




The Design of Web APIs, Second Edition

1. welcome
2. 1_What_is_API_design?
3. 2_Analyzing_needs
4. 3_Observing_operations_from_the_REST_angle
5. 4_Representing_operations_with_HTTP
6. 5_Modeling_data
7. index



welcome
Thank you for purchasing The Design of Web APIs, Second Edition.

Web APIs are everywhere; we use them all the time, often without even
realizing it. Whether sharing a photo on social media or hailing a ride through
an app, web APIs are crucial in making it happen. For developers, APIs are
essential as most modern systems rely on multiple software components
communicating with each other. We need them to build simple web
applications to complex distributed systems. APIs are also products in their
own right, as exemplified by Stripe or Twilio. Even government agencies rely
on APIs to power their digital services.

The design quality is crucial for web APIs, whether seen as technical
interfaces or products, used by a single application or multiple, or created for
internal use or third-party. Poorly designed public or private APIs can harm
developers' productivity, system performance and integrity, end-users
experience, and organization’s revenue.

This book aims to help you develop an API designer’s mindset and design
exceptional web APIs, specifically REST APIs. In these chapters, we will
explore the true nature of API design as both a result and a process. We will
learn how to analyze and evaluate requirements to identify the API
capabilities, discover HTTP and REST, and understand how to use them to
represent these capabilities. We will discuss how to create interoperable and
user-friendly APIs, ensuring that anyone can instantly use the API’s data and
operations. We will also learn how to integrate various constraints, especially
security, into our design. Additionally, we will focus on handling
modifications and preventing breaking an API design unintentionally or
breaking it intentionally when it makes sense. Furthermore, we will learn
how to become efficient API designers by learning various principles and
recipes for making design decisions when faced with new problems. We will
learn to convince others (and ourselves) that our design decisions are correct.

I am writing the second edition of this book to address what was not working



well in the first edition and expand it. I also reorganize the content to make it
easier to follow and integrate new ideas and feedback received from readers.
I am keeping the spirit of the first edition but rewriting everything. In a way,
this is almost a new book. Your feedback is essential to make this new
edition the best companion on your journey of API design; I hope you’ll add
your comments to the Livebook discussion forum.

— Arnaud Lauret

In this book

welcome 1 What is API design? 2 Analyzing needs 3 Observing operations
from the REST angle 4 Representing operations with HTTP 5 Modeling data



1 What is API design?
This chapter covers

Explaining what web APIs are
Realizing the importance of the design of web APIs
Clarifying who designs web APIs, which ones should be designed, and
when
Comprehending the purpose of web API design
Overviewing the web API design process

What magic allows us to share pictures on social media, check bank balances,
and hail cabs from our phones? How can developers quickly add telecom or
payment services to their apps without expertise? What do basic web or
mobile apps need to display data to users? Web application programming
interfaces or APIs.

Web APIs are essential in our connected world as they serve as technical
interfaces or products for various systems, organizations, and companies,
from small startups to large corporations and government entities. API design
is crucial for the success of any system, whether its APIs are visible or
hidden. Poorly designed APIs can negatively impact developers' productivity,
the system’s performance and integrity, end-users experience, and revenue.

Learning web API design requires a shared understanding of API and design
concepts. This chapter covers the different aspects of web APIs, the
importance of their design, and who designs them. It also provides an
overview of the API design process and our approach that separates concerns
to facilitate learning and execution.

1.1 What is a web API?

Web APIs are software interfaces that allow remote communication between
applications. They are invaluable because they don’t require knowledge of



the underlying code; anyone can use them, not just their creators.

1.1.1 A remote web interface for applications

A web API enables one application (the server, backend, or provider) to
expose functions or operations that other applications (the client or
consumer) can use, call, or consume remotely over a network using web
technologies. For example, many mobile applications rely on a remote server
application accessible via the internet and its web API to retrieve, send, or
process data.

Figure 1.1 Using the Socnet mobile application



Figure 1.1 shows what happens when a user of the Socnet social network
shares a photo via its mobile application. The user takes a photo, types a
message, and taps the "Share" button. The mobile application calls the
"Share" operation of the server application’s web API to send the message
and the photo via the internet network. The server application identifies the
user’s friends in the photo and stores the message, the identified friends, and
the photo. Other users of the Socnet mobile application can see the shared
messages, photos, and identified people on their timelines thanks to a call to
the "Timeline" operation of the same web API.



When a mobile application communicates with a server application via its
web API, it leverages the same mechanism as when a web browser retrieves
and displays an HTML page of a basic website. That’s the origin of the
"web" in web APIs.

Note

There are different types of web APIs, such as REST, SOAP, GraphQL, and
gRPC. No worries if those names mean nothing to you; this book focuses on
REST web APIs, but many principles presented here apply to other web
APIs. What is a REST API and why we focus on it will be explained in later
chapters.

Web APIs can be exposed on any network and consumed by any application.
Socnet can use the same API in their web application, create a batch server to
regularly call the timeline operation, and expose the next API version on their
local network for quality checks before deploying to production.

1.1.2 An interface to an implementation

We often use "web API" as a convenient shortcut to designate an application
exposing an API. However, the "web API" is only a part of it. Reading this
book, we should not confound the web API with the application’s
implementation or actual code. A web API is an interface to an
implementation and usually hides implementation details.

Figure 1.2 Comparing a restaurant and an application exposing a web API



As shown in figure 1.2, we can compare an API and its implementation to a
restaurant. The API is the waitperson who takes your order and brings it back
to you. The implementation is what happens in the kitchen. You don’t need to
know who is in the kitchen, the recipe, its ingredients, how it’s cooked, and
even if it’s cooked there. You just need to know that you’ll get the dish you
ordered.

The Socnet mobile developers code what happens on a tap of the "share"
button without knowing what happens behind the API. Knowing which
database is used, how data is organized, or which face detection algorithm is



useless to them. They only need to code the API call, providing the expected
data, and the API implementation takes care of the rest.

1.1.3 An interface for others

The fact that someone coding an application using a web API doesn’t need to
know how it is implemented has exciting consequences: it enables
collaboration within an organization and allows people outside the
organization to use and even pay for APIs.

At Socnet, three teams efficiently develop the backend API, mobile app, and
website with minimal need for synchronization or shared knowledge. The
mobile and web teams only need to know the services or features provided by
the backend API, not how it is coded. To deliver a robust face detection
feature, the backend API team leveraged the "Face Detection API" from
"Image Processing As A Service" (for which they pay a subscription).
Additionally, Socnet set up a "Search API" for selected partners willing to
pay for access to more data.

Figure 1.3 What is an internal, external, private, partner, or public API?



The APIs involved here represent three levels of API openness (or closeness):
private (Backend API), partner (Search API), and public (Face Detection
API). Internal and external may be used to qualify private and partner/public
APIs, respectively. These terms may also indicate that an API is exposed on a
local network or the internet. Figure 1.3 shows two tables disambiguating all
these terms.

Most web APIs are private, and there are millions of them, as any company
with an IT system will need them. While many are consumed by those who
create them, others across the organization often use them.



Many organizations use partner or public APIs from others, which may be
qualified as products, and their access is often paid. These APIs could be
exposed by commercial or open-source software installed on their
infrastructure. Increasingly, companies offer "as-a-service" products
accessible via websites, mobile apps, and APIs, and sometimes the API is the
only channel. Examples include payroll, retail, financial services, payments,
telecommunications, project management, development, and cloud
infrastructure. Even not-so-digital companies and government agencies offer
partner or public APIs. Whatever we need, "There’s an API for that."

1.2 Why does API design matter?

The term "design" can designate both the process we go through to decide
what an API does, how it does it, and how it looks like and the final result,
the API itself. As a result, the design of a web API matters because it affects
its consumers and provider. This section leverages a real-world analogy to
demonstrate how. Then, it explains how this applies to web APIs and why
designing them well is essential.

1.2.1 The design of any interface affects its users and creator

Figure 1.4 shows a Kitchen Radar. What is it, and how to operate it? Its
interface doesn’t help us figure this out. Pushing the "MAG." button seems to
start it, but it stops when we release it.

Figure 1.4 The Kitchen Radar



According to the user manual, shown in figure 1.5, The Kitchen Radar,
named "Radar" for historical reasons, can heat food. The "MAG." button
turns the magnetron on and off. When on, microwaves heat the food in the
oven’s cavity. To modulate the heating power, users must hold the button for
a given time (e.g., 13 seconds) and release it for the same time, as indicated
in the "Heating power cheat sheet."

This Kitchen Radar is a microwave oven proposing a terrible user experience
despite the user manual, thanks to its cryptic, inside-out, and absurd interface.
It requires users to become experts in magnetrons and time themselves



pushing and releasing the button. It’s complicated and annoying to use. And
there may be reliability and safety issues. How will the magnetron and
overall circuitry react to being turned on and off at a random or too high-
speed rate? Ultimately, who would buy this product?

Figure 1.5 The Kitchen Radar’s user manual

1.2.2 The design of any web API affects both consumers and
provider



The design of the "Kitchen Radar" interface is an exaggeration of the worst
possible flaws you could find in an everyday object. And yet, I’ve come
across private, partner, or public APIs whose designs look like this; they were
hard to understand or use or were exposing inner workings. Such API designs
negatively impact consumers and providers.

If an API is hard to understand, its purpose and features unclear, developers
may spend extra time integrating it, making more errors, and asking many
questions. Potential users may pass by if the API is partner or public, leading
to less revenue for the provider.

APIs that are easy to understand can still be hard to use. Developers may
spend extra time writing code to orchestrate complex API call flows,
resulting in more errors. Due to this complexity, they may make many API
calls, leading to unexpected extra load and costly cloud infrastructure billing.
If the API is public or partner-based, users may cancel their subscription
when they realize how complicated it is.

An API design exposing the implementation’s inner workings is often hard to
use and understand. But more than that, it creates tight coupling between
applications, prolongs modification, and augments the risk of errors or
crashes.

1.2.3 Taking care of design unleashes the power of APIs

Taking care of web API design prevents the previous section’s issues and
unleashes their power. Here are some benefits you may witness:

Better developer productivity: Well-designed APIs are much easier to
understand and use. Additionally, they offer greater flexibility and
interoperability, requiring less effort to interpret their data. Developers
can integrate them into their applications quickly and with minimal
code. 
More modular and efficient systems: Well-designed APIs allow the
creation of decoupled systems where the applications consuming and
providing APIs have limited dependencies. They may also contribute to
reducing infrastructure usage. 



Faster time to value: Developers can achieve their goals quickly by
using well-designed APIs that are versatile and reusable in various
contexts, allowing for creating innovative solutions without rebuilding
everything.
Better end-user experience: Well-designed APIs provide features
efficiently and flexibly that can contribute to creating an outstanding
experience for the end-users of the applications using them.
More API-generated value: Well-designed APIs can increase indirect
and direct value by reducing development costs and increasing revenue
through customer satisfaction.

1.3 Who designs web API?

API design matters, but who can design web APIs? You! But probably not
alone. API design requires diverse skills and knowledge, often resulting from
different people’s work. Those with API design skills, IT and subject-matter
knowledge, and influence can all contribute directly or indirectly to the
design of an API.

1.3.1 Those with API design skills

API designers lead the discussions and hold the pen when designing web
APIs. They come from various backgrounds and have different skill sets. I’ve
worked with, advised, and trained API designers from various profiles,
including developers, tech leads, architects, business analysts, tech writers,
QA engineers, product managers, and product owners. Some started as
juniors, while others began after long careers.

While having a thorough understanding of the subject matter and software is
undoubtedly an advantage, it is not a requirement for designing APIs. As an
API designer, you only need to know the fundamental principles of API
design and how to get the necessary information. This book will teach you
that.

1.3.2 Those with subject-matter knowledge



APIs solve specific problems like social networking, banking, product
catalogs, or database as a service system administration. As an API designer,
you don’t need to be an expert in the subject matter. Like when creating any
application, by interviewing SMEs (subject matter experts), you can ensure
your API accurately represents the business domain and its problems.

1.3.3 Those with software knowledge

Web APIs are programming interfaces for software. Designing one requires
familiarity with web API-based systems and specific knowledge about the
system that will expose the API.

Knowing the principles, practices, and limitations of web API-based software
in general and web and mobile applications, in particular, will significantly
help design realistic, implementable, and technically usable APIs. For
example, some API design patterns may kill a smartphone battery, and others
can make an API more effortless to use across many systems. We’ll uncover
the typical general software concerns you should consider when designing an
API and how to avoid or mitigate them in your designs.

Knowing the system behind a web API can be helpful. For instance, if the
application responsible for detecting faces takes a minute to identify people
in a photo, this should be considered when designing the API. We’ll learn the
right questions to ask technical leads and architects to uncover such details
and how to leverage this knowledge sensibly to avoid revealing internal
workings.

1.3.4 Those with influence

An API will be the result of a sum of various influences. As an API designer,
you’ll have some control over some of these, while others are out of your
hands. Even the most knowledgeable API designers must consider feedback
from peers, reviewers, security teams, and, most importantly, consumers.
Knowing how to integrate feedback is vital to creating an API that satisfies
all parties involved.

1.4 When designing web APIs?



API design is an essential task that requires careful consideration. When to
undertake this task is a question that often arises. Should we design all APIs?
Should modifications to APIs also be designed? When is the best time to
design an API? The answer is simple: we should design all types of APIs,
such as internal, external, private, partner, or public APIs, as well as any
modifications to web APIs. Moreover, we must prioritize API design before
developing the implementation.

1.4.1 When creating any API

Should we only design partner or public APIs because they are more visible
than private ones? No. They all are essential, and we must design them all,
whoever consumes them and wherever they are exposed.

It is now common for organizations to provide partner or public APIs to third
parties. Neglecting their design or brutally turning non-designed private APIs
into partner or public APIs will lead to terrible APIs and serious
consequences, as seen in section 1.2.2. For example, ignoring partner API
design can lead to lengthy and costly integration projects, while a poorly
designed public API may have no customers.

Neglecting the design of private APIs can also lead to the issues we’ve
uncovered in section 1.2.2. Even if we’re the only creators and consumers,
poor design impacts code and productivity, leading to missed milestones,
fewer features, bugs, and revenue loss.

Finally, using private APIs to improve your skills and prepare for designing
APIs for others is crucial. You will likely create more APIs for personal use
than those you provide to other teams; most will be private rather than public
or partner ones. Practicing with private APIs will help you make better
decisions with confidence.

Jeff Bezos' mandate

Around 2002, Jeff Bezos, former CEO of Amazon, issued a mandate stating
that all teams must communicate through "service interfaces" (they were not
called API then). And that all those "service interfaces" must be designed



from the ground with externalization in mind, as each could be put in
customers' hands anytime after its creation. This strategy was key to
Amazon’s success.

1.4.2 When making any modification

It’s essential to design APIs during initial creation and for any modifications,
even the most minor ones. The reason for this is the same as when creating
them, but the stakes are higher. Carelessly modifying an existing API that
applications already use can lead to disastrous consequences. It may break
their code, causing crashes or data corruption. And even if, under certain
circumstances, it is possible to introduce modifications that will break
consumer code without much consequence, we must still consciously design
them to evaluate the impacts.

1.4.3 Before developing the implementation

API design precedes implementation and occurs repeatedly throughout the
API lifecycle, the various stages an API will go through, from its inception to
its consumption.

Figure 1.6 The lifecycle of an API



There are different versions of this lifecycle, usually based on the software
development lifecycle and having more or fewer stages. Figure 1.6 shows an
API lifecycle that includes six stages:

Define: Stakeholders define vague or precise needs.
Design: An API designer collaborates with colleagues to design the API
that fulfills the needs. This book focuses on this stage.
Develop: Developers implement the API.
Test: Developers, QA engineers, and security experts ensure the API’s
implementation works as intended and is free of bugs or security



breaches.
Deploy: Automated system or people deploy the implementation. It is
often accompanied by exposing the API on an API gateway, a proxy
facilitating API securitization, consumption, or monitoring.
Provide/consume: Make the API visible and available for targeted
consumers. It is often done by adding it to an API catalog or an API
developer portal.

The lifecycle simplifies reality; there are back-and-forths between steps, and
some actions are not sequential. For example, you’ll deploy the API while
developing and testing it before deploying it into the production environment.

There may be multiple iterations of design, as discussions and analysis can
lead to refining the needs to fulfill, and discoveries made during development
or testing can lead to refining the design. Once the API is deployed and
consumed, the design stage may be revisited to add or modify features.

1.5 What does designing web APIs mean?

Designing an API involves creating a versatile product in the form of a
programming interface that addresses users' needs while also considering
contextual constraints. It requires making numerous deliberate decisions
ranging from simple to complex, flawless to half-satisfying, and from certain
to uncertain, even resulting in mistakes.

1.5.1 Designing a versatile software product

Web APIs, even private ones, are versatile software products that deliver
services related to many subjects. We must design them using general,
product, or software design principles and techniques. This section illustrates
this by reusing the "Kitchen Radar" of section 1.2.2.

Users of the Kitchen Radar want to heat food, not turn a magnetron on and
off. API designers should meet users' needs and enable them to achieve their
goals. Users of an API include the applications consuming it, the developers
creating them, and, to some extent, their end-users. None of them want to
access databases or systems; they want to accomplish tasks that matter to



them. Also, an API should be adaptable enough to serve the needs of all
present and future users in various contexts.

