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Welcome
Abandon all hope ye who enter he… I mean, thank you for purchasing the
MEAP for Write Powerful Rust Macros! I wrote this book hoping to be of
help to Rust enthusiasts who want to expand their knowledge of the language,
particularly when it comes to powerful - but difficult to master - macros. And
so the book focuses on macros, particularly the procedural kind, though we
will be exploring other topics as well.

After an introduction and overview - with examples - of declarative macros,
we start our procedural journey with a ‘Hello World’ example using a derive
macro. In the chapters after that, we will put attribute and function-like
macros into the spotlight.

Because this is an ‘advanced’ topic, I expect at least basic knowledge of the
Rust language (structs, functions, tests, lifetimes…) and its surrounding
ecosystem from the reader. I also assume you have Rust and Cargo installed
on your computer. The book will be easier to digest if you have some
professional experience as a programmer since we touch on other topics like
DDD, TDD, functional programming, etc. But if those concepts do not ring a
bell, there will usually be a note for each one, giving you the gist of it.

Writing a book is an exercise in humility. It reminds me of just how much I
don’t know, or never thought deeply about. This is especially true when your
day-to-day work as an engineer is focused on getting things working quickly
to produce value.

In any case, please, let me know if you spot mistakes, find an example that
needs a bit of work, or have suggestions that might improve the current (or
future!) chapters in Manning’s liveBook’s Discussion Forum for my book. I
appreciate your feedback.

Thanks,

—Sam Van Overmeire
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1 Going Meta
This chapter covers

What metaprogramming is
Metaprogramming in Rust
When to use macros
What this book will teach you

Macros are some of the most important and powerful tools Rust has to offer.
Because they have powers that its normal tooling (like functions) lacks, they
can serve as "a light in dark places, when all other lights go out". That of
itself is enough to make macros a core topic of this book. They have another
neat quality though: they can be a pathway to other abilities. When you want
to write a macro, you need knowledge of testing and debugging. You have to
know how to set up a library because you cannot write a procedural macro
without creating a library. Some knowledge about Rust internals,
compilation, types, code organization, pattern matching, parsing… also
comes in handy. Thus, teaching about macros allows me to talk about a
variety of other programming topics! So we will be learning about Rust
macros and using them to explore other subjects.

But we are getting ahead of ourselves. Let’s take a step back and start from
the beginning.

1.1 A day in the life of a Rust developer

You are a Rust developer, starting a new application that will accept JSON
requests containing user data, like a first and last name, and output useful
information, say the user’s full name. You start by simple adding a function
that generates a full name based on a combination of a first and last name
using format!. To turn JSON into a struct, you annotate Request with #
[derive(Deserialize)]. And you always write tests, so you add a function
for testing, annotating it with the #[test] attribute. To make sure everything



matches your expectations, you use assert_eq!. And when something goes
wrong, you either turn to a debugger or… add some logging with dbg!.

Listing 1.1 The Program You Just Wrote

use serde::Deserialize;

#[derive(Deserialize)] #1

struct Request {

  given_name: String,

  last_name: String,

}

fn full_name(given: &str, last: &str) -> String {

  format!("{} {}", given, last) #2

}

fn main() {

  let r = Request {

     given_name: "Sam".to_string(),

     last_name: "Hall".to_string()

  };

  dbg!(full_name(&r.given_name, &r.last_name)); #2

}

#[cfg(test)]

mod tests {

  use super::*;

  #[test]

  fn test_deserialize() {

    let actual: Request =

        serde_json::from_str("{ \"given_name\": \"Test\",

     \"last_name\": \"McTest\" }")

            .expect("deserialize to work");

    assert_eq!(actual.given_name, "Test".to_string()); #2

    assert_eq!(actual.last_name, "McTest".to_string()); #2

  }

}

And suddenly it dawns on you. Even when writing the simplest of Rust code,
you just cannot stop using macros. You are surrounded by the fruits of Rust’s
metaprogramming.



1.2 What is metaprogramming

In brief, metaprogramming is when you write code that will use other code as
a data input. That means you can manipulate existing code, generate
additional code, or add new capabilities to an application. To enable
metaprogramming, Rust has macros, which are a specific form of
metaprogramming. Rust’s macros run at compile time, 'expanding' into
'normal' code (structs, functions, and the like). When this process is complete,
your code is ready for the next step, like being linted, type-checked (cargo
check), compiled into a linkable library, or transformed into a - runnable -
binary by rustc.

Figure 1.1 I contain multitudes! How our simple example hides many more lines of code,
generated by macros



Rust is not the only language to offer metaprogramming capabilities. C and
Clojure also have powerful macros, with C also offering 'templates'. Java has
reflection to manipulate classes, which famously allowed the Spring
framework to develop some of its most impressive capabilities, including
using annotations for dependency injection. JavaScript has eval, a function
that takes in a string as data that will be evaluated as an instruction at
runtime. In Python, you get eval as well as better options like metaclasses
and the very popular decorators, which can manipulate both classes and
functions.



1.3 Metaprogramming in Rust

So at some point in their career, most programmers will come into contact
with a form of metaprogramming. Often to do things that would be hard to do
with 'normal' coding tools. But unless you write a lot of Common Lisp or
Clojure, where macros are very popular, on average such experiences are
bound to be limited. So why on earth should we care about metaprogramming
in Rust? Because Rust is different. Which is something you have heard too
many times before, but hear me out!

The first difference with many other languages is that, similar to Clojure, it is
hard to imagine Rust code without macros. They are used extensively in both
the standard library (think of the ubiquitous dbg! and println!) and custom
crates. At the time of writing, among the top 10 downloaded packages on
crates.io, three are for creating procedural macros (syn, quote, and proc-
macro2). One of the others is serde, where procedural macros ease your
serialization work. Or search for the keyword 'derive', which often signifies
that the package has a macro. At the time of writing (mid-2023), you will get
back over 7000 results, about 7% of all packages! In brief, in Rust macros are
not just some syntactic sugar, but core functionality.

Why are so many people writing macros? Well, in Rust they offer a very
powerful form of metaprogramming that is also relatively easy and safe to
use. Part of that safety comes from being a compiled language. Compare that
with Clojure, where macros might be easy to use (in a, in my opinion,
difficult language), but you do not get any compile-time checking. The same
can be said for JavaScript and Python. And for JavaScript, safety/security is
an important reason for the "Never use eval()" advice in the Mozilla
documentation.

Meanwhile, all of Rust’s macros are evaluated at compile time and have to
withstand the thorough checks that the language employs to verify code. This
means that what you generate is as safe as normal code, and you still get to
enjoy the compiler telling you exactly why you are wrong! Especially for
declarative macros, 'hygiene' is part of that safety, avoiding clashes with
names used elsewhere in your code. This means you get more safety than you
would get with a C macro, as these are unhygienic, allowing macros to



unintentionally reference or capture symbols from other code. They are also
less safe since they are expanded when type information is not available.
Templates are safer, though the errors you get back can be cryptic.

Another advantage of doing everything at compile-time is that the
performance impact on your final binary is in most cases negligible. You are
adding a bit of code. Nothing to lose sleep over. (Meanwhile, there is an
obvious impact on compile times, but those are annoyingly long with or
without macros.) Compare that to Java, where the aforementioned Spring
framework does a lot of reflection at startup for dependency injection. This
means performance takes a hit, and metaprogramming becomes - I’m
sounding like a broken record - less safe because you only find out if
everything works at runtime. Perhaps only when you go to production.

Finally, for me, metaprogramming can sometimes be too 'magical', with a
Spring Bean in one part of your application altering behavior in an entirely
different part. And while Rust macros may seem magical, there is less of
Spring’s, to paraphrase Einstein, 'spooky action at runtime'. That is because
macros in Rust are a) more localized and b) run at compile-time, allowing for
easier inspection and better verification.

1.3.1 Macro galore

To make the localized argument more concrete, let me introduce one of the
main protagonists of this book, the procedural macros. Procedural macros
take a piece of your code as a stream of tokens and return another stream of
tokens which will be processed together with the rest of your code by the
compiler. This low-level manipulation stands in contrast with the approach of
the better-known declarative macros (who feature in the next chapter). Those
allow you to generate code using a higher ('declarative') level of abstraction.
This makes declarative macros a safe and easy option to get started with -
even if they lack the raw power of their procedural brothers.

Note

Streams of tokens, expanding macros… As you may have guessed, we will
talk about all this in more depth in the upcoming chapters.



There are three kinds of procedural macros. First, derive macros. You use
them by adding a #[derive] attribute to a struct, enum, or union. When that
is done, the code of that struct/enum/union will be passed as an input to your
macro. This input is not modified. Instead, new code is generated as an
output. These macros are for extending the capabilities of types by adding
functions or implementing traits. So whenever you see #[derive] decorating
a struct, you know it is adding some kind of additional functionality to that
specific struct. No functionality is added to some random part of your
application. Neither is what is passed along modified in any way. Despite
these limits (or maybe because of?), these are probably the most widely used
procedural macros

Attribute macros, the second type, can be placed on structs, enums, unions as
well as trait definitions and functions. They get their name from the fact that
they define a new, custom attribute (one well-known example is #
[tokio::main]), whereas derive macros are required to use #[derive]. They
are more powerful, and thus more dangerous because they transform the item
they are decorating: the output they produce replaces the input. Whereas
derive macros were only additive, with an attribute macro the definition of
your type might change. But at least the annotation is telling you what struct
it is transforming and is not changing other code and other files.

The third kind of procedural macro is called 'function-like'. This one is
invoked with the ! operator and works with any input you pass in. That input
will disappear, replaced by what you generate as output, quite similar to
attribute macros. But unlike the others, a function-like macro is not limited to
annotating things like structs or functions. Instead, you can call it from
almost anywhere within your code. As we shall see, this can produce some
powerful magic. But - you probably already know where I am going with this
- the input of that magic is whatever you decided to pass along. Rust, once
again, seems to have found a way to take a known programming concept and
make it safe(r) to work with.

Figure 1.2 The types of macros in Rust



1.3.2 Appropriate use cases

"Ok, so since macros are so great and safe, I should use them everywhere for
everything!". Wow, slow down there straw man! Obviously, you should start
any application without turning to custom macros. Zero to Production in Rust
built an entire deployable newsletter application without ever writing a
macro. (The author uses a lot of those that are provided by the language and
its libraries though.) Structs, enums, and functions are just easier to
understand and use, plain and simple. And while macros won’t have a lot of



impact on runtime performance, they still add to compile times and binary
size. And the former is already the biggest pain point reported by Rust
developers! For small macros, like the examples in this book, that compile-
time cost is negligible. But for many 'production-grade' macros, the tradeoff
will be real - but hopefully worth it.

So when and why would you use macros? In larger applications, they might
be tempting to use for reducing boilerplate. But that might make the code
harder to understand for people unfamiliar with the project because compared
to a function, the signature of a macro gives no insight into what is
happening. In addition, your readers are bound to have more experience
mentally parsing ordinary Rust code, so even if they have to 'dive into' a
function definition, it will take them less time to get the gist of it. And
generic functions are a great tool for avoiding duplication, so they offer a
valid alternative. Similarly, generic implementation blocks - 'blanket
implementations' - are very powerful. Just look at the crazy piece of code
below, an example of the 'extension trait' pattern, combining a custom trait
with a blanket implementation. We implement our trait for everything that
implements Copy. Numbers, characters, booleans… suddenly have a new
function available. We should probably be afraid of using blanket
implementations as well as macros.

Listing 1.2 The Powers and Dangers of Generics

trait Hello {

    fn hello(&self);

}

impl<T:Copy> Hello for T {

    fn hello(&self) {

        println!("Hello world");

    }

}

fn main() {

    2.hello();

    true.hello();

    'c'.hello();

}

So, the first takeaway: avoiding boilerplate, as well as duplication, is a good



reason to use macros, but only if it doesn’t make the code hard to understand.
And if, in order to use the macro, developers often look at the
implementation, that’s bad. Consider the macros offered by the standard
library: Debug, Clone, Default, etc. They all do the grunt work for one well-
defined, repetitive task. E.g. Clone does only one thing: it makes your object
cloneable. As a bonus, a developer reading your code will immediately grasp
your intent when he sees the #[derive(Clone)} attribute. And he probably
won’t care about the actual details of how this is done. This is perfect, as it
avoids the additional mental strain involved in diving into the code. This
approach to avoiding duplication is far better than the automatic code
generation offered by some languages. Yes, code generation might help with
writing code, by adding useful boilerplate to your application. But it adds
noise and makes it harder to read the code. And writing is often not the
difficult part of programming. Making things understandable for those who
come after you is.

Note

I was reading about the Decode trait that sqlx offers and instinctively
thought: "That trait probably has a derive macro, seems like a perfect use
case". Lo and behold, there was indeed a derive available!

So look for repetitive tasks that are very easy to describe from a bird’s eye
view ("clone this, copy that, print it") and whose output will be predictable
(debug prints every property of your struct). These are often tasks with a
'universal' appeal, useful in many applications, and easy to understand. E.g.
making sure that something can be compared to others of the same kind
(PartialEq) is a common task that most developers have been confronted
with before. Functions can help fight duplication as well, but they can’t
manipulate structs or add helper methods. (Blanket implementations can, but
they are limited to working through traits.) Outside the standard library, you
can find a lot of other examples that help you avoid duplication and
boilerplate while being easy to describe and producing predictable results.
Serde allows for easy serialization/deserialization of structs. Tokio manages
the boilerplate involved in creating an async main for you.

Another reason to turn to macros, closely related to the previous category,



would be ease of use. You want to take away the uninteresting technical
details of a task that developers do not need to know about when they are
writing an application. You could argue that Serde and Tokio belong to this
category since they hide the details of serialization and asynchronous
behavior. Only rarely will you have to look under the hood of these macros,
most of the time they will 'just work'. How won’t matter. Once again, a win
for both the reader and the writer. Also worth mentioning are Clap which
hides the details - and boilerplate - of parsing command-line arguments and
Rocket, which uses macros to hide REST application complexities.

One final use case is simulating capabilities that are not available in Rust. We
will see an example of how declarative macros add varargs to the language in
the next chapter. Outside the core language, Tokio is again worth mentioning
as it enables you to have asynchronous main functions. But there are lots of
other examples in this category. Static assertions also make guarantees about
your code without ever running it, checking for instance whether a struct
implements given traits. slqx lets you write SQL strings, checks whether they
are valid at compile-time, and transforms the results into structs. Yew and
Leptos allow you to write type-checked HTML within Rust. Shuttle sets up
cloud infrastructure for you based on annotations. Obviously, a lot of these
offer validation at compile-time. After all, that is when your macro will run!
But it is also the most interesting time to check and verify before you start
doing more expensive, time-consuming things to verify your code. Like unit
testing, integration testing, end-to-end testing, or even… testing in
production. All of these have their place in modern application building.
However, when a simple cargo check can point out errors before a single
test has run, you are saving yourself a lot of time and effort. In addition, all
the things that you do at compile-time are additional performance wins for
your users.

Figure 1.3 Spectrum of testing



Besides verification, macros from this category add Domain-Specific
Language capabilities that allow you to write code in an easier, more elegant
way than would be possible with native Rust. Using macros for DSLs is also
interesting for application developers who want to enable easier expression of
ideas in a way that is closer to the language of the business experts. When
done well, this type also belongs to the ease of use category.

Domain-Specific Languages

What is a Domain-Specific Language (DSL)? The programming languages



with which we programmers are most familiar are general-purpose languages,
applicable to practically any domain. You can use JavaScript to write code
regardless of the sector you are working in. But DSLs are written with a
specific domain in mind. Think of SQL, which is designed specifically for
interacting with databases. That means the creator can focus on making
business concepts easier to express. If you were writing a language for use by
banks, you might make it very easy for developers (or even end users! a man
can dream) to write code that transfers money between accounts. A DSL can
also allow you to optimize. If you were writing one for working with DNA,
you could assume you would only need four letters (A, C, G, T) to represent
your data, which could allow for better compression (and since A always
pairs with T and G with C, maybe you would only need two options!). DSLs
come in two varieties: some are created entirely anew, and others are created
by using a general-purpose language like Rust as a base. In this book, we are
interested in the latter.

To summarize, macros are a great fit when you are confronted with a task
that has a predictable output, whose details are irrelevant to (most)
developers, and which needs to be performed frequently. Additionally,
macros are the best or only choice for extending the language and writing
elegant or complex DSLs. In other cases, you probably want to turn to
functions, structs, and enums. For example, avoiding the duplication of
filtering and mapping incoming data in two or three places calls for a
function. Not a new macro.

Note

And, finally, if you do find a good use case for a procedural or declarative
macro, do a (Google) search before you start coding. Someone may have
beaten you to the punch.

1.3.3 Unfit for purpose - when not to use macros

When it comes to inappropriate use cases for macros, two categories come to
mind. The first was mentioned already: things that you can easily accomplish
with functions. Starting with functions, and moving to macros when things
become too complicated or require too much boilerplate, is often a good idea.



Don’t try to over-engineer things. The other category where I have some
doubts is business logic. Your business code is specific to your use case and
application. So almost all publicly available macros are disqualified from the
get-go. Now you might write a custom macro for use inside your company.
But in a microservice world, sharing business code between services and
teams is often a bad idea. Your idea of a 'user', 'aircraft', 'basket', or 'factory'
within a microservice will differ from that in the next microservice. It’s a
road that leads to confusion and bugs, or customization of an already custom
macro. There are exceptions to this category though. First, in larger
codebases macros could help you avoid some rare business boilerplate.
Second, we already noted how DSLs can improve your quality of life as an
application engineer - especially in a complex domain. And macros are a
great tool for writing DSLs.

One final - but minor - point to keep in mind before we move to the next
section: IDE support for macros will always be less advanced than that for
'normal' programming. This is pretty much an unavoidable downside. With
more powerful tools come more options. That makes it harder for your
computer to guess what you can and cannot legally do. Imagine a
programming language whose only valid statement is 2 + 2 = 4. An IDE
would be incredibly helpful in pointing out mistakes ("you typed b - @? !, did
you mean 2 + 2 = 4?") and giving code completions. Now imagine a
language where everything is allowed. Does struvt Example {} have a
typo? Maybe, maybe not. Who knows? This is related to why it is harder for
an IDE to help you when you work with dynamic languages. I.e. types are
helpful for the machine too! A type system limits your options, and that can
limit the power of your language. But it can offer things like more safety,
performance, and ease of use in return.

In the case of procedural macros, one additional complexity is that your IDE
has to expand the code in the same way that Rust would. Only that way can it
tell you whether the fields or methods you think will be added by a macro are
actually there. IntelliJ, RustRover, and Visual Studio Code (to a lesser extent)
do this, as we will briefly discuss in a later chapter, but even so, their advice
can still run into trouble when expansion fails. At which point it should report
back to the user with details on what went wrong. But that is easier said than
done. Where, for example, should it point to when it comes to that error?



1.4 Approach of this book

The approach of this book can be summarized as 'example driven, step by
step'. Most chapters will have one application as a central theme to explore a
macro topic as well as other relevant themes from Rust. Starting with a
simple 'hello world', we will add layers of knowledge, piece by piece: how to
parse, how to test, how to handle errors. We will also point out common
errors that you might run into and give you some debugging hints. Finally,
chapters will briefly point out how popular crates (including those mentioned
in this chapter) use the explained techniques or accomplish specific feats.
This will give you insights into how you can apply what you have learned.
Finally, while the next chapter will give a pretty thorough overview of
declarative macros, the rest of the book will focus on the procedural ones.
Mainly because the latter are harder to use, and there is already a lot of useful
content on the former.

1.5 Exercises

Think of a recent application that you worked on. Can you think of
places where duplication and boilerplate were unavoidable? Did you
have the feeling you were lacking a tool to make the application easier
to use? Was there something that could not be done within the
constraints of the language? Hopefully, by the end of this book, you will
think of macros as one possible tool for fixing such issues.

1.6 Summary

Metaprogramming allows you to write code that generates more code.
Many languages offer some way to do metaprogramming, but these
tools are often difficult to use and not well-integrated into the language,
which can lead to hard-to-understand or buggy code.
Rust’s macros are powerful and avoid many of these shortcomings, with
a focus on safety, and without real impact on runtime performance.
Macros in Rust are 'expanded' into code checked by the compiler.
Rust has high-level declarative macros and three kinds of procedural
macros (derive macros, attribute macros, and function-like macros) that



process code as a stream of tokens.
Metaprogramming should not be your first choice when solving
problems, but it can help you avoid boilerplate and duplication, make
your applications easier to use, or do things that are difficult to do with
'normal' Rust.
This book will explore macros, all the while using them to discuss other
advanced subjects through an example-driven approach.



2 Declarative macros
This chapter covers

Writing declarative macros
Avoiding boilerplate and duplication, implementing newtypes, writing
simple DSLs, and composing functions
Understanding the lazy static crate

We will start this book in easy mode with declarative macros. These macros
consist of a syntax that will immediately remind you of pattern matching,
with a combination of matchers and transcribers. The matchers contain what
you want to match against; the transcriber has the code you will generate
when you find that match. It’s just that simple.

Note

This chapter’s focus is a broad overview of declarative macros and their
usage. This stands in contrast with the rest of this book, where we will focus
on specific topics and a limited number of examples. The reason is that
declarative macros are not the main focus of this book and I expect the reader
to know more about them than procedural macros. That means we can go
through the subject of this chapter more quickly.

2.1 Creating vectors

But wait, this was an example-driven book! That means we should drag a
first example into this. vec! is used in several beginner’s explanations of
declarative macros. We will go through a simplified implementation that
shows how the aforementioned matchers and transcribers work together to
generate the correct kind of code output for any given situation. Here’s the
code.

Listing 2.1 my_vec, our first declarative macro



macro_rules! my_vec { #1

    () => [ #2

        Vec::new()

    ]; #3

    (make an empty vec) => ( #4

        Vec::new()

    ); #5

    {$x:expr} => {

        {

            let mut v = Vec::new();

            v.push($x);

            v

        }

    }; #6

    [$($x:expr),+] => (

        {

            let mut v = Vec::new();

            $(

                v.push($x);

            )+

            v

        }

    ) #6

}

fn main() {

    let empty: Vec<i32> = my_vec![];

    println!("{:?}", empty); #7

    let also_empty: Vec<i32> = my_vec!(make an empty vec);

    println!("{:?}", also_empty); #7

    let three_numbers = my_vec!(1, 2, 3);

    println!("{:?}", three_numbers); #8

}

2.1.1 Syntax basics

You start your declaration of a declarative macro with macro_rules!,
followed by the name you would like to use for the macro, similar to how
you would create a function by writing fn followed by a function name.
Inside the curly braces, you put the desired matchers and transcribers. A
matcher and its transcriber are (similar to the syntax of pattern matching)
separated by an arrow: (matcher) ⇒ (transcriber). In this case, we have
four pairs of matchers and transcribers. Our first pair consists of an empty
matcher, represented by some empty brackets, and a transcriber whose



content is wrapped in square brackets. Squared brackets are not a requirement
though: for both matcher and transcriber you have your choice of brackets:
(), {}, and [] are all valid. You need to pick one of these three alternatives
though, as removing them entirely (e.g. () ⇒ Vec::new()) will lead to Rust
getting confused. It will start complaining about the double colons: no rules
expected the token `::. If you remove those, it becomes more helpful,
saying that the 'macro’s right-hand-side must be delimited' - i.e. by using
brackets!

Note

The alert reader will notice that every pair in the example looks a bit
different. This is only intended as a demonstration of your options regarding
brackets. Your code will look cleaner if you settle for one of these options.
Which one should you pick? Going for the curly braces can have the
downside of making your code a bit less clear if you have code blocks within
your transcriber (see the second pair). And square brackets seem to be the
less popular choice… So normal brackets are probably a good default.

Another important syntactic element is that the pairs are separated by a
semicolon. If you forget to do this, Rust will complain.

5 |     {$x:expr} => {

  |     ^ no rules expected this token in macro call

Which is its way of saying that there should not be any rules if you end a
matcher-transcriber without a semicolon. So keep adding them as long as you
have more matcher-transcriber pairs coming. When you get to your last pair,
the semicolon is optional.

2.1.2 Declaring and exporting declarative macros

A limitation to consider is that declarative macros can only be used after they
have been declared. If I had placed the macro below the main function, Rust
would complain like this:

error: cannot find macro `my_vec` in this scope

 --> src/main.rs:5:25

  |



5 |     let three_numbers = my_vec!(1, 2, 3);

  |                         ^^^^^^

  |

  = help: have you added the `#[macro_use]` on the module/import?

Once you start exporting macros, this is no longer a problem, because #
[macro_use] on top of a module or import (e.g. #[macro_use] mod
some_module;) adds the macros to the 'macro_use prelude'. In programming,
a prelude is often used as a term for the collection of things from the
language that are globally available for coding. For example: Clone (#
[derive(Clone)]) does not require an import, because it is in Rust’s prelude.
When you add a #[macro_use], the same becomes true for macros from the
chosen import: available everywhere, without an import. So the tip from the
above error message will solve the error, albeit by using a cannon to kill a
mosquito. Also, this is the 'older way' of exporting macros. But we will get to
that.

When you need to invoke your macro, you use its name followed by an
exclamation mark and arguments between brackets. Similar to the macro
itself, during invocation you can have any bracket you like, as long as it is
normal, curly, or square. No doubt you have often seen vec![], but vec!()
and vec!{} are also valid, though curly brackets do not seem to be very
popular for brief invocations. In this book, you will see me use curly braces
for multiline quote! calls though.

2.1.3 The first matcher explained

Now that we have covered the basic syntax, here is our first matcher again.

() => [

    Vec::new()

];

Since our matcher is empty, it will match any empty invocation of our macro.
So when we called let empty: Vec<i32> = my_vec!(); in our main
function, this is the matcher we ended up in, since a) Rust goes through the
matchers from top to bottom and b) we did not pass anything in within the
brackets. We said that the content of the transcriber is located between the (in
this case square) brackets, so that means Vec::new() is the code that Rust



will generate when we have a match. So in this case, we are telling it that we
want to call the new method of the vector struct. This piece of code will be
added to our application in the location where the macro was called.

That brings us back to the first call in main. Rust sees my_vec!() and thinks
"an exclamation mark! This must be a macro invocation". And since there are
no imports in our file, this is either a macro from the standard library or a
custom one. It turns out to be a custom one because Rust finds it in the same
file. With the macro found, Rust starts with the first matcher, which turns out
to be the correct one. Now it can replace my_vec!() with the content of the
transcriber, Vec::new(). So by the time you do anything with your code
(check, lint, run, etc.), let empty: Vec<i32> = my_vec!(); has already
changed to let empty: Vec<i32> = Vec::new();. A minor but important
detail: since only my_vec!() is being replaced, the semicolon at the end of the
statement remains where it is. Because of this, we did not need to add one to
our transcriber.

2.1.4 Non-emtpy matchers

Let’s turn to the second matcher, which looks like this:

(make an empty vec) => (

    Vec::new()

);

In this case, the matcher contains literal values. This means that to match this
particular 'arm' of the macro, you would need to put that exact literal value
between brackets when calling the macro, which is what we do in the second
example from our main function: let also_empty: Vec<i32> = my_vec!
(make an empty vec);. Our transcriber has not changed, so the output is still
Vec::new() and the code becomes let also_empty: Vec<i32> =
Vec::new();. In this case, the literals do not add anything interesting. But we
will see some more interesting examples later on.

The next pair is more interesting.

{$x:expr} => {

    {

        let mut v = Vec::new();



        v.push($x);

        v

    }

};

This time we are telling Rust that we want it to match any single Rust
expression (expr) and bind it to a value called x. The dollar sign preceding x
is significant, since it signifies that this is a 'macro variable'. Without it, Rust
thinks that this is just another literal, in which case there would be exactly
one match (i.e. my_vec![x:expr]). Besides expressions, which are a common
target for matching, you can also match identifiers, literals, types…

Metavariables

expr is called a metavariable in Rust lingo, or fragment specifier. The most
powerful of these metavariables is tt (TokenTree), and it will accept almost
anything you pass to it. So that’s a powerful option. But its
comprehensiveness can also be a downside. For simpler types, Rust can catch
mistakes, like when you pass in a literal while the macro only matches an
ident. Plus, with tt your matchers become less fine-grained since this one is
screaming "GIVE ME ANYTHING YOU’VE GOT". For the very same
reason, tt can be overeager. There is really a lot that will match a token tree!
This is somewhat similar to regexes. \d+, which will only capture one or
more digits, is less powerful than .*, which will capture anyone and
anything. But a limitation is also an advantage, making \d more predictable
and easier to manage. In the case of metavariables, it is advisable to start with
a more concrete type and only move up to things like tt when that proves
necessary. And if you do need it, think and test carefully.

Here is a list of all the fragment specifiers. Don’t worry, we will only use a
limited subset of these to accomplish this chapter’s goals.

block: a block expression, i.e. statements between curly braces
expr: an expression, a very wide variety of things within Rust
ident: an identifier or keyword. For example, the start of a function
declaration (fn hello) has a keyword followed by an identifier, and we
can capture them both by using ident twice
item: things like structs, enums, imports ('use declarations')…



lifetime: a Rust lifetime ('a)
literal: a literal, like a number or a character
meta: the content of an attribute, so Clone or rename = "true". You get
a good idea of what an attribute might contain in later chapters
pat: a pattern, 1 | 2 | 3 is one example
pat_param: similar to pat, except it can have | as a separator. So the
rule ($first:pat_param | $second:ident) will work, but
($first:pat | $second:ident) tells you that | is not allowed after
pat. This also means you need to do some extra work to parse 1 | 2 |
3 with pat_param (as it see 3 separate tokens instead of one)
path: a path, things like ::A::B::C, or `Self::method
stmt: a statement, for example an assignment (let foo = "bar")
tt: a TokenTree, see the above explanation
ty: a type, e.g. String
vis: a visibility modifier, pub comes to mind

Within the transcriber we are creating a new vector, adding the input
expression, and returning the entire vector, which now contains the
expression as its only element. This is basic Rust code with only two things
worth mentioning. The first is that we have to use the dollar sign within the
transcriber as well. Remember, with $ we have identified 'x' as a macro
variable. So what we are telling Rust is to push this variable, which was
bound to the input, into the vector. Without the dollar sign, Rust will tell you
that it cannot find value x in this scope. Because there is no x, only $x.

The second thing to note is the extra pair of curly braces. Without those, Rust
gives you back an error saying expected expression, found let
statement. The reason becomes clear once you try to mentally substitute the
macro call with its output. Take this example, which should match our
current rule: let a_number_vec = my_vec!(1);. We know that my_vec!(1)
will be replaced with the content of the transcriber. So since let
a_number_vec = will stay in place, we need something that can be assigned
to a let. Say, an expression. Instead, we are giving back two statements and
an expression! How is Rust supposed to give that to let? Once again, the
error sounded cryptic, but it makes perfect sense. And the solution is simply
to turn our output into a single expression. The curly braces do just that. Here
is the code after our macro has run:



let a_number_vec = {

    let mut v = Vec::new();

    v.push(1);

    v

}

Yeah, writing macros does require some thinking and (a lot of) tinkering. But
since you have chosen Rust, you know that thinking is definitely on the
menu.

We are now almost past the basics! Final matcher-transcriber pair:

[$($x:expr),+] => (

    {

        let mut v = Vec::new();

        $(

            v.push($x);

        )+

        v

    }

)

This is basically the same one as before, except with more dollar signs and
some pluses. Within our matcher, we can see that $x:expr is now wrapped
with $( ),+. That tells Rust to accept 'one or more expressions, separated by
a comma'. As a programmer, it will not surprise you to hear that in addition to
a +, you can use a * for zero or more occurrences and ? for zero or one. Like
macros, regular expressions are everywhere. A slight gotcha is that the above
will not match an input with a trailing comma. my_vec![1,2,3] will work,
whereas my_vec![1,2,3,] will not. For that, you need an extra rule (see the
exercises).

Inside the transcriber, the only thing that has changed is that a similar dollar-
bracket-plus combo is surrounding our push statement. Except this time
without the comma. Here too, this indicates repetition. 'For every expression
from the matcher, repeat what is inside these brackets'. I.e. write a push
statement for every expression that you found. That means my_vec![1,2,3]
will generate three push statements.

Note



By now it might be obvious that the third matcher-transcriber pair is covered
by the last pair. But that additional pair made it easier to explain things step-
by-step.

There are a lot of alternatives that won’t compile. For example, maybe you
were hoping that Rust would be smart enough to figure out by itself that you
want to push every expression into the vector. So you remove the $()\+ from
$(v.push($x))+ - only to be greeted by variable x is still repeating
at this depth. With 'repeating', the compiler is telling you that x contains
more than one expression, which is a problem since your code seems to
assume you only have one expression to push into the Vec.

And if you like playing around with this code, like one of my reviewers, you
will eventually discover that you can use any repetition operator you want
within the transcriber, regardless of the one in your matcher. You can do a
push with ? and * and everything will work as expected… For now at least,
since this is an open bug in Rust (see this issue for some context). If you want
to make sure your code won’t break because of this in a future version of the
language, you can add the #![deny(meta_variable_misuse)] lint to your
file. Which may, however, trigger false positives.

One final point before we end this section. What happens when you try to do
illegal things inside a macro? What if you try to mix integers and strings as
input, something a Vec cannot accept? Your IDE might not realize that
anything is amiss. After all, it’s all valid expressions being passed in! But
Rust is not fooled, because it generates 'normal' code from the 'rules' of your
macro. And that code has to obey Rust’s compilation rules. This means that
you will get an error expecting x, found y (with the names depending on
what you passed in first) if you try to mix types.

Now that you have seen the basics, we can move on to more interesting stuff.

2.2 Use cases

In this section, we will show common ways declarative macros increase the
power of applications. In some cases, their utility is straightforward: they
help you avoid writing boilerplate code, as we will see in our newtypes



example. But other examples show you how we can do things with macros
that are hard or impossible to do in any other way. Like creating Domain-
Specific Languages, fluent composition of functions, or adding additional
functionality to functions.

Let’s get started.

2.2.1 Varargs and default arguments

First, how about when we bump into the limits of functions? For example,
unlike Java or C#, Rust functions do not allow variadic arguments. One
reason might be that variadic arguments make the compiler’s life harder. Or
that it is not important enough a feature. Apparently, the discussion about
adding them to the language is very old and extremely contentious. (And the
same goes for default arguments!) Be that as it may, if you do need varargs,
there are always macros. In fact, our vector macro performs this exact trick!
Pass in any number of arguments, and Rust will generate code to handle your
needs.

If you are coming to Rust from one of the many, many languages that permit
overloading or default arguments, macros have you covered as well. An
example: I have a function for greeting and I would like it to default to
"Hello", while also allowing more creative, custom salutations. I could create
two functions with slightly different names to cover these cases. But it’s a bit
annoying that the names would differ when they offer the same functionality.
Instead, we will write a greeting macro.

Listing 2.2 Greeting people, with defaults, in greeting.rs

pub fn base_greeting_fn(name: &str, greeting: &str) -> String {

    format!("{}, {}!", greeting, name)

}

macro_rules! greeting {

    ($name:literal) => {

        base_greeting_fn($name,"Hello")

    };

    ($name:literal,$greeting:literal) => {

        base_greeting_fn($name,$greeting)

    }



}

For the first time in this chapter, our implementation is not located in the
same file as our main function. Instead, it is placed in a separate file called
greeting.rs. To use the macro outside the file with its definition, we have to
put #[macro_use] above the module declaration that we add in main.

Listing 2.3 Example usage of our greeting macro in main.rs

use crate::greeting::base_greeting_fn; #1

#[macro_use]

mod greeting; #2

fn main() {

    let greet = greeting!("Sam", "Heya");

    println!("{}", greet); #3

    let greet_with_default = greeting!("Sam");

    println!("{}", greet_with_default); #4

}

In a more complicated setup, with mod.rs importing and re-exporting
modules, you will need to put the annotation both in the 'root' (your main.rs
file) and any mod.rs files that do re-exporting. But don’t worry, Rust will
keep complaining with have you added the #[macro_use] on the
module/import? until you fix all of them. It can be tedious at times, but this
focus on keeping things private unless they are explicitly made public does
force you to think about information hiding. Alternatively, you could add a
re-export for the macro in greeting.rs, e.g. pub(super) use greeting;. In
that case the #[macro_use] won’t be required, and this is something you
might see being done in 'real' Rust code.

Note that we had to make our base_greeting_fn function public (and import
it into our main.rs). When you consider it, the reason is once again obvious:
our declarative macro is expanded in our main function. In the previous
section, we already learned that we can mentally take the content of our
transcriber and replace the invocation with that content. In this case,
greeting!("Sam", "Heya") is replaced by base_greeting_fn. And if
base_greeting_fn is not public, you are trying to invoke an unknown
function. This behavior might not be what you desire (because you might



want the macro to be the entry point to all your holiday greetings), but it is a
logical consequence of the way macros and visibility work in Rust.

2.2.2 More than one way to expand code

We interrupt this broadcast to talk a bit more about expanding, a more official
term for 'replacing with the content of the transcriber'. Because while
replacing content in your mind is great, sometimes you want to see what is
really going on. To help with that, Rust has a nice feature called trace macros
(itself a declarative macro… turtles all the way down). They are still unstable
in Rust 1.75.0, the most recent version of Rust at the time of writing, which
means you have to activate them as a feature and run your code with the
nightly build. You can do that with rustup default nightly which sets
nightly as your default. Or - if you would like to stay on stable - you can
instruct cargo to run a specific command with nightly using cargo +nightly
your-command.

The following code shows how to activate and deactivate the trace macros
feature.

Listing 2.4 Using the trace macros feature

#![feature(trace_macros)] #1

use crate::greeting::base_greeting_fn;

#[macro_use]

mod greeting;

fn main() {

    trace_macros!(true); #2

    let _greet = greeting!("Sam", "Heya");

    let _greet_with_default = greeting!("Sam");

    trace_macros!(false); #3

}

This is our code from before with the println! statements removed and calls
to trace_macros! added. With true, they are activated, with false they are
disabled. In our case, deactivation is not strictly necessary since we have
reached the end of our program in any case. Running this code will print



something like this:

--> ch2-trace-macros/src/main.rs:9:18

  |

9 |     let _greet = greeting!("Sam", "Heya");

  |                  ^^^^^^^^^^^^^^^^^^^^^^^^

  |

  = note: expanding `greeting! { "Sam", "Heya" }`

  = note: to `greeting("Sam", "Heya")`

--> ch2-trace-macros/src/main.rs:10:31

   |

10 |     let _greet_with_default = greeting!("Sam");

   |                               ^^^^^^^^^^^^^^^^

   |

   = note: expanding `greeting! { "Sam" }`

   = note: to `greeting("Sam", "Hello")`

The logs show our default at work! greeting!("Sam"); is apparently
transformed to greeting("Sam", "Hello"). How ingenious. The trace
macros feature is now doing all the substitution work for us, which can save
you a lot of mental effort.

Another occasionally useful tool is the log_syntax! macro (also unstable in
1.75.0) which allows you to log at compile time. If you have never written
macros before, you may not have considered why this might be important. As
a minor demonstration, we can add a third option to our greeting macro. This
third option uses log_syntax to tell the user what arguments were received,
calls println! to inform him that the default greeting was returned, and calls
the greeting function. All of this is wrapped in an additional pair of braces.
That is because our macro has to return a single expression to bind to let.
And by adding that second pair of braces, we create one expression by
enclosing the two statements and the expression contained in the final
transcriber.

Listing 2.5 Using log syntax

macro_rules! greeting {

    ($name:literal) => {

        base_greeting_fn($name,"Hello")

    };

    ($name:literal,$greeting:literal) => {



        base_greeting_fn($name,$greeting)

    };

    (test $name:literal) => {{ #1

        log_syntax!("The name passed to test is ", $name); #2

        println!("Returning default greeting");

        base_greeting_fn($name,"Hello")

   }} #1

}

In our main file, nothing much has changed. We have added another feature
and a macro invocation that will end up in our third matcher.

#![feature(trace_macros)]

#![feature(log_syntax)] #1

use crate::greeting::greeting;

#[macro_use]

mod greeting;

fn main() {

    trace_macros!(true);

    let _greet = greeting!("Sam", "Heya");

    let _greet_with_default = greeting!("Sam");

    let _greet_with_default_test = greeting!(test "Sam"); #2

    trace_macros!(false);

}

Now if you run this with cargo +nightly check you will see the
log_syntax! output ("The name passed to test is ", "Sam") because it is
executed at compile time. Only when we invoke cargo +nightly run will
we see both the log syntax output and the println! statements that we added
inside the macro. This difference is important for anyone debugging things
that happen at compile time. Using the former you can debug declarative
macros via print statements (objectively the best kind of debugging).
Together, these tools allow you to trace… the route from macro to expanded
Rust code. It is not the power of a real debugger, but certainly better than
nothing. A pity that you have to use nightly Rust. Later, we will see some
tooling that works with stable.

2.2.3 Newtypes

Another way declarative macros can help you is by avoiding boilerplate and



duplication. To explore that theme, we will introduce newtypes. Newtypes are
a concept from the world of functional programming. Essentially, they are a
'wrapper' around an existing value that forces your type system to help you
avoid bugs. Say I have a function that calculates pay raises. The problem with
that function is that it requires four parameters and two pairs have the same
type. That means it is easy to make stupid mistakes.

Listing 2.6 Making mistakes

fn calculate_raise(first_name: String,

                   _last_name: String,

                   _age: i32,

                   current_pay: i32) -> i32 {

    if first_name == "Sam" {

        current_pay + 1000

    } else {

        current_pay

    }

} #1

fn main() {

    let first_raise = calculate_raise(

        "Smith".to_string(),

        "Sam".to_string(),

        20,

        1000

    ); #2

    println!("{}", first_raise); #3

    let second_raise = calculate_raise(

        "Sam".to_string(),

        "Smith".to_string(),

        1000,

        20

    ); #4

    println!("{}", second_raise); #5

}

By creating unique wrappers (FirstName, LastName, Age, CurrentPay) for
our parameters the type system can keep us from making such mistakes. In
addition, our code becomes more readable because we are making everything
a bit more explicit. All of this makes this pattern popular among Clean Code
and Domain-Driven Design (see below) advocates. And hiding the 'real'



value of our parameters and giving them types with more meaning within our
domain also makes newtypes ideal for public APIs. Not only making the API
easier to understand but easier to evolve.

Type aliases

Rust also has type aliases that create an alternative name (alias) for a chosen
type. If we wanted to do this for FirstName, we would write type FirstName
= String;. This can make your code more readable to other developers, who
can now see that you desire one specific type of String, a first name. Type
aliases are often used when you have a more complex type that you want to
make easier to read and use. Crates often have one custom error that is used
everywhere. The syn crate, for example, has syn::Error. Because of this, it
is also convenient to offer a type alias for Result with the default crate error
already filled in. E.g. type Result<T> = std::result::Result<T,
syn::Error>. Now code in the package can use Result<T> for its return type.
But type aliases do not make your type system smarter: I can still pass in a
String when my function requires a FirstName type alias.

You can see an example for the FirstName newtype below. I have kept the
internal value of the wrapper private while presenting the rest of my
application with a new method. In that method I can do additional checks to
make sure a valid value was passed in, giving back an error when this is not
the case. Why would I do that? Because it will make using these types easier
in other functions that can now rely on this validation to make additional
assumptions. If there is only one way to create these wrappers, we know that
our newtype passed all its validations. In the case of FirstName I now know
that it is not empty. For Age, functions can assume validation will check that
we have, say, a positive number under 150. But even without safeguards,
newtypes have their value because they make the type system more powerful
and force you to think about the values you pass in. If a function requires a
FirstName and you are required to manually wrap your String into one,
maybe that will keep you from accidentally passing in a String called
last_name.

Note



A built-in way to mitigate mistakes for our age vs pay issue would be to
make the age parameter a u8. This would already guarantee a positive
number below 256.

Besides the constructor, we are also exposing a method get_value that will
give back an immutable reference to my value to be used, safely, by other
parts of my code. We could also add some conveniences like AsRef and
AsRefMut trait implementations, but that is beyond the scope of this example.

Listing 2.7 The FirstName newtype

struct FirstName {

    value: String,

}

impl FirstName {

    pub fn new(name: &str) -> Result<FirstName, String> {

        if name.len() < 2 {

            Err("Name should be at least two characters".to_string())

        } else {

            Ok(FirstName {

                value: name.to_string(),

            })

        }

    }

    pub fn get_value(&self) -> &String {

        &self.value

    }

}

// code for the other three newtypes

fn calculate_raise(first_name: FirstName,

                   _last_name: LastName,

                   _age: Age,

                   current_pay: Pay) -> Pay {

    // ...

} #1

Everything is a trade-off in programming. Here, one downside to our
approach is how bloated our code has become. Just to create a single
newtype, we had to write 18 additional lines of code! We can turn to macros



to reduce this overhead. Let’s start with the get_value method for the
FirstName struct.

Listing 2.8 A macro for the newtype get_value method

struct FirstName {

    value: String,

}

struct LastName {

    value: String,

}

macro_rules! generate_get_value {

    ($struct_type:ident) => { #1

        impl $struct_type { #2

            pub fn get_value(&self) -> &String {

                &self.value

            }

        }

    }

}

generate_get_value!(FirstName); #3

generate_get_value!(LastName); #3

By now, you can read this code with ease. We declare a new macro with
macro_rules! and write a single matcher-transcriber pair. The only thing that
we need to receive is the name of our struct. ident (identifier) seems like the
most suitable kind of input. Everything except this name is hardcoded in the
transcriber. Note that you can have multiple impl blocks for a struct. If this
was not the case, our macro would prevent users from implementing any
methods of their own!

So are we done? Unfortunately, no. When we try this for the next two struct,
Age and Pay, we are greeted by a compile error: mismatched types:
expected reference &String found reference &i32. Rust is right! We
were keeping things simple assuming the return type would always be
String. But that is not the case. One way to solve this issue is to make our
macro accept an additional argument, a return type override. While ident
would work, ty - which stands for 'Type' - is more suitable. String will be
the default when we only get one identifier. That way our existing code will



keep working. With this override in place, we can use the macro for Age and
Pay as well.

Listing 2.9 Making it work for other types than Strings

struct Age {

    value: i32,

}

struct Pay {

    value: i32,

}

macro_rules! generate_get_value {

    ($struct_type:ident) => {

        impl $struct_type {

            pub fn get_value(&self) -> &String {

                &self.value

            }

        }

    };

    ($struct_type:ident,$return_type:ty) => {

        impl $struct_type {

            pub fn get_value(&self) -> &$return_type {

                &self.value

            }

        }

    } #1

}

generate_get_value!(FirstName);

generate_get_value!(LastName);

generate_get_value!(Age,i32);

generate_get_value!(Pay,i32);

And so we have exchanged some 18 lines of boilerplate code for… 20? Ok,
but we can do better than that. Another nice feature of macros, one that we
have avoided using for simplicity’s sake, is that they can call themselves.
And you may have noticed that there is a lot of overlap between our two code
paths. So why not have one of our cases simply use the other? Since the
'String' pair is a special case of the other one (which can handle any type), it
makes sense for our special case to use the generic internally. So we will call
our macro and pass along the input, with String as a second argument. Rust
sees the two identifiers and knows it has to move to the second matcher.



Listing 2.10 Final version of the get_value macro

macro_rules! generate_get_value {

    ($struct_type:ident) => {

        generate_get_value!($struct_type,String); #1

    };

    ($struct_type:ident,$return_type:ident) => {

        impl $struct_type {

            pub fn get_value(&self) -> &$return_type {

                &self.value

            }

        } #2

    }

}

Figure 2.1 What happens when we call generate_get_value with only one identifier



We are now writing less boilerplate than before, all our logic for generating
get_value methods is in one place, and the more newtypes we use, the more
profit we gain from our macros. In a larger project, we could have additional
macros for additional convenience methods. And perhaps another one that
calls all the others. But that is left as an exercise for the reader.

Note

The derive_more crate is worth a mention before you start writing too much
yourself. It can automatically implement some basic traits for wrappers like



these. It uses procedural macros though, not declarative ones.

Before ending this section, I should mention that there is a Rust-specific
reason for using newtypes: orphan rules. If you want to implement a given
trait in Rust, either the trait, the type (e.g. a struct), or both should be local to
your code. This avoids all kinds of problems. If I decide to re-implement
Clone for String, what implementation should Rust prefer? In an
application, maybe it would make sense to prefer the local implementation.
But what if people write new implementations in libraries? Should Rust
prefer the Clone implementation from the standard library? Or the one from
library A, B… X?

On the other hand, sometimes these rules keep you from doing cool - eh,
useful - things. So the workaround is to wrap the non-local type (String) in a
newtype (MyString). This newtype is local, so I am free to add an
implementation of Clone to MyString. All kinds of built-in and custom
macros will make handling the boilerplate that this entails easier to bear. Oh,
and how about using declarative macros to ease the burden even further?
Like we just did!? Plus, newtypes are a zero-cost abstraction: no runtime
overhead as the compiler should optimize them out.

Finally, since we just saw how macros can call themselves: it’s important to
add that the recursive behavior of a declarative macro is not always equal to
that of a function or method. Take the below piece of code.

Listing 2.11 So you want to be a recursive superstar?

macro_rules! count {

    ($val: expr) => {

        if $val == 1 {

            1

        } else {

            count!($val - 1)

        }

    }

}

If this was a function, you would expect any invocation (e.g. counter!(1),
counter!(5)…) to return 1. Sadly, you will bump into a recursion limit
reached error at compile time instead. Add trace macros and the resulting



output is… revealing. Here are the first few lines:

= note: expanding `count! { 5 }`

= note: to `if 5 == 1 { 1 } else { count! (5 - 1) }`

= note: expanding `count! { 5 - 1 }`

= note: to `if 5 - 1 == 1 { 1 } else { count! (5 - 1 - 1) }`

= note: expanding `count! { 5 - 1 - 1 }`

= note: to `if 5 - 1 - 1 == 1 { 1 } else { count! (5 - 1 - 1 - 1) }`

$val - 1 is not evaluated, and so we never reach our terminal condition.
That is not to say that recursion with an unknown number of arguments is
impossible. See the upcoming 'compose' section for an example of how you
can make this work.

2.2.4 DSLs

Declarative macros are also good for creating Domain-Specific Languages, or
DSLs. As mentioned in the introduction, DSLs encapsulate knowledge about
the domain - that the developers have learned from domain experts - into the
application. This idea of capturing domain knowledge is related to that of a
ubiquitous language, which comes from Domain-Driven Design and argues
that communication between experts and developers is easier when they use
the same words and concepts. This leads to better code.

The goal of a DSL is to create a specialized language that is suitable to the
domain and hides irrelevant complexities. Among these complexities could
be things like additional validation and taking care of certain subtleties. Some
think that a DSL could make a codebase understandable to non-programmers
and one idea behind testing frameworks like cucumber is to write tests in a
language that the domain experts could understand. Another idea was that
experts would even be able to add their own tests using these tools! Within
the Rust ecosystem, mini-DSLs abound. And they are often created by using
macros. Two simple examples from the standard library are println! and
format!, which offer a special syntax using curly braces to determine how to
print specified variables.

As an example, we will write a DSL for handling transfers between accounts.
First, we create an Account struct that contains the amount of money in our
account. It also has methods for adding and removing money from the



account. We only want positive amounts (hence the use of u32) but handling
accounts going into the negative is beyond scope. Account also derives
Debug. A good idea in general, though our motivation here is simply to print
some outcomes.

Listing 2.12 The Account structure

use std::ops::{Add, Sub}; #1

#[derive(Debug)]

struct Account {

    money: u32,

}

impl Account {

    fn add(&mut self, money: u32) {

        self.money = self.money.add(money)

    }

    fn subtract(&mut self, money: u32) {

        self.money = self.money.sub(money)

    }

}

Now check out the exchange macro below, which presents users with a mini-
DSL. As you can see, this macro allows us to use natural language,
understandable to outsiders, to describe actions. And when the macro does
not understand a command, it will complain about this at compile time. Also,
when transferring money between two accounts (third pair), we are hiding the
complexity of a transaction from the DSL user.

Listing 2.13 This macro presents a mini-DSL for exchanging money

macro_rules! exchange {

    (Give $amount:literal to $name:ident) => {

        $name.add($amount)

    };

    (Take $amount:literal from $name:ident) => {

        $name.subtract($amount)

    };

    (Give $amount:literal from $giver:ident to $receiver:ident) => {

        $giver.subtract($amount);

        $receiver.add($amount)



    }; #1

}

fn main() {

    let mut the_poor = Account {

        money: 0,

    };

    let mut the_rich = Account {

        money: 200,

    };

    exchange!(Give 20 to the_poor); #2

    exchange!(Take 10 from the_rich); #2

    exchange!(Give 30 from the_rich to the_poor); #2

    println!("Poor: {:?}, rich: {:?}", the_poor, the_rich); #3

}

And there is no need to stop here. You could add currency types and
automatically convert them. Or you could have special rules for overdraft.
Good testing is needed to make sure that your macro scenarios do not 'collide'
with each other though. (Where you think you will land in matcher X, but
you end up in Y.) To give a simple example, the below macro is meant for
giving money to the poor and berates people who don’t give anything. We
call our macro and… are complimented for giving nothing. That’s because
the first clause accepts any literal, which includes zero. And since the macro
checks the matcher in order and always matches the first more general clause,
the second one is never reached.

Listing 2.14 A faulty wealth-transfer macro

macro_rules! give_money_to_the_poor {

    (Give $example:literal) => {

        println!("How generous");

    };

    (Give 0) => {

        println!("Cheapskate");

    };

}

fn main() {

    give_money_to_the_poor!(Give 0); #1

}



The solution - in this case - is simple. Just switch the order of the cases! The
underlying rule is: write macro rules/matchers from most-specific to least-
specific. This rule also applies to pattern matching with match, though the
order is not enforced by the compiler which only produces a warning. (Try
putting the catch-all _ before other matches.) More worrisome, ignoring this
rule still results in a valid macro implementation according to Rust, which
won’t even produce a warning. So static checks are insufficient to root out
these bugs, and you should test all your 'branches'.

2.2.5 Composing is easy

Besides avoiding boilerplate, macros also help us do things that are inelegant,
hard, or even impossible to do in plain old Rust. (And you could see DSLs as
a specific example of this more general category.) Take composition, which
is a common feature of functional programming and a design pattern in
object-oriented programming. Composition allows you to combine simple
functions into bigger ones, creating larger functionality from smaller building
blocks. This is a very interesting way to build applications when you want to
keep your functions simple, understandable, and easy to test. And it is useful
as a way to combine components in a paradigm that avoids object
interactions for application building. To make things more concrete: say we
have functions to increment a number, to change a number to a string, and to
prefix a string. These three are shown below.

Listing 2.15 Three simple functions

fn add_one(n: i32) -> i32 {

    n + 1

}

fn stringify(n: i32) -> String {

    n.to_string()

}

fn prefix_with(prefix: &str) -> impl Fn(String) -> String + '_ {

    move |x| format!("{}{}", prefix, x)

} #1

The pseudocode below shows how we would like to compose these
functions, similar to how it works in other languages. We pass our three



functions to compose and get back a new function that expects one input. That
input is the same type as the parameter of the first function we passed in. In
our case, that function is add_one, which expects an i32. Internally, our
composed will pass this argument to add_one, which will output an
incremented number. That incremented number is given to the next function,
stringify, which turns the number into a string. Finally, this string is passed
to prefix_with. Since this last function needs two arguments, both a prefix
and an input string, we already passed in a prefix. In functional lingo, the
function has been partially applied.

fn main() {

    let composed = compose(

        add_one,

        stringify,

        prefix_with("Result: ")

    );

    println!("{}", composed(5)); #1

}

And you are not limited to a few functions! You can keep adding more, as
long as they accept a single parameter that matches the output of the previous
function and return a value that the next one accepts.

Note

In some implementations, the order in which compose calls the functions
might be reversed, i.e. from the rightmost argument to the leftmost. In that
case, you first give it the last function it should call, and end with the first!

