
M A N N I N G

Nick Tune
with Jean-Georges Perrin
Forewords by Matthew Skelton, Xin Yao

Socio-technical alignment of software, strategy, and structure

2 EPILOGUE

Full-stack modernization

Modernization is far more
than just rewriting the old
system in new technologies,
maintaining feature parity.

It’s an opportunity to
modernize everything from
how the business works (the
domain) to the user
experience through new
capabilities, improvements
to existing capabilities, and
simplifying unnecessary
complexity.

It’s also an opportunity
to improve ways of working.

User
interface

Domain
model
(conceptual)

Domain

Modernize the UI to enable
a better UX, improving user
happiness and productivity.

Modernize the conceptual
domain model (including
domain boundaries), creating
a better shared understanding
and language, improving
collaboration & innovation.

Modernize the domain by
adding new and better
capabilities, which create
new business value or
reduce complexity and costs.

Software

Modernize tech and infra
stack and alignment to
domain model for code
that is easier to understand
and evolve.

Exposes
capabilities of

Models
concepts from

Implements

Architecture Modernization

Architecture Modernization
SOCIO-TECHNICAL ALIGNMENT OF SOFTWARE,

STRATEGY, AND STRUCTURE

NICK TUNE
JEAN-GEORGES PERRIN

Forewords by MATTHEW SKELTON and XIN YAO

M A N N I N G
SHELTER ISLAND

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2024 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior
written permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

The author and publisher have made every effort to ensure that the information in this book
was correct at press time. The author and publisher do not assume and hereby disclaim any
liability to any party for any loss, damage, or disruption caused by errors or omissions, whether
such errors or omissions result from negligence, accident, or any other cause, or from any
usage of the information herein.

Manning Publications Co. Development editor: Doug Rudder
20 Baldwin Road Technical editor: Kamil Nicieja
PO Box 761 Review editor: Aleksandar Dragosavljević
Shelter Island, NY 11964 Production editor: Keri Hales

Copy editor: Kristen Bettcher
Proofreader: Jason Everett

Typesetter and cover designer: Marija Tudor

ISBN 9781633438156
Printed in the United States of America

To Carole, Michel, Françoise,
Alain, and Delphine Reichenbach

brief contents
1 ■ What is architecture modernization? 1
2 ■ Preparing for the journey 15
3 ■ Business objectives 28
4 ■ Listening and mapping tours 49
5 ■ Wardley Mapping 68
6 ■ Product taxonomy 91
7 ■ Big picture EventStorming 112
8 ■ Product and domain modernization 142
9 ■ Identifying domains and subdomains 171

10 ■ Strategic IT portfolio 203
11 ■ Team Topologies 240
12 ■ Loosely coupled software architecture 270
13 ■ Internal developer platforms 313
14 ■ Data mesh revolutionizing data engineering 339
15 ■ Architecture modernization enabling teams 359
16 ■ Strategy and roadmaps 382
17 ■ Learning and upskilling 421
vi

contents
forewords xvi
preface xix
acknowledgments xxi
about this book xxiii
about the authors xxvi
about the cover illustration xxvii

1 What is architecture modernization? 1
1.1 Architecture is more than technologies and patterns 3
1.2 Independent value streams: The building blocks of

modern architecture 5
Minimizing change coupling with well-defined domain
boundaries 7 ■ Architecting at multiple scopes for global
optimization 10

1.3 Modernization as a portfolio-driven evolutionary
journey 11

1.4 Topics not covered in this book 13

2 Preparing for the journey 15
2.1 Is leadership prepared? 16

Are business and product leaders truly ready to slow down the delivery
of new features to allow modernization? 16 ■ Do leaders
understand that legacy systems and ways of working are complex
and difficult to change? 16 ■ How will leaders react when the
vii

CONTENTSviii
unexpected occurs (which is inevitable) and there are major
delays or increased costs? 16 ■ Are leaders ready to change
how they work? Can you imagine leadership supporting changes
to funding models, work prioritization, and development processes
and empowering teams to make more decisions? 17 ■ Are
leaders willing to invest sufficient time and funds into learning
and training for all employees so that they can carry out
modernization skillfully? 17 ■ Will technologists be able to
articulate to business leaders and other stakeholders the
business and organizational benefits of their ideas? 17

2.2 Prepare to embrace a new architecture mindset 18
Prepare to embrace Conway’s law 18 ■ Prepare to embrace
collaborative architecture practices 18 ■ Prepare to connect
architecture and strategy 19 ■ Prepare to move beyond
business and IT silos 20

2.3 Industry example: Hitting the right note—modernizing
music royalty processing at ICE 21

2.4 Beware of modernization silver bullets 24
Beware of bolt-on modernization 24 ■ Beware of the structure
and process fallacy 25 ■ Prepare to invest in quality technical
practices 25

2.5 Prepare to support leaders at all levels 26

3 Business objectives 28
3.1 Business justifications for architecture

modernization 29
Falling behind faster-moving competitors 29 ■ Architecture
stifling business growth 32 ■ Pursuing an exit
strategy 32 ■ Growth by acquisition 33 ■ Poor UX holding
the company back 34 ■ Inefficient internal tooling and
processes 35 ■ Improving hiring and retention 35

3.2 Connecting modernization to growth strategies 36
Growth strategy: Product development 36 ■ Growth strategy:
Market penetration 38 ■ Growth strategy: Market
development 39 ■ Growth strategy: Diversification 40

3.3 Identifying north stars 41
Choosing the right north star 41 ■ Using a north star
framework 42 ■ Industry example: North stars at
Danske 43

4 Listening and mapping tours 49
4.1 Who to meet 50

CONTENTS ix
4.2 Who conducts the tour? 51
4.3 Conducting an effective tour 51

Create a safe space 52 ■ Harness a toolbox of
techniques 53 ■ Structured vs. unstructured
discussions 56

4.4 Bringing groups together 62
Industry example: Clinical oncology structured
exploration workshop 62 ■ Industry example:
Kickstarting modernization in a large Scandinavian
enterprise 64

5 Wardley Mapping 68
5.1 The Strategy Cycle 69
5.2 Creating a Wardley Map 71
5.3 Grasping evolution 76

Evolution characteristics 76 ■ Rapid learning exercise:
Grasping evolution 79

5.4 Climatic forces 79
Everything evolves 80 ■ Components coevolve 81
Past success breeds inertia 82 ■ Change is not always
linear 83 ■ Assessing the effect of climatic changes 84

5.5 Making strategic decisions 85
Accelerators to evolution 86 ■ De-accelerators to
evolution 87 ■ Market plays 88

6 Product taxonomy 91
6.1 Defining the building blocks 92

Independent value streams 92 ■ Domains 93
Products 95 ■ Platforms 96 ■ Product groups and
portfolios 99 ■ Industry example: Salesforce product
taxonomy (2017) 99 ■ Building blocks cheat
sheet 100

6.2 Designing a product taxonomy 102
Start with the easier parts 102 ■ Use appropriate
techniques 102 ■ Expect constant evolution 102
Distribute design responsibility 103

6.3 Mapping modernization opportunities, risks, and
challenges 104
Dependencies and misaligned boundaries 104 ■ Unclear
or lacking ownership 105 ■ Skills gaps 105 ■ Product

CONTENTSx
and domain modernization 106 ■ Complexity and
cognitive load 106 ■ Macrolevel constraints and
challenges 106

6.4 What is a product? 108
Products vs. features vs. components 108 ■ Products vs.
variants vs. journeys 109 ■ Product mode 110

7 Big picture EventStorming 112
7.1 Understanding EventStorming 114

Notation 114 ■ Chaotic exploration 118 ■ Optimized
for learning and collaboration 119 ■ When to use
EventStorming 119

7.2 Running an EventStorming session 122
Planning a session 122 ■ Preparing the space 123
Kicking off the session 124 ■ Building the
timeline 125 ■ Sorting the timeline 126 ■ Timeline
walk-through 127

7.3 Surfacing problems and opportunities 129
Problems 129 ■ Opportunities 131 ■ Addressing
problems and opportunities 132

7.4 Facilitator tips and challenges 133
Modeling heuristics 133 ■ Common challenges 137

8 Product and domain modernization 142
8.1 Industry example: Business property tax

modernization 144
8.2 Identifying product requirements 145

Involve the right people 146 ■ Identify the costs of not
modernizing 147 ■ Don’t mindlessly reverse-engineer the
code 148 ■ Analyze system information 148 ■ Spend
time with real users 149 ■ Continuous discovery 150
What have people given up asking for? 151 ■ We’ve
always done it that way 151 ■ Finding shadow
IT 151 ■ Industry example: Department for Levelling
up, Housing, and Communities 152

8.3 Modernizing the domain model 154
Industry example: Royalties domain modeling 156

8.4 Process modeling EventStorming 157
Notation 157 ■ Planning a workshop 159 ■ Facilitating
a workshop 159

CONTENTS xi
8.5 Domain Storytelling 163
Notation 163 ■ Planning and facilitating a
workshop 165 ■ Replaying stories 168 ■ When to
use Domain Storytelling 168

9 Identifying domains and subdomains 171
9.1 The value of good domain boundaries 173
9.2 Domain identification principles 174

Domain boundaries depend on your goals 174 ■ Concepts
can be coupled by multiple characteristics 175 ■ Not all
dependencies are equally costly 176 ■ Explore multiple
models 177 ■ Industry example: The British
Broadcasting Corporation 177 ■ Don’t rely on
superficial knowledge 178 ■ Good boundaries are not a
panacea 179 ■ Prepare for constant evolution 179

9.3 Domain boundary heuristics 179
The five guiding domain-boundary heuristics 180 ■ Subdomain
boundary heuristics 181 ■ Subdomain grouping heuristics 188
Industry example: Airline domain decomposition 191

9.4 Identifying domains and subdomains with
EventStorming 192
Pivotal events 193 ■ Chunking the timeline 195 ■ Looking for
scattered subdomains 196 ■ Subdomains versus user
journeys/processes 196 ■ Analyzing subdomains 198
Planning a series of workshops 200

10 Strategic IT portfolio 203
10.1 Utility vs. strategic IT dichotomy 205

Tailored operating model 206 ■ Identifying
strategic IT 207

10.2 Core Domain Charts 209
Example Core Domain Chart 210 ■ Assessing model
complexity 213 ■ Core domain evolution 216 ■ Industry
example: Events industry scale-up 217 ■ Comparisons with
Wardley Mapping 219

10.3 Core Domain Chart patterns 219
Decisive core 219 ■ Indefensible core 221 ■ Big bet future
core 222 ■ High-leverage supporting 223 ■ Table stakes
supporting 225 ■ Mission-critical supporting 226
Suspect supporting 227 ■ Hidden core 229 ■ Black
swan core 230 ■ Portfolio patterns 231

CONTENTSxii
10.4 Industry example: Strategy-aligned architecture at Vinted 232

11 Team Topologies 240
11.1 Team Topologies principles 241

Sustainable fast flow 242 ■ Small, long-lived teams as the
standard 242 ■ Team-first thinking 242 ■ You build it, you
run it 243 ■ Good boundaries minimize cognitive load 244
Embrace Conway’s law 245

11.2 Team Topologies patterns 247
The four team types 247 ■ The three interaction modes 250
Industry example: Global cosmetics brand 251

11.3 Validating candidate value streams 252
Independent service heuristics 252 ■ Mandate levels 257
Good product team/bad product team 258

11.4 Sensing and evolving team topologies 259
Organizational sensing 259 ■ Industry example: Awkward
interactions when becoming multiproduct 260 ■ Evolutionary
patterns 261

11.5 Team grouping patterns 265

12 Loosely coupled software architecture 270
12.1 Coupling types and strength 272

Local versus global complexity 275

12.2 Modeling architectural flows 276
Model exploration whirlpool 276 ■ Domain Message Flow
Modeling 277 ■ Industry example: Modernizing an accounting
system 284

12.3 Individual subsystem design 288
Using a canvas 288 ■ Software design EventStorming 291

12.4 Subsystem modernization strategies 293
The modernization strategy selector 293 ■ Migration
patterns 296 ■ Assessing current-state complexity 301

12.5 Industry example: Domain-driven modernization of a gigs
platform to support new markets 305

13 Internal developer platforms 313
13.1 Developer experience 315

Zero to production in less than a day 316 ■ Roll out the red carpet
for teams to do continuous delivery 316 ■ Delightful onboarding

CONTENTS xiii
experience 317 ■ Frictionless local development experience 317
Industry example: HMRC’s Multi-channel Digital Tax Platform
(UK government) 317

13.2 Platform capabilities 320
Golden paths 320 ■ Pipelines and environments 323
Observability 324 ■ Software applications catalog 324
Great platform documentation 325 ■ Security and
compliance 326 ■ API management 326
FinOps 327

13.3 Industry example: Platform-powered business model
revolution at La Redoute 327

13.4 Managing internal developer platforms 332
Platform as a product 332 ■ Adequately staffed 335
Build vs. curate 335 ■ Technology standardization vs.
flexibility 336 ■ Platform engineer experience 336

13.5 When to build a platform 337

14 Data mesh revolutionizing data engineering 339
14.1 Setting up the context for complex data 340

The dawn of data engineering 340 ■ New needs around
data 343 ■ More problems than solutions 343

14.2 The four principles of data mesh 344
Principle of domain ownership 344 ■ Principle of data as a
product 344 ■ Principle of the self-serve data platform 346
Principle of federated computational governance 346
No principle lives in isolation 347

14.3 Building your first data quantum 348
The smallest element with value 348 ■ Logical
architecture 349 ■ Your new best friend: The data
contract 351 ■ Physical architecture 352

14.4 Navigating through the planes 354
The infrastructure experience plane 354 ■ The data
product experience plane 355 ■ The mesh
experience plane 355

14.5 First and next steps 357

15 Architecture modernization enabling teams 359
15.1 AMET primary purposes 361

Kickstarting modernization 361 ■ Sustaining modernization
momentum 362 ■ Facilitating better design 363

CONTENTSxiv
Facilitating long-lasting, durable change 363
Communicating the vision and progress 365 ■ Promoting
success stories and learnings 365

15.2 Industry example: Enabling modernization at a
European telco 366

15.3 Winding down an AMET 370
Evolving investment and involvement 370 ■ Establishing
an architecture operating model 371

15.4 Staffing an AMET 375
Patience and relationship building 376 ■ Should an
AMET be full time? 377 ■ Bringing in external
help 378

15.5 Empowering an AMET 379
15.6 Naming an AMET 380
15.7 An AMET is not always necessary 380

16 Strategy and roadmaps 382
16.1 Think big: Building a compelling vision 384

Crafting a modernization strategy deck 384 ■ Industry
example: Building and evolving a modernization strategy
at IgluCruise.com 390

16.2 Nail it: Delivering a first slice within three to
six months 395
Planning a first slice 395 ■ Choosing where to start 397
When to think about internal developer platforms 402
What if things don’t go to plan? 402

16.3 Scale it: Ramping up modernization 403
Playbooks 403 ■ Seeding and spreading expertise 404
Sequencing modernization work 405 ■ Balancing
discovery, design, and delivery 407 ■ Balancing
modernization and other work 410 ■ Visualizing and
communicating the journey 414

16.4 Continuously assessing and adapting 415
Metrics 415 ■ Pulse surveys 416 ■ Gatherings 416
Continuous feedback channels 418 ■ Spend time
with people doing the work 418 ■ Be prepared to make
the difficult decision 419

CONTENTS xv
17 Learning and upskilling 421
17.1 Planting seeds 422

Industry example: Planting the DDD seed at a French HR-tech
unicorn 422

17.2 Upskilling for upcoming project needs 429
17.3 Establishing a continuous learning environment 430

Communities of practice 431 ■ Regular small learning
opportunities 431 ■ Mentoring 434 ■ Empowering
influencers 435 ■ Blogging and public speaking 435
Internal conferences 436

17.4 Industry example: Learning-driven modernization
at CloudSuite 436

index 441

forewords
Architecture serves a purpose. In the 1990s and early 2000s, the architecture of busi-
ness and IT systems typically helped to automate previously paper-based processes.
However, with the coming of automation and cloud technologies in 2008 and beyond,
the architecture of organizations and software systems is now free to serve the needs
of the user or customer through value streams. To achieve this, we need architecture
modernization for fast flow.

 In this book, Nick Tune brings together a vital collection of techniques and
approaches that help to shape software and organizational architecture for fast flow.
Informed by approaches including Team Topologies, domain-driven design (DDD),
data mesh, and Wardley Mapping, Nick shows how to plan, start, and evolve a journey
of architecture modernization using a good mix of concepts and practical techniques.

 I particularly like the emphasis on the need to build capabilities to change archi-
tecture continuously: “Everything evolves,” says Nick in chapter 5, and “Prepare for
constant evolution” in chapter 9. This perspective is crucial for any organization work-
ing with any kind of software-enriched services today. Core Domain Charts (see chap-
ter 10) are essential to designing for constant evolution, so it’s good to see a
comprehensive treatment of this topic in the book. (Nick was instrumental in devising
and shaping the techniques around Core Domain Charts.)

 The book includes a substantial discussion of how to think about teams and team
boundaries, drawing on the books Team Topologies (IT Revolution Press, 2019) and
Dynamic Reteaming (O’Reilly Media, 2020). The language and patterns from Team
Topologies (TT) are now widespread as the go-to approach for organizing for fast flow.
Nick connects the TT ideas well to the challenge of architecture modernization. I was
pleased to see an explanation of independent service heuristics (ISH), a technique I
developed and evolved with my coauthor Manuel Pais and the wider practitioner
xvi

FOREWORDS xvii
community. I use it in almost every customer engagement these days. ISH is proving
particularly effective for bringing together people from across the organization to dis-
cuss and shape team and system boundaries for fast flow, a key aspect of architecture
modernization.

 Having had the good fortune to work directly with Nick on several customer
engagements worldwide, I know from direct experience that the patterns and
approaches in Architecture Modernization work well and lead to meaningful outcomes
for organizations. I have seen the results firsthand! I highly recommend this book as a
source of inspiration and guidance for modernizing your architecture for fast flow. I
look forward to using this book to guide my customers on their architecture modern-
ization journeys.

—MATTHEW SKELTON, COAUTHOR OF

TEAM TOPOLOGIES AND FOUNDER AT CONFLUX

When I first became an architect, software architecture was proudly practiced in a “big
design upfront” fashion for creating new code from a clean slate—architecture as a
blueprint was carried over as a metaphor from the building industry. Fast forward 15
years and older software is eating our new world. Humanity’s well-being hinges on a
web of interconnected software in banking, commerce, traffic control, food produc-
tion and energy distribution, smartphones, homes, hospitals, and even our bodies.

 Software of age not only needs to fight entropy accumulated over time but also
needs to adapt to constant changes. In recent years, evolutionary architecture has
gained much praise as an agile way to react to changes in requirements and technol-
ogy. Hence, a book about architecture modernization may trigger the old fear of all
that scrap and rework in a re-architecture event.

 As software-intensive organizations mature in their business growth cycle, they
inevitably face a rising level of socio-technical complexity. The technical complexity
around existing and new software is compounded by the social complexity around
teams working with other teams and the value exchange between the organization
and its environment. Software decisions, product decisions, and business decisions are
interconnected—it is hard to bring all players onto the same page and even harder to
let people influence and negotiate decisions.

 This book is groundbreaking. It brings us to the next leading edge of the architec-
ture discipline. In the new socio-technical reality, we need to transition from thinking
in conventional software and enterprise architecture to thinking in socio-technical
architecture, bringing software, product, strategy, organization dynamics, and way of
working in deep alignment. It is no mean feat, but it is necessary and can be done.

 As my career evolved from being a software architect to a socio-technical architect,
I’ve felt the need to renew the architecture drill in a deep and visceral way when facil-
itating complex change efforts in large organizations. The first step in making this

FOREWORDSxviii
transition is to upgrade our thinking tools to the multidisciplinary language of archi-
tecture modernization, which is well-articulated in this book.

 As a writer, Nick Tune has a rare gift of making extremely complex topics digest-
ible and immediately actionable in real-life contexts where the rubber meets the road.
This book connects the many dots of domain-driven design, Team Topologies,
DevOps, product development, strategy, architecture, and leadership. The dots are
connected into an exceptionally coherent yet practically applicable synthesis of visual
models, thinking and communication tools, and collaborative design methods.

 The book pools insights from Nick’s many blogs and conference talks into a readily
usable companion for modernization journeys, full of accessible and communicable
decision models. It is a hands-on guide to initiate, survive, and thrive in large-scale
socio-technical transformation programs.

 What makes this book truly remarkable is not just its ingenuity in meshing
together methods and models as intellectual artifacts. It is also a treasure trove of
numerous field experiences and captivating case studies. Nick has interviewed a large
group of socio-technical leaders, architects, and designers. From these conversations,
Nick distilled a vast amount of practical perspectives and tips about collective discov-
ery, visual modeling, facilitating deep conversations, and delivering tangible value in
modernization endeavors.

 As a socio-technical architecture practitioner, Nick excels at walking the walk.
Many of the experience reports shared in this book are based on Nick’s consulting
work for an extensive client base worldwide.

 Using the advice from this book, your modernization investments will not be a
one-off re-architecture event. You will activate the energy from within your product
and engineering teams to jointly affect the problem and solution space. Engineers
and designers can grow to become strategists, cocreating the future with formal lead-
ers. The collaborative design, modeling, and strategizing skills are your insurance for
sustaining the momentum in a continual process of experimentation and learning. In
the long run, this is the true competitive advantage that helps companies seize the
next opportunity for change, modernization, or renewal. This book will teach you
how to do that or take your skills to the next level.

 Happy modernizing!

—XIN YAO, INDEPENDENT DOMAIN-DRIVEN DESIGN

CONSULTANT AND SOCIO-TECHNICAL ARCHITECT

preface
Suddenly, we could no longer leave our homes or spend time with our loved ones. We
were unable to meet up with friends, and cities became ghost towns as we could no
longer work in person in our offices. It was beyond belief when, in 2020, just as the
new decade was being ushered in, the COVID-19 pandemic burst out of nowhere and
rewrote the script. As a consultant who traveled regularly to work with clients and
attend industry events, the idea of being home 24/7 was a shock. It also presented me
with a serious question: What will I do with all of my free time?

 I was fortunate to continue working remotely even during the strictest lockdowns.
There were some books that I wanted to catch up on, and I finally got to spend some
quality time with my Playstation and my cherished Gran Turismo. Even so, I still had a
lot of free time in the evenings and weekends that would normally be occupied with
work-related travel and networking. So, I began to think about writing a book.

 I had already coauthored a book with Scott Millett called Patterns, Principles, and
Practices of Domain-Driven Design (Wrox, 2015). It was a great experience, and I always
dreamed of writing another book. But I only wanted to write a book when I had built
up enough knowledge and experience to write a book worth writing. I didn’t want to
write a book just for the vanity of saying I wrote a book. It had to be something that
would be valuable to others.

 In 2020, I didn’t quite feel like I was at that point. However, I could see that many
organizations still treated modernization as a technical exercise, lacking the domain,
organizational, and strategic perspectives needed to exploit the full potential of mod-
ernization that some organizations were achieving. So, I decided to start writing a
book on Leanpub as an experiment to see what I could put together, where the gaps
were, and if I was the person who could write this book.
xix

PREFACExx
 Over the next two years, I continued to iterate on the content, regularly making
wholesale changes. Having a work in progress allowed me to incorporate all the new
things I was learning from every client engagement. Gradually, I felt like the book was
growing into a piece of work that did fit my original criteria of being valuable to oth-
ers, especially as I began working with industry practitioners to include case studies
that added a whole new depth to the book that my personal experiences alone could
never reach.

 In 2022, one thing that still stood out as missing was data mesh. This was becoming
a topic that many organizations embarking on architecture modernization journeys
wanted to hear about. I sought an expert on the topic to write a chapter about this
innovation. Fatefully, renowned data mesh industry expert Jean-Georges Perrin
agreed to write the chapter. In addition, he also posed a question: Why don’t you con-
tact Manning and publish the book with them? And here we are. Over the past 12
months working with Manning, I have heavily revised and improved every chapter of
the book with the help of many people. It’s a huge leap in quality from the Leanpub
version.

 Writing this book over the last three years has been an extremely valuable experi-
ence. But what matters to me more is that I hope my ultimate goal has been
achieved—that this book is valuable to you.

acknowledgments
Firstly, I would like to acknowledge the huge contribution of Jean-Georges Perrin for
not only writing the data mesh chapter (chapter 14), but also for being the person
whose idea made this book possible. In addition, I would like to acknowledge the cru-
cial support and feedback from the hundreds of Leanpub readers since the book’s
inception in mid-2020. Your support showed me that the topic is important and that I
should continue working on the project.

 Acknowledging all the people (and their organizations) who contributed industry
examples is essential. Your experiences make the book far more valuable, and it was
such a great time putting together the examples with you. Here is the list in the order
that the examples appear in the book: Kacper Gunia, Orlando Perri, Xin Yao, Katy Arm-
strong, Dean Wanless, Javiera Laso, Ornela Vasiliauskaite, Maxime Sanglan-Charlier,
Kenny Baas-Schwegler, Shannon Fuit, Chris van der Meer, Chris O’Dell, Antoine
Craske, João Rosa, Scott Millett, David Gebhardt, Christoph Springer, Krisztina Hirth,
Damian Bursztyn, Andrea Magnorsky, and Timber Kerkvliet. Thank you all.

 At Manning, I’d like to thank Doug Rudder, the book’s development editor, who
played a big role in bringing this book to its current standard. We met for an hour
every week, during which his feedback and support were crucial in improving every
chapter. In addition, thanks to all the members of the production staff for their hard
work in creating this book.

 The contribution of all the people who provided feedback on the book is import-
ant to acknowledge. It had a huge effect on the content and quality of the book. From
the reviewers at Manning to all the people I reached out to directly for feedback and
help, thanks to Alessandro Campeis, Alex Saez, Andrew Taylor, Arjan van Eersel, Arun
Saha, Bill Delong, Bruce Bergman, Christopher Forbes, Daut Morina, Dave Corun,
xxi

ACKNOWLEDGMENTSxxii
David Goldfarb, Devon Burriss, Enrico Mazzarella, Ernesto Cárdenas Cangahuala,
Ganesh Swaminathan, Gilberto Taccari, Gregorio Piccoli, Harinath Kuntamukkala,
Harinath Mallepally, Ian Lovell, Ivo Štimac, Jackson Murtha, James Liu, James Watson,
Jonathan Blair, Juan Luis Barreda, Kevin Pelgrims, Lakshminarayanan AS, Leonardo
Anastasia, Massimo Siani, Matteo Rossi, Maxime Boillot, Michal Těhník, Michele
Adduci, Mladen Knežić, Mohammed Fazalullah Qudrath, Neeraj Gupta, Neil Croll,
Nicolas Modrzyk, Peter Henstock, Peter Mahon, Pierre-Luc Gagné, Polina Kesel,
Ramaa Vissa, Ramnath Nair, Roberto Lentini, Roger Meli, Shawn Lam, Simeon Leyz-
erzon, Stephan Pirnbaum, Sune Lomholt, Sushil Singh, Swaminathan Subramanian,
Tibor Claassen, Tiziano Bezzi, Torje Lucian, Vojta Tuma, Warren Myers, and Yannick
Martel.

about this book
Who should read this book
This book is written primarily for technology leaders responsible for overseeing mod-
ernization, people with job titles like CTO, VP engineering, and head of architecture.
Much of the book’s content is also relevant to technologists who play a more hands-on
leadership role, people with job titles like principal engineer, staff engineer, and
architect. Many parts of the book are relevant to people who work closely with tech-
nology and architecture, even if they aren’t directly involved in architecture design
and writing code, people with job titles like the head of product, product manager,
service designer, and UX designer. Because this book doesn’t contain any code or
guidance on specific technologies, this book is not aimed at software engineers look-
ing for lots of code samples and in-depth guidance on refactoring legacy software.

How this book is organized: A road map
This book is organized into 17 chapters, each addressing a particular aspect of mod-
ernization. Most chapters contain a mix of theoretical concepts, practical techniques,
and real-world industry examples. The book has been structured so that the chapters
can be read sequentially. It follows a narrative of identifying the reasons for modern-
ization, designing a modernized architecture, and carrying out modernization. How-
ever, the lines between topics are fuzzy, and not all chapters fit neatly into this
simplified narrative.

 Chapter 1: What is architecture modernization?—This chapter introduces the key
concepts of modernization covered in the remaining chapters of the book.

 Chapter 2: Preparing for the journey—This chapter raises important topics and
common challenges that should be considered before embarking on an archi-
tecture modernization journey.
xxiii

ABOUT THIS BOOKxxiv
 Chapter 3: Business objectives—This chapter looks at the type of business benefits
architecture modernization can bring and how to identify product north stars
to clarify your organization’s strategic ambitions.

 Chapter 4: Listening and mapping tours—This chapter explains how to start your
architecture modernization journey by meeting with people from across the
organization to uncover their most important challenges and opportunities so
that you can then determine how modernization can best help.

 Chapter 5: Wardley Mapping—This chapter introduces the strategy mapping tech-
nique Wardley Mapping, which can be used to visualize your organization’s
business landscape/industry and explore how it will evolve, giving you a deeper
understanding of which capabilities will be most crucial to invest in.

 Chapter 6: Product taxonomy—This chapter covers the topic of creating building
blocks to design your architecture using the example of a product taxonomy,
which is a product-centric approach to defining business and technology archi-
tecture.

 Chapter 7: Big picture EventStorming—This chapter introduces the big picture
EventStorming technique, a highly collaborative workshop format for mapping
out business domains and a good starting point for identifying domain bound-
aries.

 Chapter 8: Product and domain modernization—This chapter looks at how to avoid
the problem of treating modernization as a project to rebuild the old system
with new technologies by showing how modernization should also be treated as
an opportunity to improve the user experience, remove long-standing pain
points, improve workflows, and develop new capabilities.

 Chapter 9: Identifying domains and subdomains—This chapter shows how to orga-
nize your business into domains and subdomains, which become the founda-
tion for your modernized software architecture and organizational structure.

 Chapter 10: Strategic IT portfolio—This chapter introduces principles, tools, and
patterns for mapping your architecture as a portfolio to determine the optimal
level of investment in each area based on business value and complexity.

 Chapter 11: Team Topologies—This chapter covers the organizational aspects of
architecture using principles and patterns from Team Topologies to help iden-
tify, validate, and refine your value streams.

 Chapter 12: Loosely coupled software architecture—This chapter covers principles
and techniques for designing a loosely coupled, domain-aligned software archi-
tecture and migrating from a current to a target state for each subsystem.

 Chapter 13: Internal developer platforms—This chapter looks at the intricate rela-
tionships between architecture and the platforms they run on, focusing on
designing platforms that provide a great developer experience so that the archi-
tecture can evolve more rapidly and reliably.

 Chapter 14: Data mesh revolutionizing data engineering (written by Jean-Georges
Perrin)—In this chapter, you will learn how the need for data mesh came to

ABOUT THIS BOOK xxv
fruition, its four fundamental principles, and how they depend on one another.
You will also learn about the tools needed to architect your own data mesh.

 Chapter 15: Architecture modernization enabling teams—This chapter introduces the
AMET, a type of team that guides and supports modernization to maintain
momentum throughout the journey without becoming a centralized team that
makes all the decisions.

 Chapter 16: Strategy and road maps—This chapter looks at how to build a compel-
ling narrative and sequence modernization work into a roadmap, focusing on
continuous evolution and delivering value early and often rather than big
upfront design and planning.

 Chapter 17: Learning and upskilling—The book’s final chapter focuses on the cru-
cial topic of growing talent and architecture capabilities within the organization
to ensure the new architecture takes full advantage of modern thinking and
approaches.

How to read this book
It is not strictly necessary to read the chapters in order. Many chapters contain stand-
alone concepts and techniques, along with references to other chapters where con-
cepts are related or have previously been introduced.

liveBook discussion forum
Purchase of Architecture Modernization includes free access to liveBook, Manning’s
online reading platform. Using liveBook’s exclusive discussion features, you can attach
comments to the book globally or to specific sections or paragraphs. It’s a snap to make
notes for yourself, ask and answer technical questions, and receive help from the author
and other users. To access the forum, go to https://livebook.manning.com/
book/architecture-modernization/discussion. You can also learn more about Man-
ning’s forums and the rules of conduct at https://livebook.manning.com/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the authors can take
place. It is not a commitment to any specific amount of participation on the part of
the author, whose contribution to the forum remains voluntary (and unpaid). We sug-
gest you try asking the authors some challenging questions lest their interest stray!
The forum and the archives of previous discussions will be accessible from the pub-
lisher’s website as long as the book is in print.

https://livebook.manning.com/discussion
https://livebook.manning.com/book/architecture-modernization/discussion
https://livebook.manning.com/book/architecture-modernization/discussion
https://livebook.manning.com/book/architecture-modernization/discussion

about the authors
NICK TUNE is a principal consultant who helps organizations modernize their archi-
tectures and ways of working toward empowered product teams and continuous deliv-
ery. He works with clients in various sectors like travel, finance, e-commerce, and
government. He is always trying to find the optimal balance of facilitator, coach, and
consultant on every project.

JEAN-GEORGES “JGP” PERRIN is a technology consultant focusing on building innova-
tive and modern data platforms, president of AIDA User Group, and author of Spark
in Action, 2nd edition (Manning, 2020). He is passionate about software engineering
and all things data. His latest endeavors bring him to more and more data engineer-
ing, data governance, industrialization of data science, and his favorite theme, data
mesh. He is proud to have been recognized as a Lifetime IBM Champion. Jean-
Georges shares over 25 years of experience in the IT industry as a presenter and par-
ticipant at conferences and publishing articles in print and online media. Visit his
blog at http://jgp.ai. He enjoys exploring upstate New York and New England with his
wife and kids when not immersed in IT, which he loves.
xxvi

http://jgp.ai

about the cover illustration
The lady on the front cover is wearing a 19th-century costume from the Swiss region
of Valais/Wallis. The image is taken from a collection of 19th-century drawings
housed in the Mary Evans Picture Library.

 In those days, it was easy to identify where people lived and what their trade or sta-
tion in life was just by their dress. Manning celebrates the inventiveness and initiative
of the computer business with book covers based on the rich diversity of regional cul-
ture centuries ago, brought back to life by pictures from collections such as this one.

xxvii

ABOUT THE COVER ILLUSTRATIONxxviii

What is architecture
modernization?
Antiquated legacy architectures are a business risk and a competitive disadvantage.
They are difficult and slow to change, more expensive to maintain, and prone to
unreliability, handing the advantage to your competitors. Southwest Airlines demon-
strated this during its 2022 scheduling crisis caused by a decades-old scheduling sys-
tem. In one week, 14,500 flights were canceled, and its brand suffered stinging
damage as it became a top international news headline for all the wrong reasons.

 In contrast, carefully designed modern architecture is a powerful competitive
advantage. Cazoo, a UK-based startup, built an online car dealership in just 90 days
and became the UK’s fastest-ever unicorn. A key factor in Cazoo’s ability to
innovate at speed was having no legacy to constrain them. As a result, it was able to

This chapter covers
 Modernizing for competitive advantage

 Adopting a holistic approach to architecture

 Connecting architecture modernization to business
outcomes

 Architecting with independent value streams

 Approaching modernization as an evolutionary journey
1

2 CHAPTER 1 What is architecture modernization?
use technologies like Serverless, which provided higher levels of productivity with
leading-edge capabilities like elastic scalability as standard.

 Even architectures that are well cared for will degrade over time due to various fac-
tors like changes in the business strategy, old features that are no longer used, quick
fixes and hacks that were never cleaned up, and outdated technologies. So it may
seem inevitable that as companies age, they inexorably regress from fast-moving start-
ups to rigid old enterprises, weighed down by their legacy architecture. But compa-
nies like Netflix have proved that it is possible to reverse the trend and be an
established market leader that innovates at speed.

 In 2009, Netflix transitioned from a monolithic architecture to hundreds of cloud-
based microservices to protect and grow its advantage in the online streaming market.
Adrian Cockroft, Netflix CTO at the time, explains why: “There is an existential threat
. . . . If you’re doing quarterly releases and your competitor is doing daily releases and
continuous delivery, you’re going to fall so far behind in the user experience you’re
just going to suffer” (https://soundcloud.com/a16z/microservices).

 Every leader should always be asking themselves questions like Netflix did: Are we
at risk of falling behind the competition? Could we keep up if a fast-moving startup
entered our market? Would our brand reputation be enough to retain market share
against a superior product and, if so, for how long? Are mission-critical parts of our
business held together by dated systems that could result in serious revenue loss or
reputational damage?

 Many organizations have successfully modernized, as Netflix did, converting their
architectures from a liability into a competitive advantage. This book is a guide for
business, technology, and product leaders who would like similar successes in their
organizations. However, modernization isn’t free. It means investing time and
finances that would otherwise be spent on improving the product. Because of these
short-term compromises, many leaders are reluctant, so work continues in the legacy
systems. But as figure 1.1 shows, this creates a negative cycle in which system health

Reluctance to
modernize

Effort/costs
needed to
modernize

Causes + Increases

+ Increases

• Time to market
• Fragility
• Risk
• Inefficiency
• Costs

+ Exacerbates

Build more
complexity into
existing system

Figure 1.1 The negative cycle
of declining architecture health

https://soundcloud.com/a16z/microservices

31.1 Architecture is more than technologies and patterns
gets worse, the cost of modernization increases, and leaders become even more reluc-
tant to invest in modernization.

 Research by Adam Tornhill and Markus Borg shines a light on what happens when
this cycle continues unchecked. In their paper “Code Red: The Business Impact of
Code Quality—A Quantitative Study of 39 Proprietary Production Codebases,” they
found that up to 42% of developers’ time may be wasted because of the levels of tech-
nical debt in a system (https://arxiv.org/abs/2203.04374v1).

 With systems growing evermore complex as more of the world runs on software, the
disadvantages of dated architecture and the advantages of modern architecture are
likely to be magnified. The growing complexity of modern systems has many factors,
such as increasing integration, data volumes, and user expectations. One indicator of
the continued growth in complexity is the number of connected Internet of Things
(IoT) devices, which is expected to rise from 8.6 billion in 2019 to almost 30 billion in
2030 (http://mng.bz/lWd8) (figure 1.2). Are you ready to break the negative cycle and
convert your architecture from a liability into a competitive advantage?

Figure 1.2 Increasing numbers of IoT devices is one indicator of architectures growing
evermore complex. (Source: Statista)

NOTE This first chapter outlines the key aspects of an architecture modern-
ization journey and how they fit together, which should help you understand
what this book is about. Each topic is covered in greater detail in subsequent
chapters, along with practical techniques and real industry examples from my
career and experts who have contributed their stories to the book.

1.1 Architecture is more than technologies and patterns
On the surface, architecture modernization may seem like a purely technical
endeavor. Take Netflix’s transition to microservices, for example. Microservice archi-

2019 2022 2025 2028 2030
0

10

20

30

40

C
on

ne
ct

ed
 d

ev
ic

es
 in

 b
ill

io
ns

http://mng.bz/lWd8
https://arxiv.org/abs/2203.04374v1

4 CHAPTER 1 What is architecture modernization?
tecture is commonly perceived as a pattern for designing software systems, often asso-
ciated with an ecosystem of tooling to make building, deploying, and operating
microservices easier.

 But look closer and you’ll see that microservices is a socio-technical architecture
pattern. Their benefits are just as much organizational as technical. Sam Newman,
author of Building Microservices (O’Reilly Media, 2021), explains this unequivocally:
“The third reason [to adopt microservices] is really where you’re looking to enable a
higher degree of organizational autonomy. You’re looking to push and distribute
responsibility into teams; you want those teams to be able to make decisions, roll out
software, and reduce the amount of coordination those teams need with other parts
of your organization” (http://mng.bz/BmP8).

NOTE Although this chapter uses the example of Netflix and its moderniza-
tion journey, which involved microservices, this book does not promote
microservices as the only valid architectural style, and the ideas in this book
are not limited to microservices-based modernization initiatives.

To truly exploit the potential of modern architecture, leaders must look beyond tech-
nologies and patterns and view architecture more holistically. This begins by under-
standing the factors that enable a modern organization to be high performing and
how architecture contributes. Jonathan Smart’s Better Value Sooner Safer Happier (figure
1.3) provides the perfect model for thinking about the value modernization can
bring. It’s a model of five principal outcomes that contribute to organizational perfor-
mance and long-term prosperity:

 Better represents improvements in quality that lead to improved efficiency and
less time wasted on rework.

 Value represents business outcomes like improving revenue or customer
retention.

 Sooner represents sooner time to learning and hence value, enabling genuine
agility.

Figure 1.3 Better Value
Sooner Safer Happier.
(Source: Smart et al.,
Sooner Safer Happier:
Antipatterns and Patterns
for Business Agility
[Portland, OR: IT
Revolution 2020])

http://mng.bz/BmP8

51.2 Independent value streams: The building blocks of modern architecture
 Safer represents factors like governance, risk, security, and compliance.
 Happier represents an improvement to the lives of people involved, like making

employees happier at work.

Better Value Sooner Safer Happier (BVSSH) is a model that we can employ at all times.
For every decision we contemplate, we can ask how it affects each element of BVSSH.
This encourages us to balance all stakeholders’ needs, giving us a greater chance of get-
ting their buy-in and support. Now that we have a model for describing the different
outcomes that need to be optimized and balanced to build high-performing organiza-
tions, we can explore how architecture modernization can contribute to each outcome.

1.2 Independent value streams: The building blocks of
modern architecture
To truly exploit the potential of architecture and maximize the return on your mod-
ernization investments, it is necessary to design architecture using building blocks
optimized for BVSSH. This begins by understanding value streams.

 A value stream is a sequence of activities that leads to the creation of new value. In a
software development context, that means the sequence of activities a team performs,
from discovering user needs and wants to building new features in software and then
delivering them to users. Figure 1.4 shows a high-level overview of a software develop-
ment value stream (a more detailed version would show more granular activities like
starting a piece of work, reviewing code, and deploying to various environments).

Figure 1.4 A high-level overview of a value stream

NOTE Figure 1.4 doesn’t convey all of the nuances of modern product devel-
opment approaches. Product experts such as Melissa Perri, Marty Cagan,
Teresa Torres, and Jon Cutler are advocates of approaches that fall under the
umbrella of continuous discovery and delivery or dual-track agile. Architec-
ture modernization is a good time to adopt modern product approaches.

The goal is to achieve fast flow, e.g, delivering
small slices of value/learning every day.

Software development value stream

Stream-aligned
team

Validate
need is metDefine slice

of value
Discover unmet

user need
Implement

slice of value

Deploy slice of
value

(and support)

Flow of change (iterative)

6 CHAPTER 1 What is architecture modernization?
This is touched on in chapter 8, along with my own experiences. If you’re
looking for a deep dive, check out the books and content of the previously
mentioned product experts.

An independent value stream (IVS) is a value stream with the following key characteris-
tics (also illustrated in figure 1.5):

 Domain aligned—It is set up to create value in a particular business subdomain
(a specific area of the business low enough in complexity to be owned by a sin-
gle team; e.g., pricing, ordering, search).

 Outcome oriented—The success of the value stream is determined by its contribu-
tion to business outcomes and product north stars (key metrics), such as reve-
nue and engagement, rather than delivering predefined requirements (aka the
feature factory antipattern).

 Team empowered—Each IVS is owned by a single team that has the autonomy to
make product and technology decisions, deploy changes, and define their
development processes.

 Software decoupled—The software for each IVS can be developed and deployed
independently.

Figure 1.5 The four key characteristics of an independent value stream

NOTE The concept of a value stream has existed for decades and has been
adapted to various contexts during that period. In this book, value stream
always refers to a software development value stream. The team that owns a
value stream is known as a stream-aligned team (terminology taken from
Team Topologies, which is covered in chapter 11).

Outcome oriented
Each IVS is driven by achieving
business outcomes like product
north stars

Team empowered
Each IVS is owned by a team,
empowered to make product,
tech, and delivery decisions

Independent value stream

Domain aligned
Each IVS is setup to create
value in a particular
business subdomain

Software decoupled
The software for each IVS can
be developed and deployed
independently

71.2 Independent value streams: The building blocks of modern architecture
The IVS characteristics are important because they enable BVSSH. Well-shaped
domain boundaries reduce coupling in the business by grouping related domain
concepts that change together when new product features are being developed.
As a result, fewer dependencies exist in the software and between teams, meaning
new product enhancements are delivered sooner due to fewer blockers and lower
coordination.

 An outcome-driven approach leads to better value in the form of better product
and feature ideas. Rather than treating teams as feature factories (feeding them pre-
defined solutions), giving them outcomes to achieve and the freedom to discover
solutions in their subdomains unlocks more of their creative talents. As renowned
product management expert and author Marty Cagan says, “If you’re just using your
engineers to code, you’re only getting about half their value. . . . The best single
source for innovation is your engineers” (www.svpg.com/the-most-important-thing/).

 Better quality is achieved because teams are aligned to a domain and responsible
for the software. Teams know that they will be responsible for any choices they make,
so they will naturally want to keep their code healthy, evolvable, and easier to support
in production. Similarly, safety is improved because teams can think about security
rather than just focusing on delivering a fixed scope by a specific date. Both of these
factors contribute to more reliable systems that are less likely to result in catastrophic
brand damage.

 In combination, the previously mentioned characteristics and benefits contribute
to happier team members who are more motivated at work. Being accountable for
business outcomes within a specific subdomain provides a strong sense of purpose
and autonomy. Fewer dependencies further improve a team’s autonomy while reduc-
ing the frustrations caused by dependencies such as being blocked. Ownership of
technical artifacts and development processes enables teams to continuously improve
how they work, creating the conditions for mastery. Working in a team where you are
delivering value every day is an excellent feeling.

NOTE Remember that this is an overview chapter, briefly introducing the fun-
damental topics of modernization and how they fit together. The remaining
chapters discuss each concept in greater detail—supported by practical tech-
niques, such as EventStorming and Wardley Mapping, and real industry
examples.

1.2.1 Minimizing change coupling with well-defined
domain boundaries

It must be stressed that even when teams own the software and are empowered to
deploy to production multiple times per day, a value stream still may not be suffi-
ciently independent. There may still be a high level of change coupling, where changes
in one value stream require corresponding changes in others. For example, develop-
ing a new product feature requires three teams to each implement a part of the func-
tionality, as shown in figure 1.6

https://www.svpg.com/the-most-important-thing/

8 CHAPTER 1 What is architecture modernization?
Change coupling is problematic because it requires the teams responsible for each
value stream to coordinate their work. Coordination is undesirable because it’s easy
for delays of days or weeks to occur due to shared rituals such as planning, having con-
flicting priorities among teams, needing to integrate and test various components,
and a host of other reasons. This is why tools like CodeScene that visualize change
coupling are becoming essential, especially for architecture modernization.

 Well-defined domain boundaries are one of the crucial measures in minimizing
change coupling. They should be defined carefully and not on a whim. Event-
Storming is a great starting point for identifying loosely coupled domain boundaries.
It’s a collaborative technique that involves mapping out steps in business processes
and journeys along a timeline. As shown in figure 1.7, different parts of the timeline
can be grouped into domains and subdomains.

Figure 1.7 Using EventStorming to collaboratively identify domains and subdomains

Logical dependency/change coupling
There is no shared code, but these 3
codebases must all change together
to implement a new product feature.

= Part of new product feature

Value
stream 3 Stream-aligned

team 3
Application 3

codebase

Value
stream 2 Stream-aligned

team 2
Application 2

codebase

Value
stream 1 Stream-aligned

team 1
Application 1

codebase

Figure 1.6 Change coupling across value
streams caused by a logical dependency

Related steps in a business process/
journey grouped into a subdomain

E-commerce (domain)

Search and browse (subdomain) Cart and checkout (subdomain) Ordering (subdomain)

Timeline

91.2 Independent value streams: The building blocks of modern architecture
Because of the involvement of a diverse group of participants—domain experts, soft-
ware developers, product managers, UX specialists, and potentially anyone inter-
ested—the insights gained during EventStorming lead to higher-quality domain
boundaries (as well as many other benefits that you’ll see later in the book).

 Collaborative techniques like EventStorming also surface another essential part of
modernization: adopting modern practices. To unlock the full potential of modern
architecture, a co-creation approach is necessary, bringing together people from vari-
ous disciplines to codesign and coevolve the architecture. This is a monumental
departure from traditional approaches that involved a centralized team of architects
handing over designs to teams.

NOTE Throughout the book, you’ll see several examples of how organiza-
tions in different industries defined some of their domains and subdomains.

Although domain boundaries are vital to achieving truly independent value streams,
they are only one part of the puzzle. This book provides a holistic approach, validating
that domain boundaries are optimal from business, organizational, and technology
perspectives before modernizing. Figure 1.8 provides an overview of the approach
covered throughout the book.

Figure 1.8 Validating domain boundaries from business, organizational, and technology aspects

NOTE Internal developer platforms (IDPs) are another crucial component
to achieving IVSs. IDPs reduce the friction of building, deploying, and

Candidate
business

subdomain

Strategy

Organization

Tech

Validate candidate
value stream

Key decision-makers are happy
that the value stream will be
independent enough and all other
requirements to be satisfactory
for modernization to begin

Target value
stream

Candidate
value stream

Refine

Validated

10 CHAPTER 1 What is architecture modernization?
supporting code by providing an exceptional developer experience (DX)
through the use of concepts like paved roads/golden paths. This allows
stream-aligned teams to focus on business outcomes without being bogged
down by extraneous infrastructure-related activities and development fric-
tion. IDPs are covered in chapter 13.

1.2.2 Architecting at multiple scopes for global optimization

IVSs are a foundational building block, but independent doesn’t mean completely iso-
lated. Well-designed IVSs reduce as much unnecessary coupling as possible, but some
level of dependency among value streams will always exist. Many products are too
large for a single team to build, requiring multiple teams to work together, each deliv-
ering a piece of the puzzle.

 Focusing only on individual value streams can easily result in local optimizations,
whereas effective modernization is about optimizing BVSSH globally. Therefore, it’s
better to think of organizations as networks of interconnected value streams. Teams
owning related subdomains contributing toward shared business outcomes will need
to collaborate. Understanding the domain relationships is crucial so that teams can be
grouped into domain-aligned organizational units based on the cohesion of their sub-
domains, as the example in figure 1.9 shows.

Figure 1.9 Grouping related value streams into domains based on the cohesion of their subdomains

As the complexity of an architecture increases, more layers tend to emerge. In larger
organizations with thousands of employees, even higher-level domains come into play.
It is, therefore, critical to have a deep awareness of architectural scopes when modern-
izing, especially as systems continue to grow in complexity.

 Every modernization decision will need to be set at the most effective scope. For
example, at what scope does a technology decision apply? Should every team get to
choose its programming language, or should groups of teams working in the same

E-commerce (domain)

Search and browse Product details Pricing Cart and checkout

Fulfillment (domain)

Availability Warehousing Logistics Last mile

111.3 Modernization as a portfolio-driven evolutionary journey
domain be expected to use the same programming language? Or should it perhaps be
an enterprise-wide decision?

 Another common and often controversial example is reuse. For example, should
each team decide if they want to use an internally developed shared service (like a
notifications service), or is that a decision made at a level above, scoped across many
teams?

 This book provides a range of principles and practical techniques for designing
architecture and making decisions at different scopes. However, one of the most criti-
cal factors is understanding what we are optimizing for—and that is ultimately a busi-
ness decision. By using techniques like Wardley Mapping and Core Domain Charts,
we can gain the strategic clarity and alignment we need to make informed architec-
tural decisions that deliver maximum business impact.

1.3 Modernization as a portfolio-driven evolutionary
journey
For many organizations, moving from aging to modernized architecture will take mul-
tiple years. No quick fix exists for systems that have declined over the course of years
or decades. But this doesn’t mean that it should take years for the modernization to
start delivering value. Rather than treating modernization as a project where a full
target-state architecture is defined upfront, an evolutionary approach is better. Value
can start being delivered in the first three to six months, and continuous feedback will
be harvested to continuously improve the architecture and roadmap.

 An evolutionary approach works best with a portfolio mindset. Modernization isn’t
just rewriting the old system with new technologies. It’s an opportunity to completely
rethink the UX, product functionality, business processes, and domain model and
remove unneeded complexity. But this level of effort won’t be necessary in every sub-
domain. In fact, it will lead to much higher costs and delay delivery of the highest-
value modernization opportunities.

 This book shows how to use tools like the Modernization Strategy Selector,
shown in figure 1.10, to identify the optimal modernization investment in each subdo-
main and the most effective sequencing of priorities. You’ll learn all about this in
chapter 12.

 For organizations with a deeply ingrained traditional mindset, a fundamental hur-
dle that prevents an evolutionary mindset is a project-like mindset where moderniza-
tion is seen as a sequence of phases: discover what is possible, design the target state,
and then spend multiple years following a rigid plan to transition from the current to
the target state.

 Discovering opportunities, designing architecture, and delivering modernization
are key aspects of modernization. But they are parallel streams of work rather than dis-
crete phases. As figure 1.11 highlights, work can be ongoing in the different streams
in parallel. Some parts of the architecture can be modernized before discovery and
design have even begun in others.

12 CHAPTER 1 What is architecture modernization?

P
la

tfo
rm

 m
od

er
ni

za
tio

n
(In

fra
st

ru
ct

ur
e

&
 te

ch
 s

ta
ck

)

Product, domain, software modernization
(Software functionality and design)

Total
modernization

(reinvent)

Sunset

Legacy
encapsulate

Lift and shift

Replatform
and remodel

Effort/value/risk

E
ffo

rt/
va

lu
e/

ris
k

Figure 1.10 Identifying the optimal modernization return on investment per
subdomain with the Modernization Strategy Selector

• All tracks are highly interdependent

• Boundaries between tracks are fuzzy

• Work is always ongoing in all tracks

• The balance of work in each track
 varies month-to-month

• Plans are less accurate the farther
 out they get

Deliver
modernization

Discover
modernization
opportunities

Design
modernized
architecture

Learn and upskill
across the
organization

Ongoing learning and upskilling supports
all tracks and is crucial to long-lasting,
durable change

Figure 1.11 Architecture modernization is parallel streams of work (not phases) supported by
continuous learning and upskilling.

13Summary
The parallel ongoing work in each stream is the enabler of an evolutionary approach.
Activity in each stream continuously influences the others: discovery in one quarter
may influence what gets delivered in the next quarter; delivering a piece of modern-
ization may surface unexpected consequences that feed back into the design of subse-
quent work; and so on.

 The importance of ongoing learning and upskilling cannot be overstated. It is per-
haps the most important part of architecture modernization. Figure 1.11 symbolizes
how it is the foundation for modernization. If teams don’t have the time and opportu-
nity to learn and practice modern concepts, there is a serious risk that new architec-
ture will be designed with the old ways of thinking, and many of its flaws will be
carried across.

 Another common challenge is modernization running out of steam or even strug-
gling to get started. In chapter 15, you’ll see how an architecture modernization
enabling team (AMET) can be formed to address this problem and keep moderniza-
tion momentum high. AMETs are not like traditional architecture teams that make
decisions; they are facilitating teams that support other teams and focus on establish-
ing sustainable improvements that continue even after modernization is over.

1.4 Topics not covered in this book
This book does not contain any technology-specific or vendor-specific concepts like
how to implement a microservice in Java using AWS Lambda or how to build an IDP
using Kubernetes and containers on Google Cloud Platform. Although technology
choices and implementation details are important parts of modernization, it’s best to
consult books that provide in-depth coverage of your preferred technologies. All of
the concepts in this book are technology agnostic.

 This book is not tied to any specific business/enterprise/software architecture
metamodels, proprietary frameworks, bodies of knowledge, or certifications. This
book is a toolkit of principles and techniques that can be combined according to your
organization’s needs and are all free to use. Although this book does use some specific
terminology like value streams and subdomains, you are not obliged to adopt them to
get value from the book. You are welcome to translate between the terminology used
in this book and the terminology used in your organization.

Summary
 Architecture modernization is about converting dated architecture, which is

a business liability, into modern architecture that provides a competitive
advantage.

 Modernization requires short-term compromises for long-term prosperity,
which is why leaders are reluctant to commit, but this creates a negative spiral
where the architecture becomes even more of a liability.

 As more of the world is run by software, systems will become more complex,
and architecture will become even more important.

14 CHAPTER 1 What is architecture modernization?
 Modern architecture is more than just technology and patterns; it is socio-
technical architecture.

 Better Value Sooner Safer Happier (BVSSH) is a guide for understanding the
value architecture can provide in modern high-performing organizations.

 Independent value streams are the building blocks of modern architecture;
they connect business, domain, organizational, and technology concerns to
enable BVSSH.

 Well-defined domain boundaries are crucial in establishing truly independent
value streams and avoiding high levels of change coupling and coordination.

 Modern architecture practices such as EventStorming are highly collaborative
and a big departure from traditional ivory-tower architecture mindsets.

 Architecture is multiple scopes depending on the size of the organization.
 Architectural scopes are used to design architecture at different levels of

abstraction and identify the scope of architectural decisions.
 Modernization is an evolutionary journey driven by portfolio thinking; it’s not

about designing a target architecture upfront and following a rigid plan.

Preparing for the journey
Before starting on a journey, it’s a good idea to think about some of the challenges
you may face and ensure you are adequately prepared. I live in the United Kingdom,
so whenever I go on a journey, I always make sure I am prepared for rain, even if the
sun is shining brightly and the skies are clear blue when I leave the house. The same
is true for an architecture modernization journey. If key stakeholders aren’t pre-
pared to make difficult decisions and change how they think and work and the rest
of the organization isn’t ready, you are destined for disappointment.

 This chapter covers some of the fundamental challenges that organizations face
on a modernization journey—challenges that usually require a change in mindset
and challenges that cause difficulties or even the complete downfall of moderniza-
tion initiatives if not addressed. These challenges touch on diverse areas like

This chapter covers
 Gauging organizational readiness

 Establishing a holistic view of architecture

 Preparing for a new architecture mindset

 Avoiding modernization silver bullets

 Nurturing modernization leaders
15

16 CHAPTER 2 Preparing for the journey
business, product, technology, culture, mindset, ways of working, and organizational
change because modernization inherently involves all these topics.

 Every organization faces many obstacles and modernization challenges. It’s com-
pletely normal. So you don’t need a comprehensive solution to these challenges
before starting the journey. But it is valuable to identify where you expect the biggest
challenges to arise so you can get a head start addressing them, like identifying where
new hires or external help will be needed.

 Remember that few modernization problems can be solved purely with tools and
techniques. Among successful leaders, one of the most distinguishing qualities I’ve
observed is their ability to build relationships and have professional, empathetic con-
versations with people of all levels and disciplines.

2.1 Is leadership prepared?
If you’re considering an architecture modernization journey, leadership support is
crucial. The following questions are a good starting point for understanding if you are
prepared to lead and how you can work with other leaders in your organization to bet-
ter prepare them for the modernization journey.

2.1.1 Are business and product leaders truly ready to slow down the delivery
of new features to allow modernization?

One of the most difficult challenges I’ve faced and observed during modernization
initiatives is getting enough time to do modernization work. Despite many promises
from leadership about putting business-as-usual work on hold and being serious about
modernization, there are frequent exceptions and special cases that creep in and con-
sume large amounts of time that were allotted for modernization.

 I recommend that leadership teams have frank and clear conversations about the
level of commitment and compromise needed. It’s also important to build a compel-
ling business case (covered in the next chapter), which articulates the benefits of
architecture modernization in clear business terms so all leaders understand why they
should invest and what they will get in return.

2.1.2 Do leaders understand that legacy systems and ways of working are
complex and difficult to change?

There’s a natural tendency to look for quick fixes. Even though legacy systems have
been built up over years or decades, there is so often pressure for a quick solution. If it
was that easy, the concept of legacy systems would not exist, and it wouldn’t be one of
the biggest problems technology companies face. The reality is that it’s going to take
time, usually years, to modernize technology and ways of working, so all stakeholders
need to be fully aligned with realistic expectations.

2.1.3 How will leaders react when the unexpected occurs (which is inevitable)
and there are major delays or increased costs?

Modernizing legacy systems and ways of working requires dealing with highly complex
systems and fundamentally changing how people do their job. There is an unlimited

172.1 Is leadership prepared?
number of technical and social things that could go wrong, and it’s guaranteed that
some will. A legacy system might be harder to split up than originally anticipated, or
some team members might be in conflict about proposed changes. You have to be
prepared for things to deviate from the optimal path, so it’s good to talk with stake-
holders and try to understand how they will react.

2.1.4 Are leaders ready to change how they work? Can you imagine leadership
supporting changes to funding models, work prioritization, and
development processes and empowering teams to make more decisions?

Modernization can touch every aspect of an organization’s operating model—for
instance, the funding model and the level of autonomy that teams have. These types
of deep changes are difficult and require leadership to change how they work, espe-
cially in regards to giving up some of their control to allow teams to be more indepen-
dent. It’s a good idea to discuss these changes with key decision-makers and
understand just how deeply they are prepared to change the organization.

2.1.5 Are leaders willing to invest sufficient time and funds into learning
and training for all employees so that they can carry out
modernization skillfully?

Modernization does not happen without learning new skills and acting differently.
Leaders need to be aware that a significant investment is necessary for supporting
every employee involved in modernization to ensure they have the required skills. If
not, modernization may take far longer, or the new architecture may look just like the
old one or even worse. Learning and upskilling (the topic of chapter 17) is not a one-
time workshop or training course; it’s an ongoing financial and time investment.
Learning needs to be built into the organization’s culture.

 Learning and upskilling cannot be negated by hiring lots of people with the
desired skills. Employees still need to learn the company’s domain, systems, and cul-
ture, which can take months. Hiring too quickly in a short period can be detrimental
to modernization.

2.1.6 Will technologists be able to articulate to business leaders and other
stakeholders the business and organizational benefits of their ideas?

Sometimes the problem isn’t that leaders aren’t supportive; it’s that they just don’t
understand what they are being asked to invest in and what the benefits are. “The
developers all have OCD. They’re always talking about technical debt and rewriting
things.” This quote is from a CEO I worked with. I don’t agree with their opinion or
tone, but the theme is a common one: when engineers aren’t able to communicate
the business benefits and justifications of their architectural proposals to leaders and
other stakeholders, they are perceived as programmers who just want to rewrite sys-
tems and play with tech for the fun of it. Engineers should be exposed to the business
domain and the business/product strategy so they can communicate the importance
of their ideas in a common language to every audience.

18 CHAPTER 2 Preparing for the journey
2.2 Prepare to embrace a new architecture mindset
It’s not just leaders who need to be engaged with a modern mindset toward architec-
ture. It’s everybody involved in building, designing, and deciding about architecture.
The contrast between traditional and modern approaches is immense, but many peo-
ple have been working with traditional approaches for so long that they aren’t aware
of modern approaches or they just aren’t willing to let go of traditional approaches
that they are so used to.

2.2.1 Prepare to embrace Conway’s law

Everybody involved in architecture needs to be aware of Conway’s law. Conway’s law
states that “organizations which design systems are constrained to produce designs
which are copies of the communication structures of these organizations.” In other
words, the design of a system is heavily influenced by the communication patterns and
organizational structure of the people that design and build it.

 A range of problems can arise due to being naive or oblivious to the effects of Con-
way’s law. Tightly coupled and overly complex software and high levels of dependencies
between teams are some of the most common. To minimize the chance of these prob-
lems and other negative effects of Conway’s law, it is essential to adopt a socio-technical
mindset to architecture, where software architecture and organization design are
jointly optimized rather than being designed in isolation by different groups of people.

 Before starting on a modernization journey, ensure that the concept of Conway’s
law has been widely circulated throughout the organization. To make it more tangi-
ble, look for real examples inside your organization. You’ll find them everywhere due
to Conway’s law being so pervasive. Look at the way your teams are organized and col-
laborate and look at the design of the architecture. For example, I worked with a cli-
ent who had a very siloed organizational mentality. Teams all had their own objectives
and worked independently wherever possible. As a result, changes made by one team
would often cause things to break in other teams. Data was also siloed, causing frustra-
tion as people could not generate deep insights by combining all of the company’s
data. It also led to a fragmented user experience for internal and external users.

2.2.2 Prepare to embrace collaborative architecture practices

Conway’s law emphasizes the importance of a socio-technical approach. Teams
aligned to a loosely coupled software architecture can deliver work faster and more
efficiently. But Conway’s law doesn’t say what teams and architecture should be
aligned to. As figure 2.1 shows, loosely coupled architecture requires loosely coupled

Loosely coupled
software architecture

Independent teams
with fast flow

Loosely coupled
subdomains

NeedsNeeds

Effects of Conway’s law

Figure 2.1 Fast
flow requires loosely
coupled software
architecture, which
requires loosely
coupled domains.

192.2 Prepare to embrace a new architecture mindset
domain boundaries. This means that when teams implement new features, they
change concepts within a single business subdomain aligned to a single codebase. No
coordination with other teams is needed.

 In addition to embracing Conway’s law, domain modeling needs to be embraced as
a foundational concept of modern architecture. And further, the idea of collaborative
approaches to domain modeling and architecture should be embraced because
they lead to better designs. As mentioned in chapter 1, modern techniques like
EventStorming are more collaborative and inclusive. They bring together people from
all disciplines to combine domain knowledge and choose the best solutions. But I
often find high levels of friction to this way of working because it is in strong contrast
to traditional approaches.

 The following quote from a conversation I had with a technology leader in 2023 is
typical of what this mindset divergence looks like in practice:

We’re a successful company with legacy systems that have built up over a couple of
decades. Leadership has started to realize that the current architecture doesn’t allow
us to move fast enough and some things we’d like to do, like exposing internal data
and capabilities externally, just aren’t possible. But after attending this workshop
and seeing techniques like EventStorming, I’ve realized that we’re approaching
modernization in completely the wrong way. Our architects, who have been here for
16 years, have gone away on their own and started by designing a monolithic
database schema for the entire system.

Later in the book, you’ll see techniques and suggestions for adopting these kinds of
techniques, but right now it’s a good time to ask yourself how different this approach
to architecture is compared to your current approach. When preparing for your archi-
tecture modernization journey, it’s a good idea to start experimenting with collabora-
tive workshops like EventStorming as soon as possible to understand how well they are
received.

2.2.3 Prepare to connect architecture and strategy

“My CEO says I need to be more strategic!” This quote from a VP of engineering high-
lights another mindset shift needed to unlock the potential of modern architecture
and approaches. It’s not enough for architects and engineers to focus on the technol-
ogy choices and fashionable architecture patterns; they need to be able to connect
architecture modernization decisions to business outcomes and demonstrate how
each decision is optimal for the desired business outcomes.

 One of the best ways to achieve this is to involve everyone in strategy. Make your
strategic processes more collaborative and inclusive. Chapter 5 shows how Wardley
Mapping is an excellent technique for collaboratively connecting architecture and
strategy. But the question to ask yourself now is, “What is the chance that business and
technology experts would want to get together and explore strategy?” If strategy has
traditionally been very top-down, you may want to test the waters of a collaborative
approach as soon as possible by facilitating a Wardley Mapping session with a diverse
group of attendees.

20 CHAPTER 2 Preparing for the journey
2.2.4 Prepare to move beyond business and IT silos

The traditional approach of treating business and IT as separate units rather than as
integrated parts of a single organization limits innovation and hinders achieving com-
mon goals. It reduces flow due to the handovers between teams, and it also takes lon-
ger to implement features because IT people don’t truly understand what they are
being asked to build.

 A fruitful architecture modernization journey requires seeing business and IT as
two sides of the same coin. But in some organizations, this mindset can be tough to
accept. IT is sometimes seen as a bunch of programmers who just take requirements
and convert them into code. Adopting a modern, product-centric mindset in which
teams are empowered to make product decisions and own their roadmap is a monu-
mental shift and probably won’t happen overnight.

 But now is a good time to understand where you are and where you’d like to be and
also to start thinking about how you can take small steps toward a more integrated oper-
ating model. One exercise I practice with organizations involves John Cutler’s Journey
to Product Team infographic, shown in figure 2.2. I ask everyone (including leaders
and individual contributors) to place a dot where they are now and where they would
like to arrive. We then discuss what is stopping them and how they can get there.

Figure 2.2 Product development approaches from waterfall to empowered product teams (Source: John Cutler,
Amplitude, https://amplitude.com/blog/journey-to-product-teams-infographic)

Waterfall

“Agile” with
release silo

“Agile” able
to release

Design as
team member

DevOps
design/dev
collab

Feature
factory

Product team
w/ ”mini CEO”

Product team

Team boundary
External handoff Internal handoff

Cross-functional collaboration
Start | Work | Finish together

Opportunity
selection

Opportunity
selection

Opportunity
selection

Opportunity
selection

Opportunity
selection

Opportunity
selection

Opportunity
selection

Opportunity
selection

Reqs
planning

Reqs
planning

Reqs
planning

Reqs
planning

Reqs
planning

Reqs
planning

Reqs
planning

Reqs
planning

Design

Design

Design

Design

Design

Build

Build

Build

Design

BuildDesign

BuildDesign

Build

Build

Build

Test

Test

Test

Test

Test

Test

Test

Test

Release

Release

Release

Release

Release

Release

Release

Release

Run

Run

Run

Run

Run

Run

Run

Run

https://amplitude.com/blog/journey-to-product-teams-infographic

212.3 Industry example: Hitting the right note—modernizing music royalty processing at ICE
This infographic is the perfect prop for these kinds of conversations. It gives people a
model to think about the different ways of working and to put their current approach
into context. Highly recommended.

2.3 Industry example: Hitting the right note—modernizing
music royalty processing at ICE

NOTE The following industry example was authored by Kacper Gunia, engi-
neering manager and deputy VP of engineering at ICE (https://www.iceser
vices.com/). I’ve known Kacper for many years; he is one of the first people I
reach out to when I need advice on topics like domain-driven design (DDD)
and architecture. Many of the concepts and techniques mentioned in this
example are covered in subsequent chapters of the book. This example shows
what is possible when organizations are willing to adopt a new architectural
mindset and apply modern principles and practices. ICE Services achieved out-
standing business and organizational outcomes as part of their portfolio-
driven, evolutionary architecture modernization journey.

As a leading provider of copyright and royalty-processing services in the music indus-
try, ICE (International Copyright Enterprise Services) faced obstacles with our IT sys-
tems and infrastructure. The rise of online music streaming caused a significant
increase in volumes of data and resulted in slow processing speed. Additionally, our
old architecture relied heavily on manual steps and actions, leading to higher com-
plexity and a higher risk of errors. To further the problem, our method of working on
new functionalities was centered on individual projects and change requests, making
it hard to promote modern engineering practices and sustainable development. In
light of these issues and to stay competitive in an ever-evolving industry, we initiated a
modernisation effort in 2020. The goal was to enhance our IT systems’ speed, accu-
racy, and scalability while shifting toward a product-centric approach.

 In order to revamp the royalty processing IT infrastructure, we employed various
strategic methods. We started by utilizing Domain-Driven Design (DDD) and Event
Storming as a means of understanding our domain and its specific behaviors. During
the Big Picture Event Storming sessions we focused on capturing the relationships
and interactions between various stakeholders, systems and events happening in the
royalty processing domain. The sessions included a broad audience to ensure a variety
of perspectives and knowledge as we wanted to gain a comprehensive overview of the
business domain.

 Once the big picture was captured we then conducted deep dive sessions with
smaller and more relevant groups of people. Each of these sessions focused on an
individual subdomain which led to more in-depth discussion and brainstorming and
at the end to a common understanding of the problem at hand. This approach
enabled us to pinpoint the critical business events, their behaviors, and the business
rules that keep the system running. With this rediscovered knowledge, we constructed
a high-level process model that helped us understand the problem at hand and estab-
lish a shared language to communicate effectively with our stakeholders.

https://www.iceservices.com/
https://www.iceservices.com/
https://www.iceservices.com/

22 CHAPTER 2 Preparing for the journey
 We then planned a gradual migration using the strangler pattern, which allowed
us to prove the viability of this approach by prototyping on the first subdomain—
Usage Ingestion. The prototype was used to demonstrate the new architecture’s bene-
fits and gain stakeholders’ buy-in. We then worked on a business case that will deliver
value incrementally instead of a big bang—this helped us to create a plan that would
deliver value in smaller chunks that could be used to justify further funding of the
ongoing migration. We started to ramp up the team and defined the product taxon-
omy, including domains, subdomains, and products, as well as the capabilities of these
products and the teams responsible for them (see figure 2.3).

Figure 2.3 From a technology-driven organization to a domain-driven, socio-technical architecture

With the team in place, we started to implement new ways of working within the devel-
opment teams. We set up continuous integration/continuous deployment and infra-
structure as a code so that we could automatically build, test, and deploy code changes
multiple times a day. Additionally, we started to adopt pair and mob programming,
which helped to increase knowledge sharing and collaboration within the teams.

 We also made sure that our development teams were working closely with the busi-
ness teams and that the team members were empowered to own and understand their
products. This allowed us to scale out the strategy and set up more teams and trans-
form the organization into one that works with quarterly and yearly product road-
maps, delivering value frequently and in small increments.

Team 1

Online system

Import/export
systems

Matching
system

Licensing system

Team 2

Initial architecture
Large teams (10–12 people),
shaped around technology
resulting in higher coupling,
dependencies, and cognitive load

New architecture
Smaller teams (5–9 people)
aligned to subdomains reducing
coupling and cognitive load and
improving flow and team autonomy

Team 1

Usage ingestion
(subdomain)

Matching
(subdomain)

Royalty processing domain

Team 2

Royalty calculation
(subdomain)

Team 3

Claims
(subdomain)

Team 4

Distribution
(subdomain)

232.3 Industry example: Hitting the right note—modernizing music royalty processing at ICE
 The modernization effort resulted in several significant improvements. One of the
most notable was a reduction in data ingestion processing time by 80%, which signifi-
cantly improved the organization’s ability to handle large volumes of data. Additionally,
we were able to reduce the time of onboarding new service providers from months to
weeks, which helped to increase the organization’s agility and competitiveness. We also
completely replaced and decommissioned old ingestion systems within 1.5 years, which
significantly reduced the complexity of the organization’s IT infrastructure.

 Another key result was an improvement in the manual matching process, which
allowed for more precise work prioritization and resulted in a 5x increase in produc-
tivity and increased match rates by 5 percentage points. Additionally, we introduced
full audibility of the matching indexes, which helped to build trust with customers
and explain why matches were made. Furthermore, the core part of the platform
responsible for royalty calculation began to be modernized, which helps provide
faster and more accurate royalty calculations. Overall, the modernization effort so far
was a great success, as it delivered a wide range of benefits that improved the organiza-
tion’s performance and competitiveness.

 In addition to these business aspects of the modernization effort, we also used
cloud services to minimize operational overhead and optimize costs. By utilizing cloud
services, we were able to take advantage of features such as autoscaling, which allowed
us to dynamically allocate resources based on the current demand, thereby reducing
costs and improving efficiency. Additionally, the cloud provided us with a scalable
infrastructure that could easily accommodate the increased volumes of data caused by
the rise of online music streaming. By employing cloud services, we were able to mini-
mize operational overhead, optimize costs, and ensure that our IT systems and infra-
structure could support our growing business needs.

 The modernization provided valuable insights into the importance of understand-
ing the domain and empowering teams to take ownership of it. By empowering the
teams to understand the domain, we greatly reduced the feedback loops and
improved the overall quality of the solution. Because the teams are self-organizing and
cross-functional, they had full responsibility for designing, developing, testing, deploy-
ing, and running the application, which incentivized them to do the best possible job.
Another key insight was the benefits of changing the funding model from project-cen-
tric to product-centric, which helped us focus on delivering value instead of creating
estimates.

 However, we also encountered challenges, particularly of a social nature, such as
finding ways to integrate and cooperate with existing teams and making this coopera-
tion productive. Trying to integrate product-centered teams and project-centered pro-
grams of work faces problems related to having very different feedback loops,
resulting from different approaches to estimating, design, development, and testing.
Based on our experience, I would recommend that organizations take care to address
the social aspects of modernization efforts, as they can be just as important as the tech-
nical aspects.

24 CHAPTER 2 Preparing for the journey
 Our job is far from over. While the modernization effort has been a great success,
several subdomains still need to be modernized, and the effort will take another couple
of years. Having a well-defined product taxonomy has been instrumental to our prog-
ress so far, and without it, we would not have been able to create autonomous teams that
continuously deliver value. As we continue to modernize the organization, we plan to
implement this model of aligning teams with subdomains and products across the
entire organization. This will ensure that the benefits of the modernization effort are
realized to their fullest and that ICE remains competitive in an ever-evolving industry.

2.4 Beware of modernization silver bullets
When leaders are told that modernization will take years, cost large sums of money,
and require reduced delivery of product features in the short term, it’s not the easiest
thing to hear. Surely there must be a way to start innovating faster that doesn’t cost as
much and is less disruptive. Unfortunately, most of the time, there is no quick fix.

2.4.1 Beware of bolt-on modernization

One silver bullet–style solution I have frequently encountered is the attempt to mod-
ernize a system without addressing fundamental architectural challenges. This is what
is referred to as a bolt-on, where easier parts of the system are changed to provide the
appearance that a system has been modernized but is still coupled to legacy systems
and databases on the inside. Effectively, it is bolted onto the legacy systems, like put-
ting lipstick on a pig, as some say. While this approach can certainly be a valid transi-
tional step, in many cases the fundamental legacy systems are never addressed and
continue to impose stifling product and technology limitations.

 When building a government service in the mid-2010s I encountered problems
with bolt-on modernization firsthand. My teams were able to build new websites that
provided a far better user experience than the legacy applications they were replac-
ing, but we weren’t able to provide the improvements users were asking for because
we still had to integrate with legacy systems and databases that could not be changed.
We couldn’t add a new text box to a web page to capture information or provide addi-
tional information to users that weren’t exposed by the legacy system’s API.

 A similar problem is when organizations believe that they can buy an off-the-shelf
tool, like a rules engine, that will allow business people to rapidly make changes with-
out needing programmers. There are many situations where rules engines and low-
code solutions can be cost-effective and provide good-enough levels of quality. But
buying these tools to avoid addressing technical debt is more like wishful thinking
than due diligence.

 When preparing for a modernization journey, it’s important to understand if lead-
ers are looking for bolt-on modernization or silver bullet tools. These signs are indica-
tive of a more fundamental problem: leaders are looking for a quick fix and don’t
understand the level of investment needed to truly address some of the organization’s
core modernization challenges. If you suspect this is the case, then it’s another situa-
tion where building relationships and having honest conversations up-front may be

252.4 Beware of modernization silver bullets
better than simply hoping that things will work out. It’s good to have a picture of some
of the most complex modernization challenges and talk through them with decision-
makers so they understand the true investment that is necessary.

2.4.2 Beware of the structure and process fallacy

Some leaders hold a mechanical view of organizations. They like to use factory meta-
phors. This is problematic because it overlooks human factors, resulting in missed
opportunities and unrealistic expectations. As a consultant, one manifestation of this
mindset is when I’m asked by organizations to help them run a workshop so they can
identify their optimal organization structure and then do a big reorganization that
will solve all of their problems.

 This antipattern is the structure and process fallacy (http://mng.bz/8rDW). The
notion that a simple change in organizational structure or adoption of a new process
(such as agile), without making deeper changes, will greatly enhance performance is
misinformed. If it was that simple, every company would have already done it. Com-
prehensive changes like promoting teamwork, giving teams control over product deci-
sions, breaking down business-IT barriers, altering funding models, and investing in
technical quality are needed to boost development speed. While the organizational
structure and development processes are crucial, these changes alone will only bring
limited improvement. It’s important to have these conversations early in your journey.

2.4.3 Prepare to invest in quality technical practices

Avoiding silver bullets that promote superficial changes is crucial. Instead, embracing
the reality that deep changes are needed is necessary. In particular, quality technical
practices keep a system healthy and prevent the need for big modernization efforts.
Investing in technical practices is crucial for achieving this. Sustainable technical prac-
tices ensure that code remains well designed, easy to understand, easy to test, and
therefore easy to change with lower maintenance costs over its lifetime. The start of a
modernization journey is the perfect opportunity to introduce these new practices.

 I’ve always been a fan of test-driven development (TDD) and pair/mob program-
ming. These techniques focus on designing quality, well-tested software through studi-
ous design and continuous refactoring. These are important steps when searching for
the simplest and most maintainable way to implement new functionality. From the out-
side, it may seem that these techniques take longer and increase costs, but when applied
effectively, I’ve always found that they provide a great ROI in the short, medium, and
especially the long term. As with most techniques, however, they can be highly divisive.
Not all teams like TDD and mob programming, so find what best suits your organiza-
tion. I don’t advocate forcing things onto teams to which they do not consent (on the
other hand, people need to try things outside their comfort zone occasionally).

 If your organization lacks expertise in technical practices, addressing this problem
is crucial before going too far with modernization. You don’t want to start building a
legacy from day one of your modernization journey. You’ll need to provide training
and upskilling opportunities for your teams, and you may want to bring in outside

http://mng.bz/8rDW

26 CHAPTER 2 Preparing for the journey
help. It’s not a topic covered in this book, but if you’re looking for a practical starting
point, check out Agile Technical Practices Distilled (Packt Publishing, 2019).

2.5 Prepare to support leaders at all levels
Modernization is a long journey with many important decisions and challenging
moments. Leadership and role models are needed at all levels, from the boardroom
to the teams writing code.

 Collectively, modernization leaders have many responsibilities, including

 Understanding and contributing to the business strategy
 Defining the modernization strategy
 Designing and evolving the architecture
 Setting up an organizational structure to develop the architecture
 Communicating vision and progress
 Build vs. buy vs. partner decisions
 Setting rewards and incentives that encourage the desired behaviors
 Continuing business as usual (BAU) while simultaneously delivering

modernization
 Ensuring engineering teams are immersed in the business domain
 Shaping engineering culture
 Developing and managing people
 Introducing modern technical practices and coaching teams
 Continuously infusing new ways of thinking and working

With all of these responsibilities, modernization efforts cannot be led by a single
superhero or even a small group of them. Before starting your modernization journey,
it’s a good idea to look at this list of modernization responsibilities and any others you
expect to face and then identify which leaders can take on which responsibilities and
whether there are gaps. In addition, you’ll need to think about how these people will
work together to collectively lead modernization initiatives across the business.

 Depending on where your organization starts, you probably won’t have all these
people fully skilled from day one. That means you’ll need a short-term solution and a
longer-term plan for getting there. This is the purpose of the architecture moderniza-
tion enabling team (AMET) covered in chapter 15.

Leaders at all levels
To get a sense of the implications of leadership at all levels, depending on the size
and type of your organization, the following is a nonexhaustive list of people that may
need to play a leading role in architecture modernization:

 CTO
 VP of engineering
 Director of engineering

27Summary
Summary
 Every organization faces a range of challenges during an architecture modern-

ization journey; it’s a good idea to identify upfront what the biggest challenges
may be so you can get a head start addressing them.

 Financial commitments to modernization while putting other work on hold is a
common challenge.

 Getting leadership onboard and aligned with the approach is vital.
 Modernization requires a new way of thinking about architecture that involves

Conway’s law, collaboration, and inclusion; it’s a good idea to experiment with
these approaches as soon as possible.

 Treating IT as a separate silo is a dated mindset; it’s important to understand
how deeply ingrained this mindset is in your organization before starting the
modernization journey.

 Unfortunately, you probably won’t find quick fixes to address your deep mod-
ernization needs, so beware of silver bullets like bolt-on modernization and the
structure and process fallacy.

 Investing in technical practices to create deep change and avoiding rebuilding
a new legacy is essential.

 Modernization requires leadership at all levels, so identify upfront how you will
support leaders and where you need to bring in new faces to address skills gaps.

 Chief architect
 Architect
 Principal engineer
 Staff engineer
 Engineering manager
 Platform architect
 Head of platform engineering
 Enterprise architect
 Data architect

In addition to these technology roles, it’s also crucial to closely involve leaders from
other disciplines, such as product, user experience (UX), customer support, finance,
and marketing.

Business objectives
Modernization is a significant investment in systems and operating models. To get
buy-in from stakeholders and maximize return on investment, you must have a
solid understanding of the business outcomes you aim to achieve and clearly articu-
late how investing in architecture modernization will move the business toward its
strategic priorities.

 Identifying the optimal level of modernization is critical to avoid wasting time
and money on things that don’t move the business forward. It requires a view of the
business and product strategy across multiple time horizons. By recognizing your
growth strategy and how each product in your portfolio contributes to it, you can
identify which areas of your architecture will truly benefit from modernization and
how to modernize your architecture most effectively for your business needs.

This chapter covers
 Identifying the business justifications for starting

an architecture modernization

 Connecting architecture modernization to
business growth strategies

 Defining business and product north stars
28

293.1 Business justifications for architecture modernization
 To do this, you must ask: Which new capabilities need to be developed? Which
parts of the system will require the most development? What is the current level of
technical debt in each area of the system? Are you looking to create new products in
new markets or increase market penetration by improving the quality of existing prod-
uct offerings? Is it about the speed of innovation, reducing operating costs, or improv-
ing scalability to support the rapid growth of the user base? This chapter begins by
looking broadly at the typical business reasons for investing in architecture modern-
ization. Then it finishes by showing how you can identify your organization’s most
important business and product metrics—north stars.

3.1 Business justifications for architecture modernization
This section outlines common business scenarios where architecture modernization is
beneficial. It’s not an exhaustive list, so modernization may still be valuable if you find
yourself in a different scenario.

 Once you have identified business justifications, a good technique for quickly
attaining feedback is to ask clarifying questions to different stakeholders. For exam-
ple, “So it’s fair to say you’re not worried about losing ground to fast-moving competi-
tors, and we should be 100% focused on reducing operating costs?” “What are the
biggest threats you see from outside the organization, like faster-moving competitors
or changes in consumer spending?” “How unique is our product? Do you think it
could be recreated easily by other companies?”

3.1.1 Falling behind faster-moving competitors

According to Simon Wardley, “Success breeds inertia,” and “Inertia increases the
more successful the past model is.” In essence, successful businesses lose their incen-
tives to be innovative. At the same time, new players in the market have the opposite
mindset; they have a big challenge to overcome established brands, and they need to
be highly innovative and willing to take risks. In addition, new players can start from a
blank canvas with the latest technologies and ways of working, while incumbents have
years or decades of technology and organizational debt. These are the perfect condi-
tions for disruption, a scenario many established businesses find themselves in as new
competitors emerge in their industry or existing competitors invest in modernization
and can innovate much faster.

 One of the most worrying concerns for business and technology leaders is not real-
izing how far behind their development capabilities are until it’s too late. Everybody
knows stories of famous companies that were disrupted, like Blockbuster (http://
mng.bz/EQMD), Netscape (https://airfocus.com/blog/why-did-netscape-fail/), and
Nokia (https://www.bbc.co.uk/news/technology-23947212). Not every business real-
izes when it’s too late. As the Netflix example in chapter 1 highlighted, some visionary
leaders spot the warning signs early, giving them a greater chance of surviving and
thriving.

http://mng.bz/EQMD
http://mng.bz/EQMD
https://airfocus.com/blog/why-did-netscape-fail/
https://www.bbc.co.uk/news/technology-23947212

30 CHAPTER 3 Business objectives
 I like to ask, “How long could you carry on without making any improvements
until you are at risk from competitors?” One COO responded, “We have about 18
months until our competitors catch up and overtake us.” In that situation, 18 months
was a good number. It was close enough that the company was incentivized to start
modernizing but far enough in the future that they had time to make sensible deci-
sions and not rush into bad decisions. Keep in mind that the amount of time doesn’t
tell the full story. For example, if the organization was larger and had millions more
lines of older code to modernize, 18 months may not have been comfortable.

 Organizations at risk of falling behind faster-moving competitors need to make
judicious modernization decisions about where to modernize. Wasting a year modern-
izing a legacy system that isn’t going to evolve much in the future could be cata-
strophic.

 Wardley Mapping (covered in chapter 5) focuses on the evolution of business land-
scapes and identifying where the future advantages will be and where there is poten-
tial for disruption to occur. It’s an essential technique to employ in this scenario.

INDUSTRY EXAMPLE: FINANCIAL SERVICES MARKET LEADER LOSING GROUND

A financial services organization approached me to support the new CTO in establish-
ing a multiyear modernization initiative. The context was fascinating and appealing.
The company had been a market leader for over a decade and was always top of indus-
try rankings, creating a mindset in the organization of optimizing for stability and
security and avoiding risks. Thanks to its highly reputable brand, the company would
remain the market leader as long as the system was online and customers could use it.

 While the business results were good, internally, the organization was performing
poorly. Factors like draconian security policies, highly restrictive development pro-
cesses, little investment in addressing technical debt, and a top-down management
style resulted in engineers constantly banging their heads against the wall trying to
complete simple tasks. The relationship between Dev and Ops was notably bad.

 Gradually, the industry started to change. Faster-moving competitors emerged with
a better UX, and the client lost their place at the top of the industry rankings. Their
product was falling behind, and intelligent people were frustrated and leaving. The
executives knew that they could no longer avoid the warning signs. They had brought
in the new CTO (along with other experienced business, product, and technology lead-
ers), who had previously built high-performing organizations in the financial sector.

 I was involved at the start, leading the first two teams designing and building mod-
ernized architecture and working in new ways. I also worked closely with operations
teams to establish the development platform and architecture teams to establish the
vision. I spent a lot of time evangelizing the ideas across many parts of the organiza-
tion to various stakeholders and teams. It was such a completely different way of think-
ing that they needed time to learn, absorb, and decide if they wanted to be part of or
leave the company.

 Due to the competitive nature of the industry, leadership demanded to see major
product improvements within six months as part of the modernization investment.

313.1 Business justifications for architecture modernization
Unfortunately, with so much technology and organizational debt, it took a year to put
a single line of modernized code in production, despite modernization having a high
level of support from the executives, which caused a lot of stress. Teams were blaming
each other for failing to deliver, even though each team was working to the best of
their abilities within the constraints. The pressure caused teams to look for shortcuts
and tactical solutions, such as building new applications on the old infrastructure.

 If the organization had accepted it was falling behind sooner and realized the
effort needed to modernize was much greater than first anticipated, it wouldn’t have
been in an unhealthy rush to modernize and would have been better able to deal with
the many expected and unexpected challenges gradually. The next example shows
what’s possible when organizations spot the warning signs early and make sufficient
modernization commitment and investment. Keep in mind, however, that the two
companies are completely different, so this is not a direct comparison.

INDUSTRY EXAMPLE: OPENTABLE
In 2011, OpenTable was the market leader in restaurant bookings, with little competi-
tion. But things changed when competitors like Yelp entered the market. OpenTable
had a lot of great ideas to maintain its market leadership, but engineering was the bot-
tleneck. They couldn’t develop product innovations as fast as their competitors. At
that time, OpenTable had a monolithic, big ball of mud codebase, which all 100+
engineers were working on. Due to the high levels of coupling, making changes was
slow and risky, and the chance of merge conflicts was always very high. The deploy-
ment cycle was 4 weeks and involved multiple days of manual QA testing.

NOTE This industry example was coauthored with Orlando Perri, who
worked at OpenTable from 2010–2015.

The team in London knew that productivity could be much higher. A decoupled,
domain-aligned codebase would enable teams to work independently, and a highly
automated continuous delivery infrastructure with a great developer experience
would enable multiple deploys to production per day. Importantly, this would also
enable them to improve product feedback cycles through A/B testing. Achieving this
vision would put OpenTable well ahead of its competitors, but getting there and get-
ting buy-in wouldn’t be straightforward.

 After multiple iterations of pitching a modernization vision that articulated the
business benefits, the board eventually agreed to put all feature work on hold to allow
a complete modernization of the existing systems. A new forward-thinking CTO
joined the organization and endorsed the modernization vision, supported by hiring
engineers with expertise in DevOps, continuous delivery, and domain-driven design.

 This story is fairly unique because the senior leadership team agreed to stop all fea-
ture work to allow complete modernization. This decision was made because every-
body wanted to ensure that modernization was completed as soon as possible and that
everything got modernized with nothing left behind. One challenge with this was that
the board wanted a timeline. The engineers made an educated guess at 6 months, but

32 CHAPTER 3 Business objectives
it took around 8 months until new product features could be added again and almost
12 to finish everything. The story ends positively, though. At the end of moderniza-
tion, the vision had fully been realized. Highly autonomous teams were working inde-
pendently and pushing code to production multiple times per day. OpenTable’s
development capabilities were a big step ahead of the competition.

 Stopping all work and focusing on intensive modernization was a good decision for
OpenTable. But for most organizations, this approach isn’t sensible or even possible, so
a more gradual approach will be necessary. Several key factors contributed to this being
the right move for OpenTable—notably the quality of people they hired, the fact that
stopping feature development for eight months was possible without severe business
consequences, and a solid articulation of the business ROI of modernization.

3.1.2 Architecture stifling business growth

Even when new players or existing competitors pose little threat, architecture can still
play a decisive role in preventing a business from maximizing its potential. Almost
every company seeks growth. Sometimes slowly and gradually, sometimes in big, rapid
increments. As a modernization leader, it’s vital to understand your organization’s
growth ambitions and potential because this will help you to identify the extent that
architecture is a limitation and blocker to business growth. Architecture moderniza-
tion should support the company’s growth ambitions, like addressing existing scaling
weak points or optimizing for innovation speed in strategic domains.

 There are four major growth strategies to be aware of: market penetration, market
development, product development, and diversification. Any number of them could be in
play across your organization at any time. Growth strategies and how they connect to
modernization are addressed later in the chapter.

3.1.3 Pursuing an exit strategy

For some businesses, the key strategic objective is achieving an exit strategy, such as
being acquired by another company or going public with an IPO (initial public offer-
ing). In early 2022, for example, the CEO of one of my clients explained to my team
that his objective was to make the company attractive to buyers and be acquired within
three years. When we discussed architecture modernization, he was only interested in
discussing initiatives that would deliver a significant business value within that time
frame. Any modernization that did not deliver short- to medium-term benefits would
not be considered. The tech leads and engineers found this to be the case when the
company wouldn’t commit more time and resources to break apart the giant legacy
database coupled with most parts of the system.

 Ultimately, the owners of the company were seeking an exit. Therefore, limiting
modernization to a three-year time horizon was their decision. But it’s worth remem-
bering that modernized architecture may help the organization look more attractive
to investors and achieve its exit strategy. One architect involved in many M&A activi-
ties warned: “I can promise that a good architect will look at the prospect’s code,

333.1 Business justifications for architecture modernization
architecture, design docs, test processes, etc. If you are aiming for an exit, you can’t
just present a pretty face and hope they won’t notice. Anyone doing a good job at due
diligence will toss out a company that is all shill and shell. An exit strategy needs to be
more architected and modern than most.”

 Focusing on a two-to-three-year horizon may benefit companies not pursuing an
exit strategy. It can help to focus on initiatives that will deliver an effect in the shorter
term. It shouldn’t take three years for modernization to deliver benefits. The key for
most companies, however, is developing a portfolio of short, medium, and long-term
modernization initiatives that deliver value regularly—and also putting in place a plan
for addressing the highly complex fundamental architecture challenges that will take
years to address fully. Common examples are giant monolithic databases and archaic
COBOL systems.

 As the CEO demonstrated, when an exit strategy is a goal, business leaders focus
on making the company look as attractive as possible to potential buyers. Typically,
this involves optimizing certain business and accounting metrics like gross margin,
revenue growth, or net income (aka the bottom line). In some industries, leaders seek
to optimize their EBITDA (earnings before interest, taxes, depreciation, and amorti-
zation) to make their business look efficient—an accounting metric that highlights
the profitability of an organization and is often used to compare companies against
each other. For companies seeking to entice investors, this is sometimes the key met-
ric. However, it is important to understand that EBITDA, like any metric, doesn’t tell
the full story and can be misleading.

 Understanding company performance beyond EBITDA is valuable for moderniza-
tion leaders. Not only will you be able to prioritize modernization initiatives better, but
you’ll also be able to speak the language of the business better and improve your cred-
ibility. A good starting point is the book Financial Intelligence (http://mng.bz/N2lx).

3.1.4 Growth by acquisition

Mergers and acquisitions (M&A) are key for some businesses. They can help with all
growth strategies, like acquiring existing competitors to increase market penetration
and acquiring businesses in different markets to support a diversification strategy. A
recent example is Salesforce’s acquisition of Slack for a reported $27 billion (http://
mng.bz/D4Xg) in 2021. Salesforce believes that acquiring Slack will allow it to offer a
more complete package in the new era of remote working. Another example is Micro-
soft’s acquisition of GitHub for $7 billion in 2018, which helped it develop innova-
tions like GitHub Copilot, an AI-powered programming assistant.

 Working as a principal engineer at Salesforce, I first understood the architecture
modernization challenges inside a large organization with a big appetite for M&A. On
the outside, customers just expected Salesforce’s large portfolio of products to fit
together seamlessly. On the inside, this was also the ambition of business and product
leaders, but the picture was much different technology-wise. Each acquisition added
even more sprawl to the technology landscape. They were legacy monoliths built in

http://mng.bz/N2lx
http://mng.bz/D4Xg
http://mng.bz/D4Xg

34 CHAPTER 3 Business objectives
different eras and cultures, with different technology stacks running on different
infrastructure stacks, all bought together under the roof of one company and
expected to fit together.

 As the company kicked off initiatives to create a more joined-up user experience
by integrating systems, there were initiatives like a single, centralized identity solution.
But with so many diverse teams and needs to consider, these initiatives moved very
slowly. Some other challenges I noticed were teams losing their place in the bigger
picture, silo boundaries forming, fragmented user experience, duplication of capabil-
ities, lack of alignment on domain boundaries, and conflict over technology and infra-
structure choices.

 Not all companies with an M&A strategy will operate at the scale of Salesforce, but
some or all of these challenges are likely to apply to some degree. As a result, a funda-
mental rethink of products, domains, software, and teams may be required to identify
the optimal post-acquisition architecture.

NOTE For an excellent industry example that touches on the themes in this
section, check out Ora Egozi Barzilai’s talk from MuCon 2019 (http://
mng.bz/lW6R). She recounts her experiences leading multiple iterations of
architecture modernization at Taboola in 2016 following a key acquisition.

If your organization is actively seeking growth by acquisition, but the current architec-
ture is not conducive to integrating the technologies of acquired companies, a crucial
part of your modernization strategy will be outlining these challenges and justifying
how modernization will accelerate the onboarding and ability to employ acquired
systems.

3.1.5 Poor UX holding the company back

For some products, the UX can make or break the whole business model. And when
the UX is lacking, a website redesign may not be sufficient to address the problem.
Deeper architectural modernization may be necessary.

 One way that architecture can be a fundamental factor in poor UX is through
unreliability. My friend Dan Young had an unfortunate experience with this. In the
autumn of 2021, he tried to hire a rental car but unintentionally hired three due to
poor UX caused by architectural problems. The website told him to retry his payment
because the backend returned an error, even though the backend had successfully
created the booking. Initially, the company only offered to refund one of the book-
ings, causing much-unneeded stress for Dan. This interaction completely ruined any
trust he had in the brand.

 During the modernization of a system I worked on, a major user pain point was the
inability to enter enough information about their case, resulting in additional hassles
like phone calls and letters, which frustrated them. Unfortunately, the character limit
was enforced by the XML schema, the database, and an intermediate database—all
part of a fragile legacy system. So what appeared to be a simple UX problem couldn’t
be resolved due to architectural complexity multiple layers deep.

http://mng.bz/lW6R
http://mng.bz/lW6R
https://www.linkedin.com/in/dan0young/

353.1 Business justifications for architecture modernization
 Leaders unfamiliar with technology constraints sometimes assume that UX prob-
lems can be fixed with a website redesign without understanding that deeper modern-
ization is required. So it’s important to help all stakeholders understand the deeper
causes of UX problems and the limitations of not addressing those deeper causes. It’s
not just a new lick of paint.

3.1.6 Inefficient internal tooling and processes

The user experience of internal-facing products can be just as problematic, or even
more so, for some organizations than the external-facing products. There seems to be
a prevalent mindset that the user experience of tools used by employees is less import-
ant than that of external customers. This results in employees, like agents and case
workers who depend on internal systems, struggling to get their work done as they
wrestle with internal systems. As a result, operational costs and critical lead times can
become significant concerns for organizations, especially over a long period, as the
systems progressively degrade.

 In one company, I worked with frustrated agents who had to use three different tools
for a simple workflow. Each tool had a high learning curve and an outdated UX, which
exacerbated the friction caused by constantly switching between the various tools. In
addition, the lead times for processing cases were many times greater than they should
have been, so the organization had to try and hire more agents to accommodate.

 Three complex internal tools meant the costs, time, and effort to onboard new
agents were also excessive. Over time, the problem had become a major bottleneck in
the organization’s plans to develop a new product because they couldn’t scale their
operational processes quickly or efficiently. They had reached the point where mod-
ernizing the UX and architecture of their internal systems was unavoidable.

3.1.7 Improving hiring and retention

The ability to hire and retain talented people can easily be overlooked, yet it can be a
notable benefit of modernization. In 2018, I spent time with a large European avia-
tion company struggling to hire and retain senior engineers. One of the prominent
factors was their legacy C++ monolith with over ten thousand business rules. It was a
dead-end career move that scared talented people away. As a result, they had a high
reliance on junior engineers and graduates, which continued to deteriorate the archi-
tecture. I could feel the tension in my initial two day workshop. There was a despera-
tion to turn things around and find short-term solutions quickly.

 Talented people in the right environment are the key to creating better products,
delivering innovations faster, and implementing sustainable long-term systems. Mod-
ern architecture, or a genuine commitment to architectural modernization, increases
the chances of hiring talented people. They see the opportunity and potential to solve
exciting problems rather than fighting legacy systems and constricting processes with
no hope of improvement.

 Hiring and retaining talent may not be the primary motivation for modernization,
but it’s worth calling out. And it might be more important than you realize.

36 CHAPTER 3 Business objectives
3.2 Connecting modernization to
growth strategies
This section looks at common business
growth strategies and the types of archi-
tecture modernization challenges that
can apply to them. These growth strate-
gies are based on Ansoff’s Matrix (figure
3.1), a 4 × 4 grid categorizing growth
based on new and existing products and
markets. Remember that multiple or all
of these strategies could be at play within
a single organization. It’s also worth not-
ing that there’s no need to try and force
everything into one of these four boxes.
Instead, employ the matrix as a conversa-
tion starter.

3.2.1 Growth strategy: Product development

A product development growth strategy focuses on building market share in existing
markets by developing new products and services. A market in this context can be
understood as the group or subset of people interested in or likely to purchase a cer-
tain type of product. Market segmentation, for example, involves grouping subsets of
a market based on characteristics like age, profession, number of employees, industry,
and revenue. For console video gaming, the market would be all the people who play
console video games, and they could be further segmented by the games they like to
play. Effectively, this means that a product development growth strategy is about build-
ing new products and services that target the same people as existing products.

 With this type of growth strategy, the company will be developing new products
likely to have some level of similarity to existing products because it’s targeted at the
same people. A few obvious architectural considerations include shared capabilities,
product integration, and balancing investment between new and old.

 Shared capabilities might be necessary where both products use similar business
rules, calculations, or data, and it would be expensive to build them twice. It could be
generic capabilities like identity systems or domain-specific capabilities. There are
many risks and challenges associated with shared capabilities. Firstly, extracting a
shared capability from an existing system designed to be a single product can be a sig-
nificant amount of work, and it’s not always clear to business stakeholders why some-
thing that already exists cannot easily be reused.

 There are other challenges to consider, like determining the appropriate level of
reuse and designing a domain model and interfaces that are not overly specific or
overly generic. There is always the risk that the shared capability becomes a bottleneck
and that the reuse level turns out to be less than anticipated. This topic gets much

Market
penetration

strategy

Product
development

strategy

Market
development

strategy

Diversification
strategy

Existing
products

New
products

Existing
markets

New
markets

Increasing risk

In
cr

ea
si

ng
 ri

sk

Figure 3.1 Ansoff’s Matrix

373.2 Connecting modernization to growth strategies
more coverage in later chapters about domain modeling, architecture design, and
Team Topologies.

 Customers will typically expect synergies and integration when they use multiple
products from the same company. When I worked at Salesforce, customers found hav-
ing multiple usernames and passwords for different products very frustrating. “This is
all Salesforce. Why do I need to log in to five different products with different creden-
tials?” Accordingly, the architecture must facilitate technical integrations with APIs
and data feeds. As with shared capabilities, re-architecting legacy systems designed to
be a single product to integrate with other products can require a significant modern-
ization investment involving risky changes to core parts of the system and data.

 Developing new products alongside existing products also raises challenges
around mindset and prioritization. New products often have more potential, and the
speed of experimentation and innovation will likely be faster, while existing products
may have a large customer base and require more stability. It can be problematic
when multiple teams are trying to move at different speeds and when people feel the
other product is getting more investment than theirs.

INDUSTRY EXAMPLE: MARINE PRODUCT DEVELOPMENT

I was once fortunate to work with a company that built hardware and software for mul-
tiple marine markets—from luxury yachts to small fishing boats to commercial tank-
ers. It was executing a major business model expansion with a product development
growth strategy. Up to that point, it had been mainly in the game of hardware devices
and embedded software. Still, it aspired to enhance its offering to existing customer
segments by developing internet-connected experiences—for example, the ability to
put a geofence around a boat and receive notifications when the boat moves outside
the geofence and the ability to remotely monitor the sensors on a boat, like the
engine speed and temperature. The company wanted to own the ecosystem of con-
nected experiences. Talented people had signed up for the journey.

 Technology-wise, however, catastrophic problems arose. The project had delivered
little in two years. As a result, the CEO was feeling pressure from the board. The tech-
nology teams had tried to build the connected platform within their existing architec-
ture: on-premises; SQL database; big ball of mud architecture; and home-rolled, event-
driven capabilities were some of the major red flags. These constraints did not work for
an IoT platform that needed to process thousands of telemetry events per second.
When tested, the system could only handle around five connected devices concurrently.
For reference, the business model was built around thousands of connected devices.

 Architecture modernization was necessary to achieve the company’s market devel-
opment growth strategy. But gaining buy-in from senior leadership wasn’t easy because
they sometimes got lost in technical jargon like cloud-based services, polyglot per-
sistence, microservice architecture, Azure, event-driven architecture, domain-driven
design, and so on. However, they did eventually commit to modernization, and I believe
the ability of technology leaders to continually connect modernization back to the busi-
ness outcome of supporting thousands of concurrently connected boats was vital.

38 CHAPTER 3 Business objectives
3.2.2 Growth strategy: Market penetration

A market penetration growth strategy focuses on building market share within exist-
ing markets by getting more out of existing products and services. High market pene-
tration is a sign of a market leader. Not only does this mean increased revenues, but it
also helps to build a strong brand. That brings other benefits like economies of scale
and less reliance on marketing. Market penetration strategies can be implemented in
various ways, including pricing changes, enhancing existing products, acquiring com-
petitors, and sales and marketing initiatives.

 The specific approach to increasing market penetration will determine the types
of architecture modernization initiatives that are most applicable. Optimizations will
likely need to be made to existing systems since no new products are being developed.
This may involve making significant changes to existing parts of the system, which
would necessitate modernizing those parts to enable a faster rate of innovation. Mod-
ernization may be a key part of reducing operating costs, such as automating manual
processes or improving the user experience of internal tools and products to improve
employee productivity.

 Business and technology leaders need clarity on priorities regarding investing in
new markets vs. increasing penetration in existing markets. There may be a desire to
invest heavily in both, so it’s vital to identify the level of modernization needed to sup-
port both strategies. It may be necessary to articulate that pursuing multiple
approaches is not feasible and that reducing focus to fewer markets is required until suf-
ficient progress with modernization has been achieved. This is, though, a good exam-
ple of how to break down modernization and deliver value sooner by focusing on a
single market: identify business opportunities in a single market (new or existing) and
determine the modernization investment required to achieve those specific outcomes.

INDUSTRY EXAMPLE: LATIN AMERICAN CHALLENGER BANK MARKET PENETRATION

I worked with a Latin American challenger bank that had established itself in the mar-
ket by moving quickly and having the best UX, as validated by its app store ratings.
Getting more people to use it as their primary bank was essential to continue the
bank’s impressive trajectory, so customers needed to have their salaries paid directly
into their accounts.

 At that time, customers mostly used the bank for secondary accounts. The strategic
north star was clear, but the business and product leads knew they needed a big invest-
ment to achieve their bold target of fully displacing the traditional banks. They were
targeting another series of funding but had been advised that they needed to show a
clear path to profitability to give investors sufficient confidence.

 As a startup, the company had focused on gaining traction. It had built up lots of
legacy very quickly and had operational processes that wouldn’t scale to the future vol-
umes necessary for the business model to succeed. A modernization initiative was
needed to move the company toward becoming profitable and attractive to investors
whose funds were required for them to make the next big step.

393.2 Connecting modernization to growth strategies
 But a careful balance needed to be struck. The company couldn’t afford to stop
developing for a year while modernizing. It had to maintain its image as an innovative
next-generation bank.

 Customer support costs were identified by various stakeholders as a key area of
focus in the journey to becoming profitable. Growing their customer base required
linearly growing their customer support team due to inefficient and manual processes
and buggy code that resulted in excessive support tickets. It was completely unsustain-
able, meaning there was a clear justification for modernizing architecture, ways of
working, and operational processes.

3.2.3 Growth strategy: Market development

A market development growth strategy focuses on expanding into new markets with
existing products and services. Usually, this starts with market research to identify new
customer segments interested in the product. Uber is a classic example of market
development. Initially, Uber focused on ride-sharing. After successfully penetrating
that market, they began adapting their products and services for new markets like
food delivery and freight delivery.

 Understanding the needs of new customer segments and how these needs differ
from and are similar to existing customers is crucial in identifying the level of invest-
ment needed to adapt the product to new markets. This can then be correlated with
the areas of the system that will need to change, including the development of new
capabilities. This is another scenario in which shared capabilities may need to be
extracted, in this case, to support various market-specific services.

 In general, shaping architecture and organizing teams can be challenging when a
single product supports multiple markets. Should the architecture and teams remain
general, focused on all market needs, or should specific parts of the socio-technical
architecture be dedicated to specific markets? EventStorming is one technique that
can be applied to collaboratively map out the current business workflows and user
journeys in a high level of detail. Each granular step of the flow can be analyzed to
identify the modernization required to support the new markets. Later in the book,
you’ll learn about EventStorming and how to use it for various purposes.

INDUSTRY EXAMPLE: TRAVEL COMPANY MARKET DEVELOPMENT DURING THE PANDEMIC

During the COVID-19 pandemic, we learned that massive, unexpected events don’t
just happen in the movies. We should be aware of areas of the architecture that don’t
scale. Even if there is no obvious scaling need, suddenly there could be.

 A European travel company I worked with had small volumes of customer refunds
pre-pandemic. It was a manual process using spreadsheets and other low-tech solu-
tions. For years it had been just fine with no problems.

 However, refunds increased by orders of magnitude during the pandemic, leaving
the business in utter chaos. They couldn’t process cases anywhere near quickly
enough. Customers got mad, industry watchdogs got involved, and the brand reputa-
tion took a hammering across various forms of media.

40 CHAPTER 3 Business objectives
 Prepandemic, the company intended to pursue a market development growth
strategy, adapting its existing capabilities to target new types of customers. However,
the pandemic showed that they needed to fundamentally modernize their systems and
ways of working before that would be possible. The architecture wouldn’t enable their
ambitious growth, so they built a business case outlining these challenges and a realis-
tic path that would eventually allow the desired market development growth strategy.

3.2.4 Growth strategy: Diversification

A diversification growth strategy focuses on launching new products or services in a
market(s) that the organization does not currently target. One organization that has
consistently applied aggressive diversification to tremendous success is Amazon. Orig-
inally, a bookstore that grew into a retail giant, Amazon established its AWS cloud busi-
ness, which generated over $60 billion in 2021 (http://mng.bz/Bmnl). Later, Amazon
diversified into other markets, such as video streaming, music, groceries, smart
homes, and video conferencing. As Ansoff’s Matrix showed, diversification is the riski-
est strategy that even Amazon gets wrong from time to time, evidenced by its difficulty
breaking into the video games market.

 Not every company has the deep resources and technical talent that Amazon has.
For technology leaders, this means understanding how well the current architecture
will support business diversification ambitions and the level of investment required.
One positive thing to consider is that it may be possible to develop the new product
completely standalone outside of existing systems and infrastructure. This is an oppor-
tunity to apply modern technology and ways of working from the start that can feed
back into older parts of the organization. Unfortunately, this can also work in reverse,
where the old system and ways of working infect the new systems and teams. That is
something to prepare for from day one. Previously mentioned architecture modern-
ization themes may also apply in a diversification strategy: shared capabilities, integra-
tion, diverse mindsets, general vs. market-specific domain models, and investment
prioritization conflicts.

INDUSTRY EXAMPLE: REGULATED E-COMMERCE DIVERSIFICATION

After a decade as the market leader in a health-related, regulated, e-commerce vertical,
growth had slowed for the organization. The company built its brand and gained high
market penetration by being a first mover in establishing an online presence. But with
near market saturation, year-on-year growth was in the low single digits.

 New sources of growth were needed for more ambitious year-on-year growth. As a
result, the company decided to employ a diversification strategy by moving into a new
market with a new product.

 The target market was still an offline experience, but the company wanted to be
the first mover in providing an online experience. However, unlike their previous
market, this physical product required a high level of customization and in-person
specialist appointments. But, the landscape was evolving; emerging technologies
would soon make it possible to go through the customization process remotely using a
mobile application.

http://mng.bz/Bmnl

413.3 Identifying north stars
 A high level of complexity was involved in establishing the new multimarket busi-
ness model, and there was an urgent need for architecture modernization. However,
there were some synergies between the new and the old market, particularly around
operational and regulatory workflows. The leadership of the new product hoped to
reuse some of the existing capabilities reducing their costs and time to market.

 The existing architecture and ways of working had been completely designed
around a single-vertical business model. In addition, it was running on-premises using
dated technologies. As the market leader, the business faced no pressure to modern-
ize until now. But now the need was urgent. The company wanted to be a first mover
and become the early market leader as it had done in the previous market.

 The head of enterprise architecture believed that architecture modernization
could help in various ways, like improving time-to-market and reducing costs by reus-
ing existing capabilities. I worked with him to validate the idea of extracting shared
services using the techniques and ideas covered in the book’s remaining chapters.

 One challenge involved extracting a shared capability to support operational pro-
cesses, which included not only extracting the software but also understanding how
the caseworkers would operate in a multivertical world and how new UIs would need
to be designed to support them. It also uncovered big challenges pertaining to shared
dependencies like funding models. The company had never faced these challenges
before, so it was impossible to plan too far into the future with much certainty.

3.3 Identifying north stars
North stars are a popular technique for identifying the most important business and
product outcomes. Identifying the right north stars clarifies where and how to mod-
ernize your architecture best.

 Sean Ellis, the coauthor of Hacking Growth, defines north stars as “the metric that
best captures the core value that your product delivers to customers. Optimizing your
efforts to grow this metric is key to driving sustainable growth across your full cus-
tomer base” (http://mng.bz/d1B1).

 North stars are a great approach to defining outcomes. However, they’re not a
shortcut for careful research and deep thinking. Choosing the right north star can
take considerable effort, even for seasoned experts. For example, John Cutler’s North
Star Framework (http://mng.bz/rWpj) includes seventeen activities.

3.3.1 Choosing the right north star

Sean Ellis offers the following advice for identifying north stars: “You must understand
the value your most loyal customers get from using your product. Then you should try
to quantify this value in a single metric. There may be more than one metric that
works, but try to boil it down to a single NSM.”

 North stars will vary according to factors such as industry, product type, and evolu-
tion stage (in the Wardley Mapping sense). For a software as a service company, north
star metrics (NSMs) could be monthly recurring revenue (MRR), customer lifetime
value (CLV), or net promoter score (NPS). In contrast, NSMs for an e-commerce

http://mng.bz/d1B1
http://mng.bz/rWpj

42 CHAPTER 3 Business objectives
product could be conversion rate, average order value (AOV), customer lifetime value
(CLV), or customer acquisition cost (CAC).

 There are also important caveats to be aware of with north stars. In particular,
avoiding vanity metrics and carefully thinking through scenarios where the NSM
could lead to the wrong behaviors like “if you made your NSM ‘average monthly reve-
nue per customer,’ then the fastest way to grow this number would be to eliminate all
customers that have a relatively low value” (http://mng.bz/V15x). Keeping north stars
simple is also essential. “Remember that the point of the NSM is to align everyone on
your team to work together to grow it. So it’s important that it is simple enough for
everyone to understand it and recall it.” North stars can be defined at multiple levels,
from individual products to product portfolios (chapter 6).

3.3.2 Using a north star framework

If you’re new to the concept of north stars and want to avoid the previously men-
tioned caveats while identifying your optimal north stars, it makes sense to use a
framework. Amplitude’s north star framework (https://info.amplitude.com/north
-star-playbook) is highly recommended. It provides a great visualization for thinking
about north stars, as shown in figure 3.2.

Figure 3.2 Amplitude’s north star framework

Amplitude’s framework begins with multiple input metrics that feed in from the work,
defined by Amplitude as follows: “A North Star Metric and Inputs should be connected
to the tasks of research, design, software development, refactoring, prototyping,
testing, and such. We call this ‘the work.’” Input metrics are leading indicators, mean-
ing they help to predict future outcomes. The NSM

 Expresses value
 Represents vision and strategy

Leading Lagging

Input 1

Input 2

Input ...

North star
metric

Mid/long-term
business results and

customer value

• Expresses value
• Represents vision and strategy
• Is a leading indicator
• Isn’t a vanity metric
• Is actionable
• Can be easily understood
• Is quantifiable

http://mng.bz/V15x
https://info.amplitude.com/north-star-playbook
https://info.amplitude.com/north-star-playbook
https://info.amplitude.com/north-star-playbook

433.3 Identifying north stars
 Is a leading indicator
 Isn’t a vanity metric
 Is actionable
 Can be easily understood
 Is quantifiable

The NSM should feed into mid/long-term business results and customer value. The
full framework contains a lot of practical advice and is worth checking out.

3.3.3 Industry example: North stars at Danske

NOTE The following industry example is provided by Xin Yao (https://
www.linkedin.com/in/xinxin/). She’s a leading voice in the world of archi-
tecture, strategy, and domain-driven design. This story shows the level of
effort that goes into identifying great north stars, in addition to the benefits
of using a structured framework and a highly collaborative approach.

Danske Bank is a multi-national bank with 21000+ employees from 10 countries. Dan-
ske has launched an ambitious transformation agenda to scale its agile practice and
modernize its IT systems.