To meet users' needs better, we could rename the Kitchen Radar to
Microwave Oven and replace "MAG." with "HEAT." However, more is
needed to make it user-friendly. We must design APIs that are easy to use
and intuitive for developers, regardless of their level of expertise in the
subject matter. Moreover, APIs should be interoperable, requiring no
complex coding to work with applications or data.

The Kitchen Radar can be more user-friendly if we replace the push button
with power and duration knobs. However, we need to consider the 60-minute
limit of the chosen magnetron and integrate it into the control panel’s design.
It’s crucial to consider the context when designing APIs. We must consider
the API type, subject matter, system, and consumer constraints. It helps us
create APIs that are realistic, usable, and implementable.

The Kitchen Radar belongs to a line of products, all sharing characteristics,
designed by the same person or numerous ones. We must ensure our APIs
form a consistent line of products or landscape when seen as a whole. As we
create or modify APIs, each must make sense compared to what we’ve done
previously. This topic has significant implications beyond this book.
However, we will learn enough to design consistent APIs easily.

1.5.2 Reasoning, deciding, doubting, failing, and iterating

Designing an API involves making deliberate decisions, such as choosing
names and data types when modeling data. The resulting API can be a
disaster if done randomly or without enough care, like the "Kitchen Radar"
and its "MAG." button seen in section 1.2.2. API designers must make
numerous decisions throughout the design process, some straightforward and
some complex.

Tradeoffs are sometimes necessary. These half-satisfying decisions dictated
by the context may not yield an ideal API design, but there may be no other
alternative. Implementation constraints can be hard to solve within a given
time and budget, requiring integration into the API design. Design questions



and problems can lead to multiple solutions, affecting user experience,
security, and evolutivity. With so many alternatives, doubt is unavoidable.
Errors can occur due to incomplete understanding of requirements,
overlooking details, or changes in context.

It’s essential to understand that dissatisfaction, doubt, and failure are part of
API design. Thankfully, there are solutions to help make informed decisions,
gain confidence in tradeoffs, overcome doubts, and mitigate the risk of
failure.

Backing decisions with principles, recipes, and logic, rationalizing pros and
cons, and leveraging past decisions enables efficient problem-solving. Also,
it’s not necessary to be "right" on the first attempt; we can leverage an
iterative approach. We can test and validate the design at any stage by
seeking feedback from those who contribute to the design, for example,
subject matter experts, implementers, or consumers (see section 1.3).

1.6 How to design web APIs?

The process of designing APIs is similar to any design process; it involves
analyzing requirements and converting them into a blueprint for the final
product. This book uses a methodology breaking down the design process
step-by-step and using a layered approach to focus on one main problem at a
time.

1.6.1 By using a step-by-step approach

To design an API, we use the step-by-step approach separating concerns
shown in figure 1.7. 

Note

This book focuses on the "Design" phase of the API lifecycle and doesn’t
cover the "Define" or "Develop" or any other phases. It doesn’t discuss
business or IT strategy involving APIs or how to code an API
implementation.



Figure 1.7 The API design process

Once needs are identified in the Define phase, we can begin designing an
API. Needs can range from a general objective or direction ("Social network"
or "Database as a service") to a more precise intent ("Enabling tagging
friends in a photo on the mobile application and website").

We use the API Capabilities Canvas to analyze these needs and identify API
capabilities in plain English, including use cases such as "Sharing a status"
and API operations like "Upload a photo" and "Send a message."



Then, we design the programming interface, which includes choosing the
type of API, representing operations with a programming interface, and
modeling data.

In parallel with the previous step, we describe the programming interface in a
blueprint document using a standard API specification format.

Ultimately, we document the API, focusing on what’s needed for design
validation and implementation. The resulting documentation may suffice for
private APIs but may need enhancements for public or partner ones.

We provide artifacts like API Capabilities Canvas, formal API description,
and documentation to implementation developers for the "Develop" phase of
the API lifecycle. These artifacts can also be helpful in other stages, like the
"Test" phase.

The API design process is iterative. Stakeholders provide feedback at any
step. Needs analysis may require refining the needs or validating
understanding, while fine-grained programming interface design or
documentation may reveal missing elements, leading to design or API
capability updates. Issues or imprecisions uncovered in the "Develop" or
"Test" phases or later may require design revision.

1.6.2 By having a layered approach

We use the layered approach shown in figure 1.8 to simplify the design
process and our learning. This approach ensures the API does the right job, is
user-friendly, integrates context and constraints, and fits into the API
landscape. The layers match the concerns discussed in section 1.5.1.

Figure 1.8 The four layers of the API design process



We first focus on ensuring the API fulfills the needs identified in the
"Define" stage, challenging them if necessary. We carefully avoid exposing
inner complexity or being too specific to consumers' needs.

Leveraging standards, common practices, and design principles, we ensure
we create a user-friendly API that anyone can understand and use. This
aspect covers its capabilities, programming interface operations, and data.

To create an efficient and effective design, we consider the context and
identify constraints like security, performance, and system limitations. We



must also ensure we don’t break existing functionality when modifying an
API.

Ultimately, we ensure our API and its elements fit in the API landscape we
are building, contributing to user-friendliness. This concern is related to "API
governance" or "API stewardship," which have implications beyond design.
This book focuses on avoiding reinventing the wheel and making API design
decisions more consistent, confident, efficient, simple, and quick.

1.7 Summary

A web application programming interface, or web API, is a software
interface exposed by an application that allows other applications to
interact with it remotely by leveraging web technologies.
Using a web API can be done without knowing or understanding what
its implementation does.
Web APIs' design can negatively or positively affect developer
productivity, system flexibility and efficiency, project delivery, and
organizational revenue.
An API designer doesn’t need to know everything; they need to know
how to get the information and find the balance when integrating them
into their design.
It’s essential to design all internal, external, private, partner, or public
APIs, as well as any of their modifications, and to do it before
developing them.
Designing web APIs requires making deliberate decisions with a
rationale to create a versatile programming interface that meets users'
needs and considers contextual constraints.
API design involves analyzing needs to identify capabilities, mapping
them to a programming interface, formally describing the interface, and
documenting the API.
Designing an API requires focusing on four different layers: ensuring
that it does the right job, that it is user-friendly, that it integrates the
context and constraints, and that it fits with past decisions.



2 Analyzing needs
This chapter covers

Why API design starts with needs analysis
Analyzing needs to identify API capabilities
Focusing on the proper needs
Avoiding exposing the provider’s inner complexity
Avoiding integrating overly specific consumer requirements

API design begins by analyzing the needs to identify the API capabilities
using plain English or any other natural language rather than programming
interface language.

It’s because form follows function: this design principle applies to buildings,
kitchen appliances, applications, and APIs. Achieving an effective API
design requires understanding user needs and identifying the capabilities,
functions, or operations fulfilling them before choosing the appropriate
programming representations and data modeling. It simplifies discussions,
streamlines the design process, and avoids creating complex or incomplete
APIs that don’t meet user needs.

This chapter first overviews needs analysis, including when, why, and how to
analyze needs. It then introduces the API Capabilities Canvas, a methodology
for analyzing needs, and applies it to an example.

2.1 Overviewing needs analysis

As shown in figure 2.1, we’re at the first step of the design process outlined
in section 1.6.1. Needs analysis is preceded by the "Define" stage of the API
lifecycle, which this book doesn’t cover. Afterward, we’ll move on to the
next step: "Design the programming interface," covered in chapters 3, 4, and
5.

Figure 2.1 We are here in the API lifecycle and design process



This section describes needs analysis prerequisites. It then discusses why
needs analysis comes first and its objectives. Afterward, it overviews how it
is done.

2.1.1 Needs analysis prerequisites

Needs analysis starts with an input outlining needs or problems to be solved.
It’s crucial for designing an API that meets expectations. This input is
defined earlier in the "Define" stage of the API lifecycle, which this book



doesn’t cover. This prior stage explores the why of the API, possibly
including strategic or product concerns, especially for public APIs.

The input can be a sticky note with a vague description of the API’s
objective, direction, or intent ("Online shopping" or "Database as a service")
or a more precise one ("Enabling tracking order status on the customer
mobile application and customer care application"). Studies conducted during
the "Define" stage, especially when creating a public API, may provide more
details (user personas, use cases). But we can work without them, especially
for private APIs.

2.1.2 Needs analysis reasons and objectives

The Kitchen Radar (see section 1.2.1) is an example of what happens when
needs analysis is skipped. Its "Turn magnetron on and off" capability exposes
its inner complexity, making it hard to use. As shown in figure 2.2,
redesigning its interface by changing button label, color, and type won’t
change that.

Figure 2.2 Redesigning the Kitchen Radar’s interface won’t improve it



What do users want? They want to heat food. They may need to select the
heating power and duration. Analyzing needs helps us identify the
appropriate "Heat food at a given power and duration" capability. As shown
in figure 2.3, an interface offering this capability may have various designs
(labels, control types), but all are easily used without magnetron knowledge.
The implementation turns the magnetron on and off based on the interface
inputs.

Figure 2.3 Contrasting capabilities, interface (API), and implementation



When designing an API, we must first focus on consumers' needs and
identify capabilities (described in plain English) to fulfill them without
worrying about the programming interface or its implementation. In the next
stage, "Design the programming interface," we’ll turn these capabilities into a
programming interface.

2.1.3 How to analyze needs

During the needs analysis, we identify API capabilities based on input from



the "Define" stage. The needs-capabilities relationship is rarely one-to-one.
With a step-by-step approach separating concerns, we scrutinize use cases,
decompose them into smaller steps, and identify what is needed to achieve
them, what users get in return, and how they use it to, ultimately, identify
unique API operations. The resulting sum of use cases and operations is the
API capabilities.

Needs analysis is often collaborative work. We verify the capabilities align
with expectations and request clarification if necessary. We don’t need to be
experts on the topic(s) the API deals with; we discuss with subject matter
experts (SMEs). As API designers, we extract and refine knowledge to create
a versatile API that serves all consumers while concealing constraints and
complexity. This work requires asking many questions, rephrasing answers,
and challenging contradictions.

Iterative discussions and thinking are necessary, even for seasoned API
designers. We may not achieve perfection on the first try, but through an
iterative process, we can refine information into a comprehensive list of
capabilities that all parties agree upon.

We only use plain language, English, or any other understood by stakeholders
to streamline discussions and ensure the accuracy of API capabilities. We
avoid using a "programming interface language;" we’ll see why in section
3.1.5.

2.2 Introducing the API Capabilities Canvas

The API Capabilities Canvas helps exhaustively and accurately identify
versatile API capabilities usable in various contexts. It is both a methodology
and a document. It follows principles many instinctively use when designing
software: wondering who the users are and what they need to do. Many other
software and product design methodologies and templates follow the same
process. You can use (and adapt) them once you understand the API
Capabilities Canvas concepts. This section overviews how the API
Capabilities Canvas works and discusses related tools.

2.2.1 How does the API Capabilities Canvas work?



The API Capabilities Canvas (see figure 2.4) relies on decomposing needs
(determined in the Define stage of the API lifecycle) in small steps in two
passes (ideal and less ideal), identifying unique operations for all steps, and
ensuring focus on the proper needs.

Figure 2.4 The API Capabilities Canvas

To decompose the needs, we identify users (USER column), describe their
use cases (USE CASE column), list steps to achieve the use cases (STEP
column), inputs to execute each step (INPUT column), outcomes and outputs



when the step is successful (SUCCESS column), and context, outcomes, and
outputs or errors when it fails (FAILURE column).

To simplify the decomposition process, we separate concerns and proceed in
two passes: walking the ideal paths (see section 2.3) and then the less ideal
paths (see section 2.4). In the first pass, we focus on ideal, nominal, common,
or happy use cases and paths of steps. In the second pass, we investigate
failures. We also analyze sub-paths and use cases set aside during the first
pass. During the decomposition, we check each input source, outcome usage,
and how to fix failures to ensure nothing is missed.

Afterward, we map each step to a unique, context-agnostic operation
(OPERATION column). Different steps may share the same operation. See
section 2.5).

Ultimately, we check all elements contribute to fulfilling the proper needs.
We ensure we stay in the Define stage’s needs scope, not to expose internal
complexity or integrate overly specific consumer needs. See sections 2.6, 2.7,
and 2.8.

Note

Needs analysis requires trial and error to get it right. Even experienced
designers rely on an iterative process and need feedback. Finding the right
level of detail can be tricky in the beginning, but keep going; it takes practice.

2.2.2 Tools to use along with the API Capabilities Canvas

You can draw and fill the API Capabilities Canvas on a physical or virtual
whiteboard. However, it may fall short for bigger APIs or when modifying
multiple elements. Also, if physical, you’ll need to rewrite everything in a
digital document.

A good old spreadsheet is my go-to for a digital API Capabilities Canvas.
You can screen share during API design workshops. Adding or moving
elements is easy, and searching and filtering features are helpful. Pivot tables
provide an overview of unique operations and their use. Examples can be
found on my website at https://apihandyman.io/the-design-of-web-apis.



It can be helpful to model step flows with diagrams for complex use cases
with optional subbranches and loops. Diagram-as-code tools like PlantUML
or MermaidJS allow for easy creation and modification of diagrams.

2.3 Walking the ideal paths

Analyzing needs starts with investigating the most common use cases' ideal
paths. We keep secondary use cases, sub-paths, and failures for the next step
(see section 2.4). This approach reduces analysis complexity and helps
quickly get an overview of the API capabilities.

For this task, we use a subset of the API Capabilities Canvas introduced in
section 2.2, shown in figure 2.5. It focuses on identifying who does what and
how (users, use cases, steps), identifying steps' inputs and successful
outcomes, and spotting missing elements. In this section, we’ll learn how to
do this using the needs written on a sticky note, "Online Shopping."

Figure 2.5 Walking the ideal paths with the API Capabilities Canvas



2.3.1 Identifying users, use cases, and steps

Walking the ideal paths starts by investigating who the users are, what they
do, and how they do it, as shown in figure 2.6.

Figure 2.6 Identifying users and their use cases and steps in the API Capabilities Canvas



Identifying the different users of the API is essential to ensure we identify all
capabilities. These could be the consumers (applications, the developers
creating them, or the organization they belong to), the end-users of the
applications, or the profiles of users or consumers. I recommend starting with
the most apparent population, the one that comes to your or SME’s mind
first, or the one representing 80% of the users. In our "Online Shopping"
example, the most prominent users are the end-users who will do online
shopping via a mobile application or website consuming the API.

Note



Identifying users also has important implications regarding security. We’ll
discuss this in chapter 11.

Once we have identified a first who, we list what they do; these are the use
cases to be covered by the API, hence high-level actions, processes, or flows
performed by the users. Let’s again choose the first use case that may pop
into our minds or the most common one. What do the end-users of an "Online
Shopping" application do? They "Buy products."

Stopping at that level risks missing capabilities; decomposing the use case is
crucial. How do the end-users buy products? They repeatedly "Add a product
to the cart" and then "Check out." This use case comprises two steps.

Tip

An initial overview of API capabilities can be obtained by working at the
user and use case level. It can be helpful to confirm the direction taken with
stakeholders. However, to ensure exhaustive and accurate capabilities, it is
necessary to investigate the steps.

2.3.2 Determining inputs and success outcomes

We determine inputs and success outcomes for each step and keep failures
for later (see section 2.4). The inputs are what users need to achieve the step;
they are pieces of information or business concepts. The success outcomes
are what happens from the users' perspective when the step is executed
without issue. They can describe inputs' states after the step, what has been
created or done, or an event. All these elements are only visible from the
users' perspective. They are also coarse-grained; for instance, we don’t care
what the properties of a product are.

What do end-users need to add a product to the cart? As shown in figure 2.7,
they need a product and a cart. And what happens when a product is added to
the cart? The success outcome description states, "Product added to the cart."
Similarly, for "Check out," the input is a cart, and the successful outcome is
"User gets an order."

Figure 2.7 Determining steps' inputs and successful outcomes in the API Capabilities Canvas



2.3.3 Spotting missing elements with sources and usages

Analyzing inputs and success outcomes helps identify missing steps, use
cases, or users. Inputs can be user-known, managed by the API, or from
earlier steps. Success outcomes may be used as inputs for other steps. Figure
2.8 illustrates this investigation for the steps of "Buy products."

Figure 2.8 Spotting a new step and a new use case by investigating "Buy products" steps' inputs
sources and success outcomes usages



For the "Add a product to the cart" step," we check where the cart and the
product come from. The API manages the cart (users don’t provide nor get it
from another step). Users search for products before adding them to the cart;
we missed an essential step. But it’s fixed by adding the "Search for products
to buy" step at the beginning of the "Buy product" use case. The successful
outcome of that step is "Product added to the cart." It’s useful for the "check
out" step, but nothing new here.

We proceed similarly with the "Check out" step. It needs a cart that is
managed by the API. When "User gets an order," they may want to check its



status, modify or cancel it, and even do that with all their orders. We have
uncovered a new area to investigate: "Manage orders," we add it to the use
case list for the end-users.

2.3.4 Analyzing the spotted elements

To investigate the newly identified elements, we proceed as before
(identifying use cases, decomposing them in steps, and spotting missing
elements). Figure 2.9 illustrates this analysis for the "Search products to buy"
step. We identified a new step, use case, and user.