But how do we write this compose? We will start simple with two input
functions. No macros are required to make this work, just a lot of generics.
compose_two (see the code in listing 2.15) requires two functions as
parameters, both of which take a single parameter and return a result. The
second one has to take the first one’s output as its single input:

Fn(FIRST) -> SECOND

Fn(SECOND) -> THIRD

For easier reading, we can put these in a where clause, binding to generics F



and G: where F: Fn(FIRST) → SECOND, G: Fn(SECOND) → THIRD. We also
return a function that takes the first function’s input and has an output equal
to the second one’s output:

Fn(FIRST) -> THIRD

Compared to the signature, the implementation is simple: it’s a closure that
takes one argument (our generic 'FIRST'), gives it to our first function, and
gives that output ('SECOND') to our second function, which will produce the
final result ('THIRD'). Because of the closure, we add impl to our return type,
since every closure is unique and won’t match a normal generic function
type.

Listing 2.16 A function to compose two functions

fn compose_two<FIRST, SECOND, THIRD, F, G>(f: F, g: G)

    -> impl Fn(FIRST) -> THIRD #1

    where F: Fn(FIRST) -> SECOND, #2

          G: Fn(SECOND) -> THIRD #3

{

    move |x| g(f(x)) #4

}

fn main() {

    let two_composed_function = compose_two(

        compose_two(add_one, stringify),

        prefix_with("Result: ")

    ); #5

}

So that is the first step. How would we go about making this work for
multiple functions? One approach that I have occasionally seen in other
languages: just write an implementation for the most common number of
arguments: compose_three, compose_four… up to compose_ten. That
should cover 90% of all cases. And if you need more, you could also start
nesting the existing implementations (a compose_ten within a compose_ten).
It is a decent workaround. And it is hard to do better with plain Rust tooling.
Say I decided to write a compose with a vector of functions as a parameter. I
would need some way to tell the compiler that each function in this vector
takes the previous output as input if I want my code to compile. That’s hard
to express in Rust.



But expressing this idea in a declarative macro is trivial. Let’s go through it
step by step. If our compose macro receives a single expression, a function, it
returns that expression. A simple base case. If the macro is invoked with two
or more arguments (note the + after $tail which is for when there is more
than a single expression in our tail) we need recursive magic. What we do is
call our compose_two and pass in the two required arguments. The first is the
first function we receive, head. The second is the result of calling our
compose macro again, this time on the remaining arguments. If this second
compose invocation receives a single expression, we end up in the first
matcher, and we only have to compose two functions with a simple
compose_two call. In the other case, we end up in our second branch - again -
and return a function that is the result of compose_two - again. This is, in fact,
what we suggested doing manually with nesting! Except now the macro takes
care of everything in the background.

Listing 2.17 Compose macro

macro_rules! compose {

    ($last:expr) => { $last };

    ($head:expr,$($tail:expr),+) => {

        compose_two($head, compose!($($tail),+))

    }

}

fn main() {

    let composed = compose!(

        add_one,

        stringify,

        prefix_with("Result: ")

    );

    println!("{}", composed(5)); #1

}

Figure 2.2 Compose macro with three functions, creatively called F1, F2 and F3



Commas are not the only way to separate the arguments that you pass to your
macro. Similar to the brackets, you have some alternatives. In the case of
expr, you can also go for a semicolon or an arrow. But if you’re a Haskell
fan, and you would like to compose using periods, that won’t do. You will
get an error that says $head:expr is followed by '.', which is not
allowed for expr fragments. Other macro input types, like tt, have more
options though.

Listing 2.18 Alternative with arrows separating the inputs to the macro



macro_rules! compose_alt {

    ($last:expr) => { $last };

    ($head:expr => $($tail:expr)=>+) => {

        compose_two($head, compose_alt!($($tail)=>+))

    } #1

}

fn main() {

    let composed = compose_alt!(

        add_one => stringify => prefix_with("Result: ")

    ); #2

    println!("{}", composed(5));

}

2.2.6 Currying on the other hand

Suppose you are now hooked on a functional style of Rust, but you find the
'one input' requirement of compose an annoyance. Because in reality, you
often have functions that require multiple parameters to be passed in at the
same time. And composition can’t handle that. Luckily, you find out that
there is something called currying, which takes a function with multiple
arguments and turns it into multiple functions each taking one parameter. E.g.
currying turns

Fn(i32, i32) -> i32

into

Fn(i32) -> Fn(i32) -> i32

That makes partial application of functions - i.e. supplying only a part of all
the arguments that a function needs - easier. Which in turn makes composing
easier. So you would like to make this possible in Rust. And after your
positive experience with composing, you think declarative macros are the
way to go.

You would soon discover that currying with declarative macros is harder,
though. One issue is the lack of 'visibility' of the function’s signature: what
does it require as parameters and what does it return? Going back to our
previous approach, we could start with the easiest case, a curry2 function for
changing a function with two arguments into a curried version. Now all I



have to do is recursively call this function. But how many times should I
(well, the macro) call it? Without access to the signature, I’m in the dark,
whereas with composing I knew how many calls had to happen because the
functions were given to my macro as arguments.

So whereas composing was trivial, currying is hard. And while explicitly
passing in details would help, that is exactly the kind of busywork we are
trying to avoid. Because they are explicit about their number of arguments,
closures are easier. And so there’s a crate for currying them. Take a look at
the simplest rule in that crate.

macro_rules! curry {

    (|$first_arg:ident $(, $arg:ident )*| $function_body:expr) => {

       move |$first_arg| $(move |$arg|)* {

          $function_body

       }

    };

    // ...

}

This matcher expects one or more identifiers within pipes (| |), followed by
an expression. Take the call curry!(|a, b| a + b); as an example. a and b
are our two identifiers and a + b is our expression. All the transcriber has to
do is add a move for each of these identifiers and pass them to the function. In
our example, this becomes move |a| move |b| a + b;. Suddenly, we have
two closures, each of which takes one argument. But again, this works
because everything you need to know is passed in as an argument. Normal
functions have this information in their signature, making good solutions
harder (though probably not impossible). Instead, as this blog post shows,
procedural macros offer the right tools for the job. And while its result is
more complicated and has more lines of code than the average declarative
macro from this chapter, the actual solution is still decently short: under a
hundred lines.

2.2.7 Hygiene is something to consider as well

You should be aware that not everything you generate will be added 'as-is' to
your code because declarative macros have a concept of hygiene for
identifiers. Simply put, identifiers inside your macro will always be different



from those in code outside the macro, even if their names overlap. Which
means a number of things are impossible. For example, I cannot let
generate_x!() output let x = 0 and then increment that named variable in
my ordinary code. If I try that, Rust will complain that it cannot find value
x in this scope. That’s because the x I initialized in my macro is not the x
I am trying to increment in my application.

The way I am presenting this, hygiene sounds like a bad thing. But it is useful
as a safeguard against contamination. A difference in intent is something to
consider. If I am getting an identifier via my input and writing an
implementation block, I want to affect code outside of the macro. Else what
would be the point of that implementation? But identifiers created within my
macro can serve other goals. Maybe I want to perform a calculation? Or push
things into a vector. That stuff is independent of what I am doing outside the
macro. And since developers often go for variable names that are easy to
understand, there is a chance that a user of my macro will have the same
variable name(s) in his own code. So when you see compiler errors around
'unresolved' and 'unknown' identifiers that are somehow related to macro
code, remember this behavior. And if you want to have an effect on an
identifier, just pass it into the macro as an argument.

2.3 From the real world

Once upon a time, there was no good built-in way to create lazily initiated
static values in Rust. But lazy statics are useful for several reasons. For one,
maybe the value inside your static requires a lot of computation. If it turns out
the value is never needed, you never pay its initialization price. Another
advantage is that the initialization happens at runtime, which has some
additional options on top of those available at compile time. (Yes, this
contradicts the preference for compile-time stuff that often bubbles up in this
book. As always in software: it depends. Compile time work makes things
safer and faster. But at runtime, you can do some things you could not do
during compilation.) Seeing this lack, Lazy static jumped in and filled a need.
Nowadays, though, once_cell can be used for 'initialization of global data'.
So Lazy static is no longer the recommended crate for this type of
functionality. But that doesn’t mean its code is not interesting anymore!



Listing 2.19 Lazy static example from the documentation

lazy_static! {

    static ref EXAMPLE: u8 = 42;

}

At the very root of the crate is the lazy static macro. A #[macro_export]
makes sure we can use it outside this file. The matchers can have meta, i.e.
metadata, optionally (note the asterisk) passed in and the static is literally
required as an input. A static also has an identifier, a type, an initialization
expression as well as some optional additional info (thrown together in
TokenTrees). Most of the incoming variables are simply passed on to an
internal macro called __lazy_static_internal. But to avoid parsing
ambiguity, () is added as an indicator of the (default) visibility modifier. In
some other matchers of the macro, (pub) is passed along instead to indicate
public visibility.

Listing 2.20 Lazy static macro entrypoint, simplified slightly

#[macro_export]

macro_rules! lazy_static {

  ($(#[$attr:meta])* static ref $N:ident : $T:ty =

 $e:expr; $($t:tt)*) => {

    __lazy_static_internal!($(#[$attr])* () static ref $N :

 $T = $e; $($t)*);

    };

    // other arms...

}

Most of the implementation is hidden inside the internal macro, shown
below. You could call the @MAKE TY and @TAIL a mini (nano?) DSL. It is used
to make sure the other matcher-transcriber pairs within the macro are called,
a pattern that appears in The Little Book of Rust Macros. The first of these
two additional arms (@MAKE TY) is, as the name indicates, responsible for
creating the type, which is just a struct with an empty internal field, decorated
with the original metadata that was passed in (so those don’t get lost). The
second arm (@TAIL) creates a Deref and initialization. This is where the
magic happens. If you need your lazily initialized static somewhere in your
code, you will dereference it as soon as you start using it. At that point will
the initialization expression that you provided run. You can see that



expression ($e) being passed to the __static_ref_initialize function
within the deref method. Underneath it all, Once from the spin library is used
to make sure this initialization only happens one time. This is done in the
lazy_static_create macro, which is called inside the generated deref.

Listing 2.21 Lazy static internal, again simplified

macro_rules! __lazy_static_internal { #1

    ($(#[$attr:meta])* ($($vis:tt)*) static ref

     $N:ident : $T:ty = $e:expr; $($t:tt)*) => { #2

        __lazy_static_internal!(@MAKE TY, $(#[$attr])*,

 ($($vis)*), $N); #3

        __lazy_static_internal!(@TAIL, $N : $T = $e); #4

    };

    (@TAIL, $N:ident : $T:ty = $e:expr) => { #4

        impl $crate::__Deref for $N {

            type Target = $T;

            fn deref(&self) -> &$T {

                fn __static_ref_initialize() -> $T { $e }

                fn __stability() -> &'static $T {

                    __lazy_static_create!(LAZY, $T);

                    LAZY.get(__static_ref_initialize)

                }

                __stability()

            } #5

        }

        impl $crate::LazyStatic for $N { #6

            fn initialize(lazy: &Self) {

                let _ = &**lazy;

            }

        }

    };

    (@MAKE TY, $(#[$attr:meta])*, ($($vis:tt)*),

 $N:ident) => { #3

        $(#[$attr])*

        $($vis)* struct $N {__private_field: ()}

        $($vis)* static $N: $N = $N {__private_field: ()};

    };

}

macro_rules! __lazy_static_create { #1

    ($NAME:ident, $T:ty) => {

        static $NAME: $crate::lazy::Lazy<$T> = $crate::lazy::Lazy::INIT;

    };

}



There, now you know like 80% (citation needed) of how the lazy static crate
works!

2.4 Exercises

Fill in the question marks (???) and make the following declarative
macro compile:

macro_rules! ??? {

    ??? => {

        impl $something {

            fn hello_world(&self) {

                println!("Hello world")

            }

        }

    };

}

struct Example {}

hello_world!(Example);

fn main() {

    let e = Example {};

    e.hello_world(); // prints "Hello world"

}

In our first declarative macro example we use expr in some of our
matches. But that was not our only option. Try to replace that with
literal, tt, ident, or ty. Which ones work? Which don’t? Do you
understand why?
Add a matcher to my_vec that allows for trailing commas. Try to avoid
code duplication. If you need help, take a look at the vec macro from the
standard library for inspiration.
Another thing I like for newtypes is convenient From implementations.
Write a macro that generates them for our four newtypes. Alternatively,
you can go for TryFrom since that is a more suitable choice when input
validation is required.
Now that we have two macros, we could make our lives even easier by
creating a third macro, generate_newtypes_methods, that calls our
existing two macros behind the scene.
Expand our Account example with dollar and euro currencies. You can



use a hardcoded exchange rate of 2 dollars to 1 euro. All existing
commands will require a currency type.
In the upcoming procedural chapters, ask yourself: could I have done
this with a declarative macro? Why not? What would be hard to do?

2.5 Summary

Declarative macros are the first group of macros that Rust has to offer.
They consist of one or more pairs of matchers and transcribers.
The matcher has to match the content that was passed into the macro
when it was invoked.
If there is a match, the code inside the transcriber will be written to
where the macro was invoked.
Pieces of input can be captured in the matcher and used in the
transcriber.
Macros can call themselves, to avoid duplication and to allow for more
complex scenarios.
To use macros outside the file where they were defined, you will need to
export them.
Declarative macros have hygiene, which means local identifiers do not
collide with external ones.
There are several use cases for declarative macros: avoiding duplication
and boilerplate is a major one. Another is doing things that are hard - or
impossible - to do otherwise, like default arguments, varargs, or DSLs.
If declarative macros fall short, you still have procedural macros waiting
in the corridor to assist you with even more powerful weapons.



3 A 'hello world' procedural macro
This chapter covers

Setting up a procedural macro
Getting the name of a struct by parsing a stream of tokens
Generating hardcoded output
Using variables in generated code
Inspecting generated code with cargo expand
Writing a macro without help from syn and quote
Understanding how Rust’s internal macros are different

We now come to the meat of our book, procedural macros. As we explained
earlier, both procedural and declarative macros are forms of
metaprogramming and allow you to manipulate and extend code. But they go
at it differently. Declarative macros offer a DSL that allows you to generate
code based on a combination of matchers and transcribers. Procedural
macros, on the other hand, deal with lower-level information. They receive a
stream of tokens containing every detail of the code you want to work with.

In my mind, the difference between declarative and procedural macros - and
when you should use them - is a bit like SQL and general-purpose
programming languages when it comes to querying databases. SQL is
powerful, expressive, and user-friendly. It should be your first choice for
querying. But at a certain level of complexity and for some kinds of tasks, it
breaks down. It becomes complicated, difficult to read and extend. At that
point, it can be worthwhile to replace SQL with a general-purpose language.
Querying might require more effort and setup, but you will have more
options and power. So the advice here is to start with declarative macros.
They are simple, powerful, require only minimal setup, and have better IDE
support to boot. If you want to do things that declarative macros can’t (for
example: manipulating existing structs), you should turn to procedural
macros.



3.1 Basic setup of a procedural macro project

We start simple, with a macro that adds a "hello world" printing method to a
struct or enum. Adding new functionality to a struct is a good use case for a
derive macro. On the other hand, if we wanted to change existing code, we
would have to look elsewhere, since these macros are incapable of doing that.
Derive macros are activated by adding the #[derive] annotation to your
code, putting the name of the macro between brackets. No doubt you have
encountered these annotations before when you wanted to add Debug (#
[derive(Debug)]) or Clone (#[derive(Clone)]) functionality to your code.

Figure 3.1 Basic setup of a procedural macro project



Creating a procedural macro takes some work. So bear with me while we go
through the setup. First, we need a hello-world directory with another
directory called hello-world-macro inside the former. In hello-world-
macro we will put the macro project, in the root we will add an application.

Figure 3.2 Our project structure



You are probably used to creating new Rust projects with cargo init
However, for our macro, we do not need an application but a library.
Developers that want to use our macro will import our library as a
dependency. So run cargo init --lib in the hello-world-macro
subdirectory of the project.

We have to modify the generated Cargo.toml. The most important change is
adding a lib section, with the proc-macro property set to true. This tells
Rust that this library will expose one - or more - procedural macros, and will
make some tooling available to us. We also want to add quote and syn as



dependencies. These are not strictly required, but they will make our lives
much easier.

Listing 3.1 The Cargo.toml file from hello-world-macro, containing the lib section and two useful
dependencies

[package]

name = "hello-world-macro"

version = "0.1.0"

edition = "2021"

[dependencies]

quote = "1.0.33"

syn = "2.0.39"

[lib]

proc-macro = true

Note

We do not require any Cargo workspaces to get this working, though we will
see examples of such a setup later on.

Inside the automatically generated lib.rs file, we add a basic
implementation that does not really do anything yet. We will discuss the code
in the next section. For now, let us continue our setup.

Listing 3.2 The initial lib.rs file from our hello-world-macro library

use quote::quote;

use proc_macro::TokenStream;

#[proc_macro_derive(Hello)]

pub fn hello(_item: TokenStream) -> TokenStream {

    let add_hello_world = quote! {};

    add_hello_world.into()

}

The library is now ready. In the outer hello-world directory, we will set up a
Rust example application with cargo init. This time, we add a dependency
on the macro library we just created using a relative path. The name of the
dependency is important and should match the name of the package you are



importing (the path and directory name can be different though). Try
renaming it to 'foo-bar', and do a cargo run. You will get something like
error: no matching package named foo-bar found. Since our application
is located one level 'above' the macro directory, in the root of the project, our
path is './hello-world-macro'. Some later chapters will have a nested directory
for both the application and library. In that case, we will have to go up one
level (path = "../a-future-macro").

Listing 3.3 The Cargo.toml file from our outer Rust application

[package]

name = "hello-world"

version = "0.1.0"

edition = "2021"

[dependencies]

hello-world-macro = { path = "./hello-world-macro" }

Finally, modify the default main.rs. You should now be able to compile and
run your application with cargo run. It currently prints nothing (except for a
warning that Example is never constructed).

Listing 3.4 The initial main.rs file from the outer application

#[macro_use]

extern crate hello_world_macro;

#[derive(Hello)]

struct Example;

fn main() {}

Note

If you don’t like this setup or all the manual work, you could use cargo
generate which has a template for generating macro setups. For learning
purposes, setting things up manually at least once is advisable. But once
you’ve got the hang of it, you can use the util/create_setup.sh script in
the code repository, which automatically sets up projects in the various styles
used in this book.



3.2 Analyzing the procedural macro setup

Now let us analyze the setup. The nested directory with lib.rs is the only
piece of code we really need.

use quote::quote;

use proc_macro::TokenStream;

#[proc_macro_derive(Hello)] #1

pub fn hello(_item: TokenStream) -> TokenStream {

    let add_hello_world = quote! {}; #2

    add_hello_world.into() #3

}

Below the import of dependencies, we have #[proc_macro_derive(Hello)].
This is an attribute, a piece of metadata that informs Rust that something
should happen. In our case, it tells Rust that this function is an entry point to
a derive macro. This annotation requires a name between parentheses - 'Hello'
in our example - which will be used when invoking the macro: #
[derive(Hello)]. The name of the function, on the other hand, is not used
externally. So pick anything you want.

Figure 3.3 The signature of a derive macro



Moving on: the function signature. It has a single parameter of type
TokenStream, which we are not using yet. Therefore, it has been prefixed
with an underscore. In earlier chapters, we already mentioned how procedural
macros operated on a stream of tokens, a representation of the code that we
want to modify, a struct for example. Everything there is to know about that
struct will be contained inside this TokenStream. Meanwhile, the
TokenStream that we are returning will be used by Rust to generate additional
code.

Briefly about parsing and tokens



Here is a high-level overview of what Rust does when you tell it to compile
your application. (And I am not an expert on the details.) There are two steps
involved: lexing and parsing. Lexing - also called tokenization - is the first
step and is used to turn your code as a raw text stream into a stream of
tokens. For example: pass the expression 1 + 11 to a macro and the resulting
stream will look like this (ignoring 'spans' and 'suffixes' for now):

TokenStream [Literal { kind: Integer, symbol: "1" }, Punct { ch:

'+', spacing: Alone }, Literal { kind: Integer, symbol: "11" }]

Our raw text has been turned into three tokens (the two numbers and the +
sign).

Parsing turns this information into an Abstract Syntax Tree or AST, a tree-
like representation of all relevant data in your program. This AST makes it
easier for the Rust compiler (as well as compilers in other languages) to do its
work, i.e. creating an executable that computers can understand. In the above
example, an AST might interpret the plus sign as the root, with the two
Literals (numbers) as its branches.

Meanwhile, 'spans' are used to link back to the original text - which is useful
for things like error messages. Once the AST has been constructed, macros
can be processed by the compiler.

While these are interesting little facts, you do not need to know the details of
this process to write procedural macros. The most important takeaway is that
Rust gives us code as parsed tokens. In return, we graciously give back
information in the same format. Rust knows how to use these tokens. After
all, all 'normal' code is also turned into tokens! Which means it is easy to turn
your tokens into additional application code.

You can find more information in the Rust Compiler Development Guide,
https://veykril.github.io/tlborm/ [The Little Book of Rust Macros], and The
Rust Reference.

This brings us to the body of our function, where we are calling the quote
macro from the dependency with the same name. Right now we are not
passing any parameters into quote, which means we are generating an empty



Tokenstream. Because quote is actually using the proc_macro2 TokenStream
(a wrapper around the built-in type), we still have to use the Into trait to
transform it into a 'normal' proc_macro TokenStream:
add_hello_world.into(). So the end result is a macro that… generates
nothing. Zero runtime overhead would be the marketeer’s pitch for this
version of our library. But there is no obligation for a macro to generate code,
so this is acceptable to Rust.

Now take a look at main.rs.

#[macro_use]

extern crate hello_world_macro; #1

#[derive(Hello)] #2

struct Example; #3

fn main() {}

The first two lines tell Rust that we will want to use macros from this
dependency, similar to how we import declarative macros. (Note that this
time we need to specify the dependency using underscores. In our
Cargo.toml we used hyphens.) This is the older style for importing
procedural macros. Nowadays, you can also import them with a use one-
liner, e.g. use hello_world_macro::Hello;. In this chapter, we primarily
use the older style, which is still used in a lot of crates and therefore still
worth knowing. But in the subsequent chapters, we will switch to the newer
(Rust 2018) style.

Next, the #[derive(Hello)] attribute tells Rust to run our derive macro
named 'Hello' for the Example struct, passing that struct along as an input of
type TokenStream. The (currently empty) output code will be added to our
main.rs file.

Earlier we said that the outer application was not strictly necessary. Instead, it
is a convenience, a 'consumer' that helps us verify that our code compiles.
This is useful because Rust’s compiler will not catch errors in code generated
by your library. To make this more concrete, say you make a typo when
adding the parameter for the derive macro function and write TokenStrea. If
you run cargo check, Rust will point out that the TokenStrea does not exist.



Failure prevented! But what if we write invalid Rust within the quote macro
invocation?

#[proc_macro_derive(Hello)]

pub fn hello(item: TokenStream) -> TokenStream {

    let add_hello_world = quote! {

        fn this should not work () {}

    };

    add_hello_world.into()

}

Running cargo check inside our macro library will still work. But when we
do a check in the outer application, we get an error:

error: expected one of `(` or `<`, found `should`

 --> src/main.rs:4:10

  |

4 | #[derive(Hello)]

  |          ^^^^^ expected one of `(` or `<`

  |

  = note: this error originates in the derive macro `Hello`

Apparently, Rust thinks that fn this means we want to create a function
called this. A function and its name are followed by either parenthesis
containing the parameters or generics (which are surrounded by <>). Instead,
the word should appears… The lesson here is that cargo check inside your
procedural macro library will only check for mistakes in your library code,
not in the code it generates.

This makes sense because within the library we are not using the generated
code. All Rust cares about, is that we declared TokenStream to be the return
type of our function. And as long as we return any stream of tokens, even an
invalid one, it is happy. Even if it did care, the compiler has no way of
knowing in what context your generated code will be used, which makes
checking hard. So instead we use a simple application with a basic usage
example to generate code and force the compiler to stop being lazy and do
some work. In later chapters, we will turn to tests for asserting the proper
working of our macro.

3.3 Generating output



So how about actually producing some code? Start by adding the following to
lib.rs:

Listing 3.5 Parsing the input and producing hardcoded output

// earlier imports

#[proc_macro_derive(Hello)]

pub fn hello(_item: TokenStream) -> TokenStream {

    let add_hello_world = quote! {

        impl Example {

            fn hello_world(&self) {

                println!("Hello world")

            }

        }

    }; #1

    add_hello_world.into()

}

We are still not doing anything with the incoming tokens. But we are using
quote to generate new code. Right now that new code is a hardcoded
implementation block for the Example struct we added to main.rs. This
means we can now call this method and the below code should run. Do
remember that the target for cargo run should be the application. Else you
will get a bin target must be available for cargo run since a library
cannot be executed.

Listing 3.6 Calling our generated function in our main file

// the macro import

#[derive(Hello)]

struct Example;

fn main() {

    let e = Example {};

    e.hello_world();

} #1

The only downside is that our code only works for structs named 'Example'.
Rename the struct and Rust will complain that it cannot find type Example



in this scope as it can’t match the implementation block to an existing
type. The solution is to retrieve the name of the struct from the incoming
tokens and use it for the impl that we are generating. In the terminology of
macros, both declarative and procedural, this name is an identifier. And since
our tokens represent the code that we decorated (a struct and its contents) we
will need the topmost identifier. Once we have the name, we can combine it
with quote to produce more interesting output.

Listing 3.7 Parsing the input and using it in our output

use quote::quote;

use proc_macro::TokenStream;

use syn::{parse_macro_input, DeriveInput};

#[proc_macro_derive(Hello)]

pub fn hello(item: TokenStream) -> TokenStream {

    let ast = parse_macro_input!(item as DeriveInput); #1

    let name = ast.ident; #2

    let add_hello_world = quote! {

        impl #name { #3

            fn hello_world(&self) {

                println!("Hello world")

            }

        } #4

    };

    add_hello_world.into()

}

We start by parsing the input tokens into an Abstract Syntax Tree by using
parse_macro_input, provided by the syn crate. syn offers a lot of tools to
help you parse Rust tokens, and this declarative macro is one tool in its
arsenal. The 'as DeriveInput' is a bit of custom syntactic sugar. Behind the
scenes, the argument after 'as' is used to determine the type that will be
generated. We have gone for DeriveInput. As the name suggests, this is any
kind of input that you might get when writing a derive macro. So it basically
contains either an enum or a struct.

Once we have the DeriveInput, we can get the name of the struct by
retrieving the topmost ident(ifier), which we save in a variable called name. If
we want to use name in our output, we need a special syntax to tell quote that



this is not a literal value but should be replaced with the content of a variable
with a matching name. You can do that by prefixing the name of your
variable with a hashtag, i.e. #name. Which, in our case, will be replaced with
the identifier 'Example'. As you can see, generating output with quote is
delightfully easy.

Figure 3.4 Using the name variable in quote for our Example struct

Run the code again, it should produce the same output as before, even if you
change the name of your struct!



3.4 Experimenting with our code

Now let us run some experiments. Does our macro work with enums? Yes!
Add the following to main.rs.

Listing 3.8 Invoking our macro for an enum

// previous code

#[derive(Hello)]

enum Pet {

    Cat,

}

fn main() {

    // previous code

    let p = Pet::Cat;

    p.hello_world();

}

How about functions? Unfortunately, no. Not only because impl cannot be
used for functions, but also because derive is not allowed for functions. The
error brings this point across quite clearly: derive may only be applied to
structs, enums and unions.

Note

Though unions are a valid derive target, they do not feature in this book.
Mostly because they are much less ubiquitous than structs and enums,
existing almost solely for compatibility with C over FFI.

Would our generated code overwrite existing implementation blocks?
Thankfully no. As we mentioned in an earlier chapter, Rust supports multiple
impl blocks. So this works:

Listing 3.9 Multiple implementation blocks

// earlier code

impl Example {



    fn another_function(&self) {

        println!("Something else");

    }

}

fn main() {

    let e = Example {};

    e.hello_world();

    e.another_function();

    // other code

}

Other things might still go wrong though. For example, if you were to define
an additional hello_world function, you would get an error duplicate
definitions for hello_world. You’d better hope no users of your macro
will ever think to add a function with that name! Name overlap is a real risk -
and something we will talk about later in this book.

3.5 Cargo expand

In our previous chapter, we introduced a couple of ways to debug macros and
to show what they expanded to. But we skipped over one very useful tool:
cargo expand, which was unstable for some time but can now be used with
stable Rust. You can install it with cargo install cargo-expand, after
which you can run cargo expand in the root of the application directory, or
the src folder. This will print your application code after macro expansion.
Below you can see that all macros, including println!, were expanded, after
running cargo expand in the root of our project.

Note

Except… format_args! was not expanded? That’s a Rust issue and fixing it
is a work in progress.

Listing 3.10 cargo expand output (with changed formatting)

#![feature(prelude_import)]

#[prelude_import]

use std::prelude::rust_2021::*; #1



// imports

struct Example; #2

impl Example {

    fn hello_world(&self) {

        {

            ::std::io::_print(

                format_args!("Hello world\n")

            ); #3

        }

    }

} #4

// Pet enum and its expanded code

// main function

Our derive annotation has disappeared since it is not needed anymore now
that macro expansion is done. In its place, the macro-generated code has been
added.

cargo expand is a useful tool for a visual inspection of our code. And it runs
even when our output is invalid, making it useful for debugging compilation
issues. Say I had mistyped self in our quote macro invocation. I would get a
compilation error and the below output, showing that something was very
wrong with the function parameter. If the error still wasn’t clear, I could pipe
the output to a file (cargo expand > somefile.rs) and have my IDE help
me track down the issue. Or I could temporarily replace my main.rs and get
pointed to the incorrect lines by cargo check.

impl ExampleStruct {

    fn hello_world(sel: ()) {

        {

            ::std::io::_print(format_args!("Hello world\n"));

        }

    }

}

You can also use expand within the hello-world-macro library. But that will
only show you how the macros you use - not the ones you create for others -
are expanded, similar to how check will only point out errors in your code,
and not in generated code. So most of the time, you want to use the expand



command in applications that utilize your library and its macro.

3.6 The Same Macro - without syn and quote

The quote and syn libraries are very useful but not strictly necessary for
writing macros. Below is the same application without them. To retrieve the
name, we iterate over the incoming stream and take the second element with
nth(1). That item is a TokenTree containing the name of the struct or enum.
The first element, contained in nth(0), has the type, i.e. struct or enum, and
is not relevant in this situation - so we skip it. With the ident_name function
we take the tree and return the name identifier, or throw an error if we cannot
find it.

The Token Tree

A TokenTree sits somewhere between a TokenStream and simple tokens.
Basically, a TokenStream is a sequence of TokenTrees, which are themselves
(recursively) composed of more trees and/or tokens. This is why we can
iterate over our stream, pick an element and assure Rust that the type is
TokenTree.

To generate output, we use the format macro to inject our name variable in a
string. For the transformation from string to TokenStream, we can use parse.
We expect this to work, so we just use an unwrap on the Result that our
parsing returns. This approach might seem very doable. We have removed
two dependencies at the cost of a little bit of extra code. But even with such a
basic example, we had to put in work to get the identifier and to output the
new code. And with more complete examples, the complexity and additional
burden of work would only grow.

Listing 3.11 Without syn and quote

use proc_macro::{TokenStream, TokenTree};

#[proc_macro_derive(Hello)]

pub fn hello_alt(item: TokenStream) -> TokenStream {

    fn ident_name(item: TokenTree) -> String {

        match item {



            TokenTree::Ident(i) => i.to_string(),

            _ => panic!("no ident")

        }

    } #1

    let name = ident_name(item.into_iter().nth(1).unwrap()); #2

    format!("impl {} {{ fn hello_world(&self) \

    {{ println!(\"Hello world\") }} }} ", name

        ).parse()

        .unwrap() #3

}

Even so, compilation speed is a reason why you might want to opt out of
using syn. While it is a very powerful library, it is also big and slow to
compile. So if our example was a real macro, and we only needed the name
of the struct/enum, our 'naive' example would compile a lot faster. Several
libraries try to offer a lightweight alternative to syn, venial for example.

Below is what our macro looks like with that library. Don’t forget to add
venial = "0.5.0" to the dependencies if you are following along! The code
looks very similar to what we had before. We use parse_declaration, which
gives back an enum Declaration. With pattern matching, we retrieve the
name from that enum.

Listing 3.12 Using a lightweight parser like venial

use quote::quote;

use proc_macro::TokenStream;

use venial::{parse_declaration, Declaration, Struct, Enum};

#[proc_macro_derive(Hello)]

pub fn hello(item: TokenStream) -> TokenStream {

    let declaration = parse_declaration(item.into()).unwrap();

    let name = match declaration {

        Declaration::Struct(Struct { name, .. }) => name,

        Declaration::Enum(Enum { name, .. }) => name,

        _ => panic!("only implemented for struct and enum")

    }; #1

    let add_hello_world = quote! {

        impl #name {

            fn hello_world(&self) {

                println!("Hello world")



            }

        }

    };

    add_hello_world.into()

}

Even in this simple example, build times measured with cargo build --
timings drop from 3.1 seconds to 1.8 on my machine. Still, in this book, we
will use syn because it is well-known, widely used, and very powerful. Plus,
once you are familiar with how it handles the TokenStream parsing,
switching to a lightweight alternative should not be too hard: many of the
parsing concepts are always the same.

3.7 From the real world

We will save further library explorations for subsequent chapters and limit
ourselves to a few observations for now. First, the developers of Rocket are
actually kind enough to teach you that macros can be imported in two ways
(the ones we described in this chapter).

//! And to import all macros, attributes, and derives via `#[macro_use]`

//! in the crate root:

//!

//! ```rust

//! #[macro_use] extern crate rocket;

//! # #[get("/")] fn hello() { }

//! # fn main() { rocket::build().mount("/", routes![hello]); }

//! ```

//!

//! Or, alternatively, selectively import from the top-level scope:

//!

//! ```rust

//! # extern crate rocket;

//!

//! use rocket::{get, routes};

//! # #[get("/")] fn hello() { }

//! # fn main() { rocket::build().mount("/", routes![hello]); }

//! ```

Second, you may also be wondering how the standard library parses and
outputs macros, since it cannot use external libraries like syn and quote.



Instead, the standard library uses built-ins with similar concepts and names.
For example rustc_ast, the 'Rust Abstract Syntax Tree' is used for parsing
input. Outputting code is done with rustc_expand. And rustc_span contains
utilities like Ident and Span. It is both familiar and alien when you are used
to working with syn and quote. But it is not meant for external usage.

Finally, since procedural macros have to be placed in a library & have to
placed in the root of the crate (else you will get functions tagged with #
[proc_macro_derive] must currently reside in the root of the

crate), lib.rs is a great starting point for exploring other people’s
procedural macro code. You will see what macros they have and can dig in
when needed.

3.8 Exercises

Fill in the question marks (???) and make the following derive macro
compile:

#[proc_macro_derive(???)]

pub fn uppercase(item: TokenStream) -> ??? {

    let ast = parse_macro_input!(item as ???);

    let name = ast.ident;

    let uppercase_name = name.to_string().to_uppercase();

    let add_uppercase = quote! {

        impl ??? {

            fn uppercase(&self) {

                println!("{}", #uppercase_name);

            }

        }

    };

    add_uppercase.into()

}

The below code fragment shows a usage example:

#[derive(UpperCaseName)]

struct Example;

fn main() {

    let e = Example {};

    e.uppercase(); // this prints 'EXAMPLE'



}

Try changing the name of the macro inside lib.rs and running the
application. What error do you get? What do you have to do to fix
things?
Add a function called testing_testing to the output of our macro. This
is an associated function, one that takes no &self parameter. It should
write "One two three" to the console.
See if you can output a greeting followed by the name of the input (e.g.
"Hello Example"). Fair warning: passing #name to print will not be
enough, because that’s an identifier, and you need a string! So either call
to_string on the identifier and save the result in a variable, or use the
stringify macro to change the #name into a string for you.

3.9 Summary

Derive macros, the first kind of procedural macro, allow us to add
functionality to structs and enums.
To write procedural macros we need to create a library with a function
that accepts a TokenStream input and outputs another TokenStream.
That output is the code that will be generated and added to our
application.
To verify our macro, we cannot rely solely on cargo check within the
library, because that will only check the code within the library itself,
not the code we generate. Therefore, it is useful to have an application
that uses and tests our macro. At the very least, this way we can verify
that the generated code compiles.
You can write procedural macros with standard Rust tooling, but syn is
of great help parsing input, and quote has a macro to generate output.
You can retrieve values from your input and pass them into your output.
Cargo expand is a great tool that allows you to see the code generated by
macros in your code.



4 Making fields public with
attribute macros
This chapter covers

Understanding the differences between derive macros and attribute
macros
Finding field information in the Abstract Syntax Tree
Retrieving fields by using matching
Retrieving fields with a custom struct
Retrieving fields with a custom struct and a Parse implementation
Adding multiple outputs in quote
Debugging macros with log statements
Understanding the no-panic crate

Rust likes to hide information. A function, struct, or enum is private by
default, and the same goes for the fields of a struct. This is very sensible,
though occasionally slightly annoying when you have a struct that has a lot of
fields that are better off being public. Data Transfer Objects (DTOs) are a
classic example of this, a common pattern in many programming languages,
used for transferring information between systems or different parts of a
single system. Because they are used as a simple wrapper for information,
they should not contain any business logic. And 'information hiding', a
primary reason for keeping fields in a struct/class private, is not applicable
when your only value is exposing the information contained in fields.

So for the purpose of experimentation, we will show how we can change the
default behavior with a few lines of code. We will create a macro that, once
added to a struct, will make it and all of its fields public. This is a very
different challenge than the one we faced in the previous chapter. Back then
we were adding things to existing code. Now we have to modify what is
already there. So derive macros are out, and attribute macros are in.

Attribute macros get their name from the fact that they define a new attribute.



And when you annotate a struct or enum with that new custom attribute, the
macro will be triggered. Otherwise, writing the library and code for an
attribute macro is quite similar to creating a derive macro. But there are
differences as well: an attribute macro also receives a TokenStream
containing additional attributes (if any). And - more importantly for this
chapter - its output tokens will replace the input. That sounds like something
that could do the trick.

4.1 Setup of an attribute macro project

Let’s go through this chapter’s setup, which is very similar to the previous
one:

create a new directory (make-public) with another directory (make-
public-macro) inside it
inside the nested make-public-macro directory run cargo init --lib
to initialize our macro
add the syn and quote dependencies (with cargo add syn quote if you
want) and set lib to proc-macro = true
run cargo init in the outer make-public directory and add our library
as a dependency

Listing 4.1 Part of the Cargo.toml file from make-public-macro

[dependencies]

quote = "1.0.33"

syn = "2.0.39"

[lib]

proc-macro = true

Listing 4.2 Part of the Cargo.toml from make-public

[dependencies]

make-public-macro = { path = "./make-public-macro" }

4.2 Attribute macros versus derive macros



With the setup out of the way, we start simple by adding a bit of code to
lib.rs in the nested directory. We define a public function that produces a
TokenStream. It takes an item parameter and parses it into an Abstract
Syntax Tree. That way we will once again be able to retrieve whatever we
need from the original code. Just like before, the output is created using the
quote! macro.

Listing 4.3 Initial setup

extern crate core;

use quote::quote;

use proc_macro::TokenStream;

use syn::{parse_macro_input, DeriveInput};

#[proc_macro_attribute] #1

pub fn public(_attr: TokenStream, item: TokenStream)

    -> TokenStream { #2

    let _ast = parse_macro_input!(item as DeriveInput); #3

    let public_version = quote! {};

    public_version.into()

} #4

While the code should look familiar, there are some differences when you
compare it to the previous chapter. First, we have a different attribute: #
[proc_macro_attribute] instead of #[proc_macro_derive]. And unlike
before, we do not specify the name of the macro between parenthesis (#
[proc_macro_derive(Hello)]). Instead, the name of the function determines
the attribute name. So in our case, we created a custom attribute #[public].
You can also see that we receive an additional TokenStream - which we will
ignore for the time being - that contains information about our attribute.

Figure 4.1 The signature of an attribute macro



The starting point of our code is the same as that of the previous chapter: a
macro that does not produce any output. But this time we do have an effect on
our existing code by not returning anything! Try adding the below code to
your application main.rs and running cargo expand.

Listing 4.4 Run cargo expand with this main.rs…

use make_public_macro::public;

#[public]

struct Example {}



fn main() {}

The Example struct is now gone! Spooky.

Listing 4.5 And see our struct pulling a disappearing act

#![feature(prelude_import)]

#[prelude_import]

use std::prelude::rust_2021::*;

#[macro_use]

extern crate std;

use make_public_macro::public;

fn main() {}

As we said earlier, Rust expects an attribute macro output to replace the
input. Which does make things slightly more complex than they were before.

4.3 First steps in public visibility

Back to the task at hand. We can now add properties to our struct to make
things more concrete.

Listing 4.6 Our example struct

#[public]

struct Example {

    first: String,

    pub second: u32,

}

We would like for our macro to output this struct with the following changes:
- the struct should become public - first should become public - second
should stay public

We can approach the problem in the same way as before. So we start with the
easiest implementation, one that only works for this specific struct.

Listing 4.7 A hardcoded implementation



extern crate core;

use quote::quote;

use proc_macro::TokenStream;

use syn::{parse_macro_input, DeriveInput};

#[proc_macro_attribute]

pub fn public(_attr: TokenStream, item: TokenStream) -> TokenStream {

    let _ast = parse_macro_input!(item as DeriveInput); #1

    let public_version = quote! {

        pub struct Example {

            pub first: String,

            pub second: u32,

        }

    }; #2

    public_version.into()

}

So that obviously works. Now, as a next step, we previously learned how we
can retrieve the name of the input struct. By applying that knowledge here,
we will be able to accept any kind of struct that has the same fields as our
example.

Listing 4.8 Hardcoded properties with the struct name retrieved from the input

#[proc_macro_attribute]

pub fn public(_attr: TokenStream, item: TokenStream) -> TokenStream {

    let ast = parse_macro_input!(item as DeriveInput);

    let name = ast.ident; #1

    let public_version = quote! {

        pub struct #name { #1

            pub first: String,

            pub second: u32,

        }

    };

    public_version.into()

}

We are finally using our AST again, and we have taken another small step in
making our struct more generally usable. Nice. What we would like to do
next, is to retrieve and use the incoming fields. And they come from the same



place as the name: our AST.

4.4 Getting and using fields

As noted before, the parameter item contains all relevant code, meaning the
entire struct can be accessed via the ast variable. That variable is of type
DeriveInput, which is a representation of the kind of input we might receive
from a derive macro. And yes, we are writing an attribute macro. But the type
works because these two share some important input targets: structs, enums,
and unions. And while attribute macros can also target traits and functions,
that’s not currently important to us. If you prefer a more fitting type,
syn::ItemStruct should be a drop-in replacement, but it does have the
downside that it is hidden behind the 'full' feature flag. So we would need to
change our syn import to use it.

So what does that type contain? This is the source code:

pub struct DeriveInput { #1

    pub attrs: Vec<Attribute>, #2

    pub vis: Visibility, #3

    pub ident: Ident, #4

    pub generics: Generics, #5

    pub data: Data, #6

}

You know Rust, so you can guess the meaning of most of these properties. -
attrs contains any attributes defined on the struct. E.g. #[derive(Debug)] -
vis has the Visibility of our struct (public, visible in crate, or just private,
i.e. 'Inherited') - ident has the name (identifier) of our struct - generics
contains information if our struct is generic (Example<T>). But that’s not the
case here - data is where we can find details about the data within our struct

data sounds the most useful to us. Now we are back to our previous question:
what does that property’s type look like? Go down the syn rabbit hole, and
you will find that Data is an enum with three options: Struct, Enum, and
Union. That makes sense, since DeriveInput was created specifically for
derive macros. Which, unlike attribute macros, can only be used for these
three targets.



pub enum Data {

    Struct(DataStruct), #1

    Enum(DataEnum), #1

    Union(DataUnion), #1

}

Struct is the variant we need. What does the DataStruct nested inside
contain? Dig just a little deeper. You will see that it has a struct_token
which contains the struct keyword (not useful), semi_token which is an
optionally present semicolon (not interesting), and the fields of the struct.

pub struct DataStruct {

    pub struct_token: Token![struct],

    pub fields: Fields,

    pub semi_token: Option<Token![;]>,

}

Figure 4.2 Finding the roots of the world tree. From DeriveInput to Fields for our Example struct



Now that we know where to find our fields, let’s extract them from the data!
For now, we just want this working for structs, so we will ignore enums and
unions during matching. We will also use matching to drill down to the
named fields, fields that have both a name and a type. E.g. first: String.
.. helps us ignore properties inside DataStruct and FieldsNamed that do not
interest us, including the unnamed fields which we will discuss later. If you
forget to add those two dots, you will get back an error similar to Struct
pattern does not mention fields someField and anotherField. That is
Rust telling you that a couple of fields are missing from your match.



let fields = match ast.data {

    Struct(

        DataStruct {

            fields: Named(

                FieldsNamed {

                    ref named, ..

                }), ..

        }

    ) => named, #1

    _ => unimplemented!(

        "only works for structs with named fields"

    ), #2

};

Ok, so now we have named fields with this type: Punctuated<Field,
Token![,]> Punctuated can be just about anything that has punctuation. In
this case, the punctuation generics show that Fields, are separated by a
comma Token. And fields in a struct are indeed separated by a comma. Useful
to know is that Punctuated implements IntoIterator, so we can iterate over
it. Dig down, and you will see that we will be iterating over the first generic,
Field. Which makes sense. A comma is not very interesting to iterate over.

So we have all the struct fields, and we can loop over them. Next question:
what is in Field? Again we turn to the source code and see that it contains
lots of familiar things: attrs, vis and ident, as well as a property called ty,
which contains the field’s type.

Figure 4.3 From Fields to Punctuated for the second field of Example (simplified view)



Ok, so now what? What is our goal? Well, we want to refill the struct with its
properties, except now prefaced with a public visibility indicator. For our
Example struct, we want to add the pub first: String using quote. Once
that is done, we want to add pub second: u32. So all we need to do is
retrieve the name and type. Any other information is - including visibility
since we always set pub - irrelevant.

Note

We are ignoring the other attributes that the struct might have, which means



other macros might not work as expected for our struct. We will see how we
can fix that later on.

You can see the implementation of this idea in the code below. We iterate
over the fields and use map to extract the identifier and type. With quote we
generate a TokenStream with the public prefix, the name, and the type of the
given field.

let builder_fields = fields.iter().map(|f| {

    let name = &f.ident; #1

    let ty = &f.ty; #1

    quote! { pub #name: #ty } #2

});

By now, we know that anything that is not a literal should be prefixed by a
hashtag in our output. That way quote knows it needs to replace the given
value with the value inside the identically named variable. Note that quote
cannot access a variable’s properties, so doing something like quote! { pub
#f.ident: #f.ty } will only result in confusing errors, as #f will be
'resolved', and a literal value '.ident' will be added to the output. Also
interesting is that we don’t need to collect the output of the map - because
quote knows how to handle maps that produce TokenStreams. If you want to
simplify a function signature, you can still call collect to get a
Vec<TokenStream> output though. We will see examples of that later on.

Now all we have to do is add the map of streams to the struct that we are
returning. And we need to tell Rust that these streams will be separated by a
comma, or Rust will complain about syntax. quote offers a convenience for
this, which looks quite similar to how you would handle multiple elements in
a declarative macro: #(#name-of-your-variable,)*. I.e. take this variable,
which contains zero or more values, and after every retrieved element add a
comma.

Listing 4.9 Our public fields macro

use quote::quote;

use proc_macro::TokenStream;

use syn::{parse_macro_input, DeriveInput, DataStruct, FieldsNamed};

use syn::Data::Struct;

use syn::Fields::Named;



#[proc_macro_attribute]

pub fn public(_attr: TokenStream, item: TokenStream) -> TokenStream {

    let ast = parse_macro_input!(item as DeriveInput);

    let name = ast.ident;

    let fields = match ast.data {

        Struct(

            DataStruct {

                fields: Named(

                    FieldsNamed {

                        ref named, ..

                    }), ..

            }

        ) => named,

        _ => unimplemented!(

            "only works for structs with named fields"

        ),

    }; #1

    let builder_fields = fields.iter().map(|f| {

        let name = &f.ident;

        let ty = &f.ty;

        quote! { pub #name: #ty }

    }); #2

    let public_version = quote! {

        pub struct #name {

            #(#builder_fields,)* #3

        }

    };

    public_version.into()

}

As you can see, quote is as versatile as you need it to be. We can add a
single, simple TokenStream with #name, or we can add multiple elements in
one go. In more complex macros, the output is often composed of a whole
range of variables brought together in one final output. And those variables
might also be the result of a composition of quote of undetermined
complexity. In any case, thanks to the above code simple structs like Example
now have all their fields set to public. Privacy is officially dead!

4.5 Possible extensions



There are lots of ways we could now expand our macro to make it more
useful. For example, instead of panicking when we receive an enum, we
could write code to handle them instead! Do remember that the variants of an
enum are automatically public when the enum itself is public. Meaning it is
probably easier to just add pub to an enum rather than using a custom macro.

We have also been ignoring unnamed fields, which do appear in structs like,
for example, struct Example(u32, String);. If we wrote our struct like
this, we would have reached our unimplemented match. So how would we
handle these structures? The first step would be to dig out the unnamed
fields, which would be very similar to how we retrieved the named. We could
do that in an additional match arm. Once we have the fields, we can output
them in the correct style, e.g. pub struct Example(pub u32, pub
String);. Finally, you would have to differentiate between a named and
unnamed struct and decide on the kind of output to return. Luckily, this is a
simple binary choice: a struct is either named or unnamed.

Somewhat surprisingly, our code will correctly handle empty structs, but only
when they are followed by brackets or curly braces. A struct without like
struct Empty; would not have anything in the way of fields at all, so it
would end up in our unimplemented arm.

There are a few more potential issues (besides not handling Unions). For
example, our macro won’t make fields of nested structs public. As luck
would have it, just adding #[public] to the nested items is an easy fix.

A much bigger issue is that when we have other macros annotating our struct,
they are getting deleted by ours! Try adding a #[derive(Debug] below our
annotation and running cargo expand. Do you see how the additional
annotation vanishes into thin air? We are simply superb at making things
disappear. As macros are executed in order, from top to bottom, the simple
workaround is adding the derive above our #[public]. Now everything will
work as expected. Except… please do not do this. Instead, do things the
proper way and retrieve and reattach all the available attributes.

Moreover, while we are keeping the generics of our named fields, we are
recreating the struct’s signature, meaning that its generics disappear. Fixing
that would require using and re-adding the generics field from DeriveInput.



You can try out several of these extensions in the exercises below.

4.6 More than one way to parse a stream

The above approach shows one way to create procedural macros. It uses syn
for parsing your tokens, quote for creating new ones, and matching plus
functions for everything in between. However, if gluing things together with
functions is not your thing, there are alternatives, like a more 'struct-focused'
approach. As an example, we will revisit our public macro and show some
options.

4.6.1 Delegating tasks to a custom struct

First, we could delegate getting and outputting the fields to a struct
StructField. Start by adding a dependency to proc-macro2, which we will
need shortly.

Listing 4.10 Two familiar dependencies in our library toml file, and a new one

[dependencies]

quote = "1.0.33"

syn = "2.0.39"

proc-macro2 = "1.0.69"

Now take a look at the new implementation. There are two big changes.
Instead of using the primitives from syn directly, we have our struct
gather/organize all required information, i.e. name and type. By convention, a
method called new should be used for creating a struct, so we create one and
call it when iterating over our fields. map(StructField::new) is a convenient
shorthand - also known as point-free style - for map(|f|
StructField::new(f)).

Listing 4.11 An implementation that uses structs to do most of the gluing

use proc_macro::TokenStream;

use quote::{quote, ToTokens};

// previous imports

struct StructField {



    name: Ident,

    ty: Type,

} #1

impl StructField {

    fn new(field: &Field) -> Self {

        Self {

            name: field.ident.as_ref().unwrap().clone(),

            ty: field.ty.clone(),

        }

    } #2

}

impl ToTokens for StructField {

    fn to_tokens(&self, tokens: &mut proc_macro2::TokenStream) {

        let n = &self.name;

        let t = &self.ty;

        quote!(pub #n: #t).to_tokens(tokens)

    }

} #3

#[proc_macro_attribute]

pub fn public(_attr: TokenStream, item: TokenStream) -> TokenStream {

    // unchanged: get fields

    let builder_fields = fields.iter().map(StructField::new); #4

    // unchanged: quote for output

}

builder_fields contains our custom structs. How can quote transform this
into a TokenStream? It can’t because it has no idea how to change a random
struct to a bunch of tokens. One solution would be to write a second method
that turns the struct into a TokenStream and call it during iteration. But here
we will start using a quote trait ToTokens that allows turning things into a
TokenStream, so we implement it.

The code inside to_tokens is similar to what we were doing before in our
mapping, except to_tokens requires us to give all our new tokens to a
mutable parameter of type proc_macro2::TokenStream. Which, as we briefly
mentioned, is a community-build token stream that wraps around the built-in
stream and adds additional features. It is used internally by quote, which is
why we always have to add into to the result of quote when returning our
tokens. Now that we use it explicitly in the signature of an impl block, we
have to add it to our project’s dependencies. What also would have worked,



is using quote::__private::TokenStream>, but let’s go with the cleaner
approach. With that, our builder_fields is automatically turned into a
TokenStream and our final quote code does not need to change.

This is more code - and complexity - than we had before, but there are
positives as well. There is a separation of concerns: we have made a struct
responsible for the retrieval and outputting of a field. This can enable reuse
and could prove to be more readable and structured. In this basic example, it
is probably over-engineering, but some structuring of data into structs might
prove useful in a bigger procedural macro.

4.6.2 Implementing the Parse trait

We could go one step further and incorporate an additional built-in from syn,
the Parse trait, which is used for changing a TokenStream into a struct or
enum. In the next code listing, we add an implementation of this trait and its
method parse, which receives syn::parse::ParseStream as input. Just think
of that as a sort of TokenStream.

Listing 4.12 Parsing instead of using new

// imports

struct StructField {

    name: Ident,

    ty: Ident, #1

}

// ToTokens implementation remains unchanged

impl Parse for StructField { #2

    fn parse(input: ParseStream) -> Result<Self, syn::Error> {

        let _vis: Result<Visibility, _> = input.parse(); #3

        let list = Punctuated::<Ident, Colon>::parse_terminated(input)

            .unwrap(); #4

        Ok(StructField {

            name: list.first().unwrap().clone(),

            ty: list.last().unwrap().clone(),

        }) #5

    }

}



#[proc_macro_attribute]

pub fn public(_attr: TokenStream, item: TokenStream) -> TokenStream {

    // unchanged

    let builder_fields = fields.iter()

        .map(|f| {

            syn::parse2::<StructField>(f.to_token_stream())

                .unwrap()

        }); #6

    // unchanged

}

We expect to receive a ParseStream representation of a single field in our
parse implementation. That means the first thing we will receive, is a token
indicating the field’s visibility. We are not interested in that value, but
handling it now will make the rest of our parsing easier. So we call parse on
the input and tell it that we want to bind this Visibility to a variable _vis.
parse might fail, so Visibility is wrapped in a Result. Which we won’t
even unwrap because this was just to get rid of the value! Now our
ParseStream no longer contains the field’s visibility modifier, and we can
continue.

Note

Perhaps you thought visibility was an optional part of the field definition,
which is certainly what I used to think. But look back at the AST diagrams
and source code: ParseStream always has a Visibility. By default, it’s just
Inherited, which - according to the documentation - 'usually means private'.

In our next step, Punctuated::<Ident, Colon> tells Rust that we expect
something that consists of identifiers separated by a colon (:). That, after all,
is what a field declaration looks like without its visibility: field_name:
FieldType. And as our example shows, the first element should be the name,
and the last element the type. So we can add those to our struct. Note that
because of Punctuated, ty is now parsed as an Ident. Which is perfectly
valid.

