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Preface

The code is more what you’d call guidelines than actual rules.
—Hector Barbossa

In the crowded landscape of modern programming languages, Rust is different. Rust
offers the speed of a compiled language, the efficiency of a non-garbage-collected lan‐
guage, and the type safety of a functional language—as well as a unique solution to
memory safety problems. As a result, Rust regularly polls as the most loved program‐
ming language.

The strength and consistency of Rust’s type system means that if a Rust program
compiles, there is already a decent chance that it will work—a phenomenon previ‐
ously observed only with more academic, less accessible languages such as Haskell. If
a Rust program compiles, it will also work safely.

This safety—both type safety and memory safety—does come with a cost, though.
Despite the quality of the basic documentation, Rust has a reputation for having a
steep on-ramp, where newcomers have to go through the initiation rituals of fighting
the borrow checker, redesigning their data structures, and being befuddled by life‐
times. A Rust program that compiles may have a good chance of working the first
time, but the struggle to get it to compile is real—even with the Rust compiler’s
remarkably helpful error diagnostics.

Who This Book Is For
This book tries to help with these areas where programmers struggle, even if they
already have experience with an existing compiled language like C++. As such—and
in common with other Effective <Language> books—this book is intended to be the
second book that a newcomer to Rust might need, after they have already encountered
the basics elsewhere—for example, in The Rust Programming Language (Steve Klabnik
and Carol Nichols, No Starch Press) or Programming Rust (Jim Blandy et al.,
O’Reilly).

v
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However, Rust’s safety leads to a slightly different slant to the Items here, particularly
when compared to Scott Meyers’s original Effective C++ series. The C++ language
was (and is) full of footguns, so Effective C++ focused on a collection of advice for
avoiding those footguns, based on real-world experience creating software in C++. 
Significantly, it contained guidelines not rules, because guidelines have exceptions—
providing the detailed rationale for a guideline allows readers to decide for them‐
selves whether their particular scenario warranted breaking the rule.

The general style of giving advice together with the reasons for that advice is pre‐
served here. However, since Rust is remarkably free of footguns, the Items here con‐
centrate more on the concepts that Rust introduces. Many Items have titles like
“Understand…” and “Familiarize yourself with…”, and help on the journey toward
writing fluent, idiomatic Rust.

Rust’s safety also leads to a complete absence of Items titled “Never…”. If you really
should never do something, the compiler will generally prevent you from doing it.

Rust Version
The text is written for the 2018 edition of Rust, using the stable toolchain. Rust’s
back-compatibility promises mean that any later edition of Rust, including the 2021
edition, will still support code written for the 2018 edition, even if that later edition
introduces breaking changes. Rust is now also stable enough that the differences
between the 2018 and 2021 editions are minor; none of the code in the book needs
altering to be 2021-edition compliant (but Item 19 includes one exception in which a
later version of Rust allows new behavior that wasn’t previously possible).

The Items here do not cover any aspects of Rust’s async functionality, as this involves
more advanced concepts and less stable toolchain support—there’s already enough
ground to cover with synchronous Rust. Perhaps an Effective Async Rust will emerge
in the future…

The specific rustc version used for code fragments and error messages is 1.70. The
code fragments are unlikely to need changes for later versions, but the error messages
may vary with your particular compiler version. The error messages included in the
text have also been manually edited to fit within the width constraints of the book but
are otherwise as produced by the compiler.
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The text has a number of references to and comparisons with other statically typed
languages, such as Java, Go, and C++, to help readers with experience in those lan‐
guages orient themselves. (C++ is probably the closest equivalent language, particu‐
larly when C++11’s move semantics come into play.)

Navigating This Book
The Items that make up the book are divided into six chapters:

Chapter 1, “Types”
Suggestions that revolve around Rust’s core type system

Chapter 2, “Traits”
Suggestions for working with Rust’s traits

Chapter 3, “Concepts”
Core ideas that form the design of Rust

Chapter 4, “Dependencies”
Advice for working with Rust’s package ecosystem

Chapter 5, “Tooling”
Suggestions for improving your codebase by going beyond just the Rust compiler

Chapter 6, “Beyond Standard Rust”
Suggestions for when you have to work beyond Rust’s standard, safe environment

Although the “Concepts” chapter is arguably more fundamental than the “Types” and
“Traits” chapters, it is deliberately placed later in the book so that readers who are
reading from beginning to end can build up some confidence first.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Preface | vii



DOES NOT COMPILE

// Marks code samples that do not compile

UNDESIRED BEHAVIOR

// Marks code samples that exhibit undesired behavior

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit https://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-889-8969 (in the United States or Canada)
707-827-7019 (international or local)
707-829-0104 (fax)
support@oreilly.com
https://www.oreilly.com/about/contact.html

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/effective-rust.

For news and information about our books and courses, visit https://oreilly.com.

Find us on LinkedIn: https://linkedin.com/company/oreilly-media.

Watch us on YouTube: https://youtube.com/oreillymedia.
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CHAPTER 1

Types

This first chapter of this book covers advice that revolves around Rust’s type system. 
This type system is more expressive than that of other mainstream languages; it has
more in common with “academic” languages such as OCaml or Haskell.

One core part of this is Rust’s enum type, which is considerably more expressive than
the enumeration types in other languages and which allows for algebraic data types.

The Items in this chapter cover the fundamental types that the language provides and
how to combine them into data structures that precisely express the semantics of
your program. This concept of encoding behavior into the type system helps to
reduce the amount of checking and error path code that’s required, because invalid
states are rejected by the toolchain at compile time rather than by the program at run‐
time.

This chapter also describes some of the ubiquitous data structures that are provided
by Rust’s standard library: Options, Results, Errors and Iterators. Familiarity with
these standard tools will help you write idiomatic Rust that is efficient and compact—
in particular, they allow use of Rust’s question mark operator, which supports error
handling that is unobtrusive but still type-safe.

Note that Items that involve Rust traits are covered in the following chapter, but there
is necessarily a degree of overlap with the Items in this chapter, because traits describe
the behavior of types.

1
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Item 1: Use the type system to express
your data structures

who called them programers and not type writers
—@thingskatedid

This Item provides a quick tour of Rust’s type system, starting with the fundamental
types that the compiler makes available, then moving on to the various ways that val‐
ues can be combined into data structures.

Rust’s enum type then takes a starring role. Although the basic version is equivalent to
what other languages provide, the ability to combine enum variants with data fields
allows for enhanced flexibility and expressivity.

Fundamental Types
The basics of Rust’s type system are pretty familiar to anyone coming from another
statically typed programming language (such as C++, Go, or Java). There’s a collec‐
tion of integer types with specific sizes, both signed (i8, i16, i32, i64, i128) and
unsigned (u8, u16, u32, u64, u128).

There are also signed (isize) and unsigned (usize) integers whose sizes match the
pointer size on the target system. However, you won’t be doing much in the way of
converting between pointers and integers with Rust, so that size equivalence isn’t
really relevant. However, standard collections return their size as a usize

(from .len()), so collection indexing means that usize values are quite common—
which is obviously fine from a capacity perspective, as there can’t be more items in an
in-memory collection than there are memory addresses on the system.

The integral types do give us the first hint that Rust is a stricter world than C++. In
Rust, attempting to put a larger integer type (i32) into a smaller integer type (i16)
generates a compile-time error:

DOES NOT COMPILE

let x: i32 = 42;
let y: i16 = x;

error[E0308]: mismatched types
  --> src/main.rs:18:18
   |
18 |     let y: i16 = x;
   |            ---   ^ expected `i16`, found `i32`
   |            |
   |            expected due to this

2 | Chapter 1: Types
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   |
help: you can convert an `i32` to an `i16` and panic if the converted value
      doesn't fit
   |
18 |     let y: i16 = x.try_into().unwrap();
   |                   ++++++++++++++++++++

This is reassuring: Rust is not going to sit there quietly while the programmer does
things that are risky. Although we can see that the values involved in this particular
conversion would be just fine, the compiler has to allow for the possibility of values
where the conversion is not fine:

DOES NOT COMPILE

let x: i32 = 66_000;
let y: i16 = x; // What would this value be?

The error output also gives an early indication that while Rust has stronger rules, it
also has helpful compiler messages that point the way to how to comply with the
rules. The suggested solution raises the question of how to handle situations where
the conversion would have to alter the value to fit, and we’ll have more to say on both
error handling (Item 4) and using panic! (Item 18) later.

Rust also doesn’t allow some things that might appear “safe,” such as putting a value
from a smaller integer type into a larger integer type:

DOES NOT COMPILE

let x = 42i32; // Integer literal with type suffix
let y: i64 = x;

error[E0308]: mismatched types
  --> src/main.rs:36:18
   |
36 |     let y: i64 = x;
   |            ---   ^ expected `i64`, found `i32`
   |            |
   |            expected due to this
   |
help: you can convert an `i32` to an `i64`
   |
36 |     let y: i64 = x.into();
   |                   +++++++

Here, the suggested solution doesn’t raise the specter of error handling, but the con‐
version does still need to be explicit. We’ll discuss type conversions in more detail
later (Item 5).

Item 1: Use the type system to express your data structures | 3



1 The situation gets muddier still if the filesystem is involved, since filenames on popular platforms are some‐
where in between arbitrary bytes and UTF-8 sequences: see the std::ffi::OsString documentation.

2 Technically, a Unicode scalar value rather than a code point.

Continuing with the unsurprising primitive types, Rust has a bool type, floating point
types (f32, f64), and a unit type () (like C’s void).

More interesting is the char character type, which holds a Unicode value (similar to
Go’s rune type). Although this is stored as four bytes internally, there are again no
silent conversions to or from a 32-bit integer.

This precision in the type system forces you to be explicit about what you’re trying to
express—a u32 value is different from a char, which in turn is different from a
sequence of UTF-8 bytes, which in turn is different from a sequence of arbitrary
bytes, and it’s up to you to specify exactly which you mean.1 Joel Spolsky’s famous
blog post can help you understand which you need.

Of course, there are helper methods that allow you to convert between these different
types, but their signatures force you to handle (or explicitly ignore) the possibility of
failure. For example, a Unicode code point can always be represented in 32 bits,2 so
'a' as u32 is allowed, but the other direction is trickier (as there are some u32 val‐
ues that are not valid Unicode code points):

char::from_u32

Returns an Option<char>, forcing the caller to handle the failure case.

char::from_u32_unchecked

Makes the assumption of validity but has the potential to result in undefined
behavior if that assumption turns out not to be true. The function is marked
unsafe as a result, forcing the caller to use unsafe too (Item 16).

Aggregate Types
Moving on to aggregate types, Rust has a variety of ways to combine related values.
Most of these are familiar equivalents to the aggregation mechanisms available in
other languages:

Arrays
Hold multiple instances of a single type, where the number of instances is known
at compile time. For example, [u32; 4] is four 4-byte integers in a row.

Tuples
Hold instances of multiple heterogeneous types, where the number of elements
and their types are known at compile time, for example, (WidgetOffset, Widget
Size, WidgetColor). If the types in the tuple aren’t distinctive—for example,
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(i32, i32, &'static str, bool)—it’s better to give each element a name and
use a struct.

Structs
Also hold instances of heterogeneous types known at compile time but allow
both the overall type and the individual fields to be referred to by name.

Rust also includes the tuple struct, which is a crossbreed of a struct and a tuple:
there’s a name for the overall type but no names for the individual fields—they are
referred to by number instead: s.0, s.1, and so on:

/// Struct with two unnamed fields.
struct TextMatch(usize, String);

// Construct by providing the contents in order.
let m = TextMatch(12, "needle".to_owned());

// Access by field number.
assert_eq!(m.0, 12);

enums
This brings us to the jewel in the crown of Rust’s type system, the enum. With the basic
form of an enum, it’s hard to see what there is to get excited about. As with other lan‐
guages, the enum allows you to specify a set of mutually exclusive values, possibly with
a numeric value attached:

enum HttpResultCode {
    Ok = 200,
    NotFound = 404,
    Teapot = 418,
}

let code = HttpResultCode::NotFound;
assert_eq!(code as i32, 404);

Because each enum definition creates a distinct type, this can be used to improve read‐
ability and maintainability of functions that take bool arguments. Instead of:

print_page(/* both_sides= */ true, /* color= */ false);

a version that uses a pair of enums:

pub enum Sides {
    Both,
    Single,
}

pub enum Output {
    BlackAndWhite,
    Color,

Item 1: Use the type system to express your data structures | 5
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}

pub fn print_page(sides: Sides, color: Output) {
    // ...
}

is more type-safe and easier to read at the point of invocation:

print_page(Sides::Both, Output::BlackAndWhite);

Unlike the bool version, if a library user were to accidentally flip the order of the
arguments, the compiler would immediately complain:

error[E0308]: arguments to this function are incorrect
   --> src/main.rs:104:9
    |
104 | print_page(Output::BlackAndWhite, Sides::Single);
    | ^^^^^^^^^^ ---------------------  ------------- expected `enums::Output`,
    |            |                                    found `enums::Sides`
    |            |
    |            expected `enums::Sides`, found `enums::Output`
    |
note: function defined here
   --> src/main.rs:145:12
    |
145 |     pub fn print_page(sides: Sides, color: Output) {
    |            ^^^^^^^^^^ ------------  -------------
help: swap these arguments
    |
104 | print_page(Sides::Single, Output::BlackAndWhite);
    |             ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Using the newtype pattern—see Item 6—to wrap a bool also achieves type safety and
maintainability; it’s generally best to use the newtype pattern if the semantics will
always be Boolean, and to use an enum if there’s a chance that a new alternative—e.g.,
Sides::BothAlternateOrientation—could arise in the future.

The type safety of Rust’s enums continues with the match expression:

DOES NOT COMPILE

let msg = match code {
    HttpResultCode::Ok => "Ok",
    HttpResultCode::NotFound => "Not found",
    // forgot to deal with the all-important "I'm a teapot" code
};

error[E0004]: non-exhaustive patterns: `HttpResultCode::Teapot` not covered
  --> src/main.rs:44:21
   |

6 | Chapter 1: Types



3 The need to consider all possibilities also means that adding a new variant to an existing enum in a library is a
breaking change (Item 21): library clients will need to change their code to cope with the new variant. If an
enum is really just a C-like list of related numerical values, this behavior can be avoided by marking it as a
non_exhaustive enum; see Item 21.

44 |     let msg = match code {
   |                     ^^^^ pattern `HttpResultCode::Teapot` not covered
   |
note: `HttpResultCode` defined here
  --> src/main.rs:10:5
   |
7  | enum HttpResultCode {
   |      --------------
...
10 |     Teapot = 418,
   |     ^^^^^^ not covered
   = note: the matched value is of type `HttpResultCode`
help: ensure that all possible cases are being handled by adding a match arm
      with a wildcard pattern or an explicit pattern as shown
   |
46 ~         HttpResultCode::NotFound => "Not found",
47 ~         HttpResultCode::Teapot => todo!(),
   |

The compiler forces the programmer to consider all of the possibilities that are repre‐
sented by the enum,3 even if the result is just to add a default arm _ => {}. (Note that
modern C++ compilers can and do warn about missing switch arms for enums as
well.)

enums with Fields
The true power of Rust’s enum feature comes from the fact that each variant can have
data that comes along with it, making it an aggregate type that acts as an algebraic
data type (ADT). This is less familiar to programmers of mainstream languages; in
C/C++ terms, it’s like a combination of an enum with a union—only type-safe.

This means that the invariants of the program’s data structures can be encoded into
Rust’s type system; states that don’t comply with those invariants won’t even compile.
A well-designed enum makes the creator’s intent clear to humans as well as to the
compiler:

use std::collections::{HashMap, HashSet};

pub enum SchedulerState {
    Inert,
    Pending(HashSet<Job>),
    Running(HashMap<CpuId, Vec<Job>>),
}
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Just from the type definition, it’s reasonable to guess that Jobs get queued up in the
Pending state until the scheduler is fully active, at which point they’re assigned to
some per-CPU pool.

This highlights the central theme of this Item, which is to use Rust’s type system to
express the concepts that are associated with the design of your software.

A dead giveaway for when this is not happening is a comment that explains when
some field or parameter is valid:

UNDESIRED BEHAVIOR

pub struct DisplayProps {
    pub x: u32,
    pub y: u32,
    pub monochrome: bool,
    // `fg_color` must be (0, 0, 0) if `monochrome` is true.
    pub fg_color: RgbColor,
}

This is a prime candidate for replacement with an enum holding data:

pub enum Color {
    Monochrome,
    Foreground(RgbColor),
}

pub struct DisplayProps {
    pub x: u32,
    pub y: u32,
    pub color: Color,
}

This small example illustrates a key piece of advice: make invalid states inexpressible in
your types. Types that support only valid combinations of values mean that whole
classes of errors are rejected by the compiler, leading to smaller and safer code.

Ubiquitous enum Types
Returning to the power of the enum, there are two concepts that are so common that
Rust’s standard library includes built-in enum types to express them; these types are
ubiquitous in Rust code.
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Option<T>

The first concept is that of an Option: either there’s a value of a particular type
(Some(T)) or there isn’t (None). Always use Option for values that can be absent; never
fall back to using sentinel values (-1, nullptr, …) to try to express the same concept
in-band.

There is one subtle point to consider, though. If you’re dealing with a collection of
things, you need to decide whether having zero things in the collection is the same as
not having a collection. For most situations, the distinction doesn’t arise and you can
go ahead and use (say) Vec<Thing>: a count of zero things implies an absence of
things.

However, there are definitely other rare scenarios where the two cases need to be dis‐
tinguished with Option<Vec<Thing>>—for example, a cryptographic system might
need to distinguish between “payload transported separately” and “empty payload
provided.” (This is related to the debates around the NULL marker for columns in
SQL.)

Similarly, what’s the best choice for a String that might be absent? Does "" or None
make more sense to indicate the absence of a value? Either way works, but
Option<String> clearly communicates the possibility that this value may be absent.

Result<T, E>

The second common concept arises from error processing: if a function fails, how
should that failure be reported? Historically, special sentinel values (e.g., -errno
return values from Linux system calls) or global variables (errno for POSIX systems)
were used. More recently, languages that support multiple or tuple return values
(such as Go) from functions may have a convention of returning a (result, error)
pair, assuming the existence of some suitable “zero” value for the result when the
error is non-“zero.”

In Rust, there’s an enum for just this purpose: always encode the result of an operation
that might fail as a Result<T, E>. The T type holds the successful result (in the Ok
variant), and the E type holds error details (in the Err variant) on failure.

Using the standard type makes the intent of the design clear. It also allows the use of
standard transformations (Item 3) and error processing (Item 4), which in turn
makes it possible to streamline error processing with the ? operator as well.
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Item 2: Use the type system to express common behavior
Item 1 discussed how to express data structures in the type system; this Item moves
on to discuss the encoding of behavior in Rust’s type system.

The mechanisms described in this Item will generally feel familiar, as they all have
direct analogs in other languages:

Functions
The universal mechanism for associating a chunk of code with a name and a
parameter list.

Methods
Functions that are associated with an instance of a particular data structure.
Methods are common in programming languages created after object-orientation
arose as a programming paradigm.

Function pointers
Supported by most languages in the C family, including C++ and Go, as a mecha‐
nism that allows an extra level of indirection when invoking other code.

Closures
Originally most common in the Lisp family of languages but have been retrofit‐
ted to many popular programming languages, including C++ (since C++11) and
Java (since Java 8).

Traits
Describe collections of related functionality that all apply to the same underlying
item. Traits have rough equivalents in many other languages, including abstract
classes in C++ and interfaces in Go and Java.

Of course, all of these mechanisms have Rust-specific details that this Item will cover.

Of the preceding list, traits have the most significance for this book, as they describe
so much of the behavior provided by the Rust compiler and standard library. Chap‐
ter 2 focuses on Items that give advice on designing and implementing traits, but
their pervasiveness means that they crop up frequently in the other Items in this
chapter too.

Functions and Methods
As with every other programming language, Rust uses functions to organize code into
named chunks for reuse, with inputs to the code expressed as parameters. As with
every other statically typed language, the types of the parameters and the return value
are explicitly specified:
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/// Return `x` divided by `y`.
fn div(x: f64, y: f64) -> f64 {
    if y == 0.0 {
        // Terminate the function and return a value.
        return f64::NAN;
    }
    // The last expression in the function body is implicitly returned.
    x / y
}

/// Function called just for its side effects, with no return value.
/// Can also write the return value as `-> ()`.
fn show(x: f64) {
    println!("x = {x}");
}

If a function is intimately involved with a particular data structure, it is expressed as a
method. A method acts on an item of that type, identified by self, and is included
within an impl DataStructure block. This encapsulates related data and code
together in an object-oriented way that’s similar to other languages; however, in Rust,
methods can be added to enum types as well as to struct types, in keeping with the
pervasive nature of Rust’s enum (Item 1):

enum Shape {
    Rectangle { width: f64, height: f64 },
    Circle { radius: f64 },
}

impl Shape {
    pub fn area(&self) -> f64 {
        match self {
            Shape::Rectangle { width, height } => width * height,
            Shape::Circle { radius } => std::f64::consts::PI * radius * radius,
        }
    }
}

The name of a method creates a label for the behavior it encodes, and the method
signature gives type information for its inputs and outputs. The first input for a
method will be some variant of self, indicating what the method might do to the
data structure:

• A &self parameter indicates that the contents of the data structure may be read
from but will not be modified.

• A &mut self parameter indicates that the method might modify the contents of
the data structure.

• A self parameter indicates that the method consumes the data structure.
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Function Pointers
The previous section described how to associate a name (and a parameter list) with
some code. However, invoking a function always results in the same code being exe‐
cuted; all that changes from invocation to invocation is the data that the function
operates on. That covers a lot of possible scenarios, but what if the code needs to vary
at runtime?

The simplest behavioral abstraction that allows this is the function pointer: a pointer
to (just) some code, with a type that reflects the signature of the function:

fn sum(x: i32, y: i32) -> i32 {
    x + y
}
// Explicit coercion to `fn` type is required...
let op: fn(i32, i32) -> i32 = sum;

The type is checked at compile time, so by the time the program runs, the value is just
the size of a pointer. Function pointers have no other data associated with them, so
they can be treated as values in various ways:

// `fn` types implement `Copy`
let op1 = op;
let op2 = op;
// `fn` types implement `Eq`
assert!(op1 == op2);
// `fn` implements `std::fmt::Pointer`, used by the {:p} format specifier.
println!("op = {:p}", op);
// Example output: "op = 0x101e9aeb0"

One technical detail to watch out for: explicit coercion to a fn type is needed, because
just using the name of a function doesn’t give you something of fn type:

DOES NOT COMPILE

let op1 = sum;
let op2 = sum;
// Both op1 and op2 are of a type that cannot be named in user code,
// and this internal type does not implement `Eq`.
assert!(op1 == op2);

error[E0369]: binary operation `==` cannot be applied to type
              `fn(i32, i32) -> i32 {main::sum}`
   --> src/main.rs:102:17
    |
102 |     assert!(op1 == op2);
    |             --- ^^ --- fn(i32, i32) -> i32 {main::sum}
    |             |
    |             fn(i32, i32) -> i32 {main::sum}
    |
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help: use parentheses to call these
    |
102 |     assert!(op1(/* i32 */, /* i32 */) == op2(/* i32 */, /* i32 */));
    |                ++++++++++++++++++++++       ++++++++++++++++++++++

Instead, the compiler error indicates that the type is something like fn(i32, i32) ->
i32 {main::sum}, a type that’s entirely internal to the compiler (i.e., could not be
written in user code) and that identifies the specific function as well as its signature.
To put it another way, the type of sum encodes both the function’s signature and its
location for optimization reasons; this type can be automatically coerced (Item 5) to a
fn type.

Closures
The bare function pointers are limiting, because the only inputs available to the
invoked function are those that are explicitly passed as parameter values. For exam‐
ple, consider some code that modifies every element of a slice using a function
pointer:

// In real code, an `Iterator` method would be more appropriate.
pub fn modify_all(data: &mut [u32], mutator: fn(u32) -> u32) {
    for value in data {
        *value = mutator(*value);
    }
}

This works for a simple mutation of the slice:

fn add2(v: u32) -> u32 {
    v + 2
}
let mut data = vec![1, 2, 3];
modify_all(&mut data, add2);
assert_eq!(data, vec![3, 4, 5]);

However, if the modification relies on any additional state, it’s not possible to implic‐
itly pass that into the function pointer:

DOES NOT COMPILE

let amount_to_add = 3;
fn add_n(v: u32) -> u32 {
    v + amount_to_add
}
let mut data = vec![1, 2, 3];
modify_all(&mut data, add_n);
assert_eq!(data, vec![3, 4, 5]);
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error[E0434]: can't capture dynamic environment in a fn item
   --> src/main.rs:125:13
    |
125 |         v + amount_to_add
    |             ^^^^^^^^^^^^^
    |
    = help: use the `|| { ... }` closure form instead

The error message points to the right tool for the job: a closure. A closure is a chunk
of code that looks like the body of a function definition (a lambda expression), except
for the following:

• It can be built as part of an expression, and so it need not have a name associated
with it.

• The input parameters are given in vertical bars |param1, param2| (their associ‐
ated types can usually be automatically deduced by the compiler).

• It can capture parts of the environment around it:
let amount_to_add = 3;
let add_n = |y| {
    // a closure capturing `amount_to_add`
    y + amount_to_add
};
let z = add_n(5);
assert_eq!(z, 8);

To (roughly) understand how the capture works, imagine that the compiler creates a
one-off, internal type that holds all of the parts of the environment that get men‐
tioned in the lambda expression. When the closure is created, an instance of this
ephemeral type is created to hold the relevant values, and when the closure is
invoked, that instance is used as additional context:

let amount_to_add = 3;
// *Rough* equivalent to a capturing closure.
struct InternalContext<'a> {
    // references to captured variables
    amount_to_add: &'a u32,
}
impl<'a> InternalContext<'a> {
    fn internal_op(&self, y: u32) -> u32 {
        // body of the lambda expression
        y + *self.amount_to_add
    }
}
let add_n = InternalContext {
    amount_to_add: &amount_to_add,
};
let z = add_n.internal_op(5);
assert_eq!(z, 8);
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The values that are held in this notional context are often references (Item 8) as here,
but they can also be mutable references to things in the environment, or values that
are moved out of the environment altogether (by using the move keyword before the
input parameters).

Returning to the modify_all example, a closure can’t be used where a function
pointer is expected:

error[E0308]: mismatched types
   --> src/main.rs:199:31
    |
199 |         modify_all(&mut data, |y| y + amount_to_add);
    |         ----------            ^^^^^^^^^^^^^^^^^^^^^ expected fn pointer,
    |         |                                           found closure
    |         |
    |         arguments to this function are incorrect
    |
    = note: expected fn pointer `fn(u32) -> u32`
                  found closure `[closure@src/main.rs:199:31: 199:34]`
note: closures can only be coerced to `fn` types if they do not capture any
      variables
   --> src/main.rs:199:39
    |
199 |         modify_all(&mut data, |y| y + amount_to_add);
    |                                       ^^^^^^^^^^^^^ `amount_to_add`
    |                                                     captured here
note: function defined here
   --> src/main.rs:60:12
    |
60  |     pub fn modify_all(data: &mut [u32], mutator: fn(u32) -> u32) {
    |            ^^^^^^^^^^                   -----------------------

Instead, the code that receives the closure has to accept an instance of one of the Fn*
traits:

pub fn modify_all<F>(data: &mut [u32], mut mutator: F)
where
    F: FnMut(u32) -> u32,
{
    for value in data {
        *value = mutator(*value);
    }
}

Rust has three different Fn* traits, which between them express some distinctions
around this environment-capturing behavior:

FnOnce

Describes a closure that can be called only once. If some part of the environment
is moved into the closure’s context, and the closure’s body subsequently moves it
out of the closure’s context, then those moves can happen only once—there’s no
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4 At least not in stable Rust at the time of writing. The unboxed_closures and fn_traits experimental features
may change this in the future.

other copy of the source item to move from—and so the closure can be invoked
only once.

FnMut

Describes a closure that can be called repeatedly and that can make changes to its
environment because it mutably borrows from the environment.

Fn

Describes a closure that can be called repeatedly and that only borrows values
from the environment immutably.

The compiler automatically implements the appropriate subset of these Fn* traits for
any lambda expression in the code; it’s not possible to manually implement any of
these traits (unlike C++’s operator() overload).4

Returning to the preceding rough mental model of closures, which of the traits the
compiler auto-implements roughly corresponds to whether the captured environ‐
mental context has these elements:

FnOnce

Any moved values

FnMut

Any mutable references to values (&mut T)

Fn

Only normal references to values (&T)

The latter two traits in this list each have a trait bound of the preceding trait, which
makes sense when you consider the things that use the closures:

• If something expects to call a closure only once (indicated by receiving a FnOnce),
it’s OK to pass it a closure that’s capable of being repeatedly called (FnMut).

• If something expects to repeatedly call a closure that might mutate its environ‐
ment (indicated by receiving a FnMut), it’s OK to pass it a closure that doesn’t need
to mutate its environment (Fn).

The bare function pointer type fn also notionally belongs at the end of this list; any
(not-unsafe) fn type automatically implements all of the Fn* traits, because it bor‐
rows nothing from the environment.
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5 For example, Joshua Bloch’s Effective Java (3rd edition, Addison-Wesley) includes Item 64: Refer to objects by
their interfaces.

As a result, when writing code that accepts closures, use the most general Fn* trait that
works, to allow the greatest flexibility for callers—for example, accept FnOnce for clo‐
sures that are used only once. The same reasoning also leads to advice to prefer Fn*
trait bounds over bare function pointers (fn).

Traits
The Fn* traits are more flexible than bare function pointers, but they can still describe
only the behavior of a single function, and even then only in terms of the function’s
signature.

However, they are themselves examples of another mechanism for describing behav‐
ior in Rust’s type system, the trait. A trait defines a set of related functions that some
underlying item makes publicly available; moreover, the functions are typically (but
don’t have to be) methods, taking some variant of self as their first argument.

Each function in a trait also has a name, providing a label that allows the compiler to
disambiguate functions with the same signature, and more importantly, that allows
programmers to deduce the intent of the function.

A Rust trait is roughly analogous to an “interface” in Go and Java, or to an “abstract
class” (all virtual methods, no data members) in C++. Implementations of the trait
must provide all the functions (but note that the trait definition can include a default
implementation; Item 13) and can also have associated data that those implementa‐
tions make use of. This means that code and data gets encapsulated together in a
common abstraction, in a somewhat object-oriented (OO) manner.

Code that accepts a struct and calls functions on it is constrained to only ever work
with that specific type. If there are multiple types that implement common behavior,
then it is more flexible to define a trait that encapsulates that common behavior, and
have the code make use of the trait’s functions rather than functions involving a spe‐
cific struct.

This leads to the same kind of advice that turns up for other OO-influenced lan‐
guages:5 prefer accepting trait types over concrete types if future flexibility is
anticipated.

Sometimes, there is some behavior that you want to distinguish in the type system,
but it cannot be expressed as some specific function signature in a trait definition. For
example, consider a Sort trait for sorting collections; an implementation might be
stable (elements that compare the same will appear in the same order before and after
the sort), but there’s no way to express this in the sort method arguments.
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In this case, it’s still worth using the type system to track this requirement, using a
marker trait:

pub trait Sort {
    /// Rearrange contents into sorted order.
    fn sort(&mut self);
}

/// Marker trait to indicate that a [`Sort`] sorts stably.
pub trait StableSort: Sort {}

A marker trait has no functions, but an implementation still has to declare that it is
implementing the trait—which acts as a promise from the implementer: “I solemnly
swear that my implementation sorts stably.” Code that relies on a stable sort can then
specify the StableSort trait bound, relying on the honor system to preserve its invar‐
iants. Use marker traits to distinguish behaviors that cannot be expressed in the trait
function signatures.

Once behavior has been encapsulated into Rust’s type system as a trait, it can be used
in two ways:

• As a trait bound, which constrains what types are acceptable for a generic data
type or function at compile time

• As a trait object, which constrains what types can be stored or passed to a func‐
tion at runtime

The following sections describe these two possibilities, and Item 12 gives more detail
about the trade-offs between them.

Trait bounds

A trait bound indicates that generic code that is parameterized by some type T can be
used only when that type T implements some specific trait. The presence of the trait
bound means that the implementation of the generic can use the functions from that
trait, secure in the knowledge that the compiler will ensure that any T that compiles
does indeed have those functions. This check happens at compile time, when the
generic is monomorphized—converted from the generic code that deals with an arbi‐
trary type T into specific code that deals with one particular SomeType (what C++
would call template instantiation).

This restriction on the target type T is explicit, encoded in the trait bounds: the trait
can be implemented only by types that satisfy the trait bounds. This contrasts with
the equivalent situation in C++, where the constraints on the type T used in a
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6 The addition of concepts in C++20 allows explicit specification of constraints on template types, but the
checks are still performed only when the template is instantiated, not when it is declared.

template<typename T> are implicit:6 C++ template code still compiles only if all of
the referenced functions are available at compile time, but the checks are purely based
on function name and signature. (This “duck typing” can lead to confusion; a C++
template that uses t.pop() might compile for a T type parameter of either Stack or
Balloon—which is unlikely to be desired behavior.)

The need for explicit trait bounds also means that a large fraction of generics use trait
bounds. To see why this is, turn the observation around and consider what can be
done with a struct Thing<T> where there are no trait bounds on T. Without a trait
bound, the Thing can perform only operations that apply to any type T—basically just
moving or dropping the value. This in turn allows for generic containers, collections,
and smart pointers, but not much else. Anything that uses the type T is going to need
a trait bound:

pub fn dump_sorted<T>(mut collection: T)
where
    T: Sort + IntoIterator,
    T::Item: std::fmt::Debug,
{
    // Next line requires `T: Sort` trait bound.
    collection.sort();
    // Next line requires `T: IntoIterator` trait bound.
    for item in collection {
        // Next line requires `T::Item : Debug` trait bound
        println!("{:?}", item);
    }
}

So the advice here is to use trait bounds to express requirements on the types used in
generics, but it’s easy advice to follow—the compiler will force you to comply with it
regardless.

Trait objects
A trait object is the other way to make use of the encapsulation defined by a trait, but
here, different possible implementations of the trait are chosen at runtime rather than
compile time. This dynamic dispatch is analogous to using virtual functions in C++,
and under the covers, Rust has “vtable” objects that are roughly analogous to those in
C++.

This dynamic aspect of trait objects also means that they always have to be handled
indirectly, via a reference (e.g., &dyn Trait) or a pointer (e.g., Box<dyn Trait>) of
some kind. The reason is that the size of the object implementing the trait isn’t known
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at compile time—it could be a giant struct or a tiny enum—so there’s no way to allo‐
cate the right amount of space for a bare trait object.

Not knowing the size of the concrete object also means that traits used as trait objects
cannot have functions that return the Self type or arguments (other than the
receiver—the object on which the method is being invoked) that use Self. The reason
is that the compiled-in-advance code that uses the trait object would have no idea
how big that Self might be.

A trait that has a generic function fn some_fn<T>(t:T) allows for the possibility of
an infinite number of implemented functions, for all of the different types T that
might exist. This is fine for a trait used as a trait bound, because the infinite set of
possibly invoked generic functions becomes a finite set of actually invoked generic
functions at compile time. The same is not true for a trait object: the code available at
compile time has to cope with all possible Ts that might arrive at runtime.

These two restrictions—no use of Self and no generic functions—are combined in
the concept of object safety. Only object-safe traits can be used as trait objects.

Item 3: Prefer Option and Result transforms
over explicit match expressions
Item 1 expounded the virtues of enum and showed how match expressions force the
programmer to take all possibilities into account. Item 1 also introduced the two
ubiquitous enums that the Rust standard library provides:

Option<T>

To express that a value (of type T) may or may not be present

Result<T, E>

For when an operation to return a value (of type T) may not succeed and may
instead return an error (of type E)

This Item explores situations where you should try to avoid explicit match expres‐
sions for these particular enums, preferring instead to use various transformation
methods that the standard library provides for these types. Using these transforma‐
tion methods (which are typically themselves implemented as match expressions
under the covers) leads to code that is more compact and idiomatic and has clearer
intent.

The first situation where a match is unnecessary is when only the value is relevant and
the absence of value (and any associated error) can just be ignored:

struct S {
    field: Option<i32>,
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}

let s = S { field: Some(42) };
match &s.field {
    Some(i) => println!("field is {i}"),
    None => {}
}

For this situation, an if let expression is one line shorter and, more importantly,
clearer:

if let Some(i) = &s.field {
    println!("field is {i}");
}

However, most of the time the programmer needs to provide the corresponding else
arm: the absence of a value (Option::None), possibly with an associated error
(Result::Err(e)), is something that the programmer needs to deal with. Designing
software to cope with failure paths is hard, and most of that is essential complexity
that no amount of syntactic support can help with—specifically, deciding what should
happen if an operation fails.

In some situations, the right decision is to perform an ostrich maneuver—put our
heads in the sand and explicitly not cope with failure. You can’t completely ignore the
error arm, because Rust requires that the code deal with both variants of the Error
enum, but you can choose to treat a failure as fatal. Performing a panic! on failure
means that the program terminates, but the rest of the code can then be written with
the assumption of success. Doing this with an explicit match would be needlessly
verbose:

let result = std::fs::File::open("/etc/passwd");
let f = match result {
    Ok(f) => f,
    Err(_e) => panic!("Failed to open /etc/passwd!"),
};
// Assume `f` is a valid `std::fs::File` from here onward.

Both Option and Result provide a pair of methods that extract their inner value and
panic! if it’s absent: unwrap and expect. The latter allows the error message on fail‐
ure to be personalized, but in either case, the resulting code is shorter and simpler—
error handling is delegated to the .unwrap() suffix (but is still present):

let f = std::fs::File::open("/etc/passwd").unwrap();

Be clear, though: these helper functions still panic!, so choosing to use them is the
same as choosing to panic! (Item 18).

However, in many situations, the right decision for error handling is to defer the deci‐
sion to somebody else. This is particularly true when writing a library, where the code
may be used in all sorts of different environments that can’t be foreseen by the library
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author. To make that somebody else’s job easier, prefer Result to Option for express‐
ing errors, even though this may involve conversions between different error types
(Item 4).

Of course, this opens up the question, What counts as an error? In this example, fail‐
ing to open a file is definitely an error, and the details of that error (no such file? per‐
mission denied?) can help the user decide what to do next. On the other hand, failing
to retrieve the first() element of a slice because that slice is empty isn’t really an
error, and so it is expressed as an Option return type in the standard library. Choos‐
ing between the two possibilities requires judgment, but lean toward Result if an
error might communicate anything useful.

Result also has a #[must_use] attribute to nudge library users in the right
direction—if the code using the returned Result ignores it, the compiler will generate
a warning:

warning: unused `Result` that must be used
  --> src/main.rs:63:5
   |
63 |     f.set_len(0); // Truncate the file
   |     ^^^^^^^^^^^^
   |
   = note: this `Result` may be an `Err` variant, which should be handled
   = note: `#[warn(unused_must_use)]` on by default
help: use `let _ = ...` to ignore the resulting value
   |
63 |     let _ = f.set_len(0); // Truncate the file
   |     +++++++

Explicitly using a match allows an error to propagate, but at the cost of some visible
boilerplate (reminiscent of Go):

pub fn find_user(username: &str) -> Result<UserId, std::io::Error> {
    let f = match std::fs::File::open("/etc/passwd") {
        Ok(f) => f,
        Err(e) => return Err(From::from(e)),
    };
    // ...
}

The key ingredient for reducing boilerplate is Rust’s question mark operator, ?. This
piece of syntactic sugar takes care of matching the Err arm, transforming the error
type if necessary, and building the return Err(...) expression, all in a single
character:

pub fn find_user(username: &str) -> Result<UserId, std::io::Error> {
    let f = std::fs::File::open("/etc/passwd")?;
    // ...
}

22 | Chapter 1: Types

https://doc.rust-lang.org/std/primitive.slice.html#method.first
https://doc.rust-lang.org/reference/attributes/diagnostics.html#the-must_use-attribute
https://blog.golang.org/errors-are-values
https://doc.rust-lang.org/reference/expressions/operator-expr.html#the-question-mark-operator


Newcomers to Rust sometimes find this disconcerting: the question mark can be hard
to spot on first glance, leading to disquiet as to how the code can possibly work.
However, even with a single character, the type system is still at work, ensuring that
all of the possibilities expressed in the relevant types (Item 1) are covered—leaving
the programmer to focus on the mainline code path without distractions.

What’s more, there’s generally no cost to these apparent method invocations: they are
all generic functions marked as #[inline], so the generated code will typically com‐
pile to machine code that’s identical to the manual version.

These two factors taken together mean that you should prefer Option and Result
transforms over explicit match expressions.

In the previous example, the error types lined up: both the inner and outer methods
expressed errors as std::io::Error. That’s often not the case: one function may
accumulate errors from a variety of different sublibraries, each of which uses different
error types.

Error mapping in general is discussed in Item 4, but for now, just be aware that a
manual mapping:

pub fn find_user(username: &str) -> Result<UserId, String> {
    let f = match std::fs::File::open("/etc/passwd") {
        Ok(f) => f,
        Err(e) => {
            return Err(format!("Failed to open password file: {:?}", e))
        }
    };
    // ...
}

could be more succinctly and idiomatically expressed with the following .map_err()
transformation:

pub fn find_user(username: &str) -> Result<UserId, String> {
    let f = std::fs::File::open("/etc/passwd")
        .map_err(|e| format!("Failed to open password file: {:?}", e))?;
    // ...
}

Better still, even this may not be necessary—if the outer error type can be created
from the inner error type via an implementation of the From standard trait (Item 10),
then the compiler will automatically perform the conversion without the need for a
call to .map_err().

These kinds of transformations generalize more widely. The question mark operator
is a big hammer; use transformation methods on Option and Result types to maneu‐
ver them into a position where they can be a nail.
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7 The online version of this diagram is clickable; each box links to the relevant documentation.

The standard library provides a wide variety of these transformation methods to
make this possible. Figure 1-1 shows some of the most common methods (light rec‐
tangles) that transform between the relevant types (dark rectangles). In line with Item
18, methods that can panic! are marked with an asterisk.

Figure 1-1. Option and Result transformations7

One common situation the diagram doesn’t cover deals with references. For example,
consider a structure that optionally holds some data:

struct InputData {
    payload: Option<Vec<u8>>,
}

A method on this struct that tries to pass the payload to an encryption function with
signature (&[u8]) -> Vec<u8> fails if there’s a naive attempt to take a reference:

DOES NOT COMPILE

impl InputData {
    pub fn encrypted(&self) -> Vec<u8> {
        encrypt(&self.payload.unwrap_or(vec![]))
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8 Note that this method is separate from the AsRef trait, even though the method name is the same.

    }
}

error[E0507]: cannot move out of `self.payload` which is behind a shared
              reference
  --> src/main.rs:15:18
   |
15 |     encrypt(&self.payload.unwrap_or(vec![]))
   |              ^^^^^^^^^^^^ move occurs because `self.payload` has type
   |                           `Option<Vec<u8>>`, which does not implement the
   |                           `Copy` trait

The right tool for this is the as_ref() method on Option.8 This method converts a
reference-to-an-Option into an Option-of-a-reference:

pub fn encrypted(&self) -> Vec<u8> {
    encrypt(self.payload.as_ref().unwrap_or(&vec![]))
}

Things to Remember
• Get used to the transformations of Option and Result, and prefer Result to
Option. Use .as_ref() as needed when transformations involve references.

• Use these transformations in preference to explicit match operations on Option
and Result.

• In particular, use these transformations to convert result types into a form where
the ? operator applies.

Item 4: Prefer idiomatic Error types
Item 3 described how to use the transformations that the standard library provides
for the Option and Result types to allow concise, idiomatic handling of result types
using the ? operator. It stopped short of discussing how best to handle the variety of
different error types E that arise as the second type argument of a Result<T, E>;
that’s the subject of this Item.

This is relevant only when there are a variety of different error types in play. If all of
the different errors that a function encounters are already of the same type, it can just
return that type. When there are errors of different types, there’s a decision to make
about whether the suberror type information should be preserved.

Item 4: Prefer idiomatic Error types | 25

https://doc.rust-lang.org/std/option/enum.Option.html#method.as_ref


9 Or at least the only nondeprecated, stable method.

10 At the time of writing, Error has been moved to core but is not yet available in stable Rust.

The Error Trait
It’s always good to understand what the standard traits (Item 10) involve, and the rel‐
evant trait here is std::error::Error. The E type parameter for a Result doesn’t
have to be a type that implements Error, but it’s a common convention that allows
wrappers to express appropriate trait bounds—so prefer to implement Error for your
error types.

The first thing to notice is that the only hard requirement for Error types is the trait
bounds: any type that implements Error also has to implement the following traits:

• The Display trait, meaning that it can be format!ed with {}
• The Debug trait, meaning that it can be format!ed with {:?}

In other words, it should be possible to display Error types to both the user and the
programmer.

The only method in the trait is source(),9 which allows an Error type to expose an
inner, nested error. This method is optional—it comes with a default implementation
(Item 13) returning None, indicating that inner error information isn’t available.

One final thing to note: if you’re writing code for a no_std environment (Item 33), it
may not be possible to implement Error—the Error trait is currently implemented in
std, not core, and so is not available.10

Minimal Errors
If nested error information isn’t needed, then an implementation of the Error type
need not be much more than a String—one rare occasion where a “stringly typed”
variable might be appropriate. It does need to be a little more than a String though;
while it’s possible to use String as the E type parameter:

pub fn find_user(username: &str) -> Result<UserId, String> {
    let f = std::fs::File::open("/etc/passwd")
        .map_err(|e| format!("Failed to open password file: {:?}", e))?;
    // ...
}

a String doesn’t implement Error, which we’d prefer so that other areas of code can
deal with Errors. It’s not possible to impl Error for String, because neither the trait
nor the type belong to us (the so-called orphan rule):
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DOES NOT COMPILE

impl std::error::Error for String {}

error[E0117]: only traits defined in the current crate can be implemented for
              types defined outside of the crate
  --> src/main.rs:18:5
   |
18 |     impl std::error::Error for String {}
   |     ^^^^^^^^^^^^^^^^^^^^^^^^^^^------
   |     |                          |
   |     |                          `String` is not defined in the current crate
   |     impl doesn't use only types from inside the current crate
   |
   = note: define and implement a trait or new type instead

A type alias doesn’t help either, because it doesn’t create a new type and so doesn’t 
change the error message:

DOES NOT COMPILE

pub type MyError = String;

impl std::error::Error for MyError {}

error[E0117]: only traits defined in the current crate can be implemented for
              types defined outside of the crate
  --> src/main.rs:41:5
   |
41 |     impl std::error::Error for MyError {}
   |     ^^^^^^^^^^^^^^^^^^^^^^^^^^^-------
   |     |                          |
   |     |                          `String` is not defined in the current crate
   |     impl doesn't use only types from inside the current crate
   |
   = note: define and implement a trait or new type instead
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As usual, the compiler error message gives a hint to solving the problem. Defining a
tuple struct that wraps the String type (the “newtype pattern,” Item 6) allows the
Error trait to be implemented, provided that Debug and Display are implemented
too:

#[derive(Debug)]
pub struct MyError(String);

impl std::fmt::Display for MyError {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        write!(f, "{}", self.0)
    }
}

impl std::error::Error for MyError {}

pub fn find_user(username: &str) -> Result<UserId, MyError> {
    let f = std::fs::File::open("/etc/passwd").map_err(|e| {
        MyError(format!("Failed to open password file: {:?}", e))
    })?;
    // ...
}

For convenience, it may make sense to implement the From<String> trait to allow
string values to be easily converted into MyError instances (Item 5):

impl From<String> for MyError {
    fn from(msg: String) -> Self {
        Self(msg)
    }
}

When it encounters the question mark operator (?), the compiler will automatically
apply any relevant From trait implementations that are needed to reach the destina‐
tion error return type. This allows further minimization:

pub fn find_user(username: &str) -> Result<UserId, MyError> {
    let f = std::fs::File::open("/etc/passwd")
        .map_err(|e| format!("Failed to open password file: {:?}", e))?;
    // ...
}

The error path here covers the following steps:

• File::open returns an error of type std::io::Error.
• format! converts this to a String, using the Debug implementation of
std::io::Error.

• ? makes the compiler look for and use a From implementation that can take it
from String to MyError.
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Nested Errors
The alternative scenario is where the content of nested errors is important enough
that it should be preserved and made available to the caller.

Consider a library function that attempts to return the first line of a file as a string, as
long as the line is not too long. A moment’s thought reveals (at least) three distinct
types of failure that could occur:

• The file might not exist or might be inaccessible for reading.
• The file might contain data that isn’t valid UTF-8 and so can’t be converted into a
String.

• The file might have a first line that is too long.

In line with Item 1, you can use the type system to express and encompass all of these
possibilities as an enum:

#[derive(Debug)]
pub enum MyError {
    Io(std::io::Error),
    Utf8(std::string::FromUtf8Error),
    General(String),
}

This enum definition includes a derive(Debug), but to satisfy the Error trait, a
Display implementation is also needed:

impl std::fmt::Display for MyError {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        match self {
            MyError::Io(e) => write!(f, "IO error: {}", e),
            MyError::Utf8(e) => write!(f, "UTF-8 error: {}", e),
            MyError::General(s) => write!(f, "General error: {}", s),
        }
    }
}

It also makes sense to override the default source() implementation for easy access
to nested errors:

use std::error::Error;

impl Error for MyError {
    fn source(&self) -> Option<&(dyn Error + 'static)> {
        match self {
            MyError::Io(e) => Some(e),
            MyError::Utf8(e) => Some(e),
            MyError::General(_) => None,
        }
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    }
}

The use of an enum allows the error handling to be concise while still preserving all of
the type information across different classes of error:

use std::io::BufRead; // for `.read_until()`

/// Maximum supported line length.
const MAX_LEN: usize = 1024;

/// Return the first line of the given file.
pub fn first_line(filename: &str) -> Result<String, MyError> {
    let file = std::fs::File::open(filename).map_err(MyError::Io)?;
    let mut reader = std::io::BufReader::new(file);

    // (A real implementation could just use `reader.read_line()`)
    let mut buf = vec![];
    let len = reader.read_until(b'\n', &mut buf).map_err(MyError::Io)?;
    let result = String::from_utf8(buf).map_err(MyError::Utf8)?;
    if result.len() > MAX_LEN {
        return Err(MyError::General(format!("Line too long: {}", len)));
    }
    Ok(result)
}

It’s also a good idea to implement the From trait for all of the suberror types (Item 5):

impl From<std::io::Error> for MyError {
    fn from(e: std::io::Error) -> Self {
        Self::Io(e)
    }
}
impl From<std::string::FromUtf8Error> for MyError {
    fn from(e: std::string::FromUtf8Error) -> Self {
        Self::Utf8(e)
    }
}

This prevents library users from suffering under the orphan rules themselves: they
aren’t allowed to implement From on MyError, because both the trait and the struct
are external to them.

Better still, implementing From allows for even more concision, because the question
mark operator will automatically perform any necessary From conversions, removing
the need for .map_err():

use std::io::BufRead; // for `.read_until()`

/// Maximum supported line length.
pub const MAX_LEN: usize = 1024;
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/// Return the first line of the given file.
pub fn first_line(filename: &str) -> Result<String, MyError> {
    let file = std::fs::File::open(filename)?; // `From<std::io::Error>`
    let mut reader = std::io::BufReader::new(file);
    let mut buf = vec![];
    let len = reader.read_until(b'\n', &mut buf)?; // `From<std::io::Error>`
    let result = String::from_utf8(buf)?; // `From<string::FromUtf8Error>`
    if result.len() > MAX_LEN {
        return Err(MyError::General(format!("Line too long: {}", len)));
    }
    Ok(result)
}

Writing a complete error type can involve a fair amount of boilerplate, which makes it
a good candidate for automation via a derive macro (Item 28). However, there’s no
need to write such a macro yourself: consider using the thiserror crate from David
Tolnay, which provides a high-quality, widely used implementation of just such a
macro. The code generated by thiserror is also careful to avoid making any this
error types visible in the generated API, which in turn means that the concerns asso‐
ciated with Item 24 don’t apply.

Trait Objects
The first approach to nested errors threw away all of the suberror detail, just preserv‐
ing some string output (format!("{:?}", err)). The second approach preserved the
full type information for all possible suberrors but required a full enumeration of all
possible types of suberror.

This raises the question, Is there a middle ground between these two approaches, pre‐
serving suberror information without needing to manually include every possible
error type?

Encoding the suberror information as a trait object avoids the need for an enum var‐
iant for every possibility but erases the details of the specific underlying error types.
The receiver of such an object would have access to the methods of the Error trait
and its trait bounds—source(), Display::fmt(), and Debug::fmt(), in turn—but
wouldn’t know the original static type of the suberror:

UNDESIRED BEHAVIOR

#[derive(Debug)]
pub enum WrappedError {
    Wrapped(Box<dyn Error>),
    General(String),
}

impl std::fmt::Display for WrappedError {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
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        match self {
            Self::Wrapped(e) => write!(f, "Inner error: {}", e),
            Self::General(s) => write!(f, "{}", s),
        }
    }
}

It turns out that this is possible, but it’s surprisingly subtle. Part of the difficulty comes
from the object safety constraints on trait objects (Item 12), but Rust’s coherence rules
also come into play, which (roughly) say that there can be at most one implementa‐
tion of a trait for a type.

A putative WrappedError type would naively be expected to implement both of the
following:

• The Error trait, because it is an error itself.
• The From<Error> trait, to allow suberrors to be easily wrapped.

That means that a WrappedError can be created from an inner WrappedError, as Wrap
pedError implements Error, and that clashes with the blanket reflexive implementa‐
tion of From:

DOES NOT COMPILE

impl Error for WrappedError {}

impl<E: 'static + Error> From<E> for WrappedError {
    fn from(e: E) -> Self {
        Self::Wrapped(Box::new(e))
    }
}

error[E0119]: conflicting implementations of trait `From<WrappedError>` for
              type `WrappedError`
   --> src/main.rs:279:5
    |
279 |     impl<E: 'static + Error> From<E> for WrappedError {
    |     ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
    |
    = note: conflicting implementation in crate `core`:
            - impl<T> From<T> for T;
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11 This section is inspired by Nick Groenen’s “Rust: Structuring and Handling Errors in 2020” article.

David Tolnay’s anyhow is a crate that has already solved these problems (by adding an
extra level of indirection via Box) and that adds other helpful features (such as stack
traces) besides. As a result, it is rapidly becoming the standard recommendation for
error handling—a recommendation seconded here: consider using the anyhow crate for
error handling in applications.

Libraries Versus Applications
The final advice from the previous section included the qualification “…for error
handling in applications.” That’s because there’s often a distinction between code that’s
written for reuse in a library and code that forms a top-level application.11

Code that’s written for a library can’t predict the environment in which the code is
used, so it’s preferable to emit concrete, detailed error information and leave the caller
to figure out how to use that information. This leans toward the enum-style nested
errors described previously (and also avoids a dependency on anyhow in the public
API of the library, see Item 24).