 The North Star Framework (NSF) has been used to collaboratively kick off some
complex change initiatives involving multiple systems, teams, and business domains.
It’s been effective in facilitating a shared, deeper understanding of the initiative’s
strategy (we call it the “Why”), before linking strategy to everyday work and team goals
(we call it the “Way”). When many teams solve a big puzzle together, it’s been benefi-
cial to “Lead with the Why, not the Way.”

 The PSD2 example was originally launched as a compliance initiative. The bank
uses credit decision models to automatically approve or reject credit applications.
These models must comply with banking regulations to become fact-based and indi-
vidualized, by utilizing the customer’s actual account transaction history data. This is
made possible by the Payment Service Directive 2 (PSD2), a European Union legisla-
tion obligating banks to provide APIs that allow account and payment information to
be accessed by third parties when a consent has been given by the consumer. Prior to
the PSD2 age, banks’ credit decision models relied on manual customer data entry
(which is cumbersome to validate) and demographically based statistical estimates
(which is less precise).

 It was soon evident that our PSD2 initiative required redesigning the product and
customer experience. A key element in the customer journey is the design around
data retrieval consent. To kick off the initiative, we used the NSF as a connecting
thread in an adapted design sprint with cross-functional participation. The design
sprint is facilitated by the initiative architect who leads product-, team- and domain-
oriented collaborative design efforts. The North Star ideation phase has a strong
human-centered design (HCD) flavor.

 Among other workshop formats, we held empathy mapping sessions (see figure
3.3), where compliance requirements got reframed in the customer context. We asked

https://www.linkedin.com/in/xinxin/
https://www.linkedin.com/in/xinxin/

44 CHAPTER 3 Business objectives
When customer is able
to see and validate

budget

Human-centered design
Reframe compliance requirements in the customer context

When [a car buyer] is able
to [get a credit decision
really fast after he has
given PSD2 consent]

When the customer has to
answer fewer questions

he/she is able to get credit
faster and with less hassle

Less annoyed due
to fewer questions,
more help with debt

information

When a customer
experiences a successful

journey, they are likely
to return

When [a car buyer] is
presented with prefilled

information and required
to answer only a few

questions

When a customer is
able to drive away

with a new car

Awareness ConfidenceCuriosity Interest

Anticipation MomentumSurprise Excitement

Boredom ApathyHesitancy Distraction

Skepticism OverwhelmedDoubt Frustration

Joy LoyalTrust Delight

Amazed EmpoweredSatisfied Successful

Annoyance RemorsefulApprehension Powerlessness

Disappointment HostilityAnger Sadness

Happy that I get help in
accessing debt information

provided to public
authorities (by enabling

eTax combined with PSD2)

Happy when I see
that the information
I filled in once still

is there
(kids, housing

type, etc.)

Figure 3.3
PSD2 design sprint
empathy mapping—
charting the path
through a customer’s
emotional journey

453.3 Identifying north stars
everyone, software engineers included, to chart a path through the customers’ emo-
tional journey in the current state, i.e., before intervention. We saw many red dots in
the bottom two sections, which represent negative emotions, on the Empathy Map-
ping chart.

 We then asked everyone to fast forward to the future, and imagine how a success-
fully deployed strategy could move the customers’ emotions to the more positive side.

 Similar sessions enabled us to collectively work on a shared language of the Why,
forming a customer value exchange narrative. We saw really engaged software engi-
neers and business participants alike in these experience discovery sessions. A shared
sense of purpose emerged from framing the initiative as a story of “how what I do can
make a difference in someone else’s life.” This would not have been possible if we had
treated the initiative as a pure compliance exercise.

 Eventually, we converged on the North Star of this initiative: fast credit decision
using account transaction history. This statement is a synthesis from collaborative dis-
covery, rather than the result of a top-down cascade of abstract goals. And since soft-
ware engineers have first-hand experience empathizing with customer pains and
wants, the NSF ideation process helped us paint a compelling big picture before
assigning chunks of work to different teams. This way, we also avoided premature con-
vergence and superficial understanding of high-level goals, which is a classic cause of
rework or unmet user expectations.

 The NSF also enabled us to work with different types of models, linking “value-
related bets” (NS and NS inputs) to “work-related bets” (Opportunities and Interven-
tions). The value-related bets are a more persistent model about how value is created
and preserved for customers, users, and the business, in ways that contribute to mid-
long-term sustainable, differentiated growth.

 At the top level, the North Star is the guiding star, pointing at the difference we
want to make in a customer’s life with our unique strategy. Around the North Star, we
have some small stars, just like Polaris is surrounded by constellations like the Great
Bear or Little Bear. These small stars are called NS inputs. They are a small set of influ-
ential, complementary factors that together contribute to the North Star, and which
we believe we can influence through our strategy.

 Figure 3.4 shows the five North Star statements for value-related bets in our PSD2
initiative, like the Efficiency/speed input “Increase credit decision automation by using
transaction data to cut down on manual rules as well as customer input questions.”

 After collaborative elicitation of the NS and NS input statements, we found good
North Star Metrics. The heuristics that go into our PSD2 NS inputs and metrics are
illustrated in figure 3.5 (the NS input metrics are omitted for brevity). For example,
the Efficiency heuristic is “How fast can a customer succeed with her goal?”

 Teams heavily debated the North Star Metric, the most important success indicator
of our initiative. Are we essentially playing a transaction game or a productivity game?
We arrived at a unified view of the NS being a primary productivity game, i.e., how effi-
cient we are at supporting the job to be done (JTBD) for the customer through auto-
mated credit decisions.

46 CHAPTER 3 Business objectives
Figure 3.4 PSD2 north star statements

Figure 3.5 PSD2 NS inputs heuristics and metrics

The NS metric was phrased as “avg # of changes to the budget made by advisors/cus-
tomers per case after credit model assessment.” Through nuanced discussions, we also
reached the deeper insight that there are interdependencies between the five NS
inputs. The NS inputs build upon each other over time, e.g., Breadth builds on Data,
Accuracy depends on Breadth, and Efficiency is contingent on Data and Accuracy. We
visualized the flywheel of NS input dependencies, reminding ourselves not to fall into
the reductionistic “flat listing of parallel goals” trap (e.g., a bullet list of goals lacking
cohesion, appearing somewhat arbitrary rather than collectively well thought out).

Our ability to succeed in the mid/long term with our PSD2 strategy is a function of our ability to ...

Provide new and repeat PERSONAL customers a compliant, fast & trustworthy automatic credit decision
requiring minimal manual input through the use of account HISTORY AND OTHER PUBLIC DATA SOURCES

... which is a function of our ability to:

PSD2 north star statements

Input

[Trust/breadth]
How many customers

trust our
PSD2 “product”?

Facilitate a
trust-building and
hassle-free PSD2

consent experience

Input

[Efficiency/speed]
How fast can a

customer succeed
with her goal?

Increase credit
decision automation
by using transaction
data to cut down on

manual rules
as well as customer

input questions

[Engagement
& transparency]

How can we engage
customer to

validate budget?

Engage customers in a
“conversation” to validate
prefilled budget items &
enable a holistic overview

of customer’s finances

InputInput

[Accuracy
& compliance]

How can we improve
current budget

estimates?

Make accurate &
invidualized current

budget (incl. debt
and wealth) using
transaction data

Input

[Data]
How can we build

a usable & compliant
PSD2 infra?

Source, store, and
serve PSD2 data

compliantly

Break down the north star into actionable input metrics

Inputs are the handful
of factors that, together,
influence the north star.

PSD2 value formula

f (Star) = Breadth
How many
customers trust
our PSD2
“product” &
give consent?

Data
How can we
build a usable &
compliant PSD2
infrastructure?

Accuracy
How can we
improve current &
future budget
estimates?

Efficiency
How fast can
a customer
succeed with
her goal?

x x x Engagement
How can we engage
customers to
validate prefilled
budget?

x

47Summary
 NS input elicitations were also a good time to review the existing team boundaries.
If each NS input requires all teams to coordinate at every decision point to deliver out-
comes, then perhaps it is time to rethink the team APIs. One benefit of letting soft-
ware engineers be part of a collaborative NS elicitation process is better and deeper
insight into business domains. Say a developer got the lucky Jira ticket “design the
consent UX” or “author the consent text.” Having been through this NSF ideation
process, this developer would have had a much deeper understanding of the larger
problem context about how his work relates to the North Star and contributes to mak-
ing a difference in the customer’s life. So the work eventually done will have better
odds of actually targeting that “trust-building” and “hassle-free” consent experience
(NS input).

 Another benefit is when developers understand the linkage from strategy to every-
day work, they can make better design decisions and ask better questions, like “why
should we use time on doing this instead of that?” “Is there a better opportunity to
influence the North Star input?” In this way, we can unlock the teams’ potential of
generating design variations, compared with the scenario when they just receive their
Jira tickets as prescriptive work items (i.e., a feature factory).

Summary
 Architecture modernization should connect modernization initiatives to strate-

gic business and organizational goals.
 Investing in modernization is expensive, so to maximize the return on invest-

ment, it is essential to identify which areas of architecture will benefit most
from modernization and which areas will be a poor investment.

 One reason to invest in architecture modernization is to improve the ability to
innovate at a faster pace, which is vital to organizations that have fallen behind
faster-moving competitors and risk losing market share as a result.

 Organizations stand a much greater chance of competing with faster-moving
competitors if they identify the need for modernization earlier. There is a ten-
dency to look for quick fixes and silver bullets in organizations that have fallen
behind competitors and have not realized early enough.

 Wardley Mapping is a technique that can be used to map out business eco-
systems and anticipate evolution, helping to identify opportunities and threats
while there is still time to react.

 Four broad types of business growth strategies are based on product and market
strategy. Understanding which of these are in play is the basis for identifying
where architecture modernization may be most effective:

– A product development growth strategy involves building and developing
products and services in new markets.

– A market penetration strategy involves increasing market share in existing
markets by improving existing products and services.

48 CHAPTER 3 Business objectives
– A market development growth strategy involves adapting existing products
to target new markets.

– A diversification growth strategy involves building new products for new
markets.

 Some organizations are pursuing an exit strategy. Leadership may only be inter-
ested in investing in initiatives within a shorter time frame, like two or three
years, so a vision that looks beyond these horizons may struggle to get the
desired level of investment.

 A shorter-term outlook does have some advantages. It can help focus on deliver-
ing immediate value but also prevent fundamental problems from ever being
addressed, like a monolithic legacy database coupled with everything.

 A portfolio-based approach usually makes the most sense, balancing short-term
wins with a clear commitment to attacking fundamental, long-term challenges.

Listening and
mapping tours
Starting a modernization journey is an exciting yet daunting experience. It will
touch many people and could fail in many socio-technical ways. It may seem intui-
tive to begin by building a compelling vision and marketing the idea throughout
the company, showing people the importance of modernization and your brilliant
ideas for achieving it.

 However, I recommend taking the opposite approach: start by listening; listen to
a diverse group of people, from senior leaders to individual contributors, to under-
stand what they’re trying to achieve and the challenges they face on their journeys.

This chapter covers
 Starting modernization by listening

 Conducting a listening tour

 Asking effective questions

 Designing and facilitating group workshops

 Kickstarting modernization initiatives with
Kickstarter workshops
49

50 CHAPTER 4 Listening and mapping tours
 Listening to people is a great way to build up a picture of the true value of modern-
ization. It’s also an excellent opportunity to work on building relationships. Not only
does listening to people’s needs lead to better business outcomes, but it also increases
your chances of getting support and buy-in. It’s liberating in the sense that you can
enjoy having conversations and not feel the pressure of needing to provide immediate
solutions.

 This chapter provides guidance for how to conduct listening and mapping tours,
where modernization leaders spend time meeting various stakeholders, individually
and in group settings. They are a mixture of listening and facilitation to identify the
most valuable opportunities for modernization, which can then be used to build a
compelling vision. As you talk to people across the organization, from the CEO to
senior engineers, you’ll hear many different perspectives about strategic priorities and
architectural challenges.

 Before starting on a listening and mapping tour, remember that the keyword is lis-
tening. Don’t abuse this opportunity by pushing an agenda like trying to get buy-in for
a preconceived solution.

4.1 Who to meet
It’s tempting to say that it’s best to speak to as many people as possible, but it could
take hundreds of hours and be inefficient. But, getting broad and deep coverage is
essential. So as you meet people, schedule follow-up sessions to explore specific topics
in more detail where necessary. Therefore, you can start by speaking with a smaller
group to understand how many more people you would like to talk to and how many
follow-up sessions you tend to schedule.

 When considering who to meet first, you’ll need to assess scope: Do you already
know that your modernization business case will be limited to a particular business
area, or is the whole organization in scope? You may also want to narrow the focus of
topics. For example, do you want to get a high level of clarity on the business strategy
before mapping the technical landscape? As a sensible default, meeting a diverse mix
of business- and technology-oriented stakeholders in the first step of the listening tour
is wise. But if you want to avoid wasting time talking to the wrong people, gaining clar-
ity on the strategy first might be the sensible option.

 Questionnaires and surveys can be employed to gain insights from people you don’t
have time to speak with. Meeting multiple people together can also help make efficient
use of time, but it can influence the information they feel comfortable sharing.

 If you need help thinking of the first group of people to meet with on your listen-
ing tour, pick at least one role from each of the following categories, ideally with a mix
of leaders and individual contributors, and arrange 1-hour sessions. The sessions will
total around 10 to 15 hours, which you can spread out over 2 to 3 weeks for a comfort-
able immersion:

 C-Suite—CEO, COO, CMO, CD(digital)O, CFO, CP(product)O
 Directors/VPs—EVP, SVP, VP, senior director, director

514.3 Conducting an effective tour
 Sales and Marketing—Head of sales, head of marketing
 Product—Head of product, product manager, product owner
 Engineering—Head of engineering, senior engineering manager, principal engi-

neer, senior engineer, head of testing, test engineer
 Infrastructure—Head of platform engineering/DevOps, platform architect, plat-

form engineer
 Architecture—Head of enterprise architecture, head of security architecture,

business architect
 Data—Data architect, data engineer, database administrator
 Delivery—Head of delivery, program manager, project manager
 Support—Head of customer support, customer support agent
 Other—Head of UX, ways of working lead, subject matter expert, customers

4.2 Who conducts the tour?
Another aspect of listening tours to consider is the people conducting the tour. This
question could be a proxy for a more strategic question: Who will be leading the mod-
ernization initiative? One approach is to establish an architecture modernization
enabling team (AMET). This group is responsible for starting a modernization initia-
tive and maintaining momentum. An AMET can steer modernization in the right
direction by facilitating a listening tour.

 An AMET can include anybody well-equipped to lead and steer a modernization
initiative. Usually, it’s good to have a mixture of people from technical and product
backgrounds, and it’s ok to include external experts. The AMET is also free to involve
others in the listening tour as necessary. Chapter 15 covers the topic of AMETs.

 After establishing the group responsible for conducting the listening tour, they must
organize themselves to carry out the tour. If the group is small, up to three people, then
they can all attend each session. Otherwise, listening sessions may be divided among
smaller groups or individuals. Individual groups must work closely and assimilate the
insights from the various listening sessions to have a clear and consistent picture.

 Recording the listening sessions so that all the insights are permanently recorded
might be tempting. However, this will limit the amount and type of information peo-
ple are willing to share. Therefore, I think it’s better to focus on creating the safest
environment for conversations and having another facilitator(s) take notes.

4.3 Conducting an effective tour
Conducting a listening tour might sound easy. It’s just talking to people, right? Yet, I
have seen great technologists struggle to lead listening tours. Asking the right ques-
tions; steering conversations in a useful direction; and being comfortable switching
between high-level strategy conversations with the CEO, financial discussions with the
CFO, and technical deep dives with a senior engineer requires some practice. This
section covers important factors that will help you to have a successful listening tour.

52 CHAPTER 4 Listening and mapping tours
NOTE If you’re yearning for more after this section, you may enjoy
Indi Young’s book Time to Listen (https://indiyoung.com/books-time-to
-listen/).

4.3.1 Create a safe space

In the movie Office Space, the classic IT film from the ’90s, the leadership team at Ini-
tech hires efficiency consultants to help downsize the company. The consultants com-
mandeer a meeting room in the office and use it for interviewing each employee
individually. It’s an intimidating space. Two stern-faced consultants on one side of the
table ask a series of intrusive questions to employees who hope it’s not them who will
be fired.

 As you probably guessed, this is not the environment you want to create during a
listening tour. You should aim to uncover what people genuinely believe are the most
valuable strategic opportunities and significant impediments, which requires creating
a safe space, not a threatening one.

 In Office Space, there was a power imbalance. Two intimidating consultants on one
side of the table interviewed a lone employee on the other side whose participation in
the meeting was mandatory. These characteristics could resemble your listening tour,
especially if consultants are involved. As a result, people may question your real inten-
tions and worry that their job is at risk. Yet, if you’re careful, it is possible to have an
imbalance and still create a safe space. I always keep in mind the Office Space movie. It
reminds me to try and lighten the mood and use softer language.

 Setting can also affect how comfortable people are sharing their thoughts. For
example, consider a coffee shop or a green space outside the office. Timing also plays
a key role. I’ve had the unfortunate experience of leading a listening session with a
head of product just after he came out of a very tense meeting. It was an uncomfort-
able situation; he revealed personal frustrations unintentionally. In these scenarios,
it’s best to stick to safer topics or reschedule the meeting.

 The goal is always to create an environment where people feel safe to reveal their
honest thoughts but also are in a state of mind where they share only what they are
comfortable sharing. It takes a while to build a sufficient level of trust with many peo-
ple, so you’ll need to foster a healthy relationship and be patient, especially if you’re a
consultant and they know very little about you.

 When receiving an unexpected email notifying you of a mandatory interview, it’s
easy to feel like an employee at Initech. Approaching the idea face-to-face or infor-
mally via chat is less intimidating. Before getting to the interview details, it’s also help-
ful to provide them with context about the initiative and what you hope to achieve
with the tour and reassure them of confidentiality. It is also vital to reiterate that you
don’t have solutions in mind at this stage and are not pitching ideas. You sincerely do
just want to listen.

 Finally, be careful with the word architecture. People will try to do some filtering for
you and share only their problems and challenges that relate to what they perceive

https://indiyoung.com/books-time-to-listen/

534.3 Conducting an effective tour
architecture to be. Therefore, at this stage, describe the initiative more vaguely with-
out using the word architecture yet still conveying importance.

4.3.2 Harness a toolbox of techniques

Various techniques will be employed during a listening tour to build on the insights
that emerge during the conversations. Some techniques can help dig deeper into spe-
cific topics, while others help to zoom out and see the bigger picture. A substantial
benefit of many techniques is visualizing the concepts that emerged during the con-
versation and seeing how they connect. In addition to the techniques introduced in
subsequent chapters, the following are short introductions to other tools and tech-
niques that can provide value throughout a listening and mapping tour.

 When you want to discern a particular stakeholder’s top priorities and how they
plan to achieve those objectives, Impact Mapping (https://www.impactmapping.org/)
is an effective technique for structuring the conversation and visualizing how delivera-
bles connect to business goals.

 Figure 4.1 outlines the syntax of an Impact Map. On the left are business goals that
connect to actors who may help to achieve those goals. One or more impacts are asso-
ciated with each actor, often captured as improvements to specific metrics or changes
in behavior. Finally, each impact connects to deliverables representing potential solu-
tions for achieving the desired impact.

Figure 4.2 shows an extract from an Impact Map produced during a listening tour in a
session with a VP. One of their top-five business goals was to help increase revenue by
$20 million in one business area. They had identified a subset of users representing
45% of all users and two potential impacts that could lead to more revenue from the
group—one of the possible deliverables connected to both impacts, making it a high-
leverage opportunity.

Deliverable

Deliverable

Why? Who? How? What?

Goal

Actor

Actor

Impact

Impact

Deliverable

Deliverable

Figure 4.1
Impact Mapping syntax

https://www.impactmapping.org/

54 CHAPTER 4 Listening and mapping tours
Figure 4.2 Impact Mapping extract

This starting point provided an ideal platform for further discussions. Notably, the
deliverable of using data better needed to be more concrete. Further discovery was
required to ascertain how to employ the data, such as producing better recommenda-
tions. This gave the team a lot to work with—a clear business goal, an opportunity to
identify new impacts that might help achieve the goal, and a specific area to zoom in
on and design deliverable solutions.

NOTE You can find a list of the techniques covered in this chapter on the
book’s Miro board (http://mng.bz/wj2W), including links to useful resources
to learn more and download artifacts.

The Business Model Canvas (BMC) (http://mng.bz/qj1E) is a tried and tested tech-
nique for visualizing the key aspects of a business model. During a listening tour, the
BMC can be used to capture a particular stakeholder’s perspective of the company’s
business model, allowing you to compare and identify where different stakeholders
are aligned and not aligned. In addition, the BMC can be used at a more granular
level to capture the business model in different areas of the business. The BMC is suit-
able for both current and future state business model exploration. Similarly, the Prod-
uct Vision Board (http://mng.bz/7vYg), shown in figure 4.3, is another canvas-style
technique used to outline the strategy for an individual product.

 The Product Vision Board comprises five sections: Vision, Target Group, Needs,
Product, and Business Goals. In the context of a listening tour, this tool is beneficial in
understanding what the future looks like for each product. Your modernization vision

Capture and
feed

diagnostic
data into the

model

$20m+
revenue

Automate
main

manual
workflows

Improve UX
of legacy
internal

tool

Improve
accuracy

rate by 30%

Reduce lead-
time for

approvals by
2 hours

Enterprise
users (45%
of overall)

http://mng.bz/wj2W
http://mng.bz/qj1E
http://mng.bz/7vYg

554.3 Conducting an effective tour
can then emphasize how it will support the specific future aspirations of each product
and shared capabilities that will support multiple products.

 Another useful technique is Risk Storming (https://riskstorming.com/). This
technique identifies the most significant challenges and constraints within the exist-
ing architecture. It covers general risks, such as a monolithic legacy database coupled
to almost everything, and risks pertaining to a particular aspect of the business strat-
egy, like known hotspots that are ok at the moment but will not scale to support target
business outcomes.

 Architectural diagrams are a precursor to Risk Storming. The standard approach is
to create C4 diagrams (https://c4model.com/), such as context and container dia-
grams. Risks are then overlaid onto the diagram with sticky notes by the people with
the best knowledge of the parts of the architecture covered by the diagrams. Figure
4.4 shows a simplified container diagram for part of a holiday booking system that
contains risks like business logic in stored procedures.

 After storming for risks, the next step is to assess the impact and probability of each
risk. A sensible default is to assign a probability score from 1 to 3 and impact score
from 1 to 3 and then multiply the two scores. A score of 6 or above is color-coded red
to indicate a major risk with high priority, while a score under 3 can be color-coded

Product vision board

www.romanpichler.com
Version 01/2023

Target
group Needs Product Business

goals

Which market or
market segment does
the product address?
Who are the target
customers and users?

What problem does the
product solve or which
benefit does it offer?
If you identify several
needs, prioritize them,
and move the most
important one to the
top.

What product is it?
What are its three to
five stand-out features
that set it apart from
competing offering?
Is it feasible to develop
the product?

How will the product
benefit the company
that develops and
provides it? What are
the desired business
benefits? Prioritize
them and move the
most important one
to the top.

This template is licensed under a Creative Commons
Attribution-ShareAlike 4.0 Unported license.

Vision

What is the reason for creating the product?
What positive change should it create?

Figure 4.3 Roman Pichler’s Product Vision Board

https://riskstorming.com/
https://c4model.com/

56 CHAPTER 4 Listening and mapping tours
green with a low priority. Between red and green is amber, which indicates a medium
priority in the context of the architecture modernization business case.

Figure 4.4 A C4 container diagram with multiple risks identified

These techniques cover many needs and will carry you a long way. During a listening
and mapping tour, however, you can put to work any techniques that are relevant to
the conversations you’d like to have. Good places to look for new techniques are the
Miroverse (https://miro.com/miroverse/) and the book Visual Collaboration Tools
(https://leanpub.com/visualcollaborationtools).

4.3.3 Structured vs. unstructured discussions

Listening tour sessions can range from entirely unstructured to structured with
minute-level precision. Unstructured sessions can be advantageous because any
insight may emerge, and the conversation can move in any direction based on what
feels important.

 Unstructured sessions can also feel more organic and authentic. It could be two peo-
ple having a casual conversation in a cafe. But on the flip side, the conversation may not
move in a beneficial direction and could end up with the interviewee expressing their

Sales &
marketingDiscovery

Website

Fulfilment

Content manager

• Add/amend
 product listings

Shopper

• Browse products
• Make purchase
• Leave feedback

Marketing assistant

• Configure promotions

The
database

Monolithic
database
coupled to
everything

E-commerce system

Lots of
business logic

in stored
procedures

Running on
outdated
version of
windows

External
payment
provider

External
courier

https://miro.com/miroverse/
https://leanpub.com/visualcollaborationtools

574.3 Conducting an effective tour
frustrations about something at the front of their mind. Unstructured sessions are
also daunting if you’re uncomfortable conversing with various stakeholders in their
language.

 If unstructured conversations feel like too much of a risk, structured conversations
are more suitable. You can start with a basic list of questions and then move into more
unstructured discussions where you feel comfortable. However, jumping straight into
canned questions like “What are your three top priorities for this year?” can feel
forced and lose a sense of authenticity.

 With structured conversations, you can create bespoke questions for each person
or have a standard set of questions used for all interviews. The latter is practical when
you need to compare responses across various conversations. For instance, you might
want to compare people’s feelings about using a given off-the-shelf tool.

 The following list provides an example of the questions you can ask spontaneously
in unstructured sessions or as part of a standardized format in structured sessions.
Mostly these are different ways of asking people what they are trying to achieve and
what problems they face:

 What are the top priorities on your roadmap for the next one/three/five years?
 What does a good year look like for you this year?
 How will you know that you have had a good year?
 What would happen if you fail to achieve your top objectives?
 What do you see as the biggest risks for achieving your objectives?
 What is your opinion on the level of innovation within the company?
 How satisfied are you with the speed at which new innovations get delivered?
 How well does this company use technology, and do you see opportunities to

use it further?
 Can you tell me about the tools you (or your team) use to get your job done?
 What do you wish you had more time for in your job?
 What changes would help you to be happier at work?
 Is anything work-related keeping you up at night?
 Are there things that take up a lot of your (or your team’s) time that you wish

could be avoided?
 How would you (or your team) spend your working day in an ideal world?
 How well do you feel that people across this company are aligned on strategic

objectives?
 If I asked a mid-level software developer to describe the strategic objectives,

would their response match yours?
 How would you describe the effect of legacy debt on this company?
 If you could change any three things about the company, what would they be?

In addition to these generic questions, you can ask questions unique to your context,
referring to particular products, systems, or ways of working. For example, “We
recently switched from project-oriented teams to product-oriented teams. What has

58 CHAPTER 4 Listening and mapping tours
been your experience so far?” With all questions, and especially this type, it’s easy to
ask leading or biased questions like “How important is architecture to achieving your
business goals?” So be very careful when asking questions and make every effort to not
influence the interviewee’s response.

EMPLOY A VARIETY OF QUESTION FORMATS

It’s a natural tendency to ask questions in a direct and repetitive format. Yet learning
to ask questions using various structures can lead to more engaging conversations and
creates conditions for more interesting insights to emerge.

 An easy question is, “What’s the biggest problem you’re working on right now?” It’s
not a bad question, but it’s direct and something people will be used to, so it might
only elicit a quick response without encouraging deeper reflection. Now consider a
Complete the Sentence question on the same topic: “One thing about my work that
makes me angry right now is ___________.”

 People will replay this sentence in their mind as they fill in the blank, and it may
trigger deeper and different thoughts that lead to further insights by tapping into
alternative thought patterns and emotions. In any case, it’s more fun.

 The following are a variety of question formats that are worth learning and apply-
ing to verbal and written scenarios:

 Complete the sentence—As discussed previously, this format helps to elicit a differ-
ent response than direct questions, potentially tapping into other emotions and
deeper reflection.

 Choose an emotion—This type of question prompts people to look at an emo-
tion/feelings wheel (https://imgur.com/tCWChf6) and pick an emotion that
best describes their feelings about a certain topic. For example, “Which emo-
tion stands out to you on the emotion wheel when you think about the speed at
which new features are implemented?”

 Pick an image—A great way to encourage novel thinking and deeper reflection is
to show people a selection of images and ask them to pick an image that reflects
their feelings about a particular topic. A real example I’ve used is “Choose an
image that describes how creative you feel in the current working environ-
ment.” Prepare to be positive when you try this for the first time. It’s an amazing
technique. The Ethnographica Deck (http://mng.bz/mjEM) by Jennifer
Mahony is a great collection of images. You simply lay them out in a grid so peo-
ple can easily see all of the images, move between them, and have a space to
connect with one (or more).

 Worst possible—These types of questions create the space for highly creative
thinking by encouraging people to go in completely the opposite direction
than expected. Imagine being encouraged to answer this question: “What is the
worst possible business opportunity that this organization could go all in on?”
It’s a real license to think differently. Worst Possible questions serve a number
of purposes like highlighting where the organization is actually doing the worst
possible thing and identifying crazy ideas that can actually be refined into some-
thing with potential.

http://mng.bz/mjEM
https://imgur.com/tCWChf6

594.3 Conducting an effective tour
 Just for fun—This type of question is more about bringing a sense of fun into the
process, which can help put people into a more relaxed and creative mindset,
eliciting deeper responses to more important questions that follow. For exam-
ple: “(Just for fun) If you could hire any celebrity to help us with moderniza-
tion, who would it be and why?” Obviously, it’s important to be careful with this
type of question. Some organizations don’t quite appreciate the importance of
making things fun; sometimes, people might think you are not taking things
seriously. Don’t be put off, though. Try it in small doses and see what kind of
response you get.

 Devil’s advocate—These questions are an excuse to challenge people’s beliefs
constructively. For example, if someone believes investing in new products is
key, you could ask, “So you are 100% convinced that reducing operating costs is
the wrong focus and nothing would ever change your mind?” These questions
need to be delivered skillfully, and it needs to be clear the intention is an explo-
ration, not a direct challenge or an insult.

Some people think that these question formats are a gimmick. I used to be of that opin-
ion, too. But I worked alongside people who used them and noticed that most people
enjoyed them and their responses were more interesting, and it felt more playful.

USE QUESTIONNAIRES

Questionnaires and surveys are great for many aspects of modernization, including
the listening tour. They can be used pre-, post-, and even during meetings and work-
shops to great effect using the question formats in the previous section.

 In the context of a listening tour, an initial workshop or survey can be sent out to a
large group. The survey results can be used to identify the key people to speak to and
key themes and trends to discuss during the listening tour. A survey can also mitigate
the problem of not having the time to speak to every person individually for the
desired amount of time.

 When putting together a questionnaire in the context of a listening tour, there are
a few themes to touch on. Of course, problems and opportunities are the obvious can-
didates, but it’s also useful to ask people about their level of interest and desired par-
ticipation in the process, such as “How much would you like to be involved in designing
and running workshops to explore these topics?” And it’s always good to ask for feed-
back about the process, such as “What have you found interesting about the listening
tour so far?” Be careful not to spam people with questionnaires too frequently.

ENCOURAGE EXPLORATION

When conducting a listening tour, anticipate that the people you meet may not have
perfect clarity on their top priorities and challenges. They may have been so focused
on delivering a certain project that they haven’t recently reassessed the big picture or
considered other potential priorities.

 Your job is not simply to take what they say and treat it as their final and compre-
hensive thoughts. You also need to challenge them by thinking of alternative possibili-
ties and asking devil’s advocate questions like “If we were to meet again one year from

60 CHAPTER 4 Listening and mapping tours
now, how confident are you that we will still be talking about this as the top strategic
priority?” or “Do you really feel that it’s completely impossible that <other scenario>
could happen?”

 Try to recognize when someone isn’t sure and they’re in the process of reflecting
on a topic and trying to understand how they feel. In this situation, you want to give
them space and not push them too hard while in reflection mode.

 On the other hand, when someone is convinced of their opinions, it may be better
to push them harder to help them try to see those alternative realities outside of their
tunnel vision. You may not trigger an instant change of mind, but you might plant
some doubt that, over time, leads to a change of opinion.

 As you can see, your role is also to coach people and help them to think about top-
ics, not just get prebaked thoughts out of their heads. Try to keep this in mind and
reflect on the type of questions you are asking. If you’re co-interviewing, ask your part-
ner(s) for feedback and encourage them to step in and guide the conversation when
necessary.

GOING DEEPER

It’s easy to stay high level and drift between various topics in a listening session, but
sometimes it may be beneficial to focus on a single specific topic and go further into
the details. The 5 Whys (http://mng.bz/5o4D) approach is a very simple idea that can
help with this if you’re not sure how to steer the conversation in a more organic fash-
ion. As the name implies, it simply involves asking “why” five times. For example, if
someone raised the following concern, “It takes a long time to onboard agents,” ask-
ing “why” might reveal, “Because we have to teach them how to use three internal
tools, which are all difficult to use.” Asking “why” again might reveal, “The developers
built the user interfaces,” and another “why” could reveal, “In this company, develop-
ers always build the user interface for internal tools because internal tools are not con-
sidered important enough for UX specialists.”

 As you can see, asking “why” five times can lead to deeper insights and trends that
are highly relevant to modernization. However, you might want to explicitly state to
the interviewee that you’re about to use the technique; otherwise, it may seem impo-
lite if you just keep asking “why.”

HAVE A WING PERSON TO SCRIBE

I find that it’s generally better to conduct listening tour sessions as a pair (keeping in
mind the potential risks of the imbalance). While one facilitator is asking questions,
the other can take notes. This allows maximum productivity from the limited time
available and avoids one facilitator trying to speak and write at the same time, which
can ruin the flow. If you don’t have a wing person to scribe, you can record the session
if the interviewee consents.

 One technique that can lead to great conversations is reviewing the notes during
the session. When playing the wing person role, I use Miro to capture notes as stickies.
I connect and cluster them to pick out various themes and use colors to highlight con-
cepts like business metrics, opportunities, and problems.

http://mng.bz/5o4D

614.3 Conducting an effective tour
 Figure 4.5 shows an extract taken from a real listening session. The actual text is
obscured because it will be completely unique to each conversation, but the image
does give an idea of what this activity can look like. As you can see, it’s very messy, so if
your boards look messy, don’t worry; it’s normal. Check out my blog if you’d like to
learn more about this freestyle approach (http://mng.bz/6nO6).

Figure 4.5 Capturing a remote listening session as sticky notes

REPEAT BACK TO VERIFY

During a listening tour, you’ll be meeting people who do different jobs and work in
different domains with different processes. It will take time to immerse yourself in
their world and grasp the concepts they mention. You won’t fully understand every-
thing they are saying immediately, and you don’t need to. But it’s definitely an advan-
tage if you can understand and absorb more of the information they share. One way
to do this is to repeat back what you have understood and ask them to verify. Very
often you’ll have misunderstood, and this gives them a chance to correct you.

 You can use these techniques on an ad-hoc basis during conversations as necessary.
I also like to use this when I’m playing the scribe role. When the main facilitator
invites me into the conversation to ask questions or share observations, I will share my
screen and talk through all the visual notes I captured on the Miro board. This can
take the conversation in interesting directions, like the interviewee wanting to go back
and explain a certain topic in more detail, or they realize that they haven’t mentioned
a key theme or topic, or they might explain that a note isn’t quite accurate and needs
to be re-explained.

http://mng.bz/6nO6

62 CHAPTER 4 Listening and mapping tours
4.4 Bringing groups together
Typically, a listening tour starts with a divergent mindset, seeking to uncover the con-
flicting opinions of all stakeholders. However, convergence around priorities is essen-
tial when pitching a modernization business case. The solution is to bring people
together for group sessions, creating a space for them to discuss themes that emerged
from individual sessions.

 These types of workshops are more ad hoc, tailored to the topics being addressed
and the dynamics of the people involved. But it’s not 100% ad hoc. For example, the
techniques presented previously in this chapter can be combined in novel ways. In
addition, Liberating Structures (https://www.liberatingstructures.com/) is a gold-
mine of useful advice and techniques.

 Liberating Structures allows people to have a meaningful dialogue using a variety
of formats. For example, Troika Consulting is one of my favorites. It’s a technique
where people work in groups of three, and each person takes a turn to play the role of
client. First, they have a short amount of time to describe a problem. Then, the client
remains silent and turns away while the other two people play the consultant role.
They discuss the client’s scenarios and provide advice while the client is listening.

4.4.1 Industry example: Clinical oncology structured exploration
workshop

One of my clients, an American nonprofit in the clinical oncology space, contacted
me about a broad modernization initiative covering technology, ways of working, lead-
ership, and other factors. We decided to start slowly in one domain and then apply les-
sons learned to other domains across the business. The initial step was to build a
business case together, identifying the modernization possibilities within the domain.
One of the client’s modernization ambitions was to improve collaboration across parts
of the organization and empower everybody to contribute to continuous organiza-
tional improvements. We used the actual process of building a business case to begin
role modeling and introduce these desired behaviors.

 Initially, we spoke to people individually and then sent out a questionnaire asking
people for thoughts, opinions, and ideas about the specified domain. We gained a
number of insights that allowed us to design the first workshop. Attendance of the
first workshop was optional. Anybody working in the domain or interested in being
part of the journey was welcome to attend. We structured the workshop into three
parts, sandwiched by loosely connected check-in and check-out questions. The first
part of the workshop focused on a meta level, giving participants the opportunity to
think about what a modernization journey might look like so they could decide on the
process they wanted to adopt. We presented them with eight journey metaphors,
including a waterfall, the double diamond (http://mng.bz/or4v), and the design
squiggle (https://thedesignsquiggle.com/). The workshop contained over 40 attend-
ees split into eight breakout sessions. None of them selected rigid processes like a
waterfall, and the majority selected the double diamond or the squiggle.

http://mng.bz/or4v
https://www.liberatingstructures.com/
https://thedesignsquiggle.com/

634.4 Bringing groups together
 The design squiggle, shown in figure 4.6, represents the chaotic and unpredictable
nature of design. In the beginning, the future is highly uncertain. It’s not even clear
which problem needs to be solved, and there is lots of back and forth, diverging and
converging, trying to figure it out.

Figure 4.6 The design squiggle (Source: The Process of Design Squiggle by
Damien Newman, thedesignsquiggle.com)

The double diamond design process, shown in figure 4.7, also involves problem iden-
tification with diverging discovery, which converses toward a problem definition. It’s
then followed by a diverging solution design converging toward a clear solution. This

PROBLEM DEFINITION

Insight into
the problem

Scope down
the focus

Potential
solutions

Solutions that work
& receive feedback

Figure 4.7 The double diamond design process

64 CHAPTER 4 Listening and mapping tours
model was useful because the group recognized they had to define the problem first,
which was a departure from their regular feature factory approach where they were
given requirements to implement. The model was also useful because it emphasized
the need for multiple divergence and convergence phases. But the double diamond is
not perfect and does have its critics. In this context, it was simply used as a way for peo-
ple to think about different metaphors to empower them to be in control of their
journey.

 In the second part of the workshop, the group was asked to define the domain. We
simply gave them a space with two circles slightly overlapping, representing inside the
domain, outside the domain, and somewhere in between. We were intentionally
vague, adding the least amount of structure possible to avoid overconstraining the
group’s thoughts. It was great to see some groups modifying our structure to better
express their understanding of the domain, such as by showing concentric circles.

 The third part of the workshop was about identifying the next steps. Working in
breakouts, each group was challenged to address the question, “What are the most
important questions this group needs to answer next?” The responses from all groups
were combined, and then each person had three votes to identify the questions they
wanted to answer next.

 Effectively, the approach taken with this client was to crowdsource building the
business case for modernization in a particular domain. In this scenario, structured
group workshops and questionnaires, using a range of question formats, were key
techniques that allowed the modernization leaders to facilitate group discussions and
empower the group to drive the process. This approach may not be realistic in your
context. For one, it can take much longer. However, the key takeaway is to think about
how you want to conduct your tour and choose structured versus unstructured ses-
sions and individual versus group sessions accordingly.

4.4.2 Industry example: Kickstarting modernization in a large
Scandinavian enterprise

A modernization Kickstarter workshop is one type of workshop that can be highly
effective for transitioning from listening and mapping to delivering modernization.
This type of workshop aims to bring people together to decide, design, and start plan-
ning the first steps of modernization. There is no set format, but a default starting
point is a three day, in-person gathering, which follows some remote listening and
mapping sessions and preparation workshops (which can be remote).

 This example outlines the approach Eduardo da Silva (https://www.linkedin.com/
in/emgsilva/) and I took with a large Scandinavian company seeking to move from a
tightly coupled monolith to a loosely coupled architecture and teams as part of leader-
ship’s ambition to double the company’s revenue within five years.

 To begin the initiative, we spoke to various stakeholders, including product own-
ers, engineers, leaders, and support staff. We followed up with some product overview
and strategy sessions where we watched them using their own product and discussed
where the user pain points were and the opportunities for future improvements.

https://www.linkedin.com/in/emgsilva/
https://www.linkedin.com/in/emgsilva/

654.4 Bringing groups together
 Following these sessions, we designed group workshops to capture the mission’s
north stars/key objectives. One of the techniques we used was Impact Mapping to cap-
ture the top-level business goals and how they connected back to initiatives and deliv-
erables, which touched on capabilities within the monolith. We then started designing
a three-day workshop to be held in person at the client’s offices, with around 15 prod-
uct and engineering people. Our high-level agenda for the workshop was

 Business and product vision
 Mapping out the current monolith’s capabilities and purposes
 Exploring the domain
 Selecting a first slice of modernization
 Designing the architecture for the first slice
 Planning the delivery of the first slice

The workshop was kicked off by product leads and the head of IT, who perfectly artic-
ulated the medium- and long-term business vision. This framing was vital because it
provided a reference point for all of the architectural discussions that followed—how
did each idea or proposal fit with the business and product objectives?

 We then moved on to mapping out the current monolith. Attendees worked in
small groups of three or four, and it was interesting to see how each group had a dif-
ferent understanding of the capabilities within the monolith. There was some conver-
gence but much divergence around boundaries and naming at multiple architectural
scopes. A crucial part of this workshop phase was each group identifying what they
considered to be the key business metrics to which the monolith contributed.

 On day two, we spent the morning mapping out the domain with process model-
ing–style EventStorming. We modeled the case of a real customer end-to-end journey
led by the product owners, who were happy to embrace role play, which made the
activity fun and engaging. There were many questions and clarifications; it was a great
learning opportunity for the engineers.

 After much deliberation and seeming deadlock, the group unanimously agreed on
which part of the monolith to break out first (thanks to the modernization Core
Domain Chart covered in chapter 16). It was a subdomain that would provide immedi-
ate business value and was reasonably complex, so it gave an idea of what to expect
when modernizing other parts.

 Day three was all about designing the future-state architecture for the first slice
and starting to sketch out what the group would do in the next six months, again
working in groups. By the end, there were still outstanding questions, but the group
could see where it wanted to go and the challenges on which it needed to focus.

 After the first day of the workshop, the whole group had dinner together in the
evening. Everybody felt good and agreed that the first day had been positive. This
opportunity to socialize also contributed to higher engagement and energy during
the remaining two days. This touches on why a three-day, in-person experience is ideal
for the Kickstarter and was a big change for the team. Getting together in person was

66 CHAPTER 4 Listening and mapping tours
a great way to start things on the right foot by building momentum and creating social
connections.

 Not every group member was equally excited and believed in the initiative. Some
were skeptical that it wouldn’t lead anywhere after past disappointments. So at the
end of the three days, the head of IT invited the CTO to close the workshop and con-
vey the magnitude of this journey. His speech was inspiring and exactly what needed
to be said in that moment. He explained the seriousness of modernization due to the
changing business landscape. He pledged to the engineers that this would receive his
full support.

 Of course, a three-day Kickstarter alone doesn’t change much. It’s a great way to
build excitement and momentum and establish the first step of a journey, but it’s
effortless to lose the momentum and fall back into the regular pattern. That’s why we
recommend establishing an AMET.

NOTE An excellent resource for anyone designing a workshop is The Design
Aspects (https://www.whenandhowstudios.com/design-aspects), created by
Dan Young and Mike Rozinsky. It covers all key considerations for structuring
a workshop, like The Basic Environment, The Art of Questions, Growing
Relatedness, Framing, Individual and Collective Thought, Inviting Dissent,
and more.

That’s now the end of this chapter covering the first steps of a modernization journey,
identifying the business and organizational rationales for your modernization initia-
tive, and beginning the process of building a compelling vision. In general, the ideas
from this chapter can be used at any point during the modernization journey. The
next chapter focuses on a single technique known as Wardley Mapping, which is also
useful during a listening tour and at many points throughout a modernization jour-
ney. It’s used to map out business and technology landscapes with the goal of making
better strategic choices, a crucial skill for modernization leaders.

Summary
 A good way to start is by listening before designing solutions.
 A listening and mapping tour involves meeting various stakeholders to under-

stand what they are trying to achieve and the challenges they are facing.
 A solid modernization vision that has strong support and buy-in can be built

from the insights gained during a tour.
 It’s good to meet a whole variety of stakeholders from all different parts of the

business, with different roles, and a mix of managers and individual contributors.
 The tour should be conducted by people who will lead or guide modernization,

like an architecture modernization enabling team (AMET).
 The most important part of a listening tour is listening and not pushing a pre-

conceived agenda or biasing the discussions.
 Listening sessions can be structured or unstructured according to your goals,

preferences, and level of experience.

https://www.whenandhowstudios.com/design-aspects
https://www.whenandhowstudios.com/design-aspects
https://www.whenandhowstudios.com/design-aspects

67Summary
 You can use any technique to map out what’s important. It’s good to have a
diverse toolbox with techniques like Impact Mapping, the Product Vision
Board, and Risk Storming.

 Asking great questions in various formats can make sessions more varied and
interesting, leading to deeper insights using techniques like the Ethnographica
Deck.

 Bringing groups together after individual sessions can be useful for spreading
awareness of themes that emerged and gaining alignment and agreement on
what’s important.

 Kickstarter workshops are a technique for moving from conversations to creat-
ing a plan of action and building excitement and momentum for the modern-
ization journey.

 A good format for Kickstarter workshops is three days in person together, start-
ing from the business and product vision and ending with a short- to medium-
term plan for getting started.

 It’s easy to lose momentum after a Kickstarter and fall back into normal work
patterns, so it’s a good idea to establish a group of people who will keep
momentum going, like an architecture modernization enabling team.

Wardley Mapping
Wardley Mapping is essential for business and technology leaders, especially during
an architecture modernization journey. It has emerged as a popular and highly
effective tool. It moves beyond simple 2 × 2 grids and gut instinct to a model that
involves mapping out businesses using value chains and their evolution. It is the
enabler for richer and more nuanced discussions about strategy. Even better, Ward-
ley Mapping makes strategy more collaborative, allowing diverse groups, including
technical and business experts, to explore their landscape and connect the busi-
ness and technological aspects of value chains.

 Not only is Wardley Mapping a technique, but it is also a large community that
continues to grow. It is becoming mainstream, and the terminology used in

This chapter covers
 Iterating through the Strategy Cycle

 Creating Wardley Maps to gain situational awareness

 Applying climatic forces to a Wardley Map

 Making strategic decisions and plays using a Wardley
Map

 Connecting architecture to strategy
68

695.1 The Strategy Cycle
Wardley Mapping is becoming the de-facto strategy language in business and technol-
ogy environments. Therefore, it’s essential to learn Wardley Mapping to know the ter-
minology and its nuances. Another reason to learn Wardley Mapping is that it is often
combined with many other techniques in this book, like Team Topologies.

 In this chapter, you’ll see the steps involved in creating a Wardley Map and some of
the principles and patterns closely connected to the technique. Wardley Mapping is a
big topic that takes a long time to master, so this chapter aims to help you get started
and provide valuable links and resources to help you continue your journey.

 As you work through the chapter, remember that Wardley Mapping has broad
applicability. While it is a great technique to help you build and demonstrate a busi-
ness case, it’s also a tool that can help you to understand the landscape better and
communicate ideas to others. You can apply it throughout a modernization journey at
every architectural scope.

 Also, remember that there isn’t a linear flow between the activities in this book.
For example, after putting together a Wardley Map, you may need to dig into the
domain with EventStorming (covered in chapter 7) to understand the domain better
or explore possible solutions, allowing you to iterate on your Wardley Maps.

 One final thing to remember: practicing is the best way to learn Wardley Mapping.
After finishing this chapter, why not create your first Wardley Map for the industry you
work in? Or at least put an hour in your calendar sometime in the next 2 weeks.

5.1 The Strategy Cycle
When practicing strategy, especially with Wardley Mapping, it helps to have a strategic
process model that outlines the steps involved, how they fit together, and when to per-
form each step. This helps to answer basic questions like: “Where do we start?” “What
should we do next?” and “Are we doing this completely wrong?” Simon Wardley, the cre-
ator of Wardley Mapping, is also the creator of the Strategy Cycle, shown in figure 5.1,

Why of
purpose

Why of
movement

The Strategy Cycle
Sun Tzu’s five factors
The two types of why
John Boyd’s OODA loop

Purpose

Landscape

Climate

Doctrine

Leadership

Orient

Observe

Decide Act

The “game”

Figure 5.1
The Strategy Cycle
(Source: Simon Wardley)

70 CHAPTER 5 Wardley Mapping
which outlines an iterative approach to strategy with five steps: purpose, landscape, cli-
mate, doctrine, and leadership. It’s based on Sun Tzu’s Five Factors (http://mng.bz/
n1E4) and John Boyd’s OODA Loop (http://mng.bz/vPOr).

 Starting out on an iteration of the Strategy Cycle begins with defining your pur-
pose. In essence, this is something resembling a mission statement. It describes the
motivation for an organization to exist and its ultimate ambitions. Here are a couple
of publicly available examples:

 “[Flatiron Health’s purpose is] to improve and extend lives by learning from
the experience of every person with cancer.”

 “Hargreaves Lansdown empowers people to save and invest with confidence.
Offering a service that supports them in building their financial resilience and
achieving the right outcomes.”

 “Carbon Re will remove Gigatonnes of CO2-equivalent from humanity’s emis-
sions each year. Our focus is on the biggest opportunities and challenges in sec-
tors such as cement, steel and glass production. We know that for a 50% chance
of keeping below 1.5 degrees global warming by 2050, we need to leave 90% of
known coal reserves and 60% of known oil & gas reserves in the ground.”

As you conduct a listening tour, you can ask each stakeholder to describe in their
words the purpose of the organization. Then you can assess the level of divergence
and convergence across the range of responses.

 Moving to the second step of the cycle involves mapping out the landscape. This
means understanding what products, services, capabilities, and other relevant things
affect the strategy and identifying relationships between them. Landscape takes the
perspective of the whole competitive business landscape, including competitors, not
just your organization. Keep in mind that this step isn’t about defining a strategy or
identifying solutions; it’s simply about understanding the current situation, which can
then be used as the basis for strategic exploration. With Wardley Mapping, a Wardley
Map visualizes a landscape using value chains (covered later in the chapter with
examples).

 After mapping the landscape, the next step is to consider the climate your business
operates in (not Earth’s climate). This is about identifying changes outside your con-
trol that will or could affect your business landscape. Every landscape is constantly
evolving due to various climatic forces. Even if a business stood still and did nothing,
the landscape would still be evolving, and a variety of forces like competitor actions,
world events like a pandemic, and the introduction of new laws and regulations would
affect the business. Blockbuster, for example, tried to continue with their brick-and-
mortar DVD rental service without acknowledging the climatic signals that online
streaming was about to change the landscape dramatically.

 Identifying potential climatic changes could be the difference between strategic
success and complete disaster. A Wardley Map can be used to visualize the effect of cli-
matic changes, and there are climatic patterns to guide you. This allows modernization

http://mng.bz/n1E4
http://mng.bz/n1E4
http://mng.bz/vPOr

715.2 Creating a Wardley Map
leaders to anticipate their journey based on future possibilities rather than just the cur-
rent hot topics.

 Doctrine follows climate in the cycle. Doctrine is less about how the map will
evolve and more about how your organization will operate to achieve the desired pur-
pose. The Wardley Mapping framework provides a collection of doctrine principles
(https://learnwardleymapping.com/doctrine/), like use a common language, strat-
egy is iterative, and optimize flow. These touch on nearly all aspects of the company’s
operating model and are addressed throughout the book. Doctrine is an often-
overlooked aspect of strategy; without an effective operating model, it’s harder to be
successful, even with a genius strategy.

 Lastly, the cycle moves into the leadership section. This represents intentional,
strategic actions businesses could or will take, like expanding into new markets or
developing new capabilities to improve existing products and drive market penetra-
tion. A Wardley Map, with a mapped-out landscape and climatic forces represented, is
the foundation for deeper strategic conversations and informed leadership decisions.
Several gameplay patterns exist within the Wardley Mapping ecosystem, like Market
Plays, which are covered later in the chapter.

 As you can discern from figure 5.1 and its name, the Strategy Cycle uses a cycle
metaphor to accentuate the iterative nature of strategy. As you build a modernization
vision and begin delivering architecture modernization, the landscape will always be
evolving, so you should continue regularly iterating on the strategy with Wardley Map-
ping to keep modernization on the optimal path. As Simon Wardley emphasizes, even
your business’s purpose can change: “The Climate may affect your purpose, the envi-
ronment may affect your strategy, and your actions may affect all . . . Your purpose
isn’t fixed, it changes as your landscape changes and as you act. There is no ‘core,’ it’s
all transitional.”

5.2 Creating a Wardley Map
The process of creating a Wardley Map can be broken down into six basic steps cover-
ing parts 1 and 2 of the Strategy Cycle—purpose and landscape:

1 Define the map’s purpose.
2 Set the scope.
3 Identify users.
4 Add user needs for each user.
5 Create value chains using components.
6 Map components along the evolution axis.

After creating a few Wardley Maps, the process becomes automatic, and you won’t
need to think about these steps, but it’s helpful when getting started. Ben Mosior’s
Wardley Mapping Canvas (http://mng.bz/46vv) is an excellent visual tool for guiding
beginners through the process. The following section shows how to build your first
Wardley Map using the canvas.

http://mng.bz/46vv
https://learnwardleymapping.com/doctrine/

72 CHAPTER 5 Wardley Mapping
 Using Ben’s canvas, we will create a Wardley Map for an online food delivery com-
pany for this example. It implements a multisided marketplace business model that
brings together restaurants and customers. Accordingly, their purpose includes the
needs of each group: “To connect hungry people with the best and widest variety of
local takeaway food” and “To enable all restaurants to offer an efficient takeaway ser-
vice.” These details are directly entered into the first step of the canvas, as shown in
figure 5.2.

Step two of the canvas sets the scope of the map. Maps can be at any level, from a
macro level covering an entire business to a micro level covering an individual prod-
uct or capability. The scope of the map will determine the granularity of the compo-
nents created and shape the type of conversations that are likely to occur. In this
example, the scope is set to a macro-level overview, as shown in figure 5.3. This is a
sensible default choice if you’re starting a modernization journey and haven’t yet set
any boundaries or priorities about where to focus.

 The next step is to describe the users who benefit from what is being mapped. This
can include users from inside and outside the organization, like customers, employ-
ees, and partners. In our food delivery example, the organization has three broad
user types at a macro level: customers, restaurants, and riders, which are added to part 3
of the canvas, as shown in figure 5.4

1. Purpose
What is your purpose? Why does this
organization or project exist?

• To connect hungry customers with the best and widest range of local
 takeaway food

• To enable all restaurants to offer an efficient takeaway service

Wardley Mapping canvas

Figure 5.2
Purpose—step 1 of the
Wardley Mapping Canvas

2. Scope
What is it that you are mapping? What does
it include? What does it not include?

 Macro-level overview to identify highest-level strategic
 priorities.

Figure 5.3 Scope—step 2 of the Wardley Mapping Canvas

3. Users
Who uses or interacts with
the thing you are mapping?

 Customer
 Restaurant
 Rider

Figure 5.4 Users—step 3 of the Wardley
Mapping Canvas

735.2 Creating a Wardley Map
 The fourth step of the canvas involves associating user needs with each user. Figure
5.5 shows customers who want to enjoy great food without cooking, restaurants who
wish to grow their business, and riders who want to earn money. It’s possible to show
multiple needs associated with a single user and some needs that multiple users may
share. It’s also possible to break users down more granularly, such as “regular cus-
tomer” and “occasional customer.” The purpose and scope of the map will drive these
choices.

Figure 5.5 User needs—step 4 of the Wardley Mapping Canvas

After step 4, things start getting more interesting and complicated in step 5, which
requires value chains to be created from components. At this point, it’s worth empha-
sizing that the precise definition of “component” can be distracting, especially if you
have experience with other techniques that use precisely defined meta-models. Work-
ing back from a user need, what are the things/capabilities needed to satisfy the user
needs? A component can be practically anything that seems useful to map, like activi-
ties, data, practices, and knowledge. One thing to avoid when mapping is getting
sucked into circular debates about the precise definition of a component and whether
something is or isn’t a component. It’s better to pick what feels most beneficial for the
map you are creating.

 Figure 5.6 shows the first steps of creating the food delivery value chains, starting
with the customer and restaurant perspectives. The customer uses the customer mobile app,
the restaurant uses the restaurant management web app for managing their restaurant,
and the kitchen staff uses the kitchen iPad app. One function of the restaurant manage-
ment app is to build the menu while the customer uses the mobile app to browse the
menu. Therefore, both apps depend on the menu component. The kitchen staff uses
the iPad app to process incoming orders, while customers place orders using the
mobile app, so both apps depend on the ordering component. At the bottom of the
diagram is the cloud platform component. The company uses this internal platform to
build and run server-side software, so all components that run on a server depend on
this component.

4. User Needs
Copy your users over. What do they need from you?
What is each user’s journey?

Customer

Enjoy great
food without
cooking

Increase sales/
grow biz

Earn
money

RiderRestaurant

74 CHAPTER 5 Wardley Mapping
Figure 5.6 Value chains section of the Wardley Mapping Canvas

You’ll notice in figure 5.6 that the vertical axis is labeled as Visible at the top and Invisi-
ble at the bottom. This signifies that items higher up are more visible to the user while
items further down are not visible to the user; the user might not be aware that they
exist. In this example, the customer sees and interacts with the customer mobile app, so it’s
highly visible to the user, yet the customer sees nothing of the company’s cloud platform.

 Finally, step 6 of the canvas is where a Wardley Map is actually created. The value
chains are copied across from step 5, and each component is moved to one of four evo-
lution stages: genesis, custom built, product, or commodity. Genesis represents new and novel
concepts that may have much unproven potential. On the opposite end, commodity is for
concepts that are highly standardized—that is, all organizations in the industry have
very similar versions—meaning there is no opportunity for differentiation.

 As shown in figure 5.7, the cloud platform is considered a commodity because it is
an established concept similar to competitors. Some bits are built in-house, but it’s
mostly delegated to a cloud provider. There is minimal opportunity to differentiate
with these components. Meanwhile, ordering is considered more of a product because

5. Value Chain
Copy the users over, with their needs underneath.
What sorts of things do you need to be doing to
fulfill those needs?
Arrange them according to dependence —
create a value chain.

I
n
v
i
s
i
b
l
e

V
i
s
i
b
l
e

Va
lu

e
ch

ai
n

Customer

Enjoy great
food without
cooking

Restaurant

Increase sales/
grow biz

Customer
mobile app

Restaurant
management
web app

Kitchen iPad
app

Menus Ordering

Payments

Cloud
platform

755.2 Creating a Wardley Map
there is still believed to be some opportunity to differentiate from competitors,
although not a great deal. The four stages of evolution are covered in more detail in
section 5.3.

Figure 5.7 Step 6 of the Wardley Mapping Canvas, a Wardley Map

Figure 5.7 shows only the customer value chains to help accentuate examples of evolu-
tion. Still, on a real map, you can show multiple users, their needs, and the relevant
value chains.

 Things get even more interesting now that you’ve put a map together. You can start
discussing the patterns that stand out to you. I always ask one facilitation question: “If
you removed all the text from this diagram, what would it tell you?” As an example,
figure 5.8 shows a Wardley Map with no text next to the components, but we can still
identify a few potential themes that might be worth digging further into.

 Firstly, there are no components in genesis or custom built, which is a warning sign
that the company has no innovations in the pipeline. That may be the case, or it might
simply be that they aren’t shown on the map, but it’s an obvious topic to explore,
potentially requiring additional workshops and techniques to verify.

 Secondly, many components are a commodity, yet the company doesn’t use any
off-the-shelf tools. The warning sign is that the company is investing a lot of resources
into building things that can be purchased easily (admittedly, to identify this pattern
required a bit of context knowing that the organization doesn’t use off-the-shelf tools,
but this is still reflective of a real situation).

6. Map

I
n
v
i
s
i
b
l
e

V
i
s
i
b
l
e

Va
lu

e
ch

ai
n

Genesis Custom Product (+rental) Commodity (+utility)
Evolution

Customer

Enjoy great food
without cooking

Ordering

Menu

Payments

Cloud
platform

Customer
mobile app

76 CHAPTER 5 Wardley Mapping
Figure 5.8 Identifying strategic themes on a Wardley Map

As you can see, just by visualizing the landscape, you can already start to understand
where modernization might be most needed or where you want to zoom in and dig
deeper.

5.3 Grasping evolution
A common challenge newcomers face to Wardley Mapping is fully grasping the intri-
cacies of determining a component’s correct stage of evolution. Genesis, custom built,
product, and commodity are fairly common words. However, they have more intricate
definitions in Wardley Mapping, with specific assessment criteria.

 A contextual understanding of the stages of evolution is paramount to learning
Wardley Mapping and getting value from the technique faster. In this section, you’ll
learn about the key characteristics and learn a short exercise to help you and your
team quickly get up to speed.

5.3.1 Evolution characteristics

One of the great things about Wardley Mapping is that Simon Wardley himself and
the community around Wardley Mapping have put together so many resources that
support creating and using maps. For assessing evolution, the community recom-
mends three characteristics and twelve properties (https://learnwardleymapping
.com/landscape/). These are referred to as weak signals; some may be more appro-
priate to certain components than others. Unfortunately, it’s not as easy as following a
flow chart for each component and producing a precise assessment. There’s an ele-
ment of subjectivity and industry expertise required, along with skill from practice.

 The three characteristics, ubiquity, certainty, and publication types, are shown in
table 5.1. Each characteristic is presented with criteria for determining what stage a
component belongs to according to that particular characteristic. If a component is

Va
lu

e
ch

ai
n

Building a lot of
commodity and
near-commodity
components in
house

Company builds
these components

in house
I
n
v
i
s
i
b
l
e

V
i
s
i
b
l
e

Genesis Custom Product (+rental) Commodity (+utility)
Evolution

Nothing in genesis
or custom built = no
future sources of
competitive advantage

https://learnwardleymapping.com/landscape/
https://learnwardleymapping.com/landscape/
https://learnwardleymapping.com/landscape/

775.3 Grasping evolution
rare, meaning very few or no other companies possess this capability, it matches in the
genesis phase of evolution for the ubiquity characteristic.

 Alternatively, if something is widespread and every company has it, it would fit into
commodity for the ubiquity characteristic. Certainty is a characteristic that represents how
well the use of a component is understood. According to this characteristic, compo-
nents are in genesis if players in the landscape are just starting to explore how to apply
the concept. Components would instead fit into commodity for the certainty characteris-
tics if components have fully evolved and there is nothing more to learn about using
the component.

In the online food delivery example, the concept of a menu is both widespread and com-
monly understood. Every competitor’s product provides menu capabilities, and every-
body knows how to use a menu. Menu, therefore, looks to be a commodity or very close.

 Now consider another capability, restaurant optimization, that one or two organiza-
tions have started to develop. It’s about helping restaurants to grow their business
through advice and recommendations. This is a new concept, and industry players are
still figuring out how to develop this capability and are constantly experimenting with
new features and ideas. It’s not being used by many restaurants, although there are
signs of increasing adoption. Therefore, it would appear to match more closely with
slowly increasing consumption and rapid increases in learning, seemingly fitting into custom
built. Of course, we should ensure we have various perspectives from domain experts
in this area. We don’t want to make the wrong impression that this is of high strategic
value when we might be missing key insights.

 In table 5.2, you can see a sample of the general properties, which also help to iden-
tify the most relevant stage of evolution. The market property represents market matu-
rity. Effectively, how established are the people who will consume the component? In
genesis, there is no market yet, whereas in commodity, the market is mature and no lon-
ger growing.

 User perception is a property that captures the expectations of users. If a component
is unusual, confusing, exciting, or surprising, it belongs in genesis. At the other
extreme, if a certain component is a table-stakes expectation, it fits in commodity. A

Table 5.1 The three evolution characteristics

Genesis Custom built Product Commodity

Ubiquity Rare Slowly increas-
ing consumption

Rapidly increasing
consumption

Widespread and
stabilizing

Certainty Poorly understood Rapid increases
in learning

Rapid increases in
use/fit for purpose

Commonly under-
stood (in terms
of use)

Publication types
Normally describe
the wonder of the
thing

Build/construct/
awareness and
learning

Maintenance/oper-
ations/installation/
features

Focused on use

https://shortener.manning.com/g7Yx

78 CHAPTER 5 Wardley Mapping
restaurant menu capability has both a mature market and is a standard capability in
the industry, again fitting into commodity. Restaurant optimization, on the other hand,
could be exciting if restaurant owners are shocked to see the potential or perhaps
even confused if they don’t understand how to leverage it.

 The market would also appear uncertain—can this apply to all restaurants or just
certain types of restaurants? So this time, restaurant optimization appears to sit some-
where between genesis and custom built based on the current level of understanding.

Perception in industry and focus of value are related properties that focus on the possible
level of competitive advantage gained through a component and will therefore be
valuable indicators of strategic priorities. A restaurant menu is largely a cost of doing
business, a table-stakes feature (http://mng.bz/XqAp). It’s also not an area where
organizations want to invest more resources than necessary to keep it running. As
table 5.2 shows, both of these signs are more evidence that menu is a commodity and is
not of high strategic importance.

 Restaurant optimization, however, is considered a source of competitive advantage. If
you can help restaurants to be more profitable, they are more likely to partner with
you, bringing customers along with them. Restaurant optimization may even have a net

Table 5.2 A sample of the general properties

Genesis Custom built Product Commodity

Market Undefined market Slowly increasing
consumption

Growing market Mature market

User perception
Different/confus-
ing/exciting/sur-
prising

Leading edge/
emerging

Common/disap-
pointed if not used
or available

Standard/
expected

Perception in
industry

Competitive advan-
tage/unpredict-
able/unknown

Competitive
advantage/ROI/
case examples

Advantage through
implementation/
features

Cost of doing
business/
accepted

Focus of value
High future worth Seeking profit/

ROI?
High profitability High volume/

reducing margin

What is competitive advantage?
Investopedia says, “Competitive advantage refers to factors that allow a company to
produce goods or services better or more cheaply than its rivals. These factors allow
the productive entity to generate more sales or superior margins compared to its mar-
ket rivals” (http://mng.bz/QRgQ). Further, competitive advantage can be broken
down into comparative advantage and differential advantage.

Comparative advantage is an advantage derived from being able to extract greater
profits while delivering a similar product or service. A differential advantage, on the
other hand, is about offering products and services that are superior in some way,
like more features or better usability.

http://mng.bz/QRgQ
http://mng.bz/XqAp
https://shortener.manning.com/YROK
https://shortener.manning.com/YROK
https://shortener.manning.com/YROK

795.4 Climatic forces
negative effect on company finances, because the effort invested is more than the
value it generates. But the company is still excited due to its high future potential.
These two signs also indicate that restaurant optimization is somewhere between genesis
and custom built.

 It could be argued that, for some restaurants, designing a menu is a competitive
advantage by offering different and unique recipes. It would be better to model this as
a separate component, like menu R&D, to distinguish it from the capability of admin-
istering and browsing menus. There’s also a deeper question: Is this a capability that
the food delivery company considers part of the landscape? Even if it’s not, it could
still be worth mapping because it represents a potential growth opportunity.

5.3.2 Rapid learning exercise: Grasping evolution

When teaching Wardley Mapping or mapping with first-time mappers, I facilitate a
short preparation activity to help them grasp evolution. The activity takes only 20 to
30 minutes and immediately gets people to a level where they need to be for a produc-
tive first mapping session. The activity can be performed as a group or in small break-
outs. To prepare the activity, you only need two things: an example component (or
multiple) to map and the lists of characteristics and properties. Then, work through
each individual criterion and determine which stage of evolution it best fits (like you
saw in section 5.3.1 but with all 15 criteria). Finally, identify which criteria are most rel-
evant to the component and assess which stage it belongs to. If working in breakout
groups, you can review the results of each group as a large-group exercise and notice
where there is divergence and convergence.

 You will learn from this activity that components do not always neatly fit into a sin-
gle phase of evolution. Some criteria may match on product while others match on com-
modity, for example, so an overall assessment needs to be made about which feels best.
This helps to convey another key principle of Wardley Mapping: there is no objec-
tively correct answer for where a component should go. There is usually an element of
subjectivity because different people have different mental models of the value chains.
Surfacing this divergence is good because it’s a learning opportunity, allowing the
group to improve their shared understanding.

 The main thing is to have productive conversations discussing why a component
could fit in multiple places. This is one way to challenge the map.

 On the book’s Miro board (http://mng.bz/wj2W) you can find a template all set
up for this activity. There’s also an example scenario if you want to practice on a ficti-
tious example before trying this exercise on components from your business. Why not
give it a try right now?

5.4 Climatic forces
Evolution is the defining characteristic of Wardley Mapping. By focusing on how each
component is evolving, you are naturally drawn into looking ahead to possible future
scenarios. This is a big advantage for overcoming biases, like the recency bias (a cogni-
tive bias that gives greater significance to more recent events), which can cause us to

http://mng.bz/wj2W

80 CHAPTER 5 Wardley Mapping
remain overfocused on current opportunities and constraints. In Wardley Mapping,
the climate refers to changes that are happening to the landscape outside of your con-
trol, like competitor innovations and major world events. The better you identify cli-
matic signals, the better you can anticipate changes and incorporate them into your
strategic thinking.

 You can apply climatic forces to your map by working through each of your compo-
nents individually and thinking about the possible scenarios outside of your control that
could cause it to change. In addition, you can think about new components that may
appear in the landscape. You may not have all the information to answer these questions,
so further research is needed, but that’s normal. Wardley Mapping isn’t a one-shot activ-
ity. Before applying climatic forces to your first map, it’s good to learn about the climatic
patterns (https://learnwardleymapping.com/climate/) provided by the community.
These will help you understand the principles underlying climatic forces and what to
consider when looking for climatic signals in your landscape. The following sections
introduce some of the most common climatic patterns to help you get started.

5.4.1 Everything evolves

The first and most fundamental climatic pattern to grasp is that all components
evolve. It’s not always clear how quickly or when they will evolve, but according to the
principles of Wardley Mapping, all components will evolve from left to right or could
die at any point during evolution.

 Take a moment to think about some of the systems you have worked on and the
products you use. How have they evolved, and how do you anticipate they might
evolve in the future? On my desk, I see my iPhone. In the late 1990s, mobile phones
had no cameras and only elementary games like Snake. Today, smartphone cameras
have evolved from an amazing and exciting idea to a table-stakes expectation, albeit
still with some room for differentiation.

 Table 5.3 highlights some characteristics (https://learnwardleymapping.com/
climate/) and how they appear at each end of the evolution spectrum. Genesis is con-
sidered uncharted territory, treading a new path that hasn’t existed before. As such,
it’s a highly chaotic, uncertain, and unpredictable phase in pursuit of future sources
of competitive advantage. Meanwhile, commodity is considered to be industrialized. It’s
ordered, known, and measured. Competitive advantage has come and gone, and now
the focus is on stability and efficiency, a cost of doing business rather than a source of
competitive advantage.

Table 5.3 Some characteristics that change with evolution

Uncharted Industrialized

Chaotic Ordered

Uncertain Known

Unpredictable Measured

https://learnwardleymapping.com/climate/
https://learnwardleymapping.com/climate/
https://learnwardleymapping.com/climate/

815.4 Climatic forces
An interesting question to ponder is, “Why does everything evolve (or die)?” The
answer in Wardley Mapping is supply and demand competition. The more demand for a
component to evolve, the more likely it is to evolve because of incentives. When assess-
ing potential climatic changes, this is a great question: “How much demand is there
for this component to evolve?”

5.4.2 Components coevolve

As you’ve seen, a Wardley Map is constructed from value chains, which are effectively
components and their dependencies. Dependencies signify that a change in one com-
ponent may affect connected components. Often, components of different types will
evolve together. Examples of this are all around us and are present throughout history.

 Earlier today, I went to the supermarket to purchase my regulars, bread and milk. I
used a self-scanning checkout. A few years ago, all checkouts required a staff member
to scan each item and take the payment. With self-scanning checkouts, it’s now possi-
ble for one employee to oversee multiple checkouts. And the activity has changed,
too. This person is now responsible for fixing problems when customers cannot scan
items and pay themselves.

 In the business world, a good example has been the coevolution of components in
the remote working space. With the increasing pervasiveness of the internet and a new
generation of remote collaboration tools like Zoom, Slack, and Google Drive, the con-
ditions were created that allowed the practice of working remotely to evolve rapidly.

HIGHER-ORDER SYSTEMS CREATE NEW SOURCES OF VALUE

One important coevolution pattern is called higher order systems create new sources of
value. As shown in figure 5.9, this pattern is characterized by the creation of new gene-
sis components, enabled by the evolution of other components toward becoming
more commoditized. As electricity became more of a widespread commodity, it
allowed the creation of many new types of products. As online payment services
evolved, more businesses were able to operate online. Likewise, as the internet devel-
oped and became more widespread, it became the source of many types of recre-
ational and commercial sources of value. This is always a pattern to consider when
applying climatic thinking to your own maps. You can ask questions like “As this com-
ponent evolves, what becomes possible? What new genesis components could come
into existence?”

Changing Stable

Future worth Low margin

Exciting Obvious

Competitive advantage Cost of doing business

Table 5.3 Some characteristics that change with evolution (continued)

Uncharted Industrialized

82 CHAPTER 5 Wardley Mapping
Figure 5.9 Higher-order systems create new sources of value

EFFICIENCY ENABLES INNOVATION

The evolution of one component may not lead to the creation of new sources of
value—that is, new genesis components. Instead, it may lead to the evolution of exist-
ing components. Amazon Web Services is a classic example of this. As Amazon evolved
its e-commerce capabilities, its business grew immensely. As a result, Amazon became
an expert at managing infrastructure for high-scale internet traffic. It then split this
out into a separate cloud computing business, moving IT infrastructure toward
becoming a commodity. Whenever exploring the evolution of a component on your
map, it’s healthy to explore how other components might also be able to evolve as a
result of a changing landscape with new or different constraints.

5.4.3 Past success breeds inertia

As the old saying goes, “Why change something if it isn’t broken?” When a business
establishes itself as a market leader and all of its key metrics, like revenue, continue to
look healthy, why risk changing? But because the climate is always changing, this can
turn out to be a false sense of security as companies like Kodak found out (http://
mng.bz/yZ2y). Chapter 3 also gave examples of internal manifestations of inertia, like
legacy systems and inefficient ways of working not being modernized through compla-
cency. Inertia is always something to look for on a Wardley Map, especially in the prod-
uct phase, where concepts are most profitable but also most likely to become
industrialized and lose value. It’s good to ask probing questions like “Is this really still
a product, or is it becoming a commodity?” “Are we too focused on current revenue
streams and blind to changes that are happening to this component?” or “Is it possible
new entrants could disrupt us here?”

A’1 A’2

New genesis components are
now possible leveraging A

Va
lu

e
ch

ai
n

I
n
v
i
s
i
b
l
e

V
i
s
i
b
l
e

Genesis Custom Product (+rental) Commodity (+utility)
Evolution

Component A
evolves into
a commodity

http://mng.bz/yZ2y
http://mng.bz/yZ2y

835.4 Climatic forces
 Inertia is something you can highlight on your map, using a filled-in rectangle
shape, as shown in figure 5.10, which demonstrates a component evolving from prod-
uct to commodity, but the organization is unwilling to accept or does not recognize
this and, therefore, has inertia.

Two other closely related inertia patterns are inertia increases the more successful the past
model is and inertia can kill an organization. You can operationalize the principles
behind these patterns by trying to understand just how successful your business is
regarding certain components and how attached stakeholders might be to those com-
ponents. Questions such as the following can help open up these conversations: “How
much would you say <component> contributes to the success of this organization?”
“What if we were disrupted and <component> was no longer relevant?” “It looks to me
like <component> will soon be widespread. Should we move on from this and invest in
something more differentiating?”

 These questions are intentionally provocative to try and see how much conviction
people have in current/past successes. I find turning up the heat a little bit in small
doses helps people challenge their own beliefs; just be careful not to go over the top.

5.4.4 Change is not always linear

A Wardley Map might give the impression that each component follows a predictable
path of evolution from genesis to commodity. The truth is evolution is a complex topic.
How, why, when, and how fast evolution happens are all things that can vary signifi-
cantly. Some industries may be slow-moving, but a sudden change, like new technology,
can rapidly speed up innovation. A number of industries experienced this with the pan-
demic, notably Miro, the online collaboration platform. In-person work was no longer
possible, and we all switched to Miro (or similar products) for workshops, meetings,
conferences, and any other collaboration that would typically have been in person.

Inertia, ignoring the
signs of evolution

Commodity (+utility)
Evolution

Figure 5.10 Visualizing
inertia on a Wardley Map

84 CHAPTER 5 Wardley Mapping
 According to a case study on the AWS website (http://mng.bz/M9Wo), Miro grew
steadily in the years before the pandemic. But during COVID times, Miro grew 500%
in just two years to reach 30 million users by January 2022, including 99% of the For-
tune 100. It’s staggering, considering that Miro scaled so quickly and was able to pro-
vide a highly reliable product. Companies all around the world in every time zone rely
on Miro to be up and running. If Miro had not been able to scale its business, technol-
ogy, and organization when the rate of change in its landscape increased enormously,
Miro would have missed out on a market-defining opportunity.

 As you work through the components on your Wardley Maps, keep the story of
Miro in the back of your mind (or a story that’s more relevant to you and doesn’t
involve pandemics). Don’t just look at how likely components are to evolve in the
future; look at how quickly they evolved in the past. This might help you to see signals
that the pace is about to change or alert you to where you aren’t prepared for a
change. It could very well be that parts of your architecture would be the bottleneck if
your landscape entered a market-defining era where the pace of change suddenly
intensified. This doesn’t mean building an infinitely scalable system, it’s all about
assessing the probabilities and making conscious decisions about which risks and
opportunities you want to invest in and be most prepared for.

5.4.5 Assessing the effect of climatic changes

After applying potential climatic forces to your map, it’s good to zoom out and look at
global themes similarly to when the map was initially created. For example, as shown
in figure 5.11, it might be that all of your components are moving to the right of the

Company plans to
invest heavily in
these three components
over the next
five years 1 year

1–2 years

~3 years

Custom Product (+rental) Commodity (+utility)

All components will
evolve significantly
in just three years,
eliminating possibility
of long-term advantage

Figure 5.11 Climatic changes indicating a lack of future differentiators

http://mng.bz/M9Wo

855.5 Making strategic decisions
map, and your organization has no source of future competitive advantage. It could
also be the case that a lot of your components are going to become a commodity
within one to two years. That could be a significant warning if your current strategy
involves major investment in those areas because they will no longer offer a chance to
differentiate. It would most likely be a big waste of resources for a component that will
soon be available off the shelf.

 A UK-based company I spent some time with had built an in-house CRM about a
decade previously when such a decision was justifiable. When I worked with them,
they were very keen to get to a modern CRM like Salesforce, which was much cheaper
to operate and had way more advanced capabilities. The problem, however, was that
the CRM was part of the same codebase as some of their more bespoke capabilities. It
was highly coupled at the code and database levels. Essentially, the costs of moving to
a commodity service were very high. This is the type of insight that technologists can
bring to Wardley Mapping sessions: thinking ahead to potential future build-vs-buy
decisions and identifying the architectural costs that would be associated. Even better
is to identify things that might evolve into a commodity earlier and not couple them
to other parts of the system in the first place.

 During a Wardley Mapping session with a North American company in the prop-
erty management space, I asked people for their observations. As we got to the head
of product, he remarked, “Everything in our industry evolves so quickly! From left to
right in just a year!” This was because competitors were easily able to copy each other,
so there was no way to create a lasting advantage in any area, which was a big lightbulb
moment for some of the group, especially those with less of a business and product
mindset. They understood that a constant source of new innovations was necessary.

5.5 Making strategic decisions
When reaching part five of the Strategy Cycle, it’s time to start thinking about choices.
How do you actively want to change the landscape? Which components do you want
to evolve, how will you prioritize investments, and how much is right to invest in each
area? Answering these questions on a business level will enable modernization leaders
to focus on building a compelling modernization vision around identifying the high-
est leverage modernization opportunities.

 It must be stressed that making decisions doesn’t have to happen in the same work-
shop where the Wardley Map is created. It’s normal to have multiple sessions with dif-
ferent people and groups. And it might be necessary to get deeper into the landscape,
using techniques like EventStorming, to create more refined maps before going too
deep into decision-making. Of course, it’s ok to explore possible strategic choices
from the first session and continue to refine them over time. The main risk is staying
high level and getting attached to early ideas that are not validated with more rigorous
analysis.

 As with other stages of the Strategy Cycle, Wardley Mapping also provides princi-
ples and patterns for the Leadership step. These patterns are considered advanced.
It’s much more important to master climatic patterns and doctrine before attempting

86 CHAPTER 5 Wardley Mapping
a Hollywood-style strategy. You need to have the right culture, thinking, and ability to
execute in place first. Nevertheless, the gameplay patterns are fascinating and worth
learning if you keep the caveats in mind. The community has put together more than
sixty gameplay patterns (http://mng.bz/am4o). The next section introduces a selec-
tion of the patterns to help begin your journey into the topic.

5.5.1 Accelerators to evolution

One option for purposely attempting
to evolve the landscape is to apply accel-
erators. These actions accelerate the
evolution of one or more components
to your perceived advantage. For each
component on your map, think about
how you may gain an advantage from
the component evolving, and then
explore the list of accelerators to iden-
tify the best option. Accelerators are
visualized on a Wardley Map using fat
arrows, as shown in figure 5.12.

OPEN APPROACHES

Open approaches, like open sourcing, are a common accelerator. By open-sourcing a compo-
nent, the component becomes more widespread, and anybody interested in the com-
ponent can contribute to developing it. Big Tech relies heavily on open source.
Google, Amazon, and Microsoft all rely on open source to varying degrees. Microsoft,
for example, open-sourced the entire .NET Framework. Open source is an enabler of
community-driven innovation in various fields and academia. TensorFlow (https://
github.com/tensorflow/tensorflow) is an open-source machine learning platform
with over three thousand contributors on GitHub. It started life as an internal capabil-
ity used by the Google Brain team. But rather than keeping it private and gaining
some advantage, the team decided to use open source as an accelerator.

 Open-sourcing a component means giving away any advantage you may have since
now all your competitors can use it. It makes more sense when looked at from the
other perspective. If your competitor gains an advantage over you through a certain
component, open-sourcing your version of the component can remove its advantage
by allowing a large community to contribute and out-develop competitor versions. In
addition, you will gain the brand reputation boost because you gave it to the open-
source community.

 Many leaders are reluctant even to discuss the idea of open-sourcing a component
to which their competitors could have access, but it’s important to explore the possibil-
ities, particularly keeping in mind that a competitor could use open source against you.

NETWORK EFFECTS

In the same way that open-sourcing a component accelerates evolution by opening up
the possibility for entire communities to contribute, network effects accelerate evolution

<Accelerator>

Figure 5.12 Visualizing accelerators on a Wardley
Map

http://mng.bz/am4o
https://github.com/tensorflow/tensorflow
https://github.com/tensorflow/tensorflow

875.5 Making strategic decisions
by allowing a wider group of people to contribute. Network effects are particularly
noticeable in social networks. The more people that join the platform—particularly
high-value content creators that draw in crowds—the faster the ecosystem grows and
develops. Is it possible that network effects could accelerate the evolution of your
landscape?

 A good example to keep in mind is Slack, the enterprise chat tool. Slack used net-
work effects as an accelerator by opening up Slack to allow developers to create cus-
tom Slack applications. Slack integrations are a prominent feature of how most
enterprises use the tool, evidenced by the 2400 applications in Slack’s marketplace.
This catalog of custom applications helped evolve the ecosystem much more rapidly
than if Slack had to build all those custom applications in-house (which would be
impractical, if not impossible).

COOPERATION

Cooperation is another accelerator to consider when seeking to accelerate the evolu-
tion of a component. Partnering with another company can provide access to neces-
sary capabilities much faster and more cost-effectively than building them yourself. We
saw this in 2019 when Apple and Goldman Sachs joined forces to launch a new credit
card, Apple Card. Apple wanted to offer physical credit cards to accelerate its Apple
Pay service. But Apple didn’t have the capabilities to launch a credit card on its own,
and cooperation was much more cost-effective and faster than developing the neces-
sary capability itself.

5.5.2 De-accelerators to evolution

In contrast to accelerators, de-accelerators can be applied to slow down evolution. When-
ever you identify a component from which you derive an advantage, you will naturally
want to lock in or extend the dura-
tion of your advantage by slowing
down evolution as the component
moves toward commodity. The follow-
ing are examples of de-accelerators
you should consider applying to
your components. As with accelera-
tors, de-accelerators are visualized
with a fat arrow facing from right to
left, as shown in figure 5.13.

INTELLECTUAL PROPERTY RIGHTS

Intellectual property (IP) rights are
deployed to protect competitive
advantage in some industries. They
act as de-accelerators by preventing competitors from employing certain capabilities that
you invented. One of the biggest IP lawsuits in recent years was the Apple vs Samsung
case (https://www.bbc.co.uk/news/business-44248404). Samsung was ordered to pay
Apple $539 million by a South Korean court after being found to be in violation of

Figure 5.13 Visualizing De-accelerators on a Wardley
Map

<De-accelerator>

https://www.bbc.co.uk/news/business-44248404

88 CHAPTER 5 Wardley Mapping
multiple Apple patents. Apple claimed that Samsung had illegally copied aspects of
the iPhone design that were protected by its patents. Apple’s iPhone was revolution-
ary, so it made sense that it wanted to protect its advantage as strongly as possible and
make competitors work harder to build smartphones as good as the iPhone.

FEAR, UNCERTAINTY, AND DOUBT

Another way to de-accelerate evolution is to alter the perception of users negatively,
reducing their demand for a more evolved component. Effectively, it’s a propaganda
technique that creates false narratives or overhypes small risks into major showstop-
pers. The last few years have seen fear, uncertainty, and doubt (FUD) used as a technique
to scare customers away from serverless technologies. Notably, vendor lock-in is
pushed as a reason to avoid serverless—for instance, “Don’t use AWS, you are giving
Amazon access to all your data” was long used as a fear tactic to scare businesses from
using the cloud. Examples of FUD can also be found outside tech. In 1877, the New
York Times wrote an article attacking Bell’s invention (http://mng.bz/g7Yx)—the tele-
phone. The narrative caused fear among readers by stirring up privacy concerns.

 When looking at your own maps, you may notice signs where FUD could be
employed. Perhaps a disruptive new entrant has joined your industry and is moving
much faster than you can. If you’re unable to compete through innovation, then
employing FUD as a marketing technique may be your only choice. There are obvious
ethical and moral problems concerning FUD.

5.5.3 Market plays

Market plays is a category of gameplay patterns that involve taking actions that change
some aspect of a market, like product development, perception change, and pricing
policy. This section provides a brief introduction to two common market plays that are
relevant in a wide range of industries.

DIFFERENTIATION

One obvious approach is to differentiate your products by addressing user needs bet-
ter than your competitors. When looking for opportunities to differentiate each of
your components, the following list of product attributes is a good starting point: bet-
ter customer service/after-sales service, more variety, faster or cheaper shipping, loca-
tion, aesthetics, usability, exclusive features, and customization. The story of Airbnb’s
early history provides a good example of product attribute differentiation. Airbnb
improved its listings by adding professional-quality images. This was seen as a critical
moment that led to huge growth for the company (http://mng.bz/eERP). Zalando’s
100-day return policy (http://mng.bz/p1E2) is an example of customer service being
a differentiating attribute, and T-Mobile USA differentiates on exclusive features by
allowing tourists to purchase an eSIM before they arrive in the country.

HARVESTING

Sometimes data is the key asset to gaining an advantage in an industry. By having
access to data that reveals market trends and unmet user needs, a company has the
powerful ability to identify new opportunities. Harvesting is achieved by building a

http://mng.bz/g7Yx
http://mng.bz/eERP
http://mng.bz/p1E2

89Summary
platform or creating a marketplace, allowing others to build on your offerings. Having
other businesses, including competitors, profiting from your capabilities sounds risky.
You’re giving away your advantage to help competitors who could use it to take away
market share. But by having all of their interactions on your platform, you will have
the most insights about consumer behaviors and unmet needs.

 One organization building a market-specific IoT platform faced just this dilemma.
They could either create a platform with capabilities like geofencing, remote monitor-
ing, and fleet management exclusively for their customers or open up the platform
and allow their competitors to use the platform as well. Ultimately, their vision was to
own the whole ecosystem and have access to all of the data, even from their competi-
tors, so opening up their platform to everybody was the obvious decision.

NOTE I highly recommend two excellent books for going deeper into the
world of Wardley Mapping and complementary techniques: Adaptive Systems
With Domain-Driven Design, Wardley Mapping, and Team Topologies by Susanne
Kaiser (http://mng.bz/OPAo) and The Value Flywheel Effect by David Anderson
(http://mng.bz/YROK).

Summary
 Wardley Mapping is becoming the de-facto strategy tool in business and tech-

nology communities. It’s a collaborative technique that involves mapping busi-
ness landscapes as value chains with evolving components. It’s a valuable
technique when building the business case for architecture modernization.

 The terminology from Wardley Mapping is also becoming widespread.
 Wardley Mapping can be used at many points in a modernization journey

rather than a tool just used for a few workshops at the beginning.
 An iterative approach to strategy is best, combining the strengths of other tech-

niques like Event Storming to get deeper insights about the business, which can
help to create better maps.

 The Strategy Cycle is a visual tool for thinking about the strategy process and
guiding you through the process. It comprises five parts: purpose, landscape,
climate, doctrine, and leadership.
– Purpose is the ultimate ambition of an organization, such as reducing carbon

emissions.
– Landscape is all of the things that are strategically relevant, like products,

capabilities, and practices.
– Climate is the forces outside your organization that cause a change in the

landscape.
– Doctrine is about ensuring your organization is set up to achieve the strategy

effectively.
– Leadership is making decisions, deciding how you want to affect the landscape

to gain an advantage.
 When creating your first map, Ben Mosior’s canvas guides you through the pro-

cess in six steps:

http://mng.bz/OPAo
http://mng.bz/YROK

90 CHAPTER 5 Wardley Mapping
– Step 1—Define the purpose
– Step 2—Set the scope of the map
– Step 3—Identify relevant users
– Step 4—Articulate the needs of each user
– Step 5—Construct value chains of components for each user need
– Step 6—Move the value chains onto a map, and move each component to the

stage of evolution that seems correct
 After constructing the map, it’s already possible to identify strategic risks and

opportunities like not having any future differentiators or investing too heavily
in components where no advantage can be gained.

 There are four stages of evolution: genesis, custom built, product, and commodity.
 Grasping the nuances of evolution can be tricky, so the community has pro-

vided characteristics and properties for determining the correct stage of evolu-
tion for a given component.

 Ubiquity and certainty are two of the characteristics for assessing evolution.
Ubiquity represents how common a component is. A rare component would fit
in genesis, while a widespread component would fit into a commodity. For cer-
tainty, a poorly understood component would fit into genesis, while a com-
monly understood component would fit into commodity.

 Some of the general properties used to determine evolution are market, user
perception, perception in industry, and focus of value.

 There are two types of competitive advantage. Comparative advantage refers to
an advantage gained by extracted greater margins through similar products or
services to competitors, while a differential advantage is an advantage through
better products and services.

 After building a map, it’s important to consider climatic forces like competitor
actions and world events (like a pandemic). You don’t want to build a strategy
around current constraints that may be about to change.

 There are several climatic patterns provided by the community, including every-
thing evolves, components coevolve, and higher-order systems create new
sources of value.

 Inertia is a climatic pattern that is common to many successful organizations.
The more successful they become, the more complacent and risk-averse they
become. This creates an opportunity for competitors.

 Patterns exist to help with making strategic decisions. Some examples are as
follows:
– Accelerators are actions that aim to intentionally speed up evolution of com-

ponents like open source and cooperation.
– De-accelerators are actions that aim to intentionally slow down acceleration

to protect an advantage like IP rights and FUD.
 A Wardley Map can be used to highlight architectural options and decisions

like codebase boundaries, team organization, and platforms.

Product taxonomy
An important part of architecture modernization is building a vision of the mod-
ernized architecture. This enables you to identify the opportunities and challenges
in each area and plan your journey from the current state to the future vision. To
do this, you’ll need a language—a set of building blocks—for describing your archi-
tecture, from a top-level macro view to individual software applications.

 There is no universally accepted language for describing architecture. So you’ll
need to choose—or invent—one that works for your business. In this chapter, I’ll
show you one possible approach, called a product taxonomy. It’s a set of building
blocks for describing architecture driven by a company’s products and the business
and customer outcomes they enable.

 I recommend a product-centric approach because it helps you to design an archi-
tecture and organization structure for empowered product teams with sustainable

This chapter covers
 Defining building blocks to describe your architecture

 Guiding principles for designing a product taxonomy

 Mapping modernization opportunities and challenges
in each business area
91

92 CHAPTER 6 Product taxonomy
fast flow optimized for key business outcomes. But you don’t have to use the building
blocks presented in this chapter to benefit from the ideas in the book. It’s just one pos-
sible approach (although a good, sensible default). You can translate to your preferred
building blocks accordingly.

 Keep in mind that this chapter focuses on defining a language to describe your
architecture. It doesn’t cover using the building blocks to design an architecture,
which is covered in later chapters.

6.1 Defining the building blocks
Defining the building blocks is the first step toward building and using a product tax-
onomy. You will use these concepts to model your architecture and the language used
to describe your business. You’re welcome to define building blocks that make the
most sense for your organization.

 This section provides example building blocks you can use as a starting point. It
doesn’t try to cover every possible scenario for every organization. You should adapt,
extend, or completely replace as necessary. For example, not all products and capabil-
ities will be digital. Therefore, you could show non-digital concepts to keep the com-
plete picture in mind when making design decisions. While reading this section,
remember that the following chapters cover each concept in greater detail.

6.1.1 Independent value streams

Independent value streams are a crucial building block because identifying indepen-
dent value streams is key to achieving fast flow. In this book, value streams refer to
development value streams; the sequence of activities a team goes through from iden-
tifying unmet user needs to delivering a solution and validating that it addresses those
needs (shown in figure 6.1), like adding new features to a product. Typically, this will
involve many activities, such as product discovery sessions, defining requirements,
planning, coding, reviewing, testing, and deploying.

The goal is to achieve fast flow, e.g, delivering
small slices of value/learning every day.

Software development value stream

Stream-aligned
team

Validate
need is metDefine slice

of value
Discover unmet

user need
Implement

slice of value

Deploy slice of
value

(and support)

Flow of change (iterative)

Figure 6.1 The high-level activities in an independent value stream

936.1 Defining the building blocks
 The nature of value streams can vary. Some examples include a price calculation
service exposed by an API, a search service with an API and UI widget, and a mobile
application (if small enough to be owned by a single team).

 As shown in figure 6.2, there are four crucial characteristics to establishing an
independent value stream with fast flow:

 Being aligned to a loosely coupled business subdomain (or other part of the
product like a frontend)

 Being driven by purposeful business outcomes
 Being owned by an autonomous stream-aligned team
 Having decoupled software architecture aligned to the business subdomain,

which the team is empowered to change and deploy

When these aspects are in place and value streams are highly independent, teams will
be motivated to achieve a business outcome and empowered to design, implement,
and deliver solutions with minimal dependencies on people outside the team. These
aspects are covered in more detail throughout this and the following chapters.

6.1.2 Domains

Value streams will never be 100% independent. The power of organizations is that the
work of many teams together produces higher-level capabilities that no single team
alone could deliver. Therefore, it’s necessary to identify value streams that contribute
to the same higher-level business outcomes and group them so that the relevant teams
stay aligned, share knowledge, and cooperate as effectively as possible to achieve end-
to-end fast flow, not just within a single value stream.

 Domains are the building blocks that represent a group of related subdomains that
involve similar domain concepts and contribute to the same higher-level purposes.
Therefore, value streams are organized into domains based on the relationship
between their subdomains and business outcomes.

Outcome oriented
Each IVS is driven by achieving business
outcomes like product north stars

Team empowered
Each IVS is owned by a team, empowered to
make product, tech, and delivery decisions

Independent value stream

Domain aligned
Each IVS is setup to create value
in a particular business subdomain

Software decoupled
The software for each IVS can be
developed and deployed independently

Figure 6.2
The four key
characteristics
of an independent
value stream

94 CHAPTER 6 Product taxonomy
 Figure 6.3 shows the example of two domains. One is a fulfillment domain com-
posed of four subdomains: availability, last mile, warehousing, and logistics. A dedicated
value stream has been established for each subdomain.

Figure 6.3 A fulfillment domain composed of four subdomains, each with a dedicated value stream

In larger organizations, domains may be defined hierarchically at different scopes to
align related groups and establish higher-level lines of accountability. Figure 6.4 illus-
trates this concept, as based on Ruth Malan and Dana Bredemeyer’s Architectural
Levels of Scope (http://mng.bz/yZ1o):

 Architecture scope 1/scope 1 domain—A single subdomain/value stream or small
cluster owned by the same team

 Architecture scope 2/scope 2 domain—A group of related scope 1 domains with
complexity that requires multiple teams

 Architecture scope 3/scope 3 domain—A group of scope 2 domains that requires
multiple groups of teams to handle the levels of complexity

The number of scopes will depend on the size of the organization and complexity of
the domain. Some organizations have more than three scopes, as the Salesforce exam-
ple later in the chapter shows. And some organizations have fewer.

E-commerce (domain)

Search and browse Product details Pricing Cart and checkout

Fulfillment (domain)

Availability Warehousing Logistics Last mile

Scope 2 domain

Scope 3 domain

Scope 1 domain
(aka subdomain/value stream)

Figure 6.4
Architecture scopes 1 to 3

http://mng.bz/yZ1o

956.1 Defining the building blocks
Not all domains at a given scope will be the same size and complexity. Figure 6.4 is a
simplification to express the general concept, not an aspirational one-size-fits-all.

6.1.3 Products

Identifying the optimal value streams and domains hinges on an important question:
What business outcomes do you want to optimize for? Many inputs are required to
answer this question (including listening and Wardley Mapping sessions). One import-
ant step is identifying the organization’s products and ascertaining the business and
customer value they provide. This is critical to understanding how to shape domain
boundaries and how they all fit together to enable strategic business outcomes.

 A successful product creates value for both customers and the business. Products
should be desirable to the customer, feasible for the company to build, and strategically
viable. It’s essential to keep these in mind when determining each product’s outcomes.
Improved productivity and increased sales are examples of customer value, while
money and data are examples of business value. Some products will be internal. The
value they provide will include improved productivity or reduced operating costs. Iden-
tifying and choosing the right outcomes using north stars was covered in chapter 3.

 Products can vary widely in size and complexity. It’s natural for them to start small
and continue to grow in complexity over time as new features are added. Some are
small enough that they can be owned by just one or a few teams, whereas others
require dozens or more teams. Therefore, there is not a 1:1 mapping between prod-
ucts and scopes. A single product could be fully satisfied by the value streams within a
single scope 2 domain or could span multiple scope 3 domains as shown in Figure 6.5.

Small product Larger, more
complex product

Figure 6.5 The size and
complexity of products
vary significantly

96 CHAPTER 6 Product taxonomy
The word product is highly ambiguous. If it’s a word that you’re struggling to define, a
suggested definition is provided at the end of the chapter.

6.1.4 Platforms

Organizations with multiple products often have to consider reuse and economies of
scale. When multiple products all use the same or similar capabilities, platforms can
be created to centralize the shared capabilities.

 Platforms are always a delicate challenge to balance. On the one hand, they’re
cost-efficient and provide economies of scale because capabilities are built once and
reused many times rather than duplicating the work in each team. On the other hand,
platforms very easily become bottlenecks when they cannot keep up with all consum-
ers’ needs or provide the capabilities in an easy-to-consume way.

 Broadly, there are two types of platforms, as shown in figure 6.6 (both of them go
by various names in the industry):

 Domain platforms/horizontals provide capabilities relevant to the business
domain, like a shared booking system.

 Internal development platforms (IDP)/internal technology platforms (ITPs) provide
capabilities to help teams build and support their products.

Both types of platforms are crucial to architecture modernization. The following two
industry examples clarify what these terms mean and what they look like in practice.

 The scope of platforms is variable. Some are limited to a small set of products,
while others can be enterprise-wide, supporting all or many of a company’s products,
like a centralized identity platform.

INDUSTRY EXAMPLE: UBER’S TRIP FULFILLMENT PLATFORM

Uber’s trip fulfillment platform (http://mng.bz/M9xD) (aka fulfillment platform) is
an excellent example of a high-value horizontal that supports multiple verticals (e.g.,

Product Product Product Product

[Domain] Platform

[Domain] Platform

Internal developer platform (IDP)/
internal technology platform (ITP) Figure 6.6 Platforms provide reuse

across multiple products

http://mng.bz/M9xD

976.1 Defining the building blocks
products, services, markets), as shown in figure 6.7. Uber refers to this as a founda-
tional Uber capability and describes its purpose, “Fulfillment is the ‘act or process of
delivering a product or service to a customer.’ The fulfillment organization at Uber
develops platforms to orchestrate and manage the lifecycle of ongoing orders and user
sessions with millions of active participants.”

Figure 6.7 Uber’s products and services that use Uber’s fulfillment platform

When Uber started expanding from a single- to a multi-product company, it didn’t
need to build completely new fulfillment capabilities for each new vertical. It extracted
fulfillment into an enterprise-wide platform that all verticals could directly use to
reduce costs, improve time to market, and increase retention of customers and driv-
ers. As a result, Uber’s fulfillment platform has a very high level of reuse, which is not
always the case for all platforms. It’s common to see platforms that have become organi-
zational bottlenecks due to the unique feature requests of each team that consumes
the platform. Reuse is always a double-edged sword that should be applied carefully by
considering domain, technical, and social criteria.

INDUSTRY EXAMPLE: NAV’S INTERNAL TECHNOLOGY PLATFORM

NAV (Norwegian Labour and Welfare Administration) is the largest public agency in
Norway. Its mission is to assist people in work and provide a series of benefits related
to pensions, disease, unemployment, and others. NAV normally provides services to
around 2.5 million citizens every year. Internally, they have over 100 teams working on
their digital operations. To help these teams build and operate products more effec-
tively, NAV developed an IDP that they refer to as their internal technology platform

Fulfillment platform

Uber
X

Auto

Pool

Moto

Black

Carpool

Taxi

Food

Grocery

Some of the products and services that
leverage the fulfillment platform

98 CHAPTER 6 Product taxonomy
(http://mng.bz/am79), as shown in figure 6.8. The platform is itself composed of mul-
tiple sub-platforms as opposed to being considered a single monolithic entity. Examples
include an infrastructure platform (https://nais.io/), a data platform (https://
docs.knada.io/), and a design system.

Figure 6.8 NAV’s internal technology platform

Decomposing a large platform into sub-platforms is a common pattern in organiza-
tions where platforms reach a certain maturity and scale. It’s a key step in preventing
platforms from becoming bottlenecks, as it allows individual teams to be responsible
for individual parts of the platform rather than requiring every team member to know
about every part of the platform, an approach that does not scale and can lead to
employee burnout.

 A key takeaway from NAV’s platform story is that, while the platform is large and var-
ied in nature, it was developed on an as-needed basis. It wasn’t fully specified upfront
and delivered as a big three-year project. Those kinds of big-bang platform projects
are notoriously risky and unsuccessful. Another key highlight from NAV’s platform
approach is that they treat IDPs with the same mindset as their other products. They
think of internal employees as the customer and try to make the platform as attractive
as possible by reducing the cognitive load, freeing them up to perform their work
more effectively. This is a crucial aspect of building platforms, referred to as platform-
as-a-product (http://mng.bz/g7N8), that enables fast flow. It is covered in more detail
later in the book.

Infrastructure platform Data platform Design system

Internal technology platform

•••

Product area health Product area work Product area family

•••

http://mng.bz/am79
https://nais.io/
https://docs.knada.io/
https://docs.knada.io/
http://mng.bz/g7N8

996.1 Defining the building blocks
6.1.5 Product groups and portfolios

For large and very large organizations with tens of thousands of employees, there is
even greater complexity at higher levels of scale. In their product taxonomy, Ross
Clanton et al. (http://mng.bz/eEdG) propose the terms product group and product port-
folio for these higher levels. A product group is a collection of products that contribute
to related outcomes or have delivery dependencies, and a product portfolio is a col-
lection of product groups that share some relationship. Platform group and platform
portfolio are the corresponding macro structures for platforms. While modernization
may not always result in changes at the product group and portfolio levels, it’s good to
have a clear understanding of them and how lower-level modernization decisions fit
into the bigger picture.

6.1.6 Industry example: Salesforce product taxonomy (2017)

Salesforce is a good example of a large organization with multiple product portfolios. In
2017, I worked as a principal engineer in the Salesforce marketing cloud. At that time,
there were around thirty thousand employees globally, although Salesforce was con-
tinually growing organically and through regular acquisitions. As a result, Salesforce
had a large, heterogenous IT estate and various organizational cultures across multi-
ple international regions. At the top level, Salesforce was architected into more than
ten product portfolios, referred to as clouds. Examples include sales cloud, service cloud,
marketing cloud, and commerce cloud.

 Marketing cloud was a product portfolio that by itself attained revenues of $933
million in 2017 (http://mng.bz/p1gR). It had its own dedicated CTO and CEO who
reported to the global CTO and CEO, respectively. The marketing cloud was com-
posed of multiple product groups, which were often, but not always, referred to as stu-
dios—for example, social studio, mobile studio, email studio, and advertising studio
(as shown in figure 6.9).

 The advertising studio product group comprised three products: advertising cam-
paigns for building and running campaigns on social networks like Facebook and
LinkedIn, advertising audiences for creating lookalike audiences based on existing
customers, and lead capture for connecting leads from social networks to a customer’s
Salesforce account. Each of these was a product that customers could purchase sepa-
rately and had its own codebase and teams building it. However, these products were
architected as a product group for multiple reasons. Commercially, they were targeted at
the same customers, and the company tried to package them up into B2B contracts.
Additionally, the domain knowledge for the three products was very similar, so it made
sense for the people involved to work closely together.

 Individually, each product was composed of multiple software parts owned by multi-
ple teams. Advertising campaigns, for example, had a variety of components, includ-
ing a customer UI, an application for creating campaigns, an application for running
and tracking campaigns, and an application for configuring campaign rules based on
triggers and conditions.

http://mng.bz/eEdG
http://mng.bz/p1gR

100 CHAPTER 6 Product taxonomy
Figure 6.9 Extract of Salesforce’s marketing cloud product taxonomy, circa 2017

6.1.7 Building blocks cheat sheet

Several concepts have been introduced in the section, and it may take a while to
become familiar with them and how they fit together. Figure 6.10 is a cheat sheet to
which you can quickly refer. You can also find an interactive version on this book’s
Miro board (http://mng.bz/OP2j).

Revenue:
$933 million (2017)

Advertising campaigns

Campaign
building

(subdomain)

Campaign
running

(subdomain)

Campaign
optimization
(subdomain)

Campaigns UI
(frontend)

Advertising
audiences

Advertising
campaigns

Lead
generation

Advertising studio

Mobile studio Social studio Advertising studio

Journey builder E-mail studio Salesforce CDP

Product groups

Product portfolio

• CTO
• CEO

• Directors of product
• Directors of engineering

• Principal engineers
• Product managers

• Product teams

Products

Value streams

http://mng.bz/OP2j

1016.1 Defining the building blocks
 Remember, these are just example building blocks you are free to adapt or use as a
source of inspiration, or you can use your own completely different building blocks.
This model does not try to account for every possible scenario. For example, you may
need to add building blocks for non-software products and capabilities.

Figure 6.10 Cheat sheet for product taxonomy building blocks

NOTE There are many models for describing architectural concepts and
their relationships at different levels of scope and in varying levels of granu-
larity. Examples include Intersection’s EDGY (https://intersection.group/
tools/edgy/); Evan Bottcher’s teams, domains, and verticals model (http://
mng.bz/YRPj); Ruth Malan’s architectural levels of scope (http://mng.bz/
G9WA); BVSSH’s value stream network (http://mng.bz/z0M6); and The
Open Group’s ArchiMate modeling language (http://mng.bz/orN2).

ProductProductProductProduct

[Domain] Platform

[Domain] Platform

Product/platform
portfolio

Product/platform
group

Scope 3 domain
Scope 2 domain

• Aligned to a business subdomain
• Driven by purposeful business outcomes
• Owned by an empowered stream-aligned
 team
• Decoupled software aligned to business
 subdomain

Product/platform
group

Product/platform
group

May need to be
grouped into

Aligned to part or all of a
(product or platform)

May need to be
grouped into

Internal developer platform (IDP)/
internal technology platform (ITP)

Grouped into

Independent value stream

https://intersection.group/tools/edgy/
https://intersection.group/tools/edgy/
http://mng.bz/YRPj
http://mng.bz/YRPj
http://mng.bz/G9WA
http://mng.bz/G9WA
http://mng.bz/z0M6
http://mng.bz/orN2

102 CHAPTER 6 Product taxonomy
6.2 Designing a product taxonomy
Having established the building blocks of your product taxonomy, you can then use
them to design your architecture as a product taxonomy. Many aspects of designing a
taxonomy are covered in the remaining chapters of the book, and every organiza-
tion’s journey will be unique. However, this section highlights a few general principles
that are worth keeping in mind before you start.

6.2.1 Start with the easier parts

Getting started can sometimes be the hardest part, so I recommend starting with the
easier parts—things that are less subjective and less contentious. One example is indi-
vidual products and services marketed and sold to customers as cohesive offerings.
Reviewing a company’s website and marketing materials is a good source of insight.

 Another technique is looking at the organization chart. Reporting structures can
indicate which parts of the business are considered independent from each other.
Caution is required, however, because sometimes the existing organizational structure
will require major changes to enable modernization. But you may still be able to use
some of the current organization chart as a starting point to challenge and evolve.

 After establishing individual products, you’ll need to zoom in and explore how
each particular product could be decomposed into value streams and identify where
shared capabilities used by multiple products could be extracted into platforms.
These decisions will usually be much more subjective and require deeper analysis
using appropriate techniques.

6.2.2 Use appropriate techniques

One of the first questions people ask when designing a taxonomy is how to do it. The
simple answer is that you can use whatever techniques with which you are comfortable
or you feel are relevant. The techniques in this book, like EventStorming and Wardley
Mapping, are tried and tested. However, if you feel that other techniques are needed,
or you are more comfortable with them, that is totally fine.

 One recommendation I always offer, regardless of the techniques used, is to avoid
making critical taxonomy decisions based on a superficial high-level understanding.
It’s easy to fool yourself into thinking you have made good choices by staying at a high
level. Some techniques are specifically designed to allow you to see the big picture but
lack the level of detail needed to make more granular architecture decisions. So you
will need to zoom into each area using techniques that surface more complexity. For
example, if you use a technique that maps out a large part of your business in just ten
sticky notes, it’s likely to be missing a lot of key information needed to make more
granular architecture decisions.

6.2.3 Expect constant evolution

Landscapes are constantly changing due to supply-and-demand competition, as Ward-
ley Mapping teaches us. And it’s easy to make the wrong decision when you know the
least: perhaps an area turns out to be more complex than originally intended and

1036.2 Designing a product taxonomy
needs to be split up, or perhaps unexpected dependencies have arisen that require
excessive coordination, necessitating a rethink of the architecture. Therefore, there is
no end-state. The product taxonomy will need to evolve, and this thinking should be
baked into your approach from day one.

 If you’re ever in a situation where you have to get a decision correct up front
because there will not be a chance to change it later, it’s an alarm bell. Where is the
pressure coming from to make such high-stakes decisions? What is the blocker to
course correction in the future? This may be an indication of deeper cultural con-
cerns that should be addressed. Of course, some decisions are more complicated to
reverse than others, so it makes sense to spend more time planning up front where
decisions will be more expensive to reverse later.

 It’s a good idea to publish an updated taxonomy regularly, like once per quarter. It
signals that change is normal. The teams themselves will frequently discover the need
for changes as they are closest to many triggers for evolution, like excessive collabora-
tion with other teams or unclear priorities. So they must be encouraged to raise con-
cerns when they feel evolution is necessary and not live with the misconception that
the design is fixed.

6.2.4 Distribute design responsibility

One of the key reasons to define a taxonomy is to establish who is responsible for mak-
ing decisions in each portfolio area, both during modernization and after. What are
the responsibilities, and how will you assign them?

 When designing the taxonomy, it is essential to avoid the antipattern of a central-
ized architecture team that designs the system and hands over the designs to the
teams. In a product-led organization, responsibility is more decentralized, and the
flow of changes is too high for a centralized team to oversee everything. As a result,
the process of designing a taxonomy is more decentralized. It’s a good idea for an
AMET to facilitate and oversee the process, at least at the start of the journey.

 Deciding where to allow autonomy and standardization is always a delicate bal-
ance. More autonomy can result in problems like tech sprawl, where each team uses
different technologies, making collaboration harder as engineers cannot understand
or contribute to work in other teams or rotate between teams. On the other hand, too
much standardization can be overly constraining, adding friction to a team’s workflow
and impeding their flow.

 In the Salesforce example earlier in the chapter, the marketing cloud was a highly
autonomous product portfolio. Within the marketing cloud, product groups had a
high level of autonomy to design and evolve their part of the taxonomy. Each taxon-
omy level had dedicated product and technology leaders who worked as a unit to dis-
courage silos from forming.

NOTE An easy trap to fall into is spending too much time up front designing
the taxonomy when you could have instead been delivering value. But the
opposite problem is also common, jumping straight to delivery without con-
sidering alternative options that might have been superior. Chapter 16 pro-
vides some guidance and suggestions for finding the optimal balance.

104 CHAPTER 6 Product taxonomy
6.3 Mapping modernization opportunities, risks, and challenges
Designing a product taxonomy is about creating a vision to guide your journey. The
difficult part is carrying out organizational and technology change initiatives to move
from the current to the desired structure. It’s not as easy as just doing a big overnight
reorganization. The modernization work will likely need to be prioritized and carried
out gradually over multiple years.

 Planning and prioritizing is, therefore, a crucial and challenging activity. The bet-
ter you understand the value, costs, and risks of modernizing each area, the better you
can prioritize the highest-value modernization options. This section touches on some
common themes to capture when mapping out the taxonomy. They will feed into
identifying the level of effort needed to transition from the current to the new struc-
ture in each area of the taxonomy and help begin preparation. The topics of prioriti-
zation and roadmaps are covered in chapter 16.

6.3.1 Dependencies and misaligned boundaries

Expect some, if not most, parts of your taxonomy vision to not align with your current
software and team boundaries. While people can easily reorganize into different
teams (although forming an effective high-performing team is not simple), reshaping
software is far more complex, especially in tightly coupled legacy systems that are
extremely risky to change.

 Figure 6.11 shows a common scenario where an organization has identified target
subdomains for which it would like to establish independent value streams, each
owned by a different team. However, the current software architecture would mean all
three teams working in all three codebases and needing to coordinate their work and
deployments, affecting their flow.

Figure 6.11 Current architecture does not align with target value stream boundaries.

Target
subdomain A

Target
subdomain B

Legacy IT
System A

Legacy IT
System B

Legacy IT
System C

Target value
streams

Existing software
architecture
boundaries

Target
subdomain C

Making changes in any subdomain
may require touching 3 codebases
that other teams also work in.
This will introduce blockers to flow.

1056.3 Mapping modernization opportunities, risks, and challenges
When misaligned boundaries are identified to the extent in figure 6.11, the first thing
to recognize is that there is likely to be a high level of uncertainty and risk. Depending
on the amount of coupling and technical debt, this probably isn’t a simple three
month modernization and is unlikely to be a good first slice unless, for example, one
of the subdomains is easy to extract or can easily be rewritten without requiring
changes to the legacy.

 Planning other work around a modernization initiative like this could be risky. So
many unexpected delays could arise, like legacy code that takes far longer to decouple
than anticipated, hidden infrastructure complexity, and a lack of knowledge about
certain parts of the system because nobody currently working at the company under-
stands them.

 In one financial services organization, the first slice of modernization was delayed
by months due to unknown compliance problems being discovered just when the
team was ready to deploy. The most important thing is to get a rough idea of the level
of misalignment in each area of the taxonomy and a list of the key challenges involved
in moving to the proposed design.

6.3.2 Unclear or lacking ownership

Before modernizing an area of the taxonomy, a staffing plan for teams that will be
responsible for the relevant value streams should be in place. It may be that existing
teams will be moved across, or it might also be that the area is currently not owned by
any team, and it’s unclear which team will own it. In this scenario, a plan for forming
the team will need to be established, which could involve bringing in existing employ-
ees, hiring new employees, using contractors, or some combination of the three.

 Keep in mind that forming new teams takes time. If it takes four to eight weeks to
hire the team, and they each have to work a notice period of four weeks with their cur-
rent employer, it could easily be three months (or even longer) before a team is in
place to start work on a given modernization initiative. Highlighting this challenge
before important prioritization decisions are made is essential.

 I’ve been in situations where senior leadership has given the green light on a par-
ticular project and expected work to start immediately, ignoring that no team is in
place yet. Then there is a rush to hire people quickly, which puts everyone under pres-
sure and doesn’t allow adequate time to hire the right kind of people or cultivate the
culture needed for modernization.

6.3.3 Skills gaps

Even when there is a team lined up to be responsible for a certain area, the team may
lack the necessary skills to carry out the desired modernization. Training and upskill-
ing may be required, and additional expertise or outside help may need to be hired.
The bigger the gap between how the team currently works and how they are expected
to work, the more time that will need to be built into the roadmap to allow them to
upskill. Chapter 17 covers this topic in more detail.