Figure 2.9 Spotting new elements when investigating "search for products to buy" steps' inputs
and success outcomes



We identified the step’s inputs and success outcomes. Users need a catalog of
products to search for products and would benefit from search filters (details
aren’t needed at this stage). In return, they get the "Products matching
filters."

We analyzed input sources and success outcomes usages to spot missing
elements. End users provide filter values, while the API manages the catalog.
But catalog administrators "fill the catalog" with products. We identified a
new type of user and one of their use cases. When end users get the "Products
matching filters," they may add them to their cart or check the product’s



detailed info beforehand. We added this step to the "Buy products" use case.

2.4 Walking the less ideal paths

Focusing only on the ideal paths would result in an incomplete API design.
Once we have walked them, we must explore the less ideal ones: failures,
alternative branches, and edge use cases. To do so, we continue using the API
Capabilities Canvas introduced in section 2.2; figure 2.10 zooms in on what
we study here.

Figure 2.10 Walking the less ideal paths with the API Capabilities Canvas



We continue working with the "Online Shopping" example from section 2.3.
We investigate failures for each step of the "Buy products" use case, add its
non-nominal branches, and then step back to see how to identify and analyze
other non-nominal use cases.

2.4.1 Analyzing failures for each step

Analyzing failures helps identify missing steps, use cases, or users. It is also
essential for creating a user-friendly API (see chapter 9) and to develop the



implementation. For each step, we list the failures, errors, or problems that
may happen from the user’s perspective when the step is executed in its use
case and individually, why each happens, and how to fix it. Missing or
invalid inputs, data state, or business controls can cause failures.

Figure 2.11 illustrates this analysis for the steps of the "Buy products" use
case; the FAILURE column is filled, and a new step is identified.

Figure 2.11 Investigating "Buy products" steps failures with the API Capabilities Canvas helps
identify a new step



What problems can occur when searching for products? No product can be
found due to users providing filters with no corresponding product in the
catalog or the catalog being empty. As a fix, end-users may search again with
different filters, or administrators may "Fill the catalog" (as identified in
section 2.3.3).

What could go wrong if "Check a product details info" is executed without a
prior search? No product details may be found because the requested product
may not exist in the catalog. To fix that, users can "Search products to buy"
to find products existing in the catalog and try again.

"Check out" can fail if the cart is empty, which can be fixed with "Add a
product to the cart." The cart may also contain an unavailable product; the
user can "Remove unavailable product from cart" to fix this. It’s a new step
we add after "Check out."

Like for other steps, we investigate what is needed to achieve it and what
happens in case of success and failure. Users need the cart managed by the
API and the product indicated in the failure of "Check out." On success, the
product is removed from the cart. It fails if a user tries to remove a product
not in the cart; there’s no fix.

2.4.2 Adding non-nominal branches on each use case

To ensure API capabilities exhaustivity, we must explore other courses of
action users can take within use cases. We identify non-nominal branches by
checking what may happen before or after the identified steps. We analyze
new steps as usual. This work is similar to how we decomposed and analyzed
use cases so far. This section provides a brief overview of non-nominal path
exploration. Fill in the gaps with your knowledge of listing steps, identifying
inputs, their source, success outcomes, failure outcomes, and their use and
fixes. Figure 2.12 shows the "Buy products" use case completed with the
steps of a non-nominal branch.

Figure 2.12 Adding a non-nominal branch on the "Buy products" use case



What if a user changes their mind about a product on "Check out"? They
need to "Remove unwanted product from cart" (step of a non-nominal
branch). To do so, they need the cart and the product (its input), which can be
obtained by "Verifying cart content" (new step spotted with input source).

We could also have added these two steps thanks to our subject matter
expertise. Users usually "Verify cart content" before "Check out" and may
"Remove unwanted product from cart" afterward.

2.4.3 Identifying and analyzing the secondary use cases



To ensure API capabilities' exhaustivity, we must analyze the secondary use
cases and users we set aside from the first pass we did in 2.3. Secondary use
cases can be edge cases rarely happening or specific use cases dealing with
problems, such as "Notify a problem with an order." Secondary users are less
prominent users, such as the "Catalog administrators." Whatever their nature,
we analyze them like the other use cases and users.

2.5 Refining steps to identify operations

After listing and analyzing use cases covering needs, we identify a unique
and context-agnostic operation or function for each step. Our objective is to
arrive at the fundamentals of the subject matter(s) the API deals with. It’s
mandatory to achieve the creation of a user-friendly and reusable API. We’ll
leverage these operations to "Design the programming interface" (next stage
of the API design process, see section 2.1). Using the "Online Shopping"
example and API Capabilities Canvas, this section explains the difference
between steps and operations and shows how to identify operations by
refining the steps.

2.5.1 Differentiating steps and operations

Differentiating steps from functions or operations is crucial for a user-
friendly, reusable API design (see section 1.2.3). An API bloated with
duplicates and highly specific operations is hard to use and reuse.

If we turn each step into an API operation as identified, we’ll end up with
many similar ones. For example, in the "Buy products" use case, the
"Remove unwanted product from cart" and "Remove unavailable product
from cart" steps are very similar. A unique "Remove product from cart"
operation can fulfill them.

Steps may not be reusable in contexts other than the use case they were
identified for. The "Search for products to buy" step is specific to the "Buy
products" use case. A context-agnostic "Search for products" operation can
fulfill it and is reusable in other situations we may encounter long after API
deployment.



2.5.2 Identifying unique and versatile operations

As shown in figure 2.13, for each step, we look for similar steps in the API
Capabilities Canvas and determine their true intent by leveraging their
description, inputs, and success outcomes to describe a unique, context-
agnostic operation fulfilling them.

Figure 2.13 Identifying unique and context-agnostic operations with the API Capabilities Canvas

The resulting operations for two "Online Shopping" use cases steps are



shown in figure 2.14. Steps marked with the same letter are similar and share
the same operation. We priorly filled the "Fill catalog" use case steps (spotted
in section 2.3.3) as we did for "Buy products." It involves looking for
products similar to a new one, verifying their information, and adding it if it’s
not a duplicate.

Figure 2.14 We identified unique and context-agnostic operations for each step of the "Buy
products" and "Fill catalog" use cases

The "Search for products to buy" step is similar to the "Look for similar



products" step of the "Fill catalog" use case ("A"). Their descriptions
resemble each other ("Search products …" and "Look for … products"), and
they share the same inputs (Catalog, filters) and success outcomes (Products
matching filters). Their true intent is to "Search for products;" we use it as
their unique and context-agnostic operation description.

The same goes for "Check product details before buying" and "Verify if
product is different" ("B"). They have the same fundamental intent and
operation, "Get product details."

The "Verify cart content" step has no similar steps. Its description is specific
and doesn’t clearly express the actual intent. We can find it by looking at the
success outcome; it returns the list of "Products in cart." Its operation is "List
products in cart."

As for "A" and "B", "Remove unwanted product from cart" and "Remove
unavailable product from cart" ("C") are similar. We can remove the context-
specific "unwanted" and "unavailable" qualifiers from their descriptions to
get their operation: "Remove product from cart."

The "Check out" and "Add a product to the cart" steps have no similar steps,
and their descriptions are context-agnostic; we can keep them for their
operation.

2.6 Focusing on the proper needs

The API Capabilities Canvas helps us design a versatile API that meets
needs. However, certain factors can affect our analysis. We must carefully
filter, transform, or accept the elements (users, use cases, steps, inputs,
outcomes, operations) for the API’s greater good. This section discusses
staying on track during the needs analysis by remaining within the scope
identified during the Define stage, focusing on the proper perspectives, and
leveraging the "Why?" question.

Note

Needs coming from the Define stage can be off-track, too. It’s essential to



challenge them if that’s the case.

2.6.1 Staying within the Define stage’s needs scope

Focusing on the proper needs requires ensuring all elements fit in the scope
of the requirements defined during the Define stage. We can request
confirmation, check subject matter(s) scope, and verify outcomes usages.

When needs are unclear or coarse-grained, we can request confirmation for
unsure elements. For instance, does "Online Shopping" cover the
administration of the product catalog?

Elements unrelated to the needs' subject matter(s) are questionable. For
instance, "Checking end-user bank account balance" looks distantly related to
"Online shopping"; maybe we shouldn’t include it in the scope of the API.
Still, it can be OK; our analysis may uncover initially unidentified subject
matters.

Verifying outcomes usages is a direct follow-up of looking for missing
elements (section 2.3.3). Remove any steps whose outcomes have no use for
users and aren’t inputs for other steps. For example, if the "Buy products" use
case has a "List product suppliers" step and users do not use this information,
and it’s not an input for another step, we should remove it.

Tip

Don’t wait for a complete API Capabilities Canvas; take an iterative
approach. Start with a list of users and use cases and validate it before further
investigation. Validate and confirm newly identified topics before
investigating them.

2.6.2 Focusing on the proper perspectives

Focusing on proper needs requires focusing on the correct perspectives.

Our expertise in the subject matter, software architecture, or existing
implementation may lead us to expose inner workings and complexity,



making the API hard to understand and use. We must ensure each element is
an actual concern for all consumers. It’s up to us and SMEs to balance all
consumers' needs by staying focused on the subject matter(s). Section 2.7
illustrates typical overly specific consumer needs situations. Chapter 13
discusses when we may need to adapt to consumers' constraints.

Although we design an API from the consumer’s perspective to fulfill their
needs, integrating overly specific ones or integrating them in an overly
specific way leads to less-reusable APIs. We must ensure each element is the
consumers' business. Helped by SMEs, architects, tech leads, or
implementation developers, we must ensure we’re not exposing the
provider’s perspective. Section 2.8 shows typical examples. Chapter 13
explains we may sometimes have no choice but to adapt gracefully to the
provider’s constraints.

2.6.3 Asking why to investigate any issue

"Why?" is a powerful question that helps investigate potential issues. For
example, why should user deactivate their address when in the process of
updating it? Because a user can only have one active address in the database.
Which is not the consumer’s business but the provider’s (see section 2.8.2).
Asking why several times can get us to the root of any problem and help us
identify unnecessary elements or proper capabilities.

2.7 Avoiding integrating too specific consumers'
perspective

Though we design an API from the consumers' perspective, we must be
careful not to be too specific, or the resulting API may be usable only by one
or a few consumers or may not be reusable in other contexts. Two common
ways we can be too specific are mapping our API design to consumers' UI or
integrating their business logic. This section illustrates them with the Online
Shopping example.

2.7.1 Avoiding mapping consumers' UI



Designing an API based on existing or wireframe UI (user interface) can be
helpful. Still, we must be careful not to create use case step flows
representing specific UI flows instead of context-agnostic subject matter
flows. UI-specific flows make APIs hard to reuse in other contexts, such as a
modified UI or another application.

Figure 2.15 Contrasting UI-specific and context-agnostic use case flows

Like the UI it is based on, the "Create a user account" use case (see figure
2.15) comprises four steps/operations: "Save the user’s email," "Save the



user’s first name and last name," "Save the user’s address," and "Validate the
new user." Four UI screens to create a user account may make sense. But for
an API, that means four calls, making the use case flow unnecessarily
complex. Also, if the screen order changes, can we change the step order to
match it? Additionally, not executing the final step could result in incomplete
user accounts.

Instead, a single "Create new user" subject matter-focused step/operation is
easily usable by any consumer (server application or UI). They are free to
divide the information gathering into several steps. But ultimately, they will
make a single API call to create a user account.

Caution

If a use case’s flow mentions fine-grained information or can’t stand a UI
flow modification, that’s a sign of a too-specific consumer’s perspective. We
must replace it with a generic, context-agnostic flow focusing on the subject
matter.

2.7.2 Avoiding integrating consumers' business logic

Consumers may try to delegate a specific job to the API, leading to tight
coupling and reduced reusability.

For example, an application leveraging our "Online Shopping" example
needs to show a weather forecast pictogram based on the user’s address,
leading to a "get user’s weather forecast" use case. We, and SMEs, can
consider this highly specific to this application and unrelated to our primary
subject matter, so we won’t include it in our "Online Shopping" capabilities.
Still, weather forecast-related features may make sense. For instance, the
"search for products" operation could have a filter to get products related to
weather conditions like "winter," "summer," or "rain." It would be up to the
consumers to provide the condition they think is interesting for users.

Caution

An element (user, use case, step, input, outcomes, operation, or later, data



model) implying integrating concerns, business logic, or processing unrelated
to or distantly related to the subject matter may be a sign of a too-specific
consumer perspective. In case of doubt, check with an SME.

2.8 Avoiding exposing the provider’s perspective

APIs reflecting the provider’s perspective expose inner complexity
consumers shouldn’t be bothered with. They are hard to understand and use
and can harm the underlying systems. Three common ways of doing so are
exposing data organization, delegating business logic, or exposing software
architecture. The Online Shopping example illustrates these ways.

2.8.1 Avoiding exposing the provider’s data organization

An API design can mirror underlying data organization, distancing it from
the fundamental subject matter and making it complex. At the API level,
consumers should view data (such as a customer or product) as cohesive
business concept units; the implementation must manage data complexity.
Figure 2.16 illustrates how data organization can affect, or not, a use case for
retrieving customer info.

Figure 2.16 Contrasting use cases exposing and not exposing underlying data organization



The first example has two steps/operations, "Read CUSD" and "Read
CUSA," mapping the customer data organization in two CUSD (customer
data) and CUSA (customer address) tables. Hoping they understand
CUSD/CUSA are customer data; it’s up to the consumer to aggregate the data
to get all customer data.

The second example is similar; it replaces the cryptic names with more
meaningful ones, "Read customer data" and "Read customer address."
However, consumers still have to aggregate data.



The third example doesn’t expose the data organization and focuses on the
subject matter with a single step/operation, "Read custom info." The
implementation manages data aggregation, and the consumers get the needed
data easily.

Caution

When table names are present in step or operation names or when they
indicate how data is structured, it is often a sign of the provider’s perspective.

2.8.2 Avoiding exposing the provider’s business logic

An API design can mirror internal business logic, making it hard to use and
potentially leading to underlying data and system corruption. Figure 2.17
illustrates it with an API relying on a system where older addresses are kept
for security purposes, and a customer’s address is the one with an "active"
status.

Figure 2.17 Contrasting use cases exposing and not exposing underlying business logic



Modifying a customer’s address from the provider’s perspective takes three
steps. Users "List customer’s addresses" to get the active one, "Update
address status" to make this address inactive, and finally, "Add a new
address" with an active status. Going through these steps and data
manipulation is complex, but more critical issues exist.

These steps will be executed by an uncontrolled consumer (developed by a
third party, for example) or in an unsecured environment (a browser, for
instance). Due to unexpected crashes, errors in code, or malicious intent,
consumers may stop at the second step, leaving a customer without an active



address, or add a new address without deactivating the active one, leading to
data integrity issues.

When thought from the consumer’s perspective, the use case has a single
step, "Update customer’s address," which ensures the implementation we
control manages the business logic securely and preserves data integrity.

Warning

If incorrect API steps/operations execution can compromise underlying data
and systems integrity, we trust API consumers with business logic. It’s solely
the implementation’s responsibility to handle such logic. See chapter 11 for
more secure API design considerations.

2.8.3 Avoiding exposing the provider’s software architecture

APIs enable building systems from various software pieces, but exposing the
composition of an API’s system can lead to complex and less performant
APIs. Figure 2.18 illustrates this issue with an API relying on a system
composed of two microservices (or small server applications). One handles
most of the products' data, and the other manages their prices.

Conway’s law

Conway’s law states that any organization’s system design will mirror its
communication structure. This adage, first published in April 1968 in
Datamation magazine, applies to APIs. They are influenced by the
organization’s communication structure and how it exchanges and processes
data across its applications.

Figure 2.18 Contrasting use cases exposing and not exposing underlying system architecture|



When buying products from the provider’s perspective, users "Search for
products" and loop on all products to "Get product price." A product without
a price is irrelevant from the subject matter perspective of our API, so users
will always do this inconvenient sequence, which also has performance
concerns we’ll discuss in chapter 12.

There can be excellent reasons for such an architecture, but that’s none of the
consumer’s business, and it splits an API’s business concept across
operations. A single "Search for products" whose implementation handles
getting their data, including their price, is preferable.



Caution

If application names appear in steps or operations or retrieving data requires
complex sequences, it’s probably a sign of the provider’s perspective. It’s up
to the API implementation to deal with the complexity of different
applications handling a business concept.

2.9 Summary

The design process starts with analyzing the Define stage needs to
identify API capabilities (use cases and operations needed to achieve
them).
Start with the most common or ideal use cases that go well, excluding
errors, failures, or complex back and forth.
Use cases are identified and decomposed into steps by investigating who
does what and how.
Investigating steps' source of inputs and success outcomes' usage helps
uncover steps, use cases, or users.
Explore failures, non-nominal branches, and less common use cases for
a comprehensive API design.
To identify potential failures and spot missing steps, investigate the
possible problems, their causes, and solutions.
Non-nominal subbranches are identified by wondering what other action
a user can take.
Differentiate steps and operations to ensure the API is reusable in other
contexts.
Determine the unique and context-agnostic operations needed to achieve
each step by looking for similar steps and describing them in a context-
agnostic way.
Ensure that all identified elements (users, use cases, steps, inputs,
outcomes, operations) are in the scope of the needs and focus on the
proper perspective (not provider’s or overly specific to some consumer).
Verify outcomes usages to spot unnecessary elements.
Don’t map use case flows to UI flows and integrate consumer-specific
business logic.
Don’t expose data organization, trust consumers with business logic, and
expose software architecture.



