

PROGR AMMING L ANGUAGES

AI-Assisted Programming

linkedin.com/company/oreilly-media
youtube.com/oreillymedia

Get practical advice on how to leverage AI development
tools for all stages of code creation, including requirements,
planning, design, coding, debugging, and testing. With this
book, beginners and experienced developers alike will learn
how to use a wide range of tools, from general-purpose LLMs
(ChatGPT, Gemini, and Claude) to code-specific systems
(GitHub Copilot, Tabnine, Cursor, and Amazon CodeWhisperer).

You’ll also learn about more specialized generative AI tools
for tasks such as text-to-image creation.

Author Tom Taulli provides a methodology for modular
programming that aligns effectively with the way prompts
create AI-generated code. This guide also describes the best
ways of using general-purpose LLMs to learn a programming
language, explain code, or convert code from one language
to another.

This book examines:

• The core capabilities of AI-based development tools

• Pros, cons, and use cases of popular systems, including
GitHub Copilot

• Ways to use ChatGPT, Gemini, Claude, and other generic
LLMs for coding

• Using AI development tools for the software development
lifecycle, including requirements, planning, coding,
debugging, and testing

• Prompt engineering for development

• Using AI-assisted programming for tedious tasks like
creating regular expressions

• How to use AI-based low-code and no-code tools

Tom Taulli is an author, advisor,
and investor who’s penned numerous
books, including Artificial Intelligence
Basics. He also contributes to
publications such as AIBusiness.com,
Inc.com, Barrons.com, eSecurity
Planet, and Kiplingers.com, and
has developed educational courses
for O’Reilly and Pluralsight, focusing
on areas such as generative AI,
databases, and Python.

9 7 8 1 0 9 8 1 6 4 5 6 0

6 9 9 9 9

US $69.99 CAN $87.99
ISBN: 978-1-098-16456-0

“When we added
vector search to
Cassandra in six weeks,
Copilot and ChatGPT
were key to meeting
our deadline, but most
developers have yet
to take advantage
of AI tools like these.
Tom’s book is a great
way to get started and
will save you hours of
trial and error.”

—Jonathan Ellis
 Cofounder and CTO of DataStax

Praise for AI-Assisted Programming

When we added vector search to Cassandra in six weeks, Copilot and ChatGPT were key
to meeting our deadline, but most developers have yet to take advantage of AI tools like
these. Tom’s book is a great way to get started and will save you hours of trial and error.

—Jonathan Ellis, cofounder and CTO of DataStax

AI-Assisted Programming is an excellent resource that showcases Tom’s expertise and
equips readers for the current evolution of software development, empowering

everyone to code.
—Justin Dorfman, Open Source Community Manager

at Sourcegraph

AI is rapidly changing how developers build software. From code editors to terminal and
more, AI assistance is becoming pervasive. AI-Assisted Programming should be the first

read for any developer trying to get the most from AI in their daily workflows.
—Zach Lloyd, CEO and cofounder of Warp

Tom Taulli’s book is a well-structured journey into how AI tools like ChatGPT can change
the game for developers—both early in their careers and for seasoned experts. It shares

applicable insights on the ups and downs of AI-powered coding, much like my own
journey from marketing and business to shipping features in production for our app.

Great for programmers looking to leverage AI as part of their toolbox.
—Titus Capilnean, cofounder at Private Market Labs

AI has changed the game for development. Every programmer will need to know how to
work with tools like GitHub Copilot. Tom’s book shows how.

—Muddu Sudhakar, CEO and cofounder of Aisera

Tom Taulli

AI-Assisted Programming
Better Planning, Coding, Testing,

and Deployment

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-098-16456-0

[LSI]

AI-Assisted Programming
by Tom Taulli

Copyright © 2024 Tom Taulli. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (https://oreilly.com). For more information, contact our corporate/institu‐
tional sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Brian Guerin
Development Editor: Shira Evans
Production Editor: Kristen Brown
Copyeditor: Paula L. Fleming
Proofreader: Emily Wydeven

Indexer: Potomac Indexing, LLC
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Kate Dullea

April 2024: First Edition

Revision History for the First Edition
2024-04-10: First Release

See https://oreilly.com/catalog/errata.csp?isbn=9781098164560 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. AI-Assisted Programming, the cover
image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the author and do not represent the publisher’s views. While
the publisher and the author have used good faith efforts to ensure that the information and instructions
contained in this work are accurate, the publisher and the author disclaim all responsibility for errors or
omissions, including without limitation responsibility for damages resulting from the use of or reliance
on this work. Use of the information and instructions contained in this work is at your own risk. If any
code samples or other technology this work contains or describes is subject to open source licenses or the
intellectual property rights of others, it is your responsibility to ensure that your use thereof complies
with such licenses and/or rights.

https://oreilly.com
https://oreilly.com/catalog/errata.csp?isbn=9781098164560

Table of Contents

Foreword. xi

Preface. xiii

1. New World for Developers. 1
Evolution and Revolution 2
Generative AI 5
The Benefits 6

Minimizing Search 6
Your Advisor 8
IDE Integration 9
Reflecting Your Codebase 10
Code Integrity 11
AI-Powered Documentation Generator 11
Modernization 12

Drawbacks 15
Hallucinations 15
Intellectual Property 15
Privacy 16
Security 17
Training Data 17
Bias 18

A New Way for Developers 18
Career 19
10x Developer? 19
Skills of the Developer 20

Conclusion 20

v

2. How AI Coding Technology Works. 21
Key Features 21
Code Suggestions and Context-Aware Completions

Versus Smart Code Completion 22
Compilers Versus AI-Assisted Programming Tools 23
Levels of Capability 24
Generative AI and Large Language Models (LLMs) 26

Evolution 26
The Transformer Model 27
OpenAI Playground 30

Evaluating LLMs 35
Types of LLMs 38
Evaluation of AI-Assisted Programming Tools 40
Conclusion 41

3. Prompt Engineering. 43
Art and Science 44
Challenges 44
The Prompt 45
Context 46
Instructions 46

Summarization 47
Text Classification 48
Recommendation 48
Translation 49

Input of Content 50
Format 50
Best Practices 51

Be Specific 51
Acronyms and Technical Terms 52
Zero- and Few-Shot Learning 53
Leading Words 54
Chain of Thought (CoT) Prompting 54
Leading Questions 55
Ask for Examples and Analogies 55

Reducing Hallucinations 56
Security and Privacy 57
Autonomous AI Agents 58
Conclusion 60

4. GitHub Copilot. 61
GitHub Copilot 61

vi | Table of Contents

Pricing and Versions 62
Use Case: Programming Hardware 63
Use Case: Shopify 64
Use Case: Accenture 65
Security 65

Getting Started 66
Codespaces and Visual Studio Code 67
Suggestions 69
Comments 72
Chat 72
Inline Chat 77
Open Tabs 79
Command-Line Interface 80

Copilot Partner Program 81
Conclusion 82

5. Other AI-Assisted Programming Tools. 83
Amazon’s CodeWhisperer 83
Google’s Duet AI for Developers 85
Tabnine 87
Replit 88
CodeGPT 91
Cody 91
CodeWP 93
Warp 94
Bito AI 96
Cursor 97
Code Llama 98
Other Open Source Models 99

StableCode 99
AlphaCode 100
PolyCoder 100
CodeT5 101
Enterprise Software Companies 101

Conclusion 102

6. ChatGPT and Other General-Purpose LLMs. 103
ChatGPT 103
GPT-4 104
Navigating ChatGPT 105

Mobile App 108
Custom Instructions 109

Table of Contents | vii

Browse with Bing 109
Tedious Tasks 113

Regular Expressions 114
Starter Code 115
GitHub README 115

Cross-Browser Compatibility 116
Bash Commands 117
GitHub Actions 117
Plugins 118

The Codecademy Plugin 119
The AskYourDatabase Plugin 120
Recombinant AI Plugin 121

GPTs 121
Gemini 123

Applications 125
Gemini for Coding 126

Claude 128
Conclusion 130

7. Ideas, Planning, and Requirements. 131
Brainstorming 131
Market Research 133

Market Trends 135
Total Addressable Market 136

Competition 137
Requirements 139

Product Requirements Document 140
Software Requirements Specification 141
Interviews 142
Whiteboarding 143
Tone 144

Approaches to Project Planning 145
Test-Driven Development (TDD) 147
Planning Web Design 149

Conclusion 152

8. Coding. 153
Reality Check 153
Judgment Calls 155
Learning 156
Comments 157
Modular Programming 158

viii | Table of Contents

Starting a Project 159
Autofill 160
Refactoring 162

Ninja Code 162
Extract Method 163
Decomposing Conditionals 164
Renaming 164
Dead Code 165

Functions 166
Object-Oriented Programing 167
Frameworks and Libraries 168
Data 169
Frontend Development 171

CSS 172
Creating Graphics 172
AI Tools 173

APIs 176
Conclusion 177

9. Debugging, Testing, and Deployment. 179
Debugging 179
Documentation 180
Code Review 182

Unit Tests 183
Pull Requests 186

Deployment 187
User Feedback 189
The Launch 190

Conclusion 191

10. Takeaways. 193
The Learning Curve Is Steep 193
There Are Major Benefits 194
But There Are Drawbacks 194
Prompt Engineering Is an Art and Science 195
Beyond Programming 195
AI Won’t Take Your Job 196
Conclusion 196

Index. 197

Table of Contents | ix

Foreword

When I graduated from UCLA in the early 1990s, I thought I would be a professor.
But when IBM hired me, I quickly fell in love with the technology industry. There
was no turning back. I would go on to work at other companies like VMware, Pivotal,
EMC, and SGI.

Then I founded several startups. My latest is Aisera, which builds generative AI solu‐
tions for enterprises. Our platform helps with customer service, employee experience,
enterprise search, IT service desk, and AIOps.

Throughout my career, I’ve seen many innovations, such as the emergence of the
internet, cloud computing, mobile devices, and deep learning. Yet there was one area
of technology that saw little progress: software development.

As a founder, this was certainly a big frustration. There would often be certain things
we wanted to do but could not because of the bottlenecks with our engineering teams.
But with AI-assisted programming, the game has changed in a big way. It has made
Aisera more agile and nimble. It’s been a force multiplier that has helped propel our
growth.

Now, when I consider hiring a developer, I want to know how they leverage AI. How
are they using this powerful technology to handle tedious processes and code faster?

Bottom line: I believe that understanding AI-assisted programming tools is a critical
skillset. According to Microsoft CEO Satya Nadella, they are “becoming standard
issue for any developer…”

But understanding AI-assisted programming requires a different approach. It’s not
like typical development. You need to understand how to use generative AI systems.
This is where Tom’s book comes in. He has written a playbook for any developer who
wants to become proficient with AI-assisted programming. He’s covered the key top‐
ics and has provided many useful examples. He also has done this in a fun manner,
making the topic approachable.

xi

https://oreil.ly/CuREp

No doubt, it’s an exciting time to be a developer. There are many opportunities for
career growth. And one of the best moves you can make is learning AI-assisted
programming.

— Muddu Sudhakar
CEO and cofounder of Aisera

xii | Foreword

Preface

I started coding back in the early ’80s. My first rig was an Atari 400—not exactly a
powerhouse with its membrane keyboard, just 8K of RAM, and programs that loaded
from cassettes. I learned the BASIC language and created simple games and utility
apps.

I was totally into it.

Naturally, over time I upgraded to beefier machines. Along the way, I got my hands
dirty with languages like Pascal, C, and C++. But the IDEs didn’t change much,
except for syntax highlighting and debugging features.

Everything changed dramatically with the arrival of GitHub Copilot and ChatGPT.
Trying out these tools felt like the moment I first held an iPhone—absolutely
game-changing.

In natural language, I asked ChatGPT to write code. Or in VS Code, I would type a
fragment of a function, and GitHub Copilot would generate a code block. Often it
was like hitting the bull’s-eye. Oh, and then I used ChatGPT to turn images into code.

Yet the real power was that these tools could handle many of the tedious tasks for
developers. Who’s into wrestling with regex statements or piecing together bash com‐
mands or GitHub actions? Not me, for sure. But these AI programming tools? They
eat that stuff for breakfast.

Turns out, these AI tools are handy for more than just coding. I began using
ChatGPT for brainstorming app ideas, drafting requirements, and even knocking out
unit tests.

It didn’t take long for me to be convinced that AI-assisted programming would be
one of those must-have skills for programmers.

So yes, I saw a big need to write this book. I put together an outline and pitched it to
O’Reilly. The folks there instantly saw the potential.

xiii

Writing the book has been lots of fun, and I’ve learned a lot. I’ve also interviewed
many smart developers who have provided me with great ideas and tips.

But AI-assisted programming is quickly evolving. This is why this book has a com‐
panion GitHub repository. Here, I’ll make updates to the book and include other
important developments in this exciting field.

So thank you for picking up this book. I hope you find it not only informative but
also a valuable guide in your journey.

What’s Covered
Here’s a brief look at each chapter:

• Chapter 1, “New World for Developers”: This chapter kicks off with a look into
how generative AI is changing the game for coders. It talks about how these AI
tools are helping developers think more about the big picture and less about the
nitty-gritty of coding. The chapter also takes a stroll through the history of pro‐
gramming languages. There are also details about the advanced AI technologies
like GPT-4.

• Chapter 2, “How AI Coding Technology Works”: The chapter starts off by
explaining generative AI and why transformer models and large language models
are big deals in the programming world. To top it off, there’s a walkthrough of
OpenAI’s Playground, showing how you can play around with these AI models
and tweak them to suit your coding needs.

• Chapter 3, “Prompt Engineering”: The information here is critical to using AI-
assisted programming tools. This chapter is packed with practical tips, like deal‐
ing with wordy or confusing prompts and deterring AI from making stuff up.
Plus, it breaks down the key parts of a prompt and shows you how to use them
effectively.

• Chapter 4, “GitHub Copilot”: This chapter is a walkthrough of this powerful tool.
There’s a look at the core features like creating code with comments, Chat, and
using an AI-powered command-line interface. There is also coverage of custom‐
izing the system for proprietary codebases.

• Chapter 5, “Other AI-Assisted Programming Tools”: This chapter details the
other top AI-assisted programming tools like Amazon CodeWhisperer, Google’s
Duet AI, and Replit to name just a few.

• Chapter 6, “ChatGPT and Other General-Purpose LLMs”: This covers how to use
these tools for tasks like handling regular expressions, starter code, and GitHub
Actions.

xiv | Preface

https://github.com/ttaulli/AI-Assisted-Programming-Book

• Chapter 7, “Ideas, Planning, and Requirements”: The focus here is on using chat‐
bots to kick off software projects. This involves topics like brainstorming, market
research, requirements documents, and test-driven development.

• Chapter 8, “Coding”: This chapter goes through common scenarios for develop‐
ment, whether working with APIs, using modular programming, or refactoring.
There’s also a look at handling functions and object-oriented programming.

• Chapter 9, “Debugging, Testing, and Deployment”: This chapter is about the less
glamorous parts of development. It covers topics like fixing bugs, using AI-
assisted programming tools for code reviews, making unit tests, and describing
pull requests.

• Chapter 10, “Takeaways”: This is a wrap-up of the book, emphasizing the main
points.

How This Book Is Different
Software developers thrive on certainty. When you give a program certain input, you
always get the same output. For ages, this pure deterministic logic was the heart and
soul of software.

But when you use AI-assisted programming tools, things get a bit topsy-turvy. Get‐
ting results is like rolling dice since everything works on probabilities. When you
prompt an AI tool to whip up some code, and even use the same prompt over multi‐
ple tries, you might get different results each time. Sure, it’s a bit of a head-scratcher at
first, but once you get the hang of it, it’s totally worth it. That’s why there is a chapter
on prompt engineering that will help with this new approach to programming.

Who Should Read This Book
This book is for any developer, whether you’re just starting out or you’ve been in the
game for many years.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Preface | xv

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a general note.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/ttaulli/AI-Assisted-Programming-Book.

If you have a technical question or a problem using the code examples, please send
email to support@oreilly.com.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of
example code from this book into your product’s documentation does require
permission.

We appreciate, but generally do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: “AI-Assisted Program‐
ming by Tom Taulli (O’Reilly). Copyright 2024 Tom Taulli, 978-1-098-16456-0.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

xvi | Preface

https://github.com/ttaulli/AI-Assisted-Programming-Book
mailto:support@oreilly.com
mailto:permissions@oreilly.com
https://oreilly.com

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit https://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-889-8969 (in the United States or Canada)
707-827-7019 (international or local)
707-829-0104 (fax)
support@oreilly.com
https://www.oreilly.com/about/contact.html

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/AI-assisted-programming.

For news and information about our books and courses, visit https://oreilly.com.

Find us on LinkedIn: https://linkedin.com/company/oreilly-media

Watch us on YouTube: https://youtube.com/oreillymedia

Acknowledgments
I want to thank the folks at O’Reilly who believed in this book and worked hard to
make it a reality: Nicole Butterfield, Shira Evans, and Brian Guerin. I also had the
benefit of outstanding tech reviewers. They include Roja Boina, Abraham Borg, Sarah
Kim, Ebubechukwu (Nnenna) Oguaju-Dike, and Gaurav Deshmukh.

Preface | xvii

https://oreilly.com
mailto:support@oreilly.com
https://www.oreilly.com/about/contact.html
https://oreil.ly/AI-assisted-programming
https://oreilly.com
https://linkedin.com/company/oreilly-media
https://youtube.com/oreillymedia

CHAPTER 1

New World for Developers

While juggling dense neural network architectures and pixel-wrangling computer
vision at Stanford from 2011 to 2016, Andrej Karpathy also moonlighted at Google.
Over there, he tinkered around and whipped up a feature-learning system for You‐
Tube videos. Then he decided to become a founding member of OpenAI and later the
senior director of AI at Tesla, where he led a team to create the Autopilot system.

It’s safe to say he’s one the world’s top coders. He is also a skilled wordsmith with a
massive Twitter—or X—following of nearly 800,000 followers. When ChatGPT cata‐
pulted onto the scene, he tweeted:

The hottest new programming language is English.

He wasn’t kidding. This wasn’t just a poetic ode to coding but a nod to a future where
typing out natural language prompts could conjure up computer code in seemingly
any language. It’s like having a bilingual genie in your computer, ready to transcribe
your English wishes into code commands.

Then there came a tweet that echoed the sentiments of many developers:

Copilot has dramatically accelerated my coding, it’s hard to imagine going back to
“manual coding”. Still learning to use it but it already writes ~80% of my code, ~80%
accuracy. I don’t even really code, I prompt. & edit.

Karpathy was tipping his hat to Microsoft’s GitHub Copilot, a fresh brew of AI-
assisted programming. But it wouldn’t be long until many other tools sprouted up.
The pace of innovation was breathtaking.

Now, for all the coders out there, the landscape might look like a dense jungle. What’s
this brave new world of AI tools? Where do they dazzle, and where do they fizzle?
And how do you wade through all this to become a savvy AI-assisted programmer?

1

https://oreil.ly/m4fFk
https://oreil.ly/9kBmX
https://oreil.ly/a_jg1

Well, this book will be your guide to help answer these questions—and many more.
The spotlight will be on harnessing these tools to code not just faster but smarter, and
with a sprinkle of fun. So, let’s roll up our sleeves and jump into this AI-assisted pro‐
gramming journey.

Evolution and Revolution
A key theme of the evolution of programming languages is abstraction. This is a fancy
way of describing how systems get easier for developers to use. When the tedious
details are handled in the background, developers can focus on what matters most.
This has been a driving force of innovation, allowing for breakthroughs like the inter‐
net, cloud computing, mobile, and AI.

Figure 1-1 highlights the evolution of abstraction over the decades.

Figure 1-1. The abstraction of programming languages and tools has evolved over the
decades

2 | Chapter 1: New World for Developers

Let’s go into more detail, starting from the 1940s:

Machine language to assembly language
At the dawn of the computer age, programmers had to wrestle with 0s and 1s to
bend machines to their will. But then, assembly language came onto the scene.
It offered alphanumeric instructions, which made coding easier and less
error-prone.

High-level languages
The 1950s brought us Fortran and COBOL, languages that let programmers code
using somewhat plain English like DISPLAY, READ, WRITE, and IF/THEN/
ELSE. A compiler would convert these into the 0s and 1s that a computer could
understand. At the same time, people without a technical background could gen‐
erally read the code well enough to understand the workflow. The emergence of
high-level languages would be a huge catalyst for the computer revolution.

Procedural programming
Languages like C and Pascal introduced procedural programming, essentially
packing complex tasks into neat little boxes called functions. This abstraction
allowed for reusability and maintainability, and it made managing colossal soft‐
ware projects less of a Herculean task.

Object-oriented programming (OOP)
Some of the stars of this type of computer language include C++ and Java.
Object-oriented programming brought a whole new level of abstraction, allowing
programmers to model real-world entities using classes and objects, encapsulat‐
ing both data and behavior. This promoted modularity and allowed for more
intuitive problem solving.

Scripting languages and web development
Python, Ruby, and JavaScript abstract many of the lower-level tasks associated
with programming. They offer extensive libraries and built-in data structures,
simplifying common programming tasks and reducing the amount of code
needed to accomplish them.

Machine learning and AI
With the rise of AI and machine learning, specialized libraries and frameworks
like TensorFlow and PyTorch have abstracted away many intricate mathematical
details of programming. This has enabled developers to focus on model architec‐
ture and training processes.

Evolution and Revolution | 3

AI-assisted programming
Of course, the latest entrant to this abstraction narrative is AI-assisted program‐
ming, á la GPT-4 and other massive large language models (LLMs). These are
like your backstage crew, ready to pitch in with code generation at your
command.

Let’s look at a simple example. For this, we’ll use ChatGPT, which has a robust ability
to gin up code. We will use a prompt to ask what we want the system to do. Suppose
we give it the following prompt:

Prompt: In Python, write a program that checks if a given integer is even or odd and
print the result.

Figure 1-2 shows the response from ChatGPT.

Figure 1-2. When asked to create code, ChatGPT’s response will include not only a list‐
ing but an explanation

4 | Chapter 1: New World for Developers

We get the code listing, which even comes with helpful comments. Then there is also
an explanation of how the program works. You can press the Copy code button at the
top right to include the code in your IDE and run it.

Generative AI
Before we go deeper into how AI-assisted programming tools work, let’s get an over‐
view of generative AI. This is the foundation of these systems.

Generative AI is a branch of artificial intelligence (AI), which allows for the creation
of new and unique content. Figure 1-3 provides a visual of how the different parts
relate to each other.

Figure 1-3. There are different types of AI, and they can be represented as nested subsets,
with generative AI and finally large language models at the center

AI is the big umbrella: it includes all systems that can pull off tasks with the flair of
human intelligence. Tucked within AI is machine learning (ML). Instead of marching
to the beat of explicit instructions, ML systems come up with insights based on heaps
of data. ML is generally based on complex algorithms, which allow for making pre‐
dictions or decisions without hardcoding.

Take a step deeper, and you get deep learning (DL), a tighter slice of ML that rolls
with neural networks stacked with hidden layers—hence the deep tag. These stacked
models have shown standout results in areas like image and speech recognition.

Within the corridors of deep learning, you’ll find generative AI (or GenAI). GenAI
models create new data that reflects their training data.

In the innermost circle sits LLMs, such as GPT-4, Gemini, Claude, and LLaMA 2.
These powerful models—often called “foundation models”—churn out human-esque
text based on cutting-edge algorithms and training on huge amounts of data.

Generative AI | 5

But generative AI is more than just LLMs. GenAI also has multimodal capabilities,
meaning the ability to create images, audio, and video.

In the next chapter, we’ll dive deeper into how generative AI works. But next, let’s
now take a look at the pros and cons of AI-assisted programming tools.

The Benefits
AI-assisted programming tools are crafted to enhance developers’ abilities, enabling
them to zero in on advanced problem solving and innovations instead of being
ensnared in monotonous tasks or complex code details. This is why GitHub’s use of
the word copilot is spot on. It’s about having that reliable buddy in the cockpit, navi‐
gating through the intricate and often tedious aspects of coding, allowing you to focus
on what matters.

In the upcoming sections, we’ll spotlight the benefits and practical applications of
these powerful systems.

Minimizing Search
Developers often find themselves playing digital detectives, hunting down pesky bugs
or wrapping their heads around cryptic codes. When they bump into a snag, their
first instinct is to hit up Google or pay a visit to Stack Overflow. A quick search, a
snippet of code, and voilá, they’re back to their IDE (integrated development
environment).

But sometimes this can turn into an ordeal. The discussion on Stack Overflow may
wind up being a dead end. You search some more—but nothing seems to be on point.
However, there’s one discussion that somewhat helps, and you do further research on
some related topics. You even search YouTube for a video. After chewing on the prob‐
lem for more than 30 minutes, you finally solve it.

Yes, all developers have experienced this. Interestingly enough, the 2022 Developer
Survey from Stack Overflow, which included responses from more than 70,000 devel‐
opers, highlights this frustration. It found that 62% of the respondents spent more
than 30 minutes a day searching for answers, and 25% spent over an hour a day.
According to the survey, “For a team of 50 developers, the amount of time spent
searching for answers/solutions adds up to between 333–651 hours of time lost per
week across the entire team.”

Now, what if there was a way to slice through this thicket of time-consuming searches
and get to the solution pronto? Enter AI-assisted programming, our knight in shining
algorithm. Research from Microsoft supports this: it shows that more than 90% of
developers who used GitHub Copilot managed to race through their tasks at a faster
clip.

6 | Chapter 1: New World for Developers

https://oreil.ly/WQ6De

Microsoft even put this to the test in a coder showdown. The company recruited 95
professional developers and split them into two groups. The task was to write an
HTTP server in JavaScript. Those who used GitHub Copilot completed the job 55%
faster than those who did not.

And it’s not just Microsoft singing praises. McKinsey & Company also conducted a
research study. More than 40 developers from across the United States and Asia par‐
ticipated, with varying degrees of experience and backgrounds. Over several weeks,
they completed three common software tasks: code generation, refactoring, and doc‐
umentation.

The results? When it came to documentation for keeping the code neat and tidy, AI-
assisted tools were the standouts, cutting the time spent by half, and AI tools per‐
formed nearly the same on drafting new code and refactoring.

However, for complex tasks, the AI tools didn’t hit the high notes. The time trimmed
was shy of 10%.

Interestingly, the research also showed that reducing the time spent did not negatively
impact the overall quality of the code, as reflected in, for example, bugs, readability,
and maintainability. In fact, the AI-assisted programming tools provided marginal
improvements. But this often was due to the fact that developers iterated with the
tools.

The McKinsey study provides the following takeaways:

Easing routine chores
The tools are great at tackling mundane tasks like autofilling code functions, aid‐
ing in real-time code completion, and autodocumenting code. By handling these
tasks, they free up developers to dive into complex business issues and speedily
deploy software features.

Producing smoother code drafts
Staring at a blank canvas can be daunting, but with generative AI tools, develop‐
ers can nudge the creative process along by fetching code suggestions with a sim‐
ple prompt, right within their IDE or separately. Many developers found these
AI-based suggestions invaluable, as they helped the humans overcome the “blank
screen problem” and get into the coding “zone” with a quicker pace.

Accelerating tweaks to existing code
With effective prompts, developers can adapt and improve existing code more
swiftly. For instance, they can snag code from online libraries, pop it into a
prompt, and then make iterative requests for AI-finessed adjustments based on
specified criteria.

The Benefits | 7

https://oreil.ly/TtsA0
https://oreil.ly/TtsA0
https://oreil.ly/xOLj3
https://oreil.ly/c_7sx

Enhancing developers’ prep for new challenges
The technology acts like a fast-track introductory course and helps developers
get acquainted with unfamiliar coding environments or languages. When tack‐
ling something new, these tools step in like a seasoned buddy, shedding light on
fresh concepts, dissecting various code bases, and dishing out comprehensive
guides on framework usage.

Harnessing multiple tools
The research indicates that bringing multiple tools into play is more effective.
Picture this: a developer swings one tool for prompts or chats, and another tool
jumps in as part of the codebase, dishing out autocomplete options and sugges‐
tions. Developers found the first tool to be a whiz at fielding queries during code
refactoring, thanks to its conversational finesse. On the flip side, the second tool
showed effectiveness in conjuring up new code that was integrated smoothly with
the development environment. When these AI tools teamed up for a task, devel‐
opers saw a time efficiency surge of 1.5 to 2.5 times.

Your Advisor
With ChatGPT, you can ask for advice on many types of development activities.
Here’s a prompt:

Prompt: Please provide detailed tips and best practices for minimizing search time and
enhancing productivity when programming. Include strategies related to code organi‐
zation, documentation, tools, and mindset.

Figure 1-4 shows the response.

ChatGPT provides three main areas to consider. It recommends using a modular
design, maintaining consistent naming, and organizing files logically. It also advises
prioritizing clear documentation with comments, docstrings, and READMEs.
ChatGPT then goes on to mention using the search functions of an IDE, using tools
like Git, and bookmarking key resources.

8 | Chapter 1: New World for Developers

Figure 1-4. You can get useful advice on programming tasks from ChatGPT

IDE Integration
Seamless integration with the IDE is crucial for AI-assisted programming. It keeps
the momentum of the development process going strong, without the heavy lifting of
mastering a new platform. This means less time scrambling up the learning curve and
more time coding and—let’s not forget—less switching between different platforms
or tools means less friction and makes for a smoother coding journey.

Then there is the advantage of real-time feedback. As developers knit together or
tweak code, integrated tools are right there to spotlight errors, offer up corrections, or
suggest a better way to get things done. This instantaneous back-and-forth of writing,
feedback, and tweaking is like having a friendly coach by your side. You’ll be guided
toward cleaner, more efficient code without the hassle of manual reviews or external
checks.

The Benefits | 9

AI-assisted systems can also amp up an IDE by tuning into the broader coding narra‐
tive. The AI gets the gist of variable types, method signatures, and even the project’s
structural blueprint to churn out relevant code suggestions. It’s not just about spitting
out code, though.

Table 1-1 introduces some of the top AI-assisted programming tools and the IDEs
they support.

Table 1-1. IDEs supported by popular AI-assisted programming tools

AI-assisted
programming tool

IDEs

GitHub Copilot Visual Studio Code, Visual Studio, Vim, Neovim, JetBrains suite, Azure Data Studio 1
Tabnine Visual Studio Code, WebStorm, PyCharm, Eclipse, IntelliJ Platform, PhpStorm, CLion, Neovim,

JupyterLab, Rider, DataGrip, AppCode, Visual Studio 2022, Android Studio, GoLand, RubyMine,
Emacs, Vim, Sublime Text, Atom.AI, Jupyter Notebook 2

CodiumAI Visual Studio Code, JetBrains (IntelliJ, WebStorm, CLion, PyCharm)
Amazon
CodeWhisperer

Visual Studio Code, IntelliJ IDEA, AWS Cloud9, AWS Lambda console, JupyterLab, Amazon
SageMaker Studio, JetBrains (IntelliJ, PyCharm, CLion, GoLand, WebStorm, Rider, PhpStorm,
RubyMine, DataGrip)

A research study from Microsoft showed that 88% of users of Git‐
Hub Copilot felt less frustrated and more focused. A key reason
was that staying within the IDE meant spending less time search‐
ing. This allowed for the developer to remain in the “flow state.”

Reflecting Your Codebase
Certain AI-assisted programming tools are tailored to mesh well with specific devel‐
opment environments. Developers have the leeway to fine-tune them, allowing the
tool to understand a project’s internal libraries, APIs, best practices, and architectural
blueprints. This ensures that the suggestions thrown your way not only are techni‐
cally solid but also dovetail with your project’s unique needs.

This customization helps to align the generated code suggestions with your organiza‐
tion’s established coding standards, quality markers, and security protocols. The focus
on fostering high-quality code means that teams can avoid stumbling into deprecated
or undesirable code snippets.

Moreover, this tailored approach is a big benefit for newcomers to a development
team. Traditionally, getting them acclimated to a new codebase requires a hefty time
investment as they may need months of exploring code, reviewing documentation,
and learning the ropes of coding protocols. However, an AI-assisted programming
tool can significantly shave time off this learning curve.

10 | Chapter 1: New World for Developers

https://oreil.ly/3e2sI

Code Integrity
Code integrity is a hallmark of sound software development. It highlights the sturdi‐
ness and trustworthiness of the source code in executing its intended function. Think
of it as a lens through which the completeness, accuracy, consistency, and fortification
of the code are examined. A hiccup in code integrity lays out a welcome mat for bugs
and potential security blind spots, which, in turn, could usher in system crashes and
data breaches.

The various factors that engender code integrity include its precision, thoroughness,
uniformity, and security provisions as well as the ease with which it can be main‐
tained. Developers can ramp up code integrity through a medley of approaches like
unit and integration testing, peer code reviews, static code analysis, and stringent
security assessments.

It’s worth noting that a growing roster of AI-assisted programming tools are rolling
out features aimed at bolstering code integrity. They delve into the finer points of the
code, paving the way for the generation of pertinent and sharp unit tests and edge
cases.

Some of these tools come with “fix-it” recommendation features. These are vetted in
advance to ensure they don’t lead to new problems before they land in front of devel‐
opers. Then developers can review and assimilate these suggestions right within their
IDE.

An added perk of these tools is their ability to swiftly analyze pull requests and spin
up succinct summaries of code alterations. They also have a knack for automating the
chore of generating release notes, which comes in handy for documenting the evolu‐
tion in software versions.

AI-Powered Documentation Generator
Documentation is the unsung hero in the software development process. It helps to
ensure that the codebase remains legible, maintainable, and scalable, especially as
teams morph and projects bloat in complexity. But let’s face it, creating and refreshing
this documentation often feels like a trek through a bureaucratic bog—it can be a
time-guzzler and, occasionally, gets shoved to the backburner.

Now, cue the entrance of AI-assisted programming tools. These digital scribes can
whip up extensive documentation in a fraction of the time—and with a hefty dose of
quality and clarity to boot. This is done by leveraging the power of LLMs, which are
particularly strong at dealing with language.

The Benefits | 11

Modernization
Marc Andreessen’s 2011 bold statement in the Wall Street Journal, “Software Is Eating
the World”, has aged like a fine wine. Andreessen, known for his knack for spotting
tech trends from miles away and his stellar track record as a successful entrepreneur
and venture capitalist, pointed out a ripe moment in tech history.

He underlined how the infrastructure had come of age and primed global industries
for a metamorphosis. The rise of cloud platforms like Amazon Web Services and the
widespread growth of broadband internet were game changers. They had knocked
down the traditional hurdles of server costs and network know-how. This had cleared
the stage for disruptors like Uber, Netflix, and a slew of social media platforms to
rewrite the rulebook of their respective industries.

When we fast forward from Andreessen’s insightful piece, we see that the innovation
express has only picked up steam. However, it has also brought along a threat of dis‐
ruption, especially for large corporations. Many of these behemoths are anchored to
legacy systems that are not only pricey but also a gamble to modernize. Their hier‐
archical setup can interpose speed bumps in decision making, and their expansive
scale adds layers of complexity to embracing change. Plus, their workforce might not
always be on the same page with the latest tech innovations.

Enter IBM, eyeing this scenario as a goldmine of opportunity and channeling its hefty
resources to craft AI-assisted programming tools for its customers. In October 2023,
it unveiled the watsonx Code Assistant for Z. This system can translate COBOL to
Java on mainframe systems, with the code output elegantly object oriented.

IBM’s Watsonx.ai model understands 115 coding languages based on 1.5 trillion
tokens. The model has about 20 billion parameters. This is one of the largest AI sys‐
tems for code development.

The fact is that there are hundreds of billions of lines of COBOL. But migrating this
language to modern ones is no easy feat. It’s common for the COBOL to be decades
old and have little or no documentation. If the conversion is not handled properly,
the consequences could be severe. Keep in mind that much of the world’s credit card
processing is handled with mainframes. The same goes for Uncle Sam’s system for
handling school loans.

Unfortunately, there are many examples of failed migration projects. Consider the
California Department of Motor Vehicles, which, despite pouring $208 million into
the effort, had to pull the plug within a few years. Ouch.

Given the high stakes, mainframe developers generally earn higher salaries. But com‐
panies still are challenged in recruiting talent. Younger developers are trained on
modern languages and perceive mainframe development as a dead end. In the mean‐
time, a growing number of seasoned mainframe developers are retiring.

12 | Chapter 1: New World for Developers

https://oreil.ly/RW8e8
https://oreil.ly/RW8e8
https://oreil.ly/cfJMO
https://oreil.ly/cfJMO
https://oreil.ly/_U1zG

IBM realized that AI is essential to solve this massive problem. It’s true that code
transpilers or translators have been around for decades. In fact, they have often been
used for mainframe projects. However, what they have mostly been doing is taking
COBOL’s spaghetti code, giving it a quick translation, and, well, you have Java spa‐
ghetti code. It’s a modest facelift with barely a hint of improvement or innovation.
The Java code still needs a good amount of elbow grease, explaining why many
projects stumbled or flat-out face-planted.

But by using generative AI, IBM says that it has been able to improve the results of a
project by as much as tenfold.

Other companies are exploring this modernization opportunity. Thomas Dohmke,
who is the CEO of GitHub, posted: “COBOL still running on main frames is a much
bigger societal problem than we think.” In an interview with Fortune, he noted that he
had heard more about COBOL in 2023 than during the past three decades. He also
said that companies have been asking how to use GitHub Copilot for their migration
projects.

Keep in mind that ChatGPT is also proficient with legacy programming languages.
Table 1-2 shows which languages it supports.

Table 1-2. Common legacy programming languages

Language Description Development era
COBOL Developed for business data processing Late 1950s to early 1960s
Fortran Designed for scientific and engineering calculations 1950s
Pascal Developed to encourage good software engineering practices Late 1960s to early 1970s
BASIC Created as an easy-to-learn language for students and beginners Mid-1960s
ALGOL Influenced subsequent languages like Pascal, C, and Java Late 1950s to early 1960s
Assembly
language

Corresponds to the architecture of the CPU it’s designed for, dating back to
early programmable computers

Early computing era

PL/I Used for scientific, engineering, business, and system programming Early 1960s

To see how AI-assisted programming can help with legacy languages, let’s suppose
you need to work on the following code snippet:

MODULE ComplexModule
 IMPLICIT NONE
 TYPE :: ComplexType
 REAL :: real, imag
 CONTAINS
 OPERATOR(+) (a, b) RESULT(c)
 TYPE(ComplexType), INTENT(IN) :: a, b
 TYPE(ComplexType) :: c
 c%real = a%real + b%real
 c%imag = a%imag + b%imag
 END OPERATOR

The Benefits | 13

https://oreil.ly/a21Lt
https://oreil.ly/sqsti/

 END TYPE ComplexType
END MODULE ComplexModule

You do not know what language it is or how it works. The syntax does not lend itself
to an intuitive understanding of the workflow.

Now let’s say you go to ChatGPT and enter the following:

Prompt: What language is this written in? What does this code snippet do? Also,
explain how it works.

Figure 1-5 shows part of the response.

Figure 1-5. ChatGPT responds to a request to interpret legacy code

ChatGPT accurately identifies this as Fortran code. It also explains that the code
defines a module named ComplexModule, which contains a derived type ComplexType
for representing complex numbers, along with an overloaded addition operator + for
adding two complex numbers together. Then there is a step-by-step explanation of
the code.

14 | Chapter 1: New World for Developers

Drawbacks
Now let’s take a look at the not-so-rosy aspects of AI-assisted programming tools.
Like any fledgling technology—hey, even the first iPhone was a bit clunky—AI comes
with its share of hiccups, issues, and hurdles. The path of innovation is littered with
room for polish and fine-tuning.

Let’s take a look at some of the drawbacks.

Hallucinations
For LLMs, hallucinations are instances in which the model outputs data that appears
accurate but is factually incorrect or not grounded in the input data on which the
model was trained. This can pose a significant challenge for software development.
Hallucinations can lead to inaccurate code suggestions, generate misleading docu‐
mentation, and create erroneous testing scenarios. Additionally, they can render
debugging inefficient, mislead beginners, and potentially erode trust in AI tools.

On a positive note, there has been notable progress in reducing the occurrence of hal‐
lucinations. A substantial amount of academic research has been dedicated to this
issue, and AI companies have been employing effective strategies like reinforcement
learning from human feedback (RLHF) to mitigate this problem.

However, given the intrinsic complexity of LLMs and the enormous amount of data
they are based on, completely eradicating hallucinations appears to be a tall order—if
not impossible.

Another aspect to consider is that certain programming languages exhibit higher
accuracy rates when AI-assisted tools are used. Languages such as Python, JavaScript,
TypeScript, and Go tend to have better performance in this regard. This is attributed
to these languages being well represented in public repositories and thus providing a
richer dataset for the AI to learn from. The better trained AI, in turn, offers more
accurate and robust suggestions.

Intellectual Property
Matthew Butterick boasts a diverse background, embodying roles as a programmer,
designer, and lawyer, with a particular penchant for typography. His journey has seen
him authoring books on typography, designing fonts, and crafting programs aimed at
document editing and layout. However, his encounter with GitHub Copilot in June
2022 didn’t spark joy. Rather, it spurred him to pen a blog post titled “This Copilot Is
Stupid and Wants to Kill Me”.

His discontent didn’t end with blogging. It quickly escalated to launching a class
action lawsuit against Microsoft, GitHub, and OpenAI. The bone of contention was

Drawbacks | 15

https://oreil.ly/qjHL6
https://oreil.ly/qjHL6
https://oreil.ly/MOqYc
https://oreil.ly/MOqYc

an alleged breach of GitHub’s terms of service and privacy policies, with a potential
extension to copyright infringement charges.

This legal tangle underscores a broader gray area concerning intellectual property
rights with respect to code engineered from AI-assisted programming tools. Given
that the output is a cocktail of countless lines of preexisting code, the question of
ownership is a big question mark.

One argument is based on the idea of “fair use.” However, this legal doctrine is murky
and does not extend a clear pathway for AI-generated content. To resolve this matter,
there will likely need to be federal legislation or a Supreme Court ruling.