Figure 4.4 Parsing the second field



If visibility was still part of our stream at this stage, Rust would complain
with Error("expected identifier"), because it expected a list of
identifiers and got a Visibility type. But even though we avoid that error,
this is still not a production-ready macro. We are expecting simple,
unannotated, named fields. Nothing else. And that is only part of the range of
content that a struct might have, albeit an important part. But this will do for
now.

All that remains is to pass in the field tokens for parsing. We can use
syn::parse2 to accomplish that task. It accepts a TokenStream and can



return any type that implements Parse. But since a lot of things implement
Parse, we have to tell the function what return type we would like. In our
case, that is a StructField. parse2::<StructField> is probably the most
elegant way to relay this info. One more clumsy alternative is map(|f| { let
field: StructField = parse2(f.to_token_stream()).unwrap(); field

}).

Note

Why parse2? parse also exists and is very similar, but it accepts an ordinary
TokenStream whereas parse2 takes the proc_macro2 variant. Hence, the
names. Btw: parse_macro_input! is just syntactic sugar for parse.

.map(|f| parse2::<StructField>(f.to_token_stream()) is not great
though. We have some nicely parsed data from syn and we are turning it back
into a TokenStream. You could avoid this ugliness by, for example, parsing
all the fields (or the entire input) into custom structs instead of every
individual field.

4.6.3 Going low, low, low with cursor

As a final example, we could also have chosen cursor for low-level control
over our parsing.

impl Parse for StructField {

    fn parse(input: ParseStream) -> Result<Self, syn::Error> {

        let first = input.cursor().ident().unwrap();

        let res = if first.0.to_string().contains("pub") {

            let second = first.1.ident().unwrap();

            let third = second.1.punct().unwrap().1.ident().unwrap();

            Ok(StructField {

                name: second.0,

                ty: third.0,

            })

        } else {

            let second = first.1.punct().unwrap().1.ident().unwrap();

            Ok(StructField {

                name: first.0,

                ty: second.0,

            })



        };

        let _: Result<proc_macro2::TokenStream, _> = input.parse();

        res

    }

}

We call cursor on our input parameter and tell it the first thing it will
encounter is an identifier. cursor does not differentiate between names,
types, visibility, etc., so this will capture either the visibility or the name of
the field. If the name contains the string 'pub', we probably have the visibility,
which means the next identifier is the name, which we get by calling
first.1.ident() and unwrapping the result. Our variable second should
have the name and the rest of our data. Our type is behind a colon, so we
expect to find punctuation (punct()) followed by the identifier. Now that we
have both name and type, we give them to StructField. The other
conditional branch is similar. When we do not have an explicit visibility
modifier, we already have the name and only need to retrieve the type.

The final let _: Result<proc_macro2::TokenStream, _> =
input.parse(); is icky though. Cursor is giving us immutable access to the
existing stream. This is great… except that after calling your parsing method,
parse2 does a check to make sure there’s nothing left unhandled inside your
stream. And in our case, we did not - could not even - change anything, so we
will get a confusing Error("unexpected token") error! So instead we just
call parse and make it give back a Result which we ignore. This is a bit
similar to ignoring the visibility in our previous example (listing 4.12).

So what style should you prefer? It depends! Functions and matching are
relatively easy and seem ideal for smaller macros or writing a POC. Structs
can give additional structure to your solution and offer a nice way to delegate
responsibility: every struct does a bit of the parsing and outputting. They are
also very useful when you are passing things into macros that do not count as
proper Rust code, like DSLs. Default parsers are obviously not well-equipped
to deal with seemingly random input that only has meaning within your
particular domain. So instead, you write your own structs and capture
relevant information. Cursor, meanwhile, gives low-level control and a lot of
power, but it is verbose and less easy to use. It should probably not be your
first choice.



In this book, many chapters will focus on functions as the glue for building
macros, because this style is convenient for brief examples. But because
structs are often used 'in the wild', we will also have examples using that
style.

4.7 Even more ways to develop and debug

In previous chapters, we talked about development and debugging tools like
cargo expand. In this chapter, we also did a lot of digging through source
code, which helped us understand more of what data is available when syn
has parsed your input. Another useful tool worth mentioning is… please
don’t slam this book shut… printing to the console! Because seeing the
structure of your AST via types is useful, but printing it tells you what is
actually in there. Which is very useful when you are uncertain about what
you are receiving.

Two things to note. First, to debug-print DeriveInput and other types from
syn, you will need to activate the 'extra-traits' feature of syn.

syn = { version = "2.0.39", features=["extra-traits"]}

Second, there is a good chance that standard output will get captured and
won’t show up in your console. The easy workaround is to use error printing,
which should always find its way.

let ast = parse_macro_input!(item as DeriveInput);

eprintln!("{:#?}", &ast);

Below you can see an abbreviated output from this command when we add
the eprintln command to our macro. There is a lot of information in there
and learning to read it takes some time. But you should recognize many types
that we discussed in this chapter: Ident, Struct, DataStruct, FieldsNamed,
etc.

DeriveInput {

    vis: Inherited,

    ident: Ident {

        ident: "Example",

        span: #0 bytes(67..74),



    },

    ...

    data: Struct(

        DataStruct {

            struct_token: Struct,

            fields: Named(

                FieldsNamed {

                    named: [

                        Field {

                            attrs: [],

                            vis: Inherited,

                            ident: Some(

                                Ident {

                                    ident: "first",

                                    span: #0 bytes(81..86),

                                },

                            ),

                            colon_token: Some(

                                Colon,

                            ),

                            ...

        },

    ),

}

4.8 From the real world

Lots of libraries use attribute macros to do cool things. For example, Tokio, a
widely used asynchronous runtime for Rust, uses its #[tokio::main] macro
to transform your main into something that can handle asynchronous calls.
This is the source code entry point:

#[proc_macro_attribute]

pub fn main(args: TokenStream, item: TokenStream) -> TokenStream {

    entry::main(args, item, true)

}

Wait, just 'main'? Then why do all code examples show #[tokio::main]?
Well, probably to make it clear to the reader that this is Tokio’s main macro.
But since the bit before :: only signifies from which crate we are getting the
macro, use tokio::main; plus #[main] is also perfectly valid! The more
you know.



There are also lots of examples of libraries using the Parse and ToTokens
traits. Here are some examples from Rocket, a web framework that uses a lot
of macros. For generating endpoints, among other things. Want to respond to
a GET call? Just add the custom #[get("/add/endpoint")] annotation.

impl Parse for Invocation {

  fn parse(input: ParseStream<'_>) -> syn::Result<Self> {

      Ok(Invocation {

        ty_stream_ty: (input.parse()?, input.parse::<syn::Token![,]>()?).0,

        stream_mac: (input.parse()?, input.parse::<syn::Token![,]>()?).0,

        stream_trait: (input.parse()?, input.parse::<syn::Token![,]>()?).0,

        input: input.parse()?,

      })

  }

}

impl ToTokens for UriExpr {

    fn to_tokens(&self, t: &mut TokenStream) {

        match self {

            UriExpr::Uri(uri) => uri.to_tokens(t),

            UriExpr::Expr(e) => e.to_tokens(t),

        }

    }

}

As you can see, the Parse implementation has better error handling than our
code (it returns a Result and uses ? instead of unwrapping). Good error
handling is certainly advisable for a production-grade macro, so we will get
back to that in a later chapter. Even so, occasionally you see panics appearing
in the wild. Yew, a web framework that has a cool macro for writing and
verifying HTML, has unimplemented!("only structs are supported")
appearing in two places.

As a final example, take a look at no panic, a macro that makes your compiler
prove that a given function never panics. Which is pretty amazing. How
could that possibly work? Consider the following code.

struct Dropper {}

impl Drop for Dropper {

    fn drop(&mut self) {

        println!("Dropping!")

    }

} #1



fn some_fun() {

    let d = Dropper {};

    panic!("panic"); #2

    core::mem::forget(d); #3

}

fn main() {

    some_fun();

}

We have a struct called Dropper that implements Drop, the trait that you can
use in Rust when custom cleanup of a resource is required. When you run the
code, some_fun will trigger a panic, followed by an unwinding of the stack.
At that point Drop from Dropper` is invoked to clean up our struct.

But if you comment out the panic, we reach forget on the next line. That
will make Rust forget about the Dropper struct and its Drop implementation.
In that case, Drop will not be called. (Remember, we stop executing when a
panic is encountered. So in the first case, we never reach forget. But - by
default at least - Rust does do a cleanup of resources on panic.) This has an
interesting implication. If the compiler can 'prove' that there is no chance that
some_fun will panic, the logical conclusion is that Drop will never be called
because of the forget call! As a consequence, Rust can safely optimize away
the Drop implementation, since it is never used.

So this library and others similar to it do a neat trick: they create a struct,
implement Drop and call a non-existing C function within the
implementation, and add a forget call. That means we will get a linking
error if the code is not optimized away. And the code is not removed when a
panic is possible before the forget call, because in that case, Rust might have
to call Drop after all. Neat, huh?

struct __NoPanic;

extern "C" {

    #[link_name = "does_not_exist"]

    fn trigger() -> !;

}

impl Drop for __NoPanic {

    fn drop(&mut self) {

        unsafe {

            trigger();



        }

    }

}

The code from the library itself is fairly brief (some 150 lines of code). Here
is a selection with some annotations. Among other things, I removed some
error handling because we haven’t discussed that yet. And for now, all you
need to know about parse_quote is that it is similar to the regular quote
macro.

#[proc_macro_attribute]

pub fn no_panic(args: TokenStream, input: TokenStream) -> TokenStream {

    let expanded = match parse(args, input.clone()) {

        Ok(function) => expand_no_panic(function),

        // error handling

    };

    TokenStream::from(expanded)

} #1

fn parse(args: TokenStream2, input: TokenStream2) -> Result<ItemFn> {

    let function: ItemFn = syn::parse2(input)?;

    let _: Nothing = syn::parse2::<Nothing>(args)?;

    Ok(function)

} #2

fn expand_no_panic(mut function: ItemFn) -> TokenStream2 {

    // ...

    let stmts = function.block.stmts;

    let message = format!(

        "\n\nERROR[no-panic]: detected panic in function `{}`\n",

        function.sig.ident,

    );

    function.block = Box::new(parse_quote!({

        struct __NoPanic;

        extern "C" {

            #[link_name = #message]

            fn trigger() -> !;

        }

        impl core::ops::Drop for __NoPanic {

            // ...

        }

        let __guard = __NoPanic;

        let __result = (move || #ret {

            #move_self

            #(

                let #arg_pat = #arg_val;



            )*

            #(#stmts)*

        })();

        core::mem::forget(__guard);

        __result

    }));

    quote!(#function)

} #3

You should recognize a lot of familiar elements in the above code. We start
with the declaration of our macro using the attribute macro attribute. Because
the function name determines the name of the macro, we know that we need
to write #[no_panic] when using this macro. We receive two token streams
as parameters and use parse2 to parse the input into ItemFn, a syn built-in
for parsing functions which we will study in more detail in an upcoming
chapter. The args are not used and so are parsed into an ignored variable of
type Nothing. If there is anything inside this TokenStream, parsing into
Nothing will fail (i.e. the name). By the way, the double specification of
types (Nothing and syn::parse2::<Nothing>) is redundant. Either will do.

expand_no_panic contains the bulk of what we discussed above. It adds the
fake linked C function and tries to forget it. As a bonus, the link_name of
the fake C function is used as a message to report the detected panic when
Drop is not optimized away. The implementation, contained within
function.block.stmts (stmts stands for 'statements'), is added to our new
implementation, which overwrites the existing one. With our new code in
place, the final expression (quote!(#function)) returns the partially
overwritten function as a TokenStream.

4.9 Exercises

Fill in the question marks (???) and make the following macro compile:

#[???]

pub fn ???(_attr: TokenStream, _item: TokenStream) -> TokenStream {

    let public_version = quote! {};

    public_version.into()

}



The below code fragment shows a usage example:

#[delete]

struct EmptyStruct {}

Handle structs with unnamed fields. If you use matching, your new
match arm will probably look a bit like this: Struct(DataStruct {
fields: Unnamed(FieldsUnnamed { ref unnamed, .. }), .. })….
Note that you will need to decide whether to output a 'normal' struct or
an unnamed one.
Make our macro handle enums. Two things to keep in mind. First, you
do not need to add pub to the fields (only to the enum), but you do have
to retrieve and re-add them (they are called variants under Enum,
DataEnum). Second, your code will now also have to decide whether it
has to return an enum or a struct.
Keep the existing attributes of the struct instead of letting them
disappear. This requires little more than getting the attrs (attributes) of
our item and adding them above the struct. You might have to play
around with the quote syntax a bit. Just remember that - unlike before -
we do not need a comma to mark the end of an attribute.
Combine all of these exercises into a single solution!
Using Punctuated::<Ident, Colon> is one way to parse the field, but
in the case of our public fields macro, there is an even simpler solution.
Just put everything in variables, as we did with Visibility, and pass
the useful things to StructField. Change our Parse implementation to
use this simpler parsing.

4.10 Summary

Like derive macros, attribute macros can be used on enums, structs and
unions. Additionally, they can be added to traits and functions.
Unlike derive macros, attribute macros overwrite their input, making it
possible to change existing code.
Attribute macros get their name from defining a new custom attribute.
We can use the syn parsing result (our AST) to retrieve all kinds of
information, like the fields of a struct.
quote allows us to combine multiple token streams into a single output.



We can use matching and functions to glue together our parsing and
outputting.
But for more structure and larger macros, you might consider creating
custom structs and delegating the parsing and outputting to them.



5 Hiding information and creating
mini-DSLs with function-like
macros
This chapter covers

Hiding information to improve code
Using function-like macros to modify and extend code
Using them to manipulate structs and functions
Debugging macros by getting the compiler or IDE to help you
Writing DSLs with flexible function-like macros
Deciding what macro fits a use case

The third and final type of procedural macro is the function-like macro,
which - unlike the other two - is not limited to annotating structs and enums.
Here two examples will demonstrate its power. In our first example, we will
stay close to familiar grounds by sticking to manipulating structs. Wilder
experiments can wait until later in this chapter when we take another look at
composing functions.

5.1 Hiding information

Like a professional skateboarder, or a sophist trying to impress an Athenian
audience, we will do a cool 180 flip: instead of telling you to expose fields,
this time we will argue that you need a macro to hide them! This is not as
strange as it sounds, since the answer to every question in programming is 'it
depends'. Yes, as we mentioned in the previous chapter, structs with public
fields are great when you just want to transfer information between systems.
But in many other cases, structs and classes are more at ease with hiding
information. This makes code easier to understand and reason about. If, for
example, a module exposes only a single function to accomplish a task, you
may never need to learn anything about the potentially hundreds of methods,



structs, and variables that it needs to accomplish its work. Not having to take
into account all the implementation details makes your life easier.

Another related reason for hiding fields is safety. Granted, this is less of an
issue in Rust, because the compiler is very good at detecting dangerous
(mutating) actions. But in languages like Java, C#, or JavaScript, you’d be
wise to hide fields and methods so nobody can change them and mess things
up. This becomes even more important in an environment where multiple
threads could access the same objects and mutate them, causing all kinds of
weird issues. Hence, the reason for functional programming’s focus on
immutability. If your objects cannot be manipulated by others, your code is
safer and easier to understand.

Even in Rust, these practices have their place, at the very least from the
perspective of easier reasoning about code. In fact, the language provides
programmers with very good tooling for hiding information in structs, files,
modules, etc. Information hiding is clearly dear to the creators' hearts. Thus,
our first example will focus on writing a macro that adds methods that allow
immutable access to fields, via references. This is useful when structs contain
fields that should be consulted or used, but not manipulated.

5.1.1 Setup of the information hiding macro

The Cargo.toml and project structure remain the same as before, except this
time the name of the nested directory (the macro) is private-macro. That
means the outer directory (the application) will have to import this
dependency with private-macro = { path = "./private-macro" }.
lib.rs and main.rs require more changes. Here is main.rs.

Listing 5.1 Our application code

use private_macro::private; #1

private!(

    struct Example {

        string_value: String,

        number_value: i32,

    }

); #2



fn main() {

    let e = Example {

        string_value: "value".to_string(),

        number_value: 2,

    };

    e.get_string_value(); #3

    e.get_number_value(); #3

}

Instead of decorating a struct with the derive annotation, we call a function-
like macro by writing its name followed by an exclamation mark and passing
on useful data between parentheses. This is similar to how a declarative
macro is used, which also means it can be hard to see the difference between
these two. And to make the two even more indistinguishable, Rust also
allows you to choose between parentheses, square brackets, and curly braces
for arguments! Since we want to add a method to a struct, we simply pass in
the entire struct as an argument. Next, inside the main function, we expect
that we can build the Example struct and call its generated methods.

Onto lib.rs. Below is the first version of our code. Can you spot the
essential differences with derive/attribute macros?

Listing 5.2 First version of our macro implementation

use quote::quote;

use proc_macro::TokenStream;

use syn::{parse_macro_input, DeriveInput};

#[proc_macro] #1

pub fn private(item: TokenStream) -> TokenStream {

    let ast = parse_macro_input!(item as DeriveInput);

    let name = ast.ident;

    quote!(

        struct #name {} #2

        impl #name {} #3

    ).into()

}

First, we have #[proc_macro] instead of #[proc_macro_derive(Hello)] or
#[proc_macro_attribute]. And since we cannot define the name explicitly,



the function name (i.e. 'private') will serve that goal.

Next, unlike attribute macros - but like derive macros - we only receive one
parameter. That is because the additional TokenStream contained information
about the attribute you were creating. And function-like macros do not create
a custom attribute.

Finally, function-like macros are similar to their attribute brothers - and
different from derives - in that their output tokens replace the input. And it
makes perfect sense for the input of a function-like macro to replace the
output. With other macros, we were receiving structured data (a struct, an
enum), but a function-like macro allows you to pass in anything, even stuff
that is not valid Rust. If that input were to remain in your source code, the
compiler would complain loudly about invalid syntax, which is probably not
what you want.

That means we have to recreate the struct we gave to the macro. In our
current version, we take the name and use it to create an empty struct and
empty implementation.

Figure 5.1 The signature of a function-like macro



5.1.2 Recreating the struct

As it stands, our application will not compile, even if we comment out the
method calls… because the fields are gone! That’s a major déjà vu: we are
once again deleting things that were already there. Bad macro, bad! So let’s
improve our code by fixing the struct recreation. This is pretty easy to fix:
just give back what you receive when you create your output. There are at
least two ways to do this: we either return the incoming TokenStream in our
output - or we give back the AST.



In the code below, we chose the first approach. Because the incoming stream
is moved by parse_macro_input, we clone the stream and use the Into trait
to change the built-in TokenStream into a type that implements the ToTokens
trait required by the quote macro. Once we have our transformed clone, all
that remains is to pass it to the output.

Listing 5.3 Second version of our macro implementation

// imports

#[proc_macro]

pub fn private(item: TokenStream) -> TokenStream {

    let item_as_stream: quote::__private::TokenStream = item

        .clone()

        .into(); #1

    let ast = parse_macro_input!(item as DeriveInput);

    let name = ast.ident;

    quote!(

        #item_as_stream #2

        impl #name {}

    ).into()

}

The AST path is even simpler, since a) DeriveInput implements ToTokens
and b) we can use a reference to retrieve the name of the struct, thus avoiding
a partial move. So the latter approach is actually preferable. Alternatively,
you could also solve the deletion issue by… not having it in the first place.
As it currently stands, there is no reason for us to pass in the entire struct - so
we could just pass in the name of the struct! But in this particular example,
that will not work, as we will soon find out.

Partial moves

A partial move is one of those tricky Rust topics, right up there with…
well… macros. In essence, this is an example of Rust being conservative with
ownership. And forcing you to think carefully about what you do with it. Say
we have a struct and a function that steals things.

#[derive(Debug)]



struct Car {

    wheels: u8,

    gps: String,

    infotainment: String,

}

fn steal(item: String) {

    println!("I am stealing {item}");

}

fn main() {

    let car = Car {

        wheels: 4,

        gps: "Garmin".to_string(),

        infotainment: "Android".to_string(),

    };

    println!("My car before the theft: {car:?}");

    steal(car.gps);

    // println!("My car after the theft: {car:?}"); // does not compile

}

The above code runs. But add the final println and Rust starts complaining
about a partial move. What is happening? Well, steal takes a property, the
gps, from the car. By taking that string as an argument it is 'moved' into the
function, thereby making the function the sole owner of that string. So the
GPS is now the property of steal (and will be dropped after the println
statement inside that function finishes executing).

So when we get to the final commented-out print, the compiler complains:
"You are asking me to print this car and all its properties. But how can I print
the GPS when someone already stole - and dropped - it?" Regretfully, the
compiler is right: ownership of a part of the struct has been moved. Meaning
the struct can no longer be used, though we can still retrieve (and, for
example, print) any values that haven’t moved yet, like infotainment. A
simple solution for avoiding partial moves is to clone. If we create a clone of
car and steal the GPS from there, our original is still fine, dandy, and
printable. Cloning has performance implications, but sometimes it might be
the only solution. A better solution is to use references whenever that’s
possible. At the very least, that will minimize the number of times you need a
clone. Other times, you can pull a clever trick, like using take on an Option:

#[derive(Debug)]



struct Car {

    wheels: u8,

    gps: Option<String>,

    infotainment: String,

}

// steal function unchanged

fn main() {

    let mut car = Car {

        wheels: 4,

        gps: Some("Garmin".to_string()),

        infotainment: "Android".to_string()

    };

    println!("My car before the theft: {car:?}");

    steal(car.gps.take().unwrap());

    // works, though the gps is now missing (None)

    println!("My car after theft: {car:?}");

}

But for us mortals, references where possible and only cloning when needed
are a great start!

5.1.3 Generating the helper methods

Now, we can focus on generating methods and the below code shows a mix
of mostly familiar building blocks. Since the methods return references to the
fields and their name is based on that of the field, we need to extract field
information to generate these new methods. This is the reason why only
passing in the name, as suggested above, will not work: our macro needs
more detailed knowledge of the struct. So we will iterate over the fields and
map each one to a stream of tokens containing code for one method. In the
solution to an exercise from the previous chapter (you’ve solved all those,
right?), we had an ugly return type (Map<Iter<'a, Field>, fn(&'a Field)
→ quote::__private::TokenStream>). That is why we use a collect this
time, which allows us to return a nice clean Vec.

That’s the overview. Now focus on the code inside map. Besides the field
name and type, we want to create a method name that consists of the field
name prefixed with 'get_', e.g. get_string_value. You might think that the
solution is simply to generate a String with that exact value. Sadly, passing a



string to quote will generate an error, for example: expected identifier,
found "get_string_value". And, in retrospect, the reason is obvious:

we are outputting a stream of tokens and asking Rust to add it to our
code
Rust starts checking the code, including the parts we generated, and
finds the keyword fn
that can only mean that the next token is a function name, which is
always of type identifier
instead it finds a string ("get_string_value")

Note

For the same reason, we need field_name to be an identifier, since we will
use it to get a reference (&self.field_name) and Rust would complain if we
tried to get a field from self using a string.

So we need an identifier. We can create one with a constructor (the new
method), which requires two arguments: a string reference - which we have -
and a span. In an earlier chapter, we mentioned that spans are a way to link
back to the original code, which is useful for reporting errors to the user.
When you create a new identifier, Rust wants to know what it should
reference in the original code if something goes wrong. There are several
ways to create a suitable span for our method name:

One simple and valid option is to take the field name span and reuse it
for our method name. Reusing spans is also useful when you want to
'link' an existing piece of code with generated code.
call_site() is one of the associated functions of Span . This span 'will
be resolved as if… written directly at the macro call location', meaning it
resolves at the place where you invoke the macro - the application code.
mixed_site() is another associated function. The difference is that it
obeys the same hygiene rules as a declarative macro. Depending on the
role of the identifier, the span will resolve either at the place of
invocation (call site) or the location where the macro was defined. The
PR author thought it was a sensible default since it provides some
additional safety. Still, it does not really match our intent here. We
actually want our generated methods to be used within the application.



More on call_site and mixed_site

OK, so maybe the difference between call_site() and mixed_site() is not
clear yet. Some code will help. Say we had a macro that generated a local
variable and decided to use mixed_site for the span of the variable’s
identifier:

#[proc_macro]

pub fn local(_: TokenStream) -> TokenStream {

    let greeting = Ident::new("greeting", Span::mixed_site());

    quote!(

        let #greeting = "Heya! It's me, Imoen!";

    ).into()

}

We can now call the macro and try to print the variable. Note that this
particular macro is invoked inside a function, not outside, as local variables
can only exist within functions.

fn main() {

    local!();

    println!("{}", greeting);

}

This will cause an error telling you that greeting was not found in this
scope. What went wrong? As you probably suspect, it’s because of hygiene.
As stated, mixed_site has the same hygiene rules as declarative macros. And
in declarative macros local variables are not exposed to the outside world. In
the parlance of the documentation: a local variable’s span only exists 'at the
definition site' of the macro, but not at the call site. Which is, in our case, the
main function. Change the greeting span to call_site, and the application
compiles and runs. Now the span exists at the place of invocation, main,
where we are trying to print it.

I can almost hear some curious reader wondering what quote is doing. After
all, we could have used it to generate the right span for us:

#[proc_macro]

pub fn private(item: TokenStream) -> TokenStream {

    quote!(

        let greeting = "Heya! It's me, Imoen!";



    ).into()

}

And this works automatically, meaning quote probably uses call_site. Yes,
yes it does. From the source code:

pub fn push_ident(tokens: &mut TokenStream, s: &str) {

    let span = Span::call_site();

    push_ident_spanned(tokens, span, s);

}

Back on topic: while all three options could work, we have gone with
call_site() for our example. Besides creating a name, we also retrieve the
field identifier and field type. These three variables are then used to generate
the method.

Listing 5.4 I heard you like methods, so we made a method for generating methods

// other imports

use syn::{DataStruct, FieldsNamed, Ident, Field};

use syn::__private::{Span, TokenStream2};

use syn::Data::Struct;

use syn::Fields::Named;

fn generated_methods(ast: &DeriveInput) -> Vec<TokenStream2> {

    let named_fields = match ast.data {

        Struct(

            DataStruct {

                fields: Named(

                    FieldsNamed {

                        ref named, ..

                    }), ..

            }

        ) => named,

        _ => unimplemented!(

            "only works for structs with named fields"

        ),

    }; #1

    named_fields.iter()

        .map(|f| {

            let field_name = f.ident.as_ref().take().unwrap();

            let type_name = &f.ty; #2

            let method_name =

                Ident::new(



                    &format!("get_{field_name}"),

                    Span::call_site(),

                ); #3

            quote!(

                fn #method_name(&self) -> &#type_name {

                    &self.#field_name

                }

            ) #4

        })

        .collect() #5

}

Figure 5.2 Mapping our first field from the Example struct



Now all we have to do is call the function and pass the result to the generated
impl block. Remember, we have a vector of token streams to add, so we need
to use the correct notation to tell this to quote: #(#name_of_variable)*.
Previously we had a comma in there because fields are separated by commas.
That is not the case for method declarations. With our macro fully up to date,
the code should compile.

Listing 5.5 Using our new method in our macro

// imports



#[proc_macro]

pub fn private(item: TokenStream) -> TokenStream {

    let item_as_stream: quote::__private::TokenStream = item

        .clone()

        .into();

    let ast = parse_macro_input!(item as DeriveInput);

    let name = &ast.ident;

    let methods = generated_methods(&ast); #1

    quote!(

        #item_as_stream

        impl #name {

            #(#methods)* #2

        }

    ).into()

}

There are still some loose ends to tie up: the methods we are generating are
not public, the fields can still be accessed directly (not safe!) and we should
also have a (new) method for creating a struct with private fields. We leave all
that for the exercises.

5.2 Debugging by writing normal code

At times, you can get confusing or unfamiliar error messages from your
macro without having an idea of what to do next. Rereading the error
message carefully might help (yes, this section contains some 'well duh'
advice), but if that does not help, another option is to write what you want to
generate as normal code. That’s because most of what you put between the
quote parentheses is accepted as the truth of God by IDEs and compilers (at
least until you try to use it in an application). A serious downside for
everyone who, like me, counts on IDE support to avoid stupid mistakes.
Luckily, once you try to create the same piece of code in ordinary Rust, your
tooling has your back again.

As an example, say I had written the below piece of code for our 'private'
macro.

quote!(



    fn #method_name(&self) -> #type_name {

        self.#field_name

    }

)

This is the (abbreviated) error that I would get:

error[E0507]: cannot move out of `self.string_value` which is behind

  a shared reference

  |

3 | / private!(

4 | |     struct Example {

5 | |         string_value: String,

6 | |         number_value: i32,

7 | |     }

8 | | );

  | |_^ move occurs because `self.string_value` has type `String`,

        which does not implement the `Copy` trait

If that error message does not 'click' for me, I might be stuck. Somewhere in
my generated code, something is going wrong. But what? Instead of staring
at my macro or the message, what if I just wrote the method I wanted to
generate for a dummy struct, based on the piece of code that I am passing to
quote?

struct Test {

    value: String

}

impl Test {

    fn get_value(&self) -> String {

        self.value

    }

}

Well, if I did that, my IDE would start pointing me to self.value as the
source of my issues. After adding an ampersand, it would point out that there
is a mismatch with the returned type. Step by step, the errors melt away,
putting us in a better place to continue work on the macro.

A final piece of obvious-but-still-valuable advice is to work step-by-step, as
we have done in these last few chapters. If there is an issue right after adding
a single piece of functionality, the source of the error is obvious. And the



satisfaction of already having something up and running is a nice bonus.

5.3 Composing

Ok, so we saw how to use a function-like macro as a stand-in for a derive (or
attribute) macro. Now let’s turn to an example where function-like is the only
good fit. In an earlier chapter, we talked about composition and how to write
a declarative macro for composing functions. We also talked about
limitations in the symbols we could use for chaining expressions together in
declarative macros. I.e. we could not mimic Haskell which allows for
composing functions by using .. (Though we also explained that the tt type
does not suffer from the same limitations.) So the second example of this
chapter is composition. But this time we will have our dots.

Again, we won’t go over the entire setup. You’ve seen it all before. Instead,
take a look at the application code in main.rs, where we see two of the
example functions from the declarative macros chapter. Inside main we
combine these functions with dots (.) using the compose macro that we are
going to write. Note that it would not be possible to pass this info to a derive
or attribute macro, because those two expect a struct, enum, function… i.e. a
bit of valid Rust code.

Listing 5.6 Our application, featuring some familiar functions

use function_like_compose_macro::compose;

fn add_one(n: i32) -> i32 {

    n + 1

}

fn stringify(n: i32) -> String {

    n.to_string()

}

fn main() {

    let composed = compose!(

        add_one . add_one . stringify

    ); #1

    println!("{:?}", composed(5));

}



How does this work? Turn to lib.rs. (Because there is a bit more code than
usual, about 60 lines, we will first look at the macro entry point in isolation.)
First, we parse the input into a custom struct of type ComposeInput.
DeriveInput is ill-equipped to deal with our current input, since we are
definitely not receiving a struct or enum as input. More in general, this kind
of composing is not natively supported by Rust, so there is no reason to
assume that a pre-build parser would be able to handle it for us.

Listing 5.7 Our compose macro entry point

#[proc_macro]

pub fn compose(item: TokenStream) -> TokenStream {

    let ci: ComposeInput = parse_macro_input!(item); #1

    quote!(

        {

            fn compose_two<FIRST, SECOND, THIRD, F, G>(first: F, second: G)

            -> impl Fn(FIRST) -> THIRD

            where

                F: Fn(FIRST) -> SECOND,

                G: Fn(SECOND) -> THIRD,

            {

                move |x| second(first(x))

            }

            #ci

        } #2

    ).into()

}

Next, we produce output. Our application code did not contain the
compose_two function from our declarative macro example, so we generate it.
The custom struct is responsible for input and output, so we just pass it along
behind the compose_two declaration. The additional pair of curly braces is
essential. Whatever we return has to be bound to a variable (let composed =
…). And without the curly braces, we are returning two things: a function plus
a call to it. With the curly braces, we create one block scope and only return
that.

Generating compose_two

Putting the compose_two function inside the block scope has the additional



advantage that it hides the function declaration from other parts of our code.
Remember, we are creating this output for every invocation of our macro. So
if we call compose! four times, we have four compose_two functions in their
own, limited, scopes, hidden from each other.

But always generating the same function is a bit inefficient. Can’t we just
export compose_two and reference it in our generated code? Well, no: a proc-
macro library can only export procedural macros. One way to work around
this limitation would be to put the proc-macro library in another library. That
outer library has our proc-macro as a dependency, and simply exports
compose_two and reexports the macro, e.g. pub use
function_like_compose_macro::compose;. If your code takes a dependency
on this new library, you can import both the function and macro, and avoid
generating the same code all the time.

Perhaps you are now thinking of monomorphization. Monomorphization is
Rust compilation creating a copy of a generic function for every concrete
type that needs it. So, when you write a generic function with signature
foo<T>(t: T) → T, and call it once with an i32 and once with u8 as a type
for T, Rust will replace that generic function with two versions. One in which
foo accepts and returns an i32, and another where it takes and gives back a
u8. This transformation generally leads to faster code, but also large binary
sizes, especially when generic functions are invoked with a lot of different
types.

In any case, monomorphization does lessen the usefulness of our technique,
as a function will be generated for every type regardless. Even so, in the
current setup, a compose_two is generated even when we have multiple
invocations with the same types! And that, at least, does not happen with
monomorphization.

A minor detail: this time we did not create a temporary variable for our
output to call into() on. Instead, we did all that in one go. And because IDEs
are not fond of curly braces followed by method calls (plus we would have
two pairs of curly braces wrapping), I used parentheses.

Now all that is left, is to take a look at the custom struct that is doing all the
heavy lifting. The Parse input is simple enough: we expect to get function



names separated by dots. That sounds like Punctuated! Identifiers will
suffice for the function names. And to get the dot, we can use the Token
macro which can handle around a hundred different symbols. Behind the
scenes, Token!(.) will generate Dot, so we could also import that type. Or
we could even mix and match these two if we are so inclined.

Figure 5.3 Parsing our application example with Punctuated::<Ident, Token!
(.)>::parse_terminated

Listing 5.8 Our custom struct



use proc_macro::TokenStream;

use proc_macro2::Ident;

use quote::{quote, ToTokens};

use syn::{parse_macro_input, Token};

use syn::parse::{Parse, ParseStream};

use syn::punctuated::Punctuated;

struct ComposeInput {

    expressions: Punctuated::<Ident, Token!(.)>,

}

impl Parse for ComposeInput {

    fn parse(input: ParseStream) -> Result<Self, syn::Error> {

        Ok(

            ComposeInput {

                expressions: Punctuated::<Ident, Token!(.)>::

                parse_terminated(input).unwrap(),

            } #1

        )

    }

}

impl ToTokens for ComposeInput {

    fn to_tokens(&self, tokens: &mut proc_macro2::TokenStream) {

        let mut total = None;

        let mut as_idents: Vec<&Ident> = self.expressions

            .iter()

            .collect();

        let last_ident = as_idents

            .pop()

            .unwrap(); #2

        as_idents.iter()

            .rev()

            .for_each(|i| {

                if let Some(current_total) = &total {

                    total = Some(quote!(

                        compose_two(#i, #current_total)

                    ));

                } else {

                    total = Some(quote!(

                        compose_two(#i, #last_ident)

                    ));

                }

            }); #3

        total.to_tokens(tokens);

    }

}



The ToTokens implementation is a bit more complex (and there are definitely
other ways of writing this). Because we want to retrieve the last identifier
(function) in the list, we iterate over the expressions, create a mutable
variable, and pop the final identifier. Next, we iterate over our functions in
reverse order with for_each. If total, which contains our output, is empty,
we are at our first element and should combine it with last_ident using
compose_two, putting that entire TokenStream into total. This is why we
popped the last element: so we would know when we need to combine the
first two elements of the reversed vector. Once passed this first composition,
things become simpler: we keep taking the current element and putting it into
a compose_two with the current total. The resulting TokenStream becomes
our new total. Finally, we pass all our gathered tokens along using
to_tokens. Oh, and as before, we need proc_macro2 identifiers and token
streams because quote uses the proc_macro2 variants instead of the built-in
versions.

Figure 5.4 Going through the identifiers in to_tokens



We are now able to use periods in our composing macro. And once again,
syn made it easy to parse our input, even though it was not valid Rust, and
quote helped us elegantly combine outputs.

5.4 Everything you can do, I can do better

Because they are the most powerful macro, you might decide to just use
function-like macros for every purpose. That would be unwise. Surely it
means something that derive macros, the most limited of the three, are



perhaps the most popular of the three. Because a limitation can also be a
strength. For instance, derive macros are predictable in their effects, both for
users and creators, since they only add without changing or… deleting. So if
you only want to add functionality to a struct or enum, and the problem is too
complex for a declarative macro, you have already found the right tool for the
job.

Derive macros have the limitation & advantage of only working for structs,
enums, and unions, while attribute macros work on these plus traits and
functions. Again, this makes them more predictable. As a user, I know not to
use them on functions. As a creator, the 'input token space' - if you will - is
much more narrow than that of a function-like macro. I.e. I am reasonably
sure that I will get a struct or an enum and I know what those look like.

So, if you only want to add functionality to a struct or enum, go with the
derive macro. If you need to alter them, default to an attribute macro. And
when you want to change functionality and need the macro to apply to other
categories as well, go for function-like.

Figure 5.5 An overview of our procedural macro signatures, usage and effects



5.5 From the real world

Without going into detail, here are a few examples of crates that put macros
to creative use. SQLx is a "Rust SQL crate featuring compile-time checked
queries", a common choice for interacting with relational databases when you
do not want to add the complexity of an ORM. You can write SQL queries by
calling the query method. But to get the advertised compile-time checks, you
should look for a macro with the same name.



let countries = sqlx::query!(

    "SELECT country, COUNT(*) as count

    FROM users

    GROUP BY country

    WHERE organization = ?",

    organization

)

.fetch_all(&pool)

.await?;

Yew is a "framework for creating reliable and efficient web applications".
Among its features is the html macro, which allows you to write HTML that
is checked at compile time. For example: if you forget to close the nested div,
you will get an error telling you that this opening tag has no
corresponding closing tag.

use yew::prelude::*;

html! {

    <div id="my_div">

        <div id="nested"/>

    </div>

};

Taking a bit of a side-tour, here is a Yew example where the library authors
decide to create a span by calling mixed_site(). (It also contains an example
of the format_ident macro which we will use in our next chapter.) The
choice makes sense in this context since the authors do not want this builder
to conflict with anything in the client application.

impl ToTokens for DerivePropsInput {

    fn to_tokens(&self, tokens: &mut proc_macro2::TokenStream) {

        // ...

        let builder_name = format_ident!(

            "{}Builder", props_name, span = Span::mixed_site()

        );

        let check_all_props_name = format_ident!(

            "Check{}All", props_name, span = Span::mixed_site()

        );

        // ...

    }

}

Meanwhile, Leptos has a view macro that allows you to mix HTML and



Rust. As an example, the below code creates an incrementing button. Here
too you will get warnings about mismatches in tags, or issues with Rust code
inside the macro.

#[component]

fn App(cx: Scope) -> impl IntoView {

    let (count, set_count) = create_signal(cx, 0);

    view! { cx,

        <button

            on:click=move |_| {

                set_count.update(|n| *n += 1);

            }

        >

            "Click me: "

            {count}

        </button>

    }

}

5.6 Exercises

Write a function-like macro to generate a struct method that prints 'hello
world'. It should only take the struct name as an input. Remember to
declare a struct with the correct name in your application code.
Our 'private' macro creates convenience methods, but the fields can still
be public and directly accessible and our newly generated methods are
not public. Change the macro so that it sets all fields to private and
generates public methods. You can ignore the complexity of re-adding
the struct attributes and hardcode a new method for your example struct.
Go look at the Token! source code and see what other tokens are
available. Try a different one for our composing macro and fix the
application code!

5.7 Summary

Function-like macros replace their input.
Just like declarative macros, you use them by writing their name
followed by an exclamation mark.



Their input is placed in the parentheses that follow.
They are not limited to structs and the like, instead taking anything you
want to pass along as input.
Writing a function-like macro is very much like writing other procedural
macros. But since their inputs are more varied, they may require more
parsing effort.
One way to deal with the input is creating a custom struct for gathering
all information. The syn library has a lot of useful goodies to help you
on your way with this.
When you’re stuck thanks to a compile error in your generated code, just
try writing out the code you want to generate and see if the compiler or
IDE gives you any useful advice.
You should think about requirements when deciding on the kind of
macro you need: where will you use it? Does it have to change existing
code?
Whenever possible, go for the simplest option.



6 Testing a builder macro
This chapter covers

Writing a derive macro that will generate a builder for structs
Creating white-box tests to verify the behavior of functions within your
macro
Using black-box tests that take an outside view of your code
Deciding what types of tests are most useful for your macro

The builder pattern is a very convenient, fluent way of constructing structs.
Because of that, it is omnipresent in Rust code. Often, though, the code
required to write a builder is boilerplate. Boilerplate that we can automate
away! In this chapter, we will write a macro to do just that. Because we are
not touching the original struct, we can use a derive macro (remember, go for
the simplest option). In an implementation block, we create a temporary
Builder struct that stores information and offers a build method for creating
the original struct.

Figure 6.1 The builder from this chapter for an example struct



This is not an original idea, sprung wholly from my head in all its glory.
There is, for example, a procedural macro workshop where you create this
kind of macro on GitHub and the Crust of Rust walks you through one
possible implementation. Being original is thus not the point of this chapter.
Instead, while implementing this builder we will discuss how we can test
procedural macros. And ideally, such a chapter would be written using Test
Driven Development.

Note



Test Driven Development (TDD) is a way of coding that puts tests in the
center of things. Rather than testing being an afterthought, every piece of
code that we write is preceded by a test verifying the behavior we would like
to see. The test starts out red (failing) because there is no implementation yet.
After we write code, and the test turns green (succeeds), we write another test
for the next bit of behavior. This approach has the obvious advantage of
creating applications with excellent test coverage. And proponents feel that
TDD also drives developers into writing better-designed code.

For us, one option would be to start with a high-level test which we
ultimately try to turn green. To get there, we would define smaller unit tests
for pieces of the desired behavior. Unfortunately, because TDD relies on
small incremental steps, this makes for unpleasant reading (and writing!) and
would make this chapter even longer than it already is. So instead, we start
with a basic setup and explore tests while further fleshing out the macro.
Afterwards, we will also talk about which type of unit test (black-box or
white-box) seems the most useful when writing macros.

6.1 Builder macro project setup

For this chapter, we will use a slightly more complex project setup. Instead of
having one directory for our application and one for our macro, we will split
up the latter into a simple library exposing the macro itself, and one
containing its implementation. This kind of setup is said to be a good
practice, creating a separation between the macro function, which uses built-
in macro utilities, and the underlying code, which will use the proc_macro2
wrapper (which we have encountered before and is used by libraries like
quote). While this is true, there are other ways to separate and isolate code -
which we will talk about in this and subsequent chapters - and I do think this
approach is often overkill. But a demonstration is not a bad idea. Afterward,
you can decide whether the isolation is worth the additional setup.

What we have to do:

We need a root directory, which we will call builder
Inside this directory, we add three more: builder-code, builder-macro,
and builder-usage.



The first two are libraries, so create them with cargo init --lib. The
last one is a normal (executable) Rust project and needs cargo init
Now make the root directory a Cargo workspace with another cargo
init.
Finally, change the contents of the toml files to match the code below

Listing 6.1 Our 'builder-code' Cargo.toml

[package]

name = "builder-code"

version = "0.1.0"

edition = "2021"

[dependencies]

quote = "1.0.33"

syn = { version = "2.0.39", features = ["extra-traits"]}

proc-macro2 = "1.0.69"

Listing 6.2 The macro ('builder-macro')

[package]

name = "builder-macro"

version = "0.1.0"

edition = "2021"

[dependencies]

builder-code = { path = "../builder-code" }

[lib]

proc-macro = true

Listing 6.3 Our application ('builder-usage') file

[package]

name = "builder-usage"

version = "0.1.0"

edition = "2021"

[dependencies]

builder-macro = { path = "../builder-macro" }

Listing 6.4 The workspace Cargo.toml in the root builder directory



[workspace]

members = [

    "builder-macro",

    "builder-code",

    "builder-usage"

]

Figure 6.2 Our setup for the builder project

Thanks to the Cargo workspace, we can combine our three subprojects into



one greater whole. Not strictly necessary, but it does allow us to run checks
and tests for all our subdirectories in one go.

Note

Someone wrote some additional tooling to help you with creating and
managing workspaces.

6.2 Fleshing out the structure of our setup

We can now add some code to lib.rs in builder-code to create the builder
(helper) struct.

Listing 6.5 The lib.rs file in builder-code

use proc_macro2::{TokenStream};

use quote::{format_ident, quote, ToTokens};

use syn::DeriveInput;

pub fn create_builder(item: TokenStream) -> TokenStream {

    let ast: DeriveInput = syn::parse2(item).unwrap(); #1

    let name = ast.ident;

    let builder = format_ident!("{}Builder", name); #2

    quote! {

        struct #builder {} #3

    }

}

Readers with a keen eye may have noticed that our builder-code has not
been marked as a procedural macro. This is because we are exposing the
macro from another directory (builder-macro). It does mean that we no
longer have access to proc_macro types since these are only available inside
a library that has been marked as a procedural macro. Instead, we use the
proc_macro2 wrapper. And because we use this wrapper, we turn to parse2
for parsing, unwrapping the Result.

As usual, we retrieve the name of the struct after parsing. In this case, we do
that because we want to have a helper struct for temporarily storing field
values. And as we will be injecting this builder in user code, we cannot



simply name it 'Builder', because the chance of the name clashing with the
user’s code is too great. Furthermore, you would only be able to use this
macro once per module, lest it generates two structs named 'Builder'. So
instead we use the name of the annotated struct as a prefix. This should be
relatively safe, but if you want even more certainty, the Rust Reference
advises adding underscore prefixes (__) as well, which makes a clash with
code that follows standard naming very unlikely. This is, in fact, a convention
that you encounter in lots of macro code. And we have seen it in several of
our 'real world' examples already. Flip back to previous chapters if you don’t
believe me. But it should only be used when you do not want the struct to be
used directly by the macro users. If we want them to pass around builders in
the application code, we want the naming to be both predictable and to follow
Rust naming conventions. And while double prefixes do not generate a
warning, they are rare structs names outside macro code.

To create an identifier for our helper, we need to generate the right string and
pass it into the identifier constructor together with a span. Instead of writing
those two lines of code, we can offload work to format_ident, which will
take care of everything. As a span it selects that of the final identifier it
received, falling back to call_site ('current location' - this is the one we
used in the previous chapter) if there are none. I.e. in our case, the builder
will get the span of the struct it will help 'build'. That’s perfect.

Once we have our name, we return an empty struct as placeholder code. As
our code now returns a proc_macro2::TokenStream we no longer have to
turn the result from quote into the standard TokenStream expected by a proc
macro… or at least not in this part of our code.

Now turn to the builder-macro code.

Listing 6.6 Builder-macro contains the actual macro function

use proc_macro::TokenStream;

use builder_code::create_builder;

#[proc_macro_derive(Builder)]

pub fn builder(item: TokenStream) -> TokenStream {

    create_builder(item.into()) #1

        .into() #2



}

The macro definition is very similar to the one we had before, except that it is
now in a separate package. We have defined a derive macro called Builder
that accepts a normal TokenStream as a parameter and returns another.
Because our builder-code is only using the proc_macro2 we are forced into
a 'translation' when we pass this data to builder-code. And when we get
back results, we do the same because procedural macros don’t know or care
about the wrapper, they expect a 'normal' stream. In both cases, we can turn
to the Into trait to take care of transformations for us.

Finally, we will fill in our main file in builder-usage. Right now it just adds
the macro to an empty struct called Gleipnir.

Listing 6.7 Our builder-usage main.rs file with an empty example struct

use builder_macro::Builder;

#[derive(Builder)]

struct Gleipnir {}

fn main() {}

This is merely a simple way to verify that everything compiles. That task is
better left to tests that not only verify compilation, but actual behavior. So
that’s the subject we now turn to.

6.3 Adding white-box unit tests

There are two ways we could unit test our procedural macros. The first is
using 'internal' or 'white-box' testing, where we have access to the internals of
the code. The other way is 'black-box' testing, where we adopt an outsider’s
perspective. We will start with the first.

Testing internals in Rust is easier than it is in most programming languages
because we can - and should - add tests to the files containing our
implementation. This allows us to verify any behavior, including that which
is hidden in private structs, fields, and functions. So our first tests will be
added to lib.rs in our builder-code. And if we had a large macro, we



would add tests to other files as well.

The first test, seen below, is a very basic assertion. Since we already wrote
code to generate a struct, we can assert that we get back something with the
expected builder name. For example, when we pass in a struct called
StructWithNoFields we expect that the returned token stream contains
StructWithNoFieldsBuilder.

Listing 6.8 Our builder-code with a first, basic test

// imports

pub fn create_builder(item: TokenStream) -> TokenStream {

    let ast: DeriveInput = syn::parse2(item).unwrap();

    let name = ast.ident;

    let builder = format_ident!("{}Builder", name); #1

    quote! {

        struct #builder {}

    }

}

#[cfg(test)]

mod tests { #2

    use super::*;

    #[test]

    fn builder_struct_name_should_be_present_in_output() {

        let input = quote! {

            struct StructWithNoFields {}

        }; #3

        let actual = create_builder(input);

        assert!(actual.to_string()

            .contains("StructWithNoFieldsBuilder")); #4

    }

}

This is very basic, but it already gives us some assurance about our code. For
example, we now know that the code is returning the builder name
somewhere in its output. But would it not be better to check that the entire
output matches our expectations? We can do that by comparing the output



with a TokenStream of our own. That does mean we need to somehow
manually build that expected output, and there are several ways to do this.
For example, we could create a new TokenStream and use to_tokens to add
all the expected output to that stream. While that would work, it requires way
more effort than the alternative: just use quote to generate the 'expected'
output!

Listing 6.9 Adding a second test to mod tests, where we compare with a TokenStream that we
generated

#[test]

fn builder_struct_with_expected_methods_should_be_present_in_output() {

    let input = quote! {

        struct StructWithNoFields {}

    }; #1

    let expected = quote! {

        struct StructWithNoFieldsBuilder {}

    }; #1

    let actual = create_builder(input);

    assert_eq!(

        actual.to_string(),

        expected.to_string()

    ); #2

}

Since TokenStream does not implement PartialEq, we cannot directly
compare both. Changing them to strings and comparing the result is an easy
enough workaround.

Instead of making sure our expected value is of the same type as our output,
we can also transform our output to make verifying it easier. So a third option
is to use parse2. If the parse fails, the test correctly panics thanks to the
unwrap call. If it succeeds, we have an AST that we can easily extract
information from - and verify that it matches expectations.

Listing 6.10 Adding a third test to mod tests, this time featuring parse2 for analyzing the output

#[test]

fn assert_with_parsing() {

    let input = quote! {



        struct StructWithNoFields {}

    };

    let actual = create_builder(input);

    let derived: DeriveInput = syn::parse2(actual).unwrap(); #1

    let name = derived.ident;

    assert_eq!(

        name.to_string(),

        "StructWithNoFieldsBuilder"

    ); #2

}

This is powerful, but once we start outputting more than one
item/struct/function/… we have to write custom logic for parsing. And when
that becomes too complex… we might have to test our tests? That is why the
second variation, which uses quote, is my favorite of the three, for both
clarity and - particularly - its ease of use. Besides testing token stream output,
white-box testing is very useful for verifying the output of helper functions.
Since you are expected to be familiar with the basics of testing in Rust,
examples of such tests are not shown here.

Still, despite their usefulness in multiple scenarios, white-box tests are by
themselves insufficient for fully testing macros. Yes, they can show us that
the output of our code is what we think it should be. But what we really want
to know is whether the generated code will do what we want it to do. In this
case: will it allow us to create our struct? To verify that sort of behavior, we
need to adopt an outsider’s perspective.

6.4 Black-box unit tests

As we mentioned earlier, black-box tests take an outsider’s view. They only
want to know whether the code produces the required result, without
knowing how it achieves this. This is often a good idea since the value of
code is in what it can produce rather than how. Do we really care that values
are temporarily stored somewhere when we build our struct? Is it important
to verify that this happens? As a consequence of their approach, black-box
tests are less tied to implementation details than white-box tests. This means
they change less often when you are only modifying code internals.



6.4.1 A happy path test

We start with some happy path testing, which verifies that the code works
when everything goes according to plan. We add the test to builder-usage
since this crate is one of the users of our macro. Alternatively, we could add
everything to a new tests folder in the root of builder-usage. In normal
projects, this is a good place for black-box tests because code in tests does
not have privileged access - it can only use the public 'API' of its project. But
in our case, the code we are testing is in an entirely different project. So
main.rs is fine.

Our first, most basic test, verifies compilation of the code and nothing more.

Listing 6.11 A first black-box test (in builder-usage, main.rs)

use builder_macro::Builder;

fn main() {}

#[cfg(test)]

mod tests {

    #[test]

    fn should_generate_builder_for_struct_with_no_properties() {

        #[derive(Builder)]

        struct ExampleStructNoFields {} #1

        let _: ExampleStructNoFields = ExampleStructNoFields::builder()

            .build(); #2

    }

}

Our test defines a struct annotated with our macro, and we are asserting that
calling ::builder().build() will return an instance of that struct. By doing
this, we are asserting that the code will compile, proving that the functions
we are expecting are generated. Even without assertions, the code already
complains: function or associated item builder not found for this
struct. So let’s turn our test green by adding everything we need for this
first use case.

Listing 6.12 Adding enough implementation to turn our test green



// earlier imports

pub fn create_builder(item: TokenStream) -> TokenStream {

    let ast: DeriveInput = syn::parse2(item).unwrap();

    let name = ast.ident;

    let builder = format_ident!("{}Builder", name);

    quote! {

        struct #builder {} #1

        impl #builder {

            pub fn build(&self) -> #name {

                #name {}

            }

        } #2

        impl #name {

            pub fn builder() -> #builder {

                #builder {}

            }

        } #3

    }

}

All changes are located in the quote macro. Instead of generating an empty
struct, we have added an implementation block for both the builder and the
original struct. In these blocks, we define the two functions that we are
calling in our test.

Some errors you may come across writing this piece of code (or similar):

expected value, found struct ExampleStructNoFields caused by
forgetting to add {} behind #name inside build. The error message is
helpful but - as usual - points to the macro instead of a specific line. One
way to track down the error is to search for places where you are using
#name since you know its value is the ExampleStructNoFields that
appears in the message. You could also use cargo expand to visualize
what the generated code looks like. The command is a bit different now
because it is tests that are being expanded. In this case: cargo expand -
-tests --bin builder-usage, which you can run inside builder-
usage

expected () because of default return type is less clear until you



realize that you have functions that should return things. So you
probably forgot to specify a return type (e.g. → #name)?
expected identifier, found "ExampleStructNoFieldsBuilder":
you will get this error if you forget that you need identifiers instead of
strings for the names of structs. You may recall that we encountered
similar issues in the previous chapter
cannot find value build in this scope: a typo inside quote means
that we have a hashtag in combination with an unknown variable. Rust
won’t like that. So check for hashtags that do not match anything. An
IDE will probably give you autocomplete for these hashtags, helping
you track down or avoid this issue.

We have turned our first type happy path test, call it a 'compile test', green!
This is a good first step. Even if the code does not do what we expect, at the
very least this verifies that our generated code does not crash and burn. Note
that these implementation changes will cause our second white-box test to
fail, as we are now producing more output. You can fix it, or disable it for
now. I would also advise disabling the third ('parsing') test because, as
predicted, it now requires too much custom parsing effort vis-à-vis its value.
Meanwhile, the first white-box test shows that there is value in simplicity: it
just keeps on working.

6.4.2 A happy path test with an actual property

What would be a useful second test? How about a struct with a single
property?