3 Observing operations from the
REST angle
This chapter covers

The basics of HTTP and REST APIs
Identifying resources and their relations
Identifying resources' actions and their inputs and outputs

Once we’ve analyzed the needs and identified the API capabilities, we can
design the programming interface by applying the model of a type of API (in
this book, a REST API) to turn the identified operations and related elements
into their programmable counterpart. Observing the identified operations
from the REST angle before designing the REST programming interface
facilitates the work and helps ensure accuracy and versatility.

This chapter introduces the "Design the programming interface" stage and
REST APIs. Afterward, it explains how to leverage the API Capabilities
Canvas to identify resources, relations, and actions. We’ll turn these elements
into a REST programming interface in chapters 4 and 5. It demonstrates this
using the Online Shopping example of chapter 2.

3.1 Overviewing programming interface design

As shown in figure 3.1, we enter the second step of the design process
outlined in section 1.6.1, "Design the programming interface," which
chapters 3, 4, and 5 cover. It is preceded by needs analysis (see chapter 2). In
parallel, we describe the programming interface we design (see chapters 6, 7,
and 16).

Figure 3.1 We are here in the API lifecycle and design process



Caution

We assume a REST API suits our needs, but choosing an API style based on
a rationale is crucial; section 13.5 covers how to make this decision.

This section first introduces the HTTP protocol and REST APIs. Afterward,
it overviews how to design a REST programming interface. Ultimately, it
discusses why we didn’t discuss HTTP or REST during the needs analysis.

3.1.1 Introducing the HTTP protocol



A web browser retrieving a web page or an application calling a web API
leverages the same web technology (see section 1.1.1). That is HTTP
(hypertext transfer protocol), a synchronous, request-response protocol that
allows the manipulation of resources with standardized HTTP methods.
Resources can be in any format, such as HTML pages, videos, PDFs, or data
in any format. Methods allow basic actions, such as retrieving (GET) or
sending (POST). HTTP enables clients and servers to communicate regardless
of technologies and implementation details.

Figure 3.2 A browser loads a web page with HTTP



As shown in figure 3.2, to view the list of posts on my blog, we can enter the
https://apihandyman.io/blog URL in a web browser, which sends a GET
/blog HTTP request to the apihandyman.io server. GET is a standard HTTP
method meaning "give me this resource," and /blog is the path to identify the
resource. The server returns an HTTP response with a 200 OK HTTP status,
indicating the processing of the request went well, along with the requested
page’s HTML code. The browser parses the HTML and retrieves other
resources, such as JS, CSS, or images, referenced in the HTML code using
the same mechanism.

Listing 3.1 Retrieving a web page in Python

import requests

page = requests.get("https://apihandyman.io/blog")

print(page.text)

The same GET /blog HTTP request can be sent using the curl
https://apihandyman.io/blog command line or the Python script of listing
3.1. Whether the server is a WordPress PHP application generating pages
from a database or a static server loading files from the file system, it would
respond with an HTTP response containing 200 OK and the HTML code for
the /blog page.

3.1.2 Introducing REST APIs

Although we’ll see they’re more than that in section 4.8, we consider for now
REST APIs as web APIs that leverage HTTP extensively and respect its
semantics.

Figure 3.3 A client application calls a REST API



As shown in figure 3.3, when a client application wants to "Search for
products" with the "Online Shopping" API (see chapter 2), it sends a GET
/products HTTP request to the web API server. The server responds with a
200 OK status and the requested list of products regardless of how they are
stored and retrieved.

From the HTTP perspective, this REST API call is no different from the blog
example in section 3.1.1. However, the resource is a "business entity" or
"concept" related to the "Online Shopping" subject matter instead of web
resources like HTML or CSS files, and the client application gets structured



data instead of HTML.

Note

The data is in JSON format, but that doesn’t matter now. Section 5.1.2
discusses this format and section 9.7 demonstrates the use of other formats.

The HTTP/REST model may look familiar to those accustomed to object-
oriented programming (OOP), as an HTTP resource can be compared to an
object or class, and the HTTP methods to the methods of a class or object.
However, unlike OOP, HTTP is limited to standardized methods.

3.1.3 Contrasting REST and not-so-REST APIs

Some so-called REST APIs barely leverage HTTP and even go against its
semantics. Figure 3.4 contrasts deleting a non-existing product with a REST
and not-REST API.

Figure 3.4 Contrasting a REST and not-REST-at-all API call to delete a product that doesn’t
exist



With a REST API respecting HTTP semantics, the client application can send
a DELETE /products/123 HTTP request. The DELETE HTTP method means
"delete a resource," the /products/123 path identifies the resource to delete
(a specific product with a 123 reference). The server returns an HTTP 404
Not Found response if no such product exists (similarly to when you request
a non-existing page on a website).

An API not respecting HTTP semantics would instead accept a GET
/deleteProduct/123 HTTP request and return a 200 OK with an error
message indicating the product to delete is not found. HTTP is only used to



transport messages with custom meanings that consumers can’t decipher by
leveraging the usual HTTP semantics. This example goes against the
definition of HTTP: it leverages the GET ("read") HTTP method for a "delete"
action and a successful HTTP status code (200 OK) to signify an error (Not
found).

Warning

It may make sense for some web APIs to not extensively leverage the HTTP
protocol and use it as a transport layer. Still, it’s best to stay within the
protocol’s definition (discussed in chapter 9).

3.1.4 How to design a REST programming interface?

Designing a REST programming interface efficiently and accurately requires
separating concerns; figure 3.5 illustrates the steps.

Figure 3.5 The three steps to design a REST programming interface



We observe operations ("Search for products") from the REST angle (see
sections 3.2 and following). We identify resources ("Catalog"), their relations
("contains Product resources"), the actions that apply to them ("Search"),
their inputs, and success and error outputs.

Leveraging identified elements, we represent operations with HTTP (see
chapter 4). We design paths representing resources (/products for
"Catalog"), choose standard HTTP methods to represent actions (GET for
"Search"), pick HTTP status codes to indicate success or failure, and locate
inputs and outputs data in requests and responses.



Ultimately, we design fine-grained data models (see chapter 5). We design
the data of resources, operation inputs, and outputs by identifying, naming,
and typing each piece of data, such as a product’s category of type string.

3.1.5 Why not talk about HTTP and REST during the needs
analysis?

Transforming "Search for products" into GET /products may seem simple,
but using the programming interface language during needs analysis can lead
to an inadequate API or complicate thinking and discussions.

Designing the programming interface during needs analysis without knowing
the problem to solve may lead to a biased design; a REST API may not be the
best solution, and even if it is, the usual way of designing operations may not
be appropriate due to undiscovered information. The concept of resource and
standard HTTP method could also taint the analysis, resulting in an API that
fails to do the job.

Including programming interface considerations at this stage may lead to
prolonged and unnecessary discussions. Even if REST is the adapted
solution, identifying resources, designing paths, or choosing HTTP methods
can be tricky. A limited view of the problem can make it more challenging.
Not everyone is fluent in programming interface language and HTTP. When
working with SMEs, prioritize discussions on the subject matter to avoid
misunderstandings. However, they may still need to assist in identifying
business concepts, related actions, or choosing names during data modeling.

3.2 Observing the API Capabilities Canvas from the
REST angle

The rest of this chapter focuses on observing the API Capabilities Canvas
from the REST angle to spot the REST elements needed to represent
operations with HTTP (see chapter 4).

We use the API Capabilities Canvas in figure 3.6 to learn how to perform this
task. It contains a subset of elements from chapter 2’s "Online Shopping"



example, representing the five most typical API operations: searching,
reading, creating, updating, and deleting things. These are often called CRUD
operations; CRUD stands for create, read (also applies to search), update, and
delete.

Figure 3.6 API Capabilities Canvas filled with typical API operations

This section reorganizes the canvas' information around operations and
expands it to save findings. Then, it overviews how to observe operations
from the REST angle to uncover what we seek.



3.2.1 Reorganizing and expanding the API goals canvas

To facilitate the observation of operations from the REST angle, we
reorganize the API Capabilities Canvas around operations and expand it to
save our findings.

The API Capabilities Canvas is currently organized around use cases, and the
same operation may appear on multiple steps (see figure 3.6), which
complexifies our task. Having the canvas in a spreadsheet makes its
reorganization around operations simple. We can create a pivot table having
OPERATION as the main column followed by INPUT, SUCCESS,
FAILURE, STEP, USE CASE, and USER, as shown in figure 3.7.
Alternatively, we can filter on the OPERATION column to select all steps
mentioning a specific operation. Avoid sorting data by operations as this may
disrupt the use cases' steps order.

Figure 3.7 Pivoted API Capabilities Canvas with typical API operations



We’ll save resource- and operation-related findings in the "Operations" and
"Resources" tables of figure 3.8. We can add them as new sheets in our API
spreadsheet. Thanks to the pivot table, we already filled the OPERATION
column with the unique operation names we found.

Figure 3.8 Expanding the API Capabilities Canvas with the Operations and Ressources tables



3.2.2 How to observe operations from the REST angle

SMEs can significantly contribute to observing operations from the REST
angle; this task relies on plain language and subject matter vocabulary. As
shown in figure 3.9, we identify resources (or business concepts) manipulated
by the operations and how they are related (section 3.3), which actions apply
to them, and their inputs and outputs (section 3.4). Once done, we can move
to the next step, representing these elements with HTTP (see chapter 4).



Figure 3.9 Observing operations from the REST angle and filling the Resources and Operations
tables

3.3 Identifying resources and their relations

The observation from the REST angle of the API Capabilities Canvas starts
with identifying resources manipulated by operations and how they are
related.

Figure 3.10 Observation from the REST angle requires identifying resources and their relations



This section first discusses what a resource is. Then, using the five typical
operations in figure 3.7 of section 3.2.1, it demonstrates how to identify
resources and their relations. Afterward, it uncovers patterns and recipes to
simplify this task.

3.3.1 What is a resource?

We’ve uncovered the concept of resource when introducing HTTP and REST
in sections 3.1.1 and 3.1.2. In HTTP, a resource is virtually anything that a



path can represent. It will be manipulated with standard HTTP methods,
hence operations. It’s the same for a REST API, but before being represented
by a path, a resource is a "business entity" or "subject-matter concept."

A resource is a high-level business concept or entity related to the API’s
subject matter(s), designated with a noun or short description using its
domain’s terminology (and not yet a path; see section 4.2.2). It can exist
independently and be manipulated stand-alone. It should not be confused
with its properties, the tiny pieces of data composing it (see chapter 5). A
resource would typically be a class for those familiar with object-oriented
programming.

In our "Online Shopping" example, the "Product" is a high-level subject
matter concept that appeared much during the needs analysis (see chapter 2):
this is a resource. On the contrary, the "name" of the product is not a
resource; it is a piece of information belonging to it that can’t exist on its
own. A counter-example is the price of a product. It is a property of a
product, but if we had pursued the needs analysis, we might have discovered
that we must also manipulate prices independently as resources to get
historical data.

3.3.2 Identifying an operation’s resource

We leverage an operation’s description, input, success, and failure to identify
the resource it manipulates.

Figure 3.11 Leveraging description, input, success, and failure to identify the resource
manipulated by an operation



The operation’s resource is often the target of its description’s main verb (see
figure 3.11). In "Modify a product," the verb "modify" applies to "product."
We can assume the resource is "Product." Looking at this operation’s input,
success, and failure confirm it; they all focus on the concept of "Product."
Similarly, in "Get product details," the verb "get" applies to "product details,"
and the inputs, success, and failure focus on "Product." Both operations
manipulate the same resource.

Note



An operation manipulates only one resource, and a resource can be
manipulated by different operations.

3.3.3 Tweaking an operation’s description to identify resource

Sometimes, shortening or expanding descriptions help better identify an
operation’s resource.

Figure 3.12 Shortening the description to identify an operation’s resource



We can shorten the operation’s description to see better its resource (see
figure 3.12). In "Add a product to the catalog," which of "Product" or
"Catalog" is the resource? We can shorten it to "Add to the catalog" and
conclude it’s the "Catalog." And, though input mentions both "Product" and
"Catalog," the success and failure state the product is/isn’t added to the
catalog. That confirms the main concept this operation manipulates is the
"Catalog" and not the "Product." For "Remove a product from the catalog,"
we can also shorten the description to "Remove a product" and conclude this
operation manipulates a "Product" (like "Modify a product" did). The input,
success, and failure confirm it; they only focus on the "Product" without
mentioning the "Catalog."

Figure 3.13 Expanding the description to identify an operation’s resource



We can also expand the operation’s description to identify its resource better
(see figure 3.13). For example, "Search for products" requires a "Catalog"
and "Filters" or "Characteristics". We can expand its description to "Search
for products matching filters or characteristics in the catalog" and shorten it
to "Search in the catalog." The "Catalog" is the resource we search into, just
like the previous two operations.

3.3.4 Identifying resources relations



Once we’ve analyzed all operations and determined their resources, we
identify their relations using our subject-matter knowledge and leveraging the
API Capabilities Canvas information. Note that resources may not have
relations depending on the subject matter.

Figure 3.14 Leveraging subject-matter knowledge and API Capabilities Canvas to identify
resources relations

As shown in figure 3.14, from the "Online Shopping" subject matter
perspective, it’s pretty evident that a "Catalog" (of products) contains many



elements of type "Product," and a "Product" belongs to a "Catalog." In the
API Capabilities Canvas, the "Search for products" and "Add a product to the
catalog" operations or "Products matching filters" and "Product in the
catalog" successes confirm this relationship.

3.3.5 Leveraging patterns and recipes to identify resources and
relations

Analyzing descriptions and leveraging inputs and outcomes are fundamental
for identifying resources and their relations. Still, we’ve discovered recipes
applicable anytime we encounter typical patterns, such as create, search,
read, update, and delete (or CRUD) operations.

Note

Along the whole design process, recognizing typical patterns and applying
proven recipes facilitates the design work, helps us be more confident in
design decisions, and contributes to creating excellent APIs.

The resource is the element when reading, updating, or deleting an element.
The resource is the container of the element when creating or adding an
element to a container or when listing or searching for elements belonging to
a container. Also, how we describe relations between resources may depend
on the subject-matter terminology, but we’ll usually end with "X belongs to
Y" or "Y contains X" relations.

Caution

Identifying resources and their relations is similar to defining classes or
tables. Use your preferred methods but avoid being influenced by pre-
existing code or databases (see section 2.6).

3.4 Identifying resources' actions

Once we identify a resource (or all resources and relations), we can identify
the action an operation applies to it. This section explains what an action is,
demonstrates how to identify it, and lists its inputs and outputs. It leverages



the resources identified in section 3.2.2.

Figure 3.15 Observation from the REST angle requires identifying actions applied to resources
and their inputs and outputs

3.4.1 What is an action, and how to identify it?

Each operation applies an action to its resource, described by the main verb
from the operation’s description, the same we used to identify the resource
(see section 3.3). That’s why we can identify an operation’s resource and



action simultaneously. Figure 3.16 shows the enhanced operation
descriptions we used when identifying resources so we connect the two tasks.

Figure 3.16 Identifying actions from operations descriptions

In "Add (a product) to the catalog," the main verb is "Add;" it is the action
applied to the "Catalog" resource by this operation. Similarly, with "Search
(for products) in the catalog," the main verb/action is "Search." The same
goes for the three other operations, "Get product details," "Modify a product,"
and "Remove a product (from the catalog)," their action is, respectively,



"Get," "Modify," and "Remove."

Caution

Don’t jump ahead when identifying actions (especially once you’ve learned
how to map them to HTTP methods in section 4.3). Use raw verbs from
operation descriptions and avoid replacing them with CRUD verbs or HTTP
methods.

3.4.2 Listing an action’s inputs

Each operation’s action inputs merge the inputs of all steps leveraging the
operation. We describe them in a context-agnostic way to avoid duplicates, as
when identifying operations in section 2.5.2.

Figure 3.17 Merging multiple context-specific step inputs into a unique and context-agnostic
action input



When different steps use an operation/action, we merge inputs, as shown in
figure 3.17. The "Get product details" operation is used by two steps whose
inputs are "Selected product" and "Found product." They both identify a
specific product found with "Search for products" regardless of its use. We
discuss with SMEs what they usually use to identify a particular product; it’s
a "Product reference." We add it to the action’s inputs.

Note

Naming can be challenging; if uncertainties exist, we can change our minds



later during fine-grained data modeling. We’ll discuss naming and choosing
identifiers in chapter 8.

Figure 3.18 No merging is needed when a single step uses the operation, but we may improve
descriptions

The task is more straightforward when the operation/action is used on a
single step, as shown in figure 3.18. Similarly to the previous example, both
"Modify a product" and "Remove a product from the catalog" expect a
"Selected product," so we add a "Product reference" to their action’s inputs.



Modifying a product also requires "Modified information," which we can
make more explicit with the "Modified product information" description at
the action level.

3.4.3 Dealing with the operation resource when listing an action
inputs

The action inputs usually exclude the operation’s resource, but exceptions
may exist. They may help us spot elements we missed during the needs
analysis.