In the meantime, Microsoft has maneuvered to build a legal firewall for GitHub
Copilot customers. It has pledged to defend users against legal claims, granted certain
prerequisites are satisfied.

Adding another layer of the legal quagmire is the intersection of AI-assisted pro‐
gramming and open source software methods. Copyleft licenses, like the General
Public License (GPL) versions 2 and 3, require that any derivative work use the origi‐
nal code’s license terms. This helps to promote a stream of innovation. Yet, it could
spell trouble for developers, because it could potentially strip them of the rights to
shield their application’s intellectual property—or even require that they make their
entire codebase open source.

Privacy
The use of AI-assisted programming tools, often housed in the cloud, begs many data
privacy and confidentiality questions. How is the data safeguarded within the com‐
pany? Is there a chance it might be used as training data?

The clarity of the answers might vary from one vendor to another. Thus, some devel‐
opers may opt to steer clear of AI-assisted programming tools altogether.

This has been the approach of Anthony Scodary, the cofounder and cohead of engi‐
neering at Gridspace. This enterprise, with roots tracing back to Stanford University,
develops voice bots adept at navigating complex phone conversations. Their techno‐
logical foundation rests on speech recognition, speech synthesis, LLMs, and dialog
systems.

Rather than hitching a ride on existing AI-assisted programming platforms, Grid‐
space chose the road less traveled. It engineered its own AI-assisted programming
platform, which is based on Docker services within a Kubernetes cluster. Deployed as
an IDE plugin, this bespoke system is fine-tuned for its own codebase. “This has
allowed us to avoid sending our IP and data to other companies,” he said. “It has also
meant that we have a model that is smaller, more efficient, and specialized to our
style.”

16 | Chapter 1: New World for Developers

https://oreil.ly/x_Ml4

This is not to imply that this is the best approach. Each organization has its own
views and preferred methods. But when it comes to evaluating AI-assisted program‐
ming, it’s important to understand the privacy implications.

Security
In a research paper entitled “Security Weaknesses of Copilot Generated Code in Git‐
Hub”, authors Yujia Fu et al. highlighted the security issues with GitHub Copilot.
They scrutinized 435 AI-generated code snippets from projects on GitHub, and
35.8% had Common Weakness Enumeration (CWE) instances.

These weren’t limited to just one programming language. They were multilingual
missteps spanning 42 different CWE categories. Three of these categories were the
usual suspects—OS Command Injection, Use of Insufficiently Random Values, and
Improper Check or Handling of Exceptional Conditions. But here’s the kicker: 11 of
these CWEs had the dubious honor of making it to the 2022 CWE Top 25 list.

This is not to imply that AI-assisted programming tools are a huge security risk. Far
from it. The fact is that vendors are continuing to work on ways to improve the
guardrails. However, as with any code, a solid dose of security mindfulness is the
name of the game.

Training Data
The training data for LLMs of AI-assisted programming tools may have notable gaps,
which can affect the performance and usefulness of these tools in real-world scenar‐
ios. Let’s break down some of these:

Representation gaps
If certain areas of a programming language or library are not well represented—
or are nowhere to be seen—in open source projects, the AI may lack enough
knowledge about them, leading to less accurate suggestions. The quality of the
AI’s output depends heavily on the quality and scope of the training data.

Quality inconsistency
To borrow a movie analogy, the open source code in an LLM is a bit like a box of
chocolates—you never know what you’re gonna get. Some projects are the crème
de la crème, while others are...let’s say, the burnt toast of the code world. This
mishmash can lead to our AI-assisted programming being inconsistent in the
quality of suggestions it throws your way.

Knowledge cutoff date
LLMs have a cutoff date on their training, so in a way they are like a snapshot in
time. This poses challenges when there are new releases, updates, or deprecations
in programming languages or libraries.

Drawbacks | 17

https://oreil.ly/ibD3D
https://oreil.ly/ibD3D

Generalization gap
The generalization gap, the difference between the AI’s performance on the train‐
ing data and unseen data, can also pose challenges. Of course, the closer the per‐
formance of the two, the better. This is the conclusion of a research paper by Rie
Johnson and Tong Zhang entitled “Inconsistency, Instability, and Generalization
Gap of Deep Neural Network Training”.

Contextual understanding
AI can give you suggestions based on what it has seen before. But if it hasn’t seen
a scenario quite like yours, it might miss the mark. This is why it’s important not
to make assumptions when creating prompts.

Bias
Developers often don’t have a solid grasp of AI ethics, likely because this topic isn’t
usually part of computer science courses or intensive bootcamp programs. This gap
in understanding can lead to algorithms unintentionally applying biases and the
potential misuse of data.

This issue carries over to AI-assisted programming tools as well. They can uninten‐
tionally perpetuate the biases present in the data they were trained on. For example, if
asked to create a list of names, they might mainly suggest English names due to the
heavy presence of English-centric datasets in their training datasets. This bias can
sometimes lead to harmful or inappropriate outputs. There was an instance where,
when given the prompt “def race(x):”, the AI filled in a limited and fixed set of race
categories. In another troubling case, when tasked with writing code comments for
the prompt “Islam,” the AI was found to access words like terrorist and violent more
frequently than when other religious groups were mentioned.

A New Way for Developers
The McKinsey study suggests that the dawn of AI-assisted programming tools is
likely to change how we approach software development. According to the authors,
success might hinge on good training, emphasizing best practices and diving into
hands-on exercises on things like prompt engineering, coding standards, and quality.
It’s also smart to shine a light on the risks associated with generative AI.

For newbie developers, especially those with less than a year of experience under their
belts, it’s a good idea to dive into extra coursework that covers the basic principles of
programming to ramp up productivity.

As developers fold these tools into their daily routine, it’s vital to keep the skill-
building momentum going with some guidance from the seasoned pros on the team
and engagement in community activities. This could mean hanging out in dedicated
online forums or having regular team huddles to share practical examples. Such

18 | Chapter 1: New World for Developers

https://oreil.ly/bdS-T
https://oreil.ly/bdS-T
https://oreil.ly/p5w5o

actions can foster a culture of continuous learning, spread the word on best practices
across the board, and help spot issues early on.

With the uptick in developer productivity, managers might want to stir the pot a bit
when it comes to roles, zeroing in on tasks that pack more value. Upskilling will be on
the menu, too, to fill in any existing gaps.

Sure, these pointers aren’t gospel. The realm of AI-assisted programming is still
pretty fresh and is changing at a brisk pace. Above all, being ready to roll with the
punches is key.

Career
While there’s no hard proof that using AI-assisted programming will boost your
career outlook, a handful of signs suggest that this expertise might become a hot
ticket in the job market:

Job listings
The job boards on sites like Indeed are starting to buzz with more listings seeking
candidates with experience in AI-assisted programming tools. The call is out for
all ranks, from junior developers to the senior hotshots.

Productivity boosts
AI-assisted programming tools are turning heads because they’re improving pro‐
ductivity without sacrificing quality. For a developer, this could be a way to move
up the ranks in an organization.

Thumbs-ups from developers
The chatter among developers is that AI-assisted programming tools are catching
on. For example, GitHub Copilot is boasting a strong rating of 4.5 out of 5 stars
on G2.com, an independent software review site.

10x Developer?
The 10x developer has the power of 10 programmers. They’re the Usain Bolt of cod‐
ing, zipping through problems and churning out solutions before you can say “bug
fix.”

So you might be thinking: Could I become a 10x developer with the help of AI-
assisted programming tools? Well, sorry to say, but probably not. While these tech‐
nologies can make a significant difference, improvements are usually not in orders of
magnitude.

Besides, the concept of a 10x developer can stir up stereotypes and biases, making the
tech scene feel like an exclusive club. Not to mention, the pressure to be this super

A New Way for Developers | 19

https://oreil.ly/khAln
https://oreil.ly/khAln

coder could lead you straight into the arms of burnout. So while being a 10x devel‐
oper might sound great, remember it’s probably closer to a fantasy.

Skills of the Developer
According to the McKinsey study, the effectiveness of AI-assisted development tools
often depends on the expertise of the developer. Here are some of the considerations:

Fixing errors
Even though generative AI can be your trusty sidekick, it can goof up too. It falls
upon the developer’s shoulders to spot and fix these blunders. Some developers
have found themselves playing a loop of corrections with the AI to get to a sweet
spot of accuracy, while others have had to spoon-feed the tool to get it to debug
accurately. This can certainly be time-consuming. But a veteran developer will
know how to avoid going down the rabbit holes.

Getting the office vibes
AI-assisted programming tools are fairly solid when it comes to coding but might
miss the beat when dealing with the unique flavor of individual projects or com‐
pany quirks. Again, this is where veteran developers are key. They’ll know how to
guide these tools to get the results that best align with organizational goals, per‐
formance targets, and security.

Tackling the tough stuff
Assisted AI-programming tools are great with tasks like polishing code, but toss
in some complex challenges like blending different coding frameworks, and the
AI might just trip over itself. In these moments, it’s the experienced developers
who have to roll up their sleeves.

Conclusion
AI-assisted programming tools are certainly the shiny toys in the software creation
sandbox. As this technology keeps marching forward, these systems will crank up
efficiency, handle boring tasks, and let developers dive into the areas that are most
important, like high-level problem solving.

But there are downsides—tangled intellectual property issues, maze of open source
software licensing, potential for bias, and security risks to name a few.

For the most part, these tools are your virtual assistants, not a replacement for your
knowledge, skill, and experience. At the same time, while they might not be superher‐
oes, they’re shaping up to be powerful additions to the developer’s toolkit.

20 | Chapter 1: New World for Developers

CHAPTER 2

How AI Coding Technology Works

In this chapter, we’ll crack open the hood of AI-assisted programming tools and take
a peek at what makes them tick. We’ll briefly wade through the history, take a whirl
with transformer models and LLMs, and demo the OpenAI Playground. Then we’ll
get some advice on how to evaluate LLMs.

Grasping what this powerful technology can and can’t do will pave the way for
smarter use of AI-assisted programming tools for real-world software projects.

Key Features
The market has been buzzing about AI-assisted programming tools such as GitHub
Copilot, Tabnine, CodiumAI, and Amazon CodeWhisperer. The makers of each
product attempt to flaunt their own set of bells and whistles. But there’s a good chunk
of capabilities these tools share. Table 2-1 summarizes some of the main features.

Table 2-1. Common functions of AI-assisted programming tools

Feature Description
Code suggestions Provides code suggestions based on comments and file context; recommends individual

lines or whole functions.
Context-aware completions Offers context-aware code completions based on all or a part of the code base, as well as

suggestions to aid in coding.
Test generation Analyzes code to generate meaningful tests, map code behaviors, and surface edge cases

to ensure software reliability before shipping.
User–IDE interaction Automatically activates and provides guidance as users type code in the IDE; users can

interact with the code through chat.
Code analysis Analyzes code snippets, docstrings, and comments to provide reliable code predictions and

tag suspicious code.
Bug detection and fixing Identifies potential bugs in code and suggests ways to fix them.

21

Feature Description
Code autodocumentation Automatically adds docstrings and enhances code documentation.
Routine task automation Helps with code creation for routine or time-consuming tasks, unfamiliar APIs or SDKs, and

other common coding scenarios like file operations and image processing.
API and SDK usage optimization Aids in making correct and effective use of APIs and SDKs.
Open source discovery and
attribution

Facilitates discovery and attribution of open source code and libraries.

The list in Table 2-1 isn’t the be-all and end-all; innovation has been moving at a
rapid clip. Clearly, these systems can give developers a big leg up, in large part by pro‐
viding code suggestions and context-aware completions. We’ll take a closer look at
these in the next section.

Code Suggestions and Context-Aware Completions
Versus Smart Code Completion
The magic of smart code completion, also known as autocompletion or Microsoft’s
term IntelliSense, is something many IDEs bring to the table. They lend developers a
hand by suggesting, filling in, and spotlighting bits of code as the humans hammer
away at the keyboard. This technology has actually been around since the late 1950s
with the inception of spellcheckers.

The breakthrough came in the mid-1990s. Microsoft’s Microsoft Visual Basic 5.0 pro‐
vided real-time suggestions and completions, with an emphasis on basic syntax and
function signatures. This greatly improved productivity and reduced errors.

So you might be wondering: How does something like IntelliSense stack up against
AI-assisted programming tools? After all, IntelliSense has a smattering of AI and
machine learning under its belt.

Yet, there’s an important distinction to be made. AI-assisted tools are powered by
generative AI. They serve up not just code but a buffet of documentation, planning
documents, and helpful guides among other things. Thanks to generative AI, these
tools get the knack of churning out, tweaking, and understanding human-like text
based on the given context, making them champs at translation, summarization, text
analytics, topic modeling, and answering queries. Engaging with these tools can
sometimes be like having a casual chat with your code. With an LLM at their core,
they can catch the drift of the context and intent from your input.

22 | Chapter 2: How AI Coding Technology Works

Compilers Versus AI-Assisted Programming Tools
To get a better understanding of AI-assisted programming tools, it helps to under‐
stand what compilers do. Here are the main steps that a compiler performs:

Lexical analysis (tokenization)
The compiler acts like a language teacher, breaking your code into tokens.

Syntax analysis
Here, the compiler checks how your tokens are grouped. It makes sure your cod‐
ing has the right structure, not just the right commands.

Semantic analysis (error checks)
The compiler ensures that your code makes sense in the context of the program‐
ming language. It’s not just about correct syntax. It’s about correct meaning, too.

Intermediate code generation
This is where your code starts its transformation journey. The compiler translates
your high-level code into an intermediate form. It’s not quite machine language
yet, but it’s getting there.

Code optimization
In this step, the compiler is like a personal trainer for your code, making it leaner
and more efficient. It tweaks the intermediate code to run faster and take up less
space.

Code generation
This is the final transformation. The compiler converts the optimized intermedi‐
ate code into machine code or assembly language that your CPU can understand.

Linking and loading:
Sometimes considered a part of the compilation process, linking involves com‐
bining various pieces of code and libraries into a single executable program.
Loading is the process of placing the program into memory for execution.

As for AI-assisted programming tools like Copilot, they’re a different beast. They
don’t really “get” programming languages like compilers do. This is fine. The com‐
piler does this. Instead, they use AI to guess and suggest bits of code based on tons of
code that’s already out there. Since the tools are playing the odds, the suggestions can
vary a lot. The compiler will then take this code and make it so the machine can run
the program.

Sometimes, AI tools might miss something simple like a bracket, which a human
coder or a compiler would spot in a heartbeat. That’s because the LLMs are based on
predicting patterns, not a compiler engine. If something’s not common in the
training, they might not catch it. Also, these tools might get fancy and suggest

Compilers Versus AI-Assisted Programming Tools | 23

complex code based on the situation. Yes, AI-assisted programming tools can get car‐
ried away.

When it comes to spotting errors, AI-assisted programming tools are generally effec‐
tive but still do not quite match up to a compiler’s ninja-like error-checking skills. Yet
the tools are still powerful. For example, they can help catch pesky syntax errors—
missing semicolons, typos in function names, mismatched brackets—and swiftly sug‐
gest the right fix. They also shine in steering you clear of common coding pitfalls.
Whether it’s reminding you to properly close a file after opening it or suggesting
more efficient ways to loop through an array, this tool has your back. And when it
comes to logical errors, AI-assisted programming tools can be surprisingly insightful.
They may not solve every complex problem, but they can often propose alternative
approaches or solutions you might not have considered, nudging your problem-
solving journey in the right direction.

This all means that while AI tools are helpful for making coding smoother, they’re not
a replacement for the thorough checks a compiler does or the keen eye of a human
coder.

These drawbacks really underline how crucial it is to blend the smarts of AI-assisted
tools with the thoroughness of compiler checks and a human touch. After all, you
want to make sure your code is not just good but spot-on accurate and correct.

Levels of Capability
In October 2023, Quinn Slack, the CEO and cofounder of Sourcegraph, shared an
insightful blog post. He dived into the world of AI-assisted programming tools like
Copilot and came up with an interesting way to think about them, which he called
“levels of code AI.” His step-by-step framework makes it easier for everyone to get
what these AI tools can do and check if the boastful claims by the companies selling
them actually hold water. Figure 2-1 shows the levels of code.

The first three levels focus on human-led coding, where the developer is the main
player. Starting off, Level 0 is where there is no AI assistance, which is old-school
coding. Developers do everything by hand with no AI in sight. It’s the baseline that
sets the stage for AI to step in later on.

Then there’s Level 1, code completion. This is where AI starts to chip in and helps to
whip up single lines or chunks of code based on what’s going on around it. At this
stage, the developer is still in the driver’s seat, directing the overall program and using
AI as a shortcut for typical coding tasks.

24 | Chapter 2: How AI Coding Technology Works

https://oreil.ly/SoDqc

Figure 2-1. Programming systems have different levels of AI capability

Level 2, code creation, ramps up the AI. Here, it gets more hands-on and crafts longer
code sections. The AI can, for example, design APIs and even fix existing code. Of
course, it’s all happening with a human keeping an eye on things. This level needs the
AI to get the codebase and the context around it so it can come up with code that’s
not just correct but also fits in nicely.

Starting with Level 3, supervised automation, we see a shift toward AI taking the lead
in coding. In this stage, the AI tackles several tasks to meet broader goals set by
humans, and it doesn’t need a check-in at every turn. Working at this level is like dele‐
gating work to a junior developer. The AI at this level is savvy enough to sort out
bugs, toss in new features, and mesh systems together, reaching out to its human
counterpart for any clarifications along the way.

At Level 4, full automation, the AI really steps up its game. Here, it handles complex
tasks all on its own, without needing humans to give the final thumbs-up on the code.
Imagine the trust you’d have in a top-notch engineer if you were a CEO or product
manager. This is the kind of relationship this level aims for. The AI isn’t just reacting.
It’s proactively keeping an eye on the code, spotting and sorting out issues as they
come up.

Finally, there’s Level 5, AI-led full autonomy. This level is a whole different ball game,
where AI isn’t just following human instructions but setting its own objectives. It’s
about AI working off a core reward function. Think of it as playing its own game in a
world where it faces off against other agents. Sure, this level sounds a bit like sci-fi,

Levels of Capability | 25

but given how fast things are moving, it’s not too wild to think we might see this level
become a reality in our lifetimes.

Right now, tools like Copilot are hovering around Level 3, give or take. Pinning down
the exact level can be tricky, but Quinn Slack’s framework does a pretty solid job of
making sense of the technology and its key interactions. And one thing’s for sure: the
technology isn’t slowing down—it’s moving forward really fast.

Generative AI and Large Language Models (LLMs)
Using AI-assisted programming tools doesn’t require you to be a whiz at the nitty-
gritty of generative AI technology. However, having a bird’s-eye view of the technol‐
ogy can be quite handy. You’ll be able to evaluate the responses, capabilities, and
limitations of these tools in a sharper way.

Transparency isn’t just a buzzword here. For a new technology to really catch on, hav‐
ing a clear picture of what’s under the hood is crucial. Adoption is all about trust. In
the coding world, reliability and accountability aren’t just fancy extras—they’re the
bread and butter.

As we venture into the upcoming sections, we’ll skim the surface of generative AI and
LLMs to give you a clearer picture.

Evolution
The story of generative AI has its roots stretching back several decades, with one of
its earliest examples being ELIZA, the pioneering chatbot brought to life by Massa‐
chusetts Institute of Technology professor Joseph Weizenbaum in the mid-60s.
ELIZA was crafted to mimic chats with a psychotherapist (you can still find it online).
Sure, it was basic, running on a rule-based algorithm and mostly parroting back user
input.

Yet many folks found ELIZA more pleasant to chat with than a real therapist, and
some were even fooled into thinking they were communicating with a human. This
curious occurrence, dubbed the “ELIZA effect,” showcased how easily people can
imagine human-like understanding on the part of a computer program.

However, the journey of generative AI wasn’t exactly a sprint. The tech gears at its
core were quite basic, and progress was more of a slow crawl. But come the 2010s, the
scene hit a turning point. The technology world was now boasting hefty compute
power, flashy hardware systems like GPUs (graphics processing units), a treasure
trove of data, and the fine-tuning of sophisticated models like deep learning. And just
like that, generative AI was back in the fast lane. As it developed, different methods
emerged:

26 | Chapter 2: How AI Coding Technology Works

https://oreil.ly/MbLP8

Variational autoencoders (VAEs)
This technology made its debut in 2013, thanks to Diederik P. Kingma and Max
Welling and their paper “Auto-Encoding Variational Bayes”. Their VAE model
consists of lower-dimensional latent space from more complex, higher-
dimensional data, all without supervision. It also includes an encoder–decoder
structure. When we say higher-dimensional data, we’re talking about data with
many features, each being a dimension—think of a 28 × 28 pixel image in a 784-
dimension space. The lower-dimensional latent space is like a compact version of
this data, holding onto the crucial information while shedding the extra dimen‐
sions. This is important because it lightens the computational load, fights off the
curse of dimensionality, and makes the data easier to visualize and interpret. This
leap from a higher- to a lower-dimensional space is called dimensionality reduc‐
tion, and it simplifies the data to its bare essentials. Unlike their cousins, the tra‐
ditional autoencoders, that spit out a single value for each latent attribute, the
encoder in a VAE gives you a probability distribution. The decoder then picks
samples from this distribution to rebuild the data. This neat trick of offering a
range of data in the latent space rather than a single value opens the door to cre‐
ate new data or images.

Generative adversarial networks (GANs)
Introduced by Ian Goodfellow and his colleagues in 2014, generative adversarial
networks are a class of AI algorithms used in unsupervised machine learning. At
the heart of GANs are two neural networks, dubbed the generator and the dis‐
criminator, that go head-to-head in a game-like showdown. The generator churns
out new data nuggets, while the discriminator plays the judge, distinguishing the
real from the fake data. With each round, the generator ups its game, crafting
data that’s eerily similar to real instances. This clever setup has swung open doors
to new possibilities, leading to AI that creates realistic images, voice recordings,
and a whole lot more.

These types of generative AI would be important building blocks for the transformer
model, a real breakthrough that has made the power of LLMs a reality.

The Transformer Model
Before transformers made a splash, the go-to method for natural language processing
(NLP) was the recurrent neural network (RNN). RNNs were crafted to tackle sequen‐
tial or time-series data. They would keep tabs on a hidden state to remember bits
from previous steps in a sequence—a handy feature for things like language model‐
ing, speech recognition, and sentiment analysis. The RNNs take it step-by-step, pro‐
cessing one piece of the sequence at a time, updating their hidden state based on the
current input and what’s been processed before—hence the term recurrent. But they
hit a snag when faced with long sequences, getting tripped up by the vanishing or

Generative AI and Large Language Models (LLMs) | 27

https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1406.2661

exploding gradient problem. This made it hard for them to keep track of long-term
relationships in the data.

Enter the transformer, flipping the script entirely. Instead of taking the step-by-step
approach of RNNs, transformers breeze through data in parallel and tap into atten‐
tion mechanisms to keep tabs on relationships between different bits in the input
sequence, no matter where they’re placed. This switch in the architectural blueprint
lets transformers handle both short and long sequences with ease. It also sidesteps the
gradient woes. Plus, their parallel processing capabilities mesh nicely with sophistica‐
ted chip architectures like graphics processing units (GPUs) or tensor processing
units (TPUs).

Ashish Vaswani and his fellow researchers at Google created the transformer and
published the core architecture in the pathbreaking paper “Attention Is All You Need”
in 2017. Figure 2-2 illustrates the main parts of the model.

The transformer model is like a brilliant linguist, adept at unraveling the intricacies of
language. Its magic unfolds in two primary stages: encoding and decoding. Each is
composed of its own set of layers. During the encoding stage, the model reads and
comprehends the input text similar to how a linguist would understand a sentence in
a foreign language. Then in the decoding stage, the model generates a new piece of
text or translation based on the understanding acquired in the encoding stage, much
like a linguist translating that sentence into your native language.

At the heart of the transformer is a mechanism called attention, which allows it to
assess the relevance of each word in a sentence to the other words. It assigns an atten‐
tion score to each. For example, take the sentence “The cat sat on the mat.” When the
model focuses on the word sat, the words cat and mat might receive higher attention
scores due to their direct relationship to the action of sitting.

One notable feature of this model is the self-attention mechanism. This allows it to
look at an entire sentence, understand the relationships between words, and retain
these relationships over long stretches of text. This grants the transformer a form of
long-term memory by enabling it to focus on all the words or tokens (whole words or
parts of a word) that have appeared so far, thereby understanding the broader
context.

However, despite these capabilities, the transformer initially lacks the ability to recog‐
nize the order of words in a sentence, which is crucial for understanding the mean‐
ing. Here, positional encoding steps in. It acts like a GPS to provide the model with the
information about the position of each word within the sentence and aids in making
sense of clauses like “The cat chases the mouse” versus “The mouse chases the cat.”

28 | Chapter 2: How AI Coding Technology Works

https://arxiv.org/abs/1706.03762

Figure 2-2. The architecture of the transformer model is at the heart of LLMs

Adding to the sophistication, the transformer employs a multi-head attention mecha‐
nism. Envision the model having multiple pairs of eyes, each pair examining the sen‐
tence from a unique angle and focusing on different aspects or relationships between
the words. For instance, one pair might focus on understanding actions, another on
identifying characters, and yet another on recognizing locations. This multi-view
approach enables the transformer to grasp a richer understanding of the text.

Furthermore, each stage of the transformer encompasses layers of a feedforward neu‐
ral network, a straightforward network that aids in processing relationships between
words. This further enhances the understanding and generation of text.

Generative AI and Large Language Models (LLMs) | 29

A transformer is in the form of a pretrained model. It has already been trained on an
enormous amount of data and is ready for use or further fine-tuning. Once pre‐
trained, the model can be accessed as an API, allowing for its immediate use in vari‐
ous language-processing tasks. Companies or individuals can rapidly integrate this
model into their systems, such as AI-assisted programming applications. Moreover,
the pretrained LLM can be further honed to excel in specialized domains, such as
medical or legal text analysis, by fine-tuning it on domain-specific data. This elimi‐
nates the need for developing a complex language model from the ground up, saving
a substantial amount of time, effort, and resources. The pretrained model, with its
foundational language understanding, acts as a springboard for the development of
generative AI applications.

Building and operating an LLM is costly. During early 2023, Git‐
Hub Copilot was losing an average of more than $20 a month per
user, according to the Wall Street Journal. In some cases, some
users were losing the company $80 per month. However, as the
infrastructure is scaled for generative AI in the coming years, per-
user costs should decrease.

The two main types of transformer systems are generative pretrained transformer
(GPT) and bidirectional encoder representations from transformers (BERT). GPT is a
tool from OpenAI that is ideal for creating text, summarizing information, and trans‐
lating languages. It is based on an autoregressive LLM architecture. This means that it
crafts text by carefully considering each word based on what it’s already output, much
like a storyteller building a narrative one word at a time. Its skills come from being
trained on a colossal amount of text data. GPT uses the decoder for generating
content.

BERT, on the other hand, uses an autoencoding approach. This design enables it to
deeply understand the context of words in a sentence, making it adept at deciphering
the nuances and meanings of language. Google developed BERT in 2018 as an open
source project. Since then, many variations and enhancements to the core model have
emerged.

As for AI-assisted programming applications, the main type of transformer model is
GPT. It has been shown to predict and autocomplete code efficiently, based on the
context provided by the programmer.

OpenAI Playground
The OpenAI Playground is a generative AI sandbox that provides access to various
models developed by OpenAI. It allows for model customization via an intuitive
graphical interface.

30 | Chapter 2: How AI Coding Technology Works

https://oreil.ly/D2NiB
https://oreil.ly/D2NiB
https://platform.openai.com

The OpenAI Playground makes it easier to understand the strengths and weaknesses
of the various LLMs. Moreover, it enables real-time testing and adjustments of mod‐
els in response to different inputs, like temperature.

However, OpenAI charges for use of the platform. Fees are based on the number of
tokens used, as seen in Table 2-2. Keep in mind that prices change periodically. The
good news is that all changes as of this writing have been reductions in price.

Table 2-2. The costs of OpenAI LLMs

Model Input Output
GPT-4/8K context $0.03/1K tokens $0.06/1K tokens
GPT-4/32K context $0.06/1K tokens $0.12/1K tokens
GPT-3.5-Turbo/4K context $0.0015/1K tokens $0.002/1K tokens
GPT-3.5-Turbo/16K context $0.003/1K tokens $0.004/1K tokens

For example, suppose you are using the GPT-4/8K context LLM. You have a prompt
with 1,000 tokens, and the response to this from the model is 2,000 tokens. Then the
cost will be 3 cents for the input and 12 cents for the output.

When you first sign up for an OpenAI account, you will get a $5 credit that can be
used for the OpenAI Playground. This can be used for calls to the API.

Tokens
Let’s take a more detailed look at tokens. OpenAI has a tool called the Tokenizer,
shown in Figure 2-3 where I have entered the following for analysis:

Input: ChatGPT is unbelievable! 🎉 I love it.

Figure 2-3. The OpenAI Tokenizer displays the tokens for an excerpt of text

Generative AI and Large Language Models (LLMs) | 31

https://platform.openai.com/tokenizer

In the tokenization—which is highlighted with colors—the word ChatGPT is com‐
posed of three tokens. The breakdown is Chat, G, and PT. The word unbelievable and
its following exclamation point have two tokens, one for the word and one for the
punctuation. As for the emoji, it consists of three tokens. Each punctuation mark is a
token. Spaces are included with an adjacent word.

The Tokenizer is for GPT-3, GPT-3.5, and GPT-4. Keep in mind that tokenization is
often different among the LLMs.

As a rule of thumb, 1,000 tokens is roughly equivalent to 750
words.

Using the Platform
When you go to the OpenAI Playground, you get access to a dashboard, shown in
Figure 2-4.

Figure 2-4. The OpenAI Playground has a dashboard with tips, resources, and
interaction areas

32 | Chapter 2: How AI Coding Technology Works

The middle of the screen has the main workflow for the interactions with an LLM:

System
This is where you provide some context for the LLM, for example, “You are an
expert in Python programming.” The system prompt is the first message in a ses‐
sion and sets the stage for the interaction. Customizing the system prompt allows
for greater control over how the model behaves in the conversation, which can be
particularly useful to ensure that it stays within desired parameters or contexts.

User
This is the main instruction of the prompt. For example, this is where you can
ask the LLM to carry out a coding task.

Add message
This allows you to have an ongoing chat with the LLM.

Let’s try an example. Suppose you’re working on a Python project and you’re having
trouble understanding how to implement the Tkinter library to get user input. You
can enter the following:

System message: You are a Python expert specialized in Tkinter.
User message: I want to create a simple GUI using Tkinter to get a user’s name and age.
How can I do that?

The LLM will generate the code listing. But suppose you want to add validation for
the input. You can press the Add button and enter “How can I ensure the age entered
is a number and not text?”

The LLM will respond with the code for this, using a try-except block to convert the
age input to an integer.

Granted, this is like using ChatGPT—but with more structure. Also, the real power is
the ability for customization. You’ll find these features on the right side of the screen:

Model
You can select from a variety of models and can even use your own fine-tuned
LLMs to ensure the model is focused on the unique needs of your coding. You
can find more information about fine-tuning a model in the OpenAI API docu‐
mentation.

Temperature
This adjusts the randomness or creativity of the generated content. The range of
values is from 0 to 2. The lower the value, the more deterministic and focused are
the responses. Table 2-3 shows suggested temperature levels for different types of
development tasks.

Generative AI and Large Language Models (LLMs) | 33

https://oreil.ly/L3y09
https://oreil.ly/L3y09

Table 2-3. Suggested temperature levels for certain types of programming tasks
Task category Temperature value Description
Code generation 0.2–0.3 Ensures more deterministic, accurate code adhering to common

conventions for reliable and understandable outcomes.
Code review 0.2 or less Focuses on well-established best practices and standards for precise

feedback.
Bug fixing 0.2 or less Produces more accurate and straightforward solutions to identified

issues.
Creative problem solving 0.7–1.0 Explores a broader range of possible solutions, useful in

brainstorming or innovative problem solving.
Learning and
experimentation

0.7–1.0 Provides a wider variety of examples and solutions for
understanding different approaches to problem solving.

Data analysis and
visualization

0.2 or less Generates accurate and meaningful visualizations or analyses.

Optimization tasks Varied Permits striking a balance between exploration (higher
temperature) and exploitation (lower temperature) for efficient
solutions.

However, if you use a fairly high value for the temperature, the results can be
nonsensical. Here’s a sample prompt when using a value of 2:

Prompt: In Python, what are the steps to migrate data from a CSV file to a MySQL
database?

Figure 2-5 shows the output. As you can see, this makes little sense!

Figure 2-5. When using a temperature of 2, the LLM’s results are mostly nonsensical

34 | Chapter 2: How AI Coding Technology Works

Now, let’s look at the other features you can adjust:

Maximum length
This is the maximum number of tokens to use to generate content. The number
includes usage for both the prompt and response. The ratio of tokens to content
depends on the model you use.

Stop sequence
This indicates a point at which the LLM should stop creating further text. You
can specify a particular string or sequence of characters that, when detected in
the generated text, will signal the model to halt the process.

Top p
Also known as nucleus sampling, this technique selects words based on a cumu‐
lative probability threshold, denoted by p, which can range from 0 to 1. In sim‐
pler terms, instead of always choosing from the top few most likely next words,
the model considers a broader or narrower range of possible next words based on
the specified p-value. A lower p-value results in a smaller, more focused set of
words to choose from, leading to more predictable and coherent text. A higher p-
value, on the other hand, allows for a wider set of possible next words, leading to
more diverse and creative text generation.

Frequency penalty
This helps to tackle a common problem with LLMs, which is repetitive phrases
or sentences. The value ranges from 0 to 2. The higher the value, the less repeti‐
tion. However, at values greater than 1, text generation can get unpredictable and
even nonsensical.

Presence penalty
This also has a value of 0 to 2. A higher value will allow the LLM to include a
wider variety of tokens, which means using a more diverse vocabulary or broader
universe of concepts.

With the frequency penalty, presence penalty, and top p, OpenAI recommends select‐
ing one approach to adjust for your task. But don’t shy away from experimentation.
The path to optimizing LLMs isn’t paved with strict rules, thanks to the intricate
dance of the complexities involved.

Evaluating LLMs
Assessing LLMs is a hefty task. These behemoths are often so opaque that they can
seem impossible to understand. The competition among AI firms only worsens this.
It’s become par for the course to see scant details on the datasets these models are
trained on, the number of parameters used to fine-tune their behavior, and the hard‐
ware that powers them.

Evaluating LLMs | 35

But there is some good news, thanks to some researchers at Stanford. They’ve created
a scoring system dubbed the Foundation Model Transparency Index to size up the
openness of LLMs. This yardstick, shaped by a hundred criteria, is a bid to usher
some clarity into the murky waters of LLM transparency.

The ranking is based on a percentage scale. Table 2-4 shows the rankings. Unfortu‐
nately, the results are far from encouraging. No major LLM is close to achieving “ade‐
quate transparency,” according to the researchers, and the mean score is only 37%.

Table 2-4. Rankings of top LLMs in terms of transparency of their modelsa

Company Model Rank
Meta LLaMA 2 54%
BigScience BLOOMZ 53%
OpenAI GPT-4 48%
Stability.ai Stable Diffusion 2 47%
Google PaLM 2 40%
Anthropic Claude 2 36%
Cohere Command 34%
AI21Labs Jurassic-2 25%
Inflection Inflection-1 21%
Amazon Titan Text 12%
a Center for Research on Foundation Models, Foundation Model Transparency Index Total Scores 2023, https://crfm.stanford.ed
u/fmti

The flexibility of LLMs to handle various domains and tasks, such as software devel‐
opment, is a notable advantage. However, it also complicates the evaluation process,
as it requires domain-specific evaluation metrics and benchmarks to ensure the mod‐
el’s effectiveness and safety in each particular application.

Despite all this, there are some metrics to consider when evaluating LLMs:

BERTScore
This metric is designed to evaluate text generation models by comparing gener‐
ated text to reference text using BERT embeddings. Although primarily used for
natural language text, it can be extended or adapted for code generation tasks,
especially when the code is annotated or commented in natural language.

Perplexity
This is a common metric for evaluating probabilistic models like LLMs. It quan‐
tifies how well the probability distribution predicted by the model aligns with the
actual distribution of the data. In the context of code generation, lower perplexity
values indicate that the model is better at predicting the next token in a sequence
of code.

36 | Chapter 2: How AI Coding Technology Works

https://oreil.ly/FoVAr
https://crfm.stanford.edu/fmti
https://crfm.stanford.edu/fmti

BLEU (bilingual evaluation understudy)
Originally developed for machine translation, BLEU is also used in code genera‐
tion to compare the generated code with reference code. It computes n-gram pre‐
cision scores to quantify the similarity between the generated and reference texts,
which can help in evaluating the syntactic correctness of the generated code. A
higher n-gram precision score indicates better agreement between the generated
and reference text for that specific sequence of n words.

ROUGE (Recall-Oriented Understudy for Gisting Evaluation)
This is another metric borrowed from NLP that can be used to evaluate code
generation models. It calculates the overlap of n-grams between the generated
and reference texts, providing insights into how well the generated code aligns
with the expected output.

MBXP (most basic X programming problems)
This benchmark is designed specifically for evaluating code generation models
across multiple programming languages. It uses a scalable conversion framework
to transpile prompts and test cases from original datasets into target languages,
thereby facilitating a comprehensive multilingual evaluation of code generation
models.

HumanEval
This is a benchmark to evaluate the code generation capabilities of LLMs by
measuring their functional correctness in synthesizing programs from doc‐
strings. This benchmark is crucial for the continuous development and enhance‐
ment of AI models in code generation. While different models display varying
levels of proficiency on HumanEval, an extended version called HUMANEVAL+
has been key in identifying previously undetected incorrect code generated by
popular LLMs.

Multilingual HumanEval (HumanEval-X)
This is an extension of the original HumanEval benchmark. Multilingual
HumanEval evaluates LLMs’ code generation and translation capabilities across
more than 10 programming languages. It employs a conversion framework to
transpile prompts and test cases from Python into corresponding data in target
languages, creating a more comprehensive benchmark for multilingual code gen‐
eration and translation.

Another way to evaluate an LLM is to look at the number of parameters—which can
be in the hundreds of billions. So the more, the better, right? Not necessarily. Evalua‐
tion should take a more nuanced approach. First of all, the costs of scaling the param‐
eters can be enormous, in terms of compute power and energy usage. This could
make an LLM uneconomical for monetizing applications. Next, as the parameter
counts balloon, so does the complexity of the model, which could potentially lead to
overfitting. Overfitting occurs when the model learns to perform exceedingly well on

Evaluating LLMs | 37

the training data but fumbles when exposed to unseen data. This dilutes its generali‐
zation capability.

Another issue is the need for vast and diverse training datasets to feed the insatiable
appetite of these models for data. However, obtaining and curating such extensive
datasets not only is resource intensive but also poses challenges pertaining to data
privacy and bias. What’s more, the evaluation of these behemoths becomes increas‐
ingly intricate with the surge in parameters. The evaluation metrics need to be more
comprehensive and diverse to accurately gauge the model’s performance across a
myriad of tasks.

Finally, fine-tuning can be a better way to get more out of models without the need
for large increases in the parameter size of the underlying LLM.

Types of LLMs
There are various types of LLMs, and one prominent category is open source LLMs.
Anyone can use, tweak, or share them. Their transparency means you can see how
these models tick. Plus, open source LLMs allow developers to collaborate on innova‐
tion as well as develop add-ons and, of course, fix pesky bugs.

And the best part? They don’t come with a price tag.

But open source LLMs are not all rainbows and unicorns. There’s usually no dedica‐
ted team to swoop in and fix issues or roll out regular updates. So, if you hit a snag,
you might have to roll up your sleeves and dive into the forums for some help.

The quality and performance of open source models can sometimes feel like a roll‐
ercoaster. Then there are the nagging security issues. Since everything is available,
hackers are more likely to find ways to insert nefarious code. Caution is advised.

Lastly, when it comes to user guides and documentation, open source LLMs might
have you wishing for more. The guides can sometimes feel like they were written in
hieroglyphics.

Table 2-5 shows some of the top open source LLMs.

Table 2-5. Top open source LLMs

Model Developer Parameters
(B = billion)

Noteworthy features

GPT-NeoX-20B EleutherAI 20B Trained on “The Pile” dataset; capable of various NLP tasks such as
story generation, chatbots, and summarization

LLaMA 2 Meta 7B to 70B Trained on 2 trillion tokens; double the context length of LLaMA 1
OPT-175B Meta 175B Part of a suite of models; trained with a lower carbon footprint

than GPT-3

38 | Chapter 2: How AI Coding Technology Works

Model Developer Parameters
(B = billion)

Noteworthy features

BLOOM BigScience 176B Trained on ROOTSa corpus; designed for transparency with
disclosed training data details and evaluation methods

Falcon-40B Technology
Innovation
Institute (TII)

40B Trained on 1,000B tokens

Dolly 2.0 Databricks 12B Based on EleutherAI’s Pythia model family; delivers ChatGPT-like
instruction-following interactivity

Mistral 7B Mistral AI 7.3B Uses grouped-query and sliding window attention; trained on a
vast dataset and excels in longer sequence handling

Mixtral 8X7B Mistral AI 46.7B Sparse mixture of experts model; performs inference like a 12.9B
model, supports multiple languages, and excels in various tasks
including code generation and reasoning

a Responsible Open-science Open-collaboration Text Sources

Closed-source or proprietary LLMs, on the other hand, are much more secretive.
They mostly keep their code, training data, and model structures under tight wraps.
However, the companies that develop these complex systems usually have enormous
amounts of capital. Table 2-6 shows the capital raised by these firms in 2023.

Table 2-6. Venture capital raised by top LLM developers

Company Funding
Anthropic $1.25 billion
OpenAI $10 billion
Cohere $270 million
Inflection AI $1.3 billion

With such resources, these companies can hire the world’s best data scientists and
build sophisticated infrastructure. The result is that the LLMs are often state-of-the-
art in terms of performance. They are also built for scale and the rigorous needs of
enterprises, such as for security and privacy.