106 CHAPTER 6 Product taxonomy
6.3.4 Product and domain modernization

Architecture modernization is not just about rewriting the old system with new tech-
nologies or even moving to new patterns and structures; it’s equally about moderniz-
ing the product and domain to create new value through improvements, such as

 Redesigning the UX
 Automating business process steps
 Redesigning colleague workflows
 Clarifying ambiguous domain terminology to help speak a common language
 Removing unneeded features/complexity

These activities may involve a large amount of discovery—for instance, user research
sessions, discovery workshops, and lots of prototyping. Identifying which parts of the
taxonomy will most benefit from product and domain modernization is useful to
ensure there is enough time to prepare and carry out effective discovery, especially if
there is potential for a high ROI. If collaborative product discovery is a new concept to
your organization, highlighting these opportunities is even more important because
you will need more time to adapt to this approach. Chapter 8 covers these topics in
more detail.

6.3.5 Complexity and cognitive load

Not all parts of a system will be equally complex. Some areas will involve more com-
plex business rules and workflows or higher scalability challenges or may be written in
very old technologies that require a higher modernization investment. Establishing
this is important because it highlights where risks and challenges may arise. It’s also
important because it helps to ensure that a single team will not be responsible for
multiple domains that are highly complex, which would exceed their cognitive load.
Assessing complexity and using it to prioritize modernization initiatives is touched on
in later chapters.

6.3.6 Macrolevel constraints and challenges

Macrolevel refers to the large-scale structure of an organization, scope 3 and above.
Changes at those levels potentially affect thousands of people, making them both
expensive and risky. Decisions at this level are usually made by senior leadership for
major strategic reasons, like in 2015 when Google split into a collection of separate
companies owned by a new holding company called Alphabet (https://hbr.org/2015/
08/why-google-became-alphabet).

 While decisions at higher scopes may be outside of the scope of modernization,
there is still value in understanding the bigger picture and how it may constrain mod-
ernization. You may even discover opportunities that nobody realized were possible.

 One macrolevel theme to be aware of is reuse. When a large company has many
products and is active in many markets, debate about what to centralize and what to
let each area build always arises. Imagine a global fast-food chain organized around

https://hbr.org/2015/08/why-google-became-alphabet
https://hbr.org/2015/08/why-google-became-alphabet

1076.3 Mapping modernization opportunities, risks, and challenges
regional markets (verticals)—for
example, the United States, United
Kingdom, Sweden, and Japan—and
the company is active in over 100
countries. Figure 6.12 highlights a
key macrolevel business architec-
ture decision: Should each vertical
be free to develop its own capabili-
ties like Loyalty and CRM, or should
they be centralized into a horizon-
tal that is shared by all verticals?

 Determining how to shape verticals and horizontals is a ubiquitous and complex
problem with many trade-offs to consider. It’s a contentious topic in some companies.
Some of the key considerations are

 User experience—Is it common for users to be active in multiple verticals? If so,
how will you balance the need for a consistent UX across all verticals with an
optimized UX within each vertical?

 Prioritization—How will work in horizontals be prioritized when there are multi-
ple verticals that are all requesting new features and improvements? How spe-
cific will the needs of each vertical be? How much concurrent demand is there
likely to be?

 Funding—How will funding be determined for horizontals that do not directly
generate revenue and are considered cost centers?

 Dependencies and complexity—Does the number of dependencies and level of
domain knowledge required cause teams to have an excessive cognitive load or
introduce excessive coordination across teams? This was a key factor in
Docker’s large-scale modernization (http://mng.bz/n1Qe).

 Efficiency versus time-to-market—Does allowing each vertical to implement similar
functionality reduce time-to-market? Do the costs of that duplication outweigh
the benefits?

In addition to the above, Wardley Mapping is always a good idea for getting a picture
of the whole landscape and anticipating future opportunities rather than being too
focused on the current pains.

INDUSTRY EXAMPLE: STRIPE TREASURY
There are various possibilities between the two extremes of complete duplication
within each vertical and full reuse as an enterprise-wide horizontal. At Craft Confer-
ence 2022 in Budapest, Prajakta Kalekar (http://mng.bz/vPN1) provided insight into
how products are built at Stripe.

 Prajakta started the talk by framing Stripe’s journey from a payments company to
an economic infrastructure company. She then talked about the story of a new vertical
that Stripe built called Stripe Treasury (https://stripe.com/treasury), a banking-as-a-
service platform.

Market
A

Loyalty

Centralized Decentralized

Market
B

Market
C Market

A
Market

B
Market

C

Loyalty Loyalty Loyalty

Figure 6.12 Centralized versus decentralized
macrostructure

http://mng.bz/n1Qe
http://mng.bz/vPN1
https://stripe.com/treasury

108 CHAPTER 6 Product taxonomy
 The talk contained many interesting insights, including Stripe’s approach to plat-
forms and reuse. Early in the vertical’s lifecycle, the teams duplicated some of Stripe’s
core payments infrastructure to optimize for “short-term efficiency.” Effectively, this
was about enabling the new vertical to validate ideas as quickly as possible and reduce
time-to-market at the cost of duplication.

 Later in the vertical’s lifecycle, Stripe decided to migrate the treasury vertical onto
Stripe’s existing core-payments infrastructure. They wanted to “avoid rebuilding
Stripe inside Stripe” and instead strive for “longer-term efficiency.”

6.4 What is a product?
The word product is used extensively throughout this chapter, yet it’s a highly ambigu-
ous word with many clashing definitions throughout the industry. This final section of
the chapter provides a recommended definition of the word product and related con-
cepts. There will not be consensus on the word, so this isn’t positioned as the single
correct definition. However, if you’re struggling to define the concept in your organi-
zation, it’s a good definition to use. If you already have a clear definition in your orga-
nization, then feel free to skip this section.

6.4.1 Products vs. features vs. components

Melissa Perri is a leading voice in the world of product management. She’s a consul-
tant, author, and senior lecturer at Harvard Business School. She spoke in her open-
ing keynote at the Agile 2022 conference in Nashville (http://mng.bz/46OD) about
her definition of product.

 Melissa’s definition centers around products being a complete offering: “A repeat-
able solution that can be offered to a market that solves a want or need (job to be
done).” She then provided credit cards as an example. The physical card alone is not
a product; it’s only a part. By itself, it does not solve a want or a need.

 Roman Pichler shares a similar opinion and clearly distinguishes between prod-
ucts, features, and components. In my experience, many people use the word product
to refer to what Roman calls a feature or component (http://mng.bz/QRQR). Roman
uses the example of search and checkout used by e-commerce companies like Ama-
zon. Some people would consider search and checkout to be products because sepa-
rate teams own them and have separate product managers. But that doesn’t fit with
Roman’s or Melissa’s definition.

 Roman argues that search and checkout are features. His rationale is that they do
not provide value to customers independently. Roman also uses the concept of a com-
ponent, which he also refers to as architectural building blocks. These are things like
UI layers and backend APIs but are also not considered independent enough to be
products.

 Figure 6.13 provides a visualization of Melissa Perri’s product overview. In this
model, five key aspects help to ensure you focus on a complete product: customer/
user research, market data and research, financial data and implication on sales, user

http://mng.bz/46OD
http://mng.bz/QRQR

1096.4 What is a product?
data, and technology implications. If you’re unfamiliar with any of these concepts,
check out Melissa’s keynote or her book Escaping the Build Trap (http://mng.bz/
Xqg1).

6.4.2 Products vs. variants vs. journeys

Multiple versions of the same product are known as product variants according to
Roman Pichler. For example, many products have a web app, an Android app, and an
iPhone app. Each of these applications provides the same or similar functionality as
part of the same business model. So really, they are variations of the same product
rather than being stand-alone products themselves.

 A user journey may involve interacting with multiple products and product variants
and could also include actions that don’t involve interacting with products. Therefore,
a user journey is not a part of the product; it is the steps the user is taking as part of their
experience. A user journey can be further broken down into user tasks (as shown in figure
6.14).

Figure 6.14 A user journey is part of the experience of using products.

ProductCustomer
research

Market research
& data

Financial data
and implication

on sales

User data

Technology
implications Figure 6.13 Melissa Perri’s

key product aspects

ProductProduct

Feature Feature Feature Feature Feature

User journey User journeyUser journey

Experience

User

user taskuser task user task user taskuser task user taskuser task user task

http://mng.bz/Xqg1
http://mng.bz/Xqg1

110 CHAPTER 6 Product taxonomy
6.4.3 Product mode

While platforms, features, components, and product variants are not products, they
can still be treated similarly to actual products. Sriram Narayan has coined this product
mode (http://mng.bz/am7o). Table 6.1 highlights some of the key comparison points
between product mode and traditional development approaches that employed a proj-
ect-centric or feature factory–like operating model. In brief, traditional project-
centric approaches have focused on delivering a fixed scope on time and on budget
with short-lived teams, whereas product mode focuses on long-term continuous product
enhancements owned by durable teams.

Product mode outlines what empowered product teams look like in practice: how they
are incentivized, how much ownership they have from ideation to ongoing mainte-
nance, and how they are funded. Transitioning to these behaviors from completely
different, deeply ingrained ways of working is hard and won’t happen overnight. But
it’s necessary to fully exploit the potential of a well-designed product taxonomy and
modern architecture.

Summary
 Transitioning to a product-centric operating model requires a deep change to

the structure, culture, and ways of working in an organization.
 A product taxonomy is a tool for designing an organization’s business architecture

based on continuous improvements of products and customer experiences. It is
used to define areas of team accountability and ownership and shape the soft-
ware architecture accordingly.

 A product taxonomy should not be designed by a centralized architecture team
who hands over the plans for teams to build.

 Taxonomy updates should be published regularly.
 You can define your own building blocks for your taxonomy.

Table 6.1 Key characteristics of project versus product mode

Projects Product mode

Funding model Building a predefined solution
or outstanding scope

The team is funded to build, run, iter-
ate, and pivot if necessary.

Team responsibilities Separate teams for ideation,
development, deployment,
and ongoing maintenance

Each team is responsible for discover-
ing, building, and running capabilities.

Team lifespan For the duration of a project,
and then disbanded—usually
less than a year

Usually multiple years, as long as their
reason to exist remains

Definition of success The fixed scope is delivered
on time and within budget.

Improvement of business-related met-
rics connected to north stars

http://mng.bz/am7o

111Summary
 A value stream (or, more specifically, a software development value stream) is
the sequence of activities a team goes through in a particular domain to dis-
cover and deliver product enhancements.

 Products can be internal, used by employees of the organization, or external,
used by those outside the organization.

 Platforms are internal capabilities employed by multiple products.
 Development platforms help teams to build and support products.
 Domains are a hierarchical concept. A larger domain may be composed of mul-

tiple subdomains, which may be composed of more granular subdomains.
There are many naming conventions used to describe these levels; this book
uses scope 1, 2, 3, and so on.

 A product taxonomy should only be designed in sufficient detail to support the
current objectives, such as defining an initial slice of modernization that can be
delivered within three to six months. It’s not necessary or encouraged to fully
define a product taxonomy before any modernization work begins.

 A product taxonomy is always in a constant state of evolution.
 North stars are key product metrics that help to clarify the value and cohesive-

ness of a part of the taxonomy.
 One of the common macro challenges is the choice of decentralizing capabili-

ties so that each vertical is free to develop its own version versus centralizing
into a single shared platform used by all verticals. There are many factors to
consider, like consistency of user experience and funding models.

 Transitioning to a future-state product taxonomy usually takes multiple years
and is done gradually. Identifying the risks and challenges in each area can help
with planning, preparation, and prioritization.

 Some of the common transitional challenges to identify in each area are mis-
aligned boundaries, lack of ownership, skills gaps, level of product and domain
modernization required, and the general complexity and cognitive load.

 Product is a highly ambiguous word. This book represents a complete offering
that provides value to a customer. A product comprises features and components
(architectural building blocks), but they themselves aren’t products.

 Even though platforms and components are not products, they can still be delivered
in a similar fashion to products. This is referred to as product mode.

Big picture
EventStorming
Modernization leaders must steer clear of making crucial architectural choices
based solely on a limited, shallow grasp of the landscape. It’s easy to fool yourself into
thinking a bad design is good when you are too disconnected from the details. When
I was coaching a chief product officer at a client in the property sector, he identified
three high-level domains as the basis for the new company structure. He was very
confident it was the right approach. But when we put the idea in front of various
employees, they found multiple reasons why the proposed architecture wouldn’t

This chapter covers
 Mapping out your business with EventStorming

 Beginning the process of identifying domains and
subdomains

 Understanding the principles behind
EventStorming

 Planning and running EventStorming workshops

 Identifying business problems and opportunities
with EventStorming

 Facilitating EventStorming workshops
112

113CHAPTER 7 Big picture EventStorming
work. They had a much deeper understanding of domain intricacies, which he lacked.
He was intelligent and humble enough to seek and accept feedback, but others choose
the Ivory Tower Architect path (http://mng.bz/g7Nx) and enforce their naive ideas.

 One technique that modernization leaders can use to prevent ivory tower thinking
from creeping into a project is big picture EventStorming. The workshop format lets
you get into a domain’s details and ensure any hidden complexity or nuance is not
missed when making important modernization decisions. It’s a flexible technique that
will come in handy throughout a modernization journey, from the first step of build-
ing a vision to identifying the domains and subdomains that shape the product taxon-
omy. And it’s effective for organizations in many types of industries. I’ve used it with
clients in various sectors like finance, travel, and real estate. It’s one of the most
important tools in my toolbox.

 EventStorming is designed around the idea of maximizing attendee participation
and diversity. Bringing together people from across the business with different skills
and roles makes it possible to build a true reflection of how the business works. There
is no limit to who can attend and be productive in an EventStorming workshop: prod-
uct people, software developers, subject matter experts, quality engineers, UX design-
ers, accountants, and just about anyone involved in contributing to the company’s
business model. This is possible because EventStorming has been intentionally
designed with a simple notation that allows anybody who attends a workshop to easily
share their knowledge of the domain and combine it with everyone else’s knowledge.
The notation is called domain events, defined simply as “events that happen in the
domain,” which are formed into a timeline running from left to right, as shown in fig-
ure 7.1. Note that this is a tiny sample; a large wall space of 8 to 20 meters will be cov-
ered with orange sticky notes in a real session.

Figure 7.1 Using domain events to map out a business on a timeline from left to right

In this chapter, you’ll learn about the principles behind EventStorming and get the
practical guidance needed to plan and facilitate your first big picture EventStorming
workshop. You can also find links to interactive EventStorming exercises on the book’s
Miro board (http://mng.bz/5oNZ) along with other useful resources like notation
cheat sheets covering the different formats and flavors of EventStorming.

Profile
configured

Identification
verified

Account
activated

Funds
added

to wallet

App
downloaded

Time

http://mng.bz/g7Nx
http://mng.bz/5oNZ

114 CHAPTER 7 Big picture EventStorming
NOTE EventStorming was invented by Alberto Brandolini in the mid-2010s
and has grown hugely popular with an active global community. This chapter
discusses big picture EventStorming, but two other formats (process model-
ing and software design) are introduced in later chapters. If you want to learn
more about EventStorming and connect with other practitioners, Mariusz
Gil’s Awesome EventStorming (https://github.com/mariuszgil/awesome
-eventstorming) resource is an excellent starting point, with references to
blogs, videos, and online communities.

7.1 Understanding EventStorming
EventStorming is intentionally designed to be a simple technique that eschews barri-
ers to entry, like complicated notation and strict roles and rules. Understanding the
basics is mostly about understanding the mindset of EventStorming, how it is opti-
mized for maximum collaboration and participation, and how it differs from tech-
niques optimized for other things you may be familiar with, like precision.

 You’re free to use other techniques when mapping your business and building a
product taxonomy. EventStorming isn’t positioned as a silver bullet that makes other
techniques redundant. But when you do apply EventStorming, it’s important to
embrace its philosophy to get maximum value from your sessions.

7.1.1 Notation

The basic premise of EventStorming is to build a timeline that runs from left to right
using domain events, expressed through orange sticky notes. While some techniques,
like Service Blueprints and Customer Journey Maps, are highly structured, Event-
Storming is more flexible. You’ll notice that in figure 7.2, there are various branches

and random-looking clusters rather
than a single line of events running
from left to right. This is because
EventStorming focuses on getting all
of the useful information onto the wall
and representing the unique complex-
ity of your domain in whatever shapes
emerge by chance or purposefully.
Capturing all of the detail is more
important than tidiness.

DOMAIN EVENTS

A domain event is loosely defined as “something that happens in the domain.” This defi-
nition has little precision to avoid excluding anyone who may have something valuable
to contribute. Anything that seems relevant to your business can be represented on the
timeline. The following lists types of events followed by an example of each.

 User interacting with a product—e.g, Review Added, where a user interacts with a
product like using a mobile app

Figure 7.2 An EventStorm runs from left to right but
does not need to be neatly and precisely laid out.

Time

https://github.com/mariuszgil/awesome-eventstorming
https://github.com/mariuszgil/awesome-eventstorming
https://github.com/mariuszgil/awesome-eventstorming

1157.1 Understanding EventStorming
 Actions in the user’s life—e.g, Thought About Moving Home, where a user does
something that does not involve interacting with a product but is still interest-
ing to the business

 Actions within the organization—e.g, Claim Approved, where an employee within
the organization performs an action or makes a decision

 Actions managed by software—e.g, Driver Selected, where automated business
rules and algorithms perform some action, like calculating a value or making a
decision

You’ll notice from all these examples that domain events are phrased in the past tense.
This is one of the only rules in EventStorming that should be adhered to wherever pos-
sible. If everybody uses the past tense, the timeline will be consistent and easier to
understand. Further, using the past tense makes it possible to refer to a precise point in
time. For example, a Review Published event would refer to the exact moment a review
was published and visible on the website, which makes it easier to refer to specific points
on the timeline and to unambiguously articulate what comes before and after.

 It’s common to see beginners using more vague names like User Registration. The
problem with this type of naming is that it’s unclear where it starts and stops and what
is included. There is a lot of nuance behind that one sticky, which could be important
to unpack.

 EventStorming is not overly specific about the granularity of events. However,
there are a few basic principles to keep in mind. On the one hand, staying too high
level means that important details and complexity of the domain will be hidden. For
example, it’s important not just to explore happy paths but also various other scenar-
ios and edge cases. On the other hand, events that are too detailed might obscure the
true business narrative with unnecessary detail, like User Clicked Form and Item
Saved to Database. Sometimes the mechanics are useful, but usually, it’s better to
focus on the domain: What was the user’s intention when they clicked the form (for
example, Membership Requested)? And what item was saved to the database (for
example, Membership Application Received)?

PEOPLE, SYSTEMS, AND HOT SPOTS

In addition to orange domain events, other notation can be used in a big picture Event-
Storming session, as shown in Figure 7.3. Small yellow stickies are used to represent

Support
case

opened

Information
requested

from
customer

Customer
support
(system)

Support
requested

Takes
up a lot
of time

Customer Agent

Time
Figure 7.3 People, systems,
and hot spots

116 CHAPTER 7 Big picture EventStorming
roles or personas in the domain, like a customer, rider, or agent. Large light-pink stickies
are used to represent systems like an order management system (OMS) or an external
third-party payment platform. Rotated dark pink (fuchsia) stickies are used to repre-
sent hot spots. A hot spot is used as a placeholder to represent something important, like
a problem or an area of disagreement. Generally, these notations are gradually intro-
duced to keep the learning curve low.

EDGE CASES, PARALLEL FLOWS, AND LOOPS

In any complex domain, many branches will represent various possible scenarios and
edge cases. There are often processes happening in parallel, too. Unlike other tech-
niques, EventStorming doesn’t have a specialized notation to illustrate these concepts.
Yet they can still easily be represented. The most straightforward approach to visualiz-
ing multiple possible scenarios is to maintain a happy path on the main flow and show
edge cases as horizontal flows below the primary flow, as shown in figure 7.4.

Figure 7.4 Modeling edge cases as branches below the main timeline

Keep it simple with notation
At the start of a workshop, domain events on orange sticky notes are perfect. The
idea is to keep the learning curve low and engagement high. Additional notation adds
more complexity and can confuse people, so it’s best to add it once momentum has
been built and people feel comfortable. But even then, it’s best to use these nota-
tions sparingly. For example, there’s no need to show a yellow role next to every
orange event. It can get messy and distracting, making it harder to move things
around.

The goal isn’t to be precise; it’s to share knowledge and uncover insights. More nota-
tion does not necessarily mean more knowledge and insights. It can be counterpro-
ductive.

Scanned
QR code

Journey
started

Scooter
unlocked

Started
riding

scooter

Scooter
went

offline

System
went

offline

Happy path modeled
as main row on top

Edge cases modeled
as branches below
the main flow

Arrived
at

scooter

App
crashed

Time

1177.1 Understanding EventStorming
You’ll notice in figure 7.4 that the hot spot is left blank, whereas other figures have
explanations written on them. My general rule is that when the problem is already clear,
I’ll save time and leave the hot spot blank. In this example, it’s obvious that the app
crashing is a problem. Where there isn’t a single happy path, annotations can be added
at the start of each flow describing the name of the scenario, as shown in figure 7.5

Parallel flows can be visualized by splitting the main flow into multiple branches, as
shown in figure 7.6. If it’s not easy to discern whether a particular branch runs in
parallel or is an alternative scenario, additional notes can be added. The example in

•••
Scenario:

silver
member

Scenario:
bronze

member

Scenario:
gold

member

•••

Refund
requested

••• •••

•••

•••

Time Figure 7.5 Modeling multiple
scenarios as branches with labels

When the customer submits their
membership request, two processes
are started in parallel — antifraud
checks and onboarding assessment.

Bank
details

provided

Membership
requested

Parallel

Assessment
call slots
identified

Assessment
call

proposed

Member
onboarding
assessment

started

Account
manager

Antifraud
checks

scheduled

Address
history

reviewed

Antifraud
check
started

Fraud
checker

Time

Figure 7.6 Splitting the main flow into multiple branches for parallel flows

118 CHAPTER 7 Big picture EventStorming
figure 7.6 uses a yellow sticky note with the word parallel on it. In addition to these
techniques, it’s also possible to use various sorting strategies, covered later in the
chapter, like creating swim lanes to accentuate the nature of a domain and the differ-
ent flows.

 Representing loops is a more intricate question than just deciding how to visualize
them. We must ask, “Do we really need a loop here, or is there a better approach?” We
can’t go back in time in real life, and that’s generally the case with the timeline in
EventStorming.

 Take the example of a late payment to an ISP (internet service provider). If a cus-
tomer does not make a payment on time, the ISP sends them a reminder letter.
Another letter is sent if the customer still does not pay after 30 days. This may seem
like a loop, but is it? Does it continue forever, and is each loop iteration the same? For
example, if a customer ignores the first message, they receive another message with
stronger language and threats to disconnect the customer’s internet. If the customer
still does not pay, the third iteration would be a phone call rather than a letter. And
then, finally, if the customer still does not pay, their services are canceled, and the
debt collection process begins. So whenever you feel the urge to use special loop nota-
tion, first try mapping out a few iterations of the loop and try to identify what is differ-
ent with each iteration.

LINES AND ARROWS

A common desire in EventStorming sessions is to draw lines and arrows, as with other
techniques. Lines and arrows cannot easily be moved around as sticky notes can, and
this is highly problematic because domain events are moved around a lot in a typical
session. Conceptually, lines and arrows don’t make sense anyway because it’s impossi-
ble to travel backward and forward in time. It might seem hard as you fight against
your instincts, but you will quickly get used to not needing lines and arrows.

7.1.2 Chaotic exploration

In addition to a wall covered in orange sticky notes, the other defining characteristic
of big picture EventStorming is chaotic exploration. Most techniques for mapping out
user journeys and business processes have a structured step-by-step approach. Event-
Storming, on the other hand, starts with the whole group adding lots of domain events
and putting them on the wall in parallel. This looks very messy, and participating in an
EventStorming session for the first time can seem a little uncomfortable. However, the
chaotic phase of EventStorming is a key part of the philosophy. It enables every partic-
ipant to surface what they know about the domain and what is important to them, get-
ting as many ideas and insights as possible onto the wall with the fewest biases and
prefiltering possible. In essence, individual brainstorming aims to allow the most
important themes to emerge. The mess is easily tidied up and sorted out later.

 Chaotic exploration is also an enabler of emergent structure. This concept is about
allowing domain boundaries to emerge from the mess and chaos rather than defining
any structure upfront. Adding some structure up front, like existing domain or

1197.1 Understanding EventStorming
organizational boundaries, will bias the structures defined during the workshop. At
the same time, allowing structures to emerge using techniques like pivotal events (cov-
ered later in the chapter) is more likely to surface ideal domain boundaries that are
not influenced by incorrect assumptions.

 In some situations, chaotic exploration is not the right approach. Remote sessions
are one example. Chaotic exploration and parallel conversations are hard to recreate
remotely, so a single-threaded mode can be used where only one person is putting the
events on the timeline and other attendees are guiding them. I sometimes use single-
threaded mode for in-person workshops when the energy is low or I want to control
the direction of the workshop.

7.1.3 Optimized for learning and collaboration

For many people, the ideas presented in this section can make it hard to understand
EventStorming. For example, the lack of notation and precision often results in com-
ments like “This is a mess; it’s not consistent. Some events are very high level, and in
other parts of the timeline, there is much more detail.” Getting over these stumbling
blocks requires accepting that EventStorming is a technique optimized for collabora-
tion and learning. The timeline on the wall is a way for people to collaboratively map
out what they individually know into a picture of their collective knowledge as the
basis for conversations.

 If some parts of the timeline are more detailed, it may be because people decided
it was more valuable to zoom into certain areas and not others. It could also reflect
that some people who understand the less well-defined areas were missing from the
workshop. The sticky notes on the wall are just a prop for having great conversations,
sharing knowledge, and identifying opportunities for improvement. Don’t get too
obsessed with the artifact or reuse value after the session. But feel free to take pictures
and distill any important learnings into other formats after the session.

7.1.4 When to use EventStorming

Having EventStorming in your toolbox means being equipped to deal with a wide
range of scenarios. When building a vision for architecture modernization, it’s useful
for exploring parts of the domain to identify opportunities for modernization or vali-
date an existing proposal to modernize a particular area of the business.

 At one e-commerce client, we were looking for an area of the business suitable for
an initial slice of modernization. We had identified four candidate areas that seemed
like they could be a good fit based on delivering business outcomes and learning
opportunities. Still, we needed more information to help us make the final choice. So
we decided to run EventStorming sessions. After running an EventStorming session in
one area, we quickly ruled it out. As we got into the details of the domain, we could
see a large number of dependencies between the different subdomains. Modernizing
that area would have involved five teams and touching five code bases. It was too chal-
lenging and risky for an initial slice.

120 CHAPTER 7 Big picture EventStorming
 One of the fundamental themes of an architecture modernization effort is design-
ing software and organizational boundaries, which domain boundaries should drive.
For me, EventStorming is an essential tool in this process and often acts as the starting
point because the EventStorm can be partitioned into domains and subdomains, as
figure 7.7 shows.

Figure 7.7 Partitioning an EventStorm in domains and subdomains

What’s great about using EventStorming to define domains and subdomains is that
the EventStorm represents the collective domain knowledge of diverse perspectives.
This gives us a very high level of confidence that we are shaping domain boundaries
based on all of the key details of the domain, and we aren’t missing vital assumptions
(as long as we ensure all of the key people are in the workshop).

 Later chapters demonstrate using an EventStorm to identify domains and subdo-
mains (chapter 9), including a range of principles and heuristics. Other techniques,
like Domain Message Flow Modeling (chapter 12) and Team Topologies (chapter 11),
can then be applied to assess and refine the boundaries identified with EventStorm-
ing. Collectively, these tools help to challenge the design from many perspectives, giv-
ing a high level of confidence that all of the important factors have been considered
and the design is optimized for the desired modernization outcomes.

 This chapter focuses on big picture, while later chapters touch on process model-
ing (chapter 8) and software design EventStorming (chapter 12). Big picture is
optimized for chaotic exploration and group learning across a large area. Process
modeling can be used to map out smaller areas of the domain in higher granularity
using more structure and notation. It’s great for mapping out the current state and
designing new or improved processes. Software design EventStorming (aka design-
level EventStorming) adds even more structure and detail and is used as a stepping
stone to map between the domain and software that is highly aligned to the domain.

INDUSTRY EXAMPLE: EVENTSTORMING AT A COMPANY GET-TOGETHER

In 2021, I was contacted by an organization planning to meet in person for the first
time since the pandemic’s start. They were having a company get-together on a farm

Domain A
Domain B

Subdomain B.1 Subdomain B.2 Subdomain B.3

1217.1 Understanding EventStorming
in Germany, and they wanted an external person to run a workshop. My colleague and
I agreed to do an EventStorming session.

 On that day, we had many attendees spread across five teams in addition to cus-
tomer success people and even someone from accounting. The session was full of
talking points. I noticed a lot of conversations around topics that affected multiple
teams. People were connecting dots and seeing new opportunities that weren’t obvi-
ous when they were all working in their teams and not thinking about the big picture.
During the session, we also began exploring domain boundaries and started conversa-
tions about how the company should be organized as it entered a period of growth.

 One of the workshop’s most fascinating moments occurred as we talked through
the timeline as a group. As a facilitator, I was asking general facilitation questions to
try and uncover insights. I pointed to one event that was part of an edge case repre-
senting a bug. I asked a developer, “How often does this happen?” He intimated that it
wasn’t a prevalent problem and wasn’t something we needed to spend time on. At that
moment, a member of the customer success team joined the conversation and
explained to the whole room that it was quite a common error. She had spoken to two
users that morning who had reported that type of problem.

 This is typical of what happens in an EventStorming session. In our day-to-day
work, we carry around many incorrect assumptions and misunderstandings about how
the business works, like the developer who thought that a bug in his team’s code
wasn’t that big of a problem. In an EventStorming session, when we bring a diverse
group together, we create a space where we can learn and correct our misunderstand-
ings and make better decisions during our day-to-day work.

 At the end of the workshop, we had a compelling presentation. We walked along
the EventStorm, describing how the business works and how different products fit
together. People would step in and out of the conversation to clarify points and add
extra details. At one point, a team mentioned that they would build an API to fix a
problem that had been raised. But then another team explained that they already had
an API that does what is needed. That evening those two teams were sitting together at
dinner, and they implemented the code to call the API and resolve the problem raised
during the day.

 When everybody went back to work, there were probably more improvements like
this. Everybody now had a much better understanding of the big picture, and when-
ever they were doing work in their team, they were better aware of how it might affect
other teams and where they might get help.

 One thing to take away from this story is that EventStorming is a technique that
creates a space where valuable conversations and learning take place. If multiple
teams work in the same business area or as part of a larger initiative, just bringing
them together for an EventStorming session could lead to many positive outcomes
even without a clear purpose up front. That’s discovery—we don’t know what we will
discover. It’s hard to put a return on investment on a discovery workshop, but if you
don’t invest time in discovery, you may never know what important learning opportu-
nities you’re missing.

122 CHAPTER 7 Big picture EventStorming
7.2 Running an EventStorming session
While EventStorming is based on a simple notation that allows a large group with
diverse skills and expertise to collaborate easily, I must admit that planning and run-
ning an EventStorming is a bit more challenging. Finding a time that works for every-
body, preparing a room with a lot of modeling space, and especially managing the
dynamics of a mixed group of personalities can be tricky. Fortunately, it does get eas-
ier after the first few workshops. Like most skills, practice and perseverance is the key.
This section is to help prepare you for your first workshop by providing guidance for
each step of the process.

7.2.1 Planning a session

Scope and purpose are the first elements to consider when planning a big picture
EventStorming session. If you set the scope too narrow, you may miss important con-
nections between different parts of the domain that are crucial to the area on which
you are focusing. Yet if you set the scope too broad, you’ll have to invite too many peo-
ple, and it may become impossible to facilitate such a large group. I usually work to
the constraint of around 15 attendees for a big picture EventStorming session, with an
upper limit of around 22, possibly more if the attendees are experienced and there
are multiple facilitators. I find this number to be a sweet spot for many diverse insights
and perspectives without the number of people becoming overwhelming. With this
human constraint in mind, it’s then a question of how wide you can set the scope
while including all the people that need to be in the session.

 To build an accurate picture of how the business works, attendees should repre-
sent as much of the business as possible: UX designers, product people, subject matter
experts, engineers, testers, support people, and so on. Let’s say you are building a pro-
posal for the first slice of modernization and have identified a particular domain
(scope 2) that could be a good starting point. The domain contains five subdomains,
each owned by a separate team, with approximately 30 software engineers working in
the domain. The minimum attendee list would look something like this:

 5 software developers (at least one from each team)
 1 principal engineer/architect/engineering manager (responsible for the

whole domain)
 2 product managers (collectively responsible for the whole domain)
 1 UX designer (works across the whole domain)
 1 subject matter expert
 1 customer support agent
 1 ops/platform engineer
 1 tester

Choosing a single scope-2 domain assumes that the boundaries at that level have
already been established. But what if they haven’t, and the purpose of your workshop

1237.2 Running an EventStorming session
is to define them? In this scenario, it would make sense to have a series of workshops
first defining the scope-2 boundaries and then having deeper-dive sessions into each
of them. EventStorming workshops that cover multiple scope-2 domains could span
across 15 teams or more, so at that level, it may not be possible to have an engineer
from every team. It may be just the tech lead of each domain that joins.

NOTE Architectural scopes 1 to 3 were introduced in chapter 6. They are an
essential mechanism for analyzing, designing, and making decisions about
architecture at different levels of abstraction.

Inviting the participants and helping them to see the importance of attending the ses-
sion can sometimes require effort and patience. There is usually a desire for clearly
defined outputs and an agenda for the session. Since EventStorming involves a large
amount of discovery, providing a list of specific outputs and a minute-by-minute
agenda up front is not possible.

 In the context of modernization, I find that connecting back to the purpose of the
initiative is usually sufficient with a description like “We are looking to modernize this
area of the business, and this workshop is going to involve mapping out the current
state and exploring future states,” or “We are looking to define the domains and sub-
domains in this area, and we will be using a technique called EventStorming as the
starting point.”

 Duration is also an important consideration. For a basic EventStorming session
with a little time to explore problems and opportunities, I suggest 3 hours as a mini-
mum. Alternatively, if you plan to map out a domain, explore multiple problems and
opportunities that arise, and identify subdomains, then I recommend setting aside 3
full days as a starting point.

7.2.2 Preparing the space

The available space and layout of the room can greatly influence how well the session
goes, so preparing the modeling space is essential. At a minimum, you should aim for
8 meters of wall space, like in figure 7.8, where participants can easily gather and
move around. It’s best to put paper on the wall using a roll of paper because it’s too
risky to rely on the wall surface being suitable for stickies (unless you have used the
wall and are confident it will be OK). A small table for all the stickies, pens, and other
workshop stationery is also needed. Apart from that, removing all other tables from
the room is best to minimize outside distractions like people using their laptops. A
typical session lasts between 3 hours and a whole day, so it’s unreasonable to forbid
chairs completely, but you might want to take them away for the first hour or two
when you want energy and engagement to be high. One benefit of virtual sessions
using tools like Miro is that you don’t need to worry about these things and get unlim-
ited modeling space.

124 CHAPTER 7 Big picture EventStorming
7.2.3 Kicking off the session

I like to start workshops with a quick overview of the purpose, followed by a social check-
in question with some connection to the workshop theme. In addition to the usual
introduction covering the person’s role in the company and their hopes for the work-
shop, this question also creates a space for people to reveal something about themselves
and bring some fun into the session. Some examples I’ve used include the following:
“What was your first job?” “What was your favorite TV show when you were a child?” and
“Who would you most like to meet (any person living or has lived) and why?”

 There are multiple possibilities for beginning to map out the domain. Some peo-
ple like to dive straight into EventStorming and build the timeline (covered in the
next section), while others like to begin with other activities. EventStorming is inten-
tionally chaotic at first; it can be a while before people start seeing the value. There-
fore, I like to start with an activity that gets people warmed up thinking about the
domain and delivers enough value that people have confidence that the rest of the
workshop will also deliver value. The technique I use is mapping out roles and perso-
nas in the domain.

 By listing all the people in the domain and describing their purpose, jobs to be
done, and other helpful information about them, you start to touch on different areas
of the domain and have valuable conversations. You’re already starting to build the
big picture and form connections, which is ideal preparation for a big picture Event-
Storming session. Product and UX people may have already done this, but I recom-
mend starting from a blank canvas. The purpose is to get warmed up for the session
and get everybody thinking. Then, preexisting personas can be brought in afterward
as a comparison.

 In figure 7.9, you can see an example of mapping out roles and personas in a
domain. This is based on a workshop with a client in the real estate sector (the

Figure 7.8 A room prepared
for an EventStorming session

1257.2 Running an EventStorming session
content is not real). Just by listing out the roles and responsibilities, people began par-
titioning them into demand side and supply side and defining key terminology. We also
highlighted where the same person could play multiple roles, like a single person is
often a buyer and seller simultaneously.

Figure 7.9 Mapping out roles and personas before kicking off an EventStorming session

7.2.4 Building the timeline

When you are ready to begin EventStorming, the first step is to build the timeline.
Each person is given some orange stickies and a pen. Then everybody is told to start
adding domain events along the timeline, placing them wherever feels right. A short
explanation of domain events is required first, and then people can start adding stick-
ies anywhere they like.

 I typically explain domain events as something that can happen in the business pro-
cess or the user’s world, phrased in the past tense. And I provide some general examples
like Order Placed, Menu Published, Incident Reported, and Device Activated. It’s also
important to explain that things can be imperfect. I emphasize to attendees that the
first part is a messy brainstorming phase, and then we’ll tidy everything up.

 A more controlled technique for beginning the session is facilitating the initial few
events. As the facilitator, ask an attendee to give an example of an event and place it
on the timeline. Then ask another attendee for a different one. In this mode, I get
attendees to think of events happening at other parts of the timeline, as shown in
figure 7.10. This way, people think about the whole process and fill up the entire
timeline on the wall. The whitespace between the events indicates that I expect

Supply side

Landlord

Landlord:
The owner who is
renting out a home.

Seller

Home
owner

Home
developers

Construction
firm

Marketing
agency

Demand side

Home
seeker

Buyer

Renter

Investor

Investor:
Someone buying a
home they will rent
out to someone else.

Buyers are also
often sellers

126 CHAPTER 7 Big picture EventStorming
attendees to fill in the gaps and get into the details of the domain rather than staying
at a high level. After four or five seed events are added, and people know what a good
domain event is, the session switches to chaotic exploration.

The first few moments when building the timeline can be a confusing period. People
still aren’t exactly sure what to do and what a domain event is. As a facilitator, the best
thing to do is keep reminding people not to worry because the timeline will be tidied
up and sorted out later. At first, the goal is to get as many events on the wall as possible
wherever they seem to fit. However, you will need to step in and correct people if they
go too far off the tracks. For example, if you notice someone not putting events in the
past tense, you can gently correct them. After 5 minutes, some people may not have
put on any events, so you can ask them if you can do anything to help. You may want
to encourage them by asking them to describe their work and then start modeling it
for them, but then politely step back and let them know that they should continue.

 I don’t mind if people are talking during the first phase as long as they continue
adding events and discussing the events on the wall. If it seems they are talking too
much, I recommend politely encouraging people to keep brainstorming events and
letting them know we’ll discuss them later. As a rough guide, I like to see at least 25
minutes of solid activity and a wall that is well-covered with orange stickies before
allowing long conversations. When the energy dips, you can announce to the group
that it’s time for a break, and when we rejoin after the break, you’ll tidy up the mess
and make sense of it.

7.2.5 Sorting the timeline

This phase involves tidying up the messy timeline using one of the multiple sorting
techniques. The most straightforward approach is to ask the group to review all of the
events and put them in what seems the correct order. Not all events will naturally fit in
a single place, so you can let attendees know they can either pick one place or dupli-
cate the events for now. This is often a good point for the group to use the roles/per-
sonas and external systems notation.

 Just asking a group to sort the timeline out is a bit optimistic, so a more structured
approach can be helpful. The most common approach is called pivotal events, which
involves slicing the timeline into sections using special events as the point of delinea-
tion between different areas, using yellow strips of tape to highlight them. I also make
the pivotal events larger and black when working remotely, as shown in figure 7.11.

 Choosing pivotal events is not an exact science, yet people often seek precision and
perfection when identifying them. The most important thing is to split the timeline
into roughly 5 to 10 smaller sections so the events can be sorted more easily. My

Time
Figure 7.10 An EventStorm seeded with
initial events and a lot of whitespace

1277.2 Running an EventStorming session
simple explanation for identifying pivotal events is to look for a transition point, like
the start or end of a process or subprocess. Some examples include Membership
Requested, Support Ticket Raised, Account Deactivated, and Article Published. One
way to check if you have suitable pivotal events is to ask: Do the pivotal events alone
tell the high-level story of the domain?

 It’s also possible to sort an EventStorm using horizontal swim lanes. However, this
isn’t an approach I often use because it can be too constricting, but it can be a good
choice when the domain involves intricate back-and-forth interactions between multi-
ple actors.

 As shown in figure 7.12, temporal
milestones is another approach where
the timeline is partitioned based on
specific moments. For example, I ran
an EventStorming session for an air-
line technology company that builds
software to help airlines plan and
manage flights. We added temporal
milestones like the day of the flight,
the day before the flight, one week
before the flight, one month before
the flight, and so on based on mile-
stones that had the most significance
to domain experts.

7.2.6 Timeline walk-through

After the timeline has been reasonably sorted, the whole group comes together and
walks through the timeline. This is when people will start to see the big picture and
how different parts of the business may influence each other. It’s a time when people
learn a lot about parts of the company with which they aren’t familiar. As the facilita-
tor, I ask an attendee to volunteer to walk the timeline. When they do this, they read

]

Pivotal events used to sort
the EventStorm into areas

Figure 7.11 Using pivotal events to sort the timeline

Day
–40

Day
–60

Temporal milestones used to sort a timeline
by giving a sense of how much time passes
between events

Figure 7.12 Using temporal milestones to sort a
timeline

128 CHAPTER 7 Big picture EventStorming
out the events on the timeline like a story as they walk from left to right along the
timeline. Questions are allowed from attendees and the facilitator at any time.

 When walking through the timeline, the intention is not to stop and discuss every
problem or opportunity. The intention is first to tell the end-to-end story so that every-
body can see the big picture and second to identify all possible interesting conversa-
tions. Therefore, at this stage, you can use hot spots as a placeholder, as shown in figure
7.13 (hot spots can be placeholders for anything you want to return to, like problems,
complex parts, disagreements, etc.). Whenever a conversation about a specific area of
the timeline lasts for more than 2 minutes, let the group know that you’re placing a
hot spot and will continue moving along the timeline.

As you’re walking the timeline and tell-
ing the story of the business, you may
want to add and refine events or con-
tinue adding additional notation, such
as systems and roles. It’s also good prac-
tice to define important or confusing
industry terminology, as demonstrated
in figure 7.14. For in-person sessions,
you can use large yellow sticky notes or
small sheets of paper for terminology
definitions.

Subdomain
labels

Hot
spot

Figure 7.13 A group
walking the timeline,
adding hot spots and
domain boundaries

Monthly
report

requested

Agent report
system

Draft report
prepared for

approval

Agent

Agent report

Essential report that agents use
to determine where to invest their
efforts in the following month.

Figure 7.14 Adding roles, systems, and clarifying
terminology

1297.3 Surfacing problems and opportunities
7.3 Surfacing problems and opportunities
For modernization leaders, it’s essential to understand more than just how the current
system operates. Identifying the problems and opportunities present within the land-
scape is important to ensure that modernization delivers more than just rewriting the
old system with new technologies. Having built and sorted the timeline with many key
people in the room, this is the perfect opportunity to surface these insights. There will
already be some hot spots on the timeline from the walk-through. Still, before voting
on which of them to dig into, it’s good to give participants 5 to 10 minutes to add their
problems and opportunities using the same hot spot notation for problems and green
stickies for opportunities.

 One thing I always appreciate about this part of the workshop is that everybody has
great ideas. People we might label as technical, such as developers, testers, and archi-
tects, often have some of the best business and product ideas. Accordingly, as a facilita-
tor, it’s vital to encourage everyone to share their ideas regardless of their role. The
whole team is responsible for discovery and delivery when moving toward a product-
centric operating model. So this type of moment is a perfect opportunity to encour-
age and role model these desired cultural behaviors.

7.3.1 Problems

There’s no real limit on the type of problem that can surface in an EventStorming ses-
sion. Anything negatively affecting the customer, employees, product, internal pro-
cesses, company culture, system reliability, or job satisfaction might be worth
highlighting. This section touches on some common examples to give you an idea of
what to expect.

USERS DROPPING OUT OF A FLOW OR FUNNEL

Users dropping out of a flow is something I
always look for because this is often a place
where something about the product is not
optimized, and the business is missing out on
potential revenue. Events like Shopping Basket
Expired, Customer Switched to Competitor,
and Monthly Plan Canceled shown in Figure
7.15 are all examples of a customer dropping
out of some pipeline or funnel where it might
be valuable to dig deeper and understand why
these events are happening and how they can
be prevented.

USER FRUSTRATION

User frustration, in general, is something to always look for. Which parts of their expe-
rience interacting with your products and organization cause them the most stress,
disappointment, and anger? Maybe the product forces them to jump through too
many hoops to get a simple job done, or the customer support workflow bounces

5 free
days

offered

5 free
days

rejected

Monthly
plan

cancelled

Customer cancels their plan and
is no longer a customer. What
can we do to prevent
this from happening?

Figure 7.15 A customer dropping out
of the funnel, resulting in lost revenue

130 CHAPTER 7 Big picture EventStorming
between multiple agents, giving them contradictory information. Multiple people
who understand users’ needs, like product managers, UX researchers, and support
agents, are essential in uncovering true user frustration. When building internal prod-
ucts, you should invite the users themselves into the workshops to get their first-hand
experiences.

 There are usually multiple perspectives to consider when looking at ways to
address user frustration. On one side, how can you prevent the problem from happen-
ing? And on the other side, if it cannot be fully prevented, how can you mitigate the
problem when it does occur? One company devised the idea of incentivizing users to
flag incorrect data. This helped prevent future problems and helped deal with them
by showing users that they were trying to address the problem.

UNRELIABLE TECHNOLOGY

In some domains, technology is a major source of problems, from unreliable systems
that contribute to poor user experience to IoT systems where devices can suddenly go
offline or start behaving erratically. When I worked with a travel company, one of the
employees responsible for configuring holidays explained how she had to create
records in a mainframe system and then copy the ID generated by the mainframe sys-
tem into another system so she could configure other aspects like the price. As you can
probably guess, a range of problems resulted from an unintentional human error to sys-
tems that failed to synchronize correctly. This shows why getting into the details of dif-
ferent systems is important. Adding some of the big pink stickies to the timeline may
unlock valuable conversations about key technology modernization opportunities.

MISSING AND DISPUTED KNOWLEDGE

Knowledge—both missing and disputed—is another major source of problems. In
one EventStorming session I ran in 2019, nobody understood how the product
worked beyond the UI because all the developers who worked on that part of the sys-
tem had left. Normally, it’s not this extreme, but a lack of knowledge is common and
worth highlighting.

 Disputed knowledge can be even more interesting when different people disagree
on the facts. In 2017, I was running a workshop for a company in the financial advice
industry, and I asked, “How is this metric calculated?” A developer jumped in to
explain the algorithm, but then the head of marketing overruled them. The devel-
oper opened his laptop to verify how the code worked, and the marketing manager
was shocked to realize why their reports had not been making sense. They had been
carrying that misconception around and making decisions based on it for a while.

PROCESS INEFFICIENCIES AND BOTTLENECKS

Lead times are always useful information to look for in an EventStorming session.
How long does a customer have to wait to receive an order? How long does it take for
a new restaurant to be onboarded? How many refund requests are being processed
per day? When processes like these are inefficient, revenue, customer experience, and
operating costs can all be negatively affected. This is why it’s important to invite
people to the workshop who are responsible for carrying out these processes and to

1317.3 Surfacing problems and opportunities
ask questions about how long things take and how long the duration can vary. A very
simple facilitator question is, “What is the range of durations between these two
events?” Even though an EventStorm is represented as a timeline, the durations aren’t
always clear, so it’s worth making them explicit.

7.3.2 Opportunities

Every problem can lead to opportunities, but many types of opportunities can be
found even when things are working well or as expected. For example, during an
EventStorming session, one good question that can help find improvements is to ask,
“How could we benefit from this happening earlier?” In the domain of eScooters, a
company could have marketing campaigns at train stations so that when people get
off the train, they see the ads and pick up a scooter. Thinking about how this could be
done earlier, you might decide to run advertising campaigns on the train so that peo-
ple are thinking about scooters even before they get off.

Figure 7.16 Does making an event happen earlier in the process improve business
outcomes like customer acquisition?

TARGETING NEW CUSTOMER SEGMENTS

Modernization is an investment that positions the company to grow and innovate.
One type of opportunity to look for is expanding the TAM (total addressable market)
of your products and services. As you walk through the EventStorm, ask, “Which cus-
tomers that we don’t currently attract might be interested in this?” or “How much
would we have to adapt this part of the system to make it appealing to different types
of customers?” For example, if the product is B2C, could it be adapted for B2B as well?
Think back to the Uber example from the last chapter, where the fulfillment platform
supports more than 10 verticals. An EventStorming session would provide a great
backdrop for discussing other potential scenarios in which their fulfillment capabili-
ties could help target new customer segments.

USING DATA BETTER

A common theme you’ll encounter in EventStorming sessions is data. You’ll hear com-
ments like “If we were able to capture more of this information, we could use it to do

Agreed to
meet

friends for
lunch

Got on
train

Got off
train

Saw
scooter
advert

Train
journey
started

Train
arrived at

destination

Make this event happen earlier
to improve business outcome
(customer acquisition)

New rider

132 CHAPTER 7 Big picture EventStorming
<thing> much better,” or “We capture so much data, and there is so much more we
could be doing with it.” As a facilitator, you can bring awareness to these topics and
ask people to add opportunities along the timeline where they think more useful data
could be captured or applied. In one session with a health organization, we were dis-
cussing how some doctors were problematic partners because of their unresponsive-
ness. One of the engineers raised the point that the organization already has tons of
information and could very easily start measuring the performance of doctors and
advising customers accordingly much earlier in the process about the most responsive
doctors in their region. The problem was that the data was fragmented across various
legacy systems and databases.

INCREASING ENGAGEMENT

In some domains, exploring opportunities to increase customer engagement can be
valuable. When I worked with one travel company, they explained that seasonality was
a big problem. People book a holiday once per year, and for the rest of the year, there
is little or no continued engagement. The travel company was looking for ways to
increase year-round engagement with the customer, like writing useful content to
build stronger connections and loyalty with their customer base. EventStorming, with
its timeline-based approach, provides a good backdrop for these conversations. For
example, in-between each customer interaction, you can ask the question, “Are there
ways we could engage with the customer in this gap?”

USING NEW TECHNOLOGIES

As we saw in the Wardley Mapping chapter, landscapes are continuously evolving.
During an EventStorming session, it’s important to consider how the landscape has
evolved recently and what new opportunities may be available. This could be in the
form of new technological advancements or new software-as-a-service (SaaS) products
that have entered the market. It’s always worth challenging each part of the timeline
and asking, “Has the landscape around this event changed? Are there any new possi-
bilities that weren’t available when this part of the system was originally designed?”

7.3.3 Addressing problems and opportunities

In most cases, you will uncover a large number of problems and opportunities. You
won’t have time to address all of them during the session, so you will need to work as a
group to decide the best use of your time together. The default approach is dot vot-
ing, where each person gets a set number of votes to put next to the discussion points
they think are the most important. In some cases, a single key stakeholder may deter-
mine where to focus when the workshop has a specific purpose and the stakeholder
has the greatest understanding of the matters that need to be covered.

 For any matters that cannot be addressed during the session, there are a number
of follow-up possibilities available, including

 Organizing further big picture workshops scoped to a particular area.

1337.4 Facilitator tips and challenges
 Spending time with users to fully grasp their experience. EventStorming is
great, but sometimes the best way to learn about the domain and its opportuni-
ties is to spend time with the people working in it.

 Scheduling process modeling EventStorming sessions to design new and future
state processes.

 Scheduling workshops to validate domain boundaries (using techniques cov-
ered in the following chapters).

Having discussed the format of workshops and how an EventStorm is a great founda-
tion for uncovering problems and opportunities, it’s important to facilitate workshops
effectively to unlock the potential of these concepts, which is the theme of the next
section.

7.4 Facilitator tips and challenges
Slapping stickies on the wall in an approximate timeline sounds quite simple, yet the
more you practice EventStorming, the more you learn to extract benefits from each
session. The learning curve for attendees is intentionally small, but as a facilitator, the
learning curve is nearly infinite. Nothing beats practice, but the following tips and
tricks will help you to accelerate your learning curve and avoid common beginner
problems.

7.4.1 Modeling heuristics

The quality of the events placed on the timeline can greatly affect the insights gained
and the problems and opportunities uncovered. Good events prompt people to ask
interesting questions and allow the knowledge of different people to be connected to
a collective vision of how the business works.

 As touched on throughout the chapter, there aren’t strict rules, processes, or flow
charts to help you determine what a good event is. And it probably wouldn’t be useful
anyway because the idea is to maximize the number of ideas shared and then filter out
what is not useful rather than risking important information not being shared because
people are worried about breaking the rules. Yet some heuristics can guide you in the
right direction without harming participation, and they are the focus of this section.
Just remember not to apply them too eagerly at the start of a workshop to ensure that
you don’t make people uncomfortable and put them off while they are acclimatizing
to this new technique.

BE WARY OF OVERABSTRACTION

When domain events abstract away too much information, they keep important
domain nuances hidden. Figure 7.17 shows a sequence of events that seems like good
domain events. They’re on orange sticky notes, they’re phrased in the past tense, and
they explain what is happening in the domain rather than being too technical, like
button clicks and database transactions. However, a large amount of complexity is rep-
resented by just four events. There’s little to be learned at this level of detail. How can

134 CHAPTER 7 Big picture EventStorming
we identify opportunities to improve the processes of signing up, subscribing, or creat-
ing campaigns if they are each covered by a single sticky note?

The scope of the workshop will have an effect on what is considered too high level and
what is reasonable, and it’s likely not possible to get deep into the details in every part
of the domain. Deciding where the group should and should not focus is one of the
most important skills as a facilitator and, unfortunately, one of the hardest to master.

DON’T MODEL; TELL A STORY

To compensate for overly abstract events, a good heuristic to keep in mind is “Don’t
model; tell a story.” This little cliche means embracing the details and the specifics
and not trying to create abstract models that cover all use cases. Applying this heuris-
tic to the example in figure 7.17 would mean telling a story about a real advertiser. We
might define a persona and describe more specifically what they are seeing and doing
at a granular level of detail. We can then start to tell the story of another advertiser
and see how their experience is different, as shown in figure 7.18, where the sign-up
process varies based on the size of the company for which the advertiser works.

 For engineers and architects who enjoy modeling, this may feel unnatural. But it’s
an important ability to be able to switch between specifics and abstract models at
appropriate times.

REPEATING DIVERGENCE

When you identify divergence in the domain based on some characteristic, it’s a good
idea to look for similar divergence throughout the timeline. In figure 7.18, the time-
line initially diverges based on whether the advertiser works for a startup or an enter-
prise. After the sign-up phase, the timeline may converge and the experience could be
similar in some places, but the type of advertiser may be a reason for subsequent diver-
gences later in the flow.

Advertiser
signed up

Subscription
purchased

Campaign
published

Campaign
created

Events are too high level. We don’t learn
anything at this level of detail. If we
model more granularly we will uncover
problems and opportunities.

Time Figure 7.17 Overly
abstract events

1357.4 Facilitator tips and challenges
The example in figure 7.19 shows an event, Advert Received No Engagement, where
an advert is performing poorly. This can happen to both types of advertisers, but what
happens next varies. The startup plan only includes free generic advice to help
improve the performance of the advert, whereas the customized plan includes help
from an expert.

Figure 7.19 A timeline that converges and then diverges at some point later based on the same
characteristic

Startup
advertiser

Enterprise
advertiser

Startup
plan

selected on
website

Sales call
requested

Customized
plan

purchased

Account
manager
assigned

Onboarding
call

scheduled

Plan
activated

Number
of users

specified

Order
reviewed

Startup
plan

purchased

Telling stories about different
types of customer reveals
variations in the process

Time

Figure 7.18 Tell stories for different customer segments or personas.

Generic
advice
offered

Expert
help

offered

Startup
plan

purchased
online

Customized
plan

purchased

Advert
received no
engagement

••• ••••••

Applies to

Applies to

Time

136 CHAPTER 7 Big picture EventStorming
Note that the arrows in figure 7.19 showing the relationship between events are anno-
tations used to clarify the visualization. You wouldn’t draw those arrows in a real
workshop.

BE CURIOUS OF UNINTRODUCED CONCEPTS

When a new concept suddenly appears on the timeline, it may be a sign that parts of
the domain have not been represented. In Figure 7.19, for example, the domain role
of an expert appears in the event Expert Help Offered. If this is the first time the con-
cept appears on the timeline, it’s good to ask some probing questions like “How does
an expert come to be available at this moment?” or “Could you describe the story of
an expert?” By adding the story of the expert to the timeline, it may reveal new
insights and opportunities that people thought were irrelevant. Discovery is all about
exploring new avenues and challenging assumptions.

QUALIFY EVENTS WITH THE SAME NAME

Sometimes there are events that appear in multiple places in the timeline. At first, it
might seem like the same event, but there is a danger that a subtle difference exists
between the events that is hidden. A good facilitation question is, “Can the same
things happen after each event?” In the airline example mentioned previously, what
appeared to be a single event had different effects according to the temporal mile-
stone (e.g., one day before the flight vs. six months before the flight) so unique event
names were created to make the nuance explicit. It may seem pedantic or academic,
but clarifying and cleaning up domain terminology to create a common language
makes collaboration much easier.

KEEP SIMILAR EVENTS THAT LOOK THE SAME

Sometimes it might appear there are multiple events representing the same thing,
and you might be tempted to keep one and throw the other away. However, before
doing so, it’s worth digging deeper. It might be that the two events represent slightly
different things or the same event from different people’s perspectives. Two events
that appear to be the same might even be an indication of domain boundaries. Take,
for example, the events Message Sent and Message Received. It may seem like they
happen at the same exact time and represent two perspectives of the same thing. How-
ever, they could represent each side of the boundary between two subdomains like
Message Composition and Message Viewing. This is an example of a more general
heuristic, Make Conflict Visible. You don’t always need to rush to find a solution;
sometimes, it’s good to visualize conflicting opinions and let them stand for a while.

USE EMPTY SPACE PURPOSEFULLY

As a facilitator, you can use whitespace to encourage participants to proceed deeper
into the details. If you feel that the events are high-level and overly abstract, you can
take two events together, spread them out, and let the group know that you would like
them to fill the gap with more events at a more granular level. This is the heuristic
from figure 7.10, which uses whitespace to set the expectation that you want them to
fill the whole wall with stickies. You can do this at any point during the workshop.

1377.4 Facilitator tips and challenges
COMBINING EXAMPLE MAPPING AND EVENTSTORMING

Example Mapping (https://cucumber.io/docs/bdd/example-mapping/) is a collabo-
rative technique used for uncovering different scenarios and edge cases. When com-
bined with EventStorming, it is a great way to zoom in on particular areas of the
domain and search for hidden insights and complexity at a higher level of granularity.
It’s like taking a magnifying glass to a small area of the domain.

 EventStorming-flavored Example Mapping
starts by picking an event on the timeline and
then specifying an action, using a blue sticky
note, that triggers the event. For example, the
Order Canceled event may be triggered by the
Cancel Order action. Then, the goal is to think
of other scenarios that can apply when the
action is performed. For example, if a customer
requests a refund for an order that has already
left the warehouse, then a Cancelation Denied
happens instead. As figure 7.20 shows, the sce-
narios are inserted as green stickies between
the action and the event that occurs in the
given scenario.

 When switching to Example Mapping
mode, I always try to encourage participants to
think of as many scenarios as possible and to
be creative, thinking outside of the box. As you
uncover more scenarios, you may realize that it makes sense to split them and make
certain concepts more explicit. In figure 7.20, for example, it may be better to split
out the voucher scenario into a separate action that focuses on all the scenarios relat-
ing specifically to vouchers. Keep in mind that it’s unlikely you will have time to apply
Example Mapping to every single event on your timeline, and you don’t want to intro-
duce the technique too early in case you prematurely zoom into an area at the
expense of making bigger-picture discoveries.

7.4.2 Common challenges

Facilitating EventStorming sessions can be challenging. From getting people into the
right mindset to dealing with difficult people who refuse to collaborate, most chal-
lenges are people related. This section outlines some of the common challenges you
are likely to face and some tips on dealing with them effectively.

GETTING ATTENDEES INTO THE DISCOVERY MINDSET

Something often overlooked when planning EventStorming and other discovery work-
shops is the need to create an environment where attendees can embrace the creative
discovery mindset needed. When people are under pressure to deliver, particularly with
urgent deadlines, it’s a big challenge for them to put that to the back of their mind and

Order
canceled

Item hasn’t
left

warehouse

Cancel
order

Item has
left

warehouse

Vouchers
that

haven’t
been used

Cancelation
denied

Vouchers
refunded

Action Scenario Outcome/event

Shopper

Figure 7.20 EventStorming-flavored
Example Mapping

https://cucumber.io/docs/bdd/example-mapping/

138 CHAPTER 7 Big picture EventStorming
spend hours or days mapping out business processes when it feels like no immediate
progress is being made on short-term goals.

 For an effective session, leaders must ensure that discovery work is prioritized
accordingly and is not just an extra commitment that people are expected to do in
addition to all of their other commitments. It doesn’t hurt to reach out to workshop
attendees ahead of time to ensure that they aren’t already overcommitted. Otherwise,
when they attend the workshop, their mind will be too focused on their other priori-
ties, and they will probably be multitasking as well. For an EventStorming session to be
effective, you really want everyone to be fully engaged and excited to be sharing their
knowledge of the business and learning from others.

AVOIDING BIKESHEDDING

Bikeshedding (http://mng.bz/6njZ) refers to the phenomenon of spending lots of
time debating details that don’t really matter in the grand scheme of things. This was
the cause of one of my biggest EventStorming failures, where an angry manager
shouted at me in front of his team. We started walking the timeline, and the group
spent a long time debating the registration process. I thought things were going great
because there was lots of discussion. But I understand why the manager got angry: the
registration process wasn’t really that important. In a workshop where everybody was
together (flown in from different countries) for just a few days to discuss bigger prob-
lems, there were more important things to focus on in the limited time.

 To minimize your chances of repeating my mistake, don’t let any conversations last
for more than a few minutes when you are walking the timeline. Try to reach the end
of the timeline before you dive too deep into one area. If it’s truly the most important
thing to talk about, the group will choose via voting to come back to it once they’ve
reached the end of the timeline.

WE’VE ALREADY GOT DIAGRAMS OF THIS

Some people resist the idea of EventStorming because they think it is redundant.
They’ve already created diagrams in some other format like UML or BPMN. In one
workshop, a process engineer said, “I’ve got diagrams of all these processes; I don’t
see the point in this workshop” and continued to labor the point throughout the
workshop. One of the employees who worked in the area for which the diagrams were
created said, “Well, where are they then? We’ve never seen them.” The process engi-
neer then conceded that the diagrams were outdated compared to what we had so far
discovered in the workshop.

 Sometimes a clash of cultures occurs where people think EventStorming is not as
good as their existing tooling. I try to speak rationally with these people and invite
them to the workshops, but if their behavior during the workshop becomes a prob-
lem, they should be removed. Sometimes, however, the problem runs deeper, and
people think that they are expected to be the expert in the company’s processes. An
EventStorming session is a concern because it may reveal things that the expert
doesn’t know, or the expert likes to hoard knowledge to protect their status in the
company. This is a much more complex social situation; how you approach it will
depend on your relationship with the people involved and your company culture.

http://mng.bz/6njZ

1397.4 Facilitator tips and challenges
CAN’T SOLVE EVERYTHING IN A TWO-DAY WORKSHOP

Sometimes people are disappointed that they haven’t redesigned their entire system
and designed new Team Topologies by the end of a two-day workshop. These are
unrealistic expectations, so it’s important not to overpromise or overhype what is pos-
sible with EventStorming. Ensure realistic expectations are set in the invite and rein-
forced when kicking off the session.

IN-PERSON VERSUS REMOTE

When the pandemic took off in 2020, many EventStorming practitioners desperately
sought ways to run remote EventStorming sessions. The focus was firmly on recreating
that in-person experience as closely as possible in virtual environments. Many were dis-
appointed because the remote experience was so different and lacked many of the ben-
efits of in-person, such as parallel conversations and the ability to read body language.
Meanwhile, others in the community set about looking for ways to optimize the online
EventStorming experience, and they exceeded all expectations, not by recreating what
worked in person but instead by playing to the strengths of virtual environments.

 In-person EventStorming sessions require everybody to be in the same physical
space. In many organizations, that takes a large amount of coordination, and in some
organizations, it’s almost impossible. The constraint of being in the same physical
space also means that a whole series of workshops needs to be crammed into a short
space of time when everyone is together. Remotely, these constraints don’t exist
(although it’s still difficult to find a suitable time when everyone is available). It’s pos-
sible to run many shorter sessions over a longer period of time. For example, I often
run 2- to 4-hour sessions when running remote sessions. These can be spread over
weeks or months, and after each session, we have opportunities to reevaluate the next
steps and who to invite.

 Remote sessions also benefit from not being constrained by physical sticky notes.
In fact, virtual whiteboard tools like Miro allow you to be far more expressive, with a
wider variety of shapes, colors, images, and emojis to express domain concepts and
people’s emotions. And another big advantage when running virtual sessions is the
ability to copy and paste. This allows you to copy an entire EventStorm and break out
into small group exercises where each group gets a copy of the EventStorm to explore
and shape into domain boundaries.

 These are a few of my favorite examples of optimizing the workshop experience
for the given format. I encourage you to continuously think about ways to optimize
each of your workshops for the format you will deliver them in.

 You’ve now reached the end of this chapter about big picture EventStorming. It’s a
great technique for mapping out domains, aligning groups of people, and increasing
the potential of modernization. In subsequent chapters, you’ll also see how it’s an
excellent starting point for identifying domains and subdomains. Keep in mind that
EventStorming alone won’t cover all of your needs. For example, it’s also a good idea
to spend time with real users—a theme of the next chapter that goes deeper into
modernizing the product and domain.

140 CHAPTER 7 Big picture EventStorming
Summary
 Important modernization decisions should not be made based on superficial,

high-level domain knowledge. It’s important to uncover the real complexity
and nuances in a domain with techniques like EventStorming.

 EventStorming is a flexible tool that provides value all through a modernization
initiative, from building an initial vision to identifying domains and subdo-
mains, which are the foundation for team organization and software architec-
ture for large parts of an organization.

 The core philosophy of EventStorming is to maximize inclusiveness and opti-
mize for collaboration. As a result, anybody involved in building products can
participate in an EventStorming session without needing training or learning
any specialized notation.

 EventStorming uses a simple notation, domain events, to map out businesses as
a timeline from left to right.

 Domain events represent specific points in time that happen in a domain and
are phrased in the past tense, like Order Placed and Customer Refunded.

 Orange sticky notes are used for representing domain events on the timeline.
 A productive EventStorming session requires 8 to 20 meters of wall space where

the walls are covered with paper and distractions like chairs and tables have
been removed.

 EventStorming isn’t positioned as a silver bullet. You are free to use other tech-
niques like Customer Journey Mapping and Service Blueprints, as desired.

 Domain events are a very general concept; they can refer to anything that hap-
pens in the domain, such as a user interacting with a product, things that hap-
pen to a person in their life away from the product, activities inside an
organization, and rules or calculations performed by software.

 Event granularity is highly subjective. Some parts of an EventStorm may be rep-
resented in more detail than others, depending on the people in the session
and where the group feels it’s most valuable to spend their time.

 Domain events should not get into the mechanics and lose sight of the domain
intention. Submit Button Clicked and Item Saved to Database are examples
that don’t reveal what is actually happening in the domain.

 Additional notation can be added to the timeline alongside domain events.
Roles/personas are represented with small yellow stickies, external systems are
represented with large pink stickies, and hot spots are represented with dark
pink stickies turned into a diamond shape.

 Hot spots are used to denote problems or placeholders that the group may
return to for deeper conversations.

 Different scenarios and parallel flows can be represented by branching from
the main timeline. There is no special notation.

 It is best to avoid loops, lines, and arrows with EventStorming.

141Summary
 Planning an EventStorming session requires clarifying the scope and purpose
of the workshop and identifying the most suitable participants, up to a maxi-
mum of around 22 unless the group is mature and there are multiple experi-
enced facilitators.

 Participants can include any role involved in building the product, like engi-
neers, testers, product managers, UX designers, customer support, etc.

 To kick off the workshop, it’s good to start with a social check-in exercise and
overview of the session’s purpose. It’s also possible to start with a warm-up activ-
ity like mapping out roles or personas and their jobs to be done.

 The first phase of EventStorming is called chaotic exploration. Each participant
has a pen and some orange stickies, and they add all of the domain events they
can think of along the timeline.

 After 30 to 60 minutes, the timeline is sorted using a technique like pivotal
events or temporal milestones.

 The timeline walk-through phase involves telling the story that has been mapped
out along the timeline by walking from left to right and describing the events.

 After the timeline walk-through, participants are invited to add their problems
and opportunities to the timeline.

 There is no strict limit on what is considered a problem or an opportunity.
Examples include lost revenue opportunities, poor customer experiences, and
process bottlenecks.

 In general, newcomers to EventStorming tend to stay high-level with events.
This is a problem because many insights only emerge when getting deeper into
the complexity and nuances of the domain.

 “Don’t model; tell a story” is a useful heuristic to keep in mind when Event-
Storming. Think about real people performing concrete actions rather than
creating a general model that covers all use cases.

 Sometimes people will have a lot on their mind, and it’s hard to switch into the
creative mindset needed for exploration and discovery. Try to schedule Event-
Storming workshops at a convenient time.

 Don’t waste too much time on conversations that seem engaging but relate to
unimportant parts of the timeline.

 It’s common for people to question the value of EventStorming because they
already have existing documentation. Documentation is usually flawed and
does not offer the same learning potential as bringing a diverse group together
and combining all of their knowledge.

 EventStorming can be combined with other techniques like Example Mapping,
which is used to zoom in and flesh out details at a higher level of granularity.

 EventStorming can be done remotely, but the dynamics are different and need
to be facilitated accordingly. It may be better to avoid the chaotic aspects and
have more structured sessions with specific roles that limit who can place events
on the timeline.

Product and domain
modernization
A comprehensive approach is required to exploit the full potential of moderniza-
tion. Modernization is often perceived as technological change, but the benefits
extend far beyond that. It’s also an opportunity to revamp the user experience,
improve the value provided by your products, address those frustrating problems
that have existed for years, and remove unneeded complexity.

 It’s common to see employees left with barely usable solutions involving green
screen mainframes or 1990s-style UIs, often part of complex manual processes.
These types of inefficiencies can grow into huge problems as organizations scale or
as more complexity is bolted on top. Understanding what users really need will also

This chapter covers
 Modernizing the UX, product, and domain

 Determining better requirements for modernized
applications

 Staffing teams with design and discovery expertise

 Designing future states with process modeling
EventStorming and Domain Storytelling

 Establishing a common language
142

143CHAPTER 8 Product and domain modernization
highlight what is no longer required and can be deleted rather than modernized, sav-
ing valuable time and costs.

 As Figure 8.1 shows, a full-stack approach involves improving the UX to make users
happier and more productive, improving the software to use better tech and better
align with the domain and creating a better conceptual domain model so people are
more aligned and have a shared language that fosters better collaboration and innova-
tion. And it’s also crucial for opportunities to modernize the domain by identifying
new capabilities that can bring new types of business and customer value.

Figure 8.1 Full-stack modernization, from business domain up to user interface

This chapter helps you avoid the mistake of rebuilding the old system, with all its
flaws, using new technologies and frameworks. The chapter begins with tips and guid-
ance for eliciting better requirements and understanding what is no longer needed
and finishes with two techniques to help you better identify the business and user
needs that modernization will deliver by designing future states of the domain: pro-
cess modeling EventStorming and Domain Storytelling.

Full-stack modernization

User
interface

Domain
model
(conceptual)

Domain

Exposes
capabilities of

Models
concepts from

Modernize the UI to enable
a better UX, improving user
happiness and productivity.

Modernize the conceptual
domain model (including
domain boundaries), creating
a better shared understanding
and language, improving
collaboration & innovation.

Modernize the domain by
adding new and better
capabilities, which create
new business value or
reduce complexity and costs.

Software

Implements

Modernize tech and
alignment to domain
model for code that
is easier to understand
and evolve.

144 CHAPTER 8 Product and domain modernization
8.1 Industry example: Business property tax modernization
This industry example is an experience of mine. I began the chapter with this story
because I wanted to emphasize how modernization applies to much more than just
technology. In this example, the user experience, business rules, and even govern-
ment policies that had existed for decades were being completely rethought. I wanted
to emphasize the enormous value of a diverse team with UX and other specialists and
getting the whole team (especially developers) deeply involved in discovery, like user
research. This story also alludes to how modernization can be successfully performed
at a government scale, with principles and platforms rather than rigid frameworks.

 I was once involved in modernizing a government tax service. It was part of a much
more significant change, led by Government Digital Service (GDS), happening across
the entire UK government to modernize the development of government digital ser-
vices. Previously, UK government IT was known for terrible UX, big outsourcing con-
tracts, infrequent big-bang deployments, and even for one of the biggest IT failures ever
seen, costing around £10 billion (http://mng.bz/W1al). GDS began modernization by
advocating for user-centric design, continuous delivery, developing code in the open
(https://www.youtube.com/watch?v=h8vlLRZxedg), and other modern practices.

 The project was highly complex—technically, organizationally, and politically.
Everything was being modernized, including the domain where new government poli-
cies and processes needed to be defined. Some of the old ones had been in place for
decades, if not more than a hundred years. The existing IT systems had a high level of
technical debt and were owned by big consultancies. A significant investment was nec-
essary due to the current approach involving excessive manual work that was too
expensive and unsustainable.

 Many of my experiences were positive. I learned a lot about product discovery and
the UX aspects of modernization, thanks largely to GDS’s principles and the culture
they nurtured. Developing the new system involved a major amount of discovery,
internal- and external-facing. Following the GDS service manual (https://www.gov
.uk/service-manual/service-standard) helped us to do this well.

 The service manual was not a framework, development process, or Jira workflow
that teams were forced to follow. Instead, it was principles supported by guidance.
Examples included Understand User Needs, Do Ongoing User Research, Make the
Experience Consistent With Gov.uk, Have a Mutli-disciplinary Team, and Iterate and
Improve the Service Frequently. An example of guidance was the range of skills
needed in a team. The teams I worked with involved all the roles needed for modern-
ization, like User Researcher, UX Designer, Content Specialist, Subject Matter Expert,
Business Analyst, Product Manager, Developer, and Tester.

 There were three teams, each responsible for one or more subdomains. They
worked closely together. The developers sat next to each other in the same office, and
the UX specialists needed to design an optimized end-to-end journey collaboratively.
Every week the user researchers would interview real citizens that would be using the
new service. They asked about their experiences with current IT services and got feed-
back about prototypes the team had built. A GDS guideline was that the whole team

http://mng.bz/W1al
https://www.youtube.com/watch?v=h8vlLRZxedg
https://www.gov.uk/service-manual/service-standard
https://www.gov.uk/service-manual/service-standard
https://www.gov.uk/service-manual/service-standard

1458.2 Identifying product requirements
should be involved in user research. Our teams loved to. Even developers would
attend research sessions in the lab. We also had regular group show-and-tells where
research highlights were a core topic.

 As we were developing the applications, we constantly had the user research front
of mind. We got feedback for our changes from real users within two weeks. For exam-
ple, when we added just a single extra textbox to one of the pages, there was a lot of
pushback. Users complained the page contained too many unrelated questions, which
increased cognitive load and anxiety.

 Having all team members immersed in user research empowered the whole team
to contribute new product and domain improvements. Even the apprentice software
developers would discuss user research findings as we coded. I remember thinking,
“This is exactly how teams should develop software.” One apprentice (recently out of
university) even went to London as the sole technical representative to talk to users to
identify their requirements. Normally, that was the tech lead’s job.

 User research brought other advantages, too. One time, a senior stakeholder told
the team to build a particular feature in a certain way. The team thought it was a bad
idea but had little say. However, when we put the new UI in front of real users, it
received negative feedback. From that moment on, after seeing the feedback, the
stakeholder stepped back and left the team to work autonomously.

 It’s good to know all the skills and specialist roles that could help your moderniza-
tion journey. For example, user research showed that citizens did not understand
complex government jargon. Sometimes it was even a concern, like when people were
warned they could be fined or go to prison for providing incorrect information, even
if it was a mistake. So it was a privilege to have dedicated content specialists handling
this challenging task.

 In contrast to autonomy, the themes of scale and standardization were also central.
For example, we had to honor the GDS principle Make the Experience Consistent With
Gov.uk. Hundreds of teams were working across the government. GDS addressed this
by providing open-source libraries and templates (https://github.com/alphagov/
govuk-design-system) that contained most of the UI styling and UI widgets teams
needed. Being open source, all teams could contribute changes for their own benefit
with the positive side-effect of helping teams across the government. Platforms were
also an important topic relating to scale. There’s an example in chapter 13.

8.2 Identifying product requirements
It’s easy to think that modernizing an individual product or application means that all
existing functionality should remain intact with a fresh lick of paint on the UI. How-
ever, this is likely to be a big mistake. For one, some features may no longer be useful,
while others may have never been useful. Identifying features that are no longer
needed can save months or even years of effort and result in a modernized architec-
ture that is much simpler.

 Even features that are being used may not have achieved their full potential. Users
may have been left with barely usable solutions that require hacks and workarounds to

https://github.com/alphagov/govuk-design-system
https://github.com/alphagov/govuk-design-system

146 CHAPTER 8 Product and domain modernization
get the job done. Then there are all the opportunities to improve the product, which
may not have previously been possible due to the existing architecture’s design or
complexity. Uncovering these opportunities early is key to maximizing the value of
modernization and designing an architecture that will be adaptive to future needs.

 This section provides guidance on uncovering better product requirements for
your modernization. Remember that requirements gathering is not a phase that hap-
pens before development; requirements can and should evolve as modernization pro-
gresses. Chapter 16 looks at how to build evolutionary roadmaps using various
techniques such as metrics to track success. Chapter 3 also showed the importance of
defining product and portfolio north stars and inputs that are essential to determin-
ing product requirements.

8.2.1 Involve the right people

To prevent UX from being an afterthought in a technology-centric modernization,
start by ensuring there are people with the right variety of skills and experience
involved. This includes internal-facing applications where it’s not uncommon to see
developers being expected to design UIs because UX is considered to be less import-
ant for employees than external users. It doesn’t cost much to put a bit of effort into
internal-facing products, and the benefits can be high. For instance, employee satis-
faction and productivity are often directly related to the quality of their tools.

 To move away from this mindset and generally to ensure your modernization deliv-
ers the maximum value for users and customers, include some or all of the following
roles in your modernization:

 User researcher—An expert who understands how to work effectively with real
users to gather their feedback and translate it into useful insights for the team.

 Product designer—An expert who makes products compelling and easy to use by
designing UIs and other customer touch points.

 Interaction designer—An expert who focuses on the moments when people inter-
act with products, covering both physical and emotional dimensions.

 Content designer—An expert who is skilled in writing and rewriting content so
that it is easily understood by the target audience of the product or service.

 Service designer—An expert who is able to see the big picture and design end-to-
end journeys balancing user needs and business outcomes.

 Subject matter expert—An expert in a particular topic. Typically someone who has
worked in or studied the domain.

As with job titles in general, some people may have experience in multiple roles, and
the definitions of these roles can vary in different organizations. It’s better to consider
the qualities that each of these roles brings to a team and identify where you may have
important gaps. With all of these roles, it’s recommended that there is close integra-
tion with the whole team rather than a person working independently who hands
designs and requirements over for others to build. You may not need all of these roles,
but equally, you may need more than you think. In any case, I recommend that you

1478.2 Identifying product requirements
have some product and UX people involved from day one who can help shape the
process and advise on what additional skills are needed.

8.2.2 Identify the costs of not modernizing

One of the ways to help identify the value of investing in modernizing the UX is to
consider the costs of not modernizing it. A company that understands this well is Citi-
bank, one of the biggest and oldest banks in the United States. In 2020, employees at
the bank made an error that cost the bank $500 million. The employees weren’t to
blame, however. The antiquated 1990s-style user interface, shown in figure 8.2, was
the cause of the problem.

Figure 8.2 The user interface that Citibank employees used to pay interest to lenders
(Source: United States District Court Southern District of New York, http://mng.bz/84J5)

When attempting to pay interest on a $1.8 billion loan to Revlon, the bank acciden-
tally paid off the full outstanding amount of $900 million rather than just the $7.8 mil-
lion interest payment. Many lenders paid back the erroneous payments, but some did
not. Citibank tried to get the money back but lost in court, costing them $500 million
and the title of “biggest banking blunder in history” (http://mng.bz/E9eX). The
problem occurred despite three system users believing that they had correctly admin-
istered the transaction with one override—the principal field in figure 8.2. This was
incorrect. They didn’t consult the instruction manual, which explained that three
overrides were required. In the end, Citibank was extremely lucky; they did manage to
get all of their money back through a follow-up court case in September 2022 (http://
mng.bz/NVAv), but this story still acts as a strong warning of the dangers of not taking
UX seriously for internal products.

http://mng.bz/84J5
http://mng.bz/E9eX
http://mng.bz/NVAv
http://mng.bz/NVAv

148 CHAPTER 8 Product and domain modernization
 After reading the story of Citibank, how do you feel about the UX of your products
and tools? Are your employees still using 1990s-style gray desktop applications with a
poor user experience? Are they expected to remember certain special rules and com-
binations or consult instruction manuals? Do you have an idea of the costs and risks of
not sufficiently modernizing the UX?

 A simple starting question I like to ask people (especially during a listening tour)
is, “What is likely to happen if nothing changes and things continue as they are?”
Check out Jabe Bloom’s Ideal Present Canvas (http://mng.bz/D9VA) if you’d like
something more structured and visual to explore this topic.

8.2.3 Don’t mindlessly reverse-engineer the code

To determine the requirements for modernization, it can seem logical to reverse-
engineer the current system. This can be dangerous, however, for multiple reasons.
Firstly, there are likely to be many features that are no longer needed in the existing
system. They may have been useful in the past but now serve no purpose; they may
have been superseded by other features or even disabled in the user interface because
they turned out to be less useful than intended. We should also keep in mind that
most new features are experiments. It’s unclear how useful they will actually be until
people use them. With that in mind, the current system likely contains some or many
features that were never actually useful. Why waste time and effort carrying these
across to the new system and trying to modernize them?

 A second reason to avoid mindlessly reverse-engineering a current system is that
even when features provide some value, they may be far from optimal. We’ve all expe-
rienced end users who have had to improvise or devise strange workarounds to per-
form their jobs. One client I worked with had employees processing customer
applications by using two different tools. Those tools didn’t talk to each other, so the
users had to copy the information manually.

 I’ve seen a few variations on the problems of integrating tools, like when email
inboxes or spreadsheets are used as work management queues. At first, the problems
might not be so bad, but as more workarounds get layered on top of each other and
the number of employees using the system grows, the costs can be overwhelming. Fix-
ing these problems in the old system may have been costly, but now that you are mod-
ernizing the systems, fixing some of these old hacks may be feasible, providing a win
for the users.

8.2.4 Analyze system information

While completely reverse-engineering legacy systems is a bad idea, taking time to
understand how they are used is a good idea. For example, identifying which features
are no longer being used helps to pinpoint parts of the architecture that are dead and
do not need to be modernized. One car manufacturer I worked with had millions of
lines of business logic in stored procedures. Fortunately, it was possible to determine
that around 30% was no longer being used and didn’t need to be modernized.

http://mng.bz/D9VA

1498.2 Identifying product requirements
 Unfortunately, legacy systems don’t always have analytics, meaning it’s much
harder to ascertain what’s no longer being used. The fastest solution may be to add
some form of observability. You can also use operational tools like logging and moni-
toring. Any information the system produces could reveal useful insights about usage
and value. As a precaution, validating any insights derived from analytics with stake-
holders and real users is sensible.

8.2.5 Spend time with real users

When facilitating workshops to help organizations start their modernization journey, I
always ask engineers and architects, “How much time do you spend with real users?” I
want to understand how much effort people put into thinking about the product and
UX, in addition to the technical aspects like breaking up a monolith into microser-
vices. The answer I often hear is something resembling “Not very often,” which is a
major concern.

 Firstly, it results in a product with a worse UX and lacking valuable features. Sec-
ondly, it indicates that the problem of engineers not understanding their users’ needs
will persist. And thirdly, it sometimes results in stalled modernization efforts. Engi-
neers have many possible ways to modernize the system and many choices about
where to start, but they don’t understand what is truly valuable to users. They get stuck
in analysis and design paralysis.

 Sometimes, engineers don’t talk to users because of cultural perspectives. For
instance, their only value is perceived as sitting at their desks coding. I’ve worked with
clients where engineers built internal products that other company employees use.
Even though they work for the same organization and one group is adding features to
products the other group uses, they barely talk to each other. If you spot this behavior
in your organization, I recommend addressing the problem early in your moderniza-
tion journey. I would be worried about engineers making important modernization
decisions without empathy for their users.

 Some companies go beyond asking their teams to spend time with users. They also
ask them to spend time in customer support resolving customer problems. Some even
ask teams to spend time doing the job of their users. Where possible, both of these
ideas are recommended for building a deeper level of empathy. A good example is
provided by the German company Bettermile. As a last-mile logistics company, they
build software to help drivers deliver parcels effectively. To help their teams build bet-
ter products by empathizing with their users (drivers and consignees), employees get
the opportunity to play the role of drivers by delivering real parcels using the com-
pany’s products (http://mng.bz/lVpd).

 If your users are internal employees, establish a regular habit by ensuring the two
groups speak at least fortnightly. If possible, allow them to sit together. Ensure the
communication pathways are always open so the two groups can easily contact each
other when needed. Having product and UX specialists on the team who can facilitate
these connections is helpful.

http://mng.bz/lVpd

150 CHAPTER 8 Product and domain modernization
 The idea that engineers shouldn’t be spending time with users and are only valu-
able when producing code is an outdated way of thinking that must also be modern-
ized. My friend Kacper Gunia (https://www.linkedin.com/in/cakper/) has the right
mindset. He looks at the database access that has been given to employees to under-
stand where tools are not meeting their needs. Whenever he identifies an unmet need
or a new person asks for SQL access so they can query the production database, he
spends time with them, understanding what they are trying to achieve and how tools
can help them rather than giving them production database access (which is a bad
idea for many reasons).

8.2.6 Continuous discovery

Spending time with users is most effective when done frequently rather than being a
one-off phase at the start of a project. It helps everyone keep users’ needs in mind and
gets rapid feedback on new ideas. As mentioned in my government example, seeing
this in practice was a big learning moment in my career. There was also the example
of the senior stakeholder who pressured the team into building a new feature in a cer-
tain way but then reversed their decision after real user feedback was negative. This
shows just how effective this approach can be.

 Continuous discovery is a practice you can use during the modernization journey,
and then your empowered product teams can continue to practice it indefinitely. This
is what product expert Teresa Torres advocates in her book Continuous Discovery Habits
(http://mng.bz/BADw). Part of her definition of continuous discovery directly
addresses the two key points: “Weekly touchpoints with customers, by the team build-
ing the product.” Continuous discovery means talking to customers weekly; teams
should be empowered to do this themselves.

 Teresa also makes another important distinction of which teams should be aware: a
validation mindset and a co-creation mindset. A validation mindset is characterized by
teams that put ideas in front of customers at the last minute when the feature is com-
pleted. It’s about answering, “Did we get it right?” A co-creation mindset is about get-
ting feedback much earlier in the process, so there is more time to act on the
feedback and less resistance to changing direction. In practice, this might mean just
talking about an idea with customers or a simple sketch before even mock-ups have
been created.

 Keep in mind that it’s not enough that teams are just doing continuous discovery.
They must also be empowered to act on the insights gained and make decisions about
the part of the product for which they are responsible. Teresa proposes a trio-based
approach to decision-making to give confidence in the decision-making process. In
effect, each important decision should involve a product, design, and technology rep-
resentative from the team. It doesn’t mean the whole team must be involved in every
decision; that would be too slow. It just means that each area of expertise is represented.

 After my experiences working in the UK government, I have continued to see the
rise of empowered product teams with a continuous discovery habit. It’s an approach
driven just as much, if not more so, by people like Teresa in the product management

https://www.linkedin.com/in/cakper/
http://mng.bz/BADw

1518.2 Identifying product requirements
community. It’s not software engineers demanding more responsibility. It seems to be
the natural progression for building better products, like how we’ve moved from
yearly to daily deployments. I encourage you to take this topic seriously, starting with
Teresa’s book, which includes all the insights and practical techniques you need to get
started. I would also highly recommend attending a product management confer-
ence, like Mind the Product (https://www.mindtheproduct.com/conferences/).

8.2.7 What have people given up asking for?

During their keynote presentation at Domain-Driven Design Europe 2022 in Amster-
dam (https://www.youtube.com/watch?v=olulGJDdpGQ), Olivia Cheng and Indu
Alagarsamy from the New York Times shared a simple but effective technique they found
useful during their modernization journey. They interviewed various users and stake-
holders and discovered a powerful question: “What have you given up asking for?”

 Often, people have given up pointing out certain problems and asking for changes
to the current system. They have learned to live with the existing inefficiencies by
using workarounds. When you talk to them, they may even be reluctant to raise these
concerns due to their bad experiences, or they may just assume that the previous con-
straints still apply. For reasons like this, it should be clear that users won’t just tell you
the perfect requirements if you talk to them. There is a lot of skill involved in identify-
ing true user needs, and you will need to work intelligently to identify the most valu-
able modernization requirements. This is another example of the value that UX
specialists can bring to your modernization journey.

8.2.8 We’ve always done it that way

The opposite of people giving up asking for improvements is people not asking for
improvements because they are satisfied with the current approach. They may be
using green-screen mainframes or 1990s-style desktop applications or email inboxes as
work queues and yet feel perfectly content with the approach. It’s what they know and
are comfortable with, even if the process is inefficient and error-prone.

 From a business perspective, modernization may still be the right approach, even if
the employees disagree. There could be deeper motivations as well. The employees
may have a lot of power and job security because using the existing systems is difficult
and requires lots of experience, making it hard to replace them. Or there may be a sim-
ilar but less political reason; the users may be scared of change because there are big
unknowns. Situations like this require a lot of empathy. It’s important to listen to users’
needs before talking about new solutions and changes. It can also be helpful to reas-
sure them that their job is safe and that the goal is to improve their productivity and
job satisfaction. Again, this takes skill, so it might be better to involve experts rather
than letting developers, who have no experience with this, deal with the situation.

8.2.9 Finding shadow IT

In their book Domain Storytelling (http://mng.bz/ddPg), Stefan Hofer and Henning
Schwentner highlight the importance of looking for shadow IT when mapping out

http://mng.bz/ddPg
https://www.mindtheproduct.com/conferences/
https://www.youtube.com/watch?v=olulGJDdpGQ

152 CHAPTER 8 Product and domain modernization
existing processes with the intention of modernization. Shadow IT systems are those
that non-IT people use without permission or the knowledge of the IT people who
govern what is permitted. Examples include work management tools, collaboration
tools, and analytics SaaS tools. Sometimes, shadow IT is the only way for people to be
productive when internal IT doesn’t help them to meet their goals, so it’s important
not to be critical. However, it is still important to discover shadow IT because it can
help you to be aware of and better address the needs of people throughout the orga-
nization. This is another situation where empathy and building trust with users is key
to creating a space where important insights, like shadow IT, can emerge.

8.2.10 Industry example: Department for Levelling up, Housing,
and Communities

If you’ve never worked in an environment with a continuous discovery approach to
product development, this industry example shows how you can introduce these ways
of working while modernizing a system to find better requirements and deliver better
results. Katy Armstrong and Dean Wanless show how they put different forms of user
research into practice and how they took a data- and feedback-driven evolutionary
approach.

 Katy Armstrong (http://mng.bz/rjBx) is the deputy director for digital services at
the UK government’s Department for Levelling Up, Housing, and Communities. In
2018, she encouraged the department to make an important decision. The contract
was ending with a large external supplier for Energy Performance of Buildings Regis-
ter (http://mng.bz/VRqN), which is a government digital service to help people
access energy certificates that they need for selling or leasing a property.

 The consensus at the time was to draw up another long-term contract with a sup-
plier, but Katy saw an opportunity to improve outcomes for UK citizens and make big
cost savings. She aimed to improve the department’s capability by developing the ser-
vice in-house with a user-centric and continuous delivery approach. During the con-
tract period, the cost of change was very high. As a result, there had been little
improvement in the service during the previous 10 years. This meant that it was diffi-
cult to access the data inside the service for internal and external users, who could
have learned considerable insight into key policy areas around reaching net-zero.

 Two years later, the situation had transformed dramatically. The new service was
live (https://www.gov.uk/find-energy-certificate). Dean Wanless (https://www.linked
in.com/in/dean-wanless-25bb7b5/) had been appointed as the service owner, and a
full internal team was in place. The team responsible for the service is now continu-
ously improving the service with multiple deployments to production per day. Satisfac-
tion from both UK citizens and government civil servants who used the service was
substantially better. The costs had also halved, substantially reducing industry fees for
sending new certificates to the register.

 Impressively, the service began to deliver well beyond the requirements set for it.
The original goal of the service had been to meet the EU requirement to have a regis-
ter of energy efficiency, but the team discovered that there was a considerable scope

http://mng.bz/rjBx
http://mng.bz/VRqN
https://www.gov.uk/find-energy-certificate
https://www.linkedin.com/in/dean-wanless-25bb7b5/
https://www.linkedin.com/in/dean-wanless-25bb7b5/
https://www.linkedin.com/in/dean-wanless-25bb7b5/

1538.2 Identifying product requirements
to improve the service offering. For example, they built a data warehouse, which
speedily aggregates data so that policy questions that would have taken weeks to
answer with the old supplier can now be answered in a matter of minutes.

 I asked Katy and Dean if they could highlight some key factors that contributed to
this successful modernization effort. Katy said winning the hearts and minds of “the
business” was key in terms of agile, user-centered ways of working. “We did this by
demonstrating regular delivery and by embedding the team in the policy area, so
they’d feel ownership of decisions and see progress.”

 Dean said that user research and continuous discovery were essential. It was the
ongoing user research that allowed the team to go above and beyond the basic
requirements that were expected. For example, very early into the journey, the team
started to get a sense of just how much potential there was to improve the service
based on feedback they received from users, such as the following quote: “This certifi-
cate is full of things that no one should care about.” Dean said this feedback “pointed
to the scale of the task that we had ahead of us!” The challenge was “how can we make
an energy performance certificate that users understand and care about so that they
improve their energy efficiency?”

 They experimented with several designs, which were regularly tested with real
users, removing unhelpful content and putting information that was important to
users clearly at the top. The team retained control of the certificate so that unhelpful
information wasn’t added back in. Iteration of the design of the certificate continues
as the policy matures.

 The team found two forms of user research invaluable: contextual inquiry and
usability testing. According to the Government Digital Service (GDS), contextual
inquiry is “Similar to ethnographic studies. Contextual inquiry investigates how your
potential users interact with their natural environment rather than just focusing on
your digital product. It helps to identify what is possible. Contextual inquiry involves
in-depth granular exploration of a small sample of people.” The team used this form
of research to answer questions like “Who are our current and potential users?” “What
are they using our data for?” and “What opportunities exist to serve insights in a more
user-centered way?” When doing this kind of research, the team collectively summa-
rized the transcripts from lots of interviews and used Affinity Sorting (http://mng.bz/
RmGR) to identify themes. For example, the team identified personas like “frequent
forecaster” and relevant information about them, such as their motivations, wishes,
and hopes and their data journey.

 Using their research findings, the team identified key pain points and KPIs. This laid
the foundations for a big breakthrough. The team was already publishing open data,
but they realized they could provide more value by developing two new products for the
public—Numbers on a Page, a simple service for the general public that will quickly
answer top questions about energy efficiency, and APIs to give access to up-to-date data
at the property level for data analysts. This is a great example of the difference between
a feature factory mindset, where teams are told what to build, and an empowered prod-
uct team mindset, where teams have the autonomy to discover new types of value.

http://mng.bz/RmGR
http://mng.bz/RmGR

154 CHAPTER 8 Product and domain modernization
 Usability testing is a technique focused on solutions and validating ideas. The team
uses this technique regularly and continuously as part of their continuous discovery.
They put new ideas in front of users before they have even been built and validate them
afterward. This is what they did when developing the new certificate, for example.

 Katy highlighted another benefit of user research: “At the moment, we are contin-
uously improving the service, and we have dedicated teams working on it. But we are
always asked if this is still a good investment and whether the government money
should be spent on something else instead. Our user research helps us to answer the
question. By continuously talking to UK citizens about the service and their needs, we
will know when there is no benefit to continued investment. However, for now, we’re
still uncovering many valuable opportunities through our ongoing user research.”

 There was another crucial factor in the success of this initiative that Katy wanted to
emphasize: “It wasn’t just designing better UIs that made our internal users happy; it
was the fact that they had a team they could easily talk to and get changes imple-
mented quickly.” This is a good example of what it looks like when organizations move
away from “the business” and “IT” as separate things. All people working on a particu-
lar capability work closely together, whether they are users carrying out operational
processes or engineers building the systems to support those processes. The result is
happier and more productive employees and better business outcomes.

NOTE If you’d like to learn more about this example, check out the service’s
live assessment (http://mng.bz/ZRZN), DLUHC Digital’s blogs about the
energy performance of buildings register (http://mng.bz/27Jo), and Katy’s
blog (http://mng.bz/1JwQ).

8.3 Modernizing the domain model
There’s a dimension to systems that is sometimes overlooked. It affects the value pro-
vided by products, the speed at which products are developed, and how well people
communicate. This element is the domain model. More specifically, the conceptual
model that people use to talk about the business concepts relevant to their products
and services. Think about examples in your career where people have misunderstood
each other and wasted time and effort going in the wrong direction or argued over
what certain words and phrases mean.

 When I worked with a North American client in the Smart Cities space, I remem-
ber clearly a meeting where a quality engineer and a solution architect seemed des-
tined for a brawl, all due to the word activated. The quality engineer insisted that
devices should be activated in the warehouse to connect to the server and identify
problems before the devices were installed on the streets. Finding problems after a
device had been installed meant an expensive truck roll, where an engineer had to go
out and uninstall the device, load it onto a truck, and then bring it back to the ware-
house for repair.

 The solution architect, on the other hand, said that devices should be activated
after they have been installed on the street because their physical location determines

http://mng.bz/ZRZN
http://mng.bz/27Jo
http://mng.bz/1JwQ

1558.3 Modernizing the domain model
how they will be configured. The argument lasted almost 30 minutes (and had been
brewing for weeks). Nobody else could break them apart or even get a word in, even
though we all knew they were talking about two different steps in the process. It was
possible for the extra checks to be done in the warehouse and additional configura-
tion to occur following physical installation. We just needed a shared conceptual
model that used two phrases to precisely describe each step, as illustrated in figure 8.3.

Figure 8.3 Problems arise when the same phrase is used to describe different domain concepts.

This example was about just a single word. In most organizations, many examples of
confusing and ambiguous terminology exist. The resulting collaboration inefficien-
cies and productivity losses can quickly add up to substantial costs. Yet this doesn’t
seem to be an area that many organizations put much effort into consciously improv-
ing. Modernization is a good chance to reset that mindset and establish good prac-
tices around using language more effectively through intentional conceptual domain
models.

 Another reason why a focus on language is a good investment is that an ambiguous
conceptual model is more likely to result in overly complex software for the domain
concepts it represents. It frequently gets to the point where the language used by busi-
ness and domain experts has little resemblance to the code. Consequently, translating
a new feature idea into requirements and implementing it in code can be slow, expen-
sive, and error-prone.

 Creating a good domain model that aligns business and technology experts and
results in simpler software doesn’t need to be a costly or academic exercise. You’ve
already seen big picture EventStorming, which creates a space for conversations about
the domain. In the final part of this chapter, you’ll see two more techniques that help
you to consciously shape the future of the domain and design an intentional model.
As you use these and other techniques, take the opportunity to clarify terminology
and suggest improvements. It’s not nitpicking or trivial to debate subtleties in lan-
guage; it’s a great habit to develop in yourself and encourage in others.

Activate
(device)

Connect to
server

Install in
physical
location

Activate
(device)

Get config
settings

from server

In the warehouse On the street

These two steps have
the same name but
mean different things

156 CHAPTER 8 Product and domain modernization
8.3.1 Industry example: Royalties domain modeling

Rebecca Wirfs-Brock and Mathias Verraes are two of the leading voices in the world of
domain modeling. Their work in this area continues to move the field forward and
inspire new generations of domain modelers from many disciplines, such as product
management, UX, and software engineering. One of their most valuable contribu-
tions is an essay titled “Models and Metaphors” (https://verraes.net/2021/12/models
-and-metaphors/). This is based on Mathias’s experiences working with a client that
acted as a broker for paying copyright holders for the use of their content. In a nut-
shell, this involved identifying the copyright holder for a piece of work, tracking usage
claims, figuring out how much is to be paid, and managing the payments. The organi-
zation ended up with a very complex system that people struggled to understand and
needed help regaining control of to add further innovations.

 A key responsibility of the system was data matching, which is the process of recon-
ciling data from multiple sources to determine the owner of a given piece of content
and who needed to be paid. A major source of the complexity was the diversity of the
various data sources, including research the company had done itself, publicly avail-
able data, private sources the company paid for, and agencies representing copyright
holders. The data was messy, incomplete, inconsistent, in constant flux, and poten-
tially susceptible to fraud.

 The key to this example is that the organization originally perceived data matching
as an engineering problem. People who worked in other business areas and weren’t
involved in writing code could not explain how data matching worked. Their ability to
collaborate with engineers and improve their products was extremely limited. Mathias
helped the organization resolve this problem by developing a shared conceptual
domain model. Instead of using a generic, technical phrase like data matching, they
built a language and a model around the concept of trust, which was reflected pre-
cisely in the code.

 As Mathias facilitated whiteboard domain modeling sessions, he asked the team to
describe all of their data-matching rules. As they did this, Mathias then encouraged
the group to focus on what the rules were trying to achieve. Mathias noticed the group
using words like reliable and trust, and through further conversations and whiteboard
modeling, trust became the center of focus. For example, if a certain data source was
considered more reliable, it should be trusted more.

 To explore the concept of trust further, Mathias worked with the engineers to exper-
iment with how trust might be modeled in code. The engineers created a trust code
object that measured trust on a scale of –5 to 5, which had implications, like when a
claim could be granted. For the group, this was a key turning point, and it’s also an
important lesson for you to keep in mind: when looking to create a better conceptual
model and language in a particular domain, try to see how the model would look as
code. This helps you to be more precise and to validate that the model will work as code.

 As the team began using the trust-based model in their conversations and code,
they continued validating the ideas with domain experts. In fact, they noticed that
domain experts became interested in the topic and started to get more involved in the

https://verraes.net/2021/12/models-and-metaphors/
https://verraes.net/2021/12/models-and-metaphors/
https://verraes.net/2021/12/models-and-metaphors/

1578.4 Process modeling EventStorming
conversations. They felt much more engaged by the idea of talking about their
domain using the model of trust compared to a generic data-matching technical algo-
rithm. The business loved the idea of assigning and evolving trust, so much so that the
new model became a shared conceptual model used throughout the business. As a
result, engineers and domain experts were able to have much richer conversations
about adding new features in the domain and more easily turn those ideas into work-
ing software because the model they used for communication aligned closely with the
model they used in the software.

NOTE You can read Rebecca and Mathias’s essay in full, along with their
other essays, in their book Design and Reality (https://leanpub.com/design
-and-reality). The remaining sections of this chapter discuss two collaborative
techniques for discovering new domain innovations and designing better
models.

8.4 Process modeling EventStorming
When you’ve decided to modernize a product or a process, or you’re interested in see-
ing what might be possible, EventStorming is an effective tool in this space. Whereas
the last chapter introduced big picture EventStorming, which is built around chaotic
exploration and understanding how the domain currently works, this section intro-
duces process modeling EventStorming, which is less chaotic, more structured, and
well suited to designing future states. The additional structure and detail take this
technique closer to the implementation, yet it doesn’t introduce any software-specific
concepts, so it is still accessible and relevant for all types of stakeholders. The creator
of EventStorming, Alberto Brandolini, even advocates that process modeling Event-
Storming works well when turned into a collaborative game.

8.4.1 Notation

Process modeling EventStorming builds on the notation used in big picture Event-
Storming. This flavor of the technique adds new concepts alongside syntax, restricting
when each notation element can be used. For example, an orange domain event can
only be used directly after a pink system. The following is the full list of notation and
syntax. There is also a visual representation in figure 8.4 (and an interactive version
on the book’s Miro board at http://mng.bz/PRO8).

 Actor/role—Small yellow stickies are used to represent people in the domain or,
more abstractly, the roles they fulfill.

 Action/command—Blue square stickies are used to represent instructions or trig-
gers performed by a user or a policy trying to perform a task on a system.

 System—Large pink stickies represent software systems or applications that may
be in-house or external.

 Domain event—Orange square stickies represent events that are produced by sys-
tems after a command has been invoked on them. These events represent the
result of the command that was applied.

http://mng.bz/PRO8
https://leanpub.com/design-and-reality
https://leanpub.com/design-and-reality
https://leanpub.com/design-and-reality

158 CHAPTER 8 Product and domain modernization
 Policy—Purple square stickies represent policies that are activated by domain
events. They are like business rules or steps in a workflow.

 Information—Green square stickies represent information that people use to
make a decision.

 Hot spots—These are notes or placeholders to come back and revisit. They are
sometimes represented using diamond-shape fuchsia or red square stickies.

Figure 8.4 Process modeling EventStorming notation and syntax

Figure 8.5 shows the example of an EventStorm used to model a small part of the
contract-approval workflow. The process begins with a salesperson who requests
approval for a contract in the contracts system. A domain event, Contract Approval
Requested, is then raised by the system, which triggers a business policy necessitating
that the contract is legally approved. This policy is acted upon automatically via soft-
ware by instructing the approvals system to request legal approval of the contract.

 After legal approval has been requested, the outstanding approval is added to the
list of new approvals, all of which are waiting to be approved by the legal team. In
practice, this information is a screen on a website that the legal team looks at to see
what work they need to do. After looking at the contract and being satisfied with the
content, the legal team will approve the contract

Figure 8.5 A small part of a contract-approval workflow

Action/
command

Actor/
role

Decides to

Policy

System
Invoked on Domain

event
Produces

Information
Observed by

Hot
spot

Updates

ActivatesIssues

Request
contract
approval

Sales-
person

Contracts
(system)

Contract
approval

requested

Legal
approval
required

Request
legal

approval

Approvals
(system)

Legal
approval

requested

New
approvals

list

Approve
contract

Legal
Team

1598.4 Process modeling EventStorming
So far, the example contains a single row, effectively the happy path. But with process
modeling, it’s also important to consider other scenarios and edge cases as well. Fig-
ure 8.6 shows an example of modeling additional scenarios. In this instance, the legal
team may or may not approve the contract. If the contract is not approved, the legal
team may request further changes, which sends the contract back to the salesperson
and the contracts system for additional refinement. This flow is modeled as a row
below because the general preference with process modeling EventStorming is to
keep the top row as the common or happy path where possible.

Figure 8.6 Handling branches in process modeling EventStorming

NOTE On the book’s Miro board (http://mng.bz/PRO8), you can find full-
color cheat sheets covering the notation for each EventStorming format.

8.4.2 Planning a workshop

Planning a process modeling EventStorming workshop shares many similarities with a
big picture EventStorming session. If you’re running the session in person, you’ll
need a large amount of wall space, and regardless of format, you’ll want a diverse
group of attendees that represent all of the key perspectives, like product, engineer-
ing, UX, and domain experts. What’s different with process modeling EventStorming
is that the scope is usually much narrower to allow for finer granularity. Therefore, the
number of representatives from different teams and areas of the business will be
lower. Another aspect that’s a little easier with this format is that it’s easier to clarify
the desired outcomes since the scope is narrower and more specific.

8.4.3 Facilitating a workshop

Facilitating process modeling sessions is a bit easier because there is no chaotic explo-
ration at the start. Generally, the group works together with a single conversation hap-
pening at any given point. On the flip side, however, this can get tricky when the
whole group tries to speak at the same time, so you will need some facilitation tricks to
help get the group under control. My approach is to set some ground rules at the start
of the workshop, explaining that we can’t all speak at the same time and that we
should show a basic level of courtesy if we want to have an effective session.

Sales-
person

Legal
Team

Legal
Team

Request
contract
approval

Contracts
(system)

Contract
approval

requested

Legal
approval
required

Request
legal

approval

Approvals
(system)

Legal
approval

requested

New
approvals

list

Approve
contract

Approvals
(system)

Contract
legally

approved

Finance
approval
required

Request
legal

changes

Less desirable scenario changes
are required before approval

Contracts
(system)

Legal
changes

requested

Refinements
list

Apply
contract

refinements

Sales-
person

Request
finance

approval

http://mng.bz/PRO8

160 CHAPTER 8 Product and domain modernization
 After the session has started, I find two techniques to be quite effective for keeping
things under control: gently reminding people and using placeholders to park certain
conversations. I also find periodic retrospectives useful, where the group can reflect
on their behavior. For example, after a couple of hours, you can tell the group, “Let’s
do a quick retrospective. We’ll go around in a circle, and each person has to answer
two questions: What’s one thing you’ve learned during this session? And what’s one
thing you would like to change in the next session?”

STARTING THE SESSION

The simple way to start a process modeling EventStorming workshop is to start with
what seems to be the first step in the process and then gradually build up the timeline
step-by-step with the whole group working together. If the group is new to the tech-
nique, it’s good to designate a single person who can place the sticky notes and rotate
the person every 15 to 30 minutes. For disciplined groups, it may not be necessary to
define roles; instead, everyone is allowed to add and move stickies.

 It’s also helpful, but not necessary, to explicitly define the preconditions and the
success, as shown in figure 8.7. The goal of this session is then to get from the start to
the end. I do find that having a clearly defined start and end can help people to focus
by giving a sense of how much progress is being made and how far there is still to go.

EventStorming as a collaborative game
Alberto Brandolini, the inventor of EventStorming, is a big fan of gamifying process
modeling EventStorming. His rationale for gamification is that process modeling
EventStorming (when used to design future states) is about converging on solutions
that require agreement. As you’re probably aware, this is not easy to achieve when
various stakeholders all have their own interests and opinions. Turning process mod-
eling into a collaborative game removes the competitive nature and creates an envi-
ronment where people need to work together.

Alberto defines four key rules in his process modeling game: all process paths are
completed, the color grammar (shown in figure 8.4) is preserved with no holes or

EE I A

Context Trigger

E

E

E I

I

I

Empty modeling space
System
outcomes

User
outcomes

Figure 8.7
Preparing the board for
a process modeling
EventStorming session

1618.4 Process modeling EventStorming
ASKING GOOD QUESTIONS

Asking good questions is an important facilitation skill. Good questions can unlock
insights that rule out certain approaches or open the group to new possibilities. One
thing to remember is that asking questions is about bringing knowledge into the
whole group or challenging the group to think differently, which in turn allows the
group to have better conversations and better understand the situation. Don’t just
view questions as a way for you personally to get the information you need to make a
decision. This distinction is vital for thinking and acting like a good facilitator. This
section provides generic facilitation questions you can use in almost any workshop.

 “How many people will assume this role (or play this role, or be able to do this
job)?” This question is about understanding the scale of the opportunity. Is there a
small team of five people who share a responsibility or a call center with five thousand
people? For example, automating the job of five people might not even justify the
costs of building and maintaining the software, but if there are five thousand people,
the equation is much different.

 A related question is, “How many roles can a single person play?” This question
can unlock conversations around making individuals more productive, like in the case
where a person plays three roles but their expertise is only necessary for one of those
roles, meaning time spent performing the other two roles is a waste of that person’s
talent. This is shown in figure 8.8, which applies these questions to roles in a prescrip-
tion validation process. The new process can then be designed to optimize the value
of each person involved.

Figure 8.8 Asking questions about people in the domain to unlock valuable conversations

gaps, every possible hot spot is addressed, and all stakeholders are reasonably
happy. To learn more about gamifying EventStorming, I highly recommend Alberto’s
talk Software Design as a Cooperative Game (https://www.youtube.com/watch?v
=awyMC9PZNfc).

• • • • • •Triage
prescription

Add
prescription

to job list

Assign
job to
me

Triage
agent

Routing
agent

Processor
agent

How many of these
roles can the same

person play?

Are any of these roles
low skill, but performed by

high-skill employees?

https://www.youtube.com/watch?v=awyMC9PZNfc)
https://www.youtube.com/watch?v=awyMC9PZNfc)
https://www.youtube.com/watch?v=awyMC9PZNfc)

162 CHAPTER 8 Product and domain modernization
When there are multiple triggers or entry points to a process, a good question is
“What’s the likelihood of each scenario?” or “Which is the most common?” You can
even apply a percentage split, as shown in figure 8.9. By making this information
explicit, you have a better understanding of where valuable opportunities may lie. On
the one hand, a large percentage of cases all flowing through a single trigger means
more users will benefit from optimizations in that scenario. On the other hand, a low
percentage of cases flowing through a particular trigger might also be a reason for
greater effort in that area. One example I’ve seen is where only a small percentage of
users seek help via an automated chatbot and instead prefer to talk to a real person.
This way of entering the process has a higher cost to the business due to the manual
work, so investing in greater modernization of this flow can result in more customers
choosing this flow with the net result of lower operating costs.

Figure 8.9 Explicitly marking the percentage breakdown of each flow through
the domain

One of the most important questions is, “Does this always happen?” If you ask this
question about every event and policy on the timeline, you are guaranteed to discover
hidden edge cases and business rules. For example, consider a policy that states legal
approval is required following an approval request for sales contracts. If we ask, “Is
legal approval always required when the sales team requests contract approval?” we
may get answers like “Actually not always. If the salesperson reuses an existing tem-
plate with an approved client, then no legal approval is necessary.” Similarly, you can
ask the opposite question, “Should X never happen under any circumstances?” or “Is
it 100% impossible that you would ever allow X to happen?”

 As process modeling EventStorming is more solution-oriented, it doesn’t hurt to
have one eye in the future thinking about requirements that will need to be imple-
mented. Thinking about service level agreements (SLAs) and general tolerance levels

• • •• • • • • •

Process
trigger

1

Process
trigger

2

Process
trigger

3

50%
??

30%
??

20%
??

What’s the breakdown
of these triggers? Which

is the most common?

1638.5 Domain Storytelling
is a good starting point for asking these kinds of questions. For example “What would
be the maximum possible amount of time you could allow between a contract
approval being requested and a response from the legal team?” You don’t need to nail
down concrete requirements covering every scenario.

8.5 Domain Storytelling
Having a variety of workshop techniques in your toolbox is always a good thing. Differ-
ent environments, domains, and people can all be factors in determining which tech-
nique is likely to be most effective in a given situation. You can also apply multiple
techniques to the same challenge to see if different perspectives lead to different
insights and opinions. For these reasons, Domain Storytelling (https://domainstory
telling.org/) is a great technique to have in your toolbox alongside the various flavors
of EventStorming.

 The philosophy of Domain Storytelling is centered around the idea of telling sto-
ries. Stories are engaging and specific and revolve around people in the domain.
These characteristics lead to a deeper immersion in the domain. Domain stories are
generally modeled and told using a step-by-step approach with a single thread of con-
versation. It’s not a technique where people must stand up and move around a lot
while different subgroups form, with multiple conversations happening in parallel.
It’s a reasonably calm process, although, as with many collaborative techniques, facili-
tation skills are needed to prevent the group from all trying to talk at the same time
and going down rabbit holes.

8.5.1 Notation

Domain Storytelling contains a few basic notation elements optimized for telling stories
about the domain through interactions between people, systems, and other entities.

 Actor—People, software systems, or other entities that play a role in a domain
story.

 Work item—A domain concept with which actors use and communicate.
 Activity—An actor doing something with a work item, often involving another

actor.
 Sequence number—Indicates the order in which each activity happens.
 Annotation—Text used to articulate anything that cannot easily be expressed

with other notation, such as the reason or motivation for a decision.
 Group—A group is used to show a relation between parts of the story, like a

domain boundary.

Figure 8.10 shows the generic modeling icons used to represent each of these con-
cepts. However, it’s also possible to bring stories to life by using icons that are more
representative of concepts in the domain being modeled. As an example, if you were
designing the process for judiciary systems, you may use the icon of a judge to repre-
sent the judge actor rather than the generic actor icon.

https://domainstorytelling.org/
https://domainstorytelling.org/
https://domainstorytelling.org/

164 CHAPTER 8 Product and domain modernization
In figure 8.11, a desired future-state process of automatically validating prescriptions
has been designed using the Domain Storytelling notation. The story begins with a
customer who places an order for medication on the orders area of the company web-
site. This is represented by the customer icon followed by the activity places, which is an
arrow with the sequence number 01. The arrow points to the order for medication work
item and is followed by a second arrow that points to the orders system/capability. This
reads as “The customer places an order for medication on the orders system.” The

Work item

Group

Activity

Actor

Annotation

Actor

1

Figure 8.10 The five basic
notation elements of the
Domain Storytelling
pictographic language

Prescription validation: future state

Places

Confirmation
details

Orders
Order for

medication

on

Uploads

Prescription

Prescription
validation

Forwards

to
to

Requests

Confirmation

Confirmation

to

from Doctor

sends

Customer

Prescription validation

Ordering

1

2

3
4

5

Figure 8.11 Designing a future-state prescription validation process with Domain Storytelling

1658.5 Domain Storytelling
next step is identified with the next sequence number, which is 02. In this example,
this step is where the same customer performs the activity of uploading a prescription
to the prescription validation area of the website. The prescription validation service
then goes off to the doctor to get confirmation that the prescription is valid via email,
and once the email is received, it confirms the details with the orders system so that
the order can be accepted and fulfilled.