Figure 3.19 Uncovering a new use case when including the operation resource in the inputs



Figure 3.19 shows the "Add a product to the catalog" operation has a
"Product" input, which we turn into "Product information" in action inputs to
avoid confusion with the product resource. The "Catalog" operation input
source is the API, and it’s the operation’s resource. If there are multiple
catalogs, we add a "Catalog reference" to the action inputs to identify the
catalog to work with and investigate a new use case, "Manage catalogs." If
there’s only one catalog, we don’t add it to the action’s input. After
discussing with SMEs, we keep the one catalog option.

Figure 3.20 Merging steps inputs and excluding the operation resource from inputs



The "Search for products" operation is used in two steps: "Search for product
to buy" and "Look for similar products." It also has the "Catalog" input, so
we exclude it as it is the operation resource, and there’s only one catalog.
After discussing with SMEs, we merge "Filters" and "Characteristics" as
"Filters," both being search criteria allowing users to find specific products.

Note

Listing an action’s inputs may reveal inputs with different names that are the
same. If unsure, keep them separate and re-evaluate during data modeling.



3.4.4 Listing an action’s outputs

For each operation/action, we build a single outputs list containing all
successes and failures cases. For each case, we have a description, type
(success or error), and data (if any). As for inputs, we merge elements
coming from different steps and describe them in a context-agnostic way.

Figure 3.21 Merging different steps outcomes and rephrasing descriptions

Figure 3.21 shows "Get product details" is used in steps "Check product



detailed info" and "Verify if product is different," with the same success and
failure outcomes. The success outcome is "Product information," added to the
actions outputs list with the description "Product found," type "Success," and
data "Product information." The failure outcome is "Product doesn’t exist,"
added to the list with the description "Product not found," type "Error," and
no data.

Caution

Don’t mix apples and oranges! An operation returning heterogeneous content
doesn’t make sense and is often a sign of wrong operation or data
identification. For instance, if an operation returns "Books" and
"Toothbrushes," they could be replaced by "Products." If it returns "Products"
and "Providers," it should probably be split into two operations.

Figure 3.22 No merge is necessary when a single step uses the operation



We proceed similarly for "Add a product to the catalog," "Modify a product,"
and "Remove a product from catalog" operations, all of which are used by a
single step (figure 3.21). The "Add" action’s outputs are "Product added to
the catalog" (Success, no data) and "Wrong product information" (Error, no
data). The "Modify" action’s outputs are "Product modified" (Success, no
data) and "Product not found" (Error, no data). The "Remove" action’s
outputs are "Product removed" (Success, no data) and "Product not found"
(Error, no data).



3.4.5 Dealing with contradictory successes and failures when
listing outputs

Having a consumer interpret an operation’s/action’s success or error output
as the opposite can happen depending on the context. However, determining
what is considered success or error for an operation/action must be done from
a context-agnostic perspective. It depends on its nature, the data being
manipulated and returned, and the subject matter.

Figure 3.23 Turning context-specific steps' outcomes into context-agnostic operation/action
outputs



In the "Search for products" operation, shown in figure 3.23, the two steps'
success and failure outcomes contradict each other. When searching for
products to buy, finding products is a success, and finding none is an error.
When looking for similar products to avoid having duplicates in the catalog,
it’s the opposite.

We add both "Product matching filters found" (with "Products information"
data) and "No products matching filters" (with no data) to the
operation/action outputs. Then, we choose their type from a context-agnostic
perspective. We set the "Product matching filters found" type to "Success"



because that is how search operations usually behave. For "No products
matching filters," though both "Success" and "Error" options exist, we choose
"Success" for reasons we’ll uncover in section 9.6 when working on errors.
That’s a pattern to remember: search or list operations do not error when they
find nothing.

Caution

Design decisions like making a search operation that finds nothing a success
should be applied consistently to all future designs to make APIs user-
friendly. See chapters 2 and 4 for more.

3.5 Summary

HTTP is a synchronous, request-response protocol that allows the
manipulation of resources with standardized HTTP methods.
A resource can be anything, such as an HTML file or data in any format.
REST APIs leverage HTTP extensively and respect its semantics.
There are three steps to designing a REST API: observe operations from
the REST perspective, represent them with HTTP, and model data.
Only relying on a plain language, such as English, observe operations
from a REST perspective to identify resources, actions, inputs, and
outputs.
The five typical API operations are searching for elements and creating,
reading, updating, and deleting an element. Also called CRUD
operations.
A resource is a standalone business concept distinct from properties.
An operation uses a single resource, which several operations can use.
The resource is the target of the main verb in the operation description.
The resource is the container for creating/adding and listing/searching
elements; it is the element itself for reading/updating/deleting.
An action is the main verb that applies to the resource manipulated by an
operation.
An action inputs list merges the inputs of the steps using it; use context-
agnostic description to avoid duplicates.
The operation resource should be removed from the action’s input list
unless multiple instances exist.



An action outputs list merges the success and failure of the steps using
it. Each output has a description, type (success or error), and optional
data.
Choose an action’s output type from a context-agnostic perspective.
Consumers may interpret success and error differently based on their
context.



4 Representing operations with
HTTP
This chapter covers

Designing resources' paths
Mapping resources' actions to HTTP methods
Representing actions' successes and failures with HTTP status codes
Selecting actions' input and output data locations in HTTP requests and
responses
Representing not-so-CRUD operations with HTTP
Introducing the REST architectural style and its principles

Once we’ve observed the operations listed in the API Capabilities Canvas
from the REST angle, we can design the HTTP-based programming interface,
mapping the identified elements (resources, actions, inputs, and outputs) to
HTTP but excluding data modeling (covered in chapter 5).

This chapter overviews when and how to represent operations with HTTP.
Then, it demonstrates how to turn resources, actions, inputs, and outputs into
their HTTP counterparts, using the Online Shopping example elements
identified in chapter 3. Afterward, it explains how to represent not-so-CRUD
operations. Ultimately, it discusses REST as an architectural style and its
principles.

4.1 Overviewing representing operations with
HTTP

As shown in figure 4.1, we’re still in the second stage of the API design
process outlined in section 1.6.1, "Design the programming interface." We
enter the second step of this stage, "Represent operations with HTTP,"
preceded by "Observe operations from a REST angle" (chapter 3) and
followed by "Model data" (chapter 5). Figures 4.2 and 4.3 show the



information gathered during observation from the REST angle for the
"Online Shopping" example. This section quickly re-explains REST and
HTTP before outlining the steps to represent operations with HTTP.

Figure 4.1 We are here in the API lifecycle and design process

Figure 4.2 Resources identified while observing operations from a REST angle for the "Online
Shopping" example



Figure 4.3 Operations, resources, actions, inputs, and outputs identified while observing
operations from a REST angle for the "Online Shopping" example



4.1.1 Refreshing our memories about HTTP and REST

We’ve discovered in section 3.1.2 that REST APIs heavily leverage HTTP
and respect its semantics (though we’ll realize in section 4.8.1 they’re more
than that).

To search for products with a REST API, the consumer can send a GET
/products HTTP request, where GET is a standard HTTP method
representing a "Read" action and /products is a path representing the



"Catalog (of products)" resource. The API server returns an HTTP response
with a standard HTTP status, such as 200 OK to signify success, and optional
data, such as a list of products. It’s only a simple example; this chapter
introduces more HTTP methods and statuses and different places to put data
in both requests and responses.

4.1.2 How do we represent operations with HTTP?

Figure 4.4 shows how to represent with HTTP the elements, such as
resources, actions that apply to them, and their inputs and outputs, identified
when observing the operations from a REST angle (see chapter 3). Figures
4.5 and 4.6 show the information used and the result (highlighted with
numbered bullets matching steps).

Figure 4.4 The steps to represent an operation with HTTP



Figure 4.5 The "Catalog" resource and its HTTP counterpart (Resource table in API
spreadsheet)



Figure 4.6 The "Search for products" operation and its HTTP counterpart (Operation table in
API spreadsheet)



We focus first on HTTP requests. We represent the resource ("Catalog") with
a path (/products), select an HTTP method (GET) to represent the action
("Search"), and choose a location for each input data (query for "Filters").
Afterward, we work on HTP responses. We pick HTTP status codes to
represent each output (200 OK for "Products matching filters found") and
choose the location of each output data (body for "Products info").

Note

We don’t investigate the specifics of "Filters" input or "Products info" output;



we keep fine-grained data modeling for the next step (chapter 5). Also, we
store our findings temporarily in our API spreadsheet’s tables; chapter 6 will
show us a better way to handle this.

4.2 Representing resources with paths

As seen in section 3.1.2, REST APIs manipulate resources, which are
business concepts like a "Product," and are identified by a path. This section
discusses the fundamentals of resource path design and demonstrates how to
design paths, leveraging the "Catalog" and "Product" resources identified in
section 3.3.2.

4.2.1 Fundamentals of resource path design

We’ll discuss various constraints and better practices for resource path design
throughout this book. At this stage, a path identifies a unique resource, may
have multiple segments and parameters, is hierarchical, doesn’t reflect the
underlying organization, and doesn’t end with a slash.

In the https://example.com/path URL, the resource path is /path and
identifies a unique resource. As two files can’t share the same path on a file
system, two resources can’t share the same path on an API server. However,
different paths may point to the same resource.

A path may contain multiple segments (this, is, a, or path in
/this/is/a/path) separated by slashes (/). It may also include variable parts
called path parameters represented between {} in API documentation or code.
For instance, /segment/{parameter} contains a path parameter named
parameter. In an HTTP request, {parameter} is replaced by a value, like
/segment/123456.

HTTP documentation states resource paths are usually hierarchical; in /p/c, p
contains or is a parent of c (and c is an element or child of p). Following this
recommendation contributes to creating user-friendly APIs (discussed in
chapter 9).

A path doesn’t have to reflect underlying data or implementation



organization. For example, /mangas may have its data stored in a BOOK table
(remember the provider’s perspective of section 2.8).

Tip

A resource path with a trailing slash, such as /path/, can cause routing bugs
at implementation code or network infrastructure levels, leading to hours of
debugging; use`/path` instead.

4.2.2 Designing a meaningful path

Figure 4.7 shows different paths identifying the "Catalog" resource, valid
from a REST perspective, but some choices are better than others.

Figure 4.7 Options for the Catalog resource’s path



We can randomly choose the first path in our API, /xyz, for example, but it’s
better to make decisions guided by what we want to convey than choosing a
random name that no one will understand (including our future selves).

We usually call a spade a spade; /catalog is a good option as it’s unique and
meaningful. Abbreviated names are common in programming, but /cat is
less significant. A name based on the resource’s content is OK, too; a
"Catalog" is a list or collection of products so that we can use the /products
path.



Note

This book discusses the art of choosing names in part 2, specifically diving
into designing user-friendly paths in section 9.3.

Before choosing one of the meaningful options, we discuss the possible paths
for the "Product" resource that the "Catalog" contains.

4.2.3 Targeting a specific element with a path parameter

Figure 4.8 shows various paths for the "Product." This section focuses on the
first three, aiming to identify a product uniquely.

Figure 4.8 The product resource’s paths



The /product path is meaningful but can’t uniquely identify a product.
Fortunately, we know that all operations leveraging this resource have a
unique "Product reference" input (see figure 4.3 of section 4.1). The
/{Product reference} (/123456) path uses it as a path parameter, allowing
product identification.

But it’s not meaningful, and a future /{Supplier reference} identifying a
"Supplier" may collide with this path (learn more about future-proof design
in chapter 14). Concatenating the resource name and the reference can solve
this. The /product-{product reference} (/product-123456 ) path is a



unique and meaningful path saying, "I’m product 123456". However, it
doesn’t convey the relationship between "Catalog" and "Product" resources.

Tip

An ID, reference, number, or code that identifies the resource and appears as
input on all of its operations is a resource identifier that must be present in
the resource path to make it unique.

4.2.4 Materializing relationship between resources

The last three paths of figure 4.8 materialize that a "Product" is an element of
the "Catalog." The /{product reference}/catalog (/123456/catalog)
path reads as "Product 123456 belongs to the catalog," but its hierarchy is
reversed (child comes before parent). The /catalog/{product reference}
(/catalog/123456) path fixes this, saying, "The catalog contains product
123456." We can also use /products/{product reference}
(/products/123456), which states, "Product 123456 belongs to the list of
products."

4.2.5 Designing paths for a collection and its elements

All combinations of "Catalog" and "Product" unique paths are valid from a
REST perspective. Still, we choose the ones shown in figure 4.9, relying on a
design pattern and recipe section 9.3 discusses.

Tip

A collection resource, which is a list of element resources, is often
represented by the /elements path (plural noun) and its children by
/elements/{element resource identifier}.

Figure 4.9 Typical paths representing a collection resource and its element



The "Catalog" is a collection resource containing "Product" resources, so we
represent them as /products and /products/{Product reference}. These
paths uniquely identify each resource (thanks to the Product reference path
parameter for "Product"), describe the relationship between the two (thanks
to being hierarchical), and are meaningful (each clearly states what the
resource is).

4.3 Representing actions with HTTP methods



As seen in section 3.1.2, REST APIs represent operations with standardized
HTTP methods applied on resource paths. This section introduces the HTTP
methods usually used, then explains and demonstrates how to choose one for
each operation’s action identified in section 3.4.1, and ultimately generalizes
learnings.

Note

Chapters 9, 12, and 13 discuss other concerns that may impact how we
choose HTTP methods. Section 4.8.2 and chapter 9 discuss how standard
HTTP methods benefit API usability.

4.3.1 Which HTTP methods use

Though there are more, most APIs leverage only five HTTP methods to
represent actions: POST, GET, PUT, PATCH, and DELETE (chapter 9 discusses
why). Figure 4.10 summarizes their meaning and usage.

Figure 4.10 How to use the five HTTP methods typically used in REST APIs



POST usually represents a creation (C of CRUD), adding an element to the
targeted resource. Use it for actions such as "create," "add," "start," "save," or
"send." Its real meaning is broader; it means "process (according to
resource’s signification)" and can be used as a fallback when no other method
fits.

GET reads the resource (R of CRUD). Use it for actions like "read," "get,"
"search," "filter," "select," "retrieve," "show," or "download."

PUT is for complete resource replacement or update (U of CRUD), creation (C



of CRUD), and upsert, which updates an existing or creates a new resource
(CU of CRUD). Use it for actions like "modify," "update," "change,"
"replace," or "edit," or the same actions as POST for creation.

PATCH is similar to PUT as it updates (U of CRUD) a resource, but it can do it
partially. Use it for the same action as PUT for updating, with the possibility
of being "partial."

DELETE represents a deletion (D of CRUD). Use it for actions such as
"delete," "cancel," "close," "finish," or "stop."

Note

Remember that HTTP is "disconnected" from the implementation; what
happens when an HTTP request is processed depends on the subject matter
and implementation choices. For example, on a DELETE /something request,
the implementation may delete a line from a table (hard delete) or update a
flag (soft delete).

4.3.2 Choosing HTTP methods to represent actions

We select the HTTP method representing each action best (the summary of
figure 4.10 can help us) by working on resources one by one. This approach
helps detect conflicts: an HTTP method can only be defined once on each
resource. Conflicts are rare and usually indicate wrong resource or operation
identification; reevaluate them in such a case. A resource can have any
number of HTTP methods and methods with similar intent defined.

Figure 4.11 shows the HTTP methods for the five typical REST API
operations of the Online Shopping example (we designed paths in section
4.2). The following sections explain these results from simple to complex
cases. In practice, you’ll work on a resource-by-resource and action-by-action
basis.

Figure 4.11 Operation table of the API spreadsheet with actions mapped to HTTP methods
(completed with resource paths)



4.3.3 Representing search, read, and delete actions

The "Catalog" resource has a "Search" action; it’s fundamentally a "Read"
action we can map to the GET HTTP method. To "Search for products,"
consumers will send a GET /products HTTP request.

The "Product" resource has a "Get" action, which we can easily map to the
GET HTTP method. To "Get product details," consumers will send a GET
/products/{Product reference} HTTP request.



The "Product" resource has a "Remove" action of type "Delete," so we
choose the DELETE HTTP method. To "Remove a product from the catalog,"
consumers will send a DELETE /products/{Product reference} HTTP
request.

4.3.4 Representing update actions

The "Modify a product" operation of the "Product" resource has a "Modify"
action, which is an update; we can map it to PUT or PATCH
/products/{Product reference}. Choose PUT at this learning stage;
chapters 5, 9, 12, and 13 discuss further considerations. It is possible to have
both methods defined. We keep both to demonstrate the five usual HTTP
methods.

4.3.5 Representing create actions

The "Catalog" resource has an "Add" action aiming to create a product,
which we can represent with POST or PUT. While POST /products creates a
product, PUT /products replaces the entire catalog. To use PUT, we must
target the resource we want to create, a "Product," and so do a PUT
/products/{Product reference}. It leads to merging "Add a product to the
catalog" and "Modify a product" operations into "Adding or modifying a
product." Also, it requires consumers to be able to provide the product
reference upon creation. These consequences may or may not be an issue.
Choose POST at this learning stage; chapters 5, 9, 12, and 13 discuss further
considerations.

4.3.6 Mapping typical operations to HTTP

We’ve uncovered new patterns and recipes applicable anytime we need to
map one of the typical create, search, read, update, and delete operations to
HTTP.