As for the downsides, there is the problem with trust. How do these models come up
with their responses? What about hallucinations and bias? Answers to these ques‐
tions can be lacking in detail.

Then there is the risk that these mega AI operators will become a monopoly. This
could mean that a customer would be locked into an ecosystem. Lastly, closed-source
LLMs might be more prone to stagnation than open source projects, as they might
not benefit from the diverse input and scrutiny that open source projects usually
enjoy.

Types of LLMs | 39

Evaluation of AI-Assisted Programming Tools
Figuring out which AI-assisted programming tool to go for can be a head-scratcher.
You’ve got to weigh many factors like its precision, chat features, security, speed, and
user-friendliness. Sometimes, it boils down to what feels right to work with. But then
again, your hands might be tied if your employer insists on a specific system.

To get a sense of what’s hot right now, Stack Overflow’s 2023 Developer Survey is a
handy resource. Stack Overflow gathered insights from nearly 90,000 coders on the
most popular tools, which you can see in Table 2-7.

Table 2-7. The ranking of popular AI-assisted programming toolsa

AI-assisted developer tool Percentage
GitHub Copilot 54.77%
Tabnine 12.88%
Amazon CodeWhisperer 5.14%
Snyk Code 1.33%
Codeium 1.25%
Wispr AI 1.13%
Replit Ghostwriter 0.83%
Mintlify 0.52%
Adrenaline 0.43%
Rubberduck AI 0.37%
a Stack Overflow, 2023 Developer Survey

This chart gives you a glimpse of the numerous tools available. When you’re looking
to pick one, a smart move is to get recommendations from other developers. Plus, it’s
a good idea to test drive a few yourself. Luckily, most of these tools offer free trials, so
you can give them a whirl without committing right off the bat.

Another key aspect to consider is the company’s financial backing. Does it have ven‐
ture capital funding? Without this, a company might struggle not just to grow but
also to keep its platform innovative. Already, several AI-assisted programming firms
have had to pull the plug on their services, and that can really throw a wrench in the
works for developers. Take Kite, for instance. It was one of the early players in this
field, starting up in 2014. However, by 2022, the company decided to call it quits on
the project. The silver lining? It open sourced most of the tool’s codebase.

40 | Chapter 2: How AI Coding Technology Works

https://oreil.ly/nvqKY
https://oreil.ly/0u7WZ
https://oreil.ly/Bnz9U
https://oreil.ly/Bnz9U

Conclusion
In this chapter, we pulled back the curtain on generative AI and LLMs. We got a
glimpse of some of the fascinating history, such as with ELIZA, and then focused on
one of the biggest breakthroughs in AI: the transformer model. We also tried out the
OpenAI Playground and showed how to customize the LLM.

Some of the key nuggets in this chapter include tokens, the advantages of piggyback‐
ing on pretrained models, the dos and don’ts of sizing up LLMs, metrics like perplex‐
ity and BLEU scores, and open source versus proprietary models.

Conclusion | 41

CHAPTER 3

Prompt Engineering

Prompt engineering is a subfield of machine learning and natural language processing,
which is the study of enabling computers to understand and interpret human lan‐
guage. The main goal is to figure out how to talk to large language models, sophistica‐
ted AI systems designed to process and generate human-like language responses, in
just the right way so they generate the answer we’re looking for.

Think of it like this: You know how when you ask someone for advice, you’ve got to
give them a bit of context and be clear about what you need? It’s like that with LLMs.
You’ve got to craft your question or prompt carefully. Sometimes, you might even
drop some hints or extra information in your question to make sure the LLM gets
what you’re asking.

This is not just about asking one-off questions either. Sometimes it’s like having a
whole conversation with the LLM, going back and forth, tweaking your questions
until you get that golden nugget of information you need.

For instance, let’s say you’re using an AI-assisted programming tool to develop a web
application. You start by asking how to create a simple user login system in JavaScript.
The initial response might cover the basics, but then you realize you need more
advanced features. So, you follow up with more specific prompts, asking about incor‐
porating password encryption and connecting to a database securely. Each interac‐
tion with the AI hones its response, gradually shaping it to fit your project’s specific
needs.

Keep in mind that prompt engineering has become a red-hot job category. According
to data from Willis Towers Watson, the average yearly earnings of a prompt engineer
hover around $130,000, though this figure might be on the conservative side. To lure
top talent, companies often sweeten the deal by offering enticing equity packages and
bonuses.

43

https://oreil.ly/Qy9Zi

In this chapter, we’ll dive deep into the world of prompt engineering and unpack
helpful strategies and tricks of the trade.

Art and Science
Prompt engineering is a mix of art and science. On one hand, you’ve got to choose
the right words and tone to get the AI to respond the way you want. It’s about guiding
the conversation in a certain direction. It takes a bit of intuition and a creative touch
to guide the conversation in a certain direction and refine your language, teasing out
detailed and nuanced replies.

Yes, this can be tricky, especially for software developers. Normally, you follow a set of
rules to write your code, and it either works or the compiler tells you what you did
wrong. It’s logical and predictable.

But prompt engineering? Not so much. It’s more freeform and unpredictable.

Then again, there is also quite a bit of science to prompt engineering. You need to
understand the nuts and bolts of how AI models work, as we discussed in Chapter 2.
Along with creativity, you need precision, predictability, and the ability to replicate
your results. Often this means you’ve got to experiment, try out different prompts,
analyze the results, and tweak things until you get the right response.

With prompt engineering, don’t expect to find any magic solutions that work every
time. Sure, there are plenty of courses, videos, and books that claim to have all the
“secrets” of prompt engineering. But take them with a grain of salt, or you might be
disappointed.

Plus, the world of AI and machine learning is always changing, with new models and
techniques popping up all the time. So, the idea of having one definitive technique for
prompt engineering? That’s a moving target.

Challenges
Prompt engineering can be frustrating. Even the tiniest change in how you phrase
your prompt can make a huge difference in what the LLM spits out. This is because of
the advanced technology under the hood, which is based on probabilistic
frameworks.

Here are some of the challenges with prompt engineering:

Wordiness
LLMs can be chatterboxes. Give them a prompt, and they might just run with it,
giving you a wordy response when all you wanted was a quick answer. They have
a tendency to throw in a bunch of related ideas or facts, making the response

44 | Chapter 3: Prompt Engineering

longer than necessary. If you’d like an LLM to get straight to the point, just ask it
to be “concise.”

Non-transferability
This means that a prompt that works nicely with one LLM might not be as effec‐
tive with another. In other words, if you’re switching from ChatGPT to Gemini
or GitHub Copilot, you might need to tweak your prompts due to the unique
training, design, and specialization of each LLM. Different models are trained on
different datasets and algorithms, leading to distinct understandings and inter‐
pretations of prompts.

Length sensitivity
LLMs can get overwhelmed by long prompts and start to overlook or misinter‐
pret parts of your input. It’s as if the LLM’s attention span falters and its responses
become somewhat distracted. This is why you should avoid providing detailed
requirements in your prompts; keep a prompt to less than a page.

Ambiguity
If your prompt is unclear, the LLM might get confused and serve up responses
that are way off base or just plain make-believe. Clarity is key.

Despite all this, there are ways to improve the results. And we’ll cover these
approaches in the rest of this chapter.

The Prompt
You can think of a prompt as having four main components, which you can see in
Figure 3-1.

Figure 3-1. A prompt has four main components

The Prompt | 45

First, the context specifies the persona or role for the LLM to take when providing a
response. Next, there are the instructions, such as to summarize, translate, or classify.
Then there is the input of content if you want the LLM to process information to cre‐
ate a better response. Finally, you can show how you want the output formatted.

Keep in mind that you do not need all of these components. In fact, you might need
just one to get a good response. But as a general rule, it’s better to provide the LLM
with more concrete details.

Let’s now look at each of the components.

Context
You’ll often begin your prompt with a sentence or two that provide context. Often,
you’ll specify the role or persona you want the AI to take on when providing the
response. This leads to responses that are not only more accurate but also contextu‐
ally relevant, ensuring a more meaningful result.

For instance, if you want to debug a piece of code, you might use this as the context:

Prompt: You are an experienced software engineer specializing in debugging Java appli‐
cations.

Or suppose you want to learn about optimization techniques for a particular algo‐
rithm. You could set the stage by stating:

Prompt: You are a senior software developer with expertise in algorithm optimization.

Adding context helps the LLM approach your prompt with the right mindset.

Instructions
Your prompt should include at least one clear instruction. There’s nothing stopping
you from adding more instructions, but you need to be careful. Loading up your
prompt with a bunch of queries can throw the LLM for a loop and make it harder to
get the answer you’re looking for.

Let’s break down why that happens. First off, when you have multiple instructions,
things can get a bit fuzzy. If they’re not clear or if they seem to clash with each other,
the LLM might get confused about which one to focus on or how to balance them all
out.

Next, having more instructions means more for the LLM to juggle. It’s got to process
and understand each part of your prompt and then figure out how to weave all the
parts into a coherent response. That’s a lot of mental gymnastics, and sometimes it
can lead to mistakes or answers that are off.

46 | Chapter 3: Prompt Engineering

And don’t forget, LLMs go through instructions one at a time, in order. So, the way
you line up those queries can influence how they’re interpreted and what kind of
answer you get back.

Given all this, a pro tip is to keep it simple. Instead of throwing a whole list of ques‐
tions at the LLM all at once, try breaking them down into a series of smaller prompts.
It’s like having a back-and-forth chat instead of delivering a monologue.

There are also numerous types of instructions for a prompt. In the next few sections,
we’ll discuss some of the main instructions used in software development.

Summarization
Summarization can condense a longer piece of text into a shorter version while keep‐
ing the main ideas and points intact. This is useful for quickly getting a handle on
lengthy documents. For a software developer, summarization can be an especially
handy tool in the scenarios listed in Table 3-1.

Table 3-1. Summarization prompts for coding tasks

Use case Description Example prompt
Code
documentation

Provides a concise overview of extensive
documentation highlighting key functionalities,
dependencies, and structures.

“Summarize the main points of the following
documentation to provide a quick overview of
the codebase.”

Bug reports Quickly identifies the main issues reported by users
in numerous or lengthy bug reports.

“Summarize the common issues reported in the
following bug reports to identify the main
problems to be addressed.”

Research papers Extracts succinct insights from lengthy research
papers or technical articles to update the user on
the latest research or technologies.

“Provide a summary of the key findings and
technologies discussed in the following research
paper.”

Change logs Enables an understanding of the key changes in a
new version of a software library or tool from
lengthy change logs.

“Summarize the key changes in the following
change log of version 1.1.2.”

Email threads Extracts the key points of discussions or decisions
from long email threads.

“Summarize the main points of discussion from
the following email thread.”

Another type of summarization is topic modeling, in which a statistical model discov‐
ers the abstract “topics” that occur in a collection of documents. Here are some topic-
modeling prompts for developers:

Prompt: Identify the main topics discussed in the following text: {text}
Prompt: Extract the keywords from the following text to infer the main topics: {text}
Prompt: Suggest tags for the following text based on its content: {text}

Instructions | 47

Text Classification
Text classification involves giving a computer a bunch of text that it learns to tag with
labels. A flavor of this is sentiment analysis, such as when you have a list of social
media posts and the LLM figures out which have a positive or negative connotation.
For developers, sentiment analysis can be a useful tool to gauge user feedback about
an application.

Some sample prompts include:

Prompt: Can you analyze these customer reviews and tell me if the sentiment is gener‐
ally positive, negative, or neutral? {text}
Prompt: Here’s a thread from our user forum discussing the latest update. Could you
summarize the overall sentiment for me? {text}
Prompt: I’ve compiled a list of feedback from our app store page. Can you categorize
the comments by sentiment? {text}
Prompt: Evaluate the sentiment of these blog post comments regarding our product
announcement. What’s the consensus? {text}

Recommendation
You can instruct an LLM to provide recommendations. Developers can use such
feedback to improve the caliber of responses for activities like squashing bugs, refin‐
ing code, or using APIs more effectively.

Check out these example prompts you might use:

Prompt: The following code snippet is throwing a NullPointerException when I try to
call <Method()>. Can you help identify the potential cause and suggest a fix?
Prompt: Here is a function I wrote to sort a list of integers. Can you recommend any
optimizations to make it run faster or be more readable?

LLM recommendations can be a powerful accelerator for your work, greatly saving
time and providing ideas you may not have thought about. This technique is particu‐
larly beneficial when dealing with intricate or nuanced tasks.

But there are downsides. One potential hitch is that the LLM might boil down the
responses too much and miss the nuances. Also, keep in mind that the model’s
knowledge is frozen at a certain point in time, so it might not be up-to-date with the
latest information or trends.

If anything, recommendations are a way to kick things off. But you’ll want to dive in
and do some more digging on your own to get the full picture.

48 | Chapter 3: Prompt Engineering

Translation
Localization is essentially attuning the software to the linguistic and cultural norms of
a specific area. It allows your software to speak the local lingo and understand
regional quirks, an ability that is key to broadening your market and cultivating a
closer connection with your audience. This can lead to a ripple effect of benefits:
users are happier because the software feels tailor-made for them, and happy users
can mean a healthier bottom line for your business.

In competitive markets, localization can give you an edge when alternatives fall short
or simply don’t exist. Plus, by aligning your software with the local ways, including
compliance with regional regulations, you’re not just making your software one
option but often the only option for a market.

On the flip side, localization is not without its challenges. It can be both expensive
and time intensive. It requires meticulous quality assurance to maintain the software’s
integrity in different languages. Additionally, software development doesn’t stand
still. It’s a continuous cycle of updates and new features, each of which may require its
own set of localization efforts. This ongoing process adds layers of complexity and
additional costs to the project.

This is where LLMs can come to the rescue. Advanced systems are capable of trans‐
lating between numerous languages. They can serve as a powerful tool in a develo‐
per’s toolkit. Table 3-2 shows some prompts you might use for localization.

Table 3-2. Examples of prompts for language translation

Task type Description Sample prompt
UI text translation Translates buttons, menu items, error

messages, dialog boxes, etc.
“Translate the following UI text into French: Save,
Exit, File, Edit, Help.”

Documentation
translation

Translates user guides, help files, and other
documentation.

“Translate the following user manual paragraph into
Spanish.”

Error message
translation

Translates error messages that the software
might generate.

“Translate the following error messages into
German: File not found, Access denied, Network
connection lost.”

Tooltip translation Translates tooltips that provide additional
information when a user hovers over an
item.

“Translate the following tooltips into Japanese: Click
to save, Click to open a new file, Click to print.”

Even so, it’s crucial to approach the multilingual capabilities of LLMs with a degree of
caution. They aren’t foolproof. These models may sometimes miss the subtleties,
idiomatic expressions, and cultural contexts unique to a language. The nuances of
language are complex, and getting them right is about more than just direct transla‐
tion—it’s about conveying the right meaning in the right way.

Instructions | 49

Handling specific terms or names can be tricky, especially when there isn’t a neat
equivalent in another language. Then there’s the challenge of getting the tone and
style right. It’s not just about the words but how you say them, and this can change a
lot from one language or culture to the next.

Having a language specialist take a look at the output could save you some headaches
down the line.

Input of Content
When crafting prompts, it’s helpful to use special symbols like ### or """ to clearly
separate your instructions from the content or information you want the LLM to
work on. These symbols act like boundaries or markers, making it clear where the
instructions end and where the content begins.

Consider a scenario in which a software developer needs help summarizing key
points from a lengthy piece of documentation regarding a new API they are integrat‐
ing. Here’s how you could structure the prompt:

Prompt: Extract the key implementation steps for the API from the text below:
Documentation: """
{API documentation text here}
"""

Using the """ delimiters is a neat way to split the instruction from the API documen‐
tation text. It gives the LLM a clearer picture of what needs to be done and increases
the chances of getting a crisp summary of the main steps. Plus, these delimiters tidy
up the prompt, making it easier to read, which is a real lifesaver for longer or more
complex text inputs.

Format
In your prompt, you can tell the LLM how to format the output. Here’s an example:

Prompt: Create a Python function that takes a list of user objects (each object contain‐
ing a user’s ID and name) and returns a JSON object that maps user IDs to names. For‐
mat the output as JSON.
ChatGPT:

{
 "code": "def map_user_ids_to_names(users):\n
 user_map = {user['id']: user['name'] for user in users}\n
 return user_map",
 "example_usage": {
 "input": [
 {"id": 1, "name": "Alice"},
 {"id": 2, "name": "Bob"},

50 | Chapter 3: Prompt Engineering

 {"id": 3, "name": "Charlie"}
],
 "output": {
 "1": "Alice",
 "2": "Bob",
 "3": "Charlie"
 }
 }
}

There are other ways you can format the output. Table 3-3 shows some options.

Table 3-3. Prompts for formatting output

Format type Sample prompt
Table “Create a table comparing the syntax, performance, and use cases of Python, Java, and C++.”
List “List the steps to troubleshoot a slow-loading web page.”
Markdown/HTML “Explain the differences between GET and POST HTTP methods in Markdown.”
Text hierarchy “Provide a structured outline of the software development life cycle (SDLC), including its phases and key

activities in each phase.”
LaTeX formatting “Express the time complexity of the binary search algorithm in LaTeX notation.”

With a prompt, you can also specify the length of the response. You could guide the
LLM with an instruction such as “Provide a brief summary” or “Write a detailed
explanation.” Or you could be more specific, such as by saying that the response
should be no more than 300 words. The LLM may exceed the word limit you provide,
but it will at least be in the general vicinity.

Best Practices
We’ll next take a look at some of the best practices for cooking up prompts that will
help get the answers you want. But don’t take these as gospel. These suggestions are
more like general advice—which can be somewhat subjective—than hard-and-fast
rules. As you spend more time chatting with LLMs, you’ll probably stumble upon
your own helpful ways of asking questions that work for you. It’s all part of the jour‐
ney of prompt engineering.

Be Specific
Crafting the right prompts can be like finding the sweet spot in a good conversation,
and it’s maybe the most crucial step to hitting it off with these text-generating sys‐
tems. The more details, the better. You also need to be clear. Otherwise, the LLM may
make assumptions or even hallucinate.

Best Practices | 51

First, let’s take a look at some prompts that are too vague.

Prompt: Develop a feature to enhance data security.
Prompt: Can you build a tool to automate the process?
Prompt: Optimize the code.
Prompt: We need a function to process transactions.

The following are much more detailed and should get better results:

Prompt: Develop a Python function to parse dates from strings. The function should be
able to handle the formats YYYY-MM-DD, MM/DD/YYYY, and Month DD, YYYY. It
should return a datetime object. Provide a script that demonstrates the function han‐
dling at least three examples of each format correctly, along with a document explain‐
ing any dependencies, the logic used in the function, and instructions on how to run
the script.
Prompt: Develop a SQL query to retrieve from our database a list of customers who
made purchases above $500 in the last quarter of 2023. The query should return the
customer’s full name, their email address, the total amount spent, and the date of their
last purchase. The results should be sorted by the total amount spent in descending
order. Please ensure that the query is optimized for performance.

Acronyms and Technical Terms
It’s crucial to be clear with technical terms and acronyms while drafting a prompt.
This jargon often means different things in different contexts and can lead to unhelp‐
ful responses. Thus, it’s a good idea to spell out acronyms and give clear definitions or
explanations of any technical terms used.

For example, suppose you are using ChatGPT to help resolve a database connection
issue. A poorly crafted prompt might be:

Prompt: Having DB connection issues. How to fix it?

In this prompt, “DB” is ambiguous as it might refer to different database systems like
MySQL, PostgreSQL, or others, and the nature of the connection issue is not clarified.

A more effective prompt would be:

Prompt: I am encountering a connection timeout issue while trying to connect to my
PostgreSQL database using JDBC. How can I resolve this?

This prompt clearly spells out the database system in use, the method of connection,
and the specific issue encountered.

52 | Chapter 3: Prompt Engineering

Mark Twain once wrote, “The difference between the almost right
word and the right word is really a large matter. ’Tis the difference
between the lightning bug and the lightning.” In a way, the same
thing can be said about writing a prompt.

Zero- and Few-Shot Learning
With zero-shot learning, you provide one prompt and get the answer you want. Often,
this works fine. But given the complexities of programming languages and frame‐
works, there are times when you need to nudge the LLM.

You can do this with few-shot learning. This refers to an LLM’s capability to under‐
stand and perform a task with very few examples or training data. This is a significant
advantage over traditional machine learning models, which may require a large
amount of training data to perform adequately on a task. The LLM’s capability is pri‐
marily due to the extensive pretraining on a diverse range of internet text that the
LLM undergoes before it is fine-tuned for a specific task.

Let’s take a look at an example of few-shot learning. Consider a scenario in which we
want to generate a function that normalizes a given list of numbers. It will scale the
values in the list to a range of [0, 1]. In the instructions, we include a list of a few
examples of the inputs and normalized outputs.

Prompt: Based on the following examples of normalizing a list of numbers to a range of
[0, 1]:
1. Input: [2, 4, 6, 8] Output: [0, 0.3333, 0.6667, 1]
2. Input: [5, 10, 15] Output: [0, 0.5, 1]
3. Input: [1, 3, 2] Output: [0, 1, 0.5]
Generate a function in Python that takes a list of numbers as input and returns a list of
normalized numbers.

ChatGPT will “learn” from the data and come up with some code:

ChatGPT:
def normalize(numbers):
 min_value = min(numbers)
 max_value = max(numbers)
 if min_value == max_value:
 return [0] * len(numbers) # Handle the case where
 # all numbers are the same
 else:
 return [(x - min_value) / (max_value - min_value) for x in numbers]
Test the function with one of the examples
print(normalize([2, 4, 6, 8])) # Output: [0.0, 0.3333333333333333,
 # 0.6666666666666666, 1.0]

Best Practices | 53

https://oreil.ly/ZL9d6

Leading Words
The concept of leading words refers to specific keywords or phrases that can guide an
LLM toward creating a particular kind of output. Sometimes you can achieve the
desired result using just one code word. Here’s an example:

Prompt:
Create a simple Python function that
1. Prompts me for a temperature in Fahrenheit
2. Converts Fahrenheit to Celsius
def

Using the word def as a leading word informs the model that it should begin writing a
Python function. Table 3-4 gives more examples of leading words.

Table 3-4. Examples of leading-word prompts

Context Leading word
JavaScript function Function
HTML element <button
CSS styling P {
SQL insert query INSERT INTO
Java method creation public

Chain of Thought (CoT) Prompting
In 2022, some Google researchers introduced chain-of-thought (CoT) prompting in
their paper “Chain-of-Thought Prompting Elicits Reasoning in Large Language Mod‐
els”. This approach enhances the reasoning abilities of LLMs by breaking down a
complex problem into different steps. It’s actually similar to few-shot learning, which
allows for nudging the model.

CoT prompting can be very useful in software code generation tasks. Let’s look at an
example. Suppose you want to create a web application with a user registration and
login functionality using Flask, a Python web framework. Table 3-5 shows the CoT
prompting steps.

Table 3-5. Chain-of-thought prompt examples

Action description Prompt
Understand the
requirement

“I need to create a web application using Flask. The application should have a user registration
and login functionality. Where should I start?”

Set up Flask application “Let’s begin by setting up a basic Flask application. How can I do that?”
Create user model “Now that the Flask application is set up, I need to create a user model for handling registration

and login. How should I structure this model?”

54 | Chapter 3: Prompt Engineering

https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903

Action description Prompt
Implement registration “With the user model in place, how can I implement a registration page with the necessary

fields?”
Implement login “Now let’s move on to creating a login page. How can I ensure secure login?”
Session management “After a user logs in, how should I manage user sessions to keep users logged in as they navigate

through the app?”
Logout implementation “Finally, how can I implement a logout function to securely log users out of the application?”

Leading Questions
Leading questions in a prompt can often fetch wonky responses from the LLM. It’s
better to stay neutral and unbiased. Also, it’s good practice to avoid making assump‐
tions; spell things out instead.

This prompt is a leading question:

Prompt: Isn’t it true that migrating to a microservices architecture will always improve
system scalability?

A more balanced prompt would be:

Prompt: What are the advantages and potential challenges of migrating to a microser‐
vices architecture in terms of system scalability?

Ask for Examples and Analogies
Suppose you don’t know the concept of inheritance in object-oriented programming.
You go to ChatGPT and enter this prompt:

Prompt: Explain inheritance that is used in object-oriented programming.

You will get a detailed response. But you may want to get something that’s easier to
understand. A good way to do this is by asking the LLM for an analogy:

Prompt: Explain inheritance that is used in object-oriented programming by using an
analogy.
ChatGPT: Think of inheritance like a family tree, where children inherit certain traits
and properties from their parents and, potentially, grandparents.

From there, ChatGPT provides more detail, which proceeds from the analogy, to
explain the key elements of inheritance.

Best Practices | 55

Reducing Hallucinations
In Chapter 2, we learned that prompting an LLM can lead to a response that is a hal‐
lucination, such that the content generated is false or misleading but the LLM
expresses the response as if it were true. Hallucinations can be particularly challeng‐
ing for software development, which requires accuracy.

No doubt, applying the lessons in this chapter can mitigate this issue, but even a well-
crafted prompt can spin up hallucinations. There are numerous reasons for this:

Lack of ground truth verification
LLMs generate responses based on patterns learned from training data without
the ability to verify the accuracy or reality of the information.

Overfitting and memorization
LLMs might memorize incorrect or misleading information in their training
datasets, especially if such data is repetitive or common.

Bias in training data
If the training data contains biases, inaccuracies, or falsehoods, the model will
likely replicate these in its outputs.

Extrapolation and speculation
Sometimes, LLMs might extrapolate from the patterns they’ve seen in the data to
generate information about topics or questions that were not adequately covered
in the training data.

Lack of context or misinterpretation
LLMs can misinterpret or lack the necessary context to accurately respond to cer‐
tain prompts. They may not fully understand the nuances or implications of cer‐
tain queries.

Slang and idioms
Such language can create ambiguity that may lead the model to misinterpret the
intended meaning, especially if it hasn’t seen enough examples of the slang or
idiom in context during training.

Then how to reduce hallucinations? For one thing, it’s important to avoid asking
open-ended questions like this:

Prompt: What are the different ways to optimize a database?

This type of prompt encourages the LLM to resort to speculation or overgeneraliza‐
tion. The model may also misinterpret the intent of the question or the desired for‐
mat of the answer, leading to responses that veer off-topic or contain fabricated
information. There may actually be a cascade of hallucinations.

56 | Chapter 3: Prompt Engineering

One effective technique is to provide a set of predefined options and ask the AI to
choose from them. For example, the preceding prompt could be rephrased as follows:

Prompt: Which of the following is a method to optimize a database: indexing, defrag‐
menting, or compressing?

As another example, consider asking the LLM for a certain type of conclusion. Here
is an effective prompt:

Prompt: Is the following syntax correct for initializing an array in Java? Provide a “yes”
or “no” response.

Or you can include multiple steps in the prompt to better guide the model through a
structured process and narrow down the possibilities for straying off course:

Prompt:
Step 1: Create a Fibonacci sequence generator.
Step 2: Use the iterative method.
Step 3: Write a Python function named generate_fibonacci that takes an integer n as an
argument.
Step 4: The function returns the first n numbers in the Fibonacci sequence as a list.

Security and Privacy
Being watchful about security and privacy while crafting prompts is key. In fact, the
duty to take appropriate precautions should be in the company rulebook. It’s crucial
to steer clear of any sensitive or personal information, such as personally identifiable
information (PII) in your prompts. Here’s an example of a prompt that contains iden‐
tifying information:

Prompt: How would you fix a login issue reported by John Doe at john.doe@exam‐
ple.com?

It’s wiser to go with something like:

Prompt: How would you tackle a login issue reported by a user?

This keeps private information private.

It’s also smart to steer clear of spilling any sensitive system details in the prompts.
Avoid this:

Prompt: How to fix a database connection error on our production server at IP
192.168.1.1?

Instead, it’s safer to use a more generic question:

Prompt: How to fix a generic database connection error?

Security and Privacy | 57

Moreover, make sure your prompts don’t accidentally nudge folks toward shady prac‐
tices. A prompt like this is fine from a security viewpoint:

Prompt: How to detect and prevent SQL injection?

But not this one, which might stir up some bad intentions:

Prompt: How to exploit SQL vulnerabilities in a website?

Besides sticking to security and privacy rules, embracing diversity and inclusion
when making prompts is important. Getting a solid grasp on bias, which often
reflects the training data, is key. It’s a good call to use neutral and inclusive language
to avoid any discriminatory or exclusionary phrases in the prompts. Also, getting
feedback from a diverse group of people on your prompt crafting can help. This not
only improves fairness and inclusivity when interacting with the LLM but also helps
get a more accurate and well-rounded understanding of the topics at hand.

Autonomous AI Agents
We’ve seen how you can nudge LLMs to map out the steps for a process. That’s at the
heart of code generation.

But AI agents can crank it up a notch. They don’t just follow prompts. They get crea‐
tive with LLMs to figure out a game plan for whatever goal you toss at them, and they
tap into specialized databases like Pinecone and Chroma DB. They handle complex
word embeddings, which the models understand.

Autonomous AI agents are based on academic research and are usually part of open
source projects. Their real power is automation. To see how this works, let’s take an
example. Suppose you set the objective as follows:

Prompt: Create a basic weather application with a user login system.

Table 3-6 shows a process that an autonomous agent may go through.

Table 3-6. Process for an autonomous agent

Phase Tasks
Creation tasks Design the user interface (UI).

Sketch the basic layout of the dashboard.
Select color schemes and fonts.
Design icons and other graphic elements.

API integration for weather data Search the internet for reliable weather data APIs.
Determine the data points to be displayed.
Write code to fetch and update weather data.

Location selection functionality Create a search bar or dropdown for users to select their location.
Connect this to the API code.

58 | Chapter 3: Prompt Engineering

Phase Tasks
Error handling Handle errors like failed API calls or invalid location entries.
Prioritizing tasks Prioritize setting up the API integration.

Focus on the UI.
Work on location selection functionality and error handling.

Iteration Review the generated code and the current state of the weather dashboard.
Identify any remaining tasks or new tasks that have arisen during execution.
Repeat the create and prioritize steps.

This technology is at the forefront and holds much promise. However, it’s not without
its fair share of hurdles:

Being resource hogs
Agents can guzzle down large amounts of compute power. This can put the
squeeze on your processors and databases, leading to more wait time, less relia‐
bility, and a slump in how things run as time goes on.

Getting stuck in infinite loops
Sometimes agents just run in circles, thanks to a lack of progression or a repeti‐
tive reward system.

Being experimental
Agents can be rough around the edges. They might come with a few bugs or
unexpected behaviors and might not be quite ready for the big leagues, depend‐
ing on what you need them for.

Having amnesia
Agents may simply forget certain steps or instructions.

Having difficulty handling a large number of tasks
Got a whole laundry list of tasks? That might trip up these agents.

Getting distracted by extraneous details
Agents might get sidetracked by the little things that don’t matter, which could
send them down the wrong path when picking tools to use.

Another innovation that bolsters LLMs is retrieval augmented generation (RAG).
With RAG, a generative AI application—say written in a framework like
LangChain—accesses external sources of data, usually vector databases. They provide
more grounding of the model in specific knowledge, which should enhance the LLM’s
responses.

RAG can be particularly useful when handling complex software development tasks,
such as in these scenarios:

Autonomous AI Agents | 59

Tackling bugs and glitches
When developers encounter bugs or errors, RAG digs up fixes and workarounds
from all around the web, looking in places like forums or bug databases. It can
whip up some tailor-made solutions or code patches that fit your problem.

Spicing up code reviews
RAG can pull in all the coding best practices, standards, and must-follow rules
from a company’s internal resources. This means it can help streamline your code
reviews, dishing out tips and tricks to make your code shine.

Revving up testing
When it’s time to put your code through its paces, RAG can be your pit crew. It
finds all sorts of test scenarios and patterns, tweaks them to suit your project’s
needs, and helps you roll out test cases or scripts faster.

In some cases, an LLM will indicate that there’s an issue with your
prompt. For example, suppose you write this:

Prompt: Write a REST API using assembler.

This is how ChatGPT responded:

ChatGPT: Creating a REST API using an assembler lan‐
guage is highly unconventional and complex due to the
low-level nature of assembler languages. These languages
are usually used for tasks that require fine-grained control
over hardware, or for scenarios where performance is a
critical concern.

Conclusion
Again, crafting the perfect prompt involves mixing science with a splash of creativity.
It’s all about finding the right ingredients—some creativity, a bit of gut feeling, and a
structured approach—to cook up prompts that get LLMs to serve up what you want.
No magic recipe exists, but if you’re clear, throw in a few examples, and lay out your
prompts well, you’re on track for better answers.

It’s a process, really. You try something, see how it goes, tweak it, and try again. And
as with any skill, you get better the more you work on it with different topics and
tasks.

60 | Chapter 3: Prompt Engineering

CHAPTER 4

GitHub Copilot

In this chapter, we’re going to check out GitHub Copilot, which I’ll refer to as Copilot
for short. It’s the big dog in the AI coding assistant world. People even call it a “killer
application” of generative AI. This is primarily due to its advanced code suggestion,
creation, and explanation capabilities, which significantly enhance developer produc‐
tivity. By understanding and predicting coding patterns based on context, it not only
saves time but also assists in writing more efficient and error-free code.

In this chapter, we’ll dive into the nitty-gritty of Copilot: how much it costs, how to
set it up, and all the cool features it offers. And we’ll be real about its downsides too.
Plus, I’ll toss in some handy tips to get the most out of it. We’re not stopping there:
we’ll also see how Copilot is teaming up with other companies with the Copilot Part‐
ner Program. This chapter is all about seeing the full scope of what Copilot can do.

GitHub Copilot
Back in June 2021, Microsoft unveiled GitHub Copilot. GitHub’s CEO, Nat Friedman,
described it in a blog post as an “AI pair programmer,” designed to speed up develop‐
ers’ work by assisting them in completing tasks more efficiently.

Copilot is the result of a partnership between Microsoft and OpenAI. Initially, it har‐
nessed a large language model named Codex, a variant of GPT-3 tailored for coding.
Microsoft enhanced this LLM’s capabilities by integrating a new approach known as
fill-in-the-middle (FIM), which better understands code context. This improved the
quality of code suggestions and shortened response times. Powered by the more
advanced GPT-3.5 Turbo, this enhancement led to a noticeable uptick in the accept‐
ance rate of code suggestions. To improve security, the tool incorporated an AI
system to instantly block risky coding patterns, focusing on vulnerabilities such as
hardcoded credentials and SQL injections.

61

https://oreil.ly/L4JcE

Pricing and Versions
A 30-day free trial of Copilot is available. Once that’s up, you’ve got three choices.

Copilot for Individuals
This plan costs $10 a month or $100 for an annual subscription. It offers features
like multi-line function suggestions that can make your coding workflow
smoother. A standout feature is its ability to accelerate test generation, a key fac‐
tor in making sure your code is reliable and solid. Plus, it’s got a feature to screen
out vulnerable coding patterns. It also prevents any suggestions that might mir‐
ror public code, ensuring that what you create is unique and original.

Copilot for Business
This package is more comprehensive and costs $19 per user per month. It
includes everything from the Copilot for Individuals plan and some extra perks
designed for businesses. It streamlines license management, which is a big plus
for companies in handling their subscriptions and access. There’s also a feature
for managing policies across the organization, helping to ensure uniformity in
governance and consistency in all projects. A key highlight is its top-notch pri‐
vacy safeguards, which are crucial for keeping sensitive business data secure.
Additionally, it supports corporate proxies, guaranteeing secure and smooth con‐
nectivity throughout the company’s network.

GitHub Copilot Enterprise
This comes with a fee of $39 per month per user. The Enterprise plan’s key fea‐
ture is that it allows for training the system on internal codebases. The Enterprise
version bumps up the efficiency of developers, because the tool starts giving
more spot-on code suggestions. It helps push for adopting better practices and
sticking to security rules. It’s tailored to fit the way developers code internally and
their favorite APIs, frameworks, and packages.

Another advantage of the Enterprise version is that you can train it on classic lan‐
guages like COBOL and Fortran. General-purpose LLMs might not be as effec‐
tive with these because there’s a lack of training data from public repositories. Of
course, they wouldn’t have any clue about proprietary languages specific to your
company.

The GitHub system also strengthens the model for the Enterprise edition by con‐
tinuously scanning a company’s repositories. For instance, it zeroes in on recent
pull requests and merges as well as thumbs-up and thumbs-down feedback. All
this helps to spotlight the latest methods and strategies a company is using.

62 | Chapter 4: GitHub Copilot

Having custom models helps spread know-how across the organization. The AI picks
up and shares the subtle knowledge tucked away in the code. With ongoing training,
the AI keeps pace with the changing codebase, making its help even more precise as
time goes on. Still, it’s really important for organizations to handle the privacy and
intellectual property risks that come with mixing these AI tools into their develop‐
ment process.

In 2023, Gartner’s research showed that less than 10% of large
enterprises had started using AI-assisted programming tools. This
hesitancy is partly due to worries about security and precision.
However, with the rapid advancements in the technology, it’s
expected that more and more businesses will start adopting these
tools in the near future. In short, the benefits they offer are just too
significant to overlook.

Use Case: Programming Hardware
An interesting case study of custom models concerns Advanced Micro Devices
(AMD). Founded in 1969, the company is a pioneer of CPUs (central processing
units). Today the company is a leader in semiconductors for data centers, embedded
systems, gaming platforms, and PCs.

Before diving in, let’s set the stage by reviewing some basics about developing for
hardware systems. It’s a whole different ballgame than building software for some‐
thing like a web app. The key challenge is that developers need to know the hardware
system inside out. Unlike regular software, which works on all-purpose computers,
firmware talks directly to the hardware. This demands a kind of precision and com‐
patibility that’s much more exacting.

This level of precision is critical because mistakes in firmware development can lead
to some seriously expensive consequences. Just one error might mean a financial hit
in the millions. And it’s not just about the money—time is a huge factor too. Fixing a
firmware issue usually involves revisiting the manufacturing process, and that can
add months to the timeline. Such a delay affects not just the release schedule but also
how competitive the product is in the market.

Clearly, the “move fast and break things” mindset common in Agile software devel‐
opment doesn’t work in this setting. The risks are too big for this approach. That’s
why firmware developers have to put considerable time and effort into making
detailed plans and doing extensive testing. This careful approach makes sure the
firmware is as solid and error-free as it can be before it gets paired with the hardware.

GitHub Copilot | 63

https://oreil.ly/zXAQ-
https://oreil.ly/pOoMj

When AMD took a look at Copilot in 2023, it set really high standards, and there was
a fair amount of understandable skepticism. In a pilot project, AMD created a custom
version of Copilot for various hardware description languages (HDLs) like Verilog and
SystemVerilog. HDLs are specific types of programming languages tailored for out‐
lining the architecture, design, and function of electronic circuits, especially the digi‐
tal logic ones. They’re crucial for modeling and simulating electronic systems at
different levels of abstraction.

The results of the pilot turned out much better than anticipated. Surprisingly, the
style of the code generated by Copilot actually aligned more with AMD’s standards
than what their own programmers were producing. The improvement was so signifi‐
cant that some of the programmers even switched from using Vim, a highly custom‐
izable text editor, to adopting Visual Studio Code as their IDE.

Use Case: Shopify
Another interesting case study is Shopify. This company runs a platform that lets cus‐
tomers set up ecommerce websites. Shopify has about 10% of the market in the Uni‐
ted States and 6% in Europe.

No doubt, this has created a need for a massive infrastructure. Consider that there are
around 300 public repositories and about 5,000 private ones. Plus, Shopify is doing
about 1,500 deployments to their code every day.

Shopify was one of the first companies to jump on the Copilot bandwagon, and it’s
been a game-changer for making developers more productive. Currently, close to
2,000 Shopify developers use the tool. And here’s the cool part: 70% of them say it’s
helpful, and 75% use it a lot. About 26% of the code suggestions from Copilot are
accepted.

Sure, there are a few features that haven’t caught on, like the integration with the
command-line interface (CLI). But despite this, many developers use code comple‐
tion and chat on a daily basis.

Here are some interesting takeaways:

Value of code suggestions
Even if a developer doesn’t use a given suggestion, it’s not a total loss. Any sugges‐
tion can spark ideas for writing even better code.

Rate of adoption
Usage usually picks up as time goes on, which should not be surprising. It takes
time to tweak daily workflows and get used to new features. There’s also a learn‐
ing curve with Copilot.

64 | Chapter 4: GitHub Copilot

https://oreil.ly/TXMvQ
https://oreil.ly/ZI_9K

Uptake by senior developers
In the early days of adoption of Copilot, the more experienced developers weren’t
too keen on using it. They tended to view it as more of a toy than a serious tool.
But as time went on and they noticed other developers getting real results, they
started to warm up to it.

Learning enhancement
Shopify noticed that Copilot is good at nudging people to try out a new language
or framework. For example, there was a noticeable uptick in adoption of Rust.

About a million lines of the Shopify codebase has been written using this tool, show‐
ing that Copilot is a very big deal for this business.

Use Case: Accenture
Accenture is a massive professional services organization that helps clients improve
operations and growth through innovative technologies and systems. The company
has over 733,000 employees in more than 120 countries.

In 2023, Accenture tested Copilot with 450 of its internal developers. The firm didn’t
set any specific tasks or objectives. Instead, managers just asked everyone to go about
their work as they normally would.

The trial with Copilot at Accenture spanned six months. So, what happened? In terms
of coding, there was a 35% rate of acceptance of Copilot’s suggestions, with 88% of
those changes sticking even after code reviews. Productivity saw a remarkable boost,
too. There was a 50% increase in pull requests and a 15% rise in the merge rate. Effi‐
ciency also made a big leap forward, with 50% more builds and a 45% increase in
their success rate. And the developers? They were really happy with it: a whopping
96% felt they were successful from day one.

Upon seeing these results, Accenture made the call to roll out Copilot globally to its
50,000 developers.

Security
Gartner surveyed more than 2,000 chief information officers (CIOs) and discovered
that 66% of them plan to invest the most resources in cyber- and information security
in 2023. This trend has been consistent for years.