Listing 6.13 A test for keeping Fenrir at bay (still in main.rs, builder-usage)

#[test]

fn should_generate_builder_for_struct_with_one_property() {

    #[derive(Builder)]

    struct Gleipnir {

        roots_of: String,

    }

    let gleipnir = Gleipnir::builder()

        .roots_of("mountains".to_string())

        .build();



    assert_eq!(gleipnir.roots_of, "mountains".to_string());

}

Right now, this will fail with no method named roots_of found for
struct Gleipnir. What do we need to do to fix this? Well, our builder has to
expose one method for every field in the struct, which will save the value.
Our build method will use that saved information to create the struct
(Gleipnir in our case). The associated builder function will create the initial
builder as before, but now we have to make sure the builder defines
properties for saving all the required values. It seems safe to conclude that we
need to retrieve the struct fields to work our magic. More specifically we
need to know their names and types to generate our functions.

Note

We are following TDD philosophy, trying to write just enough code to make
our tests turn green. So it is OK for now to assume that we only have to deal
with a String. We will make the code more generic - and performant - in the
next section.

Here is the implementation.

Listing 6.14 builder-code implementation (without white-box tests and imports)

pub fn create_builder(item: TokenStream) -> TokenStream {

    // AST, retrieving name and creating builder identifier

    let fields = match ast.data {

        Struct(

            DataStruct {

                fields: Named(

                    FieldsNamed {

                        ref named, ..

                    }), ..

            }

        ) => named,

        _ => unimplemented!(

            "only implemented for structs"

        ),

    };

    let builder_fields = fields.iter().map(|f| {



        let field_name = &f.ident;

        let field_type = &f.ty;

        quote! { #field_name: Option<#field_type> }

    });

    let builder_inits = fields.iter().map(|f| {

        let field_name = &f.ident;

        quote! { #field_name: None }

    });

    let builder_methods = fields.iter().map(|f| {

        let field_name = &f.ident;

        let field_type = &f.ty;

        quote! {

            pub fn #field_name(&mut self, input: #field_type) -> &mut Self {

                self.#field_name = Some(input);

                self

            }

        }

    });

    let set_fields = fields.iter().map(|f| {

        let field_name = &f.ident;

        let field_name_as_string = field_name.as_ref().unwrap().to_string();

        quote! {

            #field_name: self.#field_name.as_ref()

                .expect(&format!("field {} not set", #field_name_as_string))

                .to_string()

        }

    });

    quote! {

        struct #builder {

            #(#builder_fields,)*

        }

        impl #builder {

            #(#builder_methods)*

            pub fn build(&self) -> #name {

                #name {

                    #(#set_fields,)*

                }

            }

        }

        impl #name {

            pub fn builder() -> #builder {

                #builder {

                    #(#builder_inits,)*

                }

            }



        }

    }

}

This is a lot to unwrap. Let’s go over it bit by bit. First, we retrieve the fields
of the incoming struct, like we did several times before. Once that is done, we
use these fields in four different ways.

First, we make sure our helper struct has the same properties as the original
struct. That way we can temporarily store all field information. Except…
when we first create this helper, when builder() is called, we do not have
any values to store! So we will wrap the types in an Option. (And we will
ignore complexities such as what to do when a type is already an Option.)
That is what is happening in the code fragment below.

Listing 6.15 Adding fields to the builder struct definition

let builder_fields = fields.iter().map(|f| {

    let field_name = &f.ident;

    let field_type = &f.ty;

    quote! { #field_name: Option<#field_type> }

});

Note

You may at some point think that creating these temporary variables
(field_name and field_type in this instance) is a waste. Can’t we just inline
this stuff and use f directly inside quote (for example: #f.ident)?
Unfortunately, no. The quote macro is great, but it won’t retrieve struct fields
for you.

Next, when builder() is called, we have to initialize the fields, setting each
one to None since we do not have a value yet.

Listing 6.16 Initial values for the builder fields

let builder_inits = fields.iter().map(|f| {

    let field_name = &f.ident;

    quote! { #field_name: None }

});



Now we want to generate public methods with a name equal to that of a field,
for setting that field to something other than None. They will take a parameter
of the same type as the field, and save it in an Option. As an example, take
the roots_of field of type String: the method name will be roots_of, the
input will be of type String and will be saved as an Option<String> in a
builder struct field called roots_of. The method will return the builder
(Self). That way, we can have a fluent builder that sets value after value:
builder().first_field(…).second_field(…).build()).

Listing 6.17 Generating methods for setting the value of a property

let builder_methods = fields.iter().map(|f| {

    let field_name = &f.ident;

    let field_type = &f.ty;

    quote! {

        pub fn #field_name(&mut self, input: #field_type) -> &mut Self {

            self.#field_name = Some(input);

            self

        }

    }

});

Finally, when we call build we want to retrieve all the stored values and
create the annotated struct. With the following piece of code, we create this
initialization for each field. Since we are dealing with optionals, we use
expect to get the actual value and the operation might fail since a user could
forget to set a value. So we will return an informative error using
field_name_as_string. Once that is done, we have the actual field. But as
we can’t just 'move' out of the field, we do a to_string to get a copy of the
value.

Listing 6.18 Initializing the actual struct

let set_fields = fields.iter().map(|f| {

    let field_name = &f.ident;

    let field_name_as_string = field_name

        .as_ref().unwrap().to_string();

    quote! {

        #field_name: self.#field_name.as_ref()

            .expect(&format!("field {} not set", #field_name_as_string))

            .to_string()



    }

});

These are all loose pieces, which we need to bring together in quote. If you
have trouble visualizing this, run cargo expand on the test or consult the
diagram below.

Listing 6.19 Final output

quote! {

    struct #builder {

        #(#builder_fields,)* #1

    }

    impl #builder {

        #(#builder_methods)* #2

        pub fn build(&self) -> #name {

            #name {

                #(#set_fields,)*

            }

        } #3

    }

    impl #name {

        pub fn builder() -> #builder {

            #builder {

                #(#builder_inits,)*

            }

        } #4

    }

}

When writing this code, I encountered one annoying error:

22 |         #[derive(Builder)]

|                  ^^^^^^^

|                  |

|                  item list starts here

|                  non-item starts here

|                  item list ends here

Printing information and expanding did not give me any real insights. I
suspected that the issues lay in my 'builder methods' and confirmed this by
temporarily disabling that part of the code. Then it dawned on me that I had
written #(#builder_methods,)*… and functions are not separated by



commas! Removing the , did the trick.

In the below figure, there is an overview of the output generated by the
different parts of our code, and how everything fits together. From a simple
struct with a single field, we generate a builder with a property, its
initialization, a method to set its one field, and a build method where the
original Gleipnir struct is created.

Figure 6.3 An overview of transformations for our example struct



6.4.3 Testing enables refactoring

The above code is far from perfect. But the good news is that tests make it
easier and safer to refactor. As long as the black-box tests stay green, we
know that our behavior is still the same, albeit only for empty structs and
those with one field. Let’s make use of that freedom. Until now, we have
often placed all our code in one file and one function. While that is good
enough for simple examples, this one is now quite big, a single function
containing almost 70 lines of code. If we expect the implementation to grow
even further, it makes sense to split things up.

Ideally, refactoring happens step by step, and we should verify that our code
keeps working after every minor step. We can start by extracting some
functions. Each of these does an iteration over the fields to do one thing (field
definitions, initializations, etc.). With IDE tooling, this is a piece of cake.

Listing 6.20 Code fragment from our refactored create_builder function

let builder_fields = builder_field_definitions(fields);

let builder_inits = builder_init_values(fields);

let builder_methods = builder_methods(fields);

let original_struct_set_fields = original_struct_setters(fields);

The tests are still green, nice. Retrieving the field name and type is something
we do in both builder_field_definitions and builder_methods, so we
can deduplicate. Below is the code for the helper and how it is used in
another function.

Listing 6.21 Adding a helper function for getting the field name and type

use syn::{Ident, Type}; // plus other imports

fn builder_field_definitions(fields: &Punctuated<Field, Comma>)

                        -> impl Iterator<Item = TokenStream2> + '_ {

    fields.iter().map(|f| {

        let (name, f_type) = get_name_and_type(f); #1

        quote! { pub #name: Option<#f_type> }

    })

}

fn get_name_and_type<'a>(f: &'a Field) -> (&'a Option<Ident>, &'a Type) {



    let field_name = &f.ident;

    let field_type = &f.ty;

    (field_name, field_type)

}

In one of the exercises, we had a very concrete return type for a function like
builder_field_definitions: Map<Iter<Field>, fn(&Field) →
TokenStream>. That works, but this impl Iterator<Item = TokenStream2>
+ '_ is more idiomatic when you return iterator types. Instead of specifically
telling Rust that the function gives back a Map, we say it is something that
iterates over token streams: impl Iterator<Item = TokenStream2>. The '_
is obligatory, as Rust will tell you if you forget to add it. The error it throws
is quite clear in its explanation: our parameter fields, a reference, has an
anonymous lifetime. This is captured by us, but not mentioned as part of the
bounds of the return type impl Iterator<Item = TokenStream2>. So we
have to make this explicit, which we can do with a placeholder lifetime.
That’s possible because there is only a single lifetime. If we had multiple
reference parameters for this function, things would be more complicated.

We also had to add lifetimes to get_name_and_type. This is because the
lifetime elision rules, that allow Rust to infer the proper lifetime, could not be
applied to this function with two outputs. In any case, the tests are still
running.

Next, there’s too much code in a single file, so we should split off some
functionality. We could do this in two ways. First, we could create a
subdirectory (called 'implementation'? names are hard), add a file with the
code, and a mod.rs that determines what is exported (and thus usable in our
root library file). This has the advantage of a bit more power and flexibility -
which we don’t need at the moment - at the cost of a little more effort.
Instead, we go with the second option: putting the helpers in a separate file.
Which is the more 'modern' way of doing things in Rust anyway (even
though directory + mod.rs is still widely used).

That means we have to create a new file, called fields.rs, in the src
directory of our macro code. We can move all the functions except
create_builder to that file, leaving the tests untouched. When this is done,
we need to add mod fields to lib.rs and import our functions.



Listing 6.22 Part of the new fields.rs file

// imports

pub fn original_struct_setters(fields: &Punctuated<Field, Comma>)

                        -> impl Iterator<Item = TokenStream2> + '_ {

    fields.iter().map(|f| {

        let field_name = &f.ident;

        let field_name_as_string = field_name.as_ref().unwrap().to_string();

        quote! {

            #field_name: self.#field_name.as_ref()

                .expect(&format!("field {} not set", #field_name_as_string))

                .to_string()

        }

    })

} #1

// three more functions

fn get_name_and_type<'a>(f: &'a Field) -> (&'a Option<Ident>, &'a Type) {

    let field_name = &f.ident;

    let field_type = &f.ty;

    (field_name, field_type)

} #2

Listing 6.23 Using the functions in lib.rs

mod fields; #1

use crate::fields::{

    builder_field_definitions,

    builder_init_values,

    builder_methods,

    original_struct_setters

}; #2

// other imports and code

Moving the field-related code has made our library cleaner and has hidden a
helper (get_name_and_type) that is only of interest to the field-related
functions. This is good: more information hiding and less 'surface' area.
Having separate functions instead of one big blob also opens the door for
additional unit testing. Below is an example for our helper.



Listing 6.24 An example test for get_name_and_type

#[test]

fn get_name_and_type_give_back_name() {

    let p = PathSegment {

        ident: Ident::new("String", Span::call_site()),

        arguments: Default::default(),

    };

    let mut pun = Punctuated::new();

    pun.push(p);

    let ty = Type::Path(TypePath {

        qself: None,

        path: Path {

            leading_colon: None,

            segments: pun,

        },

    });

    let f = Field {

        attrs: vec![],

        vis: Visibility::Inherited,

        mutability: FieldMutability::None,

        ident: Some(Ident::new("example", Span::call_site())),

        colon_token: None,

        ty,

    };

    let (actual_name, _) = get_name_and_type(&f);

    assert_eq!(

        actual_name.as_ref().unwrap().to_string(),

        "example".to_string()

    )

}

As you can see, constructing the parameters for this function requires a lot of
boilerplate. And in this case, our trick with quote + parse2 can’t help us
since Field does not implement Parse… So perhaps you will decide against
white-box testing at this level of detail. But if you need it, it’s available.

6.4.4 Further improvements and testing

With this first bit of refactoring out of the way, we should focus our
implementation, because we are still only able to accept strings! We can
verify this behavior with a test, as real hard-core TDD practitioners should.



Listing 6.25 A test with two properties, including one that is not a String

#[test]

fn should_generate_builder_for_struct_with_two_properties() {

    #[derive(Builder)]

    struct Gleipnir {

        roots_of: String,

        breath_of_a_fish: u8

    }

    let gleipnir = Gleipnir::builder()

        .roots_of("mountains".to_string())

        .breath_of_a_fish(1)

        .build();

    assert_eq!(gleipnir.roots_of, "mountains".to_string());

    assert_eq!(gleipnir.breath_of_a_fish, 1);

}

As expected, this fails at compilation time (expected u8, found struct
String) because we are doing a to_string on our values:

quote! {

    #field_name: self.#field_name.as_ref()

        .expect(&format!("field {} not set", #field_name_as_string))

        .to_string()

}

There are several ways to fix this. One extremely easy solution is to…
replace to_string with clone, which will make Strings, primitives, and all
structs that implement Clone work automagically. And if we get a field that
does not implement this trait, we will get an error pointing that out
(YourCustomStruct does not implement Clone). Neat. But it does require
you to implement Clone for every struct property. Which you may not want.

There are two other solutions. One of them requires additional code and has
limited capabilities. The other is shorter and more elegant but requires more
thinking in advance about our goal and the rules of Rust. (Obviously, the first
solution is the one I thought of first before stumbling on the second one,
which works by consuming the builder.) But: why on earth would we explore
the first alternative when it sounds worse than what we already have? Well,
in a book about macros, this solution has the advantage that it requires us to



dive into the Abstract Syntax Tree!

So let’s begin. One issue with our current solution is that to_string only
works for one type. Primitive types like u8 don’t require anything like that,
since they implement Copy. This means we could check the type we receive
and leave out the to_string bit when we have a primitive - or when we do
not have a String.

To do that, we want a helper that can tell us whether something is a String.
But where inside the type can we find that information? Since Type is quite a
large enum, let us print out part of the AST we get in our test:

Path(TypePath {

    qself: None,

    path: Path {

        leading_colon: None,

        segments: [

            PathSegment {

                ident: Ident {

                    ident: "String",

                    span: #0 bytes(226..232),

                },

                arguments: PathArguments::None,

            },

        ],

    },

})

So our Type contains a Path and TypePath, with and an ident inside
path.segments. And an identifier can be turned into a string.

Figure 6.4 A simplified drilling down from Field to PathSegment



That means we can write a helper function to retrieve the identifier, turn it
into a string, and compare with a string representation of the type. As you can
see, writing this code is a matter of figuring out where to look for useful data.

Listing 6.26 Adding a type helper to fields.rs

fn matches_type(ty: &Type, type_name: &str) -> bool {

    if let Type::Path(ref p) = ty { #1

        let first_match = p.path.segments[0].ident.to_string();

        return first_match == *type_name; #2

    }



    false

}

We will now use this helper inside fields.rs. What we want to do there is to
add an as_ref and to_string call to our TokenStream when we have a
string. Else, we assume we’re dealing with a primitive that implements Copy.
Which means we don’t have to worry about moving.

Listing 6.27 Producing different output depending on our matches_type result

pub fn original_struct_setters(fields: &Punctuated<Field, Comma>)

                            -> impl Iterator<Item = TokenStream2> + '_ {

    fields.iter().map(|f| {

        let (field_name, field_type) = get_name_and_type(f);

        let field_name_as_string = field_name.as_ref().unwrap().to_string();

        if matches_type(field_type, "String") { #1

            quote! {

                #field_name: self.#field_name.as_ref()

                    .expect(

                        &format!("field {} not set", #field_name_as_string)

                    ).to_string()

            } #2

        } else {

            quote! {

                #field_name: self.#field_name

                    .expect(

                        &format!("field {} not set", #field_name_as_string)

                    )

            } #3

        }

    })

}

If you run our last test again, everything will be green. Huzzah. But the code
has a bit of duplication, and if that bothers you, we can get rid of it. The
example below avoids some duplication, though it is also harder to read. It’s
a tradeoff.

Listing 6.28 Combining TokenStream pieces with each other to avoid duplication

pub fn original_struct_setters(fields: &Punctuated<Field, Comma>)

                            -> impl Iterator<Item = TokenStream2> + '_ {



    fields.iter().map(|f| {

        let (field_name, field_type) = get_name_and_type(f);

        let field_name_as_string = field_name.as_ref()

            .unwrap().to_string();

        let error = quote!(

            expect(&format!("Field {} not set", #field_name_as_string))

        );

        let handle_type = if matches_type(field_type, "String") {

            quote! {

                    as_ref()

                    .#error

                    .to_string()

            }

        } else {

            quote! {

                #error

            }

        };

        quote! {

            #field_name: self.#field_name.#handle_type

        }

    })

}

This is TokenStream all the way down, baby! We have said it before: quote
offers some nice, flexible ways to compose output. So don’t think that
individual functions need to return a complete, working piece of generated
code. It is perfectly possible to build small pieces of token stream, which will
be stitched together in your final output. Or you can ignore things that are not
relevant. But more on that later.

6.4.5 An alternative approach

Our work is not done yet, as you would find out if you started experimenting
with other non-primitive properties. Remember, right now, we are checking
whether a field is a String and relying on Copy when it’s not. But there are a
lot of other types out there that are (perhaps) cloneable, but not copyable. So
let’s add another test, for Vec<String>.

Listing 6.29 Test with an additional property that is not Copy. We are almost ready for the Wolf



#[test]

fn should_generate_builder_for_struct_with_multiple_properties() {

    #[derive(Builder)]

    struct Gleipnir {

        roots_of: String,

        breath_of_a_fish: u8,

        other_necessities: Vec<String>, #1

    }

    let gleipnir = Gleipnir::builder()

        .roots_of("mountains".to_string())

        .breath_of_a_fish(1)

        .other_necessities(vec![

            "sound of cat's footsteps".to_string(),

            "beard of a woman".to_string(),

            "spittle of a bird".to_string()

        ])

        .build();

    assert_eq!(gleipnir.roots_of, "mountains".to_string());

    assert_eq!(gleipnir.breath_of_a_fish, 1);

    assert_eq!(gleipnir.other_necessities.len(), 3)

}

As expected, compilation will fail with move occurs because
self.vec_value has type Option<Vec<String> which does not

implement the Copy trait, because this is a field that is neither String nor
Copy. So maybe we should rewrite our code and clone everything that is not
Copy? That is certainly one solution to make our current test green. And at the
cost of additional code in our macro, it would produce less (and a bit more
performant) output code than our original 'clone everything' solution. Though
it would limit our builder macro to types that are Clone or Copy, and not
everything we encounter will be either.

But there is another, less limiting, way. Our builder is a temporary struct,
something to hold onto our data while the struct we want is incomplete. So
moving, which we have been trying to avoid, can actually be a good thing.
And the most efficient way to deal with the builder is probably to empty it.
How do we go about doing this? By consuming self instead of borrowing a
(mutable) reference to it! (These changes will once again break our white-box
tests. You can get them running again with some minor fixes, but we won’t
show that here.)



Listing 6.30 Stop borrowing our builder struct ( lib.rs)

pub fn build(self) -> #name { #1

    #name {

        #(#set_fields,)*

    }

}

Listing 6.31 Stop borrowing our builder struct ( fields.rs)

pub fn #field_name(mut self, i: #field_type) -> Self { #1

    self.#field_name = Some(i);

    self

}

With a couple of minor changes, the code compiles! But we are not done yet:
if everything is moved instead of copied, we no longer need to treat strings as
something special. And while we are at it, using format for the errors is not
ideal, because it does part of its work at runtime. (Expand the code if you do
not believe me.) In an early chapter, we used the stringify macro to avoid
some runtime work. This time we turn to concat, a macro that concatenates
string literals, which should allow us to produce a suitable message.

Listing 6.32 Simplifying original_struct_setters

pub fn original_struct_setters(fields: &Punctuated<Field, Comma>)

                            -> impl Iterator<Item = TokenStream2> + '_ {

    fields.iter().map(|f| {

        let field_name = &f.ident;

        let field_name_as_string = field_name

            .as_ref().unwrap().to_string();

        quote! {

            #field_name: self.#field_name

                .expect(

                    concat!("field not set: ", #field_name_as_string),

                ) #1

        }

    })

}

The one downside of this consuming approach is that a builder instance is



consumed, meaning you have to clone it if you want to reuse it. Apart from
that, our latest solution is shorter, more elegant and should be more
performant than what came before. Plus, it doesn’t require Clone, since we
are moving values instead.

Move performance considerations

With a disclaimer that this is not my area of expertise: like a copy, a move is
actually a memcpy in the background, basically a system function that copies
byte buffers, generally a cheap operation. Most of these memcpy’s will
probably be optimized away by your compiler, but that is not guaranteed. If
they are not optimized away, these copies are not an issue for small types, or
those that are only pointers plus 'bookkeeping', with everything else located
on the heap. On the other hand, large types that live entirely on the stack will
be costly to copy, and this may cause performance problems. There’s a
reason it’s important to measure performance, because modern computer
architecture laughs with our feeble attempts at simplifying things ("move is
always the best choice").

6.4.6 Unhappy path

In unhappy path testing we want to check failure modes. And for our Rust
macros, we are interested in both runtime and compile-time failures. In the
first category, our code is expected to panic when a field is missing. We start
by verifying that behavior.

Listing 6.33 Test panic on missing field

#[test]

#[should_panic] #1

fn should_panic_when_field_is_missing() {

    #[derive(Builder)]

    struct Gleipnir {

        _roots_of: String, #2

    }

    Gleipnir::builder().build(); #2

}



#[should_panic] tells Rust that we expect this code to panic because we are
calling build without setting a value for our property. This covers the one
place where we panic at runtime. But we are also panicking at compile time,
for example when we receive something that is not a struct! We should verify
this behavior as well. To do that, we will add the crate trybuild to our
dependencies. Run cargo add --dev trybuild or add trybuild =
"1.0.85" to your Cargo.toml dev dependencies (we only need this
dependency for testing) in builder-usage. Then add a tests folder in the
root of builder-usage and create a file named compilation_tests.rs with
the following content.

Listing 6.34 Our compilation test runner in the tests folder

#[test]

fn should_not_compile() {

    let t = trybuild::TestCases::new();

    t.compile_fail("tests/fails/*.rs"); #1

}

trybuild will verify that everything inside the chosen directory fails to
compile. When you run it for the first time for a given test, it will output the
error message it received (if any). If the error message matches your
expectations, you add the generated output file to the folder your test is in.
This approach makes a lot of sense: things can fail to compile for any number
of stupid reasons. You want to be sure it fails for the right reason.

Right now, we do not have any failing tests. Add a fails dir and put
build_enum.rs inside with the following content.

Listing 6.35 Testing whether running our macro with an enum fails

use builder_macro::Builder;

#[derive(Builder)]

pub enum ExampleEnum {} #1

fn main() {} #2

We are annotating an enum with our builder macro, which should fail
because we only support named structs. When you run the test, you will get



the below error message, as well as a failure file in a wip directory inside
your project. Either copy the file or take the error message and add it as a file
to fails under the name build_enum.stderr. The newline at the end is
important.

error: proc-macro derive panicked

 --> tests/fails/build_enum.rs:4:10

  |

4 | #[derive(Builder)]

  |          ^^^^^^^

  |

  = help: message: not implemented: Only implemented for structs

This is what we expect to get when applying our macro to an enum: the panic
we wrote earlier in this chapter! So that’s working - well, failing - as
expected. We could add a function example. But derive macros are only
allowed on 'structs, enums, and unions', so Rust is handling that one for us.
This means we have now covered the most important unhappy paths for our
macro. If you want, you could now move the happy path tests we placed in
main.rs to the tests folder. That way you have all your tests in one place.

6.5 What kinds of unit tests do I need?

All the unit tests! Ideally. But their importance does vary.

A simple happy path compilation test (a black-box test) seems like the most
basic requirement. If your macro won’t even compile when you expect it to,
what use does it have? Unhappy path compilation failures can be important if
you have a lot of failure modes to test. But for a simple macro, there might be
few - or you might find ways to work around them.

With regard to white-box unit testing… well, it depends. I really like that
Rust allows you to test private functions. That allows you to have all the
information hiding you want, while also allowing for easy testing of pure
functions. This mixes well with my personal preference: keep your impure
functions both small in size and number, moving transformations and
business logic where possible to pure functions. In the impure parts, where
we communicate with outside parties, databases, etc., we can rely on the type
system to guide us in the right direction & keep us from doing silly things.



(Throw in a few integration tests if you have any doubts.) And as pure
functions are straightforward to test I can still get good coverage on a large
part of my code base without thinking about things like mocking or how to
bring in real dependencies.

Note

Pure functions are functions that have no side effects and whose return is
determined solely by the input parameters. We’ll talk about them again in the
next chapter.

That being said, white-box testing for macros is a lot of work. Creating the
in- and outputs of helper functions, like the ones in this chapter, is
cumbersome. (I am excluding functions that have no macro-specific inputs or
outputs from this discussion. For that category, see the brief discussion in the
previous paragraph.) In a large project, such tests can help you catch bugs
early on. But black-box tests will also detect issues relatively quickly, are
easier to set up and reason about, and are less sensitive to minor changes.
Even just moving around parts of our output will break white-box tests
without changing the workings & meaning of our code! On the other hand,
the error you get from a black-box test might be unclear, requiring you to
follow a long trail of breadcrumbs. Hope you were running your tests after
every small addition of code! So in a larger and more complex application,
internal tests at strategic locations can be very worthwhile.

6.6 Beyond unit tests

We have spent a long chapter writing unit tests. But this exploration is only
scratching the surface of testing. For example, you have tests that take a
broader perspective:

integration tests verify that the integration between parts of your system
works as expected. They are generally slower than unit tests because
they cover more code and might draw in real dependencies. But they
cover more ground and give you more certainty that your code will do
what it should do
end-to-end tests verify the workings of your entire system, meaning



most or even all dependencies will be real. A test suite like this offers a
lot of value during continuous deployment, making sure that your code
probably doesn’t break anything… if you can keep it working because
end-to-end tests can be brittle and hard to maintain
smoke tests are a sort of variant of end-to-end testing. They focus on a
limited number of important paths, and make sure that what you deploy
is not completely broken. (Is there smoke coming from the servers?) If
your app is constantly crashing without doing anything, these tests will
tell you

Other tests feature a different approach or focus:

performance testing verifies that the system has certain speed and
reliability characteristics under various kinds of load. For Rust, you can
use criterion
load testing is similar, but its main goal is to verify that your application
will keep working without degrading under heavy load
contract testing checks that a producer is returning data in the agreed-
upon format, i.e. is adhering to its existing public API. This avoids
accidentally breaking consumers because something happened to the
data they were expecting to receive
mutation testing, a fairly new category, makes minor modifications
(mutations) to your code and checks that some unit test failed because of
the change. If changing the implementation did not cause any test to turn
red, you may be missing coverage
fuzz testing tries to make your application crash by injecting all kinds of
invalid or unexpected data. Fixing the mistakes found by fuzzing will
make your code safer and more stable. For Rust, you can fuzz by
combining libFuzzer with cargo fuzz
property based testing is popular in the functional programming world
and is ideal for testing code that has certain mathematical guarantees in
its 'contract'. It generates a whole range (hundreds, thousands) of values,
using these to verify that your code always upholds its guarantees. E.g.
for a function that sums numbers, it would generate two random values
(say x and y) and check whether the return value equals x + y

And there are even some Rust-specific testing variants!



doctests, short for documentation tests, are Rust unit tests embedded
within documentation.
the miri interpreter can be used to check for some types of undefined
behavior in your code, making your application even safer!
loom is a tool for verifying the correct behavior of concurrent programs
by exploring "all possible valid behaviors"

Obviously, we cannot explore all these kinds of testing in depth. That would
double the size of this book! But what kinds of tests are useful when you’re
writing macros? In my opinion, integration tests that check your interaction
with other systems, like APIs or databases, can be useful depending on the
type of macro you are creating. For our current example (builders), unit tests
are all we need. But if you are writing a macro for interacting with a
database, surely you would want something beyond unit tests? Something
that actually puts things in a real database that’s running locally or - ideally -
on a server or in the cloud. So in another chapter, we will come back to
integration testing. At that time, we will also talk about documentation, so
doctests will make their appearance, as well as test coverage and performance
testing.

6.7 From the real world

Very few macro crates have no testing at all. Most have a couple of unit tests
and try_build is often used for failure scenarios (for example by Tokio and
Lazy Static). Here we will discuss just two crates that are worth checking out.

The first, Rocket, is one we have encountered before in the introduction as
well as chapter 3. It is a web framework for Rust that uses macros to generate
HTTP endpoints. For example, adding the macro #[get("/hello/<name>")]
to a function will make it the entry point to an URL with path '/hello' and will
pass on a path parameter called 'name'. Rocket’s unit tests are black-box and
located in the tests folder of the project. There is a large number of happy
path unit tests as well as many failure scenarios which use trybuild. Apart
from that, separate packages even have 'benchmark' tests with criterion and a
fuzzing setup.

The next crate, serde, needs no introduction. It is an extremely popular tool



for serializing and deserializing data (for example, changing raw JSON into a
custom struct). And one way you can tell serde to do this is by using its
derive macros, one for serializing and one for deserializing. Once you’ve
added those, things will 'just work'. Serde has a wide variety of tests. Some
are white-box unit tests for simple, pure functions. (The example below has
been abbreviated.)

#[test]

fn rename_fields() {

    for &(original, upper, pascal) in &[

        (

            "outcome", "OUTCOME", "Outcome"

        ),

        (

            "very_tasty",

            "VERY_TASTY",

            "VeryTasty",

        ),

    ] {

        assert_eq!(None.apply_to_field(original), original);

        assert_eq!(UpperCase.apply_to_field(original), upper);

        assert_eq!(PascalCase.apply_to_field(original), pascal);

    }

}

But these are the exception. Most are black-box unit tests with the familiar
mix of happy path and unhappy path using trybuild.

One detail you may be wondering about is what implementation these tests
run against. After all, serde helps you change Rust code into something
concrete like JSON. So you need some kind of implementation of Serde’s
traits to have an output to compare against. But testing against a real
implementation is fraught with danger. It is also circular, since that
dependency would itself depend on serde. Instead, serde_test contains a
simple implementation that can be used to verify behavior.

6.8 Exercises

We never did write any white-box tests for structs that actually have
fields! So add one that runs against the final version of our code.
We only wrote code for handling structs with named fields, not the



unnamed variety. So we should cover that failure case.
In Rocket, you can add headers to functions that make them into
endpoints for calls. If you add #[get("/world")] and #[catch(404)] to
a function called world, you get an error that looks like this:

error[E0428]: the name `world` is defined multiple times

  --> hello/src/main.rs:23:1

   |

22 | #[get("/world")]

   | ---------------- previous definition of the type `world` here

23 | #[catch(404)]

   | ^^^^^^^^^^^^^ `world` redefined here

   |

   = note: `world` must be defined only once in the type

 namespace of this module

What could be causing this? Can you think of a way this issue might be
avoided?

6.9 Summary

The builder pattern allows you to fluently build structs that require
multiple parameters.
By writing a macro to generate a builder, we can avoid a lot of
boilerplate code.
Unit tests are our most important tool for testing macros, and they can
be divided into two categories: white-box and black-box.
White-box unit tests 'know' implementation details about the code. This
allows for more in-depth testing, but can also lead to brittleness and
breaking on minor changes.
Black-box tests only know what they are testing from an outside
perspective. Because they are less brittle and verify the desired behavior
of a macro, they are an essential check for your macro code.
In macro code, white-box tests can be useful for tracking down tricky
errors, or to verify important behavior.
If your macro communicates with external systems, some integration-
level testing is probably a good idea.
There is a large variety of other testing options available for use in Rust
projects.



7 From panic to result: error
handling
This chapter covers

Understanding the difference between pure and impure functions
Understanding the downsides of breaking control flow
Using Result for better error handling
Writing macros to manipulate function signatures and return values
Mutating the received TokenStream as an alternative to creating a new
one
Creating better error messages with syn::Error
Or, alternatively, using proc macro error to do the same thing

Until now, most of our code has focussed on structs and enums, with very
basic error handling. All of that changes right now! In this chapter we will
manipulate functions, changing panics into Result, which is a better and
more idiomatic way of handling errors in Rust. This is a useful segue into
seeing how we can manipulate functions with an attribute macro. We will
also use this code to explore better ways of returning errors to the user.
Because panicking works, but the error just points to the macro invocation,
making usage harder than it needs to be.

But first, as a general introduction to this chapter’s macro, let’s talk about the
issue with exceptions, and possible alternatives.

7.1 Errors and control flow

At the time of writing, all the most widely-used programming languages (C#,
Java, JavaScript, Python) depend heavily on throwing exceptions/errors for
failure scenarios. Is something wrong with the data you received from your
REST endpoint? Throw an exception, catch it upstream, and change it into a
400 response! A database is giving back an exception when you call it? Wrap



it in one of your exceptions and throw it! This is a valid approach to handling
things that go wrong, failure paths. And you can build great software with
error throwing. But it is not without downsides.

One important issue is that it breaks control flow. The easiest code to write,
read, and reason about, is linear. You read from top to bottom.

fn simple(a: i32, b: i32) -> i32 {

    let sum = a + b;

    let product = a * b;

    sum + product

}

Once you add conditionals, things become a bit harder because you have to
keep track of all the possible paths that your code might take.

fn a_bit_harder(a: i32, b: i32) -> i32 {

    let sum = a + b;

    let product = a * b;

    if sum > 7 && product == 0 {

        sum + product

    } else {

        sum - product

    }

}

Now add loops, nested conditionals, and even more nested loops, because
why not. Things will become so complex that your inner developer will be
screaming "REFACTOR". Because the number of things to keep tabs on for
you to understand the function just keeps growing. Cyclomatic complexity is
a way to measure this code complexity, and it depends on the number of
'paths' that you can take in a function. Ideally, you want this to be in the
single digits, only a few possible paths. By default, ESLint will start warning
you at 20.

Exceptions are another cause of cyclomatic complexity: if something can
throw an exception, that is yet another path that your code might take. What
makes them worse than conditionals and loops is how totally unexpected
their behavior can be. In a large codebase, with a core language that likes
throwing exceptions, plus a lot of dependencies, almost anything you call



might throw an error in the right (well, wrong) circumstances. E.g. in Java,
Optional.of might throw a NullPointerException. Which is funny - even
if there are reasons for having a method like this - because you are using
optionals to avoid nullpointers. There is also not much you can do about it.
Are you going to check every line of code from every dependency to see if
there’s an exception lurking in there somewhere? If not, you have to accept
that your code might take an unexpected path. And when it does, where will
it end up? If you are currently in function X, it might end up in the catch of
function Y. Or function Z. Or maybe no one will catch it. Do you know for
sure what will happen?

7.2 Pure and impure functions

So exceptions make code harder to reason about. The functional
programming paradigm has thought long and hard on control flow and
reasoning about code. One of its key tenets is that you should prefer pure
functions in applications.

You might remember from the previous chapter that pure functions are
functions without side effects, whose output depends solely on the parameters
they receive. The below function, which sums its parameters or returns zero,
is pure. Give it the same parameters multiple times and the answer will
always be the same.

fn sum_if_big_enough(a: i32, b: i32) -> i32 {

    if a > 100 && b > 1000 {

        a + b

    } else {

        0

    }

}

Now look at the next function, which calls a database to determine whether to
sum the parameters. Because it relies on something outside the function for
its output, it is no longer deterministic. Maybe the function returns 0 for
arguments 5 and 3 on our first call. Maybe someone changes the database
before our second call, and we now get back 8. Maybe the database has issues
on our third call and throws an error.



fn sum_if_big_enough(a: i32, b: i32) -> i32 {

    if big_enough_according_to_database(a, b) {

        a + b

    } else {

        0

    }

}

Because the input no longer determines the output, this is an impure function,
i.e. not pure. And it is impure even though it relies on another function
(big_enough_according_to_database) to actually talk with the database.
When you call an impure function, your function also becomes impure. The
taint spreads.

Figure 7.1 Pure functions are consistent and produce the same output for the same parameters.
Impure functions are less predictable



Side effects

Manipulating databases is a side effect: an effect that your function has
besides returning a result (which is considered the normal effect of your
code). Many other common actions are side effects as well, like all sorts of
calls to other systems. The issue is always the same though: what your
function does depends on the behavior of an external resource. Even a simple
thing like logging is a side effect. And it might fail unexpectedly when the
operating system is having issues! That being said, logging is one of the
safest (least error-prone) side effects. As far as I’m concerned, you can call



your function pure if this is the only sneaky thing it does besides returning
things.

Pure functions have nice mathematical properties like referential
transparency, which means you can replace a pure function call with its
result. This opens the door for optimizations like memoization, a caching of
function results. Which is easy since the answer is always the same as long as
the parameters do not change. That means you can return a cached result
when you get parameters you’ve seen before.

And there are other qualities that should appeal to programmers. They are
easy to reason about because you only need to remember what is happening
inside the function. Once we start doing things like calling databases, you
need to keep a lot more context in your head. Pure functions are also easy to
test, requiring only the most minimal setup, and they are unlikely ever to turn
flaky.

Compare this to impure functions like the one above. Reasoning is harder
because we need to take into account everything the database might do:
return true, return false, throw errors, connection issues, timeouts,… To
understand how such a function will behave, we have to dig deep into the
underlying functions that it calls, exploring their implementation. Testing
also becomes harder because we need mocking or stubbing.

At this point, you may be wondering why we would ever want impure
functions. 'Want' is the wrong word, however: we need these functions,
because everything useful is a side effect. Sending an email to customers,
updating a database with the latest orders, etc. So the goal is not to eliminate
impurity, but rather to limit its impact. If most of our code consists of pure
functions, that will make reading and testing most of our functionality easier.
Functional programming, with its focus on pure functions, tries to limit
impurity by moving side effects to the 'edge' of an application. Hexagonal
architecture, similarly, might move side effects to the ports of your
application, keeping a 'pure' core of business logic in the center.

7.3 Alternatives to exceptions



We have talked about the downsides of breaking control flow with
exceptions. But you do need to handle failure paths. So if not with
exceptions, what alternative is there?

One option, available in every language and sometimes seen in the wild, is to
use booleans to signify success or failure. If you need to return a value and
your language does not like tuples, just wrap the boolean and the actual
return value in a custom object. While this works, it has several downsides. It
is clunky, requiring a lot of conditional checks instead of try-catch blocks, as
well as wrapping and unwrapping. Plus, nothing forces you to handle the
boolean you receive. Just ignore it if you want to! At least exceptions were
actively stopping you from doing bad things, albeit at runtime. (Or partly at
compile-time in the case of Java’s checked exceptions. These exceptions are
hated by developers though, because adding lots of try-catch statements is
very clunky and there is often no good way to handle the checked exception.)

In a variation to the boolean approach, Go has the convention of returning
two values from a call that might fail: a value and an error, with only one of
those being present and the other being nil. The convention is good, and it
makes Go code easier to understand once you are used to this approach.
Seeing errors as ordinary values instead of something exceptional (pun
intended) is a good idea as well. But the other issues are still there:
boilerplate - all those error nil checks - and no forced handling of the error.
Just ignoring the errors is once again a perfectly valid approach. But probably
not a good idea.

There is another approach, originating largely from the functional
programming paradigm. We will focus on a part of that solution, a part that
has great support in Rust: algebraic data types (ADTs for short). Whatever
language you currently use, you have some experience with these, because
one type of ADT is the product type. Which you may know under the name
'object' or 'struct'. Basically, a product type has a total number of possible
'states' equal to the product of its properties. So a struct with two properties, a
u8 (which as a number has a total of 256 possible values) and a boolean (two
values, either true or false), has 2 * 256 = 512 possible states. That makes
sense: a struct with 120 and true, is different from one with 119 and true.
This large range of values can be a downside. You may need to do a lot of



work (e.g. a lot of conditionals) to determine whether the state of a product
type matches your requirements.

The other major algebraic data type is the sum type. As the name suggests,
here the number of possible states is the sum of its properties. (Think of the
Union type in C.) You could see a boolean as a sum type. It is either true, or
false. Not something in between. This sounds like a limitation, but as I have
said before, it might prove to be a strength. Because the restricted number of
states makes these types ideal targets for pattern matching! Rust offers a very
powerful sum type in the shape of enums. They have properties, methods,
plus great pattern matching support.

Figure 7.2 The myriad of options of a product type, versus the simplicity of the sum type



But how does all this help us with our error-handling challenge? Well,
reformulate the issue at hand: "We need a way to make clear to the developer
and type system that the result of this call is either a success or a failure. If it
is a success, it should contain the result. It not, an error (message)." Either
success or failure… Error handling requires a sum type! And enums are
ideally suited for that since they can contain properties like a result or error.
What we should do, is create an enum called Either, which returns a success
or a failure. And that, in fact, is the name for this 'pattern' in several
languages, like Scala and Haskell. For simplicity’s sake, the error message is
always a string, the result can be anything you want.



enum Either<T> {

    Success(T),

    Failure(String),

}

If we have a function that returns this Either, we have to take into account
failures, because the answer we seek is wrapped in a variant. Pattern
matching is one convenient way to handle all eventualities.

fn calculate_answer_to_life() -> Either<i32> {

    Either::Success(42)

}

fn main() {

    match calculate_answer_to_life() {

        Either::Success(answer) => {

            println!("Got the answer: {answer}");

        }

        Either::Failure(_) => {

            println!("Should handle failure");

        }

    }

}

We could add additional convenience methods to make handling the result
contained within easier. A map method, for example, manipulates the 'success
value' if it is present, and relies on pattern matching internally.

impl<T> Either<T> {

    fn map(self, function: fn(T) -> T) -> Either<T> {

        match self {

            Either::Success(answer) => {

                return Either::Success(function(answer))

            }

            // if it's not a success, no need to do anything

            _ => self

        }

    }

}

fn main() {

    let two = Either::Success(1).map(|v| v + 1);

}

Figure 7.3 "What’s in the box?" Manipulating the value



And that solves all our issues! We have a type that elegantly encapsulates the
result of a function that might fail. It is helpful to the type system. And it
forces you to deal with failures. Plus, we can add all kinds of methods that
help us transform and use the encapsulated result. There is just one
problem… we’ve just reinvented Rust’s Result type.

7.4 Rust’s Result and panics

So yes, this was a long-winded path to "this is why I think Result is pretty



neat". At the center of Rust’s standard library, we have two sum types with a
million (bazillion?) use cases. As you know, Result is an enum with either a
value (Ok) or an error (Err). This means that our error has now become a
value that we can handle and manipulate and the error is embedded in your
type system, which will force you to acknowledge that you might have an
error. The signature of your function also becomes living documentation: just
from seeing Result in the return type, you know that there are failure cases!
Suddenly, there’s information on almost every possible place where a failure
might occur. And the type system forces you to think about them.

The reader also knows that there is an alternative to Result: just panic!. In
theory - similar to Go - panic is reserved for situations where you think it is
best to stop the program altogether, because something that really should not
happen, happened. A normal failure case is a customer not having enough
money on his account, or an order being out of stock. Panicking is what you
would do if a customer just purchased an order worth infinite dollars. At this
point, you may want to stop your application before it starts charging his/her
credit card! (Or, depending on your moral stance, you could try to charge him
as much as possible I guess.) As a more realistic example, consider a server
that has just booted and discovers that some of its essential configuration is
missing. Since that makes it impossible to do anything useful, panicking
becomes a valid course of action.

Panics can also be good for handling situations where you have a good
reason to assume something cannot happen. unreachable, for example, can
be used for situations that should never happen. Another example: in the
below function we call unwrap, which will panic when our character is not a
number. But as we just checked that the character is a number, that will never
happen.

fn get_digit(ch: char) -> u32 {

    if char::is_digit(ch, 10) {

        return char::to_digit(ch, 10).unwrap()

    }

    0

}

In 'real' code, it would be wise to switch over to expect and add a message
why you think the panic should never happen (expect("value to be digit



since we checked with is_digit")). That way, when something does go
wrong, tracking down the issue becomes easier. And when that is done, you
can think deeply about your invariants.

unwrap and expect are also useful when you are writing a POC, a quick
script, or doing some exploratory work… any time when you are
experimenting and do not want proper error handling to get in the way. When
and if you have to improve that aspect of your code, do a search for unwrap
and expect and get busy! Besides using these two methods, you can use
panic and variants like unimplemented to handle unforeseen situations in
exploratory code. In the below code, we simply panic when we receive
invalid arguments.

Listing 7.1 A function for creating a validated person. Panics when validation fails

fn create_person(name: String, age: i32) -> Person {

    if name.len() < 2 {

        panic!("name should be at least three characters long!")

    } else if age > 30 {

        panic!("I hope I die before I get old");

    }

    Person {

        name,

        age,

    }

}

Most of those panics should disappear once you get serious with your code.
An unreachable still has its place, but the validation of input should be done
with Result. If you’ve used a lot of panic in your code, that might be a
boring refactor though. Which is our motivation to write a macro that can do
this for us! Whenever it finds a panic, it will replace it with Result.

Note

This example should not be taken too seriously. It showcases how macros can
alter functions, and how to give feedback to users. In some rare real use
cases, it may even prove useful. But simply rewriting the code to get rid of its
panics is obviously preferable.



Because we are changing existing code, we can’t go for a derive macro. But
an attribute macro can work with functions and change code, so that’s ideal.

7.5 Setup of the panic project

This chapter takes a middle ground between the simple setup with one
subdirectory from earlier chapters, and the more complex builder setup with
three subdirectories. Instead, we now have two directories, one with the
macro, and one with the code for verifying our code.

Figure 7.4 Avoiding both extremes, we have realized the Middle Path



So to start, we will create a panic-to-result-usage and a panic-to-
result-macro directory. The first is an executable, the second is a library.

Listing 7.2 Toml file for the macro

[package]

name = "panic-to-result-macro"

version = "0.1.0"

edition = "2021"

[dependencies]



quote = "1.0.33"

syn = { version = "2.0.39", features = ["full", "extra-traits"]}

[lib]

proc-macro = true

Listing 7.3 Dependencies for the application’s toml

[dependencies]

panic-to-result-macro = { path = "../panic-to-result-macro" }

Now the first (dummy) version of the macro code, which takes the incoming
tokens and returns them.

Listing 7.4 Macro code (first version)

use proc_macro::TokenStream;

use quote::{ToTokens}; #1

use syn::ItemFn;

#[proc_macro_attribute]

pub fn panic_to_result(_a: TokenStream, item: TokenStream) -> TokenStream {

    let ast: ItemFn = syn::parse(item).unwrap(); #2

    ast.to_token_stream().into() #3

}

We have gone with a slight variation by using parse instead of
parse_macro_input. And we now need to use ItemFn as the return type,
because we are working with functions, which makes DeriveInput and
similar types an ill-fit. This is also the reason why the "full" feature of syn is
required, because ItemFn is not available by default (perhaps because macros
for structs/enums are more popular). Another variation: we use
to_token_stream to return a stream, which we convert into a standard
TokenStream with Into.

Our main.rs in the 'usage' directory already has some basic code and tests
that verify the current behavior of our panic-prone create_person function.
To keep things simple, the function only has validation on the age field,
panicking if it gets a value over thirty.

Listing 7.5 Application code ('usage' directory) with tests for create_person



use panic_to_result_macro::panic_to_result;

#[derive(Debug)]

pub struct Person {

    name: String,

    age: u32,

}

#[panic_to_result]

fn create_person(name: String, age: u32) -> Person {

    if age > 30 {

        panic!("I hope I die before I get old");

    }

    Person {

        name,

        age,

    }

} #1

fn main() {}

#[cfg(test)]

mod tests {

    use super::*;

    #[test]

    fn happy_path() {

        let actual = create_person("Sam".to_string(), 22);

        assert_eq!(actual.name, "Sam".to_string());

        assert_eq!(actual.age, 22);

    } #2

    #[test]

    #[should_panic]

    fn should_panic_on_invalid_age() {

        create_person("S".to_string(), 32);

    } #2

}

7.6 Mutable or immutable returns

We will work on the implementation before investigating macro errors
properly. Our current situation is a bit more complicated than that from
previous chapters. When we were doing derives, all we needed from the



original input was a bit of handpicked information for generating entirely
new code. And our attribute macro for public fields macro was only slightly
more complicated. Yes, we had to reconstruct the original struct with every
field set to public, but that was relatively simple because struct definitions
often don’t contain all that much of interest besides fields. After all, a lot of
stuff is added via implementation blocks.

But now, we will be working with a function, changing the signature, and
meddling with part of its content. Which means we are back to this
conundrum: what is the best way to create our output when it replaces the
input? We have already seen that we can take the original object, or a clone,
and give that back. But since functions are a bit more complex when it comes
to content, the easier solution here is mutating the existing function, changing
what we want, and then returning everything as an output. In other languages,
mutability has downsides due to being more error-prone. But thanks to the
Rust compiler, mutability is quite safe here.

As an example, here is some code to make a function public. We make our
AST mutable, and then we can change the visibility (vis) to public
(Visibility::Public). Easy!

// other imports

use syn::{ItemFn, Visibility};

#[proc_macro_attribute]

pub fn panic_to_result(_a: TokenStream, item: TokenStream) -> TokenStream {

    let mut ast: ItemFn = syn::parse(item).unwrap(); #1

    ast.vis = Visibility::Public(Default::default()); #2

    ast.to_token_stream().into()

}

At this point, the immutable approach is not that much more complicated. We
just create a new ItemFn and add the visibility. Because we would like
everything else to remain unchanged, we are spreading the existing struct -
which will fill in the existing properties while overriding the ones we defined
ourselves, i.e. vis.

// other imports

use syn::{ItemFn, Visibility, VisPublic};

#[proc_macro_attribute]



pub fn panic_to_result(_a: TokenStream, item: TokenStream) -> TokenStream {

    let ast: ItemFn = syn::parse(item).unwrap();

    let new_ast = ItemFn {

        vis: Visibility::Public(Default::default()),

        ..ast

    }; #1

    new_ast.to_token_stream().into()

}

While this is a viable alternative, it requires a bit more boilerplate. And in this
particular example, it might also be confusing to have both an ast and
new_ast. I can easily see myself changing the first and expecting that to
effect a change in the generated code. Finally, the immutable approach seems
a bit redundant: in both the immutable and mutable approach we are
replacing the input with the output. The end result is the same, and internal
mutation is generally safe.

Internal mutation?

With internal mutation I mean any mutation that has no visible effect outside
its function. An example would be a counter (let mut counter…) that never
leaves the function (is not returned, not saved in a database, etc.). This kind
of mutation is not very harmful because the limited scope means the code
makes it less error-prone and easier to understand. And since everything is
internal to the function, parallelization will - probably - not cause additional,
weird bugs to appear. The inverse of internal mutation is a global mutable
variable, like the ones you might encounter in JavaScript or Python. The
scope of a global variable is huge (possibly the entire program) and all
objects and functions can change its value. A proper nightmare. Read-only
global variables avoid these issues by not being mutable. In between these
extremes are mutable values that are passed to and from functions. Not as
harmful as global mutable variables, but still dangerous in the right
circumstances.

7.7 Getting results

Back to the task at hand, a macro that replaces panics with results. Let’s do
this step by step. First, we will make our function return a Result. For the
error type, we will go with a simple String. And the value will have to match



the current return type of the function. Once we have changed the signature,
the final expression - currently returning a Person - will have to be wrapped
in an Ok. We will ignore more complex situations with multiple possible
return expressions. The good thing is that nothing is keeping us from making
these changes and still having a panic in our function. Meaning we can leave
replacing that for later in this chapter.

Figure 7.5 Parts of a function with their ItemFn names

If we look at ItemFn, we can see that the sig property is hiding the signature



information. One level deeper, output contains what is returned. And
ReturnType is not that complex. It is either the default (when the function
returns 'nothing', though in practice it will still return a unit, ()), or an arrow
followed by the actual type.

pub enum ReturnType {

    Default,

    Type(Token![->], Box<Type>),

}

The graphic below shows how we go from ItemFn to ReturnType.

Figure 7.6 Drilling down into ItemFn



What we want to do is to change the output to Result<(), String> when
there is no return type, or set it to Result<OriginalReturnType, String>
when we have a type. With quote and a bit of thinking, that’s not too hard to
do.

Listing 7.6 Changing the signature

let output = match ast.sig.output {

    ReturnType::Default => {

        quote! {

            -> Result<(), String>



        }

    } #1

    ReturnType::Type(_, ty) => {

        quote! {

            -> Result<#ty, String>

        }

    } #2

};

ast.sig.output = syn::parse2(output).unwrap(); #3

We match on sig.output, which is either a default (with an explicit → ()
signature, or an ellipse of the signature) or a type. In the first case, we have
an empty return value that needs to be put in a Result. So we create a
signature for that: → Result<(), String>. (As we mentioned, we will be
using String as an error.)

The other case is only slightly more complicated: we have to get the real
type, ty, and add it to our TokenStream. You can also use ref to get a
reference to the type instead of the actual value, but that’s not required.

Next, we use parse2 to do the hard work for us, converting our tokens into
the ReturnType. As usual, parse2 knows what the return type should be
because it has to match the type of the output field. Would it be annoying to
do this without quote? See for yourself. Here is what the tokens for →
Result<Person, String> look like (with some properties left out for
conciseness).

Type(

    RArrow,

    Type::Path {

        path: Path {

            segments: [

                PathSegment {

                    ident: Ident { ident: "Result" },

                    arguments: PathArguments::AngleBracketed {

                        args: [

                            GenericArgument::Type(

                                Type::Path {

                                    path: Path {

                                        segments: [

                                            PathSegment {

                                                ident: Ident {

                                                    ident: "Person"



                                                }

                                            },

                                        ],

                                    },

                                },

                            ),

                            GenericArgument::Type(

                                Type::Path {

                                    path: // path for "String"

                                }

                            )]

                    }

                }

            ]

        }

    })

That 'Person' identifier in there, that’s our ty. So we get that one for free. But
all the other stuff, we would have to write ourselves. It’s doable, but it is also
a lot of boilerplate code. quote makes it easier to both write and read this bit
of code.

Now our return value should become a Result. This time we have to go
looking in block, which contains the actual function code, and retrieve the
statements inside the function. For this particular function (which has no
early returns etc.), we only need the final statement, so we pop it (removing it
from the vector), wrap it in an Ok, and put the result back in the vector.

Listing 7.7 Changing the return value

use proc_macro::TokenStream;

use quote::{quote, ToTokens};

use syn::{ItemFn, ReturnType, Stmt};

#[proc_macro_attribute]

pub fn panic_to_result(_a: TokenStream, item: TokenStream) -> TokenStream {

    let mut ast: ItemFn = syn::parse2(item).unwrap();

    let output = // code for changing the signature

    ast.sig.output = syn::parse2(output).unwrap();

    let last = ast.block.stmts.pop().unwrap(); #1

    let last_modified = quote! {

        Ok(#last) #2



    };

    let last_modified_as_expr = Stmt::Expr(

        syn::parse2(last_modified).unwrap(),

        None

    ); #3

    ast.block.stmts.push(last_modified_as_expr); #4

    ast.to_token_stream()

}

As you can see, putting the result back in the block is slightly more complex
than retrieving the statement. The simplest way to do it would be to push the
parse result. Sadly, that fails with unexpected end of input, expected
semicolon. Digging down into the source code, the reason becomes clear:
stmts is a vector of Stmt and the Parse implementation of Stmt does not
allow statements without a semicolon. Instead, we have to give Rust some
more context and tell it that this is a specific variant of statement, an
expression. And as our (the function’s final) expression does not end in a
semicolon, we pass in None as the second optional, representing that missing
semicolon.

If you happen to be using major version 1 of syn, this code will not compile,
because two variants (Semi and Expr) were merged in version 2. In this
particular case, the change is easy though: just leave out the None.