8.5.2 Planning and facilitating a workshop

You may have observed in the previous example that, unlike EventStorming, there is
only a single flow. There are no alternative scenarios or edge cases. This is by design
and touches on another aspect of the Domain Storytelling philosophy, which is often
expressed via a cliché that Stefan and Henning (the authors of Domain Storytelling,
http://mng.bz/Jdzz) like to use: “A good example is better than a bad abstraction.”
They also quote Cyrille Martraire, who says, “One diagram, one story” in his book Liv-
ing Documentation (http://mng.bz/wjlB). As a result, Domain Storytelling workshops
are more structured and focused and require a bit more up-front planning. This sec-
tion touches on the key aspects of planning and facilitating a Domain Storytelling
workshop.

SETTING THE SCOPE

As Domain Storytelling involves telling precise stories with a single flow and no condi-
tionals, we should clarify the scope up-front. Stefan and Henning propose three scope
factors to consider when planning your workshop: granularity, point in time, and domain
purity. Granularity refers to the level of detail and is defined as one of three broad lev-
els: coarse-grained, medium-grained, or fine-grained. Coarse-grained refers to the
highest level of granularity. Typically, this will cover large parts of the business involv-
ing multiple domains and teams, whereas a fine-grained story will be much more
detailed, perhaps taking just one activity from a coarse-grained diagram and breaking
it down into 10 or more steps. It’s recommended that each domain story is modeled
strictly at a single level of granularity rather than combining multiple levels.

 Point in time is about determining whether the story will be based on the current
realities or desired future improvements that have not been implemented. These two
options are referred to as as-is and to-be, respectively. Establishing the point in time is a
good idea because it clarifies the session’s outcomes and prevents people from con-
stantly switching between the two points during the workshop, which can cause a
group to go off track and disengage. When modeling to-be, it’s a good idea to manage
expectations. This isn’t just about mapping the current knowledge; it’s about explor-
ing possible future states and making decisions. There is likely to be less output, and
people might feel like less progress is being made, so it’s important to emphasize that
converging on ideas and making decisions is valuable. That’s not an excuse to go in
circles debating ideas, so as always, it’s important to step in and facilitate when time is
not being spent productively.

 Domain purity, the third scope factor, refers to whether the story should include
software systems. A story with software systems has the domain purity of digitalized,

http://mng.bz/Jdzz
http://mng.bz/wjlB

166 CHAPTER 8 Product and domain modernization
whereas a story without software systems is considered to be pure. Choosing a pure
domain story is a good idea when you want to focus on the domain concepts and not
let software systems clutter the picture. Sometimes, however, understanding the role
software systems play is crucial in understanding constraints and limitations, so it’s a
good idea to show them.

INVITING THE RIGHT PEOPLE

As with EventStorming and any technique for designing new domain capabilities, hav-
ing the right people available is key to the quality of the ideas produced and the speed
at which the group moves. Equally, the more people that are in a workshop, the
harder it can be to keep things under control and make progress. The dynamics of
Domain Storytelling don’t really affect who should be invited to the workshop; the
recommendations are the same as with EventStorming. The first step is to identify the
questions you would like to answer during the workshop, and the next step is to think
about who would be most valuable in the workshop to help answer those questions.
When designing future state processes, that will mean people who understand the
vision of the new system and the needs of users alongside those who will be designing
and implementing the software. In addition, you may want to invite people who want
to listen to the stories and learn without getting involved. Domain Storytelling is a
good format for this.

PREPARING THE SPACE
Domain Storytelling is fairly flexible with regard to the modeling space. You don’t
need meters of wall space; in fact, you might not need any wall space. I’ve been part of
Domain Storytelling sessions where a large whiteboard was sufficient or even a large
screen where we used digital modeling tools for an in-person workshop. One thing I
learned when attending a training workshop facilitated by Stefan and Henning is that
they prefer a seat layout called the Stonehenge setup, shown in figure 8.12, where
seats are in an almost complete circle or horseshoe shape focused on the modeling
whiteboard or screen. I find this format to be cozy and engaging, and I really enjoy it.
It taught me that you don’t need to be standing up and moving around to have a great
modeling session.

 If you’re doing an in-person workshop and
prefer to use physical rather than digital
tools, a couple of options are available.
Whenever I bump into Stefan and Henning
at conferences, they actually have the
Domain Storytelling icons printed out to
stick on whiteboards and flipcharts. The
alternative is to use sticky notes, but I think
using the real icons looks better. I also find it
enjoyable to use digital tools, even when in
person. The two digital tools I recommend

Whiteboard/screen

Seated attendee

Modeler

Figure 8.12 The Stonehenge room setup

1678.5 Domain Storytelling
are Miro and The Domain Storytelling Modeler (https://egon.io/), which is an open-
source tool that can be used online for free.

WORKSHOP ROLES

It’s not necessary to introduce roles into a Domain Storytelling workshop; however, it
can help ensure conversations stay on topic and get parked if they are going down a
rabbit hole. Roles can also help to ensure that everybody gets an opportunity to speak
instead of a few loud voices dominating. I’ve found that even with a group of experi-
enced modelers, roles can still be advantageous, and I personally enjoy the structure
that they bring. The following are roles to consider adding to your workshop:

 Host—This role is responsible for organizing the meeting and inviting partici-
pants before the workshop and has ultimate responsibility during the workshop
for deciding how the time is spent (e.g., what scenarios are modeled).

 Modeler—This role is responsible for building up the story by adding notation
onto the modeling space; usually, there is just a single person with this role.

 Moderator—This role is responsible for managing the space and the conversa-
tion to ensure the group has productive, on-topic conversations and everybody
gets a fair chance to speak up and get involved.

 Storyteller—This role is responsible for sharing knowledge that the modeler will
depict as a domain story.

 Listener—This role is for people attending the workshop to learn. They are wel-
come to ask questions and speak; they aren’t forced to be silent listeners.

It’s possible to combine some of these roles. For example, the same person could be
the modeler and moderator. Where possible, I think it’s best for separate people to
play each of these roles; however, modeling and moderating both require a lot of
attention and focus to do well. The roles of storyteller and listener can also be com-
bined, especially when designing future-state processes where a combination of
domain and technology expertise is required to design a solution.

KEEPING STORIES COMPREHENSIBLE

One of the big challenges with Domain Storytelling is keeping diagrams legible. It’s
easy to keep adding steps to a process and reach a point where there are so many lines,
arrows, and icons that it’s hard to understand what is happening. At the point you begin
to notice the diagram starts to become a bit overwhelming, it’s a good idea to stop reor-
ganizing. One option is to end the story and start a new one from where the previous
one finished. This works when there is a reasonably clean transition point, like the steps
leading up to an order being placed and the steps after an order is placed.

 Another strategy is to employ multiple levels of granularity. First, create a higher-
level, coarse-grained diagram and then zoom into the areas where more detail is
needed. It’s hard to pinpoint when to stop, but I wouldn’t recommend going too far
past 20. Some modeling spaces, like a whiteboard, may not even allow you to construct
stories that large anyway. As a facilitator, I often like to stop the group periodically and

https://egon.io/

168 CHAPTER 8 Product and domain modernization
start from the beginning to recap our progress so far. During these moments, it can be
obvious when the diagram is a bit too big or when we’ve mixed multiple levels of
granularity.

8.5.3 Replaying stories

At Domain-Driven Design Europe 2022, Stefan Hofer joined my training workshop
(https://dddeurope.academy/domain-driven-analysis-indu/) for an hour in the after-
noon of day one. This was preplanned and was actually the idea of Indu Alagarsamy
(https://www.linkedin.com/in/indualagarsamy/), with whom I was running the work-
shop. Stefan did a live modeling session, playing the roles of modeler and moderator.
One of the workshop attendees played the role of the key stakeholder in the new pro-
cess. After mapping out the first 9 or 10 steps of the process using the modeling tool
(https://github.com/WPS/domain-story-modeler), Stefan put the tool into replay
mode. This mode replays the story step-by-step on the screen. Attendees in the work-
shop gasped, and the stakeholder raised his eyebrows and said, “That’s nice!” This
captures one of the selling points of Domain Storytelling when using the purpose-
built digital tool: the ability to tell the story step-by-step is very compelling and cool!

8.5.4 When to use Domain Storytelling

As you can see, the notation and philosophy of Domain Storytelling are quite a depar-
ture from EventStorming. EventStorming is fundamentally a timeline-based format
reading from left to right with few or no arrows. Domain Storytelling does not have a
timeline and allows flexibility in laying out the notation, relying on sequence numbers
to show how the process unfolds over time. Another thing to compare is scope. Event-
Storming craves a large modeling space, capturing end-to-end flows and a variety of
edge cases, all in the same model. Domain Storytelling scales in a different way by cre-
ating multiple stories for various scenarios at different levels of detail. However, both
techniques work in a step-by-step fashion to build the process, so there are also some
similarities in workshop dynamics.

 If you like the idea of standing up, being active, and capturing everything in a sin-
gle modeling space, including all variations, EventStorming is your best bet. More so if
you don’t want to worry about laying out the elements and drawing lines. On the
other hand, if you prefer to use a purpose-built digital tool, you want to keep an elec-
tronic copy of the stories, you can evolve over time, and you like the ability to replay
the stories, then Domain Storytelling will probably suit you more. It’s hard to draw an
exact line and decide when to use each technique, and personal preference will play a
large role in the decision. You might think that EventStorming is more suited to in-
person and Domain Storytelling for remote, but that isn’t a pattern observed in real-
ity. Both techniques are used in both modes.

 EventStorming or Domain Storytelling for process modeling? You’ll have to try
both techniques and decide for yourself. And further still, you should learn about
other techniques not covered in this book, like Service Blueprints (https://service

https://dddeurope.academy/domain-driven-analysis-indu/
https://www.linkedin.com/in/indualagarsamy/
https://github.com/WPS/domain-story-modeler
https://servicedesigntools.org/tools/service-blueprint

169Summary
designtools.org/tools/service-blueprint) and Customer Journey Mapping (https://
servicedesigntools.org/tools/journey-map).

Summary
 Modernization is often perceived to be about technology and software, which

means stakeholders might risk missing out on opportunities to modernize the
UX, product, domain, and domain model at great cost to users and the business.

 Identifying requirements for applications that will be modernized is not about
copying across all existing functionality and reverse-engineering the current
codebase.

 Involving experts who understand UX is vital to ensure that modernization
delivers the maximum possible value.

 Consider the costs of not modernizing the UX. As your company plans to grow,
will the current user interfaces act as a hurdle for growth or introduce risks?

 It’s essential to spend time with real users to determine the requirements for
modernization: some of the existing features may not be needed; some may be
usable but very inefficient, requiring lots of manual workarounds; and some
may be completely unusable.

 For optimal results, corroborate knowledge from the system, like current fea-
tures, logs, and metrics, with the insights gained during conversations with users.

 A continuous approach to discovery is recommended, which means that the
team of people building the product should be talking to their users weekly,
both to get feedback on potential new improvements and on features that have
just been implemented.

 Investing in a better conceptual domain model means improving how people
talk about the domain—improving collaboration, simplifying the code, and
removing expensive and error-prone translations between business speak and
IT speak.

 Techniques like EventStorming, where business and software experts spend
time discussing the domain together, are the perfect opportunity to focus on
language and establish common terminology.

 Process modeling EventStorming is a technique that can be used to design
future states of the domain, the user experience, and the domain model. It’s an
excellent technique for identifying modernization requirements before making
technology-related decisions.

 As with every discovery and modeling technique, asking great questions like
“How many roles can a single person play?” will help to uncover insights and
clarify requirements for applications to be modernized.

 Domain Storytelling is another technique that can be used to explore future
states of the domain and establish the most valuable requirements for modern-
ization along with a better conceptual domain model.

https://servicedesigntools.org/tools/service-blueprint
https://servicedesigntools.org/tools/journey-map
https://servicedesigntools.org/tools/journey-map

170 CHAPTER 8 Product and domain modernization
 Domain Storytelling is based on telling stories using pictographic language and
modeling individual scenarios up to around 20 steps in length, as opposed to
EventStorming, which models end-to-end flows with many branches as a single
timeline.

 You may want to introduce roles into your workshops to manage the group
dynamics and maximize the usage of the available time.

 Choosing between process modeling EventStorming and Domain Storytelling is
about personal preference and the constraints of the situation. It’s best to try
both techniques and decide which feels best for you and your colleagues.

Identifying domains
and subdomains
Whatever ambitious outcomes you hope to achieve with modernization, structuring
teams effectively and designing a loosely coupled architecture will play an important
role. Well-defined boundaries reduce dependencies in an organization and in soft-
ware, empowering teams to deliver changes rapidly with fewer blockages. The ben-
efits of good boundaries also extend into value discovery. Teams empowered to grow
their expertise in a particular business area can contribute far more than just writing
code. They can combine their domain knowledge and technical expertise to
propose new product innovations. Good boundaries empower teams and help
unlock their full potential.

This chapter covers
 Understanding the principles for identifying domains

and subdomains

 Exploring possible domain boundaries with heuristics

 Identifying domains and subdomains with
EventStorming

 Grouping subdomains into domains

 Assessing and refining domain boundaries
171

172 CHAPTER 9 Identifying domains and subdomains
 So what is the secret to architecting loosely coupled organizations and software? If
a primary objective is to reduce dependencies, then the key to answering this question
is understanding where dependencies are unavoidable and where they can be avoided.
Almost any dependency can be avoided if you are willing to pay a high-enough cost. A
more valid question is: Which dependencies can be avoided without incurring high
costs, and where must we accept dependencies because the cost of removing them is too
high? This second framing is also better in that it conveys the fundamental nature of the
challenge: how we architect systems is within our control. There isn’t a single perfect
solution that we need to find by following the steps in a flowchart. Every organization
is a unique system with many factors affecting the optimal design, and the landscape is
constantly evolving, which means the target is always moving.

 The key to getting as close as possible to the optimal boundaries and dependency
trade-offs is to start by analyzing the business—more specifically, the relationships
between business domain concepts. When implementing new features, for example,
which domain concepts are likely to change together? By organizing the business into
cohesive groupings of concepts that change together, called business domains (used
interchangeably with domain in this book), teams and software can be aligned with
domains, resulting in lower coupling and faster flow.

 This chapter shows how to identify domains and subdomains, starting with a few
fundamentals and then a range of heuristics. The chapter also shows how to apply the
principles and practices using EventStorming to identify domain boundaries.

Chapter 11

Chapter 12
This chapter

Chapter 10

Candidate
business

subdomain

Strategy

Organization

Tech

Validate candidate
value stream

Target value
stream

Candidate
value stream

Refine

Validated

Figure 9.1 Potential business subdomains are candidate value streams that need to be
validated from diverse perspectives.

1739.1 The value of good domain boundaries
Effectively, this chapter covers the first step in identifying independent value streams
(see figure 9.1). Each subdomain is a candidate area for establishing a value stream.
Before modernization, however, it needs to be validated from strategic, organiza-
tional, and technical perspectives. Then it can be considered a target value stream,
meaning you are confident enough to begin.

9.1 The value of good domain boundaries
Good domain boundaries contribute to many organizational and technical improve-
ments. As shown in figure 9.2, looser coupling results in fewer dependencies and
faster flow—and, from personal experience, much happier teams. Cohesive boundar-
ies that group related concepts lead to a clearer sense of purpose, aligning and moti-
vating teams and incentivizing sustainable practices. Cohesion also makes it easier to
learn the domain, in turn helping teams go beyond coding to contributing product
and domain innovations.

Figure 9.2 Well-designed domain boundaries maximize cohesion and minimize coupling, contributing to
higher-performing teams and better products.

Consider the example of a travel company that offers loyalty points for each trip. They
want to introduce a new loyalty levels feature that gives customers better rewards
based on spending habits. It requires changes to the concepts loyalty account, loyalty
points, and rewards. If those concepts were not modeled as part of the same

Well-designed
domain

boundaries
Long-term sustainability

(ways of working and
system health)

Contributes to

Contributes to

Contributes to

Contributes to

Contributes to

Contributes to

Incentivizes

Reduces

Enables

Facilitates

Minimizes

Maximizes

Organizational
and software
dependencies

Clear purpose

Learning the
domain

Faster flow of
changes

Team
motivation

Team
alignment

Whole team
product

innovation

Coupling

Cohesion

174 CHAPTER 9 Identifying domains and subdomains
subdomain, three subdomains would need to change along with three codebases and
three teams needing to coordinate their work.

 Alternatively, as per figure 9.3, when these cohesive domain concepts are modeled
as a single conceptual domain, implementing the loyalty levels feature requires changes
to only a single codebase by a single team. Fewer dependencies result in a faster flow
of changes.

Figure 9.3 Identifying domains based on business concepts that change together to reduce team and
software dependencies

Due to high cohesion, it’s possible to define a clear long-term purpose with customer
and business value: reward customers for their loyalty and increase their lifetime value
(LTV). The team is motivated to continually seek new ways to achieve the goal, mak-
ing them want to keep their code healthy and evolvable. The team is highly aligned
around the purpose and able to work closely with the relevant domain experts, help-
ing improve their domain knowledge and better reflect domain concepts in code.

9.2 Domain identification principles
Following good principles is the key to identifying effective domains and subdomains.
This section introduces fundamental principles that will lead you toward a good
design while avoiding common pitfalls.

9.2.1 Domain boundaries depend on your goals

The most fundamental principle to keep in mind when defining domain boundaries is
that they are there to serve a purpose for your organization. There is no intrinsic, uni-

Loyalty
subdomain

Before new feature implemented After new feature implemented

Loyalty
team

Loyalty
codebase

Introducing the new loyalty levels concept requires changes to only
a single domain and a single codebase owned by a single team.

RewardsLoyalty
accounts

Loyalty
points

Loyalty
accounts

Loyalty
points

Rewards

Loyalty
levels

1759.2 Domain identification principles
versally correct way to model boundaries in a domain. The optimal boundaries depend
on the outcomes you aspire to achieve; therefore, you must decide what is best in your
unique circumstances. Many factors can influence your decision, like academic
research, topical books, industry standards, and other companies, but in most cases,
there is no obligation to copy them. While it may be wise to follow existing conventions,
it’s still your decision based on well-informed rationales derived from a diligent process.

9.2.2 Concepts can be coupled by multiple characteristics

To grasp why there is no perfect solution and why it is important to arrive at your own
decisions, refer to figure 9.4. There are shapes of different sizes and colors that repre-
sent domain concepts. These concepts can be organized into subdomains in various
ways based on different characteristics: there could be a green subdomain for all green
concepts or a circle subdomain for all concepts with a circle shape.

The optimal characteristic for grouping the concepts in figure 9.4 may not even be
apparent from this perspective. It could be weight, texture, or material, underlining
the importance of deeper domain immersion.

 Even individual domain concepts are highly subjective, as Rebecca and Mathias’s
case study in chapter 8 showed. They decided to introduce the concept of trust into
their domain as a metaphor for corroborating competing sources of information
when determining royalties. Suppose you spoke to competitor organizations in the
same industry, trying to solve the same problems. They may see the domain differently
and use a different language and concepts to describe it, even if their products offer
similar functionality.

 Choosing the appropriate boundaries is usually about understanding how you
expect the system to evolve and reducing the effort it takes to make those types of
changes. To demonstrate with the abstract shapes and colors, if your product strategy

Which attribute should be used to group
these domain concepts into subdomains?

Possible domain
boundary based on shape

Possible domain
boundary based on size

Figure 9.4 Domain
concepts can be
related to each
other (aka coupled)
by multiple
characteristics.

176 CHAPTER 9 Identifying domains and subdomains
requires new features and business rules that change concepts based on their shape,
the shape would be the most important criterion. However, if you choose boundaries
based on shape, and you need to implement new business rules that require changing
all of the red concepts, there will be high coupling in the form of changes to multiple
subdomains. This extra coupling most often means that the costs to implement the
change will be higher and it will take longer.

9.2.3 Not all dependencies are equally costly

While a primary objective when shaping domain boundaries is to minimize coupling
between subdomains; it’s important to recognize that not all coupling has the same
costs. There will always be some coupling between domains, so it’s essential to discern
the implications on a case-by-case basis rather than just seeing all coupling as bad and
to be avoided. When working with one client, I facilitated a workshop to help multiple
teams collaborate more effectively. We presented several solutions to the CEO and
asked which he thought best optimized for the product strategy. His response was: “I
don’t like any of these options. You should redesign the domain boundaries so there
aren’t any dependencies.” It’s a sentiment I see occasionally, yet it’s unrealistic. It’s
important to accept that some dependencies will exist and to be comfortable with the
nuance of coupling.

 For a more realistic approach to coupling and to reduce some of the subjectivity in
determining which coupling is more problematic, I recommend a formula proposed
by Vlad Khononov: Pain = Strength * Volatility * Distance (http://mng.bz/n1ve). Pain is
used as a measure of the costs of a given instance of coupling between two concepts.
The higher the score, the more costly the coupling between the two concepts, the less
desirable the coupling is, and the more justification for investing in alternative solu-
tions that remove the coupling. Strength refers to the type of coupling between two
concepts. This is measured based on how they are implemented in software like
shared databases versus event-driven architecture. This will be discussed in more
detail in chapter 12.

 Volatility refers to how often two concepts change together. If two concepts rarely
change together, for example, once per year, then pain will be low even if the other
variables are high. There are a few important nuances to volatility. The first is that the
volatility between two concepts can change based on the strategy and type of function-
ality being implemented. Historically, it may have been low, for example, but it could
be much higher in the future based on a change in product direction. The second
nuance is the current versus desired volatility. Existing constraints may limit how often
two components change together (like legacy code), but a business may desire to
develop innovations requiring them to co-change more frequently.

 Distance refers to how far apart two concepts are. This has both organizational and
technical implications. From an organizational perspective, the distance will be low if
two subdomains that are coupled are owned by teams that sit closely together and
report to the same manager. The teams should be able to coordinate their work easily.
But if those two teams work in totally different departments, report to different

http://mng.bz/n1ve

1779.2 Domain identification principles
managers, and are based on opposite sides of the world, the organizational distance
will most likely be far higher. The technical implications of distance will be covered in
chapter 12.

9.2.4 Explore multiple models

It might seem obvious, but it’s worth being explicit: identifying good domain boundar-
ies necessitates collaboratively exploring multiple possibilities. Because domain con-
cepts are connected through various characteristics, exploring multiple models and
assessing their trade-offs is essential when identifying the optimal domains and subdo-
mains for your organization. Some options may promote autonomy and optimization
of individual products at the expense of duplication and a lack of consistency in the UX
across multiple products. In contrast, other options may employ higher levels of reuse
at the risk of creating more dependencies. Before getting too attached to the first plau-
sible option, it’s advisable to put multiple options on the table. Then you can compare
and decide which design best fits the outcomes you are trying to achieve. Using multi-
ple heuristics and multiple techniques is the key to uncovering multiple models.

9.2.5 Industry example: The British Broadcasting Corporation

BBC is the world’s oldest and the UK’s largest national TV broadcaster, having existed
since the 1920s. Nowadays, it runs one of the world’s most-viewed news websites, with
around 1.5 billion monthly page views and 61 million monthly video views (http://
mng.bz/vPl1). Yet, the BBC website is much more than a news hub. It provides a
range of services like TV streaming, radio streaming, sports, weather, and education.
When BBC began a significant modernization initiative called WebCore, its high-level
domain boundaries were aligned with these services (http://mng.bz/46eD), as shown
in figure 9.5.

Figure 9.5 The BBC’s high-level domain boundaries prior to the WebCore modernization initiative

ArticlesArticles

Search Search

Topics Topics Topics Topics Topics

Notifications
and alerts

Notifications
and alerts

Notifications
and alerts

WeatherSportNewsHomeEducationChildren

http://mng.bz/vPl1
http://mng.bz/vPl1
http://mng.bz/46eD

178 CHAPTER 9 Identifying domains and subdomains
Graeme Lindsay, an engineering manager for BBC at the time, explains: “Each is a
major service in its own right—with millions of visits every week—and they have grown
independently of one another over several years. This was reflected in the way the
organization was shaped—with separate departments owning each digital service.”
These higher-level domains defined department boundaries composed of multiple
individual teams.

 As you may have noticed, in figure 9.5, there are commonalities across verticals,
like the concepts of Topics and Articles. This resulted in individual products that were
highly optimized but with some higher-level consequences as Graeme Lindsay
explains: “The user experience across multiple services wasn’t as seamless and consis-
tent as it could have been” and “Lots of features, despite being conceptually similar,
were implemented multiple times—with the total cost of maintenance also paid multi-
ple times. Cross-cutting capabilities—for example, personalization and analytics—
were major tasks that each product development team had to tackle themselves.” As
part of their modernization initiative, BBC wanted to address these problems by creat-
ing a single website for all services, building shared horizontal services, and allowing
teams to share commodity components.

 The outcomes BBC wanted to achieve were to leverage technology better and
build more innovative features for the audience. As a result, BBC reenvisioned its
domain boundaries to include horizontal domains like Articles, Search, and Topics, as
shown in figure 9.6, and began transitioning its socio-technical architecture to align
with them. Teams responsible for audience-facing verticals like news could then lever-
age these horizontals.

Figure 9.6 Horizontal domains that were identified as part of BBC’s WebCore
modernization initiative (Source: The BBC)

9.2.6 Don’t rely on superficial knowledge

One of the most common mistakes I see is when important architectural decisions are
made based on a shallow understanding of the domain. Some domain boundaries

WeatherSportNewsHomeEducationChildren

Articles

Search

Topics

Notifications and alerts

1799.3 Domain boundary heuristics
look like a good fit from a high level, but when you get deeper into the details and
uncover more complexity, it changes your perspective completely. So, even when you
are confident about a possible domain boundary, digging deeper into the details still
makes sense by running more focused workshops and using various techniques that
provide different perspectives.

9.2.7 Good boundaries are not a panacea

It has been mentioned in the book already, but it’s worth repeating here because it is
especially relevant when identifying domains and subdomains: even if you were to
identify the perfect domain boundaries and use them to shape your teams and soft-
ware architecture, there is still no guarantee that you will achieve your modernization
ambitions. As the structure and process fallacy (http://mng.bz/QR0R) warns, struc-
ture alone is insufficient to create high-performing organizations. Other needs are
essential, too, like prioritizing the right initiatives, incentivizing sustainable practices,
and creating a learning environment.

9.2.8 Prepare for constant evolution

Identifying domain boundaries is not a one-shot activity; it’s a continuous challenge.
There can be many reasons for domain boundaries to evolve. One scenario you’re
likely to encounter is a subdomain growing too large for a single team due to the addi-
tion of many new features. Another is when initial assumptions lack key insights. After
transitioning to the new domain boundaries, more complexity and dependencies
emerge, and the costs are high.

 In my experience, it’s doubtful that your domain boundaries will be right at the first
attempt, so you should assume that domain boundaries will change and ensure you
have the flexibility to adapt. When asked to help define domain boundaries as a one-off
activity, I explain that it’s not a good idea. If you are in a similar situation, I would advise
you never to commit to putting yourself in a position where you have to get the design
right the first time. The more important matter to address is the source of these expec-
tations. Understanding triggers for evolution is key to knowing when and how to evolve
domain, team, and software boundaries, which is covered in chapter 11.

9.3 Domain boundary heuristics
There is no flow chart for identifying the optimal domain boundaries. This is because,
as discussed in the first part of this chapter, domain concepts can be organized into
domains and subdomains using multiple competing criteria. But that doesn’t mean
that identifying good domain boundaries is down to luck or is an innate skill. This is
where heuristics are important. Heuristics suggest a possible course of action like
“Take the train to work” if your goal is to get to work as quickly as possible. Learning
about heuristics for domain boundaries can help you identify various design options
and assess the trade-offs.

 One thing about heuristics is that they don’t guarantee you will arrive at the opti-
mal solution by following them. For example, taking the train to work would not

http://mng.bz/QR0R

180 CHAPTER 9 Identifying domains and subdomains
result in getting to work as quickly as possible on days when there is a train strike or
major train delays. Another thing about heuristics is that sometimes they compete
with each other. For example, “Cycle to work” is incompatible with “Take the train to
work.” Here, you can only choose one (although you could combine them into a new
heuristic). Heuristics aren’t quite a flow chart; they give clues about the direction to
move, but you still have to do additional work.

 Even though heuristics do not lead to the perfect answer, when you combine them
with multiple techniques like EventStorming and Domain Message Flow Modeling,
you will be well on the path to defining good domain boundaries. In this section,
you’ll learn about various heuristics for identifying domain boundaries, and then in
the next part of this chapter, you’ll see how to apply these heuristics in a practical set-
ting with EventStorming.

9.3.1 The five guiding domain-boundary heuristics

There are many heuristics for identifying domain boundaries. As a starting point, I
recommend five major heuristics that represent five top-level concerns when identify-
ing and assessing domain boundaries:

 Business heuristic—Define domain boundaries based on business importance.
 Domain heuristic—Define domain boundaries based on relationships between

domain concepts.
 Organization heuristic—Define domain boundaries to optimize for team motiva-

tion and productivity.
 Technical heuristic—Define domain boundaries that take into consideration soft-

ware and technology constraints and opportunities.
 User experience heuristic—Define domain boundaries for the best user experience.

The business heuristic encourages choosing domain boundaries by separating strategi-
cally important domain concepts from less strategically important domain concepts.
Depending on your target business outcomes, this could be faster innovation in sub-
domains of higher strategic importance, improved efficiencies through higher reuse,
or optimized build versus buy versus partner decisions. Decoupling high-value from
low-value concepts enables faster innovation in key areas because every extra concept
adds cognitive load and increases the costs of changing the corresponding code. Any-
thing of lower value that can be removed will result in a lower cost of change. In the
BBC example, reducing duplication costs and enabling new innovation types were two
key business outcomes. Identifying the most strategically important subdomains is the
topic of the next chapter.

 The domain heuristic encourages choosing domain boundaries based on the
domain’s inherent nature, such as relationships between domain concepts, like an
order and order items or a recipe and ingredients. In essence, this is about looking for
domain coupling and cohesion and uncovering the true complexity of the domain.
These benefits are critically important for minimizing the coupling and complexity in
the corresponding software. In the BBC example, the relationship between concepts

1819.3 Domain boundary heuristics
like topics that appeared in multiple domains was strong enough to consolidate them
into a single horizontal domain.

 The organizational heuristic encourages choosing domain boundaries that optimize
for the needs of the people building the system, like purpose, autonomy, and mastery.
For example, a subdomain that is too complex for a single team can lead to many
problems like burnout, unmaintainable code, and unreliability. This topic is covered
in more detail in chapter 11.

 The technical heuristic encourages choosing domain boundaries for technical rea-
sons, like the constraints of legacy systems. You may have been surprised to see this
heuristic. After all, shouldn’t the software architecture be based on the domain and
not vice versa? In an ideal world, that’s correct, but realistically it’s tough to change
existing legacy systems, and the cost of adapting them to the desired boundaries may
not be feasible in the short to medium term. Accordingly, you may need to define
domain boundaries that are achievable in the shorter term, although it’s still ok to
have longer-term aspirations. To summarize, software shouldn’t be the primary factor
when driving domain boundaries, but it’s important to understand technical concerns
and constraints so that your choice is actually viable.

 The user experience heuristic encourages choosing domain boundaries that offer the
best possible user experience. This was one of the key reasons for the re-architecting
of BBC’s domain boundaries. The current domains resulted in a silo effect where
each product had been fairly well optimized, but the consistent experience across all
of BBC’s product and services had suffered as a result. Domain boundaries might not
be the most important factor in optimizing the UX, but they shouldn’t be ignored.

 Sometimes, these heuristics will all pull in the same general direction, which is
nice, but often they will pull in different directions, and you’ll have to decide which
takes precedence. There is no natural precedence or simple answer. After comparing
the options, you’ll need to spend more time building a business case. Remember that
boundaries need to evolve, and you are unlikely to get them perfect the first time
regardless, so it may be better to pick the option that feels most right and make sure
you have a buffer to evolve the design as you learn more.

 These heuristics will guide you in the right general direction by ensuring you
include all key considerations and balance competing forces. But they’re very high
level and still leave a lot to the imagination when defining specific domain boundar-
ies. This is why they are most effective when combined with more granular heuristics
for identifying individual subdomains, which are covered next.

NOTE You can find cheat sheets for all the heuristics presented in this chap-
ter on the book’s Miro board at http://mng.bz/PRO8.

9.3.2 Subdomain boundary heuristics

The heuristics in this subsection are used for defining the boundaries of individual
subdomains. They are effectively the boundaries of individual teams (a single team
may also be responsible for multiple lower-complexity subdomains) and parts of the

http://mng.bz/PRO8

182 CHAPTER 9 Identifying domains and subdomains
software architecture. None of these heuristics is a rule, so in most cases, you’ll need
to consider all of them and choose the most appropriate. You should also look for
novel heuristics that may be relevant to your context.

ALIGN SUBDOMAINS WITH PROCESS AND JOURNEY STEPS

One of the easiest ways to start identifying subdomains is to break up a process or user
journey into a sequence of steps or subprocesses, each becoming a candidate subdo-
main to be owned by a separate team. For example, in an e-commerce setting, the
Placing an Order user journey may be broken down into the steps and subdomains as
shown in figure 9.7: Search and Browse, Product Details, Cart and Checkout, and
Reviews.

This heuristic is a great starting point because everybody is familiar with techniques
for mapping out processes and journeys, and it’s only a small effort from there to
then break it down into smaller parts. It is effective at finding boundaries when steps
in a process are largely self-contained and share few overlapping concepts. The
Reviews subdomains would fulfill this criteria if it needed to know very little about
other subdomains like the ID of a product and the ID of the customer that had pur-
chased the product. It could then allow customers to add reviews and ratings while
being highly immune to any change affecting Customer and Order concepts in other
subdomains.

 One drawback of a process-based decomposition approach is that, very often, cer-
tain capabilities and concepts appear in multiple steps or journeys, and duplication
costs may be too high. The next heuristic addresses this concern.

CENTRALIZE CONCEPTS THAT APPEAR IN MULTIPLE PROCESSES OR STEPS

If you start by mapping out processes and chunking them into steps, the next step is to
look for commonality across steps and processes that should be extracted into dedi-
cated subdomains, as shown in figure 9.8. Centralizing domain concepts into a single
subdomain has several benefits, including grouping related concepts that change
together and reducing the complexity within other subdomains. This was the case in
the BBC example where Topics, Search, and Notifications and Alerts were centralized.

Place an Order (user journey)

Search and
Browse

(subdomain)

Product
Details

(subdomain)

Cart and
Checkout

(subdomain)

Reviews
(subdomain)

Each high-level step in the
process is modeled as
a separate subdomain

Figure 9.7 Aligning subdomains
with steps in a user journey

1839.3 Domain boundary heuristics
Figure 9.8 Centralizing concepts that appear in multiple subdomains into a single subdomain

It’s important to be careful with this heuristic. When applied based on a superficial
understanding of the domain, it is easy to create bottlenecks in the system and other
problems. I often observe architects who have a strong desire for reuse and centraliza-
tion without fully understanding the costs. This was the case when I worked with a cli-
ent in the travel industry who had offerings tailored to both the mass and luxury
markets. The mass market is generally about high volumes and low margins. A profit is
made at the time of booking.

 Luxury is the opposite: lower volumes of customers but a much higher profit mar-
gin on each customer. Architects saw that both domains had the concept of package
building, which involves configuring the options on a booking like daily excursions,
and wanted to centralize within a single Package Building subdomain used by all user
journeys. The luxury team knew this was a bad idea. For them, package building was a
highly customizable and tailored process that helped increase the value sold to each
customer. As a centralized service owned by another team in a different country, it
would drastically limit their ability to improve this part of their product continually.
Fortunately, the luxury team convinced the architects that it wasn’t a good idea.

 The following is a list of questions you can ask to decide if following this heuristic
and creating a shared subdomain makes sense in your modernization scenario:

 Will consumers (of the shared subdomain) lose any capabilities?
 Will consumers gain new capabilities?
 Will consumers have more time to focus on their core mission?
 Will consumers be slowed down by the new dependencies?
 Will it be possible for the team owning the centralized subdomain to be respon-

sive to the needs of all their consumers?
 Could the number of consumers grow to be problematic over time?
 Will the cost for consumers to migrate be high?
 Will consumers have the option not to migrate to the shared capability?

User journey

Before applying heuristic

Subdomain A Subdomain B Subdomain C

Notifications Notifications Notifications

User journey

Subdomain A Subdomain B Subdomain C

After applying heuristic

Notifications (new subdomain)

1. The concept of notifications previously
 existed in multiple places.

2. Now it has been extracted into a single
 subdomain at the cost of extra dependencies.

184 CHAPTER 9 Identifying domains and subdomains
With the responses to these questions, you can then answer a more fundamental ques-
tion: What are the business and organizational outcomes you hope to achieve, and
how confident are you that they will be achieved? In addition to these questions, the
next heuristic is also crucial in deciding when certain concepts should and should not
be consolidated into a single subdomain.

ALIGN SUBDOMAINS WITH ESTABLISHED SEMANTIC BOUNDARIES

Determining whether two concepts are essentially the same and should subsequently
be considered part of a single subdomain often requires digging into the nuances of
domain language. One clear pattern to look for is when the same concept is referred
to by different names at different times. Imagine you worked in an organization where
the terms Lead, Rider, and Reporter could all be used to refer to the same customer.
Each is used in different scenarios with different semantics, which are candidate sub-
domains as shown in figure 9.9, where Lead is a term used in the Marketing subdo-
main, Rider is a term used in the Journeys subdomains, and Reporter (a person who
reports a problem) is a term used in the Maintenance subdomain that maintains the
fleet of vehicles.

Another pattern to look for is when the same word or phrase has different semantics
in different scenarios, like a tomato. In the Botanical domain, a tomato is considered
to be a Fruit because it develops from the fertilized ovary of a flower. Meanwhile, in
the Culinary domain, a tomato is considered to be a Vegetable because it is used in
savory dishes (http://mng.bz/Xqp1). To disambiguate, the more precise terms Botan-
ical Fruit and Culinary Vegetable are sometimes used. As this tomato example points out,
aligning subdomains with established semantic boundaries is a good heuristic for
domain boundaries because it is driven by identifying boundaries around a specific
purpose, like making good food.

 When looking for semantic boundaries, it helps to understand a few basic linguis-
tic concepts. Try to find example words and phrases for each of the following
linguistic concepts in your business domains:

 Homophone—Same pronunciation but different meaning, for example, seller
versus cellar.

 Homograph—Same spelling but different meaning, for example, saw (to cut)
and saw (to have seen).

Marketing
(subdomain)

Customer
Lead

Customer

Journeys
(subdomain)

Customer
Rider

Maintenance
(subdomain)

Customer
Reporter

Figure 9.9 Aligning subdomains
with established semantic
boundaries

http://mng.bz/Xqp1

1859.3 Domain boundary heuristics
 Homonym—Same spelling but different sound and meaning, for example, live
(to be alive) versus live (happening right now).

 Synonym—Same meaning, yet either spelling or sound may be different, for
example, drink versus beverage.

 Synecdoche—Where a part is used to describe the whole, for example, “All hands
to the pumps,” meaning everybody is needed to help out, not just their hands.

 Metaphor—Where a concept is used as a figure of speech but not literally, for
example, “low hanging fruit” implies something that is easier to achieve than
alternative options. In the previous chapter, Rebecca and Mathias’s example
demonstrated the Trust metaphor being introduced as a domain concept.

Etymology is another crucial linguistic concept that is essential to keep in mind. This
pertains to how the meanings of words change over time, which is something that hap-
pens in many business domains. This concept implies that we must continuously be
aware of evolving semantics and ensure that the software evolves in parallel. Take a
moment to try and think of three phrases in your business domains that have different
meanings now compared to a few years ago.

 The general concept of semantic boundaries exists within different fields. In lin-
guistics, there’s a concept called a semantic domain (https://www.semdom.org/descrip
tion), and in domain-driven design, there is a similar concept called a bounded context
(https://martinfowler.com/bliki/BoundedContext.html).

DEFINE PURPOSEFUL SEMANTICS

The previous heuristic was about analyzing the current state of a domain to identify
established semantic boundaries. That implies a one-way relationship, which isn’t the
case. It’s within your control to define purposeful semantic boundaries, to determine
where the same concept may have different meanings. A failure to define semantic
boundaries will likely result in highly complex and coupled software. Take the exam-
ple of a Customer. You could put everything about the Customer concept into a single
subdomain called Customer. This would include anything that seems related to a cus-
tomer, like their profile, order history, payment details, shipping preferences, loyalty,
etc. The results are monolithic, tightly coupled systems that are hard to reason about.
Defining purposeful semantics, even when there aren’t existing semantics to follow,
helps to avoid this problem.

 To define purposeful semantic boundaries, we can determine that the clue is the
name of the heuristic: start by identifying different purposes in the domain and then
work backward to identify what value a particular concept brings concerning that spe-
cific purpose. Define the semantics based on the value provided relative to that pur-
pose and then strip away anything from the definition that is unrelated. For instance,
if your product allows customers to see their order history, then the semantics of a cus-
tomer relative to this purpose is something that has placed historical orders. No busi-
ness rules or logic related to this purpose require understanding the customer’s
loyalty points, support tickets, or notification preferences. They are not part of the

https://www.semdom.org/description
https://www.semdom.org/description
https://www.semdom.org/description
https://martinfowler.com/bliki/BoundedContext.html

186 CHAPTER 9 Identifying domains and subdomains
Customer semantics in relation to this purpose. With this in mind, Order History
could be considered a separate subdomain aligned with these semantics, as shown in
figure 9.10.

DECOUPLE SUBDOMAINS BY THE RATE OF CHANGE

As a general guideline, the larger a subdomain is, the more expensive the cost-of-
change and lower the speed-of-change are likely to be. This is because when the
domain concepts are implemented as code, more code is likely to result in some or all
of the following negative effects: harder to learn the codebase, harder to understand
the code, harder to change the code, and more time-consuming to test and deploy the
code.

 All of these negative effects increase the costs and time needed to change code.
Therefore, by removing code that doesn’t change very often, the cost-of-change for
the code that does change often will be lower. Accordingly, the main intention of the
decouple subdomains by rate of change heuristic is to define domain boundaries that allow
a faster rate of change where it is most needed. Bear in mind that this is an oversimpli-
fication. A whole variety of other factors, like the quality of code and the skill of the
team, also affect cost-of-change.

 Another way to look at this heuristic is from the perspective of Vlad’s coupling for-
mula. If the coupling volatility between two concepts is low or even zero, the pain of
the coupling will be low or zero. Ergo, even if the cost-of-change between two con-
cepts is high, it’s not a problem if it barely ever happens. The risk here is accurately
determining the rate of change. It’s effectively a bet on the future, so you can’t be
100% certain. It’s not pure guesswork, though. Firstly, you can look at the historical
rate of change, and then you can look at the product strategy and roadmap to under-
stand which areas are of the most strategic importance. They will likely receive a
higher investment and change more often.

Order History
(subdomain)

Customer

Past
orders

Loyalty
(subdomain)

Customer

Loyalty
points

Support
(subdomain)

Customer

Open
tickets

The customer concept exists in multiple subdomains, each with
unique semantics related to the subdomain’s specific purpose.

Figure 9.10 Aligning
subdomains with
purposely defined
semantics

1879.3 Domain boundary heuristics
 This heuristic is one I use often, especially in the context of modernizing tightly
coupled legacy monoliths. There is often someone who will say something like,
“Everything is connected to everything; it’s impossible to break down this domain into
subdomains.” Spoiler: this has so far never turned out to be correct. I’ll typically start
exploring potential domain boundaries by asking people to draw what they consider
to be all the individual parts that are tightly connected. Then, working through each
relationship step-by-step, I’ll ask questions like “How often does this change?” “How
often do you implement new features here?” “How often do you implement new func-
tionality that requires these two parts to change together?” It’s normal to hear
responses along the lines of “That part doesn’t change very often” or “We might make
one small change every few months to add a new type of <thing>.” In these cases, you
have identified a low or zero value for volatility; therefore, the two parts can be decou-
pled with high confidence because at least one of them changes very rarely.

 One final point to add to this topic is the differentiation between the current rate
of change and ideal rate of change. The current system may constrain how quickly
changes can be implemented or may limit certain types of change altogether. The
goal of modernization is to enable the ideal rate of change in each subdomain. Keep
this in mind when calculating pain.

DECOUPLE BY SUBDOMAIN ROLE

One heuristic that is effective in many different types of domain is the delineate by sub-
domain role heuristic. This is about looking at the mechanics of each subdomain and
the type of purpose it has. Figure 9.11 demonstrates three common roles that subdo-
mains can assume. The first is the Specification role. This means the subdomain’s pur-
pose is to create a specification or description of something that must happen.

 A specification itself usually doesn’t provide value but rather describes something
that would be valuable. In figure 9.11, the Campaign Building subdomain has this
role because its purpose is to collect all of the information needed to run an Advertis-
ing Campaign. It then hands over the specification to the Campaign Running subdo-
main, which will execute some process or instructions based on the provided
specification. Therefore, Campaign Running has the Execution role. The third sub-
domain is Campaign Optimization. It has the Analysis role because it receives data
from multiple sources and produces insights about improving the Advertising Cam-
paign’s performance.

Figure 9.11 Three subdomain roles: Specification, Execution, and Analysis

Campaign Building
(subdomain)

Campaign Running
(subdomain)

Campaign
Optimization
(subdomain)

Specification Execution Analysis

188 CHAPTER 9 Identifying domains and subdomains
As with all heuristics, this heuristic does not have a 100% success rate. Sometimes, it
may be better to have a single subdomain with multiple roles like Specification and
Execution. This is often the case when the complexity of one role does not justify
being a separate subdomain, like when the steps to build a specification may only
involve collecting a few pieces of information. It does pay to think longer-term, how-
ever. When the subdomain grows and becomes too large for a single team, splitting
based on role might be the ideal approach, so it’s wise to prepare for that by keeping
the specification-related and execution-related concepts loosely coupled in the code.

SPLIT SUBDOMAINS ON KEY TRANSITION POINTS

A change of purpose is often punctuated by a defining moment where the transition
takes place. A good way to apply this heuristic is by asking, “What is the exact moment
when . . . ?” like “What is the exact moment when a person becomes an adult?” From a
legal perspective in the United Kingdom, the answer would be “A person becomes an
adult on their 18th birthday.” This is the transition point: Before the day has started, a
person is defined as a Minor, and after the day has started, the person is defined as an
Adult. I find that the question format, “What is the exact moment when . . . ?” can
sometimes uncover really profound insights, so I highly recommend using it in your
workshops.

 Another sign of a key transition point is where one process or subprocess stops and
another starts, often accompanied by some type of handover from one person or role
to another. An example of this is in a restaurant kitchen: after a Party of Customers
seated at a Table has placed an Order, a Member of the Waiting Staff will Generate the
Order. This will then trigger the processes Prepare the Starter, which is handled by the
Starter Chef. The Prepare the Main Course process, handled by the Main Chef, is trig-
gered by the Waiting Staff after they have Cleared the Starters from the Table.

9.3.3 Subdomain grouping heuristics

No matter how you slice domain boundaries at the subdomain level to create loosely
coupled software and independent teams, some dependencies are always going to
exist between them. Good domain boundaries minimize unnecessary coupling but
they can’t eliminate it altogether. When implementing new features or delivering cer-
tain types of work, co-change across multiple subdomains, and accordingly multiple
codebases and teams will sometimes happen. A number of factors contribute to
addressing this problem, and one of them is structure. By identifying subdomains that
share a close relationship and grouping them into scope 2 domains (architectural
scopes were defined in chapter 6), the costs of coupling can be reduced.

 The benefit of grouping subdomains into higher-level domains is that the subdo-
mains that change together will be owned by teams that work together, reporting into
the same leadership structure and working towards the same business outcomes. Their
communication will naturally be higher, and the barriers to collaboration will be lower.
From the perspective of Vlad’s coupling formula, this is a deliberate action that can be
taken to reduce the distance between subdomains that share a high volatility.

1899.3 Domain boundary heuristics
 The heuristics in this section are focused on identifying scope 2 domain boundar-
ies by looking at the various ways subdomains can be grouped to maximize synergies
and reduce the costs of dependencies. As with the subdomain heuristics, the five guid-
ing heuristics also apply at this level. Business, domain, organizational, technological,
and UX are all factors that need to be considered. And the same caveats apply too: no
heuristic is right in every case so you need to make decisions on a case-by-case basis
and understand which outcomes you want to optimize for.

 Another benefit of well-defined scope 2 domains is the ability to evolve subdomain
boundaries. If the boundaries of multiple subdomains turn out to be less optimal than
expected, but they are part of the same scope 2 domain, the distance will be lower,
and it should be easier to collectively evolve the boundaries. This is important to keep
in mind when shaping scope 2 domain boundaries.

GROUP SUBDOMAINS INTO PRODUCT- OR SERVICE-FOCUSED DOMAINS

A product-focused domain or service-focused domain is a domain composed of subdomains
that are all dedicated to providing capabilities for a single product or service. This
heuristic typically encourages a faster flow of changes within a single product because
all of the teams involved in building a product are closer together and more aligned.
One of the drawbacks of following this heuristic is that the experience across multiple
products may be neglected and the level of duplication may be very high. These were
two key symptoms highlighted in the BBC example, where they started with service-
focused domains and later introduced some horizontal domains.

 It may not be possible to apply this heuristic in organizations with extremely large
and complex products that have scope 3–level complexity. In these scenarios, a scope
2 domain can be considered a product capability-focused domain. These are scope 2
domains composed of subdomains that are dedicated to providing capabilities for a
single part of a single large product.

GROUP SUBDOMAINS INTO HORIZONTAL DOMAINS

A horizontal domain is a domain composed of subdomains that provide capabilities to a
platform consumed by multiple other domains. When used appropriately, this heuris-
tic can lead to domain boundaries that reduce costs and complexity and reduce time-
to-market for all of the platform’s consumers and sizable value for the organization
overall. You saw an example of this in chapter 6 with Uber’s fulfillment platform,
which handles over a million concurrent users and a billion trips per year while sup-
porting more than 10 products and services like UberX, Food, Groceries, Taxi, and
Package.

 There are numerous potential downsides to following this heuristic. Most com-
monly, horizontals tend to become bottlenecks as all of their customers request
enhancements and the teams cannot satisfy all their demands within the desired time-
frame. Another risk is a poorly designed interface between the horizontals and con-
sumers and poor reliability in horizontals that causes downtime for consumers. Uber
invested a huge amount of effort in getting these aspects right: “We spent six months
carefully auditing every product in the stack, gathering 200+ pages of requirements

190 CHAPTER 9 Identifying domains and subdomains
from stakeholder teams, extensively debating architectural options with tens of evalua-
tion criteria, benchmarking database choices, and prototyping application frame-
works options” (http://mng.bz/yZzo). You don’t need to follow Uber’s exact
approach, but you do need to take the design and evolution of horizontals seriously
and treat internal teams as well as you treat external customers because the cost of a
bad decision affects many teams.

GROUP SUBDOMAINS INTO PROCESS- OR JOURNEY-FOCUSED DOMAINS

A process-focused or journey-focused domain comprises subdomains dedicated to providing
all the capabilities needed to fulfill an end-to-end process or journey. This heuristic
typically encourages a fast flow of changes across teams aligned to a key business
outcome and jointly responsible for creating an optimized user experience from start
to finish. This was the case in my business property tax example from the previous
chapter.

 Business Property Tax was considered a scope 2 domain. Within it, multiple teams
each owned a step in the process, like Review, Resubmit, and Renegotiate (these
weren’t the real terms used but do not affect takeaways). The teams sat together,
shared rituals, and had user researchers who worked together. It was just a natural day-
to-day occurrence to always think about the end-to-end process, even if you only
worked on a single part. Remember to pay close attention to things that are common
across multiple user journeys.

GROUP SUBDOMAINS INTO CUSTOMER- OR USER-FOCUSED DOMAINS

A customer- or user-focused domain is a domain composed of subdomains dedicated to
providing capabilities to a single type of customer or user. This heuristic encourages
groups of teams to be fully devoted to serving the needs of a particular type of cus-
tomer or user. This was the case during OpenTable’s modernization in the early
2010s. The Customers domain covered all the teams who focused on people who
wanted to reserve a table at restaurants, and the Restaurants domain covered all the
teams who focused on the people working at restaurants.

 One drawback of this heuristic is that it is usually not possible to categorize every
subdomain as relevant to one type of user. Many processes and transactions affect mul-
tiple different types of users. Orlando Perri explains that this was the case at Open-
Table: “A lot of things were touching both sides like reviews and availability. So we just
had to decide which side was the most appropriate for each subdomain and be very
aware of the dependencies.”

GROUP SUBDOMAINS BY GEOGRAPHY

Geography-focused domains comprise subdomains dedicated to providing capabilities
that apply only within a given geographical region. This heuristic is useful, therefore,
in scenarios where you want a faster flow of changes and more freedom to do things
differently in different regions. These benefits can be important if your customers in
different parts of the world have diverse needs and expectations or laws, societal con-
ventions, and regulations differ across international borders. On the flip side, the
costs of greater autonomy within a geographical area must be balanced with the costs

http://mng.bz/yZzo

1919.3 Domain boundary heuristics
of duplication and the lack of consistency that customers active in multiple regions
may notice.

9.3.4 Industry example: Airline domain decomposition

In 2015, a large airline started a modernization journey driven by four primary busi-
ness outcomes: differentiated customer experiences, accelerated innovation and
delivery velocity, untapped revenue opportunities, and improved operational perfor-
mances with reduced costs. Their architecture was a major blocker, a big-ball-of-mud
monolith that was complicated and risky to change. When making changes, the whole
system had to be deployed. One thousand servers kept the system running in produc-
tion, yet it was still unreliable on the three cyber days per year (peak traffic days). The
lack of logging, monitoring, and general observability compounded these problems.

 The airline had reached a point where the current approach was untenable, and
the business case for modernization was evident. The real question was how to mod-
ernize the system and where to start tackling such a huge problem. Javiera Laso and
her colleague used EventStorming sessions to learn about the current state and
explore future opportunities and domain boundaries.

 The group identified target domains and subdomains, including an Offer/Order-
ing domain, a Redemption and Loyalty domain, a Check-in & Boarding domain, and
a Trip Management domain. Each domain was comprised of multiple subdomains, as
shown in figure 9.12.

Figure 9.12 Domains and subdomains identified at the airline (Source: Javiera Laso)

One thing to note in this example is the naming. Everything is named according to
domain terminology. All of these names had been defined collaboratively with input
from many stakeholders, including subject matter experts. Good naming helps to see
that the subdomains in each domain are cohesive. For example, the Offer/Ordering
domain aims to provide offers that customers can purchase and handle the booking

Reservation
management

Check-in

Reservation
management

Boarding
pass Reservation

management

Check-in & Boarding

Check-in Boarding
pass

Payments

Redemption Customer

Offer/Ordering

Ancillaries

Shopping

Fulfillment

Reservation
management

Check-in

Reservation
management

Boarding
pass

Reservation
management

Check-in

Reservation
management

Boarding
pass

Booking

Redemption &
Loyalty Trip Management

192 CHAPTER 9 Identifying domains and subdomains
and fulfillment process. Each of these concerns was modeled out as a separate subdo-
main because it was believed that the level of coupling between them was not too
high. Individual teams would be able to own each of the subdomains and work largely
independently. Yet, there was some coupling of concepts. Some features touched mul-
tiple subdomains, so it made sense to consider them collectively as a single domain
and organize the teams accordingly.

 You may have noticed that the Check-in & Boarding and the Trip Management
domains contain subdomains with identical names. For many architects, this is at
odds with principles like reuse and standardization. However, based on the insights
that emerged during EventStorming and other sessions, Javeria and colleagues identi-
fied distinct semantics tied to different purposes. Separate models were better
because establishing unified models would have increased coupling and complexity
for little gain.

 With domains and subdomains identified, the airline had a portfolio of modern-
ization opportunities. The costs and benefits of modernizing each subdomain were
used to make value-based prioritization decisions. For example, Javiera explains that
“the booking domain was chosen as the first slice of modernization because it is a cru-
cial part of the business flow, where we can secure payments, but being so coupled, it
was very difficult to scale and create new business rules.” After modernizing, the sys-
tem’s stability improved, leading to increased profits at times of high user flow. In the
past, the page was often down for many hours.

 Javiera also articulated the necessity of an evolutionary approach to domain model-
ing and modernization. After the airline had modernized the first parts of the system,
they continued to discover features, functionality, and edge cases in the old monolithic
system of which they weren’t even aware. As a result, there was more unplanned work
to move them across. At times, it challenged their understanding of the domain and
their proposed domain boundaries. This is typical of modernization. It is rarely a linear
sequence of steps from A to B due to the complexity of legacy systems.

9.4 Identifying domains and subdomains with EventStorming
So far, this chapter has looked at principles and heuristics for identifying domains and
subdomains. But how do you go from reading about these conceptual ideas to applying
them in practice so that you can modernize your organization’s architecture? There is
not a single right way to do this; in fact, a whole variety of techniques can be used in
identifying domains and subdomains. It’s never a good idea to rely solely on one tech-
nique, yet I do recommend EventStorming as a great starting point in most cases. It’s
probably the technique I use most often because it allows diverse participation and sur-
faces a lot of vital information that is relevant to identifying domains and subdomains.

 What’s more, the different flavors of EventStorming are all complementary. Big pic-
ture is great for identifying higher-level, fuzzy boundaries, and process modeling and
software design are perfect for getting deeper into the details, resulting in a very high
level of confidence in the proposed domain boundaries. Software design EventStorm-
ing hasn’t been covered in the book yet, but it will soon be introduced in chapter 12.

1939.4 Identifying domains and subdomains with EventStorming
9.4.1 Pivotal events

Before slicing your EventStorm up into domains and subdomains, a nice preparation
step involves identifying pivotal events. Pivotal events are the most important domain
events that give clues about where the ideal boundaries might be. They are an exam-
ple of how to apply the heuristic split subdomains on key transition points from the last
section. Because pivotal events are just markers for important events, they should not
be assumed to be domain boundaries. They’re more of a way to uncover insights in
areas where there might be a domain boundary. This is helpful because as soon as
domain boundaries are drawn, people can get attached to ideas quickly. Starting with
pivotal events helps to stay in exploration mode and uncover more possibilities for
shaping boundaries.

 To answer the question “What are the most important events?” there isn’t a simple
flow chart to follow or something obvious to look for. It’s very subjective, meaning the
criteria for determining what is important will vary from domain to domain and from
person to person. This might sound problematic, but it’s not really a big deal. Pivotal
events aren’t something to care about after the workshop. They don’t need to be offi-
cially recorded or documented. It’s better to consider them a stepping stone to identi-
fying boundaries during the workshop. Simply asking people to identify their most
important events can lead to great conversations that surface clues about how to
shape boundaries. If a particular group needs more guidance, I’ll refine the task to
“What are the key transition points or milestones in the domain, like the moment
when a lead becomes a customer?”

 Figure 9.13 shows the example of a pivotal event called Applied for Membership,
which is part of the application process for a financial institution. A Non-member
installs the app and then provides their personal and bank details. They are then able
to apply for membership. After applying for membership, two things need to happen.
The Fraud Checker needs to run some security checks and an Account Manager
needs to conduct an Onboarding Assessment. Do you think this is a useful pivotal
event, and do you think it is an indicator of a domain boundary?

Figure 9.13 An Applied for Membership pivotal event and surrounding domain events

Applied for
Membership

Antifraud
checks

scheduled

Antifraud
check
started

Member
onboarding
assessment

started

Assessment
call slots
identified

Assessment
call

proposed

Fraud
Checker

Account
Manager

Address
history

reviewed

Applicant
notified

Installed
app

Personal
details

provided

Non-
member

Bank
details

provided

Time

194 CHAPTER 9 Identifying domains and subdomains
There are a number of reasons why the Applied for Membership pivotal event is a use-
ful pivotal event and is also a good indicator of a domain boundary. Imagine you were
in this workshop and a head of product said, “Applied for Membership is one of the
most important events because the product relies heavily on network effects, and
there is strong correlation between applications made per month and revenue.” Many
people in the group might not have realized the importance of this step and had been
focusing their efforts on improving elsewhere. Now, they are aligned with the head of
product on what’s important.

 Some of the other heuristics for identifying boundaries are also noticeable in this
example and have been highlighted in figure 9.14. Firstly, notice how the word used
to describe the customer is different on either side of the event: before the event, they
are considered Non-members, but after the event, they are referred to as Applicants.
In addition, the event is a trigger for two new processes where activity is transferred to
two new actors. You’ll also notice the different types of domain roles. Before the event,
the purpose is to build a specification, the application request. After the event, it’s
about executing processes that the specification feeds into.

Figure 9.14 Multiple signs indicating the pivotal event is near a domain boundary

Sometimes, a group may struggle to limit the number of pivotal events. It may seem
like almost every event is a pivotal event. This usually occurs in high-level workshops
where large parts of the business are covered in fewer events. As a result, there may

Applied for
Membership

Antifraud
checks

scheduled

Antifraud
check
started

Member
onboarding
assessment

started

Assessment
call slots
identified

Assessment
call

proposed

Fraud
Checker

Account
Manager

Address
history

reviewed

Applicant
notified

Installed
app

Personal
details

provided

Non-
member

Bank
details

provided

There is a hand-over (of responsibility)
from the non member to the fraud
checker and account manager

People talk about this event a lot—convincing
people to apply is hard and is a key metric.

Before the pivotal event, it’s about
building a specification. After, it is
about executing processes

Two new processes are triggered by this event

Before the event, a customer is called a “non-member.”
After, they are called an “applicant.”

1959.4 Identifying domains and subdomains with EventStorming
only be one or two events on the timeline for some subdomains, meaning most events
could be considered pivotal events.

 To use pivotal events effectively in these types of higher-level workshops, I would
offer two pieces of advice. The first piece of advice is to encourage pivotal events that
are relative to your level of detail. If you are running a high-level workshop in an area
that covers many scope 2 domains, look for pivotal events that are important at that
level. A good enabling constraint is to add a hard limit like “Please identify the 5 to 8
key transition points in this EventStorm.” If you get the boundaries right at this level,
you can then follow up with more detailed workshops to identify the subdomains
within each scope 2 domain.

 The other piece of advice I would offer is to zoom in on two pivotal events that are
very close together and try to understand why. Usually, it’s because a lot of informa-
tion is missing, which might be because the people who understand that part of the
domain aren’t in the workshop. It might be important to get their insights before pro-
ceeding too far ahead. Remember, the sticky notes on the wall do not fully represent
the domain. They only represent what the people in the workshop decided to put
there.

9.4.2 Chunking the timeline

Pivotal events will get the group nicely warmed up by talking about various transitions
and handovers in the domain. Building on this momentum, you can then start to
identify domains and subdomains by slicing up the EventStorm into chunks. The piv-
otal events may have already done some of this for you. Essentially, this is the align with
process and journey steps heuristic from section 9.3. It’s about choosing sequences of
events that belong together. For this step, I keep the instructions very simple, with
something along the lines of “Group the sequences of events that seem to belong
together,” “Split the timeline up into steps,” and “Which events feel like they belong
together?” This terminology is intentionally vague because sometimes there is a desire
to define what a domain is precisely, which can be distracting at this stage. It’s some-
times good to visualize boundaries at multiple scopes, as figure 9.15 shows.

Figure 9.15 Visualizing a domain composed of multiple subdomains on an EventStorm

Domain B

Subdomain B.1 Subdomain B.2 Subdomain B.3

196 CHAPTER 9 Identifying domains and subdomains
In a virtual setting, it’s possible to copy and paste the EventStorm so that people can
work in smaller breakout groups. This is an excellent technique for allowing the
group to identify multiple options and compare the pros and cons. Smaller breakouts
enable everyone to participate more.

9.4.3 Looking for scattered subdomains

Not all subdomains will appear as a series of events that sit neatly together on an
EventStorm. Some subdomains will be represented by events that are scattered across
multiple parts of the timeline. In the context of an EventStorming session, I refer to
these as scattered subdomains. After chunking the timeline, or even at the same time, it’s
a good idea to start looking for scattered subdomains. Look for a particular domain
concept, or just a word, that appears in multiple places, and consider it a potential
subdomain. This is the practical application of the heuristic centralize concepts that
appear in multiple processes or steps from earlier in the chapter.

 At the same time, you’ll need to balance this heuristic with the heuristics align with
existing semantic boundaries and define purposeful semantics, as shown in figure 9.16. Even
if a concept does appear in multiple places, it may be wiser to treat them as different
subdomains, with the concept having different semantics in each of them relative to
the purpose of the subdomain. As always, you’ll need to analyze both of these options
and others before making a final decision.

Figure 9.16 Not all subdomains have events next to each other on the timeline.

9.4.4 Subdomains versus user journeys/processes

A common mistake that beginners make when using EventStorming to identify
domain boundaries is assuming that processes and steps in a process always align with
domain boundaries. As discussed in section 9.3, align subdomains with journey and pro-
cess steps is just one of the possible heuristics that can be applied to identify subdo-
mains; yet, it’s not always the optimal choice.

Subdomain A Subdomain B Subdomain C

Should this recurring concept be centralized into a single subdomain?
Or should the concept be part of multiple subdomains with unique
semantics in each?

1979.4 Identifying domains and subdomains with EventStorming
 To help clarify the relationship between processes/steps/journeys and subdo-
mains, I often find it useful to describe three different ways that the concepts can be
related:

 Fully aligned—A subdomain is fully aligned with and shares the name of a pro-
cess, journey, or process step.

 Aligned with delegation—Similar to the previous concept, except the subdomain
delegates some of the rules or logic to other subdomains.

 Unaligned—No subdomain is aligned with the process, journey, or process step,
which instead is a composition of multiple subdomains aligned to other purposes.

Let’s use the example of a generic
onboarding process to demonstrate
the three possible scenarios. Figure
9.17 shows the fully aligned scenario.
There is an Onboarding subdomain
that handles all the steps of an
onboarding user journey.

 The fully aligned pattern is not suit-
able when the complexity is too high
for a single subdomain, or multiple
concepts and capabilities are unre-
lated and should not be coupled. In
this scenario, the Onboarding subdo-
main still manages the process of Onboarding but delegates some aspects to other
subdomains, like an Identity Verification subdomain or a Wallet subdomain, as shown
in figure 9.18.

Step
1

Onboarding
(subdomain)

Step
2 ... Step

n
Customer
onboarded

Onboarding (journey)

Figure 9.17 Subdomain and user journey are
fully aligned.

Onboarding (journey)

Step
1

Onboarding
(subdomain)

Step
3

Customer
onboarded

Step
2

Step
4

Identity
Verification

(subdomain)

Wallet
(subdomain)

Step
...

Step
n

Figure 9.18 Subdomain aligned to user
journey delegates some parts of the process.

198 CHAPTER 9 Identifying domains and subdomains
When each of the steps within a process, journey, or process step involves drastically
different domain concepts that are also used in other places outside the Onboarding
journey, then the unaligned pattern (figure 9.19), where there is no Onboarding sub-
domain at all, is necessary.

The timeline-based format of EventStorming tends to bias us toward thinking in terms
of processes, journeys, and steps. Sometimes these will be domain boundaries and some-
times not, so it’s important to keep each of these three patterns in mind and decide on
a case-by-case basis which is the best fit. The analysis tips covered next can help.

9.4.5 Analyzing subdomains

After you have identified a candidate domain boundary, it’s useful to spend some time
analyzing the cohesiveness and exploring alternative options. One way to do this is to
write a short description of the subdomain. What is its purpose, and how does it
achieve that purpose? Then, you can pose the following questions: “Does each event
in the subdomain seem consistent with the name and description of the subdomain?”
and “Do all of the events seem related to each other?”

 Figure 9.20 uses the example of a Pickup and Dropoff subdomain from an online
car dealership. The purpose of the subdomain is to deliver cars to customers and take
their old cars away. At first glance, the first three events seem clearly related to the
name and purpose: Picked Up New Car From Warehouse, Arrived at Customer’s

Onboarding (journey)

Step
1

Step
2

Step
3

Step
4

Step
5

Account
(subdomain)

Identity
Verification

(subdomain)

Wallet
(subdomain)

Profile
(subdomain)

Interests
(subdomain)

Figure 9.19
User journey and
domain boundaries
are completely
unaligned.

Picked up
new car

from
warehouse

Pickup &
Dropoff

team

Arrived at
customer’s

house

Offloaded
new car

Gave new
owner

guide of
new car

Loaded
old car

onto van

Old car
dropped

off at
warehouse

Breakdown
insurance
activated

Pickup and Dropoff (subdomain)

This subdomain deals
with delivering cars to
customers and taking
their old cars away.

Figure 9.20 Analyzing the cohesiveness of a candidate subdomain

1999.4 Identifying domains and subdomains with EventStorming
House, and Offloaded New Car. But then the fourth and fifth events feel different—
Gave New Owner Guide of New Car and Breakdown Insurance Activated—so they
have a question mark underneath them.

 At this point, it’s ok to put a question mark if something feels out of place, even if
you can’t articulate precisely why. In this example, the two question marks suggest an
aligned with delegation subdomain. Pickup and Dropoff is concerned with the logistics
of moving cars around. While giving the new owner a guide of the car and activating
breakdown insurance happen at the same time, the domain concepts and logic have
little relationship with the other steps in the subdomain, so those two events could be
part of other subdomains.

 There are a few basic, sense-check questions I recommend using to assess and
refine options in the situations:

 Would it make sense for a single team to be responsible for all of the events?
 Have there been and will there be business rules and features that require these

concepts to change together?
 Are there people (internal or external) who only care about some of these con-

cepts and not others?

When going through this analysis process, I also find it valuable to visualize the key
details of each subdomain using the subdomain overview canvas shown in figure 9.21.
You can find the canvas on this book’s Miro board (http://mng.bz/M9OD).

Figure 9.21 The subdomain overview canvas

Users, consumers, & needs

Which groups of people are you targeting
and what are their needs (both met and

unmet needs) in this domain?

Description
What happens in this subdomain;
why is it important? Metrics:

Capabilities

What capabilities have you developed
in this subdomain to meet user needs,
and what capabilities will you develop

to meet unmet user needs?

Name:

Met user
need

Unmet
user need

Existing
capability

Future
capability

User/
consumer

Strategic
importance:

••• •••

•••

•••

•••

Questions & notes

What important questions
do you still need to answer?

Question/
note

•••

•••

http://mng.bz/M9OD

200 CHAPTER 9 Identifying domains and subdomains
9.4.6 Planning a series of workshops

Identifying domains and subdomains will take more than just a few hours or a few
days. You can use big picture EventStorming to map out high-level boundaries and
then use process modeling and software design EventStorming, along with techniques
introduced in the following chapters, to get further into the details, allowing you to
validate and refine the boundaries and have the confidence to commit to them. This
means that expectations will need to be set accordingly with all stakeholders about the
speed of progress. Unfortunately, I’m not comfortable giving even a ballpark figure
for how long to estimate, because it varies so drastically from organization to organiza-
tion. Some domains are far more complex, with decades of legacy software to factor in
and people who are uncomfortable with collaborative techniques like EventStorming.
The rate of progress is much slower in these environments.

 If you want to get a sense of how long it takes and how much effort is involved in
identifying domains and subdomains, I recommend starting with a big picture Event-
Storming session for an important end-to-end process or a scope 2 domain—basically
an area that covers around five to eight teams and contains reasonable domain com-
plexity. If it’s too simple and easy, it won’t be representative enough of what to expect
in complex areas. You should set aside two to three full days for the big picture ses-
sion. After the workshop, you can then organize deep-dive workshops for two or three
of the candidate subdomains identified. These workshops will be narrower in scope
and more detailed, using process modeling EventStorming to map the current and
possible future states along with some of the techniques introduced in the following
chapters. I recommend allowing two full days per subdomain. At this point, you’ll
have a general idea of how long and how much effort it will take. Try to pick a com-
plex subdomain to ensure that your findings are representative.

 You’ve now reached the end of this chapter. There is much to think about when it
comes to identifying effective domains and subdomains, but it’s comforting that there
are many tried and tested principles and techniques. Independent value streams
require far more than just good domain boundaries, however. The next chapter looks
at validating the strategic fit of a candidate subdomain. You can find interactive exam-
ples of this chapter’s content on the book’s Miro board (http://mng.bz/amd9).

Summary
 A business is broken down into conceptual business domains to identify differ-

ent parts of the business that are related in some way.
 Larger domains are composed of multiple, more granular domains called sub-

domains.
 Business domains and subdomains are used as the basis for defining organiza-

tional and software architecture.
 Well-defined subdomains encapsulate cohesive domain concepts that are

related and change together, enabling teams to have a clear purpose and reduc-
ing coupling in software.

http://mng.bz/amd9

201Summary
 There are many ways to shape domain boundaries in a given organization. All
have trade-offs, and there is usually no perfect solution, so it’s important to
explore multiple models.

 You may be inspired by external factors like competitors and subject-matter lit-
erature, but ultimately, you choose the domain boundaries that are most effec-
tive for achieving your desired business and organizational outcomes.

 There are many ways to shape domain boundaries because domain concepts
are often related via multiple criteria—for instance, colored shapes can be
grouped according to their color or shape.

 Some dependencies are more costly to remove or support than others, so
understanding the cost to remove and support each possible dependency is key.

 Vlad Khononov’s formula is a great way to reduce the guesswork in assessing the
cost of a dependency. His formula for assessing coupling is Pain = Strength * Vol-
atility * Distance.

 Domain boundaries are important decisions, so it’s important to get into the
details of the domain before committing. Some ideas make sense at a high level
but prove to be suboptimal when further complexity is revealed and assump-
tions are broken.

 Defining domain boundaries is not a one-shot activity; you should start with
constant evolution in mind.

 Heuristics are useful for identifying the different ways a business can be mod-
eled as domains and subdomains. Each heuristic provides a different perspec-
tive, leading to different options.

 This book proposes five guiding heuristics for finding domain boundaries cov-
ering business, domain, organizational, technical, and user experience–related
perspectives.

 More granular heuristics are used to define the boundaries of individual subdo-
mains. These heuristics provide ideas like aligning subdomains with steps in a
process or centralizing recurring domain concepts into a single subdomain.

 Semantic boundaries allow the same concept to have different meanings in dif-
ferent subdomains; for example, a tomato is a fruit in the botanical domain and
a vegetable in the culinary domain.

 Grouping subdomains into scope 2 domains is important because it helps to
reduce the cost of change across related subdomains by indicating how software
and teams should be organized.

 Various heuristics are used to determine how to group subdomains, such as
grouping subdomains to form products and grouping subdomains relative to a
specific type of user.

 EventStorming is a recommended technique for identifying domain boundaries.
 Pivotal events are important events. Identifying them can lead to important

conversations and insights about where to place domain boundaries.

202 CHAPTER 9 Identifying domains and subdomains
 An EventStorm can be chunked into domains and subdomains by grouping
events that seem related.

 Not all subdomains will have events that sit neatly together on the timeline, so
it’s important to look for these as well.

 It’s useful to analyze candidate subdomains by writing down the purpose of the
subdomain and checking to see if each event feels relevant enough.

 The subdomain overview canvas is a useful technique for visualizing the key
information about an individual candidate subdomain to help decide if it looks
like a good option.

 It usually takes a whole series of workshops to define domain boundaries, start-
ing with big picture EventStorming and moving deeper into the details with
process modeling EventStorming and other techniques.

Strategic IT portfolio
A key challenge for modernization leaders is ensuring that modernization efforts
deliver the greatest business impact, which means avoiding underinvesting in high-
priority areas and overinvesting in areas with limited return on investment. A bad
decision could result in thousands of people-hours wasted modernizing low-value
capabilities and missed opportunity costs of moving the business forward in key
strategic areas. For technologists, it’s crucial to discern that a brilliant technical
architecture using the latest technologies and patterns in an area where a simple
CRUD interface would suffice is a bad decision, regardless of the technical

This chapter covers
 Viewing architecture as a portfolio

 Classifying utility and strategic IT

 Using Core Domain Charts to map out the
portfolio of core, supporting, and generic
subdomains

 Investing optimally in each subdomain: financially,
organizationally, and technically
203

204 CHAPTER 10 Strategic IT portfolio
brilliance. One of the goals of architecture modernization is to enable fine-grained
business investments, which requires a value-driven, portfolio-based approach.

 Business subdomains are the perfect model for applying portfolio thinking to
architecture modernization. Each business subdomain is an investment opportunity
within the portfolio. The level of architecture modernization in each subdomain can
vary according to the potential returns. In subdomains that play a crucial role in
achieving desired business outcomes, investment can be higher, whereas in subdo-
mains that have little effect on the business strategy, investment can obviously be
lower. Strategic subdomains can be built in-house where maximum speed and control
are needed, while off-the-shelf tools and outsourcing are options that can be used in
less important subdomains.

 Investment in the portfolio applies broadly, far beyond just finances. Investment
touches on organizational aspects like the type of people who are part of a team and
how they work together. In subdomains of strategic importance where innovation
potential is high, it is much easier to justify investing in product discovery and collabo-
rative techniques like EventStorming. Investment also touches on technical aspects of
architecture. In low-importance domains where the focus is delivering good enough
solutions for the lowest cost, simple technical solutions like simple forms over data or
low-code solutions will often be cost-effective solutions, whereas more advanced archi-
tectural patterns may be more suitable in more complex and strategically valuable
domains.

 This chapter’s purpose is to provide principles and tools for enabling a portfolio-
based approach so that you can make globally optimal decisions. They will also help
you to validate that candidate value streams are a good fit from a strategic perspective
(see figure 10.1). For instance, a domain boundary may encompass both highly strate-
gic and highly generic concepts, which may better serve the business as separate sub-
domains with different strategies.

 This chapter introduces Core Domain Charts, a technique for mapping out domains
as a portfolio and determining the optimal investment strategy in each area. The tech-
nique also helps to define target domain boundaries by choosing the candidate
domain boundaries that align best with the desired strategic business investments. In
addition, the chapter looks at some example patterns and provides guidance on how
to invest appropriately in each type of domain. Before that, this chapter starts by look-
ing at Martin Fowler’s utility versus strategic IT dichotomy to better understand some
of the fundamental principles in this space.

 While reading through this chapter, keep in mind that it is necessary to maintain an
overview of the portfolio and not just focus on isolated investments within each domain
to avoid local optima. This is because there will always be dependencies between
domains. The optimal investment strategy for two domains individually might not be
the best investment overall. Some compromise and joined-up thinking are needed.
This is especially the case where legacy systems are involved, and there is tight coupling
and a lack of well-defined boundaries between the code for each subdomain.

20510.1 Utility vs. strategic IT dichotomy
Figure 10.1 This chapter shows how to take a portfolio perspective and verify each candidate
value stream fits into the bigger picture.

10.1 Utility vs. strategic IT dichotomy
Determining the optimal modernization strategy for each part of the portfolio will be
driven by the potential level of business value that technology can bring. Software may
be the principal factor in creating business value in some areas, while in others, it may
provide little value, even if the area is a key part of the business strategy. To help deter-
mine the potential of architecture in each area, modernization leaders should ask,
“Does IT play a strategic role in this area or is it just a utility?” This is what Martin
Fowler refers to as the utility versus strategic IT dichotomy (http://mng.bz/lVod).

 Martin’s criteria for determining if IT is strategic is “It’s all about whether the under-
lying business function is a differentiator or not. If how you do this function is a crucial
part of what makes you better than the competition, then the software that supports this
function needs to be as good as you can make it.” In brief, where software contributes
to capabilities that help your business differentiate, IT is strategic and needs to be as
good as possible. Otherwise, IT is considered utility IT and must only be good enough.
It needs to work reliably, but after a certain point, developing new features returns little
or no benefit, and the effort would be better spent on strategic IT. One important
caveat is that utility IT is not an excuse to create poor-quality software, as this may cause
negative effects like reduced employee productivity or unhappy customers.

 When I worked with a large transport company, their capabilities of optimizing the
loading of freight onto trucks and itineraries and dynamically calculating live ETAs
were highly strategic. Their software enabled them to do this better than their com-
petitors, helping them to win more business, improve customer retention, and
improve efficiencies, leading to reduced operating costs. In contrast, the company

This chapter

Candidate
business

subdomain

Strategy

Organization

Tech

Validate candidate
value stream

Target value
stream

Candidate
value stream

Refine

Validated

http://mng.bz/lVod

206 CHAPTER 10 Strategic IT portfolio
had a number of applications that contributed little to differentiation, like their
invoicing system, which was treated as utility IT (because building a better invoicing
system wouldn’t give any advantage in the market).

 Rather than a simple binary classification, I recommend looking at the utility versus
strategic IT dichotomy as a range, as shown in figure 10.2, because this allows for more
nuanced prioritization and modernization decisions. At the extreme left of the range,
IT does not affect the company’s market share; it offers little differentiation. Therefore,
it’s a clear utility. On the extreme right, software is the only factor in determining market
share and is totally strategic. Most software applications will be somewhere between the
two extremes and will even evolve over time, as Wardley Mapping demonstrated.

10.1.1 Tailored operating model

Remember that the utility versus strategy IT dichotomy is not an academic exercise
with little real-world applicability. It’s the exact opposite. Classifying IT within a partic-
ular domain as utility or strategic should fundamentally affect the level and type of
investment, covering financial, organizational, and technology aspects. As a general
guideline, the more IT contributes to business differentiation, the more justification
there is for a higher level of investment in each operating model aspect. The following
is an example list of operating model aspects that should be tailored per team based
on the strategic contribution of IT.

 Team size—The number of people working in a team should generally be higher
for strategic IT, where greater investment leads to a greater return.

 Team composition—The skills and attitudes within a team should be tailored to
the circumstances. Strategic IT generally benefits from having more senior and
skilled people.

 Collaboration—Higher levels of collaboration between domain experts and soft-
ware engineers with techniques like EventStorming is more valuable for strate-
gic IT because it fosters a more innovative environment.

 Discovery—When there is greater opportunity for business differentiation, more
discovery work increases the chances of discovering new ways to differentiate.

 Prioritization—The greater the strategic value of IT, the higher the precedence
it should take when making prioritization decisions.

 Dependencies—Dependencies that reduce the rate of change for strategic IT are
far more costly than those that affect utility IT. This means it is more justifiable
to invest in removing and minimizing dependencies affecting strategic IT.

Determines
market share

No impact on
market share

Business differentiation

Strategic ITUtility IT Figure 10.2
From utility IT
to strategic IT

20710.1 Utility vs. strategic IT dichotomy
 Architecture—Investing in more advanced architectural patterns that allow a
faster rate of change, advanced product capabilities, or better scalability is more
justifiable in strategic IT.

 Domain modeling—Developing rich domain models takes time but results in
greater collaboration and helps to sustain the rate of change over the long
term. This is a good trade-off in strategic IT.

 Code health—Code quality is always important, but in strategic IT, code health
enables the business to continue adding differentiating features at a high rate
of change over a long period of time for lower cost and with fewer risks and is
therefore vital.

 Build versus buy versus partner—Using off-the-shelf solutions makes sense when
there is little opportunity to differentiate. Martin Fowler argues that conform-
ing to off-the-shelf products makes sense rather than customizing them. For
strategic IT, building in-house gives the most opportunity to differentiate so is
nearly always the right approach.

 Risk tolerance—For strategic IT, the risk is being out-developed by competitors,
whereas for utility IT, the risk is unreliability or excessive costs.

10.1.2 Identifying strategic IT

A successful architecture modernization is all about optimizing the business impact of
strategic IT. So, it is essential to accurately determine which IT is strategic and which
IT is utility. But this is easier said than done and shouldn’t be left to gut instinct, which
is susceptible to cognitive biases and politics. Firstly, it’s important to have a clear
understanding of how each domain contributes to business differentiation, and then
it’s necessary to determine IT’s potential contribution to creating the differentiation.
If a domain is highly differentiating and IT plays an important role, then strategic IT
is needed in the domain.

 To address the first part of the task, Wardley Mapping will reveal the areas where
business differentiation is likely to be highest. Capabilities in the custom-built phase
have been validated, and the focus is on developing them to exploit the potential,
while capabilities in the first half of the product phase are at their most profitable and
still have some scope for development. Commodity is unlikely to be strategic because
capabilities in this phase are highly convergent, and there is little potential for differ-
entiation. Capabilities in the early genesis phase might be considered strategic, but
their potential is highly unknown, so it may be best to gain more confidence in the
idea through research and experimentation before considering it strategic and mak-
ing a big investment. Figure 10.3 highlights this area of the Wardley Map where candi-
dates for strategic IT are likely to be found.

 Not every component in the shaded area in figure 10.3 will be of equal strategic
value; some may even be low enough in strategic value that they are still considered a
utility. Not all software that is built in-house is strategic. Martin Fowler argues that only
between 5 to 20% of a company’s IT will be strategic. In any case, the Wardley Map
should be considered as a starting point for identifying strategic IT candidates and
not as a 1:1 mapping between evolution stages and strategic IT. It’s important to

208 CHAPTER 10 Strategic IT portfolio
follow up by getting into the details of each component and understanding exactly
how it contributes to the strategy by creating business impact. This will then also help
to understand the role of IT.

USING THE PRODUCT STRATEGY TO HELP IDENTIFY STRATEGIC IT
A good product strategy is one of the best sources of information for identifying stra-
tegic IT. It helps to move from high-level discussions into concrete details of how IT
can contribute to business outcomes. The following list shows EdTech company
Chegg’s “hard to copy advantages” from their 2010 product strategy, according to Gib-
son Biddle, who was their chief product officer at the time (http://mng.bz/BAYw).
The company’s vision was to be a market leader in textbook rentals and expand into
other student services like jobs and internships.

 “Create a ‘student graph.’ (We built a dataset of all courses on each campus. It
included all the textbooks and content that were part of the course.)”

 “Develop unique personalization technology. (We built this capability using the
student graph data above.)”

 “Achieve economies of scale through high-volume, used textbook purchases.”
 “Build a viral brand, spread campus-wide through large, highly visible orange

boxes.”
 “Create a network effect through a ‘homework help platform’ where tutors

around the world provide answers on Chegg’s platform.”

The hard to copy advantages section of Chegg’s product strategy specifically called out
which capabilities would help the business to differentiate and be hard to copy, like

Candidates for strategic IT likely
to be in this approximate area

I
n
v
i
s
i
b
l
e

V
i
s
i
b
l
e

Va
lu

e
ch

ai
n

Genesis Custom Product (+rental) Commodity (+utility)

Evolution

Figure 10.3 Identifying strategic IT candidates on a Wardley Map

http://mng.bz/BAYw

20910.2 Core Domain Charts
the student graph, personalization technology, and homework help platform. These
all seem to be candidates for strategic IT because software plays an important role in
enabling them. However, not all business differentiators require strategic IT. In this
case, building a viral brand was also a key differentiator for Chegg, but placing large
orange boxes on campus isn’t something that is likely to necessitate a strategic IT
approach.

 Chegg’s product strategy also contained specific criteria about how their capabili-
ties would contribute to differentiation (similar to the north stars technique shown in
chapter 3). For example, their student graph strategy had a clear success metric—% of
campuses with complete class, course, and textbook data—and tactics for achieving the met-
ric, like scrape and parse data from 100 campuses. In addition, the strategy contained
high-level roadmap items per quarter.

TECHNOLOGY SHOULD INFLUENCE THE PRODUCT STRATEGY

Before moving on to the next section, which provides a practical technique for map-
ping out a portfolio and identifying strategic IT, there is an important nuance I’d like
to clarify. It’s not simply the case that technology leaders should reverse-engineer the
product strategy to determine which parts of the architecture are strategic. Technol-
ogy leaders should play an important role in helping to define the product strategy.
Their contribution is needed to understand the true potential of technology and the
effort needed to achieve it. In brief, it is the act of collaboratively building a product
strategy that results in the identification of clear strategic IT initiatives. In my experi-
ence, the best results come when product people and technologists work closely
together as a cohesive unit when defining the product strategy.

10.2 Core Domain Charts
Core Domain Charts (https://github.com/ddd-crew/core-domain-charts) is a technique
from the domain-driven design (DDD) community that is designed to help with the
challenge of utility versus strategic IT. It is used to map out an architecture as a portfo-
lio of subdomains according to their business differentiation and model complexity,
as shown in figure 10.4. Model complexity is a measure that represents the effort
needed to discover, design, build, and maintain a software model of a business subdo-
main. The tool serves as both a way to collaborate and discuss the value of IT within
each subdomain and as a visualization to capture the output. It is most effective when
domain, business, product, and technical experts all work together to collectively
define and align on the strategic importance and complexity of each subdomain.

 In DDD terminology, a core domain is a subdomain that is both highly differentiat-
ing and complex. It fits Martin Fowler’s definition of strategic IT and lives in the
upper-right section of a Core Domain Chart, as shown in figure 10.4. A generic subdo-
main is a subdomain that has extremely low business differentiation potential and cor-
responds to Fowler’s definition of utility IT. In between the two is a supporting
subdomain that doesn’t neatly correspond to either of Fowler’s classifications. Support-
ing subdomains are strategic in the sense that they help to create differentiation in

https://github.com/ddd-crew/core-domain-charts

210 CHAPTER 10 Strategic IT portfolio
core domains, yet they are utility in the sense that alone they don’t offer much oppor-
tunity for differentiation.

NOTE Even though a core domain is considered to be a subdomain like the
other two, it is nearly always referred to as a core domain and not as a core
subdomain, although core subdomain is also correct. It’s a useful shorthand
because core domains are talked about the most, and core domain is quicker
to pronounce and sounds better. This inconsistency in DDD is just something
to be aware of. It’s inconsequential.

Core Domain Charts are most commonly used at the level of subdomains, where each
item represents an area small enough to be owned by a single team and to have its
own dedicated domain and codebase. This is because fine-grained investment deci-
sions are made at this level regarding the team, domain model, and software. It’s com-
mon to see varied operating model characteristics, even between teams that own
subdomains within the same domain (scope 2).

10.2.1 Example Core Domain Chart

To demonstrate how to use Core Domain Charts, I’ve put together a hypothetical
example of a shared electric scooter company. This company’s business model is
based on the idea of placing physical scooters on the streets, which members of the

Core = Strategic IT

Generic = Utility IT

HighLow Business differentiation

High

Low

M
od

el
 c

om
pl

ex
ity

SUPPORTING

CORE
G
E
N
E
R
I
C

Figure 10.4 A blank
Core Domain Chart

21110.2 Core Domain Charts
public can easily use by downloading the app and scanning the QR code of a scooter.
The company’s key strategic objectives for the year are to grow revenues by increasing
the number of journeys taken by customers and to make journeys more fun for cus-
tomers, which is core to how they position the company’s cool and trendy brand.
Three strategic areas have been identified for achieving these objectives:

 Improving placement of scooters—Product managers and data scientists conducted
in-depth analysis and came to the conclusion that between 25 to 50% more
rides would be taken by customers if scooters were placed in better locations.

 A loyalty program—The chief product officer believes that loyalty could be a dif-
ferentiator by increasing the lifetime value of customers if executed well. The
company has never done anything like this before, so there are a lot of questions
about how to do it effectively. But this type of initiative has been done in many
other industries, so there are established patterns that can be used as inspiration.

 Robot tour guides—The new CTO wants to make his mark on the company and
believes robot tour guides that can plan bespoke, dynamic journeys and talk to
customers will make the company look cool and lead to a huge rise in the num-
ber of journeys taken, particularly among tourists. There is little evidence yet to
support this idea, but it would be a revolutionary innovation if successful.

Figure 10.5 provides a visualization of how the group perceives the strategic signifi-
cance of each subdomain with regard to achieving the strategic objectives.

Figure 10.5 Core Domain Chart for the hypothetical shared scooter company

HighLow Business differentiation

High

Low

M
od

el
 c

om
pl

ex
ity

SUPPORTING

CORE
G
E
N
E
R
I
C

Scooter
placement
planning

Robot
tour
guide

Loyalty

Scooter
placement
logistics

Journeys

Scooter
search

CRM

Payments

212 CHAPTER 10 Strategic IT portfolio
The scooter placement planning subdomain is considered to be a potential source of high
differentiation, a big opportunity to grow market share. From an engineering per-
spective, it was concluded that improving placement would be possible but very com-
plex, requiring the ingestion of many new data sources and building a richer
calculation engine that operates at a high level of scale. This is seen as a long-term
opportunity where investment over multiple years will be necessary to continue driv-
ing differentiation and would be hard to copy.

 To unlock differentiation in the scooter placement planning core domain, the com-
pany must make an additional investment in the scooter placement logistics supporting
subdomain. This subdomain involves moving scooters from one place to another. It’s
a combination of in-house software and human technicians who physically move the
scooters. Currently, it will not support a more dynamic, real-time process.

 Another core domain on the chart is loyalty. Differentiation is high, but complexity
is lower. This reflects the fact that it is an easier subdomain to extract value from, but
that also means it will be easier for competitors to copy and won’t remain as a high-
value core domain for around more than a year. It could have a big effect in the short
term but will gradually drift toward becoming table stakes as the industry converges.
Conversely, the robot tour guide subdomain has the potential to be a vital core
domain and long-term source of differentiation, but extracting value will be much
harder because the concept is highly novel, and it’s unclear if customers will even be
interested. The mix of high potential and high uncertainty is represented with a ques-
tion mark on the Core Domain Chart.

 Journeys is considered to be a fairly high complexity supporting subdomain. It man-
ages the process from when a rider starts a journey on a scooter until they have arrived
at their final destination and completed their journey. The software for this subdo-
main operates at a high level of scalability and needs to be as reliable as possible. Any
downtime in this subdomain means that riders cannot take journeys, and no revenue
can be generated. The warning icon on the Core Domain Chart is an indicator that
failures in this subdomain could have a big effect on the customer, the business, and
the brand reputation.

 You might be wondering why the subdomain journeys is not a core domain. After
all, isn’t taking a journey on a scooter the core capability for which the customers use
the company? And without the ability to take a journey, there is no business. Surely,
this is the core of the business? From a differentiation point of view, it is not core. The
organization does not see any potential to differentiate in this subdomain; it is table
stakes. The company just needs it to remain solid and reliable with a continuous
stream of minor improvements. So, while this subdomain may be a core part of the
company’s value proposition, it is not a core domain in the strategic sense because
there is little opportunity for differentiation. It may have been a core domain when
the company was a startup, but now the industry has moved on, and this component
has evolved toward the late product and early commodity phase.

 CRM and payments are not considered to be sources of differentiation in any way
for the business. These are just considered a cost of doing business, so the company

21310.2 Core Domain Charts
would rather buy off–the-shelf solutions that cover their basic needs for the lowest rea-
sonable price. These subdomains are, therefore, considered to be generic. The pack-
age icon is used to indicate that SaaS products are used in these subdomains. Scooter
search is also not considered to be a differentiator for the business. It’s a basic table-
stakes feature, but it does require custom code and logic that are not available off the
shelf so is considered to be a supporting subdomain that requires a higher level of
investment to maintain.

10.2.2 Assessing model complexity

In a nutshell, model complexity is the total complexity involved in discovering new
ideas, designing a model, implementing the model in software, evolving the model
and software, and supporting the software. There isn’t a precise formula for determin-
ing the model complexity of subdomains because there are a number of factors that
contribute to complexity, and ultimately, an element of subjectivity will always exist.
But the main purpose of a Core Domain Chart is not to create precise definitions; it is
to create alignment between all stakeholders on the level of value and effort needed
within each subdomain, which then serves as the basis for making investment deci-
sions. Approximations are usually good enough, provided they are arrived at through
logical reasoning with input from multiple perspectives rather than the pure gut feel-
ing of a single person.

 This subsection lists the different types of complexity that contribute to overall
model complexity. Making your group aware of these different types of complexities
can help to mitigate the effects of cognitive biases and ensure the whole group has the
same definition of model complexity, leading to more accurate assessments and more
effective conversations.

USER NEEDS DISCOVERY COMPLEXITY

User needs discovery complexity refers to the amount of effort and level of unpredictability
involved in identifying unmet user needs. For subdomains in the genesis phase of
Wardley Mapping, user needs discovery complexity is high due to the fact that the
concept is novel and unproven, and lots of research and experimentation is needed.
User needs discovery complexity is also high as the concept matures toward commod-
ity, where the industry converges on functionality, and it becomes increasingly diffi-
cult to find new ways to differentiate. Determining this type of complexity requires
input from product and UX specialists.

PRODUCT DESIGN COMPLEXITY

After unmet user needs have been discovered, new product features and enhance-
ments need to be designed that will address the unmet user needs in an effective and
user-friendly way. The level of effort needed will vary on a case-by-case basis. Designing
solutions to address some unmet user needs may require months of wireframes and
user testing, as I mentioned in the business property tax example from the previous
chapter. Determining this type of complexity also requires input from product and
UX specialists.

214 CHAPTER 10 Strategic IT portfolio
DOMAIN MODEL DESIGN COMPLEXITY

Domain model design complexity refers to the difficulty of designing and evolving a con-
ceptual domain model in a given subdomain. Some subdomains will have far more
complicated calculations, algorithms, business rules, and business processes than oth-
ers. As a result, it will take far more time and effort to design a model that can meet all
of the product requirements and cover all of the necessary happy paths and edge cases.

 An example of this is Gran Turismo, a racing game for the PlayStation that has an
online mode. Every user gets frustrated by the penalty system—the model that decides
if you have broken the rules like cutting a corner or crashing into another car. Some-
times, another car will hit you, yet it will be you who gets the time penalty. The makers
of Gran Turismo (Polyphony Digital) are aware of this, and they have been constantly
trying to improve the model for years to make the experience more enjoyable and less
frustrating. Even though the user need is clear regarding how they want the product
to function, designing an effective model that accommodates all scenarios and
enables a great user experience is proving to be immensely complex.

CRUFT (AVOIDABLE SOFTWARE COMPLEXITY)
Martin Fowler defines cruft (https://martinfowler.com/articles/is-quality-worth-cost
.html) as “the difference between the current code and how it would ideally be.” Effec-
tively, it’s avoidable complexity that exists within software that could theoretically be
removed without affecting how the software functions. Cruft is an important concept
because the more complex software is, the harder it is to understand and the more
risky and expensive it is to change. Cruft can take many forms in a software system,
like poorly defined boundaries and interactions between different parts of the code,
tight coupling, and bad naming. The more a business can use a subdomain to differ-
entiate itself, the more expensive the costs of cruft will be as it reduces the rate of
change where time to market is most crucial.

SCALE COMPLEXITY

Some subdomains are more complex due to the level of scale they are operating at.
The business rules and domain logic may be simpler than other subdomains, but the
overall complexity could be higher due to the sheer scale where more things can go
wrong, things are more likely to go wrong, and the consequences of things going
wrong are more severe. More robustness is needed, which adds to the complexity and
maintenance costs. This is like the difference between a booking system that processes
tens of thousands of orders per day where very minimal downtime can be tolerated
versus a booking system that processes tens of orders per day, and the effects of down-
time are minimal.

INTEGRATION COMPLEXITY

Integration complexity is high when a subdomain has to integrate with many other sub-
domains and systems, especially when each of those other systems has unique or weird
data formats and is unreliable. While the internal domain model may not necessarily
contain complex domain logic, all of the code to interact with other systems, trans-
form data, and handle error conditions can add significant complexity.

https://martinfowler.com/articles/is-quality-worth-cost.html
https://martinfowler.com/articles/is-quality-worth-cost.html
https://martinfowler.com/articles/is-quality-worth-cost.html

21510.2 Core Domain Charts
 Every software developer has experiences of high integration complexity. I once
worked on a holiday booking application that had fairly simple business rules. How-
ever, it had to integrate with more than 10 other systems to fetch and integrate holiday
deals and metadata. Each integration was totally bespoke because each system had
completely different APIs, data formats, error codes, glitches, etc. The documentation
was mostly poor, and getting responses from the API developers was slow.

OPERATIONAL COMPLEXITY

Operational complexity is complexity that exists outside of the software and in the orga-
nization, such as manual processes that involve calculations and decisions being made
by employees using a variety of tools, usually including spreadsheets. Operational
complexity is often caused by poorly designed products and software. By default, oper-
ational complexity is not considered to be part of model complexity because it is com-
plexity that is managed outside of the software. However, very often, it’s important to
articulate complexity that exists outside of the software and its associated costs. Typi-
cally, this will be necessary when putting together a proposal for building software to
replace the operational complexity. When this is the case, I find it useful to add an
annotation to the Core Domain Chart to indicate that operational complexity is
included, as shown in figure 10.6.

Figure 10.6 Using annotations to indicate operational complexity

HighLow Business differentiation

High
High operational complexity

Low

M
od

el
 c

om
pl

ex
ity

SUPPORTING

CORE
G
E
N
E
R
I
C

216 CHAPTER 10 Strategic IT portfolio
Because model complexity is a composite measure that includes multiple types of
complexity, sometimes annotations are useful to articulate the major type of complex-
ity within a subdomain, even if it is not operational complexity.

10.2.3 Core domain evolution

Classifying subdomains as core, supporting, and generic is relative to a point in time.
What is core today may be supporting or even generic at some point in the future as
the landscape evolves and the business growth areas change accordingly. This evolu-
tion can be visualized on Core Domain Charts using arrows. As shown in figure 10.7,
generally, an upward arrow indicates embracing more complexity by developing new
features and capabilities that improve differentiation, while a downward arrow implies
reducing complexity to reduce costs.

Figure 10.7 Using arrows to show subdomain evolution

Even if no investment is made in a subdomain, it will naturally evolve over time. It will
become less differentiating and drift left as competitors develop new innovations, and
it will move upward and grow more complex as the technology stack and infrastruc-
ture become dated. The implication is that some level of investment is required, even
to keep a subdomain in the current position.

HighLow Business differentiation

High

Low

M
od

el
 c

om
pl

ex
ity

SUPPORTING

CORE
G
E
N
E
R
I
C

Big investment in developing new capabilities

Big investment in
reducing cruft to
reduce costs

21710.2 Core Domain Charts
10.2.4 Industry example: Events industry scale-up

Two colleagues and I had the opportunity to work with an organization in the events
industry. At the time of contact, the company was at a major transition point. They
had built a successful startup around innovations in one small aspect of the events
(typically music concerts) value chain. They had recently taken on a major round of
funding based on their ambition to own the full value chain, including organizing
their own events, having relationships with music stars, and managing travel and
accommodation for customers. The organization was going to grow significantly, and
the CTO was looking for help to understand how their architecture and organization
would need to adapt to support the growth.

 It quickly became clear that their current mode of operation was similar to many
startups. There was a focus on moving quickly at the cost of long-term sustainability,
and there was a lack of well-defined ownership, meaning every software developer
touched every part of the codebase. They were already feeling some pains due to this
when they were at around 30 engineers, and this wouldn’t scale if the number of engi-
neers doubled or tripled. So, one area of improvement was establishing clear areas of
ownership for independent teams.

 The organization needed architecture and design skills to be spread throughout
the company to help them identify business domains and shape software and teams
around them. While the organizational challenges were clear, choosing where to start
was less obvious. The engineering leads had documented around 100 problems and
challenges with the architecture and ways of working. They couldn’t make a decision
about where to begin establishing areas of ownership and introducing new ways of
working due to analysis paralysis and fear of making the wrong choice.

 This is where we used a Core Domain Chart to visualize effectively the opportuni-
ties and build a proposal for delivering their first slice of modernization. As a group,
we talked through each of their subdomains and placed them on the Core Domain
Chart based on their current differentiation and complexity. We then talked through
each subdomain, discussing the challenges and opportunities that lived within it, and
we added an arrow to each subdomain representing the potential investment. Figure
10.8 shows the three subdomains that were shortlisted. There are two core domains
(subdomain A and subdomain B) with arrows moving up and to the right, which repre-
sent investing in key new differentiation features. There is also a supporting subdo-
main (subdomain C) with an arrow pointing down, representing the investment
needed to reduce the cruft and improve the design so that the code was easier to
evolve and the high operational costs were reduced.

 Much of the benefit supplied by the Core Domain Chart was the structure it pro-
vided to our conversations and the visual representation of how the group perceived
the relative importance and complexity of their subdomains. After a couple of hours
of conversations, this helped us to converge on a clear step forward, and we began
putting a business case together. Initially, subdomain A and subdomain B were the lead-
ing candidates. These were the core domains that could move the business forward, so

218 CHAPTER 10 Strategic IT portfolio
the group naturally wanted to invest in those areas. However, the group took a U-turn
and unanimously settled on subdomain C, the supporting subdomain.

 Subdomain C was chosen as the first step for business and organizational reasons.
On the business side, it would remove a complex manual process that took up a lot of
important people’s time, resulting in high lead times for the process. This perspective
was crucial for getting buy-in from leadership. On the organizational side, this was a
good move because the current code was scattered among multiple codebases; the
organization didn’t realize the scattered code made sense as a subdomain. This was
perfect for giving the team an opportunity to practice modeling domains with tech-
niques like EventStorming and designing loosely coupled architecture. They could
take those learnings and insights and apply them to their whole business. Another
benefit was the fact that subdomains A and B depended on subdomain C. By reducing
the cruft in subdomain C, it wouldn’t be a bottleneck when the team switched focus to
innovating in subdomains A and B.

 The Core Domain Chart was also used as part of the proposal that was put to lead-
ership to get buy-in for the initiative. The Core Domain Chart was evidence that the
team carefully considered the whole portfolio and picked the most appropriate
option for business and organizational reasons. It proved they weren’t just techies who
wanted to play around with new technologies and architecture patterns.

HighLow Business differentiation

High

Low

M
od

el
 c

om
pl

ex
ity

SUPPORTING

G
E
N
E
R
I
C

High op. complexity and cruft

CORE

Subdomain C

Subdomain A
Subdomain B

Figure 10.8 Three
subdomains shortlisted
for the first
modernization step

21910.3 Core Domain Chart patterns
10.2.5 Comparisons with Wardley Mapping

Some people comment that there are similarities between a Core Domain Chart and a
Wardley Map. Bearing in mind that Wardley Mapping has been mentioned multiple
times during this chapter, there is clearly a lot of truth to the observation. In my expe-
rience, while there are similarities and overlaps between the techniques, they serve
different purposes.

 Whereas Wardley Mapping is concerned with mapping out a whole landscape from
an industry-wide perspective, a Core Domain Chart is designed to capture your
choices about which parts of your architecture are strategic IT. Core Domain Charts
focus on just two aspects: complexity and differentiation, which are the keys to assess-
ing strategic IT. You can use Wardley Mapping for this, too, but you need to rely on
additional annotations to emphasize complexity and differentiation that cannot be
inferred from the evolution phase alone.

 Wardley Mapping provides much more context about why something is differenti-
ating. The stages of evolution indicate how mature the concept is, and value chains
show components are linked and affecting each other. Wardley Mapping can also
include all types of components and be applied at all scopes, meaning it can be used
at any time. Core Domain Charts, meanwhile, are usually used only at a subdomain
level and show only subdomains without value chains. It is usually used after candidate
subdomains have been identified. Overall, I find both techniques to be very useful.
Wardley Mapping is more advanced and useful, but Core Domain Charts are great for
reaching and communicating strategic IT decisions.

10.3 Core Domain Chart patterns
This final part of the chapter looks at different patterns that appear on a Core
Domain Chart and what that implies in terms of investment and tailoring the operat-
ing model. This list isn’t exhaustive, and it’s not recommended to try and force every
subdomain into one of these patterns. The goal of this section is to cover a broad
range of possibilities to show the appropriate approach in each type of subdomain can
vary significantly and is more nuanced than just a simple utility versus strategic choice.

NOTE You can find interactive versions of the following patterns combined
into a cheat sheet on the book’s Miro board (http://mng.bz/ddxg).

10.3.1 Decisive core

A decisive core is close to the top-right-hand corner, as shown in figure 10.9, meaning it
is both highly differentiating and highly complex. Whichever organization gains an
advantage in this area will have a decisive advantage in the market, like being the mar-
ket leader or catching up with an established market leader. The high level of com-
plexity reflects that developing an effective solution is extremely hard, meaning it is
also hard to copy, which is why it has the potential to be so differentiating.

http://mng.bz/ddxg

220 CHAPTER 10 Strategic IT portfolio
The mindset for a decisive core is geared toward maximum exploitation of the busi-
ness opportunity with a fast flow of changes because innovating more in this subdo-
main is likely to have a greater ROI than in other subdomains. However, sustainability
is equally important because a decisive core is likely to be a medium- to long-term
investment. Due to the highest strategic importance and complexity of a decisive core,
it is an obvious decision to build in-house where you have full control.

 A well-staffed team who are fully dedicated to this subdomain is crucial. And it
makes sense for the team to be formed with a majority of senior and highly skilled
people. Collaboration across roles is also likely to pay dividends. Closer collaboration
between engineers, product, UX, and subject matter experts in both discovery and
development will increase the chances of identifying new innovations and implement-
ing them more rapidly. As a result, collaborative techniques like EventStorming are a
great investment. Anything that reduces the flow of changes within a decisive core will
likely have a higher negative cost than in other subdomains. As a result, dependencies
need to be managed carefully, with priority given to the decisive core.

 From a technical perspective, architecture, domain modeling, and code health are
likely to be of high importance. A well-designed architecture aligned to well-designed
domain boundaries will reduce coupling. In addition, applying more advanced archi-
tectural patterns and technologies can be justified here. A well-designed domain
model is important in a decisive core because the essential complexity of the domain
is high, and any unnecessary complexity could push the team’s cognitive load over the

HighLow Business differentiation

High

Low

M
od

el
 c

om
pl

ex
ity

SUPPORTING

G
E
N
E
R
I
C

Decisive core domain

CORE

Figure 10.9
The decisive core pattern

22110.3 Core Domain Chart patterns
edge. Keeping the code healthy is important so that the subdomain can continue to
evolve over the long term. Any shortcuts that affect code health will become expensive
in the long run as they reduce the rate of change.

 A few questions to think about with this type of subdomain are

 Can the subdomain boundaries be further refined to remove any concepts that
aren’t as high value as the rest?

 Have multiple decisive core domains been identified? If so, can the organiza-
tion afford to invest in all of them without excessive compromises?

 What would be the results if the decisive core doesn’t turn out to be as differen-
tiating as expected?

10.3.2 Indefensible core

An indefensible core is toward the right but much lower in complexity than a decisive
core. Due to the lower complexity, the likelihood that competitors will be able to
develop their own version is much higher, and therefore, the differentiation provided
by this subdomain exists only for a shorter period of time—for example, 6 to 12
months, as shown in figure 10.10. I always remember an astute comment a chief prod-
uct officer made during a workshop regarding their indefensible core domains: “Even
though it’s hard to protect our advantages for a long period of time, we want to be
seen as the company that is always first to market with new innovations. It has a big
impact on our brand.”

HighLow Business differentiation

High

Low

M
od

el
 c

om
pl

ex
ity

SUPPORTING

G
E
N
E
R
I
C

Indefensible
core domain

CORE

6–12 months

Figure 10.10 The
indefensible core pattern

222 CHAPTER 10 Strategic IT portfolio
While an indefensible core may be a crucial component of the product strategy for
one year, its role in the following year’s strategy is likely to be much reduced as focus
switches to other areas where a chance to differentiate exists. Therefore, the mindset
should be geared toward exploiting the short-term opportunity and knowing when to
reduce investment. In the initial stages, it makes sense to staff the team with a majority
of senior and skilled engineers. During this period, collaboration between engineers
and domain experts and techniques like EventStorming, along with product discovery
techniques, are likely to be highly effective in getting to market first with the new
capability. As a result, this also benefits from an in-house approach.

 Investing in architecture, domain modeling, and code health requires a balanced
approach. On one side, there is the need to get to market first and exploit the limited
timeframe when the subdomain can provide differentiation, so spending too much
time on design could have a negative effect. Yet, on the flip side, complexity can build
up very quickly, which can reduce velocity even over the course of 6 to 12 months. The
software is still likely to exist for many years with a steady stream of improvements and
bug fixes, so it’s not advisable to cut too many corners.

 A few questions to think about with this type of subdomain are

 Could it grow into a decisive core? Have you invested enough time in searching
for ways to make the subdomain more differentiating and defensible?

 Do you have a plan for what will be the core domain(s) when this subdomain is
no longer a major differentiator, or are you too focused on the short term?

10.3.3 Big bet future core

A big bet future core is a subdomain that has the potential to be a decisive core, but
there is a high level of uncertainty that needs to be validated first. Effectively, this type
of subdomain is in the early genesis phase and has a very high potential for future
worth but requires a large investment to unlock it. As a result, building in-house is the
obvious choice. To differentiate on a Core Domain Chart, we can use a question mark,
as shown in figure 10.11.

 Even though a big bet future core is a type of core domain, the team’s mindset
needs to be radically different than that of decisive and indefensible core domains.
People working in this type of subdomain need to be able to thrive in uncertainty.
Software engineers need to be comfortable with running experiments and changing
direction on a regular basis. And they need to be comfortable creating low-quality,
throwaway code. This type of team is not suitable for developers who like structure
and predictability in their work.

 Once the potential for differentiation has been validated as a big bet, the future
core becomes a decisive core, and the characteristics change accordingly. At this tran-
sition point, it may be necessary to change some members of the team or hand over to
a different team who are more focused on quality and long-term sustainability. It’s
often necessary to rewrite the code at this point due to the high levels of cruft that
have accumulated during the experimentation phase.

22310.3 Core Domain Chart patterns
I find that prioritization is a crucial topic for upcoming big bet future cores. Because
this type of subdomain does not yet deliver value, other subdomains that are deliver-
ing value are seen as more important. I’ve seen on multiple occasions how team mem-
bers will be pulled away from big bet future cores to help in other subdomains. It’s
problematic because it may help to meet deadlines in the short term, but it can seri-
ously compromise long-term success.

 A few questions to think about with this type of subdomain are

 How will the importance of this subdomain be communicated so that it is
treated equally or more importantly than subdomains that are already provid-
ing value?

 Will the organization try to measure the success of this team in the same way
that teams in more established subdomains are measured?

 What signs are needed to validate the potential of this idea and increase invest-
ment or shut it down?

10.3.4 High-leverage supporting

A high-leverage supporting subdomain is a medium-to-high complexity supporting sub-
domain that is depended on by multiple other high-priority subdomains, as shown in
figure 10.12. The presence of dependencies is crucial because the costs of good and
bad decisions within this subdomain will be amplified and potentially affect all of the

HighLow Business differentiation

High

Low

M
od

el
 c

om
pl

ex
ity

SUPPORTING

CORE
G
E
N
E
R
I
C

Big bet future core

Figure 10.11 The big
bet future core pattern

224 CHAPTER 10 Strategic IT portfolio
dependent subdomains. For instance, if the team does not invest wisely in architec-
ture, domain modeling, and code health, it could easily become a bottleneck that
slows down the other teams that are working on the highest business priorities.

Even though a high-leverage supporting subdomain is not a core domain, it does play
a highly important supporting role and is highly complex, which demands a team with
experienced and skilled members. In addition, the weighty nature of the dependencies
requires people who are skilled in building relationships with other teams and also able
to understand the concepts in their subdomains in order to build what they need.

 In these types of subdomains, collaborative techniques like EventStorming can be
valuable, often in relation to the bigger picture of how this subdomain supports other
subdomains. This is also one of the key domain modeling challenges: creating a
model that supports the needs of multiple consumers while remaining supple and
easy to evolve. Architectural patterns that keep change coupling low and reliability
high are especially good investments here.

 A few questions to think about with this type of subdomain are

 If the supporting subdomain is so complex and plays an important role in help-
ing many other subdomains, could it play a bigger role in contribution to differ-
entiation than you think—that is, should it be treated as a core domain?

HighLow Business differentiation

High

Low

M
od

el
 c

om
pl

ex
ity

SUPPORTING

CORE

G
E
N
E
R
I
C

High-leverage supporting subdomain

Depends on

Depends onDepends on

Figure 10.12
The high-leverage
supporting pattern

22510.3 Core Domain Chart patterns
 Do the dependencies need to exist? Could it be a sign that the domain bound-
aries are wrong? For example, the high-leverage supporting subdomain in fig-
ure 10.12 could be sliced into three parts, which are moved into the three core
domains.

10.3.5 Table stakes supporting

A table stakes supporting subdomain is a basic supporting subdomain that is fairly low in
both complexity and differentiation, as shown in figure 10.13. Identifying good
enough and not overinvesting are key, while at the same time ensuring that any
changes required to support improvement in core domains are implemented quickly
and effectively. On balance, it usually makes sense to build in-house to avoid compro-
mising initiatives in core domains.

All investments will typically be reduced in a table stakes supporting subdomain com-
pared to more complex and differentiation subdomains. The team will typically be
smaller, and the level of experience and expertise within the team can justifiably be
lower. For example, this type of subdomain may be a good opportunity for more
junior employees to work and build their experience. Likewise, investing in advanced
architectural patterns, practices like EventStorming, and coding patterns is less justifi-
able in this type of subdomain.

HighLow Business differentiation

High

Low

M
od

el
 c

om
pl

ex
ity

SUPPORTING

CORE
G
E
N
E
R
I
C

Table stakes
supporting
subdomain

Figure 10.13 The table
stakes supporting pattern

226 CHAPTER 10 Strategic IT portfolio
 One media company I worked with identified search as a table stakes supporting
domain. It didn’t offer much opportunity for positive differentiation, but without
some investment in search, customers just wouldn’t use the product, meaning all of
the innovations developed in core domains would have been to no avail. The com-
pany put together a team of four engineers, two of them senior and two of them more
junior, who spent an initial six months building the search API. After six months, the
search capability had reached a point where further improvements would have had lit-
tle noticeable effect, and it was decided that the team would switch their focus to the
recommendations subdomain, which was seen as a bigger opportunity for differentia-
tion. The team continued to own and make small improvements in the search subdo-
main, but most of their time was spent developing capabilities in the recommendations
subdomain.

 A few questions to think about with this type of subdomain are

 Is continued investment even justified, or could the software be shut down?
 How much of the work in core domains will involve changes in this subdomain?
 If this is such a table stakes feature, are there now off-the-shelf products that

provide this functionality that have recently become available?
 How will you ensure that sufficient knowledge of this subdomain and the code

remain within the company while the level of investment is low?
 Will a team be motivated to work on a subdomain that is low in importance?

10.3.6 Mission-critical supporting

A mission-critical supporting subdomain contains a risk of high negative differentiation
but limited positive differentiation. Negative differentiation is something that causes
damage to the brand reputation and needs to be avoided at all costs. Even though
complexity is low, building in-house is still likely to be the preferred option to have
full control over preventing incidents that cause brand damage. A warning sign is
used to highlight critical supporting subdomains on a Core Domain Chart, as shown
in figure 10.14.