However, application code typically needs to concentrate more on how to present
errors to the user. It also potentially has to cope with all of the different error types
emitted by all of the libraries that are present in its dependency graph (Item 25). As
such, a more dynamic error type (such as anyhow::Error) makes error handling sim‐
pler and more consistent across the application.

Things to Remember
• The standard Error trait requires little of you, so prefer to implement it for your

error types.
• When dealing with heterogeneous underlying error types, decide whether it’s

necessary to preserve those types.
— If not, consider using anyhow to wrap suberrors in application code.
— If so, encode them in an enum and provide conversions. Consider using

thiserror to help with this.
• Consider using the anyhow crate for convenient idiomatic error handling in

application code.
• It’s your decision, but whatever you decide, encode it in the type system (Item 1).
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Item 5: Understand type conversions
Rust type conversions fall into three categories:

Manual
User-defined type conversions provided by implementing the From and Into
traits

Semi-automatic
Explicit casts between values using the as keyword

Automatic
Implicit coercion into a new type

The majority of this Item focuses on the first of these, manual conversions of types,
because the latter two mostly don’t apply to conversions of user-defined types. There
are a couple of exceptions to this, so sections at the end of the Item discuss casting
and coercion—including how they can apply to a user-defined type.

Note that in contrast to many older languages, Rust does not perform automatic con‐
version between numeric types. This even applies to “safe” transformations of integral
types:

DOES NOT COMPILE

let x: u32 = 2;
let y: u64 = x;

error[E0308]: mismatched types
  --> src/main.rs:70:18
   |
70 |     let y: u64 = x;
   |            ---   ^ expected `u64`, found `u32`
   |            |
   |            expected due to this
   |
help: you can convert a `u32` to a `u64`
   |
70 |     let y: u64 = x.into();
   |                   +++++++

User-Defined Type Conversions
As with other features of the language (Item 10), the ability to perform conversions
between values of different user-defined types is encapsulated as a standard trait—or
rather, as a set of related generic traits.
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12 More properly known as the trait coherence rules.

The four relevant traits that express the ability to convert values of a type are as
follows:

From<T>

Items of this type can be built from items of type T, and the conversion always
succeeds.

TryFrom<T>

Items of this type can be built from items of type T, but the conversion might not
succeed.

Into<T>

Items of this type can be converted into items of type T, and the conversion
always succeeds.

TryInto<T>

Items of this type can be converted into items of type T, but the conversion might
not succeed.

Given the discussion in Item 1 about expressing things in the type system, it’s no sur‐
prise to discover that the difference with the Try... variants is that the sole trait
method returns a Result rather than a guaranteed new item. The Try... trait defini‐
tions also require an associated type that gives the type of the error E emitted for fail‐
ure situations.

The first piece of advice is therefore to implement (just) the Try... trait if it’s possible
for a conversion to fail, in line with Item 4. The alternative is to ignore the possibility
of error (e.g., with .unwrap()), but that needs to be a deliberate choice, and in most
cases it’s best to leave that choice to the caller.

The type conversion traits have an obvious symmetry: if a type T can be transformed
into a type U (via Into<U>), isn’t that the same as it being possible to create an item of
type U by transforming from an item of type T (via From<T>)?

This is indeed the case, and it leads to the second piece of advice: implement the From
trait for conversions. The Rust standard library had to pick just one of the two possi‐
bilities, in order to prevent the system from spiraling around in dizzy circles,12 and it
came down on the side of automatically providing Into from a From implementation.

If you’re consuming one of these two traits, as a trait bound on a new generic of your
own, then the advice is reversed: use the Into trait for trait bounds. That way, the
bound will be satisfied both by things that directly implement Into and by things that
only directly implement From.

Item 5: Understand type conversions | 35

https://doc.rust-lang.org/std/convert/trait.From.html
https://doc.rust-lang.org/std/convert/trait.TryFrom.html
https://doc.rust-lang.org/std/convert/trait.Into.html
https://doc.rust-lang.org/std/convert/trait.TryInto.html


13 For now—this is likely to be replaced with the ! “never” type in a future version of Rust.

This automatic conversion is highlighted by the documentation for From and Into,
but it’s worth reading the relevant part of the standard library code too, which is a
blanket trait implementation:

impl<T, U> Into<U> for T
where
    U: From<T>,
{
    fn into(self) -> U {
        U::from(self)
    }
}

Translating a trait specification into words can help with understanding more com‐
plex trait bounds. In this case, it’s fairly simple: “I can implement Into<U> for a type T
whenever U already implements From<T>.”

The standard library also includes various implementations of these conversion traits
for standard library types. As you’d expect, there are From implementations for inte‐
gral conversions where the destination type includes all possible values of the source
type (From<u32> for u64), and TryFrom implementations when the source might not
fit in the destination (TryFrom<u64> for u32).

There are also various other blanket trait implementations in addition to the Into
version previously shown; these are mostly for smart pointer types, allowing the smart
pointer to be automatically constructed from an instance of the type that it holds.
This means that generic methods that accept smart pointer parameters can also be
called with plain old items; more on this to come and in Item 8.

The TryFrom trait also has a blanket implementation for any type that already imple‐
ments the Into trait in the opposite direction—which automatically includes (as
shown previously) any type that implements From in the same direction. In other
words, if you can infallibly convert a T into a U, you can also fallibly obtain a U from a
T; as this conversion will always succeed, the associated error type is the helpfully
named Infallible.13

There’s also one very specific generic implementation of From that sticks out, the
reflexive implementation:

impl<T> From<T> for T {
    fn from(t: T) -> T {
        t
    }
}
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Translated into words, this just says that “given a T, I can get a T.” That’s such an obvi‐
ous “well, duh” that it’s worth stopping to understand why this is useful.

Consider a simple newtype struct (Item 6) and a function that operates on it (ignor‐
ing that this function would be better expressed as a method):

/// Integer value from an IANA-controlled range.
#[derive(Clone, Copy, Debug)]
pub struct IanaAllocated(pub u64);

/// Indicate whether value is reserved.
pub fn is_iana_reserved(s: IanaAllocated) -> bool {
    s.0 == 0 || s.0 == 65535
}

This function can be invoked with instances of the struct:

let s = IanaAllocated(1);
println!("{:?} reserved? {}", s, is_iana_reserved(s));
// output: "IanaAllocated(1) reserved? false"

but even if From<u64> is implemented for the newtype wrapper:

impl From<u64> for IanaAllocated {
    fn from(v: u64) -> Self {
        Self(v)
    }
}

the function can’t be directly invoked for u64 values:

DOES NOT COMPILE

if is_iana_reserved(42) {
    // ...
}

error[E0308]: mismatched types
  --> src/main.rs:77:25
   |
77 |     if is_iana_reserved(42) {
   |        ---------------- ^^ expected `IanaAllocated`, found integer
   |        |
   |        arguments to this function are incorrect
   |
note: function defined here
  --> src/main.rs:7:8
   |
7  | pub fn is_iana_reserved(s: IanaAllocated) -> bool {
   |        ^^^^^^^^^^^^^^^^ ----------------
help: try wrapping the expression in `IanaAllocated`
   |
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14 Allowing lossy conversions in Rust was probably a mistake, and there have been discussions around trying to
remove this behavior.

77 |     if is_iana_reserved(IanaAllocated(42)) {
   |                         ++++++++++++++  +

However, a generic version of the function that accepts (and explicitly converts) any‐
thing satisfying Into<IanaAllocated>:

pub fn is_iana_reserved<T>(s: T) -> bool
where
    T: Into<IanaAllocated>,
{
    let s = s.into();
    s.0 == 0 || s.0 == 65535
}

allows this use:

if is_iana_reserved(42) {
    // ...
}

With this trait bound in place, the reflexive trait implementation of From<T> makes
more sense: it means that the generic function copes with items that are already
IanaAllocated instances, no conversion needed.

This pattern also explains why (and how) Rust code sometimes appears to be doing
implicit casts between types: the combination of From<T> implementations and
Into<T> trait bounds leads to code that appears to magically convert at the call site
(but is still doing safe, explicit, conversions under the covers). This pattern becomes
even more powerful when combined with reference types and their related conver‐
sion traits; more in Item 8.

Casts
Rust includes the as keyword to perform explicit casts between some pairs of types.

The pairs of types that can be converted in this way constitute a fairly limited set, and
the only user-defined types it includes are “C-like” enums (those that have just an
associated integer value). General integral conversions are included, though, giving
an alternative to into():

let x: u32 = 9;
let y = x as u64;
let z: u64 = x.into();

The as version also allows lossy conversions:14
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15 Rust refers to these conversions as “subtyping,” but it’s quite different from the definition of “subtyping” used
in object-oriented languages.

let x: u32 = 9;
let y = x as u16;

which would be rejected by the from/into versions:

error[E0277]: the trait bound `u16: From<u32>` is not satisfied
   --> src/main.rs:136:20
    |
136 |     let y: u16 = x.into();
    |                    ^^^^ the trait `From<u32>` is not implemented for `u16`
    |
    = help: the following other types implement trait `From<T>`:
              <u16 as From<NonZeroU16>>
              <u16 as From<bool>>
              <u16 as From<u8>>
    = note: required for `u32` to implement `Into<u16>`

For consistency and safety, you should prefer from/into conversions over as casts,
unless you understand and need the precise casting semantics (e.g., for C interoper‐
ability). This advice can be reinforced by Clippy (Item 29), which includes several
lints about as conversions; however, these lints are disabled by default.

Coercion
The explicit as casts described in the previous section are a superset of the implicit
coercions that the compiler will silently perform: any coercion can be forced with an
explicit as, but the converse is not true. In particular, the integral conversions per‐
formed in the previous section are not coercions and so will always require as.

Most coercions involve silent conversions of pointer and reference types in ways that
are sensible and convenient for the programmer, such as converting the following:

• A mutable reference to an immutable reference (so you can use a &mut T as the
argument to a function that takes a &T)

• A reference to a raw pointer (this isn’t unsafe—the unsafety happens at the point
where you’re foolish enough to dereference a raw pointer)

• A closure that happens to not capture any variables into a bare function pointer
(Item 2)

• An array to a slice
• A concrete item to a trait object, for a trait that the concrete item implements
• An item lifetime to a “shorter” one (Item 14)15
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16 Specifically, the Mars Climate Orbiter.
17 See “Mars Climate Orbiter” on Wikipedia for more on the cause of failure.

There are only two coercions whose behavior can be affected by user-defined types. 
The first happens when a user-defined type implements the Deref or the DerefMut
trait. These traits indicate that the user-defined type is acting as a smart pointer of
some sort (Item 8), and in this case the compiler will coerce a reference to the smart
pointer item into being a reference to an item of the type that the smart pointer con‐
tains (indicated by its Target).

The second coercion of a user-defined type happens when a concrete item is con‐
verted to a trait object. This operation builds a fat pointer to the item; this pointer is
fat because it includes both a pointer to the item’s location in memory and a pointer
to the vtable for the concrete type’s implementation of the trait—see Item 8.

Item 6: Embrace the newtype pattern
Item 1 described tuple structs, where the fields of a struct have no names and are
instead referred to by number (self.0). This Item focuses on tuple structs that have a
single entry of some existing type, thus creating a new type that can hold exactly the
same range of values as the enclosed type. This pattern is sufficiently pervasive in
Rust that it deserves its own Item and has its own name: the newtype pattern.

The simplest use of the newtype pattern is to indicate additional semantics for a type,
over and above its normal behavior. To illustrate this, imagine a project that’s going to
send a satellite to Mars.16 It’s a big project, so different groups have built different
parts of the project. One group has handled the code for the rocket engines:

/// Fire the thrusters. Returns generated impulse in pound-force seconds.
pub fn thruster_impulse(direction: Direction) -> f64 {
    // ...
    return 42.0;
}

while a different group handles the inertial guidance system:

/// Update trajectory model for impulse, provided in Newton seconds.
pub fn update_trajectory(force: f64) {
    // ...
}

Eventually these different parts need to be joined together:

let thruster_force: f64 = thruster_impulse(direction);
let new_direction = update_trajectory(thruster_force);

Ruh-roh.17
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Rust includes a type alias feature, which allows the different groups to make their
intentions clearer:

/// Units for force.
pub type PoundForceSeconds = f64;

/// Fire the thrusters. Returns generated impulse.
pub fn thruster_impulse(direction: Direction) -> PoundForceSeconds {
    // ...
    return 42.0;
}

/// Units for force.
pub type NewtonSeconds = f64;

/// Update trajectory model for impulse.
pub fn update_trajectory(force: NewtonSeconds) {
    // ...
}

However, the type aliases are effectively just documentation; they’re a stronger hint
than the doc comments of the previous version, but nothing stops a PoundForceSec
onds value being used where a NewtonSeconds value is expected:

let thruster_force: PoundForceSeconds = thruster_impulse(direction);
let new_direction = update_trajectory(thruster_force);

Ruh-roh once more.

This is the point where the newtype pattern helps:

/// Units for force.
pub struct PoundForceSeconds(pub f64);

/// Fire the thrusters. Returns generated impulse.
pub fn thruster_impulse(direction: Direction) -> PoundForceSeconds {
    // ...
    return PoundForceSeconds(42.0);
}

/// Units for force.
pub struct NewtonSeconds(pub f64);

/// Update trajectory model for impulse.
pub fn update_trajectory(force: NewtonSeconds) {
    // ...
}

As the name implies, a newtype is a new type, and as such the compiler objects when
there’s a mismatch of types—here attempting to pass a PoundForceSeconds value to
something that expects a NewtonSeconds value:
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DOES NOT COMPILE

let thruster_force: PoundForceSeconds = thruster_impulse(direction);
 let new_direction = update_trajectory(thruster_force);

error[E0308]: mismatched types
  --> src/main.rs:76:43
   |
76 |     let new_direction = update_trajectory(thruster_force);
   |                         ----------------- ^^^^^^^^^^^^^^ expected
   |                         |        `NewtonSeconds`, found `PoundForceSeconds`
   |                         |
   |                         arguments to this function are incorrect
   |
note: function defined here
  --> src/main.rs:66:8
   |
66 | pub fn update_trajectory(force: NewtonSeconds) {
   |        ^^^^^^^^^^^^^^^^^ --------------------
help: call `Into::into` on this expression to convert `PoundForceSeconds` into
      `NewtonSeconds`
   |
76 |     let new_direction = update_trajectory(thruster_force.into());
   |                                                         +++++++

As described in Item 5, adding an implementation of the standard From trait:

impl From<PoundForceSeconds> for NewtonSeconds {
    fn from(val: PoundForceSeconds) -> NewtonSeconds {
        NewtonSeconds(4.448222 * val.0)
    }
}

allows the necessary unit—and type—conversion to be performed with .into():

let thruster_force: PoundForceSeconds = thruster_impulse(direction);
let new_direction = update_trajectory(thruster_force.into());

The same pattern of using a newtype to mark additional “unit” semantics for a type
can also help to make purely Boolean arguments less ambiguous. Revisiting the
example from Item 1, using newtypes makes the meaning of arguments clear:

struct DoubleSided(pub bool);

struct ColorOutput(pub bool);

fn print_page(sides: DoubleSided, color: ColorOutput) {
    // ...
}

print_page(DoubleSided(true), ColorOutput(false));
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If size efficiency or binary compatibility is a concern, then the #[repr(transpar
ent)] attribute ensures that a newtype has the same representation in memory as the
inner type.

That’s the simple use of newtype, and it’s a specific example of Item 1—encoding
semantics into the type system, so that the compiler takes care of policing those
semantics.

Bypassing the Orphan Rule for Traits
The other common, but more subtle, scenario that requires the newtype pattern
revolves around Rust’s orphan rule. Roughly speaking, this says that a crate can
implement a trait for a type only if one of the following conditions holds:

• The crate has defined the trait
• The crate has defined the type

Attempting to implement a foreign trait for a foreign type:

DOES NOT COMPILE

use std::fmt;

impl fmt::Display for rand::rngs::StdRng {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> Result<(), fmt::Error> {
        write!(f, "<StdRng instance>")
    }
}

leads to a compiler error (which in turn points the way back to newtypes):

error[E0117]: only traits defined in the current crate can be implemented for
              types defined outside of the crate
   --> src/main.rs:146:1
    |
146 | impl fmt::Display for rand::rngs::StdRng {
    | ^^^^^^^^^^^^^^^^^^^^^^------------------
    | |                     |
    | |                     `StdRng` is not defined in the current crate
    | impl doesn't use only types from inside the current crate
    |
    = note: define and implement a trait or new type instead

The reason for this restriction is due to the risk of ambiguity: if two different crates in
the dependency graph (Item 25) were both to (say) impl std::fmt::Display for
rand::rngs::StdRng, then the compiler/linker has no way to choose between them.
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18 This is a sufficiently common problem for serde that it includes a mechanism to help.

This can frequently lead to frustration: for example, if you’re trying to serialize data
that includes a type from another crate, the orphan rule prevents you from writing
impl serde::Serialize for somecrate::SomeType.18

But the newtype pattern means that you’re defining a new type, which is part of the
current crate, and so the second part of the orphan trait rule applies. Implementing a
foreign trait is now possible:

struct MyRng(rand::rngs::StdRng);

impl fmt::Display for MyRng {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> Result<(), fmt::Error> {
        write!(f, "<MyRng instance>")
    }
}

Newtype Limitations
The newtype pattern solves these two classes of problems—preventing unit conver‐
sions and bypassing the orphan rule—but it does come with some awkwardness:
every operation that involves the newtype needs to forward to the inner type.

On a trivial level, that means that the code has to use thing.0 throughout, rather
than just thing, but that’s easy, and the compiler will tell you where it’s needed.

The more significant awkwardness is that any trait implementations on the inner type
are lost: because the newtype is a new type, the existing inner implementation doesn’t
apply.

For derivable traits, this just means that the newtype declaration ends up with lots of
derives:

#[derive(Debug, Copy, Clone, Eq, PartialEq, Ord, PartialOrd)]
pub struct NewType(InnerType);

However, for more sophisticated traits, some forwarding boilerplate is needed to
recover the inner type’s implementation, for example:

use std::fmt;
impl fmt::Display for NewType {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> Result<(), fmt::Error> {
        self.0.fmt(f)
    }
}
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Item 7: Use builders for complex types
This Item describes the builder pattern, where complex data structures have an asso‐
ciated builder type that makes it easier for users to create instances of the data
structure.

Rust insists that all fields in a struct must be filled in when a new instance of that
struct is created. This keeps the code safe by ensuring that there are never any unini‐
tialized values but does lead to more verbose boilerplate code than is ideal.

For example, any optional fields have to be explicitly marked as absent with None:

/// Phone number in E164 format.
#[derive(Debug, Clone)]
pub struct PhoneNumberE164(pub String);

#[derive(Debug, Default)]
pub struct Details {
    pub given_name: String,
    pub preferred_name: Option<String>,
    pub middle_name: Option<String>,
    pub family_name: String,
    pub mobile_phone: Option<PhoneNumberE164>,
}

// ...

let dizzy = Details {
    given_name: "Dizzy".to_owned(),
    preferred_name: None,
    middle_name: None,
    family_name: "Mixer".to_owned(),
    mobile_phone: None,
};

This boilerplate code is also brittle, in the sense that a future change that adds a new
field to the struct requires an update to every place that builds the structure.

The boilerplate can be significantly reduced by implementing and using the Default
trait, as described in Item 10:

let dizzy = Details {
    given_name: "Dizzy".to_owned(),
    family_name: "Mixer".to_owned(),
    ..Default::default()
};

Using Default also helps reduce the changes needed when a new field is added, pro‐
vided that the new field is itself of a type that implements Default.
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That’s a more general concern: the automatically derived implementation of Default
works only if all of the field types implement the Default trait. If there’s a field that
doesn’t play along, the derive step doesn’t work:

DOES NOT COMPILE

#[derive(Debug, Default)]
pub struct Details {
    pub given_name: String,
    pub preferred_name: Option<String>,
    pub middle_name: Option<String>,
    pub family_name: String,
    pub mobile_phone: Option<PhoneNumberE164>,
    pub date_of_birth: time::Date,
    pub last_seen: Option<time::OffsetDateTime>,
}

error[E0277]: the trait bound `Date: Default` is not satisfied
  --> src/main.rs:48:9
   |
41 |     #[derive(Debug, Default)]
   |                     ------- in this derive macro expansion
...
48 |         pub date_of_birth: time::Date,
   |         ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ the trait `Default` is not
   |                                       implemented for `Date`
   |
   = note: this error originates in the derive macro `Default`

The code can’t implement Default for chrono::Utc because of the orphan rule; but
even if it could, it wouldn’t be helpful—using a default value for date of birth is going
to be wrong almost all of the time.

The absence of Default means that all of the fields have to be filled out manually:

let bob = Details {
    given_name: "Robert".to_owned(),
    preferred_name: Some("Bob".to_owned()),
    middle_name: Some("the".to_owned()),
    family_name: "Builder".to_owned(),
    mobile_phone: None,
    date_of_birth: time::Date::from_calendar_date(
        1998,
        time::Month::November,
        28,
    )
    .unwrap(),
    last_seen: None,
};
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These ergonomics can be improved if you implement the builder pattern for complex
data structures.

The simplest variant of the builder pattern is a separate struct that holds the infor‐
mation needed to construct the item. For simplicity, the example will hold an instance
of the item itself:

pub struct DetailsBuilder(Details);

impl DetailsBuilder {
    /// Start building a new [`Details`] object.
    pub fn new(
        given_name: &str,
        family_name: &str,
        date_of_birth: time::Date,
    ) -> Self {
        DetailsBuilder(Details {
            given_name: given_name.to_owned(),
            preferred_name: None,
            middle_name: None,
            family_name: family_name.to_owned(),
            mobile_phone: None,
            date_of_birth,
            last_seen: None,
        })
    }
}

The builder type can then be equipped with helper methods that fill out the nascent
item’s fields. Each such method consumes self but emits a new Self, allowing differ‐
ent construction methods to be chained:

/// Set the preferred name.
pub fn preferred_name(mut self, preferred_name: &str) -> Self {
    self.0.preferred_name = Some(preferred_name.to_owned());
    self
}

/// Set the middle name.
pub fn middle_name(mut self, middle_name: &str) -> Self {
    self.0.middle_name = Some(middle_name.to_owned());
    self
}

These helper methods can be more helpful than just simple setters:

/// Update the `last_seen` field to the current date/time.
pub fn just_seen(mut self) -> Self {
    self.0.last_seen = Some(time::OffsetDateTime::now_utc());
    self
}
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The final method to be invoked for the builder consumes the builder and emits the
built item:

/// Consume the builder object and return a fully built [`Details`]
/// object.
pub fn build(self) -> Details {
    self.0
}

Overall, this allows clients of the builder to have a more ergonomic building
experience:

let also_bob = DetailsBuilder::new(
    "Robert",
    "Builder",
    time::Date::from_calendar_date(1998, time::Month::November, 28)
        .unwrap(),
)
.middle_name("the")
.preferred_name("Bob")
.just_seen()
.build();

The all-consuming nature of this style of builder leads to a couple of wrinkles. The
first is that separating out stages of the build process can’t be done on its own:

DOES NOT COMPILE

let builder = DetailsBuilder::new(
    "Robert",
    "Builder",
    time::Date::from_calendar_date(1998, time::Month::November, 28)
        .unwrap(),
);
if informal {
    builder.preferred_name("Bob");
}
let bob = builder.build();

error[E0382]: use of moved value: `builder`
   --> src/main.rs:256:15
    |
247 |     let builder = DetailsBuilder::new(
    |         ------- move occurs because `builder` has type `DetailsBuilder`,
    |                 which does not implement the `Copy` trait
...
254 |         builder.preferred_name("Bob");
    |                 --------------------- `builder` moved due to this method
    |                                       call
255 |     }
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256 |     let bob = builder.build();
    |               ^^^^^^^ value used here after move
    |
note: `DetailsBuilder::preferred_name` takes ownership of the receiver `self`,
      which moves `builder`
   --> src/main.rs:60:35
    |
27  |     pub fn preferred_name(mut self, preferred_name: &str) -> Self {
    |                               ^^^^

This can be worked around by assigning the consumed builder back to the same
variable:

let mut builder = DetailsBuilder::new(
    "Robert",
    "Builder",
    time::Date::from_calendar_date(1998, time::Month::November, 28)
        .unwrap(),
);
if informal {
    builder = builder.preferred_name("Bob");
}
let bob = builder.build();

The other downside to the all-consuming nature of this builder is that only one item
can be built; trying to create multiple instances by repeatedly calling build() on the
same builder falls foul of the compiler, as you’d expect:

DOES NOT COMPILE

let smithy = DetailsBuilder::new(
    "Agent",
    "Smith",
    time::Date::from_calendar_date(1999, time::Month::June, 11).unwrap(),
);
let clones = vec![smithy.build(), smithy.build(), smithy.build()];

error[E0382]: use of moved value: `smithy`
   --> src/main.rs:159:39
    |
154 |   let smithy = DetailsBuilder::new(
    |       ------ move occurs because `smithy` has type `base::DetailsBuilder`,
    |              which does not implement the `Copy` trait
...
159 |   let clones = vec![smithy.build(), smithy.build(), smithy.build()];
    |                            -------  ^^^^^^ value used here after move
    |                            |
    |                            `smithy` moved due to this method call
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An alternative approach is for the builder’s methods to take a &mut self and emit a
&mut Self:

/// Update the `last_seen` field to the current date/time.
pub fn just_seen(&mut self) -> &mut Self {
    self.0.last_seen = Some(time::OffsetDateTime::now_utc());
    self
}

This removes the need for self-assignment in separate build stages:

let mut builder = DetailsBuilder::new(
    "Robert",
    "Builder",
    time::Date::from_calendar_date(1998, time::Month::November, 28)
        .unwrap(),
);
if informal {
    builder.preferred_name("Bob"); // no `builder = ...`
}
let bob = builder.build();

However, this version makes it impossible to chain the construction of the builder
together with invocation of its setter methods:

DOES NOT COMPILE

let builder = DetailsBuilder::new(
    "Robert",
    "Builder",
    time::Date::from_calendar_date(1998, time::Month::November, 28)
        .unwrap(),
)
.middle_name("the")
.just_seen();
let bob = builder.build();

error[E0716]: temporary value dropped while borrowed
   --> src/main.rs:265:19
    |
265 |       let builder = DetailsBuilder::new(
    |  ___________________^
266 | |         "Robert",
267 | |         "Builder",
268 | |         time::Date::from_calendar_date(1998, time::Month::November, 28)
269 | |             .unwrap(),
270 | |     )
    | |_____^ creates a temporary value which is freed while still in use
271 |       .middle_name("the")
272 |       .just_seen();
    |                   - temporary value is freed at the end of this statement
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273 |       let bob = builder.build();
    |                 --------------- borrow later used here
    |
    = note: consider using a `let` binding to create a longer lived value

As indicated by the compiler error, you can work around this by letting the builder
item have a name:

let mut builder = DetailsBuilder::new(
    "Robert",
    "Builder",
    time::Date::from_calendar_date(1998, time::Month::November, 28)
        .unwrap(),
);
builder.middle_name("the").just_seen();
if informal {
    builder.preferred_name("Bob");
}
let bob = builder.build();

This mutating builder variant also allows for building multiple items. The signature
of the build() method has to not consume self and so must be as follows:

/// Construct a fully built [`Details`] object.
pub fn build(&self) -> Details {
    // ...
}

The implementation of this repeatable build() method then has to construct a fresh
item on each invocation. If the underlying item implements Clone, this is easy—the
builder can hold a template and clone() it for each build. If the underlying item
doesn’t implement Clone, then the builder needs to have enough state to be able to
manually construct an instance of the underlying item on each call to build().

With any style of builder pattern, the boilerplate code is now confined to one place—
the builder—rather than being needed at every place that uses the underlying type.

The boilerplate that remains can potentially be reduced still further by use of a macro
(Item 28), but if you go down this road, you should also check whether there’s an
existing crate (such as the derive_builder crate, in particular) that provides what’s
needed—assuming that you’re happy to take a dependency on it (Item 25).

Item 8: Familiarize yourself with reference
and pointer types
For programming in general, a reference is a way to indirectly access some data struc‐
ture, separately from whatever variable owns that data structure. In practice, this is
usually implemented as a pointer: a number whose value is the address in memory of
the data structure.
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19 Albeit with a warning from modern compilers.

A modern CPU will typically police a few constraints on pointers—the memory
address should be in a valid range of memory (whether virtual or physical) and may
need to be aligned (e.g., a 4-byte integer value might be accessible only if its address is
a multiple of 4).

However, higher-level programming languages usually encode more information
about pointers in their type systems. In C-derived languages, including Rust, pointers
have a type that indicates what kind of data structure is expected to be present at the
pointed-to memory address. This allows the code to interpret the contents of mem‐
ory at that address and in the memory following that address.

This basic level of pointer information—putative memory location and expected data
structure layout—is represented in Rust as a raw pointer. However, safe Rust code
does not use raw pointers, because Rust provides richer reference and pointer types
that provide additional safety guarantees and constraints. These reference and
pointer types are the subject of this Item; raw pointers are relegated to Item 16 (which
discusses unsafe code).

Rust References
The most ubiquitous pointer-like type in Rust is the reference, with a type that is writ‐
ten as &T for some type T. Although this is a pointer value under the covers, the com‐
piler ensures that various rules around its use are observed: it must always point to a
valid, correctly aligned instance of the relevant type T, whose lifetime (Item 14)
extends beyond its use, and it must satisfy the borrow checking rules (Item 15). These
additional constraints are always implied by the term reference in Rust, and so the
bare term pointer is generally rare.

The constraint that a Rust reference must point to a valid, correctly aligned item is
shared by C++’s reference types. However, C++ has no concept of lifetimes and so
allows footguns with dangling references:19

UNDESIRED BEHAVIOR

// C++
const int& dangle() {
  int x = 32; // on the stack, overwritten later
  return x; // return reference to stack variable!
}
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Rust’s borrowing and lifetime checks mean that the equivalent code doesn’t even
compile:

DOES NOT COMPILE

fn dangle() -> &'static i64 {
    let x: i64 = 32; // on the stack
    &x
}

error[E0515]: cannot return reference to local variable `x`
   --> src/main.rs:477:5
    |
477 |     &x
    |     ^^ returns a reference to data owned by the current function

A Rust reference &T allows read-only access to the underlying item (roughly equiva‐
lent to C++’s const T&). A mutable reference that also allows the underlying item to
be modified is written as &mut T and is also subject to the borrow checking rules dis‐
cussed in Item 15. This naming pattern reflects a slightly different mindset between
Rust and C++:

• In Rust, the default variant is read-only, and writable types are marked specially
(with mut).

• In C++, the default variant is writable, and read-only types are marked specially
(with const).

The compiler converts Rust code that uses references into machine code that uses
simple pointers, which are eight bytes in size on a 64-bit platform (which this Item
assumes throughout). For example, a pair of local variables together with references
to them:

pub struct Point {
    pub x: u32,
    pub y: u32,
}

let pt = Point { x: 1, y: 2 };
let x = 0u64;
let ref_x = &x;
let ref_pt = &pt;

might end up laid out on the stack as shown in Figure 1-2.
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Figure 1-2. Stack layout with pointers to local variables

A Rust reference can refer to items that are located either on the stack or on the heap.
Rust allocates items on the stack by default, but the Box<T> pointer type (roughly
equivalent to C++’s std::unique_ptr<T>) forces allocation to occur on the heap,
which in turn means that the allocated item can outlive the scope of the current
block. Under the covers, Box<T> is also a simple eight-byte pointer value:

    let box_pt = Box::new(Point { x: 10, y: 20 });

This is depicted in Figure 1-3.

Figure 1-3. Stack Box pointer to struct on heap

Pointer Traits
A method that expects a reference argument like &Point can also be fed a
&Box<Point>:

fn show(pt: &Point) {
    println!("({}, {})", pt.x, pt.y);
}
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show(ref_pt);
show(&box_pt);

(1, 2)
(10, 20)

This is possible because Box<T> implements the Deref trait, with Target = T. An
implementation of this trait for some type means that the trait’s deref() method can
be used to create a reference to the Target type. There’s also an equivalent DerefMut
trait, which emits a mutable reference to the Target type.

The Deref/DerefMut traits are somewhat special, because the Rust compiler has spe‐
cific behavior when dealing with types that implement them. When the compiler
encounters a dereferencing expression (e.g., *x), it looks for and uses an implementa‐
tion of one of these traits, depending on whether the dereference requires mutable
access or not. This Deref coercion allows various smart pointer types to behave like
normal references and is one of the few mechanisms that allow implicit type conver‐
sion in Rust (as described in Item 5).

As a technical aside, it’s worth understanding why the Deref traits can’t be generic
(Deref<Target>) for the destination type. If they were, then it would be possible for
some type ConfusedPtr to implement both Deref<TypeA> and Deref<TypeB>, and
that would leave the compiler unable to deduce a single unique type for an expression
like *x. So instead, the destination type is encoded as the associated type named
Target.

This technical aside provides a contrast to two other standard pointer traits, the
AsRef and AsMut traits. These traits don’t induce special behavior in the compiler but
allow conversions to a reference or mutable reference via an explicit call to their trait
functions (as_ref() and as_mut(), respectively). The destination type for these con‐
versions is encoded as a type parameter (e.g., AsRef<Point>), which means that a sin‐
gle container type can support multiple destinations.

For example, the standard String type implements the Deref trait with Target =
str, meaning that an expression like &my_string can be coerced to type &str. But it
also implements the following:

• AsRef<[u8]>, allowing conversion to a byte slice &[u8]
• AsRef<OsStr>, allowing conversion to an OS string
• AsRef<Path>, allowing conversion to a filesystem path
• AsRef<str>, allowing conversion to a string slice &str (as with Deref)
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Fat Pointer Types
Rust has two built-in fat pointer types: slices and trait objects. These are types that act
as pointers but hold additional information about the thing they are pointing to.

Slices
The first fat pointer type is the slice: a reference to a subset of some contiguous collec‐
tion of values. It’s built from a (non-owning) simple pointer, together with a length
field, making it twice the size of a simple pointer (16 bytes on a 64-bit platform). The
type of a slice is written as &[T]—a reference to [T], which is the notional type for a
contiguous collection of values of type T.

The notional type [T] can’t be instantiated, but there are two common containers that
embody it. The first is the array: a contiguous collection of values having a size that is
known at compile time—an array with five values will always have five values. A slice
can therefore refer to a subset of an array (as depicted in Figure 1-4):

let array: [u64; 5] = [0, 1, 2, 3, 4];
let slice = &array[1..3];

Figure 1-4. Stack slice pointing into a stack array
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The other common container for contiguous values is a Vec<T>. This holds a contigu‐
ous collection of values like an array, but unlike an array, the number of values in the
Vec can grow (e.g., with push(value)) or shrink (e.g., with pop()).

The contents of the Vec are kept on the heap (which allows for this variation in size)
but are always contiguous, and so a slice can refer to a subset of a vector, as shown in
Figure 1-5:

let mut vector = Vec::<u64>::with_capacity(8);
for i in 0..5 {
    vector.push(i);
}
let vslice = &vector[1..3];

Figure 1-5. Stack slice pointing into Vec contents on the heap

There’s quite a lot going on under the covers for the expression &vector[1..3], so it’s
worth breaking it down into its components:

• The 1..3 part is a range expression; the compiler converts this into an instance of
the Range<usize> type, which holds an inclusive lower bound and an exclusive
upper bound.
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20 The equivalent trait for mutable expressions is IndexMut.
21 This is somewhat simplified; a full vtable also includes information about the size and alignment of the type,

together with a drop() function pointer so that the underlying object can be safely dropped.

• The Range type implements the SliceIndex<T> trait, which describes indexing
operations on slices of an arbitrary type T (so the Output type is [T]).

• The vector[ ] part is an indexing expression; the compiler converts this into an
invocation of the Index trait’s index method on vector, together with a derefer‐
ence (i.e., *vector.index( )).20

• vector[1..3] therefore invokes Vec<T>’s implementation of Index<I>, which
requires I to be an instance of SliceIndex<[u64]>. This works because
Range<usize> implements SliceIndex<[T]> for any T, including u64.

• &vector[1..3] undoes the dereference, resulting in a final expression type of
&[u64].

Trait objects
The second built-in fat pointer type is a trait object: a reference to some item that
implements a particular trait. It’s built from a simple pointer to the item, together
with an internal pointer to the type’s vtable, giving a size of 16 bytes (on a 64-bit plat‐
form). The vtable for a type’s implementation of a trait holds function pointers for
each of the method implementations, allowing dynamic dispatch at runtime
(Item 12).21

So a simple trait:

trait Calculate {
    fn add(&self, l: u64, r: u64) -> u64;
    fn mul(&self, l: u64, r: u64) -> u64;
}

with a struct that implements it:

struct Modulo(pub u64);

impl Calculate for Modulo {
    fn add(&self, l: u64, r: u64) -> u64 {
        (l + r) % self.0
    }
    fn mul(&self, l: u64, r: u64) -> u64 {
        (l * r) % self.0
    }
}

let mod3 = Modulo(3);
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can be converted to a trait object of type &dyn Trait. The dyn keyword highlights the
fact that dynamic dispatch is involved:

// Need an explicit type to force dynamic dispatch.
let tobj: &dyn Calculate = &mod3;
let result = tobj.add(2, 2);
assert_eq!(result, 1);

The equivalent memory layout is shown in Figure 1-6.

Figure 1-6. Trait object with pointers to concrete item and vtable

Code that holds a trait object can invoke the methods of the trait via the function
pointers in the vtable, passing in the item pointer as the &self parameter; see Item 12
for more information and advice.

More Pointer Traits
“Pointer Traits” on page 54 described two pairs of traits (Deref/DerefMut, AsRef/
AsMut) that are used when dealing with types that can be easily converted into refer‐
ences. There are a few more standard traits that can also come into play when work‐
ing with pointer-like types, whether from the standard library or user defined.

The simplest of these is the Pointer trait, which formats a pointer value for output. 
This can be helpful for low-level debugging, and the compiler will reach for this trait
automatically when it encounters the {:p} format specifier.

More intriguing are the Borrow and BorrowMut traits, which each have a single
method (borrow and borrow_mut, respectively). This method has the same signature
as the equivalent AsRef/AsMut trait methods.
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The key difference in intents between these traits is visible via the blanket implemen‐
tations that the standard library provides. Given an arbitrary Rust reference &T, there
is a blanket implementation of both AsRef and Borrow; likewise, for a mutable refer‐
ence &mut T, there’s a blanket implementation of both AsMut and BorrowMut.

However, Borrow also has a blanket implementation for (non-reference) types:
impl<T> Borrow<T> for T.

This means that a method accepting the Borrow trait can cope equally with instances
of T as well as references-to-T:

fn add_four<T: std::borrow::Borrow<i32>>(v: T) -> i32 {
    v.borrow() + 4
}
assert_eq!(add_four(&2), 6);
assert_eq!(add_four(2), 6);

The standard library’s container types have more realistic uses of Borrow. For exam‐
ple, HashMap::get uses Borrow to allow convenient retrieval of entries whether keyed
by value or by reference.

The ToOwned trait builds on the Borrow trait, adding a to_owned() method that pro‐
duces a new owned item of the underlying type. This is a generalization of the Clone
trait: where Clone specifically requires a Rust reference &T, ToOwned instead copes
with things that implement Borrow.

This gives a couple of possibilities for handling both references and moved items in a
unified way:

• A function that operates on references to some type can accept Borrow so that it
can also be called with moved items as well as references.

• A function that operates on owned items of some type can accept ToOwned so that
it can also be called with references to items as well as moved items; any refer‐
ences passed to it will be replicated into a locally owned item.

Although it’s not a pointer type, the Cow type is worth mentioning at this point,
because it provides an alternative way of dealing with the same kind of situation. Cow
is an enum that can hold either owned data or a reference to borrowed data. The pecu‐
liar name stands for “clone-on-write”: a Cow input can remain as borrowed data right
up to the point where it needs to be modified, but it becomes an owned copy at the
point where the data needs to be altered.

Smart Pointer Types
The Rust standard library includes a variety of types that act like pointers to some
degree or another, mediated by the standard library traits previously described. These
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22 Note that this doesn’t affect Rust’s memory safety guarantees: the items are still safe, just inaccessible.

smart pointer types each come with some particular semantics and guarantees, which
has the advantage that the right combination of them can give fine-grained control
over the pointer’s behavior, but has the disadvantage that the resulting types can seem
overwhelming at first (Rc<RefCell<Vec<T>>>, anyone?).

The first smart pointer type is Rc<T>, which is a reference-counted pointer to an item
(roughly analogous to C++’s std::shared_ptr<T>). It implements all of the pointer-
related traits and so acts like a Box<T> in many ways.

This is useful for data structures where the same item can be reached in different
ways, but it removes one of Rust’s core rules around ownership—that each item has
only one owner. Relaxing this rule means that it is now possible to leak data: if item A
has an Rc pointer to item B, and item B has an Rc pointer to A, then the pair will
never be dropped.22 To put it another way: you need Rc to support cyclical data struc‐
tures, but the downside is that there are now cycles in your data structures.

The risk of leaks can be ameliorated in some cases by the related Weak<T> type, which
holds a non-owning reference to the underlying item (roughly analogous to C++’s
std::weak_ptr<T>). Holding a weak reference doesn’t prevent the underlying item
from being dropped (when all strong references are removed), so making use of the
Weak<T> involves an upgrade to an Rc<T>—which can fail.

Under the hood, Rc is (currently) implemented as a pair of reference counts together
with the referenced item, all stored on the heap (as depicted in Figure 1-7):

use std::rc::Rc;
let rc1: Rc<u64> = Rc::new(42);
let rc2 = rc1.clone();
let wk = Rc::downgrade(&rc1);

Figure 1-7. Rc and Weak pointers all referring to the same heap item
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The underlying item is dropped when the strong reference count drops to zero, but
the bookkeeping structure is dropped only when the weak reference count also drops
to zero.

An Rc on its own gives you the ability to reach an item in different ways, but when
you reach that item, you can modify it (via get_mut) only if there are no other ways
to reach the item—i.e., there are no other extant Rc or Weak references to the same
item. That’s hard to arrange, so Rc is often combined with RefCell.

The next smart pointer type, RefCell<T>, relaxes the rule (Item 15) that an item can
be mutated only by its owner or by code that holds the (only) mutable reference to
the item. This interior mutability allows for greater flexibility—for example, allowing
trait implementations that mutate internals even when the method signature allows
only &self. However, it also incurs costs: as well as the extra storage overhead (an
extra isize to track current borrows, as shown in Figure 1-8), the normal borrow
checks are moved from compile time to runtime:

use std::cell::RefCell;
let rc: RefCell<u64> = RefCell::new(42);
let b1 = rc.borrow();
let b2 = rc.borrow();

Figure 1-8. Ref borrows referring to a RefCell container
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The runtime nature of these checks means that the RefCell user has to choose
between two options, neither pleasant:

• Accept that borrowing is an operation that might fail, and cope with Result val‐
ues from try_borrow[_mut]

• Use the allegedly infallible borrowing methods borrow[_mut], and accept the risk
of a panic! at runtime (Item 18) if the borrow rules have not been complied with

In either case, this runtime checking means that RefCell itself implements none of
the standard pointer traits; instead, its access operations return a Ref<T> or
RefMut<T> smart pointer type that does implement those traits.

If the underlying type T implements the Copy trait (indicating that a fast bit-for-bit
copy produces a valid item; see Item 10), then the Cell<T> type allows interior muta‐
tion with less overhead—the get(&self) method copies out the current value, and
the set(&self, val) method copies in a new value. The Cell type is used internally
by both the Rc and RefCell implementations, for shared tracking of counters that can
be mutated without a &mut self.

The smart pointer types described so far are suitable only for single-threaded use;
their implementations assume that there is no concurrent access to their internals. If
this is not the case, then smart pointers that include additional synchronization over‐
head are needed.

The thread-safe equivalent of Rc<T> is Arc<T>, which uses atomic counters to ensure
that the reference counts remain accurate. Like Rc, Arc implements all of the various
pointer-related traits.

However, Arc on its own does not allow any kind of mutable access to the underlying
item. This is covered by the Mutex type, which ensures that only one thread has
access—whether mutably or immutably—to the underlying item. As with RefCell,
Mutex itself does not implement any pointer traits, but its lock() operation returns a
value of a type that does: MutexGuard, which implements Deref[Mut].

If there are likely to be more readers than writers, the RwLock type is preferable, as it
allows multiple readers access to the underlying item in parallel, provided that there
isn’t currently a (single) writer.

In either case, Rust’s borrowing and threading rules force the use of one of these syn‐
chronization containers in multithreaded code (but this guards against only some of
the problems of shared-state concurrency; see Item 17).

The same strategy—see what the compiler rejects and what it suggests instead—can
sometimes be applied with the other smart pointer types. However, it’s faster and less
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23 In fact, the iterator can be more general—the idea of emitting next items until completion need not be associ‐
ated with a container.

frustrating to understand what the behavior of the different smart pointers implies.
To borrow (pun intended) an example from the first edition of the Rust book:

• Rc<RefCell<Vec<T>>> holds a vector (Vec) with shared ownership (Rc), where
the vector can be mutated—but only as a whole vector.

• Rc<Vec<RefCell<T>>> also holds a vector with shared ownership, but here each
individual entry in the vector can be mutated independently of the others.

The types involved precisely describe these behaviors.

Item 9: Consider using iterator transforms
instead of explicit loops
The humble loop has had a long journey of increasing convenience and increasing
abstraction. The B language (the precursor to C) had only while (condition)

{ ... }, but with the arrival of C, the common scenario of iterating through indexes
of an array became more convenient with the addition of the for loop:

// C code
int i;
for (i = 0; i < len; i++) {
  Item item = collection[i];
  // body
}

The early versions of C++ further improved convenience and scoping by allowing the
loop variable declaration to be embedded in the for statement (this was also adopted
by C in C99):

// C++98 code
for (int i = 0; i < len; i++) {
  Item item = collection[i];
  // ...
}

Most modern languages abstract the idea of the loop further: the core function of a
loop is often to move to the next item of some container. Tracking the logistics that
are required to reach that item (index++ or ++it) is mostly an irrelevant detail. This
realization produced two core concepts:

Iterators
A type whose purpose is to repeatedly emit the next item of a container, until
exhausted23
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For-each loops
A compact loop expression for iterating over all of the items in a container, bind‐
ing a loop variable to the item rather than to the details of reaching that item

These concepts allow for loop code that’s shorter and (more importantly) clearer
about what’s intended:

// C++11 code
for (Item& item : collection) {
  // ...
}

Once these concepts were available, they were so obviously powerful that they were
quickly retrofitted to those languages that didn’t already have them (e.g., for-each
loops were added to Java 1.5 and C++11).

Rust includes iterators and for-each–style loops, but it also includes the next step in
abstraction: allowing the whole loop to be expressed as an iterator transform (some‐
times also referred to as an iterator adaptor). As with Item 3’s discussion of Option
and Result, this Item will attempt to show how these iterator transforms can be used
instead of explicit loops, and will give guidance as to when it’s a good idea. In particu‐
lar, iterator transforms can be more efficient than an explicit loop, because the com‐
piler can skip the bounds checks it might otherwise need to perform.

By the end of this Item, a C-like explicit loop to sum the squares of the first five even
items of a vector:

let values: Vec<u64> = vec![1, 1, 2, 3, 5 /* ... */];

let mut even_sum_squares = 0;
let mut even_count = 0;
for i in 0..values.len() {
    if values[i] % 2 != 0 {
        continue;
    }
    even_sum_squares += values[i] * values[i];
    even_count += 1;
    if even_count == 5 {
        break;
    }
}

should start to feel more natural expressed as a functional-style expression:

let even_sum_squares: u64 = values
    .iter()
    .filter(|x| *x % 2 == 0)
    .take(5)
    .map(|x| x * x)
    .sum();
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Iterator transformation expressions like this can roughly be broken down into three
parts:

• An initial source iterator, from an instance of a type that implements one of
Rust’s iterator traits

• A sequence of iterator transforms
• A final consumer method to combine the results of the iteration into a final value

The first two of these parts effectively move functionality out of the loop body and
into the for expression; the last removes the need for the for statement altogether.

Iterator Traits
The core Iterator trait has a very simple interface: a single method next that yields
Some items until it doesn’t (None). The type of the emitted items is given by the trait’s
associated Item type.

Collections that allow iteration over their contents—what would be called iterables in
other languages—implement the IntoIterator trait; the into_iter method of this
trait consumes Self and emits an Iterator in its stead. The compiler will automati‐
cally use this trait for expressions of the form:

for item in collection {
    // body
}

effectively converting them to code roughly like:

let mut iter = collection.into_iter();
loop {
    let item: Thing = match iter.next() {
        Some(item) => item,
        None => break,
    };
    // body
}

or more succinctly and more idiomatically:

let mut iter = collection.into_iter();
while let Some(item) = iter.next() {
    // body
}

To keep things running smoothly, there’s also an implementation of IntoIterator for
any Iterator, which just returns self; after all, it’s easy to convert an Iterator into
an Iterator!

This initial form is a consuming iterator, using up the collection as it’s created:
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let collection = vec![Thing(0), Thing(1), Thing(2), Thing(3)];
for item in collection {
    println!("Consumed item {item:?}");
}

Any attempt to use the collection after it’s been iterated over fails:

println!("Collection = {collection:?}");

error[E0382]: borrow of moved value: `collection`
   --> src/main.rs:171:28
    |
163 |   let collection = vec![Thing(0), Thing(1), Thing(2), Thing(3)];
    |       ---------- move occurs because `collection` has type `Vec<Thing>`,
    |                  which does not implement the `Copy` trait
164 |   for item in collection {
    |               ---------- `collection` moved due to this implicit call to
    |                           `.into_iter()`
...
171 |   println!("Collection = {collection:?}");
    |                          ^^^^^^^^^^^^^^ value borrowed here after move
    |
note: `into_iter` takes ownership of the receiver `self`, which moves
      `collection`

While simple to understand, this all-consuming behavior is often undesired; some
kind of borrow of the iterated items is needed.

To ensure that behavior is clear, the examples here use a Thing type that does not
implement Copy (Item 10), as that would hide questions of ownership (Item 15)—the
compiler would silently make copies everywhere:

// Deliberately not `Copy`
#[derive(Clone, Debug, Eq, PartialEq)]
struct Thing(u64);

let collection = vec![Thing(0), Thing(1), Thing(2), Thing(3)];

If the collection being iterated over is prefixed with &:

for item in &collection {
    println!("{}", item.0);
}
println!("collection still around {collection:?}");

then the Rust compiler will look for an implementation of IntoIterator for the type
&Collection. Properly designed collection types will provide such an implementa‐
tion; this implementation will still consume Self, but now Self is &Collection
rather than Collection, and the associated Item type will be a reference &Thing.

This leaves the collection intact after iteration, and the equivalent expanded code is as
follows:

Item 9: Consider using iterator transforms instead of explicit loops | 67

https://doc.rust-lang.org/core/iter/trait.IntoIterator.html


24 This method can’t be provided if a mutation to the item might invalidate the container’s internal guarantees.
For example, changing the item’s contents in a way that alters its Hash value would invalidate the internal data
structures of a HashMap.

let mut iter = (&collection).into_iter();
while let Some(item) = iter.next() {
    println!("{}", item.0);
}

If it makes sense to provide iteration over mutable references,24 then a similar pattern
applies for for item in &mut collection: the compiler looks for and uses an imple‐
mentation of IntoIterator for &mut Collection, with each Item being of type &mut
Thing.

By convention, standard containers also provide an iter() method that returns an
iterator over references to the underlying item, and an equivalent iter_mut()
method, if appropriate, with the same behavior as just described. These methods can
be used in for loops but have a more obvious benefit when used as the start of an
iterator transformation:

let result: u64 = (&collection).into_iter().map(|thing| thing.0).sum();

becomes:

let result: u64 = collection.iter().map(|thing| thing.0).sum();

Iterator Transforms
The Iterator trait has a single required method (next) but also provides default
implementations (Item 13) of a large number of other methods that perform transfor‐
mations on an iterator.

Some of these transformations affect the overall iteration process:

take(n)

Restricts an iterator to emitting at most n items.

skip(n)

Skips over the first n elements of the iterator.

step_by(n)

Converts an iterator so it emits only every nth item.

chain(other)

Glues together two iterators, to build a combined iterator that moves through
one then the other.
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cycle()

Converts an iterator that terminates into one that repeats forever, starting at the
beginning again whenever it reaches the end. (The iterator must support Clone
to allow this.)

rev()

Reverses the direction of an iterator. (The iterator must implement the Double
EndedIterator trait, which has an additional next_back required method.)

Other transformations affect the nature of the Item that’s the subject of the Iterator:

map(|item| {...})

Repeatedly applies a closure to transform each item in turn. This is the most gen‐
eral version; several of the following entries in this list are convenience variants
that could be equivalently implemented as a map.

cloned()

Produces a clone of all of the items in the original iterator; this is particularly
useful with iterators over &Item references. (This obviously requires the underly‐
ing Item type to implement Clone.)

copied()

Produces a copy of all of the items in the original iterator; this is particularly use‐
ful with iterators over &Item references. (This obviously requires the underlying
Item type to implement Copy, but it is likely to be faster than cloned(), if that’s
the case.)

enumerate()

Converts an iterator over items to be an iterator over (usize, Item) pairs, pro‐
viding an index to the items in the iterator.

zip(it)

Joins an iterator with a second iterator, to produce a combined iterator that emits
pairs of items, one from each of the original iterators, until the shorter of the two
iterators is finished.

Yet other transformations perform filtering on the Items being emitted by the
Iterator:

filter(|item| {...})

Applies a bool-returning closure to each item reference to determine whether it
should be passed through.

take_while()

Emits an initial subrange of the iterator, based on a predicate. Mirror image of
skip_while.
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skip_while()

Emits a final subrange of the iterator, based on a predicate. Mirror image of
take_while.

The flatten() method deals with an iterator whose items are themselves iterators,
flattening the result. On its own, this doesn’t seem that helpful, but it becomes much
more useful when combined with the observation that both Option and Result act as
iterators: they produce either zero (for None, Err(e)) or one (for Some(v), Ok(v))
items. This means that flattening a stream of Option/Result values is a simple way
to extract just the valid values, ignoring the rest.

Taken as a whole, these methods allow iterators to be transformed so that they pro‐
duce exactly the sequence of elements that are needed for most situations.

Iterator Consumers
The previous two sections described how to obtain an iterator and how to transform
it into exactly the right shape for precise iteration. This precisely targeted iteration
could happen as an explicit for-each loop:

let mut even_sum_squares = 0;
for value in values.iter().filter(|x| *x % 2 == 0).take(5) {
    even_sum_squares += value * value;
}

However, the large collection of Iterator methods includes many that allow an itera‐
tion to be consumed in a single method call, removing the need for an explicit for
loop.