Listing 7.8 Stmt source code in versions 1 and 2

// syn version 1

pub enum Stmt {

    Local(Local),

    Item(Item),

    Expr(Expr),

    Semi(Expr, Token![;]),

}

// syn version 2

pub enum Stmt {

    Local(Local),

    Item(Item),

    Expr(Expr, Option<Token![;]>),

    Macro(StmtMacro),

}



Now our happy path test is failing because we return a Result instead of a
Person. Perfect! Adding an unwrap is a good solution to fix the test. Because
if we don’t get the expected Person, this will panic and cause the test to fail.

Listing 7.9 Our happy path test now needs to unwrap the return

#[test]

fn happy_path() {

    let actual = create_person("Sam".to_string(), 22).unwrap();

    assert_eq!(actual.name, "Sam".to_string());

    assert_eq!(actual.age, 22);

}

Now how about some refactoring? We can move parts of our implementation
into separate functions. If you want to clean up even more, you can also
move functions to separate files. But this will do for now.

Listing 7.10 Refactored macro, with functions for changing the signature and the return value

// imports

use syn::token::Semi;

fn signature_output_as_result(ast: &ItemFn) -> ReturnType {

    let output = match ast.sig.output {

        ReturnType::Default => {

            quote! {

                -> Result<(), String>

            }

        }

        ReturnType::Type(_, ref ty) => {

            quote! {

                -> Result<#ty, String>

            }

        }

    };

    syn::parse2(output).unwrap()

}

fn last_statement_as_result(last_statement: Option<Stmt>) -> Stmt {

    let last_unwrapped = last_statement.unwrap();

    let last_modified = quote! {

        Ok(#last_unwrapped)

    };



    Stmt::Expr(syn::parse2(last_modified).unwrap(), None)

}

#[proc_macro_attribute]

pub fn panic_to_result(_a: TokenStream, item: TokenStream) -> TokenStream {

    let mut ast: ItemFn = syn::parse(item).unwrap();

    ast.sig.output = signature_output_as_result(&ast);

    let last_statement = ast.block.stmts.pop();

    ast.block.stmts.push(last_statement_as_result(last_statement));

    ast.to_token_stream().into()

}

We now have a bit of nice, readable code that transforms the return type and
value of the function. But the panic is still, well, a panic. We still need to
replace it with an Err.

7.8 Stop panicking

Getting rid of the panic is more complex than changing the final statement in
our body: this time we can’t just pop a statement, because we don’t know
where the panic is hiding. So for a general solution, we would have to loop
over all statements to see if they contain a panic. In this section, however, we
will write code for retrieving panic from an if statement, leaving some
implementation for the exercises.

7.8.1 Changing the panic into a Result

We will iterate over the statements in our block, and use map with a separate
function to transform expressions. Statements will just pass through the
mapping. Once the iteration is done, we replace the existing block statements
with our new ones.

Listing 7.11 Code fragment from lib.rs for mapping statements

let new_statements: Vec<Stmt> = ast.block.stmts

    .into_iter()

    .map(|s| match s {

        Stmt::Expr(e, t) => handle_expression(e, t), #1

        _ => s, #2



    })

    .collect();

ast.block.stmts = new_statements; #3

The reason we focus on expressions is that if is an expression, and we know
the panic is in there. If we wanted to find every possible panic, we would also
have to handle Semi (statements that end with a semicolon).

Now onto the transformation of our statements in handle_expression, where
we look for panics and change them to results.

Listing 7.12 Transforming an expression from panic to error

fn handle_expression(expression: Expr, token: Option<Semi>) -> Stmt {

    match expression {

        Expr::If(mut ex_if) => { #1

            let new_statements: Vec<Stmt> = ex_if.then_branch.stmts

                .into_iter()

                .map(|s| match s {

                    Stmt::Macro(ref expr_macro) => #2

                            extract_panic_content(expr_macro) #3

                                .map(|t| quote! {

                                        return Err(#t.to_string());

                                    }) #4

                                .map(syn::parse2)

                                .map(Result::unwrap)

                                .unwrap_or(s),

                    _ => s

                })

                .collect();

            ex_if.then_branch.stmts = new_statements;

            Stmt::Expr(Expr::If(ex_if), token) #5

        },

        _ => Stmt::Expr(expression, token) #6

    }

}

We know the if is panicking, so we are only matching on that one variant,
simply returning all other statements. In a more generic case, we would have
to greatly extend the number of match 'arms' to handle things like loops,
whiles, yields, etc.

Next, we search for macro statements inside the conditional (Stmt::Macro).



At that point the helper, extract_panic_content, which we will discuss
momentarily, can be used to give us back an option with the panic’s message,
or none if the macro was not a panic. Once we have the message, we use it to
replace the panic with an Err containing the original message. As before, we
use parse to get back the right type, a statement. Which Rust can infer
because we specified the result should be Vec<Stmt>.

Point-free style

The shorthands map(syn::parse2) and map(Result::unwrap) are called
point-free style in functional lingo. Java calls it method references. This saves
us some typing and is quite readable: "Take the (one) parameter you receive
and use it to call this function".

If no panic was present, we instead return the statement and add it to our list.
Once our iteration is finished, we replace the existing statements with our
new ones - which are the ones we already had, except that the panic has been
replaced with a Result. Finally, we have to wrap everything in our original
structure, an if expression inside an expression.

This is another piece of code that would behave differently if you are on the
first major of syn (but I told you to use version 2, and you wouldn’t dare to
disobey, would you?). For one, we would not have to pass around optional
tokens in version 1. Bigger changes are required for the match inside map,
because back then macros were a Expr::Macro inside a 'semi' (a statement
ending with a semicolon) or expression.

Listing 7.13 Code for syn version 1

Stmt::Semi(Expr::Macro(ref expr_macro), _) =>

        extract_panic_content(expr_macro)

            // ...

Listing 7.14 The enum Stmt has a variant Expr, another enum with the following variants (among
others)

pub enum Expr {

    Array(ExprArray),

    // ...



    If(ExprIf),

    // ...

    Macro(ExprMacro),

    // ...

}

And in all other cases, except the one we just discussed, we just return the
original statement without any changes.

The extract_panic_content function is relatively simple. It looks for an
identifier matching the string 'panic' inside the macro. If we have a panic, we
get the input from tokens, clone it, and give it back.

Listing 7.15 Helper for determining if the macro is a panic

fn extract_panic_content(expr_macro: &StmtMacro) -> Option<TokenStream> {

    let does_panic = expr_macro.mac.path.segments.iter()

        .any(|v| v.ident.to_string().eq("panic"));

    if does_panic {

        Some(expr_macro.mac.tokens.clone())

    } else {

        None

    }

}

This time around, our failure path test has to change. It now expects an Err
instead of a panic.

Listing 7.16 Fixing the unhappy path test

// happy path unchanged

#[test]

fn should_err_on_invalid_age() { #1

    let actual = create_person("S".to_string(), 33);

    assert_eq!(

        actual.expect_err("this should be an err"),

        "I hope I die before I get old".to_string()

    );

}



We have now successfully enhanced our function with proper error handling!

7.8.2 Debugging observations

While writing this code, I bumped into an annoying issue that I spend way
too much time staring at. I was refactoring this part of the code:

extract_panic_content(expr_macro)

    .map(|t| quote! {

            Err(#t.to_string());

        })

    .map(syn::parse2)

    // ...

}

But I kept getting the following error:

10 | #[panic_to_result]

| ^^^^^^^^^^^^^^^^^^ cannot infer type of the type parameter `T` declared

 on the enum `Result`

|

= note: this error originates in the attribute macro `panic_to_result`

 (in Nightly builds, run with -Z macro-backtrace for more info)

help: consider specifying the generic arguments

|

10 | #[panic_to_result]::<T, String>

|                   +++++++++++++

I figured it had something to do with the Result that was returned by parse2
and that Rust somehow not being able to guess the correct types. But a cargo
check of the macro code worked fine. This was a vital clue that I was looking
in the wrong place, because Rust can verify your macro library, but not the
code you generate. You can put any nonsense in there, and you will only
notice when compiling a project that actually uses the macro, not during the
compilation of the macro itself.

So, finally, I took a look at cargo expand and had Rust / IntelliJ show me the
problem: I had written Err(#t.to_string()); without a return. Without
that return, Err(#t.to_string()); was an ordinary statement. But Rust
needs to know what type it is, and all it can guess from this piece of code is
the value of the error (E), a string, but not the return type (T). As it has no idea



what the value should be, the compiler is asking us what T should be. Once
you add the return, Rust knows that the Result value and error should match
those in the signature. Lesson learned: carefully read your error message
(which was pointing to the correct Result) and think about what cargo
check and cargo expand tell you about the error(s).

7.9 Error handling flavors

While the above solution is only a partial one, it is sufficient for now.
Because it’s really time we get started with the chapter’s main topic, error
reporting. On the other hand… right now, our macro has only a few error
cases except for the occasional unwrap for parsing. To make things
interesting, we will add some additional error cases.

For example, it makes sense that our macro should only work for functions
that do not yet return Result. The most important reason is extra complexity:
we want to return a Result with a string for the error type. What if the
existing Result has a different type? So instead of figuring out how to handle
that, we will give back a nice error when someone tries to inappropriately use
our macro. To verify that the return type is not a Result already, we add a
simple check to verify that type is not present in the function’s signature.

Listing 7.17 Panicking when the return type is Result

fn signature_output_as_result(ast: &ItemFn) -> TokenStream {

    match ast.sig.output {

        // default return code...

        ReturnType::Type(_, ref ty) => {

            if ty.to_token_stream().to_string().contains("Result") {

                unimplemented!("cannot use macro on a function with

 Result as return type!");

            }

            Ok(quote! {

                -> Result<#ty, String>

            })

        }

    }

}

Right now, this is still poor man’s error handling, throwing a panic. We will



get to that. But first, we should verify that the function fails.

Listing 7.18 An example function that should fail (you can add this to main.rs for now)

#[panic_to_result]

fn create_person_with_result(name: String, age: u32)

    -> Result<Person, String> { #1

    if age > 30 {

        panic!("I hope I die before I get old");

    }

    Ok(Person {

        name,

        age,

    })

}

If you now run cargo check in panic-to-result-usage, you get an error
similar to this one:

error: custom attribute panicked

  --> src/main.rs:21:1

   |

21 | #[panic_to_result]

   | ^^^^^^^^^^^^^^^^^^

   |

   = help: message: not implemented: Cannot use macro on a function with

 Result as return type!

It’s an okay message and the user might understand it. But this is definitely
less beautiful and helpful than the built-in messages. And it just points to the
macro. Pointing to the signature would make more sense. There are
alternatives that give better results.

7.9.1 Using Syn for error handling

First up: syn error handling, which requires changes to both
signature_output_as_result and our panic_to_result entrypoint.

Listing 7.19 syn error handling (partial code from lib.rs)

// other imports

use syn::spanned::Spanned; #1



fn signature_output_as_result(ast: &ItemFn)

    -> Result<ReturnType, syn::Error> {

    let output = match ast.sig.output {

        // default return code...

        ReturnType::Type(_, ref ty) => {

            if ty.to_token_stream().to_string().contains("Result") {

                return Err(

                    syn::Error::new(

                        ast.sig.span(), #2

                        format!(

                            "this macro can only be applied to a function

 that does not return a Result. Signature: {}",

                            quote!(#ty)

                        ) #3

                    )

                );

            }

            quote! {

                -> Result<#ty, String>

            }

        }

    };

    Ok(syn::parse2(output).unwrap())

}

#[proc_macro_attribute]

pub fn panic_to_result(_a: TokenStream, item: TokenStream) -> TokenStream {

    // other code

    match signature_output_as_result(&ast) {

        Ok(output) => ast.sig.output = output,

        Err(err) => return err.to_compile_error().into()

    }; #4

    // other code

}

Our signature_output_as_result now returns an Err if the signature
contains a Result. Inside that Err is a value of type syn::Error. The
constructor of that error type requires us to pass back a span and a message
(which should implement Display). We’ve encountered span before and
noted how it points back to the original code. That might finally be useful!
One idea is to pass the span of sig, allowing Rust to point to the signature. In
the message, we give some information about what we found plus the current
signature as a reference. As usual, we use quote, which format! will
automatically add to the string for us.



But we still have to do something with the Result that
signature_output_as_result is returning. And unlike main functions that
can return a unit or a Result, a proc macro can only return a TokenStream. So
we do a match. If everything is ok, we proceed as before by adding the new
signature to our AST. If we have an error, we convert it into a compile error
(a proc_macro2::TokenStream) and into a standard stream.

Now we get a better error message in our application:

error: this macro can only be applied to a function that does not

return a Result. Signature: Result < Person, String >

  --> src/main.rs:22:1

   |

22 | fn create_person_with_result(name: String, age: u32)

        -> Result<Person, String> {

   | ^^

This is more informative than the previous message. We’re pointing the user
to where the problem occurs, the signature (which starts with fn), and telling
him exactly what is wrong.

Let’s use our new syn error for a second example. We’ve found it useful to
transform existing panics into an Err with a message. But what if there is no
message to add? Well, our current code will… panic if we don’t have a
message. Great. We can test by adding another function that will fail to
compile. You can either disable the other failing example or add trybuild
and move it into a compilation test.

Listing 7.20 Another failing function

#[panic_to_result]

fn create_person_with_empty_panic(name: String, age: u32) -> Person {

    if age > 30 {

        panic!(); #1

    }

    Person {

        name,

        age,

    }

}



We should return a useful error when we encounter that situation instead of a
vague custom attribute panicked.

Listing 7.21 Handling empty panic content (partial code from lib.rs)

// imports

fn handle_expression(expression: Expr, token: Option<Semi>)

    -> Result<Stmt, syn::Error> {

    match expression {

        Expr::If(mut ex_if) => {

            let new_statements: Result<Vec<Stmt>, syn::Error> = ex_if

                .then_branch.stmts.into_iter()

                .map(|s| match s {

                    Stmt::Macro(ref expr_macro) => {

                        let output = extract_panic_content(expr_macro);

                        if output.map(|v| v.is_empty()).unwrap_or(false) {

                            Err(syn::Error::new(

                                expr_macro.span(),

                                "please make sure every panic \

                                in your function has a message"

                            )) #1

                        } else {

                            Ok(extract_panic_content(expr_macro)

                                // code to change panic to result

                            ) #2

                        }

                    }

                    _ => Ok(s)

                })

                .collect();

            ex_if.then_branch.stmts = new_statements?; #3

            Ok(Stmt::Expr(Expr::If(ex_if), token))

        }

        _ => Ok(Stmt::Expr(expression, token))

    }

}

#[proc_macro_attribute]

pub fn panic_to_result(_a: TokenStream, item: TokenStream) -> TokenStream {

    // ...

    let new_statements: Result<Vec<Stmt>, syn::Error> = ast.block.stmts

        .into_iter()

        .map(|s| match s {

            Stmt::Expr(e) => handle_expression(e),



            _ => Ok(s),

        })

        .collect();

    match new_statements {

        Ok(new) => ast.block.stmts = new,

        Err(err) => return err.to_compile_error().into()

    } #4

    // ...

}

That is a lot of minor changes. In handle_expression we now return a
Result, so we’ve added a lot of Ok wrappers. We have also extended the
macro check: when we get back the optional value from is_panic, we now
check whether the content we received is empty. If it is, we return a
syn::Error with a fitting message, and we use the span of the macro to point
the user to the relevant panic. Since our new_statements are now a Result,
we return early if there is an error using ?. Else, we have our statements and
can re-add them to the function.

Traverse

Another cool Rust feature makes its appearance in the above code. As you
can see, we map over statements and return a Result for each one. That
means our output should be Vec<Result<Stmt, syn::Error>. But the output
type I defined for new_statements in handle_expression is
Result<Vec<Stmt>, syn::Error>! In the functional world, this is called
traverse, which allows stacking your enums (actually, monads, but let’s not
get into that) in different ways. The reason this works in Rust is that there is a
generic FromIterator implementation for Result for values that turn into
something that also implements FromIterator. Like a vector. The details are
not important, but you should see that this is very convenient. I don’t have to
unwrap all the results myself. Instead, I get either an error or a list of
statements. To be fair, the two are not entirely equivalent: there is no room
for multiple errors in Result<Vec<Stmt>, syn::Error>, meaning every error
but the first one will be discarded. To gather all the errors, you would need
something like a vector. And preferably you would wrap that vector in some
custom struct and make that implement std::error::Error, as any good
error type should (even if it’s not strictly required).



In panic_to_result new_statements is now a Result<Vec<Stmt>,
syn::Error>. So we transform the error into a token stream and give it back,
or continue processing if everything is ok. If we now run our faulty function
we get back a new kind of error:

error: please make sure every panic in your function has a message

  --> panic-to-result-usage/src/main.rs:13:9

   |

13 |         panic!();

   |         ^^^^^

We are pointing to the correct line and the failing statement, with a clear error
message. If you want, you can use add some extra context.

Err(syn::Error::new(

    e.span(),

    format!("please make sure every panic in your function \

                has a message, check: {}",

    quote!(#statement)

)))

error: please make sure every panic in your function has a message,

check: if age > 30 { panic! () ; }

  --> panic-to-result-usage/src/main.rs:13:9

   |

13 |         panic!();

   |         ^^^^^

If our user still can’t find the issue, he has only himself to blame! The only
downside with this code is that if the user makes multiple mistakes, there will
only be a warning for one of them. Though it requires a bit of extra work, we
can use the combine method to fix that.

Listing 7.22 Using combine for reporting multiple errors

// imports and other functions

#[proc_macro_attribute]

pub fn panic_to_result(_a: TokenStream, item: TokenStream) -> TokenStream {

    // ...

    let signature_output = signature_output_as_result(&ast);

    let statements_output: Result<Vec<Stmt>, syn::Error> = // unchanged

    match (statements_output, signature_output)  { #1



        (Ok(new), Ok(output)) => {

            ast.block.stmts = new;

            ast.sig.output = output;

        }, #2

        (Ok(_), Err(signature_err)) => {

            return signature_err.to_compile_error()

                .into() #3

        },

        (Err(statement_err), Ok(_)) => {

            return statement_err.to_compile_error()

                .into() #3

        },

        (Err(mut statement_err), Err(signature_err)) => {

            statement_err.combine(signature_err);

            return statement_err.to_compile_error()

                .into() #4

        }

    };

    // popping and creating the output

}

First, a minor change: we have moved the signature output above the
statement iteration. This is an easy way to avoid a partial move issue with
ast.block. (In an earlier version, our work with block was done by the time
we started handling the signature. Hence, why we didn’t have issues before.)

Instead of handling the statements and signature separately, we now check
their combined outputs in a match arm, which will allow us to take action
when we have multiple errors. We handle the happy path by mutating the
AST. Separate errors are also handled in the same way as before, by returning
the one error. The final match is for when we have two errors. If that is the
case, we combine them before returning. Now, when you create a function
that returns a Result and has an empty panic, you will get two errors in one
go.

7.9.2 Using Proc Macro Error for error handling

Our error handling has clearly improved thanks to syn::Error. Can we do
even better? Maybe! Thanks to proc macro error. First, add proc-macro-
error = "1.0.4" to our panic-to-result-macro. Next, we need to add an
attribute to our macro, like so:



Listing 7.23 Add the extra attribute macro to our public lib.rs function

use proc_macro_error::proc_macro_error; #1

#[proc_macro_error] #2

#[proc_macro_attribute]

pub fn panic_to_result(_a: TokenStream, item: TokenStream) -> TokenStream {

    // ...

}

If you don’t do this, you will get an error with a helpful message: proc-
macro-error API cannot be used outside of entry_point invocation,

perhaps you forgot to annotate your #[proc_macro] function with #

[proc_macro_error] And now we are ready to use the macros (yes, it’s
turtles stacked on turtles) that this crate gives us. First up, abort!. This one
allows us to pass in a syn struct, from which a span will be taken, as well as
several useful messages. We will refactor our handle expression function.
Instead of returning a Result, it will now abort on a missing panic message.

Listing 7.24 Aborting (some unchanged functions not shown)

// other imports

use proc_macro_error::{abort};

fn handle_expression(expression: Expr, token: Option<Semi>) -> Stmt {

    match expression {

        Expr::If(mut ex_if) => {

            let new_statements: Vec<Stmt> = ex_if.then_branch.stmts

.into_iter()

                .map(|s| match s {

                    Stmt::Macro(ref expr_macro) => {

                        let output = extract_panic_content(expr_macro);

                        if output.map(|v| v.is_empty()).unwrap_or(false) {

                            abort!(

                                expr_macro,

                                "panic needs a message!".to_string();

                                help =

                                "try to add a message: \

                                panic!(\"Example\".to_string())";

                                note =

                                "we will add the message to Result's Err"

                            ); #1

                        } else {

                            // continue



                        }

                    }

                    _ => s #2

                })

                .collect();

            // return statement

        }

        _ => Stmt::Expr(expression, token) #2

    }

}

#[proc_macro_error]

#[proc_macro_attribute]

pub fn panic_to_result(_a: TokenStream, item: TokenStream) -> TokenStream {

    // ...

    let new_statements = ast.block.stmts

        .into_iter()

        .map(|s| match s {

            Stmt::Expr(e, t) => handle_expression(e, t),

            _ => s,

        })

        .collect(); #2

    ast.block.stmts = new_statements;

    // ...

}

You can see how abort allows us to do all kinds of things, like adding a help
and note, separated by semicolons, in addition to the message. The resulting
error applied to our empty panic function looks pretty neat. We are really
doing our best to be helpful. (Aside: as you can see from the location of the
fail, I’ve moved my test function with the empty panic to the tests
directory.)

error: panic needs a message!

         = help: try to add a message: panic!("Example".to_string())

         = note: we will add the message to Result's Err

  --> tests/fails/create_person_with_empty_panic.rs:13:9

   |

13 |         panic!();

   |         ^^^^^^^^^

But we could go a step further - why not give back feedback on all possible
issues? For that, we will need emit_error!. The difference between these



two is that abort stops processing, whereas emit_error allows you to keep
looking for problems, similar to what combine allowed us to do for syn
errors, but with less work involved. Let’s use this one for both the empty
panic and the faulty signature.

Listing 7.25 Using emit_error (partial, two unchanged functions not shown)

// other imports

use proc_macro_error::emit_error;

fn signature_output_as_result(ast: &ItemFn) -> ReturnType {

    let output = match ast.sig.output {

        // default return

        ReturnType::Type(_, ref ty) => {

            if ty.to_token_stream().to_string().contains("Result") {

                emit_error!(ty,

                    format!(

                        "this macro can only be applied to a function \

                        that does not yet return a Result. Signature: {}",

                        quote!(#ty)

                    )

                ); #1

                ast.sig.output.to_token_stream() #2

            } else {

                quote! {

                    -> Result<#ty, String>

                }

            }

        }

    };

    syn::parse2(output).unwrap()

}

fn handle_expression(expression: Expr, token: Option<Semi>) -> Stmt {

    match expression {

        Expr::If(mut ex_if) => {

            let new_statements: Vec<Stmt> = ex_if.then_branch.stmts

.into_iter()

                .map(|s| match s {

                    Stmt::Macro(ref expr_macro) => {

                        let output = extract_panic_content(expr_macro);

                        if output.map(|v| v.is_empty()).unwrap_or(false) {

                            emit_error!(

                                expr_macro,

                                "panic needs a message!".to_string();



                                help =

                                "try to add a message: \

                                panic!(\"Example\".to_string())";

                                note =

                                "we will add the message to Result's Err"

                            ); #3

                            s #3

                        } else {

                            // continue

                        }

                    }

                    _ => s

                })

                .collect();

            // return the statement

        }

        // return

    }

}

#[proc_macro_error]

#[proc_macro_attribute]

pub fn panic_to_result(_a: TokenStream, item: TokenStream) -> TokenStream {

    // ...

    ast.sig.output = signature_output_as_result(&ast); #4

    // ...

}

The change in handle_panic_to_result is not too complex. We now use
emit_error for both our error cases, and we have - again - removed every
Result wrapper. More interesting is that we are still returning something
after emitting an error. That is because we want to go on for as long as
possible, emitting errors - but continuing with parsing - until we’ve done
everything we could. And because our code will not stop on the first error,
you want to give back something sensible. Because if multiple functions are
manipulating the code (say, the signature) and the first one fails and decides
to put a garbage stream of tokens in the signature, the next function receives
that garbage and fails for a totally unexpected reason. So returning the
original value is an easy solution, even if an empty TokenStream could also
work in simple examples.

If we now add an example function that looks like this one:



Listing 7.26 Function with faulty panic and signature

#[panic_to_result]

fn create_person_two_issues(name: String, age: u32)

    -> Result<String, Person> {

    if age > 30 {

        panic!();

    }

    Ok(Person {

        name,

        age,

    })

}

We get back two errors, the one we already had for empty panics as well as
the one for faulty signature.

error: panic needs a message!

// rest of the error message from before //

error: this macro can only be applied to a function that does not yet

 return a Result. Signature: Result < String, Person >

  --> tests/fails/create_person_two_issues.rs:11:56

   |

11 | fn create_person_two_issues(name: String, age: u32)

-> Result<String, Person> {

   |   ^^^^^^^^^^^^^^^^^^^^^^

Besides abort! and emit_error!, the crate offers several other macros.
abort_call_site! and emit_call_site_error! are similar to the other two,
except they contain a default span. Meanwhile emit_warning! and
emit_call_site_warning! are used for logging warnings that won’t stop
compilation. But this is all quite similar to what we already discussed, so we
won’t go into more detail.

7.9.3 Deciding between Syn and Proc Macro Error

Use syn::Error if you dislike adding another dependency to your project
since you probably already use syn. Its Result makes the behavior of your
functions very clear, signaling that these are functions with failure cases. On
the other hand, the proc_macro_error macros have a lot of useful
functionality and require less ceremony. In either case, your users will be



glad you didn’t go for vanilla panicking.

7.10 From the real world

Most macro crates handle errors by using one of these two approaches.
Tokio, for example, is one of the libraries that use syn::Error. Say you’ve
added the Tokio macro to a function that is not actually async. This piece of
code will inform you of your mistake.

if input.sig.asyncness.is_none() {

    let msg = "the `async` keyword is missing from the function declaration";

    return Err(syn::Error::new_spanned(input.sig.fn_token, msg));

}

syn::Error::new_spanned is an alternative to syn::Error::new. The
difference is that the latter works with a span, the former allows you to pass
in anything that implements ToTokens. Which allows for more advanced
errors. But in this case, the output produced will be exactly the same as with
syn::Error::new(input.sig.fn_token.span(), msg).

As an example, the following is a bit of more 'creative' use of new_spanned:

let msg = "a message";

let token = ast.sig.fn_token;

let name = ast.sig.ident;

let fn_token_plus_function_name = quote!(#token #name);

syn::Error::new_spanned(fn_token_plus_function_name, msg)

    .to_compile_error()

    .to_token_stream()

    .into()

If the above was used in this chapter’s macro, we would get back something
like this:

error: a message

  --> src/main.rs:11:1

   |

11 | fn create_person(name: String, age: u32) -> Person {

   | ^^^^^^^^^^^^^^^^



Note how the message is pointing to both the function token and function
name!

Yew similarly relies on syn errors. Interestingly, it does throw an
unimplemented panic when the input is not a struct.

impl Parse for DerivePropsInput {

    fn parse(input: ParseStream) -> Result<Self> {

        let input: DeriveInput = input.parse()?;

        let prop_fields = match input.data {

            syn::Data::Struct(data) => match data.fields {

                syn::Fields::Named(fields) => {

                    // code

                }

                syn::Fields::Unit => Vec::new(),

                _ => unimplemented!("only structs are supported"),

            },

            _ => unimplemented!("only structs are supported"),

        };

        // more code

    }

}

Shuttle, an 'infrastructure from code' project that we mentioned in the
introduction, relies on proc_macro_error. Here they are checking the return
type. Just like us! Besides a hint, Shuttle also adds a reference to
documentation with doc.

fn check_return_type(signature: &Signature) {

    match &signature.output {

        ReturnType::Default => emit_error!(

            signature,

            "shuttle_service::main functions need to return a service";

            hint = "See the docs for services with first class support";

            doc = "https://docs.rs/shuttle-service/latest/..."

        ),

        // another check and emit error

    }

}

Leptos uses proc macro errors as well. In the below code abort is used when
there’s a useful span to point to, or abort_call_site when it is lacking.

#[proc_macro_error::proc_macro_error]



#[proc_macro]

pub fn view(tokens: TokenStream) -> TokenStream {

    // getting cx and comma

    match (cx, comma) {

        (Some(TokenTree::Ident(cx)), Some(TokenTree::Punct(punct)))

            if punct.as_char() == ',' =>

        {

            // more code

            let global_class = match (&first, &second) {

                (Some(TokenTree::Ident(first)), Some(TokenTree::Punct(eq)))

                    if *first == "class" && eq.as_char() == '=' =>

                {

                    match &fourth {

                        Some(TokenTree::Punct(comma))

                            if comma.as_char() == ',' =>

                        {

                            third.clone()

                        }

                        _ => {

                            abort!(

                                punct,

                                "To create a scope class with the view! \

                                macro you must put a comma `,`...";

                                help =

                                r#"e.g.,view!{

                                cx,class="my-class", <div>...</div>

                                }"#

                            )

                        }

                    }

                }

                _ => None,

            };

            // more code

        }

        _ => {

            abort_call_site!(

                "view! macro needs a context and RSX: e.g., view! {{ cx, \

                 <div>...</div> }}"

            )

        }

    }

}

Rocket, meanwhile, uses Diagnostics from proc_macro2_diagnostics,
which has some neat extension traits for proc_macro2. See they add an error
and help to a span when checking a signature.



if catch.function.sig.inputs.len() > 2 {

    return Err(catch.function.sig.paren_token.span

        .error("invalid number of arguments: must be zero, one, or two")

        .help("catchers optionally take `&Request` or `Status, &Request`"));

}

Those two return a Diagnostic that you can add more information to. You
turn it into an output using emit_as_item_tokens().

let uri_display = match uri_display {

    Ok(tokens) => tokens,

    Err(diag) => return diag.emit_as_item_tokens()

};

Tokio, Leptos, Shuttle, Rocket… all of them report errors in a way that
should be at least superficially familiar to you after reading this chapter. So
congratulations, you now have the tools to give back awesome feedback to
the users of your macros.

7.11 Exercises

Rewrite the 'public fields' macro to mutate the incoming TokenStream
instead of creating a brand new one.
Our function-like macro for generating methods throws unimplemented
for non-struct inputs. Use syn::Error instead. You can point to the span
of the name.
Now avoid the unimplemented with proc_macro_error.
Expand our 'panic checks' to also transform panics into while
expressions.

7.12 Summary

Pure functions, whose return only depends on the parameters they
receive, are easier to understand, test, and use than impure, side effect
producing functions.
Exceptions make code harder to understand because they break control
flow, making Rust’s Result enum an excellent alternative for error
handling.



Panics should only be used for situations that cannot happen, should
never happen, or when you are exploring ideas.
Besides creating entirely new token streams, you can manipulate the
ones you receive, changing only what is necessary while leaving the rest
of the code untouched.
With ItemFn we can view the signature and code (statements) of a
function.
Using panics for error handling in a macro works, but the resulting
compilation error is not very useful to your users.
syn::Error gives you an error type for use in Result that can be
transformed into a much more informative output.
proc_macro_error offers additional power in reporting helpful errors.
And with emit_error you can easily report multiple errors in one go.



8 Builder with attributes
This chapter covers

Working with field-level custom attributes to rename methods
Using root-level custom attributes to decide on error handling
Making a builder easier to use with type state
Exploring how derive and attribute macros differ
Parsing (document) attributes inside function-like macros

Every macro we created thus far has had its behavior set in stone. Nothing
was customizable. But sometimes you want overridable behavior, because
that greatly increases flexibility, or you may need it to meet some
requirements. In this chapter, we focus on customization via attributes, which
are available for both derive and attribute macros. We will see how we can
add information to a macro attribute and other parts of your code, like the
individual properties of a struct.

As always, we need a project to illustrate these possibilities. Instead of
introducing something new, let’s save some time by expanding on the builder
example we created previously. How can we make it more versatile? Perhaps
we can start with allowing users to rename the setter methods that will appear
on our builder. This is quite typical functionality (Serde, for example, allows
renames), because sometimes there is a mismatch between what your data
looks like and what you need it to be to conform to standards or
requirements. Even if the default works for most cases, it’s something you
may want to make possible.

8.1 A rename attribute

The setup for this chapter is easy since we already have a macro ready to go!
If you’re following along, disabling the existing tests might be a good idea, as
we won’t make an effort to keep those running. We will, however, still write
test scenarios for our new code, which we will add to main.rs in the 'usage'



folder.

8.1.1 Testing the new attribute

What we need, is a test that shows we can rename a property. At the same
time, this should also change the relevant setter method name. These two
assertions come together in the below test.

Listing 8.1 Verifying the desired behavior with a test

#[test]

fn should_generate_builder_for_struct_with_one_renamed_property() {

    #[derive(Builder)]

    struct Gleipnir {

        #[rename("tops_of")] #1

        roots_of: String,

    }

    let gleipnir = Gleipnir::builder()

        .tops_of("mountains".to_string()) #2

        .build();

    assert_eq!(

        gleipnir.roots_of,

        "mountains".to_string()

    ); #3

}

The one new thing in this test is the #[rename("tops_of")] attribute, which
we are using inside a struct annotated by #[derive(Builder)]. Try to run
this test. You will get back an error: cannot find attribute rename in
this scope. Ah yes, we haven’t told Rust that our macro has attributes.
Modify the lib.rs file in builder-macro:

Listing 8.2 Adding the rename attribute

#[proc_macro_derive(Builder, attributes(rename))] #1

pub fn builder(item: TokenStream) -> TokenStream {

    create_builder(item.into()).into()

}

A derive macro’s attributes are called 'derive macro helper attributes'. They



are inert, meaning they will not remove themselves during attribute
processing. You can see this for yourself by running cargo expand on a
derive macro with attributes - the output still contains the attributes. This
makes sense, as derive macros cannot change their input. The only purpose of
these attributes is to be fed into a derive macro that can use them to change
behavior and output.

All attributes, including our rename, should be specified in the macro
declaration under attributes (as seen above). rename is now a known
attribute. But it is still without implementation, causing the test to fail with no
method named tops_of found…. We are ready to start fixing that.

8.1.2 Implementing the attribute’s behavior

Our game plan is as follows:

loop over our fields as before
check whether we have a rename attribute
change the method name if we do
fallback to our default if we don’t

Before we continue, a quick refresher. Below are all the properties of
syn::Field. You have already learned to work with vis, ident, and ty.
colon_token simply indicates whether there is a : in the field definition (in
example: String that Option will be Some). mutability is a new field in syn
version 2 and is - at the time of writing - always None. That means attrs, the
attributes placed above the field, are the only relevant property we haven’t
used yet. And now we will!

pub struct Field {

    pub vis: Visibility,

    pub ident: Option<Ident>,

    pub ty: Type,

    pub colon_token: Option<Token![:]>,

    pub mutability: FieldMutability,

    pub attrs: Vec<Attribute>,

}

Next, since we want to modify the generation of methods, expanding



builder_methods makes sense. This is the relevant code.

Listing 8.3 Original builder_methods code

pub fn builder_methods(fields: &Punctuated<Field, Comma>)

    -> impl Iterator<Item = TokenStream2> + '_ {

    fields.iter().map(|f| {

        let (field_name, field_type) = get_name_and_type(f);

        quote! {

            pub fn #field_name(&mut self, input: #field_type) -> &mut Self {

                self.#field_name = Some(input);

                self

            }

        }

    })

}

We need to make quite a few changes to use attributes, but the good news is
that all the changes are scoped to the fields.rs file. lib.rs will remain
untouched.

We will start simple and write a helper that uses find to look within the
field’s attributes for a name that matches our string.

Listing 8.4 Helper method in fields.rs to find a field attribute with a given name

fn extract_attribute_from_field<'a>(f: &'a Field, name: &'a str)

    -> Option<&'a syn::Attribute> {

        f.attrs.iter().find(|&attr| attr.path().is_ident(name))

}

The path method gives back the attribute’s path, which is the part right after
the #[ bit, i.e. 'rename'. Because this is an identifier, we should use its
is_ident to compare with our string. Alternatively, we could have done a bit
more work and compared path segments: attr.path().segments.len() ==
1 && attr.path().segments[0].ident == *name. This works because
there is a generic implementation of equality for Ident, PartialEq<T>, for
anything where T: AsRef<str>. find will return the attribute wrapped in
Some, defaulting to None if nothing was found.

Now onto the meat of our code in builder_methods. We are still iterating



over the fields and retrieving name and type, except we now have additional
logic for retrieving the attribute, analyzing it, and deciding on output
depending on the result of that analysis.

Listing 8.5 New builder_methods code in fields.rs

// earlier imports

use syn::{Meta, LitStr};

// existing code

pub fn builder_methods(fields: &Punctuated<Field, Comma>)

    -> Vec<TokenStream> {

    fields.iter()

        .map(|f| {

            let (field_name, field_type) = get_name_and_type(f);

            let attr = extract_attribute_from_field(f, "rename") #1

                .map(|a| &a.meta)

                .map(|m| {

                    match m {

                        Meta::List(nested) => {

                            let a: LitStr = nested

                                .parse_args()

                                .unwrap();

                            Ident::new(&a.value(), a.span())

                        }

                        Meta::Path(_) => {

                            panic!(

                                "expected brackets with name of prop"

                            )

                        },

                        Meta::NameValue(_) => {

                            panic!(

                                "did not expect name + value"

                            )

                        }

                    }

                }); #2

            if let Some(attr) = attr {

                quote! {

                    pub fn #attr(mut self, input: #field_type) -> Self {

                        self.#field_name = Some(input);

                        self

                    }

                } #3



            } else {

                quote! {

                  pub fn #field_name(mut self, input: #field_type) -> Self {

                      self.#field_name = Some(input);

                      self

                  }

                } #4

            }

        }).collect()

}

We use our helper to retrieve the attribute if it exists. But that is not enough.
We also need to do some additional mapping to retrieve what we are really
interested in: the desired method name. Most of an attribute’s interesting
information is located inside meta, an enum with three variants: List, Path,
and NamedValue:

NamedValue is when you put keys with values in the brackets behind
your attribute (example: #[rename(name=tops_of)])
Path is when you have (a path of) attribute information without brackets
List is for a list of values between brackets: #
[rename("first","second")]

Figure 8.1 Diving into the Attribute type



In our case, the last one, a list of exactly one element, is correct. We will keep
things simple by panicking when we receive the wrong attribute format. But I
would be amiss if I didn’t point out that meta has a couple of useful methods
for this very situation. require_list will return the nested MetaList if it is
present, or an Err if we received a different enum variant. And there are
similar methods for the other two: require_path_only and
require_name_value. So require_list is a great alternative for a simple
panic.

List contains tokens, a TokenStream with the information we want. And the



easiest way to get a useful type out of that stream, is to use the parse_args
method, specifying the expected return type. For us, LitStr is a convenient
return as we literally - feeble pun intended - expect a string!

Now all that is left is to transform this literal into an identifier we can use to
construct the method name. For that we use the value helper method and the
span of the existing literal, passing them to the new method. It may seem like
retrieving the token, changing it into a string, and taking a reference (i.e.
&nested_lit.token().to_string()) would also work. Unfortunately, that
code will error: "\"tops_of\"" is not a valid identifier. Those
escapes around your literal are not what you want for an identifier, and value
gets rid of them for you.

Once we are done changing the attribute into a custom method name, we use
if let to get the value from the Option if it is present. In every other case,
we default to our previous implementation, where the field and method name
are the same.

8.1.3 Parsing variations

As always, there are many possible variations for this macro and its
implementation. For example, maybe you think the quotation marks around
'tops_of' are a needless distraction when invoking the macro. Maybe you
prefer it without quotes, like #[rename(tops_of)]. In that case, we don’t
have a LitStr wrapping and the tokens inside our brackets are exactly what
we need. So the alternative code within match looks like this:

Listing 8.6 Alternative code within our match

Meta::List(nested) => {

    &nested.tokens

}

With an ident instead of a string, we could also have turned to
parse_nested_meta, a method on Attribute. In that case, instead of two
nested maps (map(|a| &a.meta) plus the map that does a match), we would
have this:



Listing 8.7 Alternative with parse_nested_meta

let mut content = None;

a.parse_nested_meta(|m| { #1

    let i = &m.path.segments.first().unwrap().ident; #2

    content = Some(Ident::new(&i.to_string(), i.span()));

    Ok(())

}).unwrap(); #3

content.unwrap() #4

In major version 1 of syn, there was another useful parse_meta method under
the 'parsing' feature, but that seems to have been removed.

To make sure that everything works, you can add additional tests to main.rs.
Like one with multiple properties but only one of them with a custom name,
or a test where multiple properties have custom names.

Listing 8.8 Additional test (example)

#[test]

fn should_generate_builder_for_struct_with_two_props_one_custom_name() {

    #[derive(Builder)]

    struct Gleipnir {

        #[rename("tops_of")]

        roots_of: String,

        breath_of_a_fish: u8,

    }

    let gleipnir = Gleipnir::builder()

        .tops_of("mountains".to_string())

        .breath_of_a_fish(1)

        .build();

    assert_eq!(gleipnir.roots_of, "mountains".to_string());

    assert_eq!(gleipnir.breath_of_a_fish, 1);

}

These additional tests should compile and succeed, like the existing ones.

8.2 Alternative naming for attributes



Before moving on, we will explore the alternative of using a key plus value
for our rename attribute. Several libraries use yet another approach, creating a
single library attribute with the specific command added between
parentheses, for example #[serde(rename = "name")]. But we’ll leave that
for the exercises.

Start with a unit test to verify the required behavior. (You should disable the
other tests. We are going to replace the existing attribute behavior.)

Listing 8.9 Test for an alternative attribute naming strategy

#[cfg(test)]

mod tests {

    #[test]

    fn should_generate_builder_for_struct_with_one_renamed_prop() {

        #[derive(Builder)]

        struct Gleipnir {

            #[rename = "tops_of"] #1

            roots_of: String,

        }

        let gleipnir = Gleipnir::builder()

            .tops_of("mountains".to_string())

            .build();

        assert_eq!(gleipnir.roots_of, "mountains".to_string());

    }

}

Now for the implementation. Again, we only have to focus on fields.rs and
builder_methods. While there are only a few essential changes, the solution
does take a more 'streaming' approach to mapping. Instead of using if let,
we map until we have our output, using unwrap_or_else to get the default.
unwrap_or is an alternative, but unwrap_or_else accepts a closure and is
lazily evaluated, which could give a minor performance boost, especially if
there are a lot of renames.

Listing 8.10 Implementation for the alternative approach

// other code, imports

pub fn builder_methods(fields: &Punctuated<Field, Comma>) ->



 Vec<TokenStream> {

    fields.iter()

        .map(|f| {

            let (field_name, field_type) = get_name_and_type(f);

            extract_attribute_from_field(f, "rename")

                .map(|a| &a.meta)

                .map(|m| {

                    match m {

                        Meta::NameValue(

                            MetaNameValue { value: Expr::Lit(ExprLit {

                                lit: Lit::Str(literal_string), .. }), ..

                        }) => {

                            Ident::new(

                                &literal_string.value(),

                                literal_string.span()

                            )

                        } #1

                       _ => panic!(

                            "expected key and value for rename attribute"

                        ),

                    }

                })

                .map(|attr| {

                    quote! {

                        pub fn #attr(mut self, input: #field_type) -> Self {

                            self.#field_name = Some(input);

                            self

                        }

                    }

                }) #2

                .unwrap_or_else(|| {

                    quote! {

                        pub fn #field_name(mut self, input: #field_type) ->

 Self {

                            self.#field_name = Some(input);

                            self

                        }

                    }

                }) #3

        }).collect()

}

Besides the additional mappings, the only real difference with the previous
code is that we now have to look for NameValue in the metadata. As
mentioned, that is the variant we get for key-value attributes. The match is



quite long (Meta::NameValue(MetaNameValue { value:
Expr::Lit(ExprLit { lit: Lit::Str(literal_string), .. }), .. }))
and if you find it to be too complicated, you can split it up in multiple, nested
matches. Personally, I like how I can get to the desired value with a single
readable pattern match.

Figure 8.2 Simplified view of the meta property for our use case

Lazy and eager evaluations



Eager and lazy evaluations are two approaches to writing code. Eager
evaluation means the code you write will be invoked when it is encountered.
Lazy evaluation means that evaluation is postponed until it proves necessary.
In the example above, unwrap_or_else is lazy because the closure that
creates the default TokenStream will only be called if we end up in the
unwrap_or_else call. If every field has a rename attribute, and we never end
up in unwrap_or_else, we never pay the cost that comes with creating the
default stream. unwrap_or, on the other hand, is eager, meaning that if we
used that method, the default TokenStream would be constructed every time,
even when that is unnecessary. Eager evaluation can have the advantage of
being simpler to reason about. There is simplicity in the knowledge that
everything is always ready for use. Besides offering possible performance
advantages, lazy evaluation is the only approach suitable to some
programming constructs like infinite data structures. If you have a stream that
will produce data without ever stopping, eager evaluation would call it
forever. Whereas with a lazy approach, you would only invoke that stream
when you really need data. Languages often have a built-in preference for
one of both kinds of evaluation, even if this is seldom an exclusive
preference. JavaScript is generally eager, whereas Haskell is lazy. Oh, and we
actually already encountered lazy evaluation in this book. The lazy static
crate has a macro for "declaring lazily evaluated statics"…

8.3 Sensible defaults

Hey, remember how we talked about proper error handling in a previous
chapter? How you should not panic or throw exceptions at every turn?
Then… why on earth do we panic whenever a user forgets to fill in a field?

There are alternatives. Instead of panicking, we could output a Result when
calling build, giving back an Err if a field is missing. This is standard Rust
practice for method calls that might fail. Or we could try to make panics
impossible. A radical idea that we will save for later. Another idea, which we
will explore now, is to use defaults as a fallback. We will use the nifty
Default trait to do that. In the unlikely event that you have never heard of
this trait before: by implementing Default you specify a default value for a
given type. Most built-in types already have sensible defaults out of the box,
like numbers (0), strings (empty), booleans (false) and Option (None).



Defaults are also easily implemented with a derive macro.

In this section, we add an attribute to our macro, which will determine
whether to use defaults. Here is a test.

Listing 8.11 A test for defaults

#[test]

fn should_use_defaults_when_attribute_is_present() {

    #[derive(Builder)]

    #[builder_defaults]

    struct ExampleStructTwoFields {

        string_value: String,

        int_value: i32,

    }

    let example: ExampleStructTwoFields = ExampleStructTwoFields::builder()

        .build();

    assert_eq!(example.string_value, String::default());

    assert_eq!(example.int_value, Default::default());

}

When you try to run this test, it fails because Rust does not know about an
attribute called builder_defaults. Easy to fix.

Listing 8.12 Adding the missing attribute

#[proc_macro_derive(Builder, attributes(rename,builder_defaults))]

pub fn builder(item: TokenStream) -> TokenStream {

    create_builder(item.into()).into()

}

Now our test panics because we haven’t written our implementation yet. So
what we should do now, is retrieve the attribute. If it is present, we fall back
to defaults. The code change in our lib.rs file is simple: it checks whether
we have to use defaults and passes the boolean on to the method that needs it.

Listing 8.13 lib.rs code changes: checking the attributes for 'builder_defaults'

// mode, imports

use syn::Attribute;



const DEFAULTS_ATTRIBUTE_NAME: &str = "builder_defaults";

pub fn create_builder(item: TokenStream) -> TokenStream {

    let ast: DeriveInput = parse2(item).unwrap();

    let name = ast.ident;

    let builder = format_ident!("{}Builder", name);

    let use_defaults = use_defaults(&ast.attrs); #1

    // ...

    let set_fields = original_struct_setters(

        fields,

        use_defaults

    ); #2

    // ...

}

fn use_defaults(attrs: &[Attribute]) -> bool {

    attrs

        .iter()

        .any(|attribute| attribute.path().is_ident(DEFAULTS_ATTRIBUTE_NAME))

}

As you can see, attributes are present both at the root level of DeriveInput
and at the field level. And previously, we were adding attributes to individual
fields. This time we placed one on top of our struct. So we should look in the
root. Our use_defaults helper is simple. It checks whether any attribute
identifier matches the name 'builder_defaults'. The result is given to
original_struct_setters, the only method that needs to know about it.

Meanwhile, in fields.rs, we have more work to do, because we want to
behave differently depending on this boolean value.

Listing 8.14 fields.rs code changes

// imports and other code

pub fn original_struct_setters(fields: &Punctuated<Field, Comma>,

 use_defaults: bool)

    -> Vec<TokenStream> {

    fields.iter().map(|f| {

        let field_name = &f.ident;

        let field_name_as_string = field_name

            .as_ref().unwrap().to_string();



        let handle_type = if use_defaults { #1

            default_fallback() #1

        } else {

            panic_fallback(field_name_as_string) #2

        };

        quote! {

            #field_name: self.#field_name.#handle_type

        }

    })

        .collect()

}

fn panic_fallback(field_name_as_string: String) -> TokenStream {

    quote! {

        .expect(concat!("field not set: ", #field_name_as_string))

    }

}

fn default_fallback() -> TokenStream {

    quote! {

        unwrap_or_default()

    }

}

We have added some code and refactored a bit. We moved the 'panic'
generation, the fallback, to a separate method.

fn panic_fallback(field_name_as_string: String) -> TokenStream {

    quote! {

        expect(concat!("Field not set: ", #field_name_as_string))

    }

}

As we mentioned before, it is perfectly fine for streams to be bits of code that
cannot function on their own. And that is the case here. This expect is not
valid standalone Rust code. But we will combine it with other bits of code
until it can be parsed as valid. We also need to generate code for the default
fallback. What is nice, is that Option has an unwrap_or_default() method
created just for this.

fn default_fallback() -> TokenStream {

    quote! {

        unwrap_or_default()

    }



}

Now we need to use the 'defaults' boolean to determine the behavior. Which
we do with a simple if-else, combining the result with code for filling in the
field. By combining all these fragments, we are one step closer to valid Rust,
though we still need to do some transformations in lib.rs before everything
is in place.

pub fn original_struct_setters(fields: &Punctuated<Field, Comma>,

 use_defaults: bool)

    -> Vec<TokenStream> {

    fields.iter().map(|f| {

        let field_name = &f.ident;

        let field_name_as_string = field_name

            .as_ref().unwrap().to_string();

        let handle_type = if use_defaults {

            default_fallback()

        } else {

            panic_fallback(field_name_as_string)

        };

        quote! {

            #field_name: self.#field_name.#handle_type

        }

    })

        .collect()

}

For our convenience, we are returning a Vec instead of a Map or impl. All
three are valid inputs for quote, but Map now becomes a lot more annoying to
use. As we are passing the use_defaults boolean to map, this means that the
function inside that map is now capturing a variable from its environment.
That makes it a closure, which means our previous signature
(Map<Iter<Field>, fn(&Field) → TokenStream>) is invalid, as fn is a
function pointer, not a closure. Change it to Fn and you will get a complaint
about sizes not being known at compile time… In brief, below is everything
we have to do to keep our Map:

Listing 8.15 Do not pass go, do not collect. Alternative to returning a Vec

pub fn original_struct_setters<'a>(fields: &'a Punctuated<Field, Comma>,

 use_defaults: bool)



        -> Map<Iter<'a, Field>, Box<dyn Fn(&Field) -> TokenStream>>  { #1

    fields.iter().map(Box::new(move |f| { #2

        // same as before

    })) #3

}

The signature requires an Fn because of the closure and a Box to let Rust
know the compile-time size. That means we actually have to box our closure:
Box::new(move |f| …). The move is needed because of our original issue,
i.e. we need to take ownership of use_defaults. So a lot of busy work, a
complex signature, and possibly worse performance because of the boxing.

impl Iterator<Item = TokenStream> + '_ is still an acceptable alternative
solution. Its signature stays the same, and we only have to add a move to our
mapping for the same reason as above.

With one of these solutions in action, the test that we wrote should compile
and pass. If you want to make sure no previous code was broken, add a test
that still panics for missing properties.

8.4 A better error message for defaults

What happens when we have properties that do not implement Default? Add
trybuild to the project, copy the compilation_tests.rs we used before,
and put this under tests/fails.

Listing 8.16 Testing what happens when a property does not implement Default

use builder_macro::Builder;

struct DoesNotImplementDefault; #1

#[derive(Builder)]

#[builder_defaults]

struct ExampleStruct {

    not: DoesNotImplementDefault #2

}

fn main() {}

Rust throws an error:



┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈
6 | #[derive(Builder)]

  |          ^^^^^^^ the trait `Default` is not implemented for

 `DoesNotImplementDefault`

  |

note: required by a bound in `Option::<T>::unwrap_or_default`

 --> $RUST/core/src/option.rs

  |

  |         T: ~const Default,

  |            ^^^^^^^^^^^^^^ required by this bound in

 `Option::<T>::unwrap_or_default`

...

The error is clear enough for a user to figure out what the problem is. But the
lack of precision in the message, pointing to the macro instead of the faulty
property, is annoying.

In a previous chapter, we learned how we could use custom errors to give
back a clearer error message, with span allowing us to point to a specific
location in our source code. We can try to use that to our advantage here. One
approach, inspired by examples from the syn library, is to generate an empty
struct, giving it a where clause that requires a field’s type to implement
Default. To generate that code, we use the quote_spanned because it allows
us to pass in a span that will be applied to the generated code.

Listing 8.17 Example usage of quote_spanned with a where clause

quote_spanned! {ty.span()=>

    struct ExampleStruct where SomeType: core::default::Default;

}

We are also passing in the full path for Default, core::default::Default,
which avoids confusion with other traits with the same name, that live in
other crates (or in the user’s codebase). This is a best practice that we have
been avoiding until now for simplicity’s sake, and which will feature in more
detail in a later chapter.

What we want to do now, is loop through our fields with iter and map,
adding structs with where clauses that claims a field’s type implements
Default. If this is not the case, well… feel the wrath of the compiler, which
will use the span we passed in (the one from the offending type) to point the



user to his mistake. The struct’s name starts with two underscores, another
best practice for avoiding collisions with user code.

Listing 8.18 Additional code in fields.rs

// other imports

use quote::{format_ident, quote, quote_spanned};

use syn::spanned::Spanned; #1

pub fn optional_default_asserts(fields: &Punctuated<Field, Comma>)

    -> Vec<TokenStream> {

        fields.iter()

            .map(|f| {

                let name = &f.ident.as_ref().unwrap();

                let ty = &f.ty;

                let assertion_ident = format_ident!(

                    "__{}DefaultAssertion",

                    name

                ); #2

                quote_spanned! {ty.span()=>

                  struct #assertion_ident where #ty: core::default::Default;

                } #3

            })

            .collect()

}

Now all we need to do is to add this Vec to our final output, using the hashtag
style for multiple items, when the 'default' annotation is present. Otherwise,
we add an empty vector of tokens, which generates nothing at all.

Listing 8.19 Code in lib.rs ( builder-code)

pub fn create_builder(item: TokenStream) -> TokenStream {

    // ...

    let default_assertions = if use_defaults {

        optional_default_asserts(fields)

    } else {

        vec![]

    }; #1

    quote! {

        // generate the struct, builder, etc.

        #(#optional_default_assertions)* #2

    }



}

Now, if you try to pass in a nested struct that does not implement Default,
you get a more informative error pointing to the exact location of the
offender.

error[E0277]: the trait bound `DoesNotImplementDefault: Default`

 is not satisfied

 --> tests/fails/no_default.rs:9:10

  |

9 |     not: DoesNotImplementDefault

  |          ^^^^^^^^^^^^^^^^^^^^^^^ the trait `Default` is not implemented

 for `DoesNotImplementDefault`

  |

  = help: see issue #48214

help: ...

As a footnote to this section: I stumbled upon a variation to this approach
while answering a StackOverflow question. A user was using a macro to
generate a function that required a trait implementation for its argument. One
issue he was having, was that the error message for when the type did not
implement the trait was unhelpful. It pointed to the macro invocation. Sound
familiar? The solution was a nice variation on using spans for error messages.
Instead of hardcoding the trait, generate an identifier with the span of the
type that does not implement the trait.

let trait_ident = Ident::new("MyTrait", problematic_type.span());

Now if you use trait_ident in a where clause and something goes wrong,
Rust will point to the span and the faulty type.