 While mission-critical supporting subdomains are still supporting domains in
terms of positive differentiation, the inherent risk requires some differences in
approach. Seniority and expertise are required within the team, while more advanced
architectural patterns and code health, especially those that limit the potential for
risks, will be justified. Stakeholders who interact with the team need to be mature and
not put pressure on the team to take any shortcuts or cut any corners. Even if no new
features are being added, an ongoing investment to keep the system up-to-date is
needed.

 In December 2022, Southwest Airlines had to cancel 15,000 flights due to a melt-
down caused by its scheduling system (http://mng.bz/rjPx). News sites and social
media were full of negative publicity for the airline, and the company brand had taken
a huge beating. The airline’s CEO, Bob Jordan, was in full damage limitation, appear-
ing in the media apologizing and asking for forgiveness (http://mng.bz/VRPN).

http://mng.bz/rjPx
http://mng.bz/VRPN

22710.3 Core Domain Chart patterns
Reports suggest that the airline’s mission-critical scheduling systems were still running
on decades-old software (http://mng.bz/xjl7).

 A few questions to think about with this type of subdomain are

 Does everybody in the company realize the risk that exists within this subdo-
main, especially senior leadership?

 How out of date is the technology being used in this subdomain?
 If there is a major incident, will you be able to provide evidence that you did

everything possible to avoid the problem?

10.3.7 Suspect supporting

A suspect supporting subdomain sits toward the top left of a Core Domain Chart, as
shown in figure 10.15. Often, a high-complexity supporting subdomain is a warning
sign. How can something that’s not highly differentiating be so complex? Sometimes,
it’s a prioritization mistake. Too much investment is being poured into subdomains
where the payback is not justified. Most often, it is due to avoidable software complex-
ity. The existing solution has become needlessly complex to maintain due to the accu-
mulation of cruft. This is an important pattern to recognize because the high level of
complexity results in a higher maintenance cost, which could be taking up investment
that is better invested in more differentiating subdomains.

HighLow Business differentiation

High

Low

M
od

el
 c

om
pl

ex
ity

SUPPORTING

CORE
G
E
N
E
R
I
C

Mission-critical
supporting
subdomain

Figure 10.14 The critical supporting pattern

http://mng.bz/xjl7

228 CHAPTER 10 Strategic IT portfolio
There are multiple possible courses of action to take with suspect supporting subdo-
mains. If there is a need to continue evolving the subdomain with new features and
enhancements over the course of multiple years, reducing the complexity is a primary
objective in order to reduce the cost of change and enable new features to be built.
This will require a highly skilled team who are able to work with and modernize legacy
software. However, if there is no desire or need to make changes to the subdomain,
then it would be a waste to put together a large team of highly skilled engineers. It’s
likely to be more effective to have a smaller team composed of people who will be con-
tent to keep the system running and fix small issues that arise.

 Often, when software has a high level of cruft, the boundaries are poorly defined
and the code may resemble a big ball of mud, where the code for many subdomains is
monolithic and tightly coupled. If this is the case, then it may be important to look at
all of the affected subdomains as a collective whole, with the teams working very
closely together toward a common modernization strategy. It’s not possible to have a
fine-grained strategy when the software is tightly coupled because teams will need to
coordinate their work and deployments.

 One of the risks with a suspect supporting domain is that the level of complexity can
give a false impression that it’s a high-priority core domain. This was exactly the case
with a large European-Asian client I worked with. As one of my colleagues and I
mapped out a Core Domain Chart, the group placed their order management subdomain
close to the top right. We were confused because it didn’t sound very differentiating,
but the engineers argued that it must be core because it was the most complex

HighLow Business differentiation

High

Low

M
od

el
 c

om
pl

ex
ity

SUPPORTING

CORE
G
E
N
E
R
I
C

Reduce cruft

Suspect supporting subdomain

Figure 10.15
The suspect supporting
pattern

22910.3 Core Domain Chart patterns
engineering challenge in the company and was often being talked about by leadership.
However, the group was unable to articulate how it enabled them to differentiate from
competitors. After further conversations, we established that the subdomain was mis-
sion critical but offered little potential for differentiation.

 The reason it was so complex was because a new and an old version of the system
were running in parallel, and migrating was proving to be a long, drawn-out challenge.
The new system didn’t have all of the features of the old system, so internal users had
to use both. We reached a consensus that it was important to continue the work in the
supporting domain to reduce the complexity and create a better experience for inter-
nal users. More importantly, in that moment, the group realized what their real core
domains were.

 A few questions to think about with this type of subdomain are

 If the complexity was reduced, how could engineering effort be invested more
effectively elsewhere?

 How long will it take to reduce the complexity?
 Is everybody in agreement that new feature development will need to be

reduced or stopped while the code is being modernized?

10.3.8 Hidden core

A hidden core domain is a subdomain that is perceived to have high differentiation but
low complexity, usually because there is complexity outside the software that would
be more of a differentiator if brought into the software, as figure 10.16 shows. Any

HighLow Business differentiation

High

Low

M
od

el
 c

om
pl

ex
ity

SUPPORTING

G
E
N
E
R
I
C

CORE

Potential to
leverage

software more

Figure 10.16
The hidden core pattern

230 CHAPTER 10 Strategic IT portfolio
subdomain in the bottom right should always raise suspicion: if a subdomain is low in
complexity, it’s an easy capability to develop, which means it is easy for other competi-
tors to develop as well. I am always curious when leaders talk about certain high-priority
initiatives, yet the requirements are basically simple CRUD systems. It’s not always the
case that a subdomain in the bottom right is a hidden core. There are genuine reasons
why differentiating complexity is outside the software and cannot be brought into the
software, like domains that rely heavily on human knowledge and skill.

 To work out the most effective approach in this type of subdomain, we must first
quantify the benefits that moving complexity into software can bring. Cross-skill col-
laboration with techniques like EventStorming and product discovery are likely to be
key elements in gaining this clarity. Engineers will need to understand how the
domain currently works and advise on the potential for replacing the current manual
approaches with more advanced digital capabilities. This will require experienced
engineers who are effective at collaborating and are experienced in product and
domain discovery. If the subdomain is confirmed to be a hidden core, then the invest-
ment characteristics of a core domain should be applied, whereas if there is no benefit
to bringing more complexity into software, it should continue to be treated as a sup-
porting subdomain.

 A few questions to think about with this type of subdomain are

 Who is using the capabilities provided by this subdomain, and what are they try-
ing to achieve? Could software be more helpful?

 What evidence is being used to make the decision that this is so highly
differentiating?

10.3.9 Black swan core

A black swan event is a highly unexpected occurrence with a profound effect and may
seem obvious in hindsight (http://mng.bz/A8Ne). A black swan core domain is a
domain that demonstrates these characteristics by starting out as a generic domain
and becoming a core domain, as shown in figure 10.17. In theory, this should never
happen because generic domains are commodity offerings with little to no differentia-
tion potential, so when this does occur, it is a big surprise with weighty consequences.

 Slack, the enterprise chat system, started life as a black swan core. It was originally
an internal chat system used by Tiny Speck, which was building a video game called
Glitch. IRC was a popular chat tool at the time, but the team chose to build an in-
house chat solution. The Glitch project failed, which was the trigger for turning the
internal chat system into the product that became Slack (http://mng.bz/ZReN). In
December 2020, Salesforce announced it was acquiring Slack in a $27.7 billion deal
(http://mng.bz/RmPR). The story of AWS is also similar in some respects—managing
infrastructure wasn’t Amazon’s core business, but they became so good at it that they
were able to spin it off into a separate business.

 Traditional advice suggests SaaS, open source, or off-the-shelf solutions for generic
domains, and this is still generally good advice. However, if you feel that there is even

http://mng.bz/A8Ne
http://mng.bz/ZReN
http://mng.bz/RmPR

23110.3 Core Domain Chart patterns
a possibility that you may actually have a rare black swan core, building in-house may
be worth considering to keep your options open—though this isn’t an excuse to build
everything in-house.

10.3.10 Portfolio patterns

All of the patterns in this section have focused on a single subdomain or a small clus-
ter of closely related subdomains. This is useful because investment and approach
should be tailored on a per-subdomain/per-team basis. However, it is also important
to look at the portfolio as a whole and notice broad trends. One way I encourage peo-
ple to do this is to ask, “Imagine there was no text on this Core Domain Chart, what
would the visual patterns tell you?” The following are some examples to give you ideas
and watch for on your Core Domain Charts:

 A single core domain that is moving left into supporting—This raises the question of
what is coming next? Does the company have a longer-term plan? Should it be
investing some effort into those initiatives now? Where are the big bet future
cores?

 Five or six core domains—This is a concern that there may be too many high pri-
orities, and investment is spread too thinly.

 All/most generic subdomains built in-house—Why are so many generic capabilities
being built in-house? Is there a fundamental problem with the company’s
approach to build versus buy versus partner decisions?

HighLow Business differentiation

High

Low

M
od

el
 c

om
pl

ex
ity

SUPPORTING

G
E
N
E
R
I
C

CORE

Figure 10.17 The black
swan core pattern

232 CHAPTER 10 Strategic IT portfolio
When looking at the overall portfolio for trends, it’s useful to indicate the investment
in each team. Finances are usually too complicated, so I use team size as a proxy. As
figure 10.18 shows, this can reveal important trends that need investigation, like a
higher level of investment in supporting subdomains than core domains.

10.4 Industry example: Strategy-aligned architecture at Vinted
Established in 2008, Vinted is the first Lithuanian tech unicorn that is a global C2C
online marketplace where its members can trade their pre-loved fashion and lifestyle
items across many different categories, such as clothing, pet care, books, and video
games to name a few. Originally, Vinted focused on a single vertical, women’s cloth-
ing, and gradually expanded into others.

NOTE This industry example was coauthored with Ornela Vasiliauskaite, an
agile coach at Vinted. I highly recommend checking out her excellent DDD
and socio-technical architecture-related talks (https://www.youtube.com/
watch?v=joSgTOUy7eQ).

As the company grew from 30 engineering team members colocated in Lithuania in
2018 to 460 people spread across multiple locations in Europe at the beginning of
2023, growing pains started to become apparent. The time it took to implement new
features continued to increase as more and more developers were all working in the

HighLow Business differentiation

High

Low

M
od

el
 c

om
pl

ex
ity

SUPPORTING

G
E
N
E
R
I
C

More people working on supporting
than on core domains

CORE
4

5

6

10

Figure 10.18
Visualizing investment
on Core Domain Charts
as team size

https://www.youtube.com/watch?v=joSgTOUy7eQ
https://www.youtube.com/watch?v=joSgTOUy7eQ

23310.4 Industry example: Strategy-aligned architecture at Vinted
same monolithic codebase. One reason adding new features was more complex than
it could have been was the assumptions baked into the architecture. Many of the core
abstractions were still heavily based on the assumption of a single vertical (women’s
clothing). Supporting multiple verticals had been forced into the current model
rather than redesigned from a blank canvas.

 In 2021, the growing pains had become untenable, and everybody agreed that it
was time to modernize the architecture to speed up innovation. Developers found it
hard to understand the code, and it took too long to compile, test, and deploy it. Hir-
ing more developers didn’t lead to the expected productivity increases, and onboard-
ing them took longer. The system was also growing in fragility as changes in one area
started breaking unrelated functionality.

 Engineering leadership, including staff engineers, collectively agreed that a loosely
coupled, modular architecture and teams that owned parts of the system were needed
to bring back their ability to innovate at speed. That was seen as a prerequisite to grow
from a successful startup to an even more successful scale-up.

 One example of their growing pains was in the domain of categories. As Ornela
explains: “Categorization at Vinted is done hierarchically and uses a tree metaphor.
The broadest category is known as the ‘root’; Vinted uses departments, such as
‘Women’ or ‘Men’ for these broader groupings. From there, we have parent-child rela-
tionships: the root will have one or more child categories, each narrower in scope than
the parent category using an ‘is a’ relationship. For example, the Women root category
can have children such as ‘Footwear’ or ‘Clothing,’ as those subcategories are narrower
than the broader concept of women’s fashion. The parent-child structure can continue
indefinitely depending on how granular the structure needs to be” (see figure 10.19).

 Over the years, the variety of items being traded on Vinted’s platform grew, and
now there are six distinct departments (Women, Men, Kids, Home, Entertainment,

Figure 10.19
Example category
tree for Women

234 CHAPTER 10 Strategic IT portfolio
and Pet Care) that Vinted members could choose to sell and buy items from. Deepen-
ing and widening the categories tree was crucial, so a new team was formed to focus
on this area. However, the software architecture was a blocker.

 Immediately from its inception, the newly formed categories team struggled to
deliver value. Categories were not a well-defined part of the code that one team could
easily work on without dependencies on other teams. Quite the opposite, category
functionality was scattered throughout many parts of the architecture. As a result, the
effort required to both understand the current code and implement new features was
extremely high.

 To tackle this challenge, the team decided to try domain-driven design as an
approach to modeling categories as an independent, loosely coupled subdomain that
would enable the categories team to have a clear purpose and achieve fast flow. If
things went well, the organization wanted to apply concepts like DDD and Team
Topologies more widely.

 However, things didn’t get off to a great start, as Ornela explains: “The first sessions
we ran were really difficult. There was a lot of misalignment. Some people felt that the
chosen approach (DDD) was to blame, while in reality the domain was just very com-
plex. It was especially frustrating for the domain experts. Their conviction in the existing
model made it difficult for them to listen to others and see why other options were also
possible. I was also convinced I was right in my understanding of the domain model.”

 Introducing new approaches like DDD always takes time and patience. So, despite
the shaky start, Ornela and her colleagues persevered. They looked for an external
expert who could help kickstart their endeavor and decided to hire Marco Heimeshoff,
a leading DDD consultant. It seemed like the perfect solution to hire an unbiased exter-
nal facilitator who is skilled in domain modeling, and it proved to be the case. Marco
helped them go deeper into the domain and define two potential models, as shown in
figure 10.20.

 But the group was still split. Half of the group preferred one model, and the rest
preferred the other. After a few sessions of EventStorming and context mapping, the

Item
(listing)
upload

Search Item
details

Categories Categories Categories

Item
(listing)
upload

Search Item
details

Categories platform

Option 1—refine current approach
(multiple, specialized category models)

Option 2—complete remodel
(consolidated categories subdomain)

Figure 10.20 Multiple competing models for categories

23510.4 Industry example: Strategy-aligned architecture at Vinted
group realized that their split was more fundamental than their choice of model. The
two groups had fundamentally different beliefs about the product strategy, and they
had chosen the model that best aligned with their understanding of the product
goals. “It was difficult to define boundaries and team structures without a clear prod-
uct strategy to organize around,” said Doug Wieand, product manager.

 It had become clear to Ornela and the team that architectural decisions must be
driven by business and product outcomes: “We needed to align on the product strat-
egy before we could choose the right model. However, that was another hurdle. We
were not aligned on what we wanted to optimize for. I think we were not accustomed
to thinking about the architecture decisions in conjunction with product goals; thus,
seeing two different approaches requiring two entirely different team and code struc-
tures forced us to think about what each of those models will help us to accomplish
and which of these scenarios we actually prefer for our long term ambition.”

 With a clear understanding of the key challenge they faced, the team switched gears
and began exploring strategic modeling approaches. They began with Core Domain
Charts, explains Ornela: “We started with Core Domain Charts because it wasn’t possi-
ble to pinpoint what we wanted to optimize for by focusing on categories alone. We
needed to see it in a wider context so that we could understand the different types of
complexity each option would introduce into the overall system and how the differen-
tiation provided by categories compared to other investments we were considering.”

 After multiple strategic modeling sessions with Wardley Maps and Core Domain
Charts, the group began to converge on a preferred option. Figure 10.21 shows a

HighBusiness differentiation

SUPPORTING

Low

High

Low

M
od

el
 c

om
pl

ex
ity G

E
N
E
R
I
C

CORE
Capability A Capability B

Supports Sup
po

rts

Categories
(desired future)

Categories
(now) Figure 10.21 Mapping

the strategic portfolio with
a Core Domain Chart

236 CHAPTER 10 Strategic IT portfolio
fragment of the strategic model the team came up with in their latest iteration of their
Core Domain Chart. It shows how the group converged on the idea that categories
would be a vital enabler of their core domain (capability B) as well as supporting
other important areas like capability A. The more investment in improving the power
of categories and the ability to iterate quickly, the better they could achieve their ulti-
mate business outcomes.

 Adding strategic modeling of their portfolio into the mix helped the team to close
the full feedback loop and consider the modernization efforts from the angles of code
structure, team structure, and product and business strategy. Finally, everybody was
100% aligned on what the socio-technical architecture should be optimized for, says
Ornela, and the group unanimously chose the model of categories that best suited the
product vision: “Before all of the DDD efforts, we were solely focusing on adding new
categories into the system as it is and we were getting slower and slower. After adopt-
ing various modeling approaches, we started to see how we could add these new cate-
gories at accelerating pace. Taking longer time horizons into consideration, and
seeing and discussing different models in front of us allowed us to build confidence,
justify certain technical investments, and align on a long-term vision. We chose the
approach to invest into the categories platform that supports all the other areas where
the category context is needed.”

 There was still a huge effort ahead of the group to decouple the architecture, but
everybody knew exactly what they needed to do and why it was important. As the
team’s taxonomist, Charlie Lapin, puts it: “A holistic rework of the categories meant
that we were both more proactive, such as with trends—capturing what’s trending and
allowing for categorization within that framing—as well as being more reactive by
removing categories that are confusing, overlapping, or are not relevant to users.”
The whole team was motivated and able to focus their full energy to achieve their
desired outcome.

 One of the key takeaways from this story is perseverance. Despite the turbulent
first few sessions, the team persevered with a domain-driven approach to improving
their architecture, and it turned out to be a success. The outcome of their work and
the approach taken were impressive enough to be noticed by business leaders and col-
leagues from other areas of the business. This quote from the Vinted Marketplace
CEO, Adam Jay, captures the sentiment well: “At the scale Vinted operates, we need
our teams to be fully empowered to make product and architecture decisions. I’m
glad to see examples of such dedication and perseverance to make the needed yet
difficult changes in our organizational structure and architecture to fuel Vinted’s
success.”

 Another key takeaway is the importance of sharing learnings and successes across
the organization. People were excited by what the group had achieved and how they
achieved it. Ornela and her team were asked to share their learnings in other domains
and spread the ideas to other parts of the organization facing similar scaling

237Summary
challenges. “With their success, Ornela and her team helped unlock our next stage of
engineering productivity and created an example to be followed by other teams.
While we’re on the journey, I’m already confident that the impact of their work will
have positive reverberations throughout Vinted’s technology team,” remarked
Mindaugas Mozūras, VP of engineering.

 This story shows that proficiency in using DDD methods alone is not the key to
gaining valuable insights. Focusing on the problem they were trying to solve and
experimenting with multiple methods to figure out the solution they were most confi-
dent in worked for Ornela and the team at Vinted. A kind of freestyle problem-solving
approach, drawing inspiration from many sources and adapting them to their own
context as needed. To build that confidence, the team used visual models, and by
comparing and assessing them, collecting feedback from various stakeholders, and
iterating on the models quickly and collaboratively, they managed to come up with
solutions relatively quickly and achieve buy-in across the board.

 This chapter is now complete. You’ve seen how to identify strategic IT, which is cru-
cial in making key modernization decisions, like how to shape domain boundaries
and how to organize teams effectively. These two themes continue in the next chapter,
which looks much more closely at the socio-technical aspects of architecture: how to
codesign teams and architecture to achieve the optimal overall system, using the prin-
ciples and patterns of Team Topologies.

Summary
 Architecture should be treated as a portfolio, with a level of investment and

operating model tailored to the specifics of each area.
 A well-designed technology architecture may just be gold plating that wastes

effort that could have been better invested in more strategic areas.
 Martin Fowler’s utility versus strategic IT dichotomy classifies IT applications as

utility or strategic according to their contribution to business differentiation.
Software that helps organizations to differentiate is considered strategic, while
software that is considered just to be a cost of doing business with little or no
differentiation is considered to be utility.

 Classifying IT as utility or strategic is not to serve an academic or theoretical
purpose; it should have specific impacts on many aspects of the operating
model, including team size, team composition, product discovery, prioritiza-
tion, domain modeling, architecture, code health, and build versus buy versus
partner.

 Candidates for strategic IT are likely to be found on a Wardley Map between
late genesis and mid-product. This is not a hard and fast rule, and not all com-
ponents within these areas are guaranteed to be strategic IT.

 The act of collaboratively defining a product strategy based on research and
data will make clear which parts of IT are strategic.

238 CHAPTER 10 Strategic IT portfolio
 Business domains are a great model for enabling architecture to be treated as a
portfolio with investments aligned to business outcomes. Each business
domain and subdomain can have tailored investment and operating model
characteristics.

 Core Domain Charts is a technique from the domain-driven design community
that helps to identify and make decisions about strategic IT and the approach
to be taken in each subdomain.

 A collaborative approach involving business, product, technology, and other
stakeholders is ideal when defining Core Domain Charts.

 In DDD, each subdomain is considered to be core, supporting, or generic
based on a combination of business differentiation and model complexity.
– Core domains (which are subdomains) are high in differentiation and com-

plexity, so they should nearly always be built in-house. They align with
Fowler’s definition of strategic IT.

– Supporting subdomains are less complex and differentiating but require
industry- and company-specific domain logic, so they are typically built
in-house.

– Generic subdomains have little or no differentiation potential, and where
possible, off-the-shelf solutions usually make sense. They align with Fowler’s
definition of utility IT.

 The classification of a subdomain can change over time. What is core at one
point in time will most likely drift left into supporting at some point in the
future. Arrows can be used on a Core Domain Chart to show this evolution.

 Model complexity is a composite measure of complexity that represents the
effort required to discover user needs, build and evolve a domain model, imple-
ment it in software, and support it in production.

 Operational complexity is usually not considered to be part of model complex-
ity but often plays an important role in strategic discussions, so it can be high-
lighted on Core Domain Charts using annotations.

 There is some overlap between Core Domain Charts and Wardley Mapping;
however, Wardley Mapping is a much more advanced technique that takes an
industry-wide perspective and can be applied to all scopes. Core Domain Charts
are used more specifically to visualize strategic IT choices according to differen-
tiation and complexity.

 There are a variety of patterns that can be observed on a Core Domain Chart, like
decisive core, indefensible core, suspect supporting, and table stakes supporting.
Each pattern has implications on how the subdomain should be treated.

 A decisive core typically necessitates a big investment in talented people,
collaborative practices like EventStorming, and more advanced architectural
patterns.

239Summary
 A table stakes support requires a much smaller investment to achieve a good
enough solution, providing that there is no negative effect in core domains.

 While fine-grained investments can be made on a per-subdomain/per-team
basis, it’s important to look at the investments in the portfolio as a whole
because there are dependencies between subdomains, and decisions taken in
one may affect others.

Team Topologies
Modern architecture requires a socio-technical approach. Jointly optimizing the
organization and software architecture is necessary to achieve optimal organizational
performance. More than a well-designed software architecture is needed to achieve
fast flow because teams may be organized in a way that introduces friction and bot-
tlenecks into their workflow. Teams must work on the same code and, as a result, must
synchronize their changes and deployments or risk tripping over each other.

 Ideally, teams should form part of independent value streams. As explained in
chapter 6, a value stream is all of the steps a team goes through, from discovering
unmet user needs in a subdomain for which they are responsible to designing solu-
tions, implementing them in software, and deploying and supporting them in
production. Fast flow is enabled by independent value streams, where teams have

This chapter covers
 Designing Team Topologies

 Validating candidate value streams

 Sensing and evolving Team Topologies

 Grouping teams that work on related
challenges
240

24111.1 Team Topologies principles
responsibility for everything in the value stream, from the conceptual subdomain to
the software needed to implement the subdomain’s capabilities.

 Independent doesn’t mean isolated. In practice, some dependencies will always
exist, and most value streams will not be 100% independent. But we should still aim for
value streams that are as independent as possible by challenging every dependency and
obstacle to a team’s flow, like decisions that affect them by people outside of the team.

 In 2019, the book Team Topologies by authors Matthew Skelton and Manuel Pais was
released. It contains a toolkit for shaping socio-technical architecture and creating the
conditions for teams to achieve fast flow. This chapter introduces the principles and
patterns of Team Topologies and shows how they can be used to refine domain
boundaries by validating the organizational aspects of candidate value streams, as
highlighted in figure 11.1

Figure 11.1 Refining and validating domain boundaries with Team Topologies

11.1 Team Topologies principles
At the heart of Team Topologies is a core set of principles for organizing teams for fast
flow. These principles were included in Team Topologies because they have proven
effective in organizations that develop their products with a high velocity. While the
patterns are helpful and often easier to remember, the principles are the most critical
aspect of Team Topologies and should always be front of mind. My personal experi-
ence over more than a decade corroborates these principles. Likewise, you may
already apply some of these principles in your company. Team Topologies isn’t a pro-

This chapter

Candidate
business

subdomain

Strategy

Organization

Tech

Validate candidate
value stream

Target value
stream

Candidate
value stream

Refine

Validated

242 CHAPTER 11 Team Topologies
prietary framework that tries to reinvent organization design. Many of the ideas have
proven to be effective in the industry.

11.1.1 Sustainable fast flow

The subtitle of the Team Topologies book is Organizing Business and Technology Teams for
Fast Flow. Some people misinterpret this as churning out code as fast as possible while
neglecting quality. So, the first thing to remember is that fast flow means sustainable
fast flow—the ability to maintain a high velocity over multiple years. The other vital
thing to remember is that speed versus quality is a fallacy. Keeping a codebase healthy
by reducing cruft means that code is easier to understand, easier to change, and less
likely to have bugs or downtime (http://mng.bz/27Xo). These are key enablers for
reducing the cost of change and improving flow.

 In their 2018 book Accelerate (http://mng.bz/1JzQ), Forsgren et al. presented
research findings that showed high-performing teams deployed to production multi-
ple times per day yet still had less production downtime and were able to recover
faster when they did. For many, achieving sustainable fast flow requires deep
changes—not just to the organization structure, but every aspect of building products,
from technical practices to leadership mindset.

11.1.2 Small, long-lived teams as the standard

Team Topologies recommends that teams should generally be “a stable group of five
to nine people who work towards a shared goal as a unit.” There is scope for deviation,
but this is considered to be the sensible default. The sizing recommendation is based
on trust. Team Topologies argues that once a team gets beyond five to nine people, it
becomes difficult for team members to retain the same high -level of trust. In my anec-
dotal experience, going beyond that size makes it difficult to keep up with everything
happening in the team, and subteams start to form anyway. On the other end, going
below five can result in too little capacity or the risk of losing a large chunk of knowl-
edge when a team member leaves. Stable teams don’t have to be static, however. The
section on dynamic reteaming later in this chapter covers team fluidity patterns.

 The long-lived aspect of a team is important for both social and technical connota-
tions. From a social perspective, long-lived creates an opportunity for teams to better
know each other and continuously improve how they work together. They are respon-
sible for a part of the product and motivated to keep improving it. From a technical
perspective, long-lived incentivizes teams to keep code healthy and evolvable in the
long term because people know that they have to support the code that they write.
One of the worst culprits of poor flow is legacy code, and it is one of the most expen-
sive problems to fix. Therefore, the importance of organizing teams to incentivize
long-term code health cannot be overstated.

11.1.3 Team-first thinking

Some traditional approaches refer to software engineers as “resources.” They are seen
as interchangeable units whose work is micromanaged. They can be partially allocated

http://mng.bz/1JzQ
http://mng.bz/27Xo

24311.1 Team Topologies principles
to multiple projects simultaneously and moved around on a whim. Nowadays, the
flaws in this approach are widespread. Context switching has a high cost on productiv-
ity, and engineers can contribute much more than just code when they are immersed
in the domain and aligned with business goals. Team Topologies embraces this mind-
set by considering teams as the individual unit. It’s the team themselves who collec-
tively decide what each member will work on. All work is routed to the team and not
the individual.

 Team-first thinking also applies to goal setting and recognition. When individual
team members have their own targets, they are incentivized to act as individuals,
whereas when the team has shared goals and is recognized for their collective efforts,
cooperation is incentivized. I worked for one organization that had cascading objec-
tives that cascaded all the way down from the CEO to every individual employee. One
example, in particular, stands out in my memory, where one team member had
worked with his line manager to set his goals. His primary objective was to write a cer-
tain number of stored procedures. This was baffling because the team had little work
that seemed like it needed stored procedures, and this team member was looking for
work to achieve his objectives that weren’t consistent with the team’s product goals.

 In organizations that lack team-first thinking, one antipattern to look out for is
standardized processes and ways of working. There is a belief that if all teams follow
the same agile process and use the same Jira workflows, every team will be highly pro-
ductive, and it will be easy to rotate people to different teams. I’ve never seen this to
be effective in practice. The best teams I have worked with owned their process and
were able to continuously improve it. Standardized workflows stifle improvement and
result in lower productivity. The benefit of a consistent process is also a fallacy. As a
software engineer, when I moved from one team to another, the process was the easi-
est thing to learn. Learning the code and the domain and building relationships with
team members took far longer. Standardized workflows and processes often ignore
this human element.

11.1.4 You build it, you run it

One of the prominent trends of the 2010s that emerged from the DevOps space was
you build it, you run it (http://mng.bz/PRA8). This approach puts teams thoroughly in
control of the software they build. Teams design, write, and deploy their code to
production and then support their code in production. The idea behind this
approach is that teams will be incentivized to create more reliable software if they are
responsible for it. You build it, you run it results in more independent value streams and
faster flow because there are fewer handovers. For these reasons, it is central to the
ideas in Team Topologies.

 I had my first you build it, you run it experience at 7digital in 2012. Every morning
during daily standup, each team would observe the dashboards displayed on monitors
hanging off the walls around their team area. We would look at API traffic, perfor-
mance, error codes, and custom metrics relevant to each subdomain. Whenever we

http://mng.bz/PRA8

244 CHAPTER 11 Team Topologies
built new features, we always thought about instrumentation we could add to verify
that the feature was working or that would quickly alert us to the source when there
were problems in production. This way of developing features, with operability
(https://www.stevesmith.tech/blog/category/operability/) in mind, is something I
have yet to observe in teams that do not run the code they create.

 To someone unfamiliar with you build it, you run it, this may be perceived as extra
work that reduces the productivity of software engineers. But this is not the case in my
experience. By owning every aspect of our software, each team deployed to produc-
tion multiple times per day. As a result, no time was lost coordinating with other teams
to deploy the code. When there were problems in production, the team could resolve
them quickly, not forgetting there were already fewer production concerns and bugs
due to adopting this approach.

 It’s not necessary to apply you build it, you run it everywhere. In some circumstances,
relying on the traditional model of a separate ops team running code in production is
more effective. Steve Smith makes the case that you build it, you run it becomes more
critical as product demands and reliability needs increase (http://mng.bz/Jdyz).

11.1.5 Good boundaries minimize cognitive load

Excessive cognitive load is a significant inhibitor to sustainable fast flow. When teams
have a high cognitive load, there are many risks: the quality of the team’s work may
diminish, the team will work in unsustainable ways, and team members may burn out
as they try to keep up with everything expected of them. A team’s motivation may
drop as they context switch between different initiatives and lacks a clear sense of pur-
pose. A team’s cognitive load capacity varies based on factors like the size of a team
and its expertise.

 There are several aspects to keeping a team’s cognitive load manageable. Well-
defined boundaries is one of them. No subdomain should be too large or complex
that it results in cognitive load that is too high for a single team. Once a subdomain
reaches that point, it should be split into multiple smaller subdomains. Likewise, if a
team owns multiple subdomains, then the collective complexity cannot exceed the
cognitive load of a single team. This includes the costs of context switching that will be
necessary as the team switches from working in one subdomain to the others.

 Subdomains include various types of complexity, as discussed in the previous chap-
ter, including the current state of the software, which could be complex due to high
levels of cruft. Visualizing team boundaries on a Core Domain Chart is a helpful way
to quickly identify where high team cognitive load may appear, as shown in figure
11.2.

 Team Topologies makes a distinction between three types of team cognitive loads,
which are each handled in different ways:

 Intrinsic cognitive load—This type of cognitive load refers to the inherent diffi-
culty of a task. Designing a function to calculate the total price of a simple order
has much less intrinsic cognitive load than learning a new programming

http://mng.bz/Jdyz
https://www.stevesmith.tech/blog/category/operability/

24511.1 Team Topologies principles
language. It is difficult to reduce this type of cognitive load without changing
the requirements of the task.

 Extraneous cognitive load—This type of cognitive load is caused by environmental
factors that aren’t intrinsic to the task and could potentially be avoided. For
example, legacy code that couples unrelated concepts makes it harder to pick
out the specific concepts necessary for a given task.

 Germane cognitive load—This type of cognitive load is related to the mental effort
required to structure and organize the material being learned into long-term
memory, like learning new business domain concepts.

Figure 11.2 Identifying potential high cognitive load on a Core Domain Chart

No precise formula exists for measuring cognitive load, but it is possible to get a good,
reasonable understanding by asking teams to describe how well they can achieve their
tasks and how overworked they feel. This should be a recurring conversation as a
team’s cognitive load can increase as their responsibilities grow.

11.1.6 Embrace Conway’s law

The idea that organization structure and communication patterns are strong forces on
software architecture goes back to 1968 when Melvyn Conway coined what later became
known as Conway’s law: “Any organization that designs a system (defined broadly) will

HighLow Business differentiation

M
od

el
 c

om
pl

ex
ity

High

Low

SUPPORTING

CORE

Subdomain A

Subdomain B

Team 1’s cognitive
load is likely to be
too high due to total
complexity of their
two subdomains.

Subdomain C

Subdomain D

Team 2’s cognitive
load looks far more
manageable.

G
E
N
E
R
I
C

Team 1

Team 2

246 CHAPTER 11 Team Topologies
produce a design whose structure is a copy of the organization’s communication struc-
ture.” As mentioned in chapter 2, Conway’s law is essential for modern architecture
because the relationship between organization and software architecture is so strong.

 Conway’s law is a crucial component of Team Topologies due to its implications on
flow. The organization and the software need to be purposefully architected and
jointly optimized to enable independent value streams. For example, suppose the
organization is aligned to one set of domain boundaries, and the software is aligned to
a different set of domain boundaries. In that case, teams will be working in the same
codebases, needing to coordinate their work and tripping over each other.

 Despite being a common topic, Conway’s law is still under-acknowledged. Martin
Fowler gets to the crux of the problems seen in many organizations: “A lot of what we
see out in the industries is people ignoring [the forces of Conway’s law] and trying to
come up with architectures or just not really thinking about the organizational design
and trying to pretend it isn’t there, and as a result, you get this mismatch where peo-
ple are trying to do something in software design and their organizational design is
pushing against it, and the result is a lot of friction and problems” (http://mng.bz/
wjBB). Sometimes it’s the other way around, where organizational changes ignore
architectural constraints, but the results are similar.

 To embrace Conway’s law, leaders should always look closely at how organizational
dynamics affect the software architecture. Unfortunately, this wasn’t the case when I
worked with one travel organization. One team owned customer-facing capabilities,
and another group operated the internal API platforms. The customer-facing team
reported to marketing, and their mission was to sell holidays by showcasing the com-
pany’s products and taking orders. The platform teams reported to IT and owned the
systems and databases that were the source of truth for the data, like itineraries,
prices, and special offers used in the marketing applications. The teams had a rock-
bottom relationship and avoided communication at all costs. Their software architec-
ture reflected this and was excessively complex, leading to substantial problems that
inconvenienced customers and internal stakeholders.

 The marketing IT team had grown frustrated with the unreliable platform APIs,
which were slow and error-prone. The problem was that customers and managers in the
company saw it as a website problem, and the marketing IT team was held responsible.
When the marketing IT team was delayed adding new features because they were wait-
ing for backend API changes, they also got the blame and felt unfairly treated.

 The problems here are predominantly on the social side: the two groups needed
to work together to find a solution for the problematic APIs, and the organization
needs to incentivize them to collaborate by not blaming the marketing IT team when
there is little they can do to help. However, the solution taken was a technical one.
The marketing IT team built a data importer that sucked all of the data out of the
platform APIs and stored it in their own local database. As a result, they improved
website performance and reliability and could add new features faster, all without
needing to talk to their enemies in the platform teams.

http://mng.bz/wjBB
http://mng.bz/wjBB

24711.2 Team Topologies patterns
 Unfortunately, the new architecture created a whole new set of problems. In addi-
tion to the considerable investment in building the synchronization system, there
were other consequences, like data consistency errors where new holidays would be
missing from the website or out-of-date prices being shown. This also resulted in a
blame game between marketing IT and the platform IT teams about whose fault it
was. People in other teams, like the content management team, would have to medi-
ate between the two teams to find out what caused the problem.

 Overall, a large portion of the team’s cognitive load was taken up with the mainte-
nance of the synchronization system. The software architecture truly was a mirror of
the organization’s communication dysfunctions. The company was paying a dear price
for not adhering to the implications of Conway’s law. If both groups had tried to build
better relationships and been open to collaborating with each other, the system would
have been much simpler and the problems far fewer. In reality, personality clashes
can’t always be resolved, which means leadership needs to be aware of the conse-
quences of this type of problem and step in before things get out of hand.

11.2 Team Topologies patterns
Team Topologies introduces patterns for modeling organizations: four team types and
three interaction modes. These patterns build on top of the principles and are a use-
ful tool for designing and evolving organizations in contexts where the principles
have been fully embraced. However, applying the patterns without also adopting the
principles is unlikely to lead to much of an improvement. That’s structure-and-
process-fallacy thinking.

11.2.1 The four team types

Team Topologies introduces four team
types for modeling organizations. Deter-
mining the type of each team is important
because it helps the team understand their
role and their expected behaviors, which
can also surface problems. For example,
when a team feels like they consist of multi-
ple team types, it could be a sign that they
have too many or too diverse responsibili-
ties. The four team types, shown in figure
11.3, are an aspirational model, meaning
that the existing teams in your organization
may not fit. Rather than forcing every team
into one of these types, you can indicate
that they will remain outside the Team Topologies model until those areas have been
modernized. Otherwise, you risk just using a new label to describe what you have
always done.

Stream-aligned team

Platform grouping

Enabling
team

Complicated
subsystem

team

Figure 11.3 The four team types of Team
Topologies

248 CHAPTER 11 Team Topologies
NOTE The Team Topologies notation uses specific colors and shapes. You
can find full-color, interactive versions of all the notation shown in this chap-
ter on the book’s Miro board (http://mng.bz/qjMN).

STREAM-ALIGNED TEAMS

Most teams within an organization will be stream-aligned teams. Stream-aligned teams
are fully responsible for independent value streams that usually contribute to product
capabilities, from discovering unmet user needs within a subdomain to a you build it,
you run it operating model. The team should contain all of the skills necessary for
their value stream, such as a product manager, tester, and UX specialist. A stream-
aligned team is not just an IT team that is separated from “the business.” A stream-
aligned team has both business and IT responsibilities.

 Common examples of stream-aligned teams include

 A team that is responsible for domain APIs
 A team that builds embedded software for hardware devices
 A purely UI team like the mobile app team or web team
 A full-stack team that owns the backend API and UI pages for an end-to-end

product feature like a search component

PLATFORM GROUPINGS

Platform groupings exist to provide shared capabilities that reduce the cognitive load of
stream-aligned teams, which frees those teams up to focus on their core mission and
improves their flow. In Team Topologies, the term platform is used in a general sense.
A platform can refer to an internal developer platform (IDP), which provides capabil-
ities to help teams build software like infrastructure and tooling. A platform can also
refer to a horizontal, which contains domain logic like Uber’s fulfillment platform dis-
cussed in chapter 6.

 A key priority for platforms is ensuring that the platform doesn’t become a bottle-
neck and add cognitive load to stream-aligned teams. For these reasons, developer
experience (DX) is a principal focus of teams working as part of a platform. In a nut-
shell, this means that a platform’s teams should invest in the usability of their plat-
forms through concepts like self-service capabilities, which are documented well. If
stream-aligned teams regularly create tickets for the platform’s teams, it is a warning
sign that needs further exploration. Platforms and DX are covered more extensively
in chapter 13.

 In Team Topologies, a platform may represent a single team or a group of teams
that each own part of a cohesive platform or act as enablers, as shown in figure 11.4.
Platform groupings can even contain nested platform groupings. There was an
example of this in chapter 6, NAVs internal technology platform, which consisted of
the infrastructure platform, data platform, and design system.

http://mng.bz/qjMN

24911.2 Team Topologies patterns

Figure 11.4 Platform groupings are typically composed of multiple teams (they can
be any of the four team types, including nested platform groupings).

COMPLICATED SUBSYSTEM TEAMS

Complicated subsystem teams exist to deal with capabilities that require a high level of spe-
cialist knowledge to work on. The benefit of this is that the specialist skills do not need
to be embedded in multiple stream-aligned teams. They can be concentrated into a sin-
gle dedicated team, effectively encapsulating the complexity and making it easy for oth-
ers to consume. There are many potential candidates for a complicated subsystem team
like software that needs ultralow latency or requires degree-level education in a partic-
ular domain like physics. This poses the risk that hiring people to work in the team will
take longer, and the costs of a team member leaving will be higher.

ENABLING TEAMS

Enabling teams exist to help other teams become more effective at their work and more
autonomous. They differ from the other three team types because they don’t own
parts of the product or infrastructure. An enabling team’s responsibility is to support
other teams through education and empowerment, not by doing their work for them.

 A common pattern is establishing enabling teams for skills the organization lacks,
like continuous delivery, EventStorming, workshop facilitation, or chaos engineering.
The enabling team will spend time with other teams in various forms, like teaching
new concepts, facilitating workshops, and even spending time with the teams to intro-
duce ideas while doing real work. Enabling teams can also be project-based, such as an
enabling team that is put together to ensure a particular project is delivered on time. I
recommend creating an architecture modernization enabling team (AMET) to
ensure modernization stays on track and maintains momentum. AMETs are covered
in chapter 15.

 One integral aspect to be aware of regarding enabling teams is that the team
should have expiry conditions. This means that when the enabling team has achieved
its purpose, the team no longer has a need to exist, and the members can move to
other challenges. This contradicts some of the principles in the first part of the chap-
ter, but as mentioned, enabling teams are a bit different.

Cloud platform

Infrastructure team

Pipelines team

Observability team

Platform composed
of multiple platform
stream-aligned teams.

250 CHAPTER 11 Team Topologies
11.2.2 The three interaction modes

Supporting the four team types are three interaction modes shown in figure 11.5.
They describe the relationships that can exist between teams, in addition to no rela-
tionship at all. Team Topologies argues that more collaboration does not necessarily
mean more effective teams. One reason is that some interaction modes carry a higher
cognitive load cost than others, so they are expensive to maintain. Consequently, it’s
important to choose the most effective interaction mode. Team interactions should
evolve as the context changes, like the amount of work in a particular domain.

COLLABORATION

In collaboration mode, two teams work together toward a shared outcome. Each team is
making changes in their area, and success is collective. Due to the close nature of col-
laboration, teams need to synchronize their work through shared rituals, joint deci-
sion-making, and various forms of communication. This means that collaboration can
have a high-cognitive load cost and reduce the team’s output. Collaboration is the
obvious choice when staying aligned, and moving together in the same direction is
more important than each team producing maximum output. But when the benefits
of close alignment don’t justify the loss in production, the relationship should be
switched to X-as-a-service or removed.

X-AS-A-SERVICE

X-as-a-service (XaaS) is an interaction mode associated with lower cognitive load. One
team may use the capabilities of another team, like calling their API, but there is no
need for repeated synchronization of work, shared rituals, or high levels of asynchro-
nous collaboration. There may be onboarding costs, feature requests, and support
from time to time, but they are generally minimal overall compared to a collaboration
relationship.

FACILITATING

One team supporting another to achieve a single team’s goal is an interaction model
called facilitating. This is similar to the role of an enabling team; however, any team
can temporarily adopt the facilitating interaction mode in support of another team.
An example is when one team has an urgent deadline, so another team switches focus
to help them.

Collaboration
XaaS

Facilitating

• 2 teams working
 toward shared goal

• High cognitive load

• 1 team provides a
 service to others (e.g.,
 API)

• Low cognitive load

• 1 team helping
 another to achieve
 goals or upskill

• Varied cognitive
 load

Figure 11.5 The three
interaction modes of Team
Topologies

25111.2 Team Topologies patterns
 Facilitation could also involve upskilling, with people from one team dedicating
some of their time to teaching the other team a new skill. One of my clients intro-
duced mob programming in this fashion. After one team tried it and saw a clear bene-
fit, they helped other teams to learn and apply the technique.

11.2.3 Industry example: Global cosmetics brand

Visualizing Team Topologies with team types and interaction modes can uncover
organizational problems or help to explain certain known problems. This was the case
when my colleague Maxime Sanglan-Charlier (https://mastodon.social/@__maxs__)
and I worked remotely to help a global cosmetics brand begin its architecture mod-
ernization initiative. The name of one team came up in all of our listening tour ses-
sions, usually in a negative context. The team was responsible for an integration
platform. Their goal was to ensure that teams based in all geographical locations
could access all of the data they needed to build product experiences for their cus-
tomers and for internal analytics purposes.

 We decided to set up a call with the integration platform team to get their perspec-
tive on the matter and try to make sense of all the comments raised about them.
During the call, we started to map out their team topology, shown in figure 11.6, so we
could better understand the situation. The crux of the matter became clear: the team
was interacting with at least four other teams using the collaboration mode. This inter-
action mode carries a high-cognitive load cost due to the level of coordination
required. That’s why the team was perceived as a bottleneck by other teams. But what
had caused the team to end up in this topology?

At first, we thought the team was just using the word collaboration in a general sense
to describe their relationships with other teams. But as we discussed each dependency
with the integration platform team, they explained that they were building and

In-store tablet app

In-store tablet app BFF API

Customer search API

Order history API

Data platform

Integration platform

Collaboration

Figure 11.6 The integration platform team
was overloaded with too much collaboration.

https://mastodon.social/@__maxs__

252 CHAPTER 11 Team Topologies
maintaining custom endpoints for each team because the stream-aligned teams
lacked the skills or the budget to do it themselves.

 A high level of coordination was involved, and the integration platform team even
had to maintain the integrations they built for other teams. Ultimately, the integration
platform team was caught in a difficult situation, and they tried to do their best to
make everyone happy. Unfortunately, this amount of coordination exceeded what
they were capable of.

 With the principles and patterns of Team Topologies, we were quickly able to visu-
alize and gain shared agreement on the problem. Everybody agreed that the team
needed to discontinue accepting work that belonged outside of the platform, and it
was clear which existing responsibilities needed to be handed over. While the vision
was clear, it would take a sustained effort to undo some of the previous choices and
embed new ways of thinking throughout the company. To avoid these types of prob-
lems, both managers and team members should always pay close attention to the
team’s cognitive load by making it a regular topic during retrospectives.

11.3 Validating candidate value streams
The Team Topologies principles and patterns covered so far in the chapter are gener-
ally good concepts that modernization leaders should always keep in mind. They are
also effective when validating a candidate value stream: verifying a proposed domain
boundary to see if it makes sense as a team and software boundary and ensuring other
conditions are in place for the team to be effective. To validate a candidate value
stream using Team Topologies concepts, a technique called independent service heuristics
(ISH) (http://mng.bz/7vXV), provided by Team Topologies, can be used. It’s a set of
heuristics that can be used to assess a value stream’s independence and flag any con-
cerns. Other techniques can also be used to validate the organizational aspects of a
value stream, like John Cutler’s mandate levels, which is also covered in this section.

11.3.1 Independent service heuristics

ISH is a checklist of ten heuristics. Each heuristic includes questions and guidance to
help apply it. The checklist is there to ensure the right people have the right conversa-
tions, covering all important aspects of a value stream before investing in changes.
After applying each heuristic to a candidate value stream, you will have a higher level
of confidence that it is suitable, or you will highlight areas of uncertainty and con-
cerns to address with follow-up sessions. This technique is best used collaboratively
with a mix of people representing different perspectives: business leadership, prod-
uct, engineering, etc.

 For each heuristic, you will need to establish satisfaction criteria. I recommend a
simple approach, using thumbs-up, thumbs down, or more investigation needed. This sub-
section covers a selection of the heuristics to give a flavor of what ISH is about and
how it can be used. Remember that when you are applying ISH to assess your candi-
date value streams, it’s important to go through all of the heuristics, and you are free
to use other tools and techniques to complement each heuristic.

http://mng.bz/7vXV

25311.3 Validating candidate value streams
ISH: IMPACT/VALUE

The impact/value ISH is about determining purpose: would the team responsible for
the value stream be motivated by interesting and engaging domain and product chal-
lenges that create value for the business and customer?

 Some questions to ask when discussing this ISH are

 Is the scope big enough to provide impact?
 Would the scope be engaging for talented people?
 Is there sufficient value to the customers and the organization that the value

would clearly be recognized?

Answering yes to these questions indicates a value stream with high impact and value
and a strong sense of team purpose that all stakeholders recognize. A clear thumbs-
up. Answering no to any of the questions is not necessarily a thumbs down. For exam-
ple, realistically, not all areas will be as interesting to work on, like some supporting
and generic subdomains. If you believe some people would be motivated to work in
this value stream, it can still be considered a thumbs-up if that constraint is clear.
Alternatively, refining the domain boundaries or other aspects of the value stream
may be better to provide a higher sense of purpose.

 Any uncertainty around the value provided by a value stream shouldn’t be glossed
over. If you can’t articulate the value it will or could bring, how can you be sure that
you are making a good decision? It is good to follow-up with sessions on techniques
like Wardley Mapping and EventStorming to get a clear picture of the value provided.

ISH: PRODUCT DECISIONS

A growing sentiment in modern product management is that the people building the
product are among the best sources for product ideas. They know how the product
works, follow up on how customers use it, and know what is possible with the
technology.

 The product decisions ISH is there to determine whether a value stream is indepen-
dent enough for teams to discover unmet user needs, determine their own roadmap
to create better products, and ensure the team isn’t just ordered to build what other
people and teams dictate to them. That negatively affects innovation, team motiva-
tion, and flow due to the value stream being subject to external factors.

 When teams own their roadmap, they can make more decisions within the team,
which improves flow and puts decision-making with people closest to the customer.

 Some questions to ask when discussing this ISH are

 Does this thing provide discrete value in a well-defined sphere of execution?
 Can the team define its roadmap based on what they discover is best for the

product and its users, or is the team always driven by the requirements and pri-
orities of other teams?

It’s a warning sign if a team has little or no product-decision autonomy, although the
level of product-decision autonomy can vary for legitimate reasons. For supporting sub-
domain value streams, it can be reasonable to expect that work in core domain value

254 CHAPTER 11 Team Topologies
streams will heavily influence their roadmap and backlog. My main concern is when the
team has little say in the process and is simply told what to build. The supporting sub-
domain team should be involved in the discovery and design process and have the final
decision on any work in their value stream. They should understand why work is import-
ant and want to do it because it is the right thing for the product, not just because they
are being ordered to build something by others outside the team.

ISH: TEAMS (COGNITIVE LOAD)
Cognitive load is a fundamental concept in Team Topologies and is explicitly called
out in the teams ISH. When assessing a candidate value stream, you should consider
everything the team is responsible for to measure their total cognitive load, not just
the particular value stream being assessed.

 Some questions to ask when discussing this ISH are

 Would the cognitive load (breadth of topics/context switching) be bounded to
help the team focus and succeed? Does the team have a defined list of responsi-
bilities, and are they realistically manageable considering the costs of context
switching?

 Would significant infrastructure or other platform abstractions be needed? In
other words, would a lot of the team’s capacity be taken up with infrastructure
work or extraneous work that isn’t connected to their core mission?

These questions touch on the different types of cognitive load a team may face to
ensure their full cognitive load is considered. If either of these questions raises alarm
bells, a number of actions are available, like adjusting domain boundaries, reducing
roadmap expectations, and pushing complexity out of the team into platforms. Team
Topologies also provides a cognitive load assessment questionnaire on its GitHub
page (http://mng.bz/mjBy).

ISH: COST TRACKING

The cost tracking ISH helps identify how easily the costs and ROI of a value stream can
be isolated. The more distinguishable the costs to run a value stream and the value
produced, the more independently the value stream can be treated. When costs and
ROI are hard to distinguish in isolation, there will be investment risks, such as not
understanding if the value stream is delivering an acceptable ROI. It may put the team
under pressure if their contributions are not distinguishable—a common problem for
teams that work on platforms.

 Some questions to ask when discussing this ISH are

 Are the full costs of running this thing transparent or possible to discover? Con-
sider infrastructure costs, data storage costs, data transfer costs, license costs, etc.

 Does the organization track this separately?

In large organizations with internal platforms consumed only by other internal teams,
it’s not always possible to ascertain the precise ROI of a value stream. This isn’t a rea-
son not to proceed with the value stream, but it does need to be fully understood by

http://mng.bz/mjBy

25511.3 Validating candidate value streams
all involved to ensure the team’s work is appreciated and they aren’t negatively
affected further down the line. There are ways to measure the value of internal plat-
forms through metrics and internal customer surveys. The point of this ISH is to
ensure that these things have been thought of in advance so that measures can be put
in place.

ISH: DEPENDENCIES

Too many dependencies on other value streams prevent a value stream from becom-
ing independent and achieving fast flow. It’s always imperative to look beyond the sur-
face for any dependencies that are not obvious but could be problematic. The
dependencies ISH is a first line of defense by bringing together people familiar with dif-
ferent aspects of the value stream. Unexpected dependencies are more likely to be
discovered.

 Some questions to ask when discussing this ISH are

 Is the subdomain logically independent from other subdomains?
 Could the team “self-serve” dependencies in a nonblocking manner from a plat-

form?

As discussed in previous chapters, some dependencies will always exist. This ISH is a
chance to properly discuss which dependencies are acceptable or unavoidable and
which are too expensive and should be removed by reshaping domain boundaries,
allowing duplication to exist, or pushing responsibilities into platforms.

 Talking about dependencies with a diverse group is a great start but often isn’t
enough in isolation. You’ll see in the next chapter how techniques like domain mes-
sage flow modeling can be used to design end-to-end business flows as a software
architecture that uncovers dependencies between subdomains. It’s also a good idea to
look at the product roadmaps and map out which subdomains will need to change for
each initiative.

INDUSTRY EXAMPLE: ISH FOR REGULATED E-COMMERCE
While working with Matthew Skelton and other colleagues to help a North American
e-commerce market leader operating in a regulated industry kick off its moderniza-
tion journey, we used ISH to assess the suitability of a candidate value stream as the
first slice of modernization. After being the market leader in one market for over 10
years, the organization was establishing two new verticals as it became a multiproduct
company. They had been market leaders in the existing vertical for the past decade
and saw only marginal future growth opportunities. The two new verticals presented
significant growth opportunities, one in particular that was earmarked to grow com-
pany revenue by three to five times if executed successfully.

 The organization wanted to explore benefitting from commonality across multiple
verticals to reduce operating costs and improve time-to-market, so the candidate value
stream was a horizontal that would potentially support all three verticals. If successful,
this first slice of modernization would not only deliver direct business value but also
help the company build a playbook for developing other horizontals. They had never

256 CHAPTER 11 Team Topologies
done this before, and there were many question marks around whether it would work
and how it would work within the organization’s unique operating context.

 Figure 11.7 visualizes this challenge as a Wardley Map. Some key questions that
needed to be answered were as follows: Could three verticals at different stages of evo-
lution really be satisfied by a single horizontal? Would there be any clashes or mis-
matches due to the varying characteristics of each vertical? Could the horizontal team
become a bottleneck? And where exactly should the boundaries be drawn between
the verticals and the horizontal, considering there were high levels of product,
domain, software, and operational complexity?

Figure 11.7 Could a single horizontal support three diverse verticals?

Initially, we ran discovery and modeling workshops with techniques like EventStorm-
ing to sketch out domain and technical boundaries. We then applied ISH to under-
stand the organizational implications. From a value proposition perspective,
everything looked good: it was easy to imagine the platform as a completely separate
product. There were discussions that one day maybe it could be externalized.

 From an organizational perspective, however, there were some thumbs down. Most
notably, the team would have no dedicated budget. They would be funded exclusively
by verticals, and their roadmap would be highly constrained to build only what verti-
cals were willing to pay for. The team was not empowered to make product decisions
that they believed were best aligned with the company’s long-term interests. Further,
the existing capability was formed of multiple legacy systems and only had a team of
three engineers working on it, meaning the cognitive load would be far too high.

 You might be surprised to hear that the organization decided to proceed with the
initiative, which reinforces a key point: a red flag doesn’t mean you can’t proceed. It
means you need to be aware of the problem and understand how you will deal with it.
Some problems, especially cultural ones, can take a long time to address, so it’s better

Va
lu

e
ch

ai
n

I
n
v
i
s
i
b
l
e

V
i
s
i
b
l
e

Genesis Custom Product (+rental) Commodity (+utility)

Evolution

Vertical
A

Vertical
B

Vertical
C

Horizontal
?

25711.3 Validating candidate value streams
to get started and chip away at the problem as you go rather than not starting at all.
Being pragmatic is a necessity for architecture modernization, although it shouldn’t
be used as an excuse to avoid addressing the hard problems.

 The most important thing for modernization leaders is that concerns like these are
identified early when there is still time to act on them, and the cost of doing so is cheap-
est. Bringing together diverse stakeholders who each understand different aspects of
the proposed value stream and using ISH as a checklist to structure conversations and
activities is a good approach for covering the organizational aspects of the value stream.

NOTE You can learn more about this case study and ISH in general by check-
ing out a joint talk (https://bit.ly/ms-nt-ish) delivered by Matthew Skelton
and me at the Domain-Driven Design Europe 2022 conference.

11.3.2 Mandate levels

When discussing independent value streams, it’s easy to use words like autonomy and
empowerment ambiguously. John Cutler’s mandate levels (http://mng.bz/5oaZ) is an
excellent technique for assessing the independence of a value stream with a precise
and structured definition of autonomy. It enables you to have clear and productive
conversations covering the nuances of the topic so that you can more deeply assess
your candidate value stream and avoid missing important details.

 There are nine mandate levels, from level A to level I, which can vary from team to
team, as shown in figure 11.8. Each mandate level represents a level of work, starting

I

H

G

F

E

D

C

B

A

Generate [long-term business
outcome]

Directly generate [short-term
business outcome]

Explore various potential leverage
points and run experiments to

influence [specific business outcome]

Increase/decrease [metric] known to
influence a specific business

outcome

Explore the challenges of, and
improve the experience for,

[segment of users/customers]

Solve this [more open-ended
customer problem]

Build something that lets a segment
of customers complete [some task,

activity, goal]

Build exactly this [to a
predetermined specification]

Build something that does [specific
behavior, input-output, interaction]

Team
X

Team
Y Team

Z

Figure 11.8 Different teams may have different mandate levels.

http://mng.bz/5oaZ
https://bit.ly/ms-nt-ish
https://bit.ly/ms-nt-ish

258 CHAPTER 11 Team Topologies
from highly specific to highly general. Level A is the most specific: “Build exactly this
[to a predetermined specification].” A team with only a mandate at level A has
extremely low autonomy because they are told exactly what to build. Many of the deci-
sions affecting their work are made outside of the value stream; therefore, it is not
independent at all. Level I is the most general: “Generate [long-term business out-
come].” A team with this mandate up to level I is, therefore, empowered to make
almost every decision affecting the work they choose to do, so the value stream will be
highly independent.

 There isn’t a specific mandate level that is optimal for all value streams. It’s okay
for different teams to have different levels. However, in most cases, value streams not
going beyond level C (like Team X in figure 11.8) would make me concerned that the
team lacks autonomy, which is likely to affect the product quality and the flow.

 Even when a team has a greater mandate level, there is no guarantee their value
stream will be independent. They are empowered to make decisions, but that doesn’t
prevent dependencies across multiple value streams from arising when a new product
feature requires changes to multiple subdomains. Mandate levels address a key chunk
of autonomy, but it doesn’t tell the whole story of how independent a value stream is.

11.3.3 Good product team/bad product team

Another checklist-like tool for assessing the organizational aspects of a value stream is
Marty Cagan’s list of characteristics that differentiate good and bad product teams
(http://mng.bz/6nQZ). There are 19 criteria in the list. Not every criterion will apply
to all types of teams equally, and it may take time for some organizations to achieve a
level of maturity where any team can meet all of these criteria. But the list does serve
as a general benchmark.

 The following is a small selection of Marty’s criteria. For each of the criteria, dis-
cuss whether it would be achievable in the value stream, and if not, discuss whether
you are happy with the justification or need to make improvements.

 Good teams have a compelling product vision that they pursue with a mission-
ary-like passion. Bad teams are mercenaries.

 Good teams get their inspiration and product ideas from their objectives (e.g.,
objectives and key results), from observing customers’ struggle, from analyzing
the data customers generate from using their products, and from constantly
seeking to apply new technology to solve real problems. Bad teams gather
requirements from sales and customers.

 Good teams have product, design, and engineering sit side-by-side and embrace
the give and take between the functionality, the user experience, and the
enabling technology. Bad teams sit in their respective functional areas and ask
that others make requests for their services in the form of documents and
scheduling meetings.

 Good teams ensure that their engineers have time to try out the discovery pro-
totypes every day so that they can contribute their thoughts on how to make the

http://mng.bz/6nQZ

25911.4 Sensing and evolving team topologies
product better. Bad teams show the prototypes to the engineers during sprint
planning so they can estimate.

 Good teams know that many of their favorite ideas won’t end up working for
customers, and even the ones that could will need several iterations to get to the
point where they provide the desired outcome. Bad teams just build what’s on
the roadmap and are satisfied with meeting dates and ensuring quality.

11.4 Sensing and evolving team topologies
A core theme of Team Topologies is the need to sense and evolve socio-technical
architecture continually. It’s not a linear process that starts with designing an ideal
future state and is then followed by a big reorg. It’s an ongoing process with no end
state. Organizations are always evolving due to internal and external pressures, so
stakeholders at all levels of the org chart need to fully embrace continuous evolution.

11.4.1 Organizational sensing

Organizational sensing is about continuously scanning for clues that the existing team
topology is no longer optimal and will benefit from evolution. The following are
symptoms that the team topology may need to evolve. Keep in mind, though, that
these symptoms could also point to other problems that don’t require changing the
team topology, like team practices or leadership behaviors.

 Too much collaboration—If multiple teams collaborate excessively, it may be due
to excessive coupling in their domain concepts resulting from suboptimal
domain boundaries or simply the wrong interaction mode.

 Excessive context switching—When a team is trying to juggle too many responsibil-
ities, their cognitive load will be overstretched. This could result from poorly
defined boundaries and interaction modes or a sign that their domain(s) has
grown too large for them to manage. It could also result from the business try-
ing to do too much work in parallel.

 Delivery cadence is slowing down—Deploying less frequently is another sign that
the team’s cognitive load has grown too high. This could be due to either their
domain or infrastructure responsibilities growing or the level of cruft in their
code becoming too much.

 High delivery coordination—If business outcomes frequently require coordinating
the work of many teams, team autonomy and flow across the organization are
likely to suffer. This could also indicate boundaries that no longer align well
with changes occurring in the domain.

As you might be aware, the people in the teams doing the work are the people who
are often closest to these types of symptoms and will notice them first. Accordingly,
everybody needs to be aware of the signs of suboptimal topologies and be encouraged
to speak up when they feel these pains. It’s not only the job of managers and architects
to sense and evolve topologies. Many people, however, aren’t aware when they are
feeling pain due to suboptimal topologies, as was the case with the fragrance company

260 CHAPTER 11 Team Topologies
example. This means it’s important to invest in learning opportunities to create a
sensing organization that can constantly evolve rather than requiring large reorgs
every few years.

11.4.2 Industry example: Awkward interactions when becoming multiproduct

I had the chance to work with a smaller logistics company that had successfully estab-
lished a market presence with their first product and was developing a second prod-
uct. Clearly, it was a positive step for the company, but also a source of additional
organizational complexity because the new product depended on the first product. As
shown in figure 11.9, the team responsible for the new product was in genesis mode,
rapidly trying to validate the product idea. However, the existing product team was in
full product mode—they had scaled to a large customer base and needed to balance
stability with adding new features.

Figure 11.9 New product depends on the existing product.

The new product team asked for small tweaks and improvements daily, but the exist-
ing product team didn’t have the confidence or the cognitive load to move at their
pace. Both teams saw each other as a problem, and there was no quick fix to make the
problem disappear. They both had ambitious targets, but the dependency meant one
had to compromise. The team interaction was undoubtedly awkward, which was a sign
that some aspects of the topology may require evolution.

 One option for the logistics company was to evolve its boundaries, like the
e-commerce example, where a platform was extracted from the first vertical and
shared with multiple verticals. But reshaping boundaries and reorganizing teams isn’t
the solution to every awkward problem. These changes can be expensive and even

I
n
v
i
s
i
b
l
e

V
i
s
i
b
l
e

Va
lu

e
ch

ai
n

Genesis

Evolution

Custom built Product (+rental) Commodity (+utility)

Depends on
New

product

Existing
product

26111.4 Sensing and evolving team topologies
exacerbate the situation if the fundamental problems remain. It makes sense to ana-
lyze the situation more closely and look for more fundamental problems.

 The first fundamental concern the logistics company needed to address was the
competitive dynamic between the two teams. Both teams had their own ambitious
goals, but that was pulling them in separate directions when a dependency between
them required closer collaboration. Leadership needed to ensure that the overall pri-
orities were clear and where compromises were acceptable: more risk in the established
product or more speed in the new product. Both teams could then be jointly responsi-
ble and jointly rewarded for collaboratively delivering the optimal overall solution.

 The key takeaway is that overall company priorities should be made clear, and
teams should be rewarded for their contribution, even if that means supporting
another team rather than maximizing their objectives. A common problem I see is
that leadership loads up teams with competing priorities and keeps pressuring all
teams to deliver as much and as quickly as possible, even when there is a strong depen-
dency between them and some compromise is needed.

 There would be no awkwardness in the interaction between the two logistics teams
if the old product could move at the pace required by the new product without risking
the reliability of their product. As discussed earlier in the chapter, when teams are
empowered and incentivized to maintain the health of their code, and they have a you
build it, you run it operating model, moving reliability at speed is definitely achievable,
which could enable both teams to get closer to their ideal outcomes. It pays to invest
in the fundamental capability of continuous delivery.

NOTE As Figure 11.10 shows, Wardley Mapping is a useful tool for anticipat-
ing awkward interactions that may arise. This is a good reminder of why regu-
larly running Wardley Mapping sessions can help you identify these warning
signs early and implement measures to deal with them before they become
too problematic.

11.4.3 Evolutionary patterns

After sensing opportunities, it’s important to evolve topologies most effectively. Know-
ing about various principles and patterns is highly beneficial. Evolution may involve
reshaping boundaries, changing interaction types, or removing interactions. Just
because two teams collaborate at one point in time, it doesn’t mean that they should
collaborate indefinitely. Team Topologies covers some evolutionary patterns, but tech-
nology leaders should be familiar with other great work in this space, especially Heidi
Helfand’s work on dynamic reteaming.

DISCOVER TO ESTABLISH

A common and intentional pattern of topology evolution is discover to establish, as
shown in figure 11.10. This pattern is characterized by teams working closely together
in a novel domain with the collaboration interaction mode, but as certainty increases,
there is less need for collaboration, so the interaction mode becomes XaaS, or some-
times no interaction at all.

262 CHAPTER 11 Team Topologies

Figure 11.10 The discover to establish pattern

Discover to establish is a widespread pattern applied in all types of organizations in all
contexts. It’s a pervasive pattern when organizations embark on a journey to build a
platform.

 When I worked with a financial services organization that kicked off its moderniza-
tion journey by developing its first cloud-based application, the plan was for the first
stream-aligned teams to build their applications, including all of their platform needs,
which would gradually be extracted out of the team’s code and into a dedicated plat-
form. During the initial phase, the platform engineers worked very closely, attending
the teams’ daily standups, for example. They focused on giving the teams all the sup-
port they needed to develop their serverless applications on AWS while simultaneously
preparing for a future where they would own a platform that was used by many teams
across the organization.

 In the initial stages, they were focused heavily on helping the teams achieve their
objectives and not spending too much time trying to create the platform. It was a diffi-
cult balance between short- and medium-term needs, but they got it spot on. Trying to
extract a platform too early risks slowing down the teams delivering the initial slice of
modernization and is likely to result in a platform design based on speculation rather
than actual needs and usage patterns.

DYNAMIC RETEAMING PATTERNS

One of the misconceptions associated with Team Topologies is the idea that long-lived
teams are equal to static teams, where the same people must always be working
together on the same team. This is an oversimplification of a nuanced concept. Long-
lived implies that a team should be stable but not necessarily static. Some flexibility of
team members is more than permitted; it is encouraged to keep things fresh and
adaptable as priorities and constraints shift around. It is even argued that keeping a
team together for too long results in them becoming stale. Heidi Helfand is one of the
leading voices in this area, and her book Dynamic Reteaming (2nd ed.) (http://
mng.bz/orP2) is one of the leading resources. One of Heidi’s catchphrases is, “Team
change is inevitable. So get good at it,” indicating that organizations are constantly
evolving as new people are always joining and leaving.

Collaborate Collaborate

Discover Establish

Step 1: Teams work closely
on a new domain/challenge
with fuzzy boundaries

Step 2: Boundaries start to
emerge so teams can work
more independently

Step 3: Clear boundaries are
established and teams can
work largely independently

XaaS

http://mng.bz/orP2
http://mng.bz/orP2

26311.4 Sensing and evolving team topologies
 Dynamic Reteaming includes several patterns for evolving Team Topologies and the
individual members within a team. The patterns are based on the five reasons that
teams need to change:

 Growth/attrition—Growth is a natural factor in most organizations, like when
startups take on more funding and need to scale to achieve the ambitious vision
of investors. Growth always has a big effect on an organization’s culture.
Equally, scaling down is sometimes necessary, which can also have a big effect.

 New work or priority—A change in strategy or investment in new growth opportu-
nities, like entering new markets, can cause reteaming.

 Knowledge sharing—When there is expertise in one team that can benefit other
teams, it can be a good idea to rotate people around on a temporary or perma-
nent basis to spread the knowledge.

 Stagnation and learning—People’s motivation can drop when their work doesn’t
offer new and interesting challenges, so moving them to other teams to work on
different capabilities and learn new things is a good reason for change.

 Surprise reasons—Unexpected events that require organizational changes, like a
pandemic.

The following is a sample of Heidi’s reteaming patterns and how they relate to these
five reasons for change:

 Grow and split—When teams grow too large, it’s necessary to split the team into
multiple smaller teams. Some signs that a team has grown too large are meet-
ings that last too long, lots of communication within the team that is hard to
keep up with, and subteams forming around distinct objectives.

 Merging—The opposite of grow and split is merging, where multiple teams
come together to form a single team. This is one approach to dealing with
dependencies, like when a dependency between two teams is so strong that it is
more effective to work as a single team.

 Isolation—Sometimes, work needs to happen away from the organization’s cur-
rent culture, like when introducing new approaches. This is the isolation pattern,
establishing teams that are shielded from some aspects of the organization.

 Switching—The switching pattern involves moving a team member from one
team to another to spread knowledge and make work more interesting and var-
ied. This is a great technique for improving retention.

 One by one—As new people join a team, it takes time for them to become famil-
iar with their new teammates and vice versa. The one-by-one pattern proposes
to grow teams by one person at a time so that the team and the individual can
gradually adapt to the change.

I’m a believer in dynamic reteaming. Some of the best experiences in my days as a junior
software engineer were when I switched to different teams for a short period. I learned
a lot by pair programming with so many different people, and it made my work fresh and
exciting. But there is a lot to consider, such as how often to switch and the complexity
of each subdomain. Each person is unique, with their own preferences, so it is best to

264 CHAPTER 11 Team Topologies
experiment carefully and gradually and ensure the people involved are included in the
decision-making process and given a chance to share their feedback.

 When switching is involved, I’m often asked about estimates. Some organizations
use story points to measure team productivity, like the predictability of delivering a
fixed amount of story points per sprint, but this isn’t possible when people move
around and cause their team’s output to be inconsistent. I’ve never worked in teams
that use story points or similar estimation techniques, so I’m unable to answer that
question from experience. My advice is that there are many benefits from applying
dynamic reteaming, and they are too valuable to miss out on, so I recommend experi-
menting with ways to make the estimating technique flexible enough to support these
approaches in your unique context.

INDUSTRY EXAMPLE: MONTHLY SWITCHING AT GROCERY CHAIN

In 2018, I saw an effective use of dynamic reteaming at a large grocery chain in one of
their domains (scope 2), which was composed of four teams, each owning a subdo-
main within the domain. Every month, one person would rotate from each team into
another team (within the domain), as shown in figure 11.11. This way, everybody
would know the whole domain and would be able to contribute to any codebase in the
domain. The arrangement resulted in four teams who thought about work collectively
and built good social relationships as if they were a single team.

Another benefit to this approach was that when anybody left the team, no knowledge
was lost. Due to the monthly rotation and practices like pair programming, knowledge
sharing was extremely high. This was important because the team was approximately
50:50 full-time employees and contractors, resulting in relatively high staff turnover.
Their commitment to knowledge sharing helped to minimize the costs of onboarding
and rolling off team members.

Each month, one
person from each
team switches to
another team in the
domain

Domain X

Subdomain X.1

Team X.1

Subdomain X.2

Team X.2

Subdomain X.4

Team X.4

Subdomain X.3

Team X.3

Figure 11.11 Every month a
developer from each team switched
to another team in the domain.

26511.5 Team grouping patterns
 Overall, my observations were very positive, and I was genuinely impressed. Each team
worked well, and overall, the teams worked well together. People from all four teams
would often go for lunch together, and the teams had regular shared rituals like planning
which had a very positive ambiance. I have since encouraged other organizations to
experiment with this pattern, and I wholeheartedly encourage you to as well.

11.5 Team grouping patterns
Teams that work on related challenges like the same domain, area of a product, or
platform will generally need to have some communication bandwidth in order to
coordinate their work and design the optimal end-to-end solution for customers.
Chapter 9 looked at various heuristics for grouping subdomains into domains as a way
to determine which teams should be grouped together, like group subdomains into prod-
uct-focused domains, group subdomains into horizontal domains, and group subdomains into
process-focused domains.

 When considering how to group teams, it’s also important to think about the skills
within a team. For example, will teams be responsible for both the user interface and
the backend domain logic and data, or will there be separate backend and frontend
teams? There is no globally correct solution here. Some teams enjoy being frontend
and backend specialists and want to continue working that way, and sometimes a back-
end is consumed by multiple frontend applications, so it’s not feasible for them to
own all of the UI.

 When there is a high level of co-change between domain logic and the parts of the
UI that expose those domain concepts, it may be beneficial to have teams that own both
the UI and backend components. A domain will then be composed of multiple teams
that each own the UI and backend for a specific subdomain(s), as shown in figure 11.12.

Figure 11.12 Domain composed of multiple front-back teams

Domain Y

Subdomain Y.1

UI

Team Y.1

API

Subdomain Y.2

UI

Team Y.2

API

Subdomain Y.3

UI

Team Y.3

API

Subdomain Y.4

UI

Team Y.4

API

Domain Y is composed of
4 teams who each own all
of the UI and API code for
a single subdomain.

266 CHAPTER 11 Team Topologies
Alternatively, if the different parts of the UI change together often, it may make sense
to have one frontend team that owns the entire frontend for the domain alongside
multiple backends, as shown in figure 11.13. With this grouping, it may be possible to
have slightly larger subdomains because the backend teams will not be using up some
of their cognitive load dealing with parts of the UI.

A very common pattern is when the frontend and backend are totally separated. Mul-
tiple teams who each own a part of a frontend will be grouped together—such as the
web team and the mobile team. Domain groups are then composed of teams who own
backend logic only for their subdomains, as shown in figure 11.14.

Figure 11.14 Dedicated frontend and backend groups

Domain F

Domain F is composed of
4 teams who each own either
frontend or backend code.

Subdomain F.2

Team F.2

API

Subdomain F.3

Team F.3

API

Subdomain F.1

Team F.1

API

Team F.F (frontend team) UI

Figure 11.13 Domain composed of
dedicated frontend and backend teams

Frontend
teams

Backend
teams

Web group

Team W1 Team W2 Team Wn Team M1 Team M2 Team Mn

Mobile group

Domain A

Team A1

Team A2

Team An

Domain B

Team B1

Team B2

Team Bn

Domain C

Team C1

Team C2

Team Cn

267Summary
With this pattern, all of the people working on the frontend sit together so they can
optimize the end-to-user experience and make it more consistent. However, the dis-
tance between frontend and backend teams is greater, which often blocks flow
because collaboration between the teams is less fluid.

 In my experience, all of these patterns are common, and there are many nuanced
variations of them, too. There is definitely no perfect solution. While some domains
and products are more suited to some patterns, it’s also a very personal choice based
on people’s career aspirations and how they prefer to work. Remember, the purpose is
to find the optimal balance of BVSSH (Better Value Sooner Safer Happier). But I will
say that I have seen situations where people were reluctant to let go of a frontend/
backend split (they wanted to remain silos) even though it resulted in too many
dependencies and poor communication. Personal choice doesn’t overrule other fac-
tors; reducing dependencies and improving flow is equally important.

 While each of the patterns will likely involve some form of dependencies between
teams, each team should still have the autonomy to deploy their technical artifacts in
isolation—for example, a frontend team should be able to deploy the frontend inde-
pendently of backend APIs and vice versa. This is achieved by designing loosely cou-
pled architectural subsystems with contract coupling (covered in the next chapter).
These can still be considered independent value streams if they represent the optimal
socio-technical architecture with the least coupling pain.

NOTE The topic of dedicated frontend and backend teams versus full-stack
teams has been hotly debated for a long time. There are many pros and cons
on either side. If this is something that feels relevant to you, it’s definitely
worth digging deeper into the topic and getting more opinions. A conversa-
tion on LinkedIn started by Yan Cui provides a variety of perspectives (http://
mng.bz/n1Pe).

Summary
 Jointly optimizing organization and software architecture is necessary to

achieve fast flow.
 Poorly aligned team and software boundaries can result in shared resources,

like teams working in the same parts of the code, which causes more expensive
and riskier changes.

 Team Topologies is a socio-technical toolkit for organizing teams around inde-
pendent value streams with fast flow.

 Fast flow should be sustainable, meaning it can be continued over many years.
This requires an investment in technical practices and a good engineering
culture.

 Teams should generally contain five to nine people to enable a high level of
trust and avoid information overload.

 Teams should be long-lived so that they can become experts within their subdo-
main, contribute new product ideas, and are incentivized to work sustainably
and keep code healthy.

http://mng.bz/n1Pe
http://mng.bz/n1Pe

268 CHAPTER 11 Team Topologies
 Software developers should not be seen as resources that are partially allocated
to multiple streams of work. This has high context switching and doesn’t create
conditions for people to do their best work.

 Standardized processes and ways of working stifle teams and prevent continu-
ous improvement.

 Team Topologies encourages a team-first approach, where the team decides
who will work on each task and how they will work.

 You build it, you run it is an approach where teams are responsible for supporting
their code in production. It can improve flow by reducing handovers and incen-
tivizing teams to build more reliable software.

 Team cognitive load needs to be carefully managed. When cognitive load is too
high, a team’s velocity and quality can drop, and there is a risk of burnout.

 Good domain boundaries minimize cognitive load by reducing the scope of a
team’s responsibilities to a manageable level.

 Overlaying team boundaries onto a Core Domain Chart can indicate where
cognitive load may be too high, like a team responsible for multiple highly com-
plex subdomains.

 There are three types of cognitive load in the model used by Team Topologies:
– Intrinsic—The inherent difficulty of a task
– Extraneous—Additional complexity added by the environment
– Germane—The effort to learn a concept

 Conway’s law implies that the communication structures in an organization will
influence the design of a software architecture.

 Implications of Conway’s law are ubiquitous, and the concept should always be
kept in mind when architecting systems.

 There are four team types in Team Topologies:
– Stream-aligned teams—Own a stream of work that contributes to the product
– Platform groupings—A group of teams owing shared capabilities that empower

stream-aligned teams and reduce their cognitive load
– Complicated subsystem teams—Own a complex part of the system that requires

specialist knowledge
– Enabling teams—Support the growth of other teams

 Three interaction modes exist in Team Topologies:
– Collaborating—Two teams working toward a shared goal
– X-as-a-service—One team consumes the capabilities of another
– Facilitating—One team helps another

 Collaboration has a high-cognitive load, so it should be applied carefully. More
collaboration is not always a good thing.

 The Team Topologies patterns alone will have little benefit if they are not
applied in combination with the principles.

269Summary
 Independent service heuristics is a checklist of heuristics that can be used to
assess the level of independence of a candidate or existing value stream.

 There are 10 ISH heuristics covering value, product decisions, dependencies,
and more.

 ISH should serve to structure conversation for a diverse group of stakeholders,
not as a tick-box exercise for a lone architect-type person.

 John Cutler’s mandate levels consist of a structured model of a team’s auton-
omy over their work and can be used to assess the independence of a value
stream.

 Team Topologies are in a constant state of flux because organizations are always
evolving.

 Teams should continually be sensing awkward interactions and signs that the
topology should evolve, like excessive collaboration or a reduction in delivery
cadence.

 Discover to establish is a pattern that starts with two teams working closely using
collaboration mode and then gradually drifting apart to XaaS as boundaries
and responsibilities become clearer.

 Dynamic reteaming is a series of principles and patterns documented by Heidi
Helfand that concern the fluidity of teams and Team Topologies.

 Dynamic reteaming defines five reasons for reteaming: growth/attrition, new
work or priorities, knowledge sharing, stagnation and learning, and surprise
reasons.

 There are five patterns for reteaming: grow and split, merging, isolation, switch-
ing, and one by one.

 The principles and patterns of Team Topologies and dynamic reteaming also
exist at the group level.

 Teams can be grouped into different topologies, such as dedicated frontend
and backend teams or groups of teams that are responsible for both the fron-
tend and backend parts of a subdomain.

 Choosing the appropriate grouping of teams involves analyzing the product,
domain, organization, and preferences of the people involved.

Loosely coupled
software architecture
Achieving independent value streams in software development requires a loosely
coupled software architecture. Loose coupling in the software means lower change
coupling across value streams, resulting in few organizational dependencies that
affect flow. For some leaders, grasping the importance of loosely coupled architec-
ture takes time. But there are no quick fixes to address the technical requirements
of fast flow; doing the hard work of confronting the legacy systems cannot be avoided.

 The first step to a loosely coupled software architecture is grasping a deeper
understanding of loose coupling. Even engineers can struggle with this somewhat
nebulous idea, as there are no established standards for describing coupling in

This chapter covers
 Minimizing coupling in software architecture

 Designing software architecture aligned to the domain

 Validating the design of individual subsystems

 Determining the optimal level of modernization for
each subsystem

 Migrating subsystems from the current to the target
state
270

271CHAPTER 1 Loosely coupled software architecture
software. However, there have been attempts to develop models for describing cou-
pling. This chapter introduces Vlad Khononov’s modern approach.

 Designing a loosely coupled software architecture involves aligning software sub-
systems with the target subdomains. Feedback from the design and implementation of
the software may also flow in the opposite direction, prompting refinement of the
domain boundaries and team structure. This chapter presents various techniques for
designing software architecture driven by the domain.

Modernization involves more than just designing a target state for each subsystem. It
also requires determining the extent to which each subsystem should be modernized
and devising a strategy for migrating from the current to the target state—a task that is
often considered to be the most challenging. A thorough understanding of the com-
plexity of the current state is critical to determining the optimal modernization return
on investment (ROI) and migration approach for each subsystem. This chapter pro-
vides guidance and recommended resources for navigating this intricate aspect of
modernization (see figure 12.1).

Subsystems
This chapter uses the term subsystem to refer to a part of software architecture. A sub-
system could be a microservice, a module in a monolith, or possibly something else.

Most concepts in the chapter apply similarly to both forms unless stated otherwise.
The ideal scenario is for subsystems to be aligned to optimal subdomains, but this
will not always be the case when referring to subsystems in a legacy system.

This chapter

Candidate
business

subdomain

Strategy

Organization

Tech

Validate candidate
value stream

Target value
stream

Candidate
value stream

Refine

Validated

Figure 12.1 This chapter
covers the software
architecture aspect of
independent value streams.

272 CHAPTER 12 Loosely coupled software architecture
The next chapter delves into another technical aspect of modernization, internal devel-
oper platforms, which are also vital to flow by enabling teams to make changes to the
architecture frequently and rapidly.

12.1 Coupling types and strength
Designing a loosely coupled software architecture requires careful consideration of
trade-offs. A thorough understanding of the different types of coupling and their
intricacies is crucial in making informed architectural decisions. Although various
approaches have been proposed over the years for describing the different types of
coupling in software systems, none have gained widespread acceptance.

 Fortunately, Vlad Khononov, an experienced architect, has conducted extensive
research on the classical approaches and developed a modern classification that
builds upon previous works while adapting them to contemporary settings. Vlad iden-
tifies four types of coupling, arranged according to integration strength, which indicates
the degree to which one component knows about another.

Figure 12.2 illustrates the types of coupling in order of increasing integration strength,
with stronger coupling leading to a higher likelihood of cascading changes and, there-
fore, changes are riskier.

Figure 12.2 Vlad Khononov’s coupling types

Knowing about other components
Vlad uses the terminology knows about to describe the level of coupling between two
components. This is more of a metaphor rather than implying a component is able to
think and reason. It represents how much information about one component can be
found inside the other component.

For instance, if you look inside the codebase for component A, what can you learn
about component B—its public interface, database persistence format, private meth-
ods, etc.? Because component A knows those things, it might break if they are
changed in component B.

Integration strength
(how much one
component knows
about another)

Intrusive coupling

Functional coupling

Model coupling

Contract coupling

Implementation details are
known by other components

Business rules and domain logic
are known by other components

Domain model concepts are
known by other components

Only the explicitly defined interface
is known by other components

Weakest coupling

Strongest coupling

27312.1 Coupling types and strength
In Vlad’s model, the strongest form of coupling is intrusive coupling. As shown in figure
12.3, this type of coupling is where one component knows potentially everything
about the other, making every change risky.

In concrete terms, intrusive coupling takes various forms, like accessing private meth-
ods via reflection and directly accessing persisted state or shared code. An extreme
example of shared code is the god class, a large class in the software that combines and
tightly couples disparate logic from multiple subdomains.

 Unencapsulated persistence is a common form of intrusive coupling at an archi-
tectural level. A subsystem can easily break other subsystems unknowingly just by
changing the format in which its state is persisted.

What is a component?
In Vlad’s model, the word component is used in the general sense to mean a part of
a software system. It could refer to a function, a class, a microservice, or even an
entire system. It depends on your level of analysis (e.g., analyzing a system of micro-
services versus analysis classes in the same code module).

In other contexts, the word component has more specific definitions. In this chapter,
components are architectural subsystems like microservices or modules in a
monolith.

State
persistence

Component A Component B

Component A has intimate knowledge of the inner workings
of component B including it’s persistence. Any change to
component B could break component A.

State
persistence

Component A directly accesses the persisted
state of component B and thus is tightly
coupled to the schema.

Figure 12.3 Intrusive
coupling increases the
risk of change.

274 CHAPTER 12 Loosely coupled software architecture
Functional coupling is weaker and less fragile than intrusive coupling, although it can still
be highly problematic. It’s where components need to change together even though
there isn’t a visible connection like an API call or shared code. A common manifesta-
tion is the same business rules duplicated in different components needing to be
updated at the same time. I worked on one system where different user interfaces were
showing different prices. It turned out that the logic for calculating prices and dis-
counts had been duplicated in three or four components (one of those places was
JavaScript embedded in HTML). When the developers made changes to introduce spe-
cial discount pricing, they weren’t aware that it had to be changed in all of those places.

 Model coupling is a weaker form of coupling, but the consequences can still be sig-
nificant under certain conditions. This form of coupling arises when one component
is aware of the domain model of another, like the names of concepts, their structure,
and the relationships between them. At Salesforce, for example, the domain model of
an advertising subsystem was copied from Facebook’s marketing API. Initially, this
decision was beneficial, as it facilitated optimal time-to-market.

 Looking at the Salesforce code and understanding how it is related to Facebook
was easy. However, over time, Facebook introduced new versions of its marketing API
with completely revised domain models. As a result, the Salesforce domain model
failed to keep pace with these changes, resulting in difficulties in understanding how
the Salesforce code correlated with the Facebook domain model. This situation made
learning the codebase and making changes more challenging and time-consuming.

 Contract coupling is the weakest form of coupling (other than no coupling). This
form of coupling relies on two components integrating via explicitly defined inter-
faces with no knowledge of anything that sits behind the interface. Contract coupling
is the sensible default when designing loosely coupled subsystems, whether microser-
vices or modules in a monolith. With this form of coupling, anything internal to the
subsystem behind its interface can be changed more confidently and rapidly. As long
as the contract is not broken, the change is safe, as shown in figure 12.4.

Figure 12.4 Contract coupling is the weakest form of coupling, resulting in safer changes.

Component A Component B

A
P
I

A
P
I

Component A only has
knowledge of component
B’s explicitly defined
interface.

Changes can be made safely
to the internals and persistence
of component B.

State
persistence

State
persistenceComponent A calling

component B’s API

27512.1 Coupling types and strength
While internal changes are generally low risk and faster to implement, changes to the
contract of a subsystem need to be performed much more carefully. Versioning may
even be necessary. As a result, it’s critical to design interfaces studiously. Anything
exposed via the contract has a higher cost of change than internal details, so good
design only exposes what is required to avoid unnecessary coupling. The techniques
in the remainder of the chapter cover this in more detail.

 The forms of coupling aren’t exclusive. Two components might, for example, be
coupled via an explicit interface yet still have functional coupling as well. If making an
assessment, such as determining how much investment is needed to modernize (cov-
ered later in the chapter), the safe option is to specify the strongest form of coupling
to avoid underestimating the effort and risk involved.

 As introduced in chapter 9, Vlad’s model for assessing the coupling between two
parts is Pain = Strength * Volatility * Distance. When two concepts are coupled but have
low volatility due to rarely changing together, the overall pain of the coupling is likely
to be low, even if the two parts have intrusive coupling. Remember that volatility is not
just how often things changed in the past, it is how often they could change in the
future, so understanding the product direction is essential for determining volatility.

 Distance represents the level of socio-technical coordination required to imple-
ment a change. Chapter 9 touched on the social aspect with the example of a greater
distance between teams who report to different managers and are located in different
offices. Technically, distance starts with lines of code. Two variables in a 10-line func-
tion have a very low distance. Two classes in the same codebase is a greater distance,
whereas two classes in separate microservices would be an even greater distance,
potentially being in separate codebases and integrating over the network at runtime.
A change at this distance could require coordinated changes and deployments in two
codebases involving two teams, much greater coordination than a single team chang-
ing a few lines of code in a single function.

NOTE This chapter touches on some of the key concepts in Vlad’s work on
coupling and complexity. However, Vlad’s work goes much deeper. You can
learn more in his book Balancing Coupling in Software Design: Successful Software
Architecture in General and Distributed Systems (Addison-Wesley Signature Series
[Vernon]).

12.1.1 Local versus global complexity

When architecting a system, it’s important to be aware of the effect of size on cou-
pling. In the early microservice days, it wasn’t uncommon to hear cliches like “Every
microservice should be 100 lines of code or fewer. Then they are straightforward to
understand and change and can even be thrown away and rewritten easily.” While
there is some truth to the idea that smaller means simpler, it’s only half the story. For
this reason, Vlad also articulates the importance of balancing local complexity and
global complexity (http://mng.bz/Xq0E).

 Limiting the size of a microservice to 100 lines of code will make the microservice
simpler and easier to understand compared to a 10k lines of code microservice.

http://mng.bz/Xq0E

276 CHAPTER 12 Loosely coupled software architecture
However, the logic and complexity of those other 9.9k lines don’t just magically disap-
pear. They’re just somewhere else—possibly spread across hundreds of microservices.
This means that the system as a whole is more complex. In other words, the global com-
plexity is higher due to more interactions between each microservice, as shown in fig-
ure 12.5. Furthermore, because each microservice communicates over the network, the
complexity could be far more expensive than a single monolithic application (the net-
work increases the distance, which increases pain through the lens of Vlad’s model).

Finding the perfect balance between local and global complexity is hard to achieve in
constantly evolving systems. The best mindset is to ensure all engineers and architects
working on the system understand the different types of coupling and complexity and
their trade-offs. This will ensure they make good design decisions and can spot when a
design has drifted too far from the optimal. The techniques in the following sections
are useful for exploring different aspects of architectural design and finding the opti-
mal balance.

12.2 Modeling architectural flows
One of the best ways to identify coupling in an architecture design is to map out flows.
These are sequences of interactions between multiple subsystems collaborating as part
of an end-to-end use case or process. The interactions between subsystems are cou-
pling. Once the coupling has been visualized, you can assess it and explore alternative
designs that may have lower or less harmful coupling.

12.2.1 Model exploration whirlpool

My recommendation for effectively navigating the design process is Eric Evans’s
model, exploration whirlpool (https://www.domainlanguage.com/ddd/whirlpool/)
—a valuable tool for uncovering coupling in a design by continuously challenging it
with concrete scenarios. This iterative design process—which can be applied at
different scopes, from designing the domain model of an individual subdomain to
architecting the model of multiple subdomains interacting to fulfill an end-to-end
flow—emphasizes the importance of working through concrete scenarios, as shown in
figure 12.6.

Lower local complexity,
higher global complexity

Higher local complexity,
lower global complexity

Figure 12.5 Balancing
local and global complexity

https://www.domainlanguage.com/ddd/whirlpool/

27712.2 Modeling architectural flows
Figure 12.6 The model exploration whirlpool

By repeatedly working through concrete scenarios, key details are less likely to be
missed, which is a common risk when staying high-level and abstract. In fact, the whirl-
pool encourages going even deeper into the details where necessary by creating code
spikes to verify that the conceptual model will be effective when implemented.

 To implement the various steps of the whirlpool, you can use whichever techniques
you feel are most relevant in your context. In the next section, we’ll explore how big pic-
ture EventStorming can be used as a source for the reference scenarios, while Domain
Message Flow Modeling can be utilized to model the architectural flows aligned to the
domain. Additionally, later in the chapter, we’ll see how software design EventStorming
can be used to go a level deeper, fulfilling a similar purpose to a code probe.

12.2.2 Domain Message Flow Modeling

Domain Message Flow Modeling (http://mng.bz/yZre) is one technique for design-
ing and visualizing high-level domain flows involving multiple subdomains. As a result,
it can be used to design or uncover the coupling between the architectural subsystems
that represent each subdomain. This technique makes it easy to explore and iterate
on architectural models.

Harvest &
document

http://mng.bz/yZre

278 CHAPTER 12 Loosely coupled software architecture
NOTE You can find interactive and full-color versions of all the diagrams in
this chapter on the book’s Miro board (http://mng.bz/amwX) along with
links to all of the techniques mentioned.

The recommended notation for Domain Message Flow Modeling, illustrated in figure
12.7, is centered around the domain while also aligning closely with the implementa-
tion. As a result, it enables the architecture to be designed based on domain-specific
vocabulary while also providing a reasonable assurance that a well-designed system on
paper will translate into an effective architecture in reality.

Observing the whirlpool, we must first collect reference scenarios. Figure 12.8 shows a
scenario extracted from a big picture EventStorming session. This is a simplified, the-
oretical example of an online car dealership. The scenario is Winning a Car at an Auc-
tion. Figure 12.8 shows the first seven domain events of the scenario, which begin with
the acquisition crew inspecting a car and end with the system recommending that the
car be purchased.

Figure 12.8 Extracting scenarios from big picture EventStorming

Actor/user/
persona

Subdomain/
subsystem

Direction of message
from producer to consumer

External/3rd party
system

(green) Query

(blue) Command

(orange) Domain eventApp

Website/
desktop UI

- data
- data
- data

Message contents Figure 12.7 Basic notation for
Domain Message Flow Modeling

Inspection
plan checks
carried out

Images
uploaded •••

Inspection
results
entered

Electronic
vehicle

diagnostics
uploaded

Purchase strongly
recommended
(reason: large

profit margin, low
reliability risk)

Purchase
advice

generated

Began
inspecting

car

Acqui-
sition
crew

http://mng.bz/amwX

27912.2 Modeling architectural flows
I prefer to model message flows step by step. I walk through each domain event in
order and design the part of the architecture needed to enable the event to happen.
However, before getting started, there is a crucial modeling principle to understand:
strive to create a design that best fits the business needs rather than trying to model
the real world too closely. In simple terms, the architecture doesn’t need to be a 1:1
mapping of your EventStorm (e.g., figure 12.8) or other domain artifact.

 So, let’s get started and see what this
looks like in practice. The first event in
the scenario is Began Inspecting Car.
Let’s imagine we ask the domain
experts to walk us through this step
again, and they respond, “A member of
the acquisition crew will look at the
inspection details on the iPad screen,
like checking the paint for scratches,
and start inspecting the car.” If we try
to boil this down to the simplest possi-
ble solution, all the software must do is
show the inspection details on the iPad
screen. Figure 12.9 shows that one way
this can be modeled is with a query,
Get Inspection Details, from the iPad
app to an inspections subsystem.

 You may have noticed that we don’t
actually have a Began Inspecting Car
event in the model. That’s because it seems like no requirement depends on this
being tracked in the software. But it’s good to verify with domain experts by testing
various requirements that may not have been considered:

 Us: What if two people look at the inspection details at the same time, and they
both try to inspect the same car?

 DEs: Realistically, that will never happen because people know what jobs they have
been assigned to well before the inspection, and we never have more than one team
attending the same auction anyway.

 Us: How about the time the inspection took place? Wouldn’t you like to keep track
of this information?

 DEs: We only need to know what day it occurs, and we already have access to this.
The exact hour and minute isn’t something that could help us in any way.

Based on this conversation, it seems that the system does not need to track when an
inspection begins. While it is a domain event that happens in the physical world, it’s
not needed in the software model (yet). So, we can proceed with the current model
that uses only a query.

Acquisition crew
(using acquisition

crew app)

Inspections

1. Get inspection
details

- Inspection ID

Figure 12.9 Step 1: showing inspection details

280 CHAPTER 12 Loosely coupled software architecture
Returning to the scenario in figure 12.8, we encounter the next event, Inspection Plan
Checks Carried Out. Imagine that the dialogue plays out as follows between us and
the domain experts:

 Us: Can you talk us through this step again?
 DEs: This is where the acquisition crew has looked at the inspections on the iPad

screen and carried them all out, like checking the bodywork for scratches.
 Us: How can the app help in this scenario? How should it process the results of the

inspections?
 DEs: Well, our only objective at that moment is to generate the purchase advice.

But the inspection results alone aren’t sufficient. We need the images and vehicle
diagnostics as well. So, the inspection results alone provide no value.

 Us: So what would you call that moment when those three bits of information have
all been gathered, and you can generate the purchase advice with them?

 DEs: We don’t really have a word to describe that. But effectively, that’s when the
inspection is finished. Let’s refer to it as Inspection Completed.

So, with this information, how would you evolve the design in figure 12.9? You can see
my solution in figure 12.10. I’ve again tried implementing the known requirements
with the simplest possible solution. A single command, Complete Inspection, takes all
the information needed to generate the purchase advice. I could have had one com-
mand representing each step (inspection results, images, vehicle diagnostics), but

Good modelers challenge
We’re already starting to see a key dynamic in healthy modeling: challenging the
requirements. Good modelers don’t just accept requirements at face value. In this
example, we checked for new requirements that might improve the product or be
needed in the future. It can also work the other way, trying to simplify, remove, or
refine requirements to simplify the architecture.

The insights that emerge could significantly affect how you architect the system. Uncov-
ering them earlier (e.g., in these design sessions) means you won’t be in the position
later on where you need to evolve an architecture that has been built around the wrong
assumptions (e.g., realizing you do need to track when an inspection begins even
though you built an architecture that assumes this will never be necessary).

Refining the domain during design
Notice here how we’ve defined a new domain concept, Inspection Completed, that
wasn’t uncovered during EventStorming. This is an important takeaway: when design-
ing a model, you can still change or refine the domain.

Like with requirements, it’s not a one-way street. Trying to architect a system throws
up new insights and perspectives that make you think more deeply and differently
about the domain, leading to new ideas for improving the domain or how you reason
about it.

28112.2 Modeling architectural flows
there was no requirement to do so. The requirements from the domain experts
implied it was all or nothing, so there was no need for the inspections subsystem to
keep track of incomplete information. There may be technical reasons why this solu-
tion won’t work, so we could stop and create a code probe to verify, but for now we’ll
continue modeling this scenario.

 After the inspection is completed, the system has all of the information needed to
generate the purchase advice, which is the next event in the scenario. How would you
evolve the model to implement this functionality?

 Generating purchase advice doesn’t sound like a responsibility that belongs to
inspections. We could broaden the scope of inspections and rename it accordingly, or we
could introduce another subsystem that deals with generating the purchase advice.
The two responsibilities feel substantially different, so let’s go with the latter and intro-
duce a second subsystem called purchasing advice, which is a term the domain experts
use to describe the general capability.

Uncovering and refining domain boundaries during design
A new subdomain, purchasing advice, has just entered the picture. This is a good
example of the iterative and evolutionary nature of defining domain boundaries.

Not all subdomains will necessarily emerge in discovery sessions like EventStorming.
As you begin to architect the system, you may uncover new edge cases and require-
ments. In turn, these may trigger you to define new subdomains or evolve existing
ones. Even as you start to implement the software, new insights may cause you to
rethink domain boundaries. They’re never really fixed.

Is there any benefit to doing
each step separately?
If not, keep it simple

Inspections

Acquisition crew
(using acquisition

crew app)

1. Get inspection
details

- Inspection ID

2. Complete
inspection

- Inspection ID
- Results
- Images
- Diagnostics

Figure 12.10 Step 2:
completing the inspection

282 CHAPTER 12 Loosely coupled software architecture
Following this design direction with the new purchasing advice subsystem, we now have
to determine how the new subsystem will know when to generate the purchase advice
and how it will get the information from inspections. The inspections subsystem could
publish an event, or it could invoke a command. Figure 12.11 shows an updated
model with the two possible choices for step 3.

Figure 12.11 Step 3: initiating the generation of purchase advice

This discussion highlights a fundamental design concept, decision coupling. With a
command, the sender decides what happens next. In this case, inspections would initi-
ate the next step of the process by telling purchasing advice to Generate Advice. With
an event, it’s the recipient who decides. In this case, inspections would simply
announce Inspection Completed, and then purchasing advice, after consuming the
event, would decide that it is going to generate the purchase advice. So which is best,
and how do we decide?

 It’s always good to play around with both options and see how each option affects
the overall complexity. One benefit of events is that whenever a new subsystem needs
to know about the event, the publisher of the event doesn’t have to change. Let’s

Inspections

We could use any
message type here.
What are the
trade-offs?

Purchasing
advice

Acquisition crew
(using acquisition

crew app)

Is there any benefit
to doing each step
separately? If not,
keep it simple.

1. Get inspection
details

- Inspection ID

2. Complete
inspection

- Inspection ID
- Results
- Images
- Diagnostics

3. Generate
advice

3. Inspection
completed

28312.2 Modeling architectural flows
assume that in this example, other subsystems need to know when an inspection is
completed and there will be more in the future, so we’ll model this step with the
Inspection Completed event rather than a command.

 The next step is for purchasing advice to generate the purchase advice. The refer-
ence scenario (figure 12.8) shows three parts to the advice—a profit margin element,
a risk element, and the overall recommendation. Should purchasing advice be
responsible for all three of those responsibilities, or would it be better to have multi-
ple subsystems? Figure 12.12 shows the option where profit margin calculation and risk
calculation subsystems are introduced.

Figure 12.12 Steps 4–6: Generating the purchase advice

As always, there are multiple ways to model the communication between subsystems.
Figure 12.12 explores the possibility of two queries (steps 4 and 5). After receiving
both responses, purchasing advice will combine all the information and make an overall
assessment (step 6).

 But are queries a good choice here? Typically, queries are synchronous, meaning
the caller waits for a response before continuing. If it takes more than a few seconds
for profit margin calculation to produce a response, an asynchronous workflow involving
events may be better for scalability and performance reasons. Synchronous communi-
cation is usually more fragile, too. If the profit margin calculation or risk calculation

Purchasing
advice

Profit margin
calculation

Risk
calculation

Do these need to be
separate subsystems?
Could they be part of
purchasing advice to
reduce global
complexity?

Notifications

How long will this take?
Will it be a performance
or scalability problem
to wait for a response?

6. Purchase
recommended

4. Get profit
margin

assessment

5. Get risk
score

284 CHAPTER 12 Loosely coupled software architecture
subsystems are experiencing downtime, purchasing advice cannot perform its role.
Its uptime would be coupled with their uptime. This highlights a design subtlety:
the design should be driven by the domain, but technical factors must be considered
as well.

 The decision to introduce two new subdomains in the previous step (figure 12.12)
was somewhat arbitrary. My default is to start by going too granular to provoke deeper
conversations about boundaries. But what if this is too granular and would result in a
distributed big ball of mud? How do we get the granularity just right? By following the
whirlpool: explore more scenarios to uncover more coupling and complexity at this
level or get deeper into the details with a code probe (or another technique, such as
software design EventStorming [covered later in the chapter], which is a step closer to
code but still visual and collaborative and enables rapid experimentation).

 This example finishes here, but why not continue your learning by taking a
moment to try the technique yourself. You could model some flows from your domain
or continue my car dealership example. There is more information on the book’s
Miro board. If you prefer to learn the technique collaboratively, why not instead
schedule a 2-hour session with your colleagues for some time in the next few weeks?

12.2.3 Industry example: Modernizing an accounting system

Maxime is a consultant who specializes in DDD. He works with clients in various indus-
tries to map out domains, define boundaries, and implement domain models in code.
One of his clients maintains a portfolio of products aimed at farmers, cultivators, and
wine growers. They wanted to modernize their product offerings by moving from
desktop-based rich clients to a SaaS model. Such a change required an extensive mod-
ernization of their fragile old systems. There wasn’t an easy lift-and-shift approach,
and even if there was, they needed the ability to innovate quickly, which required a
faster flow of changes than the current architecture could allow.

NOTE This industry example was coauthored with Maxime Sanglan-Charlier.
Max has extensive experience with domain-driven design, architecture, and
modern engineering practices. He is one of the most skilled facilitators I have
worked with.

The company chose their accounting domain as the starting point for their modern-
ization journey, and they hired Max to help them. Within the accounting domain, the
fixed asset subdomain had been identified as the optimal starting point. So they
began with big picture EventStorming sessions facilitated by Max. It helped all the
stakeholders align on the same level of understanding and decide the best area to
focus on for an MVP, and crucially, what could be descoped from the MVP to reduce
the time-to-market. The group also started paying extra attention to their domain ter-
minology and building their shared language.

 An output from the EventStorming sessions was candidate subdomains. However,
as an experienced domain modeler, Max knew that further modeling was needed:
“The outcome of Big Picture Event Storming sessions was a perfect starting point to

28512.2 Modeling architectural flows
identify boundaries in the domain. Using a set of design heuristics, we quickly drew
boundaries and started shaping the future architecture. But you should never con-
sider those boundaries as the final ones! You need to refine them to gain more confi-
dence.” So Maxime organized some domain message flow modeling workshops:
“That’s where Domain Message Flow Modelling came in handy! This tool helped us to
refine the boundaries by testing them against real use cases from our domain.”

 Figure 12.13 shows the message flow of the depreciation–fixed assets sales sce-
nario. This was the first scenario involving the fixed asset subdomain that the group
modeled. It involved three other subdomains and 10 messages.

Figure 12.13 First iteration with fine-grained boundaries

Scenario: Depreciation - Fixed assets sales

Sales

Fixed asset

Depreciation
calculation

Financial
reporting

Bookkeeper

Accountant

Revaluation
calculation

9. Get sale
data

6. Get
complementary

data

10. Get data
for reporting

5. Depreciation
computed

1. Sale a
fixed asset

2. Compute
revaluation

8. Record
in ledger

7. Update
revaluation

4. Compute
depreciation

3. Revaluation
computed

Legacy
accounting
platform

286 CHAPTER 12 Loosely coupled software architecture
Modeling the first scenario proved an important moment for the group: “Visual Col-
laboration Tools are powerful: just looking at this diagram, people realized that too
many messages were sent to fulfill a quite common and simple scenario. This trig-
gered a lot of interesting discussions, and one of the outcomes was that in the real
world, the revaluation and the sale would always go together. So we decided to give it a
try, and we joined them both into a single subdomain.” This is shown in figure 12.14.

Figure 12.14 Second iteration with revaluation and sales together

Diagram messiness
Note that the diagrams in this example have been tidied and polished for physical
book format. In reality, they were much messier and more organic. When using
Domain Message Flow Modeling, or any technique to design, explore and refine

Scenario: Depreciation - Fixed assets sales

Sales/revaluation

Sales

Bookkeeper

9. Get sale
data

8. Record
in ledger

Legacy
accounting
platform

Accountant

1. Sale a
fixed asset

Depreciation
calculation

5. Depreciation
computed

4. Compute
depreciation

2. Compute
revaluation

3. Revaluation
computed

Fixed asset

7. Update
revaluation

Financial
reporting

10. Get data
for reporting

6. Get
complementary

data
Revaluation
calculation

28712.2 Modeling architectural flows
As with most modeling endeavors, one improvement unlocked new insights to refine
the model further: “People agreed that it was better like that, but then someone said
that the Sale was actually a behavior of the fixed asset subdomain and that revaluation
and depreciation were both computing behaviors. So a third iteration popped up where
we decided to put the sale as a responsibility of fixed asset, and we created a dedicated
boundary for computing tasks.” Figure 12.15 shows the group’s third iteration.

Figure 12.15 Third iteration with fixed asset and computing

models, don’t get distracted by creating pretty diagrams and instead allow yourself
to focus on modeling.

Messy diagrams are completely fine, akin to sketching out ideas on a whiteboard.
You can see the original, unpolished versions of Max’s diagrams on the book’s Miro
board (http://mng.bz/amwX).

Scenario: Depreciation - Fixed assets sales

Computing

Bookkeeper

7. Get sale
data

Legacy
accounting
platform

Accountant

Fixed asset

Financial
reporting

8. Get data
for reporting

3. Revaluation
computed

1. Sale a
fixed asset

4. Compute
depreciation

2. Compute
revaluation

6. Record
in ledger

Revaluation
calculation

Depreciation
calculation

5. Depreciation
computed

Sales

http://mng.bz/amwX

288 CHAPTER 12 Loosely coupled software architecture
As discussed earlier in the chapter, just making parts of a system smaller doesn’t lead
to simpler systems. Balancing local and global complexity is vital. This was something
Max and the group discovered. Fewer, but larger, subsystems reduced the global com-
plexity and the overall complexity: “The diagram looked much more simple than the
first two. We increased cohesion within the boundaries. People had the feeling that
everything was in the right place. We first started with four different boundaries, but
in the end, we had only two left. We tend to think that the refinement cycles always
lead to smaller boundaries, but sometimes it’s the other way around! In this case, we
started with too fine-grained boundaries that would have brought a lot of complexity
if people would have started building their new architecture based on that.”

 Max and the group also demonstrated first-hand why concrete scenarios are a cru-
cial aspect of Eric Evans’s model exploration whirlpool: “Validation through real use
cases was extremely helpful. It was pretty easy to visualize how systems communicate
and identify dependencies. In general, you can easily spot design smells and try new
options. It helps to better define boundaries that all the team agrees on. And on this
project, it definitely resulted in lower coupling and higher cohesion.”

12.3 Individual subsystem design
Before committing to an architecture, it is wise to conduct a review of the overall
design of each subsystem. The process of examining multiple scenarios enhances the
quality of the design. However, it is beneficial to consolidate the information gathered
from various scenarios into a cohesive and unified view to ensure overall optimization.

 In accordance with the model exploration whirlpool, it is also crucial to delve
deeper into the details to gain confidence in the design’s suitability. Building proof of
concepts in code is one method, while software design EventStorming is another that
moves close to code-level detail yet retains visualization and collaboration, enabling
quicker experimentation.

12.3.1 Using a canvas

Canvases are a great way to visualize the overall design of a subsystem and enable
greater collaboration. The bounded context canvas (https://github.com/ddd-crew/
bounded-context-canvas) is one option. It’s another tool from the DDD community
that can be used to verify that the overall design of an individual subsystem is loosely
coupled and tightly bound to the domain. The canvas comprises eight sections, each
representing an important design aspect.

 Figure 12.16 provides an example canvas to demonstrate each section. It shows the
canvas for a discounts subsystem, which is a software subsystem that implements an
organization’s discounts subdomain capabilities.

https://github.com/ddd-crew/bounded-context-canvas
https://github.com/ddd-crew/bounded-context-canvas

28912.3 Individual subsystem design
Figure 12.16 The bounded context canvas

The first section of the canvas is the name section. It might seem trivial, but the name
of a subsystem can have a big effect on its design and evolution. Generic names attract
behavior, meaning the more generic a name, the more likely it is that unrelated func-
tionality will be lumped together. A good name is precise enough that it helps to spot
when responsibilities that shouldn’t belong together are being combined.

 The second section of the canvas is the description section. This section is used to
summarize the purpose and responsibilities of the canvas. Writing down a clear pur-
pose is a great way to highlight misalignment in a group. People might agree on a
name but then when each person shares their definition, inconsistencies arise. The
example in figure 12.16 clearly explains in business terms the value of the discounts
subsystem.

 The third section of the canvas is strategic classification. How does the subsystem fit
into the business strategy? There are three suggested placeholders. The first is the
core, supporting, generic classification introduced in chapter 10. The second place-
holder is for the subsystem’s role in the business model. The discounts subsystem’s
business model role is to increase sales. Other options could be to improve productiv-
ity, increase engagement, reduce costs, or improve compliance. The third placeholder
is evolution in the Wardley Mapping sense.

Inbound communication Outbound communication

Description

What benefits does this context provide,
and how does it provide them?

Name: Discounts

Strategic classification
Domain Business model Evolution

Domain roles
Role types
- draft context
- execution context
- analysis context
- gateway context
- other

github.com/ddd-crew/
bounded-context-canvas

V4

Core Increase
sales

Custom
built Calculator

A key value proposition is our lower prices via discounts.
This service is responsible for calculating the optimal
discount for every order based on diverse data.

CollaboratorMessages

Order
history

Inventory

Marketing

LoyaltyGet loyalty
status

Is repeat
purchase?

Get stock
count

Find
applicable
promotions

Business decisions
Key business rules, policies, and decisions

Ubiquitous language
Context-specific domain terminology

Discount
A reduction in the total price

of an order to incentivize
more purchases.

Discount
can never be

greater
than 30%

Two discounts
maximum per
customer per

day

Collaborator

Orders

Messages

Get
discount

Add
discount

rule

Amend
discount

rule

Remove
discount

rule

Search
discount

rules

Marketing team
(via marketing UI)

290 CHAPTER 12 Loosely coupled software architecture
The fourth section of the canvas is domain roles, which was introduced in chapter 9.
Common examples are specification, execution, and analysis. But in the discounts
example, the calculator role has been specified because this subsystem’s main duty is to
calculate something (discounts).

 The fifth and sixth sections, inbound and outbound communication, visualize the
interactions with other collaborators, like other subsystems and external services. This
part of the canvas helps to surface important design information like the level of cou-
pling, the number of responsibilities the subsystem has, and the design quality of the
subsystem’s interface. In the discounts example, we can immediately observe a number
of queries on the outbound side. This subsystem depends on four other subsystems to
be able to fulfill requests from the orders subsystem when it asks for a discount. We
need to look closer and understand if this will result in a high level of change cou-
pling (http://mng.bz/OPva) or runtime reliability risks.

 In general, it’s good to challenge every dependency. What is the pain of each
dependency according to Vlad’s formula, and what would be the cost to remove it? In
the discounts example, perhaps discounts and marketing could be combined to remove
one of the dependencies. It would reduce the global complexity, but would the result-
ing subsystem be too large and complex and result in excessive cognitive load for a
single team?

 The final two sections sandwiched between the inbound and outbound communi-
cation are for capturing key domain terminology and important business rules. A
good exercise is to ask the group to list the top five most important domain terms and
the five most important business rules. It doesn’t take long, yet it can surface misalign-
ment in the group and help to share important knowledge.

 While each part of the canvas is useful in isolation, the true benefit comes when
collectively looking at the whole canvas. Do all parts, like the name, description, and
communication, seem cohesive? For example, do the names and messages in the com-
munication sections align with the name and descriptions sections?

Definition of bounded context
The term bounded context was coined by Eric Evans in his 2003 book Domain-Driven
Design. He defines it as “A description of a boundary (typically a subsystem, or the
work of a particular team) within which a particular model is defined and applicable”
(http://mng.bz/p1zw). Therefore, you’ll see the terms bounded context, model, and
subsystem used somewhat interchangeably in practice—for example, the discounts
subsystem is the boundary (the bounded context) within which the discounts domain
model is applicable.

Eric advocates that bounded contexts should be loosely coupled: “Explicitly set
boundaries in terms of team organization, usage within specific parts of the applica-
tion, and physical manifestations such as code bases and database schemas.” This
is akin to contract coupling in Vlad’s model.

http://mng.bz/p1zw
http://mng.bz/OPva

29112.3 Individual subsystem design
NOTE This chapter introduces a variety of techniques that enable a visual and
collaborative approach to the design of architecture and software. For a
deeper dive into the topic, I highly recommend the book Collaborative Software
Design (http://mng.bz/YRxa) by Evelyn van Kelle, Gien Verschatse, and
Kenny Baas-Schwegler. In addition to software and architecture design
advice, it covers a range of topics, including facilitation, decision-making, and
the effects of cognitive biases in the design process.

12.3.2 Software design EventStorming

Software design EventStorming (aka design-level EventStorming) is the third flavor of
the technique. It introduces additional software-relevant notation and is used to
model narrower scopes in finer detail. It allows a group to visualize a model that is
close to the implementation in software, so it’s a good way to verify a design by going a
level deeper into the details. It’s a great technique to use for validating proposed
architectural boundaries because of the collaborative nature and the ability to explore
and refine models quickly.

 Figure 12.17 shows the complete notation for software design EventStorming.
Compared to process modeling EventStorming, there is only a single change: the
addition of the large yellow aggregate sticky. This concept represents a collection of
objects in code that are considered to be a single atomic unit.