The most general of these methods is for_each(|item| {...}), which runs a closure
for each item produced by the Iterator. This can do most of the things that an
explicit for loop can do (the exceptions are described in a later section), but its gen‐
erality also makes it a little awkward to use—the closure needs to use mutable refer‐
ences to external state in order to emit anything:

let mut even_sum_squares = 0;
values
    .iter()
    .filter(|x| *x % 2 == 0)
    .take(5)
    .for_each(|value| {
        // closure needs a mutable reference to state elsewhere
        even_sum_squares += value * value;
    });

However, if the body of the for loop matches one of a number of common patterns,
there are more specific iterator-consuming methods that are clearer, shorter, and
more idiomatic.
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These patterns include shortcuts for building a single value out of the collection:

sum()

Sums a collection of numeric values (integers or floats).

product()

Multiplies a collection of numeric values.

min()

Finds the minimum value of a collection, relative to the Item’s Ord implementa‐
tion (see Item 10).

max()

Finds the maximum value of a collection, relative to the Item’s Ord implementa‐
tion (see Item 10).

min_by(f)

Finds the minimum value of a collection, relative to a user-specified comparison
function f.

max_by(f)

Finds the maximum value of a collection, relative to a user-specified comparison
function f.

reduce(f)

Builds an accumulated value of the Item type by running a closure at each step
that takes the value accumulated so far and the current item. This is a more gen‐
eral operation that encompasses the previous methods.

fold(f)

Builds an accumulated value of an arbitrary type (not just the Iterator::Item
type) by running a closure at each step that takes the value accumulated so far
and the current item. This is a generalization of reduce.

scan(init, f)

Builds an accumulated value of an arbitrary type by running a closure at each
step that takes a mutable reference to some internal state and the current item.
This is a slightly different generalization of reduce.

There are also methods for selecting a single value out of the collection:

find(p)

Finds the first item that satisfies a predicate.

position(p)

Also finds the first item satisfying a predicate, but this time it returns the index of
the item.
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nth(n)

Returns the nth element of the iterator, if available.

There are methods for testing against every item in the collection:

any(p)

Indicates whether a predicate is true for any item in the collection.

all(p)

Indicates whether a predicate is true for all items in the collection.

In either case, iteration will terminate early if the relevant counterexample is found.

There are methods that allow for the possibility of failure in the closures used with
each item. In each case, if a closure returns a failure for an item, the iteration is termi‐
nated and the operation as a whole returns the first failure:

try_for_each(f)

Behaves like for_each, but the closure can fail

try_fold(f)

Behaves like fold, but the closure can fail

try_find(f)

Behaves like find, but the closure can fail

Finally, there are methods that accumulate all of the iterated items into a new collec‐
tion. The most important of these is collect(), which can be used to build a new
instance of any collection type that implements the FromIterator trait.

The FromIterator trait is implemented for all of the standard library collection types
(Vec, HashMap, BTreeSet, etc.), but this ubiquity also means that you often have to use
explicit types, because otherwise the compiler can’t figure out whether you’re trying
to assemble (say) a Vec<i32> or HashSet<i32>:

use std::collections::HashSet;

// Build collections of even numbers.  Type must be specified, because
// the expression is the same for either type.
let myvec: Vec<i32> = (0..10).into_iter().filter(|x| x % 2 == 0).collect();
let h: HashSet<i32> = (0..10).into_iter().filter(|x| x % 2 == 0).collect();

This example also illustrates the use of range expressions to generate the initial data
to be iterated over.

Other (more obscure) collection-producing methods include the following:

unzip()

Divides an iterator of pairs into two collections
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partition(p)

Splits an iterator into two collections based on a predicate that is applied to each
item

This Item has touched on a wide selection of Iterator methods, but this is only a
subset of the methods available; for more information, consult the iterator documen‐
tation or read Chapter 15 of Programming Rust, 2nd edition (O’Reilly), which has
extensive coverage of the possibilities.

This rich collection of iterator transformations is there to be used. It produces code
that is more idiomatic, more compact, and has clearer intent.

Expressing loops as iterator transformations can also produce code that is more effi‐
cient. In the interests of safety, Rust performs bounds checking on access to contiguous
containers such as vectors and slices; an attempt to access a value beyond the bounds
of the collection triggers a panic rather than an access to invalid data. An old-style
loop that accesses container values (e.g., values[i]) might be subject to these runtime
checks, whereas an iterator that produces one value after another is already known to
be within range.

However, it’s also the case that an old-style loop might not be subject to additional
bounds checks compared to the equivalent iterator transformation. The Rust com‐
piler and optimizer is very good at analyzing the code surrounding a slice access to
determine whether it’s safe to skip the bounds checks; Sergey “Shnatsel” Davidoff ’s
2023 article explores the subtleties involved.

Building Collections from Result Values
The previous section described the use of collect() to build collections from itera‐
tors, but collect() also has a particularly helpful feature when dealing with Result
values.

Consider an attempt to convert a vector of i64 values into bytes (u8), with the opti‐
mistic expectation that they will all fit:

UNDESIRED BEHAVIOR

// In the 2021 edition of Rust, `TryFrom` is in the prelude, so this
// `use` statement is no longer needed.
use std::convert::TryFrom;

let inputs: Vec<i64> = vec![0, 1, 2, 3, 4];
let result: Vec<u8> = inputs
    .into_iter()
    .map(|v| <u8>::try_from(v).unwrap())
    .collect();
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This works until some unexpected input comes along:

let inputs: Vec<i64> = vec![0, 1, 2, 3, 4, 512];

and causes a runtime failure:

thread 'main' panicked at 'called `Result::unwrap()` on an `Err` value:
TryFromIntError(())', iterators/src/main.rs:266:36
note: run with `RUST_BACKTRACE=1` environment variable to display a backtrace

Following the advice given in Item 3, we want to keep the Result type in play and use
the ? operator to make any failure the problem of the calling code. The obvious mod‐
ification to emit the Result doesn’t really help:

let result: Vec<Result<u8, _>> =
    inputs.into_iter().map(|v| <u8>::try_from(v)).collect();
// Now what?  Still need to iterate to extract results and detect errors.

However, there’s an alternative version of collect(), which can assemble a Result
holding a Vec, instead of a Vec holding Results.

Forcing use of this version requires the turbofish (::<Result<Vec<_>, _>>):

let result: Vec<u8> = inputs
    .into_iter()
    .map(|v| <u8>::try_from(v))
    .collect::<Result<Vec<_>, _>>()?;

Combining this with the question mark operator gives useful behavior:

• If the iteration encounters an error value, that error value is emitted to the caller
and iteration stops.

• If no errors are encountered, the remainder of the code can deal with a sensible
collection of values of the right type.

Loop Transformation
The aim of this Item is to convince you that many explicit loops can be regarded as
something to be converted to iterator transformations. This can feel somewhat
unnatural for programmers who aren’t used to it, so let’s walk through a transforma‐
tion step by step.

Starting with a very C-like explicit loop to sum the squares of the first five even items
of a vector:

let mut even_sum_squares = 0;
let mut even_count = 0;
for i in 0..values.len() {
    if values[i] % 2 != 0 {
        continue;
    }
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    even_sum_squares += values[i] * values[i];
    even_count += 1;
    if even_count == 5 {
        break;
    }
}

The first step is to replace vector indexing with direct use of an iterator in a for-each
loop:

let mut even_sum_squares = 0;
let mut even_count = 0;
for value in values.iter() {
    if value % 2 != 0 {
        continue;
    }
    even_sum_squares += value * value;
    even_count += 1;
    if even_count == 5 {
        break;
    }
}

An initial arm of the loop that uses continue to skip over some items is naturally
expressed as a filter():

let mut even_sum_squares = 0;
let mut even_count = 0;
for value in values.iter().filter(|x| *x % 2 == 0) {
    even_sum_squares += value * value;
    even_count += 1;
    if even_count == 5 {
        break;
    }
}

Next, the early exit from the loop once five even items have been spotted maps to a
take(5):

let mut even_sum_squares = 0;
for value in values.iter().filter(|x| *x % 2 == 0).take(5) {
    even_sum_squares += value * value;
}

Every iteration of the loop uses only the item squared, in the value * value combi‐
nation, which makes it an ideal target for a map():

let mut even_sum_squares = 0;
for val_sqr in values.iter().filter(|x| *x % 2 == 0).take(5).map(|x| x * x)
{
    even_sum_squares += val_sqr;
}
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These refactorings of the original loop result in a loop body that’s the perfect nail to
fit under the hammer of the sum() method:

let even_sum_squares: u64 = values
    .iter()
    .filter(|x| *x % 2 == 0)
    .take(5)
    .map(|x| x * x)
    .sum();

When Explicit Is Better
This Item has highlighted the advantages of iterator transformations, particularly
with respect to concision and clarity. So when are iterator transformations not appro‐
priate or idiomatic?

• If the loop body is large and/or multifunctional, it makes sense to keep it as an
explicit body rather than squeezing it into a closure.

• If the loop body involves error conditions that result in early termination of the
surrounding function, these are often best kept explicit—the try_..() methods
help only a little. However, collect()’s ability to convert a collection of Result
values into a Result holding a collection of values often allows error conditions
to still be handled with the ? operator.

• If performance is vital, an iterator transform that involves a closure should get
optimized so that it is just as fast as the equivalent explicit code. But if perfor‐
mance of a core loop is that important, measure different variants and tune
appropriately:
— Be careful to ensure that your measurements reflect real-world performance—

the compiler’s optimizer can give overoptimistic results on test data (as
described in Item 30).

— The Godbolt compiler explorer is an amazing tool for exploring what the
compiler spits out.

Most importantly, don’t convert a loop into an iteration transformation if the conver‐
sion is forced or awkward. This is a matter of taste to be sure—but be aware that your
taste is likely to change as you become more familiar with the functional style.
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CHAPTER 2

Traits

The second core pillar of Rust’s type system is the use of traits, which allow the
encoding of behavior that is common across distinct types. A trait is roughly equiv‐
alent to an interface type in other languages, but they are also tied to Rust’s generics
(Item 12), to allow interface reuse without runtime overhead.

The Items in this chapter describe the standard traits that the Rust compiler and the
Rust toolchain make available, and provide advice on how to design and use trait-
encoded behavior.

Item 10: Familiarize yourself with standard traits
Rust encodes key behavioral aspects of its type system in the type system itself,
through a collection of fine-grained standard traits that describe those behaviors (see
Item 2).

Many of these traits will seem familiar to programmers coming from C++, corre‐
sponding to concepts such as copy-constructors, destructors, equality and assign‐
ment operators, etc.

As in C++, it’s often a good idea to implement many of these traits for your own
types; the Rust compiler will give you helpful error messages if some operation needs
one of these traits for your type and it isn’t present.

Implementing such a large collection of traits may seem daunting, but most of the
common ones can be automatically applied to user-defined types, using derive mac‐
ros. These derive macros generate code with the “obvious” implementation of the
trait for that type (e.g., field-by-field comparison for Eq on a struct); this normally
requires that all constituent parts also implement the trait. The auto-generated
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implementation is usually what you want, but there are occasional exceptions dis‐
cussed in each trait’s section that follows.

The use of the derive macros does lead to type definitions like:

#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
enum MyBooleanOption {
    Off,
    On,
}

where auto-generated implementations are triggered for eight different traits.

This fine-grained specification of behavior can be disconcerting at first, but it’s
important to be familiar with the most common of these standard traits so that the
available behaviors of a type definition can be immediately understood.

Common Standard Traits
This section discusses the most commonly encountered standard traits. Here are
rough one-sentence summaries of each:

Clone

Items of this type can make a copy of themselves when asked, by running user-
defined code.

Copy

If the compiler makes a bit-for-bit copy of this item’s memory representation
(without running any user-defined code), the result is a valid new item.

Default

It’s possible to make new instances of this type with sensible default values.

PartialEq

There’s a partial equivalence relation for items of this type—any two items can be
definitively compared, but it may not always be true that x==x.

Eq

There’s an equivalence relation for items of this type—any two items can be
definitively compared, and it is always true that x==x.

PartialOrd

Some items of this type can be compared and ordered.

Ord

All items of this type can be compared and ordered.

Hash

Items of this type can produce a stable hash of their contents when asked.
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Debug

Items of this type can be displayed to programmers.

Display

Items of this type can be displayed to users.

These traits can all be derived for user-defined types, with the exception of Display
(included here because of its overlap with Debug). However, there are occasions when
a manual implementation—or no implementation—is preferable.

The following sections discuss each of these common traits in more detail.

Clone

The Clone trait indicates that it’s possible to make a new copy of an item, by calling
the clone() method. This is roughly equivalent to C++’s copy-constructor but is
more explicit: the compiler will never silently invoke this method on its own (read on
to the next section for that).

Clone can be derived for a type if all of the item’s fields implement Clone themselves.
The derived implementation clones an aggregate type by cloning each of its mem‐
bers in turn; again, this is roughly equivalent to a default copy-constructor in C++.
This makes the trait opt-in (by adding #[derive(Clone)]), in contrast to the opt-out
behavior in C++ (MyType(const MyType&) = delete;).

This is such a common and useful operation that it’s more interesting to investigate
the situations where you shouldn’t or can’t implement Clone, or where the default
derive implementation isn’t appropriate.

• You shouldn’t implement Clone if the item embodies unique access to some
resource (such as an RAII type; Item 11), or when there’s another reason to
restrict copies (e.g., if the item holds cryptographic key material).

• You can’t implement Clone if some component of your type is un-Cloneable in
turn. Examples include the following:
— Fields that are mutable references (&mut T), because the borrow checker

(Item 15) allows only a single mutable reference at a time.
— Standard library types that fall into the previous category, such as MutexGuard

(embodies unique access) or Mutex (restricts copies for thread safety).
• You should manually implement Clone if there is anything about your item that

won’t be captured by a (recursive) field-by-field copy or if there is additional
bookkeeping associated with item lifetimes. For example, consider a type that
tracks the number of extant items at runtime for metrics purposes; a manual
Clone implementation can ensure the counter is kept accurate.
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Copy

The Copy trait has a trivial declaration:

pub trait Copy: Clone { }

There are no methods in this trait, meaning that it is a marker trait (as described in
Item 2): it’s used to indicate some constraint on the type that’s not directly expressed
in the type system.

In the case of Copy, the meaning of this marker is that a bit-for-bit copy of the mem‐
ory holding an item gives a correct new item. Effectively, this trait is a marker that
says that a type is a “plain old data” (POD) type.

This also means that the Clone trait bound can be slightly confusing: although a Copy
type has to implement Clone, when an instance of the type is copied, the clone()
method is not invoked—the compiler builds the new item without any involvement
of user-defined code.

In contrast to user-defined marker traits (Item 2), Copy has a special significance to
the compiler (as do several of the other marker traits in std::marker) over and above
being available for trait bounds—it shifts the compiler from move semantics to copy
semantics.

With move semantics for the assignment operator, what the right hand giveth, the left
hand taketh away:

DOES NOT COMPILE

#[derive(Debug, Clone)]
struct KeyId(u32);

let k = KeyId(42);
let k2 = k; // value moves out of k into k2
println!("k = {k:?}");

error[E0382]: borrow of moved value: `k`
  --> src/main.rs:60:23
   |
58 |         let k = KeyId(42);
   |             - move occurs because `k` has type `main::KeyId`, which does
   |               not implement the `Copy` trait
59 |         let k2 = k; // value moves out of k into k2
   |                  - value moved here
60 |         println!("k = {k:?}");
   |                       ^^^^^ value borrowed here after move
   |
   = note: this error originates in the macro `$crate::format_args_nl`
help: consider cloning the value if the performance cost is acceptable
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   |
59 |         let k2 = k.clone(); // value moves out of k into k2
   |                   ++++++++

With copy semantics, the original item lives on:

#[derive(Debug, Clone, Copy)]
struct KeyId(u32);

let k = KeyId(42);
let k2 = k; // value bitwise copied from k to k2
println!("k = {k:?}");

This makes Copy one of the most important traits to watch out for: it fundamentally
changes the behavior of assignments—including parameters for method invocations.

In this respect, there are again overlaps with C++’s copy-constructors, but it’s worth
emphasizing a key distinction: in Rust there is no way to get the compiler to silently
invoke user-defined code—it’s either explicit (a call to .clone()) or it’s not user-
defined (a bitwise copy).

Because Copy has a Clone trait bound, it’s possible to .clone() any Copy-able item. 
However, it’s not a good idea: a bitwise copy will always be faster than invoking a trait
method. Clippy (Item 29) will warn you about this:

UNDESIRED BEHAVIOR

let k3 = k.clone();

warning: using `clone` on type `KeyId` which implements the `Copy` trait
  --> src/main.rs:79:14
   |
79 |     let k3 = k.clone();
   |              ^^^^^^^^^ help: try removing the `clone` call: `k`
   |

As with Clone, it’s worth exploring when you should or should not implement Copy:

• The obvious: don’t implement Copy if a bitwise copy doesn’t produce a valid item.
That’s likely to be the case if Clone needed a manual implementation rather than
an automatically derived implementation.

• It may be a bad idea to implement Copy if your type is large. The basic promise of
Copy is that a bitwise copy is valid; however, this often goes hand in hand with an
assumption that making the copy is fast. If that’s not the case, skipping Copy pre‐
vents accidental slow copies.

• You can’t implement Copy if some component of your type is un-Copyable in
turn.
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• If all of the components of your type are Copyable, then it’s usually worth deriv‐
ing Copy. The compiler has an off-by-default lint missing_copy_implementa
tions that points out opportunities for this.

Default

The Default trait defines a default constructor, via a default() method. This trait
can be derived for user-defined types, provided that all of the subtypes involved have
a Default implementation of their own; if they don’t, you’ll have to implement the
trait manually. Continuing the comparison with C++, notice that a default construc‐
tor has to be explicitly triggered—the compiler does not create one automatically.

The Default trait can also be derived for enum types, as long as there’s a #[default]
attribute to give the compiler a hint as to which variant is, well, default:

#[derive(Default)]
enum IceCreamFlavor {
    Chocolate,
    Strawberry,
    #[default]
    Vanilla,
}

The most useful aspect of the Default trait is its combination with struct update syn‐
tax. This syntax allows struct fields to be initialized by copying or moving their con‐
tents from an existing instance of the same struct, for any fields that aren’t explicitly
initialized. The template to copy from is given at the end of the initialization, after ..,
and the Default trait provides an ideal template to use:

#[derive(Default)]
struct Color {
    red: u8,
    green: u8,
    blue: u8,
    alpha: u8,
}

let c = Color {
    red: 128,
    ..Default::default()
};

This makes it much easier to initialize structures with lots of fields, only some of
which have nondefault values. (The builder pattern, Item 7, may also be appropriate
for these situations.)
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1 Of course, comparing floats for equality is always a dangerous game, as there is typically no guarantee that
rounded calculations will produce a result that is bit-for-bit identical to the number you first thought of.

PartialEq and Eq

The PartialEq and Eq traits allow you to define equality for user-defined types.
These traits have special significance because if they’re present, the compiler will
automatically use them for equality (==) checks, similarly to operator== in C++. The
default derive implementation does this with a recursive field-by-field comparison.

The Eq version is just a marker trait extension of PartialEq that adds the assumption
of reflexivity: any type T that claims to support Eq should ensure that x == x is true
for any x: T.

This is sufficiently odd to immediately raise the question, When wouldn’t x == x?
The primary rationale behind this split relates to floating point numbers,1 and specifi‐
cally to the special “not a number” value NaN (f32::NAN / f64::NAN in Rust). The
floating point specifications require that nothing compares equal to NaN, including
NaN itself; the PartialEq trait is the knock-on effect of this.

For user-defined types that don’t have any float-related peculiarities, you should
implement Eq whenever you implement PartialEq. The full Eq trait is also required if
you want to use the type as the key in a HashMap (as well as the Hash trait).

You should implement PartialEq manually if your type contains any fields that do
not affect the item’s identity, such as internal caches and other performance optimiza‐
tions. (Any manual implementation will also be used for Eq if it is defined, because Eq
is just a marker trait that has no methods of its own.)

PartialOrd and Ord

The ordering traits PartialOrd and Ord allow comparisons between two items of a
type, returning Less, Greater, or Equal. The traits require equivalent equality traits
to be implemented (PartialOrd requires PartialEq; Ord requires Eq), and the two
have to agree with each other (watch out for this with manual implementations in
particular).

As with the equality traits, the comparison traits have special significance because the
compiler will automatically use them for comparison operations (<, >, <=, >=).

The default implementation produced by derive compares fields (or enum variants)
lexicographically in the order they’re defined, so if this isn’t correct, you’ll need to
implement the traits manually (or reorder the fields).
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2 More generally, any lattice structure also has a partial order.

Unlike PartialEq, the PartialOrd trait does correspond to a variety of real situa‐
tions. For example, it could be used to express a subset relationship among collec‐
tions:2 {1, 2} is a subset of {1, 2, 4}, but {1, 3} is not a subset of {2, 4}, nor vice
versa.

However, even if a partial order does accurately model the behavior of your type, be
wary of implementing just PartialOrd and not Ord (a rare occasion that contradicts
the advice in Item 2 to encode behavior in the type system)—it can lead to surprising
results:

UNDESIRED BEHAVIOR

// Inherit the `PartialOrd` behavior from `f32`.
#[derive(PartialOrd, PartialEq)]
struct Oddity(f32);

// Input data with NaN values is likely to give unexpected results.
let x = Oddity(f32::NAN);
let y = Oddity(f32::NAN);

// A self-comparison looks like it should always be true, but it may not be.
if x <= x {
    println!("This line doesn't get executed!");
}

// Programmers are also unlikely to write code that covers all possible
// comparison arms; if the types involved implemented `Ord`, then the
// second two arms could be combined.
if x <= y {
    println!("y is bigger"); // Not hit.
} else if y < x {
    println!("x is bigger"); // Not hit.
} else {
    println!("Neither is bigger");
}

Hash

The Hash trait is used to produce a single value that has a high probability of being
different for different items. This hash value is used as the basis for hash-bucket–
based data structures like HashMap and HashSet; as such, the type of the keys in these
data structures must implement Hash (and Eq).
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Flipping this around, it’s essential that the “same” items (as per Eq) always produce
the same hash: if x == y (via Eq), then it must always be true that hash(x) ==
hash(y). If you have a manual Eq implementation, check whether you also need a man‐
ual implementation of Hash to comply with this requirement.

Debug and Display

The Debug and Display traits allow a type to specify how it should be included in
output, for either normal ({} format argument) or debugging purposes ({:?} format
argument), roughly analogous to an operator<< overload for iostream in C++.

The differences between the intents of the two traits go beyond which format speci‐
fier is needed, though:

• Debug can be automatically derived, Display can only be manually implemented.
• The layout of Debug output may change between different Rust versions. If the

output will ever be parsed by other code, use Display.
• Debug is programmer-oriented; Display is user-oriented. A thought experiment

that helps with this is to consider what would happen if the program was local‐
ized to a language that the authors don’t speak—Display is appropriate if the
content should be translated, Debug if not.

As a general rule, add an automatically generated Debug implementation for your types
unless they contain sensitive information (personal details, cryptographic material,
etc.). To make this advice easier to comply with, the Rust compiler includes a miss
ing_debug_implementations lint that points out types without Debug. This lint is dis‐
abled by default but can be enabled for your code with either of the following:

#![warn(missing_debug_implementations)]

#![deny(missing_debug_implementations)]

If the automatically generated implementation of Debug would emit voluminous
amounts of detail, then it may be more appropriate to include a manual implementa‐
tion of Debug that summarizes the type’s contents.

Implement Display if your types are designed to be shown to end users in textual
output.

Standard Traits Covered Elsewhere
In addition to the common traits described in the previous section, the standard
library also includes other standard traits that are less ubiquitous. Of these additional
standard traits, the following are the most important, but they are covered in other
Items and so are not covered here in depth:
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Fn, FnOnce, and FnMut
Items implementing these traits represent closures that can be invoked. See
Item 2.

Error

Items implementing this trait represent error information that can be displayed
to users or programmers, and that may hold nested suberror information. See
Item 4.

Drop

Items implementing this trait perform processing when they are destroyed,
which is essential for RAII patterns. See Item 11.

From and TryFrom
Items implementing these traits can be automatically created from items of some
other type but with a possibility of failure in the latter case. See Item 5.

Deref and DerefMut
Items implementing these traits are pointer-like objects that can be dereferenced
to get access to an inner item. See Item 8.

Iterator and friends
Items implementing these traits represent collections that can be iterated over.
See Item 9.

Send

Items implementing this trait are safe to transfer between multiple threads. See
Item 17.

Sync

Items implementing this trait are safe to be referenced by multiple threads. See
Item 17.

None of these traits are deriveable.

Operator Overloads
The final category of standard traits relates to operator overloads, where Rust allows
various built-in unary and binary operators to be overloaded for user-defined types,
by implementing various standard traits from the std::ops module. These traits are
not derivable and are typically needed only for types that represent “algebraic”
objects, where there is a natural interpretation of these operators.

However, experience from C++ has shown that it’s best to avoid overloading operators
for unrelated types as it often leads to code that is hard to maintain and has unexpec‐
ted performance properties (e.g., x + y silently invokes an expensive O(N) method).
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To comply with the principle of least astonishment, if you implement any operator
overloads, you should implement a coherent set of operator overloads. For example, if
x + y has an overload (Add), and -y (Neg) does too, then you should also implement
x - y (Sub) and make sure it gives the same answer as x + (-y).

The items passed to the operator overload traits are moved, which means that non-
Copy types will be consumed by default. Adding implementations for &'a MyType can
help with this but requires more boilerplate to cover all of the possibilities (e.g., there
are 4 = 2 × 2 possibilities for combining reference/non-reference arguments to a
binary operator).

Summary
This item has covered a lot of ground, so some tables that summarize the standard
traits that have been touched on are in order. First, Table 2-1 covers the traits that this
Item covers in depth, all of which can be automatically derived except Display.

Table 2-1. Common standard traits

Trait Compiler use Bound Methods
Clone clone

Copy let y = x; Clone Marker trait
Default default

PartialEq x == y eq

Eq x == y PartialEq Marker trait
PartialOrd x < y, x <= y, … PartialEq partial_cmp

Ord x < y, x <= y, … Eq + PartialOrd cmp

Hash hash

Debug format!("{:?}", x) fmt

Display format!("{}", x) fmt

The operator overloads are summarized in Table 2-2. None of these can be derived.

Table 2-2. Operator overload traitsa

Trait Compiler use Bound Methods
Add x + y add

AddAssign x += y add_assign

BitAnd x & y bitand

BitAndAssign x &= y bitand_assign

BitOr x | y bitor

BitOrAssign x |= y bitor_assign

BitXor x ^ y bitxor

BitXorAssign x ^= y bitxor_assign
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Trait Compiler use Bound Methods
Div x / y div

DivAssign x /= y div_assign

Mul x * y mul

MulAssign x *= y mul_assign

Neg -x neg

Not !x not

Rem x % y rem

RemAssign x %= y rem_assign

Shl x << y shl

ShlAssign x <<= y shl_assign

Shr x >> y shr

ShrAssign x >>= y shr_assign

Sub x - y sub

SubAssign x -= y sub_assign

a Some of the names here are a little cryptic—e.g., Rem for remainder and Shl for shift left—but the std::ops
documentation makes the intended use clear.

For completeness, the standard traits that are covered in other items are included in
Table 2-3; none of these traits are deriveable (but Send and Sync may be automati‐
cally implemented by the compiler).

Table 2-3. Standard traits described in other Items

Trait Compiler use Bound Methods Item
Fn x(a) FnMut call Item 2
FnMut x(a) FnOnce call_mut Item 2
FnOnce x(a) call_once Item 2
Error Display + Debug [source] Item 4
From from Item 5
TryFrom try_from Item 5
Into into Item 5
TryInto try_into Item 5
AsRef as_ref Item 8
AsMut as_mut Item 8
Borrow borrow Item 8
BorrowMut Borrow borrow_mut Item 8
ToOwned to_owned Item 8
Deref *x, &x deref Item 8
DerefMut *x, &mut x Deref deref_mut Item 8
Index x[idx] index Item 8
IndexMut x[idx] = ... Index index_mut Item 8

88 | Chapter 2: Traits

https://doc.rust-lang.org/std/ops/trait.Div.html
https://doc.rust-lang.org/std/ops/trait.Div.html#tymethod.div
https://doc.rust-lang.org/std/ops/trait.DivAssign.html
https://doc.rust-lang.org/std/ops/trait.DivAssign.html#tymethod.div_assign
https://doc.rust-lang.org/std/ops/trait.Mul.html
https://doc.rust-lang.org/std/ops/trait.Mul.html#tymethod.mul
https://doc.rust-lang.org/std/ops/trait.MulAssign.html
https://doc.rust-lang.org/std/ops/trait.MulAssign.html#tymethod.mul_assign
https://doc.rust-lang.org/std/ops/trait.Neg.html
https://doc.rust-lang.org/std/ops/trait.Neg.html#tymethod.neg
https://doc.rust-lang.org/std/ops/trait.Not.html
https://doc.rust-lang.org/std/ops/trait.Not.html#tymethod.not
https://doc.rust-lang.org/std/ops/trait.Rem.html
https://doc.rust-lang.org/std/ops/trait.Rem.html#tymethod.rem
https://doc.rust-lang.org/std/ops/trait.RemAssign.html
https://doc.rust-lang.org/std/ops/trait.RemAssign.html#tymethod.rem_assign
https://doc.rust-lang.org/std/ops/trait.Shl.html
https://doc.rust-lang.org/std/ops/trait.Shl.html#tymethod.shl
https://doc.rust-lang.org/std/ops/trait.ShlAssign.html
https://doc.rust-lang.org/std/ops/trait.ShlAssign.html#tymethod.shl_assign
https://doc.rust-lang.org/std/ops/trait.Shr.html
https://doc.rust-lang.org/std/ops/trait.Shr.html#tymethod.shr
https://doc.rust-lang.org/std/ops/trait.ShrAssign.html
https://doc.rust-lang.org/std/ops/trait.ShrAssign.html#tymethod.shr_assign
https://doc.rust-lang.org/std/ops/trait.Sub.html
https://doc.rust-lang.org/std/ops/trait.Sub.html#tymethod.sub
https://doc.rust-lang.org/std/ops/trait.SubAssign.html
https://doc.rust-lang.org/std/ops/trait.SubAssign.html#tymethod.sub_assign
https://doc.rust-lang.org/std/ops/index.html
https://doc.rust-lang.org/std/ops/trait.Fn.html
https://doc.rust-lang.org/std/ops/trait.Fn.html#tymethod.call
https://doc.rust-lang.org/std/ops/trait.FnMut.html
https://doc.rust-lang.org/std/ops/trait.FnMut.html#tymethod.call_mut
https://doc.rust-lang.org/std/ops/trait.FnOnce.html
https://doc.rust-lang.org/std/ops/trait.FnOnce.html#tymethod.call_once
https://doc.rust-lang.org/std/error/trait.Error.html
https://doc.rust-lang.org/std/error/trait.Error.html#method.source
https://doc.rust-lang.org/std/convert/trait.From.html
https://doc.rust-lang.org/std/convert/trait.From.html#tymethod.from
https://doc.rust-lang.org/std/convert/trait.TryFrom.html
https://doc.rust-lang.org/std/convert/trait.TryFrom.html#tymethod.try_from
https://doc.rust-lang.org/std/convert/trait.Into.html
https://doc.rust-lang.org/std/convert/trait.Into.html#tymethod.into
https://doc.rust-lang.org/std/convert/trait.TryInto.html
https://doc.rust-lang.org/std/convert/trait.TryInto.html#tymethod.try_into
https://doc.rust-lang.org/std/convert/trait.AsRef.html
https://doc.rust-lang.org/std/convert/trait.AsRef.html#tymethod.as_ref
https://doc.rust-lang.org/std/convert/trait.AsMut.html
https://doc.rust-lang.org/std/convert/trait.AsMut.html#tymethod.as_mut
https://doc.rust-lang.org/std/borrow/trait.Borrow.html
https://doc.rust-lang.org/std/borrow/trait.Borrow.html#tymethod.borrow
https://doc.rust-lang.org/std/borrow/trait.BorrowMut.html
https://doc.rust-lang.org/std/borrow/trait.BorrowMut.html#tymethod.borrow_mut
https://doc.rust-lang.org/std/borrow/trait.ToOwned.html
https://doc.rust-lang.org/std/borrow/trait.ToOwned.html#tymethod.to_owned
https://doc.rust-lang.org/std/ops/trait.Deref.html
https://doc.rust-lang.org/std/ops/trait.Deref.html#tymethod.deref
https://doc.rust-lang.org/std/ops/trait.DerefMut.html
https://doc.rust-lang.org/std/ops/trait.DerefMut.html#tymethod.deref_mut
https://doc.rust-lang.org/std/ops/trait.Index.html
https://doc.rust-lang.org/std/ops/trait.Index.html#tymethod.index
https://doc.rust-lang.org/std/ops/trait.IndexMut.html
https://doc.rust-lang.org/std/ops/trait.IndexMut.html#tymethod.index_mut


3 This also means that RAII as a technique is mostly available only in languages that have a predictable time of
destruction, which rules out most garbage-collected languages (although Go’s defer statement achieves some
of the same ends).

Trait Compiler use Bound Methods Item
Pointer format("{:p}", x) fmt Item 8
Iterator next Item 9
IntoIterator for y in x into_iter Item 9
FromIterator from_iter Item 9
ExactSizeIterator Iterator (size_hint) Item 9
DoubleEndedIterator Iterator next_back Item 9
Drop } (end of scope) drop Item 11
Sized Marker trait Item 12
Send cross-thread transfer Marker trait Item 17
Sync cross-thread use Marker trait Item 17

Item 11: Implement the Drop trait for RAII patterns
Never send a human to do a machine’s job.

—Agent Smith

RAII stands for “Resource Acquisition Is Initialization,” which is a programming pat‐
tern where the lifetime of a value is exactly tied to the lifecycle of some additional
resource. The RAII pattern was popularized by the C++ programming language and
is one of C++’s biggest contributions to programming.

The correlation between the lifetime of a value and the lifecycle of a resource is enco‐
ded in an RAII type:

• The type’s constructor acquires access to some resource
• The type’s destructor releases access to that resource

The result of this is that the RAII type has an invariant: access to the underlying
resource is available if and only if the item exists. Because the compiler ensures that
local variables are destroyed at scope exit, this in turn means that the underlying
resources are also released at scope exit.3

This is particularly helpful for maintainability: if a subsequent change to the code
alters the control flow, item and resource lifetimes are still correct. To see this, con‐
sider some code that manually locks and unlocks a mutex, without using the RAII
pattern; this code is in C++, because Rust’s Mutex doesn’t allow this kind of error-
prone usage!
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// C++ code
class ThreadSafeInt {
 public:
  ThreadSafeInt(int v) : value_(v) {}

  void add(int delta) {
    mu_.lock();
    // ... more code here
    value_ += delta;
    // ... more code here
    mu_.unlock();
  }

A modification to catch an error condition with an early exit leaves the mutex locked:

UNDESIRED BEHAVIOR

// C++ code
void add_with_modification(int delta) {
  mu_.lock();
  // ... more code here
  value_ += delta;
  // Check for overflow.
  if (value_ > MAX_INT) {
    // Oops, forgot to unlock() before exit
    return;
  }
  // ... more code here
  mu_.unlock();
}

However, encapsulating the locking behavior into an RAII class:

// C++ code (real code should use std::lock_guard or similar)
class MutexLock {
 public:
  MutexLock(Mutex* mu) : mu_(mu) { mu_->lock(); }
  ~MutexLock()                   { mu_->unlock(); }
 private:
  Mutex* mu_;
};

means the equivalent code is safe for this kind of modification:

// C++ code
void add_with_modification(int delta) {
  MutexLock with_lock(&mu_);
  // ... more code here
  value_ += delta;
  // Check for overflow.
  if (value_ > MAX_INT) {
    return; // Safe, with_lock unlocks on the way out
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4 RAII is also still useful for memory management in low-level unsafe code, but that is (mostly) beyond the
scope of this book.

  }
  // ... more code here
}

In C++, RAII patterns were often originally used for memory management, to ensure
that manual allocation (new, malloc()) and deallocation (delete, free()) operations
were kept in sync. A general version of this memory management was added to the
C++ standard library in C++11: the std::unique_ptr<T> type ensures that a single
place has “ownership” of memory but allows a pointer to the memory to be “bor‐
rowed” for ephemeral use (ptr.get()).

In Rust, this behavior for memory pointers is built into the language (Item 15), but
the general principle of RAII is still useful for other kinds of resources.4 Implement
Drop for any types that hold resources that must be released, such as the following:

• Access to operating system resources. For Unix-derived systems, this usually
means something that holds a file descriptor; failing to release these correctly will
hold onto system resources (and will also eventually lead to the program hitting
the per-process file descriptor limit).

• Access to synchronization resources. The standard library already includes mem‐
ory synchronization primitives, but other resources (e.g., file locks, database
locks, etc.) may need similar encapsulation.

• Access to raw memory, for unsafe types that deal with low-level memory man‐
agement (e.g., for foreign function interface [FFI] functionality).

The most obvious instance of RAII in the Rust standard library is the MutexGuard
item returned by Mutex::lock() operations, which tend to be widely used for pro‐
grams that use the shared-state parallelism discussed in Item 17. This is roughly anal‐
ogous to the final C++ example shown earlier, but in Rust the MutexGuard item acts
as a proxy to the mutex-protected data in addition to being an RAII item for the held
lock:

use std::sync::Mutex;

struct ThreadSafeInt {
    value: Mutex<i32>,
}

impl ThreadSafeInt {
    fn new(val: i32) -> Self {
        Self {
            value: Mutex::new(val),
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        }
    }
    fn add(&self, delta: i32) {
        let mut v = self.value.lock().unwrap();
        *v += delta;
    }
}

Item 17 advises against holding locks for large sections of code; to ensure this, use
blocks to restrict the scope of RAII items. This leads to slightly odd indentation, but it’s
worth it for the added safety and lifetime precision:

impl ThreadSafeInt {
    fn add_with_extras(&self, delta: i32) {
        // ... more code here that doesn't need the lock
        {
            let mut v = self.value.lock().unwrap();
            *v += delta;
        }
        // ... more code here that doesn't need the lock
    }
}

Having proselytized the uses of the RAII pattern, an explanation of how to implement
it is in order. The Drop trait allows you to add user-defined behavior to the destruc‐
tion of an item. This trait has a single method, drop, which the compiler runs just
before the memory holding the item is released:

#[derive(Debug)]
struct MyStruct(i32);

impl Drop for MyStruct {
    fn drop(&mut self) {
        println!("Dropping {self:?}");
        // Code to release resources owned by the item would go here.
    }
}

The drop method is specially reserved for the compiler and can’t be manually
invoked:

DOES NOT COMPILE

x.drop();

error[E0040]: explicit use of destructor method
  --> src/main.rs:70:7
   |
70 |     x.drop();
   |     --^^^^--
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   |     | |
   |     | explicit destructor calls not allowed
   |     help: consider using `drop` function: `drop(x)`

It’s worth understanding a little bit about the technical details here. Notice that the
Drop::drop method has a signature of drop(&mut self) rather than drop(self): it
takes a mutable reference to the item rather than having the item moved into the
method. If Drop::drop acted like a normal method, that would mean the item would
still be available for use afterward—even though all of its internal state has been tid‐
ied up and resources released!

DOES NOT COMPILE

{
    // If calling `drop` were allowed...
    x.drop(); // (does not compile)

    // `x` would still be available afterwards.
    x.0 += 1;
}
// Also, what would happen when `x` goes out of scope?

The compiler suggested a straightforward alternative, which is to call the drop()
function to manually drop an item. This function does take a moved argument, and
the implementation of drop(_item: T) is just an empty body { }—so the moved
item is dropped when that scope’s closing brace is reached.

Notice also that the signature of the drop(&mut self) method has no return type,
which means that it has no way to signal failure. If an attempt to release resources can
fail, then you should probably have a separate release method that returns a Result,
so it’s possible for users to detect this failure.

Regardless of the technical details, the drop method is nevertheless the key place for
implementing RAII patterns; its implementation is the ideal place to release resources 
associated with an item.

Item 12: Understand the trade-offs between
generics and trait objects
Item 2 described the use of traits to encapsulate behavior in the type system, as a col‐
lection of related methods, and observed that there are two ways to make use of traits:
as trait bounds for generics or in trait objects. This Item explores the trade-offs
between these two possibilities.
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As a running example, consider a trait that covers functionality for displaying graphi‐
cal objects:

#[derive(Debug, Copy, Clone)]
pub struct Point {
    x: i64,
    y: i64,
}

#[derive(Debug, Copy, Clone)]
pub struct Bounds {
    top_left: Point,
    bottom_right: Point,
}

/// Calculate the overlap between two rectangles, or `None` if there is no
/// overlap.
fn overlap(a: Bounds, b: Bounds) -> Option<Bounds> {
    // ...
}

/// Trait for objects that can be drawn graphically.
pub trait Draw {
    /// Return the bounding rectangle that encompasses the object.
    fn bounds(&self) -> Bounds;

    // ...
}

Generics
Rust’s generics are roughly equivalent to C++’s templates: they allow the programmer
to write code that works for some arbitrary type T, and specific uses of the generic
code are generated at compile time—a process known as monomorphization in Rust,
and template instantiation in C++. Unlike C++, Rust explicitly encodes the expecta‐
tions for the type T in the type system, in the form of trait bounds for the generic.

For the example, a generic function that uses the trait’s bounds() method has an
explicit Draw trait bound:

/// Indicate whether an object is on-screen.
pub fn on_screen<T>(draw: &T) -> bool
where
    T: Draw,
{
    overlap(SCREEN_BOUNDS, draw.bounds()).is_some()
}

This can also be written more compactly by putting the trait bound after the generic
parameter:
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5 Using “impl Trait in argument position” isn’t exactly equivalent to the previous two versions, because it
removes the ability for a caller to explicitly specify the type parameter with something like on_screen::<Cir
cle>(&c).

pub fn on_screen<T: Draw>(draw: &T) -> bool {
    overlap(SCREEN_BOUNDS, draw.bounds()).is_some()
}

or by using impl Trait as the type of the argument:5

pub fn on_screen(draw: &impl Draw) -> bool {
    overlap(SCREEN_BOUNDS, draw.bounds()).is_some()
}

If a type implements the trait:

#[derive(Clone)] // no `Debug`
struct Square {
    top_left: Point,
    size: i64,
}

impl Draw for Square {
    fn bounds(&self) -> Bounds {
        Bounds {
            top_left: self.top_left,
            bottom_right: Point {
                x: self.top_left.x + self.size,
                y: self.top_left.y + self.size,
            },
        }
    }
}

then instances of that type can be passed to the generic function, monomorphizing it
to produce code that’s specific to one particular type:

let square = Square {
    top_left: Point { x: 1, y: 2 },
    size: 2,
};
// Calls `on_screen::<Square>(&Square) -> bool`
let visible = on_screen(&square);

If the same generic function is used with a different type that implements the relevant
trait bound:

#[derive(Clone, Debug)]
struct Circle {
    center: Point,
    radius: i64,
}
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impl Draw for Circle {
    fn bounds(&self) -> Bounds {
        // ...
    }
}

then different monomorphized code is used:

let circle = Circle {
    center: Point { x: 3, y: 4 },
    radius: 1,
};
// Calls `on_screen::<Circle>(&Circle) -> bool`
let visible = on_screen(&circle);

In other words, the programmer writes a single generic function, but the compiler
outputs a different monomorphized version of that function for every different type
that the function is invoked with.

Trait Objects
In comparison, trait objects are fat pointers (Item 8) that combine a pointer to the
underlying concrete item with a pointer to a vtable that in turn holds function point‐
ers for all of the trait implementation’s methods, as depicted in Figure 2-1:

let square = Square {
    top_left: Point { x: 1, y: 2 },
    size: 2,
};
let draw: &dyn Draw = &square;

Figure 2-1. Trait object layout, with pointers to concrete item and vtable
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This means that a function that accepts a trait object doesn’t need to be generic and
doesn’t need monomorphization: the programmer writes a function using trait
objects, and the compiler outputs only a single version of that function, which can
accept trait objects that come from multiple input types:

/// Indicate whether an object is on-screen.
pub fn on_screen(draw: &dyn Draw) -> bool {
    overlap(SCREEN_BOUNDS, draw.bounds()).is_some()
}

// Calls `on_screen(&dyn Draw) -> bool`.
let visible = on_screen(&square);
// Also calls `on_screen(&dyn Draw) -> bool`.
let visible = on_screen(&circle);

Basic Comparisons
These basic facts already allow some immediate comparisons between the two
possibilities:

• Generics are likely to lead to bigger code sizes, because the compiler generates a
fresh copy (on_screen::<T>(&T)) of the code for every type T that uses the
generic version of the on_screen function. In contrast, the trait object version
(on_screen(&dyn T)) of the function needs only a single instance.

• Invoking a trait method from a generic will generally be ever-so-slightly faster
than invoking it from code that uses a trait object, because the latter needs to per‐
form two dereferences to find the location of the code (trait object to vtable, vta‐
ble to implementation location).

• Compile times for generics are likely to be longer, as the compiler is building
more code and the linker has more work to do to fold duplicates.

In most situations, these aren’t significant differences—you should use optimization-
related concerns as a primary decision driver only if you’ve measured the impact and
found that it has a genuine effect (a speed bottleneck or a problematic occupancy
increase).

A more significant difference is that generic trait bounds can be used to conditionally
make different functionality available, depending on whether the type parameter
implements multiple traits:

// The `area` function is available for all containers holding things
// that implement `Draw`.
fn area<T>(draw: &T) -> i64
where
    T: Draw,
{
    let bounds = draw.bounds();
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    (bounds.bottom_right.x - bounds.top_left.x)
        * (bounds.bottom_right.y - bounds.top_left.y)
}

// The `show` method is available only if `Debug` is also implemented.
fn show<T>(draw: &T)
where
    T: Debug + Draw,
{
    println!("{:?} has bounds {:?}", draw, draw.bounds());
}

let square = Square {
    top_left: Point { x: 1, y: 2 },
    size: 2,
};
let circle = Circle {
    center: Point { x: 3, y: 4 },
    radius: 1,
};

// Both `Square` and `Circle` implement `Draw`.
println!("area(square) = {}", area(&square));
println!("area(circle) = {}", area(&circle));

// `Circle` implements `Debug`.
show(&circle);

// `Square` does not implement `Debug`, so this wouldn't compile:
// show(&square);

A trait object encodes the implementation vtable only for a single trait, so doing
something equivalent is much more awkward. For example, a combination Debug
Draw trait could be defined for the show() case, together with a blanket implementa‐
tion to make life easier:

trait DebugDraw: Debug + Draw {}

/// Blanket implementation applies whenever the individual traits
/// are implemented.
impl<T: Debug + Draw> DebugDraw for T {}

However, if there are multiple combinations of distinct traits, it’s clear that the combi‐
natorics of this approach rapidly become unwieldy.
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More Trait Bounds
In addition to using trait bounds to restrict what type parameters are acceptable for a
generic function, you can also apply them to trait definitions themselves:

/// Anything that implements `Shape` must also implement `Draw`.
trait Shape: Draw {
    /// Render that portion of the shape that falls within `bounds`.
    fn render_in(&self, bounds: Bounds);

    /// Render the shape.
    fn render(&self) {
        // Default implementation renders that portion of the shape
        // that falls within the screen area.
        if let Some(visible) = overlap(SCREEN_BOUNDS, self.bounds()) {
            self.render_in(visible);
        }
    }
}

In this example, the render() method’s default implementation (Item 13) makes use
of the trait bound, relying on the availability of the bounds() method from Draw.

Programmers coming from object-oriented languages often confuse trait bounds
with inheritance, under the mistaken impression that a trait bound like this means
that a Shape is-a Draw. That’s not the case: the relationship between the two types is
better expressed as Shape also-implements Draw.

Under the covers, trait objects for traits that have trait bounds:

let square = Square {
    top_left: Point { x: 1, y: 2 },
    size: 2,
};
let draw: &dyn Draw = &square;
let shape: &dyn Shape = &square;

have a single combined vtable that includes the methods of the top-level trait, plus
the methods of all of the trait bounds. This is shown in Figure 2-2: the vtable for
Shape includes the bounds method from the Draw trait, as well as the two methods
from the Shape trait itself.

At the time of writing (and as of Rust 1.70), this means that there is no way to
“upcast” from Shape to Draw, because the (pure) Draw vtable can’t be recovered at run‐
time; there is no way to convert between related trait objects, which in turn means
there is no Liskov substitution. However, this is likely to change in later versions of
Rust—see Item 19 for more on this.
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Figure 2-2. Trait objects for trait bounds, with distinct vtables for Draw and Shape

Repeating the same point in different words, a method that accepts a Shape trait
object has the following characteristics:

• It can make use of methods from Draw (because Shape also-implements Draw, and
because the relevant function pointers are present in the Shape vtable).

• It cannot (yet) pass the trait object onto another method that expects a Draw trait
object (because Shape is-not Draw, and because the Draw vtable isn’t available).

In contrast, a generic method that accepts items that implement Shape has these
characteristics:

• It can use methods from Draw.
• It can pass the item on to another generic method that has a Draw trait bound,

because the trait bound is monomorphized at compile time to use the Draw meth‐
ods of the concrete type.
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6 At the time of writing, the restriction on methods that return Self includes types like Box<Self> that could be
safely stored on the stack; this restriction might be relaxed in the future.

Trait Object Safety
Another restriction on trait objects is the requirement for object safety: only traits that
comply with the following two rules can be used as trait objects:

• The trait’s methods must not be generic.
• The trait’s methods must not involve a type that includes Self, except for the

receiver (the object on which the method is invoked).

The first restriction is easy to understand: a generic method f is really an infinite set
of methods, potentially encompassing f::<i16>, f::<i32>, f::<i64>, f::<u8>, etc.
The trait object’s vtable, on the other hand, is very much a finite collection of func‐
tion pointers, and so it’s not possible to fit the infinite set of monomorphized imple‐
mentations into it.

The second restriction is a little bit more subtle but tends to be the restriction that’s
hit more often in practice—traits that impose Copy or Clone trait bounds (Item 10)
immediately fall under this rule, because they return Self. To see why it’s disallowed,
consider code that has a trait object in its hands; what happens if that code calls (say)
let y = x.clone()? The calling code needs to reserve enough space for y on the
stack, but it has no idea of the size of y because Self is an arbitrary type. As a result,
return types that mention Self lead to a trait that is not object safe.6

There is an exception to this second restriction. A method returning some Self-
related type does not affect object safety if Self comes with an explicit restriction to
types whose size is known at compile time, indicated by the Sized marker trait as a
trait bound:

/// A `Stamp` can be copied and drawn multiple times.
trait Stamp: Draw {
    fn make_copy(&self) -> Self
    where
        Self: Sized;
}

let square = Square {
    top_left: Point { x: 1, y: 2 },
    size: 2,
};

// `Square` implements `Stamp`, so it can call `make_copy()`.
let copy = square.make_copy();
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// Because the `Self`-returning method has a `Sized` trait bound,
// creating a `Stamp` trait object is possible.
let stamp: &dyn Stamp = &square;

This trait bound means that the method can’t be used with trait objects anyway,
because trait objects refer to something that’s of unknown size (dyn Trait), and so
the method is irrelevant for object safety:

DOES NOT COMPILE

// However, the method can't be invoked via a trait object.
let copy = stamp.make_copy();

error: the `make_copy` method cannot be invoked on a trait object
   --> src/main.rs:397:22
    |
353 |         Self: Sized;
    |               ----- this has a `Sized` requirement
...
397 |     let copy = stamp.make_copy();
    |                      ^^^^^^^^^

Trade-Offs
The balance of factors so far suggests that you should prefer generics to trait objects,
but there are situations where trait objects are the right tool for the job.

The first is a practical consideration: if generated code size or compilation time is a
concern, then trait objects will perform better (as described earlier in this Item).

A more theoretical aspect that leads toward trait objects is that they fundamentally
involve type erasure: information about the concrete type is lost in the conversion to a
trait object. This can be a downside (see Item 19), but it can also be useful because it
allows for collections of heterogeneous objects—because the code just relies on the
methods of the trait, it can invoke and combine the methods of items that have differ‐
ent concrete types.

The traditional OO example of rendering a list of shapes is one example of this: the
same render() method could be used for squares, circles, ellipses, and stars in the
same loop:

let shapes: Vec<&dyn Shape> = vec![&square, &circle];
for shape in shapes {
    shape.render()
}

A much more obscure potential advantage for trait objects is when the available types
are not known at compile time. If new code is dynamically loaded at runtime (e.g., via
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7 The is_empty() method is currently a nightly-only experimental function.

dlopen(3)), then items that implement traits in the new code can be invoked only via
a trait object, because there’s no source code to monomorphize over.

Item 13: Use default implementations
to minimize required trait methods
The designer of a trait has two different audiences to consider: the programmers who
will be implementing the trait and those who will be using the trait. These two audien‐
ces lead to a degree of tension in the trait design:

• To make the implementor’s life easier, it’s better for a trait to have the absolute
minimum number of methods to achieve its purpose.

• To make the user’s life more convenient, it’s helpful to provide a range of variant
methods that cover all of the common ways that the trait might be used.

This tension can be balanced by including the wider range of methods that makes the
user’s life easier, but with default implementations provided for any methods that can
be built from other, more primitive, operations on the interface.

A simple example of this is the is_empty() method for an ExactSizeIterator,
which is an Iterator that knows how many things it is iterating over.7 This method
has a default implementation that relies on the len() trait method:

fn is_empty(&self) -> bool {
    self.len() == 0
}

The existence of a default implementation is just that: a default. If an implementation
of the trait has a different way of determining whether the iterator is empty, it can
replace the default is_empty() with its own.

This approach leads to trait definitions that have a small number of required methods,
plus a much larger number of default-implemented methods. An implementor for the
trait has to implement only the former and gets all of the latter for free.

It’s also an approach that is widely followed by the Rust standard library; perhaps the
best example there is the Iterator trait, which has a single required method (next())
but includes a panoply of pre-provided methods (Item 9), over 50 at the time of
writing.

Trait methods can impose trait bounds, indicating that a method is only available if
the types involved implement particular traits. The Iterator trait also shows that this
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8 If the new method happens to match a method of the same name in the concrete type, then the concrete
method—known as an inherent implementation—will be used ahead of the trait method. The trait method can
be explicitly selected instead by casting: <Concrete as Trait>::method().

is useful in combination with default method implementations. For example, the
cloned() iterator method has a trait bound and a default implementation:

fn cloned<'a, T>(self) -> Cloned<Self>
where
    T: 'a + Clone,
    Self: Sized + Iterator<Item = &'a T>,
{
    Cloned::new(self)
}

In other words, the cloned() method is available only if the underlying Item type
implements Clone; when it does, the implementation is automatically available.

The final observation about trait methods with default implementations is that new
ones can usually be safely added to a trait even after an initial version of the trait is
released. An addition like this preserves backward compatibility (see Item 21) for
users and implementors of the trait, as long as the new method name does not clash
with the name of a method from some other trait that the type implements.8

So follow the example of the standard library and provide a minimal API surface for
implementors but a convenient and comprehensive API for users, by adding methods
with default implementations (and trait bounds as appropriate).
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CHAPTER 3

Concepts

The first two chapters of this book covered Rust’s types and traits, which helps pro‐
vide the vocabulary needed to work with some of the concepts involved in writing
Rust code—the subject of this chapter.