8.5 Build back better

OK, how about a slight detour before soldiering on with attributes? I promise
it is somewhat relevant. And even if it’s not, the technique is interesting.

8.5.1 Avoiding illegal states and the type state pattern

What may be bothering you is how we seem to have only three choices to
deal with missing properties: defaults, panics, and a Result return type. We



have implemented the first two, and the latter option sounds nice and
idiomatic. But it is not a perfect fit because there is no reason to allow
mistakes in building our example structs! You either have all their required
properties, or you don’t. In the former case, the operation is always a success.
In the latter case, it never is. That means there is no reason to allow anyone to
skip properties when our fallback is panicking. And the 'default variation'
forces developers to implement a trait, as well as carrying a risk: did the user
really want a default, or did he forget to set the property?

Figure 8.3 Current situation: too much room for errors. We generate a builder that can
immediately call build, even without setting the fields



The best solution would be to move our check to the type system, to make
illegal states unrepresentable. What we mean by that, is that the best kind of
application does not allow programmers to create runtime issues. Instead, we
can try to mold the type system, to make the compiler stop users when they
make mistakes. Any type system offers this functionality to users, in a basic
form. It can, for example, make sure that numeric things like age cannot be
strings, negative numbers, or very large.

This may sound familiar, because we talked about this idea back when we
were discussing newtypes, which are one way to extend the power of your



type system, making it more specific to your domain. Specifically in the case
of our builder, we want to force users to fill in every required property, only
allowing them to call build when this has been done.

We can use the type state pattern to do that, encoding the state of our system
in a type parameter. A simple example might help illustrate the idea. We have
a traffic light that is either green or red. When it is red, turning red a second
time does not make sense.

Figure 8.4 It makes no sense for a traffic light to turn red when it already is that color. We are
allowing illegal states



No, a red light should only change to green, green only to red (green → red
→ green → …, it’s a state machine.).

Figure 8.5 The situation presented here is preferable: only valid states are allowed



Below is some code for enforcing this behavior at compile time, using a
marker trait, a trait that has no methods or properties but serves to 'mark'
types as being something, and some structs that implement that marker.
Because Rust does not allow unused generic properties, we have to add
PhantomData<T> (from the standard library) to TrafficLight as a signal: "I
have compile-time plans for this generic". Next, we write implementation
blocks that differ depending on the type of our generic. Only when the
generic parameter is Green do we have the turn_red method, which returns a
traffic light with the Red struct as a parameter. And the implementation block
for TrafficLight<Red> only has turn_green, which returns



TrafficLight<Green>.

Listing 8.20 Traffic light

trait Light {} #1

struct Green {} #1

struct Red {} #1

impl Light for Green {} #1

impl Light for Red {} #1

struct TrafficLight<T: Light> {

    marker: PhantomData<T>

} #2

impl TrafficLight<Green> {

    fn turn_red(&self) -> TrafficLight<Red> {

        TrafficLight {

            marker: Default::default(),

        }

    }

} #3

impl TrafficLight<Red> {

    fn turn_green(&self) -> TrafficLight<Green> {

        TrafficLight {

            marker: Default::default(),

        }

    }

} #3

fn main() {

    let light = TrafficLight { marker: Default::default() };

    light.turn_red().turn_green(); #4

}

The result? A traffic light guaranteed by the compiler to only have valid state
transitions! Graydon Hoare would be proud.

Note

As the story goes, Hoare - the creator of Rust - was inspired to create the
language when an elevator in his apartment failed to work because of a



software issue.

8.5.2 Combining the builder pattern with type state

Pretty cool. And we can do the same for our builder. We should:

create a marker trait
create a struct without properties for every field we receive (we can call
them 'field structs')
make our builder accept a generic type that implements the marker trait
make the builder method of our struct return a builder with the generic
type set to the first 'field struct' (in the case of Gleipnir, this is 'roots_of')
create an implementation block for the builder with that specific generic
parameter, with a method that accepts a field ('roots_of') and returns a
builder with the next generic parameter ('breath_of_a_fish')
rinse and repeat for all fields
the final field does not return the 'next' generic parameter since there is
none. Instead, it returns a builder with a build method

Figure 8.6 Desired situation: illegal states are unrepresentable. We generate a struct with a
different generic type parameter for every method, only allowing the last one to call build



Our setup is that of the previous sections, with the attribute-related things
(rename and defaults) stripped out so they don’t distract us. Here is a test that
should compile because the fields are all called in the correct order.

Listing 8.21 builder-usage test with correct order of attributes

// macro import

fn main() {}

#[cfg(test)]



mod tests {

    #[test]

    fn should_work_with_correct_order() {

        #[derive(Builder)]

        struct Gleipnir {

            roots_of: String,

            breath_of_a_fish: u8,

            anything_else: bool,

        }

        let gleipnir = Gleipnir::builder()

            .roots_of("mountains".to_string())

            .breath_of_a_fish(1)

            .anything_else(true)

            .build();

        assert_eq!(gleipnir.roots_of, "mountains".to_string());

    }

}

That tests the compilation and saving of at least one field value. For the error
scenario, we add a test in the tests folder, with this code under
fails/missing_prop.rs:

Listing 8.22 builder-usage compile test, under tests

use builder_macro::Builder;

#[derive(Builder)]

struct Gleipnir {

    roots_of: String,

    breath_of_a_fish: u8,

    anything_else: bool,

}

fn main() {

    Gleipnir::builder()

        .roots_of("mountains".to_string())

        .breath_of_a_fish(1)

        // missing final property

        .build();

}

This should fail with a compile-time error because we forgot to add one of
the attributes (namely anything_else).



Meanwhile, our builder-macro remains the same. The builder code has a lot
of changes though. lib.rs becomes simpler because more responsibility has
been delegated to separate functions. All those functions now need a
reference to the name of a struct. We will see why in a moment.

Listing 8.23 lib.rs in builder-code

pub fn create_builder(item: TokenStream) -> TokenStream {

    // ... get the struct name and its fields

    let builder = builder_definition(&name, fields);

    let builder_method_for_struct = builder_impl_for_struct(&name, fields);

    let marker_and_structs = marker_trait_and_structs(&name, fields);

    let builder_methods = builder_methods(&name, fields);

    quote! {

        #builder

        #builder_method_for_struct

        #marker_and_structs

        #builder_methods

    }

}

Before moving on to the meat of the implementation, here is util.rs, which
provides a way to create the identifier for the builder struct and field struct.
By using these functions, we can avoid some duplication, and we make
changing the names of our builders and additional structs, if we think of
better names, much simpler.

Listing 8.24 util.rs in builder-code

use proc_macro2::Ident;

use quote::format_ident;

pub fn create_builder_ident(name: &Ident) -> Ident {

    format_ident!("{}Builder", name)

}

pub fn create_field_struct_name(builder: &Ident, field: &Ident) -> Ident {

    format_ident!("{}Of{}", field_name, builder_name)

}

We are going to have to split up the code in fields in separate fragments
because it contains about 170 lines of code. And we will be ignoring



get_name_and_type, panic_fallback, and original_struct_setters,
which are basically unchanged.

First, creating the marker trait and structs. We add a marker trait and generate
a struct plus implementation of the trait for every field. We need one
additional struct for calling build. The trait (MarkerTraitForBuilder) and
final struct (FinalBuilder) are hardcoded for brevity’s sake. In a production-
grade macro, it would probably be best to add the name of the struct and __
as a prefix to make it more unique. Also, the structs start with a lowercase
letter and have underscores, due to the field names. Which is something Rust
will complain about.

Listing 8.25 marker_trait_and_structs in fields.rs

pub fn marker_trait_and_structs(name: &Ident, fields: &Punctuated<Field,

 Comma>)

    -> TokenStream {

    let builder_name = create_builder_ident(name);

    let structs_and_impls = fields.iter().map(|f| {

        let field_name = &f.ident.clone().unwrap();

        let struct_name = create_field_struct_name(

            &builder_name,

            field_name

        ); #1

        quote! {

            pub struct #struct_name {}

            impl MarkerTraitForBuilder for #struct_name {}

        } #2

    });

    quote! {

        pub trait MarkerTraitForBuilder {} #3

        #(#structs_and_impls)* #3

        pub struct FinalBuilder {} #4

        impl MarkerTraitForBuilder for FinalBuilder {} #4

    }

}

The builder definition is also fairly easy. We have moved more responsibility
into the method and added the generic parameter and PhantomData marker.



But that’s about it.

Listing 8.26 builder_definition in fields.rs

pub fn builder_definition(name: &Ident, fields: &Punctuated<Field, Comma>)

    -> TokenStream {

    let builder_fields = fields.iter().map(|f| {

        let (field_name, field_type) = get_name_and_type(f);

        quote! { #field_name: Option<#field_type> }

    }); #1

    let builder_name = create_builder_ident(name);

    quote! {

        pub struct #builder_name<T: MarkerTraitForBuilder> {

            marker: std::marker::PhantomData<T>,

            #(#builder_fields,)*

        } #2

    }

}

Now for something more complex. In the below function, we generate the
builder method, which creates the empty builder struct. The 'inits' are the
same as before, and we need both the struct_name and builder_name for our
output. But we also need a generic for the builder struct. As we said that this
should refer to the first field of our struct, we retrieve the first field (and
hope there is at least one! In a real use-case, we would have to check whether
it’s empty and act accordingly), and use a utility to get the right struct name.

Listing 8.27 builder_impl_for_struct in fields.rs

pub fn builder_impl_for_struct(name: &Ident, fields: &Punctuated<Field,

 Comma>)

    -> TokenStream {

    let builder_inits = fields.iter().map(|f| {

        let field_name = &f.ident;

        quote! { #field_name: None }

    });

    let first_field_name = fields.first().map(|f| {

        f.ident.clone().unwrap()

    }).unwrap(); #1

    let builder_name = create_builder_ident(name);

    let generic = create_field_struct_name(

        &builder_name,

        &first_field_name



    ); #2

    quote! {

        impl #struct_name {

            pub fn builder() -> #builder_name<#generic> {

                #builder_name {

                    marker: Default::default(),

                    #(#builder_inits,)*

                }

            } #3

        }

    }

}

Finally, we should generate methods for setting fields. This method is huge,
so we will split it up into three parts. In the first, we gather some information.
original_struct_setters gives us field setters for when we will eventually
call build, while get_assignments_for_fields sets all field properties for
the builder struct. And for reasons that may become clear in the next code
fragment, I prefer to start with the final field, so we reverse the field vector.

Listing 8.28 builder_methods in fields.rs: setup

pub fn builder_methods(name: &Ident, fields: &Punctuated<Field, Comma>)

    -> TokenStream {

    let builder_name = create_builder_ident(name);

    let set_fields = original_struct_setters(fields);

    let assignments_for_all_fields = get_assignments_for_fields(fields);

    let mut previous_field = None;

    let reversed_names_and_types: Vec<&Field> = fields

        .iter()

        .rev()

        .collect();

    // ...

}

In the next fragment, we have a map, with conditional branching. When we
start iterating, previous_field will be empty, so we will end up in the else.
(And while this was not really on purpose, this is the more optimal choice of
branching for performance, putting the least likely option last.) Since the first
field in our reversed list is actually the last field of our struct, we should
create an implementation block with a setter for the final 'field struct'.



Because we set the previous_field in both branches of the condition, every
subsequent call will end up in the if branch. Here, like before, we want to
generate a setter for the current generic. But this time, the return type should
point to the generic parameter of the next field. And since we reversed the
vector, we have that one available, stored away in previous_field.

Listing 8.29 builder_methods in fields.rs: generating the methods

pub fn builder_methods(struct_name: &Ident, fields: &Punctuated<Field,

 Comma>)

    -> TokenStream {

    // ...

    let methods: Vec<TokenStream> = reversed_names_and_types

        .iter()

        .map(|f| {

            if let Some(next_in_list) = previous_field { #1

                previous_field = Some(f);

                builder_for_field(

                    &builder_name,

                    &assignments_for_all_fields,

                    f,

                    next_in_list

                )

            } else { #2

                previous_field = Some(f);

                builder_for_final_field(

                    &builder_name,

                    &assignments_for_all_fields,

                    f

                )

            }

        }).collect();

    quote! {

        #(#methods)*

        impl #builder_name<FinalBuilder> {

            pub fn build(self) -> #struct_name {

                #struct_name {

                    #(#set_fields,)*

                }

            }

        }

    }

}



What follows, is the implementation of the two functions that were called in
the map. The difference between them is subtle. Both generate a method that
is added to the builder, which sets a specific field and returns the builder,
using the 'assignments' to fill in all its properties. This is necessary because
we cannot simply return self thanks to the generic type parameter.

The main difference is that the first method (builder_for_field) points to
the builder with a type referring to the next field (next_field_struct_name),
while the second method (builder_for_final_field) produces one with
generic type FinalBuilder.

Listing 8.30 The two functions used in builder_methods

fn builder_for_field(builder_name: &Ident, field_assignments:

 &Vec<TokenStream>,

    current_field: &Field, next_field_in_list: &Field) -> TokenStream {

    let (field_name, field_type) = get_name_and_type(current_field);

    let (next_field_name, _) = get_name_and_type(next_field_in_list);

    let current_field_struct_name = create_field_struct_name(

        &builder_name,

        field_name.as_ref().unwrap()

    );

    let next_field_struct_name = create_field_struct_name(

        &builder_name,

        next_field_name.as_ref().unwrap()

    );

    quote! {

        impl #builder_name<#current_field_struct_name> {

            pub fn #field_name(mut self, input: #field_type) ->

 #builder_name<#next_field_struct_name> {

                self.#field_name = Some(input);

                #builder_name {

                    marker: Default::default(),

                    #(#field_assignments,)*

                }

            }

        }

    }

}

fn builder_for_final_field(

        builder_name: &Ident,

        field_assignments: &Vec<TokenStream>,



        field: &Field

    ) -> TokenStream {

    let (field_name, field_type) = get_name_and_type(field);

    let field_struct_name = create_field_struct_name(

        &builder_name,

        field_name.as_ref().unwrap()

    );

    quote! {

        impl #builder_name<#field_struct_name> {

            pub fn #field_name(mut self, input: #field_type) ->

 #builder_name<FinalBuilder> {

                self.#field_name = Some(input);

                #builder_name {

                    marker: Default::default(),

                    #(#field_assignments,)*

                }

            }

        }

    }

}

Finally, the function brings everything together, adding the individual
implementation blocks as well as the build method.

Listing 8.31 builder_methods in fields.rs: output

quote! {

    #(#methods)*

    impl #builder_name<FinalBuilder> {

        pub fn build(self) -> #struct_name {

            #struct_name {

                #(#set_fields,)*

            }

        }

    }

}

The test in builder-usage should now succeed. And, depending on how well
your IDE handles macros, you should only get suggestions for the right
methods when using the builder: roots_of, breath_of_a_fish,
anything_else, and finally build. As our compile test shows, you won’t get
the builder to compile if you skip a property. And Rust even gives you a clue



as to what is wrong thanks to the generic parameters.

error[E0599]: no method named `build` found for struct

 `GleipnirBuilder<anything_elseOfGleipnirBuilder>` in the current scope

  --> tests/fails/missing_prop.rs:16:10

   |

4  | #[derive(Builder)]

   |          ------- method `build` not found for this struct

...

16 |         .build();

   |          ^^^^^ method not found in

 `GleipnirBuilder<anything_elseOfGleipnirBuilder>`

   |

   = note: the method was found for

           - `GleipnirBuilder<FinalBuilder>`

This is really cool. You are forcing users of the macro to do the right thing,
keeping them from shooting themselves in the foot. And everything is done
automatically by a macro, with all the complexity hidden away. Furthermore,
the runtime impact should be minimal. The marker trait, empty structs,
phantom markers, and generic type parameters only play a role at compile
time and can be optimized away. And most of the other code was already
present in our previous, more 'naive', builder.

A possible extension to this example: what if you had optional values in your
struct? I.e. values wrapped in an option, or values where the Default
implementation is good enough if the user does not pass anything along. In
that case, you could force the user to fill in all required values, but once the
final required value is filled in, he/she should be able to call any of the
optional setters as well as build.

How did you write this?

This is a macro with a lot of moving parts, so you may be wondering how to
approach such a complex task. In this particular case, I first sketched out my
solution with normal Rust code, identifying all the different parts, and how
they fitted together. Then I wrote code for things that were prerequisites, as
well as being relatively simple to generate (the marker trait and structs for
example), looking at the output to check my work. That done, I wrote the rest
of the code and made the macro compile. Finally, I ran cargo expand on an



example struct to identify any remaining issues. For example, I forgot to save
the 'previous field' value in the else branch. So all the setters were pointing
to build instead of the next setter!

8.6 Avoiding scattered conditionals

Gently tying this back to the original builder code, patterns like this could be
used in complex macros. For example, the 'if-else' approach to our 'error
handling' (panic or default) is fine right now because it is limited to one
location. But what if it appeared in a lot of methods? We would have a lot of
ugly conditionals in our code, scattering one piece of logic (what is our
fallback behavior) across the application. That makes mistakes easier and
refactoring harder. Instead, you could centralize this behavior while making it
easier to use.

One idea would be to have a strategy trait with methods for everything that
required a conditional, like generating the proper 'fallback'. Then you could
have an enum representing the different approaches that implement the trait.

Note

The strategy pattern is a design pattern from the 'Gang of Four'. It creates
separate objects for 'algorithms' and hides the concrete choice behind an
interface. This makes it easier to switch out algorithms without changing any
other part of your codebase. Here we use a trait instead of an interface, and a
single enum with two variants instead of multiple objects.

Listing 8.32 The Strategy trait and an enum that implements its method

trait Strategy {

    fn fallback(&self, field_type: &Type, field_name_as_string: String)

        -> TokenStream;

}

enum ConcreteStrategy {

    Default,

    Panic,

}



impl Approach for ConcreteStrategy {

    fn fallback(&self, field_type: &Type, field_name_as_string: String)

        -> TokenStream {

        match self {

            ConcreteApproach::Default => {

                quote! {

                    unwrap_or_default()

                }

            }

            ConcreteApproach::Panic => {

                // similar

            }

        }

    }

}

Within the macro you decide on a strategy based on the presence of our
'defaults' attribute, get back the right enum variant, and pass it to the right
methods.

Listing 8.33 Example of passing on and using the strategy

fn original_struct_setters<T>(strategy: &T, fields: &Punctuated<Field, Comma>)

    -> Vec<TokenStream> where T: Strategy {

    fields.iter()

        .map(|f| {

            let (field_name, field_type) = get_name_and_type(f);

            let field_name_as_string = field_name

                .as_ref()

                .unwrap()

                .to_string();

            let handle_type = strategy.fallback(

                field_type,

                field_name_as_string

            );

            quote! {

                #field_name: self.#field_name.#handle_type

            }

        })

        .collect()

}

This is more than enough abstraction for our current macro. But in a more
complex setup, where there is more need to steer developers, we could add



type state, returning intermediate states from our methods, with only the final
state returning the output TokenStream. That way everything that is needed
for the macro to work has to be present A useful attribute that helps steer the
user is #[must_use], which throws a warning when a required return value
goes unused.

8.7 Attribute tokens and attributes

We already mentioned that only derive and attribute macros support
attributes. (Function-like macros are powerful enough that you could mimic
them, as we shall soon see.) But we only discussed derive macros! Are there
any differences between the two?

Well, yes. While derive macro attributes are inert, attribute macros (and that
includes any additional attributes) are active, meaning they remove
themselves during attribute processing. That is probably the most sensible
action, because, for example, an attribute macro might not produce any
output (see next chapter’s core example). Does it make sense to keep an
attribute in your source code when the item it was attached to has
disappeared? Another difference is that you have some additional freedom in
the exact 'format' of your attribute macro attributes, whereas for a derive
macro you need to specify attributes in a specific property (attributes).

As a simple example attribute macro example, we can go back to our 'public
fields' macro, where we add an 'exclude' property that allows you to add
properties that should not be made public. We won’t go over the entire
(unchanged) setup, but these are the two files under src. As you can see, we
modified our macro invocation. Instead of a simple #[public] we now have
additional information within parenthesis, #[public(exclude(fourth,
third))]. We also added a public 'constructor' so we can create the struct in
other modules.

Listing 8.34 example.rs, with a struct. We expect first to become public, and the visibility of the
other properties to stay unchanged

use make_public_macro::public;

#[public(exclude(fourth, third))] #1



struct Example {

    first: String,

    pub second: u32,

    third: bool,

    fourth: String,

}

impl Example {

    pub fn new() -> Self {

        Example {

            first: "first".to_string(),

            // etc.

        }

    } #2

}

In our main file, we will have a simple test to check compilation.

Listing 8.35 main.rs, with some usage of our example struct

use crate::example::Example;

mod example;

fn main() {

    let e = Example::new();

    println!("{}", e.first); #1

    println!("{}", e.second); #1

    // println!("{}", e.third); #2

}

Now onto the library code, and some notable differences. With a derive
macro, we had attributes in the root of the token stream, or on individual
fields. With an attribute macro, you can still find attributes on the individual
fields, and other attributes can still be found in the root of the AST. But one
thing is very much unlike a derive macro: our 'annotation' is extremely
flexible. A derive macro is always #[derive(...)], an attribute macro’s
invocation can be molded. But where does all the information about that
attribute end up if it is not in the root of the AST? Well, it’s finally time to
look inside the first parameter of this macro! And if you were to print it for
our current example, you would get back something like this:

[Ident { ident: "exclude" }, Group { delimiter: Parenthesis,



 stream: TokenStream [Literal { kind: Str, symbol: "fourth, third",

 suffix: None }]

Look at that! It’s the property we added to our macro.

Now that we know where to look, we can move on to the macro entry point.
See how we are now passing the attr parameter to a second
parse_macro_input invocation, putting the result in a custom struct called
ExcludedFields. Then we use a custom method that we added to that struct
to detect whether the field was excluded. If it was, we give back the existing
visibility. Else, we make the field public.

Listing 8.36 Our public function with a custom struct for parsing the first parameter (the
attributes' stream)

// imports

#[proc_macro_attribute]

pub fn public(attr: TokenStream, item: TokenStream) -> TokenStream {

    let ast = parse_macro_input!(item as DeriveInput);

    let excluded_fields = parse_macro_input!(

        attr as ExcludedFields

    ); #1

    let name = ast.ident;

    let fields = // still retrieving the fields

    let builder_fields = fields.iter().map(|f| {

        let name = &f.ident;

        let ty = &f.ty;

        let vis = &f.vis;

        if excluded_fields.matches_ident(name) { #2

            quote! { #vis #name: #ty }

        } else {

            quote! { pub #name: #ty }

        }

    });

    // return output

}

Okay, so it is already clear that this time around, we have taken a struct
approach to parsing our input, with ExcludedFields as a wrapper for a vector
of strings. The struct implements Parse because else we could not pass it to



parse_macro_input. As we know there is currently only one attribute, and it
looks like this: exclude(…). So we know we are dealing with a MetaList and
parse it as such. Meta, being one level higher up, would have worked equally
well, but that would be pointless, since we are only interested in getting a list,
not a path or name-value. That means we can skip one layer of abstraction by
going directly for MetaList.

Figure 8.7 Attribute, Meta or MetaList

Once we have the meta list, we check the path property to see if our exclude



annotation is present. If it is, we parse as a Punctuated of identifiers using
parse_terminated, and change those into strings.

Listing 8.37 ExcludedFields implementation for syn major version 2

const EXCLUDE_ATTRIBUTE_NAME: &str = "exclude";

struct ExcludedFields {

    fields: Vec<String>

}

impl ExcludedFields {

    fn matches_ident(&self, name: &Option<Ident>) -> bool {

        name.as_ref().map(|n| n.to_string())

            .map(|n| self.fields.iter().any(|f| *f == n))

            .unwrap_or_else(|| false)

    }

}

impl Parse for ExcludedFields {

    fn parse(input: ParseStream) -> Result<Self, syn::Error> {

        match input.parse::<MetaList>() { #1

            Ok(meta_list) => {

                if meta_list.path

                    .segments

                    .iter()

                    .find(|s| s.ident == EXCLUDE_ATTRIBUTE_NAME)

                    .is_some() #2

                {

                    let parser = Punctuated::<Ident, Token![,]>

::parse_terminated;

                    let identifiers = parser.parse(

                        meta_list.clone().tokens.into()

                    ).unwrap();

                    let fields = identifiers.iter()

                        .map(|v| v.to_string())

                        .collect(); #3

                    Ok(ExcludedFields { fields })

                } else {

                    Ok(ExcludedFields { fields: vec![] })

                }

            }

            Err(_) => Ok(

                ExcludedFields { fields: vec![] }

            ) #4

        }



    }

}

Had we gone for exclude("fourth", "third"), it would have been a
Punctuated of LitStr and the map would call the value method. The other
code would stay unchanged in those circumstances.

Note that this is code written for syn major version 2. In version 1, you had a
useful - but limiting - struct called AttributeArgs, which was an alias for
Vec<NestedMeta>. To get the excluded items, you could do something like
this (note the 'match guard' in the first match):

Listing 8.38 Parsing AttributeArgs and MetaList in syn 1

fn properties_to_exclude(args: AttributeArgs) -> Vec<String> {

    args.iter()

        .flat_map(|a| {

            match a {

                Meta(List(MetaList {

                    path: Path { segments, .. },

                    nested,

                    ..

                })) if segments.iter()

                    .find(|s| s.ident == EXCLUDE_ATTRIBUTE_NAME)

                    .is_some() => {

                        nested

                        .iter()

                        .map(|v| match v {

                            Lit(Str(l)) => l.value(),

                            _ => unimplemented!(

                              "expected at least one args between brackets"

                            ),

                        })

                        .collect()

                    },

                _ => vec![],

            }

        })

        .collect()

}

Which is quite similar, but not the same, as our current implementation. The
big difference is that inside the if branch we use the nested property of
MetaList (which in this code example contains a list of LitStr).



A more up-to-date alternative to our current approach is to use
syn::meta::parser. The below implementation is quite similar to a
documentation example. We parse_macro_input!(attr with
attr_parser) to pass in a custom parser for the attributes, which we defined
one line above using syn::meta::parser. Actual parsing is a task for our
custom struct, which checks whether we have an exclude attribute in the path
property, throwing an error if we receive something else. Within the attribute,
we dive one level deeper with parse_nested_meta and retrieve the
identifiers, adding them to our Vector of fields.

Listing 8.39 Meta parser

#[derive(Default)]

struct AlternativeExcludedFields {

    fields: Vec<String>,

}

impl AlternativeExcludedFields {

    fn matches_ident(&self, name: &Option<Ident>) -> bool {

        // same as ExcludedFields

    }

}

impl AlternativeExcludedFields {

    fn parse(&mut self, meta: ParseNestedMeta) -> Result<(), syn::Error> {

        if meta.path.is_ident(EXCLUDE_ATTRIBUTE_NAME) {

            meta.parse_nested_meta(|meta| {

                let ident = &meta.path.segments.first().unwrap().ident;

                self.fields.push(ident.to_string());

                Ok))             })         } else {             Err(meta.error("unsupported property"

        }

    }

}

#[proc_macro_attribute]

pub fn public(attr: TokenStream, item: TokenStream) -> TokenStream {

    let ast = parse_macro_input!(item as DeriveInput);

    let mut excluded_fields = AlternativeExcludedFields::default();

    let attr_parser = syn::meta::parser(|meta| excluded_fields.parse(meta));

    parse_macro_input!(attr with attr_parser);

    // everything else is the same

}

One nice thing is that the library takes care of empty attribute streams for us,



whereas earlier we had to catch an Err and return an empty Vec. It should
also produce 'sensible error messages on unexpected input'.

8.8 Other attributes

There are other kinds of attributes that we have not looked at in this chapter.
The syn documentation lists six types of attributes in total:

outer attributes like #[repr(transparent)], positioned outside or in
front of an item
inner attributes, e.g. [#![feature(proc_macro)], placed inside the item
outer and inner one-line doc comments (/// and //!)
outer and inner documentation blocks (/* */ and /! */).

There’s nothing special when it comes to the four kinds of documentation
attributes. In fact, as the documentation notes, comments are transformed into
normal-looking attributes (#[doc = r"your comment text here"]) before
macros enter the equation. We will use a tiny example to show additional
ways of parsing documentation, and by extension, attributes. And since we
said function-like macros can mimic attributes if they want to, we will write
one of those.

Here is our 'usage code', a simple macro invocation on a struct with all four
kinds of comments.

Listing 8.40 main.rs with an example struct for our function-like macro

use other_attributes_macro::analyze;

analyze!(

    /// outer comment

    /** comment block */

    struct Example {

        //! inner comment

        /*! inner comment block */

        val: String

    }

);

fn main() {}



Below we parse this input into a struct. The outer comments are the first ones
we encounter, and to parse them we can combine Attribute::parse_outer
with call to automatically turn the comments into a vector of (two)
attributes. The most interesting field in Attribute is meta, which contains the
comment content. So in this case, 'outer comment' and 'comment block'. You
can also see traces of the transformation into #[doc = r"..."] that happened
before we entered the scene:

Meta::NameValue { path: Path { ..., segments: [PathSegment { ident: Ident

 { ident: "doc" } }] }, eq_token: Eq, value: Expr::Lit {

 attrs: [], lit: Lit::Str { token: " outer comment" } } }

To get to the inner comments, we have to get rid of some things, like the
struct keyword and identifier (Example), which is what we do with the first
two parse calls. Next, we use a macro from syn that is specifically designed
to handle curly braces: braced, which is only available when the 'parsing'
feature of syn is enabled. braced will put the entire content of the curly
braces from input in the variable we passed along, content. Next, we use
Attribute::parse_inner to retrieve the inner comments. This, again,
returns a Vec<Attribute.

Listing 8.41 lib.rs with code for parsing the comments

#[derive(Debug)]

struct StructWithComments {

    ident: Ident,

    field_name: Ident,

    field_type: Type,

    outer_attributes: Vec<Attribute>,

    inner_attributes: Vec<Attribute>,

}

impl Parse for StructWithComments {

    fn parse(input: ParseStream) -> Result<Self, syn::Error> {

        let outer_attributes = input.call(Attribute::parse_outer)

            .unwrap(); #1

        let _: Token![struct] = input.parse().unwrap();

        let ident: Ident = input.parse().unwrap();

        let content;

        let _ = braced!(content in input); #2

        let inner_attributes = content.call(Attribute::parse_inner)



            .unwrap(); #3

        let field_name: Ident = content.parse().unwrap();

        let _: Colon = content.parse().unwrap();

        let field_type: Type = content.parse().unwrap();

        Ok(StructWithComments {

            ident,

            field_name,

            field_type,

            outer_attributes,

            inner_attributes,

        })

    }

}

#[proc_macro]

pub fn analyze(item: TokenStream) -> TokenStream {

    let _: StructWithComments = parse_macro_input!(item);

    quote!().into()

}

We finish our Parse implementation by retrieving the field name and type.
As we wanted to give a brief introduction to parsing comments, as well as
showing some additional utilities for that kind of parsing, we did not take into
account complexities like multiple fields. Nor do we bother returning any
output from the macro.

Note

As a reminder, when you parse a TokenStream into a struct, syn expects you
to parse everything it finds. If we only retrieve the inner attributes from the
braced content and do nothing with the rest, we would receive an unexpected
token error pointing to the first thing you’re not parsing. In our example, we
parse everything to avoid this. But when you are not interested in the
remainder of the content, you can put everything that remains into an ignored
token stream: let _: TokenStream2 = content.parse().unwrap();. And
you can even leave the stream in its Result.

8.9 From the real world

Now some real-world examples, starting with a simple one from Tokio.



When you are inside the 'test' macro (#[test]), a check is done to verify that
you are not adding the test annotation multiple times.

if let Some(attr) = input.attrs.iter().find(|a| a.path.is_ident("test")) {

        let msg = "second test attribute is supplied";

        Err(syn::Error::new_spanned(attr, msg))

    } else {

        // ...

    }

Meanwhile, Yew has logic that decides whether the attributes of the original
struct should be used in its 'builder struct'. Like Tokio, it uses the is_ident
method to compare with strings.

impl Parse for DerivePropsInput {

    fn parse(input: ParseStream) -> Result<Self> {

        let input: DeriveInput = input.parse()?;

        // ...

        let preserved_attrs = input

            .attrs

            .iter()

            .filter(|a| should_preserve_attr(a))

            .cloned()

            .collect();

        Ok(Self {

            // ...

            preserved_attrs,

        })

    }

}

fn should_preserve_attr(attr: &Attribute) -> bool {

    let path = &attr.path;

    path.is_ident("allow") || path.is_ident("deny") || path.is_ident("cfg")

}

Serde, as noted, starts every additional attribute with Serde, as seen in its
derive entry point.

#[proc_macro_derive(Deserialize, attributes(serde))]

pub fn derive_deserialize(input: TokenStream) -> TokenStream {

    let mut input = parse_macro_input!(input as DeriveInput);

    // ...

}



And it has a lot of code to handle the different kinds of metadata. Here is a
very partial fragment. It starts by checking whether the attribute is that of
serde. When that’s done, the macro needs to know what is inside the
parentheses, so it uses parse_nested_meta (from syn version 1, several
libraries - at the time of writing - still use version 1) and reacts to things like
'rename'.

pub fn from_ast(cx: &Ctxt, item: &syn::DeriveInput) -> Self {

    // ...

    for attr in &item.attrs {

        if attr.path() != SERDE {

            continue;

        }

        if let Err(err) = attr.parse_nested_meta(|meta| {

            if meta.path == RENAME {

                let (ser, de) = get_renames(cx, RENAME, &meta)?;

                // ...

            } else if meta.path == RENAME_ALL {

                let one_name = meta.input.peek(Token![=]);

                let (ser, de) = get_renames(cx, RENAME_ALL, &meta)?;

                // ...

            } else if meta.path == DEFAULT {

                if meta.input.peek(Token![=]) {

                    // ...

                } else {

                    // ...

                }

            } else {

                let path = meta.path.to_token_stream()

                    .to_string()

                    .replace(' ', "");

                return Err(

                    meta.error(

                        format_args!(

                            "unknown serde container attribute `{}`", path

                        )

                    )

                );

            }

            Ok(())

        }) {

            cx.syn_error(err);

        }

    }

    // ...



}

You will find lots more attribute handling code in popular crates, even if few
are as extensively customizable as Serde. Its code will even feature briefly in
the solution to the first exercise.

8.10 Exercises

In our rename discussion, we used a simple name for our attribute.
However, some libraries specify the crate name within the attribute and
have the specific command wrapped inside parentheses. For example #
[serde(rename = "name")]. Rewrite our #[rename("...")] to instead
use #[builder(rename = "...")].
Our default assertions generated a warning about naming conventions
type __notDefaultAssertion should have an upper camel case

name. Fix that warning.
Add an 'uppercase' field-level attribute to our builder project, which will
uppercase String types. As an extension, you could return an
informative (syn?) error when the attribute is used on a field that is not a
String.

8.11 Summary

Macros can have attributes - which allows you to further customize their
behavior.
Attributes can be placed on top of a struct or enum, or inside (above a
field). Depending on this positioning, they will be found in the root of
the AST, or under the fields property.
Attribute macros have a custom attribute that might contain additional
instructions, unlike derive macros whose attribute is set in stone.
Function-like macros can mimic attributes and parse them.
With the type state pattern, we can eliminate illegal states, making our
code easier and safer to use.
The strategy pattern gives us a way to centralize a piece of logic, making
it possible to change or swap out algorithms.



9 Writing an Infrastructure DSL
This chapter covers

Grasping the ideas behind Infrastructure as Code
Parsing a custom syntax with structs, while using keywords to make that
parsing easier
Thinking about trade-offs when it comes to variations in parsing
Avoiding duplication by combining procedural and declarative macros
Calling asynchronous functions in a macro and creating cloud resources

Most of the macros we have created thus far worked 'within Rust', generating
new functions, adding methods to enums, etc. But we also know macros can
do more than that. For example, they allow you to generate compile-time
checked HTML (Yew). Or they create infrastructure for your code based on
annotations (Shuttle).

This chapter features a macro that boldly goes beyond the confines of Rust,
and creates infrastructure in Amazon Web Services (AWS)! This is interesting
because it allows us to manage both application and infrastructure logic in the
same repository and same language. Which might make expanding and
maintaining the code easier. And, hopefully, the example also offers
inspiration to the reader as to what else he/she might do with procedural
macros. But first, let’s take a step back to make sure we are all on the same
page.

9.1 What is IAC? What is AWS?

With the rise of cloud providers that allow you to provision or destroy
hundreds of servers at the click of a button, a new way of organizing IT
infrastructure was needed. In the olden days, sysadmins could administer
servers manually or with some light scripting. But that kind of approach is
not 'scalable' and works rather poorly in the cloud. It is hard enough to
administer hundreds of servers manually, configuring them by logging into



each one and entering the right sequence of bash commands. But now
imagine the added ephemeral nature of many cloud resources. The 'server'
you get from your cloud provider might be restarted/updated/changed several
times a day. What do you do? Manually check your servers every few
minutes, reentering your commands when they are replaced?

Never waste a good crisis, engineers thought, and a new philosophy was
born. One where servers were no longer treated as pets (i.e. each one special
and unique), but rather like cattle, i.e. interchangeable 'components', easily
described based on a few characteristics. The treatment of cattle is also a lot
more automated. And so, to enable automation, the configuration of servers
and services should be declared in a readable format like JSON, or some kind
of Domain-Specific Language (DSL). That way, we have a written
specification of what we need (this OS, this much RAM, CPU, storage) for
our application. This specification not only enables us to easily destroy and
create resources and environments, but it also serves as living, version-
controlled documentation of infrastructure. That makes things easier to
reason about, since everything is/should be exactly as described. You don’t
need to figure out the specs, OS, languages, dependencies… to reproduce a
bug on your server if all that information is available in a text file. When
everything we need to run an application is in a readable format that can
somehow be executed to create said application, we call that Infrastructure as
Code (IaC).

Note

The above story is a simplification. Automation and version-controlling
infrastructure are ideas with a long history. Nevertheless, these ideas have
seen a huge uptick in popularity thanks to the cloud.

AWS is the cloud division of Amazon, currently the biggest player in the
cloud business, a mile ahead of other big players like Azure and Google
Cloud. A large part of the internet (including Netflix) runs on their
infrastructure, which becomes painfully obvious when AWS has issues and
countless websites go down.

AWS started simple some two decades ago with compute (EC2, Elastic
Compute Cloud), storage (S3, Simple Storage Service), and queueing (SQS,



Simple Queue Service, yeah, AWS really like 'simple' things). Nowadays few
people can enumerate all the services that it offers.

It has also been one of the cloud providers that has driven IaC, launching its
tool for IaC, 'AWS CloudFormation', more than twelve years ago.
CloudFormation lets you describe your infrastructure in JSON or YAML
templates, which are used to create stacks that contain all the actual
application infrastructure. Other AWS tools build on the capabilities of
CloudFormation. AWS SAM offers a version of CloudFormation that is
easier to work with when you create serverless applications. AWS CDK lets
you write your infrastructure in a language like Typescript or Python, which
will be translated into… CloudFormation templates.

There are also lots of independent tools, like Terraform, Pulumi, or the
Serverless Framework, that allow you to create services for multiple cloud
providers. The underlying idea stays the same though: describe what you
want in text or code, and let the framework make your infrastructure dreams
come true! But how do these tools communicate your desires to the cloud
providers? Generally, they turn to either REST endpoints that the cloud
provides for creating, destroying, and using services, or SDKs, Software
Development Kits, that abstract away irrelevant detail and allow you to work
with these services directly from your favorite programming language.

Note

Behind the scenes, CloudFormation also makes 'service calls' to AWS to
create and update services. But it is not 100% clear what calls these are: the
REST endpoints? Those from the AWS SDK? Custom endpoints?

In this chapter, we will work on a DSL that uses the AWS SDK for Rust to
create resources, focussing on Amazon S3 and AWS Lambda. S3 provides
object-based storage via 'buckets' that theoretically have unlimited storage.
Lambda 'functions' allow you to run compute without worrying about
infrastructure. You provide code and some configuration, like the amount of
memory you require and the maximum amount of time the code is allowed to
run ('timeout'), AWS makes sure that your code is executed, and you only
pay for the time that your code required. Neat.



9.2 How our DSL works

Besides giving you a beautiful new way to create two AWS services from
code, we also want to give users fast feedback. One of the downsides of text-
based tools like CloudFormation is that there is no built-in mechanism for
feedback when you make mistakes. This almost necessitates using IDE
plugins and CLI tools as a substitute, because you do not want to start
deploying an application just to find out minutes later that your template had
a typo.

Rust is different: it likes to give you a lot of feedback before stuff starts
running. And so do we. Summarized, what we want to offer is:

a simple language for describing infrastructure
that automatically creates the specified resources
and warns you when and where things go wrong, preferably as early as
possible

For example, creating a bucket named unique might look like this:

iac! {

    bucket unique

}

That seems simple and easy. As an example of 'warning when things go
wrong', we will return this error when you type bucke instead of bucket:

error: only 'bucket' and 'lambda' resources are supported

 --> src/main.rs:7:9

  |

7 |         bucke unique

  |         ^^^^^

We point to the typo and give additional information. Seems actionable
enough (one of the exercises tries to make the message even better).

Besides limiting the number of services, we also limit the number of
properties you can pass in. Because not only do both buckets and lambdas
have a huge number of properties, the added value of having them in this



chapter drops rapidly, since the required code is very similar. What we allow
is creating buckets (required property: name), creating lambda functions
(required: name, optional: memory and timeout), and sending events from
buckets to functions. The latter provides very useful functionality, allowing
you to react to the creation or changing of objects, which allows for a wide
variety of use cases, like updating databases or triggering business
workflows. As such, these bucket events are widely used, even now that
Amazon EventBridge has become more of a central intermediary for eventing
within AWS.

Figure 9.1 Overview of what our macro will eventually do



To summarize, this chapter’s macro will parse a DSL that contains
instructions for creating a lambda and/or bucket. This information will be
passed on to clients who will use the AWS SDK to create the specified
resources in the cloud.

9.3 Parsing our input

We will write this macro in two phases. In this first phase, we concentrate on
parsing the input into custom structs. Only in a second phase will we start



doing something with the parsed information.

One reason for working in two phases is that parsing is very different from
creating cloud resources, so treating these two separately makes sense. And if
we keep the parsing separate, it could - in theory - be made independent of
the concrete cloud that is used behind the scene. If our example had been
something like iac! { object-storage unique } instead, the naming
would have focussed on high-level desires that could be resolved in different
ways. With an AWS 'backend' that object-storage would create a bucket,
with an Azure Cloud backend it would go for Azure Blob Storage. We would
have to write one backend for every cloud, but only one parser. That being
said, in practice there are often subtle differences between cloud providers
that make it hard not to leak implementation details in your IaC.

Finally, another reason is of a practical nature: creating real cloud
infrastructure adds much complexity, while also requiring an AWS account.
By banning the cloud to the second part of this chapter, we minimize the
number of code examples where you have to interact with AWS when coding
along.

9.3.1 Project setup and usage examples

We can use the 'two directory' setup from earlier projects, with our macro in a
subdirectory called iac-macro, and our usage examples in an iac-macro-
usage directory. Below is the familiar Cargo.toml file for the macro itself.

Listing 9.1 The iac-macro Cargo.toml

[package]

name = "iac-macro"

version = "0.1.0"

edition = "2021"

[dependencies]

quote = "1.0.33"

syn = { version = "2.0.39", features = ["extra-traits"]}

[lib]

proc-macro = true



And here is the one for the usage project.

Listing 9.2 The iac-macro-usage Cargo.toml

[package]

name = "iac"

version = "0.1.0"

edition = "2021"

[dependencies]

iac-macro = { path = "../iac-macro" }

[dev-dependencies]

trybuild = "1.0.85"

Our main.rs consists of a lot of usage examples: you can create a bucket, a
lambda, a bucket with a lambda, or a bucket linked to a lambda via an event.
For the last two we use an arrow (⇒) to indicate an event coming from the
bucket and going to the lambda.

Listing 9.3 Usage examples

use iac_macro::iac;

fn main() {

    iac! {

        bucket uniquename #1

    }

    iac! {

        lambda a_name #2

    }

    iac! {

        lambda my_name mem 1024 time 15 #2

    }

    iac! {

        lambda name bucket uniquename #3

    }

    iac! {

        bucket uniquename => lambda anothername #4

    }

    iac! {

        bucket b => lambda l mem 1024 time 15 #4

    }

}



The usage directory also contains compilation tests (in tests) for failure
cases, which are not shown here.

Our parsing implementation is about 140 lines of code. Our entry point
delegates the work to a custom struct. When parsing is done, it prints the
result and gives back an empty TokenStream - because we don’t have
anything sensible to return.

Listing 9.4 Macro entry point in lib.rs

#[proc_macro]

pub fn iac(item: TokenStream) -> TokenStream {

    let ii: IacInput = parse_macro_input!(item);

    eprintln!("{:?}", ii);

    quote!().into()

}

Since we are using a custom struct to do the parsing, we should implement
the Parse trait for IacInput.

9.3.2 Implementing the Parse trait for our structs

In the below code, you can see that IacInput is responsible for high-level
parsing, leaving the bucket and lambda specifics to other structs. As long as
there is input, we keep looking for a bucket and lambda, trying to parse those
inputs. (We could easily extend this part of our code to allow for multiple
buckets and lambdas if we wanted to.) To do that, we use peek, which takes a
look at the next token in the stream.

If we receive anything else, we throw an error. Because we either
encountered an unknown resource, or there is an unparseable leftover. Here,
we turn to lookahead1, which not only allows us to see the next token but
also to return an error for that particular piece of code. In our case, we take
the span and return our own, custom error.

Once the input has been fully parsed, we check whether our bucket has the
has_event property set to true. If it’s true, we expect a lambda to also be
present, since it is required for receiving those events. Finally, when we
retrieve the event from the bucket, the type of the bucket variable is not yet



clear to Rust, so it can’t be inferred, and we have to make it explicit: let mut
bucket: Option<Bucket>.

Note

In this chapter, I have done my best to follow the Rust 'standard' of having
errors start with a lowercase letter and without trailing punctuation.
Capitalization comes more naturally to me, and not every project seems to
follow the standard… Even so, it is probably best to follow existing
conventions.

Listing 9.5 IacInput definition and Parse implementation

#[derive(Debug)]

struct IacInput {

    bucket: Option<Bucket>,

    lambda: Option<Lambda>,

}

impl Parse for IacInput {

    fn parse(input: ParseStream) -> Result<Self, syn::Error> {

        let mut bucket: Option<Bucket> = None;

        let mut lambda = None;

        loop {

            if input.peek(kw::bucket) { #1

                bucket = Some(input.parse()?); #2

            } else if input.peek(kw::lambda) { #1

                lambda = Some(input.parse()?); #2

            } else if !input.is_empty() {

                return Err(syn::Error::new(

                    input.lookahead1().error().span(),

                    "only 'bucket' and 'lambda' resources are supported")

                ); #3

            } else {

                break; #4

            }

        }

        if bucket.as_ref().map(|v| v.has_event).unwrap_or(false)

        && lambda.is_none() {

            return Err(syn::Error::new(

                input.span(),

                "a lambda is required for an event ('=>')"



            ))

        }

        Ok(

            IacInput {

                bucket,

                lambda,

            }

        )

    }

}

One thing that is probably still unclear: what are kw::bucket and
kw::lambda? Yes, those two do require a bit of explaining. Within our macro,
'lambda' and 'bucket' have a special meaning. Both act like a sort of keyword
for a 'resource declaration', which is followed by - required and optional -
resource details. But for Rust/syn there is no reason to treat either of these
words as something special. So what we can do, is use the custom_keyword
macro to tell syn that these two are keywords within our macro. By
convention, such custom keywords are placed in a separate module called kw,
as shown below.

Listing 9.6 Our four keywords: bucket, lambda, memory and timeout

pub(crate) mod kw {

    syn::custom_keyword!(bucket);

    syn::custom_keyword!(lambda);

    syn::custom_keyword!(mem);

    syn::custom_keyword!(time);

}

Behind the scenes, the macro turns the given keywords into structs that
implement Parse, as well as a method for allowing peek. Useful, since we are
using both parse and peek in the above code!

Now, we can soldier on to take a look at Bucket, the struct that parses the S3
bucket information. The parsing code gets rid of the bucket token, retrieves
the name, and sees if an 'event token' (⇒) is present.

Listing 9.7 Bucket and its Parse implementation

#[derive(Debug)]



struct Bucket {

    name: String,

    has_event: bool,

}

impl Parse for Bucket {

    fn parse(input: ParseStream) -> Result<Self, syn::Error> {

        let bucket_token = input.parse::<kw::bucket>()

            .expect("we just checked for this token"); #1

        let bucket_name = input.parse()

            .map(|v: Ident| v.to_string())

            .map_err(|_| syn::Error::new(

                bucket_token.span(),

                "bucket needs a name"

            ))?; #2

        let event_needed = if !input.peek(kw::lambda)

        && input.peek(Token!(=>)) {

            let _ = input.parse::<Token!(=>)>().unwrap();

            true #3

        } else {

            false

        };

        Ok(Bucket {

            name: bucket_name,

            has_event: event_needed,

        })

    }

}

Most of this is familiar: we are parsing the inputs, including those we won’t
use (the bucket token and arrow) but have to get rid of. Similar to IacInput,
we have made some effort to provide good error handling. But when we
expect things to always work, we use expect with a message explaining our
thinking.

The code for parsing the lambda is similar, but a bit longer due to the
additional properties. We parse the token and name. If there is still input and
the next token is not the start of a bucket declaration, there are optional
properties. We loop and check for the mem and time custom keywords. If we
get anything else, we error. As our optional properties can only be numbers,
we parse them as LitInt (which is very similar to the LitStr from earlier
chapters). That means the library will return its sensible errors when the value



is not a number. Finally, we parse the values we received into u16.

Figure 9.2 Parsing in our Lambda struct

Why u16? Simple: that way, we can get the compiler to do even more work
for us! Both memory and timeout can only be positive numbers, so i is not
required. And because memory and time can be larger than 255 (the
maximum value of u8), u16 is next in line. Which will stop illegal values
above 65535. A further improvement to error handling would be to add
additional checks on top of what syn and the compiler are doing for us. For



example, in the time branch we would check that the value is ⇐ 900.

Listing 9.8 Lambda and its Parse implementation

#[derive(Debug)]

struct Lambda {

    name: String,

    memory: Option<u16>,

    time: Option<u16>,

}

impl Parse for Lambda {

    fn parse(input: ParseStream) -> Result<Self, syn::Error> {

        let lambda_token = input.parse::<kw::lambda>()

            .expect("we just checked for this token");

        let lambda_name = input.parse()

            .map(|v: Ident| v.to_string())

            .map_err(|_| {

                syn::Error::new(lambda_token.span, "lambda needs a name")

            })?;

        let mut lambda_memory = None;

        let mut lambda_timeout = None;

        while !input.is_empty()

        && !input.peek(kw::bucket) { #1

            if input.peek(kw::mem) {

                let _ = input.parse::<kw::mem>()

                    .expect("we just checked for this token");

                lambda_memory = Some(

                    input.parse()

                        .map(|v: LitInt| v.to_string()

                            .parse()

                            .map_err(|_| {

                                syn::Error::new(

                                    v.span(),

                                    "memory needs positive value <= 10240"

                                )

                            })

                        )??

                ); #2

            } else if input.peek(kw::time) {

                let _ = input.parse::<kw::time>()

                    .expect("we just checked for this token");

                lambda_timeout = Some(

                    input.parse()

                        .map(|v: LitInt| v.to_string()



                            .parse()

                            .map_err(|_| {

                                syn::Error::new(

                                    v.span(),

                                    "timeout needs positive value <= 900"

                                )

                            })

                        )??

                ); #2

            }  else {

                Err(syn::Error::new(

                    input.span(),

                    "unknown property passed to lambda"

                ))?

            } #3

        }

        Ok(Lambda {

            name: lambda_name,

            memory: lambda_memory,

            time: lambda_timeout,

        })

    }

}

main now runs and its logging shows that everything is parsed:

IacInput { bucket: Some(Bucket { name: "uniquename", event: true }),

 lambda: Some(Lambda { name: "my_name", memory: Some(1024),

 time: Some(15) }) }

Plus, we warn users of quite some errors at compile time (bet you are tired of
hearing me say that). Like when we forget to give a lambda a name.

error: lambda needs a name

 --> tests/fails/bucket_and_no_lambda_name.rs:5:23

  |

5 |         bucket unique lambda

  |                       ^^^^^^

When we pass a string as a memory property.

error: expected integer literal

 --> tests/fails/lambda_time_not_a_number.rs:5:25

  |

5 |         lambda name mem "yes"



  |                         ^^^^^

Or when the number we pass is invalid.

error: memory needs positive value <= 10240

 --> tests/fails/lambda_negative_time.rs:5:25

  |

5 |         lambda name mem -10

  |                         ^

So now we have a nice, little, helpful parser which we will soon put to work.

Note

A helpful parser, but not a perfect one, as it allows for some odd behavior.
For example, you can pass in multiple buckets, but we will save only one. We
won’t fix all those oddities here, though the exercises do ask you to make one
minor improvement.

9.4 Two alternative parsing approaches

But not yet, because it would be very atypical of me not to show you a few
alternatives. And to make things a little more interesting, we are also going to
use a slight variation in our DSL syntax. Maybe the current 'style' is a bit too
loose, and we could make it clearer where a resource starts and ends. So for
the lambda and its multiple properties, we can put everything between
parentheses, and separate property name and value by an equals sign.

Listing 9.9 Alternative example invocation

fn main() {

    iac! {

        bucket uniquename => lambda (name = my_name, mem = 1024, time = 15)

    }

}

Thus, in our alternatives, we focus on the Lambda struct, which has to change
because of the updated syntax.

9.4.1 Using Punctuated with a custom struct



In the first alternative Parse implementation, we now have to retrieve the
content with the parentheses. And instead of manually parsing these
parentheses (which is an option), we introduce the parenthesized macro,
which will do this work for us. Its usage is very similar to braced, which we
encountered earlier: give the macro your braced/parenthesized input, and a
variable to put the content in.

When we have the content, we know the properties are separated by
commas, with every property consisting of a key separated by a value. That
kind of repetition calls for Punctuated. So we use it to parse the properties.
For the name = value part, we create a struct called KeyValue (as in 'key-
value pairs'), which we will discuss in a moment. When we have all the key-
value pairs, we go through the results and compare them with the string value
of our keys to find the right properties, throwing an error when we encounter
an unrecognized property. An error is also thrown when we do not find the
required name property.

Listing 9.10 Lambda and its new Parse

// other imports

use syn::parenthesized;

use syn::punctuated::Punctuated;

impl Parse for Lambda {

    fn parse(input: ParseStream) -> Result<Self, syn::Error> {

        let _ = input.parse::<kw::lambda>()

            .expect("we just checked for this token");

        let mut lambda_name = None;

        let mut lambda_memory = None;

        let mut lambda_timeout = None;

        let content;

        parenthesized!(content in input); #1

        let kvs = Punctuated::<KeyValue, Token!(,)>::parse_terminated(

            &content

        )?; #2

        kvs.into_iter().for_each(|kv| {

            if kv.key == "name".to_string() {

                lambda_name = Some(kv.value); #3

            } else if kv.key == "mem" {

                lambda_memory = Some(



                    kv.value.parse().unwrap()

                ); #4

            } else if kv.key == "time" {

                lambda_timeout = Some(

                    kv.value.parse().unwrap()

                ); #4

            }

        });

        Ok(Lambda {

            name: lambda_name.ok_or(syn::Error::new(

                input.span(),

                "lambda needs a name"

            ))?, #5

            memory: lambda_memory,

            time: lambda_timeout,

        })

    }

}

Because we do string comparisons this time, we do not need the keywords for
mem and time, so those can be removed.

The definition of KeyValue holds few surprises. We save the key and value as
strings because that will work for all properties. And in Parse, we retrieve the
key, which should be the first part of our input. Next, we get rid of the =
token, which we don’t need. But since it is part of our syntax, we do throw an
error if it is not present. Note that this is the one place where we check for the
equals sign, so if we wanted to use another separator like a colon, that would
be a one-line change.