Figure 12.17 Software Design EventStorming notation

Figure 12.18 shows a small extract from the disputes subdomain of a utility bill pro-
vider. The bill dispute process has been modeled using software design EventStorm-
ing. It begins with a customer reviewing their latest bill and raising a dispute. When

Action/
command

Actor/
role

Decides to

Hot
spot

ActivatesIssues

ProducesInvoked on

Invoked on Produces

Observed by Updates

Policy

System

Aggregate

Information

Domain
event

http://mng.bz/YRxa

292 CHAPTER 12 Loosely coupled software architecture
the customer performs the action, a dispute aggregate is the piece of code responsible
for deciding what should happen.

Figure 12.18 Designing the software for a utility provider’s bill dispute subdomain with
software design EventStorming

Usually, aggregates have multiple states, which change after operations on them. They
are like state machines, so I prefer to make the states explicit. In Figure 12.18, you can
see three of the dispute aggregate’s states shown: Opened, Settlement Offered, and
Rejected.

 Software design EventStorming derives its name from the visual model being very
close to the software implementation. Listing 12.1 shows how the visual model in fig-
ure 12.18 could be implemented as code using a traditional object-oriented approach.

class Dispute {
 DisputeStatus status
 List<DomainEvent> events

 raise(customerId, billId, message) {
 //...
 status = Opened
 events.add(new BillDisputed(...))
 }

 proposeSettlement(amount, message) {
 //...
 status = SettlementOffered
 events.add(new SettlementOffered(...))
 }

 //...
}

The dispute aggregate stickies are represented in code by a class called Dispute. Each
blue action applied to the aggregate corresponds to a method on the aggregate—for
example, proposeSettlement(). The state on each aggregate sticky represents the status
field on the class, and the orange domain event stickies are implemented as separate

Listing 12.1 Disputing aggregate pseudocode

Raise
dispute

Custo
mer

Latest
bill

Dispute
state: Opened

Bill
disputed

Bill
disputed

policy

Propose
settlement

Reject
disputeAgent

Dispute
state: Settlement

offered

Dispute
state: Rejected

Settlement
offered

Dispute
rejected

29312.4 Subsystem modernization strategies
classes—for example, BillDisputed()—which the dispute aggregate publishes (via add-
ing instances of them to its events list).

NOTE For engineers seeking guidance on implementing domain models in
code, check out the recommended resources on the book’s Miro board
(http://mng.bz/amwX).

It’s important to remember that software design EventStorming isn’t an exact 1:1
mapping with code. While it does help to validate that a design will work as code and
can surface problems early, it doesn’t compile. You may still find surprises when you
start coding, and sometimes, it is better to skip software design EventStorming and go
straight to code, depending on factors like the group of people, the time available,
and the complexity of the subdomain. Once you have applied the technique a few
times on real domains, you will be able to judge when it’s appropriate to use it.

12.4 Subsystem modernization strategies
So far, this chapter has focused chiefly on the desired future architecture. If that’s not
hard enough, there is still the challenge of figuring out how to migrate from the cur-
rent state to the target state, which is arguably even harder, having to deal with chal-
lenges like whether to run the new and old versions in parallel for a while. But that’s
when business value is finally delivered, so it cannot be avoided.

 Before that, the optimal modernization investment strategy needs to be deter-
mined for each subsystem. You could rewrite each subsystem with new technologies, a
new domain model, and new capabilities. But would the ROI be worth it? And what
costs of delay would be introduced by fully modernizing every subsystem? Finding the
sweet spot is crucial.

 This final section of the chapter looks at principles and patterns for modernizing
individual subsystems. However, looking at the bigger picture and making decisions
based on a higher-level strategy and roadmap is also necessary. This is the topic of
chapter 16.

12.4.1 The modernization strategy selector

During the journey of modernizing a system, choosing a modernization strategy for
each subdomain is generally advisable based on its unique requirements. For instance,
while a lift-and-shift approach from on-premises to the cloud may be the optimal
choice for one subdomain, a complete rewrite in entirely different technologies might
be ideal for core domains with a significant opportunity for differentiation. It’s crucial
to identify the point of diminishing returns.

 Often, making fine-grained decisions may not always be feasible due to the coupling
in legacy systems that are not aligned with the target subdomains. In those scenarios, a
common approach is to lift and shift an entire monolith to the cloud and then apply
other modernization strategies for each subdomain. This highlights that modernizing
each subdomain can be a gradual progression and doesn’t need to be a big bang. When
determining how much to modernize each subdomain, the Modernization Strategy

http://mng.bz/amwX

294 CHAPTER 12 Loosely coupled software architecture
Selector shown in figure 12.19 can help (gathering information to help choose a strategy
involves concepts from previous chapters, notably chapters 5, 8, and 10).

Figure 12.19 The Modernization Strategy Selector (to be used per subdomain)

The x-axis represents the level of modernization applied to changing the behavior
and design of the code so that it provides more value or is easier to work with, which
basically consists of a range:

 Expose—Making existing functionality from the legacy subsystem available to
other subsystems (e.g., by creating an API or publishing an event) with the least
amount of effort and invasive changes possible

 Polish—Cleaning up some of the low-hanging technical debt without addressing
more fundamental concerns

 Replicate—Rewriting the subsystem, maintaining the existing functionality but
cleaning up all the technical debt

 Remodel—Rewriting the subsystem, maintaining existing functionality but invest-
ing in a complete redesign of the domain model so that it is easier to evolve

Strategies are shown in typical positions. Positions will
differ on a case-by-case basis, e.g., the cost of a rewrite
is sometimes less than evolving the current codebase.

Product, domain, software modernization
(Software functionality and design)

Total
modernization

(reinvent)

Sunset

Legacy
encapsulate

Lift and shift

Lift and
reshape

Replatform
and remodel

Rehost and
remodel

Effort/Value/Risk

E
ffo

rt/
V

al
ue

/R
is

k

Legacy
polish

Maintain Extract and
remodel

Minimum viable
replatform

P
la

tfo
rm

 m
od

er
ni

za
tio

n
(In

fra
st

ru
ct

ur
e

&
 te

ch
 s

ta
ck

)

29512.4 Subsystem modernization strategies
 Rethink—Recreating the functionality and domain model from a blank canvas,
typically involving large amounts of user research and domain discovery and
modeling

The y-axis represents the level of modernization applied to the technologies used to
build the subsystem. It’s about answering questions like: How different will the pro-
gramming language, frameworks, databases, and infrastructure be in the modernized
world compared to the current state?

 It includes

 Infrastructure—e.g. from on-prem to the cloud or from VMs to Serverless
 Programming language and runtime—e.g. from C# .NET to Kotlin on the JVM
 Data storage and integration—e.g. from Oracle SQL to a MongoDB and RabbitMQ
 Libraries and frameworks—e.g. adopting new web frameworks, persistence frame-

works, and testing frameworks

A simple option for producing an overall score is to choose high (3 points), medium
(2 points), or low (1 point) for each criterion.

 The following are some example strategies. This isn’t an exhaustive list, so don’t
feel a need to try and fit what you are doing exactly into one of these:

 Sunset—The subsystem will be discontinued and shut down (there is no mod-
ernization, but this could still involve a large amount of effort and risk).

 Maintain—Try to keep the current subsystem running for the least cost. There
might still be some effort involved in keeping the technologies up to date with
the latest security patches, etc.

 Legacy encapsulate—As in the previous example, but expose the legacy capabili-
ties to other subsystems.

 Legacy polish—Similar to the previous example but also addressing small
amounts of technical debt.

 Extract and remodel—Pulling a subsystem out of the legacy system and rebuilding
with a brand-new domain model (existing functionality and tech stack remain
largely the same).

 Lift and shift—Move the current code onto new infrastructure with minimal or
no changes to the application code.

 Lift and reshape—As in the previous example, but cleaning up some parts of the
code so that new features can be added more easily, or it runs more reliably in
production.

 Rehost and remodel—Rebuild the system with a fresh domain model and deploy
to more modern infrastructure, using largely the same programming languages
and frameworks.

 Total modernization—Every aspect of the technology, functionality, and domain
model is completely modernized to the highest degree possible. It is likely to be
a very expensive option but justifiable for subsystems that are a major source of

296 CHAPTER 12 Loosely coupled software architecture
competitive advantage or innovation. In some cases, this might actually be eas-
ier than trying to work with very messy legacy.

12.4.2 Migration patterns

Modernization is exciting. It starts with discovery and design and ends with systems
that provide greater value and are easier to evolve. Sandwiched in between, however,
is the tough part—the journey of migrating from the legacy to the modernized. Fortu-
nately, modernization is a ubiquitous challenge, and several useful patterns have
emerged to help with the arduous task of migration.

 Some patterns have the concept of gradual and iterative migration baked into
their definition. But even where not, it’s advisable to chunk a migration into smaller
steps to deliver some value sooner and reduce the severity of any incidents.

STRANGLER FIG
The strangler fig pattern (http://mng.bz/46BQ), defined by Martin Fowler, is used to
migrate an existing architecture to a new architecture gradually. While this pattern
applies at an entire application or systems level, it will naturally apply to all nested sub-
systems. It’s based on the behavior of the strangler fig plant, which grows around a host
tree, eventually killing it and taking its place. It involves creating a new system that del-
egates to the existing system. Over time, more responsibility is added to the strangler,
and less delegation is needed until no delegation is needed at all. SoundCloud used the
strangler fig pattern over an eight-year migration journey (http://mng.bz/QRx4).

 Figure 12.20 shows how the strangler fig can be applied as a migration from a leg-
acy monolith to modernized subsystems. A routing component processes all requests
arriving into the system. The router routes each call to the legacy monolith or a mod-
ernized subsystem. In the beginning, most calls will be routed to the legacy system.
Over time, as more modernized subsystems are developed, fewer calls will go to the

Modernized
subsystem

Router

Legacy system

Initially, the router will route most
requests to the legacy system because
not much has been modernized.

Over time, more subystems are
modernized and fewer requests
are routed to the legacy system.

Router

Legacy
system

Modernized
subsystem

Modernized
subsystem

Modernized
subsystem

Modernized
subsystem

Modernized
subsystem

Modernized
subsystem

Figure 12.20 Gradual system migration with the strangler fig pattern

http://mng.bz/46BQ
http://mng.bz/QRx4

29712.4 Subsystem modernization strategies
legacy system. The legacy may disappear altogether at some point, although some
parts could remain.

 Strangler fig is a very common technique. It’s one of the most common choices
when adopting a gradual migration rather than a complete rewrite. The gradual nature
reduces the risk of a big bang switchover, which can go wrong for many reasons. How-
ever, the pattern can introduce additional complexity and risks, such as the following:

 Data synchronization—For example, the modernized subsystems have separate
data storage that needs to remain consistent with the legacy system.

 Legacy integration—For example, changes need to be made to the legacy code to
process incoming requests or integrate with extracted subsystems.

 Legacy decoupling—For example, the legacy is tightly coupled, and all of the
logic for a single subdomain cannot easily be broken, so decoupling in the
monolith is required first.

 Harder to debug—For example, due to the extra moving parts, it may be harder
to debug, particularly where synchronization is involved.

 UX—For example, users may now have another application they need to use to
achieve their tasks.

BUBBLE

The bubble (aka bubble context) pattern defined by Eric Evans is a similar pattern to
the strangler fig, but it applies more granularly at the level of an individual subsystem.
The basic idea of this pattern is that a new subsystem, the bubble, is placed in front of
an existing subsystem(s). This allows a fresh domain model to be designed and imple-
mented that is unconstrained by the legacy model, as shown in figure 12.21.

 Like a strangler, it may handle some logic internally and delegate to the legacy sub-
systems where necessary via an anticorruption layer (ACL), a translator from one model
to another. Over time, more logic is added to the bubble until the legacy has been
replaced. At that point, the bubble is effectively gone.

 One crucial challenge with the bubble is the complexity of the ACL, which should
not be overlooked. ACLs can take on a life of their own and be more complex than
the domain model. When this is the case, the cost of the bubble pattern may not be
justified, and another approach, like addressing the legacy head on, may be necessary
or even conforming to the legacy model.

Resources for practitioners
For engineers and architects that will be designing and implementing migration, it’s
essential to have an in-depth understanding of the topic. You can find a list of recom-
mended resources on the book’s Miro board.

In addition, other approaches to learning and upskilling for practitioners, like book
clubs, communities of practice, and mentoring, are all extremely valuable. These are
covered in chapter 17.

298 CHAPTER 12 Loosely coupled software architecture
AUTONOMOUS BUBBLE

The autonomous bubble pattern, also from Eric Evans, is a variation of the bubble. In
this version of the pattern, the bubble has its own data store. Integration with the leg-
acy subsystem(s) is via asynchronous data synchronization, as shown in figure 12.22.

Both bubble patterns involve the creation of a bubble, enabling the development of a
fresh domain model, unconstrained by the legacy, that can be easily evolved. However,
the interplay with legacy varies greatly, creating unique trade-offs that require careful
consideration.

New subsystem
(the bubble)

New domain model
designed from a blank
canvas, unconstrained by
legacy

Legacy system Legacy system

Anticorruption layer

Translates between the
newly designed domain
model and legacy models

No synchronization risks
because bubble uses
legacy database(s)

Anticorruption layer

Figure 12.21 The bubble
migration pattern

New subsystem
(autonomous bubble) New domain model

designed from a blank
canvas, unconstrained
by legacy

Legacy system Legacy system

Anticorruption layer
Translates from legacy
model/data to new data
model, e.g., via domain
events published by
legacy systems

Asynchronous
updates

Local data store allows
autonomous bubble to
fulfill all of its tasks
without calls to the legacy

Figure 12.22 The
autonomous bubble
migration pattern

29912.4 Subsystem modernization strategies
 A clear benefit of the non-autonomous bubble is the lack of data synchronization
risks. As a compromise, however, the bubble doesn’t have anywhere to store data, so any
new fields need to be added to the legacy. If these types of changes are to be expected,
then the level of change required to the legacy systems could make this pattern unde-
sirable. That’s where the autonomous bubble is likely to be a better fit. New fields can
easily be added to the bubble without changing the legacy, but there’s a cost—data syn-
chronization. For instance, if data synchronization happens once per day, but users
need to see real-time updates, the autonomous bubble may not be suitable.

WRAPPING LEGACY AND EXPOSING VIA DOMAIN EVENTS
When the cost of modernizing legacy is not justifiable, but capabilities of the legacy
are still needed by modernized subsystems, legacy capabilities can be encapsulated
and exposed via contracts. Contracts can be in various formats, like HTTP APIs or
domain events, as shown in figure 12.23.

While this pattern doesn’t require extensive modernization of the legacy code, it usu-
ally does require modifying the legacy to publish these events. So, there is some work
and some risk involved, and in fragile legacy systems, it could still be considerable,
especially if there is no existing infrastructure for publishing events.

 Another challenge with this pattern is the design of the events. You may not want
all of your modernized subsystems coupled to the legacy domain or data model, so it
may be better to put an ACL in between, similar to the bubble pattern, to isolate them
from the legacy.

 One of the worst migration disasters I’ve seen was when a large legacy database was
converted into Kafka streams via change data capture. This isn’t an inherently bad
idea, but it was problematic because it put a huge amount of complexity into the
many applications consuming the messages. They all had to understand the legacy
database schema and be able to translate it into what was actually happening in the
domain.

 Imagine an order message that contains everything about the order and is publi-
shed whenever anything about the order changes. A service that only cares about

Legacy system

Modernized
subsystem

Modernized
subsystem

Modernized
subsystem

Domain
event

Figure 12.23 Exposing
legacy functionality via
domain events

300 CHAPTER 12 Loosely coupled software architecture
price updates has to consume thousands of messages per day and check each one to
see if the price has changed. Now, imagine that complexity spreads across every
subsystem. Encapsulating the legacy behind well-designed domain events, like Price
Increased, would have resulted in much lower complexity and coupling on a local and
global level.

PARALLEL RUN

The parallel run pattern involves running the legacy and modernized subsystems
simultaneously for a period of time. During this period, both subsystems process the
same input, although only the output from one subsystem is used. When the modern-
ized subsystem’s responses have been verified, its outputs are used. This allows the
modernized system to be tested and refined in real-world scenarios while also provid-
ing a fallback option. Once the new system has been fully tested and is working as
expected, the old system can be decommissioned, and the parallel run can be ended.
Zalando used this pattern to break their returns capability out of a monolith into a
new microservice (http://mng.bz/n1zd). They used a gradual approach where end-
points were switched over one by one.

REFACTOR FIRST

While it’s nice to be able to rewrite subsystems or use patterns like bubble to allow
clean code to be written from the get-go, on many occasions, the legacy will be too
coupled or poorly designed that some cleanup will be necessary first. I first realized
this when I was a junior developer, and I tried to use the bubble. I liked using the bub-
ble because I got to work with a clean domain model and not have to be fully
immersed in the legacy. But on one occasion, I made the mistake of creating a bubble
on a codebase that already had multiple layers of incomplete refactoring attempts.

 Working with a more skilled senior engineer, we flattened the layers of failed refac-
torings and the legacy underneath by basically inlining all of the methods using auto-
matic IDE refactorings. We then sculpted and modeled the flattened logic. It was a
little risky because we could have broken the legacy, but it was definitely the right
choice, and it taught me an important lesson—you can’t always build another layer on
top of the existing legacy. Sometimes, you have to refactor the legacy first.

ANTIPATTERN: THE SEXY NEW CODEBASE

One migration antipattern I have witnessed on numerous occasions is the sexy new
codebase antipattern. This is when all development in a legacy monolith is stopped, and
all new feature work is built in a new codebase, which is much easier to work in and is
much more exciting than being stuck in the legacy code. Unfortunately, the new code-
base quickly loses its charm because it becomes tightly coupled and difficult to work
with due to still needing to integrate and synchronize with the legacy.

 This antipattern arises when teams want to stop developing in a legacy system and
build a better architecture that enables a faster flow of changes. However, the prob-
lems occur because domain boundaries have been ignored, and the system is still
coupled. It may be possible that some types of work can be developed faster because

http://mng.bz/n1zd

30112.4 Subsystem modernization strategies
they don’t depend on the legacy, but this anti-pattern applies when a significant
amount of the new code depends on the legacy.

 The best way to avoid this anti-pattern is to always ensure that architectural bound-
aries are based on carefully defined domain boundaries.

DEFINING A MIGRATION PATTERNS LIBRARY

A common theme I have observed in organizations investing in significant moderniza-
tion is to establish a playbook of migration patterns (this is similar to the concept of
golden paths covered in chapter 13). The patterns are tailored to the organization’s
context. Typically, they provide step-by-step guidance showing how to migrate a subsys-
tem from the legacy system to approved technologies and architectural patterns. They
can also include additional support like advice on which pattern to choose and related
activities. AWS recommends (http://mng.bz/vP9a) that each migration pattern pro-
vides guidance on the following topics: current state, target state, preconditions,
migration strategy, benefits, costs, skills, and migration factory (AWS terminology for a
team that supports migration).

 According to AWS, “20–50 percent of an enterprise application portfolio consists
of repeated patterns that can be optimized by a factory approach.” In my experience,
this seems about right. As a result, I do agree that establishing a migration patterns’
library is a sensible idea in medium to large organizations.

12.4.3 Assessing current-state complexity

Choosing the optimal modernization strategy and migration patterns requires an
understanding of the current state of the system. This is an essential step in determin-
ing the level of investment required to achieve the desired level of return. While there
is no simple metric, flowchart, or tool that can provide the perfect picture, many tools
and techniques can help a great deal.

ASSESSMENT CRITERIA

Determining the health of a legacy system is notoriously difficult. There are no objec-
tive measurements or simple flow charts. Some aspects are quantifiable, but they don’t
tell the whole story and can be dangerous if misused, whereas some aspects are highly
subjective. Being aware of the different criteria that contribute to system health is the
first step. At least you know what to look for, even if you cannot perfectly measure it.

 Technology age—Assessing how old and how far behind modern technologies the
current implementation is. This covers the programming language, libraries,
frameworks, runtime versions, and so on.

 Subsystem modularity—Assessing how decoupled subsystems are. Vlad’s model
introduced earlier in the chapter can be used for this.

 Subdomain alignment—Assessing how well the current subsystems align with the
target subdomains. In legacy systems, a lack of modularity and domain align-
ment combine to create extremely coupled software with god classes

http://mng.bz/vP9a

302 CHAPTER 12 Loosely coupled software architecture
(https://wiki.c2.com/?GodClass) that contain intertwined logic for a large
number of subdomains, one of the hardest and riskiest legacy refactoring chal-
lenges.

 Layering integrity—Assessing how well the layers of application have been main-
tained. For instance, how much business logic is in the UI and database stored
procedures?

 DORA Metrics—Helping to assess how quickly changes can be made to the soft-
ware, deployed to production, and run reliably in a product.

 Test coverage & quality—Assessing how well-tested the current code is. The better
the tests, the more confidence and less risky changes will be. Just remember
that test coverage alone does not tell the full story so it’s important to get into
the code and look at how well the tests are written.

 Quality attributes—Performance, scalability, and security provide clues into how
well the system has been designed.

 Code understanding—Assessing how many, and how well, people in the organiza-
tion still understand how it works.

 Cost to run—Assessing how much needs to be invested in keeping the current
software running. Does the cost seem excessive for the value it provides?

ARCHITECTURE ANALYSIS TOOLS

Software systems have been growing ever more complex as more of the world runs on
software. Understanding and maintaining systems has unsurprisingly grown more
challenging as a result. However, over the last few years, architecture analysis tooling
has started to catch up, allowing us to understand our systems better and deal with
their complexity. The most popular tool in my circles is CodeScene, and it is also my
preferred tool, especially when trying to determine where, how, and how much to
modernize.

 When I was working with one CTO who had joined a company with the remit of
modernization, he used CodeScene to quickly ascertain which parts of the system had
no owners and which parts were worked on exclusively by contractors. He used the
visualizations provided by CodeScene to explain these insights to the leadership
group to justify some of the changes he wanted to make. This is a recurring theme in
my experience—CodeScene is not just a tool for engineers and architects. It provides
insights and visualizations that can explain systems to a nontechnical audience. This
example was compelling because anyone could ascertain the high proportion of black
(no owner, worked on by former employees) and red (worked on largely by contrac-
tors) dots. I can’t share that particular example, but figure 12.24 gives a glimpse into
how the feature works.

 CodeScene analyzes multiple sources of information to identify complexity and
challenges in a system and suggest actions to take. Firstly, it can assess a codebase and
visualize the health of each part of the system. You can see an example in figure 12.25.
The darker the color, the lower the health of that part of the system.

https://wiki.c2.com/?GodClass

30312.4 Subsystem modernization strategies
Figure 12.24 Identifying knowledge loss in a codebase with CodeScene

Figure 12.25 Visualizing code health with CodeScene

Code owners diffusionMain authors Knowledge loss Coordination needs

Hot spot

Low development activity

Code health range

Commit threshold

Combined Aspects

DefectsHot spots Code health

304 CHAPTER 12 Loosely coupled software architecture
 If you click on a particular area, you
get additional details like dependen-
cies, defects, and complexity trends, as
shown in figure 12.26. You can also
perform actions like viewing the
source code or digging into even more
granular views, which assess individual
functions in the code.

 Even more impressive is that
CodeScene combines information
about the system with version control
history. This means CodeScene can
see how often each part of the system
changes, allowing it to suggest
hotspots—areas that are highly com-
plex and change frequently. These are
clear candidates for high-priority mod-
ernization initiatives, although I
wouldn’t make such significant deci-
sions based solely on the suggestion of
a tool.
 Using version control history, Code-
Scene can also show you the change
coupling in your system. Even if two
subsystems are not part of the same
code repository, CodeScene can still
detect change coupling between sub-
systems and show trends over time,
provided it has access to the version

control history of both repositories. It’s impressive how it covers both the technical
and social aspects of architecture.

 If you haven’t used CodeScene before, I recommend you check it out. It can pro-
vide invaluable information for modernization discovery, design, and delivery. There’s
a live demo on the CodeScene website, which you can click around and explore to get
an understanding of how it works.

ENGINEER EXPLORATION AND FEEDBACK

I’ve never seen tools used exclusively to analyze a system’s health and used as the only
source of input into modernization decisions, so I cannot recommend this approach.
Tools can play a big part, but the knowledge and feedback from engineers who work
in the system are equally, if not more, important. As a result, engineers will need to be
given plenty of time to assess the current software using techniques like code review

Complexity trend

Source code Review

X-ray

Code health

Commits

Size

Main author

Knowledge

Defect count

Modified

Development
cost

66 commits / 1 year

4692 lines of code

Spencer T Brody 13%

14 issues / 1 year

0 months ago

115 issues / 2 years

75% code by former
contributors

Figure 12.26 Digging into parts of the system

30512.5 Industry example: Domain-driven modernization of a gigs platform to support new markets
sessions, workshops (e.g., C4 current-state mapping workshops), and knowledge-
sharing sessions. But it’s not a competition. Tools enhance engineering capabilities by
providing insights about where engineers should look and spend their time, like the
parts of the system that are changed most often or the parts of the code that are
touched by the most people.

EXPERIMENTAL DECOUPLING

Sometimes, the best way to understand how complex a part of the code will be to
migrate is to jump right in, code for it, and see what happens. When I joined Sales-
force, I did this as an experimental approach in the legacy monolith on my local
machine. I wasn’t expecting it to work (it definitely didn’t), but it helped me under-
stand how difficult it would be to decouple certain areas.

 I picked a specific concept called creatives. We had discussed this being a separate
microservice, so I tried to extract it as a microservice. I tried various approaches, like
deleting the concept from the codebase, trying to fix all of the compiler errors, and
creating an interface whose implementation I could replace with API calls to the
microservice. I wasn’t taking small, safe steps, and I wasn’t adding unit tests. It was cha-
otic and messy, but that wasn’t problematic because I just wanted to learn.

 Before I began the experimental decoupling, I envisioned extracting creatives as a
microservice in just a few days and completely wowing all my colleagues. “How hard
can it be?” I thought. It seemed simple and isolated and should be easy to extract.
After a week of experimental decoupling, my illusions were shattered, and I realized
just how incredibly complex it would be to decouple the code and the database. But at
least I was now thinking realistically and recognized the challenges.

 This story demonstrates a heuristic I’ve mentioned previously. When you stay
high-level, it’s easy to fool yourself. An approach may look obvious or simple, but until
you get into the details and verify, you should remain cautious before making any
commitments.

12.5 Industry example: Domain-driven modernization of a
gigs platform to support new markets

NOTE This industry example was written by Kenny Baas-Schwegler, Shannon
Fuit, Chris van der Meer, and their colleagues and is based on their experi-
ences as they began to modernize a match-making system that enabled
employers and unemployed people to find each other for short-term jobs
(gigs) without the need for recruiters. The system was three years old and had
gradually turned into a big ball of mud. During that period, the time required
to add new features increased significantly, and the system was becoming
harder to scale as the business grew. The system had evolved into a substantial
business liability. When leadership aimed to expand into markets beyond the
Netherlands, such as Germany, it became crucial to modernize the system to
facilitate a more agile and accelerated implementation of changes.

306 CHAPTER 12 Loosely coupled software architecture
One of the major reasons for the system’s decline into poor health was early architec-
tural choices. Time-to-market and product-market-fit were key business drivers, so the
team chose Ruby on Rails since this was the standard in the organization. Its
convention-over-configuration approach allowed the team to progress rapidly in the
early stages, but they were now paying the costs of those early wins. Rails had encour-
aged the team to couple their domain model and database model by using the active
record pattern. As the system grew, the coupling of domain and persistence logic
resulted in code that was harder to understand, change, and scale.

 Expanding into new markets would introduce two new challenges. The first chal-
lenge was that the domain model would need to evolve to support regional differ-
ences. Germany has a completely different way of doing temping work compared to
the Netherlands regarding contracts, procedures, and legal rules. In addition to hav-
ing a different model, the platform had to be integrated with another set of third-
party providers specific to Germany. The desire was to implement support for Ger-
many in the software without affecting the stable product running in the Netherlands.

 The second challenge was scaling up the development team to build and own the
new business capabilities. Extra developers were added to the team to work on the
rollout of the platform in Germany, which doubled the team’s size. It turned out to
be difficult for the new developers to create a mental model of the domain based on
the code. First, because it was difficult to keep track of all the dependencies, and sec-
ond, because a lot of important business rules were hidden implicitly within the
implementation. Additionally, with so many developers working on the same code-
base, they frequently obstructed each other, causing constant test failures and merge
conflicts.

 The team was split into two, with each team owning a different area of the domain.
But the software coupling remained, meaning that when either team made changes, it
would still affect the other team. It was at this point that Kenny was hired as a consul-
tant. His purpose was to teach and help the teams apply domain-driven design to
design and migrate to a loosely coupled, domain-aligned architecture that allowed
teams to work independently with a sustainable, faster flow of changes.

 The team began their DDD journey with EventStorming sessions. Initially, they
chose to design the onboarding flow of a company because that problem wasn’t too
complex. This allowed them to decouple the company and contact rules between Ger-
many and the Netherlands within a new bounded context while learning DDD at the
same time. Feeling more confident, the team began to develop a model for each
country tailored to its specific requirements.

 The team used EventStorming once again to draw out their model. This time, they
used software design EventStorming (figure 12.27) because they wanted to get close
to how the model would look in software and begin implementing it.

 As the team set their sights on implementing the model, they began researching
how to do this in Ruby on Rails, without ending up in the same situation as before.

30712.5 Industry example: Domain-driven modernization of a gigs platform to support new markets
They followed the guidelines in the book Domain-Driven Rails by Arkency, which shows
how to migrate from typical monolithic Rails applications to a domain-driven style.

 Implementing the new bounded context (model) for the German market could be
implemented seamlessly as a new codebase, completely decoupled from the existing
code and functionality. After successfully doing a proof of concept for the onboarding
of German companies, the domain-driven design approach proved itself. Then, the
real challenge began, which was doing a ship of Theseus. We needed to introduce new
features while also refactoring existing features into new bounded contexts.

 For the initial steps of modernization, all the new and existing models continued
to use a single shared database schema by using a bubble context, as in figure 12.28.
The team consciously made this choice because refactoring the code first led to

Registration
form

Company
registered
requested

Company
registered

Company
management

One-time
link

send

When a
company

is registered,
send a

one-time link
for registration

Send one-
time link to

contact
person

Contraint: How long should
this link be valid?

Signup Website Signup
requested

German
registration

form

Register
company

German
customer env

Company contact
person

Register
account

Register
contact
person

Account
registered

When a
contact person
is registered,

register
that person
at the IDP

Contact
person

registered

Contact
person
enabled

Enable
registered
contact
person

Enable
contact
person

Company contact
person

Eventually German
customer env

IDPCompany
management

Company
management

Contact
person

registered

Figure 12.27 The software design EventStorming, showing the flow of a contact person in Germany registering
on the platform and how that flow should be integrated with the current IDP (identity providers)

308 CHAPTER 12 Loosely coupled software architecture
bigger improvements for less effort. Database decoupling is usually one of the hardest
and most risky migration activities.

Figure 12.28 How the bubble context was implemented

But the database couldn’t be ignored forever. It was still a major source of coupling
between the models and teams. Each bounded context needed to have its own per-
sistence schema and move to an autonomous bubble. With that, the team could
change without worrying about breaking other bounded contexts, or the legacy
model, as shown in figure 12.29.

Application
layer

UI
layer

Domain
layer

Data

Bubble context

New model

Other
systems

Monolithic ruby on rails application

REST controllers

Company
management

Company
registered

Work
location
updated

Produces

Queries Commands

Updates

Legacy model

Reads

QueriesCommands

Rails views

MVC controllers

Entity
Aggregate

30912.5 Industry example: Domain-driven modernization of a gigs platform to support new markets
Figure 12.29 Moving to an autonomous bubble to decouple from the legacy model using an
event handler to update the legacy model with changes from the bounded context

For that, we used an anticorruption layer (ACL). The ACL was used to hide the com-
plexities of the old model in the monolith. The newly built bounded contexts would
publish domain events that were intercepted by the ACL. The ACL would convert the
new events to the old model. For example, as shown in figure 12.30, when implement-
ing the new job drafting and job fulfillment bounded contexts, a Job Published event
was raised, which the ACL intercepted and translated into the old model to a job.

Application
layer

UI
layer

Domain
layer

Data

New model

Other
systems

Monolithic ruby on rails application

REST controllers

Queries Commands

Legacy model

QueriesCommands

Rails views

MVC controllers

Entity

Company
management

Company
registered

Work
location
updated

Produces

Aggregate

Reads

Updates

Synchronized

Autonomous bubble
context (has its own
schema)

Autonomous bubble synchronization
(event handlers in autonomous
bubble write to legacy model’s tables)

310 CHAPTER 12 Loosely coupled software architecture
This ACL approach also enabled a gradual approach where the team could A/B test
changes. Throughout this process, the team ensured that the old model and its associ-
ated functionality remained operational, allowing for a controlled and efficient migra-
tion to the improved context while introducing new business functionality at a steady
pace.

 After roughly six months, the team was thrilled with their modernization efforts.
They were able to implement new changes at a much faster pace even as the user base
continued to grow, delighting stakeholders in all parts of the business. The team and
their domain experts had developed a ubiquitous language.

 The team felt that adopting a domain-driven approach was key to their success and
saw first-hand how this approach can transform even the most complex and tangled
applications. A larger team where each subteam owns a set of domain models could
now work on the product. The team also wanted to emphasize a few other factors that
were critical to their success:

 Cultivate a culture of continuous learning and improvement.
 Establish a ubiquitous language for direct stakeholder communication.
 Define a future vision for the organization.
 Celebrate successes and learn from failures.
 Incrementally migrate from monolith to bounded contexts.
 Implement domain-driven design in manageable steps.

Summary
 There are different types of coupling in software systems.
 Vlad Khononov proposes a model of coupling that includes four options for

assessing the strength of coupling between two components. From strongest to
weakest, they are intrusive coupling, model coupling, functional coupling, and
contract coupling.

Figure 12.30 How the old legacy model is synced and updated through domain events from the new bounded
context. The ACL is subscribed to the new domain events and then creates legacy jobs in the old legacy model.

Job
drafting Job fulfillment ACL Legacy

model

Job
cancelled

Candidate
applied
for job

Application
cancelled

Cancel
job

Apply
candidate

for job

Cancel
application

Job
published

Job
created

Job
added

Add
job

Publish
job

Create
legacy

job

Create
job

311Summary
 We should always strive for contract coupling where possible because it is the
weakest form and reduces the cost and risk of each change.

 Making subsystems smaller reduces their local complexity but may increase
global complexity. It’s important to consider the overall complexity rather than
making lots of small pieces.

 Modeling flows and processes are key to uncovering coupling in a design and,
therefore, reducing the coupling.

 Eric Evans’s model exploration whirlpool is an effective guide for navigating
the design process. It focuses on continuously challenging the model by work-
ing through concrete scenarios and getting deeper into the details where
necessary.

 Domain Message Flow Modeling is a technique for designing architecture by
modeling the interactions between subdomains and their subsystems. It uses a
domain-oriented notation that maps closely onto the implementation.

 EventStorming can be used as a starting point for message flow modeling by
extracting sequences of events as reference scenarios.

 It’s important to challenge each aspect of a message flow model, like the types
of messages, names, and boundaries.

 Choosing between commands and events can have a big effect on the design,
especially the decision coupling, which is about deciding which subsystem
determines what happens next in the flow.

 When designing architecture, the requirements and scenarios shouldn’t be
treated as fixed; you should always treat them as suspect and challenge them
based on feedback from the design process.

 A good modeling process will involve exploring many possible models, not just
one or two.

 Don’t waste time creating pretty diagrams when modeling; messy is fine.
 Consolidating the information from various scenarios into a single unified

design helps assess a subsystem’s overall design. This can be achieved with visual
canvases like the bounded context canvas.

 When the overall design for a subsystem is pieced together, bad design choices
will stand out, like message names and responsibilities that aren’t consistent
with the name or purpose of the subsystem.

 Software design EventStorming (aka design-level EventStorming) can be a step-
ping stone from conceptual models to code. Each sticky note maps to a granu-
lar piece of code, and a new notation—aggregates—is introduced.

 Software design EventStorming can be used to move deeper into the details
during the modeling process to get feedback on whether a design will work as
code while still allowing visual collaboration.

 The modernization strategy for each subsystem should be decided on a case-by-
case basis. Some subsystems will only benefit from lift and shift, while others

312 CHAPTER 12 Loosely coupled software architecture
may benefit from a complete overhaul of the technology stack, infrastructure,
functionality, and software design.

 Understanding the potential value and cost of investment needed is key to iden-
tifying each subsystem's optimal ROI and migration strategy.

 Migrating from the current state to the target state is probably the hardest part
of modernization. There are many migration patterns, like the strangler fig,
bubble, and parallel run patterns.

 Assessing the current state of a system can be achieved through various means
like using tools, running workshops, and just diving into the code and trying to
decouple it in an experimental fashion for discovery purposes.

Internal
developer platforms
Independent value streams enable fast flow by empowering teams to make most of
the decisions that affect their value stream, like giving them more responsibility to
deploy and support their applications. However, the extra responsibilities will be
counterproductive if the complexity of building, deploying, and supporting code is
too high. Teams will spend too much time on extraneous tasks that don’t contrib-
ute to product enhancements.

This chapter covers
 Creating a slick developer experience to enable

fast flow

 Determining the capabilities of an internal
developer platform

 Managing an internal developer platform with a
modern product management approach

 Deciding when to build an internal developer
platform
313

314 CHAPTER 13 Internal developer platforms
 Making it as effortless as possible for teams to build, deploy, and support software
through an outstanding developer experience (DX or DevEx) is essential to establishing
truly independent value teams. Good DX enables teams to continuously deliver prod-
uct enhancements rather than getting caught up in a web of intricate tasks just to get
their code in front of users.

 Internal developer platforms (IDPs) are one aspect of creating an exceptional DX that
removes all the unnecessary friction in the workflow of development teams and allows
them to focus on discovering and delivering value at a high velocity. However, build-
ing effective IDPs is a complex task. Moreover, it can be an expensive way to create
serious problems that reduce flow. Therefore, it’s essential to invest wisely and staff
the team carefully with people with the right mix of skills and a mindset that is just as
much customer-focused as tech-focused.

 Platform engineering (IDPs are a subset of platform engineering) should be a cen-
tral theme of any modernization journey. It’s a vast topic that necessitates a high level
of research. This chapter outlines some of the most crucial aspects of building an IDP,
like examples of good DX and the capabilities of an IDP, and provides recommended
resources for going deeper into the topic.

 Figure 13.1 outlines the structure of this chapter. Firstly, look at the characteristics
of a modern DX needed to achieve IVSs. Then, look at the capabilities of an IDP that
are required to achieve the necessary DX. And finally, explore how to manage a plat-
form, touching on organization design, strategy, roadmap, and product mindset.

Figure 13.1 The role of IDPs in enabling independent value streams

Internal developer platform

Teams in the platform grouping

Platform
product

manager

Head
of

platform

Create
application

Deploy
application

Service
catalogue ...

API/UI API/UI API/UI

Security and compliance baked in

Platform capabilities:
Platform capabilities
exposed as self-service
via API, UI, git, etc., with
a great developer
experience (DX).

Platform management:
Platform teams and
leadership organized
with a product mindset

Developer experience:
Platform reduces friction
and cognitive load of
teams. They can focus
on their core mission
with fast flow.

Independent value streams

API/UI

31513.1 Developer experience
13.1 Developer experience
When building an internal platform, the top priority should be DX. Almost every plat-
form decision should be driven by how well it supports DX improvements. Whenever
I’ve seen internal platforms go wrong, there has always been insufficient attention to
DX and, usually, more focus on technologies like Kubernetes. Technologies alone will
not enable fast flow and can worsen things if their complexity is not dealt with carefully.
In one Austrian company I worked with, each team needed a dedicated team member
to deal with platform responsibilities due to the high levels of complexity in the form
of various Kubernetes configuration files and Git repositories. The DX was appalling.

 Developer experience refers to the experience that developers have while build-
ing, testing, and deploying software (and even other parts of their job). It encom-
passes everything from the tools and technologies to the processes and workflows
involved in the development lifecycle. DX is critical because it directly affects software
developers’ productivity, creativity, and motivation, affecting the overall speed and
quality of product innovation.

 DX enables fast flow by removing barriers to productivity and allowing developers
to focus on discovering unmet user needs and delivering solutions to meet those
needs. When developers have access to the right tools and technologies, they can work
more efficiently and effectively, reducing the time it takes to develop and deploy soft-
ware. When processes and workflows are optimized, developers spend less time on
administrative tasks like setting up environments or managing dependencies and
more time delivering value.

 By continuously investing in DX, companies can also attract and retain top talent.
Developers want to work for companies that value their skills and provide them with the
resources they need to do their jobs well. When organizations invest in DX, they signal
to developers that they are committed to creating a productive and enjoyable work envi-
ronment, which can improve employee satisfaction and retention. Ultimately, prioritiz-
ing DX can lead to better software, faster development, and a more engaged and
motivated team. My best experiences as a developer were in organizations with a great
DX, like 7digital, where deploying code was trivial, and we got to spend most of our time
doing interesting product work and not fighting infrastructure.

IDPs are risky business
While reading through this chapter, please keep in mind that building IDPs carries sig-
nificant risks. A well-thought-out IDP can amplify the productivity of a whole organiza-
tion, while a badly executed IDP can be catastrophic to productivity and morale.

I was in the audience at Craft Conf 2023 for Michael Nygard’s talk Lessons Learned
Building Developer Platforms (http://mng.bz/qjNx) and would advise anyone thinking
of building an IDP to watch the video of this talk first. Also, keep in mind that an IDP
doesn’t have to be a huge endeavor, as Matthew Skelton explains: “A platform is a
‘curated experience for engineers.’ A good platform could thus be just a wiki page
that specifies 5 or 14 AWS services that should be used together in a specific way.”

http://mng.bz/qjNx

316 CHAPTER 13 Internal developer platforms
13.1.1 Zero to production in less than a day

For many software development teams, getting new software applications set up and
deployed to production is a nightmare that can take weeks or months and consume
much of their time. Clearly, this is not fast flow and is a blocker to fast flow. It also
encourages teams to find workarounds that can create more significant architectural
problems down the line, like one organization that built a CRM inside their trading
platform codebase so they wouldn’t have to go through months of hassling trying to
get a new application into production. It worked in the short term, but in the long
term, it compromised their speed of development in their differentiating trading plat-
form and added significant barriers to transitioning to an off-the-shelf CRM.

 Nowadays, the benchmark for spinning up a new application and deploying it to a
production environment is hours or even minutes. This standard is easily achievable
with modern cloud providers. And to be clear, all the way to production in a single day
implies using a robust and secure deployment pipeline that bakes in quality and com-
pliance requirements to the same standards as any other application running in pro-
duction. Developers have a slick paved road that provides almost everything they need
out of the box.

 When spinning up a new application is not a blocker to flow, teams will not be
forced to compromise between the optimal architecture and hitting a deadline. If a
new application is required to implement a new capability, it can easily be achieved
without adding much delay to delivery; therefore, engineers won’t feel the need to
wedge it into an existing codebase to save time. However, this does introduce a new
risk. I’ve seen teams creating too many microservices because it was so cheap and easy,
resulting in high coupling. Developing new applications should not be done on a
whim. Carefully defining domain boundaries is compulsory.

13.1.2 Roll out the red carpet for teams to do continuous delivery

If you want to build a high-performing engineering organization with fast flow, a plat-
form should make it as easy as possible for developers to deliver value to customers
continuously. I encourage platform engineers to imagine they are rolling out the red
carpet for developers. Not in the sense that developers are more important but that all
their needs for getting code into production are well and truly taken care of. So much
so that it is a pleasurable and frictionless experience, and they feel well looked after.
They should have all the tools needed to develop, deploy, and support applications
in production.

 Continuous delivery capabilities should be exposed in a user-friendly manner.
Doing the right thing should be the easiest thing. Life can be frustrating as a devel-
oper when you are constantly blocked, awaiting people outside the team to provide
you with a service such as spinning up infrastructure, providing access to some tool,
or installing software. A good DX removes the frustration of being blocked and pre-
vents friction between development and platform teams through a self-service
experience.

31713.1 Developer experience
13.1.3 Delightful onboarding experience

Joining a new company is a time of optimism and positivity. But unfortunately, the pos-
itivity can be dampened for many developers during onboarding. Getting access to
tools and getting the necessary permissions is usually frustrating, likewise for getting a
development machine set up so you can be productive and write code. In some com-
panies, this takes weeks and can be like a murder mystery game. You have to talk to
many people and piece the clues together until your developer machine finally allows
you to contribute.

 In 2012, my CTO at 7digital, Rob Bowley, was passionate about “every developer
pushing code to production on their first day.” This implied doing it from their own
machine and having access to all the required tools. I believe this should be every
CTO’s goal. On my first day, I paired up with a senior engineer. We picked up a piece
of work for a nontrivial part of the system and used TDD (test driven development) to
implement it. I pressed the button, which deployed it to production, and then we
watched the monitoring for a few minutes to ensure everything appeared to be func-
tioning correctly. A first day I’ll never forget.

13.1.4 Frictionless local development experience

Naturally, developers spend a lot of time using their computers to code. When the DX
is slick, a developer can focus on solving business problems and seamlessly perform-
ing the relevant tasks. When the DX is poor, a developer resents opening their laptop.
As far back as 2013, I began using tools like Vagrant and Docker Compose to auto-
mate the creation of disposable development environments, and these days, the tools
are even better.

 A developer should be able to install the tools they need to do their job and have
powerful machines and peripherals that provide an optimized, comfortable experi-
ence. They should have access to all necessary resources for building applications and
gaining the necessary knowledge. Penny-pinching on developer equipment is a false
economy and sends out the wrong message.

 Using security as an excuse for completely locking down developer machines is
rarely an acceptable excuse for adding friction. It doesn’t need to be a choice between
a great DX and security. Practices like ensuring developers cannot access production
environments and giving them sandboxes should be applied to eliminate risks.

NOTE Continuous learning and upskilling are necessities in modern software
development, making them another critical DX component. It’s the topic of
chapter 17.

13.1.5 Industry example: HMRC’s Multi-channel Digital Tax Platform
(UK government)

In 2015, the benchmark for what I considered to be a good developer experience
reached a new threshold. Working on UK government initiatives, I had the chance to
witness and use an IDP that allowed around 60 UK government development teams,

318 CHAPTER 13 Internal developer platforms
spread all over the country, to rapidly spin up new services and deliver improvements
daily. The developer experience was top-notch for that time, especially considering
the UK government had a poor track record with IT projects.

 Even today, many technology leaders tell me that DX is just a buzzword and achiev-
ing these ideals is impossible, especially in large organizations building complex prod-
ucts. I show them what HMRC’s IDP, the Multi-channel Digital Tax Platform (MDTP),
was capable of back in 2015 to prove it is possible, and nothing is stopping them from
achieving a great DX.

 Spinning up a new application was basically adding a few lines of configuration
and running a few jobs. HMRC’s platform operations team (PlatOps) created libraries
to make this as simple as possible.

 The general process was

 Run a Jenkins (https://www.jenkins.io/) job via the UI, providing a few parame-
ters like application name and type (e.g., microservice or frontend)

 Set up build and deploy pipelines (via a few lines of config)
 Set up metrics, monitoring, and logging (via a few lines of config)

The Jenkins job to create a new application was fully self-service. It would make a Git
repository and populate it with the skeleton of an application based on the specified
parameters. For example, setting microservice as the application type would populate
the Git repository with a skeleton Scala Play Framework (https://www.playframe
work.com/) application. The application would be prepopulated with various config-
uration settings and MDTP-specific conventions like libraries for dealing with authen-
tication, metrics, and logging. Templates were powered by bootstrap libraries like
microservice-bootstrap (https://github.com/hmrc/microservice-bootstrap).

 Setting up the build and deploy pipelines was performed by adding some configu-
ration using a Groovy DSL created by PlatOps. Listing 13.1 shows how it was possible to
set up pipelines for frontend Scala applications that use the SBT build system. This is
a real example from HMRC’s open-source Jenkins-jobs repository (https://github.com
/hmrc/jenkins-jobs). You can see more examples and job templates in the repository.

new SbtFrontendJobBuilder('paye-tax-calculator-frontend')
 .withSCoverage()
 .withScalaStyle()
 .build(this as DslFactory)

After adding configuration to the config file in a repository, a peer-to-peer system
allowed anyone to approve the pull request. It wasn’t only PlatOps that could autho-
rize. Therefore, it was usually merged within minutes and didn’t become a blocker to
flow. Once merged, a team could immediately start deploying and testing the applica-
tion in dev and QA environments. Getting to production was similarly automated.
However, there was a platform policy that every application must be pen tested before
being opened to a live environment.

Listing 13.1 Setting up pipelines on MDTP

https://www.playframework.com/
https://www.playframework.com/
https://www.playframework.com/
https://www.jenkins.io
https://github.com/hmrc/microservice-bootstrap
https://github.com/hmrc/jenkins-jobs
https://github.com/hmrc/jenkins-jobs
https://github.com/hmrc/jenkins-jobs

31913.1 Developer experience
 The MDTP also provided a great DX for supporting applications in production
and other environments. PlatOps created repositories for logging and monitoring.
Teams needed only to add a few lines of config using a DSL, similar to Listing 13.1.
They would get access to tools like Grafana and Splunk with out-of-the-box standard
reports and dashboards showing things like the number of requests, the error rate,
and response times. This ensured that every team had solid foundations for a you build
it, you run it approach. Teams could also add customizations as necessary.

 Thanks to PlatOps, there was a whole ecosystem of tools and support surrounding
MDTP, like a preconfigured load-testing setup based on Gatling (https://gatling.io/).
Furthermore, a high level of detail was paid to documenting the capabilities. If that
hadn’t been the case, 60 teams would have all been raising endless support tickets,
which would not have been sustainable. In addition, there were many Slack channels
for discussing different aspects of the platform, which were always alive with commu-
nity members and people from PlatOps.

 It helped that the MDTP had a dedicated product manager, but I also observed that
all members of PlatOps had a strong desire to create a great DX for the many teams con-
suming the platform. Even though we developers gave them a lot of headaches, PlatOps
continually strived to improve our lives, like when filling out a form to deploy to pro-
duction was replaced with an entirely self-service capability. It was impressive that they
had such a laser focus on DX and never got distracted by shiny technologies or creating
some uberplatform that was technically brilliant but hard to use.

 It’s important to acknowledge that not everything about the MDTP was perfect. At
that scale, there are always compromises. The biggest, at that time, was probably tech-
nology standardization. Teams had to use Scala and the Play Framework to develop
backend microservices and frontend applications. This certainly wasn’t to everyone’s
taste and resulted in hiring challenges. However, standardization allowed many capa-
bilities to be provided out of the box and allowed teams to focus on solving problems
and delivering value. In my opinion, it was the right choice, although it was certainly a
contentious topic.

 My former teammate Richard Dennehy describes other benefits that he experi-
enced due to MDTP’s standardization: “The team I was on for a couple of years ended
up inheriting a lot of services from various teams, and it was nice having some com-
mon structure between them, as opposed to potentially having to learn everything
from scratch.” He also emphasizes another significant aspect of the platform’s DX
relating to the local development experience: “I highly appreciated how nice it was to
be able to run basically everything locally, using the tools provided by PlatOps, like
Service Manager” (https://github.com/hmrc/service-manager).

 In summary, HMRC’s MDTP provided an exceptional developer experience at
scale all the way back in 2015. Through self-service capabilities, teams could spin up
new services in minutes and deploy them to production daily with the tools needed to
support their applications in production. Many essentials were provided out of the
box by the platform operations team, while a rich community allowed everyone build-
ing on the MDTP to share knowledge and contribute improvements.

https://gatling.io/
https://github.com/hmrc/service-manager

320 CHAPTER 13 Internal developer platforms
13.2 Platform capabilities
An IDP can be crucial in creating a great DX that enables fast flow. One of the first
steps on the journey of developing an IDP is thinking about what capabilities the plat-
form will provide and how to present them. Various approaches can be taken to
achieve the optimal DX for a given capability, like UI, YAML, CLI, or GitOps-based
experiences. This section touches on some of the most foundational and common
platform capabilities.

13.2.1 Golden paths

A golden path (or paved road) is like a recipe for creating a new software application
or other resources. Ideally, it is fully automated, but any manual steps should be well-
documented. For example, a Java API golden path would be something that an engi-
neer chooses when they need to develop a completely new backend API. The golden
path would then follow the recipe of setting up a new Java API based on the organiza-
tion’s conventions, such as setting up code repositories, infrastructure, and common
libraries, as the following industry example demonstrates.

INDUSTRY EXAMPLE: PAVING THE ROAD AT A NEOBANK

Chris O’Dell is a platform engineer who specializes in building and operating plat-
forms that provide great developer experience that enables continuous delivery. She’s
worked on platforms for a number of high-scale organizations like Stack Overflow,
Apple, and JustEat. Prior to her career transition, she was a software engineer who
practiced continuous delivery. As a result, she understands both perspectives and sees
the full picture.

 This industry example shares Chris’s experience of building and supporting a plat-
form-paved road at a mobile-first neobank. The platform supported around 2000 Go
microservices that lived in a monorepo and ran on Kubernetes, with around 150 soft-
ware engineers working on them. It enabled teams to deploy to production many
times per day so they could innovate much faster than traditional banks.

 The platform was composed of multiple teams, each owning a different layer. The
paved road was owned by the developer experience team, where Chris worked. Their
goal was to provide a simple developer experience while balancing obfuscation:
“Some people want to give devs a magic button—this leads to problems when things
go wrong. We never hid Kubernetes, but we did offer lots of defaults,” explains
Chris.

 Spinning up a new microservice and getting all the way to production usually took
less than a few hours, thanks to the slick paved road shown in figure 13.2. A developer
would run a command-line tool created by the platform teams. It would ask them a
few questions like the type of application (e.g., website or database) and would then
create a folder with the template of a Go application and Kubernetes configuration.
That step took less than 5 minutes. The developer would then commit the code and
create a pull request, which gave them a PR number.

32113.2 Platform capabilities
Figure 13.2 Paved road for creating a new microservice and pushing to production in just a few hours

After raising the PR, the CLI tool would send an RPC to another tool called the ship-
per service, which handled platform tasks like deployment. Developers could execute
commands on their machine, like Shipper ship staging and Shipper ship deploy to deploy
their code to the relevant environment once the PR has been approved. The PR could
be approved by anyone, even someone inside the same team, so there were no bottle-
necks in the process. The Go template produced by the CLI tool provided everything
a team would need, including libraries and examples for RPC calls, messaging, moni-
toring and metrics, Dockerfile, Kubernetes manifest, and Kustomize for manifest file
inheritance.

 Behind the scenes, Shipper was doing a lot of important work, like hiding Kuber-
netes complexity and baking in compliance. For instance, it would only allow produc-
tion deployments if the code had previously been deployed to staging. And it ensured
that every piece of code had been looked at by at least two developers before going to

Shipper:

• Manage deployments
• Auto run tests
• Hide Kubernetes complexity
• Bake in compliance

Shipper will not deploy code to
production unless it has been
reviewed by a 2nd person and
been deployed to staging
(compliance).

The 2nd person can be someone
from the same team to prevent
the platform being a bottleneck.

Template includes:

• Go application skeleton
• Kubernetes manifest
• Dockerfile (using shared base)
• Kustomize for manifest file inheritance
 (app name, CPUs, memory, etc.)
• RPC and messaging library/examples
• Monitoring and metrics

Spits out
folder with
application
template

Commit
the

code

Create
PR

8
minutes

8
minutes

Deploy to
staging
shipper

ship
{service}/
staging

20
minutes

20–60
minutes

Deploy to
prod

shipper
ship

{service}/
deploy

20
minutes

CLI invokes
shipper via

RPC (to
setup

new app)

Approve
PR

CLI tool
(asks

questions)

5
minutes

322 CHAPTER 13 Internal developer platforms
production, which was a regulatory requirement. It enforced this policy by analyzing
the Git history. “All developers need to know is Shipper ship thanks to all of the stan-
dards,” says Chris.

 The paved road made delivering new features equally smooth. Teams deployed to
production as often as they wanted and were even encouraged to deliver small incre-
ments on a regular basis. New feature development would often start with the defini-
tion of a new feature flag to control the visibility of the new feature. The platform
provided teams with the feature flag capability. Teams would then start to implement
the feature around the feature flags. When teams were ready to deploy, they would
create a PR in the monorepo, which could touch multiple microservices if necessary.

 Teams would then run Shipper ship staging to deploy to staging where QA could test
the feature on a phone. They would use the internal dashboard to control visibility of
the feature using the previously mentioned feature flags. Once satisfied with the fea-
ture in QA, the PR could be merged, and Shipper ship deploy would be used to deploy
the feature to production.

 Once in production, teams supported their code using observability tooling and
dashboards provided for free by the platform. The application template would config-
ure all the plumbing for an application to start logging, including baked-in conven-
tions like standard naming patterns for metrics. These capabilities were owned and
operated by the platform infrastructure team whose remit was availability, monitoring,
and metrics.

 Building a paved road is not simply a project that starts by asking developers what
they want and then designing the best possible developer experience. “Building and
evolving a paved road is about constantly balancing what the developers want with
what the platform needs,” explains Chris. “On one occasion, the developers were com-
plaining about builds taking too long. But the platform team identified that most of
the time was spent waiting for PRs to be reviewed. So, the platform team built
improved tooling to accelerate and improve the PR process.” Similarly, the choice of
standardizing on Go was a contentious decision: “New joiners usually had disbelief but
then became a believer after experiencing all of the benefits the platform could pro-
vide by standardizing on technology choices.”

GOLDEN PATH CATALOGS

Treat the engineers who use the platform as well as you would external customers and
make golden paths as easy for them to consume as possible by providing clear guid-
ance and removing things they shouldn’t care about. Tools like Backstage (https://
backstage.io/)—an open-source developer portal that makes creating a catalog of
golden path templates easy—are an excellent example of this. Backstage improves the
DX of discovering, defining, and executing golden paths. It’s far more than static doc-
umentation. Figure 13.3 shows an example golden path catalog in a Backstage project
populated with multiple golden paths. Choosing a template allows parameters to be
supplied and jobs to be triggered within.

https://backstage.io/
https://backstage.io/

32313.2 Platform capabilities
Figure 13.3 A golden path catalog in Backstage

13.2.2 Pipelines and environments

To move code from a developer’s laptop to test and production environments, pipe-
lines are needed to build and deploy the code. An opinionated platform can provide
out-of-the-box build and deployment pipelines that set up every step from the
moment a developer pushes code until the code is running in a production environ-
ment. Typically, build and deployment pipelines will form part of the golden path and
can be fully automated (or almost fully automated in the case of the HMRC MDTP
example).

 A good metric for build and deployment pipelines is lead time for changes, which
measures the time between a developer committing a piece of code and the code
being deployed to a production environment. Many organizations are now at a level
where lead time for changes is under one hour, and teams are deploying to produc-
tion multiple times per day. Organizations operating below this threshold are likely to
be disadvantaged.

 Setting up environments has traditionally been one of the most time-consuming
and frustrating activities for operations teams and developers. With the big leaps in
technology in the 2010s, like infrastructure as code (IAC), creating environments
should be fully automated and take just minutes. Spinning up test and production
environments should be free with the golden path.

324 CHAPTER 13 Internal developer platforms
13.2.3 Observability

A trend since the mid-2010s has been for engineering teams to take on more responsi-
bility for owning the operation of their applications in production. You Build It, You
build it, you run it is the term that captures this sentiment, emphasizing that the people
who write the code are those with the greatest incentives and opportunities to ensure
it performs well in a production environment.

 A common concern with you build it, you run it is that software developers will get
completely bogged down having to manage infrastructure and will have no time to
focus on their real job of building products. This concern is only valid when the cost
of supporting an application in production is too high, which is a sign of bigger prob-
lems. A well-designed IDP provides the tooling, support, and education so that the
cost of supporting systems in production is low enough not to distract engineers, as
demonstrated in the HMRC MDTP example.

 Monitoring, logging, and alerting are three IDP components that reduce the cog-
nitive load of supporting applications in production. Getting them right is vital and
requires a lot of effort, but the ROI is worth it. Good observability goes beyond moni-
toring and can greatly increase reliability and reduce maintenance costs. As Liz Fong-
Jones explains, “[Monitoring] simply shows developers when something is wrong but
doesn’t give any insights into the reasons why it’s wrong. As a result, organizations
need a new way of thinking about things. This is where observability comes in. Observ-
ability allows developers to understand the internal state of an application by analyz-
ing its external outputs” (http://mng.bz/7vGQ). OpenTelemetry (https://
opentelemetry.io/) is an open-source tool for implementing observability in a variety
of languages and is a great starting point for learning more about observability.

 As part of the golden path, application templates can include logging and moni-
toring code libraries that hook into tooling like Grafana and Splunk. All engineers
have to do is publish logs using the provided library, which will appear in centralized
logging platforms thanks to automatically configured plumbing. In addition, com-
mon dashboards based on the four golden signals (http://mng.bz/mjN8) should also
be provided out of the box.

13.2.4 Software applications catalog

Traditionally, the discoverability of IT systems has been poor. Identifying all the appli-
cations within an organization has often relied on tribal knowledge or out-of-date doc-
umentation. It’s not uncommon to hear of engineers duplicating existing APIs
because they weren’t aware a similar API already existed in the company. A software
catalog solves this problem by cataloging all APIs, frontends, and other applications in
a centralized location. It captures key information like the team that owns the soft-
ware and links to other useful information like dashboards, code repositories, and
team communication channels. Figure 13.4 shows how Backstage can be used to cata-
log software applications.

http://mng.bz/7vGQ
https://opentelemetry.io/
https://opentelemetry.io/
http://mng.bz/mjN8

32513.2 Platform capabilities
Figure 13.4 Using Backstage as a software applications catalog

In a modern context, live metadata should power software catalogs, not static docu-
mentation. For example, when a team is spinning up a new API by following a golden
path, metadata should be automatically created and accessible to the software catalog.
No manual effort should be required, meaning all IT applications are guaranteed to
be discoverable and the documentation up to date. Backstage, for example, can
include the current production status of the application in addition to team and code
information.

13.2.5 Great platform documentation

A good IDP has great documentation. Engineers and other platform consumers
should be able to find the information they need and complete the majority of their
platform tasks just by following the documentation. If engineers constantly contact
the platform’s teams for help and advice, the DX starts to suffer, and platform engi-
neers lose time to support activities that prevent them from improving the platform.
This becomes especially important as the platform scales and is used by more and
more teams. Poor documentation will result in accelerating support costs and
unhappy platform consumers. Teams working in platforms should actively monitor
their support activities and look for opportunities to improve documentation to
reduce the support workload, just like a company building a product for external cus-
tomers. Some companies hire dedicated content specialists to ensure platform docu-
mentation is high quality.

326 CHAPTER 13 Internal developer platforms
13.2.6 Security and compliance

One of the most neglected topics in many tech companies is security. In the rush to
constantly deliver new features, building secure systems is overlooked. Some organiza-
tions are lucky enough to get away with it, but many aren’t and end up as news head-
lines for reasons like leaking sensitive customer data or being held to ransom by
hackers. Conversely, some organizations are paralyzed by fear and lock down their sys-
tems so heavily that software developers face a constant struggle to develop and
deploy new features.

 An IDP can play a crucial role in building secure systems while still allowing a
delightful DX. Key compliance requirements can be baked into the platform. For
example, deployment pipelines can be implemented with automated code scanning
and other checks, like validating that the code has been reviewed by a second person
and deployed to test environments before it goes into production. The platform can
keep a full audit history of each change as proof that all compliance checks were suc-
cessfully carried out.

 This is a win-win for both engineers and security teams. Developers don’t have to
remember to follow security and compliance guidelines, while security teams can
sleep easy knowing that their controls are automated as part of the platform.

 For some organizations, improving security is a principal reason for building an
IDP, as platform engineering expert Ivan Angelov explains in this short story: “One of
our biggest competitors got taken down for more than a week by an attack. They lost
tens of millions in missed revenue alone and spent weeks dealing with the breach.
This prompted us to look at whether the same could happen to us, and it quickly
became clear that not only could it happen, but it would take a huge amount of time
to address the tens of thousands of known vulnerabilities we have. Without a platform
and appropriately staffed security teams, we’re finding ourselves in a situation where
we need to rapidly increase investment in our platform to address them quickly and
efficiently, so that’s become a huge driver for building our IDP.”

13.2.7 API management

Over time, software architectures have become significantly more distributed, particu-
larly after the explosion of microservices. As a result, the ubiquity of APIs has grown.
HTTP APIs are commonly used for frontend-to-backend integration, service-to-service
integration, and integration with external systems. Consequently, the complexity of
managing APIs has also risen. Nowadays, enterprises with more than just a handful of
APIs typically adopt an API management solution.

 An API management solution typically consists of capabilities like API lifecycle man-
agement, a portal for browsing and interacting with APIs, access control (developers
apps, API keys, etc.), and monetizing externally published APIs. An expensive API man-
agement solution can seem overkill when you only have a few APIs and integrations.
The intricacy of this problem is that the number of APIs can quickly grow over time.
When you realize that an API management solution is needed, the cost of migrating all

32713.3 Industry example: Platform-powered business model revolution at La Redoute
your APIs to an API management solution may take months or even years. A little
upfront planning and regular reviews are key to making a move at the ideal time.

 Commercial API management solutions sometimes market questionable design
practices. In particular, the ability to write custom JavaScript that executes within the
gateway should be used cautiously. I’ve encountered numerous situations where busi-
ness and application logic ended up within the gateway, solving a short-term problem
but causing long-term maintenance issues. Searching through code in both the gate-
way and the actual API when production issues occur adds complication and frustra-
tion. This problem is exacerbated when different teams own the code in the API
platform and the code for the API.

13.2.8 FinOps

FinOps (financial operations) is becoming an increasingly prevalent concept. FinOps
aims to track, manage, and optimize costs, usage, and optimization of cloud resources
to help businesses save money and improve efficiency. There are many horror stories
involving companies that accidentally ended up with huge cloud bills, so it’s clear why
FinOps is important. By implementing FinOps practices, platform engineers can gain
greater visibility into their platform’s costs and usage, make data-driven decisions, and
optimize resource utilization to ensure that the platform remains financially sustain-
able over time.

 Implementing FinOps requires additional effort, like tagging resources. When left
to developers, it can easily be forgotten by accident because they have other things to
focus on. Baking it into the platform removes the potential for errors and adds no extra
work for developers. There’s a lot to consider when introducing FinOps, so I recom-
mend checking out the FinOps Foundation (https://www.finops.org/introduction/
what-is-finops/).

13.3 Industry example: Platform-powered business model
revolution at La Redoute

NOTE This industry example was co-authored with Antoine Craske, former
director of technology transformation at La Redoute. Now CIO & CTO of
Grupo Lusiaves, he is also the founder of the QE Unit and the quality engi-
neering framework, available at qeunit.com.

La Redoute is a leading French fashion retailer with more than 10 million customers
worldwide and annual revenues reaching 1 billion euros. The company is almost 200
years old, having been established in 1837 with 99% notoriety in France. But this rep-
utation alone wasn’t enough to protect the historic company’s status as a market
leader. In 2014, the company CEO painted a stark picture: “We generate 50 million of
negative EBITDA for 600 million annual sales. Our projects take months. Our posi-
tion has declined. We have four years to transform or it’s game over for La Redoute.”

 La Redoute was initially a pioneer of the mail-order business during the 1950s, but
with internet business models starting to dominate, the company needed to modernize

https://www.finops.org/introduction/what-is-finops/
https://www.finops.org/introduction/what-is-finops/

328 CHAPTER 13 Internal developer platforms
its entire business to have any chance of survival. It was a difficult period for the com-
pany. Not only did they need to find long-term innovations, but they had to massively
reduce costs in the short-term, resulting in the loss of 50% of their 3500 employees. Yet,
the most challenging of times are often the times where modernization has the greatest
chance of success. La Redoute had to transform its business model and completely
modernize its approach to developing products. Leadership knew this. They had noth-
ing to lose and gave product and technology teams the license to go for all-out innova-
tion. “We have to make 10x more with less. Find limitations, remove constraints, and
enable the business to iterate at speed” was the mandate laid out by business leaders.

 During my conversations with Antoine Craske, a technology director who has been
at La Redoute since 2010, I learned many fascinating insights about the company’s
modernization journey, like how they revolutionized their warehouse operations and
logistics through an integrated approach to software, hardware, and processes. Their
warehouses are now among the most automated in Europe. Antoine articulated
clearly why this was crucial to business prosperity: “An order placed on our digital
channel has to be no more than 2 hours later in the truck for departure. We had no
choice but to streamline the entire value-chain.”

 Building an internal developer platform with exceptional developer experience
was a crucial enabler of La Redoute’s turnaround. It used to take days for a commit to
go from a developer’s laptop to production; now, it takes less than 10 minutes. Creat-
ing new services used to take weeks; now it takes minutes. Overall, the company
deploys around 100 times per day, which has directly supported the growth of the
business—now active in 26 countries with 7 million unique visitors per month.

 While exploiting the potential of modern technologies was important, Antoine
and his colleagues put developer experience at the forefront of their platform, think-
ing “We knew that a successful developer experience was the cornerstone of better
supporting the business, as most of our initiatives depend on technology. I personally
pushed the developer experience to satisfy three criteria, where time-to-market was
not the first one but a consequence of the others:

 Quality—The first imperative to deliver high standards of functionality, security,
and infrastructure, among other requirements. Our key driver is to deliver a
built-in quality in the first place, by the people producing the artifacts rather
than chasing other teams (to ensure they complied).

 Efficiency—The second imperative for our DX, promoting a minimalist and
incremental approach. For instance, we did not start with a fully featured inter-
nal developer portal, but rather a portal of standard pipelines that later evolved
to GitOps and an IDP portal. This approach lets us build only what was really
needed for our team.

 Speed—The last imperative largely derives from the first two. A streamlined plat-
form enabling teams to deliver the essential quality requirements supports
faster cycles of iteration. The speed imperatives translated into more autonomy
and self-service, enabled by progressive automation.

32913.3 Industry example: Platform-powered business model revolution at La Redoute
We provide a paved path/golden path for our developers to follow, which includes
self-service provisioning for pipeline, secrets, configuration, and exposition.”

 A good IDP supports more than just development; it provides teams with the capa-
bilities to support their services in production as efficiently and hassle-free as possible.
La Redoute was fully cognizant of this: “The operational stage is secured by the pipe-
line offering progressive deployments capabilities, and by design, all components
must ensure observability foundations for logs and metrics. By default, components
expose non-functional logs and metrics, allowing to industrialize the alerting for API
errors for instance. Business metrics on another side, must be added by the developer,
and are monitored across all services. An application missing the business monitoring
is then tracked up with automated ticketing and review with the engineering manag-
ers. We also built a dashboard to measure our DevOps performance and make data-
driven decisions with indicators like build frequency, success ratio, waiting time per
stages, number of deployments in production, and SLIs among others.”

 Like a product, an IDP is a long-term, ongoing investment. And like many prod-
ucts, IDPs have various stakeholders with diverse needs, which means road mapping
plays a vital role. At La Redoute, like many organizations setting out to build IDPs, the
mindset shift for infrastructure-oriented people to start thinking about DX didn’t hap-
pen instantly. “The shift to DX was a key step in prioritizing our roadmap better. The
infrastructure-driven platform team gradually understood that their customers were
the developers, which sometimes meant limiting technology optimizations to increase
developer satisfaction instead. This broader, more cohesive vision was further
strengthened by joining the CTO, solution architecture, and platform CoP practices
to ensure that we were working towards common goals and keeping all considerations
in mind.”

 As with a commercial product, it’s also important to be somewhat data-driven to
verify that the IDP is meeting the needs of stakeholders and investments are deliver-
ing a satisfactory return. La Redoute continuously monitors several metrics that help
them keep track of platform adoption, usage, and effectiveness: “It’s essential that we
have metrics and KPIs in place to ensure that we avoid getting siloed in our optimiza-
tion efforts. Metrics such as daily usage of the platform and the number of commits
per developer can help us understand the usage and adoption of the platform. KPIs
such as the number of deploys per day, lead time from development to production,
and waiting time per stage can help us measure the efficiency of our development
process. It’s important to understand the difference between metrics and KPIs, that I
like to restate as linkin the output and outcomes, and how both can be used to drive
continuous improvement.”

 Antoine was also keen to emphasize the crucial role that organization design has
played in establishing and sustaining their IDP (see figure 13.5): “Organizational
design is also a crucial part of our platform development process. We have a dedicated
platform team consisting of a lead and four engineers focused on developer experi-
ence. In addition to this, we have a CoP engineering tech lead responsible for adop-
tion, continuous improvement, and knowledge sharing. We also have a CoE focused

330 CHAPTER 13 Internal developer platforms
on cloud and infrastructure to help align our main priorities. Governance is also criti-
cal, and we have identified our sponsors and stakeholders who are responsible for
ensuring the success of our platform development efforts. We also secure time to reg-
ularly share with teams in the form of talks and other sharing opportunities.”

Figure 13.5 Organizational design to sustain the IDP

“The success of a platform is heavily dependent on the people working on it. At pres-
ent, the engineering perimeter of the platform at hand is using about 60 to 80 individ-
uals depending on the current workload. While the data perimeter is utilizing around
15 individuals and the middleware is not fully integrated, with only about 8 individuals
currently involved. To ensure that the platform runs effectively and efficiently, there is
a dedicated platform team consisting of 4 people who are focused on building and
running the platform. Their objectives are to ensure that the developer experience is
optimized for maximum satisfaction. Additionally, the Cloud Center & CoE play a

Organizational design to sustain the IDP

Product vs. platform
boundary (for speed)

Technology practices
alignment (for quality)

CTO-led governance

Tech lead Software engineers

Head of platform
engineering

Head of cloud &
infrastructures

Product

Product

Product

Product

Platform

Cloud & infrastructure

33113.3 Industry example: Platform-powered business model revolution at La Redoute
crucial role in providing some common foundations and specific services to the plat-
form team and the wider engineering team.”

 One fundamental, and oftentimes controversial, topic that cannot be avoided
when building an IDP is technology stack and build-versus-buy choices. Rather than
being seduced by fashionable industry trends or industry peer pressure, it’s important
to focus on your own unique context. As Antoine explains: “It is important to under-
stand the trade-offs of technology choices in context. Our approach was to take the
minimalist choice and iterate, rather than pre-optimize and over-engineer, as this
would lead to maintenance costs and delay.”

 By focusing on what was important to them, Antoine and his colleagues decided
that Kubernetes was the sweet spot for their needs: “We wanted managed services for
efficiency and focus, but we also wanted to maintain some flexibility with an accept-
able level of lock-in. We chose Kubernetes instead of a container or app as a service, as
it provided us with desired level of flexibility because the other options were tied to
cloud providers at the time. We also preferred to use the Spring framework rather
than a PaaS solution on top of it, as it gave us the option of moving to a higher layer of
abstraction in the future if needed.”

 Platform technology choices extend beyond just infrastructure and programming
frameworks. There’s a whole ecosystem of tools to consider, with many open source
and vendor offerings to choose from. La Redoute took a principled and pragmatic
approach and even built tools of their own that were open-sourced: “We believe in
picking mature and community-supported solutions that will remain for some time,
even if not always open-source. Examples of such solutions include Hashicorp Vault,
ELK, Grafana, Jaeger, and Kubernetes. And sometimes, it is necessary to bootstrap
yourself where you don’t find what you need. We did that in 2010, building Cerberus
Testing, now an open-source test automation platform, and in that journey with
akhq.io as an Apache Kafka management console. We built it in a distributed OSPO
(Open-Source Program Office) model, collaborating with three companies, and shar-
ing the roadmap and resources. The product supported our use cases and grew with
our needs and of the community, counting companies like BMW, Adeo, BestBuy,
Decathlon, or Klarna. We were happy to see it appear in the ThoughtWorks technol-
ogy radar at the end of 2022.”

 Another complex, unavoidable challenge of building IDPs is the trade-off between
standards and flexibility. The more the platform is standardized, the more tooling and
processes can be built around the common conventions. But the risk is that too much
standardization can stifle teams, forcing them to use technologies and processes that
limit their ability to innovate. Antoine explains that La Redoute made a best effort to
identify what would be optimal in their unique context: “It’s important to step back
and consider the big picture. This includes taking into account the company’s size
and where the limiting factors may be. At La Redoute, some of the limiting factors
were release/deployment dependencies and testing. As a result, we leveraged our IDP
standards to evolve the software architecture to a finer grain of modularity aligned
with business domains and functions (i.e., miniservices). In addition, we structured

332 CHAPTER 13 Internal developer platforms
standard event-driven patterns, increasing functional and technical decoupling by
design. We tackled the testing part with scalable test environments to support the sys-
tematic automated tests required as part of every deployment pipeline.”

NOTE Platform engineering is a vast topic. On the book’s Miro board
(http://mng.bz/qjMN), you can find recommended resources for digging
deeper into the topic and keeping up with the latest developments.

13.4 Managing internal developer platforms
A platform’s positive and negative characteristics will be amplified by the number of
teams using the platform. Therefore, it’s crucial that every aspect of building and
maintaining the platform is well managed. From treating the platform as a product to
choosing an appropriate funding model to optimize the experience of people work-
ing on platforms, there is a lot to think about and get right.

13.4.1 Platform as a product

The concept of platform as a product (http://mng.bz/5op7) has become increasingly
popular because it is an effective approach to building and evolving modern plat-
forms, which counteracts the mistakes from previous generations. It’s the idea of
applying modern product management practices to building IDPs, like having a value-
driven strategy and product management expertise within the platform’s teams.

PRODUCT NOT PROJECT

One of the biggest things to worry about when building an IDP is investing large sums
of money and hundreds of people hours only to find that nobody wants to use the
platform when it has been built. This does happen in reality and is usually the result of
treating the platform as a project. Do not set out with the mindset of designing the
whole platform up front, spending multiple years building and then expecting every-
body to come and use it.

 Building an internal platform should apply the principles and practices of modern
product development. It should be developed iteratively based on feedback, driven by
a clear strategy connected to a compelling business case, with sufficient expertise and
genuine product management expertise on the team. Start small with proof of con-
cepts and MVPs and scale the investment as value is validated.

SOLID BUSINESS CASE AND PRODUCT STRATEGY

Building an IDP should be driven by a clear understanding of the value it will provide.
It’s not a good idea to do it just because it seems fashionable and other organizations
are doing it. It’s essential to clearly understand the value the platform will provide and
how it compares to the existing approach and off-the-shelf solutions.

 Efficiency and cost reduction are benefits of an IDP. However, when focusing on
these advantages alone, it’s easy to develop a below-par platform that provides a poor
experience to consumers through lacking features and poor usability. While cost is
always an important consideration, the focal point of the business case and strategy

http://mng.bz/5op7
http://mng.bz/qjMN

33313.4 Managing internal developer platforms
should be lower cognitive load and improved productivity. Improved innovation, col-
laboration, and scalability are other benefits to articulate.

 Many concepts used throughout this book can be applied equally to building busi-
ness cases and designing IDPs, like listening and mapping tours, Wardley Mapping,
and even EventStorming as a technique for mapping out internal processes and devel-
opment workflows.

DATA- AND FEEDBACK-DRIVEN

A developer platform should reduce the cognitive load of the engineering teams that
consume it and empower them to focus on their core business objectives. It’s a major
warning sign when the platform increases teams’ cognitive load. Tracking key metrics
enables a platform’s teams to assess the platform’s effect on DX, team satisfaction, and
cognitive and system reliability. Further, these insights should be used as feedback to
drive the platform roadmap.

 Developer experience metrics measure how well the platform supports its users in
accomplishing their tasks. These metrics can include

 Time to create a new service (from zero to running in production)
 Deployment frequency
 Lead time for changes
 Number of support tickets raised (indicator that self-service needs improvement)

In addition to DX metrics, surveys are an important tool for gathering feedback about
the experience of platform consumers. On average, platforms send out a survey about
once per quarter, containing questions along the lines of

 How satisfied are you overall with your experience of the platform? (1–10)
 How easy do you find creating a new microservice on the platform? (1–10)
 How happy are you with the process of deploying new changes to production?

(1–10)
 In general, how easy is it to navigate the platform documentation? (1–10)
 What is your biggest pain point with the platform?
 If you could change one thing about the platform, what would it be?

Assessing usage is also a key measurement to determine the effect on the platform. Most
importantly, how many teams are actually using the platform out of your total address-
able market? Are all the relevant teams within the organization using the platform?

 Engineers are using the platform not only to set up new services but to support
them in production. Therefore, measuring production reliability is essential. Reliabil-
ity metrics include uptime, latency, number of incidents, mean time to recovery, and
change failure rate.

PLATFORM PRODUCT MANAGERS

It’s so easy to invest a lot of time and effort in building a suboptimal platform or even
a platform that provides a worse experience. I’ve seen countless occasions where it was
considered acceptable to have low usability standards because a platform was internal

334 CHAPTER 13 Internal developer platforms
only or intended to be used by developers. Maintaining a focus on the needs of plat-
form consumers and delivering what they need in a usable form is critical. For this rea-
son, an IDP cannot be staffed only by people with strong technical skills. It’s equally
important to have product management skills on the team. Like the MDTP example,
the optimal scenario is that the whole team has a strong product mindset and is totally
focused on providing a great DX.

 Good platform product managers will spend a lot of time with developers who use
the platform to understand how they currently work and their pain points. They will
do this constantly and continuously seek feedback while developing and evolving a
product strategy for the platform.

 A good platform product manager will also ensure that the platform’s roadmap is
focused on the highest-value items for the organization as a whole. It’s worryingly easy
for teams on a platform to fall into the habit of developing ad-hoc features based on
whichever team is shouting loudest. While feedback and adaptability are important,
all work should be validated and prioritized accordingly rather than the team being
reactive and building to spec.

REAL SELF-SERVICE

Self-service may sound like an exact and unambiguous requirement. Yet, there are
some interesting interpretations out there that involve raising support tickets and
manual tasks being conducted by platform team members. This is not what is
intended when talking about self-service platforms. Self-service platforms enable plat-
form consumers to perform their tasks, like creating a new application or deploying
to production, without raising any tickets or relying on platform team members to
carry out manual steps like creating servers or deploying code.

 One way to test your platform’s definition of self-service is to compare yourself with
AWS. Anybody can create an account with AWS and spin up services like AWS Lambda
or EC2 virtual machines. No support tickets are created, nobody at AWS is manually
doing the work behind the scenes, and there is no need to talk to anyone at AWS. The
AWS platform allows engineers to carry out their tasks immediately and without the
support of any humans.

 Obviously, things occasionally go wrong; therefore, there are genuine reasons for
raising support tickets to the platform. But, there should be periodic analysis of sup-
port tickets to ensure support tickets are not being raised for routine tasks that should
be automated or documented better.

FUNDING MODEL

New platform components and enhancements should not be funded on a per-feature
basis by the teams requesting the features. A better funding model is for the platform
to have a dedicated budget. Firstly, platform features and enhancements should bene-
fit many teams, so one customer paying doesn’t make sense. Secondly, platform com-
ponents require ongoing maintenance beyond an initial payment. And thirdly,
arguing about who is funding features creates politics and distractions that benefit no
one and ultimately delays improvements to the platform.

33513.4 Managing internal developer platforms
13.4.2 Adequately staffed

Building an IDP is not a side project for people already fully occupied with other
work. This can work when there are just a few teams, and people dedicated to the
platform can’t be justified, but it doesn’t work as the number of teams grows beyond
approximately six. Building a half-baked platform can be worse than building no plat-
form at all. They can add more friction and complexity to the workflow of every team
that uses the platform. So, if you feel there is a need to build an IDP, then take time to
determine the necessary level of investment.

DIFFERENT SKILLS FOR DIFFERENT LAYERS

As the number of platform components increases and the number of teams consum-
ing the platform grows, the number of people working on the platform will also need
to increase. When the team gets too large, it should be split into multiple smaller
teams, each owning an area of the platform. Adrian Cockroft’s first principle for archi-
tecting platform groupings is that it isn’t one platform: “It’s layers of platforms that
need different specialized knowledge, so it’s usually many platform teams” (http://
mng.bz/6nAR). At HMRC, for example, PlatOps was mostly responsible for devel-
oper-centric tools and services, while other teams like WebOps (the web operations
team) were responsible for lower layers like hosting and networking.

THE RISKS OF MULTIPLE TEAMS AND BACKLOGS

When a platform is composed of multiple teams responsible for different layers, one
anti-pattern to avoid is what Evan Bottcher calls the un-platform (http://mng.bz/
orRD). In brief, each team has its own incentives and management structure and has
no incentive for a joined-up end-to-end experience. As a consequence, the dysfunc-
tions are exposed to consumers of the platform. Because there are handovers and bot-
tlenecks inside the platform, work takes longer. And when teams have issues, they may
get passed around between different teams when trying to resolve issues, for example.

 To avoid building an un-platform, focus on the types of platform work and opti-
mize end-to-end flows. And incentivize teams in a platform grouping to optimize for
end-to-end performance rather than individual productivity.

13.4.3 Build vs. curate

There is no obligation to build and manage all platform layers. If you adopt Serverless,
for example, there is no hardware or operating system to manage. Cloud providers take
care of that for you. And it’s not a binary choice. Some parts of your system may use
Serverless, while others may need access to lower layers of the stack. When working with
one organization that had chosen a Serverless-based platform, it surprised me how
happy the security team was with the direction. I expected a lot of resistance and a long
list of reasons why it would take months to obtain approval, but their response was the
opposite. They liked that Serverless provided a much smaller attack surface.

 Where off-the-shelf components exist, like API management solutions and soft-
ware catalogs, you need a good reason to build them in-house. Remember Matthew
Skelton’s quote from the start of the chapter that emphasizes a digital platform should

http://mng.bz/6nAR
http://mng.bz/6nAR
http://mng.bz/orRD
http://mng.bz/orRD

336 CHAPTER 13 Internal developer platforms
involve curating and adapting existing offerings: “A platform is a ‘curated experience
for engineers.’ A good platform could thus be just a wiki page that specifies 5 or 14
AWS services that should be used together in a specific way.”

 When you build platform capabilities in-house, you effectively compete with cloud
providers like Google and AWS. Even if you feel that developing in-house is cheaper,
can you provide an equally good, or even better, developer experience? If not, your
cost savings may be a poor trade-off when your development teams have higher cogni-
tive load and are less productive.

13.4.4 Technology standardization vs. flexibility

Opinionated platforms improve the DX by enabling platform engineers to build more
advanced and bespoke tooling. At HMRC in 2015, the only choice for building a new
microservice API was using the programming language Scala and the Play Framework.
It’s fair to say that some engineers complained about the lack of freedom and flexibil-
ity. However, the results tell their own story. There were 50+ teams, all able to spin up
new microservices and have them close to production-ready in just hours, with the
ability to deploy to production daily. An IDP doesn’t have to be this highly opinion-
ated, but this example does make a clear case for diligently considering the level of
standardization that is right in your context.

 Rather than mandating the use of golden paths and paved roads, some organiza-
tions prefer to offer engineering teams more flexibility. Netflix is an example of a
company that invests heavily in paved roads without strict mandates: “We don’t man-
date adoption of those paved roads but encourage adoption by ensuring that develop-
ment and operations using those technologies is a far better experience than not
using them” (http://mng.bz/wjp5).

 The more technologies you use, the more golden paths and tools you must create.
Some questions to ask yourself are

 Is it an effective use of your time and budget to support four programming lan-
guages and three cloud providers?

 Can you continue to provide an exceptional DX when you are spread thinly
across a more diverse technology landscape?

 How will the cognitive load and flow of teams be impacted if they have to take
on more infrastructure and tooling responsibilities (that could have been part
of the platform)?

13.4.5 Platform engineer experience

While DX is extremely important, Paula Kennedy, the cofounder and COO at Syn-
tasso, makes an equally valid point: “The challenge we’re coming across is that cogni-
tive load is shifting onto the platform teams. These teams have become responsible
for providing the developer experience, but with many tools that need to be incorpo-
rated, as well as other concerns such as compliance and governance, they face huge
cognitive load” (https://platformengineering.org/blog/cognitive-load).

http://mng.bz/wjp5
https://platformengineering.org/blog/cognitive-load

337Summary
 Providing great experiences for developers shouldn’t come at the expense of burn-
ing out platform engineers. We should also be thinking about platform engineer expe-
riences, as Paula articulates. This means continually seeking feedback from platform
engineers, analyzing their workflows and pain points, and optimizing their processes.

13.5 When to build a platform
Deciding to build an IDP and how much to invest can be tricky. There are numerous
difficult decisions to make and a few key principles that everyone involved in the ini-
tiative needs to be aligned on. Firstly, an IDP should not be delivered as a big bang 12-
to 24-month project. In Team Topologies, Matthew Skelton and Manual Pais advocate
for a thinnest viable platform mentality: “A TVP is the smallest set of APIs, documenta-
tion, and tools needed to accelerate the teams developing modern software services
and systems.” The second important principle is that the IDP isn’t a side project. It will
be the foundation for many or all your engineering teams. It needs dedicated team
members and long-term funding.

 Smaller organizations with just a few engineering teams typically don’t need an
IDP. In 2021, a client of mine was a startup within a large European organization. The
startup’s raison d’être was to disrupt the entire industry, including its parent company.
The startup’s CEO did everything possible to create an innovative and product-centric
culture. In particular, he pushed autonomy, empowerment, and flat hierarchy to the
limit. Everybody reported to the CEO, and teams were fully empowered to make prod-
uct and technology decisions. When I first met with the organization, they were just
starting to encounter growing pains due to their success. They weren’t sure if a plat-
form team was needed.

 On one hand, they didn’t want a centralized team that could introduce bureau-
cracy into the organization. On the other hand, a few engineers were expected to
maintain and build the common infrastructure and tooling as a side project in addi-
tion to their main job as engineers in product teams. The common infrastructure
became neglected, increasing each team’s cognitive load, and the side-project engi-
neers were starting to burn out. Combined with the projection to double the number
of teams, the signs strongly hinted that it was the right time to build a real platform
with a dedicated team.

 Size isn’t the only factor that should influence the decision to build an IDP. Even
in larger organizations, there are reasons not to create a platform. For example, when
the chance of adoption is likely to be low. This happens for a number of reasons, such
as teams not wanting to give up freedom they already have or not having the time to
migrate from their existing technologies to the new platform. Or simply resistance to
change from those who are happy operating more traditionally.

Summary
 To achieve independent value streams with fast flow, stream-aligned teams cannot

be burdened with a high level of work just to build, deploy, and test their code.
 A slick developer experience (DX) is key to reducing extraneous cognitive load

so teams can focus on continuously delivering product enhancements.

338 CHAPTER 13 Internal developer platforms
 The main purpose of an internal developer platform (IDP) is to provide a great
DX and reduce the teams’ cognitive load.

 DX covers many aspects of a developer’s work like
– Creating and setting up new applications
– Developing code locally
– Deploying code to test and production environments
– Supporting code in production

 In a modern context, DX should allow teams to set up new applications in min-
utes or hours; deploy code to production in minutes’ and have metrics, moni-
toring, logging, and advanced observability out of the box.

 IDPs can enable a slick DX with golden paths, which are highly automated or
well-documented processes for performing common tasks like spinning up new
applications.

 IDPs can expose capabilities in various forms like UIs, CLIs, and Git repositories.
 IDPs should provide an applications catalog that shows all of an organization’s

applications along with metadata like the team that owns the application.
 High-quality documentation is a key part of ensuring platforms are self-service

and easy to use; without this, teams will struggle and may need to raise support
tickets.

 IDPs should be treated as products with a value-driven, iterative approach and
not treated as waterfall-style projects.

 IDPs should be staffed with skilled product managers who continuously seek
out feedback from platform consumers and treat them like external customers.

 It’s ideal when the whole platform is focused on DX and the needs of their
internal customers.

 Not all of a platform needs to be built in-house; some or most of a platform
could be a curated experience of off-the-shelf offerings.

 Not every organization needs a platform; it may be an unwise choice when
there are only a few teams, adoption of the platform is likely to be low, or off-
the-shelf solutions are sufficient.

Data mesh
revolutionizing

data engineering
If you thought modernizing your architecture would not affect your data, you
would be seriously wrong. I won’t try to convince you of the importance of data;
anyone who has read this far into this chapter knows already. Many people nick-
named data the new oil, but modern data engineering goes beyond simple pipe-
lines. Data feeds everything from dashboards and reports used by executives when
making decisions to risk analysis and fraud detection, including AI. However,
unleashing the true value of data comes at a severe operational cost if not done cor-
rectly. For sanity’s sake, I will not name the organizations whose operating budget

This chapter covers
 Quickly reviewing why and how we got into this

situation

 Anchoring the four principles of data mesh

 Understanding data quantum

 Building your first data quantum

 Assimilating the data contract

 Navigating through the experience planes
339

340 CHAPTER 14 Data mesh revolutionizing data engineering
for maintaining pipelines and systems forbids them to do any forward-thinking; then,
they hire many data scientists who spend 80% of their time on data discovery and
engineering. Finally, most complain about the value data brings to the company.
Sound familiar? In this chapter, I will walk you through how we came to this point,
what the issues are with modern data management, why you can solve them with just
four fundamental principles, what the various elements of the architecture are, and
finally, how to get started.

14.1 Setting up the context for complex data
In this section, I will briefly cover the technology background and new needs around
data. I will conclude with the issues most corporations face. Do not worry; I am not
giving a history lesson, but I will attempt to explain how data morphed from this sim-
ple, structured element to a shapeless monster. But keep in mind, when I talk about a
beast, I think more about Cookie Monster—a friendly creature, as long as you feed it.

14.1.1 The dawn of data engineering

For me, the real revolution surrounding data started around 1971, when MIT demon-
strated Codd’s idea (http://mng.bz/ZRrA) of a relational database. Along with the
third normal form, engineers began to think more about data and how to use it.

 Data warehouses were the next logical evolution: How can I aggregate data, let’s
say, from thousands of stores across the country so that I can understand what I am
selling? At first, data warehouses seemed like a great idea until businesses demanded
more agility from their data teams. The rigorous (and somewhat complex) modeling
associated with data warehouses rendered the ingestion of new data sources very
complicated.

 The example in figure 14.1 is loosely based on an auto parts retail company with a
B2C and B2B activity. The information is split into different buckets based on the
source. Look at a store receipt: part of the information is stored in the loyalty cus-
tomer dataset (process 3 in the diagram); it is recorded in the store transaction (pro-
cess 6); and depending on whether it is a pro/B2B customer or a retail/B2C,
customer it goes in two other buckets (processes 2 and 4). When the company added
the loyalty program, a whole new process (3) had to be built to collect the loyalty
information from the store receipt.

 As shown in figure 14.1, even with a simple data warehouse, the ingestion process
is not easy and can become increasingly complex as your input files grow. Because
these processes are across the domains of the company, a centralized team, which has
no domain expertise, is often building them.

 Data lakes tackled the problems by hiding the ingestion complexity under the liv-
ing room rug. Data lakes made it easy to ingest data but pushed the burden of access-
ing it onto consumers.

http://mng.bz/ZRrA

34114.1 Setting up the context for complex data
Figure 14.1 A data warehouse and some of its ingestion process

Transactions

Customers

Merchandising

Store
transactions

Pro
transactions

Store B2C
customers

Loyalty
customers

Online
customers

Pro
customers •••

•••

Product Brands •••

Files and other data sources

Nicely organized
datasets in a
datawarehouse

Domain

Store
receipt

B2B
return

New
products

Products B2B
returns

Store
receipts

Store
receipt

B2B
return

New
products

Datasets

Organized datasets in a
data lake, aligned to the
source

Figure 14.2 A data lake has
a simplified ingestion process.

342 CHAPTER 14 Data mesh revolutionizing data engineering
Figure 14.2 illustrates the simple ingestion processes. As you can see, it is much sim-
pler: store receipts go into the store receipt bucket, B2B returns go to the B2B returns
bucket, and so on. However, there are two issues:

 What happens when the store receipts change format or you open in a new
country or add a special tax, loyalty program, or any other change? You may
have new buckets or modifications of existing ones.

 As figure 14.3 indicates, it can become complicated really fast when you want to
access the data.

Figure 14.3 Getting data from a data lake is not as easy as you would like.

The numbers on pipelines/processes in figures 14.2 and 14.3 are not linked to figure
14.1; they simply illustrate that there is no obvious win in building pipelines.

 Like the data warehouse, data lakes and their ingestion and consumption are han-
dled by centralized teams with minimal domain knowledge in a project mode. This cen-
tralization thinking is very similar to the monolithic approach in software engineering.

µservice API

Good for
operational
processing

Good for
analytics
loads

Database/
datamart

Products B2B
returns

Store
receipts

Store
receipt

B2B
return

New
products

Datasets

34314.1 Setting up the context for complex data
 The size of those projects, building and deploying a data lake or data warehouse,
often calls for an enterprise engagement. Building a data lake for only your depart-
ment is difficult as it will require enterprise-level oversight, governance, and
resources. No enterprise wants a shadow IT data lake.

 In both scenarios, the ETL (extract, transform, and load) and ELT (extract, load,
and transform) pipelines are becoming expensive to maintain. Some enterprises’
entire operational budget supports those pipelines and their maintenance, freezing
any new developments. The lake house tries combining data warehouses and lakes
without addressing the centralization issues around data.

14.1.2 New needs around data

The rigor around data is growing everywhere—a trend that will continue. Let’s address
the elephant in the room first: data breaches. They seem to happen all the time, and
although the root cause of the breach is rarely (dare I say never?) the data itself, it is
about how we manage the data. For the consumer, it can be devastating. However, for
corporations, fines are only one consequence; reputational harm lasts longer. Corpo-
rations understand that they need to protect the data as data cannot protect itself.

 Early in my career, I remember going to a customer at a single “mom and pop”
shop (without even a mom). He was building and deploying a pharmacy management
system out of his basement. I am sure that neither the details of the prescriptions nor
the names of the patients were encrypted.

 Another concern is how much information technology has become ubiquitous in
our daily lives. States and governments have developed laws to manage how personal
data is handled and used. Famous examples include Europe’s GDPR (2016), Califor-
nia’s CCPA (2018), and France’s National Commission on Informatics and Liberty
(1978). Corporations need to comply with privacy regulations.

 A third issue is the abuse and inadequate practices that develop over time—inade-
quate reporting to Wall Street, complex (and voluntarily cryptic) financial products,
abuse in collection calls and reach out, and so much more. Corporations have right-
fully been the target of legislators for increased scrutiny and need to prove that they
are willing to do the right thing. For example, in the United States, you should keep
your financial data for 7 years, but in France, it is 10 years, and Australia is changing
from 7 years to 10 years.

 This assessment is in no way exhaustive or static. We live in a dynamic and global
world. We need a governance system from an enterprise perspective that is flexible
based on business and regulatory needs.

14.1.3 More problems than solutions

We are experiencing a constant run toward new technologies that do not

 Solve centralization of data and data engineering, far from the expertise of the
factory floor

 Answer to more regulations and diverse compliance rules
 Provide lifecycles around data and its constant acceleration

344 CHAPTER 14 Data mesh revolutionizing data engineering
 Grant access or allow users to manipulate data easily
 Ensure trust
 Support the growing scale of data

In the next section, we see how data mesh can directly solve some of these issues and
help others.

14.2 The four principles of data mesh
In this section, I will detail the four principles driving data mesh; how they provide a
solution to the problems discussed in the previous section; and, most importantly, why
those four principles rely on one another. In May 2019, a brilliant engineer, Zhamak
Dehghani, published a paper highlighting the basis of the data mesh called “How to
Move Beyond a Monolithic Data Lake to a Distributed Data Mesh” (http://mng.bz/
RmMv). In her paper, Dehghani sets the ground for four principles, which are refined
over the last couple of years into the data mesh’s four principles.

 I like to compare those principles to how the agile manifesto by Kent Beck et al.
(https://agilemanifesto.org/) disrupted the waterfall-based lifecycle in software engi-
neering. Data mesh brings to data engineering many of the concepts you may have
been familiar with in agile software engineering and domain-driven design, including
product thinking, iterative development, ownership, and more. Let’s discuss the four
principles.

14.2.1 Principle of domain ownership

The term domain has been so overused in recent decades that its meaning is almost
gibberish. Nevertheless, let’s try to tame the domain and ownership in this context.
Chapter 8 provides more detailed enlightenment about this notion.

 A domain is a specific area of business on which you are focusing. If you are in the
financial industry, it can be customer accounts or a specific area, such as individual
accounts. Identifying the domain sets the boundaries and prevents you from falling
into scope-creep situations (such as including all types of accounts in the project).

 If you are familiar with domain-driven design, which was discussed previously in
this book, the principle will come naturally to you. It is common sense: find the peo-
ple who know a domain best and associate them with a data architect. The decentral-
ized team has precious domain expertise; they know more about the data sources,
data producers, rules, history, and evolution of systems than a centralized team that
switches from domain to domain. Adding the data architect into the mix will bring
security, rules, and global governance to stay compliant with enterprise policies. Prob-
lem solved: centralization of data and data engineering.

14.2.2 Principle of data as a product

In software engineering, Agile replaced the project with the product. It was only a
question of time before data also became a product versus a project. Before seeing
what a data product can bring, let’s remind ourselves what a project is.

http://mng.bz/RmMv
http://mng.bz/RmMv
https://agilemanifesto.org/

34514.2 The four principles of data mesh
 A project is a carefully planned initiative with a precise goal. A project is executed
individually or as a team, although in software and data engineering, it is mostly
teams. An essential attribute of a project is about time. A project is finite. It should
end; its temporality is built-in.

 Focusing on a data product will enable you to switch from a project-planning per-
spective to a customer-centric approach. Daunting? No, just remember DAUNTIVS; a
data product must be

 Discoverable
 Addressable
 Understandable
 Natively accessible
 Trustworthy and truthful
 Interoperable and composable
 Valuable on its own
 Secure

In the next sections, I will describe the architecture and implementation to answer
those requirements.

 In software architecture, the smallest deployable element is called a quantum. When
applied to data architecture, the data quantum is the smallest deployable element
bringing value (figure 14.4). The data quantum is not related to quantum computing.

Figure 14.4 The data quantum takes the shape of a hexagon, highlighting its multiple
endpoints, allowing access to data, metadata, observability, and control.

Data quantum

Analytics data
clients

Operational
data clients

Control clients

Data sources

Discovery
clients

Observability
clients

346 CHAPTER 14 Data mesh revolutionizing data engineering
You’re probably wondering, “Hey, how is that different from my data lake with a cou-
ple of data governance tools?” The answer is that size matters: instead of an entire
enterprise-level lake, you focus on a single domain. It’s more “byte size” and chewable.
Thanks to its smaller size and scope, implementation is faster and the value from data
is reinjected in the company a lot faster.

 Let’s consider a small example: Is it easier to build and deploy a smaller data prod-
uct than a full data lake? By focusing on a smaller product at first, you can materialize
value quicker. Our approach was to focus on six smaller datasets, each composed of
one table and less than 200 columns, knowing that we could easily evolve it at a later
stage based on customer needs. This allowed us to deliver quick results. Problem
solved: provide lifecycle around data and its constant acceleration.

14.2.3 Principle of the self-serve data platform

When I was a kid, in France, I loved going to the local supermarket with my parents
because it had a cafeteria where I could put all the food I wanted onto a tray. The self-
service empowered me to make (bad) food choices. But what does that mean when it
comes to a data platform?

 Since its inception in 2001, Agile has proven to be a working methodology. Agile
software engineering empowered software engineers. The way to empower data scien-
tists is to give them access to data.

 Data scientists and analysts spend (too much) time in their data discovery phase.
In many situations, they find a piece of data in a random column in a table some-
where and assume that this is what they need. Sometimes it works, and sometimes
your PB&J toast does not fall on the jelly side. (The peanut butter and jelly toast or
sandwich is a rare American delicacy. As you can imagine, your toast falling on the
jelly side is not the best experience.)

 Empowering the data scientists means giving them access to not only a basic cata-
log of fields but also precise definitions, active and passive metadata, feedback loops,
and much more. For a data engineer, self-service means the ability to create ad-hoc
data pipelines and products. As you build a data mesh, they are your customers: you
want to greet them in a five-star Yelp cafeteria, not this crappy one-star shack. Prob-
lems solved: grant access or allow users to manipulate data easily and support the
growing scale of data.

14.2.4 Principle of federated computational governance

Every word of the principle of federated computational governance has a very import-
ant meaning, as I shall convey. Information technology has become ubiquitous in our
day-to-day life. States and governments have developed laws to manage how personal
data is handled and used. Of course, those constraints are not the only push toward
governance in enterprises; most companies often have data governance rules and pro-
tections that may go beyond what the law requires. Those rules are established by a
central (federal) governance team.

34714.2 The four principles of data mesh
 Your data governance team creates policies applicable to the entire organization,
which the domain team will follow to achieve enterprise-level consistency and compli-
ance. However, the domain team owns the local governance at the quantum level,
maximizing the team’s expertise.

 But why push toward computational governance and not just data governance?
Because data governance is simply too limiting. Even when you include metadata in
your governance (and, of course, you do), you are still missing the entire ecosystem of
computational resources linked to your systems. In a modern cloud-based world, you
must account for many more assets. It simply makes sense to extend from data to com-
putational governance (figure 14.5).

Figure 14.5 In a federated governance model, the enterprise data governance team
works with each business unit.

For example, the company’s data retention period could be three years, but some
local teams may be required to keep the data for seven (or more) years. The central
data governance team will say “three years,” while the ground team can override this
based on their needs and choose a “seven-year” value. Problem solved: answer to more
regulations and diverse compliance rules.

14.2.5 No principle lives in isolation

Now that you know everything about the four principles driving a data mesh, let’s
focus on their interactions and understand the relationship between the principles.
Each principle influences one another, and as you design and build your data mesh,
you cannot look at one principle in isolation; you need progress on the four fronts at
the same time. It is easier than it seems, but ignoring even one principle would be a
big mistake, as figure 14.6 illustrates.

Ground team

Enterprise data
governance

team

Ground team

Field knowledge
business expertise
specific domain
rules

Global governance
rules legislation

348 CHAPTER 14 Data mesh revolutionizing data engineering
Figure 14.6 Thinking of implementing a data mesh without integrating all four
principles would be a mistake.

Here is how to read figure 14.6. Following the principle of domain ownership, the
domain drafts the business requirements. Those requirements will be used to design
the product (principle of data as a product). The product enters a lifecycle in terms of
availability and lifecycle that are managed by the principle of federated governance.
Finally, the product’s availability influences the self-service aspect of the data platform.

14.3 Building your first data quantum
After understanding the problem statements and the principles that will solve them,
one of the hardest parts is how to architect (and then implement) a data mesh. Let’s
start small and expand from there. Let’s build your first data quantum.

14.3.1 The smallest element with value

Whatever you do, the goal is to build value for your company. However, how can you
create this value without boiling the ocean (which is cruel in many ways)?

 If you are familiar with domain-driven design (DDD), you will quickly draw a paral-
lel; if not, think of a limited scope for your project. What is the minimal set of (data)
features you can deliver that will bring value to your consumers?

Detailed catalog

Business requirements

Business domain expertise

Product &
feature

lifecycle

Data quantum architecture & designImplementation

Principle of
domain ownership

Principle of
data as a product

Principle of the
self-serve data platform

Principle of
federated computational

governance

34914.3 Building your first data quantum
 In this way, you are applying the first principle: domain ownership. Agile and prod-
uct thinking introduced the notion of a minimal viable product (MVP). You are going
to deliver a minimal viable data product. It may contain only some of the elements
demanded by your customers, but like with Agile methodologies, you will deploy, let’s
say, 80% of the features within a (few) sprints.

 Similar to Agile methodologies, after you deliver your first product, your custom-
ers will provide feedback, and you will add the features from your backlog. This deliv-
ery mechanism is hitting the second principle of data mesh: data as a product.

 As you previously read, the smallest deployment element of an architecture is a
quantum. The smallest deployment data product of an architecture is a data quan-
tum. Let’s build our first data quantum.

14.3.2 Logical architecture

You just learned that a data quantum is the smallest element you can deploy. Let’s con-
sider its main components.

Figure 14.7 A data quantum (pl. data quanta) is the implementation of a data product and is
represented as a hexagon.

You can divide the data quantum into five subcomponents (figure 14.7):

 The discovery & dictionary services
 The observability services
 The control services

Consumers

Control clients

Data sources

Discovery
clients

Observability
clients

Observability
services

Discovery
services

Data onboarding

SLA

Data quality

Transformation

Interoperable data
model

Control services

350 CHAPTER 14 Data mesh revolutionizing data engineering
 The data onboarding
 The interoperable data

The dictionary services provide the precious sesame to your passive metadata. I recom-
mend that your data quantum users can connect, without authentication, to the dic-
tionary. This facilitates the third principle of data mesh: the self-serve data platform.
Their data discovery is then extremely simplified as they can browse the dictionary in
a very interactive way without needing specific permissions, with additional descrip-
tion and access to data lineage. When they find what they need, they can easily check
that they have access or request access to the data. The information exposed by the
dictionary services is called passive metadata.

 The observability services bring an interface between the built-in observability of the
data quantum and REST clients. Observability can measure the availability of the
sources and changes in the source schema; the services also include data quality.
These services allow a data consumer to gauge the quality of the data within the data
quantum and decide if the data quantum will match their service-level objectives
(SLO) expectations. Collectively, you can call those metrics active metadata.

NOTE Check out this post on Medium at http://mng.bz/27Wa for a quick
introduction to the dimensions of data quality.

The control services offer access to a REST API where you can control the onboarding
and data store(s). If you want to create a new version of your dataset in the data quan-
tum, there is an API call for that. Do you need to control which data quality rules
should be applied in your data onboarding? There is an API call for that. This inter-
face is mainly oriented for data engineers managing the data quanta.

 As you can imagine, the three sets of APIs are similar for each data quantum: there
is no need to learn a new API for each data quantum. To simplify your usage, you can
wrap your REST APIs in a Python API accessible via a notebook or a web application.

 The data onboarding component is your old data pipeline on steroids. In many (if not
all) predata mesh data engineering projects, the focus was on the data pipeline. The
data mesh puts the pipeline back in its place. The pipeline is important but is an ele-
ment of the data onboarding, such as observability or the application data quality
rules. Adding all those functions in this component secures the classic, often failing,
fragile ETL process. Yup, the days when the pipeline is the team’s quarterback are
behind us. (More details about the evil side of the data pipeline can be found here:
http://mng.bz/1Jgq.)

 Last but seriously not least, the interoperable data model is your critical data in a con-
sumable way. I could have represented this component as the classic cylinder in older
architecture diagrams. However, remember that the data a data quantum exposes is
not always relational. The data quantum promises to separate the application from
the data. This promise has an impact on the data modeling inside the data quantum.
Before jumping into the physical architecture, let’s discover what is gluing all that
together: the data contract.

http://mng.bz/27Wa
http://mng.bz/1Jgq

35114.3 Building your first data quantum
14.3.3 Your new best friend: The data contract

You have just learned about the components forming a data product, but how do you
keep all those components in check? How can you define a base layer guaranteeing
that all components speak the same language? This is the role of the data contract.

 The data contract has multiple roles and benefits (figure 14. 8). The contract is a
lingua franca used by many of the internal components of the data quantum. It cre-
ates a clear list of expectations between the data producer and the data consumer.
The term contract is a powerful word that binds the different parties. It is precisely
that. If I have data I want to sell (or give) to you, the data contract will describe all the
information about the product I am selling you. I also like to think of the contract as
the brochure I am giving you to advertise my data product.

Figure 14.8 The data contract is a rich document defining the internal and external behavior of the
data product.

In terms of responsibility, the data product owner owns the data contract. But data
engineers, scientists, curators, stewards, and a lot of automation can contribute.

 The data contract contains

 Fundamental elements like names, versions, and descriptions (including links
to video tutorials, etc.)

 Schema from the exposed data, both logical and physical, including the con-
nection between the two worlds

 Data quality rules and governance policies
 Service-level agreements (SLA)

Contributors to
the data contract

BU-level

Enterprise-level consumers &
contributors

Applications Monitoring Observability Notification Tools

Data
engineers

Data
scientists

Data product
owners Automation

Enterprise
data

governance

Enterprise
data

catalog

Enterprise
security &

audit

Enterprise
ops

Data contract

Fundamentals Schema SLAData quality Security

Name,
version,
descriptions…

Custom

Roles,
stakeholders.

Latency,
retention,
frequency…

Data quality
rules.
Data
governance
policies.

Physical &
logical
implementation.

Room for custom
needs &
extensions.

352 CHAPTER 14 Data mesh revolutionizing data engineering
 Security, more specifically, roles and stakeholders
 Room for expansion with custom attributes

The data contract is used by many (if not all) of the internal components of the data
quantum. It is also used both at the business unit (BU) level and enterprise level. At
the BU level, it is used for applications, monitoring, observability, notification, and
other tools.

 At the enterprise level, the data contract can be used by many teams as well that
need to oversee data usage. Recently, PayPal has decided to release in open source,
under an Apache 2 license, its internal template for a data contract, which is a YAML
file. I would encourage you to read it, use it, and contribute to it. The data contract is
essential for the internals of the data quantum, but it is even more critical to the out-
side world, as you will discover in the next section.

NOTE The Linux Foundation is now hosting the Open Data Contract Stan-
dard (ODCS) as an open standard. You can read more here: http://mng.bz/
PR1R. The standard can be found here: http://mng.bz/JdxZ.

14.3.4 Physical architecture

Before you implement your data product, you will need to clarify your physical
architecture.

Figure 14.9 Only a few things change from data product to data product: onboarding, model,
and contract.

Consumers

Control clients

Data sources

Discovery
clients

Observability
clients

Observability
services

Discovery
services

Data onboarding Interoperable
data model

Control services

Immutable across
all data products

Immutable across
all data products

Variable across
all data products

The data
contract
is binding
everything
together.

http://mng.bz/JdxZ
http://mng.bz/PR1R
http://mng.bz/PR1R

35314.3 Building your first data quantum
Over the past year, I talked to many implementers, and although there are a few com-
mon points, I realized that the physical architecture is highly dependent on your exist-
ing infrastructure. Let’s focus on those common points, and you can integrate them
into your infrastructure (figure 14.9).

 When you build a data product, the variable parts include

 The data onboarding
 The model itself
 The data contract

NOTE When you compare building a data product to a data pipeline, the data
contract is the only additional element your data engineers handle. Later in
your project, use the data contract to ease the data engineers’ work.

Figure 14.10 A good practice is to isolate the immutable parts in a single sidecar that can be
deployed with each data product.

By isolating all your elements in a sidecar that uses the data contract as a configura-
tion file, you create a viable component that you will be able to reuse in all your data
products (figure 14.10).

NOTE Handling cross-cutting concerns is a good use case for the sidecar pat-
tern. The name is an analogy with a motorcycle and its attached sidecar, with
which it has strong ties. The difference between a sidecar and a library is that
the sidecar is active (it has processes and services) and a library is passive
code.

Consumers

Clients

Data sources Data onboarding Interoperable
data model

Sidecar

Immutable across
all data products

Variable across
all data products

The data
contract
is binding
everything
together.

354 CHAPTER 14 Data mesh revolutionizing data engineering
The sidecar will contain all your microservices, libraries, etc. The implementation will
rely on your infrastructure: container and K8S, lambda functions on AWS, or a good
old VM on your preferred cloud. The choice is yours (or, in many cases, imposed on
you), but you still control the behaviors consistently.

14.4 Navigating through the planes
At this stage, you should understand everything you need to build multiple data prod-
ucts. However, numerous data products do not form a data mesh; they form a constel-
lation of data products. You are transferring the issues with management elsewhere
but still need to solve them. In this last section, I will drive you through the experience
planes that will build the mesh.

 They consist of

 The infrastructure experience plane
 The data product experience plane
 The mesh experience plane

14.4.1 The infrastructure experience plane

The infrastructure experience plane is undoubtedly the easiest to understand. This
plane is regrouping all your infrastructure artifacts, including core producers. It
includes network elements, SaaS applications, virtual machines, and more (figure
14.11). The infrastructure does not depend on the data mesh but strongly depends

Infrastructure
experience plane

SaaS
applicationsSaaS

applications

Data product
experience plane

Mesh experience
plane

Marketplace

Other tools

Figure 14.11 The infrastructure experience plane focuses on databases, security, networks, SaaS
applications, and all the other low-level elements.

35514.4 Navigating through the planes
on this plane. A mix of data engineers and system engineers manages this plane.
Your security should be the strongest on this plane. In most cases, when building a
data mesh, you do not need to modify this plane, but you need a good understanding
of it.

14.4.2 The data product experience plane

The data product experience plane is the home of your unlinked data products. This
plane regroups all your data products but ignores the link between them. It heavily
relies on its infrastructure to offer data products and access to data (figure 14.12).
Usually, data engineers use this plane in their capacity to build data products.

Figure 14.12 The data product experience plane feeds from the infrastructure plane to offer data
products.

14.4.3 The mesh experience plane

Finally, the mesh experience plane is where the meshing happens. This plane creates
the link between the data products, and naturally, this is where the meshing happens.
The data quanta can talk to one another and share their information to centralization
tools like a data discovery system (catalog), monitoring solution, and many more, as
only the imagination is the limit (figure 14.13).

Infrastructure
experience plane

SaaS
applicationsSaaS

applications

Data product
experience plane

Mesh experience
plane

Marketplace

Other tools

356 CHAPTER 14 Data mesh revolutionizing data engineering
Figure 14.13 The mesh experience plane provides the full experience.

As you can imagine, the mesh experience plane heavily relies on the data product
experience plane. The users of this plane are anyone producing or consuming data.
They have many different roles in the organization. Figure 14.14 shows the three
planes together.

Figure 14.14 The three experience planes working in synergy.

Infrastructure
experience plane

SaaS
applicationsSaaS

applications

Data product
experience plane

Mesh experience
plane

Marketplace

Other tools

Infrastructure
experience plane

SaaS
applicationsSaaS

applications

Data product
experience plane

Mesh experience
plane

Marketplace

Other tools

357Summary
Let’s imagine a couple of scenarios. As a data scientist, I want to look for data so I can
start by searching the marketplace. Once I have the right data product, I can access its
internals directly, like detailed descriptions, sample data, ratings, and more. Finally, if
I use its data, I will control it through the infrastructure experience plane.

 As a data engineer, I am building a pipeline between a couple of sources and a tar-
get database, which will become a data product. I work within the data experience
plane to build the data product from the work done in the infrastructure plane. When
ready, I will register (or expose) the data product in the mesh experience plane.