The borrow checker and lifetime checks are central to what makes Rust unique; they
are also a common stumbling block for newcomers to Rust and so are the focus of the
first two Items in this chapter.

The other Items in this chapter cover concepts that are easier to grasp but are never‐
theless a bit different from writing code in other languages. This includes the
following:

• Advice on Rust’s unsafe mode and how to avoid it (Item 16)
• Good news and bad news about writing multithreaded code in Rust (Item 17)
• Advice on avoiding runtime aborts (Item 18)
• Information about Rust’s approach to reflection (Item 19)
• Advice on balancing optimization against maintainability (Item 20)

It’s a good idea to try to align your code with the consequences of these concepts. It’s
possible to re-create (some of) the behavior of C/C++ in Rust, but why bother to use
Rust if you do?
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Item 14: Understand lifetimes
This Item describes Rust’s lifetimes, which are a more precise formulation of a concept
that existed in previous compiled languages like C and C++—in practice if not in
theory. Lifetimes are a required input for the borrow checker described in Item 15;
taken together, these features form the heart of Rust’s memory safety guarantees.

Introduction to the Stack
Lifetimes are fundamentally related to the stack, so a quick introduction/reminder is
in order.

While a program is running, the memory that it uses is divided up into different
chunks, sometimes called segments. Some of these chunks are a fixed size, such as the
ones that hold the program code or the program’s global data, but two of the
chunks—the heap and the stack—change size as the program runs. To allow for this,
they are typically arranged at opposite ends of the program’s virtual memory space, so
one can grow downward and the other can grow upward (at least until your program
runs out of memory and crashes), as summarized in Figure 3-1.

Figure 3-1. Program memory layout, including heap growing up and stack growing
down

Of these two dynamically sized chunks, the stack is used to hold state related to the
currently executing function. This state can include these elements:

• The parameters passed to the function
• The local variables used in the function
• Temporary values calculated within the function
• The return address within the code of the function’s caller
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When a function f() is called, a new stack frame is added to the stack, beyond where
the stack frame for the calling function ends, and the CPU normally updates a regis‐
ter—the stack pointer—to point to the new stack frame.

When the inner function f() returns, the stack pointer is reset to where it was before
the call, which will be the caller’s stack frame, intact and unmodified.

If the caller subsequently invokes a different function g(), the process happens again,
which means that the stack frame for g() will reuse the same area of memory that f()
previously used (as depicted in Figure 3-2):

fn caller() -> u64 {
    let x = 42u64;
    let y = 19u64;
    f(x) + g(y)
}

fn f(f_param: u64) -> u64 {
    let two = 2u64;
    f_param + two
}

fn g(g_param: u64) -> u64 {
    let arr = [2u64, 3u64];
    g_param + arr[1]
}

Figure 3-2. Evolution of stack usage as functions are called and returned from
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Of course, this is a dramatically simplified version of what really goes on—putting
things on and off the stack takes time, and so real processors will have many opti‐
mizations. However, the simplified conceptual picture is enough for understanding
the subject of this Item.

Evolution of Lifetimes
The previous section explained how parameters and local variables are stored on the
stack and pointed out that those values are stored only ephemerally.

Historically, this allowed for some dangerous footguns: what happens if you hold
onto a pointer to one of these ephemeral stack values?

Starting back with C, it was perfectly OK to return a pointer to a local variable
(although modern compilers will emit a warning for it):

UNDESIRED BEHAVIOR

/* C code. */
struct File {
  int fd;
};

struct File* open_bugged() {
  struct File f = { open("README.md", O_RDONLY) };
  return &f;  /* return address of stack object! */
}

You might get away with this, if you’re unlucky and the calling code uses the returned
value immediately:

UNDESIRED BEHAVIOR

struct File* f = open_bugged();
printf("in caller: file at %p has fd=%d\n", f, f->fd);

in caller: file at 0x7ff7bc019408 has fd=3

This is unlucky because it only appears to work. As soon as any other function calls
happen, the stack area will be reused and the memory that used to hold the object will
be overwritten:

UNDESIRED BEHAVIOR

investigate_file(f);
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/* C code. */
void investigate_file(struct File* f) {
  long array[4] = {1, 2, 3, 4}; // put things on the stack
  printf("in function: file at %p has fd=%d\n", f, f->fd);
}

in function: file at 0x7ff7bc019408 has fd=1592262883

Trashing the contents of the object has an additional bad effect for this example: the
file descriptor corresponding to the open file is lost, and so the program leaks the
resource that was held in the data structure.

Moving forward in time to C++, this latter problem of losing access to resources was
solved by the inclusion of destructors, enabling RAII (see Item 11). Now, the things on
the stack have the ability to tidy themselves up: if the object holds some kind of
resource, the destructor can tidy it up, and the C++ compiler guarantees that the
destructor of an object on the stack gets called as part of tidying up the stack frame:

// C++ code.
File::~File() {
  std::cout << "~File(): close fd " << fd << "\n";
  close(fd);
  fd = -1;
}

The caller now gets an (invalid) pointer to an object that’s been destroyed and its
resources reclaimed:

UNDESIRED BEHAVIOR

File* f = open_bugged();
printf("in caller: file at %p has fd=%d\n", f, f->fd);

~File(): close fd 3
in caller: file at 0x7ff7b6a7c438 has fd=-1

However, C++ did nothing to help with the problem of dangling pointers: it’s still
possible to hold onto a pointer to an object that’s gone (with a destructor that has
been called):

// C++ code.
void investigate_file(File* f) {
  long array[4] = {1, 2, 3, 4}; // put things on the stack
  std::cout << "in function: file at " << f << " has fd=" << f->fd << "\n";
}

in function: file at 0x7ff7b6a7c438 has fd=-183042004

As a C/C++ programmer, it’s up to you to notice this and make sure that you don’t
dereference a pointer that points to something that’s gone. Alternatively, if you’re an
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1 For example, the Chromium project estimates that 70% of security bugs are due to memory safety.

attacker and you find one of these dangling pointers, you’re more likely to cackle
maniacally and gleefully dereference the pointer on your way to an exploit.

Enter Rust. One of Rust’s core attractions is that it fundamentally solves the problem
of dangling pointers, immediately solving a large fraction of security problems.1

Doing so requires moving the concept of lifetimes from the background (where
C/C++ programmers just have to know to watch out for them, without any language
support) to the foreground: every type that includes an ampersand & has an associ‐
ated lifetime ('a), even if the compiler lets you omit mention of it much of the time.

Scope of a Lifetime
The lifetime of an item on the stack is the period where that item is guaranteed to stay
in the same place; in other words, this is exactly the period where a reference (pointer)
to the item is guaranteed not to become invalid.

This starts at the point where the item is created, and extends to where it is either
dropped (Rust’s equivalent to object destruction in C++) or moved.

The ubiquity of the latter is sometimes surprising for programmers coming from
C/C++: Rust moves items from one place on the stack to another, or from the stack to
the heap, or from the heap to the stack, in lots of situations.

Precisely where an item gets automatically dropped depends on whether an item has
a name or not.

Local variables and function parameters have names, and the corresponding item’s
lifetime starts when the item is created and the name is populated:

• For a local variable: at the let var = ... declaration
• For a function parameter: as part of setting up the execution frame for the func‐

tion invocation

The lifetime for a named item ends when the item is either moved somewhere else or
when the name goes out of scope:

#[derive(Debug, Clone)]
/// Definition of an item of some kind.
pub struct Item {
    contents: u32,
}

{
    let item1 = Item { contents: 1 }; // `item1` created here
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    let item2 = Item { contents: 2 }; // `item2` created here
    println!("item1 = {item1:?}, item2 = {item2:?}");
    consuming_fn(item2); // `item2` moved here
} // `item1` dropped here

It’s also possible to build an item “on the fly,” as part of an expression that’s then fed
into something else. These unnamed temporary items are then dropped when they’re
no longer needed. One oversimplified but helpful way to think about this is to imag‐
ine that each part of the expression gets expanded to its own block, with temporary
variables being inserted by the compiler. For example, an expression like:

let x = f((a + b) * 2);

would be roughly equivalent to:

let x = {
    let temp1 = a + b;
    {
        let temp2 = temp1 * 2;
        f(temp2)
    } // `temp2` dropped here
}; // `temp1` dropped here

By the time execution reaches the semicolon at the end of the original line, the tem‐
poraries have all been dropped.

One way to see what the compiler calculates as an item’s lifetime is to insert a deliber‐
ate error for the borrow checker (Item 15) to detect. For example, hold onto a refer‐
ence to an item beyond the scope of the item’s lifetime:

DOES NOT COMPILE

let r: &Item;
{
    let item = Item { contents: 42 };
    r = &item;
}
println!("r.contents = {}", r.contents);

The error message indicates the exact endpoint of item’s lifetime:

error[E0597]: `item` does not live long enough
   --> src/main.rs:190:13
    |
189 |         let item = Item { contents: 42 };
    |             ---- binding `item` declared here
190 |         r = &item;
    |             ^^^^^ borrowed value does not live long enough
191 |     }
    |     - `item` dropped here while still borrowed
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192 |     println!("r.contents = {}", r.contents);
    |                                 ---------- borrow later used here

Similarly, for an unnamed temporary:

DOES NOT COMPILE

let r: &Item = fn_returning_ref(&mut Item { contents: 42 });
println!("r.contents = {}", r.contents);

the error message shows the endpoint at the end of the expression:

error[E0716]: temporary value dropped while borrowed
   --> src/main.rs:209:46
    |
209 | let r: &Item = fn_returning_ref(&mut Item { contents: 42 });
    |                                      ^^^^^^^^^^^^^^^^^^^^^ - temporary
    |                                      |           value is freed at the
    |                                      |           end of this statement
    |                                      |
    |                                      creates a temporary value which is
    |                                      freed while still in use
210 | println!("r.contents = {}", r.contents);
    |                             ---------- borrow later used here
    |
    = note: consider using a `let` binding to create a longer lived value

One final point about the lifetimes of references: if the compiler can prove to itself that
there is no use of a reference beyond a certain point in the code, then it treats the
endpoint of the reference’s lifetime as the last place it’s used, rather than at the end of
the enclosing scope. This feature, known as non-lexical lifetimes, allows the borrow
checker to be a little bit more generous:

{
    // `s` owns the `String`.
    let mut s: String = "Hello, world".to_string();

    // Create a mutable reference to the `String`.
    let greeting = &mut s[..5];
    greeting.make_ascii_uppercase();
    // .. no use of `greeting` after this point

    // Creating an immutable reference to the `String` is allowed,
    // even though there's a mutable reference still in scope.
    let r: &str = &s;
    println!("s = '{}'", r); // s = 'HELLO, world'
} // The mutable reference `greeting` would naively be dropped here.
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Algebra of Lifetimes
Although lifetimes are ubiquitous when dealing with references in Rust, you don’t get
to specify them in any detail—there’s no way to say, “I’m dealing with a lifetime that
extends from line 17 to line 32 of ref.rs.” Instead, your code refers to lifetimes with
arbitrary names, conventionally 'a, 'b, 'c, …, and the compiler has its own internal,
inaccessible representation of what that equates to in the source code. (The one
exception to this is the 'static lifetime, which is a special case that’s covered in a
subsequent section.)

You don’t get to do much with these lifetime names; the main thing that’s possible is
to compare one name with another, repeating a name to indicate that two lifetimes
are the “same.”

This algebra of lifetimes is easiest to illustrate with function signatures: if the inputs
and outputs of a function deal with references, what’s the relationship between their
lifetimes?

The most common case is a function that receives a single reference as input and
emits a reference as output. The output reference must have a lifetime, but what can
it be? There’s only one possibility (other than 'static) to choose from: the lifetime of
the input, which means that they both share the same name, say, 'a. Adding that
name as a lifetime annotation to both types gives:

pub fn first<'a>(data: &'a [Item]) -> Option<&'a Item> {
    // ...
}

Because this variant is so common, and because there’s (almost) no choice about what
the output lifetime can be, Rust has lifetime elision rules that mean you don’t have to
explicitly write the lifetime names for this case. A more idiomatic version of the same
function signature would be the following:

pub fn first(data: &[Item]) -> Option<&Item> {
    // ...
}

The references involved still have lifetimes—the elision rule just means that you don’t
have to make up an arbitrary lifetime name and use it in both places.

What if there’s more than one choice of input lifetimes to map to an output lifetime?
In this case, the compiler can’t figure out what to do:
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DOES NOT COMPILE

pub fn find(haystack: &[u8], needle: &[u8]) -> Option<&[u8]> {
    // ...
}

error[E0106]: missing lifetime specifier
   --> src/main.rs:56:55
   |
56 | pub fn find(haystack: &[u8], needle: &[u8]) -> Option<&[u8]> {
   |                       -----          -----            ^ expected named
   |                                                     lifetime parameter
   |
   = help: this function's return type contains a borrowed value, but the
           signature does not say whether it is borrowed from `haystack` or
           `needle`
help: consider introducing a named lifetime parameter
   |
56 | pub fn find<'a>(haystack: &'a [u8], needle: &'a [u8]) -> Option<&'a [u8]> {
   |            ++++            ++                ++                  ++

A shrewd guess based on the function and parameter names is that the intended life‐
time for the output here is expected to match the haystack input:

pub fn find<'a, 'b>(
    haystack: &'a [u8],
    needle: &'b [u8],
) -> Option<&'a [u8]> {
    // ...
}

Interestingly, the compiler suggested a different alternative: having both inputs to the
function use the same lifetime 'a. For example, the following is a function where this
combination of lifetimes might make sense:

pub fn smaller<'a>(left: &'a Item, right: &'a Item) -> &'a Item {
    // ...
}

This appears to imply that the two input lifetimes are the “same,” but the scare quotes
(here and previously) are included to signify that that’s not quite what’s going on.

The raison d’être of lifetimes is to ensure that references to items don’t outlive the
items themselves; with this in mind, an output lifetime 'a that’s the “same” as an
input lifetime 'a just means that the input has to live longer than the output.

When there are two input lifetimes 'a that are the “same,” that just means that the
output lifetime has to be contained within the lifetimes of both of the inputs:

{
    let outer = Item { contents: 7 };
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    {
        let inner = Item { contents: 8 };
        {
            let min = smaller(&inner, &outer);
            println!("smaller of {inner:?} and {outer:?} is {min:?}");
        } // `min` dropped
    } // `inner` dropped
} // `outer` dropped

To put it another way, the output lifetime has to be subsumed within the smaller of
the lifetimes of the two inputs.

In contrast, if the output lifetime is unrelated to the lifetime of one of the inputs, then
there’s no requirement for those lifetimes to nest:

{
    let haystack = b"123456789"; // start of  lifetime 'a
    let found = {
        let needle = b"234"; // start of lifetime 'b
        find(haystack, needle)
    }; // end of lifetime 'b
    println!("found={:?}", found); // `found` used within 'a, outside of 'b
} // end of lifetime 'a

Lifetime Elision Rules
In addition to the “one in, one out” elision rule described in “Algebra of Lifetimes” on
page 113, there are two other elision rules that mean that lifetime names can be
omitted.

The first occurs when there are no references in the outputs from a function; in this
case, each of the input references automatically gets its own lifetime, different from
any of the other input parameters.

The second occurs for methods that use a reference to self (either &self or &mut
self); in this case, the compiler assumes that any output references take the lifetime
of self, as this turns out to be (by far) the most common situation.

Here’s a summary of the elision rules for functions:

• One input, one or more outputs: assume outputs have the “same” lifetime as the
input:

fn f(x: &Item) -> (&Item, &Item)
// ... is equivalent to ...
fn f<'a>(x: &'a Item) -> (&'a Item, &'a Item)

• Multiple inputs, no output: assume all the inputs have different lifetimes:
fn f(x: &Item, y: &Item, z: &Item) -> i32
// ... is equivalent to ...
fn f<'a, 'b, 'c>(x: &'a Item, y: &'b Item, z: &'c Item) -> i32
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• Multiple inputs including &self, one or more outputs: assume output lifetime(s)
are the “same” as &self’s lifetime:

fn f(&self, y: &Item, z: &Item) -> &Thing
// ... is equivalent to ...
fn f(&'a self, y: &'b Item, z: &'c Item) -> &'a Thing

Of course, if the elided lifetime names don’t match what you want, you can always
explicitly write lifetime names that specify which lifetimes are related to each other.
In practice, this is likely to be triggered by a compiler error that indicates that the eli‐
ded lifetimes don’t match how the function or its caller are using the references
involved.

The 'static Lifetime
The previous section described various possible mappings between the input and out‐
put reference lifetimes for a function, but it neglected to cover one special case. What
happens if there are no input lifetimes, but the output return value includes a refer‐
ence anyway?

DOES NOT COMPILE

pub fn the_answer() -> &Item {
    // ...
}

error[E0106]: missing lifetime specifier
   --> src/main.rs:471:28
    |
471 |     pub fn the_answer() -> &Item {
    |                            ^ expected named lifetime parameter
    |
    = help: this function's return type contains a borrowed value, but there
            is no value for it to be borrowed from
help: consider using the `'static` lifetime
    |
471 |     pub fn the_answer() -> &'static Item {
    |                             +++++++

The only allowed possibility is for the returned reference to have a lifetime that’s
guaranteed to never go out of scope. This is indicated by the special lifetime 'static,
which is also the only lifetime that has a specific name rather than an arbitrary place‐
holder name:

pub fn the_answer() -> &'static Item {

The simplest way to get something with the 'static lifetime is to take a reference to
a global variable that’s been marked as static:
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static ANSWER: Item = Item { contents: 42 };

pub fn the_answer() -> &'static Item {
    &ANSWER
}

The Rust compiler guarantees that a static item always has the same address for the
entire duration of the program and never moves. This means that a reference to a
static item has a 'static lifetime, logically enough.

In many cases, a reference to a const item will also be promoted to have a 'static
lifetime, but there are a couple of minor complications to be aware of. The first is that
this promotion doesn’t happen if the type involved has a destructor or interior
mutability:

DOES NOT COMPILE

pub struct Wrapper(pub i32);

impl Drop for Wrapper {
    fn drop(&mut self) {}
}

const ANSWER: Wrapper = Wrapper(42);

pub fn the_answer() -> &'static Wrapper {
    // `Wrapper` has a destructor, so the promotion to the `'static`
    // lifetime for a reference to a constant does not apply.
    &ANSWER
}

error[E0515]: cannot return reference to temporary value
   --> src/main.rs:520:9
    |
520 |         &ANSWER
    |         ^------
    |         ||
    |         |temporary value created here
    |         returns a reference to data owned by the current function

The second potential complication is that only the value of a const is guaranteed to
be the same everywhere; the compiler is allowed to make as many copies as it likes,
wherever the variable is used. If you’re doing nefarious things that rely on the under‐
lying pointer value behind the 'static reference, be aware that multiple memory
locations may be involved.
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There’s one more possible way to get something with a 'static lifetime. The key
promise of 'static is that the lifetime should outlive any other lifetime in the pro‐
gram; a value that’s allocated on the heap but never freed also satisfies this constraint.

A normal heap-allocated Box<T> doesn’t work for this, because there’s no guarantee
(as described in the next section) that the item won’t get dropped along the way:

DOES NOT COMPILE

{
    let boxed = Box::new(Item { contents: 12 });
    let r: &'static Item = &boxed;
    println!("'static item is {:?}", r);
}

error[E0597]: `boxed` does not live long enough
   --> src/main.rs:344:32
    |
343 |     let boxed = Box::new(Item { contents: 12 });
    |         ----- binding `boxed` declared here
344 |     let r: &'static Item = &boxed;
    |            -------------   ^^^^^^ borrowed value does not live long enough
    |            |
    |            type annotation requires that `boxed` is borrowed for `'static`
345 |     println!("'static item is {:?}", r);
346 | }
    | - `boxed` dropped here while still borrowed

However, the Box::leak function converts an owned Box<T> to a mutable reference
to T. There’s no longer an owner for the value, so it can never be dropped—which
satisfies the requirements for the 'static lifetime:

{
    let boxed = Box::new(Item { contents: 12 });

    // `leak()` consumes the `Box<T>` and returns `&mut T`.
    let r: &'static Item = Box::leak(boxed);

    println!("'static item is {:?}", r);
} // `boxed` not dropped here, as it was already moved into `Box::leak()`

// Because `r` is now out of scope, the `Item` is leaked forever.

The inability to drop the item also means that the memory that holds the item can
never be reclaimed using safe Rust, possibly leading to a permanent memory leak.
(Note that leaking memory doesn’t violate Rust’s memory safety guarantees—an item
in memory that you can no longer access is still safe.)
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Lifetimes and the Heap
The discussion so far has concentrated on the lifetimes of items on the stack, whether
function parameters, local variables, or temporaries. But what about items on the
heap?

The key thing to realize about heap values is that every item has an owner (excepting
special cases like the deliberate leaks described in the previous section). For example,
a simple Box<T> puts the T value on the heap, with the owner being the variable hold‐
ing the Box<T>:

{
    let b: Box<Item> = Box::new(Item { contents: 42 });
} // `b` dropped here, so `Item` dropped too.

The owning Box<Item> drops its contents when it goes out of scope, so the lifetime of
the Item on the heap is the same as the lifetime of the Box<Item> variable on the
stack.

The owner of a value on the heap may itself be on the heap rather than the stack, but
then who owns the owner?

{
    let b: Box<Item> = Box::new(Item { contents: 42 });
    let bb: Box<Box<Item>> = Box::new(b); // `b` moved onto heap here
} // `bb` dropped here, so `Box<Item>` dropped too, so `Item` dropped too.

The chain of ownership has to end somewhere, and there are only two possibilities:

• The chain ends at a local variable or function parameter—in which case the life‐
time of everything in the chain is just the lifetime 'a of that stack variable. When
the stack variable goes out of scope, everything in the chain is dropped too.

• The chain ends at a global variable marked as static—in which case the lifetime
of everything in the chain is 'static. The static variable never goes out of
scope, so nothing in the chain ever gets automatically dropped.

As a result, the lifetimes of items on the heap are fundamentally tied to stack
lifetimes.

Lifetimes in Data Structures
The earlier section on the algebra of lifetimes concentrated on inputs and outputs for
functions, but there are similar concerns when references are stored in data
structures.

If we try to sneak a reference into a data structure without mentioning an associated
lifetime, the compiler brings us up sharply:
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DOES NOT COMPILE

pub struct ReferenceHolder {
    pub index: usize,
    pub item: &Item,
}

error[E0106]: missing lifetime specifier
   --> src/main.rs:548:19
    |
548 |         pub item: &Item,
    |                   ^ expected named lifetime parameter
    |
help: consider introducing a named lifetime parameter
    |
546 ~     pub struct ReferenceHolder<'a> {
547 |         pub index: usize,
548 ~         pub item: &'a Item,
    |

As usual, the compiler error message tells us what to do. The first part is simple
enough: give the reference type an explicit lifetime name 'a, because there are no life‐
time elision rules when using references in data structures.

The second part is less obvious and has deeper consequences: the data structure itself
has to have a lifetime parameter <'a> that matches the lifetime of the reference con‐
tained within it:

// Lifetime parameter required due to field with reference.
pub struct ReferenceHolder<'a> {
    pub index: usize,
    pub item: &'a Item,
}

The lifetime parameter for the data structure is infectious: any containing data struc‐
ture that uses the type also has to acquire a lifetime parameter:

// Lifetime parameter required due to field that is of a
// type that has a lifetime parameter.
pub struct RefHolderHolder<'a> {
    pub inner: ReferenceHolder<'a>,
}

The need for a lifetime parameter also applies if the data structure contains slice
types, as these are again references to borrowed data.

If a data structure contains multiple fields that have associated lifetimes, then you
have to choose what combination of lifetimes is appropriate. An example that finds
common substrings within a pair of strings is a good candidate to have independent
lifetimes:
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/// Locations of a substring that is present in
/// both of a pair of strings.
pub struct LargestCommonSubstring<'a, 'b> {
    pub left: &'a str,
    pub right: &'b str,
}

/// Find the largest substring present in both `left`
/// and `right`.
pub fn find_common<'a, 'b>(
    left: &'a str,
    right: &'b str,
) -> Option<LargestCommonSubstring<'a, 'b>> {
    // ...
}

whereas a data structure that references multiple places within the same string would
have a common lifetime:

/// First two instances of a substring that is repeated
/// within a string.
pub struct RepeatedSubstring<'a> {
    pub first: &'a str,
    pub second: &'a str,
}

/// Find the first repeated substring present in `s`.
pub fn find_repeat<'a>(s: &'a str) -> Option<RepeatedSubstring<'a>> {
    // ...
}

The propagation of lifetime parameters makes sense: anything that contains a refer‐
ence, no matter how deeply nested, is valid only for the lifetime of the item referred
to. If that item is moved or dropped, then the whole chain of data structures is no
longer valid.

However, this also means that data structures involving references are harder to use—
the owner of the data structure has to ensure that the lifetimes all line up. As a result,
prefer data structures that own their contents where possible, particularly if the code
doesn’t need to be highly optimized (Item 20). Where that’s not possible, the various
smart pointer types (e.g., Rc) described in Item 8 can help untangle the lifetime
constraints.

Anonymous Lifetimes
When it’s not possible to stick to data structures that own their contents, the data
structure will necessarily end up with a lifetime parameter, as described in the previ‐
ous section. This can create a slightly unfortunate interaction with the lifetime elision
rules described earlier in the Item.
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For example, consider a function that returns a data structure with a lifetime parame‐
ter. The fully explicit signature for this function makes the lifetimes involved clear:

pub fn find_one_item<'a>(items: &'a [Item]) -> ReferenceHolder<'a> {
    // ...
}

However, the same signature with lifetimes elided can be a little misleading:

pub fn find_one_item(items: &[Item]) -> ReferenceHolder {
    // ...
}

Because the lifetime parameter for the return type is elided, a human reading the
code doesn’t get much of a hint that lifetimes are involved.

The anonymous lifetime '_ allows you to mark an elided lifetime as being present,
without having to fully restore all of the lifetime names:

pub fn find_one_item(items: &[Item]) -> ReferenceHolder<'_> {
    // ...
}

Roughly speaking, the '_ marker asks the compiler to invent a unique lifetime name
for us, which we can use in situations where we never need to use the name else‐
where.

That means it’s also useful for other lifetime elision scenarios. For example, the decla‐
ration for the fmt method of the Debug trait uses the anonymous lifetime to indicate
that the Formatter instance has a different lifetime than &self, but it’s not important
what that lifetime’s name is:

pub trait Debug {
    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>;
}

Things to Remember
• All Rust references have an associated lifetime, indicated by a lifetime label (e.g.,
'a). The lifetime labels for function parameters and return values can be elided in
some common cases (but are still present under the covers).

• Any data structure that (transitively) includes a reference has an associated life‐
time parameter; as a result, it’s often easier to work with data structures that own
their contents.

• The 'static lifetime is used for references to items that are guaranteed never to
go out of scope, such as global data or items on the heap that have been explicitly
leaked.
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2 Note that all bets are off with expressions like m!(value) that involve a macro (Item 28), because that can
expand to arbitrary code.

• Lifetime labels can be used only to indicate that lifetimes are the “same,” which
means that the output lifetime is contained within the input lifetime(s).

• The anonymous lifetime label '_ can be used in places where a specific lifetime
label is not needed.

Item 15: Understand the borrow checker
Values in Rust have an owner, but that owner can lend the values out to other places
in the code. This borrowing mechanism involves the creation and use of references,
subject to rules policed by the borrow checker—the subject of this Item.

Under the covers, Rust’s references use the same kind of pointer values (Item 8) that
are so prevalent in C or C++ code but are girded with rules and restrictions to make
sure that the sins of C/C++ are avoided. As a quick comparison:

• Like a C/C++ pointer, a Rust reference is created with an ampersand: &value.
• Like a C++ reference, a Rust reference can never be nullptr.
• Like a C/C++ pointer or reference, a Rust reference can be modified after cre‐

ation to refer to something different.
• Unlike C++, producing a reference from a value always involves an explicit (&)

conversion—if you see code like f(value), you know that f is receiving owner‐
ship of the value. (However, it may be ownership of a copy of the item, if the
value’s type implements Copy—see Item 10.)

• Unlike C/C++, the mutability of a newly created reference is always explicit
(&mut). If you see code like f(&value), you know that value won’t be modified
(i.e., is const in C/C++ terminology). Only expressions like f(&mut value) have
the potential to change the contents of value.2

The most important difference between a C/C++ pointer and a Rust reference is indi‐
cated by the term borrow: you can take a reference (pointer) to an item, but you can’t
keep that reference forever. In particular, you can’t keep it longer than the lifetime of
the underlying item, as tracked by the compiler and explored in Item 14.

These restrictions on the use of references enable Rust to make its memory safety
guarantees, but they also mean that you have to accept the cognitive costs of the bor‐
row rules, and accept that it will change how you design your software—particularly
its data structures.
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3 The compiler’s suggestion doesn’t help here, because item is needed on the subsequent line.

This Item starts by describing what Rust references can do, and the borrow checker’s
rules for using them. The rest of the Item focuses on dealing with the consequences of
those rules: how to refactor, rework, and redesign your code so that you can win
fights against the borrow checker.

Access Control
There are three ways to access the contents of a Rust item: via the item’s owner (item),
a reference (&item), or a mutable reference (&mut item). Each of these ways of access‐
ing the item comes with different powers over the item. Putting things roughly in
terms of the CRUD (create/read/update/delete) model for storage (using Rust’s drop
terminology in place of delete):

• The owner of an item gets to create it, read from it, update it, and drop it.
• A mutable reference can be used to read from the underlying item and update it.
• A (normal) reference can be used only to read from the underlying item.

There’s an important Rust-specific aspect to these data access rules: only the item’s
owner can move the item. This makes sense if you think of a move as being some
combination of creating (in the new location) and dropping the item’s memory (at the
old location).

This can lead to some oddities for code that has a mutable reference to an item. For
example, it’s OK to overwrite an Option:

/// Some data structure used by the code.
#[derive(Debug)]
pub struct Item {
    pub contents: i64,
}

/// Replace the content of `item` with `val`.
pub fn replace(item: &mut Option<Item>, val: Item) {
    *item = Some(val);
}

but a modification to also return the previous value falls foul of the move restriction:3
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DOES NOT COMPILE

/// Replace the content of `item` with `val`, returning the previous
/// contents.
pub fn replace(item: &mut Option<Item>, val: Item) -> Option<Item> {
    let previous = *item; // move out
    *item = Some(val); // replace
    previous
}

error[E0507]: cannot move out of `*item` which is behind a mutable reference
  --> src/main.rs:34:24
   |
34 |         let previous = *item; // move out
   |                        ^^^^^ move occurs because `*item` has type
   |                              `Option<inner::Item>`, which does not
   |                              implement the `Copy` trait
   |
help: consider removing the dereference here
   |
34 -         let previous = *item; // move out
34 +         let previous = item; // move out
   |

Although it’s valid to read from a mutable reference, this code is attempting to move
the value out, just prior to replacing the moved value with a new value—in an
attempt to avoid making a copy of the original value. The borrow checker has to be
conservative and notices that there’s a moment between the two lines when the muta‐
ble reference isn’t referring to a valid value.

As humans, we can see that this combined operation—extracting the old value and
replacing it with a new value—is both safe and useful, so the standard library pro‐
vides the std::mem::replace function to perform it. Under the covers, replace uses
unsafe (as per Item 16) to perform the swap in one go:

/// Replace the content of `item` with `val`, returning the previous
/// contents.
pub fn replace(item: &mut Option<Item>, val: Item) -> Option<Item> {
    std::mem::replace(item, Some(val)) // returns previous value
}

For Option types in particular, this is a sufficiently common pattern that there is also
a replace method on Option itself:

/// Replace the content of `item` with `val`, returning the previous
/// contents.
pub fn replace(item: &mut Option<Item>, val: Item) -> Option<Item> {
    item.replace(val) // returns previous value
}
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Borrow Rules
There are two key rules to remember when borrowing references in Rust.

The first rule is that the scope of any reference must be smaller than the lifetime of
the item that it refers to. Lifetimes are explored in detail in Item 14, but it’s worth not‐
ing that the compiler has special behavior for reference lifetimes; the non-lexical life‐
times feature allows reference lifetimes to be shrunk so they end at the point of last
use, rather than the enclosing block.

The second rule for borrowing references is that, in addition to the owner of an item,
there can be either of the following:

• Any number of immutable references to the item
• A single mutable reference to the item

However, there can’t be both (at the same point in the code).

So a function that takes multiple immutable references can be fed references to the
same item:

/// Indicate whether both arguments are zero.
fn both_zero(left: &Item, right: &Item) -> bool {
    left.contents == 0 && right.contents == 0
}

let item = Item { contents: 0 };
assert!(both_zero(&item, &item));

but one that takes mutable references cannot:

DOES NOT COMPILE

/// Zero out the contents of both arguments.
fn zero_both(left: &mut Item, right: &mut Item) {
    left.contents = 0;
    right.contents = 0;
}

let mut item = Item { contents: 42 };
zero_both(&mut item, &mut item);

error[E0499]: cannot borrow `item` as mutable more than once at a time
   --> src/main.rs:131:26
    |
131 |     zero_both(&mut item, &mut item);
    |     --------- ---------  ^^^^^^^^^ second mutable borrow occurs here
    |     |         |
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    |     |         first mutable borrow occurs here
    |     first borrow later used by call

The same restriction is true for a function that uses a mixture of mutable and immut‐
able references:

DOES NOT COMPILE

/// Set the contents of `left` to the contents of `right`.
fn copy_contents(left: &mut Item, right: &Item) {
    left.contents = right.contents;
}

let mut item = Item { contents: 42 };
copy_contents(&mut item, &item);

error[E0502]: cannot borrow `item` as immutable because it is also borrowed
              as mutable
   --> src/main.rs:159:30
    |
159 |     copy_contents(&mut item, &item);
    |     ------------- ---------  ^^^^^ immutable borrow occurs here
    |     |             |
    |     |             mutable borrow occurs here
    |     mutable borrow later used by call

The borrowing rules allow the compiler to make better decisions around aliasing:
tracking when two different pointers may or may not refer to the same underlying
item in memory. If the compiler can be sure (as in Rust) that the memory location
pointed to by a collection of immutable references cannot be altered via an aliased
mutable reference, then it can generate code that has the following advantages:

It’s better optimized
Values can be, for example, cached in registers, secure in the knowledge that the
underlying memory contents will not change in the meantime.

It’s safer
Data races arising from unsynchronized access to memory between threads
(Item 17) are not possible.

Owner Operations
One important consequence of the rules around the existence of references is that
they also affect what operations can be performed by the owner of the item. One way
to help understand this is to imagine that operations involving the owner are per‐
formed by creating and using references under the covers.

Item 15: Understand the borrow checker | 127

https://en.wikipedia.org/wiki/Aliasing_(computing)


For example, an attempt to update the item via its owner is equivalent to making an
ephemeral mutable reference and then updating the item via that reference. If
another reference already exists, this notional second mutable reference can’t be
created:

DOES NOT COMPILE

let mut item = Item { contents: 42 };
let r = &item;
item.contents = 0;
// ^^^ Changing the item is roughly equivalent to:
//   (&mut item).contents = 0;
println!("reference to item is {:?}", r);

error[E0506]: cannot assign to `item.contents` because it is borrowed
   --> src/main.rs:200:5
    |
199 |     let r = &item;
    |             ----- `item.contents` is borrowed here
200 |     item.contents = 0;
    |     ^^^^^^^^^^^^^^^^^ `item.contents` is assigned to here but it was
    |                       already borrowed
...
203 |     println!("reference to item is {:?}", r);
    |                                           - borrow later used here

On the other hand, because multiple immutable references are allowed, it’s OK for the
owner to read from the item while there are immutable references in existence:

let item = Item { contents: 42 };
let r = &item;
let contents = item.contents;
// ^^^ Reading from the item is roughly equivalent to:
//   let contents = (&item).contents;
println!("reference to item is {:?}", r);

but not if there is a mutable reference:

DOES NOT COMPILE

let mut item = Item { contents: 42 };
let r = &mut item;
let contents = item.contents; // i64 implements `Copy`
r.contents = 0;

error[E0503]: cannot use `item.contents` because it was mutably borrowed
   --> src/main.rs:231:20
    |
230 |     let r = &mut item;
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    |             --------- `item` is borrowed here
231 |     let contents = item.contents; // i64 implements `Copy`
    |                    ^^^^^^^^^^^^^ use of borrowed `item`
232 |     r.contents = 0;
    |     -------------- borrow later used here

Finally, the existence of any sort of active reference prevents the owner of the item
from moving or dropping the item, exactly because this would mean that the refer‐
ence now refers to an invalid item:

DOES NOT COMPILE

let item = Item { contents: 42 };
let r = &item;
let new_item = item; // move
println!("reference to item is {:?}", r);

error[E0505]: cannot move out of `item` because it is borrowed
   --> src/main.rs:170:20
    |
168 |     let item = Item { contents: 42 };
    |         ---- binding `item` declared here
169 |     let r = &item;
    |             ----- borrow of `item` occurs here
170 |     let new_item = item; // move
    |                    ^^^^ move out of `item` occurs here
171 |     println!("reference to item is {:?}", r);
    |                                           - borrow later used here

This is a scenario where the non-lexical lifetime feature described in Item 14 is partic‐
ularly helpful, because (roughly speaking) it terminates the lifetime of a reference at
the point where the reference is last used, rather than at the end of the enclosing
scope. Moving the final use of the reference up before the move happens means that
the compilation error evaporates:

let item = Item { contents: 42 };
let r = &item;
println!("reference to item is {:?}", r);

// Reference `r` is still in scope but has no further use, so it's
// as if the reference has already been dropped.
let new_item = item; // move works OK

Winning Fights Against the Borrow Checker
Newcomers to Rust (and even more experienced folk!) can often feel that they are
spending time fighting against the borrow checker. What kinds of things can help you
win these battles?
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Local code refactoring
The first tactic is to pay attention to the compiler’s error messages, because the Rust
developers have put a lot of effort into making them as helpful as possible:

DOES NOT COMPILE

/// If `needle` is present in `haystack`, return a slice containing it.
pub fn find<'a, 'b>(haystack: &'a str, needle: &'b str) -> Option<&'a str> {
    haystack
        .find(needle)
        .map(|i| &haystack[i..i + needle.len()])
}
// ...

let found = find(&format!("{} to search", "Text"), "ex");
if let Some(text) = found {
    println!("Found '{text}'!");
}

error[E0716]: temporary value dropped while borrowed
   --> src/main.rs:353:23
    |
353 | let found = find(&format!("{} to search", "Text"), "ex");
    |                   ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^       - temporary value
    |                   |                 is freed at the end of this statement
    |                   |
    |                   creates a temporary value which is freed while still in
    |                   use
354 | if let Some(text) = found {
    |                     ----- borrow later used here
    |
    = note: consider using a `let` binding to create a longer lived value

The first part of the error message is the important part, because it describes what
borrowing rule the compiler thinks you have broken and why. As you encounter
enough of these errors—which you will—you can build up an intuition about the
borrow checker that matches the more theoretical version encapsulated in the previ‐
ously stated rules.

The second part of the error message includes the compiler’s suggestions for how to 
fix the problem, which in this case is simple:

let haystack = format!("{} to search", "Text");
let found = find(&haystack, "ex");
if let Some(text) = found {
    println!("Found '{text}'!");
}
// `found` now references `haystack`, which outlives it
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This is an instance of one of the two simple code tweaks that can help mollify the
borrow checker:

Lifetime extension
Convert a temporary (whose lifetime extends only to the end of the expression)
into a new named local variable (whose lifetime extends to the end of the block)
with a let binding.

Lifetime reduction
Add an additional block { ... } around the use of a reference so that its lifetime
ends at the end of the new block.

The latter is less common, because of the existence of non-lexical lifetimes: the com‐
piler can often figure out that a reference is no longer used, ahead of its official drop
point at the end of the block. However, if you do find yourself repeatedly introducing
an artificial block around similar small chunks of code, consider whether that code
should be encapsulated into a method of its own.

The compiler’s suggested fixes are helpful for simpler problems, but as you write
more sophisticated code, you’re likely to find that the suggestions are no longer useful
and that the explanation of the broken borrowing rule is harder to follow:

DOES NOT COMPILE

let x = Some(Rc::new(RefCell::new(Item { contents: 42 })));

// Call function with signature: `check_item(item: Option<&Item>)`
check_item(x.as_ref().map(|r| r.borrow().deref()));

error[E0515]: cannot return reference to temporary value
   --> src/main.rs:293:35
    |
293 |     check_item(x.as_ref().map(|r| r.borrow().deref()));
    |                                   ----------^^^^^^^^
    |                                   |
    |                                   returns a reference to data owned by the
    |                                       current function
    |                                   temporary value created here

In this situation, it can be helpful to temporarily introduce a sequence of local vari‐
ables, one for each step of a complicated transformation, and each with an explicit
type annotation:

DOES NOT COMPILE

let x: Option<Rc<RefCell<Item>>> =
    Some(Rc::new(RefCell::new(Item { contents: 42 })));
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let x1: Option<&Rc<RefCell<Item>>> = x.as_ref();
let x2: Option<std::cell::Ref<Item>> = x1.map(|r| r.borrow());
let x3: Option<&Item> = x2.map(|r| r.deref());
check_item(x3);

error[E0515]: cannot return reference to function parameter `r`
   --> src/main.rs:305:40
    |
305 |     let x3: Option<&Item> = x2.map(|r| r.deref());
    |                                        ^^^^^^^^^ returns a reference to
    |                                      data owned by the current function

This narrows down the precise conversion that the compiler is complaining about,
which in turn allows the code to be restructured:

let x: Option<Rc<RefCell<Item>>> =
    Some(Rc::new(RefCell::new(Item { contents: 42 })));

let x1: Option<&Rc<RefCell<Item>>> = x.as_ref();
let x2: Option<std::cell::Ref<Item>> = x1.map(|r| r.borrow());
match x2 {
    None => check_item(None),
    Some(r) => {
        let x3: &Item = r.deref();
        check_item(Some(x3));
    }
}

Once the underlying problem is clear and has been fixed, you’re then free to recoa‐
lesce the local variables back together so that you can pretend you got it right all
along:

let x = Some(Rc::new(RefCell::new(Item { contents: 42 })));

match x.as_ref().map(|r| r.borrow()) {
    None => check_item(None),
    Some(r) => check_item(Some(r.deref())),
};

Data structure design
The next tactic that helps for battles against the borrow checker is to design your data
structures with the borrow checker in mind. The panacea is your data structures
owning all of the data that they use, avoiding any use of references and the conse‐
quent propagation of lifetime annotations described in Item 14.

However, that’s not always possible for real-world data structures; any time the inter‐
nal connections of the data structure form a graph that’s more interconnected than a
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tree pattern (a Root that owns multiple Branches, each of which owns multiple Leafs,
etc.), then simple single-ownership isn’t possible.

To take a simple example, imagine a simple register of guest details recorded in the
order in which they arrive:

#[derive(Clone, Debug)]
pub struct Guest {
    name: String,
    address: String,
    // ... many other fields
}

/// Local error type, used later.
#[derive(Clone, Debug)]
pub struct Error(String);

/// Register of guests recorded in order of arrival.
#[derive(Default, Debug)]
pub struct GuestRegister(Vec<Guest>);

impl GuestRegister {
    pub fn register(&mut self, guest: Guest) {
        self.0.push(guest)
    }
    pub fn nth(&self, idx: usize) -> Option<&Guest> {
        self.0.get(idx)
    }
}

If this code also needs to be able to efficiently look up guests by arrival and alphabeti‐
cally by name, then there are fundamentally two distinct data structures involved, and
only one of them can own the data.

If the data involved is both small and immutable, then just cloning the data can be a
quick solution:

mod cloned {
    use super::Guest;

    #[derive(Default, Debug)]
    pub struct GuestRegister {
        by_arrival: Vec<Guest>,
        by_name: std::collections::BTreeMap<String, Guest>,
    }

    impl GuestRegister {
        pub fn register(&mut self, guest: Guest) {
            // Requires `Guest` to be `Clone`
            self.by_arrival.push(guest.clone());
            // Not checking for duplicate names to keep this
            // example shorter.
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            self.by_name.insert(guest.name.clone(), guest);
        }
        pub fn named(&self, name: &str) -> Option<&Guest> {
            self.by_name.get(name)
        }
        pub fn nth(&self, idx: usize) -> Option<&Guest> {
            self.by_arrival.get(idx)
        }
    }
}

However, this approach of cloning copes poorly if the data can be modified. For
example, if the address for a Guest needs to be updated, you have to find both ver‐
sions and ensure they stay in sync.

Another possible approach is to add another layer of indirection, treating the
Vec<Guest> as the owner and using an index into that vector for the name lookups:

mod indexed {
    use super::Guest;

    #[derive(Default)]
    pub struct GuestRegister {
        by_arrival: Vec<Guest>,
        // Map from guest name to index into `by_arrival`.
        by_name: std::collections::BTreeMap<String, usize>,
    }

    impl GuestRegister {
        pub fn register(&mut self, guest: Guest) {
            // Not checking for duplicate names to keep this
            // example shorter.
            self.by_name
                .insert(guest.name.clone(), self.by_arrival.len());
            self.by_arrival.push(guest);
        }
        pub fn named(&self, name: &str) -> Option<&Guest> {
            let idx = *self.by_name.get(name)?;
            self.nth(idx)
        }
        pub fn named_mut(&mut self, name: &str) -> Option<&mut Guest> {
            let idx = *self.by_name.get(name)?;
            self.nth_mut(idx)
        }
        pub fn nth(&self, idx: usize) -> Option<&Guest> {
            self.by_arrival.get(idx)
        }
        pub fn nth_mut(&mut self, idx: usize) -> Option<&mut Guest> {
            self.by_arrival.get_mut(idx)
        }
    }
}
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In this approach, each guest is represented by a single Guest item, which allows the
named_mut() method to return a mutable reference to that item. That in turn means
that changing a guest’s address works fine—the (single) Guest is owned by the Vec
and will always be reached that way under the covers:

let new_address = "123 Bigger House St";
// Real code wouldn't assume that "Bob" exists...
ledger.named_mut("Bob").unwrap().address = new_address.to_string();

assert_eq!(ledger.named("Bob").unwrap().address, new_address);

However, if guests can deregister, it’s easy to inadvertently introduce a bug:

UNDESIRED BEHAVIOR

// Deregister the `Guest` at position `idx`, moving up all
// subsequent guests.
pub fn deregister(&mut self, idx: usize) -> Result<(), super::Error> {
    if idx >= self.by_arrival.len() {
        return Err(super::Error::new("out of bounds"));
    }
    self.by_arrival.remove(idx);

    // Oops, forgot to update `by_name`.

    Ok(())
}

Now that the Vec can be shuffled, the by_name indexes into it are effectively acting
like pointers, and we’ve reintroduced a world where a bug can lead those “pointers” to
point to nothing (beyond the Vec bounds) or to point to incorrect data:

UNDESIRED BEHAVIOR

ledger.register(alice);
ledger.register(bob);
ledger.register(charlie);
println!("Register starts as: {ledger:?}");

ledger.deregister(0).unwrap();
println!("Register after deregister(0): {ledger:?}");

let also_alice = ledger.named("Alice");
// Alice still has index 0, which is now Bob
println!("Alice is {also_alice:?}");

let also_bob = ledger.named("Bob");
// Bob still has index 1, which is now Charlie
println!("Bob is {also_bob:?}");
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let also_charlie = ledger.named("Charlie");
// Charlie still has index 2, which is now beyond the Vec
println!("Charlie is {also_charlie:?}");

The code here uses a custom Debug implementation (not shown), in order to reduce
the size of the output; this truncated output is as follows:

Register starts as: {
  by_arrival: [{n: 'Alice', ...}, {n: 'Bob', ...}, {n: 'Charlie', ...}]
  by_name: {"Alice": 0, "Bob": 1, "Charlie": 2}
}
Register after deregister(0): {
  by_arrival: [{n: 'Bob', ...}, {n: 'Charlie', ...}]
  by_name: {"Alice": 0, "Bob": 1, "Charlie": 2}
}
Alice is Some(Guest { name: "Bob", address: "234 Bobton" })
Bob is Some(Guest { name: "Charlie", address: "345 Charlieland" })
Charlie is None

The preceding example showed a bug in the deregister code, but even after that bug
is fixed, there’s nothing to prevent a caller from hanging onto an index value and
using it with nth()—getting unexpected or invalid results.

The core problem is that the two data structures need to be kept in sync. A better
approach for handling this is to use Rust’s smart pointers instead (Item 8). Shifting to
a combination of Rc and RefCell avoids the invalidation problems of using indices as
pseudo-pointers. Updating the example—but keeping the bug in it—gives the
following:

UNDESIRED BEHAVIOR

mod rc {
    use super::{Error, Guest};
    use std::{cell::RefCell, rc::Rc};

    #[derive(Default)]
    pub struct GuestRegister {
        by_arrival: Vec<Rc<RefCell<Guest>>>,
        by_name: std::collections::BTreeMap<String, Rc<RefCell<Guest>>>,
    }

    impl GuestRegister {
        pub fn register(&mut self, guest: Guest) {
            let name = guest.name.clone();
            let guest = Rc::new(RefCell::new(guest));
            self.by_arrival.push(guest.clone());
            self.by_name.insert(name, guest);
        }
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        pub fn deregister(&mut self, idx: usize) -> Result<(), Error> {
            if idx >= self.by_arrival.len() {
                return Err(Error::new("out of bounds"));
            }
            self.by_arrival.remove(idx);

            // Oops, still forgot to update `by_name`.

            Ok(())
        }
        // ...
    }
}

Register starts as: {
  by_arrival: [{n: 'Alice', ...}, {n: 'Bob', ...}, {n: 'Charlie', ...}]
  by_name: [("Alice", {n: 'Alice', ...}), ("Bob", {n: 'Bob', ...}),
            ("Charlie", {n: 'Charlie', ...})]
}
Register after deregister(0): {
  by_arrival: [{n: 'Bob', ...}, {n: 'Charlie', ...}]
  by_name: [("Alice", {n: 'Alice', ...}), ("Bob", {n: 'Bob', ...}),
            ("Charlie", {n: 'Charlie', ...})]
}
Alice is Some(RefCell { value: Guest { name: "Alice",
                                       address: "123 Aliceville" } })
Bob is Some(RefCell { value: Guest { name: "Bob",
                                     address: "234 Bobton" } })
Charlie is Some(RefCell { value: Guest { name: "Charlie",
                                         address: "345 Charlieland" } })

The output no longer has mismatched names, but a lingering entry for Alice remains
until we fix the bug by ensuring that the two collections stay in sync:

pub fn deregister(&mut self, idx: usize) -> Result<(), Error> {
    if idx >= self.by_arrival.len() {
        return Err(Error::new("out of bounds"));
    }
    let guest: Rc<RefCell<Guest>> = self.by_arrival.remove(idx);
    self.by_name.remove(&guest.borrow().name);
    Ok(())
}

Register after deregister(0): {
  by_arrival: [{n: 'Bob', ...}, {n: 'Charlie', ...}]
  by_name: [("Bob", {n: 'Bob', ...}), ("Charlie", {n: 'Charlie', ...})]
}
Alice is None
Bob is Some(RefCell { value: Guest { name: "Bob",
                                     address: "234 Bobton" } })
Charlie is Some(RefCell { value: Guest { name: "Charlie",
                                         address: "345 Charlieland" } })
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Smart pointers
The final variation of the previous section is an example of a more general approach:
use Rust’s smart pointers for interconnected data structures.

Item 8 described the most common smart pointer types provided by Rust’s standard
library:

• Rc allows shared ownership, with multiple things referring to the same item. Rc is
often combined with RefCell.

• RefCell allows interior mutability so that internal state can be modified without
needing a mutable reference. This comes at the cost of moving borrow checks
from compile time to runtime.

• Arc is the multithreading equivalent to Rc.
• Mutex (and RwLock) allows interior mutability in a multithreading environment,

roughly equivalent to RefCell.
• Cell allows interior mutability for Copy types.

For programmers who are adapting from C++ to Rust, the most common tool to
reach for is Rc<T> (and its thread-safe cousin Arc<T>), often combined with RefCell
(or the thread-safe alternative Mutex). A naive translation of shared pointers (or even
std::shared_ptrs) to Rc<RefCell<T>> instances will generally give something that
works in Rust without too much complaint from the borrow checker.

However, this approach means that you miss out on some of the protections that Rust
gives you. In particular, situations where the same item is mutably borrowed (via bor
row_mut()) while another reference exists result in a runtime panic! rather than a
compile-time error.

For example, one pattern that breaks the one-way flow of ownership in tree-like data
structures is when there’s an “owner” pointer back from an item to the thing that
owns it, as shown in Figure 3-3. These owner links are useful for moving around the
data structure; for example, adding a new sibling to a Leaf needs to involve the own‐
ing Branch.
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Figure 3-3. Tree data structure layout

Implementing this pattern in Rust can make use of Rc<T>’s more tentative partner,
Weak<T>:

use std::{
    cell::RefCell,
    rc::{Rc, Weak},
};

// Use a newtype for each identifier type.
struct TreeId(String);
struct BranchId(String);
struct LeafId(String);

struct Tree {
    id: TreeId,
    branches: Vec<Rc<RefCell<Branch>>>,
}

struct Branch {
    id: BranchId,
    leaves: Vec<Rc<RefCell<Leaf>>>,
    owner: Option<Weak<RefCell<Tree>>>,
}

struct Leaf {
    id: LeafId,
    owner: Option<Weak<RefCell<Branch>>>,
}

The Weak reference doesn’t increment the main refcount and so has to explicitly check
whether the underlying item has gone away:

impl Branch {
    fn add_leaf(branch: Rc<RefCell<Branch>>, mut leaf: Leaf) {
        leaf.owner = Some(Rc::downgrade(&branch));
        branch.borrow_mut().leaves.push(Rc::new(RefCell::new(leaf)));
    }

Item 15: Understand the borrow checker | 139

https://doc.rust-lang.org/std/rc/struct.Weak.html


4 Cow stands for clone-on-write; a copy of the underlying data is made only if a change (write) needs to be made
to it.

    fn location(&self) -> String {
        match &self.owner {
            None => format!("<unowned>.{}", self.id.0),
            Some(owner) => {
                // Upgrade weak owner pointer.
                let tree = owner.upgrade().expect("owner gone!");
                format!("{}.{}", tree.borrow().id.0, self.id.0)
            }
        }
    }
}

If Rust’s smart pointers don’t seem to cover what’s needed for your data structures,
there’s always the final fallback of writing unsafe code that uses raw (and decidedly
un-smart) pointers. However, as per Item 16, this should very much be a last resort—
someone else might have already implemented the semantics you want, inside a safe
interface, and if you search the standard library and crates.io, you might find just
the tool for the job.