Given that /elements represents a list of elements and /elements/{element
identifier} represents an element of that list, the five typical REST API
operations can be mapped to HTTP as follows:



Create an element: POST /elements (default choice at this stage) or
/PUT /elements/{element identifier}.
List or search for elements: GET /elements.
Read an element: GET /elements/{element identifier}.
Update an element: PUT (default choice at this stage) or PATCH
/elements/{element identifier}.
Delete an element: DELETE /elements/{element identifier}.

4.4 Choosing input data locations in HTTP requests

Knowing the HTTP method and path for each operation, we can locate their
inputs in the HTTP request. This location and the HTTP method impact data
modeling (chapter 5). This section discusses locations for data in an HTTP
request, choosing one for each input identified in section 3.4.2, and
generalizes learnings.

Note

Parts 2 and 3 discuss other considerations when choosing locations and
values of inputs in HTTP requests, such as data formats, security, and
provider or consumer constraints.

4.4.1 Where to put input data in an HTTP request?

As shown in figure 4.12, an HTTP request has four data locations: path and
query parameters, header fields, and the body. Only specific methods can
have a body. For more information on data modeling concerns, refer to
chapter 5.

Figure 4.12 Input data locations in an HTTP request



As seen in section 4.2.1, path parameters are located in the resource path (on
the first line of the HTTP request). Their value can be anything that fits into a
(usually short) string. For example, in the path /resources/{Resource
identifier}/sub-resources/{Sub-resource identifier}, the {} indicates
two path parameters. In an HTTP request, such a path could be
/resources/12/sub-resources/ab.

The resource’s path can be completed with query parameters containing non-
hierarchical data participating in resource identification (discussed in chapter
9). They are added after a ?, are in a name=value form, and are separated by &



if there is more than one. We’re free to choose their name as we like, and
their values can be anything that fits into a (usually short) string. For
example, /resources?a=1&b=no has two query parameters: a (value 1) and b
(value no).

After the first line, HTTP requests include header fields that contain metadata
about the request’s origin, target, content, and other details. HTTP and its
extensions define over 200 standard headers (see IANA HTTP Field Registry
at https://www.iana.org/assignments/http-fields/http-fields.xhtml). Their
format is name: value. Though defining custom headers is possible, we’ll
use standard ones for now. Their values can be anything that fits into a
(usually short) string. For example, Content-length: 345 is a standard
HTTP header indicating the request body size in bytes.

The request body follows the headers and is used in POST, PUT, and PATCH; we
can’t use it on GET or DELETE. It can contain anything, such as text or binary
data, like JSON, XML, or an image. The body is a "representation" of the
resource to create or update; the implementation may process it and not store
it exactly as the consumer sent. The "representation" concept is discussed
further in chapter 9.

4.4.2 Choosing input data locations

HTTP method and data nature influence the location of input data. As some
resource operations may share parameters, proceeding on a resource-by-
resource basis is helpful. Figure 4.13 shows the input data locations for the
typical operations of the Online Shopping example. The following sections
explaining these results are organized by the data nature; in practice, you’ll
work on a resource-by-resource basis.

Figure 4.13 The operations table expanded with input data location based on HTTP methods and
data nature



4.4.3 Choosing a location for resource identifiers

The three operations of the "Product" resource (GET, PUT or PATCH, and
DELETE /products/{product reference}) share the same "Product
reference" input identified as a resource identifier and path parameter in
section 4.2.2. However, we investigate it for the sake of our learning.

This input can’t be a header as it’s not a request’s metadata matching any of
IANA’s 200 standard headers. It can’t be in the body, as GET or DELETE can’t



have one. If it was only PUT (or PATCH), we could put it in the body, but it
doesn’t represent the resource to update; it identifies it. Therefore, it could be
a path or query parameter. Both are OK for HTTP; /products?reference=
{product reference} and /products/{product references} allow us to
identify the "Product" resource uniquely, still, for reasons explained in
chapter 9, we put the product reference in a path parameter as we initially did.

4.4.4 Choosing a location for resource representations

To modify a product (PUT or PATCH), we need "Modified product
information." It can’t fit into a header, path parameter, or query parameter, as
it’s structured data unfit for a short string, and it’s not request metadata
matching any standard header. According to HTTP, it must be in the body, as
it represents the new state of the resource. The same applies to "Add a
product to the catalog" (POST), which has "Product information" input.

4.4.5 Choosing a location for resource modifiers

The "Search for products" (GET /products) operation has a single input
"Filters." The HTTP method is GET, so we can’t put it into the request body. It
also doesn’t fit into a standard HTTP header. That leaves path and query
parameter locations. Both options are valid for HTTP. If these filters are
"type" and "description," we could have /products/{type}/{description}
(path parameters) and /products?type={type}&description=
{description} (query parameters).

Still, we chose the query parameter option for "Filters." While the product
reference path parameter was a resource identifier, these are resource
modifiers allowing the selection of a subset of all products. Setting them as
path parameters makes them mandatory, which is not convenient; we need to
be able to GET /products without them and get all products. Chapters 9, and
14 explains further the reasons behind this choice.

4.4.6 Choosing input data locations for typical operations

We’ve uncovered new patterns and recipes applicable anytime we need to
identify input locations of the typical create, search, read, update, and delete



operations to HTTP:

The data needed to create or update a resource goes into the body.
The resource identifiers go into path parameters.
The resource modifiers (like search filters) that do not fit into a standard
HTTP header go into query parameters.
HTTP headers must only be used for standard HTTP request metadata
(at this stage).

4.5 Representing output types with HTTP statuses

Having designed resource paths, chosen HTTP methods, and decided on
input locations, we can move on to HTTP response, starting with HTTP
statuses. This section covers HTTP statuses, how to choose them, selecting
statuses for success and error outputs identified in section 3.4.4, and ensuring
exhaustive error handling with HTTP. Ultimately, it summarizes our
learnings.

Note

Section 4.8.2 and chapter 9 discuss how standard HTTP statuses benefit API
usability.

4.5.1 What is an HTTP status?

In an HTTP response, the HTTP status indicates how the processing of the
HTTP request went. You might have seen statuses like 404 Not Found while
accessing a non-existing web page. A status comprises a three-digit code
(404) and a human-readable reason describing it (Not Found), as shown in
figure 4.14.

Figure 4.14 The structure of an HTTP status code and the main HTTP status classes



The codes ranging from 100 to 599 are organized into five classes from 1XX to
5XX, having a specific signification. Most APIs leverage the 2XX (success),
4XX(client error), and 5XX(server error) classes.

2XX class codes between 200 and 299 indicate the server has successfully
processed the request.

4XX class codes between 400 and 499 indicate client/consumer errors. The
server can’t process the request due to, for example, unparsable data,
unhandled HTTP method, missing mandatory property, business logic



checks, or insufficient rights.

5XX class codes between 500 and 599 indicate server/implementation errors
caused by unexpected problems (a bugged implementation throwing a null
pointer exception or an inaccessible database server, for example) or planned
unavailability.

The class system makes interpreting unknown code easy. You may not know
the meaning of the 413 HTTP status code, but you can tell it indicates an
error caused by the consumer.

4.5.2 How to choose HTTP statuses for outputs

We can proceed operation by operation to choose the HTTP statuses best
representing each output listed in section 3.4.4, leveraging what we discover
from one to another. At this stage, selecting an HTTP status code depends on
the following:

The type of output: success (2XX) or error (4XX, 5XX).
In case of error, who caused it: consumer (4XX) or provider (5XX).
The HTTP method of the request.

The book showcases commonly used HTTP statuses in REST APIs, covering
most cases. HTTP methods documentation may provide recommendations
(see IANA HTTP Method Registry at https://www.iana.org/assignments/http-
methods/http-methods.xhtml). For more codes, refer to the IANA HTTP
Status Code Registry (https://www.iana.org/assignments/http-status-
codes/http-status-codes.xhtml). Use caution when using codes not referenced
in this book, and avoid using unassigned codes to create custom statuses (see
Chapter 9 for more details). Use X00 main value of a class when in doubt.

In the following sections, we’ll first treat successes (2XX), then errors (4XX or
5XX) to facilitate learning. In reality, proceed operation by operation and
output by output.

4.5.3 Choosing successful HTTP statuses for read operations



Figure 4.15 shows the five typical operations of the Online Shopping
example and their success outputs with corresponding HTTP statuses of the
2XX (success) class. This section and the following ones explain the results
for each typical operation.

Figure 4.15 Operation table focusing on success outputs and completed with HTTP statuses

Consumers can "Get product details" by sending a GET /products/{Product
reference} HTTP request. We could look at each 2XX code documentation to
find the best one to represent this success. Still, it is faster to check the GET



HTTP method, which says a GET request usually returns a 200 OK response
(chapter 9 discusses other options).

4.5.4 Choosing successful HTTP statuses for delete operations

To "Remove a product from the catalog," consumers use the DELETE HTTP
method, whose documentation gives three options: 200 OK, 202 Accepted,
and 204 No Content. We can use 200 OK if the action has been executed and
the response contains data describing its status. We can use 202 Accepted if
the action will likely succeed but has not yet been executed. 204 No Content
is similar to 200 OK, but the response contains no data. For our case, where
deletion is instantaneous and doesn’t return data, 204 No Content is the best
option. We’ll get back to 200 OK and 202 Accepted in chapters 9 and 13,
respectively.

4.5.5 Choosing successful HTTP statuses for update operations

The "Modify a product" operation uses PUT or PATCH methods. Navigating in
documentation, we finally found the HTTP status options are the same as for
DELETE. As the update is instantaneous, we have to choose between 200 OK
and 204 No Content. The output description, which says "Product modified,"
isn’t clear about returning data (200) or not (204). Both options are OK; we
choose the most usual one, 200 (chapters 9 and 13 discuss the pros and cons
of these options). That means we need to add output data; see section 4.6.2.

4.5.6 Choosing successful HTTP statuses for search operations

Based on what we’ve seen before with GET and DELETE, "Search for products"
(GET /products)) can return a 200 OK when "Product matching filters
found" and 204 No Content when "No products matching filters ." We may
also use 200 OK for both; we choose this option for reasons chapter 9 will
explain.

4.5.7 Choosing successful HTTP statuses for create operations

Following POST HTTP method documentation, "Add a product to the catalog"
(POST /products) returns a 201 Created as we create a resource. Same if



using PUT /products/{product reference}, which allows the consumer to
differentiate between an update (200 OK) and a creation (201 Created).

The documentation reveals a missing piece: a creation should return the
created resource’s information, or at least minimal data to retrieve it later.
Section 4.6.2 shows how to detect and fill such a gap.

4.5.8 Choosing error HTTP statuses

Section 4.5.1 taught us error HTTP statuses fall into two classes: 4XX (client)
and 5XX (server); determining who is responsible for the error allows us to
identify the correct one. As shown in figure 4.16, we identified two errors
across all operations of the Online Shopping example: "No product found"
and "Wrong product information."

Figure 4.16 Operation table focusing on error outputs and completed with HTTP statuses



The "No product found" error is caused by a wrong product reference
provided by a consumer, resulting in a 4XX HTTP status class. Based on our
browsing experience and documentation, 404 Not Found is the relevant code
to indicate that the resource/path doesn’t exist.

The "Wrong product information" error occurs when a consumer provides
incorrect or incomplete data while adding a product, resulting in a 4XX HTTP
status class. Scanning the IANA list, we can find several options we’ll
discuss in section 9.6. At this stage of our learning, we take for granted we
can use the most usual one, 400 Bad Request.



4.5.9 Ensuring exhaustive error handling

Errors found during needs analysis may not be exhaustive; this is normal as
the focus is on business needs. Choosing HTTP statuses is the perfect
moment to identify and fill the gaps. Figure 4.17 shows what we can detect at
this stage of our learning; we’ll learn to discover more gaps throughout the
book.

Figure 4.17 Errors missed during needs analysis and their HTTP statuses



Some operations expecting inputs are missing errors related to improper and
missing inputs, and so 400 Bad Request. That is the case for "Search for
products" and its "Filters" and "Modify a product" and its "Modified product
information." We can check that any operation with path parameters has a
"Resource not found" error and 404 Not Found; no missing errors here.

Ultimately, even though the implementation is thoroughly tested and the
infrastructure is reliable, an improbable but possible server failure must be
described. All operations must have an "Unexpected server error" output and
return a 500 Internal Server Error.

4.5.10 Choosing HTTP statuses for typical operations

We’ve uncovered new patterns and recipes applicable anytime we choose the
HTTP status codes representing the outputs of the typical create, search, read,
update, and delete operations and helping us detect gaps.

Choosing HTTP statuses for successful outputs:

A successful creation returns a 201 Created.
A successful read returns a 200 OK.
A successful search returns a 200 OK.
A successful update returns a 200 OK when the updated resource is
returned and 204 No Content when it’s not.
A successful delete returns a 204 No Content if no status data is
returned and 200 OK if there is.

Choosing HTTP statuses for error outputs and spotting missing errors:

An operation expecting input query or body data must handle missing or
invalid data errors and return a 400 Bad Request.
An operation whose resource path contains one or more path parameters
must handle resource not found errors and return a 404 Not Found.
Each operation must handle unexpected server errors and return a 500
Internal Server Error.

Note



Chapters 9 and 13 discuss other options, pros and cons.

4.6 Choosing outputs locations in HTTP responses

Our last task is determining locations for output data in the HTTP response as
it impacts data modeling (chapter 5). This section covers data locations in
HTTP responses, filling output data gaps with HTTP, and choosing locations
for data identified in section section 3.4.4, and generalizes learnings.

4.6.1 Where to put data in an HTTP response?

As shown in figure 4.18, an HTTP response has a similar structure to an
HTTP request, with the first line containing the HTTP status instead of a
method and path. Headers follow, containing metadata about the response,
followed by an empty line and the body. As for the HTTP request, headers
contain anything that fits into a (usually) short string, and we use only
standard ones (see IANA Header Field Registry at
https://www.iana.org/assignments/http-fields/http-fields.xhtml), and the body
can contain any data.

Figure 4.18 Output data locations in an HTTP response



4.6.2 Filling the output data gaps

As seen in section 4.4, we may have missed some output elements when
listing them in section 3.4.4 and HTTP can help us fill the gaps (see figure
4.19 for the final output list).

The "Add a product to the catalog" operation uses POST, whose
documentation recommends returning the representation/data of the created
resource or minimal information (the product reference) to retrieve it later



(with "Get product details"). It also uses 201 Created, which requires the
response to contain the URL of the created resource in a Location header,
which allows for later retrieval with a GET {created resource URL}, even
when no data is returned (see chapter 10 for more details).

We chose to return 200 OK (with data) instead of 204 No Content (without
data) on the "Modify a product" operation, so we should add the updated
product data as output. Similarly, for the "No product matching filters" 200
OK output of "Search for products," we must return data like "Empty products
list" (see chapter 9 for more details).

HTTP status codes can hint at what is happening, but they often fall short in
case of error; thus, HTTP documentation recommends returning "Error
information" data on all errors (see section 9.6 for more details).

4.6.3 Choosing outputs locations

Once we have an exhaustive output data list, we choose their locations
(header or body) similarly as we did for input data in section 4.4. Figure 4.19
shows the final HTTP representation of the typical operations of the Online
Shopping example, including output data location.

Figure 4.19 Finalized operation table completed with all output data and their locations



The "Product information" returned upon creating, reading, or updating a
product, as well as the "Products information" or "Empty products list," is
structured data unfit for a header. More importantly, they represent the
resource the operation manipulates, so, as HTTP documentation says, they go
into the response body. Similarly, "Error information" goes in the body as
HTTP recommends.

Strictly following the 201 Created status documentation, we return the
"Product URL" of the "Add a product to the catalog" operation as a standard
Location header.



4.6.4 Choosing output data locations for typical operations

We’ve uncovered new patterns and recipes applicable anytime we need to
identify output locations of the typical create, search, read, update, and delete
operations to HTTP:

A "read" operation (GET) returns the requested resource in the body.
A "search" operation (GET) returns found elements or an empty list in the
body.
A "create" operation (POST or PUT) returns the created resource in the
body and its URL in a standard Location header.
An "update" operation (PUT or PATCH) returns the modified resource in
the body.
A "delete" operation (DELETE) returns nothing
All errors return error data in the body.
HTTP headers are only for standard HTTP response metadata (at this
stage).

Note

Chapter 9 discusses when returning data on a "delete" makes sense. Chapter
13 discusses when returning created or modified resources should be avoided.

4.7 Representing a "Do" operation with HTTP

Not all operations fit the typical create, search, read, update, and delete
operations. For instance, mapping the "Check out" step of the "Buy products"
use case (see section 2.3.1) to an HTTP operation is not straightforward. The
challenge is figuring out the resource and the corresponding HTTP method.

Figure 4.20 Three HTTP representations for a "Do" operation, such as "Check out"



As shown in figure 4.20, this section uncovers three ways to handle such a
"Do" or non-CRUD operation: using an action resource, turning the action
into a business concept, and focusing on the action’s result.

4.7.1 Using an action resource

The POST HTTP method means "Process according to resource’s
signification" (see section 4.3.1), so a "Do" operation can be represented by
POST /do, where /do is the path of an action resource. The request body may



contain data needed to execute the action, and the response body, the
resulting data, possibly along with the input data. When it makes sense, the
path should show a relationship between the action resource and a business
matter resource, similar to how a method is related to a class.