14.5 First and next steps
You are now ready to build your data mesh. Here is some final advice for your journey:

 As with any disruptive technologies and methodologies, be prepared to guide
your users through this transition. The cognitive load and innovation will scare and
block some. Many data engineers live by the sacrosanct data pipeline, and
reducing their idol to a mere component in a mesh can be traumatizing.

 Prepare your leadership for time to stand up a new platform; they should not
expect results two weeks after you start (or even three).

 Limit your dependency on the infrastructure experience plane as you build
your prototype.

 As with all product development, identify clearly who your users are and what
tools they currently use. Share your personas. You may need to transition or
extend their tooling, and this may create friction and resistance.

 And the truth is there is no “data mesh product” out there. There might be
bricks, elements, or components that can be assembled to help you build your
mesh (Spark remains a fantastic engine to perform your data transformation at
scale; for more on this, I recommend the following book: https://jgp.ai/sia).
However, there is nothing like an OTS (off-the-shelf) commercial or open
source platform. In late 2022, Zhamak Dehghani founded Nextdata; her work is
very promising but is not yet available.

 The lack of software vendors in the field fosters innovation but equally chaos.

Summary
 The data mesh paradigm comes from the natural evolution of data manage-

ment.
 In many ways, data mesh is the application of Agile software engineering to data

engineering.
 A data mesh is driven by four principles: domain ownership, data as a product,

self-serve data platform, and federated computational governance.
 When building a data mesh, the four principles are intertwined. One cannot

build a data mesh with only one (or even three) of the principles.
 The smallest deployable component is the data quantum.

https://jgp.ai/sia

358 CHAPTER 14 Data mesh revolutionizing data engineering
 The data contract rules the internal and external behavior of the data product/
data quantum.

 The plural of data quantum is data quanta, and by composing them, you build
the data mesh.

 You can implement all your common services in a sidecar that is reusable across
all your data products.

 The data mesh combines data products (or data quanta) in the mesh experi-
ence plane.

 Data products live in the data product experience plane.

Architecture
modernization
enabling teams
If the most challenging part of modernization is getting started, then the second
most challenging part is sustaining the momentum. Modernization is technology
change, organizational change, and cultural change. You are swimming upstream
against how things have always been done, and if you don’t maintain high levels of
commitment, your modernization will get washed away, and things will be back to
the way they were before.

 An architecture modernization enabling team (AMET) is one solution for countering
the forces of inertia. An AMET’s mission is to ensure modernization keeps pro-
gressing via various means, from organizing workshops to coaching leaders and

This chapter covers
 Identifying the need for an architecture

modernization enabling team (AMET)

 Winding down an AMET when the mission has
been achieved

 Staffing an AMET with suitable team members

 Establishing an enduring architecture operating
model
359

360 CHAPTER 15 Architecture modernization enabling teams
teams to keeping modernization high on the agenda when other priorities, like BAU
work and bug fixes, compete for people’s limited time.

 An AMET should not be confused with or become the modernization team. This is an
antipattern where one team does all the modernization work. Equally, an AMET is not
a centralized team of architects who do all the architecture and design and then hand
it over to teams to implement. An AMET is more focused on supporting stream-
aligned teams and other stakeholders during modernization (see figure 15.1) and
upskilling the organization’s architectural capabilities, creating long-lasting, durable
change so that an AMET is no longer needed.

Figure 15.1 An AMET is an enabling team that facilitates stream-aligned teams (and other
stakeholders) during the modernization journey.

The benefits are profound when an AMET focuses on upskilling just as much as deliv-
ering modernization. There is less need for significant modernization initiatives in the
future. Because an organization’s architectural capability is higher, the architecture will
age more gracefully, and modernization will become an organic and ongoing activity.

 Forming an AMET should be done carefully. Team members require a high level
of maturity. They need to be comfortable engaging with all stakeholders involved in
an initiative, from senior leadership to teams doing the work. And they need to know

Stream-aligned team 1

Stream-aligned team 2

Stream-aligned team N

AMET

...

An AMET plays a facilitating role for
stream-aligned teams during the
modernization journey.

Facilitating interaction mode

Collaboration interaction mode

Architecture to be
modernized

36115.1 AMET primary purposes
when to lead, when to facilitate, and when to step back and allow teams to take con-
trol. This chapter looks at the responsibilities of an AMET, how their purpose changes
over time, and some suggestions for establishing effective AMETs.

15.1 AMET primary purposes
The concept of an AMET is not new. It’s a pattern that has existed for many years.
Eduardo da Silva (https://www.linkedin.com/in/emgsilva/) and I coined the term to
describe an effective approach we have observed and applied on modernization jour-
neys. We believe that there are six fundamental challenges most modernization initia-
tives will face, and we observe that effective AMETs focus on six primary
responsibilities that each address one of the challenges, as shown in table 15.1.

15.1.1 Kickstarting modernization

Investing in modernization is a big decision. It’s a gamble and a sacrifice. It’s a choice
to commit time and money that could be spent elsewhere, like continuing to add new
product features and enhancements or developing new products. It’s also daunting;
with a legacy built up over many years and many opportunities for improvement,
where to begin? For reasons like these, just getting started with modernization is hard.
The path of least resistance is to keep operating as normal and ignore the problems
(unless you have been doing that and are finally at the point where they can no longer
be ignored).

 Sometimes, being bold and sacrificing other investments in favor of modernization
is the right course of action for an organization. And this is the first primary purpose
of an AMET: to help all relevant stakeholders realize that architecture modernization
will unlock major strategic business opportunities. The kickstarting analogy empha-
sizes that an initial boost of energy is needed to get things up and running to transi-
tion from a steady BAU state to an energetic enthusiasm for modernization.

Table 15.1 Fundamental architecture modernization challenges linked to AMET’s primary responsibilities

Architecture modernization challenge AMET primary purpose

Struggling to get things moving, stuck in analysis paralysis,
lacking a compelling business case

Kickstart the modernization initiative

Progressing slowly due to conflicts with other work (e.g.,
business as usual) and deprioritization

Keep the momentum high throughout the
journey

Lacking up-to-date knowledge and experience in designing
modern architectures

Facilitate the design of better architecture

Failing to sustain new approaches and falling back to how
things were

Facilitate long-lasting, durable change

People outside the initiative get confused by modernization
or are unsure of the value

Keep people informed of the vision and
progress being made

Learnings in one area do not benefit other areas Promote success stories and learnings

https://www.linkedin.com/in/emgsilva/

362 CHAPTER 15 Architecture modernization enabling teams
 As discussed in chapters 3 and 4, building a compelling vision and starting with a
listening and mapping tour can help to kickstart a modernization initiative. This is a
good initial focus for an AMET to conduct a listening and mapping tour to discover
people’s problems and the opportunities for modernization before switching into
solution mode. One particular activity that I highly recommend is the Kickstarter
workshop introduced in chapter 4. After meeting people individually or in small
groups, this workshop is a chance to get together in person for a few days to get
aligned on the vision, explore the domain, and start building a concrete plan of
action for delivering a first slice of modernization within three to six months.

 Delivering an initial slice of modernization within three to six months builds
excitement, belief, and, perhaps most importantly, trust. Management has shown that
they are willing to invest in and support modernization when there is a well-articu-
lated vision, and teams have shown that they can deliver business value. So often, I see
the lack of trust as a major inhibitor to getting modernization off the ground. Man-
agement is weary of committing to a large investment that may turn into techies play-
ing around with fashionable, shiny technologies rather than delivering value. And
engineers don’t believe that management will invest to a level that is truly needed, so
they are also wary and hesitant to commit to modernizing.

15.1.2 Sustaining modernization momentum

After kickstarting modernization, some momentum has been built. But it can quickly
and easily be lost. An AMET works with all stakeholders as needed to keep moderniza-
tion on the agenda and sustain or increase the momentum.

 Numerous factors contribute to a loss of momentum, such as

 Lack of a clear vision, strategy, and priorities
 Other work being given a higher priority (e.g., BAU and bug fixes)
 Blocked by dependencies (e.g., teams not involved in modernization prioritiz-

ing nonmodernization work)
 Corporate red tape (e.g., taking months to get approval to deploy on the cloud)
 Not getting the investment needed (e.g., funds to hire additional people and

skills relevant to the type and level of modernization needed)
 Going around in circles, unable to make significant or complex architectural

decisions
 Concerns spanning multiple teams that fall through the cracks

To be able to deal with all these kinds of challenges, an AMET needs people who are
comfortable dealing with all types of stakeholders and are able to use all of the tech-
niques in this book, from mapping out strategy with Wardley Mapping to facilitating
domain discovery with EventStorming, to designing and implementing domain mod-
els with domain-driven design. Not every team member will need to be an expert in
each skill (although it’s a worthwhile ambition), but the team needs the full range of
skills collectively. It may need to bring in outside help, and AMET team members will
very likely need to have opportunities for training and upskilling themselves.

36315.1 AMET primary purposes
 It’s crucial to remember that an AMET is not intended just to fight fires and fix
whatever problems arise. An AMET’s purpose is to establish solutions so that the orga-
nization can deal with these types of issues without the need for an AMET. For exam-
ple, suppose teams working on related challenges cannot make collective decisions in
a timely fashion. In that case, the AMET may introduce a decision-making approach
like The Architecture Advice Process (http://mng.bz/j1Ve), which is covered later in the
chapter.

15.1.3 Facilitating better design

Even if an architecture modernization gets off to a good start and momentum
remains high, it’s still possible for the initiative to deliver underwhelming results if the
new architecture is not designed well. If teams have been working in a legacy system
and haven’t had opportunities to learn modern skills and practice designing good
architecture, it’s unrealistic to expect them to design the system well. The new system
may have as many flaws as the old one.

 This was the case for Segment (http://mng.bz/W1qW), who rebuilt their system
twice. First, they went to microservices and then back to a monolith because their
microservice design caused too many problems. Alexandra Noonan articulates one of
their key learnings: “If microservices are implemented incorrectly or used as a band-
aid without addressing some of the root flaws in your system, you’ll be unable to do
new product development because you’re drowning in the complexity.” This principle
can apply to any modernization, not just microservices.

 An AMET needs to look out for a lack of adequate design skills to prevent the type
of expensive problems Segment experienced. A recurring theme is that people struggle
with the concept of domains and identifying domain boundaries. One CTO told me,
“We’re moving from on-prem to the cloud, but I feel like we’re repeating our old mis-
takes. I’m concerned that we don’t understand what domains are. I thought if we did
some EventStorming they would just fall out, but that wasn’t the case at all.” Another
example was a technology leader who said, “We need to modernize our 20-year-old sys-
tem, but we’ve got people who have been here for 15 years, and they’ve started by cre-
ating a big entity relationship diagram for the entire database. This seems completely
the wrong way of designing systems after what I learned in the DDD workshop.”

 Both examples demonstrate somebody realizing ineffective architecture practices
and a skills gap. This is precisely the kind of observation an AMET should be making
and then supporting and upskilling teams so they are equipped to design modern
architecture.

15.1.4 Facilitating long-lasting, durable change

At the start of a modernization initiative, there is excitement and openness to try new
techniques and ways of working, using techniques like EventStorming. But over time,
it’s easy to fall back into old ways of working. This can happen for several reasons.
Sometimes, there is too much reliance on external consultants, and when they leave,
there is insufficient knowledge and expertise within the organization to sustain the

http://mng.bz/j1Ve
http://mng.bz/W1qW

364 CHAPTER 15 Architecture modernization enabling teams
new ideas and approaches. On other occasions, the organization drifts back into old
habits, like when teams are piled up with work and don’t have sufficient time or sup-
port to continue the new techniques and continuously improve their practices.

 An AMET is strongly focused on enabling long-lasting, durable change so that the
organization continues to benefit from modernization long after modernization is fin-
ished. An AMET will work with teams to help them develop the skills necessary to
design and evolve architectures to a high standard and collaborate effectively with
other teams and stakeholders. An AMET will also work with leadership to ensure they
continue incentivizing better ways of working and help them adopt modern
approaches to leadership.

INDUSTRY EXAMPLE: COMMUNITY OF PRACTICE SUPPORTING THE TRANSITION TO A
PRODUCT-CENTRIC APPROACH

When I was part of an enabling team to help an organization move from a project-cen-
tric to a product-centric approach, we established a community of practice (CoP) for
heads of product and platform. These people managed a group of teams responsible
for either external-facing products or internal platforms consumed by the external-
facing products. Before the shift to products and platforms, the product and platform
leaders had worked in a strong project culture—their focus was delivering scope on
time and budget, communicating progress, and managing risks.

 The CoP allowed the product and platform leads to raise issues they were facing and
get advice and support from other product and platform leads and external experts
hired to help with the transition. It was an hourly session held every two weeks.

 Just moving to a product-centric structure didn’t magically lead to a faster time to
market and better products. Initially, the leads were still trying to work in a project-
centric fashion despite now being product and platform leads. For example, on one
occasion, a platform lead had asked to speak at the next CoP about resource utiliza-
tion. He opened the session by proposing a format. It was an Excel spreadsheet where
each column was a day, and each row was a team member. He could show what each
person in his teams would work on for any given day in the following three months.
This approach gave the team no autonomy or flexibility in deciding how to do their
work. It rebranded how the company worked before, just with a different spreadsheet
and names, like avoiding the word project and using product.

 When we asked the platform lead to explain the thinking behind this approach
and why he needed something this detailed and rigid, he explained that he needed a
way to show his stakeholders what each person in his team was working on. But that
wasn’t the case; it was just his perception of what he thought they needed based on
how the company had previously operated for many years. Collectively, the CoP came
to the agreement that fine-grained, rigid resource utilization was not necessary and
that teams themselves should be able to decide who works on which tasks on a more
flexible basis. It was also agreed that, generally, nobody outside the team needed to
know which team members were working on which tasks (unless there was a clear
need, e.g., for collaboration). It was still possible to communicate with the team via
their chat channels and team leads to gain information or make requests.

36515.1 AMET primary purposes
 As time went by, the CoP similarly addressed many topics, helping product-centric
approaches to become the standard. The nature of the CoP itself also changed;
enablers like myself became less involved, and the product and platform leaders them-
selves continued to drive their continuous improvement. The product-centric
changes were long-lasting and durable, as was the approach to continuous improve-
ment. There was no longer a need for an enabling team. The scaffolding could be
removed safely. This is one way an AMET can support long-lasting, durable change.

15.1.5 Communicating the vision and progress

While modernization can be exciting for some, it can be confusing and worrying for
others, like teams that aren’t yet involved in the modernization journey. Sometimes,
people are angry or jealous: “Why was that team chosen first instead of us?” “How
come they get to do all the cool AWS and DDD stuff, and we’re stuck fixing bugs in
the legacy monolith?” Not everybody can be involved in modernization from the start,
so concerns like these are likely to arise. Good communication helps to minimize
these problems. If you bring people along on the journey, they are more likely to
understand decisions, even if it’s not what they would ideally like.

 Communicating the vision and progress can also help people outside of modern-
ization who feel stuck in a limbo state: “We’ve been asked to implement some com-
plex new functionality. Should we keep working on the legacy tech stack or wait for
modernization to establish a foundation and build our solution in the new world?”

 Sometimes, people aren’t aware of the modernization work that is happening in
other parts of the business and how it could benefit them, so they continue building
as usual when they could have waited for modernization to make their lives easier.

 Some people may be skeptical or not even see the need for modernization. They
may have been at the company for many years and are comfortable with the status
quo. They may have even lived through similar initiatives that didn’t deliver any value.
Good communication can help to bring these people along, too, and allow them to
see the value and spark their enthusiasm gradually.

 An AMET shouldn’t be the voice and face of modernization. It shouldn’t be the
team communicating the vision and progress. However, it may need to take on some
of these responsibilities, especially at the start of a modernization journey, until it has
established sustainable communication patterns. This may involve supporting tech-
nology leaders to set up rituals like monthly modernization progress sessions and
working with teams to help them share their progress in various formats like text and
video. There are many other possibilities, like internal conferences, communities of
practice, and office hours sessions.

15.1.6 Promoting success stories and learnings

Building on the previous point, it’s especially good to elevate modernization success
stories and learnings. This enables successes and learnings in one area of the business
to inspire and enable improvements in others. In organizations with a large amount of
legacy technology and deeply ingrained legacy ways of working, getting from the

366 CHAPTER 15 Architecture modernization enabling teams
current state to modern architecture and fast flow can feel impossible. But when one
area of the organization has proved it is possible, it can invigorate teams in other areas.
They realize that they don’t have to be stuck deep in legacy, and they can see the steps
other teams took as a guideline for planning their own modernization journey.

 Allowing teams to share success stories at all-hands meetings and other events
where large parts of the organization gather is a great idea. Equally, engineering off-
sites are something I’ve seen work well. When I worked at Salesforce, hundreds of
engineers were brought together from different offices across the US and Europe to
discuss modernization of the legacy systems. But, the opportunity was also used for
teams to share case studies of what was working and ideas from which other teams
could benefit. I remember Ryan Tomlinson (https://www.linkedin.com/in/ryan-c
-tomlinson/) talking about how his teams had achieved continuous delivery through
engineering practices like TDD and fully automated infrastructure. Engineers from
other teams dealing with a huge monolith that took hours to compile started to see
that this wasn’t just a nice theoretical idea, but it was 100% achievable, and there were
people in other teams who could help them.

 I’ve noticed that speaking publicly about success stories can have a positive effect
internally. It’s inspiring when people see their colleagues talking at meetups and con-
ferences and having their blog posts praised on social media. They, too, want to do
outstanding modernization work that is recognized and appreciated. So, I highly rec-
ommend that your organization establishes a tech blog and supports employees to
speak at meetups and conferences. These are also great strategies for hiring—show
the great work you are doing and the great engineering culture you have, and tal-
ented people will want to work for you.

 If the infrastructure and rituals aren’t in place for sharing your modernization suc-
cess stories as widely as possible, this is definitely something an AMET should help
with, even if it’s just a case of finding people outside the team who can be responsible
for them.

15.2 Industry example: Enabling modernization at a
European telco
At the beginning of the 2020s, a major European telco had an ambitious, dual-focus
growth strategy. On the one hand, the company was conducting an internal mac-
rolevel restructuring, splitting itself into a NetCo, which manages physical assets like
pipes and cables in the ground, and a ServCo, which offers products directly to cus-
tomers. This change was driven by a desire to allow different parts of the organization
to evolve at different rates. On the other hand, the telco was exploring product devel-
opment and growth strategies by doing more for its existing customer base in nontra-
ditional areas. The executives knew they had to be more responsive to opportunities
in the market. They were concerned about their inability to move at speed in an
increasingly competitive marketplace.

 The telco knew its existing operating model was a significant sticking point.
Regardless of their desired growth strategies, the organization needed to be more

https://www.linkedin.com/in/ryan-c-tomlinson/
https://www.linkedin.com/in/ryan-c-tomlinson/
https://www.linkedin.com/in/ryan-c-tomlinson/

36715.2 Industry example: Enabling modernization at a European telco
effective with a faster flow of product enhancements. They had tried transitioning
from a Waterfall model to the Spotify model with generic Agile processes, but this
shallow effort resulted in teams that were too large with many dependencies between
them. Supported by João Rosa (https://www.joaorosa.io), the executives of the telco
agreed to a more evolutionary approach tailored to their specific challenges and the
nuances of their operating context. They were already aware of some of the biggest
bottlenecks the transition to the Spotify model exposed.

 What would your approach be to helping this telco modernize its systems and orga-
nization? For João, a key principle shaped the approach: durable change must come
from within the organization. Many companies will outsource large parts of modern-
ization to external consultants, but João has seen firsthand that this rarely works out.
Instead, their first step was to establish an internal operating model exploration team,
which aimed to explore the different evolution options for the operating model.

 This team comprised João (the external consultant) and four diverse people from
within the organization. They were either business-oriented department directors or
technology-oriented IT architects. The team’s stated purpose was to explore, facilitate,
and advise on modernization efforts across the organization.

 João acted as the coach within the team, bringing his previous experiences in simi-
lar initiatives to the table. He facilitated conversations within the group, helped them
identify connections across the organization, and taught them how to use tools and
concepts like Wardley Mapping, Value Stream Mapping, and Team Topologies. Effec-
tively, João was empowering them to drive durable change rather than creating a
dependency on himself.

 The team’s first challenge was to zoom into the current bottlenecks and under-
stand what potential organizational changes were needed to facilitate a sustainable
improvement in the flow of work. They began by meeting with some of the teams in e-
commerce and e-care areas to try and answer a fundamental question: What are your cur-
rent boundaries, and how did you choose them? This is a great opening question
when communicated openly and genuinely because it creates a space for interesting
insights and themes to emerge and doesn’t bias particular solutions or answers.

 Once problems begin to emerge, a follow-up question that João recommends is:
What would it take to do X (where X is the insight that has emerged)? A common
problem that teams face is that the limitations and constraints of the current environ-
ment make it hard to envision a different reality, and this question helps us to think
beyond those current constraints. The other crucial benefit of this question is that it
empowers the teams to identify improvements. Suppose you are used to offering solu-
tions and making decisions but would like to become more of a facilitator and coach
who can enable durable change. In that case, this is an ideal type of question to learn.

 After interviews, João helped the operating model exploration team use multiple
techniques, including EventStorming, Capability Mapping, and Value Stream Map-
ping, to map the organization and identify candidate domains and service boundar-
ies. Each technique was applied to help facilitate valuable conversations as opposed to
being seen as the ultimate artifact.

https://www.joaorosa.io

368 CHAPTER 15 Architecture modernization enabling teams
 As a result of the diverse perspectives, discussions, and deep insights that surfaced
about the business, they settled on five high-level domains for the organization. One
of those domains was product fulfilment. It included the capability customer self-fulfillment
of an internet broadband package. Figure 15.2 shows some key steps the team mapped out
in the operational value stream for this capability: place the broadband order, prepare the
broadband equipment, ship the broadband equipment, deliver the broadband equipment, and
self-install and activate the broadband. These were the initial candidates for team and
software boundaries.

Figure 15.2 Partial view of the customer self-fulfillment of an internet broadband package operational
value stream

From a business perspective, these boundaries made sense. The next step was to vali-
date that they made sense from a team perspective. They used Team Topologies to
map the team relationships and identify any problematic dependencies with the pro-
posed structure. They followed a three-step approach:

 What is the to-be Team Topology that fits a telco context and allows fast flow?
 What are the as-is Team Topologies and challenges within the context?
 What are the options for team evolution and architecture modernization?

Figure 15.3 shows the as-is Team Topology that they mapped out. Both the number
and nature of dependencies are problematic. All the steps in the customer self-fulfillment
of an internet broadband package operational value stream require the involvement of
multiple teams. And nearly all the interactions between teams are handover or collab-
oration, meaning higher levels of coordination and team cognitive load.

 Figure 15.3 also highlights department boundaries, accentuating handovers
between departments that represent more significant challenges to flow due to even
higher levels of coordination, like the website platform shared between departments,
testing and deployment done outside of the teams creating the software, and most of
the steps of those processes being performed manually. The operating model explora-
tion team also identified many escalation paths with the as-is approach, meaning
teams were blocked, waiting for decisions or for work outside the team.

Place
broadband

order

Prepare
broadband
equipment

Ship
broadband
equipment

Deliver
broadband
equipment

Self-install
and activate
broadband

Candidate domain, team, and software
architecture boundaries

Customer self-
fulfillment team

(business owners)

36915.2 Industry example: Enabling modernization at a European telco
Figure 15.3 As-is team topology for the self-fulfillment of an internet broadband package value stream

Working closely with the teams involved, the operating model explanation team collab-
oratively designed a to-be team topology, shown in figure 15.4, which resulted in a big
improvement. They clubbed together related responsibilities and removed the need

Website platform

Infrastructure platform

IT department

Fulfillment department

Activation platform

Digital department
e-Commerce team Fulfillment team

Testing and deployment team

Handover Handover

Handover
Handover

Handover

XaaS

Undefined
interaction

Undefined
interaction

Flow of change

Order management system platform

Customer self-fulfillment team

Platform engineering

Order management system team

Fulfill the product department

Platform engineering department

Activation platform

Website platform

Customer management department

XaaS

XaaS

XaaS

Flow of change

XaaS

Figure 15.4 To-be Team Topologies with few minimal paths to support the self-fulfillment of an internet
broadband package value stream

370 CHAPTER 15 Architecture modernization enabling teams
for many escalation paths, so teams had fewer dependencies and were empowered to
make faster decisions. They also replaced the high-cost handover and collaboration
interactions with X-as-a-service relationships, so teams had more capacity to focus on
delivering enhancements. And they ensured clear ownership of all related IT systems.

 The fulfill the product department clubs together processes and technology related
to their scope: the activation platform, the order management system platform, and
the customer self-fulfillment team. All of them interact via an X-as-a-service relation-
ship. And the platform engineering department supports all the other stream-align
teams and platforms via an X-as-a-service relationship (internal development plat-
forms are the topic of chapter 13). Lastly, all the self-fulfillment functionalities are
exposed to the telco customers via their website, and the website platform exposes
capabilities that the order management system team and the activation platform can
consume via an X-as-a-service relationship.

 Throughout the journey of identifying boundaries, João and the operating model
exploration team not only supported the organization in identifying good candidate
boundaries but also helped the organization establish a playbook and principles while
removing no longer useful principles. This allowed the organization to scale out the
approach to modernization, ensuring all improvements were aligned with the com-
pany’s purpose.

 The playbook also became a valuable tool for analyzing and prioritizing modern-
ization initiatives—people at the telco could identify unnecessary dependencies, mis-
matches between boundaries, and excessive team cognitive load. The playbook gave
them guidelines and techniques for addressing the challenges and improving flow.

 João is particularly keen to emphasize one core aspect of this journey: “Our mod-
ernization efforts at the telco needed to take a sociotechnical approach: the joint opti-
mization of the technical and the social systems. By focusing on the boundaries and
what a given team could realistically achieve, we then discussed and prioritized the
technical improvements that would best support the organization’s purpose. If we
ignored the social aspects, we would not have been able to achieve fast flow”.

NOTE You can find full-color, interactive versions of João’s Team Topology
diagrams on the book’s Miro board (http://mng.bz/PRO8).

15.3 Winding down an AMET
As with every enabling team (in the Team Topologies sense), an AMET is not
intended to exist forever. Once the team has achieved the purpose it set out to
achieve, it can start to wind down. For an AMET, the mission is to empower the orga-
nization to successfully modernize its architecture and practices without the need for
an AMET. Effectively, an AMET is scaffolding.

15.3.1 Evolving investment and involvement

Figure 15.5 nominally shows how the need for an AMET evolves as the organization’s
architectural capability increases. Initially, an AMET plays a leading role in making

http://mng.bz/PRO8

37115.3 Winding down an AMET
decisions and shaping the initiative’s direction. Over time, however, the AMET starts to
step back as modernization is delivered, and teams have the expertise and structures to
continue the journey without the AMET. Team members may reduce the time they
spend supporting AMET activities. Some members may roll off the team altogether.

Figure 15.5 AMET involvement decreases as the organization upskills

As an AMET starts to wind down, its focus will be ensuring that long-lasting, durable
change has truly been achieved. As the scaffolding is slowly removed, the team must
confirm all structures remain in place. For example, AMET team members will attend
and observe sessions without organizing or facilitating them and may run one-to-one
coaching sessions to ensure leaders are equipped.

15.3.2 Establishing an architecture operating model

An AMET is a temporary team that may take on some architectural responsibilities
during the early part of its lifecycle. However, you must consider what architecture
means to your organization in the long term when the AMET no longer exists. What will
be the architectural roles and responsibilities, how will decisions be made at each
scope, what architectural standards will be established, and who defines them? An
AMET’s purpose of creating long-lasting, durable changes involves helping to establish
the desired architecture operating model that will endure beyond the AMET’s lifetime.

ARCHITECT ORGANIZATION MODEL

Defining architectural roles and responsibilities is the first consideration when design-
ing your architecture operating model. Gregor Hohpe proposes four broad options
(http://mng.bz/E92R) (based on Stefan Toth’s work): benevolent dictator(s), primus inter

http://mng.bz/E92R

372 CHAPTER 15 Architecture modernization enabling teams
pares, architecture without architects, and the inmates running the asylum, as shown in
figure 15.6.

 Benevolent dictator(s) is the traditional model of an architecture team that designs
the architecture and hands over the designs for teams to implement. This is generally
best avoided in product-led organizations where fast flow is required.

Figure 15.6 Options for organizing architects

Primus inter pares is where each team has a dedicated architect. Architecture is still the
responsibility of a single person, but at least they are within the team, meaning fewer
dependencies. Architecture without architects, meanwhile, relies on multiple members of
a team sharing architectural responsibilities without a dedicated architect.

 Finally, the inmates running the asylum means, effectively, that nobody is doing archi-
tecture, and it is neglected. Organizations don’t choose this model by accident. For
example, some just lack knowledge of architecture, and some believe there is no need
for architecture in agile environments.

 I consider the four models to be quite general. Each can be implemented in differ-
ent ways. For instance, I think the personality and attitude of architects have as much
of an effect on the quality of architecture (if not more) than the organizational model

Option 1: Benevolent dictator(s)
Centralized architect or team hands
over designs for teams to implement

Option 2: Primus inter pares
Architects are members of teams

Option 3: Architecture without architects
Architecture is a shared responsibility

Option 4: The inmates running the asylum
Nobody consciously performs the task of architecture

37315.3 Winding down an AMET
chosen. With primus inter pares, an architect embedded within a team could tend more
toward an expert individual, much like a benevolent dictator, or they could be more
of a facilitator who helps to upskill the team and move toward architecture without archi-
tects. Equally, a benevolent dictator team of architects with an enabling mindset could be
more effective than architects embedded in teams in some circumstances. So, in addi-
tion to an architecture organization model, it’s a good idea to define how you would
like architects to operate in their role.

ARCHITECTURE GUILDS

After determining architecture roles and responsibilities, it’s necessary to think about
architecture on a larger scale. How will architectural ideas and knowledge be shared
across large parts, or even all, of your company? How will cross-cutting standards and
principles be established that affect hundreds or thousands of engineers? Tradition-
ally, centralized architecture teams and review boards have filled this void. But in orga-
nizations looking for more autonomy and decentralization of architecture to achieve
fast flow, architecture guilds are likely to be a more effective solution due to the avoid-
ance of a centralized bottleneck.

 An architecture guild is a decentralized approach to making architectural decisions
in medium and large organizations. A guild should be designed to meet the specific
needs of your organization. As a starting point for establishing a guild in your organi-
zation, Jakub Nabrdalik’s architecture guild example repository (http://mng.bz/
NVYd; if for any reason this repository is deleted, you can find a snapshot on the book’s
Miro board, http://mng.bz/PRO8) provides an example structure containing the fol-
lowing elements:

 Motivation—Why your architecture guild exists, for example, to maintain high
architectural standards while empowering teams to achieve fast flow.

 Roles and responsibilities—What the guild does, for example, identifying shared
problems and identifying solutions that are globally optimal.

 How the guild works—When the guild meets, processes the guild follows, and the
people that are involved.

 How the guild cooperates with others—How, when, and why other teams interact with
the guild and vice versa; for example, all developers are welcome to join the guild.

Architecture organization topologies (AOTs)
The options for organizing architects presented in figure 15.6 are largely focused on
architecture at the team level. In medium and large organizations with multiple archi-
tectural scopes (covered in chapter 6), it’s also important to architect responsibilities
that span multiple teams, like a group of teams, each owning a subdomain within a
larger domain.

Eduardo da Silva has documented a variety of patterns and their trade-offs. He refers
to them as architecture organization topologies, and you can find them on his website
(https://esilva.net/architecture-topologies).

http://mng.bz/PRO8
https://esilva.net/architecture-topologies
http://mng.bz/NVYd
http://mng.bz/NVYd
https://shortener.manning.com/BAR2
https://shortener.manning.com/BAR2
https://shortener.manning.com/BAR2
https://shortener.manning.com/BAR2

374 CHAPTER 15 Architecture modernization enabling teams
 Contact—Details for contacting the guild, for example, chat channel or email
address.

INDUSTRY EXAMPLE: COMCAST ARCHITECTURE GUILD

Comcast is America’s largest multinational telecommunications conglomerate with an
annual turnover of more than $120 billion (http://mng.bz/D9RV) and approaching
200,000 employees (http://mng.bz/lV1o). In 2019, they published a report describ-
ing their approach to architecture guilds (http://mng.bz/BAR2). They had already
adopted decentralized approaches to architecture, which empowered teams to make
decisions and move faster, and were seeking a way to maintain those advantages while
still making effective decisions at scale that were optimal for the organization overall.

 Comcast established a strategic architecture team at the top of their architecture
guild structure to identify technical capabilities “where more commonality in imple-
mentation would be warranted.” It would be exceptionally easy for a team with this
remit to make decisions that looked good at a high level but didn’t work out in prac-
tice and frustrated teams affected by the decision. However, Comcast had a very clear
policy for mitigating this problem: “We stick to capabilities where our teams’ needs
are well understood and where there are multiple mature solutions available; it is
much more likely we can find a ‘one size fits most’ solution in that setting and expect
that to be a reasonable solution for several years.”

 When establishing an architecture guild, it’s essential to understand what will work
best for your unique organization and avoid unquestioningly adopting practices that
worked elsewhere but may not be a good fit for you. For Comcast, distributed ways of
working had been broadly adopted throughout the technology organization, so this
was core to how their architecture guild operated: “We are a distributed technical
organization, with both remote staff as well as geographically dispersed office loca-
tions, we decided to emphasize an asynchronous, written approach to work in the
Guild to ensure everyone has an equal chance to participate. The core construct is a
dedicated ‘#architecture’ channel in our chat tool and an associated email distribu-
tion list.”

 Within the architecture guild, working groups are formed to address certain top-
ics, like source control. Each working group has a charter that clearly outlines what is
inside and outside the group’s scope. Each working group has a dedicated Slack chan-
nel and two to three cochairs. Comcast’s advice for identifying suitable cochairs needs
little clarification: “Experience has shown that good facilitation skills are more critical
than technical expertise for co-chairs!”

 When making recommendations, working groups are expected to create architec-
ture decision records (ADRs) composed of four sections: context, decision, rationale,
and consequences. And to ensure groups don’t jump too quickly to decisions, there is
a four-step process that begins with allowing everyone to bring ideas and identifying
the must-haves of the solution. Then, allowing anyone to propose a solution followed
by evaluating each one. All these steps are documented in the ADR. To make the final
decision, a vote is held where participants choose a score from 1 (best solution ever)

http://mng.bz/lV1o
http://mng.bz/D9RV
http://mng.bz/BAR2

37515.4 Staffing an AMET
to 5 (terrible mistake). Following the vote, any concerns are explored to try and
improve the overall score to a 3 (acceptable).

 Over time, Comcast noted that their architecture guild continued to gain traction
and serve a greater purpose than originally intended. It led to the emergence of an
architecture and design community, accelerated decision-making, and crowd-sourcing
of working group chapters.

THE ARCHITECTURE ADVICE PROCESS

If you aim to adopt an architecture operating model that improves flow by avoiding
dependencies on centralized architecture teams, one technique to be aware of is the
architecture advice process (http://mng.bz/dd4w), which an AMET can help to estab-
lish. It’s designed to maintain high levels of architectural quality while allowing teams
to move at speed without being blocked when making architectural decisions. It can
work well for decisions that affect multiple teams yet don’t need the full weight of an
RFC process of an architecture guild working group.

 The architecture advice process allows anyone to make an architectural decision.
But it’s not a free-for-all where people can decide to design a system however they
want to or introduce new technologies on a whim. The person making the decision
must first discuss the idea with people affected by the decision and experts in relevant
topics. One possible outcome is that the decision should be referred to an architec-
ture guild working group.

 Andrew Harmel-Law has been applying the architecture advice process and pro-
moting it through conference talks and written articles. He offers the following advice
for getting the most value out of the architecture advice process:

 Use ADRs to capture decisions that were made in addition to the conversations
that took place with affected parties and experts.

 Establish principles and an internal technology radar (https://www.thought
works.com/en-gb/radar) to guide people when making decisions.

 Remember that an architect’s role is to help and facilitate, not to make all of
the decisions.

 Hold a weekly hour-long architecture advisory forum (http://mng.bz/rjyy)
where active decisions can be reviewed and discussed, and early warnings can
be presented of upcoming decisions that may soon need to be made.

NOTE The Domain-Driven Design Europe 2022 opening keynote was an
interactive session where the audience got to participate in various formats to
explore the topic of the architecture advice process. I was there, and it was a
great experience. You can find more information on GitHub, including all
attendee responses (http://mng.bz/G9dJ).

15.4 Staffing an AMET
Team members are the most integral part of any AMET. Not only does the team need
to have a broad range of expertise and be able to work effectively with all stakehold-
ers, but team members also need a genuinely enabling mindset. Being part of an

http://mng.bz/dd4w
https://www.thoughtworks.com/en-gb/radar
https://www.thoughtworks.com/en-gb/radar
https://www.thoughtworks.com/en-gb/radar
http://mng.bz/rjyy
http://mng.bz/G9dJ

376 CHAPTER 15 Architecture modernization enabling teams
AMET is not a fitting role for people who want to spend all their time doing modern-
ization work or making decisions and dishing out tasks for teams to implement.
Instead, being part of an AMET requires a strong desire to nurture and upskill others.
Team members need to be comfortable leading and doing some of the work, knowing
when to step back, being patient, and helping others grow.

15.4.1 Patience and relationship building

I’ve had the chance to work with a handful of technically brilliant people who are also
highly skilled coaches and experts at switching between the two modes. One of them
is Yogi Valani (https://www.linkedin.com/in/yogiv/). The following story is a short
recollection of an experience working with Yogi. It deeply affected me, and I think it’s
a great example for potential AMET team members to decide if it’s the type of role
they would relish.

 Technically, Yogi is as talented as any person I’ve worked with. He’s got a PhD in
math, worked in teams deploying to production multiple times per day, and played a
pivotal role in building a data warehouse on GCP (Google Cloud Platform) at JustEat,
which Google considered one of the largest in Europe at the time. It’s effortless for
people like Yogi to dominate or show how smart they are continually, but this wasn’t
the case at all.

 On one project where we were moving a legacy system to the cloud and trying to
improve flow, Yogi and I supported a team with no continuous delivery experience.
We gathered in Amsterdam for an intensive week of planning the modernization and
delivering some of the first pieces. We had a small office exclusively to ourselves; the
environment was set up nicely.

 After making a plan on the first morning and sketching out some designs on the
whiteboard, Yogi suggested that we work as a whole group and use mob programming.
As we tried this approach, the team’s technical lead did not seem happy and got quite
frustrated. The atmosphere was tense, and we weren’t making great progress. We went
for dinner as a whole team, and Yogi asked the tech lead what his thoughts were about
the day’s session and mobbing. He didn’t want to engage, so Yogi didn’t force the mat-
ter by trying to discuss it any further.

 The following day followed a similar pattern. I clashed with the tech lead a few
times. However, I could see that the tech lead wasn’t clashing with Yogi, so I stepped
back from the group and let them continue without me. During dinner in the eve-
ning, Yogi asked the question again. And this time, the tech lead responded. He was
still frustrated, but he felt more comfortable sharing his honest opinion: “I don’t see
the point. I could do all of this work myself in half of the time. Why does it need so
many people? Why are we wasting so much time?” Yogi responded calmly, “What we’re
trying to achieve by mobbing is to get the whole team to the level where they could do
all this work by themselves in half the time. We want them to learn from you.” At that
moment, I could instantly feel everything change. The tech lead had been used to
working in environments encouraging individual performance and expertise. At that

https://www.linkedin.com/in/yogiv/

37715.4 Staffing an AMET
moment, it clicked that we were trying to build a great team and that he, as the tech
lead, was the key to making it work.

 What Yogi achieved may appear simple, but it required a lot of skill and patience.
Firstly, Yogi spent the first few days of the week building social connections with the
tech lead. He never tried to argue or tell him he was wrong when the tech lead would
get angry. When the tech lead didn’t want to discuss the concerns on the first day, he
stepped away, continued building trust, and gently tried to approach the topic again
at other times. The tech lead began to trust Yogi because he knew that Yogi was genu-
ine and cared about his opinion. Yogi could have used authority and forced the mat-
ter, but he genuinely wanted to make a social connection.

 In this example, Yogi connected with a talented engineer and helped him see his
work responsibilities from a different perspective. The tech lead was already techni-
cally brilliant. He could learn AWS concepts in minutes, but his approach was very
individualistic due to the environments he had worked in throughout his career. The
organization was trying to create a more collaborative approach, enabling faster flow.
Yogi helped the tech lead to understand why this was important and how the tech lead
could have a far more significant effect by coaching and upskilling those who worked
with him, even if that meant individual productivity was sometimes lower.

 Yogi explained to me that one of the turning points in his career was when he read
the book Non-violent Communication by Marshall Rosenberg. “I realized that the words I
used when interacting with people weren’t conducive to creating effective relation-
ships. After reading Non-violent Communication, I consciously tried to use words and
phrases that couldn’t be interpreted as aggressive and were more open and amicable.
But I do also care about people and want to build good relationships.”

 One final point I would like to add about this example is that change doesn’t
always happen in a few days. Sometimes, it can take months of patience and respect
and building trust with people to make those big breakthroughs. AMETs need to live
and breathe this mentality, not just act nice when they want something.

15.4.2 Should an AMET be full time?

How important is modernization in your organization, and to what extent do you face
the challenges outlined in table 15.1? No rule states that AMET team members have to
be fully committed to the team. Still, if modernization is of utmost importance and the
six recurring challenges pose a major risk, the sensible solution is for AMET team mem-
bers to be 100% dedicated. Whenever I see people expected to do modernization-
enabling work as a side project around their other responsibilities, they spend most of
their time being sucked back into their other work, and modernization suffers.

 The true picture is much more nuanced. By definition, an AMET supports other
teams, so even when team members work full time for an AMET, they will still be help-
ing other teams address challenges and deliver modernization. And not every team
member needs to be 100% part of the AMET. Some people may be brought in and
out of the AMET as needs change over time.

378 CHAPTER 15 Architecture modernization enabling teams
 At a minimum, I would suggest a core group of at least two people who are 100%
dedicated to the AMET. Everything they work in is connected to the AMET’s purpose.
In addition, there should be periodic points where all people involved with the AMET
get together. For example, an AMET planning session every two weeks and a monthly
AMET retrospective.

15.4.3 Bringing in external help

The topic of external consultants is always a tricky balancing act and sometimes con-
troversial. I’ve been involved in projects where big chunks of modernization work are
almost entirely outsourced to external consultancies. This approach results in numer-
ous problems, but most importantly, it doesn’t lead to long-lasting, durable change
within the organization. I’ve also been involved in initiatives where the people within
an organization don’t have the skills and experience to carry out a fundamental
rethink of architecture and practices, which also has numerous problems.

 An AMET is one scenario where studiously bringing in outside help can pay divi-
dends. The key aspect to focus on is long-lasting, durable change. Will your company
be able to sustain your architectural capabilities when the external people have left?
And will you be able to part ways with external consultants, or will you always depend
on them? When a CTO wanted help kicking off a modernization initiative, I accepted
the opportunity to lead a small tribe. But from day one, I worked closely with an exist-
ing tech lead who would be responsible when I walked away in 6 to 12 months. And it
was evident in communications, so everybody understood the arrangement.

 Finding external help willing to play this type of role can be tricky. Some consul-
tancies have a firm sales culture. They are looking for ways to increase their business
with you and get more people involved, not step away in six months because they’ve
made themselves redundant. However, I have worked for consultancies where this
isn’t the case. When working for UK-based consultancy Equal Experts (EE) in 2017 for
a client based in the United States, I faced numerous seeming conflicts of interest. But
the advice I got from my contacts at EE was always “Do whatever is right for the client.”

Choosing a reliable partner
I haven’t worked with EE for many years, so I cannot recommend or discourage part-
nering with them. I’ve heard positive and negative experiences working with most con-
sultancies (although some tend to be generally more positive than others). I shared
this experience because I wanted to add balance to the argument and not appear to
have an agenda against consultancies.

Working with consultancies who will act in your best interests is possible. Choosing
partners is a very complex topic that requires a lot of care. I recommend starting by
looking for consultancies with public content and case studies that align with what
you are trying to achieve. I also advise asking them to explain in-depth how they will
contribute to long-lasting, durable change.

37915.5 Empowering an AMET
15.5 Empowering an AMET
One of the natural concerns for an AMET, and enabling teams in general, is being
toothless. An AMET is there to help others, but what if those teams don’t want to
cooperate with the AMET? It’s not an uncommon scenario. How you address this will
depend on the culture you are trying to foster, the personalities of the individuals
involved, and other organizational dynamics like incentives and reporting hierarchies.

 Ideally, people naturally respect the AMET team members and want to collaborate
with them because they exist to facilitate solving a recognized challenge. It doesn’t
mean that the AMET should be experts whom others put on a pedestal and worship; it
means the AMET should be regarded as knowledgeable in the topics they are advising
on and perceived as being open to constructive feedback and being challenged.
Everybody should feel that when they are working with the AMET, all conversations
will be in good faith and aimed at identifying the overall optimal solution for the mod-
ernization effort. The first step to achieving this follows on from the previous section:
staffing an AMET with people who are recognized by their peers as being knowledge-
able and open to collaboration, aiming to build trust and relationships.

 A second dimension to consider is the positioning of the team. This is about how
people perceive the AMET based on how leaders explain the team’s role and remit.
It’s up to you to decide what feels right in your context. As a default, my framing of an
AMET is that it is an extension of the CTO (or other senior figure who is leading mod-
ernization) acting on the CTO’s behalf. An AMET is helping other teams to adopt and
implement the principles, patterns, and objectives that have been laid out in the mod-
ernization vision, strategy, and roadmap (covered in the next chapter) by the CTO
(remember that enabling teams, in general, should always have a clear mission). The
AMET members don’t have carte blanche to do whatever they want based on a whim;
they are guiding modernization based on agreements that have been made. But they
do need public backing from senior modernization leaders.

 Staffing an AMET with the right people and articulating the team’s mission and
remit play an important role in preventing the team from becoming toothless and
allowing them to provide a greater effect. But what if you do those things and there
are still conflicts or the team is struggling to have the desired effect? One key point to
remember is that an AMET’s responsibility is to maintain the momentum of modern-
ization. They’re not just advisors who offer optional advice to teams. If an AMET feels
that the actions of a team(s) are negatively affecting modernization, the AMET is
responsible for raising awareness and trying to resolve the situation. This means that
the team needs to be prepared to deal with conflicts.

 Organizational conflict is a deep topic, and it’s best to consult expert resources on
the subject to identify the approaches that will best work for you. There are multiple
aspects to consider, like personal measures and escalation processes. On the Miro
board, you can find a list of suggested learning resources curated by my colleagues
Mike Rozinsky and Dan Young, who work in this field. It’s also likely that the AMET
team members themselves can benefit from coaching and enablement in this area.

380 CHAPTER 15 Architecture modernization enabling teams
 Two things that have worked for me are openly discussing conflict and keeping
stakeholders informed early. The first is about acknowledging there is a problem to
the other person(s) and trying to amicably resolve the solution through direct conver-
sation. It took me about 10 years or more in my career to have the maturity to do this
(I believe it felt more natural after I began seeing a therapist). The second is about let-
ting key stakeholders (like the CTO and HR) know early that there is some friction
and difficulty. The reason I do this is that I don’t want to raise awareness of the prob-
lem after it has already gotten out of hand.

15.6 Naming an AMET
Remember that architecture modernization enabling team is the pattern’s name. You
shouldn’t name an AMET after the pattern. It’s better to give an AMET a name that
clearly describes its mission. Here are some examples: Atlas Monolith Modernization
Enabling Team, Logistics Monolith to Microservices Enabling Team, Payments Platform Rear-
chitecture Enabling Team, and Trading Domain System Evolution Enabling Team.

 When a team has a very vague or broad name, people aren’t sure what the team
does or when they should ask it for help. Equally, team members might take on extra
responsibilities because they don’t fully understand what is outside their scope. A pre-
cise, mission-aligned name helps everybody clearly understand the team’s responsibil-
ities and what they aren’t.

 In general, it’s better to focus on the enabling aspect of the team rather than the
architecture aspect because you don’t want to give the impression that it is a team
purely of architects. The team’s purpose is to support the architecture’s moderniza-
tion, which requires a whole range of skills.

15.7 An AMET is not always necessary
One final point to add before the end of this chapter is that an AMET is not always
necessary. This chapter outlines one possible approach for addressing the six chal-
lenges outlined at the start of the chapter, but it is not mandatory. For instance, if you
already have a high level of architectural capability within the organization, and teams
already have a great working relationship, the teams may already be equipped to self-
organize and address the necessary modernization challenges. Adding an AMET
could even backfire if teams don’t feel it is necessary and that they aren’t being
respected and trusted.

 If you’re unsure about creating an AMET, refer to table 15.1. Do you see modern-
ization challenges like trouble getting started or maintaining momentum? If so, estab-
lishing an AMET or something similar adapted to your unique context is wise.

Summary
 An architecture modernization enabling team (AMET) helps to kickstart mod-

ernization, sustain momentum, and enable long-lasting, durable change.
 As an enabling Team in the Team Topologies sense, an AMET should not do

the work or make all the decisions but instead help other teams to achieve their
goals and introduce sustainable practices—effectively, an AMET is scaffolding.

381Summary
 AMETs should identify gaps in knowledge and expertise and upskill teams to be
self-sufficient.

 An AMET should gradually wind down as the organization’s baseline architec-
tural modernization capabilities increase.

 There should be an established architecture operating model in place by the
time the AMET winds down.

 An architecture operating model is your organization’s approach to architec-
ture covering things like structure, architecture guilds, roles and responsibili-
ties, and decision-making processes.

 An architecture guild is an approach to establishing architectural principles
and making decisions that affect large parts of an organization in a decentral-
ized fashion that does not block team-level fast flow.

 The architecture advice process is an approach to making architecture deci-
sions that allow anyone to make a decision, providing they consult affected peo-
ple and subject experts.

 The most important part of an AMET is choosing people with the right skills
and mindset.

 An AMET needs to be able to work with all stakeholders, from senior leadership
to teams implementing changes.

 An AMET needs public backing from senior modernization leaders to ensure
the team doesn’t become toothless.

 AMET team members should be comfortable leading, facilitating, stepping
back, and knowing when to adopt and switch between each mode.

 People don’t need to be 100% committed to an AMET, but if you are serious
about modernization, it is generally worth considering to ensure modernization
doesn’t lose focus.

 External experts can help AMETs to upskill, but the team and organization
shouldn’t become reliant on them.

 Establishing communities of practice is one way that AMETs can help to estab-
lish long-lasting, durable change.

 An AMET should be named according to its mission.
 You might not need an AMET; it’s not an obligatory pattern. If you can achieve

the purposes of an AMET without an AMET, then you don’t need one.

Strategy and roadmaps
Instead of continuing business as usual—developing new product features and work-
ing as you always have—modernization is an investment in a better future by spend-
ing time improving the architecture of a system and learning new ways of working.
However, the idea of slowing down feature delivery is often perceived as bizarre by
those without experience in software development and concepts like technical debt.
So how do you persuade them that investing in modernization is in their, and every-
one else’s, best interests? Equally, how do you get buy-in from employees who might
be happy with the current setup and be concerned by potential changes?

This chapter covers
 Building a compelling modernization narrative to

generate excitement and buy-in

 Structuring a modernization strategy deck

 Starting with a small first slice and delivering
value within three to six months

 Ramping up modernization across the
organization

 Measuring and adapting continuously
382

383CHAPTER 16 Strategy and roadmaps
 When crafted skillfully in a language that speaks to all stakeholders, a compelling
modernization strategy is an inspiring vision that sets the scene for a united modern-
ization journey. It helps everybody to see how modernization will benefit them,
increasing the chances of securing their buy-in. A good strategy connects moderniza-
tion initiatives to business outcomes, enabling modernization work to be prioritized
and sequenced into a roadmap showing how the inspiring vision will gradually
become a reality.

 As figure 16.1 shows, modernization strategies and roadmaps need to be evolution-
ary. As teams work to implement modernization and deliver value, it’s important to
continuously learn by validating that architecture decisions worked out as expected
and the modernization investment is providing sufficient return on investment and
progressing at an acceptable pace. Modernization never goes exactly as planned, so be
prepared from day one for continuous adaptation.

Figure 16.1 An evolutionary approach to modernization strategy and roadmaps

In this chapter, you’ll see a nail it then scale it approach to modernization strategy and
roadmaps. The principle behind this idea is to validate ideas on a small scale before
rolling them out to larger parts of an organization. An additional benefit of adopting
this approach is that you can start delivering value and learning within just three to six
months. Delivering value early and often is a great way to sustain excitement and

[Evolutionary]
modernization strategy

Think big: a compelling
vision of the value

modernization will bring

[Evolutionary]
modernization roadmap

Nail it then scale it: start
small, validate, ramp up

[Continuously]
deliver modernization

Implementing
modernization work to
deliver value and learn

Drives

DrivesInforms

Influences

Influences

Informs
Climactic factors

Changes to business
strategy, competitor

actions, etc.

[Continuously]
assess and adapt

Validate architecture decisions:
measure actual vs. expected

value, costs, progress

384 CHAPTER 16 Strategy and roadmaps
buy-in and secure ongoing investment. Modernization should not be a big multiyear
project where a completely new system is delivered as one big bang at the end—a rec-
ipe for disaster.

16.1 Think big: Building a compelling vision
Many modernization journeys never make it past the first hurdle—getting started.
Often, the cause is the lack of a compelling narrative. I see companies falling at this
hurdle when modernization has a very technology-centric narrative. Engineering peo-
ple are constantly using phrases like technical debt, refactoring, migrating to the
cloud, and similar vocabulary, which usually doesn’t inspire people outside of engi-
neering to see the value of modernization.

 A compelling narrative needs to inspire all stakeholders, including people in engi-
neering. Some engineers and architects get used to working a certain way for years or
decades. They built the current systems, know intricately how they work, and are very
comfortable with the established development processes. Why should they step out-
side their comfort zone, take risks, and put their effort into something that replaces
the systems they created?

 Modernization initiatives that do get past the first hurdle can still falter and run
out of steam before realizing even a fraction of their potential because it feels mod-
ernization is not delivering a sufficient return on investment. A compelling narrative
can prevent this problem by bringing people along on the journey, helping them see
the bigger picture, and accentuating the progress toward improved business out-
comes.

 There are a number of key ingredients that make up the recipe for an inspiring
and compelling modernization vision. Some things are more quantifiable and objec-
tive, like business objectives, industry trends, and other types of data. But a compel-
ling narrative isn’t just numbers and facts; it also connects with people on an
emotional level. It should include content like personal quotes, employee feedback,
and the company’s story.

16.1.1 Crafting a modernization strategy deck

There are many ways to structure a strategy deck and tell the story of your moderniza-
tion journey. However, four key components are usually woven into the narrative, as
shown in figure 16.2. What is the organization as a whole, and what are different parts
of the organization ultimately trying to achieve? What challenges are holding it back?
How will modernization help to achieve outcomes and deal with the challenges? And
in what order and when will modernization work be carried out? I recommend telling
the story and structuring a strategy deck in that logical order.

 A diverse group of people should be involved in defining the strategy to create a
compelling narrative that appeals to all stakeholders and genuinely addresses their
needs and concerns. Feedback from a diverse group should be sought on a regular
basis to ensure the strategy evolves with their needs.

38516.1 Think big: Building a compelling vision
BUSINESS CONTEXT

Crafting a modernization vision begins by ascertaining the most important business
objectives (covered in chapter 3), like north stars for products and portfolios. How
does the business plan to sustain and grow its market share? To uncover these aspira-
tions, you need to go out and start talking to people from across the organization
(covered in chapter 4). Techniques like Wardley Mapping are a great tool for visualiz-
ing and exploring the strategy (covered in chapter 5). Wardley Mapping can help
paint the picture of where the industry is heading and the opportunities that will
arise. I recommend incorporating the visualizations into your deck.

 As you gather this information, you can start to tell the business side of the mod-
ernization story. This would generally be the first section in a modernization strategy
slide deck as part of a section called business context, enterprise context, or similar. This
section aims to demonstrate that you have a deep understanding of the business strat-
egy. This is crucial for gaining trust and buy-in from business leaders. You want them
to feel like you truly grasp what the business is trying to achieve, and they couldn’t
have explained it better themselves. Having a strong business focus on the moderniza-
tion strategy shows technologists the importance of speaking the language of the busi-
ness when discussing modernization. Here is a list of items that should be included in
the section on a strategy deck:

 Major business objectives, opportunities, and growth targets (e.g., revenue and
other financial targets, launching into new markets, operational efficiency)

 Product and portfolio north stars and new capabilities that will enable them
 Wardley Maps and other strategy visuals to envision the future of the landscape,

including what competitors are doing and other risks and opportunities that
may arise

 The story of the company: In contrast to future evolution, how did the company
get where it is today? How has the product and customer base changed over the
past years/decades? What has worked well? How do customers perceive the brand?

Business/enterprise context

Obstacles and challenges

Modernization objectives,
initiatives, and principles

Modernization priorities
and milestones

Each layer builds
on the layers below

Figure 16.2 Basic elements of
a modernization strategy deck

386 CHAPTER 16 Strategy and roadmaps
 Personal quotes and survey feedback about goals and objectives (e.g., “I
strongly believe that if we are first to market with our new product, we’ll be well
positioned as market leaders for the next 5 to 10 years” and “80% of the organi-
zation indicated that improving our offering in existing markets is a better idea
than expanding into new markets”)

OBSTACLES AND CHALLENGES

After telling the story of the business and the plan for creating new and better value,
you can talk about the obstacles and challenges that prevent the organization from
delivering Better Value Sooner Safer Happier (BVSSH was covered in chapter 1). A listen-
ing and mapping tour is also a great way to uncover obstacles and challenges.

 In the following section of the deck, you’ll talk about how modernization will
address these challenges, so this section is about setting up that conversation. Accord-
ingly, you’ll want to focus on obstacles and challenges that modernization can address.
For example, a common obstacle is being unable to innovate fast enough. It would be
a good obstacle to mention if things like technical debt and organization structure
were contributing factors because modernization can address those.

 When talking about obstacles and challenges, I find a combination of both infor-
mational and emotional justifications to be effective in explaining the problem and
what’s causing it. For example, Value Stream Maps are a common visualization to show
all the steps involved in delivering a new product/feature. This type of visualization
makes it easy to accentuate the process’s bottlenecks, such as prioritization, code review,
or testing. While these visualizations are highly effective at conveying an accurate pic-
ture, they can feel a bit abstract. Supporting them with personal quotes can make the
problem feel more real, for example, “I don’t understand why everything takes so long
here, even simple things. I asked for two text boxes to be put on a web page so we can
improve SEO and six months later, it still hasn’t been done. —Head of Marketing.”

 Further, you may want to consider showing how your organization stacks up
against industry averages and high performers. For example, what is your deployment
frequency, and how does it compare to the industry average (https://cloud.google
.com/devops/state-of-devops)?

 Another type of data to include is analysis from tools like CodeScene (covered in
chapter 12). It can visualize things like coupling, complexity trends, and knowledge
loss in a system in a format that nonengineers and nonarchitects can grasp. This is
powerful because you can connect the dots and build an immensely compelling busi-
ness case. For example, you can talk about a particular business objective and use the
value stream map and employee quotes to show that the current operating model is a
massive obstacle to achieving the outcome. You can then use CodeScene visuals to
show information like how parts of the legacy code are tightly coupled, which is a
major contributor to the bottlenecks in the value stream.

 In this section of a strategy deck, it’s important to choose words studiously. Many
existing employees are likely to have been involved in building the current system and
establishing current ways of working. You don’t want to alienate them by making them
feel like you are blaming them or being overly critical of their work. It’s a difficult bal-
ancing act, so get feedback before publishing anything to a wider audience.

https://cloud.google.com/devops/state-of-devops
https://cloud.google.com/devops/state-of-devops
https://cloud.google.com/devops/state-of-devops

38716.1 Think big: Building a compelling vision
 I’ve seen skilled leaders find a balance by being honest about the challenges but
rationalizing them in a non-blaming fashion. One CTO I worked with explained that
the challenges the company was facing were normal for an organization in its position
that was transitioning from startup to scale up. Another found examples of old
assumptions—that is, the system may have been built well to old requirements that
have since changed. We’ve seen some industry examples of this, like Vinted in chapter
10, who designed core architecture abstractions around the assumption of being
active in a single vertical, which no longer held as the company expanded into new
verticals. Here is a summary of items to be included in this section:

 List of problems along with negative effects like metrics (e.g., average onboard-
ing time is one week, but competitors do it in less than one day)

 Visualizations (e.g., value stream maps showing wait times, bottlenecks, etc.)
 IT industry trends (e.g., DORA metrics)
 Story of how the current operating model came to be (e.g., from startup to

scale up or lots of M&A over the past few years) and design assumptions that
changed (e.g., the system would only support a single market but then had to
support multiple)

 Personal quotes pertaining to obstacles and challenges (e.g., “We have to use
four different systems and two spreadsheets to process a simple case. This is a
nightmare for my team.”)

 Employee survey results (e.g., “73% of developers reported technical debt as
the #1 reason they can’t deliver features faster, while 92% reported that techni-
cal debt is increasing.”)

 Architecture visualizations (e.g., CodeScene screenshots showing areas of the
system with high complexity or knowledge loss) linked to obstacles

MODERNIZATION OBJECTIVES, INITIATIVES, AND PRINCIPLES

The next step is to build a compelling vision demonstrating how modernization will
enable the business to achieve highly desirable outcomes that are impossible or unlikely
without investing in modernization. If the previous sections are compelling, it will be

Avoiding the perception of copy-paste management
It’s well known that when leaders join a new company, they often copy ideas that they
have used in previous jobs. This isn’t inherently bad, but leaders have a reputation
for implementing approaches that have worked before without understanding if they
are a good fit for the new organization.

Many people are wary of this. When they see a new leader join the company, and the
leader immediately starts pushing new ideas, it can easily be negatively perceived as
copy-paste management that will fail. The chances of getting buy-in will be much lower.
But by well-articulating the business context and major obstacles, you can show that
you have taken the time to understand the organization and are proposing solutions
that are a good fit, even if you haven’t been at the organization for a long time.

388 CHAPTER 16 Strategy and roadmaps
easier to convey how modernization will directly contribute to improved business out-
comes. However, just because you have made a compelling narrative of the business con-
text and challenges, stakeholders are not guaranteed to buy into your proposed
solutions. You still need to make well-reasoned pitches and avoid throwing around too
many buzzwords like microservices and artificial intelligence that make it sound like you
are using shiny technologies for the sake of it rather than for business reasons.

 A good pattern to follow in this section is to start with modernization outcomes
that are described in business-friendly language and work step-by-step, gradually get-
ting more technical. For example, imagine the modernization outcome: “Improve
time-to-market for new products and features: Currently, we ship every 4 to 10 weeks,
an order of magnitude less frequently than our competitors and below industry aver-
ages. Our target is for every team to deploy new changes daily within two years, put-
ting us ahead of our competitors and the industry average.”

 Next, you can describe themes, initiatives, and principles that are connected to the
outcome. For example, a theme/principle that addresses the above outcome could
be: “Project- to product-centric operating model: By organizing our teams and soft-
ware around long-term, independent value streams, we will incentivize long-term
thinking and sustainable fast flow. Teams will be empowered to make decisions and
changes faster, putting us ahead of the competition.”

 Next, you can talk about specific initiatives connected to this outcome and theme.
Where possible, I recommend describing the business architecture before moving
into highly technical details. A product taxonomy (covered in chapter 6) is a good
example of business architecture. It uses terms like product, portfolio, platform,
domain, and value stream, which should be understandable by all stakeholders, allow-
ing you to talk about architecture modernization in a language that everybody can fol-
low to grasp the key ideas. In this example, you could talk about parts of the product
taxonomy, like specific value streams that have been identified.

 It is important to get into the technical details as well. However, it might not be
necessary for all audiences, so you can have different versions of the deck tailored to
different audiences. For example, you might want to talk about recommended archi-
tecture and migration patterns like the bubble (from chapter 12).

 This section is also a good opportunity to show that modernization is more than
just improving velocity and optimizing existing processes. You can make a compelling
pitch showing how an investment in modernization will lead to direct improvements
to the customer experience and create new types of value (covered in chapter 8)
through modernized UIs, completely new capabilities, and such. Here is a summary of
items that should be included in this section:

 Specific modernization outcomes (e.g., improving time to market, new and
improved product capabilities)

 Modernization themes and principles (e.g., moving from project- to product-
centric operating model)

 Details of target business architecture (e.g., product taxonomy)

38916.1 Think big: Building a compelling vision
 Specific initiatives (e.g., establishing the first independent value stream, migrat-
ing a specific legacy app to modernized tech stack)

 Software architecture diagrams and patterns (e.g., C4 architecture diagrams,
recommended migration patterns like the bubble)

MODERNIZATION PRIORITIES AND ROADMAP

A strategy deck doesn’t need to contain a super detailed target architecture and five-
year roadmap, but I do think it’s valuable to convey the top priorities and give some
sense of when certain milestones are expected to be achieved. This helps to make the
vision feel more tangible, and it helps people to see when they might be involved or
when certain initiatives might affect them. I’ve been in a number of strategy presenta-
tions where leaders talk big about ambitious investments that then never transpire. As
a result, a lot of people are skeptical of big talk until they see tangible commitments
(and signs that progress is being made).

 Showing the reasoning behind priorities helps to increase alignment. A portfolio
overview can be a good starting point using techniques like Core Domain Charts (cov-
ered in chapter 11) that show how technology-centric modernization investments are
based on business value. For example, you can emphasize how top modernization pri-
orities enable innovation in business core domains, reduce maintenance costs and
complexity in supporting domains, and move to off-the-shelf commodity services in
generic domains.

 The Modernization Strategy Selector (covered in chapter 12) can be used to artic-
ulate on a more granular level how the investment in each architecture subsystem has
been carefully determined based on the potential business value and costs of modern-
ization. Other tools that can be used are impact versus effort techniques like Modern-
ization Core Domain Charts and scorecards that show more granular criteria that
were used to make prioritization decisions (both techniques are covered later in the
chapter). Here is a summary of items that should be included in this section:

 High-level roadmap of major milestones
 List of modernization priorities
 Portfolio view of priorities and investments (e.g., Core Domain Chart)
 Prioritization criteria (e.g., Scorecards, Modernization Strategy Selector, Mod-

ernization Core Domain Chart)

Ambitious deadlines are risky but can combat inertia in complex
modernization challenges
There’s always a risk in setting ambitious deadlines that they won’t be reached, lead-
ing to concerns that modernization is failing, or people will rush to hit deadlines
and make too many compromises. But when used effectively, setting ambitious but
achievable date commitments can create a healthy sense of urgency and keep cer-
tain important outcomes high on the agenda that might otherwise be de-emphasized.

390 CHAPTER 16 Strategy and roadmaps
16.1.2 Industry example: Building and evolving a modernization strategy
at IgluCruise.com

Scott Millett has been the CIO at UK-based travel firm Iglu since 2015. I’ve known him
since 2011, when we worked together and coauthored the book Principles, Patterns, and
Practices of Domain-Driven Design (Wiley) in 2014. Scott has always been a very business-
focused strategic thinker, and he’s authored a book on this topic: The Accidental CIO: A
Lean and Agile Playbook for IT Leaders (Wiley). So, I caught up with Scott in March 2023
and asked him to share his insights on his current approach to modernization and
strategy at Iglu.

 Nick: Could you summarize some of the key ways in which Iglu has modernized its
technology and ways of working since you joined the company, and what was driving
the need for those changes?

 Scott: There were three big changes to our modernization effort. The most visible
one is the new organization structure. Teams that were set up for transient projects
are now formed around long-lived value streams or business capabilities, such as the
booking fulfillment, or customer journey steps, such as the quote and book journey.
Teams are also a fusion of technical and nontechnical people. This helps with embed-
ding deep domain knowledge and expertise as well as creating a sense of ownership
for the value stream outcome rather than just the technical aspects.

 The second was how we solved problems. Historically, there had been a “build it all”
approach. This led to a vast bespoke landscape and resulted in the limited development
resources being spread thinly and having to focus on areas of the business that were not
key to delivering the strategy. So, we began to take a more portfolio-based approach. We
identified the generic and supporting capabilities and looked for off-the-shelf systems,
managed services, or even outsourced them completely. This meant we could invest
focus and effort in areas unique to our industry, aka our core domains. For example, in
the CRM space, we had bespoke solutions for both lead management and customer ser-
vices. 20 years ago, you could argue it made sense to build these; however, because of
the evolution of technology and the cost-effectiveness of SaaS solutions, it didn’t make
commercial sense to keep these in-house. We replaced the bespoke solutions with
Zendesk as that suited what we needed; however, the big impact was that I could con-
solidate the dev teams to focus on the cruise catalog which was unique to our industry
and absolutely essential to achieve business success.

(continued)
For example, one client migrated to microservices, but they were all still coupled to
the legacy monolithic database. Due to the level of effort needed, the database mod-
ernization kept getting pushed back, and investment couldn’t be secured. If used
well, deadlines can act as a countermeasure to inertia for these complex challenges.
Put these items on the agenda early to emphasize their importance with a clear busi-
ness case for modernizing that is compelling to all stakeholders while encouraging
teams to continually chip away at these complex problems in the firm belief that even-
tually, a major goal will be achieved in the future.

39116.1 Think big: Building a compelling vision
 The last, and perhaps the biggest, change however was in decision rights. Previ-
ously the ops board made all decisions on what to focus on down to project level; how-
ever, this became a bottleneck, and there was no feeling of responsibility for the
outcome at the team level. Now, we have clear decision rights at each flight level. The
ops board is accountable for setting the strategic direction. Product managers at the
tactical level are accountable for determining how we deliver against the strategic
actions in the form of strategic initiatives. Then, at the operational level, product
teams determine how best they can contribute to the strategic initiatives as well as jug-
gling BAU needs. However, even though we have explicit accountability levels, every-
one has a sense of responsibility for business success.

 Nick: These types of changes aren’t easy and can take a while to complete. Have the
benefits been worth it?

 Scott: That is a hard question to answer, as I don’t know where we would be if we
hadn’t made those changes. However, these are my observations on the impact of our
modernization program:

 We have a quarterly eNPS survey, and our score is higher than it has ever been. We
have quantifiable evidence that teams feel engaged, have clarity on what they are
doing, and feel that they are making a difference.

 Our attrition rate is very low, even during the height of the pandemic and the start
of the “great resignation.”

 Our market shares are high, and we are hitting our business targets with digital
channels, increasing in the revenue mix, which is a direct result of team contribution.

 Feedback from my boss and my peers is positive. They understand IT’s contribu-
tion and are encouraged by the proactive nature of the teams to identify solutions to
opportunities and constraints.

 Of course, there are also some things that didn’t quite go according to plan. We
had to make a couple of changes to teams as boundaries were not as well understood
as first thought. During the first six months of the pandemic, we moved to a more
command and control model of operating due to chaos and uncertainty of the impact
of COVID. As we began to understand the new normal and pivot our top-level strat-
egy, we could then give back decision rights to teams.

 Nick: How did you start the journey of making such deep changes to the organiza-
tion? Did you create some form of strategic vision?

 Scott: I went back to first principles. In order to start a journey, you need to know
where you are headed. I needed a strategy. In its simplest form, an IT strategy is the
actions that you will take, in alignment with the rest of the organization, to achieve
your business goals. Therefore, to work out the IT strategy, I really had to understand
business strategy and the key factors impacting our organization in order to anchor
my strategic actions.

 I worked with my CEO and peers to explicitly map the choices our enterprise was
making on where to play and how to win (Scott’s approach to documenting business
strategy is shown in figure 16.3). I spoke to my CEO to understand the aspirations of
the board and my commercial director to understand the market opportunities. My

392 CHAPTER 16 Strategy and roadmaps
marketing director helped me to understand our share of the market and market
dynamics. I worked with the COO on the challenges and opportunities in sales and
fulfillment. I then worked with my CEO on my assumptions to get feedback and clarify
the strategic direction of the business. My experience has primarily been in SME busi-
nesses, and often there is a lack of explicit business strategy that you may find in larger
organizations, so being able to tease the strategic direction is extremely important to
anchor any technology actions.

Figure 16.3 Scott Millett’s approach to documenting business strategy

With clarity on our strategic objectives, I then looked for the barriers, obstacles, and
challenges that stood in the way of the organization achieving them. These barriers
were modeled as businesses’ capabilities to understand what needed to be improved
and what technology could contribute to that improvement. For example, one of the
strategic objectives was to launch into new territories. I looked at all barriers and
obstacles along the customer journey that would need to be improved, such as local-
ized pricing management, content, rules and regulations, etc. I then consolidated
them into groups of capabilities and, along with my peers in other departments,
worked out what actions we needed to take (Scott’s approach to determining IT stra-
tegic actions is shown in figure 16.4).

 For example, a key capability improvement to support launching into new territo-
ries is localized content. This required the hiring of content creators that could speak
the language of the target country, a process to obtain and keep up to date on chang-
ing content, and, of course technology to manage and deliver content. IT’s strategic
action in this instance was to provide a platform to manage and reduce the duplica-
tion of content as well as being able to deliver it based on a user’s specific context.

Business context Business strategy

Key insights on oportunity
and challenges from:

 • Market supply
 Competitors and suppliers

 • Market demand
 Competitors and
 expectations

 • Macroeconomic
 Political, economic,
 socio cultural, technological,
 legal, and environmental
 factors

 • Internal insights
 Internal analysis, insights,
 and investments

The Where to Play and How to Win choices
based on the business context conclusions

Measure
e.g., reduce overheads to

17%

Measure
e.g., 20% revenue from B2B

sales

Measure
e.g., 10% revenue from

North America

Strategy objective
e.g., reduce supply chain

costs

Strategy objective
e.g., launch in North

America

Strategy objective
e.g., focus on B2B markets

39316.1 Think big: Building a compelling vision
Nick: So you had a high-level vision of the key business objectives and the capabilities
that needed to be developed to support them, how did you get from that vision to
your new architecture and organizational design, which empowered teams to make
decisions and innovate faster?

 Scott: With strategic actions clarified, I worked with my enterprise architect on
designing a target technical architecture. For this, we mapped the business capabili-
ties to their evolution state: unique, supporting, or generic. We then looked at how we
were currently approaching supporting these capabilities with tech and if that
approach was appropriate. From this, we were able to create a target architecture—
where we build versus where we buy, and some candidate solutions (Scott’s approach
to designing target architecture is shown in figure 16.5).

Figure 16.5 Scott Millett’s approach to designing a target architecture

ApproachBusiness strategy IT strategic actions

IT strategy or IT
strategic contribution

e.g., Integrate with local
supply chain

e.g., Provide localize
product platform

etc....

M
ea

su
re

e.
g.

, 1
0%

re

ve
nu

e
fro

m
N

or
th

 A
m

er
ic

a

St
ra

te
gy

ob

je
ct

iv
e

e.
g.

, l
au

nc
h

in

N
or

th
 A

m
er

ic
a

• Map the value stream or customer journey that
 is directly related to each of the strategic
 objectives

• Capture the obstacles, barriers, constraints, or
 opportunities needed to achieve the strategic
 objective

• Model these as business capabilities

• Understand the improvement needs and the
 technical contribution in collaboration and
 alignment with other departments and
 functions

Figure 16.4 Scott Millett’s approach to determining IT strategic actions

Approach Target architectureIT strategic actions

The changes required
to technology

• Understand the evolution of the
 capability that needs to be created or
 improved (unique / support / generic)

• Understand how the capability is
 enabled by technology today and the
 architectural state

• Is the current state of the technology
 approach suitable based on the
 capability evolution and improvement
 needs

• Look for candidate solutions (in house /
 outsource / managed service) as a
 target technology state

e.g., Integrate with local
supply chain

e.g., Provide localize
product platform

etc....

394 CHAPTER 16 Strategy and roadmaps
Lastly, we developed a target operating model aka how IT would be set up to do the
work. So based on the target architecture, strategic objectives, IT strategic actions, and
the wider business context, we designed a team structure, set out decision rights, ways
of working, who we would partner with, how we would measure performance, the tools
and tech we would leverage, and the talent we would need to achieve business success
(Scott’s approach to designing a target operating model is shown in figure 16.6).

Figure 16.6 Scott Millett’s approach to designing a target operating model

The most important thing in all of this was the red line that could be made from the
decisions we made and the choices we took all the way to business success. This
ensured I was aligned with what was going to help the business be successful. If my
conclusions were wrong, it was because my assumptions were incorrect. Hence, any
correction needed to be made on business assumptions.

 Nick: How were you able to keep the strategy flexible and avoid it becoming a fixed
five-year plan?

 Scott: Strategy creation is not a once-and-done exercise. It needs to evolve based on
changes to your assumptions and changes in the context, both business and technical,
that your organization operates in. Your business context is made up of the key factors
that can have a material impact on your organization that can cause a change in stra-
tegic direction, which in turn will have a knock-on effect to your technical strategy.
The technical context represents the constantly changing technical landscape that
expands the art of the possible and makes what was once unique into a commodity.
Two big factors that impacted our business were:

 COVID and its hangover obviously had massive impacts on the travel industry. At
the outbreak it caused a need to focus on new capabilities to manage vast returns,
reschedules, rebooks, and the complexities of COVID rules and regulations for

IT strategic actions
and

target architecture
Approach Target operating

model

The changes required
to ways we work

e.g., Integrate with local
supply chain

e.g., Provide localize
product platform

etc....

• Based on the evolution and importance
 of the capability, how will we source
 talent? In house/outsource/managed
 service?

• How will teams be structured, what are
 their roles and accountabilities, what are
 their decision rights?

• What are the ways of working? Agile?
 Prince 2? Lean? Six sigma?

• How we will finance the work and
 measure performance?

39516.2 Nail it: Delivering a first slice within three to six months
itineraries that covered multi-countries, as well as highlighting capabilities that were
exposed as being vastly immature and ill-prepared for a major incident. Post-COVID,
there are still impacts to the strategic direction of the business, some as the result of
external compliance and regulatory change.

 In terms of the technical context, we started to embrace more forms of technology
to increase our speed. Two big ones were low code platforms that enabled us to
develop solutions rapidly and RPA solutions that enabled us to quickly solve the mass
of manual back-office fulfillment tasks that were a constraint to business growth.

 Nick: What kind of things do you do to be aware of changes that will impact your
strategy?

 Scott: The main thing is to continually scan your contexts to look for factors that
may cause a trigger and change in strategic thinking. This is for both the business and
technical context. Speak to your CEO and peers about what is happening in the
macro- and microenvironments and what these mean to your business so that you can
have a heads-up on potential impacts or opportunities for technology. Understand the
impacts of what you are doing; are they working? Were your assumptions correct? Do
we need to double down or pivot? In addition to the business context, keep abreast of
technology advances. Go to expos and conferences, read white papers, consume as
much as possible; you don’t need to go deep, you need to go wide. You need to be
aware of the art of the possible ready for when the wind changes.

16.2 Nail it: Delivering a first slice within three to six months
Getting modernization started as soon as possible by delivering a small first slice is a
great way to prove the value of the concept, start building crucial momentum, and val-
idate assumptions like technology choices and organizational readiness. I suggest aim-
ing to identify a first slice that can be delivered within a quarter. But you can’t just
jump into delivery; you need to identify candidate first slices and time to decide and
prepare. This can take anywhere from a couple of weeks to a quarter. You don’t need
to define a big strategy before starting with a first slice, in fact, delivering a first slice
can be used as part of the narrative to make the business case for a larger moderniza-
tion investment.

 Starting with a single first slice is a sensible default. However, it’s sometimes okay
to have multiple initiatives as part of the first slice. I’ve seen examples where one ini-
tiative focused on something user-facing and involved front-end work running along-
side another initiative to explore internal platforms. This made sense because both
initiatives provided different types of learning opportunities that informed the long-
term vision.

16.2.1 Planning a first slice

Figure 16.7 shows an example of how a detailed roadmap for a first slice could look in
a hypothetical scenario where things go fairly smoothly. This isn’t intended to be a
step-by-step guide to copy and paste.

396 CHAPTER 16 Strategy and roadmaps
Figure 16.7 Hypothetical roadmap for delivering a first slice within six months

In this example, modernization begins with a short listening and mapping tour. This
is about listening to diverse stakeholders to understand their goals and challenges and
workshops to map out the current system and its problems. As this progresses, the
higher levels of the future-state product taxonomy and some of the details can start to
be mapped out.

 After making progress with the tour and sketching a high-level taxonomy, it’s possi-
ble to start thinking about a first slice. This is done by identifying candidate options
and exploring each option’s costs, benefits, and complexity (the next section provides
techniques to help with this). And then, a kickstarter workshop can be used to choose
the preferred option and start planning to deliver the first slice, which begins, ideally,
soon after and is delivered within three months if all goes reasonably well.

 At some point, before delivery begins, it’s necessary to form the team(s) involved.
Ideally, this will start as soon as possible to avoid any delays. One complication is that
determining the people involved might not be possible until a candidate has been

Discovery and design of
other domains could
continue while first slice
is being delivered

Discovery

Kickstarter
workshop(s)

Design

High-level product
taxonomy

Architecture of
candidate first slices

Stakeholder
interviews

Mapping the
current state

Deliver selected
first slice

First slice team
formation

Hypothetical roadmap for delivering a first slice of modernization
This is not suggested as a one-size-fits-all

Learning and
upskilling

Don’t aim to design 100%
up-front. Design can
continue during delivery

Delivery

Organization

39716.2 Nail it: Delivering a first slice within three to six months
selected. In such a case, you can either prepare for multiple eventualities or delay the
start of delivery.

 A similar line of reasoning applies to learning and upskilling. If the first slice
team(s) have a chance to learn new technologies and skills before delivery begins,
they can hit the ground running. Alternatively, you can add two to four weeks of learn-
ing before delivery starts. In any case, some learning and upskilling will happen
during delivery, so plenty of time for learning needs to be baked in. This topic is the
focus of the next chapter.

16.2.2 Choosing where to start

When deciding where to start, or at any point on the journey when you need to decide
on the next step, you’ll need some way of assessing the options and picking the most
suitable. I’m a big fan of visualizing the opportunity landscape and making the pro-
cess collaborative using tools like the Modernization Core Domain Chart. When more
detailed criteria are necessary, scorecard-style formats are commonly used.

MODERNIZATION CORE DOMAIN CHART

The Modernization Core Domain
Chart is a variation of the Core
Domain Charts’ technique. As fig-
ure 16.8 shows, the horizontal axis
represents the value of moderniz-
ing a particular subdomain, and
the vertical axis represents the
complexity of modernizing. Value
is an overall measure that includes
progress toward business out-
comes like delivering new product
capabilities and learning value,
which is about gaining insights
that support future moderniza-
tion work like validating technol-
ogy choices or patterns.

 The bottom right quadrant,
low-hanging fruit, represents sub-
domains with the most attractive
ROI. The value of modernizing is
high, while the complexity is low. An example would be a part of a legacy system that
can be rewritten from scratch without touching the legacy systems, with new features
being added that make a significant contribution to the product’s north star.

 The top left, last toothpaste in the tube, is the opposite scenario. The value of mod-
ernizing the subdomain is low, yet the effort is very high—like when you reach the end
of a toothpaste tube, you have to roll up the tube and squeeze much harder to get the

HighLow Modernization business
and learning value

Last toothpaste
in the tube

Risk averse

Risk tolerant

Low-hanging
fruit

M
od

er
ni

za
tio

n
co

m
pl

ex
ity

, e
ffo

rt,
 ri

sk
H

ig
h

Lo
w

Figure 16.8 The modernization Core Domain Chart

398 CHAPTER 16 Strategy and roadmaps
last small bit out. An example is one million lines of stored procedures full of business
logic with no test coverage. Even when modernized, it’s part of the system that is
unlikely to see any noteworthy changes, so the effort to modernize will have minimal
benefit in the long term.

 Naturally, these subdomains should be left until later in the journey or not mod-
ernized. But there could still be convincing reasons, like being fragile and posing a
brand reputation or security risk. (I would consider this a form of value that protects
against loss, and accordingly, it wouldn’t be in the top left.)

 The bottom left and top right are the most common scenarios. The bottom left
contains risk-averse choices. Complexity is lower, but equally so is business and learn-
ing value. In comparison, the top right is the inverse, representing opportunities
where higher levels of risk must be tolerated for potentially greater business and
learning value.

 An example of risk aversion would be building a small API using the new platform
and tech stack. The team gets an opportunity to learn the new stack, but they aren’t
addressing any complex legacy concerns or adding any noteworthy new functionality
to the product. Conversely, a highly risk-tolerant approach might be extracting a core
domain from the monolith, which is tightly coupled to everything and has no tests. It’s
hard to estimate what it will take, and it could break the system in many unexpected
ways, but breaking it out will allow differentiating new capabilities to be added to the
product.

 Choosing between a risk-tolerant and risk-averse approach can be intricate, espe-
cially early on. On one side, engineers want to start with something small and low risk.
But when the cost appears high, yet little business value appears to be delivered, some-
times it’s hard for business leaders to see the point and give the initiative full backing.
Sometimes, it is perceived as techies who want to play with shiny toys.

 This type of scenario demonstrates the importance of a compelling strategy. It
articulates the rationale behind technology-heavy decisions and why they are in the
best interests of all stakeholders. The chances of buy-in are far greater.

 The Modernization Core Domain Chart isn’t only done once at the start of a proj-
ect. It represents a highly dynamic landscape. Delivering one opportunity may provide
insights or lay the foundations that reduce the complexity of others. It’s also possible
for items to move as they are gradually modernized. Showing dependencies is also
useful to highlight where steps must be taken in a certain order.

 Feel free to modify the axis labels if either axis is too generic and you want to be
more explicit about individual measures like business value, learning outcomes,
effort, or risk. Alternatively, use more suitable visualization formats like radar charts.

MODERNIZATION SCORECARDS

Visualizing the portfolio of opportunities can help see the big picture and how
options compare. But when making important decisions, it’s a good idea to get
deeper into the details to better understand the pros and cons of certain options.
Scorecards can be used for this purpose.

39916.2 Nail it: Delivering a first slice within three to six months
 Creating scorecards involves identifying important criteria and scoring each mod-
ernization opportunity against each criterion. It’s not just the output that’s useful;
assessing each opportunity against various criteria and having conversations are highly
valuable alone.

 Having a standard list of criteria and a scoring process would be ideal. Alas, it’s a
bit more involved. Your context is highly unique, meaning the most relevant charac-
teristics and the importance of each will be specific to you. Even within the same orga-
nization, in different parts of the business, and at different times, the optimal
characteristics for prioritizing opportunities will vary. One approach is to organize
scorecards into three sections:

 Business value—What new value will be created that moves the business forward?
 Delivery risks—What are the potential causes and consequences for not deliver-

ing within certain timeframes?
 Discovery/learning value versus complexity—What insights will emerge that support

future modernization, and how complex will it be to achieve each of them?

Figure 16.9 uses the hypothetical scenario of a workflow automation subdomain, show-
ing the business value section of the modernization scorecard. The organization wants
to understand if this is a good candidate as a first slice for modernization. High-profile
customers have been promised new product features pertaining to this subdomain.
They must either be built as part of this modernization initiative or in the legacy sys-
tem. The scorecard will help to decide. A score of 0 represents no value, and a score of
5 represents very high value.

Figure 16.9 An example business value scorecard section

Provides supporting functionality for
other high-priority strategic initiatives?

Is a source of long-term differentiation?

Architecture area/initiative: Extract workflow automation from monolith

Architecture modernization scorecard

Business value

Delivers tangible business outcomes or
moves forward important business and
product metrics? 5

4 A sustainable fast flow of change in
this area over the next 3+ years would
be a major asset

2 May help sell some other services, but
nothing major

Business value score
(higher is better) 11/15 High business

value

Defined as to top strategic priority by
leadership. Expectation is a big uplift in
revenue, lifetime value, new business

400 CHAPTER 16 Strategy and roadmaps
As Figure 16.9 shows, the business value is high. Leadership is aligned with this being
a top organizational priority, and it connects clearly to key outcomes, notably revenue.
But is there any benefit to building this in the new modernized world, or would the
same value be delivered in the legacy monolith? The key indicator is that it’s an essen-
tial long-term priority, and the ability to innovate faster would be a big advantage.
That’s not possible when building it in the legacy.

 The initial sign is that this candidate would make a great first slice. However, the
next section of the scorecard is the delivery risks section, which paints a different pic-
ture. The delivery risk is very high, making this an extremely risky first slice unless a
loosening of the business deadline can be negotiated.

 As figure 16.10 shows, the delivery risk is very high because it must be delivered
within six months. Customers have been promised the new features will be available by
then based on how long it would have taken to develop in the legacy. The number of
dependencies on other teams is also high because the existing code is tightly coupled
to many parts of the big ball of mud legacy monolith in which many other teams work.

Figure 16.10 An example delivery risks scorecard section

Figure 16.11 shows the final section of the scorecard. The organization has identified
eleven priority modernization criteria. For example, modernized APIs represents the
ability to learn about building modern APIs and establish principles and patterns for
doing this effectively, which other teams can use for their modernization initiatives.
Integrating with existing data stores represents learning about building modernized sub-
systems that integrate with legacy data and establishing patterns.

 It might seem intuitive to create an overall score by combining the four individual
scores and choosing the option with the best overall score. However, I don’t recom-
mend this approach because it puts too much faith in the numbers and doesn’t
account for certain criteria being of greater significance than others.

Will be problematic to resolve
dependencies and other blockers that
arise?

Tied to key business deadlines?

Delivery risks

Delivery risks rating
(lower is better)

Requires a high level of coordination
with others outside the team?

5 Customers promised delivery within six
months based on legacy implementation
estimates

5 Highly entangled within the legacy
monolith; high coordination needed
with many teams

3 We have leadership buy-in, but there
could be a lot of politics with other
leaders who have their own priorities

13/15 Very high
delivery risk

40116.2 Nail it: Delivering a first slice within three to six months
In this example, the consequences of not delivering within six months would be severe.
The company’s biggest customers would not be happy, which could cause a storm and
even derail the entire modernization initiative. Considering this is the first slice of mod-
ernization, many unknowns could pop up and cause delays of weeks or months. There
is not much margin for error within six months. Therefore, this criterion alone is
enough to rule this candidate out unless some of the constraints can be negotiated.

 To avoid the inherent challenge of just relying on numbers, I always like to bring
the group of decision-makers together and ask them to vote on the final decision. Cre-
ating the scorecards is still a crucial part of the process because it ensures people are
voting based on diverse information and deep conversations. And the scorecards can
be used as part of the activities that lead up to the vote.

Pro-con-fix list
Another useful technique I learned from Gien Verschatse is the pro-con-fix list
(http://mng.bz/z0rA). Basically, this involves comparing the pros and cons of each
option and identifying fixes to remove the cons.

Local development experience

Other legacy integration

Untangling existing legacy
systems

Modernized service-to-service
integration

Modernized auth/identity

Integrating with existing infra

Modernized IDP

Integrating with existing data
stores

Modernized data storage

Modernized frontend

Modernized APIs

Potential complexityDiscovery/learning value

Discovery/learning value vs. complexity

5 5

3 2
2 4
2 5
0 0
2 3
4 5
0 0

0 0

1 3

3 2
22/55

(higher is better)
29/55

(lower is better)

Figure 16.11
An example
discovery/learning
value versus
complexity
scorecard section

http://mng.bz/z0rA

402 CHAPTER 16 Strategy and roadmaps
16.2.3 When to think about internal developer platforms

Thinking about an IDP and developer experience needs to happen early in the mod-
ernization initiative. Delivering the first slice will depend on certain platform choices
like infrastructure providers and preferred technologies. In addition, these choices
will be necessary as part of the outcome of the first slice: patterns and insights that
other teams can follow to begin their modernization journey, effectively the first steps
in creating playbooks and golden paths.

 But this doesn’t mean that an entire platform needs to be built before moderniza-
tion can begin—quite the opposite. The goal is to build just enough of the platform to
allow the first slice to be delivered. This is a good example of nail it then scale it, but do
remember to balance this with another key principle: think big, work small. Spend
some time drafting a vision of what the platform could look like if all goes well to gain
confidence that you are moving somewhat in the right direction.

 In the simplest scenario, the first pieces that form the platform (i.e., the Thinnest
Viable Platform (http://mng.bz/0lZv) can be extracted from the first slice after it has
been delivered. I’ve seen this working extremely well when the platform and software
engineers work closely together to deliver the first slice. They spend much of their
time working together through daily standup sessions, planning sessions, and mob
programming sessions. This is an example of the discover to establish pattern mentioned
in chapter 11.

 However, there is a risk with this style of approach. It assumes there won’t be any
major platform blockers or surprises that cannot be resolved quickly. In my experi-
ence, trying to establish a path to production is a scenario that throws up many risks
that can take weeks or months to resolve, especially in large, bureaucratic organiza-
tions with a very traditional mindset regarding technology. Therefore, sometimes it is
better to build a proof of concept that establishes a path to production before mod-
ernization begins.

 In any case, one risk-management pattern I recommend for almost every project is
the walking skeleton. The idea is to deploy a thin version of the application to produc-
tion as soon as possible. This ensures a clear path to production, meaning there is a
much-reduced risk of delays later in the project when trying to go live.

16.2.4 What if things don’t go to plan?

Achieving an idyllic vision, like the one in figure 16.7, is possible but never guaranteed.
In some instances, delivering the first slice can prove disastrous. The most extreme case

(continued)

In the workflow automation scorecard example, a fix for the delivery risk might be to
develop new workflow automation capabilities in the legacy monolith and the new
modernized world. This approach, however, does introduce several challenges in
addition to the costs of building the same thing twice.

http://mng.bz/0lZv

40316.3 Scale it: Ramping up modernization
I have encountered was a first slice intended to take two months but ended up taking
over a year due to roadblocks and crises at every stage. The signs were ominous even on
the first day. The teams turned up ready to kick off modernization only to discover that
no solution had been approved for hosting code in the cloud (due to misalignment
between different streams of work), and due to firewall rules, the teams couldn’t access
the AWS console. Each setback took weeks to resolve. Even after being resolved, more
problems arose, such as connecting cloud-hosted services to on-prem data and crip-
pling fear of green-lighting any production deployments.

 Despite the seemingly endless sequence of issues, I firmly believe that delivering
the first slice of modernization as soon as possible was the right approach. It flagged
the concerns at the earliest opportunity and prevented the problem from spreading
to other teams. It’s unlikely that more up-front planning would have surfaced these
concerns sooner because many of these problems only manifest when trying to deploy
working software into production. You could spend months thinking about every pos-
sible scenario, or try delivering a small slice and see what happens. We’re always trying
to find the sweet spot between too much upfront planning and recklessness.

 Even though important discoveries were made, there were still extremely serious
consequences. Commitments had been made to deliver within certain timeframes, and
the delay in modernization by over six months affected the delivery of crucial work
promised to senior stakeholders. This put a lot of pressure on everyone involved, and
some people unfairly blamed the teams for the delay even though they were blocked.

 Despite negative experiences like this, I continue to advocate for delivering the
first slice of modernization as soon as possible. But I do encourage some caution. Be
careful when tying the first slice of modernization to important business deadlines.
Even if the timeframe seems generous, the first slice of modernization can still reveal
major complications or many small ones that accumulate to delays that significantly
overshoot deadlines.

16.3 Scale it: Ramping up modernization
Wouldn’t it be nice to split modernization up into a list of tasks, prioritize them, and
then work through them in priority order until all the modernization work is com-
plete a few years later? Unfortunately, scaling up modernization is much more com-
plex than that for many reasons, like dependencies between initiatives, other types of
nonmodernization work, and complex environments where business and project strat-
egy could change at any time.

16.3.1 Playbooks

A common way to scale modernization is with playbooks. A playbook lays out a stan-
dard pattern or process for a certain type of modernization. For example, a playbook
could be created demonstrating how to modernize parts of a legacy on-prem as a Java
API running in the cloud according to the organization’s conventions. The playbook
would be based on a real example that has verified the approach.

404 CHAPTER 16 Strategy and roadmaps
 In addition to providing repeatable processes based on real examples, playbooks
provide other benefits. They can allow modernization to scale up quickly, with many
teams using the same playbook rather than needing the help of experts who have a
limited capacity.

 Playbooks can also reduce the need for centralized planning as teams can access
and apply playbooks when they are ready to modernize rather than needing to com-
mit upfront to specific dates. However, there is a downside; without an explicit com-
mitment, modernization may keep getting pushed back in favor of feature delivery. In
addition, understanding when certain teams plan to modernize may feed into the pri-
oritization process for establishing playbooks, so playbooks are unlikely to completely
eliminate the need for some central planning.

 Adding some guard rails, especially at the start, is a sensible idea. For example, a
team seeking to modernize via an established playbook needs some form of approval.
It could be the AMET or another governance team, as long as they don’t become a
bottleneck. Over time the guardrails can gradually be removed—for example, as more
teams have begun modernizing, peer-to-peer systems are possible where teams need
the approval of another team that has applied the playbook. The following are exam-
ples of the type of information to include in a modernization playbook:

 General overview
 Criteria for choosing the playbook
 Prerequisites to applying the playbook
 The process or pattern to follow
 Examples of either initiatives that followed the playbook
 Teams responsible for the playbook and other contact details
 General advice and tips

Playbooks are usually accompanied by guidelines that help teams to decide which
playbook to choose based on the modernization strategy that has been chosen for the
subsystem. For example, different playbooks may be created for lifting and shifting a
legacy Java API versus completely modernizing a legacy Java API.

16.3.2 Seeding and spreading expertise

One of the biggest constraints on scaling modernization is expertise and experience.
Therefore, when delivering early modernization initiatives like the first slice, you may
want to bring in people who are expecting to be involved in subsequent steps of mod-
ernization so that they can gain experience, allowing them to take the knowledge
back to their team so they can hit the ground running when their initiative kicks off.
It’s always good to keep in mind the knowledge aspect of modernization. Typically, the
more knowledge and experience of the modernization patterns spread around the
organization, the more modernization can happen in parallel and, ultimately, the
faster modernization will progress.

40516.3 Scale it: Ramping up modernization
16.3.3 Sequencing modernization work

Playbooks can alleviate some of the need for explicitly sequencing modernization
work by allowing teams to follow established patterns and processes when they decide
modernization is right for them. However, some explicit sequencing of work is always
likely to be necessary. The following is advice for dealing with the most common
sequencing challenges you will likely face.

PRIORITIZING MODERNIZATION WORK

With a big landscape to modernize and many initiatives that will benefit from modern-
ization, prioritization is a constant and dynamic challenge. It’s made more compli-
cated because many projects may already be in progress while some are scheduled to
start soon. Should they continue as planned in the old stack or be replanned as part of
the modernization effort, which could introduce new risks and affect existing
commitments?

 Effective prioritization starts with a clear and compelling modernization strategy
that outlines the highest value modernization outcomes. You can ask yourself the fol-
lowing as a quick sense check: “Are we working on the modernization initiatives that
will contribute most to the highest value modernization outcomes?” This isn’t the only
consideration, but I find it helps to better focus on what is most important in an ideal
scenario.

 The ideal scenario is not always possible, but at least you have a starting point to
negotiate from. Maybe a quicker win on a lower value initiative would be a better next
step, or maybe it’s important to pick an initiative that supports a deliverable on the
product roadmap. You’ve already seen two techniques that can help with these deci-
sions: Modernization Core Domain Charts and scorecards. You can use them at any
point during modernization.

 There is usually value in a centralized resource that keeps track of all initiatives
along with the approach and prioritization for that area. For example, some clients
use a simple spreadsheet. Each row in the spreadsheet is a subdomain and columns in
the details represent the modernization strategy being applied in that subdomain
(e.g. lift and shift vs total modernization) along with some sense of prioritization like
high, medium, and low or a numeric score. It goes without saying that priorities
should be reviewed and reassessed on a regular basis.

IDENTIFYING DEPENDENCIES

If there is one thing to expect when modernizing legacy systems, it is a lot of depen-
dencies. Dependencies can cause many problems from delays to extra work and
increased costs. I’ve seen teams that have begun modernizing and committed to deliv-
ering important product features by certain dates only to be blocked for months
because their new subsystems are dependent on changes to legacy systems and they
had to wait. If not managed well, over the course of a modernization journey the total
costs of dependencies could be catastrophic. As a result, sequencing work is never
going to be easy, but there’s a lot that you can do to minimize the risks and pains.

406 CHAPTER 16 Strategy and roadmaps
 One of the biggest risks with dependencies is that lower-value initiatives negatively
affect higher-value initiatives. A simple starting point for addressing this matter is
ensuring that the highest value initiatives aren’t losing people or resources to lower-
value initiatives or being blocked by them.

 Another problem caused by dependencies is work that cannot be started or com-
pleted because required foundational components aren’t yet in place. Common
examples are features related to identity platforms and IDPs, but there are many
other possibilities. This is one of the reasons why longer-term planning is necessary.
Understanding when certain initiatives need to be delivered by and the dependencies
they have provides sufficient time for the required work to be done or the team to
make alternative arrangements like tactical solutions.

 Identifying dependencies doesn’t happen by chance. It’s important to be proactive
by introducing rituals and habits that increase the chances of dependencies being
identified as soon as possible or at least before they become problematic. There are a
variety of measures to consider:

 Collaborative design session—Like EventStorming and collaborative design, where
all teams involved in a piece of work map out the solution together, increasing
the chance of identifying dependencies.

 Architecture gatherings—Sessions where teams come together and discuss the
work their team is doing, including details of their architecture design, which
can trigger other teams to raise awareness of hidden dependencies.

 Boundary-spanning roles—People who work across multiple teams or move
between multiple teams and are able to identify a dependency that may not be
obvious to members of each team.

 Engineering off-sites—In-person gatherings where large numbers, or all of engi-
neering, come together to talk about their modernization work over the course
of multiple days. Dependencies can be uncovered during presentations, conver-
sations, or social interactions around the event.

 Proof of concepts—Building small proof of concepts can uncover previously hid-
den dependencies.

 Make dependencies explicit on the roadmap—This will accentuate potential bottle-
necks and increase the chance of hidden dependencies being raised.

 Continuous scanning—Don’t just look for dependencies when prioritizing;
encourage everyone to continuously look for hidden dependencies.

LEGACY SYSTEM SCALING BOTTLENECKS

Some dependencies on legacy systems cannot be avoided. Even if you identify them
early and are fully aware of them, you still need an effective strategy for managing
them. Consider the scenario where three teams want to build new microservices in the
cloud. Each of those microservices requires access to data from the legacy, on-prem,
COBOL monolith’s database. Currently, the data is not accessible, so APIs need to be
created, and each team needs a unique API.

40716.3 Scale it: Ramping up modernization
 The legacy system is owned by a team of COBOL developers, who are the only peo-
ple permitted to make changes to it. Due to the complexity and fragility of the legacy
and the lack of people who understand it, it will take at least six weeks to build, test,
and deploy each API. This is a problem because the three teams have all made com-
mitments to deliver within three weeks, and other teams building new features
depend on them. They had seen other teams modernizing and thought that it would
be straightforward because they were following an established playbook (a good play-
book would raise awareness of this bottleneck). At best, only one of them will meet
their commitment.

 Avoiding the problem through better planning is ideal but not always possible or
realistic. How do you deal with a bottleneck like this? When not managed well, it is left
to the team responsible for the bottleneck—in this example the COBOL team—to
fend for themselves. I’ve seen teams in this situation trying their best to help everyone,
but in an impossible situation, everyone gets very stressed.

 Leadership needs to set clear and explicit priorities at the bottleneck. Is modern-
ization work a higher priority, or is ongoing feature work more important? If multiple
modernization initiatives are in play, which one takes precedence? Everyone should
understand that the bottleneck’s roadmap directly reflects business priorities and is
endorsed by leadership. The team working on the bottleneck should not be given
stress or blame if other teams miss their deadlines. If such a scenario does happen, a
post-mortem should occur with the involved parties to look for opportunities to pre-
vent similar problems.

16.3.4 Balancing discovery, design, and delivery

Modernization involves different types of work. Understanding the different types of
work helps teams assess how well they spend their time. A basic categorization is three
tracks: discovery, design, and delivery. Discovery is about identifying modernization
opportunities, design is about designing modernized architecture, and delivery is
actually delivering modernization.

 As figure 16.12 shows, discovery involves activities like stakeholder interviews and
Wardley Mapping to identify business outcomes that architecture can contribute to.
Design involves envisioning the future state, like the product taxonomy and the
migration steps to get there. And delivery involves activities like building new capabili-
ties and refactoring legacy systems. It’s also where value is created and excitement is
built as people see real, tangible progress.

 All three types of work are valuable according to the context. But how do teams
know what is optimal for their context? If delivery is where business and customer
value is created, then too much discovery and design means less value is delivered. On
the other hand, not enough discovery and design could result in delivering the wrong
thing or encountering a lot of blockers that could have been avoided with a bit of
upfront thinking, resulting in delivery taking longer and costing more.

408 CHAPTER 16 Strategy and roadmaps
Figure 16.12 A basic model for categorizing modernization work

The sensible approach is for teams to continually reflect on how they are working and
adapt according to their observations. Reflecting on the feedback loops is especially
important. For example, if delivery does keep hitting avoidable roadblocks or priori-
ties keep changing mid-delivery, are these insights feeding back into the design and
discovery approaches, respectively, to avoid similar problems in the future?

 Remember that roadmaps are hierarchical. For instance, a high-level roadmap
might indicate that a certain initiative is currently being delivered, whereas a more
granular roadmap for that same initiative could reveal that certain discovery work—
such as EventStorming sessions—is still in progress. The higher-level roadmap
emphasizes the overall status of each initiative, while the lower-level roadmap pro-
vides a more granular breakdown of activities within the initiative. So, a roadmap
showing an initiative being delivered should not imply that only delivery activities are
permitted.

REFLECTIVE QUESTIONS

While there is no flowchart for finding the optimal balance of discovery, design, and
delivery, there are signs that indicate an imbalance. As an example, here are the types
of questions a team can ask themselves periodically to surface meaningful insights:

Discovery
Discovering modernization

opportunities

Stakeholder
interviews

Wardley
Mapping

Current state
assessment

Big picture
EventStorming

User
research

Impact
Mapping

Example activities

Design
Designing modernized

architecture and migrations

Product
taxonomy C4

Message flow
modeling

Process
modeling

EventStorming

Migration
design ISH

Example activities

Delivery
Delivering modernized

architecture

Build new
subsystem

Extract
subsystem

from monolith

Refactor
legacy

Decouple
monolithic
database

Build IDP
capability Improve DX

Example activities

Feedback

Outcome

FeedbackFeedback

Feeds Feeds

Outcome

Business and
customer value

Momentum,
excitement, belief,

trust

40916.3 Scale it: Ramping up modernization
 Have we delivered anything in the last three months that people outside the
team would recognize as progress?

 Are people expressing concern at the lack of value being delivered?
 Are we designing parts of the architecture that won’t be delivered for over a

year? Could we instead design this later without any disadvantages?
 Are we constantly encountering issues during delivery, requiring us to stop and

rethink the approach? Could they have been prevented with a little bit of
upfront design?

 Are we changing direction regularly during delivery because new priorities have
emerged? Would it have been possible to identify these up front with a bit more
discovery?

 Is everything taking far longer than expected and costing significantly more
than planned?

 Are people questioning our priorities because what we’ve delivered isn’t the
highest value opportunity?

 Are we constantly being blocked during delivery because we don’t have suffi-
cient resources or people to deliver the work? Would more discovery and
design in advance help us to identify what we need earlier so we can have every-
thing in place when we are ready to start delivery?

 Are we seeing misalignment between teams in terms of their priorities and their
architecture choices? Would more discovery and design up front help to keep
people moving in the right direction?

 Does our roadmap lack consistency—are we modernizing parts of the system
ad-hoc rather than in a logical order?

Questions like these can be turned into regular surveys or used in retrospectives to
adapt and improve the balance continually. The final section of this chapter provides
some guidance and techniques for an evolutionary approach.

DECISION TIMEBOXES

Timeboxes are great for preventing modernization from getting stuck in analysis and
not progressing. There is rarely 100% confidence in what to do next, which can lead
to teams doing far too much discovery and design. When this goes on for too long,
people start to lose interest and questions begin to be raised about modernization not
going anywhere, which becomes an excuse for other work to creep back into teams’
backlogs.

 With timeboxes, you commit to making a decision by a certain date—for example,
“We are going to make a decision about how to proceed after two months of discovery,
which ends on July 16. We will never be 100% confident, but two months feels like the
right balance of finding the right direction versus spending too long debating and
risking a big drop in momentum.”

 Having a timebox encourages focus. Everybody knows they have limited time to
share their feedback and raise concerns, but I advise that you ensure the timebox

410 CHAPTER 16 Strategy and roadmaps
includes a period of reflection. This means people know the preferred option and
have time to properly embrace the idea and raise any final concerns. So, with a two
month timebox, you can use the first month to draft an initial proposal (or shortlist of
options) and the second month to seek feedback and refine the proposal through a
series of 1:1 sessions and group workshops.

16.3.5 Balancing modernization and other work

It would be great if teams could focus 100% on modernization work until everything is
slick and modern and there is no more legacy. Realistically, that rarely happens, and
teams are expected to do other work as well, like fixing bugs and continuing to add
new features. This raises the important question of how to balance modernization
work with those other types of work.

 One of the biggest risks is falling back into familiar patterns and neglecting mod-
ernization. Building momentum is key, so at the beginning especially, there needs to
be strong incentives and countermeasures. As discussed in the previous chapter, this is
one of the primary purposes of an AMET. So, if modernization takes too much of a
backseat, forming an AMET is worth considering.

 In any case, having a compelling vision and clear commitment is essential. People
need to understand the value of modernization, and teams need to feel empowered to
say no to work that isn’t as valuable as their modernization work. This is one of the
important roles a well-crafted strategy can play. However, the message needs to be
reinforced daily. Leaders need to continue emphasizing the importance of modern-
ization and prioritizing it over other work.

 One approach that I’m skeptical of is people’s time being split across multiple
teams. For example, a developer is expected to do modernization work with one team
for three days a week and work on legacy with another team for two days a week.
Maybe it can work, but I’ve never seen it work.

 The common problems I observe are

 The context switching is disruptive for all parties.
 The developer usually gets pulled back into more legacy work, like when there

are bugs and production issues.
 Modernization requires a lot of learning, which is hampered by only being with

the team part-time and constantly context switching.
 People I’ve spoken to don’t enjoy it.

I’ve heard the argument that splitting a developer between modernization and legacy
work is necessary because they are one of the only people who understand the legacy,
and the team needs them. This problem can be mitigated by identifying the problem
as soon as possible and handing over as much knowledge as possible. The developer
can then join modernization but be called back only in emergencies. Before commit-
ting to any decision, it’s always vital to listen to the individuals involved and take on
their opinions and concerns.

41116.3 Scale it: Ramping up modernization
INDUSTRY EXAMPLE: USING THE COST OF CHANGE TO BALANCE LEGACY INVESTMENT AND
PLATFORM EVOLUTION AT MOBILE.DE

NOTE This industry example by David Gebhardt (CTO & CPO, mobile.de)
and Christoph Springer (head of platform, mobile.de) demonstrates a great
example of attaining buy-in for a continuous commitment to addressing leg-
acy by articulating technical concepts in a language that all stakeholders
understand—cost of change. This example also provides excellent insights
into modernizing and evolving shared-service platforms at scale—in particu-
lar, how to evolve platform responsibilities as needs emerge rather than trying
to predict everything upfront.

Back in 2017—when mobile.de was already over 20 years old and consisted of more
than 400 technical artifacts—a group of engineers and product managers of
mobile.de were asked to build a new global automotive platform using their deep
experience and knowledge. Consequently, the mobile.de team suddenly became sig-
nificantly smaller while the platform remained just as big and complex. The team was
still expected to deliver on our ambitious product and business objectives, thus the
focus was primarily on creating new value.

 All of that is a natural development in such a situation but turned out to be unsus-
tainable in the longer term. The first consequences became obvious after only one
quarter, and we knew it was time to change our approach on platform health, espe-
cially around technical debt.

To illustrate the challenge, including for everyone outside of technology, we used the
concept of cost of change. Cost of change in our case refers to the expenses (resources,
time) incurred in implementing or executing a change or modification to a product,
process, or system. The explanation we used was simple:

 Delivery increases cost of change—Building new products or extending existing prod-
ucts increases complexity and therefore cost of change.

 Excellence decreases cost of change—Focusing on removing technical debt, maintain-
ing existing artifacts, and refactoring legacy decreases complexity and therefore cost
of change.

 With that simple model (see figure 16.13), it became clear for everyone: by focus-
ing only on delivery and having less bandwidth at the same time, cost of change will
eventually increase, meaning platform health will deteriorate and speed and ability to
deliver will decrease, leading to tangible negative business impact.

Our definition of technical debt
We believe that every platform has legacy.

Legacy describes systems and functions with a design contrary to architectural prin-
ciples.

(Technical) debt is the part of legacy that is causing problems within our platform.

412 CHAPTER 16 Strategy and roadmaps
Figure 16.13 Maintaining a low cost of change by balancing delivery and excellence

With the cost of change in mind, we established a timeshare of 25% that teams allo-
cate to functional excellence (removing technical debt, maintenance, and refactor-
ing) and secured full buy-in from management.

 To manage and prioritize, we established a process within our OKR framework to
handle technical debt. The starting point is a technical debt inventory, where every
item on the list is estimated roughly, and a goal is set for the given year for how much
percent of the debt we want to repay. What items will be picked to meet that target
depends on the priority of the respective items and also how the items are spread
across teams and artifacts. We then gave focus and tracked progress through quarterly
OKRs and OKR check-ins with the teams to understand progress and to help remove
blockers. As a result of this process, we discovered two immediate consequences:

 With an again growing organization and product, we saw a lot of inter-team
dependencies and also duplication across teams, affecting their flow, and we
received requests for many foundational services that were currently scattered
across teams (e.g., API for mobile.de consumer applications, picture services,
and foundational handling of ads/listings).

 The concept of defining architectural principles of the platform to adhere to
and subsequently tracking the inventory of technical debt and the progress of
resolving it required more coordination and guidance and a clear mandate
within the technology organization.

We deemed that introducing a coordinated way to establish and own shared services
would help us reduce enterprise complexity, allowing teams to focus on their core
missions and improve their time-to-market while reducing overall costs for the organi-
zation.

 We started by bringing together individuals from different parts of the organiza-
tion who individually took care of these kinds of services in their respective domain,
and we transferred the ownership of those artifacts to the newly founded team whose
mission was to holistically own the whole platform of shared services. We also decided
that the team will be headed by a head of platform, with the clear mandate to drive
technical decision-making and guidance (through architecture decision records and
guidelines) as well as the coordination of the technical debt process.

Increases Decreases

Costs of change

Excellence

Costs
of

change

Costs
of

change

Delivery

41316.3 Scale it: Ramping up modernization
 At that moment, our Platform Team was born.
 In the beginning, the team consisted of our most senior engineers/architects, with

a focus on backend engineering. Today, the team also spans across mobile engineer-
ing, frontend engineering, and cloud and infrastructure. As part of the expansion, we
established ownership and clarity and communicated a clear mandate, empowering
them to fulfill their responsibilities.

 Part of their responsibility is also to give guidance and consultation to our product
teams who are responsible for business domains like transactions and advertising. Each
of these teams has a defined technical lead role, a person who has the technical own-
ership of the team’s applications and artifacts, as well as ensuring functional excel-
lence and keeping it in balance with product and business objectives.

 To ensure the platform best serves the needs of our product teams, platform engi-
neers/architects are organized to support specific domains as shown in figure 16.14.
They work closely with the technical leads of those domains and are included in cru-
cial planning sessions for bigger or critical features. And further, they support those
teams in building features that integrate with platform central services. Platform
architects also collaborate with other functions (these are teams or departments that
interact with multiple domains like marketing, SRE, and data).

Figure 16.14 Platform architects worked closely with teams that used the platform.

As previously mentioned, the Platform Team owns central capabilities. Those are
foundational for many of the services and products we offer. Due to the growth of our
platform, processes had to be established on how to identify and review services that
might become a central capability. In architectural review sessions, all our technical

Platform

Central
service

Consumer Transactions Commercial Advertising

Central
service

Central
service

Central
service

Central
service

Central
service

Central
service

Architect Architect Architect Architect Architect Architect

Functions (e.g., marketing, SRE, data)

414 CHAPTER 16 Strategy and roadmaps
leads and platform engineers/architects get together to discuss new services, upcom-
ing projects, or extensions of existing services. If one of those services gets identified
as a candidate central service, it will be discussed and documented using the ADR for-
mat shown in figure 16.15, and the future ownership will be determined.

One of the main challenges around this process is to keep the artifact-per-headcount
ratio in balance. Therefore, only essential services that are used widely within the
organization will be owned by the platform team, such as our central API and our
ads/listings publishing service.

16.3.6 Visualizing and communicating the journey

Visualizing the modernization journey with roadmaps and other artifacts brings many
benefits. Firstly, it’s a great way to create alignment and bring people along. Everybody
across the organization can see the work that is ongoing and planned, helping them
to feel more connected, aligned, and prepared. As mentioned, it’s also a good way to
spot problems like dependencies early, as well as identify in advance the help that
teams will need, like support from an AMET, learning and upskilling requirements,
and hiring needs.

 On the other hand, visualizing roadmaps carries significant risks. It can give a
sense of a fixed timeline rather than an evolutionary journey, incentivizing the wrong
behaviors. A lot will change in the course of two years or more. If a team commits to
delivering by a certain date, any failure to do so may result in the team being nega-
tively judged, even if they did the right thing by stopping and changing course. As a
result, teams feel safer following a bad plan rather than taking a risk and changing

ADR <number>:<title>
<preamble text, artifact/service description>

Decision
<decision taken, reasoning>

Technical details
<artifact specific details>

Discarded alternatives
<Details of alternatives that were discussed>

Ownership
<Team that previously owned the artifact>

Status
<e.g., accepted>

Consequences
<What consequences are tied to the decision that was
taken, any future disadvantages, etc.>

Figure 16.15 ADR template for
determining if the platform would
take ownership of an artifact

41516.4 Continuously assessing and adapting
course or even raising the problem. The roadmap isn’t the problem; the culture and
the incentives are. As a leader, you’ll need to carefully consider what is appropriate for
your organization and how you will work on the messaging.

 There are different types of visuals to consider when visualizing a modernization
journey. High-level, milestone-based roadmaps are good for providing an overview of
what has been achieved and when major objectives will be achieved. These are usually
organized into periods of months, quarters, or years. Conversely, fine-grained plan-
ning roadmaps serve a different purpose. They are used to help coordinate the work
across multiple teams working toward shared goals and helping to identify and plan
around dependencies.