For example, imagine that you have a function that sometimes returns a reference to
one of its inputs but sometimes needs to return some freshly allocated data. In line
with Item 1, an enum that encodes these two possibilities is the natural way to express
this in the type system, and you could then implement various pointer traits
described in Item 8. But you don’t have to: the standard library already includes the
std::borrow::Cow type that covers exactly this scenario once you know it exists.4

Self-referential data structures
One particular battle with the borrow checker always stymies programmers arriving
at Rust from other languages: attempting to create self-referential data structures,
which contain a mixture of owned data together with references to within that owned
data:

DOES NOT COMPILE

struct SelfRef {
    text: String,
    // The slice of `text` that holds the title text.
    title: Option<&str>,
}
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5 Dealing with async code is beyond the scope of this book; to understand more about its need for self-
referential data structures, see Chapter 8 of Rust for Rustaceans by Jon Gjengset (No Starch Press).

At a syntactic level, this code won’t compile because it doesn’t comply with the life‐
time rules described in Item 14: the reference needs a lifetime annotation, and that
means the containing data structure would also need a lifetime parameter. But a life‐
time would be for something external to this SelfRef struct, which is not the intent:
the data being referenced is internal to the struct.

It’s worth thinking about the reason for this restriction at a more semantic level. Data
structures in Rust can move: from the stack to the heap, from the heap to the stack,
and from one place to another. If that happens, the “interior” title pointer would no
longer be valid, and there’s no way to keep it in sync.

A simple alternative for this case is to use the indexing approach explored earlier: a
range of offsets into the text is not invalidated by a move and is invisible to the bor‐
row checker because it doesn’t involve references:

struct SelfRefIdx {
    text: String,
    // Indices into `text` where the title text is.
    title: Option<std::ops::Range<usize>>,
}

However, this indexing approach works only for simple examples and has the same
drawbacks as noted previously: the index itself becomes a pseudo-pointer that can
become out of sync or even refer to ranges of the text that no longer exist.

A more general version of the self-reference problem turns up when the compiler
deals with async code.5 Roughly speaking, the compiler bundles up a pending chunk
of async code into a closure, which holds both the code and any captured parts of the
environment that the code works with (as described in Item 2). This captured envi‐
ronment can include both values and references to those values. That’s inherently a
self-referential data structure, and so async support was a prime motivation for the
Pin type in the standard library. This pointer type “pins” its value in place, forcing the
value to remain at the same location in memory, thus ensuring that internal self-
references remain valid.

So Pin is available as a possibility for self-referential types, but it’s tricky to use cor‐
rectly—be sure to read the official docs.

Where possible, avoid self-referential data structures, or try to find library crates that
encapsulate the difficulties for you (e.g., ouroborous).
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Things to Remember
• Rust’s references are borrowed, indicating that they cannot be held forever.
• The borrow checker allows multiple immutable references or a single mutable

reference to an item but not both. The lifetime of a reference stops at the point of
last use, rather than at the end of the enclosing scope, due to non-lexical life‐
times.

• Errors from the borrow checker can be dealt with in various ways:
— Adding an additional { ... } scope can reduce the extent of a value’s lifetime.
— Adding a named local variable for a value extends the value’s lifetime to the

end of the scope.
— Temporarily adding multiple local variables can help narrow down what the

borrow checker is complaining about.
• Rust’s smart pointer types provide ways around the borrow checker’s rules and so

are useful for interconnected data structures.
• However, self-referential data structures remain awkward to deal with in Rust.

Item 16: Avoid writing unsafe code
The memory safety guarantees—without runtime overhead—of Rust are its unique
selling point; it is the Rust language feature that is not found in any other mainstream
language. These guarantees come at a cost: writing Rust requires you to reorganize
your code to mollify the borrow checker (Item 15) and to precisely specify the refer‐
ence types that you use (Item 8).

Unsafe Rust is a superset of the Rust language that weakens some of these
restrictions—and the corresponding guarantees. Prefixing a block with the unsafe
keyword switches that block into unsafe mode, which allows things that are not sup‐
ported in normal Rust. In particular, it allows the use of raw pointers that work more
like old-style C pointers. These pointers are not subject to the borrowing rules, and
the programmer is responsible for ensuring that they still point to valid memory
whenever they’re dereferenced.

So at a superficial level, the advice of this Item is trivial: why move to Rust if you’re
just going to write C code in Rust? However, there are occasions where unsafe code
is absolutely required: for low-level library code or for when your Rust code has to
interface with code in other languages (Item 34).

The wording of this Item is quite precise, though: avoid writing unsafe code. The
emphasis is on the “writing,” because much of the time, the unsafe code you’re likely
to need has already been written for you.
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6 In practice, most of this std functionality is actually provided by core and so is available to no_std code as
described in Item 33.

The Rust standard libraries contain a lot of unsafe code; a quick search finds around
1,000 uses of unsafe in the alloc library, 1,500 in core, and a further 2,000 in std.
This code has been written by experts and is battle-hardened by use in many thou‐
sands of Rust codebases.

Some of this unsafe code happens under the covers in standard library features that
we’ve already covered:

• The smart pointer types—Rc, RefCell, Arc, and friends—described in Item 8 use
unsafe code (often raw pointers) internally to be able to present their particular
semantics to their users.

• The synchronization primitives—Mutex, RwLock, and associated guards—from
Item 17 use unsafe OS-specific code internally. Rust Atomics and Locks by Mara
Bos (O’Reilly) is recommended if you want to understand the subtle details
involved in these primitives.

The standard library also has other functionality covering more advanced features,
implemented with unsafe internally:6

• std::pin::Pin forces an item to not move in memory (Item 15). This allows
self-referential data structures, often a bête noire for new arrivals to Rust.

• std::borrow::Cow provides a clone-on-write smart pointer: the same pointer
can be used for both reading and writing, and a clone of the underlying data hap‐
pens only if and when a write occurs.

• Various functions (take, swap, replace) in std::mem allow items in memory to
be manipulated without falling foul of the borrow checker.

These features may still need a little caution to be used correctly, but the unsafe code
has been encapsulated in a way that removes whole classes of problems.

Moving beyond the standard library, the crates.io ecosystem also includes many
crates that encapsulate unsafe code to provide a frequently used feature:

once_cell

Provides a way to have something like global variables, initialized exactly once.

rand

Provides random number generation, making use of the lower-level underlying
features provided by the operating system and CPU.
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byteorder

Allows raw bytes of data to be converted to and from numbers.

cxx

Allows C++ code and Rust code to interoperate (also mentioned in Item 35).

There are many other examples, but hopefully the general idea is clear. If you want to
do something that doesn’t obviously fit within the constraints of Rust (especially
Items 14 and 15), hunt through the standard library to see if there’s existing function‐
ality that does what you need. If you don’t find what you need, try also hunting
through crates.io. After all, it’s unusual to encounter a unique problem that no one
else has ever faced before.

Of course, there will always be places where unsafe is forced, for example, when you
need to interact with code written in other languages via a foreign function interface
(FFI), as discussed in Item 34. But when it’s necessary, consider writing a wrapper
layer that holds all the unsafe code that’s required so that other programmers can then
follow the advice given in this Item. This also helps to localize problems: when some‐
thing goes wrong, the unsafe wrapper can be the first suspect.

Also, if you’re forced to write unsafe code, pay attention to the warning implied by
the keyword itself: Hic sunt dracones.

• Add safety comments that document the preconditions and invariants that the
unsafe code relies on. Clippy (Item 29) has a warning to remind you about this.

• Minimize the amount of code contained in an unsafe block, to limit the potential
blast radius of a mistake. Consider enabling the unsafe_op_in_unsafe_fn lint so
that explicit unsafe blocks are required when performing unsafe operations,
even when those operations are performed in a function that is unsafe itself.

• Write even more tests (Item 30) than usual.
• Run additional diagnostic tools (Item 31) over the code. In particular, consider

running Miri over your unsafe code—Miri interprets the intermediate level out‐
put from the compiler, that allows it to detect classes of errors that are invisible to
the Rust compiler.

• Think carefully about multithreaded use, particularly if there’s shared state
(Item 17).

Adding the unsafe marker doesn’t mean that no rules apply—it means that you (the
programmer) are now responsible for maintaining Rust’s safety guarantees, rather
than the compiler.
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Item 17: Be wary of shared-state parallelism
Even the most daring forms of sharing are guaranteed safe in Rust.

—Aaron Turon

The official documentation describes Rust as enabling “fearless concurrency”, but this
Item will explore why (sadly) there are still some reasons to be afraid of concurrency,
even in Rust.

This Item is specific to shared-state parallelism: where different threads of execution
communicate with each other by sharing memory. Sharing state between threads gen‐
erally comes with two terrible problems, regardless of the language involved:

Data races
These can lead to corrupted data.

Deadlocks
These can lead to your program grinding to a halt.

Both of these problems are terrible (“causing or likely to cause terror”) because they
can be very hard to debug in practice: the failures occur nondeterministically and are
often more likely to happen under load—which means that they don’t show up in
unit tests, integration tests, or any other sort of test (Item 30), but they do show up in
production.

Rust is a giant step forward, because it completely solves one of these two problems.
However, the other still remains, as we shall see.

Data Races
Let’s start with the good news, by exploring data races and Rust. The precise technical
definition of a data race varies from language to language, but we can summarize the
key components as follows:

A data race is defined to occur when two distinct threads access the same memory
location, under the following conditions:

• At least one of them is a write.

• There is no synchronization mechanism that enforces an ordering on the accesses.

Data races in C++
The basics of this are best illustrated with an example. Consider a data structure that
tracks a bank account:
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UNDESIRED BEHAVIOR

// C++ code.
class BankAccount {
 public:
  BankAccount() : balance_(0) {}

  int64_t balance() const {
    if (balance_ < 0) {
      std::cerr << "** Oh no, gone overdrawn: " << balance_ << "! **\n";
      std::abort();
    }
    return balance_;
  }
  void deposit(uint32_t amount) {
    balance_ += amount;
  }
  bool withdraw(uint32_t amount) {
    if (balance_ < amount) {
      return false;
    }
    // What if another thread changes `balance_` at this point?
    std::this_thread::sleep_for(std::chrono::milliseconds(500));

    balance_ -= amount;
    return true;
  }

 private:
  int64_t balance_;
};

This example is in C++, not Rust, for reasons that will become clear shortly. However,
the same general concepts apply in many other (non-Rust) languages—Java, or Go, or
Python, etc.

This class works fine in a single-threaded setting, but consider a multithreaded 
setting:

BankAccount account;
account.deposit(1000);

// Start a thread that watches for a low balance and tops up the account.
std::thread payer(pay_in, &account);

// Start 3 threads that each try to repeatedly withdraw money.
std::thread taker(take_out, &account);
std::thread taker2(take_out, &account);
std::thread taker3(take_out, &account);
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Here several threads are repeatedly trying to withdraw from the account, and there’s
an additional thread that tops up the account when it runs low:

// Constantly monitor the `account` balance and top it up if low.
void pay_in(BankAccount* account) {
  while (true) {
    if (account->balance() < 200) {
      log("[A] Balance running low, deposit 400");
      account->deposit(400);
    }
    // (The infinite loop with sleeps is just for demonstration/simulation
    // purposes.)
    std::this_thread::sleep_for(std::chrono::milliseconds(5));
  }
}

// Repeatedly try to perform withdrawals from the `account`.
void take_out(BankAccount* account) {
  while (true) {
    if (account->withdraw(100)) {
      log("[B] Withdrew 100, balance now " +
          std::to_string(account->balance()));
    } else {
      log("[B] Failed to withdraw 100");
    }
    std::this_thread::sleep_for(std::chrono::milliseconds(20));
  }
}

Eventually, things will go wrong:

** Oh no, gone overdrawn: -100! **

The problem isn’t hard to spot, particularly with the helpful comment in the with
draw() method: when multiple threads are involved, the value of the balance can
change between the check and the modification. However, real-world bugs of this
sort are much harder to spot—particularly if the compiler is allowed to perform all
kinds of tricks and reorderings of code under the covers (as is the case for C++).

The various sleep calls are included in order to artificially raise the chances of this
bug being hit and thus detected early; when these problems are encountered in the
wild, they’re likely to occur rarely and intermittently—making them very hard to
debug.

The BankAccount class is thread-compatible, which means that it can be used in a
multithreaded environment as long as the users of the class ensure that access to it is
governed by some kind of external synchronization mechanism.
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7 The third category of behavior is thread-hostile: code that’s dangerous in a multithreaded environment even if
all access to it is externally synchronized.

The class can be converted to a thread-safe class—meaning that it is safe to use from
multiple threads—by adding internal synchronization operations:7

// C++ code.
class BankAccount {
 public:
  BankAccount() : balance_(0) {}

  int64_t balance() const {
    // Lock mu_ for all of this scope.
    const std::lock_guard<std::mutex> with_lock(mu_);
    if (balance_ < 0) {
      std::cerr << "** Oh no, gone overdrawn: " << balance_ << " **!\n";
      std::abort();
    }
    return balance_;
  }
  void deposit(uint32_t amount) {
    const std::lock_guard<std::mutex> with_lock(mu_);
    balance_ += amount;
  }
  bool withdraw(uint32_t amount) {
    const std::lock_guard<std::mutex> with_lock(mu_);
    if (balance_ < amount) {
      return false;
    }
    balance_ -= amount;
    return true;
  }

 private:
  mutable std::mutex mu_; // protects balance_
  int64_t balance_;
};

The internal balance_ field is now protected by a mutex mu_: a synchronization
object that ensures that only one thread can successfully hold the mutex at a time. A
caller can acquire the mutex with a call to std::mutex::lock(); the second and sub‐
sequent callers of std::mutex::lock() will block until the original caller invokes
std::mutex::unlock(), and then one of the blocked threads will unblock and pro‐
ceed through std::mutex::lock().

All access to the balance now takes place with the mutex held, ensuring that its value
is consistent between check and modification. The std::lock_guard is also worth
highlighting: it’s an RAII class (see Item 11) that calls lock() on creation and
unlock() on destruction. This ensures that the mutex is unlocked when the scope
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8 The Clang C++ compiler includes a -Wthread-safety option, sometimes known as annotalysis, that allows
data to be annotated with information about which mutexes protect which data, and functions to be annota‐
ted with information about the locks they acquire. This gives compile-time errors when these invariants are
broken, like Rust; however, there is nothing to enforce the use of these annotations in the first place—for
example, when a thread-compatible library is used in a multithreaded environment for the first time.

exits, reducing the chances of making a mistake around balancing manual lock()
and unlock() calls.

However, the thread safety here is still fragile; all it takes is one erroneous modifica‐
tion to the class:

// Add a new C++ method...
void pay_interest(int32_t percent) {
  // ...but forgot about mu_
  int64_t interest = (balance_ * percent) / 100;
  balance_ += interest;
}

and the thread safety has been destroyed.8

Data races in Rust
For a book about Rust, this Item has covered a lot of C++, so consider a straightfor‐
ward translation of this class into Rust:

pub struct BankAccount {
    balance: i64,
}

impl BankAccount {
    pub fn new() -> Self {
        BankAccount { balance: 0 }
    }
    pub fn balance(&self) -> i64 {
        if self.balance < 0 {
            panic!("** Oh no, gone overdrawn: {}", self.balance);
        }
        self.balance
    }
    pub fn deposit(&mut self, amount: i64) {
        self.balance += amount
    }
    pub fn withdraw(&mut self, amount: i64) -> bool {
        if self.balance < amount {
            return false;
        }
        self.balance -= amount;
        true
    }
}
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along with the functions that try to pay into or withdraw from an account forever:

pub fn pay_in(account: &mut BankAccount) {
    loop {
        if account.balance() < 200 {
            println!("[A] Running low, deposit 400");
            account.deposit(400);
        }
        std::thread::sleep(std::time::Duration::from_millis(5));
    }
}

pub fn take_out(account: &mut BankAccount) {
    loop {
        if account.withdraw(100) {
            println!("[B] Withdrew 100, balance now {}", account.balance());
        } else {
            println!("[B] Failed to withdraw 100");
        }
        std::thread::sleep(std::time::Duration::from_millis(20));
    }
}

This works fine in a single-threaded context—even if that thread is not the main
thread:

{
    let mut account = BankAccount::new();
    let _payer = std::thread::spawn(move || pay_in(&mut account));
    // At the end of the scope, the `_payer` thread is detached
    // and is the sole owner of the `BankAccount`.
}

but a naive attempt to use the BankAccount across multiple threads:

DOES NOT COMPILE

{
    let mut account = BankAccount::new();
    let _taker = std::thread::spawn(move || take_out(&mut account));
    let _payer = std::thread::spawn(move || pay_in(&mut account));
}

immediately falls foul of the compiler:

error[E0382]: use of moved value: `account`
   --> src/main.rs:102:41
    |
100 | let mut account = BankAccount::new();
    |     ----------- move occurs because `account` has type
    |                 `broken::BankAccount`, which does not implement the
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    |                 `Copy` trait
101 | let _taker = std::thread::spawn(move || take_out(&mut account));
    |                                 -------               ------- variable
    |                                 |                         moved due to
    |                                 |                         use in closure
    |                                 |
    |                                 value moved into closure here
102 | let _payer = std::thread::spawn(move || pay_in(&mut account));
    |                                 ^^^^^^^             ------- use occurs due
    |                                 |                        to use in closure
    |                                 |
    |                                 value used here after move

The rules of the borrow checker (Item 15) make the problem clear: there are two
mutable references to the same item, one more than is allowed. The rules of the bor‐
row checker are that you can have a single mutable reference to an item, or multiple
(immutable) references, but not both at the same time.

This has a curious resonance with the definition of a data race at the start of this Item:
enforcing that there is a single writer, or multiple readers (but never both), means
that there can be no data races. By enforcing memory safety, Rust gets thread safety
“for free”.

As with C++, some kind of synchronization is needed to make this struct thread-
safe. The most common mechanism is also called Mutex, but the Rust version “wraps”
the protected data rather than being a standalone object (as in C++):

pub struct BankAccount {
    balance: std::sync::Mutex<i64>,
}

The lock() method on this Mutex generic returns a MutexGuard object with RAII
behavior, like C++’s std::lock_guard: the mutex is automatically released at the end
of the scope when the guard is dropped. (In contrast to C++, Rust’s Mutex has no
methods that manually acquire or release the mutex, as they would expose developers
to the danger of forgetting to keep these calls exactly in sync.)

To be more precise, lock() actually returns a Result that holds the MutexGuard, to
cope with the possibility that the Mutex has been poisoned. Poisoning happens if a
thread fails while holding the lock, because this might mean that any mutex-protected
invariants can no longer be relied on. In practice, lock poisoning is sufficiently rare
(and it’s sufficiently desirable that the program terminates when it happens) that it’s
common to just .unwrap() the Result (despite the advice in Item 18).

The MutexGuard object also acts as a proxy for the data that is enclosed by the Mutex,
by implementing the Deref and DerefMut traits (Item 8), allowing it to be used both
for read operations:
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impl BankAccount {
    pub fn balance(&self) -> i64 {
        let balance = *self.balance.lock().unwrap();
        if balance < 0 {
            panic!("** Oh no, gone overdrawn: {}", balance);
        }
        balance
    }
}

and for write operations:

impl BankAccount {
    // Note: no longer needs `&mut self`.
    pub fn deposit(&self, amount: i64) {
        *self.balance.lock().unwrap() += amount
    }
    pub fn withdraw(&self, amount: i64) -> bool {
        let mut balance = self.balance.lock().unwrap();
        if *balance < amount {
            return false;
        }
        *balance -= amount;
        true
    }
}

There’s an interesting detail lurking in the signatures of these methods: although they
are modifying the balance of the BankAccount, the methods now take &self rather
than &mut self. This is inevitable: if multiple threads are going to hold references to
the same BankAccount, by the rules of the borrow checker, those references had better
not be mutable. It’s also another instance of the interior mutability pattern described
in Item 8: borrow checks are effectively moved from compile time to runtime but
now with cross-thread synchronization behavior. If a mutable reference already
exists, an attempt to get a second blocks until the first reference is dropped.

Wrapping up shared state in a Mutex mollifies the borrow checker, but there are still
lifetime issues (Item 14) to fix:

DOES NOT COMPILE

{
    let account = BankAccount::new();
    let taker = std::thread::spawn(|| take_out(&account));
    let payer = std::thread::spawn(|| pay_in(&account));
    // At the end of the scope, `account` is dropped but
    // the `_taker` and `_payer` threads are detached and
    // still hold (immutable) references to `account`.
}
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error[E0373]: closure may outlive the current function, but it borrows `account`
              which is owned by the current function
   --> src/main.rs:206:40
    |
206 |     let taker = std::thread::spawn(|| take_out(&account));
    |                                    ^^           ------- `account` is
    |                                    |                     borrowed here
    |                                    |
    |                                    may outlive borrowed value `account`
    |
note: function requires argument type to outlive `'static`
   --> src/main.rs:206:21
    |
206 |     let taker = std::thread::spawn(|| take_out(&account));
    |                 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
help: to force the closure to take ownership of `account` (and any other
      referenced variables), use the `move` keyword
    |
206 |     let taker = std::thread::spawn(move || take_out(&account));
    |                                    ++++
error[E0373]: closure may outlive the current function, but it borrows `account`
              which is owned by the current function
   --> src/main.rs:207:40
    |
207 |     let payer = std::thread::spawn(|| pay_in(&account));
    |                                    ^^         ------- `account` is
    |                                    |                  borrowed here
    |                                    |
    |                                    may outlive borrowed value `account`
    |
note: function requires argument type to outlive `'static`
   --> src/main.rs:207:21
    |
207 |     let payer = std::thread::spawn(|| pay_in(&account));
    |                 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
help: to force the closure to take ownership of `account` (and any other
      referenced variables), use the `move` keyword
    |
207 |     let payer = std::thread::spawn(move || pay_in(&account));
    |                                    ++++

The error message makes the problem clear: the BankAccount is going to be dropped
at the end of the block, but there are two new threads that have a reference to it and
that may carry on running afterward. (The compiler’s suggestion for how to fix the
problem is less helpful—if the BankAccount item is moved into the first closure, it will
no longer be available for the second closure to receive a reference to it!)

The standard tool for ensuring that an object remains active until all references to it
are gone is a reference-counted pointer, and Rust’s variant of this for multithreaded
use is std::sync::Arc:
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let account = std::sync::Arc::new(BankAccount::new());
account.deposit(1000);

let account2 = account.clone();
let _taker = std::thread::spawn(move || take_out(&account2));

let account3 = account.clone();
let _payer = std::thread::spawn(move || pay_in(&account3));

Each thread gets its own copy of the reference-counting pointer, moved into the clo‐
sure, and the underlying BankAccount will be dropped only when the refcount drops
to zero. This combination of Arc<Mutex<T>> is common in Rust programs that use
shared-state parallelism.

Stepping back from the technical details, observe that Rust has entirely avoided the
problem of data races that plagues multithreaded programming in other languages.
Of course, this good news is restricted to safe Rust—unsafe code (Item 16) and FFI
boundaries in particular (Item 34) may not be data-race free—but it’s still a remarka‐
ble phenomenon.

Standard marker traits
There are two standard traits that affect the use of Rust objects between threads. Both
of these traits are marker traits (Item 10) that have no associated methods but have
special significance to the compiler in multithreaded scenarios:

• The Send trait indicates that items of a type are safe to transfer between threads;
ownership of an item of this type can be passed from one thread to another.

• The Sync trait indicates that items of a type can be safely accessed by multiple
threads, subject to the rules of the borrow checker.

Another way of saying this is to observe that Send means T can be transferred
between threads, and Sync means that &T can be transferred between threads.

Both of these traits are auto traits: the compiler automatically derives them for new
types, as long as the constituent parts of the type also implement Send/Sync.

The majority of safe types implement Send and Sync, so much so that it’s clearer to
understand what types don’t implement these traits (written in the form impl !Sync
for Type).

A type that doesn’t implement Send is one that can be used only in a single thread.
The canonical example of this is the unsynchronized reference-counting pointer
Rc<T> (Item 8). The implementation of this type explicitly assumes single-threaded
use (for speed); there is no attempt at synchronizing the internal refcount for multi‐
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threaded use. As such, transferring an Rc<T> between threads is not allowed; use
Arc<T> (with its additional synchronization overhead) for this case.

A type that doesn’t implement Sync is one that’s not safe to use from multiple threads
via non-mut references (as the borrow checker will ensure there are never multiple
mut references). The canonical examples of this are the types that provide interior
mutability in an unsynchronized way, such as Cell<T> and RefCell<T>. Use
Mutex<T> or RwLock<T> to provide interior mutability in a multithreaded environ‐
ment.

Raw pointer types like *const T and *mut T also implement neither Send nor Sync;
see Items 16 and 34.

Deadlocks
Now for the bad news. Although Rust has solved the problem of data races (as previ‐
ously described), it is still susceptible to the second terrible problem for multithreaded
code with shared state: deadlocks.

Consider a simplified multiple-player game server, implemented as a multithreaded
application to service many players in parallel. Two core data structures might be a
collection of players, indexed by username, and a collection of games in progress,
indexed by some unique identifier:

struct GameServer {
    // Map player name to player info.
    players: Mutex<HashMap<String, Player>>,
    // Current games, indexed by unique game ID.
    games: Mutex<HashMap<GameId, Game>>,
}

Both of these data structures are Mutex-protected and so are safe from data races.
However, code that manipulates both data structures opens up potential problems. A
single interaction between the two might work fine:

impl GameServer {
    /// Add a new player and join them into a current game.
    fn add_and_join(&self, username: &str, info: Player) -> Option<GameId> {
        // Add the new player.
        let mut players = self.players.lock().unwrap();
        players.insert(username.to_owned(), info);

        // Find a game with available space for them to join.
        let mut games = self.games.lock().unwrap();
        for (id, game) in games.iter_mut() {
            if game.add_player(username) {
                return Some(id.clone());
            }
        }
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        None
    }
}

However, a second interaction between the two independently locked data structures
is where problems start:

impl GameServer {
    /// Ban the player identified by `username`, removing them from
    /// any current games.
    fn ban_player(&self, username: &str) {
        // Find all games that the user is in and remove them.
        let mut games = self.games.lock().unwrap();
        games
            .iter_mut()
            .filter(|(_id, g)| g.has_player(username))
            .for_each(|(_id, g)| g.remove_player(username));

        // Wipe them from the user list.
        let mut players = self.players.lock().unwrap();
        players.remove(username);
    }
}

To understand the problem, imagine two separate threads using these two methods,
where their execution happens in the order shown in Table 3-1.

Table 3-1. Thread deadlock sequence

Thread 1 Thread 2

Enters add_and_join() and immediately
acquires the players lock.

Enters ban_player() and immediately
acquires the games lock.

Tries to acquire the games lock; this is held 
by thread 2, so thread 1 blocks.

Tries to acquire the players lock; this is held 
by thread 1, so thread 2 blocks.

At this point, the program is deadlocked: neither thread will ever progress, nor will
any other thread that does anything with either of the two Mutex-protected data
structures.

The root cause of this is a lock inversion: one function acquires the locks in the order
players then games, whereas the other uses the opposite order (games then players).
This is a simple example of a more general problem; the same situation can arise with
longer chains of nested locks (thread 1 acquires lock A, then B, then it tries to acquire
C; thread 2 acquires C, then tries to acquire A) and across more threads (thread 1
locks A, then B; thread 2 locks B, then C; thread 3 locks C, then A).
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A simplistic attempt to solve this problem involves reducing the scope of the locks, so
there is no point where both locks are held at the same time:

/// Add a new player and join them into a current game.
fn add_and_join(&self, username: &str, info: Player) -> Option<GameId> {
    // Add the new player.
    {
        let mut players = self.players.lock().unwrap();
        players.insert(username.to_owned(), info);
    }

    // Find a game with available space for them to join.
    {
        let mut games = self.games.lock().unwrap();
        for (id, game) in games.iter_mut() {
            if game.add_player(username) {
                return Some(id.clone());
            }
        }
    }
    None
}
/// Ban the player identified by `username`, removing them from
/// any current games.
fn ban_player(&self, username: &str) {
    // Find all games that the user is in and remove them.
    {
        let mut games = self.games.lock().unwrap();
        games
            .iter_mut()
            .filter(|(_id, g)| g.has_player(username))
            .for_each(|(_id, g)| g.remove_player(username));
    }

    // Wipe them from the user list.
    {
        let mut players = self.players.lock().unwrap();
        players.remove(username);
    }
}

(A better version of this would be to encapsulate the manipulation of the players
data structure into add_player() and remove_player() helper methods, to reduce
the chances of forgetting to close out a scope.)

This solves the deadlock problem but leaves behind a data consistency problem: the
players and games data structures can get out of sync with each other, given an exe‐
cution sequence like the one shown in Table 3-2.
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Table 3-2. State inconsistency sequence

Thread 1 Thread 2

Enters add_and_join("Alice") and adds Alice to the 
players data structure (then releases the players lock).

Enters ban_player("Alice") and removes Alice
from all games (then releases the games lock).

Removes Alice from the players data structure; thread
1 has already released the lock, so this does not block.

Carries on and acquires the games lock (already released by 
thread 2). With the lock held, adds “Alice” to a game in progress.

At this point, there is a game that includes a player that doesn’t exist, according to the
players data structure!

The heart of the problem is that there are two data structures that need to be kept in
sync with each other. The best way to do this is to have a single synchronization
primitive that covers both of them:

struct GameState {
    players: HashMap<String, Player>,
    games: HashMap<GameId, Game>,
}

struct GameServer {
    state: Mutex<GameState>,
    // ...
}

Advice
The most obvious advice for avoiding the problems that arise with shared-state paral‐
lelism is simply to avoid shared-state parallelism. The Rust book quotes from the Go
language documentation: “Do not communicate by sharing memory; instead, share
memory by communicating.”

The Go language has channels that are suitable for this built into the language; for
Rust, equivalent functionality is included in the standard library in the
std::sync::mpsc module: the channel() function returns a (Sender, Receiver)
pair that allows values of a particular type to be communicated between threads.

If shared-state concurrency can’t be avoided, then there are some ways to reduce the
chances of writing deadlock-prone code:

• Put data structures that must be kept consistent with each other under a single lock.
• Keep lock scopes small and obvious; wherever possible, use helper methods that

get and set things under the relevant lock.
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• Avoid invoking closures with locks held; this puts the code at the mercy of what‐
ever closure gets added to the codebase in the future.

• Similarly, avoid returning a MutexGuard to a caller: it’s like handing out a loaded
gun, from a deadlock perspective.

• Include deadlock detection tools in your CI system (Item 32), such as no_dead
locks, ThreadSanitizer, or parking_lot::deadlock.

• As a last resort: design, document, test, and police a locking hierarchy that
describes what lock orderings are allowed/required. This should be a last resort
because any strategy that relies on engineers never making a mistake is likely to
be doomed to failure in the long term.

More abstractly, multithreaded code is an ideal place to apply the following general
advice: prefer code that’s so simple that it is obviously not wrong, rather than code
that’s so complex that it’s not obviously wrong.

Item 18: Don’t panic
It looked insanely complicated, and this was one of the reasons why the snug plastic cover it
fitted into had the words DON’T PANIC printed on it in large friendly letters.

—Douglas Adams

The title of this Item would be more accurately described as prefer returning a Result
to using panic! (but don’t panic is much catchier).

Rust’s panic mechanism is primarily designed for unrecoverable bugs in your pro‐
gram, and by default it terminates the thread that issues the panic!. However, there
are alternatives to this default.

In particular, newcomers to Rust who have come from languages that have an excep‐
tion system (such as Java or C++) sometimes pounce on std::panic::catch_unwind
as a way to simulate exceptions, because it appears to provide a mechanism for catch‐
ing panics at a point further up the call stack.

Consider a function that panics on an invalid input:

fn divide(a: i64, b: i64) -> i64 {
    if b == 0 {
        panic!("Cowardly refusing to divide by zero!");
    }
    a / b
}

Trying to invoke this with an invalid input fails as expected:

// Attempt to discover what 0/0 is...
let result = divide(0, 0);
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9 Tom Cargill’s 1994 article in the C++ Report explores just how difficult exception safety is for C++ template
code, as does Herb Sutter’s Guru of the Week #8 column.

thread 'main' panicked at 'Cowardly refusing to divide by zero!', main.rs:11:9
note: run with `RUST_BACKTRACE=1` environment variable to display a backtrace

A wrapper that uses catch_unwind to catch the panic:

fn divide_recover(a: i64, b: i64, default: i64) -> i64 {
    let result = std::panic::catch_unwind(|| divide(a, b));
    match result {
        Ok(x) => x,
        Err(_) => default,
    }
}

appears to work and to simulate catch:

let result = divide_recover(0, 0, 42);
println!("result = {result}");

result = 42

Appearances can be deceptive, however. The first problem with this approach is that
panics don’t always unwind; there is a compiler option (which is also accessible via a
Cargo.toml profile setting) that shifts panic behavior so that it immediately aborts the
process:

thread 'main' panicked at 'Cowardly refusing to divide by zero!', main.rs:11:9
note: run with `RUST_BACKTRACE=1` environment variable to display a backtrace
/bin/sh: line 1: 29100 Abort trap: 6  cargo run --release

This leaves any attempt to simulate exceptions entirely at the mercy of the wider
project settings. It’s also the case that some target platforms (for example, WebAssem‐
bly) always abort on panic, regardless of any compiler or project settings.

A more subtle problem that’s surfaced by panic handling is exception safety: if a panic
occurs midway through an operation on a data structure, it removes any guarantees
that the data structure has been left in a self-consistent state. Preserving internal
invariants in the presence of exceptions has been known to be extremely difficult
since the 1990s;9 this is one of the main reasons why Google (famously) bans the use
of exceptions in its C++ code.

Finally, panic propagation also interacts poorly with FFI (foreign function interface)
boundaries (Item 34); use catch_unwind to prevent panics in Rust code from propagat‐
ing to non-Rust calling code across an FFI boundary.

So what’s the alternative to panic! for dealing with error conditions? For library
code, the best alternative is to make the error someone else’s problem, by returning a
Result with an appropriate error type (Item 4). This allows the library user to make
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their own decisions about what to do next—which may involve passing the problem
on to the next caller in line, via the ? operator.

The buck has to stop somewhere, and a useful rule of thumb is that it’s OK to panic!
(or to unwrap(), expect(), etc.) if you have control of main; at that point, there’s no
further caller that the buck could be passed to.

Another sensible use of panic!, even in library code, is in situations where it’s very
rare to encounter errors, and you don’t want users to have to litter their code
with .unwrap() calls.

If an error situation should occur only because (say) internal data is corrupted, rather
than as a result of invalid inputs, then triggering a panic! is legitimate.

It can even be occasionally useful to allow panics that can be triggered by invalid
input but where such invalid inputs are out of the ordinary. This works best when the
relevant entrypoints come in pairs:

• An “infallible” version whose signature implies it always succeeds (and which
panics if it can’t succeed)

• A “fallible” version that returns a Result

For the former, Rust’s API guidelines suggest that the panic! should be documented
in a specific section of the inline documentation (Item 27).

The String::from_utf8_unchecked and String::from_utf8 entrypoints in the
standard library are an example of the latter (although in this case, the panics are
actually deferred to the point where a String constructed from invalid input gets
used).

Assuming that you are trying to comply with the advice in this Item, there are a few
things to bear in mind. The first is that panics can appear in different guises; avoiding
panic! also involves avoiding the following:

• unwrap() and unwrap_err()
• expect() and expect_err()
• unreachable!()
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Harder to spot are things like these:

• slice[index] when the index is out of range
• x / y when y is zero

The second observation around avoiding panics is that a plan that involves constant
vigilance of humans is never a good idea.

However, constant vigilance of machines is another matter: adding a check to your
continuous integration (see Item 32) system that spots new, potentially panicking
code is much more reliable. A simple version could be a simple grep for the most
common panicking entrypoints (as shown previously); a more thorough check could
involve additional tooling from the Rust ecosystem (Item 31), such as setting up a
build variant that pulls in the no_panic crate.

Item 19: Avoid reflection
Programmers coming to Rust from other languages are often used to reaching for
reflection as a tool in their toolbox. They can waste a lot of time trying to implement
reflection-based designs in Rust, only to discover that what they’re attempting can
only be done poorly, if at all. This Item hopes to save that time wasted exploring dead
ends, by describing what Rust does and doesn’t have in the way of reflection, and
what can be used instead.

Reflection is the ability of a program to examine itself at runtime. Given an item at
runtime, it covers these questions:

• What information can be determined about the item’s type?
• What can be done with that information?

Programming languages with full reflection support have extensive answers to these
questions. Languages with reflection typically support some or all of the following at
runtime, based on the reflection information:

• Determining an item’s type
• Exploring its contents
• Modifying its fields
• Invoking its methods

Languages that have this level of reflection support also tend to be dynamically typed
languages (e.g., Python, Ruby), but there are also some notable statically typed lan‐
guages that also support reflection, particularly Java and Go.
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Rust does not support this type of reflection, which makes the advice to avoid reflec‐
tion easy to follow at this level—it’s just not possible. For programmers coming from
languages with support for full reflection, this absence may seem like a significant gap
at first, but Rust’s other features provide alternative ways of solving many of the same
problems.

C++ has a more limited form of reflection, known as run-time type identification
(RTTI). The typeid operator returns a unique identifier for every type, for objects of
polymorphic type (roughly: classes with virtual functions):

typeid

Can recover the concrete class of an object referred to via a base class reference

dynamic_cast<T>

Allows base class references to be converted to derived classes, when it is safe and
correct to do so

Rust does not support this RTTI style of reflection either, continuing the theme that
the advice of this Item is easy to follow.

Rust does support some features that provide similar functionality in the std::any
module, but they’re limited (in ways we will explore) and so best avoided unless no
other alternatives are possible.

The first reflection-like feature from std::any looks like magic at first—a way of
determining the name of an item’s type. The following example uses a user-defined
tname() function:

let x = 42u32;
let y = vec![3, 4, 2];
println!("x: {} = {}", tname(&x), x);
println!("y: {} = {:?}", tname(&y), y);

to show types alongside values:

x: u32 = 42
y: alloc::vec::Vec<i32> = [3, 4, 2]

The implementation of tname() reveals what’s up the compiler’s sleeve: the function is
generic (as per Item 12), and so each invocation of it is actually a different function
(tname::<u32> or tname::<Square>):

fn tname<T: ?Sized>(_v: &T) -> &'static str {
    std::any::type_name::<T>()
}
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The implementation is provided by the std::any::type_name<T> library function,
which is also generic. This function has access only to compile-time information;
there is no code run that determines the type at runtime. Returning to the trait object
types used in Item 12 demonstrates this:

let square = Square::new(1, 2, 2);
let draw: &dyn Draw = &square;
let shape: &dyn Shape = &square;

println!("square: {}", tname(&square));
println!("shape: {}", tname(&shape));
println!("draw: {}", tname(&draw));

Only the types of the trait objects are available, not the type (Square) of the concrete
underlying item:

square: reflection::Square
shape: &dyn reflection::Shape
draw: &dyn reflection::Draw

The string returned by type_name is suitable only for diagnostics—it’s explicitly a
“best-effort” helper whose contents may change and may not be unique—so don’t
attempt to parse type_name results. If you need a globally unique type identifier, use
TypeId instead:

use std::any::TypeId;

fn type_id<T: 'static + ?Sized>(_v: &T) -> TypeId {
    TypeId::of::<T>()
}

println!("x has {:?}", type_id(&x));
println!("y has {:?}", type_id(&y));

x has TypeId { t: 18349839772473174998 }
y has TypeId { t: 2366424454607613595 }

The output is less helpful for humans, but the guarantee of uniqueness means that the
result can be used in code. However, it’s usually best not to use TypeId directly but to
use the std::any::Any trait instead, because the standard library has additional func‐
tionality for working with Any instances (described below).

The Any trait has a single method type_id(), which returns the TypeId value for the
type that implements the trait. You can’t implement this trait yourself, though,
because Any already comes with a blanket implementation for most arbitrary types T:

impl<T: 'static + ?Sized> Any for T {
    fn type_id(&self) -> TypeId {
        TypeId::of::<T>()
    }
}
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The blanket implementation doesn’t cover every type T: the T: 'static lifetime
bound means that if T includes any references that have a non-'static lifetime, then
TypeId is not implemented for T. This is a deliberate restriction that’s imposed
because lifetimes aren’t fully part of the type: TypeId::of::<&'a T> would be the
same as TypeId::of::<&'b T>, despite the differing lifetimes, increasing the likeli‐
hood of confusion and unsound code.

Recall from Item 8 that a trait object is a fat pointer that holds a pointer to the under‐
lying item, together with a pointer to the trait implementation’s vtable. For Any, the
vtable has a single entry, for a type_id() method that returns the item’s type, as
shown in Figure 3-4:

let x_any: Box<dyn Any> = Box::new(42u64);
let y_any: Box<dyn Any> = Box::new(Square::new(3, 4, 3));

Figure 3-4. Any trait objects, each with pointers to concrete items and vtables
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Aside from a couple of indirections, a dyn Any trait object is effectively a combina‐
tion of a raw pointer and a type identifier. This means that the standard library can
offer some additional generic methods that are defined for a dyn Any trait object;
these methods are generic over some additional type T:

is::<T>()

Indicates whether the trait object’s type is equal to some specific other type T

downcast_ref::<T>()

Returns a reference to the concrete type T, provided that the trait object’s type
matches T

downcast_mut::<T>()

Returns a mutable reference to the concrete type T, provided that the trait object’s
type matches T

Observe that the Any trait is only approximating reflection functionality: the pro‐
grammer chooses (at compile time) to explicitly build something (&dyn Any) that
keeps track of an item’s compile-time type as well as its location. The ability to (say)
downcast back to the original type is possible only if the overhead of building an Any
trait object has already happened.

There are comparatively few scenarios where Rust has different compile-time and
runtime types associated with an item. Chief among these is trait objects: an item of a
concrete type Square can be coerced into a trait object dyn Shape for a trait that the
type implements. This coercion builds a fat pointer (object + vtable) from a simple
pointer (object/item).

Recall also from Item 12 that Rust’s trait objects are not really object-oriented. It’s not
the case that a Square is-a Shape; it’s just that a Square implements Shape’s interface. 
The same is true for trait bounds: a trait bound Shape: Draw does not mean is-a; it
just means also-implements because the vtable for Shape includes the entries for the
methods of Draw.

For some simple trait bounds:

trait Draw: Debug {
    fn bounds(&self) -> Bounds;
}

trait Shape: Draw {
    fn render_in(&self, bounds: Bounds);
    fn render(&self) {
        self.render_in(overlap(SCREEN_BOUNDS, self.bounds()));
    }
}
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the equivalent trait objects:

let square = Square::new(1, 2, 2);
let draw: &dyn Draw = &square;
let shape: &dyn Shape = &square;

have a layout with arrows (shown in Figure 3-5; repeated from Item 12) that make the
problem clear: given a dyn Shape object, there’s no immediate way to build a dyn
Draw trait object, because there’s no way to get back to the vtable for impl Draw for
Square—even though the relevant part of its contents (the address of the
Square::bounds() method) is theoretically recoverable. (This is likely to change in
later versions of Rust; see the final section of this Item.)

Figure 3-5. Trait objects for trait bounds, with distinct vtables for Draw and Shape

Comparing this with the previous diagram, it’s also clear that an explicitly construc‐
ted &dyn Any trait object doesn’t help. Any allows recovery of the original concrete
type of the underlying item, but there is no runtime way to see what traits it imple‐
ments, or to get access to the relevant vtable that might allow creation of a trait object.

So what’s available instead?
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The primary tool to reach for is trait definitions, and this is in line with advice for
other languages—Effective Java Item 65 recommends, “Prefer interfaces to reflection.”
If code needs to rely on the availability of certain behavior for an item, encode that
behavior as a trait (Item 2). Even if the desired behavior can’t be expressed as a set of
method signatures, use marker traits to indicate compliance with the desired behav‐
ior—it’s safer and more efficient than (say) introspecting the name of a class to check
for a particular prefix.

Code that expects trait objects can also be used with objects having backing code that
was not available at program link time, because it has been dynamically loaded at
runtime (via dlopen(3) or equivalent)—which means that monomorphization of a
generic (Item 12) isn’t possible.

Relatedly, reflection is sometimes also used in other languages to allow multiple
incompatible versions of the same dependency library to be loaded into the program
at once, bypassing linkage constraints that There Can Be Only One. This is not
needed in Rust, where Cargo already copes with multiple versions of the same library
(Item 25).

Finally, macros—especially derive macros—can be used to auto-generate ancillary
code that understands an item’s type at compile time, as a more efficient and more
type-safe equivalent to code that parses an item’s contents at runtime. Item 28 dis‐
cusses Rust’s macro system.

Upcasting in Future Versions of Rust
The text of this Item was first written in 2021, and remained accurate all the way until
the book was being prepared for publication in 2024—at which point a new feature is
due to be added to Rust that changes some of the details.

This new “trait upcasting” feature enables upcasts that convert a trait object dyn T to
a trait object dyn U, when U is one of T’s supertraits (trait T: U {...}). The feature
is gated on #![feature(trait_upcasting)] in advance of its official release,
expected to be Rust version 1.76.

For the preceding example, that means a &dyn Shape trait object can now be con‐
verted to a &dyn Draw trait object, edging closer to the is-a relationship of Liskov sub‐
stitution. Allowing this conversion has a knock-on effect on the internal details of the
vtable implementation, which are likely to become more complex than the versions
shown in Figure 3-5.

However, the central points of this Item are not affected—the Any trait has no super‐
traits, so the ability to upcast adds nothing to its functionality.
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10 The field can’t be named type because that’s a reserved keyword in Rust. It’s possible to work around this
restriction by using the raw identifier prefix r# (giving a field r#type: u8), but it’s normally easier just to
rename the field.

Item 20: Avoid the temptation to over-optimize
Just because Rust allows you to write super cool non-allocating zero-copy algorithms safely,
doesn’t mean every algorithm you write should be super cool, zero-copy and non-allocating.

—trentj

Most of the Items in this book are designed to help existing programmers become
familiar with Rust and its idioms. This Item, however, is all about a problem that can
arise when programmers stray too far in the other direction and become obsessed
with exploiting Rust’s potential for efficiency—at the expense of usability and main‐
tainability.

Data Structures and Allocation
Like pointers in other languages, Rust’s references allow you to reuse data without
making copies. Unlike other languages, Rust’s rules around reference lifetimes and
borrows allow you to reuse data safely. However, complying with the borrow check‐
ing rules (Item 15) that make this possible can lead to code that’s harder to use.

This is particularly relevant for data structures, where you can choose between allo‐
cating a fresh copy of something that’s stored in the data structure or including a ref‐
erence to an existing copy of it.

As an example, consider some code that parses a data stream of bytes, extracting data
encoded as type-length-value (TLV) structures where data is transferred in the fol‐
lowing format:

• One byte describing the type of the value (stored in the type_code field here)10

• One byte describing the length of the value in bytes (used here to create a slice of
the specified length)

• Followed by the specified number of bytes for the value (stored in the value
field):

/// A type-length-value (TLV) from a data stream.
#[derive(Clone, Debug)]
pub struct Tlv<'a> {
    pub type_code: u8,
    pub value: &'a [u8],
}

pub type Error = &'static str; // Some local error type.
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/// Extract the next TLV from the `input`, also returning the remaining
/// unprocessed data.
pub fn get_next_tlv(input: &[u8]) -> Result<(Tlv, &[u8]), Error> {
    if input.len() < 2 {
        return Err("too short for a TLV");
    }
    // The TL parts of the TLV are one byte each.
    let type_code = input[0];
    let len = input[1] as usize;
    if 2 + len > input.len() {
        return Err("TLV longer than remaining data");
    }

    let tlv = Tlv {
        type_code,
        // Reference the relevant chunk of input data
        value: &input[2..2 + len],
    };
    Ok((tlv, &input[2 + len..]))
}

This Tlv data structure is efficient because it holds a reference to the relevant chunk
of the input data, without copying any of the data, and Rust’s memory safety ensures
that the reference is always valid. That’s perfect for some scenarios, but things become
more awkward if something needs to hang onto an instance of the data structure (as
discussed in Item 15).

For example, consider a network server that is receiving messages in the form of
TLVs. The received data can be parsed into Tlv instances, but the lifetime of those
instances will match that of the incoming message—which might be a transient
Vec<u8> on the heap or might be a buffer somewhere that gets reused for multiple
messages.

That induces a problem if the server code ever wants to store an incoming message so
that it can be consulted later:

pub struct NetworkServer<'a> {
    // ...
    /// Most recent max-size message.
    max_size: Option<Tlv<'a>>,
}

/// Message type code for a set-maximum-size message.
const SET_MAX_SIZE: u8 = 0x01;

impl<'a> NetworkServer<'a> {
    pub fn process(&mut self, mut data: &'a [u8]) -> Result<(), Error> {
        while !data.is_empty() {
            let (tlv, rest) = get_next_tlv(data)?;
            match tlv.type_code {
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                SET_MAX_SIZE => {
                    // Save off the most recent `SET_MAX_SIZE` message.
                    self.max_size = Some(tlv);
                }
                // (Deal with other message types)
                // ...
                _ => return Err("unknown message type"),
            }
            data = rest; // Process remaining data on next iteration.
        }
        Ok(())
    }
}

This code compiles as is but is effectively impossible to use: the lifetime of the Net
workServer has to be smaller than the lifetime of any data that gets fed into its pro
cess() method. That means that a straightforward processing loop:

DOES NOT COMPILE

let mut server = NetworkServer::default();
while !server.done() {
    // Read data into a fresh vector.
    let data: Vec<u8> = read_data_from_socket();
    if let Err(e) = server.process(&data) {
        log::error!("Failed to process data: {:?}", e);
    }
}

fails to compile because the lifetime of the ephemeral data gets attached to the longer-
lived server:

error[E0597]: `data` does not live long enough
   --> src/main.rs:375:40
    |
372 |     while !server.done() {
    |            ------------- borrow later used here
373 |         // Read data into a fresh vector.
374 |         let data: Vec<u8> = read_data_from_socket();
    |             ---- binding `data` declared here
375 |         if let Err(e) = server.process(&data) {
    |                                        ^^^^^ borrowed value does not live
    |                                              long enough
...
378 |     }
    |     - `data` dropped here while still borrowed

Switching the code so it reuses a longer-lived buffer doesn’t help either:
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DOES NOT COMPILE

let mut perma_buffer = [0u8; 256];
let mut server = NetworkServer::default(); // lifetime within `perma_buffer`

while !server.done() {
    // Reuse the same buffer for the next load of data.
    read_data_into_buffer(&mut perma_buffer);
    if let Err(e) = server.process(&perma_buffer) {
        log::error!("Failed to process data: {:?}", e);
    }
}

This time, the compiler complains that the code is trying to hang on to a reference
while also handing out a mutable reference to the same buffer:

error[E0502]: cannot borrow `perma_buffer` as mutable because it is also
              borrowed as immutable
   --> src/main.rs:353:31
    |
353 |         read_data_into_buffer(&mut perma_buffer);
    |                               ^^^^^^^^^^^^^^^^^ mutable borrow occurs here
354 |         if let Err(e) = server.process(&perma_buffer) {
    |                         -----------------------------
    |                         |              |
    |                         |              immutable borrow occurs here
    |                         immutable borrow later used here

The core problem is that the Tlv structure references transient data—which is fine for
transient processing but is fundamentally incompatible with storing state for later.
However, if the Tlv data structure is converted to own its contents:

#[derive(Clone, Debug)]
pub struct Tlv {
    pub type_code: u8,
    pub value: Vec<u8>, // owned heap data
}

and the get_next_tlv() code is correspondingly tweaked to include an additional
call to .to_vec():

// ...
let tlv = Tlv {
    type_code,
    // Copy the relevant chunk of data to the heap.
    // The length field in the TLV is a single `u8`,
    // so this copies at most 256 bytes.
    value: input[2..2 + len].to_vec(),
};
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then the server code has a much easier job. The data-owning Tlv structure has no
lifetime parameter, so the server data structure doesn’t need one either, and both var‐
iants of the processing loop work fine.

Who’s Afraid of the Big Bad Copy?
One reason why programmers can become overly obsessed with reducing copies is
that Rust generally makes copies and allocations explicit. A visible call to a method
like .to_vec() or .clone(), or to a function like Box::new(), makes it clear that
copying and allocation are occurring. This is in contrast to C++, where it’s easy to
inadvertently write code that blithely performs allocation under the covers, particu‐
larly in a copy-constructor or assignment operator.

Making an allocation or copy operation visible rather than hidden isn’t a good reason
to optimize it away, especially if that happens at the expense of usability. In many sit‐
uations, it makes more sense to focus on usability first, and fine-tune for optimal effi‐
ciency only if performance is genuinely a concern—and if benchmarking (see Item 30)
indicates that reducing copies will have a significant impact.

Also, the efficiency of your code is usually important only if it needs to scale up for
extensive use. If it turns out that the trade-offs in the code are wrong, and it doesn’t
cope well when millions of users start to use it—well, that’s a nice problem to have.

However, there are a couple of specific points to remember. The first was hidden
behind the weasel word generally when pointing out that copies are generally visible. 
The big exception to this is Copy types, where the compiler silently makes copies
willy-nilly, shifting from move semantics to copy semantics. As such, the advice in
Item 10 bears repeating here: don’t implement Copy unless a bitwise copy is valid and
fast. But the converse is true too: do consider implementing Copy if a bitwise copy is
valid and fast. For example, enum types that don’t carry additional data are usually eas‐
ier to use if they derive Copy.

The second point that might be relevant is the potential trade-off with no_std use.
Item 33 suggests that it’s often possible to write code that’s no_std-compatible with
only minor modifications, and code that avoids allocation altogether makes this more
straightforward. However, targeting a no_std environment that supports heap alloca‐
tion (via the alloc library, also described in Item 33) may give the best balance of
usability and no_std support.
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References and Smart Pointers
So very recently, I’ve consciously tried the experiment of not worrying about the hypothetical
perfect code. Instead, I call .clone() when I need to, and use Arc to get local objects into
threads and futures more smoothly.
And it feels glorious.

—Josh Triplett

Designing a data structure so that it owns its contents can certainly make for better
ergonomics, but there are still potential problems if multiple data structures need to
make use of the same information. If the data is immutable, then each place having its
own copy works fine, but if the information might change (which is very commonly
the case), then multiple copies means multiple places that need to be updated, in sync
with each other.

Using Rust’s smart pointer types helps solve this problem, by allowing the design to
shift from a single-owner model to a shared-owner model. The Rc (for single-
threaded code) and Arc (for multithreaded code) smart pointers provide reference
counting that supports this shared-ownership model. Continuing with the assump‐
tion that mutability is needed, they are typically paired with an inner type that allows
interior mutability, independently of Rust’s borrow checking rules:

RefCell

For interior mutability in single-threaded code, giving the common
Rc<RefCell<T>> combination

Mutex

For interior mutability in multithreaded code (as per Item 17), giving the com‐
mon Arc<Mutex<T>> combination

This transition is covered in more detail in the GuestRegister example in Item 15,
but the point here is that you don’t have to treat Rust’s smart pointers as a last resort.
It’s not an admission of defeat if your design uses smart pointers instead of a complex
web of interconnected reference lifetimes—smart pointers can lead to a simpler, more
maintainable, and more usable design.
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1 With the notable exception of C and C++, where package management remains somewhat fragmented.