At a time when cyber threats are becoming more complex and widespread, a security
breach could mean big financial losses, harm to reputation, legal troubles, and dis‐
ruptions in operations. Plus, with data privacy regulations getting stricter, CIOs have
to be vigilant about compliance to dodge fines and keep customer trust.

GitHub Copilot | 65

https://investor.accenture.com
https://oreil.ly/ku8Nd
https://oreil.ly/UgdoL
https://oreil.ly/k1oVc

That’s why for GitHub, security is a major focus of its Copilot program. GitHub has
developed a system based on LLMs that spots and fixes insecure coding patterns right
as they happen.

Then there are also GitHub’s Advanced Security features assisted by Copilot. Here are
the main ones:

Code scanning
In real time, Advanced Security will search for security vulnerabilities and coding
errors.

Secret scanning
The product can root out secrets like keys and tokens that have been checked
into private repositories.

Dependency review
This shows the implications of dependency changes. It also provides details of
vulnerabilities when you merge a pull request.

For students, teachers, and maintainers of popular open
source projects, Copilot is free, but there is a verification
process.

Getting Started
To get started with Copilot, you first need to create a GitHub account. GitHub is an
online service that supports version control and collaborative software development.
It’s built on Git, a tool that offers code review and project management features.

After setting up your account, click on your profile photo at the top right of the
screen. You’ll see a drop-down menu, as shown in Figure 4-1.

Select Copilot and then click Enable GitHub Copilot. You can select the type of plan
and then click Continue. You’ll provide your payment details, assuming you do not
qualify for a free account.

66 | Chapter 4: GitHub Copilot

https://oreil.ly/fZamu

Figure 4-1. Begin enablement of Copilot from the profile photo drop-down menu

Codespaces and Visual Studio Code
There are two ways to use Copilot. One way is to access it through Codespaces, a
cloud-based development environment that runs on Visual Studio Code (VS Code)
and is available directly on https://github.com.

Alternatively, you can opt for the Copilot extension if you’re using the desktop ver‐
sion of Visual Studio Code. In this book, we’re going to focus on using the VS Code
extension.

Getting Started | 67

https://github.com

The IDE itself is free. Figure 4-2 shows the main screen of VS Code. You can run this
system on various platforms, including Windows (versions 7, 8, 10, and 11); macOS;
and various Linux distributions like Ubuntu, Debian, Fedora, and more.

Figure 4-2. The main screen for Visual Studio Code includes an Activity Bar and an area
to generate and display code

On the left is the Activity Bar, which is a stack of icons. You can use these for loading
files and folders. You can also select the fifth icon, which is the group of squares, to go
to the area to install extensions (Figure 4-3).

If you enter “GitHub Copilot” in the search box, you’ll see a list of extensions. Select
the top one and click Install.

Then look at the bottom right of the screen. If you see the Copilot icon, then you have
the service available.

68 | Chapter 4: GitHub Copilot

Figure 4-3. You can install extensions in VS Code, such as for Copilot

In the middle of the screen, you will see the code to print “Hello, Copilot!” This was
created by using the following prompt, which Copilot turned into code:

Prompt: # write a “Hello, Copilot!” program

The # character specifies a comment. This is one of the ways to instruct Copilot to
generate code.

Notice that the code is in Python. Why so? The extension for the file is py. Copilot
uses the file extension to determine what language to use.

At the top right of the screen, there is an icon to run the program. Click it, and VS
Code will launch the terminal. You will then see the message printed out.

Suggestions
Getting started with Copilot in VS Code is straightforward. As you begin typing your
code, the tool kicks in, offering you code suggestions and generating code snippets
based on your input.

Suppose you type the header for a function in Python:

def find_factorial(number):

Getting Started | 69

Copilot will promptly suggest a complete function body, as you can see in Figure 4-4.
This generated coding is called ghost text and is highlighted in gray.

Figure 4-4. Copilot suggests code when a user writes a function header

Keep in mind that the code might look a bit different on your machine, and that’s
normal since the underlying LLM works according to a complex set of probabilities.

But here’s the thing: GitHub gets that you’re trying to write a function for calculating
a factorial based on a parameter. So, it suggests the If–Then structure you need to get
the right result.

You can hit Tab to accept the code suggestion. But if it’s not what you’re looking for,
just press the Escape key to skip it.

If you hover over the generated code, you will see some more options, as shown in
Figure 4-5.

Figure 4-5. Hovering over the generated code evokes more options, visible at the upper
right

You can click Accept to accept the code suggestion, just like pressing the Tab key, or
you can select Accept Word to select one word in the code at a time. If you click the
three dots, you will get a menu for either accepting a line or to always show the
toolbar.

70 | Chapter 4: GitHub Copilot

Clicking on the 1/2 on the left lets you see alternatives for the generated code; in
Figure 4-5, there are two alternatives, and the first one is currently showing. Clicking
“>” would take you to version 2. Then clicking “<” would take you back to version 1.

You can also use the shortcut keys listed in Table 4-1 to navigate the options.

Table 4-1. Shortcut keys for scrolling through code suggestions

OS Next suggestion Previous suggestion
macOS Option (⌥) or Alt+] Option (⌥) or Alt+[
Windows Alt+] Alt+[
Linux Alt+] Alt+[

If you press Ctrl+Enter, VS Code will create a new tab to show 10 alternative solu‐
tions (Figure 4-6).

Figure 4-6. Pressing Ctrl+Enter brings up a separate tab displaying 10 different versions
of the code

To select one of the alternatives, click Accept Solution above that code. Otherwise,
close the tab to reject all of them.

Getting Started | 71

Comments
Earlier, in “Codespaces and Visual Studio Code” on page 67, we looked at how you
can prompt Copilot to generate code using one or more comments. To do this, you
indicate the comment in the syntax of the programming language you’re working in.

But you can do more. You can use comments to interact with the system as if it were
ChatGPT. Let’s check out an example:

Prompt: # q: What is a class in object-oriented programming?
Copilot: # a: A class is a blueprint for creating objects. An object has properties and
methods (functions) associated with it. Almost everything in Python is an object.

You can see the answer is also in the context of the language you are coding in. Now
say you ask Copilot about how the system works:

Prompt: # q: What is the shortcut for accepting an inline suggestion?
Copilot: # a: tab

You can ask Copilot about features of VS Code:

Prompt: # q: What is the shortcut for the user settings in VS Code?
Copilot: # a: Ctrl + ,

You can also ask it about shortcut keys for other IDEs:

Prompt: # q: What is the shortcut for a new file in the Atom editor?
Copilot: # a: ctrl + n

Note that Copilot knows I’m on a Windows system and provides the code based on
this platform.

Chat
Copilot Chat is like ChatGPT, but for your coding environment. It’s handy for chat‐
ting about code, such as when you need to figure out syntax, squash bugs, sort out
test cases, or just get your head around different programming ideas. It’s powered by
OpenAI’s GPT-4 and GPT-3.5 Turbo, plus some of Microsoft’s own LLMs.

You can dive into Chat right from https://github.com. It’s great for analyzing code,
handling pull requests, peeking at documentation, or just asking whatever coding
questions you’ve got. Plus, Chat is available on the GitHub apps for both iOS and
Android, so you can take it with you on the go.

But right now, let’s focus on how this works with VS Code. This means adding a new
extension. Just look up “GitHub Copilot Chat.” Once you install it, you’ll see a new
icon pop up on the left side of your screen. It’s got two little chat bubbles, as you can
see in Figure 4-7.

72 | Chapter 4: GitHub Copilot

https://github.com

Figure 4-7. An icon for Chat has appeared on the left of the screen

At the top of the Chat panel, you see a group of icons in a menu. The first, consisting
of horizontal lines and a small x, clears all your chat threads. This is important due to
the way context works. When you type in a prompt, the LLM checks out the conver‐
sation history. If your chat’s all over the place topic-wise, you might end up with some
less-than-helpful answers. That’s why it’s a good idea to keep each chat focused on a
particular topic and start new chats for new topics.

The next icon, with a person and a chat bubble, allows you to send feedback about
the system. Then there is the history button, a clock, which shows the prior threads.

If you click the three dots, you can use the chat inside the editor, where there is a lot
more room for your chats.

At the bottom of the Chat box, there is an input area to ask a question of the system.

The Chat system has numerous shortcuts. One is @workspace, which refers to the
files open in your workspace. For example, if you have a calculator program in
Python, you can enter:

Prompt: @workspace /explain

Figure 4-8 shows that Chat has analyzed the program file and provided an in-depth
explanation.

Getting Started | 73

Figure 4-8. Chat can be used to explain code, for example, a calculator program

You can ask Chat to explain just a part of the code. Highlight the section you’re inter‐
ested in and press the right button on your mouse. This will bring up a menu
(Figure 4-9).

74 | Chapter 4: GitHub Copilot

Figure 4-9. Focus the chat on a segment of your code by highlighting it and pressing the
right mouse button

When you’ve told Chat to focus on just part of the code, you can not only explain the
code but also fix it, generate documentation, or create tests.

Another helpful shortcut is the /new command. It will create a scaffold for a new
project or feature. Here are some examples:

Prompt: /new Create a Python script to scrape data from a website
Prompt: /new Generate a Java class for a student with fields for name, age, and grade
Prompt: /new Build a simple REST API using Flask
Prompt: /new Create a JavaScript function to sort an array of numbers in ascending
order
Prompt: /new Design a SQL database schema for a blog, with tables for users, posts,
and comments

Getting Started | 75

In response to these prompts, the Chat system will show the main steps and then pro‐
vide the code listing. You also have several options for what to do with it. As you can
see in Figure 4-10, there is a menu bar at the top.

Figure 4-10. At the top of the code listing for Chat, there are options for what to do with
the code

The first icon will copy the code, and the next one will insert it where the cursor is in
the file (you can also use Ctrl+Enter). If you select the three dots, you can insert the
code into a new file or the terminal.

There’s also a shortcut for creating a new Jupyter Notebook: /newNotebook. You
should specify what you want the notebook to do. Here are some sample prompts:

Prompt: /newNotebook Create a notebook to visualize data from a csv file using mat‐
plotlib
Prompt: /newNotebook Create a notebook to preprocess and clean a dataset for
machine learning
Prompt: /newNotebook Create a notebook to implement a simple linear regression
model using scikit-learn
Prompt: /newNotebook Create a notebook to analyze time series data
Prompt: /newNotebook Create a notebook to scrape data from a website and analyze it

Chat also provides a /terminal shortcut. You can ask questions about or get help with
terminal or command line operations, such as with navigating directories, running
scripts, or installing packages. Here are some prompts:

76 | Chapter 4: GitHub Copilot

Prompt: /terminal What is the command to list all environment variables?
Prompt: /terminal How do I use grep to find specific text in multiple files?
Prompt: /terminal How can I use the find command to search for files by their permis‐
sions?
Prompt: /terminal How do I redirect the output of a command to a file?
Prompt: /terminal How do I use awk to process text files?

Then there is @vscode, which is called an agent. With this, you can ask questions or
get help about some aspects of VS Code such as a feature, navigation, configuration,
or an extension.

Here are some sample prompts:

Prompt: @vscode How do I split the editor into multiple windows?
Prompt: @vscode How can I customize my keyboard shortcuts?
Prompt: @vscode How do I set up a multi-root workspace?
Prompt: @vscode How do I configure task automation in VS Code?
Prompt: @vscode How can I set up and use Docker with VS Code?

Finally, there is the /api command. You can ask questions about or get help with
aspects of API development or usage including creation, testing, or integration. Here
are some examples:

Prompt: /api How do I make a POST request with JSON data in Node.js?
Prompt: /api How can I handle CORS issues in an Express.js API?
Prompt: /api How do I authenticate a user in a Django REST API?
Prompt: /api How can I paginate results in a Rails API?
Prompt: /api How do I version an API in ASP.NET Core?

You can also use /api in the context of VS Code:

Prompt: @vscode /api How do I create a new command in VS Code extension?
Prompt: @vscode /api How can I read and write settings in VS Code extension?
Prompt: @vscode /api How do I create a new webview panel in VS Code extension?
Prompt: @vscode /api How can I interact with the file system in VS Code Extension?
Prompt: @vscode /api How do I add a new item to the activity bar in VS Code Exten‐
sion?

Note that if you want to clear the chat, you can use /clear.

Inline Chat
You can use the Chat feature inside your code listing. You will highlight code and
then press Ctrl+I for Windows or Cmd+I for macOS. You’ll then see a popup, such as
in Figure 4-11.

Getting Started | 77

Figure 4-11. The Inline Chat feature allows you to chat within your code

According to GitHub, Inline Chat has become a popular feature. After all, it allows a
developer to stay within their “flow.”

You can use the shortcuts—which we described earlier—to ask questions about the
code. The explanation will show up on the Chat panel.

Notice that there is also a orange sparkle icon next to the code. If you click it, you will
get a few options—to fix the code, explain it, or rewrite it—which you can see in
Figure 4-12.

Figure 4-12. Pressing the orange sparkle icon allows you to interact directly with the code

Let’s try an example using Inline Chat. We’ll use this prompt:

Prompt: Create a function for a bubble sort

Chat creates code for this. But suppose we want to see if there is a faster type of sort.
Highlight the function and execute Inline Chat. Figure 4-13 shows the response.

78 | Chapter 4: GitHub Copilot

Figure 4-13. Inline Chat has responded to a request to create a faster sort than the bub‐
ble sort on the top

Chat suggests a quick sort and shows this in “diff mode.” This allows for comparing
and contrasting the two approaches. You can either accept the new code in its entirety
or just parts of it.

Open Tabs
When you’re working on a standard software development project, your IDE is usu‐
ally packed with a bunch of files, each playing its own part in the app’s framework.
Take a web project using React as an example. You’re going to see .jsx and .js files for
the components, along with HTML and CSS files, not to mention .json and .env files
too.

What does this mean to Copilot? It’s a big help. Copilot gets better the more it under‐
stands the context of your work. This means it takes into account everything in the
current file you’re working on. As for the other open files, the LLM doesn’t scan them
all. It zeroes in on the parts that are relevant to what you’re doing. Also, Copilot does
not look at the rest of the files in your project, likely to respect your privacy.

Getting Started | 79

Command-Line Interface
You can use Copilot in your CLI. Copilot’s two main functions there are to explain
commands and to suggest them.

To do this, you need to install the GitHub CLI and then log in to your GitHub
account:

gh auth login

Next, you will install Copilot:

gh extension install github/gh-copilot

You can upgrade the extension:

gh extension upgrade gh-copilot

Here’s an example of asking Copilot to explain a CLI command:

Prompt: gh copilot explain xcopy

Figure 4-14 shows the output.

Figure 4-14. Copilot explains the xcopy command in a CLI

Here’s how to get Copilot to suggest a command:

Prompt: gh copilot suggest

80 | Chapter 4: GitHub Copilot

https://cli.github.com

Next, Copilot will ask what type of command you want help with—a generic shell
command, a gh command, or a git command—so specify this. Then it will ask what
you would like the command to do. Here’s an example:

Prompt: What are the commands for viewing and setting environment variables in the
system?

Figure 4-15 shows Copilot’s response, which includes suggestions for commands to
use. You can copy this or ask Copilot for more help, such as to explain the command
or revise it.

Figure 4-15. Copilot’s suggest feature in the CLI offers commands according to the
parameters you provide

Copilot Partner Program
Developers often spice up their apps and get more out of their data by using third-
party tools. Take Splunk, for example. It’s a favorite for digging into logs and data
analytics. Developers lean on Splunk to keep an eye on their apps and fix problems
fast, thanks to its powerful search and report features. Then there’s New Relic, which
is all about making sure your app runs smoothly. It gives you real-time insights and
diagnostics, helping you spot and fix performance issues and make your app run bet‐
ter for a great user experience. And let’s not forget Datadog. It’s a key player for moni‐
toring both your infrastructure and applications. With its wide range of integrations,
Datadog lets developers gather, mix, and show off data from all sorts of places, help‐
ing them make smart choices about how to boost performance and manage
resources.

Considering the importance of these systems, GitHub has introduced the Copilot
Partner Program. It features an expanding lineup of popular integration platforms, all
accessible through plugins.

Copilot Partner Program | 81

One of the early partners in this program is DataStax, the company behind Astra DB,
a vector database designed for crafting advanced AI applications. Thanks to a plugin,
developers can speed up database creation using Chat. For instance, Chat offers code
suggestions for a database’s structure and metadata, all in line with coding standards.
This leads to code that’s neater and easier to maintain.

To ask a question, use the @datastax tag. Some sample prompts include:

Prompt: Tell me about my chat_prod database
Prompt: Tell me about the schema of a table
Prompt: Write a SQL query to read from the chat table

Mary-Brenda Akoda, an AI researcher with a patent in
the field of AI for ophthalmology, is an avid user of
Copilot. She says, “One time, I wrote code for an entire
model development process in under an hour using
Copilot. This was a task that would typically have deman‐
ded a lot more of my time and effort. Interestingly, it is
actually when I had to use an online IDE that didn’t sup‐
port Copilot that I realized how tedious and slow the
development process can be.”

Conclusion
Copilot has quickly become a must-have AI tool for coding, greatly enhancing devel‐
oper productivity and code quality. This chapter has given you a rundown of its key
features, including its ability to suggest complex code blocks, its solid security meas‐
ures, its impressive performance, and its ease of use in VS Code. Features like Chat
and Inline Chat in Copilot make it possible to interact with the AI as you’re in the
middle of coding. Although it’s still a tool that needs human guidance, Copilot is defi‐
nitely a peek into the future of AI-driven coding.

82 | Chapter 4: GitHub Copilot

https://oreil.ly/4QQrB

CHAPTER 5

Other AI-Assisted Programming Tools

While GitHub Copilot is the big shot when it comes to AI-assisted programming,
plenty of other great tools are available. It’s common for developers to mix and match
a few of them in their day-to-day coding. What’s nice is that most of these tools follow
GitHub Copilot’s lead, so getting the hang of them isn’t too tough. You’ll use a com‐
ment to kick off a command and use handy shortcuts to get quick suggestions, and
they also have a handy chat feature.

In this chapter, we’re going to dive into different AI programming tools. We’ll check
out those from the big leagues like Amazon and also some neat finds from startups.
Plus, we’re not leaving out open source options—like Meta’s Code Llama—because
they’re definitely worth a look too.

Amazon’s CodeWhisperer
Amazon CodeWhisperer is like a Swiss Army knife extension for IDEs like VS Code,
PyCharm, and AWS Lambda. It’s powered by an LLM trained on massive amounts of
code and understands 15 programming languages. Amazon’s been careful about
adding new languages, focusing on accuracy and security rather than speed to mar‐
ket. There are two versions of CodeWhisperer:

• The Individual version is free—just sign up with your AWS Builder ID or Ama‐
zon login. It gives code suggestions, tracks where open source code comes from,
and does security checks.

• CodeWhisperer Professional costs $19 a month per user. It’s got everything that
Individual has, plus some extra features useful to bigger companies. There’s an
admin system to manage who gets access to what, and you can even control the
type of open source data used.

83

The cool part of the Professional edition is the customization feature. Companies
can tweak CodeWhisperer to give more relevant code suggestions based on their
own libraries, APIs, and frameworks. This means better quality and less time
wasted on outdated code. You can set up to eight different customizations.

Let’s dive into two of CodeWhisperer’s features:

• The reference tracker keeps an eye on how your code compares to open source
listings, showing what kind of licenses the open source code is using for the dis‐
tribution. This is useful for staying on the right side of the law and intellectual
property (IP) rights. Reference tracking shows annotations to the project’s reposi‐
tory, file reference, and license information. This can be helpful in making a deci‐
sion as to whether to use the suggestion or not, based on your organization’s
compliance requirements.

• The security scan runs in your IDE, checking for vulnerabilities, including the top
10 Open Web Application Security Project (OWASP) threats and Common
Weakness Enumeration (CWE) listings. It even follows best practices for crypto
libraries. If the security scan spots a vulnerability, it will offer up some fixes. This
speeds things up and cuts down on development costs. Considering the quirks
that can come with AI-generated code, having this built-in security feature is a
huge plus.

A perk of CodeWhisperer is how it meshes with AWS services. This means that
developers don’t need to be AWS wizards or slog through heaps of docs to use AWS.
Here are a few examples of what you can prompt it to do:

Prompt: # Write a Python function to upload a file to an S3 bucket.
Prompt: # Construct a Python Lambda handler to process records from a Kinesis
stream.
Prompt: # Write a Java method to query items from the DynamoDB table by sort key.
Prompt: # Write a bash script to stop an EC2 instance by instance ID using AWS CLI.
Prompt: # Create an RDS instance with a PostgreSQL engine using AWS CDK in Type‐
Script.

Amazon did a study on customers using CodeWhisperer and found that, on average,
developers were 27% more likely to successfully finish tasks and did so 58% faster
than developers who did not use the tool.

Take Accenture’s experience, for instance. Using CodeWhisperer for AI projects man‐
aged to cut development time by up to 30%. Tasks like preprocessing data, usually
time-consuming and tedious, got a lot quicker and more efficient. By simply using
prompts like the following, developers significantly boost their productivity:

Prompt: # Create a preprocessing data class script for ML data

84 | Chapter 5: Other AI-Assisted Programming Tools

https://aws.amazon.com/codewhisperer
https://oreil.ly/SFmVt

Consider Persistent Systems, a global digital engineering firm. Normally, new devel‐
opers needed at least four months of training to get project-ready. However, with
CodeWhisperer, they slashed this time to just one month.

Google’s Duet AI for Developers
Google is the brains behind Duet AI for Developers. This nifty AI-powered program‐
ming tool supports IDEs like VS Code, IntelliJ, PyCharm, GoLand, WebStorm, Cloud
Workstations, and Cloud Shell editor. Plus, it’s got your back with over 20 program‐
ming languages. It’s also built on Gemini, which is Google’s top-of-the-line LLM.

Duet AI has the features you would typically see with an AI-assisted programming
system, such as chat. There are also shortcuts, called smart actions, which are one-
click magic tricks for things like code explanations and unit tests.

Duet AI also takes security seriously. It’s got all the heavy-duty protections and safe‐
guards you need, like Private endpoints (Private Google Access), VPC Service Con‐
trols, and enterprise-grade access controls.

And let’s not forget about governance rules. When you toss your code into Duet AI,
you can rest easy knowing it’s not getting used to train any shared models or build
products. You’ve got full control when it comes to your data and intellectual property.
It will also flag instances where Duet AI thinks certain code may be copied—at
length—from a repository.

A big part of Google’s strategy with Duet is to build an extensive partnership ecosys‐
tem. For example, some partners provide support for developers on Google Cloud for
certain environments. This allows for better code suggestions as well as documenta‐
tion and knowledge sources. Here are some examples:

Elastic
This is the big shot in the search analytics space. Its Duet AI integration allows a
developer to get the lowdown on how to query, test, and work with Elastic data
without ever having to leave the development environment.

HashiCorp
This is a top provider of cloud infrastructure automation software. It has built a
system that makes it easy to use Terraform for writing configurations—based on
the HashiCorp Configuration Language (HCL)—and automations.

MongoDB
This is the leader in NoSQL databases. Using Duet AI, you can get access to best
practices and help with building apps.

Google’s Duet AI for Developers | 85

https://oreil.ly/K4ovC

Neo4j
This is one of the royalty of graph databases. You can use Duet AI to get advice
on such things as the Cypher query language. This can make it possible to
unearth hidden relationships and patterns in complex datasets.

Duet AI has a nifty trick up its sleeve. It has built Duet AI into the Google Cloud con‐
sole. To use it, click the Activate button on the top right of the main screen of the
console. Then a chat panel will pop up, as shown in Figure 5-1. You can then enter
prompts for tasks like creating scripts, understanding logs, or diving into JSON.

Figure 5-1. The chat panel for AI Duet in the Google Cloud appears on the right when
Activate is clicked

86 | Chapter 5: Other AI-Assisted Programming Tools

The chat is even available in the Google Log Explorer. If you spot a log that’s giving
you trouble, highlight it and click the Explain this Log button. The log will pop right
into the chat panel, and from there, you can ask for an explanation and even get some
suggestions on how to fix it.

The cost for Duet AI is $19 per user per month. There is also an up-front annual
commitment. If you are a new Google Cloud customer, there is a $300 free credit.

Turing AI, an AI technology service company, has been using Duet
AI. It has been able to achieve a hefty 33% boost in the develop‐
ment team’s productivity.

Tabnine
Tabnine stands as the pioneer in AI-assisted programming tools. It all started in 2013
when Dror Weiss and Eran Yahav set up the company. They’d been in the software
game since the 1990s, specializing in code analysis and simulation. But it was their
hands-on experience with the complexities of development that led them to a light
bulb moment: What if AI could be the solution?

And indeed, it did help. However, this was before the era of transformer models.
Faced with no other options, the founders rolled up their sleeves and built their own
models. This journey helped them deeply understand AI’s role in software develop‐
ment. Fast-forward to the last few years, and Tabnine has embraced the transformer
model.

The company has invested heavily in security systems. Here’s how it works: when
you’re typing away on your code, each character gets tokenized and encrypted before
being sent over to Tabnine’s inference server, which could be cloud based or on-site.
Tabnine makes a point of not storing your data, and no employee gets to read it. Plus,
Tabnine provides SOC-2 compliance.

For training its model, the company uses open source code with permissive licenses
like MIT, Apache, and BSD. This is important for organizations that are keen on pro‐
tecting their IP. Tabnine also values transparency about the code it uses for training. It
even gives developers ways to opt out of repositories that may be used in Tabnine’s
training datasets. This shows the company’s careful approach to licensing when it
comes to training generative models.

Tabnine | 87

https://oreil.ly/76D75
https://oreil.ly/76D75

Tabnine’s pricing structure includes three tiers:

• The Starter plan is free and caters to individual users, offering basic features like
short code completions and community support.

• The Pro plan costs $12 per month per user. It is designed for professional devel‐
opers and small teams and includes advanced features like whole-line and full-
function code completion, as well as natural language–to–code completions, with
standard support.

• The Enterprise plan is aimed at larger organizations seeking comprehensive secu‐
rity, control, and customization. It offers unlimited users, private and custom AI
models, private deployment options, and premium support. Pricing is available
on request.

Tabnine has garnered a large user base, with over a million monthly users and hun‐
dreds of thousands engaging with it daily. Notably, some of its prominent customers
include tech giants like Google, Amazon, Netflix, and Atlassian.

Replit
Replit is a versatile web-based IDE that supports numerous programming languages
and allows for hosting applications, known as repls. Its rich collaboration features are
similar to those found in Google Docs. Expanding its reach, Replit has also developed
a desktop version, which is available for macOS, Windows, Linux, Android, and iOS.
The platform boasts a substantial community of around 23 million developers.

Replit was founded in 2016 by Amjad Masad, Faris Masad, and Haya Odeh. The con‐
cept for Replit was conceived by Amjad over a decade prior to its establishment. Dur‐
ing this period, Amjad honed his skills in engineering roles at Yahoo! and Facebook,
focusing on building development tools. He was also instrumental in the founding of
Codecademy, further showcasing his commitment to innovative technology and edu‐
cation in coding.

Replit offers three subscription tiers:

• The free tier provides unlimited public repls and 10GB of storage.
• The Hacker plan costs $7 per month per user and offers unlimited private repls.

It comes with varying levels of memory and storage to suit different needs.
• The Pro plan is available for $20 per month per user and includes everything that

comes with the Hacker plan. In addition, while the basic system for code devel‐
opment is available with both lower tiers, Pro users gain exclusive access to the
most powerful AI model along with advanced features, offering a more robust
experience in code development.

88 | Chapter 5: Other AI-Assisted Programming Tools

https://blog.replit.com/ai4all

“Replit is an all-in-one software creation platform,” said David Hoang, VP of market‐
ing and design at Replit. “The product experience is designed to reduce the friction in
the software development process: dev environment, code authoring, and deploying
to production. Because of this, Replit is able to integrate AI beyond code generation.
Our code complete model is also powered by our own language model.”

Replit’s LLM is trained on a whopping one trillion tokens and is capable of under‐
standing 30 programming languages. When working on Replit, the code you write in
public repls, including keystrokes, might be used to further train Replit AI. If you’d
rather keep your work private and out of the training pool, you can opt to make your
repl private. It’s important to note that your rights over your code don’t change when
using Replit AI. Code in public repls is automatically licensed under the MIT License,
as outlined in Replit’s licensing information.

Figure 5-2 shows the IDE. On the top left is a file tree and search box. In the middle,
you’ll find the editor, and the output (e.g., the console) shows up on the right side of
the screen. On the bottom left, you see the available tools. If you select AI, the chat
feature comes up in the right panel.

Figure 5-2. The UI for Replit includes a file tree and search box, icons to select tools, an
editor box, and an output panel

Replit | 89

If you highlight code and press the right mouse button, you will get these options:

Explain
Replit offers a feature to give a helpful explanation of your code. If the explana‐
tion doesn’t quite hit the mark, you can simply click Retry to ask Replit to take
another shot. Additionally, if you have specific questions, there’s an Ask Chat
option available from a pull-down menu at the top of the Explain box. Replit
provides other useful functionalities as well, such as Ask Replit Documentation,
Edit Code, and Generate Code, to assist with your coding.

Modify (Ctrl+I)
In Replit, you have the ability to modify code through prompts. For example, if
you’ve highlighted a section of code for a binary search, you can write a prompt
requesting a transformation of that Python code into a JavaScript function. Alter‐
natively, you could ask for the code to be altered to use a recursive approach. The
Modify feature offers a flexible and interactive way to experiment with and refine
your code.

To showcase just how user-friendly and powerful this tool is, let’s check out some
interesting stories:

Diabetes app
When London-based iOS developer Marwan Elwaraki learned of his younger
brother’s diabetes diagnosis, he was determined to create an app for monitoring
blood sugar levels. He and his wife, Salwa Al Alami, wanted to team up to create
something useful and unique. “While on a plane, I prototyped a Lock Screen
widget by connecting a widgets app with the blood sugar tracker’s API and was
able to see my brother’s blood sugar,” said Marwan. “This was significantly better
than having to open the app to see the latest reading.”

They added buttons to send messages and improved the texting capabilities.
Then they published it as a public app on the iOS App Store.

While Marwan was an experienced mobile frontend developer, he had little expe‐
rience with Python or backend development, and Salwa was a product manager
with no coding experience. At first, they used ChatGPT, but Replit AI would
make a big difference. “The AI tools have helped generate or at least double-
check almost all the backend written for my app,” said Marwan. “I’ve heard the
stories about big increases in developer productivity and I can honestly vouch
this in my case.”

Hackathon to startup
Priyaa Kalyanaraman, with her impressive stints as a product manager at Micro‐
soft, Snapchat, and Waymo, lacked a technical background but didn’t let that stop
her. She took part in the Craft Ventures AI Hackathon, leveraging Replit AI to
whip up an app designed to simplify and add fun to content creation. Her efforts

90 | Chapter 5: Other AI-Assisted Programming Tools

paid off handsomely as she clinched the $10,000 grand prize. Leveraging her
product management expertise, she meticulously prepared detailed specs and
logically structured the app. This winning app later became the foundation for
her startup, Lica, which successfully secured a pre-seed investment round.

CodeGPT
CodeGPT, an extension designed for VS Code, provides a variety of pricing options.
These range from a free plan to a premium tier costing $49.99 per month for each
user. There’s also a 10-day free trial available for those who want to test the service
before committing to a subscription.

To set up the CodeGPT extension, first click on File. Then navigate to Preferences
and select Settings. This will open up the Settings window. From there, on the left
side, click on Extensions and then choose CodeGPT.

What’s interesting about CodeGPT is its ability to integrate with a range of LLMs.
This includes models from OpenAI, Cohere, AI21, and Anthropic, among others.
Setting up an API account with Hugging Face grants access to a wide array of open
source platforms, further expanding the tool’s versatility.

Once you select a model, you can configure it based on factors like the following:

• Max tokens for the prompt and response
• Temperature
• Window memory (the number of past threads in a chat)

Another interesting feature of CodeGPT is its API, which is handy for applications
like chatbots, virtual assistants, or any other system requiring the understanding and
generation of human-like text. Its RESTful API design ensures broad compatibility
and straightforward integration with various platforms. Moreover, CodeGPT offers
SDKs in Python and JavaScript, adding to its implementation flexibility. This API is
part of a broader initiative to transform the coding process, aiming to make sophisti‐
cated AI tools available for a wide range of development projects.

Cody
In 2013, Quinn Slack and Beyang Liu came together to found Sourcegraph, with the
aim of developing code search tools. Beyang was inspired by his experience at Goo‐
gle, where he saw firsthand the advantages of the company’s internal platform for
code intelligence and insights, which was especially beneficial for handling large
codebases.

Cody | 91

https://www.codegpt.co

Sourcegraph’s primary goal became the creation of advanced tools to tackle “big
code.” The level of complexity is a significant challenge in this field. A survey by Sour‐
cegraph highlighted this issue: about 77% of developers reported a fivefold increase in
their codebases over three years. What’s more, 72% expressed concern that the bur‐
geoning scale of big code could pose a real threat to their company’s capacity for
innovation and competitiveness.

AI plays a crucial role in Sourcegraph’s strategy, and the company has developed an
AI-driven code generation system named Cody. Cody relies on LLMs from
Anthropic and OpenAI. There is also the use of Starcoder as well.

“We have leveraged our search capabilities for this tool,” said Liu. “Keep in mind that
80% of a developer’s time is about reading and understanding code, not creating it. So
with Cody, it scans the whole codebase. But we also make it easy to bring in other
libraries and frameworks. What we have seen is that there are better results.”

Here are some of the prompts you can use with this platform:

Prompt: How is this repository structured?
Prompt: What does this file do?
Prompt: Where is X component defined?

In terms of pricing, Sourcegraph offers a free product and two paid tiers:

• The free tier includes various features like code autocomplete, chat, and context
awareness.

• The Pro edition costs $9 per user per month. With Pro, you get:
— Unlimited autocompletes, messages, and commands
— Personalization with larger codebases
— Multiple LLM choices for chat
— A higher level of support

• The Enterprise edition is tailored to the needs of larger organizations. It costs $19
per user per month and offers:
— User management
— Single-tenant deployment
— Audit logging
— Pooled organization usage
— Daily rate limits while in beta
— Web and API access
— Configurable LLMs

92 | Chapter 5: Other AI-Assisted Programming Tools

https://oreil.ly/Pu6Gp
https://oreil.ly/Pu6Gp

To get a sense of Cody’s potential, let’s consider what Deepak Kumar, a full-stack
developer and an open source contributor to Cody, has to say: “The features that
stand out for me are the Chat and the Commands. I use the Chat to answer any
coding-related questions, starter ideas for a project, or fix a bug. Commands are pre‐
defined custom prompts, which are helpful as they help me wrap up the ad-hoc tasks
like writing docs and adding tests.”

In July 2021, Sourcegraph announced a Series D funding of $125 million at a $2.625
billion valuation. Investors included Andreessen Horowitz, Insight Partners, and
Geodesic Capital.

CodeWP
WordPress is a highly popular open source content management system (CMS)
renowned for its simplicity and versatility as well as its extensive selection of themes
and plugins. Initially launched as a blogging platform, it has expanded to accommo‐
date various types of websites, including those optimized for ecommerce, portfolio
presentation, and general business. Its appeal lies in its user-friendly interface and
customizable options. A significant portion of the web relies on WordPress; W3Techs
reports that about 45.8% of all websites on the internet are powered by this platform.

AI-assisted programming presents a significant opportunity for WordPress develop‐
ment, a potential that CodeWP has capitalized on. The company was founded by
James LePage, who created a WordPress agency during his high school years.
Although the business experienced rapid growth, it was labor intensive. The intro‐
duction of AI-assisted programming technology enabled a substantial increase in
productivity. A key benefit was James’s deep understanding of the common use cases
in WordPress development, which further enhanced the effectiveness of the AI.

CodeWP offers a web-based platform with a free version and two premium options.
Both premium plans come with a discount of up to 33% for annual subscriptions:

• The Professional plan, priced at $18 per month per user, provides additional AI
transactions, projects, and support.

• For larger-scale needs, there’s the Agency plan at $48 per month per user. This
caters to professional web development and marketing firms, with unlimited
projects and collaboration features.

Go to the CodeWP site to create an account. Click on Create New and then select
New Snippet to create code or New Chat if you just have questions.

The left side of the screen has options for storing snippets as well as for tracking con‐
versations and listing projects. In the middle is the editor, which has contents of the

CodeWP | 93

https://oreil.ly/bSI3N
https://oreil.ly/NiXTW
https://codewp.ai

file you’re working on. You can click New File if you want to create a new file. On the
right side is a chat function.

Here are some sample prompts:

Prompt: Register a custom post type called “book” with the label of “Books.”
Prompt: Create a WordPress widget called “My Widget” using the WP_Widget class.
Prompt: Create a custom plugin activation hook for the register_activation_hook func‐
tion.

CodeWP extends its support to various key components within the WordPress eco‐
system. This includes compatibility with major tools like WooCommerce, WPSimple‐
Pay, Gravity Forms, SearchWP, and Contact Form 7 among others.

CodeWP features a live preview option that provides an instant view of what your
code will do, making testing and debugging a breeze. Moreover, when working on
WordPress projects, CodeWP simplifies the deployment process. Its integrated tools
allow you to easily transfer your code to a WordPress site, making the task of apply‐
ing and testing your code in a real-world setting much more efficient.

Warp
The command-line interface started back in the 1960s, growing up alongside the
early days of operating systems like Multics and Unix. While flashy graphical inter‐
faces have emerged over the years, the CLI has mostly stayed true to its roots. It’s all
about keeping it simple: you type your commands in plain text and get back just what
you need, no frills attached.

CLIs are incredibly widespread despite their simplicity. They’re essential for taking
care of cloud systems, dealing with files and programs on your computer, and setting
up smooth workflows. They’re good at automating tasks, processing data, managing
networks, and developing software.

Getting the hang of CLIs can seriously speed things up and make you more precise. A
standout benefit is that you can mix and match different commands to handle com‐
plex tasks. Plus, since you can program these command lines, you’ve got much more
room to tweak things to your liking and automate tasks. This means developers can
set things up just how they need them, making their whole workflow smoother and
more efficient.

While CLIs are powerful, they’re not perfect. A big problem is that they’re not great
for collaboration and so can trip up productivity and teamwork. When you close a
terminal session, you lose everything. Command lines are also usually stuck on one
machine, making it a pain to switch between devices. Moreover, terminals can be
intimidating, especially for tricky tasks. And let’s not forget: getting good with CLI
commands and their syntax isn’t exactly a walk in the park for a lot of people.

94 | Chapter 5: Other AI-Assisted Programming Tools

So yes, there is room for innovation in the category. And a startup that is helping to
lead the way is Warp.

Zach Lloyd, who is the founder and CEO, started the company in 2020. Before this,
he worked at Google as a principal engineer for Google Sheets. “I’ve been a developer
for over 20 years,” said Lloyd. “While the CLI is powerful and very useful, there was
lots of room for improvement.”

Warp was built with Rust, a programming language that’s known for being fast and
efficient. Instead of sticking to the usual JavaScript, Warp uses Rust’s strengths to run
almost like an app you’d install on your computer, but instead it’s right in your
browser. This clever twist with Rust means a smoother and snappier experience for
anyone using Warp, making the whole interaction with the app a lot better.

Think of Warp as a terminal on steroids. It boasts advanced text input features like
selections, cursor positioning, and completion menus, allowing users to seamlessly
navigate their command history. This eliminates the hassle of scrolling through long
texts. Furthermore, Warp makes copying output a breeze with a simple click.

In Warp, every command and its output form a distinct block. You can effortlessly
hover over these blocks to revisit past commands. Selecting a block enables the use of
Warp AI, accessible via the right-click menu, which provides explanations and solu‐
tions for errors. This is in stark contrast to traditional CLIs, which offer limited guid‐
ance and depend heavily on the user’s expertise to decipher error messages and
troubleshoot.

Warp AI also comes with a chat function. You use this by starting the prompt with a
#. For example, suppose you want to know the following:

Prompt: # How do I use grep to exclude directories in a recursive search?

Warp will provide an answer to this question, which you can then copy into the
terminal.

Now keep in mind that Lloyd is an avid user of Copilot for his own development. “I
use this tool alongside Warp,” he said. “They work very well together.”

A big fan of Warp is Mike Krieger, a cofounder of Instagram. He said, “I have been
using Warp every day at work. My favorite thing is the speed: both in terms of how
fast it works and also how fast you feel while using it, especially the excellent type-
ahead and search. Warp brings terminals into the modern day, and I can’t wait to see
where they take Warp.”

Warp is available on Mac, Linux, and Windows. There is a web version as well. The
pricing for Warp is structured into three tiers:

• The free version provides up to 20 AI requests daily.

Warp | 95

https://www.warp.dev
https://oreil.ly/_Zhk7
https://oreil.ly/VwV0f

• For more extensive use, there’s the Team edition, priced at $12 per month for
each user and offering up to 100 AI requests per day.

• Larger organizations with specific requirements will want to consider the Enter‐
prise version, with custom pricing tailored to the customer’s needs.

Bito AI
In 2006, Amar Goel and Anand Das started PubMatic, an online advertising com‐
pany, and took it public in 2020. Their journey with PubMatic led them to recognize
the potential of AI to enhance coding productivity, sparking the idea for Bito AI.
Mukesh Agarwal, with his experience as a product lead at Microsoft and Ernst &
Young, joined them as a part of the founding team.

Bito has multilingual capabilities, supporting 20 languages, including unique blends
like Hinglish, a combination of Hindi and English.

This tool is equipped with several notable features. One allows you to create custom
prompt templates for frequently used coding structures, streamlining the develop‐
ment process. Moreover, the platform includes security and performance checks, pro‐
viding recommendations for optimizations to enhance both the safety and efficiency
of code.

Bito boasts a substantial context window of approximately 240,000 tokens, enhancing
its understanding and analysis capabilities. Furthermore, it uses a vector database
that’s local to the user’s machine. This enables the system to effectively handle large
codebases, ensuring the generation of more relevant and accurate results. This capa‐
bility significantly contributes to the tool’s efficiency and effectiveness in managing
extensive coding projects.