 I don’t advocate for a specific roadmap template or format because it will vary
according to the context, like the nature and shape of the work and the story you want
to tell. In different scenarios, you will present your roadmap differently. You may want
to organize swim lanes based on teams, domains, legacy systems, types of activity, or
something else.

 Another reason to embrace multiple roadmaps is for different architecture scopes
(covered in chapter 6). A higher-level roadmap will show only the key details from
lower-level roadmaps. For example, a scope 2 roadmap may show the various activities
a group of teams will go through to modernize their services. But the equivalent scope
3 roadmap that covers other groups of teams as well might just show when the work
each team is doing will be complete (omitting all of the steps that lead up to it). When
I was at Salesforce, for example, each product group was in control of its own modern-
ization roadmap and reported key highlights to the level above.

16.4 Continuously assessing and adapting
In a world of constant change, leaders need to be able to adapt their strategies and
visions, sometimes incrementally and sometimes dramatically. This final section of the
chapter looks at various ways to incorporate continuous change into the DNA of your
modernization initiative and architecture operating model.

16.4.1 Metrics

Metrics are an obvious starting point to verify that modernization is progressing at an
acceptable level. Slow progress, higher costs, or a mismatch between the value delivered
compared to expected are examples of signs that could necessitate a change of course.
In general, any of the metrics mentioned in this book may be good to track, including

 High-level business metrics like revenue and growth
 Product and portfolio north stars and north star inputs
 DORA metrics like deployment frequency and system stability
 Quality attributes like performance and scalability

Progress toward many of these metrics, like revenue and deployment frequency, can
take a year or longer to become noticeable. People might not see any obvious prog-
ress and start to question the value of modernization. So, it’s also good to identify

416 CHAPTER 16 Strategy and roadmaps
relevant metrics that can help to show the progress of the modernization journey,
including shorter-term feedback. Modernization metrics will depend on what is
important to you, but here are some suggestions to get started:

 Number of subdomains that have been modernized
 Amount of traffic being routed to legacy versus modernized architecture
 Number of subdomains still persisting in the legacy database
 Number of teams that have begun modernization
 Number of tasks completed by users in legacy versus modernized UI

16.4.2 Pulse surveys

Regular surveys are an effective tool in understanding people’s experiences and
expectations of modernization. They can help to identify when things may have gone
off course and detect problems early before they grow out of control. Pulse surveys are
typically sent once per month to once per quarter and can cover any aspects of mod-
ernization that you feel are necessary.

 The following are some example questions to get you started.

 How clear to you is the modernization vision?
 How strongly do you agree with the modernization strategy and roadmap?
 Are you seeing any benefits of modernization?
 Does your team’s work feel connected to the bigger picture?
 Is your team spending enough time on modernization work?
 Do you have enough clarity about your team’s roadmap?
 Does your team have all the support and resources needed to deliver modern-

ization successfully?
 How well are the new principles being adopted on your team?
 Have you been able to change course when new insights have emerged?
 How much have unexpected dependencies blocked your team?
 Overall, how satisfied are you with your team’s modernization progress?
 How useful do you find the modernization playbooks?
 What suggestions do you have for improving our approach to modernization?
 What do you think is working well with our approach to modernization?

16.4.3 Gatherings

Bringing groups of people together is a vital component of a successful moderniza-
tion journey. It’s an opportunity for ideas and insights to spread, and it’s an opportu-
nity for people to raise feedback, all of which helps everybody involved to continually
assess and adjust the journey they are on.

MODERNIZATION ALL-HANDS SESSIONS

Modernization all-hands sessions are an opportunity to bring together everyone
involved to keep people aligned on progress and show what’s upcoming. You can run

41716.4 Continuously assessing and adapting
these sessions however you like. A format I’ve seen work well is to start by summariz-
ing progress toward the big picture strategy, changes to the plan, and what’s coming
up next.

 Then, have a space where teams and individuals share their work. I have found this
to be incredibly beneficial at the start of modernization when teams that are not yet
involved in modernization can see the real work being done and get excited about
their opportunity to be involved in modernization.

 I also find it highly beneficial to have an open Q&A session where anybody can post
questions that will be answered live by modernization leaders. This can work well using
digital tools where people are free to post anonymously, although I have seen problems
with this approach where people post intentionally disruptive comments anonymously.

 The frequency of modernization all-hands sessions is typically once every one to
three months. I’ve heard some people say that once per month feels too frequent and
a bit of a time waste, while on other occasions, quarterly or less seems insufficient, and
people feel out of the loop. What’s optimal will vary according to your unique context,
so seeking out feedback and adapting where necessary is key.

RETROSPECTIVES

Another type of essential gathering is the retrospective. These are important moments
where people can step away from their work, reflect on what is working, and discuss
opportunities for improvement in a group setting. Everybody should be involved in
some type of retrospective. Individual teams should have retrospectives at least once
per month and so should modernization leadership teams.

 I’ve also found that project-based retrospectives work well. This is where multiple
teams collaborating toward a specific goal have retrospectives. I’ve seen this lead to
huge improvements in collaboration between teams. At one organization, there were
two stream-aligned teams and platform teams involved in delivering the first slice of
modernization. The stream-aligned teams and platform teams had a rocky relation-
ship, but well-designed and facilitated retrospectives brought them much closer
together and improved the relationship immeasurably.

LARGE GROUP SESSIONS

When working with Dan Young and Mike Rozinsky in 2021, I began to see the value of
larger group sessions, where 50 or more people attend virtual gatherings. The pur-
pose of these meetings can be anything. One example is when we conducted inter-
views with many people from across the organization in different roles and then
presented back the key themes that emerged and designed activities to allow the
groups to explore certain topics. Another example was running workshops around
the theme of developer experience to understand how different teams interpreted
the concept and the help they needed.

 Large group sessions are generally the hardest to design and facilitate, so if you’re
not an experienced workshop designer and facilitator, it’s better to start smaller and
safer or bring in an expert who can help. Chapter 3 covered this topic in more detail,
along with links to additional resources.

418 CHAPTER 16 Strategy and roadmaps
COLLABORATIVE DISCOVERY, DESIGN, AND MODELING

As mentioned throughout the book, collaborative discovery and modeling techniques
like EventStorming are excellent techniques for bringing groups together and help-
ing them see the bigger picture. This can lead to all kinds of insights that help teams
take their journey in a better direction, like reprioritizing work, improving the design,
and discovering that something has already been built by another team. Therefore,
encourage periodic EventStorming among related teams. Once or twice a year is not a
huge ask and will easily pay for itself.

16.4.4 Continuous feedback channels

Conversation channels are an invaluable tool that allow teams to share knowledge and
insights, which helps them to identify when they are not on the optimal path and get
advice to help change course.

 Channels can be created for a whole range of topics, including

 Ideas and feedback—This type of channel is for people to share feedback about
what is or isn’t working and ideas to improve modernization.

 Success stories and lessons learned—This type of channel is for teams to share what
has worked and what hasn’t so that other teams can incorporate the learnings
into their own roadmap.

 General Modernization questions and support—This type of channel can surface
common challenges teams are facing, which may indicate more fundamental,
strategic problems.

 Legacy systems—This type of channel allows teams to raise requests for changes
they require to legacy systems and get advice on what is possible and by when it
could be completed.

16.4.5 Spend time with people doing the work

One piece of advice I would offer almost every technology leader, regardless of senior-
ity, is to actually spend time with teams doing the work. Showing people that you are
interested in and respect their work shows them that you are deeply committed to
modernization and want to help them achieve it in the best way possible.

 The reason I don’t offer this advice to every modernization leader is that it has the
potential to cause more harm than good if not carried out with care. At one organiza-
tion, the CTO, who was based in another country, announced he would be visiting our
office to introduce himself to the teams. He introduced himself by saying, “I have a rep-
utation for shouting at people, but don’t take it seriously. And if I don’t shout at you, the
CEO will shout at you louder.” Unfortunately, this wasn’t intended as a joke in the slight-
est. The CTO and CEO really were leaders who were renowned for shouting at people.

 If you’re genuinely interested in seeing how teams work and care about their well-
being, then don’t hesitate to spend time with them and show your support. If you’re
worried that your presence may be intimidating, then I recommend working with a
coach who can help you work on this aspect of your leadership skills.

419Summary
16.4.6 Be prepared to make the difficult decision

Continually assessing modernizing and looking for the need to pivot may result in
uncovering major assumptions underpinning the architecture, strategy, or roadmap
that no longer hold, requiring a big change of direction. Changing course may be
expensive, or it may seem like the original decision was a mistake, or some other rea-
son may cause fear of making the decision and continuing with the existing plan. It’s
also easy to be naive and assume a problem doesn’t exist or will go away, but it’s a risky
strategy. I think it’s better to be alert to potential problems and create an environment
where your colleagues and teams feel encouraged to raise awareness to you.

 Remember that you have already crafted a modernization strategy that attained
buy-in from a variety of stakeholders. If you built a compelling narrative for the origi-
nal plan, then there’s a good chance you can build a compelling narrative for a diffi-
cult, but necessary, change in direction as well.

 The sooner you identify the problem, the lesser the effect will be. Even if you
aren’t sure that a pivot is needed, it can be wise to let key stakeholders know about this
risk that has appeared on the radar and that a change may be necessary in the near
future. There’s a risk it may alarm them unnecessarily if the problem never develops,
but it could also build trust and make the problem feel shared.

 You can help to address the problem by doing work up front—by making it clear
that some assumptions may not hold, that pivots may be necessary from the start of
the initiative, and by having an active and transparent risk management approach.
Even more fundamentally, I recommend striving to continually build better relation-
ships and trust with all the stakeholders and people involved in modernization. You’ll
have the greatest chance of dealing with whatever problems arise, including the most
difficult ones.

Summary
 A good modernization strategy acts as a compelling vision that helps all stake-

holders see the value of modernization and get excited about the journey.
 A good modernization roadmap allows people to see how concrete steps will be

taken to achieve the strategy and how they can prepare to play their part.
 Strategies and roadmaps can be dangerous if not done well; they can become

too fixed and rigid while lacking a strong purpose that connects initiatives to
business outcomes.

 The most important aspect of strategy and roadmaps is to prepare for constant
evolution.

 A nail it then scale it approach can help to deliver value early, de-risk a project,
and lay the foundations for other teams to start modernizing.

 There doesn’t need to be a single strategy and roadmap; different parts of the
product taxonomy can define their own strategies and roadmap that connect
back to the bigger picture.

420 CHAPTER 16 Strategy and roadmaps
 There is no perfect structure for a strategy deck, but it’s generally a good idea
to start with business objectives and product strategy and show modernization
initiatives will contribute to them.

 A modernization roadmap doesn’t need to be fully defined upfront; in fact, it’s
good to deliver a first slice within the first three to six months.

 Modernization Core Domain Charts and scorecards can be used to choose the
first or next step in a modernization journey.

 Modernization involves different types of work like discovery, design, and deliv-
ery; an imbalance can lead to focusing on the wrong problem or encountering
many blockers during delivery, which increase rework and costs and slow down
modernization.

 Decision timeboxes are an effective tool for allowing for discovery and design
without getting stuck and not delivering anything.

 Modernization will likely need to be carried out alongside other work, like new
features and bug fixes, so it’s important to use concepts like cost of change to
avoid going too far in one direction.

 Metrics, pulse surveys, and various forms of gatherings are all crucial compo-
nents of assessing progress of a modernization journey and identifying a need
to evolve the strategy or roadmap.

Learning and upskilling
Technological advancements have been integral to human history, constantly trans-
forming our lives and work. From the printing press to the internet, new technolo-
gies have disrupted existing systems and created opportunities for growth and
progress. However, embracing these new technologies has often required a shift in
mindset, as people have had to let go of old ways of thinking and adopt new ways of
approaching problems. Following the invention of the printing press by Johannes
Gutenberg in the 15th century, scribes and scholars were resistant to the idea of
printing, as they were used to copying texts by hand. As the benefits of the printing
press became more apparent, the mindset toward printing gradually changed,
eventually revolutionizing the spread of information.

 Keep this example in mind when thinking about modernization in your com-
pany. It is unlikely that everybody in your organization will simply transition

This chapter covers
 Introducing new ideas into an organization

 Upskilling for imminent modernization projects

 Growing a culture of continuous learning and
upskilling
421

422 CHAPTER 17 Learning and upskilling
overnight from your legacy systems and ways of working to modern technologies, pat-
terns, and practices. They may even be skeptical, which history shows is normal. This
means that to truly benefit from modernization, a significant investment in learning
and upskilling is crucial financially and time-wise. This is where leadership plays a piv-
otal role in the success of modernization—creating the conditions where employees
can properly get to grips with modern approaches, allowing your organization to fully
exploit the potential.

 The more ambitious your modernization, and the bigger the delta between the
legacy world and the new modern world, the more investment in learning and upskill-
ing will be necessary. It’s crucial to consider these costs when planning and budgeting
for modernization to avoid problems further down the line.

 Learning and upskilling is more than looking at the upcoming modernization work
and identifying the skills teams need to learn. For modern, high-performing organiza-
tions, learning and upskilling is a continuous process baked into the company’s DNA.
It ensures the business is always moving forward and adopting modern approaches
rather than needing a big explicit modernization program every five years.

 Leading organizations employ numerous techniques for learning and upskilling,
including communities of practice, bytesize architecture sessions, and mentoring pro-
grams. These activities are built into regular working time and treated equally to other
types of work. This chapter looks at some of the most common learning and upskilling
approaches relevant to architecture modernization initiatives and more generally.

17.1 Planting seeds
Even when you explain the benefits of a new technology or practice perfectly, some-
times your managers or peers won’t share your enthusiasm. It’s frustrating because
you’re excited and feel this new concept could bring so much value to your organiza-
tion if they made an effort to learn and apply it.

 Most people find themselves in this position at some point in their careers. It’s a
question I’m asked often, and it’s a question that is often raised at conferences and
meetups: “How can I introduce this technique in my organization? How do I convince
my boss and my colleagues to learn and adopt this technique?”

 The reality is that introducing new approaches that are completely different from
the current way of thinking will often be met with resistance. But that’s not a reason to
give up if you believe that there is a significant amount of potential. Instead, you can
embrace the metaphor of planting and nuturing a seed. This metaphor is about being
patient and persistent, seizing opportunities that present themselves, and gradually
introducing new approaches.

17.1.1 Industry example: Planting the DDD seed at a French HR-tech unicorn

This industry example is an astonishing story of what can be achieved by planting a
seed and patiently nurturing it. A small book club was the seed that gradually flour-
ished into significant organizational changes and product development ethos.

42317.1 Planting seeds
NOTE This story is told by Krisztina Hirth, who joined PayFit as a staff archi-
tect in September 2022, bringing the necessary skills, energy, and passion to
spread the DDD paradigm company-wide, evolving it from an engineering-
driven initiative to a driver for product and organizational decisions.

PayFit is Europe’s leading cloud-based solution for running payroll for small- and
medium-sized companies. The company was founded in 2016, has offices in three
European countries, became a French Unicorn in January 2022, and has close to
1,000 employees. The company motto, “To make work a source of fulfillment for
everyone,” speaks for itself. This is not only the vision of the product, but it is also mir-
rored by the core values at PayFit: care, passion, humility, and excellence. These val-
ues and their importance in the organization give some insights into the mindset of its
employees and leaders.

 The DDD journey was “officially” started at PayFit in 2021 (more than two years
ago) by Damian Bursztyn, engineering director at PayFit, with a book club. The club
was originally composed of engineers (mostly individual contributors and a few man-
agers) and met biweekly. They discussed the concepts concerning their daily chal-
lenges at PayFit and looked for possibilities to apply what they learned.

 Word of the book club started to spread, and the group started to grow partially
organically and partially by inviting colleagues so that it became more diverse by hav-
ing product, design, and domain experts as members. This allowed them to create
and improve the common understanding of some domains and their boundaries.
They defined and refined domains and terminology in domains like time planning
and payments. The first seeds had been planted. Now, it was time to carefully and
patiently nurture them.

 The benefits of being patient soon became clear. Several features and refactoring
initiatives began with collaborative modeling sessions, like EventStorming, as the first
step. “It brought a lot of things to the table (including processes we never think
about),” and “It was super useful to see the complexity and the different understand-
ings of the team” are the types of comments received after these workshops.

 As a side effect of our domain discovery workshops, evolving the understanding of
our business domains brought improvement opportunities regarding our organiza-
tion structure. This wasn’t just a theoretical problem; there were improvement oppor-
tunities to act on:

 How teams were interacting
 High need for coordination and collaboration
 Slow product development
 Inefficient work

Additionally, PayFit was growing rapidly. The costs of dependencies and slow product
development work were equally increasing and becoming untenable. The organiza-
tion could see this and wanted to give teams more autonomy and empowerment and
reduce dependencies. It became clear that a new way was necessary to organize teams:

424 CHAPTER 17 Learning and upskilling
aligned to the business outcomes and the domain rather than technological layers
while leveraging platformization.

 But this had to be done carefully. One crucial example was handling payroll data,
which involves working with highly sensitive data. While it was time to find a way to
empower teams, we also had to ensure a holistic approach to data governance, consis-
tency, and decentralized decision-making.

 Senior leadership gave the go-ahead for a series of domain discovery and modeling
workshops to map out the company domains and rethink the organizational struc-
ture. Damian took the responsibility to get all this organized across the whole organi-
zation, and Krisztina became the facilitator of the workshops, both being aware of the
potential impact this initiative would have.

 One of the first workshops she ran was a deep dive into the company’s core
domain, payroll. As she spoke to different groups, everything seemed coupled to pay-
roll, so this seemed like the essential starting point. The workshop’s purpose was to
gain alignment on the domain model, like what domain concepts are involved, how
they relate, and where people see the boundaries.

 Shortly before the first workshop, she started an unusual kind of domain discovery
with Jean de Barochez (embedded architect in the payroll team). A knowledge-crunch-
ing session began with writing instead of stickies or diagrams. The topic was pay period,
a core term “used by six people for seven different meanings” (a phrase Krisztina
uses). The asynchronous exchange started on the documentation platform by asking
everyone to add their definition and known usages for the term—a kind of RFC but to
collect knowledge instead of suggesting one decision.

 After some time, the gaps and misunderstandings became transparent. Having all
the needs and interpretations in one place made it easy to realize that people were
actually talking about different concepts. Pay period is the widely used, customer-
focused term but is missing the concept of the payroll lifecycle—the period of time a
payroll is referring to. Usually, this is one month, but some countries allow shorter
periods too—for example, one week. This need was identified earlier as valuable, but
it needed a name and a meaning to be able to implement it. Now, it had a name and a
very clear description that could be used as the target vision for the deep-dive
workshop.

 The name payroll period is only slightly different from pay period as a name, but it
leads to a completely different implementation. We continued to build up a mental
model around this name, using the MindMap shown in figure 17.1, and after a short
time, we ended up with a domain model ready to be implemented.

 During the two-day workshop, a diverse, cross-functional group—including the
product manager, design expert, and engineers—stormed, explored, and iterated on
the payroll period domain model. They ran through the most important use cases to
build a deeper shared understanding of the current functionality and proposed
future changes. This helped them to explore the optimal architecture.

42517.1 Planting seeds
Figure 17.1 Payroll period MindMap

The artifacts from the workshops were

 A bounded context canvas documenting what belongs to payroll, what doesn’t,
its main responsibilities, and how it communicates with others.

 One draft of a canvas describing a new context called payslips, which was consid-
ered as an internal implementation detail of payroll until that moment (DDD
started to do its magic: we started to divide and conquer based on business
needs, not on technological heuristics.

 Four domain message flow diagrams describing the main use cases.
 The future design of payroll and its relationship with the payroll period, docu-

mented as the payroll vision to be shared with everyone impacted (and inter-
ested)—an RFC to share it throughout the engineering organization.

 The next step to make it happen—fast experimentation to validate the concept
based on real production usage compared to planning and assuming things,
which was the default.

 Key challenges, like rolling out a completely new architecture and design by
migrating slowly from the old one. We knew the company couldn’t afford to sit
still while we rewrote the whole system, so had to be realistic.

I want to really emphasize that all of this happened because we focused on clarifying a
single domain term. Naming is hard, and it is a key driver for all kinds of decisions,
both business and technological.

Will be opened when an external
command says it is time

Has an intended end date

Has a real end date

Helps positioning the events from
payroll impactors in a timeline

Can be opened, running,
calculated, closed

Has an ID depending on
the company

When a new company was
onboarded, for example

All impactors contain an applicability
date or date range

Owns the data or collects it
when it is about to start

Or when the command was calledIt has a configured start date
(not the date when actually open)

Payroll
period

426 CHAPTER 17 Learning and upskilling
 After this first deep-dive into the heart of the product, a series of big picture dis-
covery workshops were started for all payroll-related domains and other areas that
needed to be tackled by a successful product, like the self-serve experience.

 The purpose of the workshops was to

 Explore the four highest-priority business objectives
 Identify the relevant domains
 Define a shared language
 Explore team organization options
 Improve team autonomy to make decisions and work with fewer dependencies

I (Krisztina) designed and facilitated each workshop. Participants covered the whole
spectrum of employees, from sales to customer support, product, design, and engi-
neering experts, from multiple countries. Each workshop followed a similar structure:

 Describe the current situation (each topic owner added the most important
resources to the Miro board before the workshop so that everyone could have
read up, if necessary)

 Start a conversation about the daily work, about the problems and the needs,
and put all this on the board

 Collect terms and their meanings so that the gaps and the misunderstandings
become transparent.

 EventStorming on the most common use cases and identifying domain bound-
aries (this was the whole second half of each workshop)

Figure 17.2 shows one output from a workshop related to the domain concept of Dec-
larations (you can see an interactive version on the book’s Miro board: http://mng.bz/
PRO8). These are the different terms, activities, and topics regarding declarations
that appear during work in different countries.

 One piece of advice I would like to offer anyone interested in running these types
of workshops is to focus on knowledge sharing and not just on the outputs. In our
workshops, people heard about business needs and processes directly from those
involved rather than a proxy. People loved getting this deeper understanding.

 Although the agenda was the same for each workshop, the outcomes and next
steps were completely different. For example, two topics were merged because we dis-
covered they were both related to addressing the same needs. Another example was
when a workshop uncovered three “black holes” (areas we didn’t realize existed),
which required three additional workshops. The third topic followed the initial plan
to collect all the information, agree on the boundaries and pivotal events, and start
filling the bounded context canvas. (This canvas will soon become the standard docu-
mentation for teams to talk about the domains they handle and start collaborations
with other neighboring contexts.) The fourth topic was huge, including the whole
self-serve experience and all the related domains. This initiative was already ongoing,
so even before the discovery workshops were done, it was possible to create and use

http://mng.bz/PRO8
http://mng.bz/PRO8

42717.1 Planting seeds
the first message flow diagrams to challenge the boundaries and plan the iterative
implementation.

 There is so much more that I would love to share about our journey at PayFit, but
for now, here are some of the quotes from some of our team:

 “We came to a satisfactory common definition of the declaration domain at the
company level, and this let us make the right arbitrations to create a hybrid
team with a diverse product/tech skill set, including a whole team of product
builders.”

Spanish
team

France
team

Feedback
gotten
back

Feedback
gotten
back

Accounting
output needs

to know
about

holdings

Company
declarations

Employee
regarding

declarations

Merge
declarations
for holdings
& duplicates

Send them
to the 2
different

organisms
manually

The
declarations

are sent
monthly + one

summary in
January

Admins didn’t
enter the

right data for
sick leaves

Maternity leave—it is
different because it is
paid more but it has a
fixed length of 14 days

Legal
obligations of
the company
as the legal

representative
of the clients

Legal
obligations

regarding the
employee

Help
employees to
declare taxes
at the end of

the year

The declarations are
sent to 2 different
organisms with 2
different structures

The final
documents

are kept

Sent after
specific
payroll
events

Employee-related
declaration after

onboarding, offboarding,
sick leaves

Sick leaves
to health
insurance

Onboarding
to inform
about a

new hiring

Offboarding
to inform
about an
end of the

contract

Declaration
is key

Specific
forms,

specific
timings

New declarations
always replace the
old ones, we can’t
modify the old ones

Missmatch
in settings
we are not
aware of

F.e. different
contractual
changes
payfit is

not aware of

We have the
info but we
didn’t ingest

correctly

The admin
forgot to

update the
settings

Sent to
the

same
organisms

Organisms are using
sometimes the holding

identifier, which we don’t
know and thus ignore
the feedback on the

setup sheets

Confirm
that

everything
is fine

The event-based
declarations are

related to the rights of
the employees

The recurring
declarations are just for
information about the

current situation

Duplicates happen bc
 we can’t handle

multiple contracts for
one employee

Figure 17.2 Notes taken during big picture domain discovery about declarations

428 CHAPTER 17 Learning and upskilling
 “This is a testimony to the efficient methodology behind DDD, and we are
hopeful other significant results will come out of the discussions on other
domains” —Ghita Benotmane, product France director after two rounds of big
picture discovery workshops, expressed during a team review.

 “I was surprised by the high level of engagement and collaboration at a meeting
where the attendees were supposed to take the ownership over more work!" —
Francois-Xavier Paradis, product manager of declarations after a hand-over
meeting necessary to move functionality to the right domain-owners.

 “Before the ‘computes’ and payslip generation were the same, but now they are
different, and it has an impact on the UX. It’s a great example of how DDD
helps us to improve and to decouple the scope of teams because now we have
two different concepts for what used to be one ‘big thing,’ and the payroll team
has full autonomy to improve the UX related to payslip previews.” —Clément
Ricateau-Pasquino, engineer and DDD practitioner working hard on stability
and reliability improvements.

All this started two years ago by planting a small seed, our DDD book club, and con-
tinuing to nurture it.

 Nick: This story covers a lot of ground, starting with a developer book club and
ending with domain discovery and modernization of almost the whole business involv-
ing people from every background. I asked Krisztina what advice she would offer to
those who would like to go on a similar journey.

 Krisztina: I often hear that DDD is hard and either impossible or not worth
attempting. My experience at PayFit proved the opposite. The best tool that we have
to gain control over complexity is DDD. Applying the paradigm is hard because it
requires us to leave our comfort zones and silos: engineering doing engineering,
product people thinking about the product evolution by themselves, and sales caring
only about selling. These circles of activity that have traditionally been separated now
need to talk to each other, translate what they do, and embrace being challenged.

 If PayFit had been a start-up, it would have been much easier to start with DDD
because of the small amount of legacy. But it would have also been less valuable
because of the small amount of industry experience to draw from. We wouldn’t know
what the market needs from us. An eight-year-old, very successful product means eight
years of experience—a huge asset allowing us to have better domain and boundary
definitions.

 As a result, the processes, the relationships, and nearly the whole system got rede-
fined in the last couple of years. Opening the gates between the different roles, tri-
umphing over inertia, changing the mindset of everyone involved—this is the hardest
part, and this is what a real transformation means. But the key thing to keep in mind is
that you don’t need to do this all at once. You can start with a small seed like a book
club or define a few key domain words and gradually introduce new ideas and ways of
thinking at a pace that works for your organization. If you want to learn more about
PayFit’s journey, check out their blog: https://backstage.payfit.com/.

https://backstage.payfit.com/

42917.2 Upskilling for upcoming project needs
17.2 Upskilling for upcoming project needs
For many teams, learning and upskilling opportunities will be required as they start
modernization. The level needed will vary according to the difference between their
current technologies, patterns, and practices and what will be expected of them
during modernization. The sooner you identify the upskilling needs of a team, the
more time you have to get them up to speed so that modernization can start as
smoothly and productively as possible.

 However, many new skills take months to learn and can only truly be mastered by
applying them to real work. As a result, whenever teams apply something new for the
first time, even if they have had some training, patience and built-in opportunities for
learning and experimentation are essential.

 The first step in upskilling for an upcoming project is identifying the skills needed
and working out where the team(s) currently stand concerning those skills. Then, for
each upskilling need, a learning plan can be created. When deciding who and how to
do this, involving the teams to some degree is important. One extreme is to give the
teams full ownership of determining what upskilling they need. In some situations,
this won’t work well because teams don’t know enough about what they don’t know.
They don’t know what level of upskilling is needed. Therefore, they will need help
from people with expertise in the new technologies and practices. This is where an
AMET, new hire, or external help is required.

 Taking a more global perspective for learning and upskilling topics is often
healthy. They can be done in bulk, which can be more cost- and time-effective. For
example, at one organization, the CTO and modernization leaders had agreed to
adopt a serverless-first approach to their journey from on-prem to the cloud. So, they
hired AWS serverless expert Yan Cui (https://theburningmonk.com/) to run training
cohorts for the entire engineering organization.

 The training created a lot of positive energy. People were learning together, even
those who weren’t yet involved in modernization. It helped them feel part of the jour-
ney and reassured them that they would be involved in the future. It also helped some
people to grasp what was possible with the new technology. The head of IT, who had
been skeptical before the training, began speaking very positively of serverless and
cloud after he got to experience first-hand the process of building and deploying a
serverless application to a live environment during the training. He was then much
more responsive to helping teams address infrastructure and IT problems that arose.

 Once learning needs have been identified, various approaches can be leveraged to
help teams gain the required skills. I find people prefer different formats and teach-
ing styles, so there is no one-size-fits-all. All of the following are worth considering:

 Books
 Public/private instructor-led training (in person or remote)
 Self-paced video training
 Embedding external experts/coaches within the team

https://theburningmonk.com/

430 CHAPTER 17 Learning and upskilling
 Building proof of concepts
 Attending relevant meetups and conferences

17.3 Establishing a continuous learning environment
Investing in learning and upskilling for upcoming project needs is important but is a
long way short of achieving what is possible by investing in continuous learning and
upskilling and embedding it into the fabric of the organization. In my experience,
organizations that incentivize continuous learning and improvement are more inno-
vative, more effective at building products, and better environments to work in.

 In my first role as a junior software engineer, I had two perfect mentors. Learning
was just part of the job. They introduced me to ideas like domain-driven design and all
of Martin Fowler’s work. They bought any book I wanted and bought me licenses to
online video training (Tekpub was my preference back then). During working hours,
we listened to tech podcasts, we discussed blog posts, and we experimented with new
tools.

 As .NET developers, we were using all kinds of open source frameworks like Castle
Monorail. Back then, it was extremely rare for .NET developers to use anything but
official Microsoft frameworks like ASP.NET. We always discussed different patterns for
implementing code, and there was always space to explore different implementation
approaches. As a result, I loved going to work every day, and the quality of my work
was far greater than if I was just expected to deliver tickets.

 When I moved to London and began working for 7digital in 2012, I was sur-
rounded by colleagues who loved learning. The CTO, Rob Bowley, strongly incentiv-
ized learning and made space during working hours. In particular, everyone had two
days per month to use for learning something. There were only two rules: you have to
agree on the days with your team lead, and after, you need to write a short blog post
sharing what you learned. I used to love my two days of innovation time each month.
During 2012, I took every second available to me. I used my time to learn about things
like Erlang and Hadoop.

 We also had a couple of hours each week for the whole team to come together and
discuss a certain topic. I remember at one point we were using the time to watch and
discuss conference talks, and at other times we used them for code katas. Sometimes
Rob or other leaders would invite experts to come and host sessions.

 There would often be a book that people were reading, and it would become a
topic in the office. It was exciting and infectious. But often, the books weren’t just
about programming. Books like The Goal and The Lean Startup touched on business,
process, and culture. And as a result, software developers (including myself) felt
encouraged to think about themselves as far more than programmers. We were
expected to contribute in any way we wanted, from continuously improving our ways
of working to getting more involved with product management and customers.

 It’s no coincidence that 7digital was a high-performing company where every team
was deploying to production daily. It was the company where bugs raised during the
daily standup would be resolved in production before lunch and where every developer

43117.3 Establishing a continuous learning environment
deployed to production on their first day. Whenever I meet my former 7digital col-
leagues, we still agree it is one of the benchmarks of a high-performing organization.

 In contrast to these experiences, I’ve worked for companies that had a poor atti-
tude toward learning. At one company, I asked if I could attend a conference. The
CTO said the company would pay half if I paid the other half. As a junior developer, I
couldn’t afford it. Then, the chief architect started openly mocking me because con-
ferences were just places where nerds go to hang out. When I decided to leave shortly
after, the CTO was exasperated. He explained to me that he was trying to turn the
company around and improve how they build software, and he couldn’t figure out
why he was struggling to hire and retain good people.

 For me, there is no doubt that making continuous learning part of an organiza-
tion’s DNA is one of the most important steps in becoming a high-performing organi-
zation. An architecture modernization journey is the perfect opportunity to become a
learning organization because it requires a huge amount of learning and can lay foun-
dations that last long after modernization.

17.3.1 Communities of practice

Communities of practice (CoPs) are a common and proven approach to enabling
continuous learning and upskilling. A CoP is a group of people with similar skills,
interests, or concerns. They meet regularly to improve in their relevant area of focus.
A CoP can be formed around almost anything, such as a particular tool, practice, chal-
lenges an organization is facing, theme like modernization, or a particular aspect of
modernization like dealing with legacy.

 While CoPs appear to be very popular and seem like a simple idea, they don’t
always deliver the expected benefits for a variety of reasons, like people becoming dis-
interested or having insufficient time to organize and attend them. In her book, Build-
ing Successful Communities of Practice (http://mng.bz/K95O), Emily Webber provides
four key pieces of advice for creating the conditions that set up a CoP for success:

 The ability to meet regularly
 The right community leadership
 Creating a “safe to learn” environment
 Getting support from your organization

I highly recommend reading Emily’s book if you are new to the idea of communities
of practice or have tried them before but didn’t get the benefits you were hoping for
or ran into problems.

17.3.2 Regular small learning opportunities

Incentives are a key part of creating a learning organization. People need to feel that
leadership is incentivizing them to spend some of their time learning rather than just
judging people based on how hard they appear to be working. Freeing up small
chunks of time during working hours for people to come together and learn is a great
way to show teams that you are genuinely committed to creating an environment
where learning is incentivized.

http://mng.bz/K95O

432 CHAPTER 17 Learning and upskilling
 Regular small learning sessions can be used in different ways. We’ve already seen
some examples previously in the chapter, like book clubs, coding katas, presentations,
watching videos together, and inviting external speakers. Another format popularized
by Andrea Magnorsky is Bytesize Architecture Sessions (http://mng.bz/9QAr).

 Bytesize architecture sessions are typically hour-long sessions for a group of people
who work on the same or related parts of a system. The primary purpose is to spread
knowledge and expertise among team members so that everybody has a deeper knowl-
edge of the system they are working on and a greater collective understanding. The
structure of a session can vary, but Andrea proposes the following as a default:

 Goal—The group decides on a part of the architecture to focus on.
 Alone together—Everyone spends 5 minutes alone drawing the chosen part of the

architecture; when the timer ends, everybody reveals their drawing.
 Consensus—The group then discusses the various drawings and tries to reach a

consensus by creating a single diagram together.
 The final version is stored somewhere.

Even if you don’t use the bytesize architecture session format, there’s still a lesson to
be learned. Look around in your organization. Do you see people experimenting with
new formats for sharing ideas and learning new skills? In a learning organization, peo-
ple constantly seek new ways to learn and share knowledge. The environment encour-
ages and rewards them, and it’s a natural part of the job. When was the last time
someone in your company invented a new format like this? Could you be doing more
as a leader to incentivize this type of behavior?

INDUSTRY EXAMPLE: BYTESIZE ARCHITECTURE SESSIONS FOR INTERTEAM COLLABORATION

I developed the bytesize architecture sessions format because I wanted to help teams
better understand the systems on which they were working. I wanted to empower
everyone involved in building the system to get more involved in contributing to the
architecture in a collaborative fashion.

NOTE This industry example was authored by Andrea Magnorsky, a software
consultant with experience across various industries like TV broadcasting,
automotive, games, and finance.

Bytesize sessions help create an environment where learning happens on a regular
basis. Most teams are able to dedicate 45 to 60 minutes twice per month, so I built a
workshop format around this timebox. After trying it, the idea seemed to work well, so
I’ve continued to use the technique with different teams and in different organizations.

 In every case, I have observed that teams improve their ability to

 Think about their systems
 Develop skills in systems modeling
 Learn how to model systems together, which improves team dynamics
 Increasingly have a homogeneous understanding of the system as more sessions

happen

http://mng.bz/9QAr

43317.3 Establishing a continuous learning environment
 See the value of having a shared mental model
 Have better tools to model potential solutions
 Learn to actively listen

Bytesize architecture sessions can be used for many purposes. I find them to be espe-
cially useful for exploring tech debt and getting new members of a team up to speed,
but they can be used for more. For example, they are incredibly beneficial for inter-
team collaboration.

 When I was working with an organization in
the broadcasting industry, three teams were
involved in major improvements to the video
streaming workflow. The three teams had to
work in tandem due to dependencies between
their work, as shown in figure 17.3. The first
team triggered processes in the second team,
and the second team kicked off processes in the
third team. And the teams needed to be kept up
to date on progress of other teams. For example, the first team needed to know when
the processes in the third system were completed.

 Everyone involved knew about this level of dependence on each other, and we
understood that it was likely we had relied on internals of services that we shouldn’t
have, but we didn’t know where those inefficiencies were.

 So, we organized a few bytesize architecture sessions with two programmers from
each team and a tech lead who was knowledgeable in the area as a whole. The main
objective was to think through what would be a simple and good architecture. To add
to that, we had a good shared understanding of the product requirements, especially
because the process we were exploring was well-established.

 The first session was about modeling the system as it was that day. We used C4 con-
text diagrams to draw what each person knew about these three teams working
together. Remember that this part of a bytesize session, alone together, is done indi-
vidually, where attendees work on their own. It is fair to say there was a lot learned
during that session! For example, we learned concrete details about how the process
in each of the teams worked, rather than the blurry assumptions each of us made. We
also realized that the process that kicked everything off was used in slightly different
ways by two different teams, which triggered two main areas of inquiry: Why are we
consuming the same information from two different places? And how much extra
work are we doing that we probably don’t need to do?

 Following the session, we captured some questions that needed to be answered for
the next session. For example, we needed details about a part of the API of one of the
services, and we also had some questions for people in teams that were not repre-
sented in the meeting.

 The following session was about four weeks later (life happens; I would have pre-
ferred two weeks); the goal of the session was to model what the system should look like

Team 1

Team 2

Team 3

Trigger process
Progress updates

Figure 17.3 Dependencies between
the three teams

434 CHAPTER 17 Learning and upskilling
given the problem we had to address. While we were on the consensus section of the ses-
sion, we realized that some aspects of the workflow as it is were a lot more complicated
than needed to be, a common occurrence in bytesize sessions. For example, we found
duplicated logic that was not giving us any wins. We also realized we could improve one
of the system’s inputs by removing some well-known but forgotten technical debt.

 We explored the problem with duplicated logic and realized that the amount of
work needed to fix it would be hard to negotiate, but we took notes, hoping to eventu-
ally address this problem. Then we proceeded to discuss the details of how the interac-
tion between the three systems should look in an ideal world.

 A few days later, one of the teams drafted an ADR for the contract about what
would change and circulated it to the other two teams. There were some details that
needed ironing out, and we set up an impromptu video call to deal with it. Thirty min-
utes later, all the details were in place!

 At this point, everyone had all the context needed to solve the problem. And impor-
tantly, these bytesize sessions had improved relations between the teams, so they were
perfectly set up to collaboratively address this interteam challenge in the optimal way.

 In this particular example, all of the sessions were remote. I would like to empha-
size that I have run bytesize sessions both remotely and in person, and the benefits are
great in both. Sessions can also work in a hybrid format. I basically run them as
though everyone is remote to ensure the session includes everyone. If you’d like to
learn more about bytesize architecture sessions, or if you have any questions, feed-
back, or want to share some of your ideas, check out the website https://bytesizearchi
tecturesessions.com/.

17.3.3 Mentoring

Mentoring is a powerful tool for creating a continuous learning and upskilling cul-
ture. It provides big benefits for the mentee and the mentor. I’m grateful for the men-
tors I had as a junior and know firsthand how it can accelerate career development.
I’ve also been a mentor and found it to be a rewarding experience that helped me
improve my leadership skills. When I talk to friends and colleagues about mentoring,
their experiences are very similar.

 Mentoring happens naturally within teams composed of a mix of junior and senior
engineers. Mentoring can also happen organically when someone reaches out and
asks someone else to be their mentor. But in my experience, relying on mentoring to
happen organically misses out on a lot of the potential. That’s why I advocate for
explicitly encouraging and incentivizing mentoring or even establishing an explicit
mentoring program.

 Mentoring programs can be set up and structured in various ways. In general, there
needs to be a place for mentors and mentees to connect, a process for connecting
them, and some structure to help them plan and conduct their sessions, especially the
first introductory meeting.

 It takes practice to become a good mentor, and some senior engineers may be
reluctant to give it a try if they have no prior experience. So, a good mentoring

https://bytesizearchitecturesessions.com/
https://bytesizearchitecturesessions.com/
https://bytesizearchitecturesessions.com/

43517.3 Establishing a continuous learning environment
program will provide support for first-time mentors by providing useful guidelines
and connecting them with experienced mentors.

 As with most learning and upskilling initiatives, it’s essential that people are incen-
tivized to take up the opportunity. If they are still expected to deliver the same
amount of work with mentoring being stacked on top, mentoring will mostly likely be
abandoned. In some organizations, mentoring is an explicit responsibility of senior
engineers and is something that is discussed during their performance reviews with
equal significance to the regular work they have accomplished.

17.3.4 Empowering influencers

Some people are highly respected by their peers. Their words and actions carry a lot
of weight. These people are your influencers. They can play a crucial role in helping
new concepts and practices become widely adopted in your organization. But they
need support to do so.

 One way to support influencers is to provide them with training so that they can
teach others, aka “train the trainer.” This could be in the form of public training
courses, private coaching from an external expert, or opportunities to attend confer-
ences relevant to the desired skills.

 Then, influencers need to be given sufficient space and time to influence. They
can do this in various ways like writing blog posts or documentation, creating videos,
organizing internal workshops, and spending time with teams in a coaching role.

 Whenever you are planning any modernization work, it’s always a good idea to
think about how you can involve influencers so that they can spread learning and
insights. For example, the first slice of modernization may not involve a team that an
influencer works in. Therefore, you may want to invite an influencer to join the team
temporarily so that they can gain particular experience and then share it with others.

17.3.5 Blogging and public speaking

One behavior that can have a big impact on creating a culturing of continuous learn-
ing is sharing content publicly outside the organization. The most common examples
are creating a company tech blog and supporting employees who want to speak at
conferences on behalf of the organization.

 Sharing content publicly has many positive internal benefits. On a personal level,
it’s motivating and rewarding for individuals to show their work off to a wider audi-
ence and get feedback. This inspires them to want to learn more and publish even bet-
ter content. Then, these people become role models for other employees who see the
value of creating public content. Even the content that is shared publicly can be useful
knowledge to other parts of the organization. As a result of sharing content publicly,
it’s likely that sharing content internally will improve as well.

 Sharing content publicly is also a great way to attract talent. It helps prospective
employees to learn about what it’s like to work in your organization and the type of
people that work there. It also shows that the environment is conducive to learning
and personal development.

436 CHAPTER 17 Learning and upskilling
17.3.6 Internal conferences

I’m a big fan of internal tech conferences. I find they create a real sense of excitement
and community within an organization. They help to spread knowledge across a com-
pany and connect people who share similar interests. They are also another explicit
sign that shows the organization cares about learning and upskilling and is willing to
commit time and effort during working hours.

 I’ve been invited to present at internal tech conferences, and there is some value
in inviting external speakers, but the real magic is employees within an organization
presenting to their peers. Topics can range from experiences working on real projects
to talking about particular tools, technologies, and techniques, like a real conference.
And obviously, this is extra beneficial when on an architecture modernization journey.

 Internal tech conferences are usually held once or twice a year. They work well in
person, remotely, or hybrid. It’s hard to think of a reason why you wouldn’t want to
hold an internal tech conference. Although there can be a lot of logistics and prepara-
tion work involved.

NOTE The book Internal Tech Conferences (https://leanpub.com/InternalTech
Conferences) by Victoria Morgan-Smith and Matthew Skelton is an excellent
starting point for organizations looking to run an internal tech conference. It
provides guidance on planning and running an event along with real case
studies.

17.4 Industry example: Learning-driven modernization
at CloudSuite
Modernization doesn’t always need a grand plan or a master strategy. Sometimes, it’s
better to start small and gradually build the foundations without thinking too far
ahead. This was the approach taken by CloudSuite, an SaaS company offering an e-
commerce platform where wholesalers and brand manufacturers can manage all their
online channels (B2B, B2C, and B2X). In 2021, leadership sought to grow their cus-
tomer base, with the ambitious goal of establishing themselves as an important player
in the mid-market segment of e-commerce platform technology. Achieving this would
also require scaling the organization, including the number of engineers, to develop
new innovations. But leadership also knew that this wouldn’t be easy.

 At the time, CloudSuite had around 20 software engineers, effectively a single
large team working in a shared monolith that had organically built up from the com-
pany’s startup days, and a smaller frontend team. As a result, it was already taking too
much time to develop new features, and it just wouldn’t scale. A big improvement in
sustainable velocity was needed to support the company’s growth ambitions.

 The company’s first step toward architecture modernization was hiring Timber
Kerkvliet. He joined CloudSuite as a senior software engineer with the remit of identi-
fying where investment in modernization would best support the strategic objectives.
It was apparent that the old architecture would need some modernization, but
Timber didn’t jump in on day one by starting to map out a fully defined future-state

https://leanpub.com/InternalTechConferences

43717.4 Industry example: Learning-driven modernization at CloudSuite
architecture using the latest patterns and technologies. Instead, Timber focused on
building technical excellence first before making significant architectural changes:
“What I’ve been focusing on from day one is improving day-to-day coding practices.
How brilliant your ideas on being agile, continuously delivering in autonomous teams
may be, you need technical excellence to get there. I wanted to reach a state where
technical practices like test-first, pair programming, and merging often to trunk
would be our standard. Then we would be in good shape to attempt more ambitious
architecture modernization.”

 Timber offers some actionable advice for introducing new technical practices:
“Simply telling your developers to work that way does not work. It takes time and
effort to get there. And that really all starts with creating a learning culture. I experi-
mented with different ways to foster the learning culture. What eventually really
worked well for us was the Samman method by Emily Bache. It combines a more
standalone short session (learning hour) with mob/ensemble sessions.”

 CloudSuite’s modernization journey is a great example of tailoring a moderniza-
tion journey to your organization’s unique context. Rather than starting with big pic-
ture EventStorming and working down into the details, they chose a different path;
they made decisions based on what would best motivate the team as a way to build a
collaborative environment and increase engagement: “What is kind of atypical to our
story is that the biggest changes really started at the tactical level. The strategic aspect
was always in mind, with early discussions on subdomains and what is core. However,
the strategic discussions and decisions were really driven from the tactical changes.
Developers got excited and got started with the tactical (software design and model-
ing) aspect of DDD first, leading to a need for a ubiquitous language, which led to col-
laborative modeling, more vertical alignment, and eventually organizing teams
around our identified subdomains.”

 But did a bottom-up approach to identifying domains and subdomains lead to the
desired results? “Our bottom-up approach worked well. We identified two core domains,
discovery and ordering, that represent phases in
the e-commerce user journey” (see figure 17.4).

 The discovery phase encompasses the time
from when a user arrives on a web page until
they develop an intention to purchase. The
ordering phase begins with capturing customers’
purchase intentions and guides them toward the
point of order creation.

 Breaking a journey or process into steps is
one heuristic for identifying subdomains, but it’s
not always the correct approach. Timber and his
colleagues were careful before committing to
these boundaries: “We were confident that these
subdomains were optimal because they have a

Discovery
(subdomain)

from arrival on
website until
intention to
purchase

Ordering
(subdomain)

from purchase
intention until

order has
been placed

Discovery team Ordering team

E-commerce user journey

Figure 17.4 CloudSuite’s
subdomains identified with a bottom-
up modernization approach

438 CHAPTER 17 Learning and upskilling
minimal connection to each other. The coupling is low because the latter part of the
journey (ordering) doesn’t require in-depth knowledge of how a customer reached
that stage.”

 Timber and his colleagues also encountered a common modernization challenge
leading to a crucial learning moment: “In the beginning, CloudSuite mostly thought
of the change as a technical one. Fortunately, we quickly came to the conclusion that
this was far too narrow. I had created a module in the legacy using TDD and DDD pat-
terns. But the teams weren’t comfortable just being handed over the module that was
drastically different to other parts of the system. I realized that for new ideas to be
accepted, everybody needs to feel comfortable with the direction; they need to be
involved in the decisions and feel safe raising their concerns.”

 One modernization challenge that is hard to avoid is a messy migration phase.
CloudSuite wanted to apply the inverse Conway maneuver (organizing teams based
on the target architecture), but they couldn’t ignore the constraints of the current sys-
tem: “The inverse Conway maneuver does not work if you cannot change your system.
We did the transition in phases. In the first phase, we reorganized our teams, but they
were still aligned to the old architecture” (see figure 17.5). They addressed the diffi-
culties by being realistic about the management and compromises needed during the
transitional phase: “We expected, and planned for, more intense collaboration
between the teams because they were sharing technical artifacts. For instance, our
backend API extended across team boundaries. Separating it physically demands con-
siderable effort, and modifications to this API are currently minimal. As a result,
our priority is to concentrate on collaboration and modularization within this compo-
nent first.”

Step 1 of inverse Conway maneuver

New domain boundaries

Teams now aligned to
new domain boundaries

Initially, teams had to share codebases. In later
steps, the codebases were aligned to subdomains.

Codebases not aligned
with teams and domains

System A System B System C System D

Discovery
(core subdomain)

Team •••

•••Ordering
(core subdomain)

E-commerce domain

Team

Figure 17.5 In phase 1 of the inverse Conway maneuver, teams were reorganized first.

439Summary
If there is one thing that can make or break a modernization journey, it is trust—trust
from senior leadership to teams doing the work and vice versa. Timber explains: “For
us, modernization was about trying lots of new things on a technical and organiza-
tional level. We didn’t know what was going to be effective so we had to keep trying
and experimenting to see what worked. As the architect, I was responsible for facilitat-
ing the process, helping and supporting teams from high-level workshops to hands-on
coding. We were always looking to improve every aspect of our architecture. This
experimental mindset was necessary to make the barrier of starting as low as possible
and to reach the point where everyone was on board with the new directions. How-
ever, one of the most crucial aspects of this was the support we had from senior leader-
ship. They were encouraging us to experiment and continuously improve and this
gave us the confidence to try things like Mob Programming, which have made a huge
improvement to how we work. Without the support of leadership, we would never
have had the time and space to properly give this a try.”

Summary
 Architecture modernization involves a tremendous amount of learning and

upskilling about technologies, patterns, and practices.
 Understanding the benefits of modern approaches and learning to exploit

their full potential takes time and requires patience and investment.
 Learning and upskilling are often essential for immediate project needs, but it

is much more important to make learning and upskilling an ingrained behavior
treated with equal importance to what is considered real work.

 Even when you are passionate and can see the value of an approach, your peers
and superiors may not yet share your optimism, so it’s sometimes necessary to
be patient.

 A good analogy for patiently and gradually introducing a new skill approach
into your organization is the analogy of planting a seed.

 Starting small, with activities like a book club for a group of enthusiasts, can
gradually grow into a big idea that is adopted by the whole organization, so
patience and persistence are worthwhile.

 To ensure a modernization project gets off to a good start and stays on track,
teams need the opportunity to learn the new tools and techniques they’ll be
applying.

 Even when teams have had some training, it’s not until they have applied them
to real projects that they become fully proficient, so any plans should be built
around this constraint.

 There are many learning formats that can be used for short-term upskilling,
like books, training courses, and hiring coaches; what’s best will depend on the
preferences of the individuals involved, so they should be consulted first.

440 CHAPTER 17 Learning and upskilling
 An environment where people continuously learn and upskill leads to better-
performing teams and more motivated employees.

 Teams should be incentivized to learn and upskill during working hours.
 Communities of practice, mentoring, blogging and public speaking, and inter-

nal tech conferences are all valuable practices that help to learn and upskill an
organization during architecture modernization and beyond.

index
A

active metadata 350
Airbnb

product attribute differentiation at 88
Amazon

diversification growth strategy 40
Amplitude

north star framework 42
Ansoff’s Matrix 36
anticorruption layer (ACL) 297, 309
API management solutions

common capabilities of 326
architectural scopes 123
architecture advice process 363
architecture modernization enabling team

(AMET)
AMET members as guiding the modernization

vision laid out by the CTO 379
architecture advice process 363
architecture advice process, establishing 375
architecture advice process, getting the most out

of 375
architecture guild, description of 373
architecture guild, establishing 373
architecture guild, example structure 374
architecture organization topologies

(AOTs) 373
architecture without architects model 372
benefits of delivering an initial slice of modern-

ization within 3 to 6 months 362
benefits of using external consultants 378
benevolent dictator(s) model 372
choosing the right team members 360
communicating the modernization vision and its

progress 365

creating architecture decision records (ADRs) 374
decreasing AMET involvement as the organiza-

tion upskills 371
drifting back into old habits 364
empowering an AMET 379
enabling long-lasting, durable change 364
establishing a desirable architecture operating

model for the future 371
example of Comcast’s architecture guild 374
example of enabling modernization at a Euro-

pean telco 366
example of establishing a community of practice

(CoP) for heads of product and platform 364
facilitating better design 363
factors contributing to a loss of modernization

momentum 362
focusing on upskilling 360
giving an AMET a name that clearly describes its

mission 380
goal of 359
Gregor Hohpe’s four options for designing an

architecture operating model 371
identifying ineffective architecture practices and

a skills gap 363
kickstarting a modernization initiative 362
lack of trust between management and engi-

neers as inhibiting modernization 362
leadership’s role in incentivizing better ways of

working and adopting modern
approaches 364

maintaining a core group who are 100% dedi-
cated to the AMET 378

not confusing an AMET with the modernization
team 360

openly discussing conflict and keeping stake-
holders informed early 380
441

INDEX442
architecture modernization enabling team
(AMET) (continued)

primus inter pares model 372
promoting modernization success stories and

learnings 365
six primary responsibilities of 361
staffing an AMET 375
struggling with the concept of domains and

identifying domain boundaries 363
the inmates running the asylum model 372
the need for consultants to eventually make

themselves redundant 378
when an AMET isn’t always necessary 380
winding down an AMET 370
working with those skeptical of

modernization 365
architecture modernization enabling teams

(AMETs) 26
definition of 13
starting a modernization initiative and maintain-

ing momentum 51
architectures

advantages of modern architectures 1
architecture modernization as parallel streams

of work 12
articulating the benefits of architecture

modernization 16
avoiding bolt-on modernization of legacy

systems 24
benefits of codesigning and coevolving an

architecture 9
connecting engineers and architecture modern-

ization to business outcomes 19
converting from a liability into a competitive

advantage 2
disadvantages of legacy architectures 1
domain modeling 19
effect of legacy architectures on market

leaders 2
embracing a new architecture mindset 18
example of Cazoo 1
example of Southwest Airlines 1
exploiting the potential of modern

architectures 4
identifying where architecture modernization

may be most effective 47
increasing number of connected Internet of

Things (IoT) devices 3
leading technology roles required in architec-

ture modernization 26
loosely coupled architecture and domain

boundaries 19
microservices as a sociotechnical architecture

pattern 4
moving beyond business and IT silos 20
negative cycle of declining architecture health 2

Netflix's transition to cloud-based
microservices 2

shaping architecture and organizing teams 39
when architecture stifles business growth 32, 40

autonomous bubble pattern 297–298, 309

B

Bache, Emily
using her Samman method for creating a learn-

ing culture 437
Backstage 322

using as a software applications catalog 325
big picture EventStorming

definition of 120
black swan core pattern 230
bolt-on modernization

avoiding in legacy systems 24
bounded context

as defined by Eric Evans 290
bounded context canvas

description section 289
domain roles section 290
example illustrating each of its eight

sections 289
inbound section 290
name section 289
outbound section 290
strategic classification section 289

Business Model Canvas (BMC)
capturing the business model in different busi-

ness areas 54
visualizing the key aspects of a business

model 54
business outcomes

Amazon’s diversification growth strategy 40
Amplitude’s north star framework 42
Ansoff’s Matrix 36
articulating the business ROI of

modernization 31
choosing the right north star 41
connecting modernization to growth

strategies 36
coping with an unhealthy rush to modernize 31
developing a market penetration growth

strategy 38
developing short, medium, and long-term mod-

ernization initiatives 33
EventStorming 39
example of OpenTable 31
example of Salesforce 33
examples of north star metrics (NSMs) 41
falling behind faster-moving competitors 29
fostering a product development growth

strategy 36
identifying great north stars at Danske Bank 47

INDEX 443
identifying north stars 41
identifying the optimal level of

modernization 28
identifying where architecture modernization

may be most effective 47
implementing a market development growth

strategy 39
improving hiring and retention 35
John Cutler’s North Star Framework 41
Latin American challenger bank market

penetration 38
marine product development example 37
modernizing the UX and architecture of inter-

nal systems 35
pursuing an exit strategy while modernizing 32
pursuing an M&A strategy 34
regulated e-commerce diversification 40
scenarios where architecture modernization is

beneficial 29
shaping architecture and organizing teams 39
Simon Wardley 29
travel company market development during the

pandemic 39
Uber’s market development 39
understanding company performance beyond

EBITDA 33
Wardley Mapping 47
when architecture stifles business growth 32, 40
when established businesses face disruption 29
when UX problems threaten the business

model 34
BVSSH model

optimizing for high-performing organizations 5

C

C4 diagrams
identifying multiple business risks 55

Cagan, Marty
list of 19 criteria that differentiate good and bad

product teams 258
change coupling

CodeScene 8
definition of 7
team coordination and 8

CodeScene 8, 302
collaboration mode 250
communities of practice (CoPs)

a proven approach to enabling continuous
learning and upskilling 431

complicated subsystem teams 249
component

definition of 273
contextual inquiry

definition of 153
contract coupling 274

control services
providing access to a REST API 350

Conway’s law
definition of 18
minimizing the negative effects of 18

Core Domain Chart patterns
big bet future core pattern 222
black swan core pattern 230
critical supporting pattern 226
decisive core pattern 219
deepening and widening the categories tree at

Vinted 234
example of Vinted 232
exploring strategic modeling approaches at

Vinted 235
further questions regarding the big bet future

core pattern 223
further questions regarding the critical support-

ing pattern 227
further questions regarding the decisive core

pattern 221
further questions regarding the hidden core

pattern 230
further questions regarding the high-leverage

supporting pattern 224
further questions regarding the indefensible

core pattern 222
further questions regarding the suspect support-

ing pattern 229
further questions regarding the table stakes sup-

porting pattern 226
hidden core pattern 229
high-leverage supporting pattern 223
indefensible core pattern 221
introducing domain-driven design at Vinted 234
mapping Vinted’s strategic portfolio with a Core

Domain Chart 235
modernizing Vinted’s architecture to speed up

innovation 233
suspect supporting pattern 227
table stakes supporting pattern 225
Vinted’s difficulties in defining boundaries and

team structures without a clear product
strategy 235

Vinted’s growing pains and forced adoption of
multiple verticals 232

visualizing investment on Core Domain Charts
as team size 232

visualizing portfolio patterns and noticing broad
trends 231

Core Domain Charts
charting core domain evolution with arrows 216
collaborating, discussing, and visualizing the

value of IT within each subdomain 209
comparing a Core Domain Chart to a Wardley

Map 219

INDEX444
Core Domain Charts (continued)
core domain, definition of 209
CRM subdomain 212
domain model design complexity, definition

of 214
domain-driven design technique for mapping

an architecture as a portfolio of business-dif-
ferentiated subdomains 209

example of an events industry scale-up 217
focusing on complexity and differentiation as

the keys to assessing strategic IT 219
generic subdomain, definition of 209
hypothetical example of a shared electric

scooter company 210
integration complexity, definition of 214
journeys subdomain 212
listing the types of complexity contributing to

overall model complexity 213
loyalty subdomain 212
Martin Fowler’s definition of cruft 214
model complexity, definition of 213
operational complexity, definition of 215
payments subdomain 212
product design complexity, definition of 213
robot tour guide subdomain 212
scale complexity of subdomains, definition

of 214
scooter placement planning subdomain 212
supporting subdomain, definition of 209
three strategic areas identified by the scooter

company 211
user needs discovery complexity, definition

of 213
visualizing model complexity versus business dif-

ferentiation for the scooter company 211
critical supporting pattern 226
Cutler, John

assessing the independence of a value stream
with a precise and structured definition of
autonomy 257

product development approaches of 20

D

Danske Bank
identifying great north stars 47
Payment Service Directive 2 (PSD2) initiative 43

data contract
contents of 351
its roles and benefits 351

data engineering and management
a data lake with a simplified ingestion

process 341
active metadata 350
architecting (and then implementing) your first

data mesh 348

avoiding the big mistake of implementing a data
mesh without integrating all four
principles 348

clarifying your physical architecture before
implementing a data product 352

control services as providing access to a REST
API 350

data breaches 343
data contract, contents of 351
data contract, its roles and benefits 351
data onboarding component 350
data product experience plane 355
data quantum, definition of 345
data warehouses and their ingestion of new data

sources 340
delivering a minimal viable data product 349
diagram of the three experience planes working

in synergy 356
dictionary services as providing access to your

passive metadata 350
dividing a data quantum into five

subcomponents 349
empowering data scientists by giving them

access to data 346
extending from data to computational

governance 347
final advice on building your data mesh 357
government laws that manage how personal data

is handled and used 343
how data morphed from a simple, structured

element to a shapeless monster 340
infrastructure experience plane 354
interoperable data model 350
isolating the immutable data parts in a single

sidecar 353
issues facing new data technologies 343
list of experience planes for building the data

mesh 354
mesh experience plane 355
no principle lives in isolation 347
observability services 350
passive metadata 350
principle of data as a product 344
principle of domain ownership 344
principle of federated computational

governance 346
principle of the self-serve data platform 346
requirements for a data product

(DAUNTIVS) 345
the enormity of building and deploying a data

lake or data warehouse 343
the four principles of a data mesh 344
Zhamak Dehghani and the four principles of a

data mesh 344
data onboarding component 350
data product experience plane 355

INDEX 445
data quantum
definition of 345

decisive core pattern 219
Dehghani, Zhamak

the four principles of a data mesh 344
design squiggle 63
developer experience

definition of 315
dictionary services

providing access to your passive metadata 350
discovery

continuous discovery as requiring teams to talk
to customers weekly 150

exploring new avenues and challenging
assumptions 136

importance in EventStorming 121
distance

definition of 275
domain events

definition of 113–114
mapping out a business on a timeline 113
phrasing in the past tense 115

Domain Message Flow Modeling 120, 277
domain model design complexity

definition of 214
domain modeling 19
domain platforms/horizontals

definition of 96
Domain Storytelling

adding as a valuable technique to a facilitator’s
toolbox 163

adding workshop roles 167
basic notation elements optimized for telling

domain stories 163
choosing between EventStorming and Domain

Storytelling for process modeling 168
designing a future-state prescription validation

process 164
factors to consider when setting the scope 165
inviting the right people 166
keeping stories comprehensible 167
preparing the modeling space 166
the five basic notation elements of the Domain

Storytelling pictographic language 164
domains

defining hierarchically at different scopes 94
definition of 93
example of a fulfillment domain consisting of

four subdomains 94
domains and subdomains, identifying

align with existing semantic boundaries
heuristic 196

align with process and journey steps
heuristic 195

aligned with delegation pattern 197

aligning subdomains with established semantic
boundaries 184

aligning subdomains with purposely defined
semantics 185

aligning subdomains with steps in a user
journey 182

aligning teams and software with domains 172
analyzing subdomains after identifying a candi-

date domain boundary 198
Applied for Membership pivotal event 193
assuming that domain boundaries will con-

stantly evolve 179
avoiding a superficial understanding of a

domain 178
BBC’s high-level domain boundaries prior to

WebCore modernization 177
BBC’s horizontal domains boundaries identified

during WebCore modernization 178
benefits of architecting loosely coupled organi-

zations and software 172
benefits of grouping subdomains into higher-

level domains 188
business heuristic 180
centralizing concepts that appear in multiple

subdomains into a single subdomain 182
choosing the optimal characteristic for grouping

domain concepts 175
clarifying the relationship between processes/

steps/journeys and subdomains 197
decouple subdomains by rate of change

heuristic 186
define purposeful semantics heuristic 196
defining domain boundaries based on your

organizational goals 174
delineate by subdomain role heuristic 187
domain heuristic 180
example of a domain decomposition of a large

airline 191
example of the British Broadcasting

Corporation 177
exploring multiple models and assessing their

trade-offs 177
five major domain-boundary heuristics 180
fully aligned pattern 197
fundamental principles for identifying effective

domains and subdomains 174
good domain boundaries as maximizing cohe-

sion and minimizing coupling 173
grouping subdomains into customer- or user-

focused domains 190
grouping subdomains into horizontal

domains 189
grouping subdomains into process- or journey-

focused domains 190
grouping subdomains into product- or service-

focused domains 189

INDEX446
domains and subdomains, identifying (continued)
identifying domains based on business concepts

that change together 174
identifying pivotal events 193
looking for subdomains scattered across parts of

the timeline 196
mistakenly assuming that processes and steps

always align with domain boundaries 196
organizational heuristic 181
planning your own series of workshops 200
potential business subdomains as candidate

value streams 172
questions for determining if a shared subdo-

main makes sense 183
signs indicating that a pivotal event is near a

domain boundary 194
slicing up the EventStorm into chunks 195
split subdomains on key transition points

heuristic 188, 193
subdomain boundary heuristics 181
subdomain overview canvas 199
technical heuristic 181
three common subdomain roles of Specifica-

tion, Execution, and Analysis 187
unaligned pattern 197
useful linguistic concepts when looking for

semantic boundaries 184
user experience heuristic 181
Using EventStorming to identify domains and

subdomains 192
using heuristics to help define good domain

boundaries 179
Vlad Khononov’s coupling formula of Pain =

Strength * Volatility * Distance 176
double diamond design process 63

E

Ellis, Sean 41
enabling teams 249
engineers

connecting architecture modernization to busi-
ness outcomes 19

Evans, Eric
autonomous bubble pattern 297–298
bounded context, definition of 290
model exploration whirlpool 276

EventStorming 19, 39, 69, 85
architectural scopes 123
big picture EventStorming, definition of 120
building a domain events timeline using orange

sticky notes 114
collaboratively identifying domains and

subdomains 8
definition of 8
domain events, definition of 113–114

Domain Message Flow Modeling 120
embracing its philosophy to derive maximum

benefits from workshop sessions 114
experimenting with collaborative workshops 19
gathering useful domain information in all its

complexity versus a tidy timeline 114
getting the granularity of timeline events

right 115
hot spot, definition of 116
how to use special loop notation 118
its effectiveness and benefits for many types of

industries 113
not needing and not using timeline lines and

arrows 118
other notations and stickies used in big picture

EventStorming 115
partitioning an EventStorm into domains and

subdomains 120
phrasing domain events in the past tense 115
preventing ivory tower thinking from creeping

into a project 113
process modeling EventStorming, definition

of 120
resources for learning 113
shaping domain boundaries based on the key

details of the domain 120
sharing knowledge and uncovering insights as

the goal 116
software design (design-level) EventStorming,

definition of 120
sticky notes as a prop for having conversations,

sharing knowledge, and identifying
opportunities 119

Team Topologies 120
techniques that enable domain structures to

emerge from chaotic exploration 119
types of information that can be added to a

timeline 114
understanding the chaotic exploration

phase 118
using domain events to map out a business on a

timeline 113
visualizing parallel flows by splitting the main

flow into multiple branches 117
vital role of discovery 121
workshop for a company get-together in

Germany 120
exit strategy

pursuing while modernizing 32

F

facilitating mode 250
fast flow

the ability to maintain a high velocity over multi-
ple years 242

INDEX 447
when achieving sustainable fast flow also
requires deep organizational changes 242

FinOps (financial operations)
use by platform engineers to track, manage, and

optimize cloud resources 327
Fowler, Martin

criteria for determining if IT is strategic 205
cruft defined 214

functional coupling 274

G

generic subdomain
definition of 209

god class
tightly coupling disparate logic from multiple

subdomains 273
grow and split pattern 263
growth/attrition pattern 263
Gunia, Kacper

how ICE Services adopted a new architectural
mindset 21

H

heuristics
align with existing semantic boundaries

heuristic 196
align with process and journey steps

heuristic 195
business heuristic 180
decouple subdomains by rate of change

heuristic 186
define purposeful semantics heuristic 196
delineate by subdomain role heuristic 187
domain heuristic 180
five major domain-boundary heuristics 180
organizational heuristic 181
split subdomains on key transition points

heuristic 188, 193
subdomain boundary heuristics 181
technical heuristic 181
user experience heuristic 181
using heuristics to help define good domain

boundaries 179
hidden core pattern 229
high-leverage supporting pattern 223
Hohpe, Gregor

four options for designing an architecture oper-
ating model 371

hot spot
adding as a placeholder when walking the

timeline 128
definition of 116

HTTP APIs
common uses of 326

I

ICE Services
adopting a new architectural mindset 21

identifying independent value streams 92
Impact Mapping

outlining the syntax of an Impact Map 53
structuring a listening conversation and visualiz-

ing deliverables 53
indefensible core pattern 221
independent service heuristics (ISH)

cost tracking ISH 254
dependencies ISH 255
establishing satisfaction criteria for each

heuristic 252
impact/value ISH 253
product decisions ISH 253
teams (cognitive load) ISH 254
ten heuristics for assessing a value stream’s

independence 252
independent value stream (IVS)

characteristics of 6
infrastructure as code (IAC) 323
infrastructure experience plane 354
integration complexity

definition of 214
internal developer platforms (IDPs)

a good IDP has great documentation 325
API management solutions, common capabili-

ties of 326
avoiding Evan Bottcher’s un-platform anti-

pattern 335
Backstage 322
benefits of 9
benefits of continuously investing in DX 315
build and developer pipelines and production

environments 323
building secure systems while still allowing a

delightful DX 326
concept of platform as a product 332
dangers of treating the platform as a

project 332
definition of 9
determining whether the organization should

build and manage all platform layers
itself 335

developer experience, definition of 315
engineering teams taking on the ownership of

their applications in production 324
ensuring adequate staffing so that building an

IDP is not a side project 335
evaluating when and how to build a

platform 337
example of a golden path catalog in

Backstage 323
example of a mobile-first neobank 320

INDEX448
internal developer platforms (IDPs) (continued)
example of French fashion retailer La

Redoute 327
example of HMRC’s Multi-channel Digital Tax

Platform 317
helping platform engineers to avoid huge cogni-

tive loads or burnout 336
how DX enables fast flow 315
how opinionated platforms improve the

DX 336
HTTP APIs, common uses of 326
importance of tracking key platform

metrics 333
incorporating key compliance requirements

into the platform 326
infrastructure as code (IAC) 323
La Redoute’s transformation of its business

model and modernizing of its product
development 328

La Redoute’s use of Kubernetes 331
lead time for changes 323
making it easier for teams to build, deploy, and

support software 314
making the onboarding experience positive and

productive 317
managing every aspect of building and main-

taining the internal platform 332
measuring production reliability metrics 333
monitoring, logging, and alerting as three key

IDP components 324
observability, definition of 324
OpenTelemetry as an open-source tool for

implementing observability 324
organizational design sustaining La Redoute’s

IDP 330
outline steps for creating a microservice then

pushing it quickly into production 321
penny-pinching on developer equipment as a

false economy 317
preventing friction between development and

platform teams 316
primary reasons for building an IDP 333
relying on a dedicated budget for the platform’s

funding 334
role of good platform product managers 334
role of IDPs and a good developer experience

(DX or DevEx) in enabling independent
value streams 314

security as a major driver for building an
IDP 326

setting up a golden path (or paved road) for
engineers 320

significant risks in building IDPs 315
splitting a large project into multiple smaller

teams 335

striving for zero to production in less than a
day 316

testing your platform’s definition of self-
service 334

thinking about the capabilities that the platform
will provide 320

using a software applications catalog to catalog
all APIs, frontends, and applications 324

using Backstage as a software applications
catalog 325

using FinOps (financial operations) to track,
manage, and optimize cloud resources 327

using surveys to gather feedback about the expe-
riences of platform consumers 333

internal development platforms (IDP)
definition of 96

internal technology platforms (ITPs)
definition of 96

Internet of Things (IoT) devices
increasing number of 3

interoperable data model 350
intrusive coupling 273
isolation pattern 263

K

Khononov, Vlad
balancing local complexity and global

complexity 275
component, definition of 273
contract coupling 274
four types of software coupling 272
functional coupling 274
intrusive coupling 273
model coupling 274

knowledge sharing pattern 263

L

La Redoute
choosing Kubernetes 331
organizational design sustaining its IDP 330
transforming its business model and moderniz-

ing its product development 328
leadership

leading technology roles required in architec-
ture modernization 26

moving beyond business and IT silos 20
responsibilities of modernization leaders 26

learning and upskilling
Andrea Magnorsky and bytesize architecture

sessions 432
benefiting from modernization by investing in

learning and upskilling 422
benefits of bytesize sessions 432

INDEX 449
blogging and public speaking for sharing con-
tent publicly 435

building into an organization's culture 17
CloudSuite’s subdomains identified with a bot-

tom-up modernization approach 438
communities of practice (CoPs) as a proven

approach to enabling continuous learning
and upskilling 431

creating the conditions where employees can
acquire modern technological
approaches 422

Emily Webber’s advice for creating a successful
CoP 431

establishing a continuous learning
environment 430

example of bytesize architecture sessions for
interteam collaboration 432

example of learning-driven modernization at
CloudSuite, an SaaS company 436

example of planting the DDD seed at
PayFit 422

exploring the payroll period domain model and
its most important use cases 424

exposing engineers to the business domain 17
focusing on knowledge sharing during work-

shops and not just on the outputs 426
identifying the skills needed for upcoming

projects 429
incentives as key to creating a learning

organization 431
introducing new technical approaches gradually

and then patiently nurturing them 422
involving and supporting influencers by provid-

ing them with training 435
making learning and upskilling a continuous

process baked into the company’s DNA 422
mentoring as a tool for creating a continuous

learning organization 434
notes taken during a big picture domain discov-

ery about declarations 427
payroll period MindMap 425
the value in holding regular small learning

sessions 432
the value in periodically holding internal tech

conferences 436
upskilling for upcoming modernization

needs 429
using Emily Bache’s Samman method for creat-

ing a learning culture 437
legacy systems

avoiding bolt-on modernization 24
problems encountered during

modernization 16
Liberating Structures

having meaningful dialogues in a variety of
formats 62

listening and mapping tours
a 3-day Kickstarter workshop for a large Scandi-

navian company 64
assessing scope when deciding whom to

meet 50
assessing the impact and probability of identi-

fied business risks 55
assimilating insights from listening sessions 51
avoiding the word architecture while

interviewing 53
bringing people together for group sessions 62
building a compelling modernization vision

through listening 50
capturing a listening session as sticky notes 61
choosing between structured and unstructured

discussions 56
conducting an effective listening tour 51
creating a safe, non-threatening listening

space 52
creating C4 diagrams 55
design squiggle 63
double diamond design process 63
employing a variety of question formats 58
establishing an architecture modernization

enabling team (AMET) 51
example of clinical oncology nonprofit 62
example question formats 58
examples of generic discussion questions 57
gaining insights from questionnaires and

surveys 50
having a wing person as a note-taking scribe 60
repeating interviewee comments to verify your

understanding 61
Risk Storming technique 55
sample list of department heads and managers

to meet 50
steering people to think more deeply about

question topics 60
using a Business Model Canvas (BMC) 54
using a Product Vision Board 54
using Impact Mapping 53
using Liberating Structures 62
using questionnaires and surveys effectively 59

loosely coupled software architecture
aligning software subsystems with the target

subdomains 271
balancing local complexity and global

complexity 275
component, definition of 273
contract coupling 274
coupling types ranked in order of increasing

integration strength 272
distance, definition of 275
functional coupling 274
god class as tightly coupling disparate logic from

multiple subdomains 273

INDEX450
loosely coupled software architecture (continued)
intrusive coupling 273
model coupling 274
modernizing each system and devising a migra-

tion strategy to the target state 271
subsystem, definition of 271
understanding the different types of coupling

and complexity and their trade-offs 276
unencapsulated persistence as a common form

of intrusive coupling 273
Vlad Khononov’s four types of software

coupling 272
volatility, explanation of 275

M

Magnorsky, Andrea
holding bytesize architecture sessions 432

merging pattern 263
mesh experience plane 355
microservices

as a sociotechnical architecture pattern 4
model complexity

definition of 213
model coupling 274
modeling architectural flows

challenging the requirements as a key dynamic
in good modeling 280

continuing to change or refine the domain
while designing a model 280

creating code spikes to verify the effectiveness of
the conceptual model 277

Domain Message Flow Modeling 277
Eric Evans’s model exploration whirlpool 276
extracting domain event scenarios from big pic-

ture EventStorming 278
identifying coupling through mapping out

architectural flows 276
modernizing an accounting system 284
not worrying about messy diagrams when using

Domain Message Flow Modeling 287
uncovering and refining domain boundaries

during design 281
modernization

a basic model for categorizing modernization
work 408

a Nail it then scale it approach to modernization
strategy and roadmaps 383

Amplitude’s north star framework 42
an evolutionary approach to modernization

strategy and roadmaps 383
applying portfolio thinking to architecture

modernization 204
architecture modernization as parallel streams

of work 12

architecture modernization enabling teams
(AMETs) 13

articulating the benefits of architecture
modernization 16

articulating the business ROI of
modernization 31

as a portfolio-driven evolutionary journey 11
ascertaining the most important business objec-

tives first 385
avoiding a copy-paste management style 387
avoiding bolt-on modernization of legacy

systems 24
balancing discovery, design, and delivery 407
balancing honesty about existing business chal-

lenges with a non-blaming attitude toward
them 387

balancing modernization and other work 410
balancing Nail it then scale it with Think big,

work small 402
benefits of codesigning and coevolving an

architecture 9
Better Value Sooner Safer Happier (BVSSH)

model 5
bringing groups together through collaborative

discovery and modeling techniques 418
broad-based benefits of end-to-end

modernization 143
building a compelling vision for

modernization 384
building in time for learning and upskilling 397
building just enough of the platform to allow

the first slice to be delivered 402
business scenarios where architecture modern-

ization is beneficial 29
challenges facing organizations on a moderniza-

tion journey 15
choosing your audience carefully when describ-

ing technical details 388
compiling a technical debt inventory 412
connecting engineers and architecture modern-

ization to business outcomes 19
connecting modernization initiatives to business

outcomes 383
connecting modernization to growth

strategies 36
coping with an unhealthy rush to modernize 31
cost of change, definition of 411
creating continuous feedback channels for a

variety of topics 418
creating modernization scorecards 399
dangers of splitting time across multiple

teams 410
dangers of the structure and process fallacy 25
dealing with legacy system bottlenecks 406
dealing with the most common sequencing chal-

lenges faced during modernization 405

INDEX 451
deciding where to start 397
decision making and architectural scopes 10
delivering a first slice within 3 to 6 months 395
delivering value early and often to sustain excite-

ment and buy-in 384
describing modernization outcomes in business-

friendly language 388
describing the business architecture before mov-

ing into highly technical details 388
describing themes, initiatives, and principles

connected to the outcome 388
developing short, medium, and long-term mod-

ernization initiatives 33
difficulties in choosing between a risk-tolerant

and risk-averse approach 398
each business subdomain as an investment

opportunity within a portfolio 204
embracing a new architecture mindset 18
embracing collaborative architecture

practices 18
embracing multiple roadmaps for different

architecture scopes 415
embracing the need for deep changes 25
enabling investments requiring a value-driven,

portfolio-based approach 204
ensuring that modernization delivers the great-

est business impact 203
ensuring the realistic expectations of

stakeholders 16
EventStorming 19, 39
examining how your organization stacks up

against industry averages 386
example business value scorecard section 399
example delivery risks scorecard section 400
example discovery/learning value versus com-

plexity scorecard section 401
example of balancing legacy investment and

platform evolution at mobile.de 411
example of OpenTable 31
example of Scott Millett and UK-based travel

firm Iglu 390
examples of important modernization metrics

to track 416
experimenting with EventStorming and collabo-

rative workshops 19
exploiting the potential of modern

architectures 4
exposing engineers to the business domain 17
five principal outcomes contributing to organi-

zational performance 4
getting buy-in from employees who like the sta-

tus quo 382
having a single initiative versus multiple initia-

tives as the first slice 395
holding modernization all-hands sessions 416

how ICE Services adopted a new architectural
mindset 21

hypothetical roadmap for delivering a first slice
within 6 months 396

identifying dependencies when modernizing
legacy systems 405

identifying the optimal level of
modernization 28

identifying where architecture modernization
may be most effective 47

improving hiring and retention 35
investing in strategically important subdomains

with high innovation potential 204
John Cutler and product development

approaches 20
keeping a centralized resource that tracks all ini-

tiatives along with their approaches and
prioritizations 405

keeping in mind the knowledge and experience
aspects of modernization 404

lacking a compelling narrative as a key
hurdle 384

leaders needing to continuously assess and
adapt their strategies and visions 415

leading technology roles required in architec-
ture modernization 26

legacy systems and 16
list of items to include in the business context

section of a strategy deck 385
list of techniques and proactive measures for

uncovering dependencies 406
list summary of presentation topics and modern-

ization themes 388
loosely coupled architecture and domain

boundaries 19
making enough time for modernization

work 16
minimizing the negative effects of Conway’s

law 18
Modernization Core Domain Chart, description

of horizontal and vertical axes and quadrant
measures 397

modernization never goes exactly as
planned 383

modernization strategy deck, basic elements
of 385

modernization strategy deck, creating 384
Modernization Strategy Selector 389
moving beyond business and IT silos 20
opposition to slowing down feature delivery

during modernization 382
organizing scorecards into three sections 399
planning a first slice 395
playbooks, benefits of 404
playbooks, scaling up modernization with 403
playbooks, types of information to include 404

INDEX452
modernization (continued)
prioritization as a constant and dynamic

challenge 405
problems caused by dependencies 406
pursuing an exit strategy while modernizing 32
ramping up modernization 403
recommended deployment of the walking skele-

ton risk-management pattern 402
reflective questions designed to surface modern-

ization imbalances 408
reluctance to invest in 2
requirements of leadership 17
responsibilities of modernization leaders 26
risks involved in setting ambitious deadlines 389
Scott Millett’s approach to designing a target

architecture 393
Scott Millett’s approach to designing a target

operating model 394
Scott Millett’s approach to determining IT stra-

tegic actions 393
Scott Millett’s approach to documenting busi-

ness strategy 392
shaping architecture and organizing teams 39
showing how modernization will contribute to

improved business outcomes 388
showing how technology-centric modernization

investments are based on business value 389
tips on how best to address obstacles and

challenges 387
trying to find the sweet spot between too much

upfront planning and recklessness 403
types of retrospectives held by modernization

teams 417
uncovering obstacles and challenges and how

modernization can address them 386
using deadlines as a countermeasure to

inertia 390
using metrics to verify that modernization is pro-

gressing at an acceptable pace 415
using pulse surveys for early detection of typical

modernization problems 416
using the Modernization Strategy Selector 11
using timeboxes to commit to making a decision

by a certain date 409
using visualization tools like CodeScene to build

a compelling business case 386
validating that architecture decisions work out

as expected 383
validating that candidate value streams are a

good fit strategically 204
visualizing and accentuating process bottlenecks

using Value Stream Maps 386
visualizing and communicating the moderniza-

tion journey 414
visualizing the opportunity landscape and mak-

ing the process collaborative 397

Wardley Mapping 30, 47
Wardley Mapping as a great tool for visualizing

the modernization strategy 385
when a first slice doesn’t live up to

expectations 402
when a major change of direction is

required 419
when architecture stifles business growth 32, 40
when modernization doesn’t feel like it’s deliver-

ing a sufficient return on investment 384
when to think about internal developer plat-

forms (IDPs) 402
modernization at a European telco 366

advantages of durable change coming from
within an organization 367

creating a playbook for addressing challenges,
improving flow, and prioritizing moderniza-
tion initiatives 370

empowering teams to identify improvements
and drive durable change 367

from an as-is to a collaboratively designed to-be
team topology 369

identifying candidate domains and service
boundaries 367

operational value stream for a customer self-ful-
fillment of a broadband package 368

scaling out the organization’s new approach to
modernization 370

teams interacting via an X-as-a-service
relationship 370

using Team Topologies to map team
relationships 368

Modernization Strategy Selector 389
identifying the optimal modernization

investments 11
Mosior, Ben

using the Wardley Mapping Canvas 71

N

NAV (Norwegian Labour and Welfare Administra-
tion)

internal technology platform and
subplatforms 97

Netflix
transition to cloud-based microservices 2

new work or priority pattern 263
no principle lives in isolation 347
north stars

choosing the right north star 41
examples of north star metrics (NSMs) 41
identifying 41
identifying great north stars at Danske Bank 47
John Cutler’s North Star Framework 41
Sean Ellis 41

INDEX 453
O

observability
definition of 324

observability services 350
one by one pattern 263
OpenTable

pitching a modernization vision 31
OpenTelemetry

an open-source tool for implementing
observability 324

operational complexity
definition of 215

P

pair/mob programming
benefits of 25

parallel run pattern 300
passive metadata 350
Payment Service Directive 2 (PSD2) 43
Perri, Melissa

defining what constitutes a product 108
Pichler, Roman

distinguishing between products, features, and
components 108

pivotal events
Applied for Membership pivotal event 193
identifying 193
signs indicating that a pivotal event is near a

domain boundary 194
sorting the EventStorm into areas 126

platform
definition of 248

platform as a product
applying modern product management prac-

tices to building IDPs 332
platform groupings 248
platform-as-a-product 98
platforms

advantages and disadvantages of 96
centralizing the shared capabilities of

products 96
domain platforms/horizontals 96
internal development platforms (IDP) and

internal technology platforms (ITPs) 96
principle of data as a product 344
principle of federated computational

governance 346
principle of the self-serve data platform 346
process modeling EventStorming

adding Domain Storytelling to a facilitator’s
toolbox 163

adding workshop roles 167
asking good questions as an important facilita-

tion skill 161

basic notation elements optimized for telling
domain stories 163

building on the notation used in big picture
EventStorming 157

choosing between EventStorming and Domain
Storytelling for process modeling 168

definition of 120
designing a future-state prescription validation

process with Domain Storytelling 164
discovering hidden edge cases and business

rules 162
examples of facilitator questions that unlock

good conversations 161
facilitating process modeling sessions 159
factors to consider when setting the scope 165
how this workshop differs from a big picture

EventStorming session 159
inviting the right people 166
keeping stories comprehensible 167
list of notation and syntax 157
modeling a contract-approval workflow 158
planning and facilitating a workshop 159, 165
preparing the modeling space 166
procedure for handling branches 159
starting a process modeling EventStorming

workshop and preparing the board 160
the five basic notation elements of the Domain

Storytelling pictographic language 164
usefulness of holding periodic workshop

retrospectives 160
viewing a session as a collaborative game 160
when there are multiple triggers or entry points

to a process 162
product and domain modernization

benefits of fixing old hacks 148
broad-based benefits of end-to-end

modernization 143
contextual inquiry, definition of 153
continuous discovery as requiring teams to talk

to customers weekly 150
dangers of mindlessly reverse-engineering the

current system 148
discovering shadow IT to better address people’s

needs 152
empowering teams to act on the insights gained

and make responsible decisions 150
example of business property tax

modernization 144
identifying the costs of not modernizing 147
identifying which features are no longer being

used 148
importance for teams to have a validation mind-

set and a co-creation mindset 150
important roles to include in your

modernization 146

INDEX454
product and domain modernization (continued)
involving people with the right variety of skills

and experience 146
involving product and UX people from day

one 147
modernizing the Department for Levelling up,

Housing, and Communities 152
modernizing the domain model 154
necessity of spending time with real users 149
royalties domain modeling 156
uncovering better product requirements for

your modernization 145
usability testing, definition of 154
using language more effectively through inten-

tional conceptual domain models 155
when people are too satisfied with the current

approach 151
when people give up asking for product

improvements 151
product design complexity

definition of 213
product taxonomy

achieving sustainable fast flow 92
building blocks cheat sheet 100
challenges of hiring and forming teams to work

on a modernization initiative 105
clarifying which teams will be responsible for the

relevant value streams 105
complexities in reshaping the current software

architecture 104
defining building blocks to describe your mod-

ernized architecture 92
defining domains hierarchically at different

scopes 94
defining the word product and related

concepts 108
description of the Salesforce product taxonomy

(2017) 99
determining where to allow autonomy and

standardization 103
differentiating products, user journeys, and user

tasks 109
domains, definition of 93
establishing decision-making responsibility in

each portfolio area 103
example of a fulfillment domain consisting of

four subdomains 94
expecting a product taxonomy that will con-

stantly evolve 103
four key characteristics of an independent value

stream 93
general principles for designing an architecture

as a product taxonomy 102
getting a rough idea of the level of misalignment

in each taxonomy area 104

how products naturally vary in size, complexity,
and scope 95

identifying an organization’s products and
determining their value 95

identifying independent value streams 92
key characteristics of a project versus a product

mode 110
mapping modernization opportunities, risks,

and challenges 104
Melissa Perri 108
modernizing the product and domain to create

new value through improvements 106
NAV's internal technology platform 97
organizing value streams into domains 93
product groups and product portfolios 99
product mode as exemplifying empowered

product teams 110
publishing an updated taxonomy regularly 103
Roman Pichler 108
starting with the least subjective and least con-

tentious parts 102
Stripe’s evolution from a payments company to

an economic infrastructure company 107
Uber's trip fulfillment platform 96
understanding macrolevel business architecture

decisions 107
using appropriate techniques that are tried and

tested 102
using platforms to centralize the shared capabili-

ties of products 96
weighing a centralized versus decentralized

macrostructure 107
when teams lack the necessary skills 105

Product Vision Board
five sections of 54
outlining the strategy for an individual

product 54

R

Risk Storming
identifying significant challenges, constraints,

and risks 55
running an EventStorming session

adding a hot spot as a placeholder 128
adding roles, systems, and clarifying

terminology 128
adding whitespace to encourage attendees to fill

the gap 136
addressing problems and opportunities 132
asking a social check-in question connected to

the workshop theme 124
avoiding bikeshedding 138
being wary of domain over abstraction 133
building the timeline 125

INDEX 455
combining Example Mapping and
EventStorming 137

comparing in-person to remote sessions 139
conducting virtual sessions using tools like

Miro 123
connecting back to the purpose of the

initiative 123
dealing with common people-related

challenges 137
discovery as exploring new avenues and chal-

lenging assumptions 136
encouraging attendees to add timeline events 126
examining process inefficiencies and

bottlenecks 130
expanding the TAM (total addressable market)

of your products and services 131
exploring follow-up possibilities after the work-

shop ends 132
exploring opportunities to increase customer

engagement 132
exploring why users drop out of a pipeline or

funnel 129
facing unrealistic workshop expectations 139
getting attendees to embrace the discovery

mindset 137
helping attendees identify pivotal events 127
identifying problems and opportunities and sur-

facing insights 129
looking for repeating divergence throughout

the timeline 134
making a minimum attendee list 122
making conflict visible 136
mapping out roles and personas in the

domain 124
missing and disputed knowledge as a major

source of problems 130
modeling heuristics 133
offering helpful examples of domain events to

attendees 125
people who view the workshop as

redundant 138
preparing the modeling space 123
qualifying events with the same name 136
questioning unintroduced concepts 136
recommended duration for a workshop 123
seizing new opportunities 131
setting the correct scope 122
sorting a timeline using horizontal swim

lanes 127
sorting a timeline using temporal milestones

based on specific moments 127
sorting and tidying up the timeline 126
splitting the timeline into roughly 5 to 10

smaller sections 126
starting workshops with a quick overview of the

purpose 124

telling a story to compensate for overly abstract
events 134

tips, tricks, and challenges for workshop
facilitators 133

uncovering the causes of user frustration 129
using data better 131
using new technologies 132
using pivotal events to sort the timeline 126
walking the timeline after it’s been sorted 127
when adding domain events leads naturally into

chaotic exploration 126
when technology is a major source of

problems 130

S

Salesforce
description of its product taxonomy (2017) 99
seeking growth by acquisition 33

scale complexity
definition of 214

sexy new codebase antipattern 300
software design (design-level) EventStorming

definition of 120
software design EventStorming 306
stagnation and learning pattern 263
strangler fig pattern 296
Strategy Cycle

defining an organization's mission and
purpose 70

leadership and strategic business decisions and
actions 71

mapping out the competitive business
landscape 70

Simon Wardley and 70
understanding doctrine as an aspect of

strategy 71
understanding its five major parts 89
understanding the climate in which a business

operates 70
stream-aligned teams 248
Stripe

evolving from a payments company to an eco-
nomic infrastructure company 107

structure and process fallacy
dangers of 25

subsystem
definition of 271

subsystem design and modernization
allowing engineers adequate time to assess the

current software 304
anticorruption layer (ACL) 297, 309
architecture analysis tools 302
assessing current-state complexity 301
autonomous bubble pattern 297–298, 309
bounded context 306–307

INDEX456
subsystem design and modernization (continued)
bounded context canvas and its eight

sections 289
CodeScene 302
combining system information with version con-

trol history in CodeScene 304
conducting a comprehensive review of each sub-

system’s overall design 288
determining the optimal modernization invest-

ment strategy for each subsystem 293
encapsulating and exposing legacy capabilities

via contracts 299
Eric Evans’s definition of bounded context 290
establishing a migration patterns library 301
example of domain-driven modernization of a

gigs platform 305
Identifying knowledge loss in a codebase with

CodeScene 303
list of criteria that contribute to system

health 301
migration patterns that help with the task of

migration 296
Modernization Strategy Selector 293
Modernization Strategy Selector, example

strategies 295
Modernization Strategy Selector, x-axis

categories 294
Modernization Strategy Selector, y-axis

categories 295
parallel run pattern 300
potential complexities and risks introduced by

the strangler fig pattern 297
refactoring the legacy layers first 300
Ruby on Rails 306
sexy new codebase antipattern 300
software design EventStorming 291, 306
software design EventStorming, notation for 291
software design EventStorming, using to design

a utility provider’s bill dispute subdomain 292
strangler fig pattern 296
subsystem modernization strategies 293
using the bounded context canvas 288
validating that a design will work as code 293
visualizing code health with CodeScene 303

supporting subdomain
definition of 209

surprise reasons pattern 263
suspect supporting pattern 227
switching pattern 263

T

table stakes supporting pattern 225
Team Topologies 120

mapping team relationships at a European
telco 368

team topologies
considering teams as the individual unit 243
core principles for organizing teams for fast

flow 241
examining how organizational dynamics affect

the software architecture 246
fast flow as enabled by independent value

streams 240
fast flow as meaning sustainable fast flow 242
identifying potential high-cognitive load on a

core domain chart 245
implications of Conway’s law on flow 246
keeping a team’s cognitive load

manageable 244
legacy code as one of the worst culprits of poor

flow 242
Martin Fowler on Conway’s law 246
organizations that lack team-first thinking 243
refining and validating domain boundaries 241
small, long-lived teams as the recommended

standard 242
the DevOps approach of You build it, you run

it 243
three types of team cognitive loads 244
when achieving sustainable fast flow also

requires deep organizational changes 242
when standardized workflows stifle improve-

ment and result in lower productivity 243
when teams design, write, and deploy their code

and support it in production 243
when teams own their process and work contin-

uously to improve it 243
team topologies patterns

benefits of applying dynamic reteaming 264
collaboration mode 250
complicated subsystem teams 249
considerations of how to group teams 265
continuously scanning for clues that the existing

team topology is no longer optimal 259
cost tracking ISH 254
dependencies ISH 255
discover to establish pattern 261
dynamic reteaming patterns 262
enabling teams 249
evolution patterns may involve reshaping

boundaries, changing interaction types, or
removing interactions 261

example of a logistics company developing its
second product 260

example of a regulated e-commerce
company 255

facilitating mode 250
global cosmetics brand 251
grow and split pattern 263
growth/attrition pattern 263
impact/value ISH 253

INDEX 457
independent service heuristics (ISH) 252
isolation pattern 263
knowledge sharing pattern 263
list of symptoms that the team topology may

need to evolve 259
Marty Cagan’s list of 19 criteria that differentiate

good and bad product teams 258
merging pattern 263
monthly exchanging of a single worker among

four developer teams 264
need for organizations to sense and evolve socio-

technical architecture continually 259
new work or priority pattern 263
one by one pattern 263
platform groupings 248
platform, definition of 248
product decisions ISH 253
stagnation and learning pattern 263
stream-aligned teams 248
surprise reasons pattern 263
switching pattern 263
team grouping patterns 265
teams (cognitive load) ISH 254
teams that own both the UI and backend com-

ponents for a specific subdomain 265
the four team types 247
three interaction modes 250
understanding the nine mandate levels and

their levels of work and autonomy 257
using John Cutler’s mandate levels to assess the

independence of a value stream 257
validating candidate value streams 252
X-as-a-service (XaaS) mode 250

test-driven development (TDD)
benefits of 25

U

Uber
market development at 39
products and services that leverage its fulfill-

ment platform 97
unencapsulated persistence

a common form of intrusive coupling 273
usability testing

definition of 154
user needs discovery complexity

definition of 213
utility IT vs. strategic IT

Chegg’s product strategy 208
classifying IT within a particular domain as util-

ity or strategic 206
having product people and engineers work

closely together to define product
strategy 209

identifying strategic IT 207

identifying strategic IT candidates on a Wardley
Map 208

list of operating model aspects that should be
tailored per team 206

looking at the utility versus strategic IT dichot-
omy as a more nuanced range 206

Martin Fowler’s criteria for determining if IT is
strategic 205

using the product strategy to identify strategic
IT 208

using Wardley Mapping to reveal areas of great-
est business differentiation 207

utility IT as not an excuse to create poor-quality
software 205

UX
modernizing the UX and architecture of inter-

nal systems 35
when UX problems threaten the business

model 34

V

value stream
definition of 240

Value Stream Maps
using to visualize and accentuate process bottle-

necks during modernization 386
value streams

benefits of an outcome-driven approach 7
change coupling, definition of 7
defining domains hierarchically at different

scopes 94
definition of 5
domains, definition of 93
example of a fulfillment domain consisting of

four subdomains 94
four key characteristics of an independent value

stream 93
identifying 92
independent value stream (IVS), characteristics

of 6
organizations as networks of interconnected

value streams 10
organizing into domains 93
stream-aligned teams 6

Vinted
deepening and widening its categories tree 234
difficulties in defining boundaries and team

structures without a clear product
strategy 235

exploring strategic modeling approaches 235
facing growing pains and forced adoption of

multiple verticals 232
introduction of domain-driven design 234
mapping its strategic portfolio with a Core

Domain Chart 235

INDEX458
Vinted (continued)
modernizing its architecture to speed up

innovation 233
Vlad Khononov

calculating coupling costs using the formula
Pain = Strength * Volatility * Distance 176

volatility, explanation of 275

W

Wardley Mapping 19, 30, 47
Airbnb and product attribute differentiation 88
applying climatic forces to a map 80
applying de-accelerators to slow down

evolution 87
assessing evolution and learning its

characteristics 76
assessing potential climatic changes 81
assessing the effects of climatic changes 84
Ben Mosior’s Wardley Mapping Canvas 71
certainty characteristic 77
climate explained 80
commodity property of the certainty

characteristic 77
commodity property of the ubiquity

characteristic 77
community-contributed gameplay patterns 86
comparing a Core Domain Chart to a Wardley

Map 219
components evolving as a fundamental climatic

pattern 80
connecting the business and technological

aspects of value chains 68
cooperation and partnering as accelerators 87
creating a Wardley Map as step 6 of the Wardley

Mapping Canvas 74
creating a Wardley Map for an online food deliv-

ery company 72
defining competitive advantage 78
determining a component’s correct stage of

evolution 76
evolution as a defining characteristic of Wardley

Mapping 79
exploring accelerators to evolution 86
exploring the evolution of components 82
general properties 77
genesis phase of evolution for the ubiquity

characteristic 77
grasping evolution 79
higher-order systems creating new sources of

value 81
how components of different types coevolve 81
identifying strategic themes on a Wardley

Map 75

identifying the highest leverage modernization
opportunities 85

industrial change as not always linear 83
intellectual property (IP) rights as de-

accelerators 87
introducing common climatic patterns 80
looking for product differentiation

opportunities 88
looking for signs of inertia 82
market plays as a category of gameplay

patterns 88
market property 77
purpose as step 1 of the Wardley Mapping

Canvas 72
reasons for learning its techniques and

terminology 69
restaurant optimization capability 77
scope as step 2 of the Wardley Mapping

Canvas 72
six basic steps for creating a Wardley Map 71
subjectivity in assigning where a component

should go 79
table of characteristics that change with

evolution 80
table of some general properties 78
table of the three evolution characteristics 77
ubiquity, certainty, and publication types as the

three characteristics 76
user needs as step 4 of the Wardley Mapping

Canvas 73
user perception property 77
users as step 3 of the Wardley Mapping

Canvas 72
using fear, uncertainty, and doubt (FUD) as a

marketing technique 88
using harvesting to build a platform or create a

marketplace 89
using its collection of doctrine principles 71
using network effects to accelerate evolution 86
using open source as an accelerator 86
value chains as step 5 of the Wardley Mapping

Canvas 73
visualizing a landscape using value chains 70
visualizing the effects of climatic changes 70

Wardley, Simon 29
creator of Wardley Mapping and the Strategy

Cycle 70
Webber, Emily

advice for creating a successful CoP 431

X

X-as-a-service (XaaS) mode 250

3

Evolutionary modernization:
Think big, nail it, scale it, continuously assess and adapt

[Evolutionary]
modernization strategy

Think big: a compelling
vision of the value

modernization will bring

[Evolutionary]
modernization roadmap

Nail it then scale it: start
small, validate, ramp up

[Continuously]
deliver modernization

Implementing
modernization work to
deliver value and learn

Drives

DrivesInforms

Influences

Influences

Informs
Climactic factors

Changes to business
strategy, competitor

actions, etc.

[Continuously]
assess and adapt

Validate architecture decisions:
measure actual vs. expected

value, costs, progress

Tune ● Perrin ● Forewords by Matthew Skelton, Xin Yao

ISBN-13: 978-1-63343-815-6

T
he decisions you make about your software are inherently
connected to the decisions you make about your business.
Why not turn the mundane task of modernizing legacy

systems into a transformative process for your entire company?
Th is book shows you how! It reveals a socio-technical approach
to align your software and products with organizational
dynamics and ways of working.

Architecture Modernization: Socio-technical alignment of soft-
ware, strategy, and structure presents a clear path for upgrading
your entire organization when you re-imagine your software.
In it, you’ll learn to combine practices like Domain-Driven
Design, Event Storming, and Wardley Mapping to discover
user needs, design optimal architecture, and avoid falling back
into old habits. Provocative examples from Danske, Salesforce,
the UK Government, and others show the real-world result
of each approach, identifying techniques you can apply eff ec-
tively in your own business.

What’s Inside
● Uncover cross-org challenges and opportunities
● A product-centric approach to architecture
● Envision architecture as a portfolio to prioritize investment

For CTOs, tech leads, and principal engineers who decide on
architecture and organization design.

Nick Tune helps organizations modernize their architectures
through empowered product teams and continuous delivery.
Jean-Georges Perrin builds innovative and modern data
platforms.

Th e technical editor on this book was Kamil Nicieja

For print book owners, all ebook formats are free:
https://www.manning.com/freebook

Architecture Modernization

ARCHITECTURE/DOMAIN-DRIVEN DESIGN

M A N N I N G

“Nick has a rare gift of
making complex topics

digestible and immediately
actionable where the rubber
meets the road. Th is book

connects the dots of domain-
driven design, Team

Topologies, DevOps, product
development, strategy,

 architecture, and leadership.”—From the Foreword by Xin Yao
DDD consultant and

socio-technical architect

“Helps you modernize your
applications and organizational

structures to support your
business strategy and allow you
to regain agility and momen-

tum… I plan to use this
 approach in my work.”—Eoin Woods, Endava

“Guides you through every
twist and turn of your

 modernization journey.”—Vlad Khononov
Technology Consultant

See first page

	brief contents
	contents
	forewords
	preface
	acknowledgments
	about this book
	Who should read this book
	How this book is organized: A road map
	How to read this book
	liveBook discussion forum

	about the authors
	about the cover illustration
	1 What is architecture modernization?
	1.1 Architecture is more than technologies and patterns
	1.2 Independent value streams: The building blocks of modern architecture
	1.2.1 Minimizing change coupling with well-defined domain boundaries
	1.2.2 Architecting at multiple scopes for global optimization

	1.3 Modernization as a portfolio-driven evolutionary journey
	1.4 Topics not covered in this book
	Summary

	2 Preparing for the journey
	2.1 Is leadership prepared?
	2.1.1 Are business and product leaders truly ready to slow down the delivery of new features to allow modernization?
	2.1.2 Do leaders understand that legacy systems and ways of working are complex and difficult to change?
	2.1.3 How will leaders react when the unexpected occurs (which is inevitable) and there are major delays or increased costs?
	2.1.4 Are leaders ready to change how they work? Can you imagine leadership supporting changes to funding models, work prioritization, and development processes and empowering teams to make more decisions?
	2.1.5 Are leaders willing to invest sufficient time and funds into learning and training for all employees so that they can carry out modernization skillfully?
	2.1.6 Will technologists be able to articulate to business leaders and other stakeholders the business and organizational benefits of their ideas?

	2.2 Prepare to embrace a new architecture mindset
	2.2.1 Prepare to embrace Conway’s law
	2.2.2 Prepare to embrace collaborative architecture practices
	2.2.3 Prepare to connect architecture and strategy
	2.2.4 Prepare to move beyond business and IT silos

	2.3 Industry example: Hitting the right note—modernizing music royalty processing at ICE
	2.4 Beware of modernization silver bullets
	2.4.1 Beware of bolt-on modernization
	2.4.2 Beware of the structure and process fallacy
	2.4.3 Prepare to invest in quality technical practices

	2.5 Prepare to support leaders at all levels
	Summary

	3 Business objectives
	3.1 Business justifications for architecture modernization
	3.1.1 Falling behind faster-moving competitors
	3.1.2 Architecture stifling business growth
	3.1.3 Pursuing an exit strategy
	3.1.4 Growth by acquisition
	3.1.5 Poor UX holding the company back
	3.1.6 Inefficient internal tooling and processes
	3.1.7 Improving hiring and retention

	3.2 Connecting modernization to growth strategies
	3.2.1 Growth strategy: Product development
	3.2.2 Growth strategy: Market penetration
	3.2.3 Growth strategy: Market development
	3.2.4 Growth strategy: Diversification

	3.3 Identifying north stars
	3.3.1 Choosing the right north star
	3.3.2 Using a north star framework
	3.3.3 Industry example: North stars at Danske

	Summary

	4 Listening and mapping tours
	4.1 Who to meet
	4.2 Who conducts the tour?
	4.3 Conducting an effective tour
	4.3.1 Create a safe space
	4.3.2 Harness a toolbox of techniques
	4.3.3 Structured vs. unstructured discussions

	4.4 Bringing groups together
	4.4.1 Industry example: Clinical oncology structured exploration workshop
	4.4.2 Industry example: Kickstarting modernization in a large Scandinavian enterprise

	Summary

	5 Wardley Mapping
	5.1 The Strategy Cycle
	5.2 Creating a Wardley Map
	5.3 Grasping evolution
	5.3.1 Evolution characteristics
	5.3.2 Rapid learning exercise: Grasping evolution

	5.4 Climatic forces
	5.4.1 Everything evolves
	5.4.2 Components coevolve
	5.4.3 Past success breeds inertia
	5.4.4 Change is not always linear
	5.4.5 Assessing the effect of climatic changes

	5.5 Making strategic decisions
	5.5.1 Accelerators to evolution
	5.5.2 De-accelerators to evolution
	5.5.3 Market plays

	Summary

	6 Product taxonomy
	6.1 Defining the building blocks
	6.1.1 Independent value streams
	6.1.2 Domains
	6.1.3 Products
	6.1.4 Platforms
	6.1.5 Product groups and portfolios
	6.1.6 Industry example: Salesforce product taxonomy (2017)
	6.1.7 Building blocks cheat sheet

	6.2 Designing a product taxonomy
	6.2.1 Start with the easier parts
	6.2.2 Use appropriate techniques
	6.2.3 Expect constant evolution
	6.2.4 Distribute design responsibility

	6.3 Mapping modernization opportunities, risks, and challenges
	6.3.1 Dependencies and misaligned boundaries
	6.3.2 Unclear or lacking ownership
	6.3.3 Skills gaps
	6.3.4 Product and domain modernization
	6.3.5 Complexity and cognitive load
	6.3.6 Macrolevel constraints and challenges

	6.4 What is a product?
	6.4.1 Products vs. features vs. components
	6.4.2 Products vs. variants vs. journeys
	6.4.3 Product mode

	Summary

	7 Big picture EventStorming
	7.1 Understanding EventStorming
	7.1.1 Notation
	7.1.2 Chaotic exploration
	7.1.3 Optimized for learning and collaboration
	7.1.4 When to use EventStorming

	7.2 Running an EventStorming session
	7.2.1 Planning a session
	7.2.2 Preparing the space
	7.2.3 Kicking off the session
	7.2.4 Building the timeline
	7.2.5 Sorting the timeline
	7.2.6 Timeline walk-through

	7.3 Surfacing problems and opportunities
	7.3.1 Problems
	7.3.2 Opportunities
	7.3.3 Addressing problems and opportunities

	7.4 Facilitator tips and challenges
	7.4.1 Modeling heuristics
	7.4.2 Common challenges

	Summary

	8 Product and domain modernization
	8.1 Industry example: Business property tax modernization
	8.2 Identifying product requirements
	8.2.1 Involve the right people
	8.2.2 Identify the costs of not modernizing
	8.2.3 Don’t mindlessly reverse-engineer the code
	8.2.4 Analyze system information
	8.2.5 Spend time with real users
	8.2.6 Continuous discovery
	8.2.7 What have people given up asking for?
	8.2.8 We’ve always done it that way
	8.2.9 Finding shadow IT
	8.2.10 Industry example: Department for Levelling up, Housing, and Communities

	8.3 Modernizing the domain model
	8.3.1 Industry example: Royalties domain modeling

	8.4 Process modeling EventStorming
	8.4.1 Notation
	8.4.2 Planning a workshop
	8.4.3 Facilitating a workshop

	8.5 Domain Storytelling
	8.5.1 Notation
	8.5.2 Planning and facilitating a workshop
	8.5.3 Replaying stories
	8.5.4 When to use Domain Storytelling

	Summary

	9 Identifying domains and subdomains
	9.1 The value of good domain boundaries
	9.2 Domain identification principles
	9.2.1 Domain boundaries depend on your goals
	9.2.2 Concepts can be coupled by multiple characteristics
	9.2.3 Not all dependencies are equally costly
	9.2.4 Explore multiple models
	9.2.5 Industry example: The British Broadcasting Corporation
	9.2.6 Don’t rely on superficial knowledge
	9.2.7 Good boundaries are not a panacea
	9.2.8 Prepare for constant evolution

	9.3 Domain boundary heuristics
	9.3.1 The five guiding domain-boundary heuristics
	9.3.2 Subdomain boundary heuristics
	9.3.3 Subdomain grouping heuristics
	9.3.4 Industry example: Airline domain decomposition

	9.4 Identifying domains and subdomains with EventStorming
	9.4.1 Pivotal events
	9.4.2 Chunking the timeline
	9.4.3 Looking for scattered subdomains
	9.4.4 Subdomains versus user journeys/processes
	9.4.5 Analyzing subdomains
	9.4.6 Planning a series of workshops

	Summary

	10 Strategic IT portfolio
	10.1 Utility vs. strategic IT dichotomy
	10.1.1 Tailored operating model
	10.1.2 Identifying strategic IT

	10.2 Core Domain Charts
	10.2.1 Example Core Domain Chart
	10.2.2 Assessing model complexity
	10.2.3 Core domain evolution
	10.2.4 Industry example: Events industry scale-up
	10.2.5 Comparisons with Wardley Mapping

	10.3 Core Domain Chart patterns
	10.3.1 Decisive core
	10.3.2 Indefensible core
	10.3.3 Big bet future core
	10.3.4 High-leverage supporting
	10.3.5 Table stakes supporting
	10.3.6 Mission-critical supporting
	10.3.7 Suspect supporting
	10.3.8 Hidden core
	10.3.9 Black swan core
	10.3.10 Portfolio patterns

	10.4 Industry example: Strategy-aligned architecture at Vinted
	Summary

	11 Team Topologies
	11.1 Team Topologies principles
	11.1.1 Sustainable fast flow
	11.1.2 Small, long-lived teams as the standard
	11.1.3 Team-first thinking
	11.1.4 You build it, you run it
	11.1.5 Good boundaries minimize cognitive load
	11.1.6 Embrace Conway’s law

	11.2 Team Topologies patterns
	11.2.1 The four team types
	11.2.2 The three interaction modes
	11.2.3 Industry example: Global cosmetics brand

	11.3 Validating candidate value streams
	11.3.1 Independent service heuristics
	11.3.2 Mandate levels
	11.3.3 Good product team/bad product team

	11.4 Sensing and evolving team topologies
	11.4.1 Organizational sensing
	11.4.2 Industry example: Awkward interactions when becoming multiproduct
	11.4.3 Evolutionary patterns

	11.5 Team grouping patterns
	Summary

	12 Loosely coupled software architecture
	12.1 Coupling types and strength
	12.1.1 Local versus global complexity

	12.2 Modeling architectural flows
	12.2.1 Model exploration whirlpool
	12.2.2 Domain Message Flow Modeling
	12.2.3 Industry example: Modernizing an accounting system

	12.3 Individual subsystem design
	12.3.1 Using a canvas
	12.3.2 Software design EventStorming

	12.4 Subsystem modernization strategies
	12.4.1 The modernization strategy selector
	12.4.2 Migration patterns
	12.4.3 Assessing current-state complexity

	12.5 Industry example: Domain-driven modernization of a gigs platform to support new markets
	Summary

	13 Internal developer platforms
	13.1 Developer experience
	13.1.1 Zero to production in less than a day
	13.1.2 Roll out the red carpet for teams to do continuous delivery
	13.1.3 Delightful onboarding experience
	13.1.4 Frictionless local development experience
	13.1.5 Industry example: HMRC’s Multi-channel Digital Tax Platform (UK government)

	13.2 Platform capabilities
	13.2.1 Golden paths
	13.2.2 Pipelines and environments
	13.2.3 Observability
	13.2.4 Software applications catalog
	13.2.5 Great platform documentation
	13.2.6 Security and compliance
	13.2.7 API management
	13.2.8 FinOps

	13.3 Industry example: Platform-powered business model revolution at La Redoute
	13.4 Managing internal developer platforms
	13.4.1 Platform as a product
	13.4.2 Adequately staffed
	13.4.3 Build vs. curate
	13.4.4 Technology standardization vs. flexibility
	13.4.5 Platform engineer experience

	13.5 When to build a platform
	Summary

	14 Data mesh revolutionizing data engineering
	14.1 Setting up the context for complex data
	14.1.1 The dawn of data engineering
	14.1.2 New needs around data
	14.1.3 More problems than solutions

	14.2 The four principles of data mesh
	14.2.1 Principle of domain ownership
	14.2.2 Principle of data as a product
	14.2.3 Principle of the self-serve data platform
	14.2.4 Principle of federated computational governance
	14.2.5 No principle lives in isolation

	14.3 Building your first data quantum
	14.3.1 The smallest element with value
	14.3.2 Logical architecture
	14.3.3 Your new best friend: The data contract
	14.3.4 Physical architecture

	14.4 Navigating through the planes
	14.4.1 The infrastructure experience plane
	14.4.2 The data product experience plane
	14.4.3 The mesh experience plane

	14.5 First and next steps
	Summary

	15 Architecture modernization enabling teams
	15.1 AMET primary purposes
	15.1.1 Kickstarting modernization
	15.1.2 Sustaining modernization momentum
	15.1.3 Facilitating better design
	15.1.4 Facilitating long-lasting, durable change
	15.1.5 Communicating the vision and progress
	15.1.6 Promoting success stories and learnings

	15.2 Industry example: Enabling modernization at a European telco
	15.3 Winding down an AMET
	15.3.1 Evolving investment and involvement
	15.3.2 Establishing an architecture operating model

	15.4 Staffing an AMET
	15.4.1 Patience and relationship building
	15.4.2 Should an AMET be full time?
	15.4.3 Bringing in external help

	15.5 Empowering an AMET
	15.6 Naming an AMET
	15.7 An AMET is not always necessary
	Summary

	16 Strategy and roadmaps
	16.1 Think big: Building a compelling vision
	16.1.1 Crafting a modernization strategy deck
	16.1.2 Industry example: Building and evolving a modernization strategy at IgluCruise.com

	16.2 Nail it: Delivering a first slice within three to six months
	16.2.1 Planning a first slice
	16.2.2 Choosing where to start
	16.2.3 When to think about internal developer platforms
	16.2.4 What if things don’t go to plan?

	16.3 Scale it: Ramping up modernization
	16.3.1 Playbooks
	16.3.2 Seeding and spreading expertise
	16.3.3 Sequencing modernization work
	16.3.4 Balancing discovery, design, and delivery
	16.3.5 Balancing modernization and other work
	16.3.6 Visualizing and communicating the journey

	16.4 Continuously assessing and adapting
	16.4.1 Metrics
	16.4.2 Pulse surveys
	16.4.3 Gatherings
	16.4.4 Continuous feedback channels
	16.4.5 Spend time with people doing the work
	16.4.6 Be prepared to make the difficult decision

	Summary

	17 Learning and upskilling
	17.1 Planting seeds
	17.1.1 Industry example: Planting the DDD seed at a French HR-tech unicorn

	17.2 Upskilling for upcoming project needs
	17.3 Establishing a continuous learning environment
	17.3.1 Communities of practice
	17.3.2 Regular small learning opportunities
	17.3.3 Mentoring
	17.3.4 Empowering influencers
	17.3.5 Blogging and public speaking
	17.3.6 Internal conferences

	17.4 Industry example: Learning-driven modernization at CloudSuite
	Summary

	index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