CHAPTER 4

Dependencies

When the Gods wish to punish us, they answer our prayers.
—Oscar Wilde

For decades, the idea of code reuse was merely a dream. The idea that code could be
written once, packaged into a library, and reused across many different applications
was an ideal, realized only for a few standard libraries and for corporate in-house
tools.

The growth of the internet and the rise of open source software finally changed that.
The first openly accessible repository that held a wide collection of useful libraries,
tools, and helpers, all packaged up for easy reuse, was CPAN: the Comprehensive Perl
Archive Network, online since 1995. Today, almost every modern language has a
comprehensive collection of open source libraries available, housed in a package
repository that makes the process of adding a new dependency easy and quick.1

However, new problems come along with that ease, convenience, and speed. It’s usu‐
ally still easier to reuse existing code than to write it yourself, but there are potential
pitfalls and risks that come along with dependencies on someone else’s code. This
chapter of the book will help you be aware of these.

The focus is specifically on Rust, and with it the use of the cargo tool, but many of the
concerns, topics, and issues covered apply equally well to other toolchains (and other
languages).
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Item 21: Understand what semantic versioning promises
If we acknowledge that SemVer is a lossy estimate and represents only a subset of the possible
scope of changes, we can begin to see it as a blunt instrument.

—Titus Winters, Software Engineering at Google (O’Reilly)

Cargo, Rust’s package manager, allows automatic selection of dependencies (Item 25)
for Rust code according to semantic versioning (semver). A Cargo.toml stanza like:

[dependencies]
serde = "1.4"

indicates to cargo what ranges of semver versions are acceptable for this dependency.
The official documentation provides the details on specifying precise ranges of
acceptable versions, but the following are the most commonly used variants:

"1.2.3"

Specifies that any version that’s semver-compatible with 1.2.3 is acceptable

"^1.2.3"

Is another way of specifying the same thing more explicitly

"=1.2.3"

Pins to one particular version, with no substitutes accepted

"~1.2.3"

Allows versions that are semver-compatible with 1.2.3 but only where the last
specified component changes (so 1.2.4 is acceptable but 1.3.0 is not)

"1.2.*"

Accepts any version that matches the wildcard

Examples of what these specifications allow are shown in Table 4-1.

Table 4-1. Cargo dependency version specification

Specification 1.2.2 1.2.3 1.2.4 1.3.0 2.0.0

"1.2.3" No Yes Yes Yes No

"^1.2.3" No Yes Yes Yes No

"=1.2.3" No Yes No No No

"~1.2.3" No Yes Yes No No

"1.2.*" Yes Yes Yes No No

"1.*" Yes Yes Yes Yes No

"*" Yes Yes Yes Yes Yes
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When choosing dependency versions, Cargo will generally pick the largest version
that’s within the combination of all of these semver ranges.

Because semantic versioning is at the heart of cargo’s dependency resolution process,
this Item explores more details about what semver means.

Semver Essentials
The essentials of semantic versioning are listed in the summary in the semver docu‐
mentation, reproduced here:

Given a version number MAJOR.MINOR.PATCH, increment the:

• MAJOR version when you make incompatible API changes

• MINOR version when you add functionality in a backward compatible manner

• PATCH version when you make backward compatible bug fixes

An important point lurks in the details:

3. Once a versioned package has been released, the contents of that version MUST
NOT be modified. Any modifications MUST be released as a new version.

Putting this into different words:

• Changing anything requires a new patch version.
• Adding things to the API in a way that means existing users of the crate still com‐

pile and work requires a minor version upgrade.
• Removing or changing things in the API requires a major version upgrade.

There is one more important codicil to the semver rules:

4. Major version zero (0.y.z) is for initial development. Anything MAY change at any
time. The public API SHOULD NOT be considered stable.

Cargo adapts this last rule slightly, “left-shifting” the earlier rules so that changes in
the leftmost non-zero component indicate incompatible changes. This means that
0.2.3 to 0.3.0 can include an incompatible API change, as can 0.0.4 to 0.0.5.

Semver for Crate Authors
In theory, theory is the same as practice. In practice, it’s not.

As a crate author, the first of these rules is easy to comply with, in theory: if you touch
anything, you need a new release. Using Git tags to match releases can help with
this—by default, a tag is fixed to a particular commit and can be moved only with a
manual --force option. Crates published to crates.io also get automatic policing of
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this, as the registry will reject a second attempt to publish the same crate version. The
main danger for noncompliance is when you notice a mistake just after a release has
gone out, and you have to resist the temptation to just nip in a fix.

The semver specification covers API compatibility, so if you make a minor change to
behavior that doesn’t alter the API, then a patch version update should be all that’s
needed. (However, if your crate is widely depended on, then in practice you may need
to be aware of Hyrum’s Law: regardless of how minor a change you make to the code,
someone out there is likely to depend on the old behavior—even if the API is
unchanged.)

The difficult part for crate authors is the latter rules, which require an accurate deter‐
mination of whether a change is back compatible or not. Some changes are obviously
incompatible—removing public entrypoints or types, changing method signatures—
and some changes are obviously backward compatible (e.g., adding a new method to
a struct, or adding a new constant), but there’s a lot of gray area left in between.

To help with this, the Cargo book goes into considerable detail as to what is and is not
back compatible. Most of these details are unsurprising, but there are a few areas
worth highlighting:

• Adding new items is usually safe—but may cause clashes if code using the crate
already makes use of something that happens to have the same name as the new
item.
— This is a particular danger if the user does a wildcard import from the crate,

because all of the crate’s items are then automatically in the user’s main name‐
space. Item 23 advises against doing this.

— Even without a wildcard import, a new trait method (with a default imple‐
mentation; Item 13) or a new inherent method has a chance of clashing with
an existing name.

• Rust’s insistence on covering all possibilities means that changing the set of avail‐
able possibilities can be a breaking change.
— Performing a match on an enum must cover all possibilities, so if a crate adds a

new enum variant, that’s a breaking change (unless the enum is already marked
as non_exhaustive—adding non_exhaustive is also a breaking change).

— Explicitly creating an instance of a struct requires an initial value for all
fields, so adding a field to a structure that can be publicly instantiated is
a breaking change. Structures that have private fields are OK, because crate
users can’t explicitly construct them anyway; a struct can also be marked
as non_exhaustive to prevent external users from performing explicit
construction.
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2 For example, cargo-semver-checks is a tool that attempts to do something along these lines.

• Changing a trait so it is no longer object safe (Item 12) is a breaking change; any
users that build trait objects for the trait will stop being able to compile their
code.

• Adding a new blanket implementation for a trait is a breaking change; any users
that already implement the trait will now have two conflicting implementations.

• Changing the license of an open source crate is an incompatible change: users of
your crate who have strict restrictions on what licenses are acceptable may be
broken by the change. Consider the license to be part of your API.

• Changing the default features (Item 26) of a crate is potentially a breaking
change. Removing a default feature is almost certain to break things (unless the
feature was already a no-op); adding a default feature may break things depend‐
ing on what it enables. Consider the default feature set to be part of your API.

• Changing library code so that it uses a new feature of Rust might be an incompat‐
ible change, because users of your crate who have not yet upgraded their com‐
piler to a version that includes the feature will be broken by the change. However,
most Rust crates treat a minimum supported Rust version (MSRV) increase as a
non-breaking change, so consider whether the MSRV forms part of your API.

An obvious corollary of the rules is this: the fewer public items a crate has, the fewer
things there are that can induce an incompatible change (Item 22).

However, there’s no escaping the fact that comparing all public API items for compat‐
ibility from one release to the next is a time-consuming process that is likely to yield
only an approximate (major/minor/patch) assessment of the level of change, at best.
Given that this comparison is a somewhat mechanical process, hopefully tooling
(Item 31) will arrive to make the process easier.2

If you do need to make an incompatible major version change, it’s nice to make life
easier for your users by ensuring that the same overall functionality is available after
the change, even if the API has radically changed. If possible, the most helpful
sequence for your crate users is as follows:

1. Release a minor version update that includes the new version of the API and that
marks the older variant as deprecated, including an indication of how to
migrate.

2. Release a major version update that removes the deprecated parts of the API.

A more subtle point is make breaking changes breaking. If your crate is changing its
behavior in a way that’s actually incompatible for existing users but that could reuse
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the same API: don’t. Force a change in types (and a major version bump) to ensure
that users can’t inadvertently use the new version incorrectly.

For the less tangible parts of your API—such as the MSRV or the license—consider
setting up a CI check (Item 32) that detects changes, using tooling (e.g., cargo-deny;
see Item 25) as needed.

Finally, don’t be afraid of version 1.0.0 because it’s a commitment that your API is
now fixed. Lots of crates fall into the trap of staying at version 0.x forever, but that
reduces the already-limited expressivity of semver from three categories (major/
minor/patch) to two (effective-major/effective-minor).

Semver for Crate Users
For the user of a crate, the theoretical expectations for a new version of a dependency
are as follows:

• A new patch version of a dependency crate Should Just Work.™
• A new minor version of a dependency crate Should Just Work,™ but the new parts

of the API might be worth exploring to see if there are now cleaner or better ways
of using the crate. However, if you do use the new parts, you won’t be able to
revert the dependency back to the old version.

• All bets are off for a new major version of a dependency; chances are that your
code will no longer compile, and you’ll need to rewrite parts of your code to
comply with the new API. Even if your code does still compile, you should check
that your use of the API is still valid after a major version change, because the con‐
straints and preconditions of the library may have changed.

In practice, even the first two types of change may cause unexpected behavior
changes, even in code that still compiles fine, due to Hyrum’s Law.

As a consequence of these expectations, your dependency specifications will com‐
monly take a form like "1.4.3" or "0.7", which includes subsequent compatible ver‐
sions; avoid specifying a completely wildcard dependency like "*" or "0.*". A
completely wildcard dependency says that any version of the dependency, with any
API, can be used by your crate—which is unlikely to be what you really want. Avoid‐
ing wildcards is also a requirement for publishing to crates.io; submissions with
"*" wildcards will be rejected.
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However, in the longer term, it’s not safe to just ignore major version changes in
dependencies. Once a library has had a major version change, the chances are that no
further bug fixes—and more importantly, security updates—will be made to the pre‐
vious major version. A version specification like "1.4" will then fall further and fur‐
ther behind as new 2.x releases arrive, with any security problems left unaddressed.

As a result, you need to either accept the risks of being stuck on an old version or
eventually follow major version upgrades to your dependencies. Tools such as cargo
update or Dependabot (Item 31) can let you know when updates are available; you
can then schedule the upgrade for a time that’s convenient for you.

Discussion
Semantic versioning has a cost: every change to a crate has to be assessed against its
criteria, to decide the appropriate type of version bump. Semantic versioning is also a
blunt tool: at best, it reflects a crate owner’s guess as to which of three categories the
current release falls into. Not everyone gets it right, not everything is clear-cut about
exactly what “right” means, and even if you get it right, there’s always a chance you
may fall foul of Hyrum’s Law.

However, semver is the only game in town for anyone who doesn’t have the luxury of
working in an environment like Google’s highly tested gigantic internal monorepo. As
such, understanding its concepts and limitations is necessary for managing depen‐
dencies.

Item 22: Minimize visibility
Rust allows elements of the code to either be hidden from or exposed to other parts of
the codebase. This Item explores the mechanisms provided for this and suggests
advice for where and when they should be used.

Visibility Syntax
Rust’s basic unit of visibility is the module. By default, a module’s items (types, meth‐
ods, constants) are private and accessible only to code in the same module and its
submodules.

Code that needs to be more widely available is marked with the pub keyword, making
it public to some other scope. For most Rust syntactic features, making the feature
pub does not automatically expose the contents—the types and functions in a pub mod
are not public, nor are the fields in a pub struct. However, there are a couple of
exceptions where applying the visibility to the contents makes sense:

• Making an enum public automatically makes the type’s variants public too
(together with any fields that might be present in those variants).
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• Making a trait public automatically makes the trait’s methods public too.

So a collection of types in a module:

pub mod somemodule {
    // Making a `struct` public does not make its fields public.
    #[derive(Debug, Default)]
    pub struct AStruct {
        // By default fields are inaccessible.
        count: i32,
        // Fields have to be explicitly marked `pub` to be visible.
        pub name: String,
    }

    // Likewise, methods on the struct need individual `pub` markers.
    impl AStruct {
        // By default methods are inaccessible.
        fn canonical_name(&self) -> String {
            self.name.to_lowercase()
        }
        // Methods have to be explicitly marked `pub` to be visible.
        pub fn id(&self) -> String {
            format!("{}-{}", self.canonical_name(), self.count)
        }
    }

    // Making an `enum` public also makes all of its variants public.
    #[derive(Debug)]
    pub enum AnEnum {
        VariantOne,
        // Fields in variants are also made public.
        VariantTwo(u32),
        VariantThree { name: String, value: String },
    }

    // Making a `trait` public also makes all of its methods public.
    pub trait DoSomething {
        fn do_something(&self, arg: i32);
    }
}

allows access to pub things and the exceptions previously mentioned:

use somemodule::*;

let mut s = AStruct::default();
s.name = "Miles".to_string();
println!("s = {:?}, name='{}', id={}", s, s.name, s.id());

let e = AnEnum::VariantTwo(42);
println!("e = {e:?}");

#[derive(Default)]
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pub struct DoesSomething;
impl DoSomething for DoesSomething {
    fn do_something(&self, _arg: i32) {}
}

let d = DoesSomething::default();
d.do_something(42);

but non-pub things are generally inaccessible:

let mut s = AStruct::default();
s.name = "Miles".to_string();
println!("(inaccessible) s.count={}", s.count);
println!("(inaccessible) s.canonical_name()={}", s.canonical_name());

error[E0616]: field `count` of struct `somemodule::AStruct` is private
   --> src/main.rs:230:45
    |
230 |     println!("(inaccessible) s.count={}", s.count);
    |                                             ^^^^^ private field
error[E0624]: method `canonical_name` is private
   --> src/main.rs:231:56
    |
86  |         fn canonical_name(&self) -> String {
    |         ---------------------------------- private method defined here
...
231 |     println!("(inaccessible) s.canonical_name()={}", s.canonical_name());
    |                                         private method ^^^^^^^^^^^^^^
Some errors have detailed explanations: E0616, E0624.
For more information about an error, try `rustc --explain E0616`.

The most common visibility marker is the bare pub keyword, which makes the item
visible to anything that’s able to see the module it’s in. That last detail is important: if a
somecrate::somemodule module isn’t visible to other code in the first place, anything
that’s pub inside it is still not visible.

However, there are also some more-specific variants of pub that allow the scope of the
visibility to be constrained. In descending order of usefulness, these are as follows:

pub(crate)

Accessible anywhere within the owning crate. This is particularly useful for crate-
wide internal helper functions that should not be exposed to external crate users.

pub(super)

Accessible to the parent module of the current module and its submodules. This
is occasionally useful for selectively increasing visibility in a crate that has a deep
module structure. It’s also the effective visibility level for modules: a plain mod
mymodule is visible to its parent module or crate and the corresponding
submodules.
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pub(in <path>)

Accessible to code in <path>, which has to be a description of some ancestor
module of the current module. This can occasionally be useful for organizing
source code, because it allows subsets of functionality to be moved into submod‐
ules that aren’t necessarily visible in the public API. For example, the Rust stan‐
dard library consolidates all of the iterator adapters into an internal
std::iter::adapters submodule and has the following:

• A pub(in crate::iter) visibility marker on all of the required adapter
methods in submodules, such as std::iter::adapters::map::Map::new.

• A pub use of all of the adapters:: types in the outer std::iter module.

pub(self)

Equivalent to pub(in self), which is equivalent to not being pub. Uses for this
are very obscure, such as reducing the number of special cases needed in code-
generation macros.

The Rust compiler will warn you if you have a code item that is private to the module
but not used within that module (and its submodules):

pub mod anothermodule {
    // Private function that is not used within its module.
    fn inaccessible_fn(x: i32) -> i32 {
        x + 3
    }
}

Although the warning indicates that the code is “never used” in its owning module, in
practice this warning often indicates that code can’t be used from outside the module,
because the visibility restrictions don’t allow it:

warning: function `inaccessible_fn` is never used
  --> src/main.rs:56:8
   |
56 |     fn inaccessible_fn(x: i32) -> i32 {
   |        ^^^^^^^^^^^^^^^
   |
   = note: `#[warn(dead_code)]` on by default

Visibility Semantics
Separate from the question of how to increase visibility is the question of when to do
so. The generally accepted answer to this is as little as possible, at least for any code
that may possibly get used and reused in the future.

The first reason for this advice is that visibility changes can be hard to undo. Once a
crate item is public, it can’t be made private again without breaking any code that uses
the crate, thus necessitating a major version bump (Item 21). The converse is not true:
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moving a private item to be public generally needs only a minor version bump and
leaves crate users unaffected—read through Rust’s API compatibility guidelines and
notice how many are relevant only if there are pub items in play.

A more important—but more subtle—reason to prefer privacy is that it keeps your
options open. The more things that are exposed, the more things there are that need
to stay fixed for the future (absent an incompatible change). If you expose the internal
implementation details of a data structure, a putative future change to use a more effi‐
cient algorithm becomes a breaking change. If you expose internal helper functions,
it’s inevitable that some external code will come to depend on the exact details of
those functions.

Of course, this is a concern only for library code that potentially has multiple users
and a long lifespan. But nothing is as permanent as a temporary solution, and so it’s a
good habit to fall into.

It’s also worth observing that this advice to restrict visibility is by no means unique to
this Item or to Rust:

• The Rust API guidelines include this advice: structs should have private fields.
• Effective Java, 3rd edition, (Addison-Wesley Professional) has the following:

— Item 15: Minimize the accessibility of classes and members.
— Item 16: In public classes, use accessor methods, not public fields.

• Effective C++ by Scott Meyers (Addison-Wesley Professional) has the following
in its second edition:
— Item 18: Strive for class interfaces that are complete and minimal (my italics).
— Item 20: Avoid data members in the public interface.
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Item 23: Avoid wildcard imports
Rust’s use statement pulls in a named item from another crate or module and makes
that name available for use in the local module’s code without qualification. A wild‐
card import (or glob import) of the form use somecrate::module::* says that every
public symbol from that module should be added to the local namespace.

As described in Item 21, an external crate may add new items to its API as part of a
minor version upgrade; this is considered a backward-compatible change.

The combination of these two observations raises the worry that a nonbreaking
change to a dependency might break your code: what happens if the dependency adds
a new symbol that clashes with a name you’re already using?

At the simplest level, this turns out not to be a problem: the names in a wildcard
import are treated as being lower priority, so any matching names that are in your
code take precedence:

use bytes::*;

// Local `Bytes` type does not clash with `bytes::Bytes`.
struct Bytes(Vec<u8>);

Unfortunately, there are still cases where clashes can occur. For example, consider the
case when the dependency adds a new trait and implements it for some type:

trait BytesLeft {
    // Name clashes with the `remaining` method on the wildcard-imported
    // `bytes::Buf` trait.
    fn remaining(&self) -> usize;
}

impl BytesLeft for &[u8] {
    // Implementation clashes with `impl bytes::Buf for &[u8]`.
    fn remaining(&self) -> usize {
        self.len()
    }
}

If any method names from the new trait clash with existing method names that apply
to the type, then the compiler can no longer unambiguously figure out which method
is intended:

DOES NOT COMPILE

let arr = [1u8, 2u8, 3u8];
let v = &arr[1..];

assert_eq!(v.remaining(), 2);
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as indicated by the compile-time error:

error[E0034]: multiple applicable items in scope
  --> src/main.rs:40:18
   |
40 |     assert_eq!(v.remaining(), 2);
   |                  ^^^^^^^^^ multiple `remaining` found
   |
note: candidate #1 is defined in an impl of the trait `BytesLeft` for the
      type `&[u8]`
  --> src/main.rs:18:5
   |
18 |     fn remaining(&self) -> usize {
   |     ^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   = note: candidate #2 is defined in an impl of the trait `bytes::Buf` for the
           type `&[u8]`
help: disambiguate the method for candidate #1
   |
40 |     assert_eq!(BytesLeft::remaining(&v), 2);
   |                ~~~~~~~~~~~~~~~~~~~~~~~~
help: disambiguate the method for candidate #2
   |
40 |     assert_eq!(bytes::Buf::remaining(&v), 2);
   |                ~~~~~~~~~~~~~~~~~~~~~~~~~

As a result, you should avoid wildcard imports from crates that you don’t control.

If you do control the source of the wildcard import, then the previously mentioned
concerns disappear. For example, it’s common for a test module to do use
super::*;. It’s also possible for crates that use modules primarily as a way of dividing
up code to have a wildcard import from an internal module:

mod thing;
pub use thing::*;

However, there’s another common exception where wildcard imports make sense.
Some crates have a convention that common items for the crate are re-exported from
a prelude module, which is explicitly intended to be wildcard imported:

use thing::prelude::*;

Although in theory the same concerns apply in this case, in practice such a prelude
module is likely to be carefully curated, and higher convenience may outweigh a
small risk of future problems.

Finally, if you don’t follow the advice in this Item, consider pinning dependencies that
you wildcard import to a precise version (see Item 21) so that minor version upgrades
of the dependency aren’t automatically allowed.
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3 This example (and indeed Item) is inspired by the approach used in the RustCrypto crates.

Item 24: Re-export dependencies whose types
appear in your API
The title of this Item is a little convoluted, but working through an example will make
things clearer.3

Item 25 describes how cargo supports different versions of the same library crate
being linked into a single binary, in a transparent manner. Consider a binary that uses
the rand crate—more specifically, one that uses some 0.8 version of the crate:

# Cargo.toml file for a top-level binary crate.
[dependencies]
# The binary depends on the `rand` crate from crates.io
rand = "=0.8.5"

# It also depends on some other crate (`dep-lib`).
dep-lib = "0.1.0"

// Source code:
let mut rng = rand::thread_rng(); // rand 0.8
let max: usize = rng.gen_range(5..10);
let choice = dep_lib::pick_number(max);

The final line of code also uses a notional dep-lib crate as another dependency. This
crate might be another crate from crates.io, or it could be a local crate that is loca‐
ted via Cargo’s path mechanism.

This dep-lib crate internally uses a 0.7 version of the rand crate:

# Cargo.toml file for the `dep-lib` library crate.
[dependencies]
# The library depends on the `rand` crate from crates.io
rand = "=0.7.3"

// Source code:
//! The `dep-lib` crate provides number picking functionality.
use rand::Rng;

/// Pick a number between 0 and n (exclusive).
pub fn pick_number(n: usize) -> usize {
    rand::thread_rng().gen_range(0, n)
}

An eagle-eyed reader might notice a difference between the two code examples:

• In version 0.7.x of rand (as used by the dep-lib library crate), the
rand::gen_range() method takes two parameters, low and high.
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• In version 0.8.x of rand (as used by the binary crate), the rand::gen_range()
method takes a single parameter range.

This is not a back-compatible change, and so rand has increased its leftmost version
component accordingly, as required by semantic versioning (Item 21). Nevertheless,
the binary that combines the two incompatible versions works just fine—cargo sorts
everything out.

However, things get a lot more awkward if the dep-lib library crate’s API exposes a
type from its dependency, making that dependency a public dependency.

For example, suppose that the dep-lib entrypoint involves an Rng item—but specifi‐
cally a version-0.7 Rng item:

/// Pick a number between 0 and n (exclusive) using
/// the provided `Rng` instance.
pub fn pick_number_with<R: Rng>(rng: &mut R, n: usize) -> usize {
    rng.gen_range(0, n) // Method from the 0.7.x version of Rng
}

As an aside, think carefully before using another crate’s types in your API: it intimately
ties your crate to that of the dependency. For example, a major version bump for the
dependency (Item 21) will automatically require a major version bump for your crate
too.

In this case, rand is a semi-standard crate that is widely used and pulls in only a small
number of dependencies of its own (Item 25), so including its types in the crate API is
probably fine on balance.

Returning to the example, an attempt to use this entrypoint from the top-level binary
fails:

DOES NOT COMPILE

let mut rng = rand::thread_rng();
let max: usize = rng.gen_range(5..10);
let choice = dep_lib::pick_number_with(&mut rng, max);

Unusually for Rust, the compiler error message isn’t very helpful:

error[E0277]: the trait bound `ThreadRng: rand_core::RngCore` is not satisfied
  --> src/main.rs:22:44
   |
22 |     let choice = dep_lib::pick_number_with(&mut rng, max);
   |                  ------------------------- ^^^^^^^^ the trait
   |                  |                `rand_core::RngCore` is not
   |                  |                 implemented for `ThreadRng`
   |                  |
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4 This kind of error can even appear when the dependency graph includes two alternatives for a crate with the
same version, when something in the build graph uses the path field to specify a local directory instead of a
crates.io location.

   |                  required by a bound introduced by this call
   |
   = help: the following other types implement trait `rand_core::RngCore`:
             &'a mut R

Investigating the types involved leads to confusion because the relevant traits do
appear to be implemented—but the caller actually implements a (notional)
RngCore_v0_8_5 and the library is expecting an implementation of RngCore_v0_7_3.

Once you’ve finally deciphered the error message and realized that the version clash
is the underlying cause, how can you fix it?4 The key observation is to realize that
while the binary can’t directly use two different versions of the same crate, it can do so
indirectly (as in the original example shown previously).

From the perspective of the binary author, the problem could be worked around by
adding an intermediate wrapper crate that hides the naked use of rand v0.7 types. A
wrapper crate is distinct from the binary crate and so is allowed to depend on rand
v0.7 separately from the binary crate’s dependency on rand v0.8.

This is awkward, and a much better approach is available to the author of the library
crate. It can make life easier for its users by explicitly re-exporting either of the
following:

• The types involved in the API
• The entire dependency crate

For this example, the latter approach works best: as well as making the version 0.7 Rng
and RngCore types available, it also makes available the methods (like thread_rng())
that construct instances of the type:

// Re-export the version of `rand` used in this crate's API.
pub use rand;

The calling code now has a different way to directly refer to version 0.7 of rand, as
dep_lib::rand:

let mut prev_rng = dep_lib::rand::thread_rng(); // v0.7 Rng instance
let choice = dep_lib::pick_number_with(&mut prev_rng, max);

With this example in mind, the advice given in the title of the Item should now be a
little less obscure: re-export dependencies whose types appear in your API.
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5 It’s also possible to configure an alternate registry of crates (for example, an internal corporate registry). Each
dependency entry in Cargo.toml can then use the registry key to indicate which registry a dependency
should be sourced from.

Item 25: Manage your dependency graph
Like most modern programming languages, Rust makes it easy to pull in external
libraries, in the form of crates. Most nontrivial Rust programs use external crates, and
those crates may themselves have additional dependencies, forming a dependency
graph for the program as a whole.

By default, Cargo will download any crates named in the [dependencies] section of
your Cargo.toml file from crates.io and find versions of those crates that match the
requirements configured in Cargo.toml.

A few subtleties lurk underneath this simple statement. The first thing to notice is
that crate names from crates.io form a single flat namespace—and this global
namespace also overlaps with the names of features in a crate (see Item 26).5

If you’re planning on publishing a crate on crates.io, be aware that names are gener‐
ally allocated on a first-come, first-served basis; so you may find that your preferred
name for a public crate is already taken. However, name-squatting—reserving a crate
name by preregistering an empty crate—is frowned upon, unless you really are going
to release code in the near future.

As a minor wrinkle, there’s also a slight difference between what’s allowed as a crate
name in the crates namespace and what’s allowed as an identifier in code: a crate can
be named some-crate, but it will appear in code as some_crate (with an underscore).
To put it another way: if you see some_crate in code, the corresponding crate name
may be either some-crate or some_crate.

The second subtlety to understand is that Cargo allows multiple semver-incompatible
versions of the same crate to be present in the build. This can seem surprising to
begin with, because each Cargo.toml file can have only a single version of any given
dependency, but the situation frequently arises with indirect dependencies: your crate
depends on some-crate version 3.x but also depends on older-crate, which in turn
depends on some-crate version 1.x.

This can lead to confusion if the dependency is exposed in some way rather than just
being used internally (Item 24)—the compiler will treat the two versions as being dis‐
tinct crates, but its error messages won’t necessarily make that clear.

Allowing multiple versions of a crate can also go wrong if the crate includes C/C++
code accessed via Rust’s FFI mechanisms (Item 34). The Rust toolchain can internally
disambiguate distinct versions of Rust code, but any included C/C++ code is subject
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to the one definition rule: there can be only a single version of any function, constant,
or global variable.

There are restrictions on Cargo’s multiple-version support. Cargo does not allow mul‐
tiple versions of the same crate within a semver-compatible range (Item 21):

• some-crate 1.2 and some-crate 3.1 can coexist
• some-crate 1.2 and some-crate 1.3 cannot

Cargo also extends the semantic versioning rules for pre-1.0 crates so that the first
non-zero subversion counts like a major version, so a similar constraint applies:

• other-crate 0.1.2 and other-crate 0.2.0 can coexist
• other-crate 0.1.2 and other-crate 0.1.4 cannot

Cargo’s version selection algorithm does the job of figuring out what versions to
include. Each Cargo.toml dependency line specifies an acceptable range of versions,
according to semantic versioning rules, and Cargo takes this into account when the
same crate appears in multiple places in the dependency graph. If the acceptable
ranges overlap and are semver-compatible, then Cargo will (by default) pick the most
recent version of the crate within the overlap. If there is no semver-compatible over‐
lap, then Cargo will build multiple copies of the dependency at different versions.

Once Cargo has picked acceptable versions for all dependencies, its choices are recor‐
ded in the Cargo.lock file. Subsequent builds will then reuse the choices encoded in
Cargo.lock so that the build is stable and no new downloads are needed.

This leaves you with a choice: should you commit your Cargo.lock files into version
control or not? The advice from the Cargo developers is as follows:

• Things that produce a final product, namely applications and binaries, should
commit Cargo.lock to ensure a deterministic build.

• Library crates should not commit a Cargo.lock file, because it’s irrelevant to any
downstream consumers of the library—they will have their own Cargo.lock file;
be aware that the Cargo.lock file for a library crate is ignored by library users.

Even for a library crate, it can be helpful to have a checked-in Cargo.lock file to ensure
that regular builds and CI (Item 32) don’t have a moving target. Although the prom‐
ises of semantic versioning (Item 21) should prevent failures in theory, mistakes hap‐
pen in practice, and it’s frustrating to have builds that fail because someone
somewhere recently changed a dependency of a dependency.
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However, if you version-control Cargo.lock, set up a process to handle upgrades (such as
GitHub’s Dependabot). If you don’t, your dependencies will stay pinned to versions
that get older, outdated, and potentially insecure.

Pinning versions with a checked-in Cargo.lock file doesn’t avoid the pain of handling
dependency upgrades, but it does mean that you can handle them at a time of your
own choosing, rather than immediately when the upstream crate changes. There’s
also some fraction of dependency-upgrade problems that go away on their own: a
crate that’s released with a problem often gets a second, fixed, version released in a
short space of time, and a batched upgrade process might see only the latter version.

The third subtlety of Cargo’s resolution process to be aware of is feature unification:
the features that get activated for a dependent crate are the union of the features
selected by different places in the dependency graph; see Item 26 for more details.

Version Specification
The version specification clause for a dependency defines a range of allowed versions,
according to the rules explained in the Cargo book:

Avoid a too-specific version dependency
Pinning to a specific version ("=1.2.3") is usually a bad idea: you don’t see newer
versions (potentially including security fixes), and you dramatically narrow the
potential overlap range with other crates in the graph that rely on the same
dependency (recall that Cargo allows only a single version of a crate to be used
within a semver-compatible range). If you want to ensure that your builds use a
consistent set of dependencies, the Cargo.lock file is the tool for the job.

Avoid a too-general version dependency
It’s possible to specify a version dependency ("*") that allows any version of the
dependency to be used, but it’s a bad idea. If the dependency releases a new major
version of the crate that completely changes every aspect of its API, it’s unlikely
that your code will still work after a cargo update pulls in the new version.

The most common Goldilocks specification—not too precise, not too vague—is to
allow semver-compatible versions ("1") of a crate, possibly with a specific minimum
version that includes a feature or fix that you require ("1.4.23"). Both of these ver‐
sion specifications make use of Cargo’s default behavior, which is to allow versions
that are semver-compatible with the specified version. You can make this more
explicit by adding a caret:

• A version of "1" is equivalent to "^1", which allows all 1.x versions (and so is also
equivalent to "1.*").

• A version of "1.4.23" is equivalent to "^1.4.23", which allows any 1.x versions
that are larger than 1.4.23.
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Solving Problems with Tooling
Item 31 recommends that you take advantage of the range of tools that are available
within the Rust ecosystem. This section describes some dependency graph problems
where tools can help.

The compiler will tell you pretty quickly if you use a dependency in your code but
don’t include that dependency in Cargo.toml. But what about the other way around? If
there’s a dependency in Cargo.toml that you don’t use in your code—or more likely, no
longer use in your code—then Cargo will go on with its business. The cargo-udeps
tool is designed to solve exactly this problem: it warns you when your Cargo.toml
includes an unused dependency (“udep”).

A more versatile tool is cargo-deny, which analyzes your dependency graph to detect
a variety of potential problems across the full set of transitive dependencies:

• Dependencies that have known security problems in the included version
• Dependencies that are covered by an unacceptable license
• Dependencies that are just unacceptable
• Dependencies that are included in multiple different versions across the depend‐

ency tree

Each of these features can be configured and can have exceptions specified. The
exception mechanism is usually needed for larger projects, particularly the multiple-
version warning: as the dependency graph grows, so does the chance of transitively
depending on different versions of the same crate. It’s worth trying to reduce these
duplicates where possible—for binary-size and compilation-time reasons if nothing
else—but sometimes there is no possible combination of dependency versions that
can avoid a duplicate.

These tools can be run as a one-off, but it’s better to ensure they’re executed regularly
and reliably by including them in your CI system (Item 32). This helps to catch newly
introduced problems—including problems that may have been introduced outside of
your code, in an upstream dependency (for example, a newly reported vulnerability).

If one of these tools does report a problem, it can be difficult to figure out exactly
where in the dependency graph the problem arises. The cargo tree command that’s
included with cargo helps here, as it shows the dependency graph as a tree structure:

dep-graph v0.1.0
├── dep-lib v0.1.0
│   └── rand v0.7.3
│       ├── getrandom v0.1.16
│       │   ├── cfg-if v1.0.0
│       │   └── libc v0.2.94
│       ├── libc v0.2.94
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6 If you are targeting a no_std environment, this choice may be made for you: many crates are not compatible
with no_std, particularly if alloc is also unavailable (Item 33).

│       ├── rand_chacha v0.2.2
│       │   ├── ppv-lite86 v0.2.10
│       │   └── rand_core v0.5.1
│       │       └── getrandom v0.1.16 (*)
│       └── rand_core v0.5.1 (*)
└── rand v0.8.3
    ├── libc v0.2.94
    ├── rand_chacha v0.3.0
    │   ├── ppv-lite86 v0.2.10
    │   └── rand_core v0.6.2
    │       └── getrandom v0.2.3
    │           ├── cfg-if v1.0.0
    │           └── libc v0.2.94
    └── rand_core v0.6.2 (*)

cargo tree includes a variety of options that can help to solve specific problems,
such as these:

--invert

Shows what depends on a specific package, helping you to focus on a particular
problematic dependency

--edges features

Shows what crate features are activated by a dependency link, which helps you
figure out what’s going on with feature unification (Item 26)

--duplicates

Shows crates that have multiple versions present in the dependency graph

What to Depend On
The previous sections have covered the more mechanical aspect of working with
dependencies, but there’s a more philosophical (and therefore harder-to-answer)
question: when should you take on a dependency?

Most of the time, there’s not much of a decision involved: if you need the functional‐
ity of a crate, you need that function, and the only alternative would be to write it
yourself.6

But every new dependency has a cost, partly in terms of longer builds and bigger
binaries but mostly in terms of the developer effort involved in fixing problems with
dependencies when they arise.
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The bigger your dependency graph, the more likely you are to be exposed to these
kinds of problems. The Rust crate ecosystem is just as vulnerable to accidental
dependency problems as other package ecosystems, where history has shown that one
developer removing a package, or a team fixing the licensing for their package can
have widespread knock-on effects.

More worrying still are supply chain attacks, where a malicious actor deliberately
tries to subvert commonly used dependencies, whether by typo-squatting, hijacking a
maintainer’s account, or other more sophisticated attacks.

This kind of attack doesn’t just affect your compiled code—be aware that a depend‐
ency can run arbitrary code at build time, via build.rs scripts or procedural macros
(Item 28). That means that a compromised dependency could end up running a cryp‐
tocurrency miner as part of your CI system!

So for dependencies that are more “cosmetic,” it’s sometimes worth considering
whether adding the dependency is worth the cost.

The answer is usually “yes,” though; in the end, the amount of time spent dealing with
dependency problems ends up being much less than the time it would take to write
equivalent functionality from scratch.

Things to Remember
• Crate names on crates.io form a single flat namespace (which is shared with

feature names).
• Crate names can include a hyphen, but it will appear as an underscore in code.
• Cargo supports multiple versions of the same crate in the dependency graph, but

only if they are of different semver-incompatible versions. This can go wrong for
crates that include FFI code.

• Prefer to allow semver-compatible versions of dependencies ("1", or "1.4.23" to
include a minimum version).

• Use Cargo.lock files to ensure your builds are repeatable, but remember that the
Cargo.lock file does not ship with a published crate.

• Use tooling (cargo tree, cargo deny, cargo udep, …) to help find and fix
dependency problems.

• Understand that pulling in dependencies saves you writing code but doesn’t come
for free.
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Item 26: Be wary of feature creep
Rust allows the same codebase to support a variety of different configurations via
Cargo’s feature mechanism, which is built on top of a lower-level mechanism for con‐
ditional compilation. However, the feature mechanism has a few subtleties to be
aware of, which this Item explores.

Conditional Compilation
Rust includes support for conditional compilation, which is controlled by cfg (and
cfg_attr) attributes. These attributes govern whether the thing—function, line,
block, etc.—that they are attached to is included in the compiled source code or not
(which is in contrast to C/C++’s line-based preprocessor). The conditional inclusion
is controlled by configuration options that are either plain names (e.g., test) or pairs
of names and values (e.g., panic = "abort").

Note that the name/value variants of config options are multivalued—it’s possible to
set more than one value for the same name:

// Build with `RUSTFLAGS` set to:
//   '--cfg myname="a" --cfg myname="b"'
#[cfg(myname = "a")]
println!("cfg(myname = 'a') is set");
#[cfg(myname = "b")]
println!("cfg(myname = 'b') is set");

cfg(myname = 'a') is set
cfg(myname = 'b') is set

Other than the feature values described in this section, the most commonly used
config values are those that the toolchain populates automatically, with values that
describe the target environment for the build. These include the OS (target_os),
CPU architecture (target_arch), pointer width (target_pointer_width), and
endianness (target_endian). This allows for code portability, where features that are
specific to some particular target are compiled in only when building for that target.

The standard target_has_atomic option also provides an example of the multi-
valued nature of config values: both [cfg(target_has_atomic = "32")] and
[cfg(target_has_atomic = "64")] will be set for targets that support both 32-bit
and 64-bit atomic operations. (For more information on atomics, see Chapter 2 of
Mara Bos’s Rust Atomics and Locks [O’Reilly].)
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Features
The Cargo package manager builds on this base cfg name/value mechanism to pro‐
vide the concept of features: named selective aspects of the functionality of a crate that
can be enabled when building the crate. Cargo ensures that the feature option is
populated with each of the configured values for each crate that it compiles, and the
values are crate-specific.

This is Cargo-specific functionality: to the Rust compiler, feature is just another
configuration option.

At the time of writing, the most reliable way to determine what features are available
for a crate is to examine the crate’s Cargo.toml manifest file. For example, the follow‐
ing chunk of a manifest file includes six features:

[features]
default = ["featureA"]
featureA = []
featureB = []
# Enabling `featureAB` also enables `featureA` and `featureB`.
featureAB = ["featureA", "featureB"]
schema = []

[dependencies]
rand = { version = "^0.8", optional = true }
hex = "^0.4"

Given that there are only five entries in the [features] stanza; there are clearly a
couple of subtleties to watch out for.

The first is that the default line in the [features] stanza is a special feature name,
used to indicate to cargo which of the features should be enabled by default. These
features can still be disabled by passing the --no-default-features flag to the build
command, and a consumer of the crate can encode this in their Cargo.toml file like so:

[dependencies]
somecrate = { version = "^0.3", default-features = false }

However, default still counts as a feature name, which can be tested in code:

#[cfg(feature = "default")]
println!("This crate was built with the \"default\" feature enabled.");
#[cfg(not(feature = "default"))]
println!("This crate was built with the \"default\" feature disabled.");

The second subtlety of feature definitions is hidden in the [dependencies] section of
the original Cargo.toml example: the rand crate is a dependency that is marked as
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7 This default behavior can be disabled by using a "dep:<crate>" reference elsewhere in the features stanza;
see the docs for details.

8 The cargo tree --edges features command can help with determining which features are enabled for
which crates, and why.

optional = true, and that effectively makes "rand" into the name of a feature.7 If
the crate is compiled with --features rand, then that dependency is activated:

#[cfg(feature = "rand")]
pub fn pick_a_number() -> u8 {
    rand::random::<u8>()
}

#[cfg(not(feature = "rand"))]
pub fn pick_a_number() -> u8 {
    4 // chosen by fair dice roll.
}

This also means that crate names and feature names share a namespace, even though
one is typically global (and usually governed by crates.io), and one is local to the
crate in question. Consequently, choose feature names carefully to avoid clashes with
the names of any crates that might be relevant as potential dependencies. It is possible
to work around a clash, because Cargo includes a mechanism that allows imported
crates to be renamed (the package key), but it’s easier not to have to.

So you can determine a crate’s features by examining [features] as well as optional
[dependencies] in the crate’s Cargo.toml file. To turn on a feature of a dependency,
add the features option to the relevant line in the [dependencies] stanza of your
own manifest file:

[dependencies]
somecrate = { version = "^0.3", features = ["featureA", "rand" ] }

This line ensures that somecrate will be built with both the featureA and the rand
feature enabled. However, that might not be the only features that are enabled; other
features may also be enabled due to a phenomenon known as feature unification. This
means that a crate will get built with the union of all of the features that are requested
by anything in the build graph. In other words, if some other dependency in the build
graph also relies on somecrate, but with just featureB enabled, then the crate will be
built with all of featureA, featureB, and rand enabled, to satisfy everyone.8 The same
consideration applies to default features: if your crate sets default-features =

false for a dependency but some other place in the build graph leaves the default fea‐
tures enabled, then enabled they will be.
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Feature unification means that features should be additive; it’s a bad idea to have
mutually incompatible features because there’s nothing to prevent the incompatible
features being simultaneously enabled by different users.

For example, if a crate exposes a struct and its fields publicly, it’s a bad idea to make
the fields feature-dependent:

UNDESIRED BEHAVIOR

/// A structure whose contents are public, so external users can construct
/// instances of it.
#[derive(Debug)]
pub struct ExposedStruct {
    pub data: Vec<u8>,

    /// Additional data that is required only when the `schema` feature
    /// is enabled.
    #[cfg(feature = "schema")]
    pub schema: String,
}

A user of the crate that tries to build an instance of the struct has a quandary:
should they fill in the schema field or not? One way to try to solve this is to add a
corresponding feature in the user’s Cargo.toml:

[features]
# The `use-schema` feature here turns on the `schema` feature of `somecrate`.
# (This example uses different feature names for clarity; real code is more
# likely to reuse the feature names across both places.)
use-schema = ["somecrate/schema"]

and to make the struct construction depend on this feature:

UNDESIRED BEHAVIOR

let s = somecrate::ExposedStruct {
    data: vec![0x82, 0x01, 0x01],

    // Only populate the field if we've requested
    // activation of `somecrate/schema`.
    #[cfg(feature = "use_schema")]
    schema: "[int int]",
};

However, this doesn’t cover all eventualities: the code will fail to compile if this code
doesn’t activate somecrate/schema but some other transitive dependency does. The
core of the problem is that only the crate that has the feature can check the feature;
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9 Features can force other features to be enabled; in the original example, the featureAB feature forces both
featureA and featureB to be enabled.

there’s no way for the user of the crate to determine whether Cargo has turned on
somecrate/schema or not. As a result, you should avoid feature-gating public fields in
structures.

A similar consideration applies to public traits, intended to be used outside the crate
they’re defined in. Consider a trait that includes a feature gate on one of its methods:

UNDESIRED BEHAVIOR

/// Trait for items that support CBOR serialization.
pub trait AsCbor: Sized {
    /// Convert the item into CBOR-serialized data.
    fn serialize(&self) -> Result<Vec<u8>, Error>;

    /// Create an instance of the item from CBOR-serialized data.
    fn deserialize(data: &[u8]) -> Result<Self, Error>;

    /// Return the schema corresponding to this item.
    #[cfg(feature = "schema")]
    fn cddl(&self) -> String;
}

External trait implementors again have a quandary: should they implement the
cddl(&self) method or not? The external code that tries to implement the trait
doesn’t know—and can’t tell—whether to implement the feature-gated method or not.

So the net is that you should avoid feature-gating methods on public traits. A trait
method with a default implementation (Item 13) might be a partial exception to
this—but only if it never makes sense for external code to override the default.

Feature unification also means that if your crate has N independent features,9 then all
of the 2N possible build combinations can occur in practice. To avoid unpleasant sur‐
prises, it’s a good idea to ensure that your CI system (Item 32) covers all of these 2N

combinations, in all of the available test variants (Item 30).

However, the use of optional features is very helpful in controlling exposure to an
expanded dependency graph (Item 25). This is particularly useful in low-level crates
that are capable of being used in a no_std environment (Item 33)—it’s common to
have a std or alloc feature that turns on functionality that relies on those libraries.
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Things to Remember
• Feature names overlap with dependency names.
• Feature names should be carefully chosen so they don’t clash with potential

dependency names.
• Features should be additive.
• Avoid feature gates on public struct fields or trait methods.
• Having lots of independent features potentially leads to a combinatorial explo‐

sion of different build configurations.
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CHAPTER 5

Tooling

Titus Winters (Google’s C++ library lead) describes software engineering as program‐
ming integrated over time, or sometimes as programming integrated over time and
people. Over longer timescales, and a wider team, there’s more to a codebase than just
the code held within it.

Modern languages, including Rust, are aware of this and come with an ecosystem of
tooling that goes way beyond just converting the program into executable binary
code (the compiler).

This chapter explores the Rust tooling ecosystem, with a general recommendation to
make use of all of this infrastructure. Obviously, doing so needs to be proportionate—
setting up CI, documentation builds, and six types of test would be overkill for a
throwaway program that is run only twice. But for most of the things described in
this chapter, there’s lots of “bang for the buck”: a little bit of investment into tooling
integration will yield worthwhile benefits.

Item 27: Document public interfaces
If your crate is going to be used by other programmers, then it’s a good idea to add
documentation for its contents, particularly its public API. If your crate is more than
just ephemeral, throwaway code, then that “other programmer” includes the you-of-
the-future, when you have forgotten the details of your current code.

This is not advice that’s specific to Rust, nor is it new advice—for example, Effective
Java 2nd edition (from 2008) has Item 44: “Write doc comments for all exposed API
elements.”

The particulars of Rust’s documentation comment format—Markdown-based,
delimited with /// or //!—are covered in the Rust book, for example:
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/// Calculate the [`BoundingBox`] that exactly encompasses a pair
/// of [`BoundingBox`] objects.
pub fn union(a: &BoundingBox, b: &BoundingBox) -> BoundingBox {
    // ...
}

However, there are some specific details about the format that are worth highlighting:

Use a code font for code
For anything that would be typed into source code as is, surround it with back-
quotes to ensure that the resulting documentation is in a fixed-width font, mak‐
ing the distinction between code and text clear.

Add copious cross-references
Add a Markdown link for anything that might provide context for someone read‐
ing the documentation. In particular, cross-reference identifiers with the conve‐
nient [`SomeThing`] syntax—if SomeThing is in scope, then the resulting
documentation will hyperlink to the right place.

Consider including example code
If it’s not trivially obvious how to use an entrypoint, adding an # Examples sec‐
tion with sample code can be helpful. Note that sample code in doc comments
gets compiled and executed when you run cargo test (see Item 30), which helps
it stay in sync with the code it’s demonstrating.

Document panics and unsafe constraints
If there are inputs that cause a function to panic, document (in a # Panics sec‐
tion) the preconditions that are required to avoid the panic!. Similarly, docu‐
ment (in a # Safety section) any requirements for unsafe code.

The documentation for Rust’s standard library provides an excellent example to emu‐
late for all of these details.

Tooling
The Markdown format that’s used for documentation comments results in elegant
output, but this also means that there is an explicit conversion step (cargo doc). This
in turn raises the possibility that something goes wrong along the way.

The simplest advice for this is just to read the rendered documentation after writing it,
by running cargo doc --open (or cargo doc --no-deps --open to restrict the gen‐
erated documentation to just the current crate).
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1 Historically, this option used to be called intra_doc_link_resolution_failure.

You could also check that all the generated hyperlinks are valid, but that’s a job more
suited to a machine—via the broken_intra_doc_links crate attribute:1

UNDESIRED BEHAVIOR

#![deny(broken_intra_doc_links)]

/// The bounding box for a [`Polygone`].
#[derive(Clone, Debug)]
pub struct BoundingBox {
    // ...
}

With this attribute enabled, cargo doc will detect invalid links:

error: unresolved link to `Polygone`
 --> docs/src/main.rs:4:30
  |
4 | /// The bounding box for a [`Polygone`].
  |                              ^^^^^^^^ no item named `Polygone` in scope
  |

You can also require documentation, by enabling the #![warn(missing_docs)]
attribute for the crate. When this is enabled, the compiler will emit a warning for
every undocumented public item. However, there’s a risk that enabling this option
will lead to poor-quality documentation comments that are rushed out just to get the
compiler to shut up—more on this to come.

As ever, any tooling that detects potential problems should form a part of your CI
system (Item 32), to catch any regressions that creep in.

Additional Documentation Locations
The output from cargo doc is the primary place where your crate is documented, but
it’s not the only place—other parts of a Cargo project can help users figure out how to
use your code.

The examples/ subdirectory of a Cargo project can hold the code for standalone
binaries that make use of your crate. These programs are built and run very similarly
to integration tests (Item 30) but are specifically intended to hold example code that
illustrates the correct use of your crate’s interface.
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2 The default behavior of automatically including README.md can be overridden with the readme field in
Cargo.toml.

On a related note, bear in mind that the integration tests under the tests/ subdirec‐
tory can also serve as examples for the confused user, even though their primary pur‐
pose is to test the crate’s external interface.

Published Crate Documentation
If you publish your crate to crates.io, the documentation for your project will be
visible at docs.rs, which is an official Rust project that builds and hosts documenta‐
tion for published crates.

Note that crates.io and docs.rs are intended for slightly different audiences:
crates.io is aimed at people who are choosing what crate to use, whereas docs.rs is
intended for people figuring out how to use a crate they’ve already included
(although there’s obviously considerable overlap between the two).

As a result, the home page for a crate shows different content in each location:

docs.rs

Shows the top-level page from the output of cargo doc, as generated from //!
comments in the top-level src/lib.rs file.

crates.io

Shows the content of any top-level README.md file that’s included in the proj‐
ect’s repo.2

What Not to Document
When a project requires that documentation be included for all public items (as men‐
tioned in the first section), it’s very easy to fall into the trap of having documentation
that’s a pointless waste of valuable pixels. Having the compiler warn about missing
doc comments is only a proxy for what you really want—useful documentation—and
is likely to incentivize programmers to do the minimum needed to silence the
warning.

Good doc comments are a boon that helps users understand the code they’re using;
bad doc comments impose a maintenance burden and increase the chance of user
confusion when they get out of sync with the code. So how to distinguish between the
two?

The primary advice is to avoid repeating in text something that’s clear from the code.
Item 1 exhorted you to encode as much semantics as possible into Rust’s type system;
once you’ve done that, allow the type system to document those semantics. Assume
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that the reader is familiar with Rust—possibly because they’ve read a helpful collec‐
tion of Items describing effective use of the language—and don’t repeat things that are
clear from the signatures and types involved.

Returning to the previous example, an overly verbose documentation comment
might be as follows:

UNDESIRED BEHAVIOR

/// Return a new [`BoundingBox`] object that exactly encompasses a pair
/// of [`BoundingBox`] objects.
///
/// Parameters:
///  - `a`: an immutable reference to a `BoundingBox`
///  - `b`: an immutable reference to a `BoundingBox`
/// Returns: new `BoundingBox` object.
pub fn union(a: &BoundingBox, b: &BoundingBox) -> BoundingBox {

This comment repeats many details that are clear from the function signature, to no
benefit.

Worse, consider what’s likely to happen if the code gets refactored to store the result
in one of the original arguments (which would be a breaking change; see Item 21). No
compiler or tool complains that the comment isn’t updated to match, so it’s easy to
end up with an out-of-sync comment:

UNDESIRED BEHAVIOR

/// Return a new [`BoundingBox`] object that exactly encompasses a pair
/// of [`BoundingBox`] objects.
///
/// Parameters:
///  - `a`: an immutable reference to a `BoundingBox`
///  - `b`: an immutable reference to a `BoundingBox`
/// Returns: new `BoundingBox` object.
pub fn union(a: &mut BoundingBox, b: &BoundingBox) {

In contrast, the original comment survives the refactoring unscathed, because its text
describes behavior, not syntactic details:

/// Calculate the [`BoundingBox`] that exactly encompasses a pair
/// of [`BoundingBox`] objects.
pub fn union(a: &mut BoundingBox, b: &BoundingBox) {

The mirror image of the preceding advice also helps improve documentation: include
in text anything that’s not clear from the code. This includes preconditions, invariants,
panics, error conditions, and anything else that might surprise a user; if your code

Item 27: Document public interfaces | 207



3 Scott Meyers, More Effective C++ (Addison-Wesley), Item 32.

can’t comply with the principle of least astonishment, make sure that the surprises are
documented so you can at least say, “I told you so.”

Another common failure mode is when doc comments describe how some other code
uses a method, rather than what the method does:

/// Return the intersection of two [`BoundingBox`] objects, returning `None`
/// if there is no intersection. The collision detection code in `hits.rs`
/// uses this to do an initial check to see whether two objects might overlap,
/// before performing the more expensive pixel-by-pixel check in
/// `objects_overlap`.
pub fn intersection(
    a: &BoundingBox,
    b: &BoundingBox,
) -> Option<BoundingBox> {

Comments like this are almost guaranteed to get out of sync: when the using code
(here, hits.rs) changes, the comment that describes the behavior is nowhere nearby.

Rewording the comment to focus more on the why makes it more robust to future
changes:

/// Return the intersection of two [`BoundingBox`] objects, returning `None`
/// if there is no intersection.  Note that intersection of bounding boxes
/// is necessary but not sufficient for object collision -- pixel-by-pixel
/// checks are still required on overlap.
pub fn intersection(
    a: &BoundingBox,
    b: &BoundingBox,
) -> Option<BoundingBox> {

When writing software, it’s good advice to “program in the future tense”:3 structure
the code to accommodate future changes. The same principle is true for documenta‐
tion: focusing on the semantics, the whys and the why nots, gives text that is more
likely to remain helpful in the long run.