It is also good with handling memory leaks. These happen when a program grabs
some of your computer’s RAM and then forgets to give it back. If this keeps happen‐
ing, it can cause real headaches. As the program keeps running, it keeps leaking
memory, which eats into the total memory you have available. This can slow things
down, as your system starts using swap space because there’s not enough physical
memory left. And if the leakage gets really bad, memory leaks can even make the pro‐
gram or your whole computer crash because it runs out of memory.

Memory leaks can be tricky to spot and fix. They usually don’t cause problems right
away and might only start showing up after the program’s been running for a while.
This delay makes it even harder to figure out and sort them out. But Bito can sniff out
potential memory leaks. You just use the Insert Code Selected in IDE option and
throw in a prompt like this:

Prompt: Identify any issues with the code.

96 | Chapter 5: Other AI-Assisted Programming Tools

And guess what? It not only flags the problems but also throws in some suggested
fixes.

When it comes to privacy, Bito makes sure not to store any of your actual code. How‐
ever, it does keep hold of the metadata that gets generated along the way.

Two versions are available:

• There’s a free version for individual users.
• A paid option is available at $15 per month per user. It includes features like

unlimited AI code completions and access to the extensive 240,000-token context
window, enhancing the overall coding experience.

Based on Bito’s internal analysis, users of the tool reported a 31%
increase in productivity. They also used the tool almost 200 times a
month. Currently, the platform boasts around 100,000 users.

Cursor
Anysphere is the developer of Cursor. The company certainly has a bold vision for it:

In the next few years, we’d like to build a code editor that is more helpful, delightful,
and fun than the world has ever seen. Cursor should be a place where it’s impossible to
write bugs. An editor where you whip up 2,000-line PRs with 50 lines of pseudo code.
A tool where you get any codebase question answered instantly. Perhaps even an inter‐
face where the source code itself starts to melt away…

In the meantime, Cursor is still quite powerful. It has also attracted interest from
investors like OpenAI. In October 2023, the company successfully raised $8 million
in funding, bringing its total capital raised to $11 million.

Cursor offers a choice between GPT-4 and GPT-3.5, but it also enhances its capabili‐
ties with proprietary models. These models include 1.4 billion vectors and access to
150,000 codebases. Additionally, the platform incorporates advanced AI techniques
like Merkle trees, further boosting its effectiveness.

Cursor is a fork of VS Code and is compatible with Windows, Mac, and Linux. This is
a huge plus as it spares you the hassle of learning a new IDE. When you download
Cursor, it conveniently lets you import your existing VS Code extensions. You can
take advantage of its AI features right within the CLI, seamlessly integrating advanced
capabilities into your familiar coding environment.

Cursor | 97

https://oreil.ly/xKYaw
https://cursor.sh
https://oreil.ly/E2IrW

For example, in the chat area, you can easily import documentation and ask it ques‐
tions. Here’s a sample prompt:

Prompt: @python docs

Or you can use @ to work with a particular file. You can enter something like:

Prompt: What does @the_app.ts do?

Cursor offers the ability to debug directly in the terminal. Its AI sifts through your
files and engages in a logical process to pinpoint and attempt to resolve the issue,
streamlining the troubleshooting experience.

Jeffrey Biles, a full-stack web developer, is an early adopter of Cursor. He said:

I really enjoy being able to quickly load app context into the AI with a keystroke. It
works great for answering questions, remembering syntax, refactoring small sections
of code, and writing boilerplate. However, it reaches its limits when asked to under‐
stand larger data models spread across multiple files. However, this will only get better
as the models get better, such as with larger context windows.

Tosh Velaga is another user of Cursor. He is a software engineer and founder of sev‐
eral AI companies like Typeblock and STBL, which makes Stable Diffusion. Accord‐
ing to him:

A feature I really like is the Command+L shortcut to ask questions about the code.
This is super useful when I’m in a new codebase with a backend language I do not have
experience with. This feature has helped me get up to speed much faster. Something
else I think is a benefit is that you can bring your own API key so you can save on costs
and switch between GPT-3.5 and GPT-4.

Code Llama
There’s a growing number of open source projects focused on AI-assisted develop‐
ment, and it’s a hot topic in academic circles, too. One of the big names in this space
is Meta. Its Code Llama system has been making waves since its launch in August
2023.

Code Llama is built on the LLaMA 2 LLM, which is trained on a staggering 2 trillion
tokens and a context length of 4,096 tokens. It includes fine-tuned models that have
been beefed up with training on over a million human annotations, making them
even more effective and reliable.

LLaMA 2 has special versions like LLaMA 2-Chat, which is tailor-made for chat
applications and outperforms other open source chat models on key benchmarks,
especially in helpfulness and safety. Plus, it’s integrated with platforms like Hugging
Face and has major partnerships with companies like Microsoft and Amazon for
cloud services deployment.

98 | Chapter 5: Other AI-Assisted Programming Tools

https://typeblock.co
https://www.stablediffusionai.dev
https://ai.meta.com/llama

Code Llama is versatile, supporting most of the big languages like Python, C++, Java,
PHP, JavaScript, C#, and Bash. It comes in three model sizes with 7, 13, and 34 billion
parameters respectively. They’ve all been trained on a massive 500 billion tokens of
code. The interesting thing about the 7B and 13B models is that they’re geared up
with fill-in-the-middle ability, so they can slot code into existing scripts. This makes
them useful for tasks like code completion. The 7B model can run on just a single
GPU, and it’s usually quicker. But, as you’d expect, the 34B model packs a bigger
punch in terms of power.

Code Llama goes beyond what the LLaMA 2 base model offers. All its models can
handle up to a whopping 100,000 tokens in context. This is great for whipping up
code for longer programs. This bigger context window makes it a whiz at debugging
too.

There are a couple of specialized versions of Code Llama. First up, there’s the Python
version, which has been sharpened by using a massive 100 billion tokens of code.
Then there’s the Instruction version. This one has been given extra training in natural
language to boost results on natural language applications.

Code Llama 34B has shown impressive results. It has scored a solid 53.7% on
HumanEval and 56.2% on MBPP (Mostly Basic Python Programming). These scores
are better than those of other open source projects, and Code Llama’s performance is
on a par with that of ChatGPT. Moreover, Code Llama has been put through the
wringer with security testing. Meta notes that its responses are even safer than
ChatGPT’s.

Other Open Source Models
There’s been some cool innovation happening in open source for code generation.
Let’s check out some of the standout platforms.

StableCode
Stability AI, which is behind the popular text-to-image system Stable Diffusion, came
up with StableCode. StableCode is trained on the open source project BigCode, a
joint venture between Hugging Face and ServiceNow Research. BigCode put together
a dataset called The Stack, which is a massive 6.4TB collection of unique, freely usable
GitHub code—perfect for training AI models.

StableCode’s got its own unique technology, using rotary position embedding (RoPE)
instead of the ALiBi (Attention with Linear Biases) method. StableCode has been
fine-tuned significantly, including by cleaning up the data. It’s quite versatile, sup‐
porting languages like Python, Go, Java, JavaScript, C, Markdown, and C++.

Other Open Source Models | 99

https://oreil.ly/JNY1n
https://oreil.ly/JNY1n

There are three versions of StableCode to check out:

StableCode-Completion-Alpha-3B-4k
This is a decoder-only model with 3 billion parameters, great for handling a
bunch of languages and a 4,000-token context length.

StableCode-Instruct-Alpha-3B
Also a 3 billion parameter model, this version is tuned for instructions.

StableCode-Completion-Alpha-3B
Also with 3 billion parameters, this version is a whiz at doing extensive code
completion, handling up to 16,000 tokens.

AlphaCode
DeepMind, which is part of Google, whipped up the AlphaCode AI system. It per‐
forms well in code competitions, scoring in the top 54% in contests on Codeforces, a
website that hosts competitive programming contests. AlphaCode was able to handle
different sorts of tough tasks that needed a mix of critical thinking, logic, algorithms,
coding skills, and understanding of natural language. This system even got a shoutout
for its abilities in Science magazine.

Code competitions are usually about tricky algorithms and brain-bending theoretical
problems, which are a bit different from your everyday programming tasks. Take this
one test that AlphaCode has to tackle, a tough problem called Backspace. Competi‐
tors had to play around with two strings, s and t, and use Backspace to change s into t.
Success is not just about getting the complex problem right. It’s also about coming up
with smart algorithms. This shows off the kind of advanced problem-solving skills
needed for competitive programming.

DeepMind aims to use AlphaCode for the complete automation of code generation,
marking a significant advancement in AI-driven coding.

PolyCoder
PolyCoder is particularly good at speeding up C programming, so the system appeals
to game developers. PolyCoder is also a champ at summing up code in multiple lan‐
guages. Thanks to training on a varied dataset, it’s good at picking up common pat‐
terns and structures in a bunch of programming languages, like C, C++, Java, Python,
and JavaScript.

PolyCoder is trained on a data set of 249 GB covering 12 different programming lan‐
guages. Plus, it’s packed with 2.7 billion parameters.

100 | Chapter 5: Other AI-Assisted Programming Tools

https://oreil.ly/6E7cK

CodeT5
CodeT5 uses an all-in-one pretrained encoder–decoder model. This makes it good at
different coding tasks, such as spotting bugs in code or finding code clones, as well as
at new structures, whether it’s turning programming language into plain English or
vice versa or even switching between programming languages.

Its design includes special tricks that boost its ability to get code right, both in under‐
standing it and spitting it out, by making the most of the deep structure that’s built
into programming languages.

CodeT5 has really shown its stuff on 14 different challenges in CodeXGLUE (General
Language Understanding Evaluation benchmark for CODE). It’s blown past older
models like PLBART in all the generating tasks, like summing up code, turning text
into code, translating between codes, and polishing code. And when it comes to
understanding tasks, CodeT5 has been quite effective in finding bugs and done just as
well in spotting copycat code.

Enterprise Software Companies
Mega software companies like SAP, ServiceNow, and Salesforce have been making
their own code generation systems. They’ve got major advantages: huge customer
bases, enormous resources, extensive distribution networks, and trusted brands.
Their big talent pool is a big help, too. Plus, they’re large enough in the market to set
trends and standards.

Integrating new technology with their existing products means they can offer com‐
plete solutions, keeping customers coming back. Because they’ve already got the
infrastructure and a global presence, they can scale up these new technologies fast,
meeting what the market wants both now and in the future.

Here’s a look at some of the code generation systems from these companies:

Salesforce Code Builder
This makes it easy for a developer to tweak their CRM and other bits and pieces
in Salesforce. It helps get things just right with the latest Salesforce languages and
frameworks. Furthermore, you can grab third-party add-ons from the Open VSX
marketplace, which is a big open playground for VS Code extensions. And the
best part? You don’t need to mess around with installing or setting up these fea‐
tures. They’re ready to go right off the bat.

SAP Build Code
This is made for Java and JavaScript users. Plus, it hooks up with SAP Joule,
which is SAP’s own AI sidekick. You also get to tap into some powerful database
systems, like SAP’s HANA (High-performance ANalytic Appliance).

Other Open Source Models | 101

https://oreil.ly/frVS6
https://oreil.ly/qpHLM
https://oreil.ly/u8cKy

StarCoder LLM
ServiceNow and Hugging Face teamed up to create this open source project. It’s
beefy, with 15 billion parameters and trained on a whopping trillion tokens
across more than 80 programming languages. They keep things above board with
governance, safety, and generally sticking to the rules, training only on code that’s
gotten the green light from permissive licenses.

Conclusion
AI-assisted programming tools are shaking things up for developers, offering some
seriously cool new abilities. Big names like Amazon, Google, Meta, and Salesforce are
all over this. And let’s not forget the small, innovative startups that are turning heads
with their neat features and wallet-friendly prices. Open source projects are also mak‐
ing waves by making top-notch AI coding tools available.

As these AI models get bigger and smarter, they’re getting even better at writing,
explaining, and tweaking code. Looking ahead, successful enterprises will make these
tools fit smoothly into what developers are already doing.

102 | Chapter 5: Other AI-Assisted Programming Tools

https://oreil.ly/kBEdY

CHAPTER 6

ChatGPT and Other General-Purpose LLMs

In this chapter, we’re going to dive into some widely used general-purpose large lan‐
guage models that can whip up code. Sure, they might not have all the bells and whis‐
tles like those that specialize in coding—such as with integration with IDEs,
sophisticated security, or guardrails for the types of code used to train the models—
but they’re still impressive. Plus, they’re not just about coding; they’re also great for
planning and brainstorming.

We’ll check out the big-name chatbots like ChatGPT, Gemini, and Claude. I’ll walk
through how to set them up, what they cost, what their cool features are, and how to
get the most out of them.

ChatGPT
ChatGPT, short for Chat Generative Pretrained Transformer, exploded on the scene
on November 30, 2022. OpenAI, the brains behind the app, didn’t really splash out on
marketing. Turns out, they didn’t have to. ChatGPT quickly blew up and went viral all
on its own.

In just five days, this app pulled in a million users, and within a couple of months, the
number of users skyrocketed to 100 million. It became the quickest-growing platform
in internet history.

Sandhini Agarwal, who helps to develop policy at OpenAI, noted, “I think it was defi‐
nitely a surprise for all of us how much people began using it. We work on these
models so much, we forget how surprising they can be for the outside world some‐
times.”

103

https://oreil.ly/jgzv7
https://oreil.ly/54fAU

The buzz kept growing. By September, ChatGPT had over 1.5 billion visits, and reve‐
nues had shot up to $1.2 billion, a massive leap from a mere $28 million in 2022. But
it wasn’t all about ChatGPT itself. There was also a booming business with OpenAI’s
API.

Let’s get the quick backstory on OpenAI. It started up in 2015 and had some big
names from Silicon Valley backing it, like Elon Musk, Sam Altman, Greg Brockman,
Ilya Sutskever, John Schulman, and Wojciech Zaremba. They were ready to pitch in
up to a cool $1 billion to get things rolling.

OpenAI kicked off as a nonprofit, and it had more of an academic vibe, staffed mostly
with PhDs in data science and AI. The mission was to achieve artificial general intelli‐
gence (AGI), the technology that can outdo humans in most tasks that matter. The
goal had an altruistic component: to use AGI for the greater good and steer clear of
any uses that might hurt people or give too much power to the few.

In the early days, OpenAI was focused on research and sharing its findings with oth‐
ers. The organization made its patents and code public, working hand in hand with
other institutions. But the cost of creating cutting-edge generative AI systems was
steep.

To keep its big dreams alive and bring in the right people, OpenAI created a “capped”
for-profit company in 2019. This meant they could now legally get cash from venture
funds and strategic investors, as well as give their employees a slice of the pie. That
same year, Microsoft came in with a $1 billion investment. A few more rounds of
investment brought in a total of about $3 billion from Microsoft. Fast-forward to
April 2023, and the tech giant went all in, dropping a whopping $10 billion into the
mix.

GPT-4
OpenAI’s GPT-4 model exhibits remarkable versatility in code generation, owing to
its diverse training data encompassing a broad spectrum of sources. This extensive
training has enabled human-level performance on several professional and academic
benchmarks, and GPT-4 has consistently outperformed GPT-3 and GPT-3.5 in most
programming languages. This is largely due to its enhanced ability to follow complex
instructions expressed in natural language and generate technical or creative works
with greater depth. Another key factor is the 32K context window.

104 | Chapter 6: ChatGPT and Other General-Purpose LLMs

https://oreil.ly/Xlv3B
https://oreil.ly/Xlv3B

Interestingly, when evaluated on specific code generation benchmarks, an enhanced
version of GPT-4 integrated with Reflexion—a framework for creating sophisticated
agents based on LLMs—rocked an impressive 88% pass rate on HumanEval. This
score was notably higher than that of the base version of GPT-4, which had a 67%
pass rate. This suggests that, with certain improvements, GPT-4 can attain state-of-
the-art performance in code generation tasks.

When pitted against competitive programming scenarios on the Codeforces plat‐
form, GPT-4 scored a rating of 392 points, an improvement over GPT-3.5’s 260
points. However, GPT-4 is still a newbie in the world of competitive programming,
and these scores are in the bottom 5%. Even though GPT-4 has come a long way, it
still has a lot of catching up to do to match human skills in tough coding challenges.

Navigating ChatGPT
For this chapter, I will be using the premium version of ChatGPT, ChatGPT Plus. A
monthly subscription costs $20.

Here’s the cool stuff you get:

Always in
Even when everyone’s trying to use ChatGPT, premium subscribers get preferen‐
tial access during peak times.

Quick replies
Things move faster with ChatGPT Plus. You get your answers quicker, making
chats smoother and more fun.

First dibs on new offerings
If there’s a shiny new feature or an upgrade, Plus members get to try it out before
everyone else.

Latest model
You get access to it.

Figure 6-1 shows the interface for ChatGPT.

At the top left, you can hover over the dropdown to select the model you want or to
access the plugin store. On the left side of the screen, you can click a button to create
a new chat session. At the bottom, you will see your user profile, where you can get
information about your ChatGPT plan, change your settings, and add custom
instructions. You can also change the theme for the UI: options include system, dark,
and light. Then at the bottom, there is the input box where you can enter a prompt.

Navigating ChatGPT | 105

https://oreil.ly/DFaDj
https://oreil.ly/icUjw

Figure 6-1. The interface for the ChatGPT system allows you to select the GPT model
you want and enter prompts

Let’s try out some of the features. Suppose you want to create code. You enter this into
ChatGPT:

Prompt: Write a Python code snippet that calculates the factorial of a number.

Figure 6-2 shows the response.

Suppose you want to see if there are other ways to create the code. You can ask:

Prompt: What is another way to create this code?

ChatGPT provides another code suggestion, which is called the iterative approach.
But suppose you do not know what this is? Again, you can continue with your chat.
As you do this, the chat session will be logged in the top left of the screen, as you can
see in Figure 6-3. ChatGPT labels the chat “Factorial Calculation in Python.” If you
want, you can rename it by clicking the icon next to it. There is also a delete icon.

106 | Chapter 6: ChatGPT and Other General-Purpose LLMs

Figure 6-2. ChatGPT has created a Python code snippet in response to a prompt

Figure 6-3. ChatGPT logs chat sessions at the top left of the screen

Want to create a new session? Click the pencil icon at the top. You’ll get a blank
screen.

Navigating ChatGPT | 107

Keep in mind that each session is self-contained. So if you ask ChatGPT in a later ses‐
sion about the code it created for the factorial calculation, it will not know what you
are referring to.

Something else to consider is the context window for the chat session. This is impor‐
tant because it determines how much of the previous conversation or text the model
can “remember” and use to generate coherent and contextually relevant responses.
For GPT-3.5, the context window is 16K, but for GPT-4, it is 32K.

If you want to delete all the chat threads, you will click your profile
at the bottom left of the screen and select Settings and Beta. Then
click the Clear button.

When you select your profile and then Settings & Beta, you’ll find other options for
your ChatGPT data:

Switching off chat history and model training
If you turn off your chat history, your new chats won’t be used for training the AI
and won’t show up in the history on the side panel. But OpenAI will still hang on
to all chats for 30 days before they’re gone for good, primarily for legal purposes.

Sharing chats
Got an interesting thread? You can turn it into a link and share it with others.

Downloading your chat data
Choose this, and you’ll get an email with all your ChatGPT conversations.

Sometimes, ChatGPT might stop in the middle of generating text.
When this happens, usually you’ll see a Continue button pop up.
Click that button to keep the text rolling. If there’s no button, just
type “continue output” in the prompt. And if it’s not giving you
what you’re after, just click the Stop Generating button to put a
pause on it.

Mobile App
ChatGPT’s got your back on both iOS and Android devices. The apps are fairly simi‐
lar to the web version, although, at least for now, they do not have features like
plugins.

You can have voice chats with ChatGPT on your phone. This is convenient if you’re
not a fan of typing on tiny screens. Just head over to the New Features section in the
settings and opt in to get started. Once you’ve turned this feature on, tap the head‐
phone icon at the top-right corner of the home screen to start talking with ChatGPT.

108 | Chapter 6: ChatGPT and Other General-Purpose LLMs

You get to pick from five different voices for ChatGPT to chat back with. This voice
system works thanks to a generative AI text-to-speech model called Whisper.

The mobile version of ChatGPT makes chatting even more fun by letting you share
pictures with the assistant. You can snap a photo of anything, like an object, a land‐
mark, or even some code, and then dive into a chat with ChatGPT about it. There’s
also a nifty drawing tool in the app, so you can highlight a specific part of your image
while you’re talking about it.

Custom Instructions
With custom instructions in ChatGPT, you can tweak how the responses come out to
suit what you need. This feature lets you save time because you don’t have to keep
fine-tuning responses or coming up with new prompts every time you chat with the
bot. You can switch on custom instructions in your profile.

When you set up a custom instruction, you’ll need to answer these two questions:

ChatGPT: What would you like ChatGPT to know about you to provide better
responses?
ChatGPT: How would you like ChatGPT to respond?

Let’s take an example:

ChatGPT: What would you like ChatGPT to know about you to provide better respon‐
ses?
Developer: I am a programmer working with a team that follows the PEP 8 style guide
for Python code. We value clean, readable code and adhere to best practices. I usually
work on data processing and analysis tasks, and I often need help with writing efficient
and well-structured code.
ChatGPT: How would you like ChatGPT to respond?
Developer: I would like ChatGPT to provide Python code snippets that adhere to the
PEP 8 style guide. It should prioritize readability and best practices in coding. When
suggesting solutions, I prefer explanations as to why a particular approach is recom‐
mended and how it aligns with PEP 8 standards. I would also appreciate it if ChatGPT
could point out any common pitfalls or errors related to the task at hand and provide
tips for avoiding them.

Browse with Bing
ChatGPT’s training has a cutoff of April 2023. This can be a problem for developers.
With libraries, frameworks, and tools changing so fast, any number of new features or
capabilities may have popped up since then, and ChatGPT won’t be up-to-date on
them.

Browse with Bing | 109

But ChatGPT’s got a trick up its sleeve: Browsing with Bing. It lets you do real-time
web searches to come up with answers.

Let’s say you’re checking out a new framework, like LangChain. It’s been on the scene
since late 2022, and it has evolved a lot. It’s also designed to make app development
with LLMs smoother, so you might like to use it.

To activate Browse with Bing and enhance ChatGPT’s understanding of where Lang‐
Chain is at right now, add something like “Use the internet for this response” to your
prompt. Here are some examples of prompts designed to get general information
about LangChain:

Prompt: Tell me about the LangChain framework and its primary features. Use the
internet for the response.
Prompt: Check the internet for introductory resources or documentation for getting
started with LangChain.
Prompt: Browse the internet for examples of applications that have been built using the
LangChain framework.
Prompt: Look up any recent updates or releases related to the LangChain framework.
Use the internet for the response.

When responding to these prompts, ChatGPT did provide fairly useful answers. For
example, for the first prompt, ChatGPT came up with five main features of Lang‐
Chain, which you can see in Figure 6-4.

You can also change the format of this content. Try this prompt:

Prompt: Turn this into a table.

Figure 6-5 shows the result.

110 | Chapter 6: ChatGPT and Other General-Purpose LLMs

Figure 6-4. Using the Browse with Bing function helps ChatGPT to research the main
features of the LangChain framework

Browse with Bing | 111

Figure 6-5. When prompted to do so, ChatGPT can put its output into a table

When you use Browse with Bing, ChatGPT might take a few seconds or maybe even a
minute or more to respond. Sometimes ChatGPT may even get stuck and spit out an
error. You might have to give it a few goes before you get an answer. ChatGPT can
sometimes be temperamental.

When you use Browse with Bing, the output will often have a web link to the source
of the information. It’s a good idea to click on it to verify the content. After all, you
have to take everything generated by ChatGPT with a grain of salt. Sometimes the
response might come from a social media post, for instance, and that’s not always the
most reliable source.

Fortunately, you can instruct ChatGPT to focus on certain types of sources. Table 6-1
provides some suggestions.

112 | Chapter 6: ChatGPT and Other General-Purpose LLMs

Table 6-1. Ways to instruct ChatGPT to use certain sources for information

Approach Description
Domain restriction Use the site operator to limit the search to reputable domains like .edu or .gov or to

specific reputable organizations.
Use of scholarly keywords Examples include peer-reviewed, journal, study, and research.
Use of publication date filters Filter the search by recent publication dates to get current and relevant information.
Professional or scholarly
associations

Specify professional or scholarly associations to seek authoritative publications or reports.

So how well does ChatGPT do with creating code for LangChain? Let’s see. Here’s a
prompt for a simple program:

Prompt: I want to write a Python program that uses the LangChain framework. It will
have the following features:
1. Get input from the user about a topic.
2. Select the type of content to create: blog or social media post.
3. Use LangChain to access the OpenAI API to create either the blog or social media
post based on the topic.

When I tried this in ChatGPT, the results were, well, meh. Sure, it nailed the basic
Python code structure for user input—no shocker there, since ChatGPT is sharp with
Python. But with the LangChain code? Way off base. It goofed up the LangChain
library import and missed some other things, too. Plus, it was clueless about how to
call the OpenAI API.

Bottom line: Browse with Bing is mostly handy for your everyday, general
questions—at least for now.

Tedious Tasks
Software development can easily get complicated with lots of steps. You’ve got plan‐
ning, coding, and testing to name just a few. One part that can be a real drag is the
repetitive coding. It’s dull and eats up a ton of time. Developers often end up stuck
writing the same routine code, squashing bugs, and looking over code. True, this is all
important, but it’s not exactly the fun, creative part of making software. Besides, try‐
ing to keep up with new programming languages, frameworks, and tools can be
overwhelming.

AI tools like ChatGPT can take the edge off those boring bits of software develop‐
ment. In the next few sections, we’ll dive into some of these areas.

Tedious Tasks | 113

Regular Expressions
Regular expressions, or regex, are a nifty tool for working with text. Think of them like
a powerful find-and-replace functionality that can spot patterns in strings of charac‐
ters. But here’s the kicker: regex is like learning a whole new language of symbols and
commands. It can be a brain twister! Trying to remember all those weird combina‐
tions of backslashes, dots, brackets, and who-knows-what-else is enough to make
your head spin. Sometimes, it feels like you need a secret decoder ring just to make
sense of it all.

For example, take a regex pattern like this:

^(?=.*[a-z])(?=.*[A-Z])(?=.*\d)(?=.*[@$!%*?&])[A-Za-z\d@$!%*?&]{8,}$

This would be used to validate a strong password, ensuring it has at least eight char‐
acters, including one uppercase letter, one lowercase letter, one number, and one spe‐
cial character.

You probably wouldn’t enjoy writing that, but ChatGPT can create a regex. Here’s a
look at some common examples:

Prompt: Create a regex pattern to validate standard email addresses. The email should
start with alphanumeric characters, followed by optional dots, hyphens, or under‐
scores. Then, there should be an “@” symbol, followed by more alphanumeric charac‐
ters, a dot, and finally, a domain name that is 2 to 6 characters long.
Regex pattern: ^[a-zA-Z0-9._-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,6}$
Prompt: Provide me with a regex pattern to validate URLs. The URL may start with
“http” or “https”, followed by “://”, then a domain name which can include alphanu‐
meric characters and dots. After the domain, there can be an optional path that starts
with a “/” and can include alphanumeric characters, slashes, dots, or hyphens. The
URL may end with an optional “/”.
Regex pattern: ^(https?:\/\/)?([\da-z.-]+)\.([a-z.]{2,6})([\/\w .-]*)*\/?$
Prompt: Create a regex pattern to validate dates in the MM/DD/YYYY format. The
month should be between 01 and 12, the day should be between 01 and 31, and the
year should be either in the 1900s or 2000s.
Regex pattern: ^(0[1-9]|1[0-2])\/(0[1-9]|[12][0-9]|3[01])\/(19|20)\d\d$
Prompt: I’m looking for a regex pattern to validate IPv4 addresses. Each octet should be
a number between 0 and 255, and the octets should be separated by dots. Create a
regex pattern for this.
Regex pattern: ^(25[0-5]|2[0-4]\d|[0-1]?\d\d?)\.((25[0-5]|2[0-4]\d|[0-1]?\d\d?)\.){2}
(25[0-5]|2[0-4]\d|[0-1]?\d\d?)$

ChatGPT can also help you decipher regex patterns. Here’s a sample prompt:

Prompt: What is this regex? ^(\(\d{3}\)\s?|\d{3}[-.])\d{3}[-.]\d{4}$

114 | Chapter 6: ChatGPT and Other General-Purpose LLMs

The response is that this is designed to match the North American phone number
format.

Starter Code
Starter code is the initial code snippets or templates that give you a head start. No
doubt, it can be a big time saver. But starter code can be a learning tool as well. If
you’re new to coding, poking around some starter code can help you figure out how
things work. What’s more, starter code helps keep things consistent, especially in big
teams where everyone needs to be on the same page.

Here’s an example:

const express = require('express');
const app = express();
const port = 3000;
app.get('/', (req, res) => {
 res.send('Hello, World!');
});
app.listen(port, () => {
 console.log(`Server running at http://localhost:${port}`);
});

This provides a concise and clear example of a basic web server created using
Express.js, a popular web framework for Node.js. It is good starter code because of its
simplicity and use of core elements. Table 6-2 shows some prompts for starter code.

Table 6-2. Prompts for starter code

Programming language/framework Prompt
Node.js/Express.js “Provide an example of a basic Express.js server.”
React (JavaScript) “How do I create a simple React component?”
JavaScript “Can you show me how to define a simple function in JavaScript?”
Android (Java) “What is the starter code for a basic Android Activity in Java?”
Python/Flask “Can you give me an example of a basic Flask application?”
Vue.js (JavaScript) “Show me how to set up a basic Vue instance.”
Django (Python) “How can I start a new Django project with a simple view?”
Swift (iOS) “What’s the starter code for a simple UIViewController in Swift?”

GitHub README
The GitHub README file is essentially the welcome mat for a repository. It’s where
you find out what the project’s all about—its purpose, what it does, and how to use it.
Usually called README.md, it’s written in Markdown, which is for making things
look nice and be easy to read. You’ll see the README on the main page of the repo.

Tedious Tasks | 115

A well-written README is important because it makes everything smoother for any‐
one checking out your project. It sets the tone and helps to make the project clearer,
whether a user wants to use the project or wants to contribute to it. The README
will also lay down the rules and what to expect.

Writing a README is not always a walk in the park. You have to find the sweet spot
between giving all the juicy details and keeping it concise. Developers, who are
focused on their coding, might skip over important parts, not realizing that what’s
obvious to them isn’t obvious to everyone.

For crafting a good README, you do need some writing chops. But this is not neces‐
sarily the strong point of a developer. Moreover, as your project grows and changes,
keeping the README up-to-date is a whole thing on its own. Yes, it can be a juggling
act.

But with ChatGPT on your side, whipping up a README can be a breeze and the
content should be pretty solid. Let’s take an example. Imagine you’ve just built this
awesome app for digging up recipes. Here’s a prompt to kick things off:

Prompt: Write a GitHub readme for my project named “Recipe Finder.” This project is
developed using Vue.js and helps users find recipes based on the ingredients they have.
Users need to input the ingredients they have, and the app will return a list of recipes
they can cook with those ingredients. To kickstart, simply clone the repository, run
npm install, insert your API key into the .env file, and execute npm start to launch
the app.

ChatGPT creates an introduction to the project and then includes sections like
Features, Getting Started, Usage, Contributing, License, and Acknowledgments.

For some sections of the README, ChatGPT made assumptions. For example, it
specified that the project uses the MIT License. But you can continue to prompt
ChatGPT to provide more details about the project.

If you do not know what open source license to use, check out
Choose a License (https://choosealicense.com), which provides
assistance with this question.

Cross-Browser Compatibility
Cross-browser compatibility is about making sure your website or web app works right
on different browsers. It’s important because your users likely access your site or app
using a whole mix of browsers like Chrome, Firefox, Safari, and Edge, all of which
have various versions.

116 | Chapter 6: ChatGPT and Other General-Purpose LLMs

https://choosealicense.com

Let’s show how ChatGPT can help you tackle this challenge. Table 6-3 shows some
useful prompts.

Table 6-3. Prompts for browser compatibility

Category Prompt
HTML5 and CSS3
features

“I want to use the placeholder attribute in my input fields, but it doesn’t work in older versions of
Internet Explorer. How can I create a fallback?”

CSS prefixes “I want to use the transition property in my CSS, but I want to ensure it’s compatible across all
browsers. How should I write it?”

JavaScript
functionality

“I am using the fetch function in JavaScript to make HTTP requests, but it’s not supported in Internet
Explorer. What can I do?”

Bash Commands
Instructions you type into a terminal to interact with your computer system are
known as bash commands. They let you do many sorts of tasks, like move around in
your files, keep tabs on what your computer’s doing, and manipulate files.

Getting the hang of bash commands can be tough, especially if you’re new to the
Unix/Linux world. The way some commands are written can be cryptic and hard to
grasp at first. It takes a fair bit of time and practice to really get good at it. Further‐
more, there are a lot of commands, each with their own bunch of options and twists.
Sure, there are resources on the internet to help out. Yet even the pros can have a
hard time remembering commands they don’t use often or only recently picked up.

However, you can use ChatGPT as your virtual assistant for working with bash com‐
mands. Here are some example prompts:

Prompt: How can I use a bash command to list all the files in a directory sorted by
modification time?
Prompt: What is the bash command to count the number of lines in a file?
Prompt: How can I create a directory and navigate into it using a single command?
Prompt: How can I redirect the output of a command to a file?
Prompt: What is the command to search for a specific process running on my system?
Prompt: How can I compress a directory into a ZIP file using bash?
Prompt: What command should I use to change the permissions of a file in bash?

GitHub Actions
GitHub Actions is a continuous integration and continuous deployment (CI/CD) tool
that’s baked into GitHub. It lets developers set up, customize, and run their software
development workflows directly in their repos. Basically, a GitHub Actions workflow
is a set of automated processes you define in a workflow file. The processes are made

GitHub Actions | 117

up of jobs, each doing a different thing like running commands, setting up processes,
or running actions. They’re written in YAML syntax and kick into gear when certain
actions happen, like pushing code, making a new issue, or scheduling times. With
GitHub Actions, developers can build, test, and deploy their code straight from Git‐
Hub, making their software development process smoother and more automated.
You can share, reuse, or even tweak other developers’ actions, which is great for team‐
work and sharing know-how in the world of automated software development.

ChatGPT can help you create GitHub Actions. Here are some prompts:

Prompt: Create a GitHub Actions workflow template to build and deploy a static web‐
site using Hugo, with deployment to GitHub Pages.
Prompt: Generate a GitHub Actions workflow template for a Java project using Maven,
including steps for compiling the code, running tests, and packaging the application.
Prompt: Create a GitHub Actions workflow template for a Dockerized application,
including steps for building the Docker image, pushing it to Docker Hub, and deploy‐
ing it to a Kubernetes cluster.
Prompt: Generate a GitHub Actions workflow template for a React Native mobile
application, including steps for installing dependencies, building the app, and upload‐
ing the APK to a specified Google Drive folder.

Plugins
ChatGPT plugins are mini apps that use the power of an OpenAI LLM. They open
the door to using external databases and applications. It’s like having your own little
app store for iOS or Google Play.

To use plugins, you first need to make sure you have the feature activated. Go to your
profile and select Settings and then Beta Features.

You can find the plugins by hovering over the GPT-4 icon—at the top of the screen—
and then choosing Plugins. Click this, and you will get the screen shown in
Figure 6-6.

At the top, you can navigate the plugins. You can filter for popular, new, all, and
installed apps. There is also a search box.

118 | Chapter 6: ChatGPT and Other General-Purpose LLMs

Figure 6-6. The ChatGPT plugin store gives you access to mini apps that use the power of
an OpenAI LLM

The Codecademy Plugin
Let’s try out the plugin from Codecademy. First, press the Install button. To activate
it, go to the top of the screen and click the down arrow. Then click on the Codeca‐
demy icon.

This plugin has two main functions. One is to allow users to find specific courses or
paths based on their goals and experience level. For instance, users interested in AI
and ChatGPT can ask the plugin for course recommendations, and it will provide a
list of relevant courses, including descriptions and information on whether the cour‐
ses are free or paid.

Next, the plugin serves as a quick reference tool for technical documentation, provid‐
ing links to documents and articles with more detailed information.

We’ll test this part out:

Prompt: What is the best doc or article for explaining arrays in JavaScript?

ChatGPT provides the response shown in Figure 6-7.

At the top, an icon shows that the system is accessing the Codecademy plugin. Below
is text that indicates there are many resources available on this topic. However, the
plugin then narrows this down by providing links to three documents.

Plugins | 119

Figure 6-7. The Codecademy plugin responds to a request for resources on JavaScript
arrays

The AskYourDatabase Plugin
Sheldon Niu came up with this plugin idea because he was often using ChatGPT to
write SQL statements and it was a hassle. He had to explain the whole database
schema each time, and then there was a bunch of copying and pasting the output to
run it in a terminal. He thought, “Hey, what if ChatGPT could just chat directly with a
database?” And that’s how he got rolling on creating AskYourDatabase.

With this tool, you can breeze through prototyping a database schema using
ChatGPT. Then, querying data becomes a piece of cake. Even better, you can skip
those traditional business intelligence (BI) tools that usually need lots of setup.

120 | Chapter 6: ChatGPT and Other General-Purpose LLMs

Recombinant AI Plugin
Mark Zahm’s a developer who started his own AI consulting business. He created the
Recombinant AI plugin to make life easier for developers working with their GitHub
and Gitlab repos. This tool lets ChatGPT get the gist of whole programs and sift
through the nitty-gritty details. That way, users can get a solid grasp of their code,
which helps when tweaking, analyzing, or blending their own ideas into software.
Mark calls it a “conversational IDE,” which is a pretty neat way to put it.

Here are some of its applications:

• Doing traditional tasks like storing code snippets or prompts
• Using the project and file system to create complex task lists and chain-of-

thought prompts
• Saving important information regarding up-to-date programming libraries

GPTs
You can create your own custom ChatGPT. It’s called a GPT, and it is very easy to put
together—often taking just a few minutes.

Let’s look at an example. We’ll create a GPT for a software development style guide.
This is packed with nuts-and-bolts guidelines like how to name your variables so they
make sense to everyone, the right way to indent your code, and the specific program‐
ming patterns or practices the team follows. It’s a dress code for your code.

The idea is to make everything uniform and tidy. This makes it easier for everyone to
read and understand the codebase, which can be a lifesaver during big projects.

But here’s the catch: if you’re new to this, it can be a bit overwhelming. You might be
used to coding a certain way, and suddenly you’ve got to adapt to new standards.

This is where a GPT can help. So let’s create one. First, on the home screen of
ChatGPT—at the top left—select Explore and then choose Create a GPT. You will get
a screen with two panels, as you can see in Figure 6-8.

The left panel is where you build the GPT, and the right one is a preview area. To have
it work with a development style guide, your prompt would look like this:

Prompt: Make a system that enforces a software development style guide.

GPTs | 121

Figure 6-8. The GPT Builder lets you create a custom GPT

ChatGPT will start to create the instructions for the GPT. This prompt is somewhat
vague, but ChatGPT will ask some questions to get more information. It will first sug‐
gest a name for the GPT—it suggests “Code Stylist.”

It will then create a profile image for the GPT by using DALL·E 3. But you could
upload your own image instead.

Then it will ask for details like the language or languages, the practices, guidelines,
rules, what should be avoided, and so on. Say you tell it the language is Python and
give it some other requirements.

Next, on the top of the panel, select the Configure tab. You can then upload your style
guide.

You can then go to the right panel to experiment with the GPT. If you ask it to write
code, it will automatically work in Python and abide by your rules.

You can save this GPT by clicking the icon at the top right. It will then show up on
your main screen. To use it, just click the GPT icon.

OpenAI has also created an appstore for GPTs. You navigate to this by selecting
Explore GPTs at the top left of the screen of ChatGPT.

One of the categories is for programming. Here are some examples of the GPTs that
are available:

• GPTavern is an innovative platform designed to teach coding through a unique
approach called “prompt-gramming.” It offers over 20 hotkeys to streamline cod‐
ing processes and provides a collection of 75 starter projects for learning code.
The platform is interactive, allowing users to ask questions, upload photos, and
access a command menu and a README for guidance.

122 | Chapter 6: ChatGPT and Other General-Purpose LLMs

• DesignerGPT was created by Pietro Schirano and specializes in creating and
hosting aesthetically pleasing websites.

• Screenshot To Code GPT, provided by godofprompt.ai, offers a feature that lets
users upload screenshots of websites, which are then converted into clean HTML,
Tailwind, and JavaScript code.

• Mindmap/Diagram/Chart—PRO BUILDER, offered by pyxl.ai, helps in visualiz‐
ing code and databases. It enables users to create flowcharts, charts, and sequen‐
ces with a user-friendly drag-and-drop editor, aiding in the understanding and
organization of complex data structures.

• Code Guru was developed by Ryan J. Topps and offers a range of services includ‐
ing reviewing code, writing pull requests, generating and optimizing functions,
writing tests, and commenting on existing code.

You can include third-party APIs in your GPT. You do this by
selecting Actions.

Gemini
When ChatGPT showed up, it caught Google off guard. Even with all its early moves
and big-bucks investment in AI, Google wasn’t ready for the generative AI wave.
Google was wary about jumping into the new-fangled technology—worried about its
accuracy and its effect on the company’s lucrative ad business. But then, early in 2023,
Google’s stock took a dip, and that shook things up. The company decided to make a
move and rolled out Bard, its own take on generative AI, kind of a comeback to
ChatGPT. Bard had a few bumps at the start, but it got better, finding its way into
different Google apps and helping the company’s stock bounce back.

In February 2024, Google renamed the Bard platform Gemini. In addition to a free
version, there’s now also a premium offering, Gemini Advanced, which costs $19.99
per month after two free initial months. It uses Google’s most sophisticated LLM,
which is called Ultra 1.0. According to Google: “It can help you with more advanced
coding scenarios, serving as a sounding board for ideas and helping you evaluate dif‐
ferent coding approaches.”