For the values of the properties, we expect an Ident for the name. If we had
used name = "some_name" it would have been a LitStr. LitInt is used for
the other two, which should stop several faulty inputs. In all other cases, the
property is unrecognized, which means it’s error time.

Listing 9.11 lib.rs and the new KeyValue struct

#[derive(Debug)]

struct KeyValue {

    key: String,

    value: String,

}



impl Parse for KeyValue {

    fn parse(input: ParseStream) -> Result<Self, syn::Error> {

        let key = input.parse()

            .map(|v: Ident| v.to_string())

            .map_err(|_| syn::Error::new(

                input.span(),

                "should have property keys within parentheses"

            ))?; #1

        let _: Token!(=) = input.parse()

            .map_err(|_| syn::Error::new(

                input.span(),

                "prop name and value should be separated by ="

            ))?; #2

        let value = if key == "name".to_string() {

            input.parse()

                .map(|v: Ident| v.to_string())

                .map_err(|_| syn::Error::new(

                    input.span(),

                    "Name property needs a value"

                )) #3

        } else if key == "mem".to_string() || key == "time".to_string() {

            input.parse()

                .map(|v: LitInt| v.to_string())

                .map_err(|_| {

                    syn::Error::new(

                        input.span(),

                        "memory and time needs a positive value")

                }) #3

        } else {

            Err(syn::Error::new(

                input.span(),

                format!("unknown property for lambda: {}", key

                )))

        }?; #3

        Ok(KeyValue {

            key,

            value,

        })

    }

}

The happy path for this alternative approach is identical to that of the
previous setup, producing the same output. Error handling is basically the
same, even if it is slightly abbreviated. The use of parentheses and equals



signs does mean we have some additional messages, like:

error: prop name and value should be separated by =

 --> tests/fails/lambda_colon_instead_of_equals.rs:5:22

  |

5 |         lambda (name :)

  |                      ^

That concludes the first movement. Eh, variation. One nice thing is how it
avoids the use of a (while) loop for retrieving the properties, by making
Punctuated do part of the work. And having the content within parentheses
does not hurt either. It also shows that keywords are a nice convenience, but
not obligatory.

9.4.2 Using Punctuated with a custom enum and builder

Now, take a look at the next approach. On the surface, it’s similar to the
previous one: get rid of the token, retrieve the content… Except this time we
have LambdaProperty in our Punctuated, and we are folding/reducing the
results into our output, using a builder.

Listing 9.12 lib.rs Lambda struct

impl Parse for Lambda {

    fn parse(input: ParseStream) -> Result<Self, syn::Error> {

        let _ = input.parse::<kw::lambda>()

            .expect("we just checked for this token");

        let content;

        parenthesized!(content in input);

        let kvs = Punctuated::<LambdaProperty, Token!(,)>::parse_terminated(

            &content

        )?; #1

        let builder = kvs

            .into_iter()

            .fold(Lambda::builder(content.span()), |acc, curr| {

                match curr {

                    LambdaProperty::Name(val) => acc.name(val),

                    LambdaProperty::Memory(val) => acc.memory(val),

                    LambdaProperty::Time(val) => acc.time(val),

                }

            }); #2



        Ok(builder.build()?) #3

    }

}

Below is part of the builder definition. Thanks to earlier chapters you should
be intimately familiar with both concept and implementation. We save a span
in the struct to allow creating an error when the required name parameter is
missing. And build returns a Result because, as we just made clear, the
operation might fail when the name is not present.

Listing 9.13 LambdaBuilder struct, and the Lambda method that instantiates it

struct LambdaBuilder {

    input_span: Span,

    name: Option<String>,

    memory: Option<u16>,

    time: Option<u16>,

}

impl LambdaBuilder {

    fn name(mut self, name: String) -> Self {

        self.name = Some(name);

        self

    }

    // similar setters for memory and time

    fn build(self) -> Result<Lambda, syn::Error> {

        let name = self.name.ok_or(

            syn::Error::new(self.input_span, "name is required for lambda")

        )?; #1

        Ok(Lambda {

            name,

            memory: self.memory,

            time: self.time,

        })

    }

}

impl Lambda {

    fn builder(input_span: Span) -> LambdaBuilder {

        LambdaBuilder {

            input_span,

            name: None,



            memory: None,

            time: None,

        }

    }

}

Because of this span - which has come from proc_macro2 since that is what
syn::Error is expecting - we need to add proc-macro2 = "1.0.69" to our
dependencies.

LambdaProperty is an enum with the three kinds of known lambda
properties, which allows us to immediately pass in the right type of value (a
string or a number).

Meanwhile, within parse, our code is similar to what we had in our first
approach. We check whether the property matches any of our keywords. If it
does, we get rid of what we do not need, and return the proper variant.

Listing 9.14 The LambdaProperty enum

pub(crate) mod kw {

    // earlier keywords

    syn::custom_keyword!(name);

}

#[derive(Debug)]

enum LambdaProperty {

    Name(String),

    Memory(u16),

    Time(u16),

}

impl Parse for LambdaProperty {

    fn parse(input: ParseStream) -> Result<Self, syn::Error> {

        let lookahead = input.lookahead1();

        if lookahead.peek(kw::name) {

            let _ = input.parse::<kw::name>()

                .expect("we just checked for this token");

            let _: Token!(=) = input.parse()

                .map_err(|_| syn::Error::new(

                    input.span(),

                    "prop name and value should be separated by =")

                )?;



            let value = input.parse()

                .map(|v: Ident| v.to_string())

                .map_err(|_| syn::Error::new(

                    input.span(),

                    "name property needs a value")

                )?; #1

            Ok(LambdaProperty::Name(value))

        } else if lookahead.peek(kw::mem) {

            let value = parse_number::<kw::mem>(

                input,

                "memory needs a positive value <= 10240"

            )?; #2

            Ok(LambdaProperty::Memory(value))

        } else if lookahead.peek(kw::time) {

            let value = parse_number::<kw::time>(

                input,

                "time needs a positive value <= 900"

            )?; #2

            Ok(LambdaProperty::Time(value))

        } else {

            Err(syn::Error::new(

                input.span(),

                format!("unknown property for lambda")

            )) #3

        }

    }

}

For once, we have a helper for the practically identical parsing required for
memory and time. Because in both cases, we like to have LitInt as the
parsing type to stop errors, necessitating an additional step to turn the result
into a u16. That means we cannot just use the function for parsing the name.

The most interesting thing about parse_number is that we made it generic
over Parse. That’s necessary because we want to parse the 'memory' and
'time' keywords. And these are two traits implemented by custom keywords.
So, as seen above, when we want to parse the timeout, we simply call
parse_number::<kw::time>.

Listing 9.15 The generic parse_number helper

fn parse_number<T>(input: ParseStream, error_message: &str)

                   -> Result<u16, syn::Error>

                    where T: Parse { #1



    let _ = input.parse::<T>() #2

        .expect("we just checked for this token");

    let _: Token!(=) = input.parse()

        .map_err(|_| syn::Error::new(

            input.span(),

            "prop name and value should be separated by =")

        )?;

    let value = input.parse()

        .map(|v: LitInt| v.to_string()

            .parse()

            .map_err(|_| {

                syn::Error::new(

                    v.span(),

                    error_message,

                )

            })

        )??;

    Ok(value)

}

Those are the three implementation options we have on offer today, though
you could think of countless more. As usual, the best choice depends on
preferences and project specifics. Our first approach was the shortest, mainly
because it was leaving a lot of the hard work to a single struct (Lambda). And
in the case of a macro of this length, it’s a perfectly fine solution. The second
solution is longer, but the abstraction of adding another struct for parsing
might pay off in the long run. The third approach is even longer. Definitely
overkill for a macro like this. However, having a flexible and use-case-
specific enum can become worthwhile if the application keeps growing.

9.5 Actually creating the services

Next up: asking AWS to actually create the requested services. We can do
this with the AWS SDK for Rust.

Caveats

There are several things to be aware of for this part of the project.

Linking the bucket and lambda may occasionally fail because AWS might
mistakenly think that the bucket or lambda you created less than a second ago



does not exist. A production-grade version of this project would detect such
failures and do a retry.

This code only creates resources. If you run it a second time, you will get an
error saying that the resources already exist. Production-grade code would
check the existence of these resources by names, or by keeping a state - like
Terraform. See the exercises for a simple example.

Also, be careful when running this code in certain IDEs. IntelliJ, for example,
might expand macros to give you better feedback. Except that in our case,
expanding has the side effect of creating resources. Which won’t cost you
anything, because buckets and lambdas are free. But it might cause your code
to fail because the name you picked was already claimed by the IDE.

When it comes to IntelliJ, you can try to avoid this by skipping resource
creation when you know the IDE is expanding your macros (see below for
the has_resources method details):

impl IacInput {

    pub fn has_resources(&self) -> bool {

        !is_ide_completion()

        && (self.bucket.is_some() || self.lambda.is_some())

    }

}

fn is_ide_completion() -> bool {

    match std::env::var_os(

        "RUST_IDE_PROC_MACRO_COMPLETION_DUMMY_IDENTIFIER"

    ) {

        None => false,

        Some(dummy_identifier) => !dummy_identifier.is_empty(),

    }

}

Alternatively, you can use the RUST_IDE_PROC_MACRO_COMPLETION
environment variable, which will be set to '1'. Of course, there are no
guarantees that this will work for your IntelliJ setup or future versions of the
IDE.

And, a final caveat, we will be using the first approach (of those presented
above) for parsing our input.



Our project now has two very different tasks to perform. It still needs to parse
the input, as we have done in previous sections. But it also needs to
communicate with AWS. It might be best to split our project into multiple
modules/files, with more specialized tasks.

lib.rs still exists as the entry point and coordinator
input.rs contains everything related to parsing
lambda.rs has code to handle creating lambdas
s3.rs similarly contains code for creating a bucket
errors.rs contains a custom error, translating AWS SDK errors into
useful syn errors. Errors handled by input.rs are already of type syn,
so we leave those untouched
and the example directory contains a basic JavaScript function
handler.js, that we will execute in our AWS Lambda

A minor change, not shown here, is that many of the fields of our parsing
structs have become public to allow lambda.rs and s3.rs to access them
when creating resources.

Creating a separate file for errors is not always a good idea. Locality, having
everything related to a piece of functionality - including error handling - in
one place, can be a big plus. And in a large project, having separate files for
errors can become unwieldy. In this specific case, it offers us a nice way to
unify the errors from lambda and s3, while also allowing us to discuss all our
error handling in one go.

We start by looking at lib.rs. Our first step is still: parse… that… input!
When that is done, we use a helper to determine whether we have any
resources that need to be created. This is an optimization that helps us avoid
some work when it is not necessary.

What kind of work? Well, AWS SDK client initialization (via the new
method) is asynchronous… Plus, most of the methods exposed by these
clients are also async. And, for this behavior, the SDK relies on Tokio as an
asynchronous runtime, i.e. for executing the asynchronous Rust code.

Note



We have encountered Tokio before when we talked a bit about the
tokio::main macro.

So the asynchronous behavior and Tokio runtime from the AWS SDK 'infect'
our macro. Meaning that, when we have resources and need to use the SDK,
we have to start a runtime and call block_on to wait until the infrastructure
has been created.

Listing 9.16 The lib.rs entrypoint

// mods and imports

#[proc_macro]

pub fn iac(item: TokenStream) -> TokenStream {

    let ii: IacInput = parse_macro_input!(item);

    if ii.has_resources() {

        let rt = tokio::runtime::Runtime::new()

            .unwrap(); #1

        match rt.block_on(create_infra(ii)) { #1

            Ok(_) => quote!().into(), #2

            Err(e) => e.into_compile_error() #3

        }

    } else {

        quote!().into() #2

    }

}

As we are now using tokio, you will need to add it as a dependency to the
project. Somewhat surprisingly, the 'rt' (runtime) feature is not enough to get
this code working: the new method is sneakily hiding behind the 'rt-multi-
thread' flag. We also add the AWS SDK dependencies we need: s3 and
lambda, plus one for creating configuration for the clients of these crates.

aws-config = "1.1.1"

aws-sdk-s3 = "1.11.0"

aws-sdk-lambda = "1.9.0"

tokio = { version = "1.26.0", features = ["rt", "rt-multi-thread"] }

And if you think tokio is too big a dependency for such a simple use case,
you may be able to use something more lightweight like the pollster crate,



which has no dependencies and is a fraction of the size of Tokio. Usage is
pretty similar:

use pollster::FutureExt as _;

pub fn iac(item: TokenStream) -> TokenStream {

    // ...

    match create_infra(ii).block_on() {

            Ok(_) => quote!().into(),

            Err(e) => e.into_compile_error()

    }

}

However, this is not an option for this particular use case because - as we
mentioned - the SDK relies on the Tokio runtime. This means you get an
error (there is no reactor running, must be called from the
context of a Tokio 1.x runtime) when using any alternative runtime.

The async function, create_infra, is shown below. It creates clients for the
SDK calls to Amazon S3 and AWS Lambda. And, as you can see, those are
async, since we need to await them, hence the need for an asynchronous
function. When the clients are ready, we create the lambda, saving the result
in output. Why? Because we will be creating a bucket next, and if it has an
event, we need to know the ARN (Amazon Resource Name, a unique
identifier) of the lambda. So we know where to send the event. We also need
to add so-called AWS IAM (Identity Access Management) permissions to tell
the lambda that our bucket is allowed to send events. Errors inside the
function are changed into IacError, the custom error type which is turned
into_compile_error by our entry point.

Note

You could imagine somehow encoding 'we have a linked bucket and lambda'
in the parsing phase, maybe with an enum variant called
BucketLinkedToLambda(Bucket,Lambda). That would make this phase of
creating the infrastructure easier and safer. See the exercises.

Listing 9.17 The async create_infra function coordinates the infrastructure setup

async fn create_infra(iac_input: IacInput) -> Result<(), IacError> {



    let s3_client = S3Client::new()

        .await; #1

    let lambda_client = LambdaClient::new()

        .await; #1

    let mut output = None;

    if let Some(lambda) = &iac_input.lambda {

        eprintln!("creating lambda...");

        output = Some(lambda_client.create_lambda(lambda).await?);

    } #2

    if let Some(bucket) = &iac_input.bucket {

        eprintln!("creating bucket...");

        s3_client.create_bucket(bucket).await?; #3

        if bucket.has_event {

            eprintln!("linking bucket and lambda by an event...");

            let lambda_arn_output = output

                .expect("when we have an event, we should have a lambda");

            let lambda = iac_input.lambda

                .expect("when we have an event, we should have a lambda");

            let lambda_arn = lambda_arn_output.function_arn()

                .expect("creating a lambda should return its ARN");

            lambda_client.add_bucket_permission(

                &lambda, &bucket.name

            ).await?; #4

            s3_client.link_bucket_with_lambda(

                bucket, lambda_arn

            ).await?; #4

        }

    }

    Ok(())

}

To summarize: once our input has been parsed, we check whether we have
any resources that need creating. When we have a bucket and/or lambda, we
start a runtime, block on an asynchronous function, and wait for it to build
our resources using the two SDK clients.

9.6 The two AWS clients

All that is left to do, is to dive into the code for the two clients. We use
aws_config (that additional crate) to create the right configuration, relying on



locally available credentials and an AWS region that we pass in ('eu-west-1',
i.e. Ireland, you may want to pick another region if you are not in Europe).
I.e. to run this code locally, make sure you have active AWS admin creds.

Listing 9.18 The Lambda client new method

// imports

pub struct LambdaClient {

    client: Client,

}

impl LambdaClient {

    pub async fn new() -> Self {

        let config = aws_config::defaults(BehaviorVersion::latest())

            .region(Region::new("eu-west-1"))

            .load()

            .await; #1

        LambdaClient {

            client: Client::new(&config),

        } #2

    }

}

In a real project, we could turn to Default for a default setup, allowing users
to pick a region when calling new.

Next, the functions we already saw in action. create_lambda uses a builder
to send lambda configuration info to AWS. We set the name, and optionally
add a time and memory size. We also have to fill in several other properties,
including a role (which already exists in my account!) and a zip with the
code, which was already uploaded to a bucket ('my-lambda-bucket') in my
account.

Listing 9.19 create_lambda

pub async fn create_lambda(&self, lambda: &Lambda)

        -> Result<CreateFunctionOutput, SdkError<CreateFunctionError>> {

    let mut builder = self.client

        .create_function()

        .function_name(&lambda.name) #1

        .role("arn:aws:iam::11111111111:role/change") #2

        .code(FunctionCode::builder()



            .s3_bucket("my-lambda-bucket")

            .s3_key("example.zip")

            .build()

        ) #3

        .runtime(Runtime::Nodejs18x) #4

        .handler("handler.handler"); #5

    if let Some(time) = lambda.time {

        builder = builder.timeout(time.into());

    }; #6

    if let Some(mem) = lambda.memory {

        builder = builder.memory_size(mem.into())

    }; #6

    builder

        .send()

        .await #7

}

Below is the handler.js file within example.zip. If you only want the
macro to work (and not the Lambda that we are creating), you could even
upload an empty file.

exports.handler = async () => {

    return {

        hello: 'world'

    };

};

To make the method more unit-testable you could extract the builder, which
is pure, into a separate function that contains most of the code and has no
need for mocking. The send, which is impure, would be in a different
function.

pub async fn create_lambda(&self, lambda: &Lambda)

        -> Result<CreateFunctionOutput, SdkError<CreateFunctionError>> {

    self.create_lambda_builder(&lambda) #1

        .send()

        .await

}

The second function, add_bucket_permission, allows the bucket to invoke
the lambda. It, too, uses a builder and send to talk to AWS. Inside we do
some basic AWS IAM things, like allowing anyone ('*') to invoke the lambda



as long as the source of that invocation is our bucket. That way, the bucket
can invoke the function when it has an event ready to go.

Listing 9.20 add_bucket_permission

pub async fn add_bucket_permission(&self, lambda: &Lambda, bucket: &str)

        -> Result<AddPermissionOutput, SdkError<AddPermissionError>> {

    self.client.add_permission()

        .function_name(&lambda.name)

        .principal("*") #1

        .statement_id("StatementId")

        .action("lambda:InvokeFunction") #2

        .source_arn(

            format!("arn:aws:s3:::{}", bucket)

        ) #3

        .send()

        .await

}

Now the S3Client. Its fields and new are very similar to the LambdaClient:
we load the config, and add the client and region to our struct.

Listing 9.21 The S3 client

pub struct S3Client {

    client: Client,

    region: String,

}

impl S3Client {

    pub async fn new() -> Self {

        let config = aws_config::defaults(BehaviorVersion::latest())

            .load()

            .await;

        S3Client {

            client: Client::new(&config),

            region: "eu-west-1".to_string(),

        }

    }

}

Probably because S3 buckets are a more 'global' concept than Lambdas -
which are region-specific like most things in AWS - we do not pass in the
region during configuration. But when we create a bucket, we do have to give



a location_constraint to make sure the resource is placed in the right
region.

Listing 9.22 create_bucket

pub async fn create_bucket(&self, bucket: &Bucket)

        -> Result<CreateBucketOutput, SdkError<CreateBucketError>> {

    let constraint = BucketLocationConstraint::from(self.region.as_str());

    let cfg = CreateBucketConfiguration::builder()

        .location_constraint(constraint)

        .build();

    self.client.create_bucket()

        .bucket(&bucket.name)

        .create_bucket_configuration(cfg) #1

        .send()

        .await #2

}

We have a bucket and lambda, and the bucket is allowed to invoke the
lambda. But we aren’t doing any eventing yet! Our final method makes sure
to send events when an object is created ('s3:ObjectCreated:*').

Listing 9.23 link_bucket_with_lambda

pub async fn link_bucket_with_lambda(

    &self,

    bucket: &Bucket,

    lambda_arn: &str) -> Result<

            PutBucketNotificationConfigurationOutput,

            SdkError<PutBucketNotificationConfigurationError>

        > {

    self.client.put_bucket_notification_configuration()

        .bucket(&bucket.name)

        .notification_configuration(NotificationConfiguration::builder()

            .lambda_function_configurations(

                LambdaFunctionConfiguration::builder()

                    .lambda_function_arn(lambda_arn) #1

                    .events(

                        Event::from("s3:ObjectCreated:*")

                    ) #2

                .build()

                .expect("to create valid lambda function config")

            ).build())

        .send()



        .await

}

In brief, our code communicates with AWS to set up the desired resources.
When we want to send events, we have to do a lot of additional work,
because AWS requires consent from both parties (bucket and lambda) before
allowing that.

9.7 Errors and declarative macros

And that’s every… wait, I forgot about errors.rs. There’s that downside of
putting errors in a separate file. On the upside, I can probably get away with
only showing you part of the code, because it is all pretty similar. Our custom
IacError is an enum with one variant for each 'kind' of error that might
occur: creating a bucket or lambda might fail, and setting up the event could
go awry. IacError implements Error and has the required Display
implementation. It also has a custom method for turning into a TokenStream,
which is what we will have to output.

Since the four functions for calling AWS in s3 and lambda all throw their
own error, we have four From trait implementations. Each implementation
turns one of those AWS errors into our own, retrieving the message from the
error.

Listing 9.24 Our custom IacError

#[derive(Debug)]

pub enum IacError {

    BucketError(String),

    LambdaError(String),

    EventError(String),

} #1

impl IacError {

    pub fn into_compile_error(self) -> TokenStream {

        match self {

            IacError::BucketError(message) => {

                syn::Error::new(

                    Span::call_site(),

                    format!("bucket could not be created: {}", message)

                ).into_compile_error().into()



            }, #2

            // similar fo the other two

        }

    }

}

impl From<SdkError<CreateBucketError>> for IacError {

    fn from(value: SdkError<CreateBucketError>) -> Self {

        let message = value.message()

            .map(|v| v.to_string())

            .unwrap_or_else(|| "no message".to_string());

        IacError::BucketError(message)

    } #3

}

// similar for our three other errors

// plus simple error and display implementations

Seems like a waste, to write boilerplate code in a book that talks so much
about 'macros as a tool for avoiding boilerplate'. And nothing is stopping us
from using additional declarative or procedural macros within a macro -
though the latter would require setting up another project. In this case, a
declarative macro will do just fine. We only need to pass in two things: the
variant for our error enum (expr will do), and the type of the AWS error (ty,
as you may recall from way back).

Note

I wrote this code and chapter while the Rust SDK was still in developer
preview. In version 0.24, you could match on the error and always got back
the same 'global' types (ServiceError for example). Now that the SDK is
generally available, matching on an error returns very specific errors (like
BucketAlreadyExists). More specific errors are great, but they are not good
for deduplication like we’ve done here. In order to still show this example of
combining procedural and declarative macros, I have gone for simply
extracting the error message. This is not the best choice per se, but it works
for this section example!

Listing 9.25 A declarative macro for the From implementations

macro_rules! generate_from_error {



    ($mine:expr, $aws:ty) => {

        impl From<SdkError<$aws>> for IacError {

            fn from(value: SdkError<$aws>) -> Self {

                // get the message, same as before

                $mine(message)

            }

        }

    }

}

generate_from_error!(IacError::BucketError,CreateBucketError);

generate_from_error!(IacError::LambdaError,CreateFunctionError);

generate_from_error!(

    IacError::EventError,

    PutBucketNotificationConfigurationError

);

generate_from_error!(IacError::EventError,AddPermissionError);

If you want, you can now run the code, which should produce either an error
(when you don’t have credentials, or a bucket or lambda with the given name
already exists, etc.) or the resources you requested. That means you have
succeeded in (ab)using Rust macros to create actual cloud infrastructure.
Congratulations!

Note

The thiserror crate is a nice way of reducing error boilerplate when you don’t
want to write your own errors. It’s a derive macro, and by now you will
probably understand most of the code.

In its current form, our macro is not very useful yet. But it offers a lot of
possibilities. For example, instead of just creating a bucket, we could save its
details in a struct and add methods to store things in S3. And since we’d be
creating the bucket via our macro, we gain safety: at runtime, a bucket with
the given name has to be available for storing stuff, or we would have seen
the application fail at compile time.

9.8 The right kind of testing

When we discussed or used tests earlier in this book, we focussed on unit
tests. At the time, those were the right tools for the job, fast, simple, and easy



to maintain. And why would we ever need more when we are 'just' generating
or transforming functions, structs, or enums?

The DSL presented in this chapter is different though. In its current form, it is
not producing any useful output. And even if it did produce something, as
suggested in the previous section, would this prove that we’ve done what we
promised to do, i.e. create resources in the cloud? Clearly not. To verify a
macro like this, we need a more complex kind of testing. End-to-end testing
is one option. What we could do is set up a project that tests our macro - and
we have quite some experience with that - and use the AWS SDK to verify
that the resources are created. Preferably, there would also be a cleanup step
afterward. I like to test things using a combination of my CI/CD pipeline and
AWS Lambda. The latter provides a realistic testing environment for my
code, as it is not inconceivable that my macro will be used in a Lambda at
some point. Plus, lambdas are also cheap, and easy to spin up.

Sadly, this chapter is already long enough, so implementing this type of
testing in your preferred CI/CD tool is left to the reader.

9.9 From the real world

We have already come across several crates that present a DSL for easier
creation of things. Let’s recap a bit: SQLx lets us write SQL queries, with
Yew we write HTML, and with Leptos we mix Rust and HTML - all within a
macro. Shuttle was also mentioned in several places as an example of
Infrastructure from Code, which takes the concept of Infrastructure as Code
one step further. You write your code, and Shuttle takes care of the
infrastructure that you need, without you explicitly defining what that is.

Take the code below, run cargo shuttle deploy, and you have an active
endpoint that returns 'hello world'!

async fn hello_world() -> &'static str {

    "Hello, world!"

}

#[shuttle_runtime::main]

async fn axum() -> shuttle_axum::ShuttleAxum {

    let router = Router::new().route("/hello", get(hello_world));



    Ok(router.into())

}

Another brief note: many projects combine the powers of declarative and
procedural macros like we did here! Shuttle uses them as you would expect,
i.e. to avoid duplication.

macro_rules! aws_engine {

    ($feature:expr, $pool_path:path, $option_path:path, $struct_ident:ident)

    => {

        paste! {

            #[cfg(feature = $feature)]

            pub struct $struct_ident{

                local_uri: Option<String>,

            }

            // struct implementations

        }

    };

}

And yes, paste! is a macro invocation in a declarative macro in a crate with
procedural macros.

But the other way around exists as well. Rocket has more than one
declarative macro that generates procedural macros (and yes, that’s a plural,
we’ll briefly come back to having multiple macros in one project in the next
chapter).

macro_rules! route_attribute {

    ($name:ident => $method:expr) => (

        // ...

        #[proc_macro_attribute]

        pub fn $name(args: TokenStream, input: TokenStream) -> TokenStream {

            emit!(attribute::route::route_attribute($method, args, input))

        } #1

    )

}

SQLx’s famous query macro is also a declarative macro that generates a
procedural macro. Note that the entry point of that procedural macro is
(accidentally) quite familiar to ours, in that it does only three things:



delegates parsing to a struct
makes another function handle the result of that parsing
and returns the result or error to the user

#[macro_export]

#[cfg_attr(docsrs, doc(cfg(feature = "macros")))]

macro_rules! query (

    // ...

    ($query:expr) => ({

        $crate::sqlx_macros::expand_query!(source = $query)

    }); #1

);

// other file //

#[proc_macro]

pub fn expand_query(input: TokenStream) -> TokenStream {

    let input = syn::parse_macro_input!(input as query::QueryMacroInput);

    match query::expand_input(input, FOSS_DRIVERS) {

        Ok(ts) => ts.into(),

        Err(e) => {

            if let Some(parse_err) = e.downcast_ref::<syn::Error>() {

                parse_err.to_compile_error().into()

            } else {

                let msg = e.to_string();

                quote!(::std::compile_error!(#msg)).into()

            }

        }

    }

}

A final note for this section: in this chapter, our macros also used quite a few
printline statements to give information to users. Either to show what was
parsed or to tell the user that a resource is being created.

How do real Rust (macro) crates handle logging? Leptos has its own macro
for its logging. As the comment states, behind the scenes plain old println is
used when you’re not in the browser.

/// Uses `println!()`-style formatting to log something to the console

/// (in the browser)

/// or via `println!()` (if not in the browser).

#[macro_export]

macro_rules! log {

    ($($t:tt)*) => ($crate::console_log(&format_args!($($t)*).to_string()))

} #1



Rocket has macros to help with logging, though this one does not use print
behind the scenes (as stated in the comment for write_out).

macro_rules! define_log_macro {

    ($name:ident: $kind:ident, $target:expr, $d:tt) => (

        #[doc(hidden)]

        #[macro_export]

        macro_rules! $name {

            ($d ($t:tt)*) => (

                $crate::log::private::$kind!(target: $target, $d ($t)*)

            )

        }

    );

    // more implementation

}

define_log_macro!(error, error_); #1

// `print!` panics when stdout isn't available, but this macro doesn't.

#[cfg(not(any(debug_assertions, test, doctest)))]

macro_rules! write_out {

    ($($arg:tt)*) => ({

        use std::io::{Write, stdout, stderr};

        let _ = write!(stdout(), $($arg)*)

            .or_else(|e| write!(stderr(), "{}", e));

    })

}

And some projects just use good old println and eprintln statements.

9.10 Exercises

Try to improve the input modeling. As discussed, it should be easier for
users of IacInput to know that we have a bucket event. Optionally, you
can also rework the creation of infrastructure using the new IacInput.
Suggest the right resource (or property) when you cannot find a match.
E.g. when you type 'buck', the error should suggest 'bucket'. One option
is to use Levenshtein distance.
Currently, our code fails when the resources we added already exist.
Skip creation when you detect that that is unnecessary.
Make it possible to add another kind of resource (from AWS, or maybe



from another cloud provider!) to the iac macro. (Note: there is no
solution for this exercise.)

9.11 Summary

With Infrastructure as Code (IaC) we describe the entire infrastructure of
our application as text or code, which means the state of our
infrastructure is documented version-controlled, and easy to create,
destroy or update.
We can use a function-like macro to create our own IaC syntax, letting
the macro create what we describe behind the scenes.
Within struct-based parsing, there are many variations for writing code
for us to choose from.
The ability to create custom keywords in syn is very useful when you
are 'inventing' a language within your macro.
We can use asynchronous calls within a macro to do things like creating
AWS infrastructure with the Rust SDK.
We can mix and match declarative and procedural macros any way we
like, combining their powers.



10 Macros and the outside world
This chapter covers

Using a single library to expose multiple macros
Adding or disabling functionality with features
Using attributes for control over what code will be generated
Documenting and publishing a macro library
Moving on to explore interesting macro subjects beyond this book

In previous chapters, we have often made excuses for taking shortcuts,
explaining how 'production-grade' macros would do things better or
differently. In this, our last, chapter, we will create a macro for making
available YAML config that tries to do everything right. While its
functionality will be very limited, it will have proper testing, error handling,
documentation, and the like. Making it - almost - ready for use by other
people.

And that is great because publishing a library means your macro might find
use among other developers, enriching the ecosystem of the language you
love. Even libraries written within a company, with a specific use case in
mind, might benefit from being open-sourced. People might discover bugs or
send pull requests with fixes and improvements, helping you to improve the
quality of your code to everyone’s benefit. This chapter also offers an
opportunity to bring together a few miscellaneous topics. Like features,
which can help you make your macro as lightweight as possible.

10.1 A function-like configuration macro

Let’s go over the first version of our macro, which exposes a function-like
macro called config. Calling that macro generates a struct called Config,
which contains a HashMap<String,String>. We also generate a new method
for filling the map with configuration properties.



That means the below YAML configuration, plus a call to new, results in the
creation of a map containing keys 'user' and 'password', with the
corresponding values 'admin' and 'pass'.

user: "admin"

password: "pass"

For simplicity’s sake, we won’t allow nested YAML structures, only plain
keys with string values.

10.1.1 Macro project structure

We are once again going for a project with two directories (config-macro
and config-macro-usage) and the optional Cargo workspace. There is also a
configuration directory on the same level as these two directories, with an
example config.yaml file contained within.

Listing 10.1 The example configuration

user: "admin"

password: "admin"

In our usage directory, the trybuild dependency has been added for
compilation testing.

Listing 10.2 The config-macro-usage Cargo.toml dependencies

[dependencies]

config-macro = { path = "../config-macro", features = ["struct"] }

[dev-dependencies]

trybuild = "1.0.85"

The macro itself has serde and serde_yaml, used for reading the YAML.

Listing 10.3 The config-macro Cargo.toml

[dependencies]

quote = "1.0.33"

syn = { version = "2.0.39", features = ["extra-traits"]}

proc-macro2 = "1.0.69"



serde = "1.0.192"

serde_yaml = "0.9.27"

And the workspace looks like this:

Listing 10.4 The config-macro-usage Cargo.toml

[workspace]

members = [

    "config-macro",

    "config-macro-usage"

]

In config-macro-usage, main.rs contains an example of how to use the
macro, as well as some happy path tests. There is also a tests directory with
compilation failure tests, which are also left out for brevity’s sake, but can be
found in this book’s code repository.

Listing 10.5 main.rs in config-macro-usage has a usage example and tests

fn main() {

    config!();

    let cfg = Config::new();

    let user = cfg.0.get("user").unwrap();

    println!("{user}");

}

// some happy path tests

Let’s turn to the implementation.

10.1.2 Code overview

The macro code contains nothing that you haven’t seen before, so we will be
brief. We have gone for a modular approach by already creating input.rs
and output.rs files in addition to lib.rs.

Start with lib.rs, which reads the token stream input using a struct from
input.rs, and produces output via a helper function. It also contains some of
the core logic of our macro: finding and reading YAML. We look for the file
with the default or overridden path, and pass that file to serde_yaml for



transforming it into a HashMap<String, String>. Errors are properly
handled, and panics are avoided.

Listing 10.6 lib.rs finds the config and coordinates the functions from input.rs and output.rs

// imports, mod input, mod output

fn find_yaml_values(input: ConfigInput)

    -> Result<HashMap<String, String>, syn::Error> {

    let file_name = input.path

        .unwrap_or_else(|| {

            "./configuration/config.yaml".to_string()

        }); #1

    let file = fs::File::open(&file_name)

        .map_err(|err| {

            syn::Error::new(

                Span::call_site(),

                format!(

                    "could not read config with path {}: {}",

                    &file_name,

                    err

                )

            )

        })?; #2

    Ok(serde_yaml::from_reader(file)

        .map_err(|e| {

            syn::Error::new(Span::call_site(), e.to_string())

        })?) #3

}

#[proc_macro]

pub fn config(item: TokenStream) -> TokenStream {

    let input: ConfigInput = parse_macro_input!(item); #4

    match find_yaml_values(input) {

        Ok(values) => generate_config_struct(values).into(),

        Err(e) => e.into_compile_error().into()

    } #5

}

input.rs parses the incoming TokenStream. Currently, it expects one
optional argument: a path for overriding the location of the configuration file,
for which we created a custom keyword. Because we anticipate the
possibility of other arguments in the future, we have gone for a key-value
style approach (path = "./path.yaml") which makes it easier to add



additional keys later on. We have also made sure to use proper error
handling.

Listing 10.7 input.rs parses the function-like macro input

// syn imports

pub(crate) mod kw {

    syn::custom_keyword!(path);

}

#[derive(Debug)]

pub struct ConfigInput {

    pub path: Option<String>,

}

impl Parse for ConfigInput {

    fn parse(input: ParseStream) -> syn::Result<Self> {

        if input.is_empty() {

            return Ok(ConfigInput {

                path: None,

            });

        }

        if !input.peek(kw::path) {

            return Err(

                syn::Error::new(

                    input.span(),

                    "config macro only allows for 'path' input",

                )

            );

        }

        let _: kw::path = input.parse()

            .expect("checked that this exists");

        let _: Token!(=) = input.parse()

            .map_err(|_| syn::Error::new(

                input.span(),

                "expected equals sign after path"

            ))?;

        let value: LitStr = input.parse()

            .map_err(|_| syn::Error::new(

                input.span(),

                "expected value after the equals sign"

            ))?;



        Ok(ConfigInput {

            path: Some(value.value()),

        })

    }

}

output.rs also has a very familiar feel. That, at least, is what I am hoping
for, after all those earlier chapters It takes the values from the configuration
file, creating a struct and a new method.

Listing 10.8 output.rs creates the right output

// imports

fn generate_inserts(yaml_values: HashMap<String, String>)

    -> Vec<TokenStream> {

    yaml_values.iter().map(|v| {

        let key = v.0;

        let value = v.1;

        quote!(map.insert(#key.to_string(), #value.to_string());)

    }).collect()

} #1

pub fn generate_config_struct(yaml_values: HashMap<String, String>)

    -> TokenStream {

    let inserts = generate_inserts(yaml_values);

    quote! {

        pub struct Config(

            pub std::collections::HashMap<String,String>

        );

        impl Config {

            pub fn new() -> Self {

                let mut map = std::collections::HashMap::new();

                #(#inserts)*

                Config(map)

            }

        }

    }

} #2

With that, we can generate a struct from configuration.

10.1.3 Using full paths



The one thing that’s new and interesting about this code is that we are using
the full path for HashMap. E.g. struct Config(pub
std::collections::HashMap<String, String>);, and similar inside new.
Why? Two reasons.

First, HashMap is not included in the Rust prelude, so it will not be available
by default in our user’s code. So without the full path, Rust won’t know
where this type is coming from. This will cause your code to fail with an
error, and cause the compiler to suggest importing the standard HashMap.

error[E0412]: cannot find type `HashMap` in this scope

 --> config-macro-usage/src/main.rs:5:5

  |

5 |     config!();

  |     ^^^^^^^^^ not found in this scope

  |

Think of what is happening. We are 'adding' code to a Rust file in an
application. And if we add struct Config(HashMap<String, String>);,
without the path, we are referring to a type that is unfamiliar within the user’s
code, not our code. The users will have to fix the issue, probably by
importing std::collections::HashMap. Maybe some of them even got
lucky, and there already was an import. In that case, they remain blissfully
unaware of any macro compilation issues.

Still, user action is not a good outcome. Not only is it not very user-friendly,
but it also very directly exposes the fact that we are using a HashMap. Which
is an implementation detail we might like to hide if that’s possible. That way,
changing to a different type will be easier if that proves necessary, requiring
no changes to existing application code. So by including the full path of
things, we make life easier for our clients and enable the hiding of - some -
implementation details.

The second reason is that users may already be using a HashMap, but not the
one we were expecting. Maybe they created a struct with the same name.

struct HashMap {}

If our macro did not use a full path, those users would be greeted with a
confusing error caused by std::collections::HashMap expecting generic



arguments, which the local one does not have.

error[E0107]: this struct takes 0 generic arguments but 2 generic

 arguments were supplied

This is something we have to avoid because the chance of a collision with the
application code and library code grows with the size of both the project and
our macro. So it’s good practice to always use full paths in generated code.
Even when it comes to things included in Rust’s prelude (like
std::vec::Vec), this may be worthwhile. Because even these might not be
available in certain environments or might be overridden by things declared
in application code.

String or str

Throughout this book, I have often used String as a type, and not string
slices (str). Partly because String is an easy and familiar type. Sometimes
because it was the only correct choice. And in several other cases, strings
helped avoid complexity that was not relevant to the discussion.

But just for this once, let’s consider string slices, since they are a valid
alternative and not that difficult to use in this particular example. After all,
we are generating a new method that has the hard-coded values baked in.
Those literals are static. Meaning we can have slices with static lifetimes:
struct Config(pub std::collections::HashMap<&'static str,&'static

str>); Apart from that signature, only generate_insert has to change, as it
no longer requires to_string calls.

fn generate_inserts(yaml_values: HashMap<String, String>)

    -> Vec<TokenStream> {

    yaml_values.iter().map(|v| {

        let key = v.0;

        let value = v.1;

        quote!(map.insert(#key, #value);)

    }).collect()

}

pub fn generate_config_struct(yaml_values: HashMap<String, String>)

    -> TokenStream {

    let inserts = generate_inserts(yaml_values);

    quote! {



        pub struct Config(

            pub std::collections::HashMap<&'static str,&'static str>

        );

        // unchanged new method

    }

}

10.2 Adding another macro

Currently, we are exposing a nice function-like macro. But what if our users
prefer to modify an existing struct with an attribute macro, instead of
generating a new struct? Well, why not offer this option as well? While a
proc-macro library can only expose procedural macros (and not normal
functions, structs, etc.), there is no limit to the number of macros one library
can have, as seen briefly in the 'real world' section of the previous chapter.

Now, let’s do this ourselves. We won’t show the new usage examples or
tests, focussing only on what has changed in the macro directory. We reuse
the ConfigInput struct for parsing the attribute TokenStream. If it contains a
custom path ((path = …)), we can automatically handle that! To retrieve
relevant details of the annotated struct, we turn to DeriveInput, for the same
reasons as before (i.e. it is available by default and suits our use case),
passing it into the output generator.

Listing 10.9 lib.rs has an additional macro

#[proc_macro_attribute]

pub fn config_struct(attr: TokenStream, item: TokenStream)

    -> TokenStream {

    let input: ConfigInput = parse_macro_input!(

        attr

    ); #1

    let ast: DeriveInput = parse_macro_input!(

        item

    ); #2

    match find_yaml_values(input) {

        Ok(values) => generate_annotation_struct(ast, values)

            .into(), #3

        Err(e) => e.into_compile_error()

            .into()

    }



}

input.rs has not changed at all, it just works. But output.rs has to generate
a different kind of output: it needs to recreate the struct, its new method, and
field declarations.

Listing 10.10 lib.rs has an additional macro

// imports and earlier code

fn generate_fields(yaml_values: &HashMap<String, String>)

    -> Vec<TokenStream> {

    yaml_values.iter().map(|v| {

        let key = Ident::new(v.0, Span::call_site());

        quote! {

            pub #key: String

        }

    }).collect()

}

fn generate_inits(yaml_values: &HashMap<String, String>)

    -> Vec<TokenStream> {

    yaml_values.iter().map(|v| {

        let key = Ident::new(v.0, Span::call_site());

        let value = v.1;

        quote! {

            #key: #value.to_string()

        }

    }).collect()

}

pub fn generate_annotation_struct(

        input: DeriveInput,

        yaml_values: HashMap<String, String>

    ) -> TokenStream {

    let attributes = &input.attrs;

    let name = &input.ident;

    let fields = generate_fields(&yaml_values);

    let inits = generate_inits(&yaml_values);

    quote! {

        #(#attributes)* #1

        pub struct #name {

            #(#fields,)*

        }



        impl #name {

            pub fn new() -> Self {

                #name {

                    #(#inits,)*

                }

            }

        }

    }

}

By now, all of this is child’s play! Except that I forgot for a moment that I
had to turn the keys into identifiers, meaning I was greeted by an expected
identifier error… Make sure to use Ident from proc_macro2 as well. If
your IDE selects the one from proc_macro, you will be warned that the
trait bound proc_macro::Ident: ToTokens is not satisfied. quote
expects a ToTokens implementation to change your code into a TokenStream.
And that implementation is missing from the other kind of Ident.

With this bit of code in place, we can choose between config! or #
[config_struct]. Or both! But that is probably not advisable.

10.3 Features

One downside of having multiple macros that do the same work is that we are
forcing users to pull in a lot of code that they might not need. To avoid that,
we can turn to features. You are probably familiar with them, but just to be
sure: features - sometimes also called feature flags - allow us to make parts of
our code optional. Only if the user decides he wants a specific feature and
activates it, will that part of the library be pulled into our project.

Let’s make the attribute macro optional, hiding it behind a feature called
'struct' (because we need a struct to use it). First, we add it to the macro’s
Cargo.toml.

Listing 10.11 Cargo.toml, in the config-macro directory, has a feature now

[features]

struct = []

Next, to make things simpler, we move all the code-generating functions



(generate_fields, generate_inits, generate_annotation_struct) for the
attribute macro from output.rs to a separate file. Call it struct_output.rs.

Now, we add feature configuration to our library. The entry point for our
attribute macro is now annotated with #[cfg(feature = "struct")],
meaning it will only be included when the 'struct' feature is enabled. We can
do the same for the DeriveInput import. More importantly, our new
file/module struct_output is only imported when the feature is active. This
is why we moved those functions to a separate file: it enables hiding all three
in one go. To avoid one additional import, I have used the full path for the
import of struct_output::generate_annotation_struct.

Listing 10.12 lib.rs featuring a feature

// other imports, mod input, mod output

#[cfg(feature = "struct")] #1

use syn::DeriveInput;

#[cfg(feature = "struct")] #1

mod struct_output;

// find_yaml_values

// function-like macro

#[cfg(feature = "struct")] #2

#[proc_macro_attribute]

pub fn config_struct(attr: TokenStream, item: TokenStream)

    -> TokenStream {

    let input: ConfigInput = parse_macro_input!(attr);

    let ast: DeriveInput = parse_macro_input!(item);

    match find_yaml_values(&input) {

        Ok(values) => struct_output::generate_annotation_struct(

                ast, values, &input.exclude_from

            ).into(), #3

        Err(e) => e.into_compile_error().into()

    }

}

You can verify the correctness of our code by running this code in config-
macro-usage.

Listing 10.13 A usage example



use config_macro::config_struct;

#[config_struct]

#[derive(Debug)] #1

struct ConfigStruct {}

fn main() {

    let config = ConfigStruct::new();

    println!("{config:?}"); #1

}

Which will fail because the attribute macro is now unknown. The function-
like macro, on the other hand, would keep on working. Change the
dependency on our macro library to config-macro = { path =
"../config-macro", features = ["struct"] } and everything works
again.

This does mean that users that prefer this macro over the function-like are
unable to exclude the latter. So we could hide it behind a feature as well,
maybe called 'functional'. Which does mean our code would, by default,
expose no macros? Which is technically allowed but still pretty strange. In
that case, adding a default feature could be a good idea. That way, users can
get rid of it with config-macro = { path = "../config-macro",
features = ["struct"], default-features = false }, but we still
expose at least one macro by… default.

[features]

default = ["functional"]

struct = []

functional = []

That covers keeping out unneeded library code. But what about the code that
we are generating? Let’s suppose that the attribute macro also generated a
From implementation for our struct, which allowed turning it into a HashMap,
just in case someone prefers that over accessing fields.

let cfg = MyConfigStruct::new();

let as_map: HashMap<String, String> = cfg.into();

Not everyone is going to use that method, but as things stand, it is being
generated nonetheless.



Note

Yes, Rust might decide to optimize your code by removing unused functions
and the like. But there is no guarantee that this will happen. And it still takes
time to get rid of unused code. So not having it in the first place can still be
worthwhile.

Maybe we can avoid that. One option would be to add an attribute to our
macro that signifies we want to exclude some code generation. Let’s call it
exclude. For the moment, the only allowed value is 'from', which will make
sure the From implementation is not generated.

#[config_struct(exclude = "from")]

struct ConfigStruct {}

To support this attribute, we need to alter our input.rs parsing a bit. We add
the exclude keyword, an exclude_from boolean property, and code to parse
the exclude. If its string value equals 'from', we set the property to true. In
every other case, it is false. The below code has the downside of only
allowing a single property: either 'path' or an 'exclude'. You can take a look at
the exercises if you want to fix that.

Listing 10.14 An additional property for ConfigInput

// syn imports

pub(crate) mod kw {

    syn::custom_keyword!(path);

    syn::custom_keyword!(exclude); #1

}

#[derive(Debug)]

pub struct ConfigInput {

    pub path: Option<String>,

    pub exclude_from: bool, #2

}

impl Parse for ConfigInput {

    fn parse(input: ParseStream) -> syn::Result<Self> {

        if input.is_empty() {

            // similar to earlier code; exclude is false

        } else if input.peek(kw::path) {



            // similar to earlier code; exclude is false

        } else if input.peek(kw::exclude) {

            let _: kw::exclude = input.parse()

                .expect("checked that this exists");

            let _: Token!(=) = input.parse()

                .map_err(|_| syn::Error::new(

                    input.span(),

                    "expected equals sign after path"

                ))?;

            let value: LitStr = input.parse()

                .map_err(|_| syn::Error::new(

                    input.span(),

                    "expected value after the equals sign"

                ))?;

            let exclude_from = value.value() == "from";

            Ok(ConfigInput {

                path: None,

                exclude_from,

            }) #3

        }

        // error case

    }

}

The other changes are located in struct_output.rs. Two functions
(generate_inserts_for_from and generate_from_method) help us generate
the proper From. Meanwhile, generate_annotation_struct receives a
boolean from lib.rs, where we pull it from ConfigInput. Based on its
value, we either call the new functions to generate output or generate an
empty token stream. The generated code/empty stream is passed on to our
final quote.

Listing 10.15 Additional methods and changes in struct_output.rs

// imports, generate_fields, generate_inits

fn generate_inserts_for_from(yaml_values: &HashMap<String, String>)

    -> Vec<TokenStream> {

    yaml_values.iter().map(|v| {

        let key = v.0;

        let key_as_ident = Ident::new(key, Span::call_site());

        quote!(map.insert(#key.to_string(), value.#key_as_ident);)

    }).collect()

} #1



fn generate_from_method(

        name: &Ident,

        yaml_values: &HashMap<String, String>

    ) -> TokenStream {

    let inserts = generate_inserts_for_from(yaml_values);

    quote! {

        impl From <#name> for std::collections::HashMap<String,String> {

            fn from(value: #name) -> Self {

                let mut map = std::collections::HashMap::new();

                #(#inserts)*

                map

            }

        }

    }

} #1

pub fn generate_annotation_struct(

        input: DeriveInput,

        yaml_values: HashMap<String, String>,

        exclude_from_method: &bool

    ) -> TokenStream {

    // all the other token streams

    let from = if !exclude_from_method {

        generate_from_method(name, &yaml_values)

    } else {

        quote!()

    }; #2

    quote! {

        // struct and method generation

        #from

    }

}

The one advantage of using this alternative is that it is extremely flexible.
After all, it’s handcrafted code, it could do anything. We could, say, retrieve
some environment variables, compare them with a local file, and determine
what to generate based on the outcome! But in many cases, including this
one, you can accomplish your goals with a feature (see the exercises). And
you should probably prefer built-in tooling over custom solutions unless you
have very good reason not to.

10.4 Documenting a macro



If you want to write a macro that other people will use, documentation is
essential. No one likes exploring a crate or project that leaves you in the dark
when it comes to usage. And while it is not my job to tell you what is
worthwhile documenting - that depends on the situation - I can show you
some of the available options.

Besides ordinary code comments (//) for internal use, we have 'outer
documentation' (///), which is used to document a single item. I.e., we can
add item-specific documentation to our macros. Below is a short example for
the config macro.

Listing 10.16 Outer documentation for config

/// This function-like macro will generate a struct called `Config`

/// which contains a HashMap<String,String> with all

/// the yaml config properties.

#[proc_macro]

pub fn config(item: TokenStream) -> TokenStream {

    // implementation

}

If you run cargo doc --open, you will see that documentation was generated
specifically for config.

We mentioned the existence of 'doctests' in an earlier chapter. We can add
one of those to our other macro. Because these tests are run when you do a
cargo test, you should make sure they actually work. Hence, the import and
the specific configuration path, since lib.rs is in a different location
compared to my usage examples. And note the change I made to cfg.
Without it, Rust did not generate documentation for this struct because it was
hidden behind a feature. Adding the doc profile is one way to make it visible.

Listing 10.17 Outer documentation for config_struct

/// This macro allows manipulation of an existing struct

/// to serve as a 'config' struct.

/// It will replace any existing fields with those present

/// in the configuration.

///

/// ```rust

/// use config_macro::config_struct;



///

/// #[config_struct(path  = "./configuration/config.yaml")]

/// struct Example {}

///

/// // Example now has a new method

/// let e = Example::new();

///

/// // e now contains a 'user' field that we can access

/// println!("{}", e.user);

/// ```

///

#[cfg(any(feature = "struct",doc))] #1

#[proc_macro_attribute]

pub fn config_struct(attr: TokenStream, item: TokenStream)

    -> TokenStream {

    // implementation

}

Now our documentation looks like the below example, with more
information (like the above test) available behind the hyperlinks.

Figure 10.1 Outer documentation with hyperlinks to the more detailled info



Meanwhile, 'inner documentation' (//!) is used to document an entire file or
crate. We could add the following to lib.rs.

//! ## Documentation from lib.rs

//! Here is documentation placed directly within lib.rs...

// imports, code

Another neat trick is that you can import documentation from an external
Markdown document. That may keep your Rust files cleaner, avoid
duplicating information, and might prove easier to write. With a README.md



file in config-macro, as shown below…

# Config Macro

## Overview

This crate contains macros that allow you to transform yaml config

into a struct that you can use in your application.

## Usage

Left out for brevity's sake.

… we should add this command to the top of our lib.rs.

#![doc = include_str!("../README.md")]

//! ## Documentation from lib.rs

//! Here is documentation placed directly within lib.rs.

// imports, code

The imported text will appear above the inline inner documentation. This
gives us some general documentation for our crate, added above the specific
(outer) documentation that we wrote earlier.

Figure 10.2 Outer documentation



10.5 Publishing your macro

Our macro is now tested, handles errors responsibly, has documentation, and
- also pretty important - does something people might find useful. Maybe it is
time to publish it to crates.io with the cargo publish command.

Note

Please don’t publish this example though. I doubt the Rust community would



appreciate hundreds of identical config macros with limited functionality.

Before we do that, we should add some more information to our Cargo.toml
file in the config-macro directory. Below, a selection of useful fields has
been added.

Listing 10.18 config-macro Cargo.toml additions

[package]

name = "config-macro"

version = "0.1.0"

edition = "2021"

description = "Macros for using config as a struct within your app"

license = "MIT"

homepage = "https://github.com/some-page"

repository = "https://github.com/some-page"

readme = "README.md"

keywords = ["configuration", "yaml", "macro"]

# dependencies, lib, features

In general, Rust advises not committing a Cargo.lock when you write a
library, so it might be best to add that file to your .gitignore at this point. If
you’ve already committed the file, just remove it from your git and update
.gitignore afterward.

You may also have noticed that I’ve placed my documentation and publish
information in the config-macro directory. The reason is that there is little
use in publishing our usage or configuration directories! Those are for
testing the library but offer no functionality, so you may want to publish the
config-macro directory, not the entire project. Two final pointers: you will
need credentials to publish to crates.io, and cargo publish has a --dry-run
which might be useful to try out first.

Note

Publishing is one reason why we have chosen a setup with two directories for
this chapter, as it is currently impossible to publish crates with path
dependencies. Meaning that the 'three directories' setup we showed in earlier



chapters is harder to publish. Because in that case, our macro entry point is in
one library, and its implementation is pulled in via a path dependency. That
does not make publishing in that scenario impossible, but until - if ever -
publishing with path dependencies becomes allowed, it does create
complications.

Once the crate is published and becomes stable, reaching version 1,
developers will expect you to use semantic versioning (also known as
semver) when you update your library. This means that bug fixes increase the
patch version (e.g. 1.1.0 ⇒ 1.1.1), functionality that is backwards
compatible increases the minor (e.g. 1.1.0 ⇒ 1.2.0), and backwards
incompatible changes increase the major version (e.g. 1.0.0 ⇒ 2.0.0). This
is especially important in Rust because cargo allows you to specify
dependencies solely by major: trybuild = "1", for example. Introducing a
breaking change without bumping the major version might cause projects to
suddenly and unexpectedly break…

10.6 From the real world

Many Rust crates have excellent documentation. Go to the lib.rs of the
libraries we discussed in this book, and you will find both inner
documentation for the crate and outer documentation of the most important
functionality. I will let you explore their documentation on your own.

Instead, we can briefly talk about features and multiple macros. Have you
ever had this happen? You add serde to a project, put a
derive(Deserialize) on a struct… and Rust does not know what to do,
because you forgot that the macro is hidden behind a feature. Unsurprisingly,
you will find the list of serde features under serde/Cargo.toml, including
one called 'derive'. This also activates the 'serde_derive' dependency.

[features]

default = ["std"]

# Provide derive(Serialize, Deserialize) macros.

derive = ["serde_derive"]

# etc.

In serde/lib.rs you find a re-export of the two derive macros, hidden



behind that feature.