We can represent the "Check out" operation with a POST /cart/check-out
(or POST /carts/{Cart identifier}/check-out if multiple carts exist).
The path materializes the relationship between the cart and "Check out"
resources. It takes no input and returns a 201 Created with the created order
information (body) and URL (Location header, /orders/123456, for
example).

Creating something is not mandatory; we can use action resources for volatile
processing, for example, summing two numbers with a POST /sum expecting
two numbers in its body and returning the 200 OK with the result.

Note

Action resources are often wrongly considered non-REST, but according to
REST, a resource can be anything, and POST handles such cases.

Though an action resource is an acceptable REST API pattern I keep in my
toolbox, I mostly use noun-based business concept resources in my API
designs as they may offer more possibilities, as shown in the following
sections.

4.7.2 Turning the action into a business concept

If it makes sense from a subject matter perspective, we can turn an action
resource into a business concept by nominalizing its verb. Additionally, it
allows for adding more features than just "Do."

We can consider "Checkouts" ("check out" nominalization) as an essential
business concept independent from the cart (though it leverages it under the
hood). POST /checkouts takes no data and returns checkout-related data
(including an order reference) along with the /checkouts/{Checkhout ID}
URL to retrieve it later ("Get checkout details" operation). Also, we can
"Search for checkouts (with filters)" with GET /checkouts.



Fundamentally, we could have similar operations represented with POST and
GET /cart/check-out, and GET /cart/check-out/{Checkout ID}, but that
is unusual and inconsistent with what we did with the Catalog and Product
resources, for example (see part 2 for more details about consistency).

When the nominalization is not as simple as "check out" to "checkout," you
can leverage suffixes such as -ing, -ance, -ence, -ment, -tion, or -sion. For
instance, "do" will become "doings," and execute" will become "executions."

Note

Turning an action into a business concept is perfect for long processes or
operations that chapter 13 covers.

4.7.3 Focusing on the result

If the action is not interesting from a subject matter perspective, we can work
directly with its result and create a resource based on it.

We can decide the resulting "Order" is the crucial business concept and so
represent the "Check out" operation with POST /cart/orders ("Create an
order from the cart"). It would return the created order (body) along with its
URL (Location header, /orders/{Order reference}).

The difference between /cart/orders and /orders/{Order reference}
paths comes from the fact that we could create orders from the cart’s content
(POST /cart/orders) and an ad-hoc list of products (POST /orders).
Ultimately, no matter how an order was created, it is an "Order" resource
instance, so /orders/{Order reference} (see chapter 10 for more details).

4.8 Leveraging the REST architectural style
principles for API design

To simplify our learning, we’ve considered REST APIs as mapping
capabilities to HTTP, but it’s a common oversight to reduce them to just that
and miss essential principles. REST APIs are based on the REST



architectural style, providing a foundation for efficient, scalable, and reliable
remote API-based systems. This section discusses the REST architecture
style, its principles, and how they relate to API design.

4.8.1 Introducing the REST architectural style

Designing a web API involves working on a distributed system composed of
software communicating over a network. A mobile application and its
backend, microservices working together, or the Internet are distributed
systems.

The REST architectural style enables building distributed systems that are
efficient (fast network communication and request processing), scalable
(capable of handling more and more requests), reliable (resistant to failure),
simple, portable (reusable), and modifiable. Roy Fielding developed it in his
2000 dissertation, "Architectural Styles and the Design of Network-based
Software Architectures," while working on HTTP 1.1. A REST software
architecture needs to conform to the six following constraints:

Client/server separation - Mobile apps (client) and API servers must
have separate and balanced responsibilities.
Statelessness - Requests contain all necessary information; no client
context (session) is stored between them.
Cache - Responses to requests specify if they can be reused and for how
long (to avoid repeating the same call)
Layered system - Clients only see and interact with servers, unaware of
the underlying infrastructure.
Uniform interface - Interactions are performed via the manipulation of
resources through representations of their state/data with standard
methods (it’s the origin of the REST acronym: Representational State
Transfer) and the help of metadata, enabling representation
interpretation and knowing resource capabilities.
Code on demand (Optional) - A server can transfer executable code to
the client (JavaScript, for example).

More about the REST architectural style



Fielding’s dissertation, "Architectural Styles and the Design of Network-
based Software Architectures," is available
at https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm; REST is
defined in chapter 5. It gives no guidance on API and API design

The world has evolved, and REST has been used, misused, and abused since
2000. "Reflections on the REST Architectural Style and 'Principled Design of
the Modern Web Architecture,'" by Fielding et
al., https://research.google.com/pubs/pub46310.html, describes the history,
evolution, and shortcomings of REST as well as several architectural styles
derived from it.

4.8.2 Applying REST principles to API design

This book already leveraged or uncovered some REST constraints and will
continue to do so. Note that you can leverage these principles for other types
of remote APIs.

Section 2.6 discusses the provider and consumer perspectives discussed,
which are related to the client/server separation constraints. Part 2 and
chapter 14 dive deeper into this topic.

The statelessness constraint is hidden behind the context-agnostic operation
of section 2.5.2. Chapter 10 dives deeper into stateless API call flows.

Chapter 12 that teaches how to create efficient APIs uncovers the cache
constraint.

Section 41.3 mentions that consumers are only aware of the API, which is the
first layer of the system; it is an example of the layered system constraint.

In this chapter, we represented API capabilities with resources and HTTP
methods, following the uniform interface constraint. Its importance and
benefits will be better understood in parts 2 and 3.

Code-on-demand constraint is mainly used in HTML and JavaScript apps,
not often in REST APIs; chapter 10 leverages its spirit for API call flows.



What is or is not REST (often sterile) debates

Many REST or RESTful APIs do not follow REST principles and barely
leverage HTTP correctly. The "What is or is not REST/RESTful?" question
has sparked many (heated and sterile) debates, often unrelated to REST or
due to REST and HTTP misunderstanding.

Some people argue that "`POST /do` is not RESTful because /do is not a
resource;" /do can be a resource, and this usage is valid according to HTTP.
Similarly, others declare, "A collection must have a plural (or singular noun)
in a REST API;" naming conventions do not determine whether an API is
RESTful.

This book has your back to help you understand the principles, apply them
seamlessly, and know when not to apply them. For arguments, chapter 15
teaches how to avoid them.

4.9 Summary

A resource path must uniquely identify each resource (using path
parameters when needed, /resources/{identifier}), clearly state the
resource, and indicate any parent-child relations (/parent/child).
A collection (list) resource path indicates the element it contains
(/elements, for example), and its children’s resources concatenate their
unique identifier and parent’s path (/elements/{identifier}).
Map the five typical REST API operations to HTTP as follows: create
element: POST /elements or /PUT /elements/{element reference},
search for elements: GET /elements, read an element: GET
/elements/{element identifier}, update an element: PUT or PATCH
/elements/{element identifier}, and delete an element: DELETE
/elements/{element identifier}.
The data needed to create or update a resource goes into the body.
The resource identifiers always go into path parameters.
The resource modifiers (like search filters) that do not fit into a standard
HTTP header go into query parameters.
Only standard HTTP headers defined in the IANA registry should be
used (at this stage).



The success of an operation is represented by a 2XX class HTTP status
code, an error caused by the consumers, a 4XX, and an error caused by
the provider, a 5XX.
A successful creation returns 201 Created, and other operations may
return 200 OK if data is returned (search, read, update), and 204 No
Content otherwise (delete).
Operations expecting input query or body data must return 400 Bad
Request, operations with path parameter(s) must return 404 Not Found,
and all operations must handle unexpected server errors and return 500
Internal Server Error.
Output data go into the response body unless it fits into a standard
header defined in the IANA registry.
A "Do" non-CRUD operation can be mapped to POST /do (action
resource), /doings (nominalization of action), or /results (resource
based on result). The two latter are to be preferred.
An API adhering to the REST architecture style is efficient, scalable,
reliable, simple, portable, and modifiable. It must respect client/server
separation, statelessness, cache, uniform interface, and optional code-on-
demand constraints to adhere to.



5 Modeling data
This chapter covers

Designing resource data models
Designing operations inputs and outputs data based on resource models
Leveraging fine-grained data models to ensure completeness and proper
focus of the API

Once we’ve given an HTTP representation to operations and identified
locations of coarse-grained inputs and outputs in HTTP requests and
responses, we can design their fine-grained data models.

Data modeling involves selecting appropriate data, names, types, and
organization. At this stage of our learning, we aim to efficiently model data
that meets identified needs. Though a good first draft, we must polish our
design afterward; user-friendliness, performance, security, and
implementation constraints are essential factors to consider in data modeling.
Parts 2, and 3 cover them in depth.

The chapter overviews data modeling, clarifying which data we model and
introducing the JSON portable data format. Using the Online Shopping
example of previous chapters it demonstrates how to model resources and
derive them into inputs and outputs based on their locations and types of
operation. It also shows how to leverage fine-grained data to ensure
completeness and proper focus of the API.

5.1 Overviewing data modeling

As shown in figure 5.1, we’re still in the second stage of the API design
process outlined in section 1.6.1, "Design the programming interface." We
enter the last step of this stage, "Model data," which is preceded by
"Represent operations with HTTP" (chapter 4) and "Observe operations from
a REST angle" (chapter 3). Figures 5.2 and 5.3 show the information



gathered during the prior steps for the "Online Shopping" example. This
section clarifies which data we model and introduces the JSON data format
before outlining how to finalize the API design with data modeling.

Figure 5.1 We are here in the API lifecycle and design process

Figure 5.2 The resources of the Online Shopping example and their paths

Figure 5.3 The Online Shopping example’s operations and their HTTP methods, inputs and
outputs location, and HTTP status codes



5.1.1 Which data are we modeling?

When representing operations with HTTP, we discovered the possible data
locations in requests and responses (see sections 4.4.1 and 4.6.1). They are
the path parameters, query parameters, header fields, and bodies shown in



figure 5.4. The data models we design in this chapter describe the data we put
in those locations; figure 5.5 show examples.

Figure 5.4 HTTP request and response data locations

Figure 5.5 HTTP request and response data examples

Path parameters appear in HTTP request paths and are resource identifiers
pinpointing a unique resource; an example is the 12345 product reference
necessary to get a product’s details.

Query parameters are resource modifiers that may appear at the end of the
path after a ? and separated by & in the name=value form. The category and
keywords product search filters are examples.

HTTP header fields contain metadata about requests and responses. We use
only standard ones from the "HTTP header fields" IANA registry. For
instance, the Location header indicates the created product URL when a
product is added to the catalog.



HTTP request and response bodies contain a representation of a resource’s
desired or current state. For example, when adding a product to the catalog,
the request body contains a representation of a product to create, and the
response body has a representation of the created product.

Caution

When designing web APIs, we must focus on modeling the data exchanged
between the consumers and the provider from the subject matter perspective
rather than from the data storage one (see section 2.8.1).

5.1.2 Introducing the JSON portable data format

HTTP allows for the use of any data format in request and response bodies.
JSON (JavaScript Object Notation, https://www.json.org/) is the most
common format in REST APIS. Though based on JavaScript, it is
programming language-independent. JSON is widely adopted for various
uses like database storage, configuration files, or web APIs.

Figure 5.6 JSON portable data format examples

As shown in figure 5.6, JSON can describe atomic values (strings, numbers,
or booleans), arrays or lists containing ordered values, and objects containing



unordered key/value pairs. Brackets ([]) delimit an array, and commas
separate its values (,). Curly braces ({}) delimit an object, and commas
separate its properties. An object’s property key or name is a quoted string
("price") and is separated from its value by a colon (:). A value can be of
any type: a string like "Cowboy Bebop", a number like 12345 or 49.99, a
boolean (true or false), an object, or an array. It can also be the null value
to indicate it’s not set.

To ensure maximum compatibility between the provider and consumers, we
model all data going into bodies and all other locations with JSON in mind.
Path parameters, query parameters, or header data are usually based on
atomic values.

Note

JSON is a common data format in web APIs, but we can use others, such as
XML or CSV. Chapter 9 shows what they look like and how to handle
different data formats with the same operation.

5.1.3 Finalizing the API design with data modeling

As shown in figure 5.7, we proceed in three phases to model data and achieve
the design of an API.

Figure 5.7 Modeling data and ensuring completeness and proper focus



We design the theoretical or complete resource models containing all possible
data a business concept can have. We choose names and data types and
decide how to structure data. The "Product" resource is an object with
properties such as productReference (an integer) and supplier (an
object).

Then, we derive the resource models into inputs and outputs of each
operation using them, picking all or a subset of their elements. When adding
a product, the body shouldn’t contain the productReference generated by the
server.

Note

We temporarily record data models in spreadsheet tables; chapter 7 shows a
more efficient way to describe them. Our data models could be better; it’s
essential to consider factors such as user-friendliness, performance, security,
and implementation constraints, which parts 2 and 3 cover in depth.

Afterward, we leverage the operation inputs and outputs data models to
ensure our API design is complete and has the proper focus by checking each
property source and usage (as we did during the needs analysis in sections
2.3.3, 2.6, and 2.7). For instance, if adding a product to the catalog requires
supplier information, we may need to add supplier-related use cases and
steps to our API Capabilities Canvas.



5.2 Designing theoretical resource data models

We first design theoretical resource data models containing all possible data
of the business concept they represent (see section 3.3.1) before actual inputs
or successful outputs for all operations.

As data is often connected between requests and responses, locations, and
operations, designing an API’s resource models first simplifies and
accelerates the design, reduces errors, and fosters consistency, leading to
easy-to-use-and-maintain APIs. For example, the data needed to create a
product or the data returned when reading a product are similar.

Leveraging the Online Shopping example resources, this section discusses
determining a resource’s structure, choosing properties, their name and types,
and if they are required, and streamlining this process.

5.2.1 Determining a resource’s structure

All elements we design must be of any portable introduced in section 5.1.2,
including resources. Chapters 9 and 14 will show us that all resources should
be an object. Still, for simplicity at this stage of our learning, we will
consider a collection resource as an array and an individual resource as an
object.

Figure 5.8 Resources and their models

As shown in 5.8, "Product" is an element of the "Catalog", so a Product of
type object, while "Catalog" is a collection or list of "Product", so an array
of Product.

5.2.2 Choosing an object resource’s properties



To design an object data model like Product, we identify what information is
necessary to fully represent the business concept, hence its properties, guided
by our knowledge or that of our SMEs, supplemented with information from
existing applications, implementation code, or databases. We must ensure the
result fulfills the needs, makes sense from the consumers' perspective, and
isn’t tainted by unwanted influences (see section 2.6); section 5.5 will get
back to these concerns.

Figure 5.9 shows and the following sections discuss the result of our
discussions with SMEs about "What goes into a Product?".

Figure 5.9 The Product resource theoretical model and a JSON example

5.2.3 Choosing a property name and type



Choosing names and types is an art that parts 2 and 3 cover in depth. At this
stage, we choose meaningful names and write them as we would write
variable names in code or query parameters in URLs. For instance, the
reference uniquely identifying a product is productReference,
product_reference, or any other variation depending on our preferences.

We also pick portable types (see section 5.1.2) that seem appropriate for the
data and indicate a format when necessary. The Product model of figure 5.9
showcases all the portable data types. The productReference is an integer,
name is a string, price is a float, and isProductAvailable is a boolean.
Note that dateAdded is a string with a (date) format (YYYY-MM-DD); see
chapter 8 for more about formats and dates. Not all properties are atomic
values; the keywords property is an array of string, and the supplier one
is an object with its own properties.

We may provide an optional description to capture additional information
that the combination of resource name, property name, and type can’t
convey. For instance, the product’s price is expressed in US dollars. See
chapter 17 for more about API documentation.

5.2.4 Indicating required properties

In a theoretical resource model, the required flag ("req." in figure 5.9)
indicates properties essential for the concept. It’s mainly a subject-matter
question, but we can also think about what consumers must provide as input
and what the API implementation always returns as output. A product doesn’t
make sense without a productReference, name, or price but can exist
without a description or keywords. We must also set this flag for deeper
elements; for example, the supplier object must have a supplierCode
property.

5.3 Designing inputs and outputs data models

Once we’ve designed the theoretical resources models, we can easily design
inputs and outputs for each API operation using that base; we pick the
element we need in those models according to the context. Still, we can
simplify our work by identifying patterns and recipes.



This section allows us to practice designing input and successful output from
resource models for each of the "Online Shopping" typical create, read,
search, update, and delete operations (listed in figure 5.3 of section 5.1). The
following section 5.4 generalizes our learnings to simplify this process. It
also quickly provides a temporary error model to complete our design.

5.3.1 Designing a read operation inputs and success outputs

As shown in figure 5.10, the "Get product details" (GET /products/{product
reference}) operation has a single input, "Product reference," and its success
output is "Product information;" we can design them taking the Product
theoretical model as a base.

We "design" the output using the unmodified theoretical Product model as
the operation returns a Product (see figure 5.9 of section 5.2.2). In this
context, each property’s required flag indicates whether it is systematically
returned. For instance, the name property is required, so the operation returns
it for all products. On the other hand, the operation may or may not return the
non-required description property.