Google also launched a mobile version of Gemini for Android and iOS. With the app,
you can type, talk, or use images to interact with the LLM. Figure 6-9 shows the inter‐
face for Gemini.

Gemini | 123

https://oreil.ly/WYs67

Figure 6-9. The user interface for Gemini allows you to manage chat sessions and enter
text prompts, images, and speech-to-text input

Just like ChatGPT, on the left side of the screen, you’ve got your list of chat sessions. If
you want to hide the list, just click on the hamburger icon above. For any chat, you
can hit the little icon on the right to either change its name or delete it. Then there’s
this cool feature: you can pin chats you want to keep handy.

If you want to clear out all or just some of your items—based on when they
happened—head over to the bottom left and click on Activity. Here, you can also tell
Gemini if you want it to hang onto your prompts or just let them go.

In the middle of the screen, you’ll find some helpful tips on how to use Gemini, as
well as some security heads-ups. Down at the bottom is where you type in your
prompts. And over on the right is your spot for uploading images. Gemini can pull
out text, spot objects and scenes, answer questions about the pics, and even whip up
some creative text formats.

The right side of the input box also has a microphone icon. This allows you to use
speech-to-text to generate text for Gemini.

So what about plugins? Does Gemini have its own version? It does, and they are
called extensions. Currently, they only are for Google applications like Flights, Hotels,
Maps, Workspace, and YouTube; there are no third-party extensions.

124 | Chapter 6: ChatGPT and Other General-Purpose LLMs

Finally, Gemini has real-time access to the internet. Its responses will include cita‐
tions so you can verify the source.

Applications
Productivity apps like Excel and Google Sheets aren’t just for spreadsheets. They’ve
got their own programming languages to amp up what they can do. Take Excel, for
instance. It’s got Visual Basic for Applications (VBA), which is a beefy programming
system that lets you cook up your own scripts and programs. It’s great for automating
the same old tasks, making special functions, and analyzing your data. Excel also
comes loaded with many ready-to-go functions, like PivotTables and Power Query,
and it plays nice with Power BI for some top-notch data visuals and analysis.

Google Sheets, on the other hand, rolls with Google Apps Script, which is like
JavaScript’s cousin. It lets you do tasks similar to those you can do in Excel. But in
addition, there are smooth integrations to Google apps like Drive and Gmail. Google
Sheets is also packed with its own set of ready-to-use functions, and you can boost it
with different add-ons from the Google Workspace Marketplace. Being entirely cloud
based makes it great for teaming up with others, and it’s a solid pick for web apps and
group projects.

Then can Gemini help out? Definitely. For example, you can use it to explain a for‐
mula. No doubt, formulas can get quite complicated. Here’s an example:

Prompt: Explain the following Excel formula: =SUM(OFFSET(A1,1,0,COUNT(A:A),
1))

For Gemini, making sense of this is no problem.

Another use case is to create VBA scripts. Here are some sample prompts:

Prompt: How can I create a custom form in Excel using VBA for entering user login
details?
Prompt: Can you help me write a VBA script for Excel to protect specific data with a
password?
Prompt: I need VBA code to validate email addresses and date formats in my Excel user
login sheet. Can you assist?
Prompt: Is it possible to send automated email notifications from Excel using VBA to
get updates about user login information?

While all this is great, when it comes to working with spreadsheets, it’s important to
understand the relationships among the data, formulas, and scripts. Knowing how
they dance together helps you build models that are powerful and don’t trip up on
errors. After all, if you tweak something in your data, the change can ripple through
your formulas and mess with what your scripts output, and before you know it, your
final results have done a total 180.

Gemini | 125

But Gemini can load and analyze Excel spreadsheets. You can then ask questions
about them, such as to get a step-by-step understanding or to highlight a certain area
of your data or logic.

Let’s take an example. Suppose you have an Excel spreadsheet with data on book
sales. Here are some example prompts:

Prompt: Can you show me how to find the highest royalty amount earned by an author
in Excel?
Prompt: I want to calculate the inventory turnover rate for each book in Excel. What
formula should I use?
Prompt: How do I create a stock shortage alert in Excel, indicating when to order more
based on the reorder level?
Prompt: How do I calculate the percentage of positive reviews (ratings 4 or higher) for
books in Excel?

Gemini for Coding
Gemini understands over 20 computer programming languages. So let’s try out the
system with this prompt:

Prompt: Generate a TypeScript function that converts a temperature from Celsius to
Fahrenheit.

Figure 6-10 shows the response from Gemini.

At the top right, there is a Show drafts option. If you click on this, you will find three
versions of Gemini’s response. This can be a way to get better ideas for your coding
tasks.

As with ChatGPT, the response includes a code listing, which you can copy. Gemini
also provides an explanation.

126 | Chapter 6: ChatGPT and Other General-Purpose LLMs

Figure 6-10. Gemini responds to a request to create a Typescript function

Figure 6-11 shows several ways to work with the response.

Figure 6-11. Click the icons on the bottom for different options to take actions on
Gemini’s response

Gemini | 127

Your options include:

Evaluation
You can click thumbs-up or thumbs-down to provide feedback about the
response.

Modify this response
You can click the filter icon to access choices to make the response shorter,
longer, simpler, more casual, or more professional.

Share
You can share the response as a public link. You can also export it to Google Docs
or for a Gmail draft.

Double-check the response
When you click the Google logo, Gemini will review the response for accuracy. It
may provide links for support.

Claude
Back in 2021, the brother–sister team of Dario and Daniela Amodei kicked off their
own startup called Anthropic. They used to be big shots at OpenAI, but they had the
idea of creating a different kind of generative AI platform. Their vision was to focus
on making AI safer, such as by minimizing bias. This became known as constitutional
AI.

The Anthropic LLM has strong coding skills. It has scored 71.2% on the Codex
HumanEval, which is a coding test for Python.

A major benefit of Claude is its context window, which is at 100,000 tokens. This
means it can handle large code listings. You can also upload files like PDFs.

Figure 6-12 shows the initial screen for Claude.

128 | Chapter 6: ChatGPT and Other General-Purpose LLMs

https://oreil.ly/Rj-sM
https://oreil.ly/Rj-sM

Figure 6-12. The main screen for the Claude chatbot lists your prior activities and allows
you to enter a prompt and upload files

At the top, you can enter your prompt as well as upload up to five files. Below is a list
of your prior activities, grouped by how many days ago they occurred.

Suppose we enter this:

Prompt: Can you write a JavaScript function that reverses a string?

Figure 6-13 shows Claude’s response.

Like ChatGPT, Claude offers a free tier. But you can also pay $20 per month for a pre‐
mium version. With the upgrade, you get five times more usage capacity, priority
access during high-traffic periods, and early access to new features.

Claude | 129

Figure 6-13. Claude responds to a request for a JavaScript function

Conclusion
In this chapter, we took a tour through some of the mega LLMs like ChatGPT, Gem‐
ini, and Claude. We checked out their cool features—stuff like code generation, plu‐
gins, surfing the web in real time, and handling big chunks of information. Sure, they
might not be on par with specialized coding tools, but they still have a lot to offer
when you want to speed up your software development. And as these LLMs keep get‐
ting better, they’re gearing up to bring even more awesome AI-powered program‐
ming breakthroughs.

130 | Chapter 6: ChatGPT and Other General-Purpose LLMs

CHAPTER 7

Ideas, Planning, and Requirements

In this chapter, we’ll dig into the important early stages of making software. This is
where all the cool ideas come alive and where we plan them out so they’re ready to
go. We’re going to use ChatGPT to brainstorm effectively and plan things down to the
last detail. We’ll look at market research, keep an eye on trends, and check out the
competition. We’ll also talk about whiteboarding, which is a fun, visual way to throw
around ideas and make them better. Plus, we’ll dive into how to plan your project,
looking at methods like Agile and Scrum, and how to tweak them to fit your software
project.

Brainstorming
Thousands of software products pop up every day, so it’s no walk in the park to make
something that really shines and stands out from the crowd. But with an LLM like
ChatGPT, you can do some brainstorming.

First of all, you can have it provide different approaches. Here’s a prompt:

Prompt: What are techniques for brainstorming ideas for new products? Use the inter‐
net to research this question.

ChatGPT dished out 10 helpful approaches—here’s a peek at a few of them:

ChatGPT:

• 5 Whys: You start with a problem and keep asking “why” it happened. It’s handy
for looking back and figuring out what went wrong.

• Bad Idea: Think up a bunch of terrible ideas on purpose. Chatting about why
they’re so bad can actually spark clever solutions.

• Starbursting: This is about questions, not answers. You use a star-shaped diagram
and hit it with questions like: who, what, when, where, why and how.

131

Suppose you want to use the starbursting approach. You can learn more about this
with the following prompt:

Prompt: How would you use starbursting as a way to come up with a new idea for a
software product?

ChatGPT gave a straightforward breakdown of the starbursting exercise as applied to
this topic:

ChatGPT:

• Who: Think about who’s going to use your software.

• What: Get into what problem your software is solving. How is it different from
what’s already out there?

• When: Figure out the best times to use your software, launch it, and do updates or
fixes.

• Where: What platforms or devices can people use the software on?

• Why: Dive into why your software is a must-have. Why should people pick it over
the others?

• How: Think about how your software will work, how you’ll build and sell it, and
how you’ll take care of your users when they need help.

Going through this process is a great way to get a clearer picture of your new software
product idea.

Now, let’s say you want to come up with a list of ideas. It’s best to zero in on a specific
category, know who you’re targeting, and understand what problem you want to
tackle. Here are a few prompts to get you started:

Prompt: I want to develop a health-tracking app for seniors. The problem is the diffi‐
culty they face in monitoring chronic conditions and medication schedules. What fea‐
tures can be included to make the app senior-friendly and assist in managing their
health more effectively?
Prompt: The target audience is college students struggling with managing their finan‐
ces. What features should a budgeting app include to help them track expenses, save
money, and understand financial planning easily?
Prompt: I want to create a language learning app for busy professionals who struggle to
find time for regular classes. Can you suggest features that cater to their tight schedules
and offer quick, effective language-learning sessions?

How good are the ideas that ChatGPT creates? Well, some Wharton School profes‐
sors put it to the test in their MBA innovation class. They had the students come up
with a dozen product or service ideas. Then, they did the same thing with ChatGPT,
tapping into the GPT-4 model. Among the ideas tossed out were things like a dorm
room–friendly chef kit and a comfy cushion for those hard classroom seats.

132 | Chapter 7: Ideas, Planning, and Requirements

https://oreil.ly/V7N31

To test these ideas, the professors used an online purchase-intent survey. The ques‐
tion was: “How likely would you be to purchase based on this concept if it were avail‐
able to you?”

On average, around 40% of the student ideas were fairly solid, and ChatGPT scored
slightly higher at 49%. But the professors didn’t stop there. They focused on the top
10% of ideas. These are the ones with real potential to be game-changers. And guess
what? Out of the 40 top-notch ideas, only 5 were from the students.

Market Research
Before diving into a software project, it’s smart to ask a few key questions: Is there
actually a need for this tool? Are customers willing to shell out cash for it? And just
how big is the market for it?

This is all about doing your market research. Sure, it’s not a crystal ball, but it defi‐
nitely helps lower the risk of pouring your time and energy into something that
might not take off.

The truth is, a lot of new products don’t make it. Clayton Christensen, a Harvard pro‐
fessor and best-selling author, did a lot of research on this and found out that about
80% of new products flop.

And, when it comes to software projects, it seems that number may be even higher.
Table 7-1 shows some of the most notable examples.

Table 7-1. Failed software applications

Product/Service Launch year Failure reasons
Friendster 2002 Technical issues, scalability problems, overtaken by Facebook
Microsoft Zune 2006 Failed to compete with iPod, changing music market dynamics
Windows Vista 2007 High system requirements, compatibility issues, security prompts
Google Wave 2009 Complex interface, unclear purpose, lack of user adoption
Google+ 2011 Numerous errors, inaccurate data, poor navigation capabilities
Vine 2013 Overshadowed by competitors like Instagram and Snapchat
Amazon Fire Phone 2014 High price, limited app selection, unappealing features
Quibi 2020 Short-form content format not embraced, high competition, COVID-19 impact

One of the most epic fails is the video game for Steven Spielberg’s 1982 movie E.T. the
Extra-Terrestrial. Atari shelled out a whopping $21 million for the rights from
Universal Pictures and dropped another $5 million on promoting it.

The game really flopped. It was super confusing and not much fun either. So, what
happened? Atari only managed to sell about 1.5 million units. The remaining 2.5 mil‐
lion ended up in a landfill in New Mexico.

Market Research | 133

https://oreil.ly/6BJ2H
https://oreil.ly/pu8Gu
https://oreil.ly/pu8Gu

Let’s dive into how you can use ChatGPT for market research. First of all, we need to
figure out the target audience. Think about who’s going to get the most out of this
software. Let’s start brainstorming about who these users might be. Consider this
prompt:

Prompt: What are potential target demographics for a project management software
program?

You can then have ChatGPT take on a task that’s important for getting to know your
marketing: creating detailed user personas. Think of these personas as characters that
give you snapshots of the different kinds of people who might use your product.
Details often include how old they are, their interests, their jobs, and their lifestyles.
By mapping out these personas, you start to understand who your customers are and
what they’re looking for.

I asked ChatGPT for some user personas for management software, and you can see
some of its responses in Figure 7-1.

ChatGPT can also be instrumental in drafting surveys and questionnaires to gather
specific data.

Prompt: Could you create a survey focused on understanding what buyers look for in
project management software? The survey should include questions that help identify
key features, usability preferences, specific industry needs, and any particular chal‐
lenges buyers want to address with this type of software. Additionally, please include
questions that gauge the importance of factors such as cost, support, scalability, and
integration capabilities.

Let’s take a look at some of the other factors we need to consider when evaluating the
market for software.

134 | Chapter 7: Ideas, Planning, and Requirements

Figure 7-1. ChatGPT created user personas for management software

Market Trends
When you’re rolling out new software, digging into market research can make a big
difference. It’s like getting insider information on what users are really after, and it
also gives you the scoop on what your rivals are up to. Think of it as your secret play‐
book. You get to spot trends before they blow up and opportunities that others might
miss. Plus, it’s a great safety net. It cuts down on the guesswork and helps you make
smart choices that are more likely to hit the mark. And let’s not forget about market‐
ing. Knowing your audience inside out means you can create ads and promos that
resonate with them, instead of just throwing stuff out there and hoping it sticks.

ChatGPT can be a good sidekick for your market research. Of course, the model is
trained only up to a certain date, but there’s a workaround: you can tell it to “research
the internet” in your prompts.

Market Research | 135

Here are some examples:

Prompt: Research the internet to find current trends in <specific software category, e.g.,
mobile gaming, educational technology> as of <year>.
Prompt: Research the internet to provide an overview of emerging technologies in the
software industry that are gaining popularity in <year>.
Prompt: Research the internet to find the consumer behavior trends that are currently
influencing the software market, particularly in <target demographic or application
type>.
Prompt: Research the internet to find the latest trends in user interface and user experi‐
ence (UI/UX) design for software applications in <year>.
Prompt: Research the internet to come up with a list of the top software applications in
<a specific field or category> and explain what makes them successful in the current
market.

Total Addressable Market
The total addressable market, or TAM for short, is an estimate of the maximum
amount of money you could make if everyone who could use your product actually
did. This helps you figure out where to focus your energy, how to position your prod‐
uct in the market, and what your growth game plan should be. It’s a reality check that
helps you set achievable goals for how much of the market you can grab and the cash
you can bring in.

Venture capitalists (VCs) weight TAM heavily when they’re figuring out where to put
their money, since it shows how much growth potential there is. They’re always on
the hunt for places where their investment could take off, and a hefty TAM means
there’s a huge market just waiting to be tapped.

Usually, VCs look for a TAM that’s over a billion dollars—and ideally much more
than that. After all, even if a company only grabs a small piece of such a huge market,
the profits can be impressive.

In response to a prompt like “What are the different ways to estimate the size of the
TAM?” ChatGPT will respond similar to this:

ChatGPT:

• Top-down approach: You gather industry data and market research to get a sense
of the whole market size. Then, you zoom in a bit, such as by focusing on the slice
of the market you’re aiming for.

• Bottom-up approach: You figure out how many people or businesses might buy
your product, guess how many of them will actually go through with it (your con‐
version rate), and then think about how much each customer will bring in. This
approach takes more work, but it can give you a clearer, more tailored picture.

136 | Chapter 7: Ideas, Planning, and Requirements

Let’s take an example. Suppose you have a startup in the medical technology category:

Prompt: SilverConnect Health is a health tech startup focusing on telemedicine serv‐
ices. The target market is in the United States, with a focus on elderly populations in
urban areas. What is the current size of the telemedicine services market for Silver‐
Connect Health? What are the projected growth rates for this market segment over the
next 5–10 years?

ChatGPT searches the internet and comes up with some useful facts:

ChatGPT:

• Market size in 2022: The U.S. telemedicine market was valued at more than USD
35 billion in 2022. Another estimate puts the telemedicine market size at USD
91.2 billion in the same year.

• Projected growth rates: One estimate suggests a compound annual growth rate
(CAGR) of 12.5% from 2023 to 2032. Another source projects a CAGR of 22.9%
from 2023 to 2030.

Competition
There are several key benefits of competitive analysis. First of all, it gives you a sneak
peek into the market. You get to see what’s already out there, what’s working, and
what’s not. This helps you spot any gaps that your software can fill, making sure you
bring something fresh to the table.

Then, there’s learning from your competitors—both from their wins and their oops
moments. This can really up your game.

Also, when you know what makes your software different, you can get specific with
your marketing, hitting the right people more effectively.

As for ChatGPT, it can be helpful with competitive analysis. Here are some prompts:

Prompt: List the main competitors for <your software type> in the <specific industry or
market>.
Prompt: Compare the features of <your software> with its top three competitors.
Prompt: What are the pricing models used by competitors of <your software> in the
market?
Prompt: How do the leading competitors position themselves in the market for <type of
software>?
Prompt: Identify the strengths and weaknesses of <competitor’s name> software.
Prompt: Summarize the customer reviews for <competitor’s software name> focusing on
user satisfaction and pain points.

Competition | 137

You can also have ChatGPT put the analysis in a table, which can make it clearer:

Prompt: Can you provide a summary in bullet points of the key players in the customer
relationship management (CRM) software market as of 2023? Put the results in a table.

Figure 7-2 shows the response.

Figure 7-2. ChatGPT provides a competitive analysis for the CRM market and formats it
in a table

ChatGPT can even do a SWOT (strengths, weaknesses, opportunities, and threats)
analysis. This helps you play up your strong points, fix or work around weak spots,
grab chances that come by, and dodge any curveballs. Businesses of all types use it,
and it’s even useful for personal career moves.

138 | Chapter 7: Ideas, Planning, and Requirements

Requirements
Requirements documents are critical for software development. Here are just a hand‐
ful of their benefits:

Give you direction
These documents lay out exactly what the software should do. Everyone, from
developers to clients, gets what the plan is, which keeps things on track.

Keep everyone on the same page
They make sure everyone involved, like your team and your clients, understands
what’s expected. This way, there’s less chance of mix-ups or wrong turns.

Help with planning
Need to figure out how long things will take or how much they’ll cost? These
documents are your go-to for planning out the work, time, and money needed.

Improve communication
They’re great for clear communication, especially in big teams or when people
are geographically spread out.

Reduce risks
Spotting potential problems early on? That’s what these documents help you do,
so you can dodge delays and keep costs under control.

Of course, coming up with software requirements isn’t easy, and a big reason why is
that software development can get complicated. Then there are the challenges of
coordinating the work and thinking of many team members, who may be in other
countries and time zones. Each group has its own ideas and needs, and sometimes
these don’t exactly match up or aren’t clear.

Another headache is that what people want from the software can keep changing.
This is especially true when you’re working in a fast-paced industry. So, you’re often
trying to hit a moving target with your requirements, which makes it tough to settle
on something solid. In the meantime, you’ve got to make sure the requirements are
doable and that you can verify that they’re being met.

When requirements are off base, the results can be disastrous. Here’s a look at a few
examples:

Denver International Airport’s automated baggage system (1995)
The requirements were mind-numbingly complex, and the goals were overambi‐
tious. This led to a 16-month delay and skyrocketing costs. In the end, the airport
decided to ditch the whole system.

Requirements | 139

FBI’s virtual case file system (2000–2005)
The FBI had only a vague idea of what it wanted. So yes, the system wound up
not being of much use. In the end, the agency poured over $170 million into the
project only to throw in the towel. The next project, called Sentinel, had much
more specific requirements and, of course, was more successful.

HealthCare.gov launch (2013)
The federal government didn’t nail down what it needed and didn’t test it
enough, so when it launched, it just couldn’t handle the traffic and wasn’t work‐
ing right. The launch was a flop, and a lot of people had to put in a lot more work
and money to fix it and get it running smoothly.

In the world of software development, there’s an array of different requirements, each
serving a unique purpose. You’ve got functional requirements that lay out what the
software should do, like the tasks it should perform or the features it needs. Then
there are non-functional requirements, which are about how the software should
operate, such as with performance speed, security, and usability.

To explore how generative AI can help, we’ll focus on two types of important docu‐
ments: the product requirements document (PRD) and the software requirements speci‐
fication (SRS).

Product Requirements Document
A PRD sets forth what your software will be and do. Think of it as a story, outlining
what the application should look like, how it should behave, who’s going to use it, and
what problems it’s going to solve. It is often detailed, covering everything from the
must-have features to the user experience.

The audience for the PRD is diverse. It is for developers, designers, project managers,
and the quality assurance team. It’s also crucial for executives or other stakeholders
who need to understand the product’s vision and goals. Moreover, it can be useful for
marketing teams to get an understanding of how to position the product. Essentially,
it’s for anyone involved in bringing the product to market and making sure it hits the
mark with its intended users.

If you haven’t seen a PRD, ChatGPT can help out:

Prompt: What are the main parts of a PRD? Create a Word document as a template.

Figure 7-3 shows the document ChatGPT produced.

140 | Chapter 7: Ideas, Planning, and Requirements

Figure 7-3. ChatGPT created a sample outline of a PRD

Software Requirements Specification
How is the SRS different from the PRD? The SRS is like the nitty-gritty technical
manual for a software project. Unlike the PRD, which takes on the perspective of end
users or customers and focuses on what they need and why, the SRS goes deep into
the specifics of what the software needs to do and how it should do it, focusing on the
technical aspects.

If you have a simple app, the SRS could be just a few pages. But with more complex
projects—say for an enterprise software implementation—it can easily run hundreds
of pages.

Let’s take a look at some prompts:

Prompt: What are the essential elements and best practices to consider when drafting
an effective SRS?
Prompt: Outline the process for developing an SRS, emphasizing the steps involved in
gathering and analyzing requirements, stakeholder collaboration, and documentation
methodologies.
Prompt: Create a detailed SRS for a software project, including sections like Project
Overview, Stakeholder Analysis, Functional and Non-functional Requirements,
Assumptions, and Constraints. <Add the details you want for each.>

Requirements | 141

Interviews
Voice recognition software has been around for several decades, but for the most
part, it was more of a novelty than a practical tool. Usually, it was impractical for
everyday use or professional settings, as it couldn’t reliably understand natural, con‐
versational speech.

However, during the past few years, voice recognition has taken a leap forward,
driven by the advances in AI. Modern systems are powered by sophisticated AI algo‐
rithms that are not only better at understanding a wide range of accents and dialects
but also can grasp the context and nuances of spoken language. These systems learn
and adapt over time, constantly improving their accuracy.

One way this can be helpful is during the interviews you often conduct to put
together requirements documents.

For example, with voice recognition software, you can improve the following:

Accuracy and playback
While transcription accuracy is usually pretty good, you can use playback for
corrections.

Speaker identification
Voice recognition can differentiate speakers in a meeting. This can help bring
clarity to the requirements.

Key topics identification
Voice recognition software can highlight frequent keywords in the transcript,
making it easier to identify and focus on main topics or requirements.

Summaries of key points
Voice recognition software can produce summaries of key points and suggest
action items, aiding developers in pinpointing critical requirements and convert‐
ing them into specific project tasks.

Some of the top voice recognition software systems include:

• Otter AI
• Fathom
• Rev
• Sonix
• Notta

142 | Chapter 7: Ideas, Planning, and Requirements

Whiteboarding
Whiteboarding is a common practice when putting together requirements for soft‐
ware projects. It can help with the brainstorming process and allow everyone to chip
in. It allows for collecting lots of different ideas and viewpoints, which is key for nail‐
ing down what the software should do. It’s also hands-on—you can sketch out flow‐
charts or diagrams during the discussion, making complex stuff easier to get.

Well, ChatGPT can help with this. How? It can decipher images that you upload to
the system.

For example, suppose you sketch out a login system, as shown in Figure 7-4.

Figure 7-4. A sketch of a login system can be input to ChatGPT

As you can see, my handwriting is kind of messy. I also use abbreviations, such as
“pw” for “password.”

Let’s see if ChatGPT can figure it out. I used this prompt:

Prompt: Analyze the diagram.
ChatGPT: The diagram you’ve uploaded appears to be a flowchart related to user
account management, specifically for a login process on a website or application.

It then set forth the whole process (Figure 7-5).

Requirements | 143

Figure 7-5. ChatGPT analyzed an image of a diagram for a login system, translating it
into an easy-to-read breakdown of the workflow

Tone
There’s an art to writing effective PRDs and SRSs. It’s important to strike the right
tone. These documents should be clear, concise, and professional.

Let’s break down why the writing style matters:

Making it crystal clear
These documents are like the holy grail for your project. You want everything to
be spot-on so that everyone gets what’s going on. This way, you dodge those
pesky miscommunications and development blunders.

Sticking to the facts
PRDs and SRSs aren’t the place for personal or stylistic flair. You need to be like a
news reporter here—just the facts, please. Keeping it straightforward and neutral
ensures that you’re focusing on what the product really needs.

144 | Chapter 7: Ideas, Planning, and Requirements

Consistency is key
You want to keep the same tone from start to finish. Think of it as following a
recipe. If you start switching things up halfway, you’re going to end up with a
mess. Consistency makes these often hefty documents easier to digest.

Keeping the focus on the product
Remember, the star of the show here is the product and what it’s supposed to do.
Keeping a direct tone ensures you don’t stray from the main plot—that is, the
functionality and requirements.

When it comes to an LLM like ChatGPT, writing is one of its strengths. It can really
up your game. And yes, you can instruct the LLM to hit the right tone, as with this
prompt:

Prompt: Please draft a comprehensive list of technical requirements for a mobile bank‐
ing app, ensuring the writing is clear, well structured, and professional.

There are tons of AI writing tools on the market, each with its own special features to
suit whatever kind of writing you’re into. Take Jasper and Writer, for example. They’re
great for churning out content and keeping your brand voice consistent. Then you’ve
got Grammarly, which is the go-to for nailing grammar and sprucing up your writing
style. AI21 and Copy.ai are also in the mix, making content creation a breeze.

Consider Jigyasa Grover, who uses Grammarly for her projects. An expert in
machine learning, she wrote a book on the topic, Sculpting Data for ML (2021).
According to her:

Grammarly is another tool that aids me in drafting technical design documents. I lev‐
erage it for proofreading, grammar, punctuation, and style suggestions. It integrates
seamlessly with many web browsers and word-processing software. The language fab‐
rication is clear and concise and even customizes suggestions based on the target audi‐
ence and purpose of the document.

Approaches to Project Planning
After you have put together the requirements, the next step is to plan how you’ll
approach the project. This is about laying out the game plan for how your team will
tackle the software creation journey. It involves setting clear goals and figuring out
what you need to do, who’s doing what, when it’s happening, and how. The main
objective is to keep things running smoothly, make sure everyone’s productive, and,
in the end, have a product that does what it’s supposed to do and makes everyone,
especially the customers, happy.

Now, the world of software development is certainly complex, so there are a bunch of
different ways that teams can plan their projects. They each have varying strategies,
each with their own rules, and steps to help people handle their tasks, deal with any

Approaches to Project Planning | 145

changes, keep the quality up, and deliver something awesome to their clients. So
whether your team needs everything spelled out in detail or prefers a more go-with-
the-flow kind of plan that can change on the fly, there’s a method out there for you.

Some common project-planning approaches are waterfall, Agile, Scrum, Kanban, and
Extreme Programming (XP). Picking the right one is important because it can make
or break your project. Your choice depends on many factors like how big and com‐
plex your project is, what your client needs, how your team works together, and how
certain or uncertain things are in your project world. Some teams might stick to one
method, but others might mix and match to find the perfect fit for their project.

As for prompts, let’s take an example. Suppose you are building a “to-do list” app. You
have created a one-page requirements document for it, and now you ask ChatGPT:

Prompt: What is the best project planning approach for this app?

ChatGPT suggests the Agile method as the best option and provides reasons
(Figure 7-6).

Here’s a look at some other prompts you might use:

Prompt: How can teams effectively select and tailor a project-planning approach to fit
their specific software project?
Prompt: Discuss the importance of aligning a project-planning approach with the goals
and complexity of a software project.
Prompt: Explain the sequential phases of the waterfall model in software project man‐
agement.
Prompt: Describe the core principles of Agile methodology in software development.
Prompt: How does Agile methodology facilitate flexibility and customer involvement
in a project?
Prompt: Outline the roles and ceremonies involved in the Scrum framework.
Prompt: Compare and contrast Scrum and traditional project management
approaches.
Prompt: List the key practices of Extreme Programming and how they contribute to
customer satisfaction.
Prompt: Discuss the benefits and challenges of implementing test-driven development
as part of XP.

146 | Chapter 7: Ideas, Planning, and Requirements

Figure 7-6. ChatGPT explains why Agile is the best approach for development of a
certain app

Test-Driven Development (TDD)
One of the smartest things you can do before you start coding is to map out your test
cases. Remember the old saying “Measure twice, cut once”? It’s good advice. You want
to get ready before you dive in. A common approach is test-driven development
(TDD).

Approaches to Project Planning | 147

Here’s the deal: when you sit down and think about all the tests your code needs to
pass, you get a much better understanding of what you need to build. You’re taking a
good, hard look at the blueprint before you start building. This way, you know exactly
what your code should do, which saves you from a lot of head-scratching later on.

What’s more, planning your tests first means you’re thinking about the people who’ll
use your software right from the start. You’re not just lost in code. You’re focused on
making something that works for users. It’s better to spot potential headaches early
on than to tear your hair out fixing bugs later.

In TDD, this approach is at the heart and soul of the whole thing. You write your tests
before you code, which means you’re always focused on what the code needs to
achieve. This approach leads to cleaner, more straightforward code because you’re
always coding with a purpose.

With TDD, there’s a toolkit for the different ways to write our tests:

Given-When-Then (GWT)
The Given is setting the stage, such as where everything’s at before the action
starts. Then you hit the When stage, the main event that gets things rolling. And
you wrap up with Then, where you spell out what you expect to happen after the
dust settles. It’s like telling a story of what your code will carry out.

Arrange-Act-Assert (AAA)
This is similar to GWT. But GWT tends to be more narrative and user-centric,
making it ideal for collaboration among developers, testers, and nontechnical
stakeholders. AAA, on the other hand, is more about the technical execution of
the test itself.

Setup-Exercise-Verify-Teardown (SEVT)
This is your go-to when you’re in the trenches of integration and systems testing.
You start with Setup, where you prep your testing ground. Then, you jump into
Exercise, where you run your system through its paces. After this, you go to Ver‐
ify, which is where you play detective to confirm everything worked out. And
don’t forget the Teardown. This is the cleanup step that’s essential to keeping
everything neat for next time.

Here’s an example of a prompt for TDD, using GWT:

Prompt: Formulate a testing approach for critical features using the Given-When-Then
methodology. The specific requirements include:

• Develop an online booking system for a chain of boutique hotels.

• The system must pull room availability data from each hotel’s internal manage‐
ment software.

• It should allow users to filter rooms by date, price, and amenities.

148 | Chapter 7: Ideas, Planning, and Requirements

• The interface needs to be intuitive and compatible with both desktop and mobile
browsers.

• The system should be built using cloud-based solutions to ensure reliability and
scalability.

TDD also often focuses on specific scenarios or use cases that need to be tested. Here
are several types of prompts that can be useful:

Prompt: Write tests for a feature that allows users to reset their password via email veri‐
fication.
Prompt: Create tests to verify the system’s response when the database connection fails.
Prompt: Develop tests to ensure that the search functionality returns results within 2
seconds under normal load conditions.
Prompt: Write tests to check that all user data is encrypted when stored.
Prompt: Design tests to verify the integration between the payment gateway and the
order-processing system.

Planning Web Design
Planning a website or web app can be complex and involve numerous steps. First, you
need to understand the goals for the site and the target users. Then, you will sketch
out the website’s blueprint and plan how users will move around. This is often known
as the prototype or wireframe.

After this, it’s about making it look good by picking colors, fonts, and snazzy graphics
that show off what the brand’s all about. Of course, you need some catchy words and
cool pictures or videos to tell your story. Then comes the geeky part, where you turn
all these ideas into a real, working website using languages like HTML, CSS, and Java‐
Script.

Of course, a tool like ChatGPT can be helpful when you’re going through the plan‐
ning stages. Here are some prompts:

Prompt: I’m developing a website for <a certain category>. Suggest some objectives or
goals. Who would be the target audience?
Prompt: What are the pages I need for the basic layout of an online store?
Prompt: I’m working on a wireframe for a blog’s main page. Could you suggest some
important elements to include?
Prompt: I’m drafting a wireframe for a landing page of a mobile app. What essential
sections should I make sure to incorporate?
Prompt: For a website about <a certain category>, what would be good ideas for con‐
tent, say blog posts, videos, and infographics?
Prompt: How will you structure the navigation of your site to make it intuitive and
user-friendly for your audience?

Approaches to Project Planning | 149

Prompt: List the key SEO strategies you will implement to improve your website’s visi‐
bility in search engines.
Prompt: What color palette do you envision for my website about <a particular cate‐
gory>?
Prompt: Select font styles for your website about <a particular category>. Consider
readability and brand alignment and how the fonts contribute to the overall aesthetic
of the site.

There are also various tools that use AI to help create wireframes. One is Uizard. Sim‐
ilar to a system like Figma, it has design functions, such as the ability to drag-and-
drop elements like buttons and forms. It can also be used by teams to collaborate.

The AI features are located on the toolbar on the left of the dashboard. The button is
called Magic. Click it, and you will see a list of AI features.

To create a wireframe, select Autodesigner and this will bring up a wizard, which you
can see in Figure 7-7.

First, you will select the device to design for: mobile, tablet, or web. Then, you will
describe the project. You may provide just a sentence or two. Here is an example:

Prompt: A website that connects freelance chefs with people hosting dinner parties or
special events.

Next, you’ll come up with the design style, such as:

Prompt: A chic, modern design with vibrant visuals and an intuitive layout, highlight‐
ing mouth-watering food photography and user-friendly booking features.

Figure 7-8 shows the wireframe.

150 | Chapter 7: Ideas, Planning, and Requirements

Figure 7-7. Uizard has an AI wizard to help create a wireframe for a mobile app or
website

Approaches to Project Planning | 151

Figure 7-8. Based on the given prompts, Uizard generated this wireframe for a website

Conclusion
In this chapter, we explored how to use ChatGPT to start a software development
project. We kicked things off with brainstorming, followed by digging into market
research. Then, we dived into the nitty-gritty of drafting requirements, shining a
spotlight on how PRDs and SRSs help get your project goals and technology details
on point. We checked out different planning styles, from the go-with-the-flow Agile
to the structured waterfall. We also looked at whiteboarding and TDD techniques. By
mixing a powerful tool like ChatGPT with tried-and-true methods, you can build a
strong base for a project.

152 | Chapter 7: Ideas, Planning, and Requirements

CHAPTER 8

Coding

In this chapter, we’ll dive into some handy coding techniques. We’ll start with the
bread and butter of coding—playing around with functions and classes. Then, we’ll
get our hands dirty with a bit of refactoring, tidying up messy code and making it run
smoother. We’ll also show how to work with and create data. Then we’ll check out
some AI tools that can help create fancy frontends without breaking a sweat.

Reality Check
AI-assisted programming tools are pretty cool, right? But let’s not kid ourselves.
They’re not the magic wand that can solve all our coding problems. Why? Well, these
tools are like those students in class who only learn from public notes. They’re trained
on a mishmash of code from all over the internet, and let’s be honest, not all of it is
top-notch. What does this mean for you? Sometimes, you might get code that’s more
bloated than a Thanksgiving turkey or as maintainable as a house of cards. And
sometimes the code is just plain wrong, doesn’t do what you need, or, even worse,
leaves your front door wide open for hackers or the hogging of your network
resources.

Let’s look at an example where ChatGPT produced messy code. Figure 8-1 shows
code for merging two sorted lists into a single sorted list.

153

Figure 8-1. When asked to merge two sorted lists, ChatGPT created some messy code

This AI-generated code does correctly merge two lists, but it takes a verbose
approach. It separately handles the cases of empty lists and uses two additional while
loops to append the remaining elements from each list.

This is where your coding smarts really come into play. You’ve got to know the funda‐
mentals. You need to know what questions to ask and where to poke around when
something isn’t quite right.

Figure 8-2 shows a better approach.

154 | Chapter 8: Coding

Figure 8-2. With some human help, we’ve achieved a better approach to the merging of
the sorted lists

So don’t worry about all the doom and gloom you may hear about robots taking over
developer jobs. Granted, these AI models are getting better all the time. They’re learn‐
ing and growing. Yet they are still far from being the be-all and end-all of program‐
ming. Programmers are still very much in the game. AI-assisted programming tools
are extremely helpful, but they’re not about to replace the savvy and know-how of
real, live engineers.

When you’re jamming with these systems, remember: it’s a collaboration, not a hand‐
over. Stay sharp, stay curious, and don’t forget to double-check everything these AI
tools serve up. They’re helpers, not heroes.

Judgment Calls
Sometimes, it’s simpler to just do the coding yourself instead of using an AI-assisted
programming tool. After all, it can take a bunch of tries to get the AI to catch on to
what you need. But as you keep using these AI tools, you’ll get the hang of figuring
out when they’re useful or when you’re better off flying solo.

Take the experience of Dmitrii Ivashchenko, a lead software engineer at MY.GAMES,
an Amsterdam-based game company with over 1 billion registered users worldwide.
According to him:

An example would be the prompt “Write a method in Python to add a default time‐
zone to the datetime object.” However, you should be prepared that many aspects will
be omitted and you will either have to finalize the handling of corner cases yourself or
have a long correspondence with ChatGPT pointing out its errors. The main thing
here is to initially gauge the time it takes to explain a task versus what it will take for
you to implement it yourself.

Judgment Calls | 155

Learning
Using something like ChatGPT to pick up a new language, framework, or library can
be a big help. It may be faster than the old-school ways like taking a course, endlessly
Googling, or watching a bunch of YouTube videos.

You can use ChatGPT to get the lowdown on all the basics and syntax of the code.
Plus, if you’re more of a learn-by-doing type, you can ask for code examples to see
how everything clicks together. If you already know one programming language,
ChatGPT can make learning a new one easier by comparing the two. Suppose you’re
good with Python but just diving into JavaScript; it can explain the main differences
in Python terms. If you need more resources, ChatGPT can scour the internet and
recommend some solid learning materials for you.

Here are some prompts to consider:

Prompt: For someone who does not know Python, what should I learn first?
Prompt: What are some beginner-friendly projects I can try to improve my skills in
React?
Prompt: Can you suggest resources for learning advanced SQL queries?
Prompt: How would you implement a basic “to-do list” app in both Python and Java‐
Script to highlight their differences?
Prompt: I know how to use loops in C++. Can you show me how loops work in Python
for comparison?
Prompt: Find 5 useful YouTube videos that show how to learn Rust.

Let’s now see how Ivashchenko approaches this:

If you want to quickly master a new language or framework, you can immediately start
making a new project on that technology. Let’s say you want to learn Django. Let’s
choose a project that we will implement on this technology—let it be an online store.
To begin with, just ask ChatGPT how to start developing a new project on Django. It
will tell you what dependencies you need to install, how to set up the initial configura‐
tion of the project, and what related technologies you will need to deal with. Then we
move on to more specific requests such as “How is a model organized in Django?”
“How to add a new section in the admin panel?” and “How to migrate the database?”
By gradually gaining new knowledge and asking more and more detailed questions,
you can realize almost any project on any previously unfamiliar technology. This is
how I mastered Django literally through a weekend of fruitful work.

You can have ChatGPT create useful study guides as well. Here’s a sample prompt:

Prompt: Create a study guide for JavaScript. Focus on a beginner level.

156 | Chapter 8: Coding

You can then follow this up with:

Prompt: Please create a study schedule for me. What topics should I study? What about
practice exercises or quizzes? Coding problems? Links to resources?

ChatGPT can even help you to remember new concepts. One way is to use a
mnemonic device, such as acronyms. For example, suppose you want to remember
the key elements of DevOps, which include continuous integration, continuous deliv‐
ery, microservices, and infrastructure as code. This is what ChatGPT suggests:

ChatGPT: CI-CD-MI (pronounced “Ci-Ci-D-Mi”)

Finally, you can use ChatGPT to get help with LeetCode. Picture it: you’re sitting in
the interview room, maybe with a whiteboard or a laptop in front of you, and then
they hit you with this brain-teasing algorithm or data structure question. It’s more
than just coding. They’re sizing up how quickly you think, how well you explain your
thoughts, and your problem-solving style.

If you want to get a leg up, think about signing up for LeetCode. It’s $35 a month. But
of course, ChatGPT can lend a hand whenever you need it. Here’s a simple prompt:

Prompt: Suggest 3 common LeetCode interview questions.

ChatGPT then came up with challenges like two sum, longest substring without
repeating characters, and valid parentheses. You can then dive deeper, such as by get‐
ting longer explanations or examples.

Comments
When you’re racing against a deadline, it’s easy to skimp on code comments or ditch
them altogether. But AI-assisted tools can have your back. You’ll often find code sug‐
gestions with comments already included.