Things to Remember
• Add doc comments for public API items.
• Describe aspects of the code—such as panics and safety criteria—that aren’t obvi‐

ous from the code itself.
• Don’t describe things that are obvious from the code itself.
• Make navigation clearer by providing cross-references and by making identifiers

stand out.
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Item 28: Use macros judiciously
In some cases it’s easy to decide to write a macro instead of a function, because only a macro
can do what’s needed.

—Paul Graham, On Lisp (Prentice Hall)

Rust’s macro systems allow you to perform metaprogramming: to write code that
emits code into your project. This is most valuable when there are chunks of “boiler‐
plate” code that are deterministic and repetitive and that would otherwise need to be
kept in sync manually.

Programmers coming to Rust may have previously encountered the macros provided
by C/C++’s preprocessor, which perform textual substitution on the tokens of the
input text. Rust’s macros are a different beast, because they work on either the parsed
tokens of the program or on the abstract syntax tree (AST) of the program, rather
than just its textual content.

This means Rust macros can be aware of code structure and can consequently avoid
entire classes of macro-related footguns. In particular, we see in the following section
that Rust’s declarative macros are hygienic—they cannot accidentally refer to (“cap‐
ture”) local variables in the surrounding code.

One way to think about macros is to see them as a different level of abstraction in the
code. A simple form of abstraction is a function: it abstracts away the differences
between different values of the same type, with implementation code that can use any
of the features and methods of that type, regardless of the current value being oper‐
ated on. A generic is a different level of abstraction: it abstracts away the difference
between different types that satisfy a trait bound, with implementation code that can
use any of the methods provided by the trait bounds, regardless of the current type
being operated on.

A macro abstracts away the difference between different fragments of the program
that play the same role (type, identifier, expression, etc.); the implementation can
then include any code that makes use of those fragments in the same role.

Rust provides two ways to define macros:

• Declarative macros, also known as “macros by example,” allow the insertion of
arbitrary Rust code into the program, based on the input parameters to the
macro (which are categorized according to their role in the AST).

• Procedural macros allow the insertion of arbitrary Rust code into the program,
based on the parsed tokens of the source code. This is most commonly used for
derive macros, which can generate code based on the contents of data structure
definitions.
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Declarative Macros
Although this Item isn’t the place to reproduce the documentation for declarative
macros, a few reminders of details to watch out for are in order.

First, be aware that the scoping rules for using a declarative macro are different than
for other Rust items. If a declarative macro is defined in a source code file, only the
code after the macro definition can make use of it:

DOES NOT COMPILE

fn before() {
    println!("[before] square {} is {}", 2, square!(2));
}

/// Macro that squares its argument.
macro_rules! square {
    { $e:expr } => { $e * $e }
}

fn after() {
    println!("[after] square {} is {}", 2, square!(2));
}

error: cannot find macro `square` in this scope
 --> src/main.rs:4:45
  |
4 |     println!("[before] square {} is {}", 2, square!(2));
  |                                             ^^^^^^
  |
  = help: have you added the `#[macro_use]` on the module/import?

The #[macro_export] attribute makes a macro more widely visible, but this also has
an oddity: a macro appears at the top level of a crate, even if it’s defined in a module:

mod submod {
    #[macro_export]
    macro_rules! cube {
        { $e:expr } => { $e * $e * $e }
    }
}

mod user {
    pub fn use_macro() {
        // Note: *not* `crate::submod::cube!`
        let cubed = crate::cube!(3);
        println!("cube {} is {}", 3, cubed);
    }
}

210 | Chapter 5: Tooling

https://oreil.ly/Vm7AZ
https://oreil.ly/Vm7AZ


Rust’s declarative macros are what’s known as hygienic: the expanded code in the body
of the macro is not allowed to make use of local variable bindings. For example, a
macro that assumes that some variable x exists:

// Create a macro that assumes the existence of a local `x`.
macro_rules! increment_x {
    {} => { x += 1; };
}

will trigger a compilation failure when it is used:

DOES NOT COMPILE

let mut x = 2;
increment_x!();
println!("x = {}", x);

error[E0425]: cannot find value `x` in this scope
   --> src/main.rs:55:13
    |
55  |     {} => { x += 1; };
    |             ^ not found in this scope
...
314 |     increment_x!();
    |     -------------- in this macro invocation
    |
    = note: this error originates in the macro `increment_x`

This hygienic property means that Rust’s macros are safer than C preprocessor mac‐
ros. However, there are still a couple of minor gotchas to be aware of when using
them.

The first is to realize that even if a macro invocation looks like a function invocation,
it’s not. A macro generates code at the point of invocation, and that generated code
can perform manipulations of its arguments:

macro_rules! inc_item {
    { $x:ident } => { $x.contents += 1; }
}

This means that the normal intuition about whether parameters are moved or &-
referred-to doesn’t apply:

let mut x = Item { contents: 42 }; // type is not `Copy`

// Item is *not* moved, despite the (x) syntax,
// but the body of the macro *can* modify `x`.
inc_item!(x);

println!("x is {x:?}");
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4 An eagle-eyed reader might notice that format_args! still looks like a macro invocation, even after macros
have been expanded. That’s because it’s a special macro that’s built into the compiler.

x is Item { contents: 43 }

This becomes clear if we remember that the macro inserts code at the point of invoca‐
tion—in this case, adding a line of code that increments x.contents. The cargo-
expand tool shows the code that the compiler sees, after macro expansion:

let mut x = Item { contents: 42 };
x.contents += 1;
{
    ::std::io::_print(format_args!("x is {0:?}\n", x));
};

The expanded code includes the modification in place, via the owner of the item, not
a reference. (It’s also interesting to see the expanded version of println!, which relies
on the format_args! macro, to be discussed shortly.)4

So the exclamation mark serves as a warning: the expanded code for the macro may
do arbitrary things to or with its arguments.

The expanded code can also include control flow operations that aren’t visible in the
calling code, whether they be loops, conditionals, return statements, or use of the ?
operator. Obviously, this is likely to violate the principle of least astonishment, so pre‐
fer macros whose behavior aligns with normal Rust where possible and appropriate.
(On the other hand, if the purpose of the macro is to allow weird control flow, go for
it! But help out your users by making sure the control flow behavior is clearly docu‐
mented.)

For example, consider a macro (for checking HTTP status codes) that silently
includes a return in its body:

/// Check that an HTTP status is successful; exit function if not.
macro_rules! check_successful {
    { $e:expr } => {
        if $e.group() != Group::Successful {
            return Err(MyError("HTTP operation failed"));
        }
    }
}

Code that uses this macro to check the result of some kind of HTTP operation can
end up with control flow that’s somewhat obscure:

let rc = perform_http_operation();
check_successful!(rc); // may silently exit the function

// ...
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An alternative version of the macro that generates code that emits a Result:

/// Convert an HTTP status into a `Result<(), MyError>` indicating success.
macro_rules! check_success {
    { $e:expr } => {
        match $e.group() {
            Group::Successful => Ok(()),
            _ => Err(MyError("HTTP operation failed")),
        }
    }
}

gives code that’s easier to follow:

let rc = perform_http_operation();
check_success!(rc)?; // error flow is visible via `?`

// ...

The second thing to watch out for with declarative macros is a problem shared with
the C preprocessor: if the argument to a macro is an expression with side effects,
beware of repeated use of the argument in the macro. The square! macro defined
earlier takes an arbitrary expression as an argument and then uses that argument
twice, which can lead to surprises:

UNDESIRED BEHAVIOR

let mut x = 1;
let y = square!({
    x += 1;
    x
});
println!("x = {x}, y = {y}");
// output: x = 3, y = 6

Assuming that this behavior isn’t intended, one way to fix it is simply to evaluate the
expression once and assign the result to a local variable:

macro_rules! square_once {
    { $e:expr } => {
        {
            let x = $e;
            x*x // Note: there's a detail here to be explained later...
        }
    }
}
// output now: x = 2, y = 4
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5 The std::fmt module also includes various other traits that are used when displaying data in particular for‐
mats. For example, LowerHex is used when an x format specifier indicates that lower-case hexadecimal output
is required.

The other alternative is not to allow an arbitrary expression as input to the macro. If
the expr syntax fragment specifier is replaced with an ident fragment specifier, then
the macro will only accept identifiers as inputs, and the attempt to feed it an arbitrary
expression will no longer compile.

Formatting Values
One common style of declarative macro involves assembling a message that includes
various values from the current state of the code. For example, the standard library
includes format! for assembling a String, println! for printing to standard output,
eprintln! for printing to standard error, and so on. The documentation describes the
syntax of the formatting directives, which are roughly equivalent to C’s printf state‐
ment. However, the format arguments are type safe and checked at compile time, and
the implementations of the macro use the Display and Debug traits described in Item
10 to format individual values.5

You can (and should) use the same formatting syntax for any macros of your own that
perform a similar function. For example, the logging macros provided by the log
crate use the same syntax as format!. To do this, use format_args! for macros that
perform argument formatting rather than attempting to reinvent the wheel:

/// Log an error including code location, with `format!`-like arguments.
/// Real code would probably use the `log` crate.
macro_rules! my_log {
    { $($arg:tt)+ } => {
        eprintln!("{}:{}: {}", file!(), line!(), format_args!($($arg)+));
    }
}

let x = 10u8;
// Format specifiers:
// - `x` says print as hex
// - `#` says prefix with '0x'
// - `04` says add leading zeroes so width is at least 4
//   (this includes the '0x' prefix).
my_log!("x = {:#04x}", x);

src/main.rs:331: x = 0x0a
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Procedural Macros
Rust also supports procedural macros, often known as proc macros. Like a declarative
macro, a procedural macro has the ability to insert arbitrary Rust code into the pro‐
gram’s source code. However, the inputs to the macro are no longer just the specific
arguments passed to it; instead, a procedural macro has access to the parsed tokens
corresponding to some chunk of the original source code. This gives a level of expres‐
sive power that approaches the flexibility of dynamic languages such as Lisp—but still
with compile-time guarantees. It also helps mitigate the limitations of reflection in
Rust, as discussed in Item 19.

Procedural macros must be defined in a separate crate (of crate type proc-macro)
from where they are used, and that crate will almost certainly need to depend on
either proc-macro (provided by the standard toolchain) or proc-macro2 (provided by
David Tolnay) as a support library, to make it possible to work with the input tokens.

There are three distinct types of procedural macro:

Function-like macros
Invoked with an argument

Attribute macros
Attached to some chunk of syntax in the program

Derive macros
Attached to the definition of a data structure

Function-like macros
Function-like procedural macros are invoked with an argument, and the macro defi‐
nition has access to the parsed tokens that make up the argument, and emits arbitrary
tokens as a result. Note that the previous sentence says “argument,” singular—even if
a function-like macro is invoked with what looks like multiple arguments:

my_func_macro!(15, x + y, f32::consts::PI);

the macro itself receives a single argument, which is a stream of parsed tokens. A
macro implementation that just prints (at compile time) the contents of the stream:

use proc_macro::TokenStream;

// Function-like macro that just prints (at compile time) its input stream.
#[proc_macro]
pub fn my_func_macro(args: TokenStream) -> TokenStream {
    println!("Input TokenStream is:");
    for tt in args {
        println!("  {tt:?}");
    }
    // Return an empty token stream to replace the macro invocation with.
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    TokenStream::new()
}

shows the stream corresponding to the input:

Input TokenStream is:
  Literal { kind: Integer, symbol: "15", suffix: None,
            span: #0 bytes(10976..10978) }
  Punct { ch: ',', spacing: Alone, span: #0 bytes(10978..10979) }
  Ident { ident: "x", span: #0 bytes(10980..10981) }
  Punct { ch: '+', spacing: Alone, span: #0 bytes(10982..10983) }
  Ident { ident: "y", span: #0 bytes(10984..10985) }
  Punct { ch: ',', spacing: Alone, span: #0 bytes(10985..10986) }
  Ident { ident: "f32", span: #0 bytes(10987..10990) }
  Punct { ch: ':', spacing: Joint, span: #0 bytes(10990..10991) }
  Punct { ch: ':', spacing: Alone, span: #0 bytes(10991..10992) }
  Ident { ident: "consts", span: #0 bytes(10992..10998) }
  Punct { ch: ':', spacing: Joint, span: #0 bytes(10998..10999) }
  Punct { ch: ':', spacing: Alone, span: #0 bytes(10999..11000) }
  Ident { ident: "PI", span: #0 bytes(11000..11002) }

The low-level nature of this input stream means that the macro implementation has
to do its own parsing. For example, separating out what appear to be separate argu‐
ments to the macro involves looking for TokenTree::Punct tokens that hold the
commas dividing the arguments. The syn crate (from David Tolnay) provides a pars‐
ing library that can help with this, as “Derive macros” on page 217 describes.

Because of this, it’s usually easier to use a declarative macro than a function-like pro‐
cedural macro, because the expected structure of the macro’s inputs can be expressed
in the matching pattern.

The flip side of this need for manual processing is that function-like proc macros
have the flexibility to accept inputs that don’t parse as normal Rust code. That’s not
often needed (or sensible), so function-like macros are comparatively rare as a result.

Attribute macros
Attribute macros are invoked by placing them before some item in the program, and
the parsed tokens for that item are the input to the macro. The macro can again emit
arbitrary tokens as output, but the output is typically some transformation of the
input.

For example, an attribute macro can be used to wrap the body of a function:

#[log_invocation]
fn add_three(x: u32) -> u32 {
    x + 3
}

so that invocations of the function are logged:
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let x = 2;
let y = add_three(x);
println!("add_three({x}) = {y}");

log: calling function 'add_three'
log: called function 'add_three' => 5
add_three(2) = 5

The implementation of this macro is too large to include here, because the code needs
to check the structure of the input tokens and to build up the new output tokens, but
the syn crate can again help with this processing.

Derive macros
The final type of procedural macro is the derive macro, which allows generated code
to be automatically attached to a data structure definition (a struct, enum, or union).
This is similar to an attribute macro but there are a few derive-specific aspects to be
aware of.

The first is that derive macros add to the input tokens, instead of replacing them
altogether. This means that the data structure definition is left intact but the macro
has the opportunity to append related code.

The second is that a derive macro can declare associated helper attributes, which can
then be used to mark parts of the data structure that need special processing. For
example, serde’s Deserialize derive macro has a serde helper attribute that can pro‐
vide metadata to guide the deserialization process:

fn generate_value() -> String {
    "unknown".to_string()
}

#[derive(Debug, Deserialize)]
struct MyData {
    // If `value` is missing when deserializing, invoke
    // `generate_value()` to populate the field instead.
    #[serde(default = "generate_value")]
    value: String,
}

The final aspect of derive macros to be aware of is that the syn crate can take care of
much of the heavy lifting involved in parsing the input tokens into the equivalent
nodes in the AST. The syn::parse_macro_input! macro converts the tokens into a
syn::DeriveInput data structure that describes the content of the item, and Derive
Input is much easier to deal with than a raw stream of tokens.

In practice, derive macros are the most commonly encountered type of procedural
macro—the ability to generate field-by-field (for structs) or variant-by-variant (for
enums) implementations allows for a lot of functionality to be provided with little
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effort from the programmer—for example, by adding a single line like
#[derive(Debug, Clone, PartialEq, Eq)].

Because the derived implementations are auto-generated, it also means that the
implementations automatically stay in sync with the data structure definition. For
example, if you were to add a new field to a struct, a manual implementation of
Debug would need to be manually updated, whereas an automatically derived version
would display the new field with no additional effort (or would fail to compile if that
wasn’t possible).

When to Use Macros
The primary reason to use macros is to avoid repetitive code—especially repetitive
code that would otherwise have to be manually kept in sync with other parts of the
code. In this respect, writing a macro is just an extension of the same kind of general‐
ization process that normally forms part of programming:

• If you repeat exactly the same code for multiple values of a specific type, encapsu‐
late that code into a common function and call the function from all of the
repeated places.

• If you repeat exactly the same code for multiple types, encapsulate that code into
a generic with a trait bound and use the generic from all of the repeated places.

• If you repeat the same structure of code in multiple places, encapsulate that code
into a macro and use the macro from all of the repeated places.

For example, avoiding repetition for code that works on different enum variants can
be done only by a macro:

enum Multi {
    Byte(u8),
    Int(i32),
    Str(String),
}

/// Extract copies of all the values of a specific enum variant.
#[macro_export]
macro_rules! values_of_type {
    { $values:expr, $variant:ident } => {
        {
            let mut result = Vec::new();
            for val in $values {
                if let Multi::$variant(v) = val {
                    result.push(v.clone());
                }
            }
            result
        }
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    }
}

fn main() {
    let values = vec![
        Multi::Byte(1),
        Multi::Int(1000),
        Multi::Str("a string".to_string()),
        Multi::Byte(2),
    ];

    let ints = values_of_type!(&values, Int);
    println!("Integer values: {ints:?}");

    let bytes = values_of_type!(&values, Byte);
    println!("Byte values: {bytes:?}");

    // Output:
    //   Integer values: [1000]
    //   Byte values: [1, 2]
}

Another scenario where macros help avoid manual repetition is when information
about a collection of data values would otherwise be spread out across different areas
of the code.

For example, consider a data structure that encodes information about HTTP status
codes; a macro can help keep all of the related information together:

// http.rs module

#[derive(Debug, PartialEq, Eq, Clone, Copy)]
pub enum Group {
    Informational, // 1xx
    Successful,    // 2xx
    Redirection,   // 3xx
    ClientError,   // 4xx
    ServerError,   // 5xx
}

// Information about HTTP response codes.
http_codes! {
    Continue           => (100, Informational, "Continue"),
    SwitchingProtocols => (101, Informational, "Switching Protocols"),
    // ...
    Ok                 => (200, Successful, "Ok"),
    Created            => (201, Successful, "Created"),
    // ...
}
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The macro invocation holds all the related information—numeric value, group,
description—for each HTTP status code, acting as a kind of domain-specific lan‐
guage (DSL) holding the source of truth for the data.

The macro definition then describes the generated code; each line of the form
$( ... )+ expands to multiple lines in the generated code, one per argument to the
macro:

macro_rules! http_codes {
    { $( $name:ident => ($val:literal, $group:ident, $text:literal), )+ } => {
        #[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
        #[repr(i32)]
        enum Status {
            $( $name = $val, )+
        }
        impl Status {
            fn group(&self) -> Group {
                match self {
                    $( Self::$name => Group::$group, )+
                }
            }
            fn text(&self) -> &'static str {
                match self {
                    $( Self::$name => $text, )+
                }
            }
        }
        impl core::convert::TryFrom<i32> for Status {
            type Error = ();
            fn try_from(v: i32) -> Result<Self, Self::Error> {
                match v {
                    $( $val => Ok(Self::$name), )+
                    _ => Err(())
                }
            }
        }
    }
}

As a result, the overall output from the macro takes care of generating all of the code
that derives from the source-of-truth values:

• The definition of an enum holding all the variants
• The definition of a group() method, which indicates which group an HTTP sta‐

tus belongs to
• The definition of a text() method, which maps a status to a text description
• An implementation of TryFrom<i32> to convert numbers to status enum values

If an extra value needs to be added later, all that’s needed is a single additional line:

220 | Chapter 5: Tooling



ImATeapot => (418, ClientError, "I'm a teapot"),

Without the macro, four different places would have to be manually updated. The
compiler would point out some of them (because match expressions need to cover all
cases) but not all—TryFrom<i32> could easily be forgotten.

Because macros are expanded in place in the invoking code, they can also be used to
automatically emit additional diagnostic information—in particular, by using the
standard library’s file!() and line!() macros, which emit source code location
information:

macro_rules! log_failure {
    { $e:expr } => {
        {
            let result = $e;
            if let Err(err) = &result {
                eprintln!("{}:{}: operation '{}' failed: {:?}",
                          file!(),
                          line!(),
                          stringify!($e),
                          err);
            }
            result
        }
    }
}

When failures occur, the log file then automatically includes details of what failed and
where:

use std::convert::TryInto;

let x: Result<u8, _> = log_failure!(512.try_into()); // too big for `u8`
let y = log_failure!(std::str::from_utf8(b"\xc3\x28")); // invalid UTF-8

src/main.rs:340: operation '512.try_into()' failed: TryFromIntError(())
src/main.rs:341: operation 'std::str::from_utf8(b"\xc3\x28")' failed:
                 Utf8Error { valid_up_to: 0, error_len: Some(1) }

Disadvantages of Macros
The primary disadvantage of using a macro is the impact that it has on code readabil‐
ity and maintainability. “Declarative Macros” on page 210 explains that macros allow
you to create a DSL to concisely express key features of your code and data. However,
this means that anyone reading or maintaining the code now has to understand this
DSL—and its implementation in macro definitions—in addition to understanding
Rust. For example, the http_codes! example in the previous section creates a Rust
enum named Status, but it’s not visible in the DSL used for the macro invocation.
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This potential impenetrability of macro-based code extends beyond other engineers:
various tools that analyze and interact with Rust code may treat the code as opaque,
because it no longer follows the syntactical conventions of Rust code. The
square_once! macro shown earlier provided one trivial example of this: the body of
the macro has not been formatted according to the normal rustfmt rules:

{
    let x = $e;
    // The `rustfmt` tool doesn't really cope with code in
    // macros, so this has not been reformatted to `x * x`.
    x*x
}

Another example is the earlier http_codes! macro, where the DSL uses Group enum
variant names like Informational with neither a Group:: prefix nor a use statement,
which may confuse some code navigation tools.

Even the compiler itself is less helpful: its error messages don’t always follow the chain
of macro use and definition. (However, there are parts of the tooling ecosystem [see
Item 31] that can help with this, such as David Tolnay’s cargo-expand, used earlier.)

Another possible downside for macro use is the possibility of code bloat—a single
line of macro invocation can result in hundreds of lines of generated code, which will
be invisible to a cursory survey of the code. This is less likely to be a problem when
the code is first written, because at that point the code is needed and saves the
humans involved from having to write it themselves. However, if the code subse‐
quently stops being necessary, it’s not so obvious that there are large amounts of code
that could be deleted.

Advice
Although the previous section listed some downsides of macros, they are still funda‐
mentally the right tool for the job when there are different chunks of code that need
to be kept consistent but that cannot be coalesced any other way: use a macro when‐
ever it’s the only way to ensure that disparate code stays in sync.

Macros are also the tool to reach for when there’s boilerplate code to be squashed: use
a macro for repeated boilerplate code that can’t be coalesced into a function or a
generic.

To reduce the impact on readability, try to avoid syntax in your macros that clashes
with Rust’s normal syntax rules; either make the macro invocation look like normal
code or make it look sufficiently different so that no one could confuse the two. In
particular, follow these guidelines:
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• Avoid macro expansions that insert references where possible—a macro invocation
like my_macro!(&list) aligns better with normal Rust code than my_macro!
(list) would.

• Prefer to avoid nonlocal control flow operations in macros so that anyone reading
the code is able to follow the flow without needing to know the details of the
macro.

This preference for Rust-like readability sometimes affects the choice between declar‐
ative macros and procedural macros. If you need to emit code for each field of a
structure, or each variant of an enum, prefer a derive macro to a procedural macro that
emits a type (despite the example shown in “When to Use Macros” on page 218)—it’s
more idiomatic and makes the code easier to read.

However, if you’re adding a derive macro with functionality that’s not specific to your
project, check whether an external crate already provides what you need (see Item
25). For example, the problem of converting integer values into the appropriate var‐
iant of a C-like enum is well-covered: all of enumn::N, num_enum::TryFromPrimitive,
num_derive::FromPrimitive, and strum::FromRepr cover some aspect of this
problem.

Item 29: Listen to Clippy
It looks like you’re writing a letter. Would you like help?

—Microsoft Clippit

Item 31 describes the ecosystem of helpful tools available in the Rust toolbox, but one
tool is sufficiently helpful and important to get promoted to an Item of its very own:
Clippy.

Clippy is an additional component for Cargo (cargo clippy) that emits warnings
about your Rust usage, across a variety of categories:

Correctness
Warns about common programming errors

Idiom
Warns about code constructs that aren’t quite in standard Rust style

Concision
Points out variations on the code that are more compact

Performance
Suggests alternatives that avoid unnecessary processing or allocation
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Readability
Describes alterations to the code that would make it easier for humans to read
and understand

For example, the following code builds fine:

UNDESIRED BEHAVIOR

pub fn circle_area(radius: f64) -> f64 {
    let pi = 3.14;
    pi * radius * radius
}

but Clippy points out that the local approximation to π is unnecessary and inaccu‐
rate:

error: approximate value of `f{32, 64}::consts::PI` found
 --> src/main.rs:5:18
  |
5 |         let pi = 3.14;
  |                  ^^^^
  |
  = help: consider using the constant directly
  = help: for further information visit
    https://rust-lang.github.io/rust-clippy/master/index.html#approx_constant
  = note: `#[deny(clippy::approx_constant)]` on by default

The linked webpage explains the problem and points the way to a suitable modifica‐
tion of the code:

pub fn circle_area(radius: f64) -> f64 {
    std::f64::consts::PI * radius * radius
}

As shown previously, each Clippy warning comes with a link to a webpage describing
the error, which explains why the code is considered bad. This is vital, because it
allows you to decide whether those reasons apply to your code or whether there is
some particular reason why the lint check isn’t relevant. In some cases, the text also
describes known problems with the lint, which might explain an otherwise confusing
false positive.

If you decide that a lint warning isn’t relevant for your code, you can disable it either
for that particular item (#[allow(clippy::some_lint)]) or for the entire crate (#!
[allow(clippy::some_lint)], with an extra !, at the top level). However, it’s usually
better to take the cost of a minor refactoring of the code than to waste time and
energy arguing about whether the warning is a genuine false positive.
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Whether you choose to fix or disable the warnings, you should make your code
Clippy-warning free.

That way, when new warnings appear—whether because the code has been changed
or because Clippy has been upgraded to include new checks—they will be obvious.
Clippy should also be enabled in your CI system (Item 32).

Clippy’s warnings are particularly helpful when you’re learning Rust, because they
reveal gotchas you might not have noticed and help you become familiar with Rust
idiom.

Many of the Items in this book also have corresponding Clippy warnings, when it’s
possible to mechanically check the relevant concern:

• Item 1 suggests using more expressive types than plain bools, and Clippy will
also point out the use of multiple bools in function parameters and structures.

• Item 3 covers manipulations of Option and Result types, and Clippy points out a
few possible redundancies, such as the following:
— Unnecessarily converting Result to Option
— Opportunities to use unwrap_or_default

• Item 3 also suggests that errors should be returned to the caller where possible;
Clippy points out some missing opportunities to do that.

• Item 5 suggests implementing From rather than Into, which Clippy also suggests.
• Item 5 also describes casts, and Clippy has (disabled by default) warnings for the

following:
— as casts that could be from instead
— as casts that might truncate
— as casts that might wrap
— as casts that lose precision
— as casts that might convert signed negative numbers to large positive numbers
— any use of as

• Item 8 describes fat pointer types, and various Clippy lints point out scenarios
where there are unnecessary extra pointer indirections:
— Holding a heap-allocated collection in a Box
— Holding a heap-allocated collection of Box items
— Taking a reference to a Box
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• Item 9 describes the myriad ways to manipulate Iterator instances; Clippy
includes a truly astonishing number of lints that point out combinations of itera‐
tor methods that could be simplified.

• Item 10 describes Rust’s standard traits and included some implementation
requirements that Clippy checks:
— Ord must agree with PartialOrd.
— PartialEq::ne should not need a nondefault implementation (see Item 13).
— Hash and Eq must be consistent.
— Clone for Copy types should match.

• Item 18 suggests limiting the use of panic! or related methods like expect, which
Clippy also detects.

• Item 21 observes that importing a wildcard version of a crate isn’t sensible;
Clippy agrees.

• Item 23 suggests avoiding wildcard imports, as does Clippy.
• Items 24 and 25 touch on the fact that multiple versions of the same crate can

appear in your dependency graph; Clippy can be configured to complain when
this happens.

• Item 26 explains the additive nature of Cargo features, and Clippy includes a
warning about “negative” feature names (e.g., "no_std") that are likely to indicate
a feature that falls foul of this.

• Item 26 also explains that a crate’s optional dependencies form part of its feature
set, and Clippy warns if there are explicit feature names (e.g., "use-crate-x")
that could just make use of this instead.

• Item 27 describes conventions for documentation comments, and Clippy will
also point out the following:
— Missing descriptions of panic!s
— Missing descriptions of unsafe concerns

As the size of this list should make clear, it can be a valuable learning experience to
read the list of Clippy lint warnings—including the checks that are disabled by default
because they are overly pedantic or because they have a high rate of false positives.
Even though you’re unlikely to want to enable these warnings for your code, under‐
standing the reasons why they were written in the first place will improve your
understanding of Rust and its idiom.
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Item 30: Write more than unit tests
All companies have test environments.
The lucky ones have production environments separate from the test environment.

—@FearlessSon

Like most other modern languages, Rust includes features that make it easy to write
tests that live alongside your code and that give you confidence that the code is work‐
ing correctly.

This isn’t the place to expound on the importance of tests; suffice it to say that if code
isn’t tested, it probably doesn’t work the way you think it does. So this Item assumes
that you’re already signed up to write tests for your code.

Unit tests and integration tests, described in the next two sections, are the key forms
of tests. However, the Rust toolchain, and extensions to the toolchain, allow for vari‐
ous other types of tests. This Item describes their distinct logistics and rationales.

Unit Tests
The most common form of test for Rust code is a unit test, which might look some‐
thing like this:

// ... (code defining `nat_subtract*` functions for natural
//      number subtraction)

#[cfg(test)]
mod tests {
    use super::*;
    #[test]
    fn test_nat_subtract() {
        assert_eq!(nat_subtract(4, 3).unwrap(), 1);
        assert_eq!(nat_subtract(4, 5), None);
    }

    #[should_panic]
    #[test]
    fn test_something_that_panics() {
        nat_subtract_unchecked(4, 5);
    }
}

Some aspects of this example will appear in every unit test:

• A collection of unit test functions.
• Each test function is marked with the #[test] attribute.

Item 30: Write more than unit tests | 227

https://oreil.ly/UzBRq
https://doc.rust-lang.org/book/ch11-00-testing.html
https://doc.rust-lang.org/book/ch11-00-testing.html


• The module holding the test functions is annotated with a #[cfg(test)]
attribute, so the code gets built only in test configurations.

Other aspects of this example illustrate things that are optional and may be relevant
only for particular tests:

• The test code here is held in a separate module, conventionally called tests or
test. This module may be inline (as here) or held in a separate tests.rs file. Using
a separate file for the test module has the advantage that it’s easier to spot
whether code that uses a function is test code or “real” code.

• The test module might have a wildcard use super::* to pull in everything from
the parent module under test. This makes it more convenient to add tests (and is
an exception to the general advice in Item 23 to avoid wildcard imports).

• The normal visibility rules for modules mean that a unit test has the ability to use
anything from the parent module, whether it is pub or not. This allows for “open-
box” testing of the code, where the unit tests exercise internal features that aren’t
visible to normal users.

• The test code makes use of expect() or unwrap() for its expected results. The
advice in Item 18 isn’t really relevant for test-only code, where panic! is used to
signal a failing test. Similarly, the test code also checks expected results with
assert_eq!, which will panic on failure.

• The code under test includes a function that panics on some kinds of invalid
input; to exercise that, there’s a unit test function that’s marked with the
#[should_panic] attribute. This might be needed when testing an internal func‐
tion that normally expects the rest of the code to respect its invariants and pre‐
conditions, or it might be a public function that has some reason to ignore the
advice in Item 18. (Such a function should have a “Panics” section in its doc com‐
ment, as described in Item 27.)

Item 27 suggests not documenting things that are already expressed by the type sys‐
tem. Similarly, there’s no need to test things that are guaranteed by the type system. If
your enum types start holding values that aren’t in the list of allowed variants, you’ve
got bigger problems than a failing unit test!

However, if your code relies on specific functionality from your dependencies, it can
be helpful to include basic tests of that functionality. The aim here is not to repeat
testing that’s already done by the dependency itself but instead to have an early warn‐
ing system that indicates whether the behavior that you need from the dependency
has changed—separately from whether the public API signature has changed, as indi‐
cated by the semantic version number (Item 21).
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Integration Tests
The other common form of test included with a Rust project is integration tests, held
under tests/. Each file in that directory is run as a separate test program that executes
all of the functions marked with #[test].

Integration tests do not have access to crate internals and so act as behavior tests that
can exercise only the public API of the crate.

Doc Tests
Item 27 described the inclusion of short code samples in documentation comments,
to illustrate the use of a particular public API item. Each such chunk of code is
enclosed in an implicit fn main() { ... } and run as part of cargo test, effectively
making it an additional test case for your code, known as a doc test. Individual tests
can also be executed selectively by running cargo test --doc <item-name>.

Regularly running tests as part of your CI environment (Item 32) ensures that your
code samples don’t drift too far from the current reality of your API.

Examples
Item 27 also described the ability to provide example programs that exercise your
public API. Each Rust file under examples/ (or each subdirectory under examples/
that includes a main.rs) can be run as a standalone binary with cargo run --
example <name> or cargo test --example <name>.

These programs have access to only the public API of your crate and are intended to
illustrate the use of your API as a whole. Examples are not specifically designated as
test code (no #[test], no #[cfg(test)]), and they’re a poor place to put code that
exercises obscure nooks and crannies of your crate—particularly as examples are not
run by cargo test by default.

Nevertheless, it’s a good idea to ensure that your CI system (Item 32) builds and runs
all the associated examples for a crate (with cargo test --examples), because it can
act as a good early warning system for regressions that are likely to affect lots of users.
As noted, if your examples demonstrate mainline use of your API, then a failure in
the examples implies that something significant is wrong:

• If it’s a genuine bug, then it’s likely to affect lots of users—the very nature of
example code means that users are likely to have copied, pasted, and adapted the
example.

• If it’s an intended change to the API, then the examples need to be updated to
match. A change to the API also implies a backward incompatibility, so if the
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crate is published, then the semantic version number needs a corresponding
update to indicate this (Item 21).

The likelihood of users copying and pasting example code means that it should have a
different style than test code. In line with Item 18, you should set a good example for
your users by avoiding unwrap() calls for Results. Instead, make each example’s
main() function return something like Result<(), Box<dyn Error>>, and then use
the question mark operator throughout (Item 3).

Benchmarks
Item 20 attempts to persuade you that fully optimizing the performance of your code
isn’t always necessary. Nevertheless, there are definitely times when performance is
critical, and if that’s the case, then it’s a good idea to measure and track that perfor‐
mance. Having benchmarks that are run regularly (e.g., as part of CI; Item 32) allows
you to detect when changes to the code or the toolchains adversely affect that perfor‐
mance.

The cargo bench command runs special test cases that repeatedly perform an opera‐
tion, and emits average timing information for the operation. At the time of writing,
support for benchmarks is not stable, so the precise command may need to be cargo
+nightly bench. (Rust’s unstable features, including the test feature used here, are
described in The Unstable Book.)

However, there’s a danger that compiler optimizations may give misleading results,
particularly if you restrict the operation that’s being performed to a small subset of
the real code. Consider a simple arithmetic function:

pub fn factorial(n: u128) -> u128 {
    match n {
        0 => 1,
        n => n * factorial(n - 1),
    }
}

A naive benchmark for this code:

#![feature(test)]
extern crate test;

#[bench]
fn bench_factorial(b: &mut test::Bencher) {
    b.iter(|| {
        let result = factorial(15);
        assert_eq!(result, 1_307_674_368_000);
    });
}

gives incredibly positive results:
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test bench_factorial             ... bench:           0 ns/iter (+/- 0)

With fixed inputs and a small amount of code under test, the compiler is able to opti‐
mize away the iteration and directly emit the result, leading to an unrealistically opti‐
mistic result.

The std::hint::black_box function can help with this; it’s an identity function
whose implementation the compiler is “encouraged, but not required” (their italics) to
pessimize.

Moving the benchmark code to use this hint:

#[bench]
fn bench_factorial(b: &mut test::Bencher) {
    b.iter(|| {
        let result = factorial(std::hint::black_box(15));
        assert_eq!(result, 1_307_674_368_000);
    });
}

gives more realistic results:

test blackboxed::bench_factorial ... bench:          16 ns/iter (+/- 3)

The Godbolt compiler explorer can also help by showing the actual machine code
emitted by the compiler, which may make it obvious when the compiler has per‐
formed optimizations that would be unrealistic for code running a real scenario.

Finally, if you are including benchmarks for your Rust code, the criterion crate may
provide an alternative to the standard test::bench::Bencher functionality that is
more convenient (it runs with stable Rust) and more fully featured (it has support for
statistics and graphs).

Fuzz Testing
Fuzz testing is the process of exposing code to randomized inputs in the hope of find‐
ing bugs, particularly crashes that result from those inputs. Although this can be a
useful technique in general, it becomes much more important when your code is
exposed to inputs that may be controlled by someone who is deliberately trying to
attack the code—so you should run fuzz tests if your code is exposed to potential
attackers.

Historically, the majority of defects in C/C++ code that have been exposed by fuzzers
have been memory safety problems, typically found by combining fuzz testing with
runtime instrumentation (e.g., AddressSanitizer or ThreadSanitizer) of memory
access patterns.

Rust is immune to some (but not all) of these memory safety problems, particularly
when there is no unsafe code involved (Item 16). However, Rust does not prevent
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bugs in general, and a code path that triggers a panic! (see Item 18) can still result in
a denial-of-service (DoS) attack on the codebase as a whole.

The most effective forms of fuzz testing are coverage-guided: the test infrastructure
monitors which parts of the code are executed and favors random mutations of the
inputs that explore new code paths. “American fuzzy lop” (AFL) was the original
heavyweight champion of this technique, but in more recent years equivalent func‐
tionality has been included in the LLVM toolchain as libFuzzer.

The Rust compiler is built on LLVM, and so the cargo-fuzz subcommand exposes
libFuzzer functionality for Rust (albeit for only a limited number of platforms).

The primary requirement for a fuzz test is to identify an entrypoint of your code that
takes (or can be adapted to take) arbitrary bytes of data as input:

UNDESIRED BEHAVIOR

/// Determine if the input starts with "FUZZ".
pub fn is_fuzz(data: &[u8]) -> bool {
    if data.len() >= 3 /* oops */
    && data[0] == b'F'
    && data[1] == b'U'
    && data[2] == b'Z'
    && data[3] == b'Z'
    {
        true
    } else {
        false
    }
}

With a target entrypoint identified, the Rust Fuzz Book gives instructions on how to
arrange the fuzzing subproject. At its core is a small driver that connects the target
entrypoint to the fuzzing infrastructure:

// fuzz/fuzz_targets/target1.rs file
#![no_main]
use libfuzzer_sys::fuzz_target;

fuzz_target!(|data: &[u8]| {
    let _ = somecrate::is_fuzz(data);
});

Running cargo +nightly fuzz run target1 continuously executes the fuzz target
with random data, stopping only if a crash is found. In this case, a failure is found
almost immediately:

INFO: Running with entropic power schedule (0xFF, 100).
INFO: Seed: 1607525774

232 | Chapter 5: Tooling

https://lcamtuf.coredump.cx/afl/
https://llvm.org/docs/LibFuzzer.html
https://github.com/rust-fuzz/cargo-fuzz
https://oreil.ly/xF0Ex


6 If your code is a widely used open source crate, the Google OSS-Fuzz program may be willing to run fuzzing
on your behalf.

INFO: Loaded 1 modules: 1624 [0x108219fa0, 0x10821a5f8),
INFO: Loaded 1 PC tables (1624 PCs): 1624 [0x10821a5f8,0x108220b78),
INFO:        9 files found in fuzz/corpus/target1
INFO: seed corpus: files: 9 min: 1b max: 8b total: 46b rss: 38Mb
#10 INITED cov: 26 ft: 26 corp: 6/22b exec/s: 0 rss: 39Mb
thread panicked at 'index out of bounds: the len is 3 but the index is 3',
     testing/src/lib.rs:77:12
stack backtrace:
   0: rust_begin_unwind
             at /rustc/f77bfb7336f2/library/std/src/panicking.rs:579:5
   1: core::panicking::panic_fmt
             at /rustc/f77bfb7336f2/library/core/src/panicking.rs:64:14
   2: core::panicking::panic_bounds_check
             at /rustc/f77bfb7336f2/library/core/src/panicking.rs:159:5
   3: somecrate::is_fuzz
   4: _rust_fuzzer_test_input
   5: ___rust_try
   6: _LLVMFuzzerTestOneInput
   7: __ZN6fuzzer6Fuzzer15ExecuteCallbackEPKhm
   8: __ZN6fuzzer6Fuzzer6RunOneEPKhmbPNS_9InputInfoEbPb
   9: __ZN6fuzzer6Fuzzer16MutateAndTestOneEv
  10: __ZN6fuzzer6Fuzzer4LoopERNSt3__16vectorINS_9SizedFileENS_
      16fuzzer_allocatorIS3_EEEE
  11: __ZN6fuzzer12FuzzerDriverEPiPPPcPFiPKhmE
  12: _main

and the input that triggered the failure is emitted.

Normally, fuzz testing does not find failures so quickly, and so it does not make sense
to run fuzz tests as part of your CI. The open-ended nature of the testing, and the
consequent compute costs, mean that you need to consider how and when to run
fuzz tests—perhaps only for new releases or major changes, or perhaps for a limited
period of time.6

You can also make subsequent runs of the fuzzing infrastructure more efficient, by 
storing and reusing a corpus of previous inputs that the fuzzer found to explore new
code paths; this helps subsequent runs of the fuzzer explore new ground, rather than
retesting code paths previously visited.
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Testing Advice
An Item about testing wouldn’t be complete without repeating some common advice
(which is mostly not Rust-specific):

• As this Item has endlessly repeated, run all your tests in CI on every change (with
the exception of fuzz tests).

• When you’re fixing a bug, write a test that exhibits the bug before fixing the bug.
That way you can be sure that the bug is fixed and that it won’t be accidentally
reintroduced in the future.

• If your crate has features (Item 26), run tests over every possible combination of
available features.

• More generally, if your crate includes any config-specific code (e.g., #[cfg(tar
get_os = "windows")]), run tests for every platform that has distinct code.

This Item has covered a lot of different types of tests, so it’s up to you to decide how
much each of them is relevant and worthwhile for your project.

If you have a lot of test code and you are publishing your crate to crates.io, then
you might need to consider which of the tests make sense to include in the published
crate. By default, cargo will include unit tests, integration tests, benchmarks, and
examples (but not fuzz tests, because the cargo-fuzz tools store these as a separate
crate in a subdirectory), which may be more than end users need. If that’s the case,
you can either exclude some of the files or (for behavior tests) move the tests out of
the crate and into a separate test crate.

Things to Remember
• Write unit tests for comprehensive testing that includes testing of internal-only

code. Run them with cargo test.
• Write integration tests to exercise your public API. Run them with cargo test.
• Write doc tests that exemplify how to use individual items in your public API.

Run them with cargo test.
• Write example programs that show how to use your public API as a whole. Run

them with cargo test --examples or cargo run --example <name>.
• Write benchmarks if your code has significant performance requirements. Run

them with cargo bench.
• Write fuzz tests if your code is exposed to untrusted inputs. Run them (continu‐

ously) with cargo fuzz.
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7 This list may be reduced in some environments. For example, Rust development in Android has a centrally
controlled toolchain (so no rustup) and integrates with Android’s Soong build system (so no cargo).

Item 31: Take advantage of the tooling ecosystem
The Rust ecosystem has a rich collection of additional tools, which provide function‐
ality above and beyond the essential task of converting Rust into machine code.

When setting up a Rust development environment, you’re likely to want most of the
following basic tools:7

• The cargo tool for organizing dependencies (Item 25) and driving the compiler
• The rustup tool, which manages the installed Rust toolchains
• An IDE with Rust support, or an IDE/editor plug-in like rust-analyzer, that

allows you to quickly navigate around a Rust codebase, and provides autocom‐
pletion support for writing Rust code

• The Rust playground, for standalone explorations of Rust’s syntax and for sharing
the results with colleagues

• A bookmarked link to the documentation for the Rust standard library

Beyond these basics, Rust includes many tools that help with the wider task of main‐
taining a codebase and improving the quality of that codebase. The tools that are
included in the official Cargo toolchain cover various essential tasks beyond the
basics of cargo build, cargo test, and cargo run, for example:

cargo fmt

Reformats Rust code according to standard conventions.

cargo check

Performs compilation checks without generating machine code, which can be
useful to get a fast syntax check.

cargo clippy

Performs lint checks, detecting inefficient or unidiomatic code (Item 29).

cargo doc

Generates documentation (Item 27).

cargo bench

Runs benchmarking tests (Item 30).
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cargo update

Upgrades dependencies to the latest versions, selecting versions that are compli‐
ant with semantic versioning (Item 21) by default.

cargo tree

Displays the dependency graph (Item 25).

cargo metadata

Emits metadata about the packages that are present in the workspace and in their
dependencies.

The last of these is particularly useful, albeit indirectly: because there’s a tool that
emits information about crates in a well-defined format, it’s much easier for people to
produce other tools that make use of that information (typically via the cargo_meta
data crate, which provides a set of Rust types to hold the metadata information).

Item 25 described some of the tools that are enabled by this metadata availability,
such as cargo-udeps (which allows detection of unused dependencies) or cargo-
deny (which allows checks for many things, including duplicate dependencies,
allowed licenses, and security advisories).

The extensibility of the Rust toolchain is not just limited to package metadata; the
compiler’s abstract syntax tree can also be built upon, often via the syn crate. This
information is what makes procedural macros (Item 28) so potent but also powers a
variety of other tools:

cargo-expand

Shows the complete source code produced by macro expansion, which can be
essential for debugging tricky macro definitions.

cargo-tarpaulin

Supports the generation and tracking of code coverage information.

Any list of specific tools will always be subjective, out of date, and incomplete; the
more general point is to explore the available tools.

For example, a search for cargo-<something> tools gives dozens of results; some will
be inappropriate and some will be abandoned, but some might just do exactly what
you want.

There are also various efforts to apply formal verification to Rust code, which may be
helpful if your code needs higher levels of assurance about its correctness.

Finally, a reminder: if a tool is useful on more than a one-off basis, you should inte‐
grate the tool into your CI system (as per Item 32). If the tool is fast and false-positive
free, it may also make sense to integrate the tool into your editor or IDE; the Rust Tools
page provides links to relevant documentation for this.
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Tools to Remember
In addition to the tools that should be configured to run over your codebase regularly
and automatically (Item 32), there are various other tools that have been mentioned
elsewhere in the book. For reference, these are collated here—but remember that
there are many more tools out there:

• Item 16 recommends the use of Miri when writing subtle unsafe code.
• Items 21 and 25 include mention of Dependabot, for managing dependency

updates.
• Item 21 also mentions cargo-semver-checks as a possible option for checking

that semantic versioning has been done correctly.
• Item 28 explains that cargo-expand can help when debugging macro problems.
• Item 29 is entirely dedicated to the use of Clippy.
• The Godbolt compiler explorer allows you to explore the machine code corre‐

sponding to your source code, as described in Item 30.
• Item 30 also mentions additional testing tools, such as cargo-fuzz for fuzz test‐

ing and criterion for benchmarking.
• Item 35 covers the use of bindgen for auto-generating Rust FFI wrappers from C

code.

Item 32: Set up a continuous integration (CI) system
A CI system is a mechanism for automatically running tools over your codebase,
which is triggered whenever there’s a change to the codebase—or a proposed change
to the codebase.

The recommendation to set up a CI system is not at all Rust-specific, so this Item is a
mélange of general advice mixed with Rust-specific tool suggestions.

CI Steps
Moving to specifics, what kinds of steps should be included in your CI system? The
obvious initial candidates are the following:

• Build the code.
• Run the tests for the code.

In each case, a CI step should run cleanly, quickly, deterministically, and with a zero
false positive rate; more on this in the next section.
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8 If your code relies on particular features that are available only in the nightly compiler, a rust-toolchain.toml
file also makes that toolchain dependency clear.

The “deterministic” requirement also leads to advice for the build step: use rust-
toolchain.toml to specify a fixed version of the toolchain in your CI build.

The rust-toolchain.toml file indicates which version of Rust should be used to build
the code—either a specific version (e.g., 1.70), or a channel (stable, beta, or
nightly) possibly with an optional date (e.g., nightly-2023-09-19).8 Choosing a
floating channel value here would make the CI results vary as new toolchain versions
are released; a fixed value is more deterministic and allows you to deal with toolchain
upgrades separately.

Throughout this book, various Items have suggested tools and techniques that can
help improve your codebase; wherever possible, these should be included with the CI
system. For example, the two fundamental parts of a CI system previously mentioned
can be enhanced:

• Build the code.
— Item 26 describes the use of features to conditionally include different chunks

of code. If your crate has features, build every valid combination of features in
CI (and realize that this may involve 2N different variants—hence the advice to
avoid feature creep).

— Item 33 suggests that you consider making library code no_std compatible
where possible. You can be confident that your code is genuinely no_std com‐
patible only if you test no_std compatibility in CI. One option is to make use
of the Rust compiler’s cross-compilation abilities and build for an explicitly
no_std target (e.g., thumbv6m-none-eabi).

— Item 21 includes a discussion around declaring a minimum supported Rust
version (MSRV) for your code. If you have this, check your MSRV in CI by
including a step that tests with that specific Rust version.

• Run the tests for the code.
— Item 30 describes the various different styles of test; run all test types in CI.

Some test types are automatically included in cargo test (unit tests, integra‐
tion tests, and doc tests), but other test types (e.g., example programs) may
need to be explicitly triggered.

However, there are other tools and suggestions that can help improve the quality of
your codebase:
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• Item 29 waxes lyrical about the advantages of running Clippy over your code; run
Clippy in CI. To ensure that failures are flagged, set the -Dwarnings option (for
example, via cargo clippy -- -Dwarnings).

• Item 27 suggests documenting your public API; use the cargo doc tool to check
that the documentation generates correctly and that any hyperlinks in it resolve
correctly.

• Item 25 mentions tools such as cargo-udeps and cargo-deny that can help man‐
age your dependency graph; running these as a CI step prevents regressions.

• Item 31 discusses the Rust tool ecosystem; consider which of these tools are
worth regularly running over your codebase. For example, running rustfmt /
cargo fmt in CI allows detection of code that doesn’t comply with your project’s
style guidelines. To ensure that failures are flagged, set the --check option.

You can also include CI steps that measure particular aspects of your code:

• Generate code coverage statistics (e.g., with cargo-tarpaulin) to show what pro‐
portion of your codebase is exercised by your tests.

• Run benchmarks (e.g., with cargo-bench; Item 30) to measure the performance
of your code on key scenarios. However, note that most CI systems run in shared
environments where external factors can affect the results; getting more reliable
benchmark data is likely to require a more dedicated environment.

These measurement suggestions are a bit more complicated to set up, because the
output of a measurement step is more useful when it’s compared to previous results.
In an ideal world, the CI system would detect when a code change is not fully tested
or has an adverse effect on performance; this typically involves integration with some
external tracking system.

Here are other suggestions for CI steps that may or may not be relevant for your
codebase:

• If your project is a library, recall (from Item 25) that any checked-in Cargo.lock
file will be ignored by the users of your library. In theory, the semantic version
constraints (Item 21) in Cargo.toml should mean that everything works correctly
anyway; in practice, consider including a CI step that builds without any local
Cargo.lock, to detect whether the current versions of dependencies still work cor‐
rectly.

• If your project includes any kind of machine-generated resources that are
version-controlled (e.g., code generated from protocol buffer messages by
prost), then include a CI step that regenerates the resources and checks that
there are no differences compared to the checked-in version.
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• If your codebase includes platform-specific (e.g., #[cfg(target_arch =

"arm")]) code, run CI steps that confirm that the code builds and (ideally) works
on that platform. (The former is easier than the latter because the Rust toolchain
includes support for cross-compilation.)

• If your project manipulates secret values such as access tokens or cryptographic
keys, consider including a CI step that searches the codebase for secrets that have
been inadvertently checked in. This is particularly important if your project is
public (in which case it may be worth moving the check from CI to a version-
control presubmit check).

CI checks don’t always need to be integrated with Cargo and the Rust toolchains;
sometimes a simple shell script can give more bang for the buck, particularly when a
codebase has a local convention that’s not universally followed. For example, a code‐
base might include a convention that any panic-inducing method invocation (Item
18) has a special marker comment or that every TODO: comment has an owner (a per‐
son or a tracking ID), and a shell script is ideal for checking this.

Finally, consider examining the CI systems of public Rust projects to get ideas for
additional CI steps that might be useful for your project. For example, Cargo has a CI
system that includes many steps that may provide inspiration.

CI Principles
Moving from the specific to the general, there are some overall principles that should
guide the details of your CI system.

The most fundamental principle is don’t waste the time of humans. If a CI system
unnecessarily wastes people’s time, they will start looking for ways to avoid it.

The most annoying waste of an engineer’s time is a flaky test: sometimes it passes and
sometimes it fails, even when the setup and codebase are identical. Whenever possi‐
ble, be ruthless with flaky tests: hunt them down, and put in the time up front to
investigate and fix the cause of the flakiness—it will pay for itself in the long run.

Another common waste of engineering time is a CI system that takes a long time to
run and that runs only after a request for a code review has been triggered. In this
situation, there’s the potential to waste two people’s time: both the author and also the
code reviewer, who may spend time spotting and pointing out issues with the code
that the CI bots could have flagged.

To help with this, try to make it easy to run the CI checks manually, independent
from the automated system. This allows engineers to get into the habit of triggering
them regularly so that code reviewers never even see problems that the CI would have
flagged. Better still, make the integration even more continuous by incorporating
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some of the tools into your editor or IDE setup so that (for example) poorly format‐
ted code never even makes it to disk.

This may also require splitting the checks up if there are time-consuming tests that
rarely find problems but are there as a backstop to prevent obscure scenarios
breaking.

More generally, a large project may need to divide up its CI checks according to the
cadence at which they are run:

• Checks that are integrated into each engineer’s development environment (e.g.,
rustfmt)

• Checks that run on every code review request (e.g., cargo build, cargo clippy)
and are easy to run manually

• Checks that run on every change that makes it to the main branch of the project
(e.g., full cargo test in all supported environments)

• Checks that run at scheduled intervals (e.g., daily or weekly), which can catch
rare regressions after the fact (e.g., long-running integration tests and benchmark
comparison tests)

• Checks that run on the current code at all times (e.g., fuzz tests)

It’s important that the CI system be integrated with whatever code review system is
used for your project so that a code review can clearly see a green set of checks and be
confident that its code review can focus on the important meaning of the code, not on
trivial details.

This need for a green build also means that there can be no exceptions to whatever
checks your CI system has put in place. This is worthwhile even if you have to work
around an occasional false positive from a tool; once your CI system has an accepted
failure (“Oh, everyone knows that test never passes”), then it’s vastly harder to spot
new regressions.