#[cfg(feature = "serde_derive")]

#[macro_use]

extern crate serde_derive;

#[cfg(feature = "serde_derive")]

pub use serde_derive::{Deserialize, Serialize};

Also: serde is exporting two derive macros, Deserialize and Serialize.
Just like us!

Leptos, to take one other example, has a leptos_macro directory where
lib.rs exports a derive macro (Params), two attribute macros (server and
component) and two function-like macros (template and view). It has feature
flags for things like server-side rendering and tracing.

To finish the final chapter, we will explore how #[tokio::main] works from
the beginning till the end in detail. Under the tokio directory of the Tokio
repository, we find a list of features, including the macros feature. It points to
the tokio-macros dependency.

Listing 10.19 root Cargo.toml of Tokio

[features]

macros = ["tokio-macros"]

# ...

[dependencies]

tokio-macros = { version = "1.7.0", path = "../tokio-macros",

 optional = true }

So we head to the tokio-macros directory. In its Cargo.toml, we find that
this is indeed a procedural macro library (proc-macro = true), with the
usual dependencies (syn, quote, and proc-macro2). Moving on to lib.rs,
we see it exposes several attribute macros, including #[tokio::test] and #
[tokio::main]. Each macro has extensive outer documentation. About 170
lines of it, in the case of main. We can see that both the attributes and the
decorated item of this attribute macro are used by the entry::main function.
The 'workaround' mentioned in the code below, is an ambiguity caused by
this function being called main. And in Rust, that name serves a special



purpose as an entry point.

Listing 10.20 lib.rs of the tokio-macros directory

/// Marks async function to be executed by the selected runtime.

/// ...

#[proc_macro_attribute]

#[cfg(not(test))] // Work around for rust-lang/rust#62127

pub fn main(args: TokenStream, item: TokenStream) -> TokenStream {

    entry::main(args, item, true)

}

Within entry::main, the item is first parsed into an ItemFn. In other words,
Tokio expects a function, turning a syn error into a compilation error if that is
not the case. Next, and only after doing a few checks, the configuration is
created based on the attributes which are parsed by AttributeArgs. Which,
as mentioned, is no longer available in syn version 2.

If both input and configuration are valid, parse_knobs will create an output
stream.

Listing 10.21 The macro entry point in entry.rs

pub(crate) fn main(args: TokenStream, item: TokenStream, multi_thread: bool)

    -> TokenStream {

    let input: syn::ItemFn = match syn::parse(item.clone()) {

        Ok(it) => it,

        Err(e) => return token_stream_with_error(item, e),

    }; #1

    let config = if input.sig.ident == "main"

    && !input.sig.inputs.is_empty() {

        let msg = "the main function cannot accept arguments";

        Err(syn::Error::new_spanned(&input.sig.ident, msg))

    } else {

        AttributeArgs::parse_terminated

            .parse(args)

            .and_then(|args| build_config(

                input.clone(),

                args,

                false,

                multi_thread))

    }; #2



    match config {

        Ok(config) => parse_knobs(input, false, config),

        Err(e) => token_stream_with_error(

            parse_knobs(input, false, DEFAULT_ERROR_CONFIG),

            e

        ),

    } #3

}

Below is build_config, which we will have to show in two parts. After
making sure the expected async keyword is present, a new - mutable -
configuration is created. Next, the code loops over the available arguments,
adding its key-value pairs (NameValue) to the configuration, one by one. If an
unknown identifier is found, an error is returned.

Listing 10.22 build_config in entry.rs (part 1)

fn build_config(

    input: syn::ItemFn, args: AttributeArgs,

    is_test: bool, rt_multi_thread: bool,

) -> Result<FinalConfig, syn::Error> {

    if input.sig.asyncness.is_none() {

        let msg = "the `async` keyword is missing ...";

        return Err(syn::Error::new_spanned(input.sig.fn_token, msg));

    }

    let mut config = Configuration::new(is_test, rt_multi_thread);

    let macro_name = config.macro_name();

    for arg in args {

        match arg {

            syn::NestedMeta::Meta(syn::Meta::NameValue(namevalue)) => {

                let ident = namevalue.path.get_ident()

                    .ok_or_else(|| {

                        syn::Error::new_spanned(

                            &namevalue,

                            "Must have specified ident"

                        )

                    })?

                    .to_string().to_lowercase();

                match ident.as_str() {

                    "worker_threads" => {

                        config.set_worker_threads(

                            namevalue.lit.clone(),

                            syn::spanned::Spanned::span(&namevalue.lit),

                        )?;



                    }

                    // more matching

                    name => {

                        let msg = format!(

                            "Unknown attribute {} is specified ...",

                            name,

                        );

                        return Err(syn::Error::new_spanned(namevalue, msg));

                    }

                }

            }

            // ...

}

The next code listing shows that, despite Tokio only allowing key-value pairs
for attributes, the match does check if 'path' values are present. Why? To give
back a helpful error! The given path attribute is checked against known
names. That way, the error can give a hint on how you should set that
particular argument. For example, adding #[tokio::main(multi_thread)]
to a function results in error: Set the runtime flavor with #
[tokio::main(flavor = "multi_thread")]. For unknown path arguments,
as well as miscellaneous unrecognized arguments, a generic 'unknown
attribute' error is thrown, pointing to the correct token.

Listing 10.23 build_config in entry.rs (part 2)

fn build_config(

    input: syn::ItemFn, args: AttributeArgs,

    is_test: bool, rt_multi_thread: bool,

) -> Result<FinalConfig, syn::Error> {

            // ...

            syn::NestedMeta::Meta(syn::Meta::Path(path)) => {

                let name = path

                    .get_ident()

                    .ok_or_else(|| syn::Error::new_spanned(

                        &path,

                        "Must have specified ident"

                    ))?

                    .to_string()

                    .to_lowercase();

                let msg = match name.as_str() {

                    "threaded_scheduler" | "multi_thread" => {

                        format!(

                            "Set the runtime flavor with ...",



                            macro_name

                        )

                    } #1

                    // same for other possible attributes and unknown ones

                };

                return Err(syn::Error::new_spanned(path, msg));

            }

            other => {

                return Err(syn::Error::new_spanned(

                    other,

                    "Unknown attribute inside the macro",

                ));

            } #2

        }

    }

    config.build()

}

parse_knobs is also too long to show in full, so I have left out some things
that are only relevant for the test macro, and some code for handling a
rename of the tokio package. First, the signature of the input is modified,
removing the async. This is because Rust does not allow its main functions to
be asynchronous. So after removing the async, Tokio builds a Runtime and
blocks on the existing code (contained within body), removing the need for
asynchronicity. Two more things to note:

the header is optionally generated, depending on the incoming boolean
value, similar to what we did in this chapter with 'exclude'
some Clippy linting is disabled, like a warning for the use of expect in
the building of Runtime. You do not want to show the user a warning
that he can’t do anything about

Listing 10.24 parse_knobs in entry.rs

fn parse_knobs(mut input: syn::ItemFn, is_test: bool, config: FinalConfig)

    -> TokenStream {

    input.sig.asyncness = None;

    let mut rt = // ... #1

    if let Some(v) = config.worker_threads {

        rt = quote! { #rt.worker_threads(#v) };

    } #2

    // more config



    let header = if is_test {

        quote! {

            #[::core::prelude::v1::test]

        }

    } else {

        quote! {}

    }; #3

    let body = &input.block;

    let brace_token = input.block.brace_token;

    let body_ident = quote! { body };

    let block_expr = quote_spanned! {last_stmt_end_span=>

        #[allow(clippy::expect_used,

[CA clippy::diverging_sub_expression)]]

        {

            return #rt

                .enable_all()

                .build()

                .expect("Failed building the Runtime")

                .block_on(#body_ident);

        }

    }; #4

    input.block = syn::parse2(quote! {

        {

            #body

            #block_expr

        }

    }).expect("Parsing failure");

    input.block.brace_token = brace_token;

    let result = quote! {

        #header

        #input

    };

    result.into() #5

}

With that, you know - in broad terms - how this quite famous macro does its
work.

10.7 Where to go from here



Congratulations on making it to the end of this book! Together, we have
explored declarative and procedural macros in a wide variety of use cases.
Sometimes we added methods to structs and enums, in other cases we
changed their fields or decided to change function signatures and returns.
Plus, you also learned about testing, error handling, documentation, and saw
a lot of 'real world' examples.

That being said, some interesting tools and functions did not make the cut.
synstructure, for example, is a tool that helps you implement derive macros.
proc-macro-crate helps you find the name of the crate that your macro is
declared in, even if it was changed in the user’s application. And hidden
behind some syn feature flags are visit and fold, two powerful helpers for
stepping through 'nodes' like an expression. You will find some information
on how to use those two in the documentation. And you can check out the
blog post I wrote about Fold for some inspiration or guidance. Plus, there are
lots more libraries that use macros in unusual, interesting, creative ways,
ready to be explored! And if you run into trouble, you will find a lot of
helpful people ready to answer macro questions on both StackOverflow and
Reddit.

So thank you for reading. I hope all this was of some use to you. And, to end
with the words of AWS’s Werner Vogels: "Now go build!".

10.8 Exercises

Make sure that we can accept both 'path' and 'exclude' as macro
properties.
Instead of adding 'exclude' to our attribute macro, try to use a feature.

10.9 Summary

A macro library can only export procedural macros - but there is no limit
on number or type.
Features can hide optional functionality, making sure users only pull in
the library code that they need.
When it comes to avoiding useless generated code, you can use feature



flags or your own custom attributes.
A 'production-grade' macro should have good test coverage and error
handling.
And it should have proper documentation, preferably including doctests.



Appendix A. Exercise Solutions



A.1 Chapter 2

Fill in the question marks (???) and make the following declarative
macro compile

This is one possible solution. ty seems most appropriate, though ident - for
example - would also work.

macro_rules! hello_world {

    ($something:ty) => {

        impl $something {

            fn hello_world(&self) {

                println!("Hello world!")

            }

        }

    };

}

struct Example {}

hello_world!(Example);

fn main() {

    let e = Example {};

    e.hello_world();

}

In our first declarative macro example we use expr in some of our
matches. But that was not our only option. Try to replace that with
literal, tt, ident, or ty. Which ones work? Which don’t? Do you
understand why?

literal will work because we are passing in literal values (for example
my_vec!(1, 2, 3)). tt will work as well. As we said, it accepts basically
anything! ident will not work because we are not passing in identifiers. A
valid example - that would get accepted - might be
NameOfThisStructIDeclaredInMyCode. ty will not work either, because we
are not passing in types. Valid examples include: String, i32, etc.

Add a matcher to my_vec that allows for trailing commas. Try to avoid
code duplication. If you need help, take a look at the vec macro from the



standard library for inspiration.

This solution is based on the standard library code.

macro_rules! my_vec {

    () => {

        Vec::new()

    };

    ($($x:expr),+ $(,)?) => (

        {

            let mut v = Vec::new();

            $(

                v.push($x);

            )+

            v

        }

    );

}

Alternatively, you could add another rule for matching a trailing comma. In
that case, you probably want to define the transcriber body only once and
make one of the rules for multiple elements use the other one internally.

Another thing I like for newtypes is convenient From implementations.
Write a macro that generates them for our four newtypes. Alternatively,
you can go for TryFrom since that is a more suitable choice when input
validation is required.

To be brief, this solution only shows the From implementations. It is quite
similar to our earlier code for getting the underlying value.

macro_rules! generate_from {

    ($struct_type:ident) => {

        generate_from!($struct_type,String);

    };

    ($struct_type:ident,$return_type:ty) => {

        impl From<$struct_type> for $return_type {

            fn from(f: $struct_type) -> Self {

                f.value

            }

        }

    }

}



Now that we have two macros, we could make our lives even easier by
creating a third macro, generate_newtypes_methods, that calls our
existing two macros behind the scene.

macro_rules! generate_newtypes_methods {

    ($struct_type:ident) => {

        generate_get_value_string!($struct_type,String);

        generate_from!($struct_type,String);

    };

    ($struct_type:ident,$return_type:ty) => {

        generate_get_value_string!($struct_type,$return_type);

        generate_from!($struct_type,$return_type);

    }

}

generate_newtypes_methods!(FirstName);

generate_newtypes_methods!(Age,i32);

Expand our Account example with dollar and euro currencies. You can
use a hardcoded exchange rate of 2 dollars to 1 euro. All existing
commands will require a currency type.

This is one of several possible solutions. We are assuming the money in our
accounts is in euros.

// account code from DSL chapter

enum Currency {

    Euro,

    Dollar

}

impl From<&str> for Currency {

    fn from(value: &str) -> Self {

        if value.contains("euro") {

            Currency::Euro

        } else {

            // simple fallback to dollars

            Currency::Dollar

        }

    }

}

impl Currency {

    fn calculate(&self, amount: u32) -> u32 {

        match self {



            Currency::Euro => amount,

            Currency::Dollar => amount * 2

        }

    }

}

macro_rules! exchange {

    (Give $amount:literal $currency:literal to $name:ident) => {

        let curr: Currency = $currency.into();

        $name.add(curr.calculate($amount))

    }

    // others are similar to the above

}

fn main() {

        let mut the_poor = Account {

            money: 0,

        };

        exchange!(Give 10 "euros" to the_poor);

        exchange!(Give 10 "dollars" to the_poor);

        exchange!(Give 1 "euro" to the_poor);

}

Because we want to change a string slice to a currency, we need quotation
marks around "euros" and "dollars". You could also experiment with tt and
ty for alternative solutions. Or add match arms that literally
$amount:literal euros, $amount:literal dollars, etc.



A.2 Chapter 3

Fill in the question marks (???) and make the following derive macro
compile

Solution:

// imports

#[proc_macro_derive(UpperCaseName)]

pub fn uppercase(item: TokenStream) -> TokenStream {

    let ast = parse_macro_input!(item as DeriveInput);

    let name = ast.ident;

    let uppercase_name = name.to_string().to_uppercase();

    let add_uppercase = quote! {

        impl #name {

            fn uppercase(&self) {

                println!("{}", #uppercase_name);

            }

        }

    };

    add_uppercase.into()

}

The name of the macro can be deduced from the usage example. And we
learned that macros return a TokenStream, that a DeriveInput can be used to
parse input, and that we can use hashtags to refer to variables.

Try changing the name of the macro inside lib.rs and running the
application. What error do you get? What do you have to do to fix
things?

If I change the name of the macro to 'Helloz', I will get a very helpful error:

error: cannot find derive macro `Hello` in this scope

 --> src/main.rs:4:10

  |

4 | #[derive(Hello)]

  |          ^^^^^ help: a derive macro with a similar name...

  |



  |

6 | pub fn hello(item: TokenStream) -> TokenStream {

  | ---------------------------------------------- similarly named...

But that is only the case if I stay close to the original. If I rename it to
'AnotherName', I get:

error: cannot find derive macro `Hello` in this scope

 --> src/main.rs:4:10

  |

4 | #[derive(Hello)]

  |          ^^^^^

The fix is easy. Change every derive annotation to point to the new name. For
example:

#[derive(AnotherName)]

struct Example;

Add a function called testing_testing to the output of our macro. This
is an associated function, one that takes no &self parameter. It should
write "One two three" to the console.

use quote::quote;

use proc_macro::TokenStream;

use syn::{parse_macro_input, DeriveInput};

#[proc_macro_derive(Hello)]

pub fn hello(item: TokenStream) -> TokenStream {

    let ast = parse_macro_input!(item as DeriveInput);

    let name = ast.ident;

    let add_hello_world = quote! {

        impl #name {

            fn hello_world(&self) {

                println!("Hello world")

            }

            fn testing_testing() {

                println!("One two three")

            }

        }

    };

    add_hello_world.into()



}

See if you can output a greeting followed by the name of the input (e.g.
"Hello Example"). Fair warning: passing #name to print will not be
enough, because that’s an identifier, and you need a string! So either
call to_string on the identifier and save the result in a variable, or use
the stringify macro to change the #name into a string for you.

A bit more challenging, but don’t worry, we will encounter these
complexities in upcoming chapters as well.

use quote::quote;

use proc_macro::TokenStream;

use syn::{parse_macro_input, DeriveInput};

#[proc_macro_derive(Hello)]

pub fn hello(item: TokenStream) -> TokenStream {

    let ast = parse_macro_input!(item as DeriveInput);

    let name = ast.ident;

    let add_hello_world = quote! {

        impl #name {

            fn hello_world(&self) {

                println!("Hello {}", stringify!(#name))

            }

        }

    };

    add_hello_world.into()

}

Forget to add the stringify and you will get Example doesn’t implement
std::fmt::Display.



A.3 Chapter 4

Fill in the question marks (???) and make the following macro compile

#[proc_macro_attribute]

pub fn delete(_attr: TokenStream, _item: TokenStream)

    -> TokenStream {

    let public_version = quote! {};

    public_version.into()

}

Handle structs with unnamed fields. If you use matching, your new
match arm will probably look a bit like this: Struct(DataStruct {
fields: Unnamed(FieldsUnnamed { ref unnamed, .. }), .. })….
Note that you will need to decide whether to output a 'normal' struct, or
an unnamed one.

Highlights of one possible solution (you can find the entire solution on
GitHub).

use quote::{__private, quote};

// other imports and some functions

fn unnamed_fields_public(

    fields: &Punctuated<Field, Comma>,

) -> Map<Iter<Field>, fn(&Field) -> __private::TokenStream> {

    fields.iter().map(|f| {

        let ty = &f.ty;

        quote! { pub #ty }

    })

}

fn generate_unnamed_output<'a>(

    struct_name: Ident,

    builder_fields:

    Map<Iter<'a, Field>, fn(&'a Field) -> __private::TokenStream>,

) -> quote::__private::TokenStream {

    quote!(

        pub struct #struct_name(

            #(#builder_fields,)*

        );

    )



}

#[proc_macro_attribute]

pub fn public(_attr: TokenStream, item: TokenStream)

    -> TokenStream {

    let ast = parse_macro_input!(item as DeriveInput);

    let name = ast.ident;

    let basic_output = match ast.data {

        // code for named fields structs

        Struct(DataStruct {

            fields: Unnamed(FieldsUnnamed { ref unnamed, .. }),

            ..

        }) => {

            let f = unnamed_fields_public(unnamed);

            generate_unnamed_output(name, f)

        }

        _ => unimplemented!("only works for structs"),

    };

    quote!(

        #basic_output

    ).into()

}

Instead of making the match output the fields, we now make it generate all
our code, because while we are in the match we now exactly what kind of
struct (named or unnamed) we are dealing with. That makes it easier to
generate the right kind of structure. The specific retrieval and transformation
logic has been moved to separate functions. This time we are using the
private TokenStream from quote to avoid the additional dependency. And
you can see why we said a collect could give you a nicer signature,
Map<Iter<'a, Field>, fn(&'a Field) →

quote::__private::TokenStream> is not great. Alternatively, you could go
for an impl Iterator, which we will do in subsequent chapters.

Make our macro handle enums. Two things to keep in mind. First, you
do not need to add pub to the fields (only to the enum), but you do have
to retrieve and re-add them (they are called variants under Enum,
DataEnum). Second, your code will now also have to decide whether it
has to return an enum or a struct.

Highlights of one possible solution (you can find the entire solution on



GitHub).

// imports and some functions

fn generate_enum_output(

        enum_name: Ident,

        variants: &Punctuated<Variant, Comma>

    ) -> __private::TokenStream {

    let as_iter = variants.into_iter();

    quote!(

        pub enum #enum_name {

            #(#as_iter,)*

        }

    )

}

pass:c,q[#[proc_macro_attribute]]

pub fn public(_: TokenStream, item: TokenStream) -> TokenStream {

    let ast = parse_macro_input!(item as DeriveInput);

    let name = ast.ident;

    let basic_output = match ast.data {

        // struct code

        Enum(DataEnum { ref variants, .. }) => {

            generate_enum_output(name, variants)

        },

        _ => unimplemented!("only works for structs and enums"),

    };

    quote!(

        #basic_output

    ).into()

}

The only thing that is different, is the location where we get our
fields/variants, and that we do not need to add any visibility modifiers to
those variants. Note the into_iter for the variants, since quote does not
know how to handle Punctuated as an iterable.

Keep the existing attributes of the struct instead of letting them
disappear. This requires little more than getting the attrs (attributes) of
our item and adding them above the struct. You might have to play
around with the quote syntax a bit. Just remember that - unlike before -



we do not need a comma to mark the end of an attribute.

Highlights of one possible solution (you can find the entire solution on
GitHub).

// imports and functions

#[proc_macro_attribute]

pub fn public(_: TokenStream, item: TokenStream) -> TokenStream {

    let ast = parse_macro_input!(item as DeriveInput);

    let name = ast.ident;

    let attributes = &ast.attrs;

    let basic_output = // create the output as before

    quote!(

        #(#attributes)*

        #basic_output

    ).into()

}

As you can see, this is quite easy: retrieve the attributes property from our
AST and add it, without comma, to the output as an iterable. If you are
absent-minded and add a comma to separate the attributes - e.g. #
(#attributes,)* - you will get a compile error: expected item after
attributes

Combine all of these exercises into a single solution!

See GitHub for the full solution. This brings everything we did earlier
together in one big macro.

// imports and functions

#[proc_macro_attribute]

pub fn public(_: TokenStream, item: TokenStream) -> TokenStream {

    let ast = parse_macro_input!(item as DeriveInput);

    let name = ast.ident;

    let attributes = &ast.attrs;

    let basic_output = match ast.data {

        Struct(DataStruct {

            fields: Named(FieldsNamed { ref named, .. }),

            ..



        }) => {

            let f = named_fields_public(named);

            generate_named_output(name, f)

        }

        Struct(DataStruct {

            fields: Unnamed(FieldsUnnamed { ref unnamed, .. }),

            ..

        }) => {

            let f = unnamed_fields_public(unnamed);

            generate_unnamed_output(name, f)

        }

        Enum(DataEnum { ref variants, .. }) => {

            generate_enum_output(name, variants)

        },

        _ => unimplemented!("only works for structs and enums"),

    };

    quote!(

        #(#attributes)*

        #basic_output

    ).into()

}

Using Punctuated::<Ident, Colon> is one way to parse the field, but
in the case of our public fields macro, there is an even simpler solution.
Just put everything in variables, as we did with Visibility, and pass
the useful things to StructField. Change our Parse implementation to
use this simpler parsing.

We remove the Punctuated bit and simply parse field after field. We do not
unwrap the colon since we do not need it, but it should always be there so
unwrapping and ignoring is a perfectly valid solution as well.

impl Parse for StructField {

    fn parse(input: ParseStream) -> Result<Self, syn::Error> {

        let _vis: Result<Visibility, _> = input.parse();

        let name: Ident = input.parse().unwrap();

        let _colon: Result<Colon, _> = input.parse();

        let ty: Ident = input.parse().unwrap();

        Ok(StructField {

            name,

            ty,

        })

    }



}



A.4 Chapter 5

Write a function-like macro to generate a struct method that prints 'hello
world'. It should only take the struct name as an input. Remember to
declare a struct with the given name in your application code.

Our macro code expects to receive an identifier - the struct name - so we ask
syn to parse that for us. Once we have the identifier, we can pass it to the
output.

// imports

#[proc_macro]

pub fn hello(item: TokenStream) -> TokenStream {

    let ast = parse_macro_input!(item as Ident);

    quote!(

        impl #ast {

            fn hello_world(&self) {

                println!("Hello world")

            }

        }

    ).into()

}

We do now need to create the struct ourselves in the application (main.rs).
And now we have created a method without passing in the entire struct.

use hello_world_only_name_exercise_macro::hello;

struct Example {

    another_value: String

}

hello!(Example);

fn main() {

    let e = Example {

        another_value: "does not disappear".to_string(),

    };

    e.hello_world();

}



Our 'private' macro creates convenience methods, but the fields can still
be public and directly accessible and our newly generated methods are
not public. Change the macro so that it sets all fields to private and
generates public methods. You can ignore the complexity of re-adding
the struct attributes and hardcode a new method (or just keep everything
in one file so visibility does not matter).

We now need to use the field information in multiple places. So we should
write a separate method to retrieve the field name and type.

fn get_field_info(ast: &DeriveInput) -> Vec<(&Ident, &Type)> {

    match ast.data {

        Struct(

            DataStruct {

                fields: Named(

                    FieldsNamed {

                        ref named, ..

                    }), ..

            }

        ) => named,

        _ => unimplemented!(

            "only works for structs with named fields"

        ),

    }

        .iter()

        .map(|f| {

            let field_name = f.ident.as_ref().take().unwrap();

            let type_name = &f.ty;

            (field_name, type_name)

        })

        .collect()

}

Now we use this information to generate our methods. The logic is almost the
same as before, except the input is now a &Vec<(&Ident, &Type)> (a
reference to the vector makes it easier to pass the field info to multiple
methods). And inside the map we get the field name and type from the tuple
we receive.

fn generated_methods(

        fields: &Vec<(&Ident, &Type)>

    ) -> Vec<TokenStream2> {



    fields

        .iter()

        .map(|f| {

            let (field_name, type_name) = f;

            let method_name =

                Ident::new(

                &format!("get_{field_name}"),

                Span::call_site()

            );

            quote!(

                pub fn #method_name(&self) -> &#type_name {

                    &self.#field_name

                }

            )

        })

        .collect()

}

Making our fields private is even easier than making them public.

fn generate_private_fields(

        fields: &Vec<(&Ident, &Type)>

    ) -> Vec<TokenStream2> {

    fields

        .iter()

        .map(|f| {

            let (field_name, type_name) = f;

            quote!(

                #field_name: #type_name

            )

        })

        .collect()

}

In our lib.rs file we create the struct anew in our output with the field info
we generated. We also have a hardcoded new method for creating our
Example. In the next chapter, we will look into generating real constructor
methods.

// imports

#[proc_macro]

pub fn private(item: TokenStream) -> TokenStream {

    // ast and name



    let fields = get_field_info(&ast);

    let output_fields = generate_private_fields(&fields);

    let methods = generated_methods(&fields);

    quote!(

        pub struct #name {

            #(#output_fields,)*

        }

        impl #name {

            pub fn new() -> Self {

                Example {

                    string_value: "value".to_string(),

                    number_value: 2,

                }

            }

            #(#methods)*

        }

    ).into()

}

Go look at the Token! source code and see what other tokens are
available. Try a different one for our composing macro and fix the
application code!

A selection of the available tokens:

"&"      pub struct And/1    /// bitwise and logical AND...

"&&"     pub struct AndAnd/2 /// lazy AND, borrow, references...

// ...

"!="     pub struct Ne/2     /// not equal

"!"      pub struct Not/1    /// bitwise and logical NOT...

"|"      pub struct Or/1     /// bitwise and logical OR...

"|="     pub struct OrEq/2   /// bitwise OR assignment

// ...

An exclamation mark might be fun. This is what changes in lib.rs. For fun
and profit, I am using the type (Not) that the Token macro will resolve to in
the struct definition. In parse, we are using Token!(!) to get the Not type.

use proc_macro::TokenStream;

use proc_macro2::Ident;

use quote::{quote, ToTokens};

use syn::{parse_macro_input, Token};



use syn::parse::{Parse, ParseStream};

use syn::punctuated::Punctuated;

use syn::token::Not;

struct ComposeInput {

    expressions: Punctuated::<Ident, Not>,

}

impl Parse for ComposeInput {

    fn parse(input: ParseStream) -> Result<Self, syn::Error> {

        Ok(

            ComposeInput {

                expressions: Punctuated::<Ident, Token!(!)>

                    ::parse_terminated(input).unwrap(),

            }

        )

    }

}

The code in our application changes slightly.

// imports and example functions

fn main() {

    let compose = compose!(add_one ! add_one ! stringify);

    println!("{:?}", compose(5));

}



A.5 Chapter 6

We never did write any white-box tests for structs that actually have
fields! So add one that runs against the final version of our code.

Here is a test for a struct with one field.

#[test]

fn builder_struct_for_one_field_struct_should_be_present_in_out() {

    let input = quote! {

        struct StructWithOneField {

            string_value: String,

        }

    };

    let expected = quote! {

        struct StructWithOneFieldBuilder {

            string_value: Option<String>,

        }

        impl StructWithOneFieldBuilder {

            pub fn string_value(mut self, input: String) -> Self {

                self.string_value = Some(input);

                self

            }

            pub fn build(self) -> StructWithOneField {

                StructWithOneField {

                    string_value: self.string_value

                      .expect(concat!("field not set: " , "string_value")),

                }

            }

        }

        impl StructWithOneField {

            pub fn builder() -> StructWithOneFieldBuilder {

                StructWithOneFieldBuilder {

                    string_value: None,

                }

            }

        }

    };

    let actual = create_builder(input);



    assert_eq!(actual.to_string(), expected.to_string());

}

We only wrote code for handling structs with named fields, not the
unnamed variety. So we should cover that failure case.

Add the code below to our tests/fails directory, next to build_enum.rs.
You can pick any name you want.

use builder_macro::Builder;

#[derive(Builder)]

pub struct Ano(String,i32);

fn main() {}

As before, after running it for the first time, you should check the error you
got back, which will look something like this:

┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈
error: proc-macro derive panicked

 --> tests/fails/build_anyonymous_struct.rs:4:10

  |

4 | #[derive(Builder)]

  |          ^^^^^^^

  |

  = help: message: not implemented: Only implemented for structs

┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈

In Rocket, you can add headers to functions that make them into
endpoints for calls. If you add #[get("/world")] and #[catch(404)] to
a function called world, you get an error that looks like this: […] What
could be causing this? Can you think of a way this issue might be
avoided?

When you have two (attribute) macros and get an error regarding a duplicate
definition, your first guess should be that both macros are generating custom
things (functions, structs, traits) in too broad a scope and these definitions are
colliding with each other. You can confirm your guess by expanding the
code, which will in this case reveal two structs named world being created. If
you remove one macro, one definition disappears. Clearly, each macro is
generating a single struct. You could also go digging through the code. At the



time of writing, you would end up in
core/codegen/src/attribute/route/mod.rs which has a function called
codegen_route. That function is outputting this code:

/// Rocket code generated proxy structure.

#vis struct #handler_fn_name {  }

Based on handler_fn_name you can guess that this struct has the same name
as the function that is annotated, i.e. 'world'. Mystery solved!

Depending on the context, there are several ways to avoid this issue, and we
have discussed most of them before. A more limited scope for the struct and
other elements that you are creating (i.e. putting them between {}) is a very
simple and useful solution, but it might not work depending on requirements
(where will the struct be used?).

Another option is making the name more unique and less likely to collide
with others. By keeping the name without upper-casing it ('world' instead of
'World' which is the standard naming convention for structs), the creators of
Rocket have at the very least made collisions with structs in the user’s code
base very unlikely. Unfortunately, using the name as a prefix or suffix will
not work in this case because even then the two macros will generate the
same name. Random suffixes would work, though in rare cases (depending
on uniqueness and bad luck) you will get very weird errors (when, once in a
blue moon, the supposedly unique suffixes turn out to be the same).

The most obvious solution, though, is a better error message. The macros
could check whether any other Rocket macros are present on the function. If
two Rocket macros for one function do not make sense, a custom error
should report this to the user. But creating custom errors is the topic for
another chapter.



A.6 Chapter 7

Rewrite the 'public fields' macro to mutate the incoming TokenStream
instead of creating a brand new one.

There are several solutions. What complicates matters a bit is that Data -
among others - does not implement Parse. FieldsNamed does, however, so
we put our public fields in curly braces so that we can parse them into
FieldsNamed. And we wrap the output in the correct Data struct, replacing
the existing data field of our AST (which has become mutable to make this
possible). We also set the visibility to public. In both cases, we make good
use of the Default trait. When that’s done, we can change it into a
TokenStream.

// imports

#[proc_macro_attribute]

pub fn public(_attr: TokenStream, item: TokenStream) -> TokenStream {

    let mut ast = parse_macro_input!(item as DeriveInput);

    let fields = // get fields if named, else throw panic

    let builder_fields = fields.iter().map(|f| {

        let name = &f.ident;

        let ty = &f.ty;

        quote! { pub #name: #ty }

    });

    let builder_fields_with_braces = quote!(

        {

            #(#builder_fields,)*

        }

    );

    ast.data = Data::Struct(DataStruct {

        struct_token: Default::default(),

        fields: Fields::Named(

            parse2(builder_fields_with_braces).unwrap()

        ),

        semi_token: None,

    });

    ast.vis = Visibility::Public(Default::default());



    ast.to_token_stream().into()

}

The resulting code is actually longer than the original code. But it is better at
keeping existing attributes.

Our function-like macro for generating methods throws unimplemented
for non-struct inputs. Use syn::Error instead. You can point to the span
of the name.

Here is one possible solution. In the case of an enum, we do a bit of extra
effort to help the user and point specifically to the 'enum token'. In other
cases, we point to the name of the invalid struct or union.

// imports and unchanged functions

fn get_field_info(ast: &DeriveInput)

    -> Result<Vec<(&Ident, &Type)>, syn::Error> {

    Ok(match ast.data {

        Struct(

            DataStruct {

                fields: Named(

                    FieldsNamed {

                        ref named, ..

                    }), ..

            }

        ) => named,

        Enum(ref d) => return Err(

            syn::Error::new(

                d.enum_token.span(),

                "does not work for enums"

            )

        ),

        _ => return Err(

            syn::Error::new(

                ast.ident.span(),

                "only works for structs with named fields"

            )

        ),

    }

        .iter()

        .map(|f| {

            let field_name = f.ident.as_ref().take().unwrap();

            let type_name = &f.ty;



            (field_name, type_name)

        })

        .collect())

}

#[proc_macro]

pub fn private(item: TokenStream) -> TokenStream {

    let ast = parse_macro_input!(item as DeriveInput);

    let name = &ast.ident;

    let fields = match get_field_info(&ast) {

        Ok(fields) => fields,

        Err(err) => return err.to_compile_error()

            .to_token_stream().into()

    };

    // more unchanged code

}

Now avoid the unimplemented with proc_macro_error.

One possible implementation. abort is sufficient because there is only one
place our code throws an error.

// imports and unchanged functions

fn get_field_info(ast: &DeriveInput) -> Vec<(&Ident, &Type)> {

    match ast.data {

        Struct(

            DataStruct {

                fields: Named(

                    FieldsNamed {

                        ref named, ..

                    }), ..

            }

        ) => named,

        Enum(ref d) => abort!(

                d.enum_token, "Does not work for enums!".to_string();

                help = "This macro can only be used on structs"

        ),

        _ => abort!(

            ast.ident,

            "Only works for structs with named fields".to_string()

        ),

    }

        .iter()



        .map(|f| {

            let field_name = f.ident.as_ref().take().unwrap();

            let type_name = &f.ty;

            (field_name, type_name)

        })

        .collect()

}

#[proc_macro_error]

#[proc_macro]

pub fn private(item: TokenStream) -> TokenStream {

    // unchanged

}

Expand our 'panic checks' to also transform panics into while
expressions.

This is relatively easy, just add a check for Expr::While and get the
statements from body. At this point, you probably want to extract part of the
map logic, which is identical to the one for Expr::If. (And IDE tools can do
this refactoring for you.)

fn handle_expression(expression: Expr, token: Option<Semi>) -> Stmt {

    match expression {

        Expr::If(mut ex_if) => {

            // same code as before

        },

        Expr::While(mut ex_while) => {

            let new_statements: Vec<Stmt> = ex_while.body.stmts

                .into_iter()

                .map(|s| match s {

                    Stmt::Macro(ref expr_macro) => {

                      let output = extract_panic_content(expr_macro);

                      if output.map(|v| v.is_empty()).unwrap_or(false) {

                          emit_error!(

                            expr_macro, "panic needs a message!"

                                .to_string();

                            help = "try to add a message: panic!(...)";

                            note = "we will add the message to Result's Err"

                          );

                          s

                      } else {

                          extract_panic_content(expr_macro)

                            .map(|t| quote! {



                                    return Err(#t.to_string());

                                })

                            .map(parse2)

                            .map(Result::unwrap)

                            .unwrap_or(s)

                      }

                    }

                    _ => s

                })

                .collect();

            ex_while.body.stmts = new_statements;

            Stmt::Expr(Expr::While(ex_while), token)

        },

        _ => Stmt::Expr(expression, token)

    }

}

Here is some code to test our changes. What’s important is that our while
does not end with a semicolon. If it does, a panic will still be thrown, because
we are specifically checking on while expressions, not statements.

use panic_to_result_macro::panic_to_result;

#[derive(Debug)]

pub struct Person {

    name: String,

    age: u32,

}

#[panic_to_result]

fn create_person_while_loop(name: String, age: u32) -> Person {

    while true {

        panic!("strange failure");

    }

    Person {

        name,

        age,

    }

}

fn main() {}

#[cfg(test)]

mod tests {

    use super::*;



    #[test]

    fn should_err_on_while_loop() {

        let actual = create_person_while_loop("S".to_string(), 32);

        assert_eq!(

            actual.expect_err("This should be an err"),

            "strange failure".to_string()

        );

    }

}



A.7 Chapter 8

In our rename discussion, we used a simple name for our attribute.
However, some libraries specify the crate name within the attribute and
have the specific command wrapped inside parentheses. For example #
[serde(rename = "name")]. Rewrite our #[rename("...")] to instead
use #[builder(rename = "...")].

By using #[builder(rename = "...")] it is much clearer that this attribute
is specific to the builder macro. We start by adding attributes(builder) to
our macro.

#[proc_macro_derive(Builder, attributes(builder))]

pub fn builder(item: TokenStream) -> TokenStream {

    create_builder(item.into()).into()

}

The only other change is in builder_methods, where we will replace our
existing mapping. We use parse_nested_meta, check whether we have a
rename attribute, and extract the string, while ignoring the equal sign.

// imports, other code

pub fn builder_methods(fields: &Punctuated<Field, Comma>)

    -> Vec<TokenStream> {

    fields.iter()

        .map(|f| {

            let (field_name, field_type) = get_name_and_type(f);

            let attr = extract_attribute_from_field(f, "builder")

                .map(|a| {

                    let mut content = None;

                    a.parse_nested_meta(|m| {

                        if m.path.is_ident("rename") {

                            let _: Token![=] = m.input.parse().unwrap();

                            let name: LitStr = m.input.parse().unwrap();

                            content = Some(Ident::new(&name.value(),

 name.span()));

                        }

                        Ok(())

                    }).unwrap();

                    content.unwrap()



                });

            // if let... unchanged

        }).collect()

}

This is quite similar to Serde, except that code is longer and uses some lower-
level things like lookahead. We showed from_ast in the 'real world' section
of this chapter. If you follow get_multiple_renames, this is its
implementation:

fn get_ser_and_de<'c, T, F, R>(

    cx: &'c Ctxt,

    attr: Symbol,

    meta: &ParseNestedMeta,

    f: F,

) -> syn::Result<(VecAttr<'c, T>, VecAttr<'c, T>)>

// where clause

{

    let mut ser_meta = VecAttr::none(cx, attr);

    let mut de_meta = VecAttr::none(cx, attr);

    let lookahead = meta.input.lookahead1();

    if lookahead.peek(Token![=]) {

        if let Some(both) = f(cx, attr, attr, meta)?.into() {

            ser_meta.insert(&meta.path, both.clone());

            de_meta.insert(&meta.path, both);

        }

    } else if lookahead.peek(token::Paren) {

        meta.parse_nested_meta(|meta| {

            if meta.path == SERIALIZE {

                if let Some(v) = f(cx, attr, SERIALIZE, &meta)?.into() {

                    ser_meta.insert(&meta.path, v);

                }

            }

            // more conditionals

            Ok(())

        })?;

    } else {

        return Err(lookahead.error());

    }

    Ok((ser_meta, de_meta))

}

What we did is quite similar to the first if branch, except we did not need to
peek to see whether we had an equals sign. We just threw an error if the



format did not match our expectations.

Our default assertions generated a warning about naming conventions
type __notDefaultAssertion should have an upper camel case

name. Fix that warning.

This is a minor change. We turn the name in optional_default_asserts into
a string, uppercase it, and give it to format_ident. The change also solves
another minor 'bug': the warning was pointing back to the offending field
because we were passing its identifier (including its span) to format_ident.
That might be confusing to users, who do not need to be aware of the
existence of these additional structs.

pub fn optional_default_asserts(fields: &Punctuated<Field, Comma>)

    -> Vec<TokenStream> {

    fields.iter()

        .map(|f| {

            let name = &f.ident.as_ref().unwrap().to_string();

            let mut c = name.chars();

            let uppercased_name = c.next().unwrap().to_uppercase().

collect::<String>() + c.as_str();

            let ty = &f.ty;

            let assertion_ident = format_ident!("__{}DefaultAssertion",

 uppercased_name);

            quote_spanned! {ty.span()=>

                struct #assertion_ident where #ty: core::default::Default;

            }

        })

        .collect()

}

Add an 'uppercase' field-level attribute to our builder project, which will
uppercase String types. As an extension, you could return an
informative (syn?) error when the attribute is used on a field that is not
a String.

(Based on our project after adding defaults.) Here is a test for the happy path:

#[test]

fn should_uppercase_the_attribute() {

    #[derive(Builder)]



    struct Gleipnir {

        #[uppercase]

        roots_of: String,

    }

    let gleipnir = Gleipnir::builder()

        .roots_of("upper".to_string())

        .build();

    assert_eq!(gleipnir.roots_of, "UPPER".to_string());

}

We have to add the attribute to our macro entry point.

#[proc_macro_derive(Builder, attributes(

[CAbuilder_defaults,rename,uppercase))]]

pub fn builder(item: TokenStream) -> TokenStream {

    create_builder(item.into()).into()

}

To change our eventual output, we should expand
original_struct_setters where we will check for the 'uppercase' attribute.
If this attribute is present and the field is a String (we use a helper from a
previous chapter to verify this), we do a to_uppercase on our optional value.
If we have the attribute but the type is not a string, we return a syn::Error.
In all other cases, there’s nothing extra to do, so we return an empty stream.
Finally, we have to append the uppercase mapping to our output, before the
error handling. As we noted in an earlier chapter, our Vec<Result> is
automatically transformed to Result<Vec>, which is convenient.

pub fn original_struct_setters(

        fields: &Punctuated<Field, Comma>,

        use_defaults: bool) -> Result<Vec<TokenStream>, syn::Error> {

    fields.iter().map(|f| {

        let (field_name, field_type) = get_name_and_type(f);

        let field_name_as_string = field_name

            .as_ref().unwrap().to_string();

        let uppercase_attr = extract_attribute_from_field(

            f,

            "uppercase"

        );

        let to_add = if uppercase_attr.is_some()



                && matches_type(field_type, "String") {

            quote! {

                .map(|v| v.to_uppercase())

            }

        } else if uppercase_attr.is_some() {

            return Err(

                syn::Error::new(field_name.span(),

                "can only use uppercase for String type"

            ));

        } else {

            quote!()

        };

        let handle_type = if use_defaults {

            default_fallback()

        } else {

            panic_fallback(field_name_as_string)

        };

        Ok(quote! {

            #field_name: self.#field_name #to_add.#handle_type

        })

    })

        .collect()

}

Now all that is left is to handle the potential Err in lib.rs.

let set_fields = match original_struct_setters(fields, use_defaults) {

    Ok(setters) => setters,

    Err(err) => return err.to_compile_error().to_token_stream()

};

The test should turn green.



A.8 Chapter 9

Try to improve the input modeling. As discussed, it should be easier for
users of IacInput to know that we have a bucket event. Optionally, you
can also rework the creation of infrastructure using the new IacInput.

All relevant changes are in input.rs and lib.rs. input.rs is up first. The
Bucket and Lambda structs are unchanged, except that we have made
has_event private. While we still need that property internally, other parts of
our code won’t get access anymore.

IacInput has become an enum with two variants: Normal, which is a bucket,
lambda, both, or nothing, and EventBucket, which is when we have a bucket
linked with a lambda. In the latter situation, we know we have a bucket and
lambda, so no option wrappers are required.

#[derive(Debug)]

pub enum IacInput {

    Normal(Option<Bucket>, Option<Lambda>),

    EventBucket(Bucket, Lambda),

}

has_resources has changed, in that we now use pattern matching. And its
logic is now slightly simpler: if we have the EventBucket variant, we know
we have resources. When we have a Normal with no properties, we do not
have any. In every other situation, we return true. The wild card is
convenient, though not without risks: if we add another variant that might not
have resources, we still return true and the compiler will not warn us.

impl IacInput {

    pub fn has_resources(&self) -> bool {

        match self {

            IacInput::EventBucket(_, _) => true,

            IacInput::Normal(None, None) => false,

            _ => true,

        }

    }

}



In Parse, we were already checking the has_event field to see if we also had
a lambda. Now, when we do not throw an error, we return the EventBucket
variant and unwrap the bucket and lambda. We already verified their
existence, so we can use expect.

impl Parse for IacInput {

    fn parse(input: ParseStream) -> Result<Self, syn::Error> {

        // bucket and lambda variables

        // unchanged logic for finding the bucket and lambda

        if bucket.as_ref().map(|v| v.has_event).unwrap_or(false) {

            return if lambda.is_none() {

                Err(syn::Error::new(

                    input.span(),

                    "a lambda is required for an event ('=>')"

                ))

            } else {

                Ok(IacInput::EventBucket(

                    bucket.expect("only here when bucket exists"),

                    lambda.expect("just checked that this exists"),

                ))

            };

        }

        Ok(IacInput::Normal(bucket, lambda))

    }

}

Next, lib.rs and the changed create_infra method. (I have left out the
println statements because they are not relevant.) The number of lines of
code has not really changed, but in the EventBucket situation, things are now
much simpler because we know we have a bucket, lambda, and event. If we
have a Normal variant, we also have fewer situations to think about. I have
kept the if let, but you could replace that with additional pattern matching.
Plus, we managed to get rid of the mutable output variable that was used to
store the optional lambda output.

async fn create_infra(iac_input: IacInput) -> Result<(), IacError> {

    let s3_client = S3Client::new().await;

    let lambda_client = LambdaClient::new().await;

    match iac_input {

        IacInput::Normal(bucket, lambda) => {

            if let Some(lambda) = lambda {

                lambda_client.create_lambda(&lambda).await?;



            }

            if let Some(bucket) = bucket {

                s3_client.create_bucket(&bucket).await?;

            }

        },

        IacInput::EventBucket(bucket, lambda) => {

            let output = lambda_client.create_lambda(&lambda).await?;

            s3_client.create_bucket(&bucket).await?;

            let lambda_arn = output.function_arn()

                .expect("creating a lambda should return its ARN");

            lambda_client.add_bucket_permission(&lambda, &bucket.name)

                .await?;

            s3_client.link_bucket_with_lambda(&bucket, &lambda_arn)

                .await?;

        }

    }

    Ok(())

}

Consider splitting up the Normal variant into a None, Lambda, Bucket, and
LambdaAndBucket. It will make creating the infrastructure much simpler,
though this approach will probably not scale if you add a lot of resource,
since you will have an explosion of possible variants.

Suggest the right resource (or property) when you cannot find a match.
E.g. when you type 'buck', the error should suggest 'bucket'. One option
is to use Levenshtein distance.

We will use the code from before we added the AWS SDK because our
solution only requires our parsing functionality.

First, add this dependency to the macro:

edit-distance = "2.1.0"

All our changes are scoped to the IacInput Parse implementation.
Specifically the else if !input.is_empty(), where we have something that
is not a bucket or lambda.

First, we try to parse the input as an Ident, defaulting to the original error
when we encounter issues. If the parse works, we can get the string



representation of the identifier and compare its distance to the keywords. We
won’t return messages when the distance is very large, because it does not
make sense to suggest one of our two keywords when the input has
absolutely nothing in common with either.

When we do have one or more valid suggestions, we take the one with the
lowest distance to the input and add that to our error message as a suggestion.
Note that we use the span of the identifier within the Ok branch because that
is exactly what our macro is having issues with.

match input.parse::<Ident>() {

    Ok(remainder) => {

        let remainder_as_string = remainder.to_string();

        let distance_to_bucket = edit_distance(

            "bucket",

            &remainder_as_string

        );

        let distance_to_lambda = edit_distance(

            "lambda",

            &remainder_as_string

        );

        if distance_to_bucket > 10 && distance_to_lambda > 10 {

            return Err(syn::Error::new(

                remainder.span(),

                "only 'bucket' and 'lambda' resources are supported"

            ));

        }

        let suggestion = if distance_to_bucket > distance_to_lambda {

            "lambda"

        } else {

            "bucket"

        };

        return Err(syn::Error::new(

            remainder.span(),

            format!("only 'bucket' and 'lambda' resources are supported. \

                Is this a typo for {}?", suggestion

        )));

    }

    Err(_) => {

        // original error

    }

}



A possible improvement to the above code would be to extract a helper to
build the error since we now have three places where it is being used, and
they are all very similar.

Currently, our code fails when the resources we added already exist.
Skip creation when you detect that that is unnecessary.

We need to change s3.rs and lambda.rs to check for resource existence.
The Lambda SDK has a get_function call, so we add it and only create the
lambda if we get back an error.

We are ignoring the very real possibility that the error might be caused by a
lot of things besides the function not existing. In most cases, this is fine: if
there is an error, it will probably show up when we try to create the resource.
One error case that can cause real bugs, is the user not having the required
permissions to list or read functions, while still having permission to create
them! In that unlikely case, the code will always try to create the resource!

When the function exists, we could check the memory and time
configuration, updating it if necessary with
update_function_configuration(). Which is probably the behavior a user
would expect.

Finally, we are now returning a string instead of a CreateFunctionOutput,
because we no longer have this output when the resource already exists.
Instead, we return the ARN, which is what we actually need.

pub async fn create_lambda(&self, lambda: &Lambda)

        -> Result<String, SdkError<CreateFunctionError>> {

    match self.client.get_function()

        .function_name(&lambda.name)

        .send()

        .await {

            Err(_) => {

                let builder = self.create_lambda_builder(&lambda);

                let output = builder.send().await?;

                Ok(output.function_arn()

                    .expect("a new function to have an ARN")

                    .to_string())

            },

            Ok(output) => {



                eprintln!("function exists, skipping creation");

                Ok(output.configuration()

                    .expect("function output to have a configuration")

                    .function_arn()

                    .expect("an existing function to have an ARN")

                    .to_string())

            }

    }

}

For buckets, we do not have a 'get' call in the SDK. So instead we list the
buckets and check whether our name is in there.

We are again ignoring a few failure cases like missing 'list buckets'
permissions and accounts with so many buckets that a single call won’t
retrieve all of them. The latter is a bit unlikely because of the (soft) AWS
limit on the number of buckets. Also, our return type has once again changed.
This time to a unit type, since we don’t use the output.

pub async fn create_bucket(&self, bucket: &Bucket)

        -> Result<(), SdkError<CreateBucketError>> {

    let bucket_output = self.client.list_buckets().send().await

        .expect("listing buckets to work");

    let buckets = bucket_output.buckets();

    let bucket_names: Vec<String> = buckets.iter()

        .map(|b| b.name().expect("bucket to have a name").to_string())

        .collect();

    if bucket_names.contains(&bucket.name) {

        eprintln!("bucket exists, skipping creation");

    } else {

        let constraint = BucketLocationConstraint::from(

            self.region.as_str()

        );

        let cfg = CreateBucketConfiguration::builder()

            .location_constraint(constraint)

            .build();

        self.client.create_bucket()

            .bucket(&bucket.name)

            .create_bucket_configuration(cfg)

            .send()

            .await?;

    };

    Ok(())



}

With the clients in order, create_infra requires a slight change because of
the changed create_lambda return type. Instead of unwrapping the output
and retrieving the function ARN, we can just unwrap the optional.

async fn create_infra(iac_input: IacInput) -> Result<(), IacError> {

    let s3_client = S3Client::new().await;

    let lambda_client = LambdaClient::new().await;

    let mut output = None;

    if let Some(lambda) = &iac_input.lambda {

        output = Some(lambda_client.create_lambda(lambda).await?);

    }

    if let Some(bucket) = &iac_input.bucket {

        s3_client.create_bucket(bucket).await?;

        if bucket.has_event {

            let lambda_arn = output

                .expect("when we have an event, we should have a lambda");

            let lambda = iac_input.lambda

                .expect("when we have an event, we should have a lambda");

            lambda_client.add_bucket_permission(&lambda, &bucket.name)

                .await?;

            s3_client.link_bucket_with_lambda(bucket, &lambda_arn)

                .await?;

        }

    }

    Ok(())

}

Two cargo run commands with the same macro input should now show the
creation of the lambda, followed by skipping creation because it already
exists. What’s nice, is that the event can still be created even if the bucket and
lambda already exist. But running it an additional time, will cause a
complaint about the statement id already existing (you may remember we
hardcoded that particular id). To fix that, you have to check the bucket
configuration (get_bucket_notification_configuration()) to see if the
configuration for our lambda ARN is already present.

Make it possible to add another kind of resource (from AWS, or maybe



from another cloud provider!) to the iac macro. (Note: there is no
solution for this exercise.)

What are you looking in here for? I already told you there is no solution for
this exercise! But if you want something simple, try adding another AWS
resource like SQS, which has very few required properties. Add any optional
properties you like (maybe FIFO as a boolean?).



A.9 Chapter 10

Make sure that we can accept both 'path' and 'exclude' as macro
properties.

Our starting point is the project before we added documentation. Everything
we need to change is in input.rs. Instead of an if-else, we use while to
loop as long as the stream is not empty. We save both the path and
exclude_from in mutable values, adding them to the return value once we are
done looping.

We’ve chosen to support traits without a separator (#[config_struct(path
= "./a/config.yaml" exclude = "from")]). If we wanted a separator, we
could instead turn to Punctuated.

impl Parse for ConfigInput {

    fn parse(input: ParseStream) -> syn::Result<Self> {

        let mut path = None;

        let mut exclude_from = None;

        while !input.is_empty() {

            if input.peek(kw::path) {

                // parse the path, the equals sign, and the string

                path = Some(value.value());

            } else if input.peek(kw::exclude) {

                // parse the path, the equals sign, and the string

                exclude_from = Some(value.value() == "from");

            } else {

                // error

            }

        }

        Ok(ConfigInput {

            path,

            exclude_from: exclude_from.unwrap_or(false),

        })

    }

}

Instead of adding 'exclude' to our attribute macro, try to use a feature.



Here too, our starting point is the code before we added documentation.

Getting rid of the exclude means making some changes to lib.rs, input.rs
and struct_output.rs. Other than that, we need to change our macro’s
Cargo.toml to add the additional feature.

[features]

struct = []

from = []

In struct_output.rs we add one generate_from_method that will be
compiled when the feature is active, and one that returns an empty token
stream when it is not: #[cfg(not(feature = "from"))]. In
generate_annotation_struct we call the generate function. Depending on
the situation, either a From implementation or an empty stream will be added
to our output.

// imports and other generate functions

#[cfg(feature = "from")]

fn generate_from_method(

        name: &Ident,

        yaml_values: &HashMap<String, String>

    ) -> TokenStream {

    let inserts = generate_inserts_for_from(yaml_values);

    quote! {

        impl From <#name> for std::collections::HashMap<String,String> {

            fn from(value: #name) -> Self {

                let mut map = std::collections::HashMap::new();

                #(#inserts)*

                map

            }

        }

    }

}

#[cfg(not(feature = "from"))]

fn generate_from_method(

        _name: &Ident,

        _yaml_values: &HashMap<String, String>

    ) -> TokenStream {

    quote!()

}



pub fn generate_annotation_struct(

        input: DeriveInput,

        yaml_values: HashMap<String, String>

    ) -> TokenStream {

    let attributes = &input.attrs;

    let name = &input.ident;

    let fields = generate_fields(&yaml_values);

    let inits = generate_inits(&yaml_values);

    let from = generate_from_method(name, &yaml_values);

    quote! {

        #(#attributes)*

        pub struct #name {

            #(#fields,)*

        }

        impl #name {

            pub fn new() -> Self {

                #name {

                    #(#inits,)*

                }

            }

        }

        #from

    }

}

It’s a slightly different way of thinking than our previous 'exclude'
implementation. But it is equally elegant, and simple to implement thanks to
the built-in support for features.
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