Funny enough, because of AI technologies, having comments may feel somewhat
retro. If code’s got you scratching your head, you could just ask the tool to break it
down for you, right? This is certainly true.

Something else: writing prompts is becoming the new way to comment. After all,
most tools include the prompts in the comment lines.

Of course, if you want to add comments to some code, you can use a simple prompt
like:

Prompt: Add comments that are clear and according to best coding practices.

Comments | 157

Whether or not to comment is your call. There’s no one-size-fits-all rule here. It’s all
about what works for you and your team. But one thing’s for sure—slapping com‐
ments onto your code is a breeze with AI-assisted tools.

Modular Programming
Modular programming is a cornerstone of efficient and effective software develop‐
ment. With modular programming, coding is more organized, easier to understand,
and easier to keep up with. It also makes teaming up with other coders a lot less of a
headache because everyone’s not tripping over each other. Plus, modules are reusable;
reusability is a massive time-saver, keeps things consistent, and makes it less likely
you’ll goof up.

The value of modular programming certainly applies to how you work with AI-
assisted tools. They will not whip up an advanced application from a simple prompt.
They’re not wizards. But if you break your task down into clear, specific pieces, these
tools shine. Otherwise, you might end up with a code jumble that’s way off track.

According to Titus Capilnean, the cofounder and chief product officer at Private
Market Labs:

After I started using AI tools, I could focus on the problem and my approach to get a
solution, not the minutiae of the actual code I need to write. When I have a technical
problem, I start by breaking it down into smaller pieces, where the inputs and outputs
are clear. The reason for this is that the context window of the AI tool I’m using might
not be sufficient to come up with a good solution in one shot. I found that it’s easier to
debug and build if I ask the model to deliver code that uses a simple input, does one
single job and provides an output I can verify. If I’m not happy with the intermediate
output, I describe my issue to ChatGPT and attempt to run the updated code it deliv‐
ers. Once I’m happy with the solution, I can add extra processing steps, either inside
the existing function or that takes the output of the previous step and refines it further,
closer to my desired solution.
AI tools also improved my productivity by allowing me to check whether a snippet of
code I built is actually correct before even sending it to a compiler or deploying a cloud
function and consuming resources on an error. I just paste the part of the code in the
ChatGPT window and ask whether it is correct, assuming I initialized/provided the
correct context for the snippet to function (e.g., imports, variables, constants, custom
functions being called, etc.). This allows me to produce solutions that run well and
faster.

158 | Chapter 8: Coding

Starting a Project
At the start of a coding project, you may hit the “cold start problem” or “blank page
problem.”

Here’s a scenario: you’re staring at an empty screen, no code, no data, not even a clear
path forward. No doubt, it’s as overwhelming as it sounds. The first big headache is
selecting your project’s architecture, design patterns, and what technology to use.
These decisions are huge because you’ll be living with them for the long haul, so you
want to nail them from the get-go as much as possible.

And let’s not forget the people factor. Getting your team on the same page, figuring
out how to communicate effectively, and setting up a workflow from scratch—these
can be just as challenging as the technology. It’s not just about slapping down those
first lines of code. It’s about laying a solid foundation for everything that comes next.
Tackling this phase needs a mix of smart planning, technical know-how, and solid
teamwork.

AI-assisted programming tools can be a big help. You can use them to set up the basic
scaffolding of your app. You’ll figure out a customized starting point that aligns with
your vision. The tools save you from the nitty-gritty of initial setup and let you jump
straight into the more interesting parts of your project.

You can come up with a particular task and then prompt the LLM to generate boiler‐
plate or starter code.

This is a sample prompt:

Prompt: Generate starter code for a web app that aggregates a user’s social media feeds
from multiple platforms into a single dashboard interface. What do you suggest I use
for the language and frameworks? What about the general file structure?

With this, ChatGPT starts off by suggesting React for creating a smooth, single-page
application (SPA). It also suggests using Redux to maintain strongly styled and reusa‐
ble components. It then says to use Node.js to run the application and Express.js for
the API endpoints. It goes on to recommend Passport.js for the logins and MongoDB
and Mongoose for the database and model building. As for the file structure,
Figure 8-3 shows the layout.

Starting a Project | 159

Figure 8-3. ChatGPT suggests a file structure for a new web app

Autofill
You know when you’re deep in the coding zone, setting up those constants for time
units, and it’s just line after repetitive line? Here’s where GitHub Copilot jumps in.
You can have it provide autofill.

Let’s take an example. Suppose you are creating an app that you want to make respon‐
sive. This means you will need to have constants for the breakpoints for a CSS-in-JS
styled-components library.

160 | Chapter 8: Coding

You can first write this:

breakpoints = {
 'xs': '320px', # Extra small devices

Then in the inline chat, you can use this prompt:

Prompt: Create constants for other screen sizes.

Figure 8-4 shows the result. It provides other screen sizes and variables that have a
similar style.

Figure 8-4. This is output from Copilot that suggests different constants for screen sizes

You can go further with this. Copilot can help with autofill by looking at open files in
your project.

According to Capilnean:

I found that Copilot is especially useful if you have parts of the code that are similar
when it comes to data structures. If you have defined an object in another file that’s
part of the code repository you’re working with, then when you are trying to define a
similar object, it can reliably pre-fill the code for you as you type. For example, an
object for a common API call, like a Sendgrid email, works well here.
However, this autocomplete can hallucinate if you’re not careful. On imports, for
example, it won’t always get the folder structure right, especially if you designed your
own code shape, or if the framework you’re using is fairly new and not well docu‐
mented yet. In that case, I have to go in and manually check where the component is
coming from and whether the directory that Copilot suggested was correct.

Autofill | 161

Refactoring
Refactoring is like spring cleaning for your code. It’s all about tidying up, reorganiz‐
ing, and sometimes sprucing things up. It’s not about adding new features or fixing
bugs.

Refactoring keeps the codebase healthy, less cluttered, and more intuitive. This means
when you or someone else jumps back in later, it’s easier to understand what’s going
on, which cuts down on headaches and, well, swearing at the screen. Plus, cleaner
code is usually more efficient and less buggy, so it’s a win-win for everyone involved.

Refactoring is one of those areas where AI-assisted tools shine. With a prompt or two,
you can slice through the complexity of your code, trim the fat, and reorganize your
code into something that’s not just functional but elegant. With AI in your corner,
refactoring becomes less of a chore and more of a secret weapon for staying ahead of
the curve.

In the next few sections of this chapter, we’ll take a look at some examples of refactor‐
ing.

Ninja Code
Think of ninja code as one of those over-the-top action movie stunts. It’s flashy and
complex, and it leaves you thinking, “Whoa, how’d they do that?” But here’s the catch:
it’s a beast to figure out once the awe wears off. Imagine code so sneaky and tangled
that even the person who wrote it can’t make heads or tails of it after their “ninja”
phase passes. Sure, pulling off that ninja move feels epic in the moment, but when
you or someone else needs to jump back in and make changes, it’s less “hi-ya!” and
more “uh-oh.” The truth is, while ninja code might show off some serious program‐
ming chops, it often goes against the grain of good coding practices, which are all
about keeping things clean, simple, and understandable.

Regardless, ninja code is common. But refactoring with an AI-assisted tool can help
sort things out. Here’s an example:

console.log((function(n, a = 0, b = 1) { while (--n) [a, b] = [b, a + b];
return a; })(10));

Make any sense? Well, you’d probably need to take quite a bit of time to figure this
out. Instead, make ChatGPT do the work:

Prompt: Can you explain this code in a step-by-step process? Also, can you write this in
a simpler way that is more maintainable?

ChatGPT determines that this is a function to calculate the nth Fibonacci number. It
goes on to describe it in six steps and then provides a simplified version, as seen in
Figure 8-5:

162 | Chapter 8: Coding

ChatGPT: In this version, the calculateFibonacci function clearly shows the process of
iterating through the Fibonacci sequence. It’s more verbose but much easier to under‐
stand and maintain, especially for other developers who might read this code in the
future.

Figure 8-5. ChatGPT has provided a simpler version of what was ninja code

Extract Method
You apply the extract method when you have a long method or function. You’ll pick
out a chunk of the code that’s focused on a certain task—say data checking or a spe‐
cific calculation—and you’ll turn this into a new method.

This approach isn’t just about making things look neat and tidy. It’s practical, too. It
helps you keep your code easy to read and understand. When you need to do that
same task again, you can call up your new method instead of rewriting the code. And
if there’s ever a glitch, it’s easier to sort out when your code is nicely split up into these
focused, bite-sized pieces. It’s about making your life easier and keeping your code
clean and organized.

Here are some prompts for the extract method:

Prompt: Are there any common pitfalls to avoid when extracting methods in functional
programming languages?
Prompt: I’ve attached a piece of my C# code. Could you suggest which sections would
be good candidates for extract method refactoring?
Prompt: Can you compare my original function and the refactored version with extrac‐
ted methods? Which is more efficient?

Refactoring | 163

Decomposing Conditionals
Decomposing conditionals is about breaking down big, gnarly if-then-else statements
into something a lot more digestible. You know the kind—those lengthy, twisty con‐
ditions that make you squint at your screen trying to figure out what’s going on.

Let’s say you have an if statement with a complex condition that checks multiple
variables and perhaps calls other functions. Instead of trying to decipher this every
time, you can extract this condition into a method with a name that clearly describes
what the condition is checking. For instance, a condition like if (user.isActive()
&& user.hasSubscription() && !user.isBlocked()) can be refactored into a
method named canUserAccessContent(). This not only makes your main method
cleaner but also instantly makes the code self-explanatory.

Similarly, the code within the then and else blocks can be extracted into distinct
methods. This makes the main flow of your program much more readable. Instead of
wading through lines of detailed logic, a reader can now understand the flow at a
high level: if this condition is true, do this; otherwise, do that. Each part of the logic
lives in its own neatly named method, making it easier to test and modify in isolation.

Here are some prompts:

Prompt: Can you explain how to decompose conditionals in Java code for better read‐
ability?
Prompt: How can I break down complex if-then-else statements using the decompos‐
ing conditional technique?

Renaming
Renaming functions, variables, and classes might seem like a small change, but it can
have a significant impact on the readability and maintainability of code. This is par‐
ticularly useful in situations where code has evolved over time and original names no
longer accurately describe what the code does. For instance, a method initially named
processData might become more specialized. Renaming it to something more
descriptive, like filterInvalidEntries, can instantly clarify its functionality.

Writing a prompt for renaming is fairly simple:

Prompt: What would be a good name for a variable that holds the total number of users
in a database in my SQL script?
Prompt: Here’s a snippet of my JavaScript code. Can you review the variable and
method names and suggest improvements?
Prompt: I’m not sure if the names in my Java class are clear enough. Can you propose
better names for clarity?

164 | Chapter 8: Coding

But you need to be cautious, such as when you’re using a tool like Copilot. If you
change a name, this can break parts of the code that are still using the old name.

Dead Code
As the name implies, dead code is not being used for anything. These are the forgot‐
ten lines of code from features that got scrapped or updates that made some parts
redundant.

Scrubbing this dead code from your project makes everything neater and more man‐
ageable. It also makes it less confusing for anyone new jumping into your project.
They don’t have to scratch their heads over why something’s there if it doesn’t seem to
be doing anything.

Here are some helpful prompts:

Prompt: Can you help me identify potential dead code in this JavaScript snippet?
Prompt: Here’s a piece of my Python project. Could you point out any code that seems
unused or redundant?
Prompt: Could you take a look at these SQL procedures and confirm if any of them are
safe to delete?

Note that using an LLM for this can be risky. Sometimes what looks like an old, dusty
corner of code might actually be important for those rare, just-in-case scenarios.
Then there’s the domino effect: removing one piece might mess up something else
that was relying on it, especially if it’s part of complex logic or setup. So just be
cautious.

The other problem is that the generative AI may not truly understand the relation‐
ships. So until AI systems get more sophisticated, it’s probably best to avoid using
them for rooting out dead code.

When it comes to dealing with dead code, alternative tools may be a better option. An
example is a linter. Think of this as your code’s tidy-up crew. If you’re working with
JavaScript, there’s ESLint. Or for Python fans, there’s Pylint, and the Ruby folks can
turn to RuboCop. These tools are like the grammar checkers of coding. They’re awe‐
some at picking up on those pesky syntax mistakes, potential bugs, and, of course,
even those sneaky bits of code that aren’t doing anything.

You’ve also got the heavy-duty inspectors: the static code analysis tools. Top providers
are SonarQube, Code Climate, and Coverity. These tools are like detectives. They dig
through your code without even running it, sniffing out complicated patterns that
might be troublemakers down the line, including dead code.

Refactoring | 165

Functions
Functions are the bread and butter of coding, playing a huge role in any kind of soft‐
ware program, no matter what programming language is used. They’re chunks of
code that do wonders for keeping your programs tidy and easy to read since they let
you easily reuse code—a lifesaver for any developer. They can also take a big task and
break it down into smaller, more manageable bits. This makes dealing with complex
software a whole lot easier, especially when you need to fix bugs, make updates, or
just try to wrap your head around what the code is doing.

It’s key to nail functions right from the get-go. Making them work is one thing, but
you also need to make sure they play nice with the rest of your code. You want your
functions to be clear, easy to keep up with, and efficient. You’ll need to think about
what to call each function so that it makes sense, how you’re going to set it up, how it
will deal with the data coming in and going out, and how it handles any hiccups.

To help out, here are some guidelines to keep in mind:

Think of the single responsibility principle
Your function needs to be a specialist in one job—that’s it. This makes it a lot
simpler to figure out what it’s doing, check if it’s working right, and fix it if it’s
not.

Name it clearly
Give your function a name that tells you exactly what it does. If it calculates the
total price, call it calculateTotalPrice. This makes your code much more
readable.

Keep it short and sweet
A good rule of thumb is that you should be able to see the whole function on
your screen without scrolling. Short functions are easier to handle and less likely
to have bugs.

Parameters are key
Use parameters for inputs and return values for outputs. This makes your func‐
tions predictable and self-contained.

Stay consistent
Follow the coding conventions and style guidelines of your language or project.
This helps keep your code uniform and easy for others to read.

When you keep these tips in mind, you can whip up some really effective prompts for
functions, and ChatGPT can help. Check out these example prompts:

Prompt: Write a Python function named calculate_area that takes two integers as
parameters, length and width, and returns the area of a rectangle. Include a docstring

166 | Chapter 8: Coding

explaining the function’s purpose and ensure the function handles non-integer inputs
by raising a TypeError.
Prompt: I need a JavaScript function called filterAndTransform. It should take an array
of objects as input. Each object has properties name (string) and age (number). The
function should return a new array containing the names of people who are 18 years or
older, converted to uppercase. Include comments explaining the logic.
Prompt: Create a C++ function named efficientSort that sorts an array of integers in
ascending order. The function should be optimized for time complexity. Provide com‐
ments within the function explaining the choice of sorting algorithm and its time com‐
plexity.
Prompt: Can you generate a Java function called safeDivide that takes two double
parameters, numerator and denominator, and returns their division? The function
should handle division by zero by returning a custom error message. Include Javadoc
comments explaining the function and its error handling.

Object-Oriented Programing
Object-oriented programming, or OOP for short, is a way of writing computer pro‐
grams using the idea of “objects” to represent data and methods. Think of it like cre‐
ating a bunch of small, self-contained boxes, each with its own set of tools and
information. These boxes, called classes, are like blueprints for creating different
objects. A class defines the structure and behaviors of objects—similar to a template.
Then from this class, you can create individual objects, each with its own specific
details but following the same basic structure.

Diving into the world of OOP can feel as if you’re stepping into a maze of complex
concepts like abstraction, inheritance, encapsulation, and polymorphism. They can
feel like they’re written in an alien language.

This is where ChatGPT can be your translator. It breaks down these complex ideas
into bite-sized, easy-to-digest explanations. Struggling with what encapsulation really
means? Just ask, and you’ll get an answer that actually makes sense, minus the tech
jargon.

Here are some prompts:

Prompt: Can you create a simple class in <your preferred programming language> that
demonstrates encapsulation?
Prompt: What are some real-world examples of encapsulation in programming?
Prompt: Explain abstraction in OOP with an analogy from everyday life.
Prompt: Can you show me an example of inheritance in a programming scenario?
Prompt: How does inheritance promote code reuse in OOP?
Prompt: How does polymorphism enhance flexibility in a program?
Prompt: In what scenarios is polymorphism particularly useful, and can you provide
examples?

Object-Oriented Programing | 167

AI-assisted programming tools can also be helpful in coming up with the initial
structures for classes. Here are some example prompts:

Prompt: Design an Employee class with properties like employeeName, employeeID,
and department. Implement a method that displays the employee’s details. Also,
include a constructor to set these properties.
Prompt: I need a BankAccount class in Java. It should have private properties like bal‐
ance and accountNumber. Can you add methods for deposit(), withdraw(), and check‐
Balance() that modify or access these properties safely?
Prompt: Could you show me how to create a Vehicle class in C# and then a Truck class
that inherits from it? Make sure to include properties like wheels and fuelType and
demonstrate the use of different access modifiers.
Prompt: In C++, how would I write a FileHandler class that opens a file in its construc‐
tor and closes it in its destructor? Also, include methods for writeToFile() and read‐
FromFile().

Frameworks and Libraries
Diving into software development without frameworks and libraries is like trying to
bake a fancy cake from scratch without a recipe or premixed ingredients. It’s possible,
but it’s a whole lot harder and takes more time. Frameworks and libraries are the
secret sauce that makes a developer’s life easier. Instead of reinventing the wheel every
time you need to make a web request or manipulate a DOM element, you just tap
into what’s already there.

AI-assisted programming tools can certainly help. First of all, they can be useful for
learning the basic features and workflows. They can also tell you when it’s best to use
a framework or library.

But take their help with a grain of salt. Here’s what Capilnean has to say:

Given the large number of updates React gets—as well as other frameworks and libra‐
ries—and the fact that we use specific versions of frameworks, I had to provide these as
system prompts to my ChatGPT instance in order to optimize my results. Sometimes,
GPT provided solutions that were more academic than production-grade, so I tend to
rely on working with our senior developers to get the job done for more complex
issues. For React, I find myself asking GPT to check my syntax and my method of pro‐
cessing a specific data type more than actually build a full feature for me.
The same goes for NodeJS. I have to take into consideration our internal APIs and
methods of working with our data before I can go to ChatGPT and ask for a code snip‐
pet for a feature. Once I am able to describe the output of one of our functions as the
input for the feature I am building, it usually is able to provide me with stable code. I
use the same process here if the output isn’t good or it errors out. I provide it with the
issue and ask for a code update in the right direction.

168 | Chapter 8: Coding

Data
Data is the lifeblood of every application, truly. It’s what keeps an app alive and kick‐
ing. Just like blood carries oxygen and nutrients to keep our bodies functioning, data
flows through an application, giving it the information and insights it needs to work
its magic.

But creating sample data can be a slog. Picture this: you’re excited to test your shiny
new app, but first, you need a bunch of data to see how it actually works in the real
world. You start typing in rows and rows of data—names, dates, numbers, whatever it
takes. But then, it just keeps going. And going.

What’s more, you have to be careful about making it realistic enough so your tests are
valid, but not so detailed that you’re writing a novel for each entry. And if you need a
large dataset? Forget it: you’re basically signing up for a marathon of copy-pasting,
tweaking, and double-checking.

An AI-assisted programming tool can be handy for this. But first, you need to select a
database and spin up the schema and tables. The tool will also need to be given the
relationships, say, among the tables. Then you will need to do the configuration and
setup. But then the AI can begin to help.

Here are some prompts to get help evaluating databases:

Prompt: What type of database would be best suited for handling <specific data types or
functions, e.g., user interactions, product inventory, etc.>?
Prompt: For an app expecting <high/low> traffic with <type of data, e.g., images, text,
real-time data>, which database should I consider?
Prompt: I’m on a tight budget. Can you suggest a cost-effective database solution for a
small <type of app, e.g., local delivery service app>?
Prompt: I’m relatively new to database management. Which databases are user-friendly
and easy to maintain for a beginner?

Here are some prompts to ask for help with a database schema:

Prompt: Can you help me design a basic database schema for a <type of application, e.g.,
online store, blog>? I need to know what tables I should create and the primary rela‐
tionships between them.
Prompt: What would be an efficient table structure for managing <specific type of data,
e.g., customer orders, inventory> in a relational database? What fields and data types
should I include?
Prompt: How should I define the relationships between tables in a relational database
for an application that deals with <describe the application’s functionality, e.g., event
management, course enrollment>? Specifically, I need help with understanding foreign
keys and join tables.

Data | 169

Prompt: I’m working on a relational database schema for <describe the project>. Could
you guide me on setting up primary and foreign keys effectively for data integrity?
Prompt: What normalization strategy would you recommend for a database handling
<type of data or application function>? How can I avoid data redundancy and ensure
data integrity?
Prompt: I’m using a NoSQL database for a <type of project, e.g., social media app>. How
should I design the document structures to store <specific data types, e.g., user profiles,
posts, comments>?
Prompt: In designing my database schema, what indexing strategies should I consider
for optimizing query performance, especially for <type of queries or operations, e.g.,
full-text search, frequent updates>?
Prompt: I need to migrate an existing database to a new schema. What are the key con‐
siderations and steps for redesigning the database structure without losing data
integrity?

And here are some prompts for setting up the initial database environment:

Prompt: Can you provide step-by-step instructions for installing <a specific database
server, e.g., MySQL, PostgreSQL> on <a specific operating system, e.g., Windows, Linux>?
Prompt: After installing <name of database>, what are the essential configuration set‐
tings I should initially set up for optimal performance?
Prompt: What are the best practices for securing a <specific database> server? I’m par‐
ticularly interested in user authentication and protecting sensitive data.
Prompt: How can I optimize the performance of <a specific database> for an applica‐
tion that will handle <describe the nature of the data and expected load, e.g., large data‐
sets, high transaction volumes>?

Now, let’s look at how we can use AI to create sample data. Here are some example
prompts:

Prompt: Create demo data for 100 IDs and email data and save this to a CSV file.
Prompt: Create demo data for 50 products, including product ID, name, price, and cat‐
egory.
Prompt: Create a demo dataset of 150 order records, each with an order ID, customer
ID, order date, and total amount.
Prompt: Generate sample data for 100 employees, including employee ID, full name,
department, and email address.
Prompt: Create sample data for 80 customer feedback entries, including feedback ID,
customer ID, comments.

With the data, you can then create SQL statements for it. You can use something like
this for the customer feedback entries:

Prompt: Generate a SQL insert statement to populate the Feedback table with the data.

170 | Chapter 8: Coding

ChatGPT can be a lifesaver when it comes to the nitty-gritty task of data conversion.
If you’re a developer, you know that converting data between different formats like
XML, SQL, JSON, CSV, and TOML is common. But let’s be honest, it can be a tedious
and sometimes error-prone process. That’s where ChatGPT comes in handy.

Here are some sample prompts:

Prompt: Here’s a CSV row: ‘John Doe, 35, New York’. Can you convert this into an XML
format for me?
Prompt: I have a JSON array like this: [{‘name’: ‘Alice’, ‘job’: ‘Engineer’}, {‘name’: ‘Bob’,
‘job’: ‘Designer’}]. How would I represent this in a SQL table format?
Prompt: I need to convert this TOML configuration: ‘title = “My Project” owner =
“Sara”’ into an equivalent YAML format. How would you convert this?

Frontend Development
Frontend development involves making websites look great and navigate smoothly.
At its core, it uses HTML to set up the basic structure of web pages, CSS to make
things look nice and lay out everything, and JavaScript to make it interactive. Nowa‐
days, frontend developers often use frameworks like React and Vue. These frame‐
works offer features like reusable components and ways to make data update in real
time, which allows for building websites and apps that are dynamic and engaging.

Frontend development can be challenging, even for experienced developers. First of
all, there is the unpredictable nature of web browsers and user interactions. You need
to deal with different browsers, devices, screen sizes, and user preferences. It’s like
trying to make a one-size-fits-all T-shirt that looks good on everyone. Next, the front‐
end world changes fast. Framework updates pop up frequently.

Another thing about frontend development is that it’s not just about coding. It’s also a
lot about good user experience (UX) and user interface (UI) design. This is a unique
skill set that many programmers don’t have. UX and UI design involves understand‐
ing how people interact with technology, what makes a design visually appealing, and
how to create a smooth, logical flow in an app or website. It’s like being part artist,
part psychologist. For a lot of traditional programmers, who might be wizards at
things like algorithms and data structures, the world of colors, layouts, and user jour‐
neys can be unfamiliar territory.

Regardless, there are ways that AI-assisted programming tools can help out. We’ll
look at some of these in the next few sections.

Frontend Development | 171

CSS
Writing CSS for websites can be tricky, especially when you’re working on big, com‐
plex sites. It’s challenging to make sure everything looks good across different brows‐
ers and devices. You’ve got to know all the weird browser-specific quirks. It’s also easy
to accidentally mess things up so that one part of your style steps on the toes of
another, making things look wonky. Plus, traditional CSS doesn’t let you use variables
or functions, which means you end up repeating yourself a lot in your code (though
tools like SASS and LESS help with that). Even something as simple as centering a
<div> can be an ordeal.

Here are some prompts for common CSS tasks:

Prompt: Can you provide me with a CSS snippet for a responsive navigation bar that
collapses into a hamburger menu on mobile devices?
Prompt: I’m having trouble with a flexbox layout in CSS where items are not aligning
properly. Can you suggest what might be going wrong?
Prompt: I need to add a hover effect to buttons on my website. Can you show me a CSS
example to make the button change color when hovered over?
Prompt: I’d like to add a fade-in animation to my website’s homepage. Could you pro‐
vide a CSS code snippet for this?

Creating Graphics
Creating professional graphics for websites or apps requires an extensive background
in design, along with understanding sophisticated tools like Photoshop. But there are
many powerful text-to-image generative AI systems that can help you create standout
images. Some of these systems include:

• Canva
• Stable Diffusion
• DALL·E 3 (which is built into ChatGPT)
• Adobe’s FireFly
• Midjourney

With these systems, you can create many types of assets, including hero images, but‐
tons, and logos.

Let’s look at an example. We’ll have ChatGPT create a logo:

Prompt: I’m creating a website for my home bakery business named “Sweet Whisk.” I
want a logo that’s warm and inviting. The main products are cakes and cookies, so
maybe those could be incorporated into the design. I like pastel colors, especially light
pink and mint green. The style should be simple and modern, with a touch of
playfulness.

172 | Chapter 8: Coding

Figure 8-6 shows what ChatGPT created.

Figure 8-6. ChatGPT created a logo when given some guidelines

If you want to make changes to the output, you can continue to prompt ChatGPT.
Other AI image tools, like Firefly, have more features than ChatGPT for designing
images, but ChatGPT can still create compelling images—without much work.

AI Tools
There are some excellent AI tools that can whip up websites just from a prompt or a
picture of what you want the frontend to look like. They’ll handle all the coding for
you. This even includes making conversions to frameworks like React, Angular, and
Vue. What’s more, an AI tool will also usually be able to import a wireframe, say from
Figma.

After the code is created, you can jump in and tweak things to get it just right. Using
AI is an effective shortcut for speeding up the whole website-building process.

Here are some of the AI tools available:

• TeleportHQ
• Anima
• Locofy
• v0 by Vercel

Let’s take a closer look at v0 by Vercel, which is easy to use. In fact, the interface is
similar to that of ChatGPT, as you can see in Figure 8-7.

Frontend Development | 173

Figure 8-7. This is the interface for v0 by Vercel

You can either enter a prompt for the type of interface you want the system to create
or upload an image. For this example, I will use a prompt:

Prompt: An ecommerce dashboard with a sidebar navigation and a table of recent
orders.

This will take you to a design studio, which will look like Figure 8-8.

Figure 8-8. The design studio that v0 by Vercel comes up with when you enter a prompt

The AI will create three versions of the dashboard. You can create additional ones,
too. Then, with a prompt, you can make changes, such as to the text size, colors, and
so on.

When you are finished, you can click Code at the upper right. You’ll see a listing of
clean React code that’s based on the shadcn/ui and Tailwind CSS.

There are also several open source systems that use AI to generate frontends. Con‐
sider Screenshot to Code. The creator of this project is Abi Raja, who is the CEO and
founder of Pico. His prior startup was acquired by Yahoo! in 2013.

174 | Chapter 8: Coding

https://oreil.ly/31Rjd

Raja spent six months creating the initial codebase for Screenshot to Code. “Frontend
developers often convert designs and mock-ups into code,” said Raja. “Much of this
work is repetitive. But my software can help automate this process, achieving about
90% of the task.”

Currently, Screenshot to Code supports exports to React, Bootstrap, and HTML/Tail‐
wind CSS. The project has over 31,000 stars on GitHub.

With ChatGPT, you can also convert an image to code. Suppose you want to create a
calculator app and you want it to look like the version on the iPhone. Figure 8-9
shows the image.

Figure 8-9. You can input an image of the iPhone calculator app to ChatGPT to generate
code

First, we’ll ask ChatGPT to identify the image, which it does correctly. Then we can
use this prompt:

Prompt: Suggest code for this image

Figure 8-10 shows the calculator.

ChatGPT created code for Python. True, the styling is off, but this is still fairly good.
Of course, if you want it to look more like the iPhone version, you can be more spe‐
cific with the prompt, such as by telling ChatGPT to use something like React.

Frontend Development | 175

Figure 8-10. ChatGPT created code for the calculator based on an image of Apple’s
iPhone app

APIs
Getting the hang of a new API can be a challenge. First off, you’ve got to wade
through the documentation, which may be dense and technical. And it’s hit or miss
with these docs—some are clear and easy to follow, while others...not so much. Then
there’s the deal with logging in and getting access, like using API keys or OAuth
tokens. Plus, trying to figure out the data structures and response formats the API
spits back at you can be overwhelming. Then there is error handling as well as having
to keep up with any updates or changes in the API.

Fortunately, using ChatGPT can make tackling these challenges a bit easier.

To see how, let’s take a simple example. Suppose you want to use an API to get infor‐
mation about the weather. You can ask ChatGPT for API suggestions:

Prompt: What are good weather APIs?

One that ChatGPT recommends is OpenWeather API. Next, ask the following:

Prompt: How do I start using the OpenWeather API?

ChatGPT describes the main steps.

You can then ask it to show how to make a request:

Prompt: How do I create a request using the OpenWeather API? How do I do this
using Python?

176 | Chapter 8: Coding

ChatGPT will go through the process, providing details on these steps:

• Import the requests library.
• Define the API key.
• Create the API request URL and use the current weather data endpoint.
• Execute the request and handle the response.
• Check to see if the request was successful.

Conclusion
In this chapter, we dug into modular programming, functions, and object-oriented
programming. We also explored how to use AI to learn new languages and frame‐
works on the fly as well as how to use it to work more efficiently with data. Then we
saw how to create compelling frontends.

But it’s important to repeat: AI-assisted programming tools are far from perfect.
That’s why it’s important to keep your eyes peeled and double-check everything.

Conclusion | 177

CHAPTER 9

Debugging, Testing, and Deployment

This chapter is about the parts of software development that often do not get enough
love: debugging, testing, and deployment. It’s a guide to everything from spotting dif‐
ferent bugs, to writing docs that people can actually understand, to making sure your
code does what it’s supposed to. We’ll also dive into how to merge changes without a
hitch, make your software run smoothly and safely, take in what users say, and even
how to make a splash when you launch.

Debugging
When creating code, a developer will spend around 35% to 50% of their time on
debugging. This is not just a time sink. It also eats up a big chunk of the budget in a
software project.

There are two main types of bugs. First, there are syntax errors. These pop up when
your code doesn’t play by the rules of the structure of a language. It can be as simple
as forgetting to add a colon at the end of a for loop. A modern IDE like VS Code
should detect and fix many of these types of errors.

Next, there are logical errors. These are trickier because they happen when something
in your logic is off. For example, suppose you have created a program to filter out
adult users from a list based on their age. The only problem is, instead of excluding
everyone aged 18 and above, your code mistakenly excludes those under 18. So, you
end up with a list full of adults instead of teens. This mix-up is a prime example of a
logical error. Your code is doing the exact opposite of what you intended. Pinpointing
why it’s flagging the under-18 crowd, instead of those 18 and above, can be quite the
puzzle. The fix can range from making a quick adjustment in the age condition to
having to rethink the whole logic.

179

https://oreil.ly/vci4A
https://oreil.ly/vci4A

Regardless, using an AI-assisted programming tool is not something you should start
off with when debugging. Often, traditional approaches should be fine. VS Code pro‐
vides powerful debugging features that can detect and resolve problems. After all, you
can easily set up breakpoints to inspect variable values, walk through the code line by
line, and see what’s exactly happening. These are a lifesaver, especially in large
programs.

But of course, some bugs can be real head-scratchers. Modern software is often a
complex puzzle with many layers and parts that have to work together. Sometimes a
bug pops up because these parts interact in unexpected ways, and figuring out
what’s actually going wrong can be a real challenge. Then there’s the issue of
documentation—or the lack of it. When software doesn’t come with clear instructions
or explanations, it’s tough to understand how it’s supposed to work, which makes
finding and fixing bugs even harder. Your software will usually rely on external libra‐
ries or services, and if something goes wrong there, the bugs in your software can be
maddening.

So this is where you can turn to AI. For example, one scenario is deciphering cryptic
or long error messages. These may be stack traces, for instance, which are snapshots
of what the program was doing when everything went haywire. You might also get
detailed information about the interactions among various frameworks and libraries.

What you can do is copy-and-paste the error message into a prompt and include
something simple like:

Prompt: What does this mean? {error message}

Or, suppose you have code and there is a logic error. The program simply will not do
what you want it to do. In this case, you can copy-and-paste the code into the
prompt. Then include this:

Prompt: This program is supposed to allow users to upload photos and display them in
a gallery. However, when it is executed, the photos are not appearing. What is the
problem with this program? {code}

If ChatGPT finds the problem, it will often suggest a solution. But if it does not, you
can add this instruction to the prompt.

Documentation
Documentation is the glue that keeps everything from falling apart, but sadly, it’s usu‐
ally shoved to the back burner. We’ve all seen it—working with code without a guide
is like wandering in a maze, and it’s a pain, especially for new folks or anyone trying
to figure things out.

180 | Chapter 9: Debugging, Testing, and Deployment

Good documentation helps to prevent guessing games and keeps everyone on the
same page. A survey from Stack Overflow says that 68% of developers bump into
these knowledge roadblocks every week. Plus, GitHub’s report from 2021 showed that
sharing information in documentation can make teams up to 55% more productive.

But it’s not just about making developers’ lives easier. Good documentation is the
backbone of a smooth-running development process. It’s akin to a map that shows
you where to go and what to watch out for. Without it, you’re often flying blind, and
that’s when costly mistakes happen.

With ChatGPT, you can create any type of documentation, such as:

• User manuals
• README files
• API documentation
• FAQs
• Troubleshooting guides

When developing prompts for creating effective documentation, here are some fac‐
tors to keep in mind:

Know your audience
Think about who’s going to use your docs. Are they newbies looking for a guide
to get started quickly, or are they tech wizards needing the nitty-gritty details like
API docs and code snippets? Getting a bead on what your readers need is key to
hitting the mark with your content.

Keep it simple
Nobody likes to wade through jargon or tech-speak that needs a decoder ring.
Keep your words straightforward and to the point. If your grandparent couldn’t
get it, you’re probably not there yet.

Stick to the plan
Keep your docs looking familiar. Use the same style, headings, fonts...you name
it. Consistency is your friend. It’s like having a good rhythm in a song. It just
flows better.

Show, don’t just tell
People understand things faster when they see it in action. So, throw in real-life
examples or scenarios. If you’re talking to coders, some code examples are gold.
For others, screenshots or step-by-step walkthroughs can be helpful.

A picture is worth a thousand words
Sometimes, text just doesn’t cut it. Use diagrams, screenshots, or even videos to
get your point across, especially when you’re dealing with complex stuff.

Documentation | 181

https://oreil.ly/tWiy4
https://oreil.ly/q6QO8

The why matters as much as the how
Don’t just lay out the steps. Tell your readers why they’re doing what they’re
doing.

With all this in mind, you could use a prompt like the following:

Prompt: Can you suggest how I might explain the concept of version control in Git to a
non-technical audience? I need to keep it simple and avoid technical jargon. Also,
explain the importance of version control and suggest any visuals or diagrams.

ChatGPT has deep capabilities for language translation. You can
certainly leverage this with your documentation or any other
content.

Microsoft has been cooking up a system called GitHub Copilot for Docs, which is for
the enterprise edition. It’s not your average, run-of-the-mill tool for digging through
docs. For example, the search results and responses are based on a user’s coding back‐
ground and experience. It is also updated with the latest on GitHub’s repositories. It
even gives you the ability to add private documentation. Essentially, this is a highly
sophisticated knowledge base that can greatly boost your coding.

Code Review
Think of a code review as your code’s test drive before it gets a pull request in the
codebase. You make sure everything’s running smoothly, fits in just right, and won’t
go kaput down the road.

But the process is about more than just looking for clunky bits or glitches. It’s helpful
for everyone to huddle around, bat ideas back and forth, and learn from each other.
You’ll see different ways to tackle a problem and get a better grip on the whole
project.

In the meantime, a code review can help enforce an organization’s coding style and
guidelines. Then there’s the security check. You see, automated tools don’t always
catch everything. Sometimes, it takes a human eye to spot those sly security risks.

As for ChatGPT, it can be a key part of this process. Here’s an example prompt:

Prompt: Write a code review for the code below. Keep a focus on the maintainability of
the code, potential security issues, and performance flaws. {code}

182 | Chapter 9: Debugging, Testing, and Deployment

I intentionally gave ChatGPT a poorly written function, yet ChatGPT did a good job
with its review. It suggested numerous areas for improvement, such as that the func‐
tion could benefit from not having hardcoded database connections. ChatGPT also
detected the potential for a SQL injection due to the direct concatenation of the user
ID in the SQL query and a lack of user input validation. It then found a performance
issue with the construction of the SQL.

Unit Tests
In a way, unit tests are mini evaluations for parts of your code, say for a few functions
or methods. Developers often do this testing themselves using cool tools like JUnit
for Java, NUnit for .NET, or pytest for Python. These tools help write and run tests,
and tell you the results. They usually play nice with other software tools you’re using.

Doing unit testing is helpful because it makes your software better, cuts down on
pesky bugs, and makes it easier to tweak and fix problems later. Each test focuses on
just one thing, so if something goes wrong, you know exactly where to look. These
tests are usually automated, which means they can be run fast and often. This is
important for keeping everything smooth and up-to-date.

Unit tests are usually straightforward to write. Since they focus on small parts of the
code, they shouldn’t be too complicated. Plus, they’re like a guide to your software. By
checking out the unit tests, other developers can get how certain parts are supposed
to work. If you change your code, unit tests are great for making sure you haven’t
messed up something that was working fine before.

Let’s take a look at an example. Suppose you have created a tip calculator program
like this one:

def tip_calculator(bill_amount, tip_percentage):
 tip_amount = bill_amount * (tip_percentage / 100)
 total_amount = bill_amount + tip_amount
 return total_amount

bill_amount = float(input("Enter the bill amount: "))
tip_percentage = float(input("Enter the tip percentage (e.g., 20 for 20%): "))
total_amount = tip_calculator(bill_amount, tip_percentage)
print(f"Total amount including tip: {total_amount:.2f}")

This has a function that calculates the total bill amount including a tip and takes two
parameters, bill_amount and tip_percentage. The function will find the value for
total_amount.

Code Review | 183

For code like this, unit tests check all sorts of scenarios. For instance, they can help
verify that the function correctly calculates the total amount, including tips, for a
range of inputs. This is important because even a small error can lead to significant
discrepancies. Unit tests can cover typical cases, such as standard bill amounts and tip
percentages, as well as edge cases, like a zero or negative bill amount or unusually
high tip percentages. They also help to ensure that the function handles wonky
inputs, such as non-numeric or null values, gracefully.

Here’s a sample prompt:

Prompt: For this program, suggest unit tests to correctly calculate the total amount,
check the typical and edge cases, such as zero and negative bill amounts and high tip
values. Also check for invalid inputs. For the unit tests, you can have console logs.

Figure 9-1 shows the code that ChatGPT created for the unit tests.

If you want to use a testing framework, to allow for a more structured and compre‐
hensive approach, you can ask ChatGPT for this:

Prompt: Create unit tests that use a testing framework.

ChatGPT suggests using unittest. It shows how to set it up, develops the tests, and
demonstrates how to run the unit tests.

Or, if you already have a file with unit tests, you can evaluate them. Here’s a prompt:

Prompt: Below is the file for unit tests for a program that <explain what it does or point
to the code>. Any other tests I should have? What is missing here?

While ChatGPT or an AI-assisted programming tool can be useful with creating
these, the tools are far from foolproof. For more advanced use cases or larger codeba‐
ses, the results can be off.

Consider the following advice from David Lee, who is a founder, senior engineer, and
AWS-certified solutions architect:

However, when dealing with tests involving real database interactions and Docker, the
dynamics change significantly. It becomes another level of sophistication that ChatGPT
4.0 may not be able to comprehend to some extent, and you probably need to write a
few tests manually first, especially the database connection part so that it can learn how
to write others.

184 | Chapter 9: Debugging, Testing, and Deployment

Figure 9-1. ChatGPT created code for unit tests on a tip calculator program

Code Review | 185

Pull Requests
A pull request, or PR for short, is like a golden ticket in the coding world, especially
when you’re working with others. You wrap up your code, push it to somewhere like
GitHub or GitLab, and send out a PR. It’s not just a “please add my code” request,
though. It’s also a nudge to your teammates to check out what you’ve done, give it a
thumbs up, or maybe throw in some pointers to make it even better. It’s all about
making sure that when your code joins the rest of the project, it’s the best it can be.
What’s more, PRs are a neat way to keep track of who did what and when, which is
certainly helpful in big projects.