Item 30 included the common advice of adding a test to reproduce a bug, before fix‐
ing the bug. The same principle applies to your CI system: when you discover process
problems add a CI step that detects a process issue, before fixing the issue. For example,
if you discover that some auto-generated code has gotten out of sync with its source,
add a check for this to the CI system. This check will initially fail but then turn green
once the problem is solved—giving you confidence that this category of process error
will not occur again in the future.

Item 32: Set up a continuous integration (CI) system | 241



Public CI Systems
If your codebase is open source and visible to the public, there are a few extra things
to think about with your CI system.

First is the good news: there are lots of free, reliable options for building a CI system
for open source code. At the time of writing, GitHub Actions are probably the best
choice, but it’s far from the only choice, and more systems appear all the time.

Second, for open source code it’s worth bearing in mind that your CI system can act
as a guide for how to set up any prerequisites needed for the codebase. This isn’t a
concern for pure Rust crates, but if your codebase requires additional dependencies—
databases, alternative toolchains for FFI code, configuration, etc.—then your CI
scripts will be an existence proof of how to get all of that working on a fresh system.
Encoding these setup steps in reusable scripts allows both the humans and the bots to
get a working system in a straightforward way.

Finally, there’s bad news for publicly visible crates: the possibility of abuse and attacks.
This can range from attempts to perform cryptocurrency mining in your CI system
to theft of codebase access tokens, supply chain attacks, and worse. To mitigate these
risks, consider these guidelines:

• Restrict access so that CI scripts run automatically only for known collaborators
and have to be triggered manually for new contributors.

• Pin the versions of any external scripts to particular versions, or (better yet) spe‐
cific known hashes.

• Closely monitor any integration steps that need more than just read access to the
codebase.
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CHAPTER 6

Beyond Standard Rust

The Rust toolchain includes support for a much wider variety of environments than
just pure Rust application code, running in userspace:

• It supports cross-compilation, where the system running the toolchain (the host)
is not the same as the system that the compiled code will run on (the target),
which makes it easy to target embedded systems.

• It supports linking with code compiled from languages other than Rust, via built-
in FFI capabilities.

• It supports configurations without the full standard library std, allowing systems
that do not have a full operating system (e.g., no filesystem, no networking) to be
targeted.

• It even supports configurations that do not support heap allocation but only have
a stack (by omitting use of the standard alloc library).

These nonstandard Rust environments can be harder to work in and may be less
safe—they can even be unsafe—but they give more options for getting the job done.

This chapter of the book discusses just a few of the basics for working in these envi‐
ronments. Beyond these basics, you’ll need to consult more environment-specific
documentation (such as the Rustonomicon).

Item 33: Consider making library code
no_std compatible
Rust comes with a standard library called std, which includes code for a wide variety
of common tasks, from standard data structures to networking, from multithreading
support to file I/O. For convenience, several of the items from std are automatically
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1 See The Embedonomicon or Philipp Oppermann’s older blog post for information about what’s involved in cre‐
ating a no_std binary.

2 Be aware that this can occasionally go wrong. For example, at the time of writing, the Error trait is defined in
core:: but is marked as unstable there; only the std:: version is stable.

imported into your program, via the prelude: a set of common use statements that
make common types available without needing to use their full names (e.g., Vec
rather than std::vec::Vec).

Rust also supports building code for environments where it’s not possible to provide
this full standard library, such as bootloaders, firmware, or embedded platforms in
general. Crates indicate that they should be built in this way by including the
#![no_std] crate-level attribute at the top of src/lib.rs.

This Item explores what’s lost when building for no_std and what library functions
you can still rely on—which turns out to be quite a lot.

However, this Item is specifically about no_std support in library code. The difficul‐
ties of making a no_std binary are beyond this text,1 so the focus here is how to make
sure that library code is available for those poor souls who do have to work in such a
minimal environment.

core
Even when building for the most restricted of platforms, many of the fundamental
types from the standard library are still available. For example, Option and Result
are still available, albeit under a different name, as are various flavors of Iterator.

The different names for these fundamental types start with core::, indicating that
they come from the core library, a standard library that’s available even in the most
no_std of environments. These core:: types behave exactly the same as the equiva‐
lent std:: types, because they’re actually the same types—in each case, the std:: ver‐
sion is just a re-export of the underlying core:: type.

This means that there’s a quick and dirty way to tell if a std:: item is available in a
no_std environment: visit the doc.rust-lang.org page for the std item you’re inter‐
ested in and follow the “source” link (at the top right).2 If that takes you to a src/
core/… location, then the item is available under no_std via core::.

The types from core are available for all Rust programs automatically. However, they
typically need to be explicitly used in a no_std environment, because the std prelude
is absent.
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3 Prior to Rust 2018, extern crate declarations were used to pull in dependencies. This is now entirely han‐
dled by Cargo.toml, but the extern crate mechanism is still used to pull in those parts of the Rust standard
library (the sysroot crates) that are optional in no_std environments.

In practice, relying purely on core is too limiting for many environments, even
no_std ones. A core (pun intended) constraint of core is that it performs no heap
allocation.

Although Rust excels at putting items on the stack and safely tracking the corre‐
sponding lifetimes (Item 14), this restriction still means that standard data
structures—vectors, maps, sets—can’t be provided, because they need to allocate heap
space for their contents. In turn, this also drastically reduces the number of available
crates that work in this environment.

alloc

However, if a no_std environment does support heap allocation, then many of the
standard data structures from std can still be supported. These data structures, along
with other allocation-using functionality, are grouped into Rust’s alloc library.

As with core, these alloc variants are actually the same types under the covers. For
example, the real name of std::vec::Vec is actually alloc::vec::Vec.

A no_std Rust crate needs to explicitly opt in to the use of alloc, by adding an
extern crate alloc; declaration to src/lib.rs:3

//! My `no_std` compatible crate.
#![no_std]

// Requires `alloc`.
extern crate alloc;

Pulling in the alloc crate enables many familiar friends, now addressed by their true
names:

• alloc::boxed::Box<T>

• alloc::rc::Rc<T>

• alloc::sync::Arc<T>

• alloc::vec::Vec<T>

• alloc::string::String

• alloc::format!

• alloc::collections::BTreeMap

<K, V>
• alloc::collections::BTreeSet<T>

With these things available, it becomes possible for many library crates to be no_std
compatible—for example, if a library doesn’t involve I/O or networking.
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There’s a notable absence from the data structures that alloc makes available,
though—the collections HashMap and HashSet are specific to std, not alloc. That’s
because these hash-based containers rely on random seeds to protect against hash
collision attacks, but safe random number generation requires assistance from the
operating system—which alloc can’t assume exists.

Another notable absence is synchronization functionality like std::sync::Mutex,
which is required for multithreaded code (Item 17). These types are specific to std
because they rely on OS-specific synchronization primitives, which aren’t available
without an OS. If you need to write code that is both no_std and multithreaded,
third-party crates such as spin are probably your only option.

Writing Code for no_std
The previous sections made it clear that for some library crates, making the code
no_std compatible just involves the following:

• Replacing std:: types with identical core:: or alloc:: crates (which requires
use of the full type name, due to the absence of the std prelude)

• Shifting from HashMap/HashSet to BTreeMap/BTreeSet

However, this only makes sense if all of the crates that you depend on (Item 25) are
also no_std compatible—there’s no point in becoming no_std compatible if any user
of your crate is forced to link in std anyway.

There’s also a catch here: the Rust compiler will not tell you if your no_std crate
depends on a std-using dependency. This means that it’s easy to undo the work of
making a crate no_std compatible—all it takes is an added or updated dependency
that pulls in std.

To protect against this, add a CI check for a no_std build so that your CI system (Item
32) will warn you if this happens. The Rust toolchain supports cross-compilation out
of the box, so this can be as simple as performing a cross-compile for a target system
that does not support std (e.g., --target thumbv6m-none-eabi); any code that inad‐
vertently requires std will then fail to compile for this target.

So: if your dependencies support it, and the simple transformations above are all
that’s needed, then consider making library code no_std compatible. When it is possi‐
ble, it’s not much additional work, and it allows for the widest reuse of the library.

If those transformations don’t cover all of the code in your crate but the parts that
aren’t covered are only a small or well-contained fraction of the code, then consider
adding a feature (Item 26) to your crate that turns on just those parts.
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Such a feature is conventionally named either std, if it enables use of std-specific
functionality:

#![cfg_attr(not(feature = "std"), no_std)]

or alloc, if it turns on use of alloc-derived functionality:

#[cfg(feature = "alloc")]
extern crate alloc;

Note that there’s a trap for the unwary here: don’t have a no_std feature that disables
functionality requiring std (or a no_alloc feature similarly). As explained in Item 26,
features need to be additive, and there’s no way to combine two users of the crate
where one configures no_std and one doesn’t—the former will trigger the removal of
code that the latter relies on.

As ever with feature-gated code, make sure that your CI system (Item 32) builds all
the relevant combinations—including a build with the std feature disabled on an
explicitly no_std platform.

Fallible Allocation
The earlier sections of this Item considered two different no_std environments: a
fully embedded environment with no heap allocation whatsoever (core) and a more
generous environment where heap allocation is allowed (core + alloc).

However, there are some important environments that fall between these two
camps— in particular, those where heap allocation is possible but may fail because
there’s a limited amount of heap.

Unfortunately, Rust’s standard alloc library includes a pervasive assumption that
heap allocations cannot fail, and that’s not always a valid assumption.

Even a simple use of alloc::vec::Vec could potentially allocate on every line:

let mut v = Vec::new();
v.push(1); // might allocate
v.push(2); // might allocate
v.push(3); // might allocate
v.push(4); // might allocate

None of these operations returns a Result, so what happens if those allocations fail?

The answer depends on the toolchain, target, and configuration but is likely to
descend into panic! and program termination. There is certainly no answer that
allows an allocation failure on line 3 to be handled in a way that allows the program
to move on to line 4.
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4 It’s also possible to add the std::nothrow overload to calls to new and check for nullptr return values. How‐
ever, there are still container methods like vector<T>::push_back that allocate under the covers and that can
therefore signal allocation failure only via an exception.

This assumption of infallible allocation gives good ergonomics for code that runs in a
“normal” userspace, where there’s effectively infinite memory—or at least where run‐
ning out of memory indicates that the computer as a whole has bigger problems
elsewhere.

However, infallible allocation is utterly unsuitable for code that needs to run in envi‐
ronments where memory is limited and programs are required to cope. This is a
(rare) area where there’s better support in older, less memory-safe, languages:

• C is sufficiently low-level that allocations are manual, and so the return value
from malloc can be checked for NULL.

• C++ can use its exception mechanism to catch allocation failures in the form of
std::bad_alloc exceptions.4

Historically, the inability of Rust’s standard library to cope with failed allocation was
flagged in some high-profile contexts (such as the Linux kernel, Android, and the
Curl tool), and so work to fix the omission is ongoing.

The first step was the “fallible collection allocation” changes, which added fallible
alternatives to many of the collection APIs that involve allocation. This generally adds
a try_<operation> variant that results in a Result<_, AllocError>; for example:

• Vec::try_reserve is available as an alternative to Vec::reserve.
• Box::try_new is available (with the nightly toolchain) as an alternative to
Box::new.

These fallible APIs only go so far; for example, there is (as yet) no fallible equivalent
to Vec::push, so code that assembles a vector may need to do careful calculations to
ensure that allocation errors can’t happen:

fn try_build_a_vec() -> Result<Vec<u8>, String> {
    let mut v = Vec::new();

    // Perform a careful calculation to figure out how much space is needed,
    // here simplified to...
    let required_size = 4;

    v.try_reserve(required_size)
        .map_err(|_e| format!("Failed to allocate {} items!", required_size))?;

    // We now know that it's safe to do:
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    v.push(1);
    v.push(2);
    v.push(3);
    v.push(4);

    Ok(v)
}

As well as adding fallible allocation entrypoints, it’s also possible to disable infallible
allocation operations, by turning off the no_global_oom_handling config flag (which
is on by default). Environments with limited heap (such as the Linux kernel) can
explicitly disable this flag, ensuring that no use of infallible allocation can inadver‐
tently creep into the code.

Things to Remember
• Many items in the std crate actually come from core or alloc.
• As a result, making library code no_std compatible may be more straightforward

than you might think.
• Confirm that no_std code remains no_std compatible by checking it in CI.
• Be aware that working in a limited-heap environment currently has limited

library support.

Item 34: Control what crosses FFI boundaries
Even though Rust comes with a comprehensive standard library and a burgeoning
crate ecosystem, there is still a lot more non-Rust code in the world than there is Rust
code.

As with other recent languages, Rust helps with this problem by offering a foreign
function interface (FFI) mechanism, which allows interoperation with code and data
structures written in different languages—despite the name, FFI is not restricted to
just functions. This opens up the use of existing libraries in different languages, not
just those that have succumbed to the Rust community’s efforts to “rewrite it in Rust”
(RiiR).

The default target for Rust’s interoperability is the C programming language, which is
the same interop target that other languages aim at. This is partly driven by the ubiq‐
uity of C libraries but is also driven by simplicity: C acts as a “least common denomi‐
nator” of interoperability, because it doesn’t need toolchain support of any of the
more advanced features that would be necessary for compatibility with other lan‐
guages (e.g., garbage collection for Java or Go, exceptions and templates for C++,
function overrides for Java and C++, etc.).
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However, that’s not to say that interoperability with plain C is simple. By including
code written in a different language, all of the guarantees and protections that Rust
offers are up for grabs, particularly those involving memory safety.

As a result, FFI code in Rust is automatically unsafe, and the advice in Item 16 has to
be bypassed. This Item explores some replacement advice, and Item 35 will explore
some tooling that helps to avoid some (but not all) of the footguns involved in work‐
ing with FFI. (The FFI chapter of the Rustonomicon also contains helpful advice and
information.)

Invoking C Functions from Rust
The simplest FFI interaction is for Rust code to invoke a C function, taking “immedi‐
ate” arguments that don’t involve pointers, references, or memory addresses:

/* File lib.c */
#include "lib.h"

/* C function definition. */
int add(int x, int y) {
  return x + y;
}

This C code provides a definition of the function and is typically accompanied by a
header file that provides a declaration of the function, which allows other C code to
use it:

/* File lib.h */
#ifndef LIB_H
#define LIB_H

/* C function declaration. */
int add(int x, int y);

#endif  /* LIB_H */

The declaration roughly says: somewhere out there is a function called add, which
takes two integers as input and returns another integer as output. This allows C code
to use the add function, subject to a promise that the actual code for add will be pro‐
vided at a later date—specifically, at link time.

Rust code that wants to use add needs to have a similar declaration, with a similar
purpose: to describe the signature of the function and to indicate that the corre‐
sponding code will be available later:

use std::os::raw::c_int;
extern "C" {
    pub fn add(x: c_int, y: c_int) -> c_int;
}
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5 If the FFI functionality you want to use is part of the standard C library, then you don’t need to create these
declarations—the libc crate already provides them.

6 A corresponding links key in the Cargo.toml manifest can help to make this dependency visible to Cargo.

The declaration is marked as extern "C" to indicate that an external C library will
provide the code for the function.5 The extern "C" marker also automatically marks
the function as no_mangle, which we explore in “Name mangling” on page 253.

Linking logistics
The details of how the C toolchain generates an external C library—and its format—
are environment-specific and beyond the scope of a Rust book like this. However, one
simple variant that’s common on Unix-like systems is a static library file, which will
normally have the form lib<something>.a (e.g., libcffi.a) and which can be generated
using the ar tool.

The Rust build system then needs an indication of which library holds the relevant C
code. This can be specified either via the link attribute in the code:

#[link(name = "cffi")] // An external library like `libcffi.a` is needed
extern "C" {
    // ...
}

or via a build script that emits a cargo:rustc-link-lib instruction to cargo:6

// File build.rs
fn main() {
    // An external library like `libcffi.a` is needed
    println!("cargo:rustc-link-lib=cffi");
}

The latter option is more flexible, because the build script can examine its environ‐
ment and behave differently depending on what it finds.

In either case, the Rust build system is also likely to need information about how to
find the C library, if it’s not in a standard system location. This can be specified by
having a build script that emits a cargo:rustc-link-search instruction to cargo,
containing the library location:

// File build.rs
fn main() {
    // ...

    // Retrieve the location of `Cargo.toml`.
    let dir = std::env::var("CARGO_MANIFEST_DIR").unwrap();
    // Look for native libraries one directory higher up.
    println!(
        "cargo:rustc-link-search=native={}",
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        std::path::Path::new(&dir).join("..").display()
    );
}

Code concerns
Returning to the source code, even this simplest of examples comes with some
gotchas. First, use of FFI functions is automatically unsafe:

let x = add(1, 1);

error[E0133]: call to unsafe function is unsafe and requires unsafe function
              or block
   --> src/main.rs:176:13
    |
176 |     let x = add(1, 1);
    |             ^^^^^^^^^ call to unsafe function
    |
    = note: consult the function's documentation for information on how to
            avoid undefined behavior

and so needs to be wrapped in unsafe { }.

The next thing to watch out for is the use of C’s int type, represented as
std::os::raw::c_int. How big is an int? It’s probably true that the following two
things are the same:

• The size of an int for the toolchain that compiled the C library
• The size of a std::os::raw::c_int for the Rust toolchain

But why take the chance? Prefer sized types at FFI boundaries, where possible—which
for C means making use of the types (e.g., uint32_t) defined in <stdint.h>. How‐
ever, if you’re dealing with an existing codebase that already uses int/long/size_t,
this may be a luxury you don’t have.

The final practical concern is that the C code and the equivalent Rust declaration
need to exactly match. Worse still, if there’s a mismatch, the build tools will not emit a
warning—they will just silently emit incorrect code.

Item 35 discusses the use of the bindgen tool to prevent this problem, but it’s worth
understanding the basics of what’s going on under the covers to understand why the
build tools can’t detect the problem on their own. In particular, it’s worth understand‐
ing the basics of name mangling.
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Name mangling
Compiled languages generally support separate compilation, where different parts of
the program are converted into machine code as separate chunks (object files), which
can then be combined into a complete program by the linker. This means that if only
one small part of the program’s source code changes, only the corresponding object
file needs to be regenerated; the link step then rebuilds the program, combining both
the changed object and all the other unmodified objects.

The link step is (roughly speaking) a “join-the-dots” operation: some object files pro‐
vide definitions of functions and variables, and other object files have placeholder
markers indicating that they expect to use a definition from some other object, but it
wasn’t available at compile time. The linker combines the two: it ensures that any
placeholder in the compiled code is replaced with a reference to the corresponding
concrete definition.

The linker performs this correlation between the placeholders and the definitions by
simply checking for a matching name, meaning that there is a single global name‐
space for all of these correlations.

Historically, this was fine for linking C language programs, where a single name
could not be reused in any way—the name of a function is exactly what appears in the
object file. (As a result, a common convention for C libraries is to manually add a
prefix to all symbols so that lib1_process doesn’t clash with lib2_process.)

However, the introduction of C++ caused a problem because C++ allows overridden
definitions with the same name:

// C++ code
namespace ns1 {
int32_t add(int32_t a, int32_t b) { return a+b; }
int64_t add(int64_t a, int64_t b) { return a+b; }
}
namespace ns2 {
int32_t add(int32_t a, int32_t b) { return a+b; }
}

The solution for this is name mangling: the compiler encodes the signature and type
information for the overridden functions into the name that’s emitted in the object
file, and the linker continues to perform its simple-minded 1:1 correlation between
placeholders and definitions.

On Unix-like systems, the nm tool can help show what the linker works with:

% nm ffi-lib.o | grep add  # what the linker sees for C
0000000000000000 T _add

% nm ffi-cpp-lib.o | grep add  # what the linker sees for C++
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0000000000000000 T __ZN3ns13addEii
0000000000000020 T __ZN3ns13addExx
0000000000000040 T __ZN3ns23addEii

In this case, it shows three mangled symbols, all of which refer to code (the T indi‐
cates the text section of the binary, which is the traditional name for where code lives).

The c++filt tool helps translate this back into what would be visible in C++ code:

% nm ffi-cpp-lib.o | grep add | c++filt  # what the programmer sees
0000000000000000 T ns1::add(int, int)
0000000000000020 T ns1::add(long long, long long)
0000000000000040 T ns2::add(int, int)

Because the mangled name includes type information, the linker can and will com‐
plain about any mismatch in the type information between placeholder and defini‐
tion. This gives some measure of type safety: if the definition changes but the place
using it is not updated, the toolchain will complain.

Returning to Rust, extern "C" foreign functions are implicitly marked as #[no_man
gle], and the symbol in the object file is the bare name, exactly as it would be for a C
program. This means that the type safety of function signatures is lost: because the
linker sees only the bare names for functions, if there are any differences in type
expectations between definition and use, the linker will carry on regardless and prob‐
lems will arise only at runtime.

Accessing C Data from Rust
The C add example in the previous section passed the simplest possible type of data
back and forth between Rust and C: an integer that fits in a machine register. Even so,
there were still things to be careful about, so it’s no surprise then that dealing with
more complex data structures also has wrinkles to watch out for.

Both C and Rust use the struct to combine related data into a single data structure.
However, when a struct is realized in memory, the two languages may well choose to
put different fields in different places or even in different orders (the layout). To pre‐
vent mismatches, use #[repr(C)] for Rust types used in FFI; this representation is
designed for the purpose of allowing C interoperability:

/* C data structure definition. */
/* Changes here must be reflected in lib.rs. */
typedef struct {
    uint8_t byte;
    uint32_t integer;
} FfiStruct;

// Equivalent Rust data structure.
// Changes here must be reflected in lib.h / lib.c.
#[repr(C)]
pub struct FfiStruct {
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    pub byte: u8,
    pub integer: u32,
}

The structure definitions have a comment to remind the humans involved that the
two places need to be kept in sync. Relying on the constant vigilance of humans is
likely to go wrong in the long term; as for function signatures, it’s better to automate
this synchronization between the two languages via a tool like bindgen (Item 35).

One particular type of data that’s worth thinking about carefully for FFI interactions
is strings. The default definitions of what makes up a string are somewhat different
between C and Rust:

• A Rust String holds UTF-8 encoded data, possibly including zero bytes, with an
explicitly known length.

• A C string (char *) holds byte values (which may or may not be signed), with its
length implicitly determined by the first zero byte (\0) found in the data.

Fortunately, dealing with C-style strings in Rust is comparatively straightforward,
because the Rust library designers have already done the heavy lifting by providing a
pair of types to encode them. Use the CString type to hold (owned) strings that need
to be interoperable with C, and use the corresponding CStr type when dealing with
borrowed string values. The latter type includes the as_ptr() method, which can be
used to pass the string’s contents to any FFI function that’s expecting a const char* C
string. Note that the const is important: this can’t be used for an FFI function that
needs to modify the contents (char *) of the string that’s passed to it.

Lifetimes
Most data structures are too big to fit in a register and so have to be held in memory
instead. That in turn means that access to the data is performed via the location of
that memory. In C terms, this means a pointer: a number that encodes a memory
address—with no other semantics attached (Item 8).

In Rust, a location in memory is generally represented as a reference, and its numeric
value can be extracted as a raw pointer, ready to feed into an FFI boundary:

extern "C" {
    // C function that does some operation on the contents
    // of an `FfiStruct`.
    pub fn use_struct(v: *const FfiStruct) -> u32;
}

let v = FfiStruct {
    byte: 1,
    integer: 42,
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};
let x = unsafe { use_struct(&v as *const FfiStruct) };

However, a Rust reference comes with additional constraints around the lifetime of
the associated chunk of memory, as described in Item 14; these constraints get lost in
the conversion to a raw pointer.

As a result, the use of raw pointers is inherently unsafe, as a marker that Here Be
Dragons: the C code on the other side of the FFI boundary could do any number of
things that will destroy Rust’s memory safety:

• The C code could hang onto the value of the pointer and use it at a later point
when the associated memory has either been freed from the heap or reused on
the stack (use-after-free).

• The C code could decide to cast away the const-ness of a pointer that’s passed to
it and modify data that Rust expects to be immutable.

• The C code is not subject to Rust’s Mutex protections, so the specter of data races
(Item 17) rears its ugly head.

• The C code could mistakenly return associated heap memory to the allocator (by 
calling C’s free() library function), meaning that the Rust code might now be
performing use-after-free operations.

All of these dangers form part of the cost-benefit analysis of using an existing library
via FFI. On the plus side, you get to reuse existing code that’s (presumably) in good
working order, with only the need to write (or auto-generate) corresponding declara‐
tions. On the minus side, you lose the memory protections that are a big reason to
use Rust in the first place.

As a first step to reduce the chances of memory-related problems, allocate and free
memory on the same side of the FFI boundary. For example, this might appear as a
symmetric pair of functions:

/* C functions. */

/* Allocate an `FfiStruct` */
FfiStruct* new_struct(uint32_t v);
/* Free a previously allocated `FfiStruct` */
void free_struct(FfiStruct* s);

with corresponding Rust FFI declarations:

extern "C" {
    // C code to allocate an `FfiStruct`.
    pub fn new_struct(v: u32) -> *mut FfiStruct;
    // C code to free a previously allocated `FfiStruct`.
    pub fn free_struct(s: *mut FfiStruct);
}
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To make sure that allocation and freeing are kept in sync, it can be a good idea to
implement an RAII wrapper that automatically prevents C-allocated memory from
being leaked (Item 11). The wrapper structure owns the C-allocated memory:

/// Wrapper structure that owns memory allocated by the C library.
struct FfiWrapper {
    // Invariant: inner is non-NULL.
    inner: *mut FfiStruct,
}

and the Drop implementation returns that memory to the C library to avoid the
potential for leaks:

/// Manual implementation of [`Drop`], which ensures that memory allocated
/// by the C library is freed by it.
impl Drop for FfiWrapper {
    fn drop(&mut self) {
        // Safety: `inner` is non-NULL, and besides `free_struct()` copes
        // with NULL pointers.
        unsafe { free_struct(self.inner) }
    }
}

The same principle applies to more than just heap memory: implement Drop to apply
RAII to FFI-derived resources—open files, database connections, etc. (see Item 11).

Encapsulating the interactions with the C library into a wrapper struct also makes it
possible to catch some other potential footguns, for example, by transforming an
otherwise invisible failure into a Result:

type Error = String;

impl FfiWrapper {
    pub fn new(val: u32) -> Result<Self, Error> {
        let p: *mut FfiStruct = unsafe { new_struct(val) };
        // Raw pointers are not guaranteed to be non-NULL.
        if p.is_null() {
            Err("Failed to get inner struct!".into())
        } else {
            Ok(Self { inner: p })
        }
    }
}

The wrapper structure can then offer safe methods that allow use of the C library’s
functionality:

impl FfiWrapper {
    pub fn set_byte(&mut self, b: u8) {
        // Safety: relies on invariant that `inner` is non-NULL.
        let r: &mut FfiStruct = unsafe { &mut *self.inner };
        r.byte = b;
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7 A Rust equivalent of the c++filt tool for translating mangled names back to programmer-visible names is
rustfilt, which builds on the rustc-demangle command.

    }
}

Alternatively, if the underlying C data structure has an equivalent Rust mapping, and
if it’s safe to directly manipulate that data structure, then implementations of the
AsRef and AsMut traits (described in Item 8) allow more direct use:

impl AsMut<FfiStruct> for FfiWrapper {
    fn as_mut(&mut self) -> &mut FfiStruct {
        // Safety: `inner` is non-NULL.
        unsafe { &mut *self.inner }
    }
}

let mut wrapper = FfiWrapper::new(42).expect("real code would check");
// Directly modify the contents of the C-allocated data structure.
wrapper.as_mut().byte = 12;

This example illustrates a useful principle for dealing with FFI: encapsulate access to
an unsafe FFI library inside safe Rust code. This allows the rest of the application to
follow the advice in Item 16 and avoid writing unsafe code. It also concentrates all of
the dangerous code in one place, which you can then study (and test) carefully to
uncover problems—and treat as the most likely suspect when something does go
wrong.

Invoking Rust from C
What counts as “foreign” depends on where you’re standing: if you’re writing an
application in C, then it may be a Rust library that’s accessed via a foreign function
interface.

The basics of exposing a Rust library to C code are similar to the opposite direction:

• Rust functions that are exposed to C need an extern "C" marker to ensure
they’re C-compatible.

• Rust symbols are name mangled by default (like C++),7 so function definitions
also need a #[no_mangle] attribute to ensure that they’re accessible via a simple
name. This in turn means that the function name is part of a single global name‐
space that can clash with any other symbol defined in the program. As such, con‐
sider using a prefix for exposed names to avoid ambiguities (mylib_…).

• Data structure definitions need the #[repr(C)] attribute to ensure that the layout
of the contents is compatible with an equivalent C data structure.
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Also like the opposite direction, more subtle problems arise when dealing with point‐
ers, references, and lifetimes. A C pointer is different from a Rust reference, and you
forget that at your peril:

UNDESIRED BEHAVIOR

#[no_mangle]
pub extern "C" fn add_contents(p: *const FfiStruct) -> u32 {
    // Convert the raw pointer provided by the caller into
    // a Rust reference.
    let s: &FfiStruct = unsafe { &*p }; // Ruh-roh
    s.integer + s.byte as u32
}

/* C code invoking Rust. */
uint32_t result = add_contents(NULL); // Boom!

When you’re dealing with raw pointers, it’s your responsibility to ensure that any use
of them complies with Rust’s assumptions and guarantees around references:

#[no_mangle]
pub extern "C" fn add_contents_safer(p: *const FfiStruct) -> u32 {
    let s = match unsafe { p.as_ref() } {
        Some(r) => r,
        None => return 0, // Pesky C code gave us a NULL.
    };
    s.integer + s.byte as u32
}

In these examples, the C code provides a raw pointer to the Rust code, and the Rust
code converts it to a reference in order to operate on the structure. But where did that
pointer come from? What does the Rust reference refer to?

The very first example in Item 8 showed how Rust’s memory safety prevents refer‐
ences to expired stack objects from being returned; those problems reappear if you
hand out a raw pointer:

UNDESIRED BEHAVIOR

impl FfiStruct {
    pub fn new(v: u32) -> Self {
        Self {
            byte: 0,
            integer: v,
        }
    }
}

// No compilation errors here.
#[no_mangle]
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pub extern "C" fn new_struct(v: u32) -> *mut FfiStruct {
    let mut s = FfiStruct::new(v);
    &mut s // return raw pointer to a stack object that's about to expire!
}

Any pointers passed back from Rust to C should generally refer to heap memory, not
stack memory. But naively trying to put the object on the heap via a Box doesn’t help:

UNDESIRED BEHAVIOR

// No compilation errors here either.
#[no_mangle]
pub extern "C" fn new_struct_heap(v: u32) -> *mut FfiStruct {
    let s = FfiStruct::new(v); // create `FfiStruct` on stack
    let mut b = Box::new(s); // move `FfiStruct` to heap
    &mut *b // return raw pointer to a heap object that's about to expire!
}

The owning Box is on the stack, so when it goes out of scope, it will free the heap
object and the returned raw pointer will again be invalid.

The tool for the job here is Box::into_raw, which abnegates responsibility for the
heap object, effectively “forgetting” about it:

#[no_mangle]
pub extern "C" fn new_struct_raw(v: u32) -> *mut FfiStruct {
    let s = FfiStruct::new(v); // create `FfiStruct` on stack
    let b = Box::new(s); // move `FfiStruct` to heap

    // Consume the `Box` and take responsibility for the heap memory.
    Box::into_raw(b)
}

This raises the question of how the heap object now gets freed. The previous advice
was to perform allocation and freeing of memory on the same side of the FFI bound‐
ary, which means that we need to persuade the Rust side of things to do the freeing.
The corresponding tool for the job is Box::from_raw, which builds a Box from a raw
pointer:

#[no_mangle]
pub extern "C" fn free_struct_raw(p: *mut FfiStruct) {
    if p.is_null() {
        return; // Pesky C code gave us a NULL
    }
    let _b = unsafe {
        // Safety: p is known to be non-NULL
        Box::from_raw(p)
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8 Note that Rust version 1.71 includes the C-unwind ABI, which makes some cross-language unwinding func‐
tionality possible.

    };
} // `_b` drops at end of scope, freeing the `FfiStruct`

This still leaves the Rust code at the mercy of the C code; if the C code gets confused
and asks Rust to free the same pointer twice, Rust’s allocator is likely to become ter‐
minally confused.

That illustrates the general theme of this Item: using FFI exposes you to risks that
aren’t present in standard Rust. That may well be worthwhile, as long as you’re aware
of the dangers and costs involved. Controlling the details of what passes across the
FFI boundary helps to reduce that risk but by no means eliminates it.

Controlling the FFI boundary for C code invoking Rust also involves one final con‐
cern: if your Rust code ignores the advice in Item 18, you should prevent panic!s
from crossing the FFI boundary, as this always results in undefined behavior—unde‐
fined but bad!8

Things to Remember
• Interfacing with code in other languages uses C as a least common denominator,

which means that symbols all live in a single global namespace.
• Minimize the chances of problems at the FFI boundary by doing the following:

— Encapsulating unsafe FFI code in safe wrappers
— Allocating and freeing memory consistently on one side of the boundary or

the other
— Making data structures use C-compatible layouts
— Using sized integer types
— Using FFI-related helpers from the standard library
— Preventing panic!s from escaping from Rust

Item 35: Prefer bindgen to manual FFI mappings
Item 34 discussed the mechanics of invoking C code from a Rust program, describing
how declarations of C structures and functions need to have an equivalent Rust decla‐
ration to allow them to be used over FFI. The C and Rust declarations need to be kept
in sync, and Item 34 also warned that the toolchain wouldn’t help with this—mis‐
matches would be silently ignored, hiding problems that would arise later.
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Keeping two things perfectly in sync sounds like a good target for automation, and
the Rust project provides the right tool for the job: bindgen. The primary function of
bindgen is to parse a C header file and emit the corresponding Rust declarations.

Taking some of the example C declarations from Item 34:

/* File lib.h */
#include <stdint.h>

typedef struct {
    uint8_t byte;
    uint32_t integer;
} FfiStruct;

int add(int x, int y);
uint32_t add32(uint32_t x, uint32_t y);

the bindgen tool can be manually invoked (or invoked by a build.rs build script) to
create a corresponding Rust file:

% bindgen --no-layout-tests \
          --allowlist-function="add.*" \
          --allowlist-type=FfiStruct \
          -o src/generated.rs \
          lib.h

The generated Rust is identical to the handcrafted declarations in Item 34:

/* automatically generated by rust-bindgen 0.59.2 */

#[repr(C)]
#[derive(Debug, Copy, Clone)]
pub struct FfiStruct {
    pub byte: u8,
    pub integer: u32,
}
extern "C" {
    pub fn add(
        x: ::std::os::raw::c_int,
        y: ::std::os::raw::c_int,
    ) -> ::std::os::raw::c_int;
}
extern "C" {
    pub fn add32(x: u32, y: u32) -> u32;
}

and can be pulled into Rust code with the source-level include! macro:

// Include the auto-generated Rust declarations.
include!("generated.rs");
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9 The example also used the --no-layout-tests option to keep the output simple; by default, the generated
code will include #[test] code to check that structures are indeed laid out correctly.

For anything but the most trivial FFI declarations, use bindgen to generate Rust bind‐
ings for C code—this is an area where machine-made, mass-produced code is defi‐
nitely preferable to artisanal handcrafted declarations. If a C function definition
changes, the C compiler will complain if the C declaration no longer matches the C
definition, but nothing will complain that a handcrafted Rust declaration no longer
matches the C declaration; auto-generating the Rust declaration from the C declara‐
tion ensures that the two stay in sync

This also means that the bindgen step is an ideal candidate to include in a CI system
(Item 32); if the generated code is included in source control, the CI system can error
out if a freshly generated file doesn’t match the checked-in version.

The bindgen tool comes into its own when you’re dealing with an existing C codebase
that has a large API. Creating Rust equivalents to a big lib_api.h header file is manual
and tedious, and therefore error-prone—and as noted, many categories of mismatch
error will not be detected by the toolchain. bindgen also has a panoply of options that
allow specific subsets of an API to be targeted (such as the --allowlist-function
and --allowlist-type options previously illustrated).9

This also allows a layered approach for exposing an existing C library in Rust; a com‐
mon convention for wrapping some xyzzy library is to have the following:

• An xyzzy-sys crate that holds (just) the bindgen-erated code—use of which is
necessarily unsafe

• An xyzzy crate that encapsulates the unsafe code and provides safe Rust access
to the underlying functionality

This concentrates the unsafe code in one layer and allows the rest of the program to
follow the advice in Item 16.

Beyond C
The bindgen tool has the ability to handle some C++ constructs but only a subset and
in a limited fashion. For better (but still somewhat limited) integration, consider using
the cxx crate for C++/Rust interoperation. Instead of generating Rust code from C++
declarations, cxx takes the approach of auto-generating both Rust and C++ code from
a common schema, allowing for tighter integration.
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Afterword

Hopefully the advice, suggestions, and information in this book will help you become
a fluent, productive Rust programmer. As the Preface describes, this book is intended
to cover the second step in this process, after you’ve learned the basics from a core
Rust reference book. But there are more steps you can take and directions to explore:

• Async Rust is not covered in this book but is likely to be needed for efficient, con‐
current server-side applications. The online documentation provides an intro‐
duction to async, and the forthcoming Async Rust by Maxwell Flitton and
Caroline Morton (O’Reilly, 2024) may also help.

• Moving in the other direction, bare-metal Rust might align with your interests
and requirements. This goes beyond the introduction to no_std in Item 33 to a
world where there’s no operating system and no allocation. The bare-metal Rust
section of the Comprehensive Rust online course provides a good introduction
here.

• Regardless of whether your interests are low-level or high-level, the crates.io
ecosystem of third-party, open source crates is worth exploring—and contribu‐
ting to. Curated summaries like blessed.rs or lib.rs can help navigate the huge
number of possibilities.

• Rust discussion forums such as the Rust language forum or Reddit’s r/rust can
provide help—and include a searchable index of questions that have been asked
(and answered!) previously.

• If you find yourself relying on an existing library that’s not written in Rust (as per
Item 34), you could rewrite it in Rust (RiiR). But don’t underestimate the effort
required to reproduce a battle-tested, mature codebase.

• As you become more skilled in Rust, Jon Gjengset’s Rust for Rustaceans (No
Starch, 2022) is an essential reference for more advanced aspects of Rust.

Good luck!
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of items on the heap, 119
lifetime extension, 131
lifetime reduction, 131
lifetimes of multiple arguments, 120
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boundary, 256

program memory layout, 106
protections in Rust, 256
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missing Debug implementations compiler lint,

85
missing safety doc Clippy lint, 144
modules, 181

pub contents, 183
tests or test, 228
visibility, 183
wildcard imports of, 186

monomorphization (generics), 18, 94
different monomorphized function for each

type called with, 96
More Effective C++ (Meyers), 208
move keyword, 15
moving an item, 124, 129

data structures, 141
items moved to or from the stack, 110

Mul trait, 88
MulAssign trait, 88
multithreading, 146, 150

general advice on multithreaded code, 159
mutable references, 53, 55, 123

accessing contents of Rust items with, 124
aliased, 127
borrow checker rule for, 151
conversion to immutable, 39
owner operations and, 128
replacing item content and returning previ‐

ous value, 124

rule for, 126
mutex (in C++), 148
Mutex type, 63, 79, 89, 91, 138, 143, 151, 246,

256
data structures protected by, 155
providing interior mutability in multithrea‐

ded environment, 155
MutexGuard type, 63, 79, 91, 151, 159

N
name clashes, 186

crates and features, 199
name mangling, 253, 258
named_mut method, 135
NaN (not a number) values, 83
Neg trait, 86, 88
nested errors, 29
newtype pattern, 40-44

function operating on it, 37
limitations of, 44
making Boolean argument clear with, 42
orphan rule and, 43

next method, 103
nm tool, 253
--no-default-features flag (build command),

198
non-lexical lifetimes, 112, 126, 129, 131, 142
None variant of Option, 21, 45, 70
nonstandard Rust environments, 243
non_exhaustive attribute, 178
Not trait, 88
no_deadlocks crate, 159
no_global_oom_handling config flag, 249
no_mangle attribute, 251
no_panic crate, 162
no_std attribute, 26, 143, 173, 195, 201, 244

binary, difficulty of creating, 244
core library in no_std environments, 244
opting in to alloc use, 245
writing code for no_std environment, 246

nth element of iterator, 72

O
object safety, 20, 101, 179
object-oriented programming

rendering a list of shapes, 102
Ok variant of Result, 70
once_cell crate, 143
one definition rule, 192
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open source, 175
operating systems

resources, 91
synchronization primitives, 246
systems not having full OS, 243
target_os config value, 197

operator overloads, 86
optimization, 127

avoiding over-optimization, 169-174
compiler optimizations giving misleading

results, 230
Option type, 4, 9, 70, 244

modifying, move restriction and, 124
preferring Option and Result transforms

over explicit match expressions, 20-25
replace method, 125

Option::None variant, 21
Ord trait, 71

defined, 83
orphan rule, 26, 30, 46

bypassing for traits, 43
OSS-Fuzz program, 233
owner links in tree-like data structures, 138
owner of Rust items

accessing item contents through, 124
operations performed by, 127

ownership, 61
data structures owning all data they use, 132
of items on the heap, 119
shifting from single-owner to shared-owner

model, 174

P
package manager for Rust (see Cargo)
panic! macro

code path triggering, resulting in DoS
attack, 232

entrypoints triggering, 161
sensible uses of, 161

panics, 63, 138, 159-162, 207, 247
alternative to for dealing with error condi‐

tions, 160
avoiding, 161
Clippy checks for use of, 226
default behavior and alternatives to, 159
documenting, 204
on failure, 21
function that panics on invalid input, 228
preventing from crossing FFI boundary, 261

signaling failing test, 228
parameters (function), limiting, 225
parking_lot::deadlock, 159
parse_macro_input! macro, 217
PartialEq trait

defined, 83
required by PartialOrd, 83

PartialOrd trait
defined, 83
unexpected results from, 84

partition method, 73
patch version, 177
performance, 223

benchmarks of, 230
Pin type, 141, 143
Pointer trait, 59, 89
pointer traits, 54, 59, 140
pointers, 51, 123

in C, 255
coercion of pointer types, 39
passed back from Rust to C, 260
raw (see raw pointers)
in Rust and C, 259
smart pointer types, 60
unnecessary pointer indirections, 225

poisoning (locks), 151
polymorphic type, 163
position method, 71
preconditions, 207, 228
prelude, 187, 244
principle of least astonishment, 207, 212
printf (C), 214
println! macro, 212, 214
private, 181

preferring private code, 185
proc macros (see procedural macros)
proc-macro crate, 215
proc-macro2 crate, 215
procedural macros, 209, 215-218, 223, 236

attribute macros, 216
derive macros, 217-218
function-like macros, 215
types of, 215

product method, 71
programming in the future tense, 208
Programming Rust (Blandy et al.), v, 73
pub, 181, 183

pub(crate), 183
pub(in crate), 184
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pub(in path), 184
pub(self), 184
pub(super), 183

public fields in structures, avoiding feature-
gating, 201

push method, 248
Python, 162

R
RAII (Resource Acquisition Is Initialization)

pattern, 89-93, 151, 257
wrapper that prevents C memory leaks, 257

rand crate, 143, 188, 198
random number generation, 246
range expression, 57
Range type, 58
raw identifier prefix (r#), 169
raw memory, 91
raw pointers, 52, 142, 155, 255, 259
Rc type, 61, 64, 136, 138, 139, 174

not implementing Send, 154
re-export, 188-190
readability, 224
Receiver, 158
reduce method, 71
Ref type, 62
RefCell type, 62, 136, 138

not implementing Sync, 155
reference-counted pointers, 153
references, 16, 24, 51-56, 169, 255, 259

borrowing, rules for, 126
coercions of reference types, 39
creation and use of, 123
lifetime scope and, 110
lifetimes of, 112, 122, 123, 256
macro expansions that insert, avoiding, 223
mutable, 15
prevention of references to expired stack

objects, 259
and smart pointers, 174
stored in data structures, lifetimes of, 119

reflection, 162-168, 215
languages with full reflection support, 162
reflection-like features in Rust, 163
upcasting in future Rust versions, 168

reflexive implementation of From, 36
reflexivity, 83
registry of crates, 191
release method, 93

Rem trait, 87, 88
RemAssign trait, 88
render method, 99
replace function, 125, 143
repr(C), 254, 258
repr(transparent), 43
Resource Acquisition Is Initialization (see RAII

pattern)
Result type, 9, 70, 76, 244

avoiding unwrap calls for, 230
building collections from values, 73
error types as second type argument of, 25
holding MutexGuard, 151
macro emitting, 213
manipulations of, Clippy pointing out

redundancies, 225
preferring to Option for expressing errors,

22
returned by release method, 93
returned in type conversions, 35
returning with proper error type instead of

panic!, 160
values from try_borrow, 63

Result::Err variant, 21
return statements, 212
rewrite it in Rust (RiiR), 249, 265
RTTI (run-time type identification), 163
Rust Atomics and Locks (Bos), 143, 197
Rust for Rustaceans (Gjengset), 141, 265
Rust Fuzz Book, 232
Rust playground, 235
The Rust Programming Language (Klabnik and

Nichols), v
rustc, vi
RustCrypto crates, 188
rustfilt, 258
rustfmt, inapplicability to macro invocations,

222
Rustonomicon, 243, 250
rustup, 235
RwLock type, 138, 143, 155

S
safety, v
scan method, 71
scope, 110-113

locks, keeping small and obvious, 158
reducing for locks, 157
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reference scope smaller than lifetime of item
referred to, 126

rules for declarative macro use, 210
segments (stack), 106
self keyword, 11, 17, 115, 152
Self type, 20, 47, 50, 66

object safety of types with sizes known at
compile time, 101

trait object safety and, 101
self-referential data structures, 140-142, 143
semantic versioning, 176-181

Cargo and, 192
for crate authors, 177
for crate users, 180
essentials of, 177
multiple semver-incompatible versions of a

crate in the build, 191
ranges of acceptable versions, 176
understanding its concepts and limitations,

181
updating, 229
version specification for dependencies, 193

semi-automatic type conversions, 34
Send trait, 86, 89, 154
Sender/Receiver pair, 158
separate compilation, 253
serde crate, 44, 217
sets, 245
Shape trait, 166

methods accepting, Draw and, 100
requirement for Draw implementation, 99
vtable for, 99

shapes, rendering in OO example, 102
shared-state parallelism, 63, 91, 145-159

advice for avoiding problems with, 158
data races, 145-155
deadlocks, 155-158

shared_pointer (C++), 61
Shl trait, 87
ShlAssign trait, 88
should_panic attribute, 228
Shr trait, 88
ShrAssign trait, 88
Sized trait, 89, 101
skip method, 68
skip_while method, 70
sleep, 147
SliceIndex type, 58
slices, 56, 162

bounds checking, 73
slice types in structures, lifetime parameter

for, 120
smart pointer types, 60, 121, 138-142, 174

behaving like references, 55
blanket trait implementations for, 36
use of unsafe code, 143
user-defined types acting as, 40

Some variant of Option, 70
sorting, using marker trait in, 17
spin crate, 246
Square object, 166
square! macro, 213
square_once! macro, 213, 222
stack, 53, 54, 59, 243

introduction to, 106
prevention of references to expired stack

objects, 259
stack pointers, 107
state inconsistency sequence, 157
static library file, 251
static lifetime, 113, 116, 122
static typing, 2
static, global variable marked as, 119
statically typed languages, vii

supporting reflection, 162
std library, 26, 143, 201

code for environments where full std not
provided, 244

core library types equivalent to, 244
inability to cope with failed allocation, 248
no_std crate depending on std-using

dependency, 246
replacing std types with identical core and

alloc crates, 246
wide variety of common tasks covered in,

243
std::any::type_name, 164
std::any:tname, 163
std::fmt, 214
std::mem functions, 143
std::os::raw::c_int, size of, 252
String type, 26, 55, 255

absence of a value, 9
String::from_utf8, 161
String::from_utf8_unchecked, 161
strings, 120

library function returning first line of file as
string, 29
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in Rust and C, 255
struct types, 5, 217

in C and Rust, 254
contents made public, avoiding making

fields feature-dependent, 200
derive macro use, 217
encapsulating interaction with C library in

wrapper struct, 257
field-by-field comparison for Eq, 77
methods added to, 11
private fields in, 185
traits versus, for flexible code, 17
using builder pattern with complex structs,

45-51
struct update syntax, 82
structs, 178
Sub trait, 86, 88
SubAssign trait, 88
subtyping, 39
suggestions for future learning, 265
sum method, 71, 76
supply chain attacks, 196
swap function, 143
syn crate, 216, 217, 236
Sync trait, 86, 88, 89, 154
synchronization primitives, 151, 246

keeping two data structures in sync, 158
use of unsafe code, 143

T
T (target type) in generics, monomorphization

into particular type, 18
take function, 143
take method, 75
take_while method, 69
target_arch config option, 197
target_endian config option, 197
target_has_atomic config option, 197
target_os config option, 197
target_pointer_width config option, 197
templates (C++), 94, 160
test attribute, 227
test modules, 187, 228
tests, 206, 227-234

benchmarks, 230
doc tests, 229
of examples, 229
fuzz tests, 231
integration tests, 229

testing advice, 234
testing tools, 237
unit tests, 227-228

text section, 254
@thingskatedid, 2
thread safety in Rust, 151
thread-compatible, 147
thread-hostile, 148
thread-safe, 148
threading, 63, 86

Send/Sync marker traits and, 154
threads

deadlock sequence, 156
sharing state between, 145

ThreadSanitizer, 159, 231
TLV (type-length-value) structure, 169-173
tokens, 217
TokenTree::Punct tokens, 216
Tolnay, David, 33, 215, 216
tooling, 222

defined, 203
tooling ecosystem, 235-237

Cargo toolchain, 235
development environment tools, 235
tools to remember, 237

ToOwned trait, 60, 88
trait bounds, 18, 93, 94, 166, 209

for Error types, 26
more uses for, 99
trait methods imposing, 103
use with generics, 19
using Into trait for in type conversions, 35

trait coherence rules, 35
trait methods with default implementations,

103
trait objects, 18, 19, 58, 93, 96, 164

different compile time and runtime types,
166

encoding implementation vtable for only
single trait, 98

generics versus, 97
no conversions between related trait objects,

99
safety, 101
trade-offs between generics and, 102
for traits having trait bounds, 99
upcasting in Rust version 1.76, 168

traits, 1, 10, 168
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attempting to implement foreign trait for
foreign type, 43

auto-generated implementations from
derive macros, 78

breaking changes in, 179
bypassing orphan rule for, 43
coercion of concrete item into trait object,

39
common standard traits, 78-85, 87
defined, 17, 77
example for displaying graphical objects, 94
Fn, FnOnce, and FnMut, 15
iterator, 66
less common standard traits, 85, 88
making public, 182
marker, 17
new upcasting feature, 168
newtype and traits implemented on inner

type, 44
operator overload traits summary, 87
pointer, 54, 59
public, with feature gate on a method, 201
relating to operator overloads, 86
standard traits, 77

implementation checks by Clippy, 226
used to display data in formats, 214
in user-defined type conversions, 35
using default implementations to minimize

required trait methods, 103
transformations, 65

(see also iterator transforms)
Option and Result, methods for, 24

tree data structures, 133, 138
TryFrom trait, 86, 88, 220

blanket implementation for any type imple‐
menting Into trait, 36

implementations for source not fitting desti‐
nation type, 36

implementations for standard library types,
36

use in user-defined type conversions, 35
TryInto trait, 35, 88
try_.. methods, 76
try_borrow method, 63
try_find method, 72
try_fold method, 72
try_for_each method, 72
try_new method, 248
try_reserve method, 248

tuple struct, 5, 28, 40
tuple type, 4
turbofish, 74
type aliases, 27, 41
type coercion, 13, 39, 55, 166

implicit coercion, 34
type conversions, 34-40

casts, 38
coercion, 39
error attempting to convert larger integer

type into smaller integer type, 3
explicit coercion to fn type, 12
manual, 34
user-defined, 34

type erasure, 102
type safety, v, 254

of function signatures, 254
type system, v

encoding behavior into, 1
not documenting things already expressed

by, 228
type-length-value (TLV) structure, 169-173
TypeId, 164
typeid (C++), 163
types, 2-9

aggregate, 4
closures, 13
core and std, 244
defined, 1
expressing common behaviors, 10
full type names required when not using

std, 246
function pointers, 12
functions, 10
fundamental, 2-4

bool, 3
char, 4
floating point types, 3
integer types matching pointer size on

target system, 2
integer types with specific sizes, 2
stricter conversions in Rust, 2
unit, 3

idiomatic Error types, preferring, 25-33
including as much semantics as possible

Rust type system, 206
making common types available without

using full names, 244
methods, 11
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newtype pattern, 40-44
preferring Option and Result transforms

over explicit match expressions, 20-25,
20

sized types at FFI boundaries, 252
traits, 17

(see also trait bounds; trait objects;
traits)

trait bounds, 18
trait objects, 19

using builders for complex types, 45-51
visibility, 181

U
u128 type, 2
u16 type, 2
u32 type, 2, 4

values not valid for Unicode code points, 4
u64 type, 2
u8 type, 2, 73
Unicode, 4
union, 193, 199, 217
unique_ptr (C++), 91
unit tests, 227-228, 234

common elements, 227
optional elements, 228

unit type, 3
unreachable! macro, 161
unsafe code, 91, 105, 231

avoiding writing, 142-144
documenting, 204, 226
FFI code in Rust, 250, 252

encapsulating in safe code, 258
occasions requiring, 142
raw pointers, 256
use by replace, 125
using raw and un-smart pointers, 140

unsafe functions, 4
unsafe keyword, 142
unsafe mode, 243
unsafe_op_in_unsafe_fn lint, 144
unstable features in Rust, 230
unwrap method, 21, 161, 228, 230
unwrap_err method, 161
unzip method, 72
upcasting in future Rust versions, 168
usability, 173
use statements, 186, 187, 244

core types in no_std environments, 244

use-after-free, 256
user-defined type conversions, 34
user-defined types

coercions affected by, 40
operator overloads for, 86

usize, 2
UTF-8, 4, 29

V
Vec type, 57, 64, 72, 247

Result holding a Vec, 74
Vec::push, 248

vectors, 245
bounds checking, 73
converting vector of i64 values to bytes (u8),

73
verification (formal), 236
version control, Cargo.lock file, 192
version selection algorithm (Cargo), 192
version specification (dependencies), 193
visibility, 181-185

restricting, 184
syntax for, 181
unit tests and, 228

void (C), 4
vtable, 40, 58, 96

entry for Any, 165
trait object, 101
trait objects for trait bounds, 99

W
warn(missing_docs) attribute, 205
warnings about Rust usage (Clippy), 223
Weak type, 61, 139
weak_ptr (C++), 61
wildcard dependency, 180
wildcard imports, 186-187

avoiding from crates you don't control, 187
Clippy checks on, 226
name clashes from, 186

Wilde, Oscar, 175
Winters, Titus, 203
wrapper layer holding unsafe code, 144
wrapper struct for C library interaction, 257

Z
zip method, 69
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