Figure 5.10 Modeling a path parameter based on the output

Once we’ve designed the output, we can work on the input, the "Product
reference" that uniquely identifies the product resource. We can reuse the
productReference property of the Product (output or theoretical) model as a



base to design it and set this input type to integer. We also rename the
corresponding path parameter in the Product resource path
(/products/{product reference}) to be consistent with the model
(/products/{productReference}). Remember that {productReference} is
a placeholder whose name never appears in an API call as an actual value
replaces it.

Tip

When modeling operation data, starting with the output design is convenient
since each piece of input data is identical to a part of the output.

5.3.2 Designing a search operation inputs and success outputs

The "Search for products" operation (GET /products) has a "Filters" input
and "Products information" and "Empty products information" successful
outputs.

Figure 5.11 shows the modelization of the outputs. Both outputs represent the
result of a search across the "Catalog" resource. Hence, they are an array of
Product; one contains some Product while the other is empty.

Figure 5.11 The product summary model is a subset of the product model



We have two options for each array element: returning all data of the Product
theoretical model or a subset of it; this choice is discussed in parts 2 and 3).
At this stage of our learning, we choose the most common option: returning a
subset or summary of available information, an array of ProductSummary.
The ProductSummary model has properties like productReference, name,
category, keywords, and price. We only need select properties giving a
good overview of a product, not necessarily all required ones; for instance,
we excluded dateAdded. To get all the data of a specific product, consumers
can use the "Get product details" operation by sending a GET
/products/{productReference} request using the productReference
property value in the {productReference} path parameter.

The "Filters" query input selects a subset of products. Parts 2 and 3,
thoroughly discuss the design of query and search parameters. At this stage of
our learning, we choose a common option: mapping search filters to the
output model properties. For example, we can have two query parameters to
allow filtering on keywords or category, their name and type identical to the
original properties of the ProductSummary model. An example of a filtered
request could be GET /products?keywords=anime,fantasy&category=BD.
Note how comma-separated values represent the keywords (array of
string); later chapters discuss other options.



5.3.3 Designing a create operation inputs and success outputs

The "Add a product to the catalog" operation (POST /products) has a single
input, "Product information," and returns "Product information" and "Product
URL" when a product is successfully created.

Figure 5.12 The data participating in a product creation

The "Product information" output is the data of the created product, hence the
Product theoretical model, hence the same data "Get product details" returns.
However, note that for performance reasons, we may return a
ProductMinimal model containing only the productReference property;
check out chapter 13 for more. As seen in section 4.6.2, the "Product URL" is
the created product URL. We strictly follow HTTP documentation and put it
into the standard Location header as a string. Its value is, for example,
/products/12345 (/products/{productReference}); 12345 is the



productReference of the created product.

Though they share the same name in our API spreadsheet, the "Product
information" input differs from the output. It is the data needed to create a
product, a subset of the Product output model stripped of implementation-
managed properties. After discussing with the SMEs and implementation
team, we decided the ProductCreation model contains all of the Product
properties minus productReference, dateAdded, and the name of the
supplier. The implementation generates the first two and sets the third based
on the supplierCode. In this context, each property’s required flag indicates
whether consumers must provide it. For instance, consumers can’t create a
product without a name but don’t need to provide a description. Chapter 9
discusses how the required flag may impact user experience.

5.3.4 Designing an update operation inputs and success outputs

The "Modify a product" operation (PUT or PATCH
/products/{productReference}) has two inputs, "Product reference" and
"Modified product information," and returns "Product information" when the
product is successfully updated.

We have already designed the output data. The returned "Product
information" is the new state of the Product resource; thus, its data is the
Product theoretical model, the same "Get product details" or "Add a product
to the catalog" return. The "Product reference" path parameter is the same as
for "Get product details" as both operations share the same resource (see
section 5.3.1).

The input design may vary depending on the HTTP method (PUT or PATCH). If
we use PUT /products/{productReference}, the "Modified product
information" input should contain all properties necessary to replace entirely,
hence re-create the product identified by the path. So we need the same
information as in the ProductCreation input of "Add a product to the
catalog" (POST /product). We may rename the model
ProductCreationOrReplacement. If we use PATCH
/products/{productReference}, which allows for a partial update, the
common option would be to have a ProductModification model that is



similar to ProductCreation, but all properties are optional (see Chapter 9 for
more about PATCH options).

Some data may be restricted from updates due to subject matter-related
reasons. For example, a product’s category may be defined upon creation
and cannot be modified afterward. To limit what can be updated, the input
data model may be a subset of the one used for creation. Check out chapters 9
and 17, which discuss this topic further.

5.3.5 Designing a delete operation inputs and success outputs

The "Remove a product from the catalog" operation (DELETE
/products/{product reference}) has a single input, "Product reference,"
and no outputs. We’re in the same situation as with GET, PUT, or PATCH
/products/{product reference}. This operation manipulates a Product
resource, so we end with a DELETE /products/{productReference} where
the {productReference} path parameter maps the productReference
property of the theoretical product resource.

5.3.6 Designing a temporary error data model

This chapter doesn’t cover error output modeling, but we can design a
temporary simple data model for all error outputs (4XX and 5XX) of all
operations (figure 5.13). The Error model is an object with a required
message property, a string, conveying explicit human-readable information
about the problem. See section 9.6 for a complete design.

Figure 5.13 A simplistic and generic error model

5.4 Streamlining data modelization

Now that we have designed all resources and operations' inputs and success



outputs, we can identify seven typical models that allow us to streamline the
outputs and inputs design for CRUD and "Do" operations: complete (or
theoretical), summarized, minimal, identifier, creation, replacement, and
modification. Figure 5.14 shows where to use these models. This section
explains how to design and use these typical CRUD and "Do" operations
models. It also explains how to simplify listing and modeling properties and
discusses some risks related to non-differentiating similarly named elements.

Figure 5.14 Usages of the typical models in operations

5.4.1 Designing and using the complete, summarized, minimal,
and identifier models

Figure 5.15 shows we can derive the complete model to design the
summarized, minimal, and identifier ones.

Figure 5.15 From complete to summarized, minimal, and identifier models



A complete (or theoretical) resource model, such as Product, should be
designed first, as it is the source for the other models. It contains all possible
business concept properties, including a resource identifier. We can use it as
a successful output body for create, read, search (in a list), and update
operations.

A summarized model, such as ProductSummary, contains a subset of the data
from the complete resource model, including resource identifiers and "main"
properties representing a meaningful summary. We can use it as an output of
search operations (in a list).

On search operations, we can leverage the properties of the complete or
summarized model we use in the list as a base for query parameters, as
in`GET /products?keywords=anime,fantasy&category=BD`.

A minimal model, such as ProductMinimal, is a subset of the complete or
summarized models, containing only the resource identifier. We can use it as
an output for a create operation (discussed in chapter 13).

The summarized and minimal models can also be embedded in other
resources. For example, an Order may contain a list of products whose
elements are one of these models.

An identifier model is the type of the resource identifier of the complete data
model. We can use it as a path parameter (/products/{productReference}).

5.4.2 Designing and using the creation, replacement, and
modification models



Figure 5.16 shows how we can derive the complete model to design the
creation, replacement, and modification ones.

Figure 5.16 From complete to creation, replacement, and modification input models

A creation model, such as ProductCreation, contains all the properties
needed to create a resource and goes into the body input of a "Create
resource" operation. It is a subset of the complete model that excludes data
managed by the implementation, such as the resource unique identifier
(productReference) or creation date (dateAdded).

A replacement model, such as ProductReplacement, is the body input for an
"Update resource" operation using PUT. It’s usually the same model as the
creation one (ProductCreationOrReplacement).

A modification model, such as ProductModification, is the body input for
an "Update resource" operation using PATCH. It’s usually a copy of the
creation model, where all properties are non-required.

Both replacement and modification models can also be a subset of the
creation model if some properties are not modifiable after creation.

Note



Chapters 9 and 13 discuss the pros and cons, modeling alternatives, and
concerns for "Update resource" operations with PUT and PATCH.

5.4.3 Modeling data for "Do" operations

In section 4.7, we learned about representing "Do" or non-CRUD operations
using the REST model; we fundamentally defined two options: creating a
business concept resource or an action resource. This section discusses how
to model their data.

If we choose the business concept option and create an "Executions" or
"Results" resource, "Do" is represented by a create operation (POST
/executions or POST /results). We can model these resources like any
other resource, as explained in sections 5.3 and 5.4. Design "Results"
resource like any business concept. The work is similar for "Executions"
resources; the complete model, used as output, contains all "Do" input and
output data (the numbers to sum and their sum, for example) plus a resource
identifier. The input is a creation model only containing what is needed to
perform the action (the numbers to sum).

With an action resource, we can have a POST /do behaving like a function
whose body input, as in the previous option, contains all needed to perform
the action (numbers to sum) and whose body output has the result (the sum).
Still, I recommend designing the output models similarly to "Executions"
resources minus the resource identifier; returning all input and output data
(complete model) allows consumers to understand the source of the result.

5.4.4 Listing and modeling properties

To streamline the design process, list properties without worrying about
details (final names or types), group those belonging to a sub-concept to
create sub-objects, evaluate each element, and remove any that don’t make
sense. Reiterate with deeper objects, such as supplier, if necessary. Finally,
choose the most appropriate name and type for each element and determine if
it’s required. For more information, refer to 2 and 3.

5.4.5 Differentiating similarly named elements



Similarly named resources, inputs, or outputs may be the same but not share
the same model or not be the same concept depending on the context. It’s
essential to differentiate them and identify what they are to design the
appropriate models contributing to creating an API that fulfills the needs.

In section 5.3.3, we realized "Product information" was both an input and
output for the "Add a product to the catalog" operation, but with different
modelizations. Thanks to the typical models of section 5.4, we can
seamlessly differentiate elements between inputs and outputs and across
operations that manipulate the same resource.

Once we identify and model resources, we must be careful not to use them
whenever they’re mentioned. Business concepts with similar names may
differ depending on the context and require different resources. For instance,
the "Product" resource identified for catalog-related operations likely differs
from the "Product" in the cart context. Adding a "Product" to a cart typically
requires a product reference, whose value is the same as the
productReference of the Product model and the quantity. We should
differentiate these concepts by naming them "Catalog Product" and "Cart
Item." Additionally, when listing the items (or products) added to the cart, we
can embed some of the "Catalog Product" information in the "Cart Item
Summary" to provide a complete picture.

What may seem like a unique business concept is often multiple concepts
adapted to a context or use case. Always check with SMEs if seemingly
identical concepts are the same; rename them using a suffix, prefix, or more
precise name. At last resort, fine-grained modelization can uncover non-
differentiation issues by demonstrating the two concepts are different. When
concepts are related, leverage typical models of section 5.4 or their elements
to compose new models.

5.5 Leveraging data to ensure completeness and
proper focus

We now have a solid draft of our programming interface design. Still, before
moving forward, we must review it for completeness and accuracy as we
have investigated the needs deeper with data modelization. Similar to what



we did during the initial needs analysis (see chapter 2), this review involves
checking input sources and output usages and avoiding exposing provider or
too specific consumer perspectives. We also add a thorough error handling
check. This section overviews these concerns using the "Online Shopping"
programming interface data as an example.

5.5.1 Spotting missing elements with sources and usages

As in section 2.3.3, we must check if consumers can provide requested inputs
and what they do with outputs to spot missing use cases, steps, and
operations.

The fine-grained inputs source check can reveal new API parts that were
previously unknown during the needs analysis. For instance, to "Add a
product to the catalog," consumers must provide information about the
supplier, especially a code identifying them. After discussing with SMEs,
we realized a "Select a supplier" step needs to be added to the "Fill the
catalog" use case (see section 2.3.3).

We likely spotted all the use cases and steps we could discover during needs
analysis by investigating output usage. However, we can do a quick second
pass. For example, we can consider what end-users may do with the
supplier information returned with products. We may add this as a filter to
"Search products," but if we decide the supplier property is irrelevant for
end-users, we can remove this information. But catalog administrators need
it; that leads to security questions discussed in chapter 11, so we keep it for
now.

5.5.2 Ensuring complete business error handling

Part 2 and 3, especially chapters 9 and 17, thoroughly discuss errors and their
documentation. At this stage of our learning, we focus on identifying them.
Now that we have a fine view of all inputs, we can double-check with SMEs
what possible business errors can happen, especially on creation and
modification operations.

In most cases, the newly identified errors should be a refinement of the ones



already identified during needs analysis. For instance, "You can’t add a
product with a price which is negative or above 100,000" is a refinement of
"wrong product information." We can add the newly detected specific error
cases to the description of the 400 error cases. We must also check if errors
impact the use cases identified during need analysis (adding new branches,
operations, etc.), though that should be rare.

5.5.3 Focusing on the proper elements

We must analyze each fine-grained input and output data model element from
the angles uncovered in section 2.6, data must be aligned with the needs and
free of unwanted provider or too specific consumer influence. Note that later
chapters will show us more possible issues and solutions.

We must ensure consumers can send the data they want and get the data they
need to achieve their goals in the context of the use cases identified during
needs analysis (see 2). For example, the "Product" resource data model
returned by "Get product details" may miss data about the size of the product,
which is crucial for consumers, though not used elsewhere in the API.

We must ensure that the names, types, or data organization are not exposing
the provider’s perspective, hence exposing data organization or business
logic (there’s less risk of software architecture issues here). For instance, if
the price description says, "Add 10% on Fridays between 4 pm and 7 pm", it
would be better to find a way to avoid consumers having to deal with that.
We’ll get back to that topic in part 2.

We must ensure a specific consumer’s perspective doesn’t taint data by
checking if it doesn’t mimic existing UI or isn’t specialized for one
consumer. A typical UI influence would be to have description and
keyword grouped under a summary property in the product model because
that’s how information is presented on the existing website. But from a pure
data perspective, agnostic of the context, this organization doesn’t make any
sense.

5.6 Summary



Use JSON portable data types (strings, numbers, booleans, arrays, and
objects) to model all data for better compatibility between providers and
consumers.
Design data models for resource/business concepts and derive them into
inputs and outputs for each API operation.
Typical data models used as input or output for CRUD and "Do"
operations include complete, summarized, minimal, identifier, creation,
replacement, and modification.
The complete (or theoretical) model contains all business concept
properties, including a resource identifier. Design it first; it is the source
for the other models. Use it for create, read, search (list), or update
operations.
The summarized model is a subset of the complete model, including the
resource identifier and properties representing a meaningful summary.
Use it as output for search operations (list).
The minimal model is a subset of the complete model, containing only
the resource identifier. Use it as output for create operations.
The identifier model is the type of the resource identifier of the complete
data model. Use it for path parameters.
The creation model is a subset of the complete model that excludes data
managed by the implementation. Use it as input for create operations.
The replacement model is usually the same as the creation one. Use it as
input for update operations using PUT.
The modification model is usually a copy of the creation model where
all properties are non-required. Use it as input for update operation using
PATCH.
To design models, list properties without worrying about details (final
names or types), reorganize and filter them, and finally, choose name,
type, and required status.
Investigate fine-grained data sources and usages to spot missing use
cases or steps.
Identify all business errors by leveraging input data.
Ensure fine-grained data is aligned with the needs and free of unwanted
provider or too specific consumer influence.



welcome
Thank you for purchasing The Design of Web APIs, Second Edition.

Web APIs are everywhere; we use them all the time, often without even
realizing it. Whether sharing a photo on social media or hailing a ride through
an app, web APIs are crucial in making it happen. For developers, APIs are
essential as most modern systems rely on multiple software components
communicating with each other. We need them to build simple web
applications to complex distributed systems. APIs are also products in their
own right, as exemplified by Stripe or Twilio. Even government agencies rely
on APIs to power their digital services.

The design quality is crucial for web APIs, whether seen as technical
interfaces or products, used by a single application or multiple, or created for
internal use or third-party. Poorly designed public or private APIs can harm
developers' productivity, system performance and integrity, end-users
experience, and organization’s revenue.

This book aims to help you develop an API designer’s mindset and design
exceptional web APIs, specifically REST APIs. In these chapters, we will
explore the true nature of API design as both a result and a process. We will
learn how to analyze and evaluate requirements to identify the API
capabilities, discover HTTP and REST, and understand how to use them to
represent these capabilities. We will discuss how to create interoperable and
user-friendly APIs, ensuring that anyone can instantly use the API’s data and
operations. We will also learn how to integrate various constraints, especially
security, into our design. Additionally, we will focus on handling
modifications and preventing breaking an API design unintentionally or
breaking it intentionally when it makes sense. Furthermore, we will learn
how to become efficient API designers by learning various principles and
recipes for making design decisions when faced with new problems. We will
learn to convince others (and ourselves) that our design decisions are correct.

I am writing the second edition of this book to address what was not working



well in the first edition and expand it. I also reorganize the content to make it
easier to follow and integrate new ideas and feedback received from readers.
I am keeping the spirit of the first edition but rewriting everything. In a way,
this is almost a new book. Your feedback is essential to make this new
edition the best companion on your journey of API design; I hope you’ll add
your comments to the Livebook discussion forum.

— Arnaud Lauret

In this book

welcome 1 What is API design? 2 Analyzing needs 3 Observing operations
from the REST angle 4 Representing operations with HTTP 5 Modeling data


	welcome
	1_What_is_API_design?
	2_Analyzing_needs
	3_Observing_operations_from_the_REST_angle
	4_Representing_operations_with_HTTP
	5_Modeling_data
	index