No doubt, writing a solid PR description really makes a difference. You want to lay
out the what, why, and how of your changes. Start with a quick rundown of the prob‐
lem you’re tackling. Then dive into how your changes fix this. Don’t forget to throw
in details like which files got a makeover or any tests you ran. If there’s something
specific you’re unsure about or need a second opinion on, mention that too.

An effective PR description is a lifesaver for your reviewers. It speeds up the whole
process and keeps everyone on the same page. Moreover, detailed PR descriptions are
like a treasure trove of information for the future.

And yes, ChatGPT can be your sidekick in nailing those PR descriptions. Need to
kickstart a draft? Tell ChatGPT what you did, and it will help you structure it into
something clear and to the point. If you’ve already written a description, ChatGPT
can check it out for clarity and grammar and suggest ways to make it even better.
ChatGPT can also help you figure out the best way to lay out your PR, like starting
with a summary and then getting into the nitty-gritty. And if there are technical
details that need simplifying, it’s got your back in making the PR more understanda‐
ble for everyone in your team.

Let’s take a look at some helpful prompts:

Prompt: I added a new search feature to the application that filters results based on user
input. Can you help me write a PR description for this?
Prompt: I fixed a bug where the app crashed when a user entered special characters in
the text field. How should I describe this in a PR?
Prompt: I refactored the authentication module to improve performance and read‐
ability. What should I include in the PR description?
Prompt: I updated the user interface to make the navigation more intuitive and added
new icons. Can you help me draft a PR description?
Prompt: What’s a good way to phrase this in a PR description?
Prompt: I added new unit tests for the payment-processing module. Can you assist me
in writing a PR description that highlights these changes?
Prompt: I resolved merge conflicts that arose due to recent changes in the main branch.
What should I mention in the PR description about this?

186 | Chapter 9: Debugging, Testing, and Deployment

Keep in mind that Microsoft has added a feature in Copilot that allows for creating
PR descriptions. It’s called Generated Commit Message. To use it, you’ll need to make
sure you have a connection to the repository on GitHub. Then you’ll just need to
click the sparkle button, as you can see in the lefthand panel in Figure 9-2.

Figure 9-2. Copilot can create PR descriptions based on the repository that is loaded into
your project

Copilot will then write up a useful PR description.

Finally, there are numerous startups that are creating their own systems based on
LLM technologies. One is called What The Diff. According to the company’s
cofounder and CEO, Sebastian Schlein:

There are two main features of What The Diff: 1) Making pull requests easier to review
by summarizing them into plain English and giving reviewers and easy-to-understand
overviews about the changes within the PR. 2) WTD can also write summaries that are
completely non-technical and that get sent to other stakeholders like product manag‐
ers who don’t have GitHub access. That makes it easy for them to see if the change in
the pull request actually matches their specifications.

Deployment
You’ve been grinding away on your software, and now it’s go-time—the big launch.
It’s a thrilling moment. You’re about to see real people using your software, telling you
what rocks and what could use a tweak or even more. That kind of feedback? Price‐
less for a developer.

If you’re in the business of selling your software, this is the moment you’ve been wait‐
ing for—when the cash starts rolling in. Nailing the launch can be a real game-
changer for your bank balance.

But let’s be real: deploying software is like holding your breath and hoping for the
best. There’s always this sneaky feeling that something might not go as planned.

You know how things seem perfect in your test setup, but then in the real world, they
get a bit wobbly? It could be different hardware, some funky network systems, or just
odd settings that mess things up.

Deployment | 187

https://oreil.ly/LriIB

Security is a big deal, too. Once you’re live, you must be on your toes to keep the bad
guys out and play nice with privacy rules.

Also, your software has to be tough enough to handle the crowd. It’s got to stay quick
and smooth, no matter how many people jump into it or how big your business gets.

And then there’s the whole CI/CD thing. It’s all about making deployments smooth
and automatic to dodge mistakes. Sounds great, but getting it up and running, and
keeping it that way, is a bit of a hustle.

Then what to do? You can definitely check out ChatGPT. The following are just a few
of the prompts to consider:

Prompt: Can you guide me in creating a deployment checklist for my team to follow?
Prompt: What are some good learning resources for getting started with Docker for
deployment purposes?
Prompt: Can you provide best practices for zero-downtime deployment in a web appli‐
cation?
Prompt: I’m encountering a “server timeout” error during deployment. What are some
common causes and solutions for this?
Prompt: Could you help me write a bash script for automating the deployment of my
Python web app?
Prompt: What are the essential configuration settings I should check before deploying
an app in a production environment?
Prompt: How do I plan a rollback strategy for a failed deployment in a cloud environ‐
ment?
Prompt: What security measures should I consider during the deployment of a finan‐
cial application?
Prompt: How can I optimize the performance of a deployed Node.js application?

While not perfect, ChatGPT can be helpful with complex DevOps. Here are some
thoughts from Titus Capilnean, who is the cofounder and chief product officer at Pri‐
vate Market Labs:

Cloud logs are not the easiest things to work with, especially as I’m not a devops engi‐
neer, but we have to deal with them, given that we are running processes on AWS and
Google Cloud on a regular basis.
One time, I had to set up tracking for a SQS + Lambda process, based on the output of
a large-scale function deployment. My function was essentially printing a status in the
logs and I planned to use that status to generate a report of that process—in our case,
deal aliveness. I asked ChatGPT to provide an AWS CloudWatch query script and
tuned it to the point where I could just run it at the end of each process to get my
results. Reading the documentation in detail for this task would have taken probably
5–6 hours, so I saved a ton by going the GPT route.

188 | Chapter 9: Debugging, Testing, and Deployment

Similarly, I had to set up some alerts in Google Cloud, and I worked with ChatGPT to
create a query that excluded some system-level errors we weren’t actually responsible
for and were not user-facing. It saved me hours of reading and work, and it provided
me with the custom metric I needed to set up a useful alert system for our team.

User Feedback
User feedback is key to making your software rock. When your users see you’re tun‐
ing in and making changes based on their thoughts, they’re more likely to stick
around and be all smiles. It’s smarter to iron out the kinks early with their help, rather
than try to clean up a big mess later when a lot of (increasingly unhappy) folks are
using your app.

Even with all the testing, some bugs are sneaky, only showing their faces when your
software hits the real world. Your users are like your own personal detectives, spot‐
ting the stuff that might have slipped past you.

Sometimes your users get really inventive with your software, using it in ways you
never dreamed of. Their wild ideas can light the spark for new features, or even
brand-new products.

Of course, there’s a whole toolbox to boost customer service. Just some of the tools
include Zendesk, Freshdesk, Drift, and Salesforce. They are handy with everything
from live chat that lets you talk to customers in real time to feedback forms that
gather insights on what your users think. Automated ticketing systems keep track of
customer issues, ensuring that nothing slips through the cracks. And don’t forget
about customer relationship management (CRM) systems, which keep all customer
interactions in one place. These tools can really make a difference in providing effi‐
cient, responsive customer service.

Generative AI can definitely add value on top of all this. It is particularly good at pro‐
cessing large amounts of unstructured data like user feedback.

For example, suppose you have a file that includes lots of emails, IMs, and contact
form information from users. You can then go to ChatGPT and use this prompt:

Prompt: Identify the common themes and categories, such as usability, performance,
features, bugs, and customer service. Also, do sentiment analysis on this file. Based on
the frequency and severity of issues mentioned, help prioritize which bugs to fix first
or which features to consider adding. With all this, create a report that includes charts.

Another way ChatGPT can help is with response drafting. If you’re dealing with cus‐
tomer feedback, it can help you write better responses, such as by creating templates
for answers to common questions. This way, you’re always on point and professional
when you’re chatting with users or customers.

Deployment | 189

Or, you can use ChatGPT for more personalized responses. You can cut-and-paste
user email and use a prompt like this:

Prompt: Write a reply to the user email, focusing on a calm and understanding tone.
Make sure the response is friendly and helps to ease any concerns without escalating
the situation. {email}

In some cases, you can create your own LLM-based application to handle user feed‐
back. This is what Warp did. The company had a developer spend less than a week—
at half-time—to create the app. It was built using the OpenAI API.

“The app has made a huge difference,” said Noah Zweben, who is a product manager
at Warp. “Before, it was difficult to categorize and prioritize the incoming feedback.
But the generative AI has been able to do this extremely well.”

The Launch
Several years before ChatGPT became a big deal, generative AI was already making
an impact on important activities like sales and marketing. The trailblazer was Jasper.
The company grew at a staggering rate. Then again, generative AI is ideal for whip‐
ping up catchy and creative content—fast.

But you don’t need Jasper for your software launch. ChatGPT should work just fine.
First of all, you can start mapping out a killer marketing plan with it. Here’s a sample
prompt:

Prompt: You have created an app to help people plan healthy meals. It creates custom
meal plans based on dietary preferences, health goals, and nutritional needs. It can also
generate shopping lists, offer recipe suggestions, and track nutritional intake. For this
app, put together a marketing plan. The company is an early-stage startup and does
not have much resources for a marketing budget.

ChatGPT first recommends that you identify your target audience. It suggests that the
primary users are “health-conscious individuals, fitness enthusiasts, people with spe‐
cific dietary needs (e.g., gluten-free, vegan), busy professionals, etc.” It then covers
various strategies, such as leveraging social media, content marketing, community
engagement, email marketing, and partnerships.

Here are some other helpful ChatGPT prompts:

Prompt: Write an engaging introduction for a blog post announcing the launch of the
new health planner app, highlighting its unique features and benefits.
Prompt: Craft a series of social media posts for announcing our new health planner
app, focusing on its user-friendly interface and how it helps in managing health goals.
Prompt: Compose a product announcement email for our health planner app, empha‐
sizing its ability to track and improve users’ health routines.

190 | Chapter 9: Debugging, Testing, and Deployment

Prompt: Create a persuasive sales email targeting gym instructors and health coaches,
promoting our health planner app as a tool for their clients.
Prompt: Generate a list of catchy and relevant names for a new health planner app that
conveys a sense of wellness and organization.
Prompt: Develop ad copy for Facebook and Instagram ads promoting our health plan‐
ner app, highlighting its ease of use and personalization options.
Prompt: Formulate a template to request testimonials from early users of our health
planner app, to be used in marketing materials.
Prompt: Create an invitation for a virtual launch event of our health planner app,
detailing the agenda and special guests.

Conclusion
This chapter is like a behind-the-scenes look at the things in software development
that don’t always get the spotlight. Sure, creating new software is thrilling, but it’s the
less flashy tasks like debugging, testing, and documentation that really make or break
your app. We’ve talked about how AI tools, like ChatGPT, can make these jobs a lot
smoother. These AI buddies aren’t magic fixes, but they’re pretty awesome at sifting
through tons of data, giving advice, whipping up content, spotting problems, and
speeding up the whole process. This means developers get to focus on the really
tricky stuff. By bringing generative AI and some smart strategies into every step, from
squashing bugs to launching, developers can build better software that really hits the
mark for users—and do it quicker too.

Conclusion | 191

CHAPTER 10

Takeaways

This chapter is about giving you a quick rundown of the main ideas I’d like you to
take away from this book.

The Learning Curve Is Steep
AI-assisted programming, while an exciting frontier in technology, presents a signifi‐
cant learning curve that can be challenging for even the most seasoned developers.
This challenge is amplified by the rapid pace of advancement in the tech industry,
where innovation is constant and new developments are constantly emerging. Staying
abreast of these changes can feel overwhelming, akin to trying to catch a swiftly mov‐
ing bullet train on foot.

One of the key challenges lies in adapting to the nuances of working with large lan‐
guage models, which are far more complex and unpredictable than traditional pro‐
gramming methods. Developers who are accustomed to conventional coding have
come to expect a linear process where the code behaves predictably and executes
exactly as written. However, with AI models, there’s an element of unpredictability
and autonomy that can be both baffling and exhilarating. These models often process
and respond to coding requests in ways that are not immediately intuitive to human
programmers.

This shift requires developers to adopt a new mindset. They must learn to anticipate
and interpret the often unexpected outputs of AI models, and this departure from the
straightforward, logical processes they are used to can be uncomfortable at first.

193

There Are Major Benefits
With traditional coding, when you hit a snag, you usually have to stop everything and
go on a wild goose chase through Stack Overflow or dig through tons of documenta‐
tion or search Google. But AI-assisted programming tools are like buddies who can
throw you a lifeline. These tools pop up with suggestions and fixes as you type, so you
can keep your head in the game and not get lost switching between a bunch of tabs or
apps. You can get in the “flow” and stay there.

Some of the tools are smart enough to pick up on your coding style and the names
you use for variables, functions, and methods. They get the whole vibe of your code.
So, when they make a suggestion, they’re not just handing you some random piece of
advice. Their wisdom is tailor-made for your project.

Now let’s talk about the real value proposition: saving you from the boring stuff.
These are the same old routine tasks that make you want to snooze—file handling,
data juggling, API calls, UI stuff, regex, starter code, those aggravating bash com‐
mands, and messing with GitHub Actions, just to name a few. AI in programming is
like, “Don’t worry, I got this,” and just whips up the code for you.

And it doesn’t stop there. The AI is also a whiz at making sense of your code. For one
thing, it can automatically document all of it. Instead of you burning the midnight oil,
trying to jot down notes and explanations, the AI sorts it all out in plain English. This
is certainly important, especially when you’re bringing new people into the project or
revisiting old code. The AI’s got it all laid out.

But There Are Drawbacks
AI-assisted programing has some sticky points, too. First up, there’s the whole mess
about who owns what when it comes to the code AI tools spit out. These tools learn
from a bunch of code from everywhere, and some of it might be copyrighted. If the
AI buddy churns out something that looks a bit too much like something that already
exists, is that stepping on someone’s toes? And if you make something awesome with
AI’s help, who gets to cash in on it? The whole legal side of things is complicated, and
it will likely take time for some consensus to form around it.

Security’s another thing to watch out for. Turns out, sometimes the code that comes
out of these AI tools can have security gaps. Since we don’t really get a peek into how
an LLM thinks up its magic—it’s pretty much a mystery box—it’s hard to be sure
about what you’re getting. This means you can’t just take the code and run with it.
Instead, you’ve got to put it through the wringer with tests and checks before you can
actually use it.

Then there are the potential issues with privacy. AI tools might inadvertently learn
from private code repositories or proprietary data if they’re not carefully managed.

194 | Chapter 10: Takeaways

Moreover, the data a developer feeds into these AI models could contain personal
information.

The challenge is to ensure that AI programming assistants are trained and used in a
way that respects privacy and confidentiality. This means implementing robust data
handling and privacy policies and ensuring compliance with regulations like GDPR.

Let’s not forget also that sometimes AI-assisted programming tools can get things
wrong. Or the code may be far from optimal or be verbose. This is due to factors like
the varying quality of the underlying training data. Then there are the unpredictabil‐
ity and complexities of the LLMs. You never quite know what you’re going to get.

Prompt Engineering Is an Art and Science
Learning prompt engineering is far from easy. It’s an art, since you need a knack for
picking the right words to guide the AI. This is often about being creative in how you
ask questions or set the scene.

But prompt engineering is a science, too. You need to geek out on how AI models
work. You’re trying to become more and more precise in your guesses about how the
AI will react to your prompts. It’s like being a detective, running experiments, check‐
ing what happens, and tweaking your prompts to get the answers you want.

Fortunately, there are some guidelines that can help out. For example, the length of
the prompt is key. If your prompt is too long, the AI might get confused or miss the
point. You also need to be specific. “A prompt needs to be clear and focused,” said
Ankit Anchlia, a veteran software engineer. “There must be sufficient context. If not,
you’ll likely not get the response you want.”

Beyond Programming
AI-assisted programming tools are not just about coding. They’ve got a whole bunch
of tricks up their sleeve. In this book, we’ve seen that they are like Swiss Army knives
for all sorts of tasks, from brainstorming cool ideas and planning projects to digging
into market research and jotting down what you need for a project. For instance,
imagine zipping through writing top-notch product requirements documents and
software requirements specifications. AI can help you with these tasks, and even do
them better.

And when you’re ready to roll out your product, guess what? AI’s there to help with
that too. It’s like having a marketing guru in your pocket. You can use AI tools to
whip up a marketing plan that gets your product out there and noticed. You can also
use AI for analyzing user feedback, as you make your application better and better.

Beyond Programming | 195

AI Won’t Take Your Job
Of course, there’s the big worry that AI’s going to swoop in and steal everyone’s jobs.
The world is heading toward some sort of Skynet scenario where the machines take
over, right? And all that effort you put into learning to code—is it just going to be for
nothing? Well, not exactly.

Here’s the deal: AI-assisted programming tools are powerful, but they’re not here to
replace you. They’re more like your sidekicks, there to make you an even better coder.
They don’t have the smarts or independence of a real developer.

But, and it’s a big but, if you’re not using these tools, you might find yourself falling
behind. More and more, employers are expecting their developers to work with these
AI systems. Why? Because the benefits are just too good to pass up. We all need to
keep up with the times. Using AI tools is becoming a must-have skill, not to keep
them from replacing you (they can’t) but because they’ll help you do your job way
better.

According to James Clift, who is the founder and CEO of Durable:

Advancements in AI will lead to shifts in the dynamics of the labor market, but it’s
important to remember that AI and business are better together. One does not replace
the other. The key is to not be fearful but to embrace the technology to support further
business growth and job creation. AI tools put resources once only available to large
companies into the hands of everybody.

Conclusion
We’ve covered a ton of ground in this book, diving into the ins and outs of AI-
assisted programming. But even so, we’re just scratching the surface! We’re in the
early days of this AI journey, and the cool part is, it’s only going to get better from
here. The technology is evolving at breakneck speed, which means there’s going to be
even more awesome tools and tricks for developers to get our hands on. We’re at the
starting line of a really exciting race, and the possibilities are just ramping up.

It’s a thrilling time to be in this field. Imagine all the new ways we’ll be able to sharpen
our skills, streamline our work, and create things we haven’t even dreamed of yet. The
future of AI-assisted programming is bright and full of potential, so let’s keep our
eyes peeled and be ready to embrace all the amazing advancements coming our way.
Here’s to riding the wave of AI innovation and seeing where it takes us as developers.

196 | Chapter 10: Takeaways

Index

Symbols
(hashtag character), for comments, 69, 83
@ (at symbol), Cursor prompts, 98

A
AAA (Arrange-Act-Assert) methodology, 148
Accenture, 65, 84
acronyms in prompts, 52
Adobe Firefly, 173
Advanced Micro Devices (AMD), 63
Agarwal, Mukesh, 96
Agarwal, Sandhini, 103
AGI (artificial general intelligence), 104
Agile project planning method, 146
AI-assisted programming, 1-20

benefits, 6-14, 194
coding techniques (see coding techniques

with AI)
coding technology (see coding technology)
debugging for, 180
drawbacks, 15-18, 194
evaluation of tools, 40
evolution and revolution, 2-5
generative AI, 5
learning curve for, 193
reality check on coding effectiveness,

153-155
software development impact, 18-20
software project role, 131-152

ALiBi (Attention with Linear Biases), 99
AlphaCode, 100
Amazon CodeWhisperer, 10, 83-85
ambiguity issue for LLMs, 45, 56
AMD (Advanced Micro Devices), 63

Amodei, Dario and Daniela, 128
analogies, in prompts, 55
Andreessen, Marc, 12
Anthropic, 128
Anysphere, 97-98
/api command, Copilot Chat, 77
APIs (application programming interfaces), 176
Arrange-Act-Assert (AAA) methodology, 148
artificial general intelligence (AGI), 104
AskYourDatabase plugin (ChatGPT), 120
Astra DB, 82
attention mechanisms, 28
Attention with Linear Biases (ALiBi), 99
autocompletion, 22
autofill, with AI, 160-161
automated ticketing systems, 189
autonomous AI agents, 58-60

B
bash commands, 117
BERTScore, 36
bias, training data, 18, 56, 58
bidirectional encoder representations from

transformers (BERT), 30
BigCode, 99
bilingual evaluation understudy (BLEU) metric,

37
Bito AI, 96-97
brainstorming a project, 131-133
browser compatibility issue, 116, 172
Browsing with Bing, 109-113
Butterick, Matthew, 15

197

C
Capilnean, Titus, 158, 161, 168, 188
chain-of-thought (CoT) prompting, 54
chat function

Code Llama, 98
Copilot, 72-79, 82
Google Cloud console, 86
Warp AI, 95

ChatGPT, xiii, 103-123
bash commands, 117
Browsing with Bing, 109-113
as code advisor, 8
code from prompt example, 4
code review with, 183
coding techniques (see coding techniques

with AI)
and comments to prompt Copilot, 72
cross-border compatibility, 116
custom GPTs, 121-123
custom instructions, 109
deployment, 188
documentation, 181
GitHub Actions, 117
GitHub README file, 115-116
launching a project, 190
messy code example, 153-155
mobile app, 108
navigating, 105-109
plugins, 118-121
pull requests, 186-187
regular expressions, 114-115
software project role of, 131-152
starter code, 115
unit tests, 184
updating legacy programs, 13-14
user feedback, 189

Christensen, Clayton, 133
CI/CD (continuous integration and continuous

deployment), 117, 188
classes (OOP), AI help with structures for, 168
Claude, 128-129
/clear command, Copilot Chat, 77
CLI (see command line interface)
Clift, James, 196
closed-source LLMs, 39
cloud infrastructure automation (HashiCorp),

85
cloud logs, and DevOps challenges, 188
COBOL, using AI to modernize languages, 12

Code Guru, 123
code integrity, 11
Code Llama, 98
code review, 182-187
code suggestions

Accenture’s uptake of, 65
Copilot, 69-71, 80
versus smart code completion, 22
value of, 64

codebase, AI-assisted programming reflecting,
10

Codecademy plugin (ChatGPT), 119
CodeGPT, 91
Codespaces on VS Code, 67
CodeT5, 101
CodeWhisperer (Amazon), 10, 83-85
CodeWP, 93-94
Codex, 61
coding techniques with AI, 153-177

APIs, 176
autofill, 160-161
comments, 157
data and databases, 169-171
frameworks and libraries, 168
frontend development, 171-175
functions, 166-167
judgment calls and human versus AI, 155
learning scenarios, 156-157
modular programming, 158
object-oriented programming, 167
reality check on AI code writing quality,

153-155
refactoring, 162-165
starting a project, 159

coding technology, 21-41
compilers versus AI-assisted tools, 23-24
evaluating LLMs, 35-38
evaluating tools, 40
generative AI and LLMs, 26-35
key features, 21-22
levels of capability, 24-26
smart code completion versus AI-assisted

tools, 22
types of LLMs, 38-39

CodiumAI, 10
Cody, 91-93
command line interface (CLI)

Copilot, 80
Cursor, 97

198 | Index

Warp, 94-96
comments

coding techniques with AI, 157
Copilot, 72
hashtag (#) for, 69, 83

Common Weakness Enumeration (CWE), 17,
84

competitive analysis, project with AI, 137-138
compilers versus AI-assisted tools, 23-24
conditionals, decomposing, 164
constitutional AI, 128
content versus instructions, prompts, 50
context window, 18

Bito AI, 96
Claude, 128
Code Llama, 99
GPT-4, 104, 108

context, prompt, 18, 46, 56
context-aware versus smart code completion,

22
continuous integration and continuous deploy‐

ment (CI/CD), 117, 188
Copilot (see GitHub Copilot)
Copilot Partner Program, 81
CoT (chain-of-thought) prompting, 54
cross-border compatibility (ChatGPT), 116
crypto libraries, 84
Cursor, 97-98
custom GPTs, 121-123
customer relationship management (CRM) sys‐

tems, 189
cutoff date, training data, 17
CWE (Common Weakness Enumeration), 17,

84
cybersecurity, 65

D
Das, Anand, 96
data conversion, AI assistance with, 171
databases, setting up for code testing, 169-171
Datadog, 81
datasets, challenge of large, diverse training

sets, 38
DataStax, 82
dead code, and refactoring, 165
debugging, 179-180

challenges of AI assistance with, 20
Code Llama, 99
CodeT5, 101

Cursor, 98
decoding stage, transformer model, 28
decomposing conditionals, 164
deep learning (DL), 5
DeepMind, 100
deployment, project, 187-190
DesignerGPT, 123
developers, AI impact on, 18-20, 196
DevOps, ChatGPT help with, 188
dimensionality reduction, 27
discriminator network, 27
DL (deep learning), 5
documentation, 11, 180-182
Duet AI for Developers (Google), 85-87

E
Elastic, Duet AI integration, 85
ELIZA, 26
encoding stage, transformer model, 28
enterprise use of AI-assisted programming, 63,

101
error checking, LLMs versus compilers, 24

(see also debugging)
ethics, AI, 18
examples, in prompts, 55
extract method, and refactoring, 163
extrapolation, LLM, 56

F
feedforward neural network, 29
few-shot learning, 53
fill-in-the-middle (FIM), LLM approach, 61
Firefly, 173
firmware development use case, Copilot, 63
formatting of prompt output, instructing on, 50
Foundation Model Transparency Index, 36
frameworks and libraries, 168
Friedman, Nat, 61
frontend development (see web development)
functions, AI-assisted coding of, 166-167

G
Gemini, 85, 123-128
generalization gap, training data, 18
Generated Commit Message (Copilot), 187
generative adversarial networks (GANs), 27
generative AI, 5, 26-35

evolution, 26-27

Index | 199

IBM’s Watsonx.ai model to update code, 12
OpenAI Playground, 30-35
transformer model, 27-30

generative pretrained transformer (GPT), 30
generator network, 27
ghost text, 70
GitHub Actions, 117
GitHub Copilot, xiii, 1, 61-82

Accenture use case, 65
autofill capability, 160-161
benefits, 7, 10
Chat and inline chat, 72-79
CLI, 80
code suggestions, 69-71, 80
Codespaces on VS Code, 67
Copilot Partner Program, 81
generating comments, 72
getting started, 66
and intellectual property issue, 16
open tabs feature, 79
pricing and versions, 62-63
programming hardware use case, 63
pull request assistance, 187
security, 17, 65
Shopify use case, 64
Warp, 95

GitHub Copilot for Docs, 182
GitHub README file, 115-116
Given-When-Then (GWT) methodology, 148
Goel, Amar, 96
Google Cloud console, and Duet AI, 86
Google Sheets use case (Gemini), 125
Google’s AlphaCode, 100
Google’s Duet AI for Developers, 85-87
Google’s Gemini, 85, 123-128
governance rules (Duet AI), 85
GPT (generative pretrained transformer), 30
GPT-3.5 Turbo, 61
GPT-4 model (ChatGPT), 104
GPTavern, 122
Grammarly, 145
graph databases (Neo4j), 86
graphics for websites or apps, 172
Gridspace, 16
ground truth verification, 56
GWT (Given-When-Then) methodology, 148

H
hallucinations, 15, 56-57

hardware description languages (HDLs), 64
hardware programming use case (Copilot), 63
HashiCorp, Duet AI integration, 85
higher-dimensional data, 27
Hoang, David, 89
Hugging Face, 91, 99, 102
HumanEval metric, 37
HumanEval-X metric, 37

I
IBM’s Watsonx.ai model, 12
inline chat (Copilot), 77-79
inspectors, code, 165
instructions, prompt, 46
integrated development environments (IDEs),

9, 68, 97
intellectual property (IP) rights, 15, 84, 85, 102
IntelliSense, 22
interviews, requirements document, 142
Ivashchenko, Dmitrii, 155

J
Jasper, 190
Java and JavaScript (SAP Build Code), 101
Jupyter Notebook, creating with Copilot, 76

K
Karpathy, Andrej, 1
Kingma, Diederik P., 27
Krieger, Mike, 95

L
LangChain and Browse with Bing, 110-113
large language models (LLMs), 4, 5

ambiguity issue for, 45, 56
challenges in prompt engineering, 44
cost of building and operating, 30
dead code refactoring considerations, 165
error checking versus compilers, 24
evaluating, 35-38
and generative AI, 26-35
Meta’s LLaMa 2, 98
multiple-choice options for, 57
prompt engineering as method to talk to, 43
training data deficiencies, 17
types, 38-39

launching software, 190
leading questions, in prompts, 55

200 | Index

leading word prompts, 54
learning code, AI as instructor for, 156-157
Lee, David, 184
LeetCode, 157
length sensitivity, LLM, 45
LePage, James, 93
libraries and frameworks, 168
licenses, choosing open source, 116
linter, for dealing with dead code, 165
Liu, Beyang, 91
LLMs (see large language models)
Lloyd, Zach, 95
localization, prompt instructions, 49
logical errors in code, 179
lower-dimensional latent space, 27

M
machine learning (ML), 3

(see also prompt engineering)
market research, software project, 133-137
market trends, 135
Masad, Amjad, 88
Masad, Faris, 88
MBXP (most basic X programming problems)

metric, 37
memorization of data, and hallucination, 56
memory leaks, Bito AI’s handling of, 96
Meta’s Code Llama, 98
Microsoft IntelliSense, 22
Microsoft, and Copilot, 61
Mindmap/Diagram/Chart—PRO BUILDER,

123
ML (machine learning), 3

(see also prompt engineering)
mobile apps

ChatGPT, 108
Gemini, 123

modular programming, 158
MongoDB, Duet AI integration, 85
most basic X programming problems (MBXP)

metric, 37
multi-head attention mechanism, transformer

model, 29
Multilingual HumanEval metric, 37
multimodal capabilities, 6
multiple-choice options for LLM, 57

N
natural language processing (NLP), 27-30, 31

(see also prompt engineering)
Neo4j, Duet AI integration, 86
neural networks

deep learning, 5
GANs, 27

/new command, Copilot shortcut, 75
New Relic, 81
/newNotebook command, Copilot Chat, 76
ninja code, and refactoring, 162
Niu, Sheldon, 120
NLP (natural language processing), 27-30, 31

(see also prompt engineering)
non-transferability between LLMs, 45
NoSQL databases, 85

O
object-oriented programming (OOP), 3, 167
Odeh, Haya, 88
open source AI software, 16

AlphaCode, 100
Code Llama, 98-102
CodeT5, 101
licenses for, 116
LLMs, 38
PolyCoder, 100
StableCode, 99

open tabs (Copilot), 79
Open Web Application Security Project

(OWASP), 84
OpenAI, 61, 103

(see also ChatGPT)
OpenAI Playground, 30-35
operating system platforms, 9, 68, 97
overfitting of data, 37, 56

P
parameters in LLM, scaling challenge, 37
perplexity metric, 36
Persistent Systems, and CodeWhisperer, 85
personally identifiable information (PII), 57
planning approaches for projects, 145-150
plugins

ChatGPT, 118-121
Gemini extensions, 124

PolyCoder, 100
positional encoding, NLP, 28
PRD (product requirements document), 140
predicting patterns, LLMs as based on, 23

Index | 201

pretrained encoder–decoder model (CodeT5),
101

pretrained model, transformer as, 30
privacy, 16

AI-assisted issues with, 194
Bito AI, 97
Copilot’s respect for file, 79
prompt engineering, 57
Replit, 89

procedural programming, 3
product requirements document (PRD), 140
prompt engineering, 43-60, 195

art and science of, 44
autonomous AI agents, 58-60
best practices, 51-55
challenges, 44
prompt components, 44-51
reducing hallucinations, 56-57
security and privacy, 57

proprietary LLMs, 39
PubMatic, 96
pull requests (PRs), 186-187
Python, and Code Llama, 99

Q
quality inconsistency, training data, 17

R
RAG (retrieval augmented generation), 59
Raja, Abi, 174
README file (GitHub), 115-116
Recall-Oriented Understudy for Gisting Evalu‐

ation (ROUGE) metric, 37
Recombinant AI plugin (ChatGPT), 121
recommendations, prompt, 48
recurrent neural network (RNN), 27
refactoring with AI, 162-165
reference tracker, CodeWhisperer, 84
Reflexion, 105
regular expressions (regex) (ChatGPT),

114-115
reinforcement learning from human feedback

(RLHF), 15
renaming code elements, and refactoring, 164
Replit, 88-91
repls (hosted applications in Replit), 88
representation gaps, training data, 17
requirements documents, project, 139-145
response drafting for user feedback, 189

retrieval augmented generation (RAG), 59
RLHF (reinforcement learning from human

feedback), 15
RNN (recurrent neural network), 27
rotary position embedding (RoPE), 99
ROUGE (Recall-Oriented Understudy for Gist‐

ing Evaluation) metric, 37
Rust, 95

S
Salesforce Code Builder, 101
sample data, setting up for code testing,

169-171
SAP Build Code, 101
Schlein, Sebastian, 187
Scodary, Anthony, 16
Screenshot to Code GPT, 123, 174-175
scripting languages, 3
search analytics (Elastic and Duet AI), 85
search, minimizing with AI, 6-8
security, 17

as AI-assisted drawback, 194
Code Llama, 99
CodeWhisperer’s scan, 84
Copilot, 65
Duet AI, 85
prompt engineering, 57
Tabnine, 87

self-attention mechanism, transformer model,
28

sentiment analysis, 48
ServiceNow Research, 99, 102
Setup-Exercise-Verify-Teardown (SEVT) meth‐

odology, 148
Shopify use case (Copilot), 64
single-page application (SPA), 159
Slack, Quinn, 24, 91
smart actions (Duet AI), 85
smart code completion, 22
SOC-2 compliance (Tabnine), 87
software developers, AI impact on, 18-20, 196
software project with AI assistance, 131-152

brainstorming, 131-133
competitive analysis, 137-138
market research, 133-137
planning approaches, 145-150
requirements documents, 139-145

software requirements specification (SRS), 141
Sourcegraph, 91

202 | Index

sources of information
instructing ChatGPT to use specific, 112
verifying with Gemini, 125

SPA (single-page application), 159
specificity in prompts, 51
speculation, LLM, 56
Splunk, 81
spreadsheets, analyzing with Gemini, 125-126
SRS (software requirements specification), 141
Stability AI, 99
Stable Diffusion, 99
StableCode, 99
Stack Overflow, 6
StarCoder LLM, 102
starter code (ChatGPT), 115, 159
summarization prompts, 47
syntax errors in code, 179

T
Tabnine, 10, 87
Tailwind CSS, 174
TAM (total addressable market), 136
TDD (test-driven development), 147-149
technical terms in prompts, 52
10x developer, 19
/terminal command, Copilot Chat shortcut, 76
Terraform, 85
test-driven development (TDD), 147-149
testing, 182-187
text classification, prompt instructions, 48
Tokenizer, 31
tokens, in NLP, 28, 31
topic modeling, prompt instructions, 47
total addressable market (TAM), 136
training data gaps and quality issues, 17
transformer model, 27-30
translation

localization prompt instructions, 49
programming language, 13, 167

transparency criterion for LLMs, 26, 36, 38
Turing AI, 87

U
UI/UX (user interface/user experience) design,

171-175

Uizard, 150
unit tests, 183-184
user feedback, after deployment, 189-190
user personas, for market research, 134

V
v0 by Vercel, 173-174
variational autoencoders (VAEs), 27
Vaswani, Ashish, 28
VBA scripts use case (Gemini), 125
Velaga, Tosh, 98
venture capitalists (VCs), and TAM measure,

136
Visual Studio Code (VS Code), 64

and /api command in Copilot, 77
CodeGPT, 91
Codespaces in Copilot, 67
and Copilot Chat, 72
and Cursor, 97

voice recognition software, 142
@vscode agent, Copilot Chat, 77

W
Warp, 94-96
Watsonx.ai model, 12
web development, 3, 149-150, 171-175
Weiss, Dror, 87
Weizenbaum, Joseph, 26
Welling, Max, 27
What the Diff?, 187
whiteboarding, requirements document, 143
wireframes for web design, 150
wordiness challenge for LLMs, 44
@workspace shortcut, Copilot Chat, 73-75
writing style, requirements document, 144

Y
Yahav, Eran, 87

Z
Zahm, Mark, 121
zero-shot learning, 53

Index | 203

About the Author
Tom Taulli (@ttaulli) is a consultant to various companies, such as Aisera, a venture-
backed generative AI startup. He has written several books like AI Basics and Genera‐
tive AI, which cover ChatGPT, GPT-4, and other large language models. Tom has also
taught IT courses for O’Reilly, UCLA, and Pluralsight. For these, he has provided les‐
sons in using Python to create deep learning and machine learning models. He has
also taught on topics like natural language processing.

Colophon
The animal on the cover of AI-Assisted Programming is a reef triggerfish (Rhinecan‐
thus rectangulus). The animal is also referred to as humuhumunukunukuapua’a, or
simply humuhumu. Following a popular vote and the approval of the Hawaiian state
legislature, the reef triggerfish was selected as the official state fish of Hawaii in 1984.

The reef triggerfish is found in shallow outer reef habitats in the Indo-Pacific and
Hawaii. Its diet consists of algae and reef invertebrates, such as sea urchins and snails,
which the triggerfish finds by swimming close to the bottom of reefs.

Although the triggerfish tends to keep its distance from onlookers, its distinctive
charging, territorial behavior and appearance—a plump mouth, blue top lip, and size
of up to 10 inches—make it easier to observe.

There are approximately 40 species of triggerfish, and the reef triggerfish’s current
conservation status is “Least Concern.” Many of the animals on O’Reilly covers are
endangered; all of them are important to the world.

The cover illustration is by Karen Montgomery, based on an antique engraving from
Oeuvres du Comte De Lacépede. The series design is by Edie Freedman, Ellie Volck‐
hausen, and Karen Montgomery. The cover fonts are Gilroy Semibold and Guardian
Sans. The text font is Adobe Minion Pro; the heading font is Adobe Myriad Con‐
densed; and the code font is Dalton Maag’s Ubuntu Mono.

Learn from experts.
Become one yourself.
Books | Live online courses
Instant answers | Virtual events
Videos | Interactive learning

Get started at oreilly.com.

©
20

23
 O

’R
ei

lly
 M

ed
ia

, I
nc

. O
’R

ei
lly

 is
 a

 re
gi

st
er

ed
 tr

ad
em

ar
k

of
 O

’R
ei

lly
 M

ed
ia

, I
nc

. 1
75

 7
x9

.19
75

	Cover
	Copyright
	Table of Contents
	Foreword
	Preface
	What’s Covered
	How This Book Is Different
	Who Should Read This Book
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	Chapter 1. New World for Developers
	Evolution and Revolution
	Generative AI
	The Benefits
	Minimizing Search
	Your Advisor
	IDE Integration
	Reflecting Your Codebase
	Code Integrity
	AI-Powered Documentation Generator
	Modernization

	Drawbacks
	Hallucinations
	Intellectual Property
	Privacy
	Security
	Training Data
	Bias

	A New Way for Developers
	Career
	10x Developer?
	Skills of the Developer

	Conclusion

	Chapter 2. How AI Coding Technology Works
	Key Features
	Code Suggestions and Context-Aware Completions Versus Smart Code Completion
	Compilers Versus AI-Assisted Programming Tools
	Levels of Capability
	Generative AI and Large Language Models (LLMs)
	Evolution
	The Transformer Model
	OpenAI Playground

	Evaluating LLMs
	Types of LLMs
	Evaluation of AI-Assisted Programming Tools
	Conclusion

	Chapter 3. Prompt Engineering
	Art and Science
	Challenges
	The Prompt
	Context
	Instructions
	Summarization
	Text Classification
	Recommendation
	Translation

	Input of Content
	Format
	Best Practices
	Be Specific
	Acronyms and Technical Terms
	Zero- and Few-Shot Learning
	Leading Words
	Chain of Thought (CoT) Prompting
	Leading Questions
	Ask for Examples and Analogies

	Reducing Hallucinations
	Security and Privacy
	Autonomous AI Agents
	Conclusion

	Chapter 4. GitHub Copilot
	GitHub Copilot
	Pricing and Versions
	Use Case: Programming Hardware
	Use Case: Shopify
	Use Case: Accenture
	Security

	Getting Started
	Codespaces and Visual Studio Code
	Suggestions
	Comments
	Chat
	Inline Chat
	Open Tabs
	Command-Line Interface

	Copilot Partner Program
	Conclusion

	Chapter 5. Other AI-Assisted Programming Tools
	Amazon’s CodeWhisperer
	Google’s Duet AI for Developers
	Tabnine
	Replit
	CodeGPT
	Cody
	CodeWP
	Warp
	Bito AI
	Cursor
	Code Llama
	Other Open Source Models
	StableCode
	AlphaCode
	PolyCoder
	CodeT5
	Enterprise Software Companies

	Conclusion

	Chapter 6. ChatGPT and Other General-Purpose LLMs
	ChatGPT
	GPT-4
	Navigating ChatGPT
	Mobile App
	Custom Instructions

	Browse with Bing
	Tedious Tasks
	Regular Expressions
	Starter Code
	GitHub README

	Cross-Browser Compatibility
	Bash Commands
	GitHub Actions
	Plugins
	The Codecademy Plugin
	The AskYourDatabase Plugin
	Recombinant AI Plugin

	GPTs
	Gemini
	Applications
	Gemini for Coding

	Claude
	Conclusion

	Chapter 7. Ideas, Planning, and Requirements
	Brainstorming
	Market Research
	Market Trends
	Total Addressable Market

	Competition
	Requirements
	Product Requirements Document
	Software Requirements Specification
	Interviews
	Whiteboarding
	Tone

	Approaches to Project Planning
	Test-Driven Development (TDD)
	Planning Web Design

	Conclusion

	Chapter 8. Coding
	Reality Check
	Judgment Calls
	Learning
	Comments
	Modular Programming
	Starting a Project
	Autofill
	Refactoring
	Ninja Code
	Extract Method
	Decomposing Conditionals
	Renaming
	Dead Code

	Functions
	Object-Oriented Programing
	Frameworks and Libraries
	Data
	Frontend Development
	CSS
	Creating Graphics
	AI Tools

	APIs
	Conclusion

	Chapter 9. Debugging, Testing, and Deployment
	Debugging
	Documentation
	Code Review
	Unit Tests
	Pull Requests

	Deployment
	User Feedback
	The Launch

	Conclusion

	Chapter 10. Takeaways
	The Learning Curve Is Steep
	There Are Major Benefits
	But There Are Drawbacks
	Prompt Engineering Is an Art and Science
	Beyond Programming
	AI Won’t Take Your Job
	Conclusion

	Index
	About the Author
	Colophon

