

Praise for SQL Queries for Mere Mortals®

The good books show you how to do something. The great books enable

you to think clearly about how you can do it. This book is the latter. To

really maximize the potential of your database, thinking about data as

a set is required and the authors’ accessible writing really brings out

the practical applications of SQL and the set-based thinking behind it.

— Ben Clothier, Lead Developer at IT Impact, Inc., co-author of

 Professional Access 2013 Programming, and Microsoft Access MVP

Unless you are working at a very advanced level, this is the only SQL

book you will ever need. The author has taken the mystery out of com-

plex queries and explained principles and techniques with such clarity

that a “Mere Mortal” will indeed be empowered to perform the super-

human. Do not walk past this book!

— Graham Mandeno, Database Consultant

It’s beyond brilliant! I have been working with SQL for a really long

time, and the techniques presented in this book exposed some of the

bad habits I picked up over the years in my learning process. I wish

I had learned these techniques a long time ago and saved myself all

the headaches of learning SQL the hard way. Who said you can’t teach

old dogs new tricks?

— Leo (theDBguy), Utter Access Moderator and Microsoft Access MVP

I learned SQL primarily from the first and second editions of this

book … Starting from how to design your tables so that SQL can be

effective (a common problem for database beginners), and then con-

tinuing through the various aspects of SQL construction and capabil-

ities, the reader can become a moderate expert upon completing the

book and its samples. Learning how to convert a question in English

into a meaningful SQL statement will greatly facilitate your mastery

of the language. Numerous examples from real life will help you visu-

alize how to use SQL to answer the questions about the data in your

 database. Just one of the “watch out for this trap” items will save you

more than the cost of the book when you avoid that problem when

writing your queries. I highly recommend this book if you want to tap

the full potential of your database.

— Kenneth D. Snell, Ph.D., Database Designer/Programmer

I don’t think they do this in public schools anymore, and it is a shame,

but do you remember in the seventh and eighth grades when you

learned to diagram a sentence? Those of you who do may no longer

remember how you did it, but all of you do write better sentences

because of it. John Viescas must have remembered because he takes

everyday English queries and literally translates them into SQL. This

is an important book for all database designers. It takes the com-

plexity of mathematical set theory and of first order predicate logic,

as outlined in E. F. Codd’s original treatise on relational database

design, and makes it easy for anyone to understand. If you want an

 elementary-through intermediate-level course on SQL, this is the one

book that is a requirement, no matter how many others you buy.

— Arvin Meyer, MCP, MVP

SQL Queries for Mere Mortals, provides a step-by-step, easy-to-read

introduction to writing SQL queries. It includes hundreds of examples

with detailed explanations. This book provides the tools you need to

understand, modify, and create SQL queries.

— Keith W. Hare, Convenor, ISO/IEC JTC1 SC32 WG3, the International

SQL Standards Committee

Even in this day of wizards and code generators, successful database

developers still require a sound knowledge of Structured Query

Language (SQL, the standard language for communicating with most

database systems). In this book, John does a marvelous job of mak-

ing what’s usually a dry and difficult subject come alive, presenting

the material with humor in a logical manner, with plenty of relevant

examples. I would say that this book should feature prominently in

the collection on the bookshelf of all serious developers, except that I’m

sure it’ll get so much use that it won’t spend much time on the shelf!

— Doug Steele, Microsoft Access Developer and author

I highly recommend SQL Queries for Mere Mortals to anyone working

with data. John makes it easy to learn one of the most critical aspects

of working with data: creating queries. Queries are the primary tool

for selecting, sorting, and reporting data. They can compensate for

table structure, new reporting requirements, and incorporate new data

sources. SQL Queries for Mere Mortals uses clear, easy to understand

discussions and examples to take readers through the basics and into

complex problems. From novice to expert, you will find this book to be

an invaluable reference as you can apply the concepts to a myriad of

scenarios, regardless of the program.

— Teresa Hennig, Microsoft MVP-Access, and lead author of several

Access books, including Professional Access 2013 Programming (Wrox)

This page intentionally left blank

SQL Queries for
Mere Mortals®
Fourth Edition

A Hands-On Guide to Data
Manipulation in SQL

John L. Viescas

Boston • Columbus • Indianapolis • New York • San Francisco • Amsterdam

Cape Town • Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto

Delhi • Mexico City • São Paulo • Sydney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

Many of the designations used by manufacturers and sellers to distinguish
their products are claimed as trademarks. Where those designations appear in
this book, and the publisher was aware of a trademark claim, the designations
have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book,
but make no expressed or implied warranty of any kind and assume no
 responsibility for errors or omissions. No liability is assumed for incidental
or consequential damages in connection with or arising out of the use of the
 information or programs contained herein.

For information about buying this title in bulk quantities, or for special
sales opportunities (which may include electronic versions; custom cover
designs; and content particular to your business, training goals, marketing
focus, or branding interests), please contact our corporate sales department
at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2017964124

Copyright © 2018 John L. Viescas

Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication
is protected by copyright, and permission must be obtained from the publisher
prior to any prohibited reproduction, storage in a retrieval system, or trans-
mission in any form or by any means, electronic, mechanical, photocopying,
recording, or likewise. For information regarding permissions, request forms,
and the appropriate contacts within the Pearson Education Global Rights &
Permissions Department, please visit www.pearsoned.com/permissions/.

ISBN-13: 978-0-134-85833-3
ISBN-10: 0-134-85833-6

1 18

Editor-in-Chief: Mark Taub

Acquisitions Editor: Trina Macdonald

Development Editor: Rick Kughen

Managing Editor: Sandra Schroeder

Senior Project Editor: Lori Lyons

Production Manager: Dhayanidhi Karunanidhi

Copy Editor: Rick Kughen

Indexer: Lisa Stumpf

Proofreader: Abigail Manheim

Technical Reviewer: Douglas J. Steele

Cover Designer: Chuti Prasertsith

Compositor: codemantra

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com
http://informit.com/aw
http://www.pearsoned.com/permissions/

 vii

Contents at a Glance

Foreword xxi
Preface xxii
Acknowledgments xxiv
About the Author xxv
Introduction 1

PART I: RELATIONAL DATABASES AND SQL 13
Chapter 1: What Is Relational? 15
Chapter 2: Ensuring Your Database Structure Is Sound 33
Chapter 3: A Concise History of SQL 71

PART II: SQL BASICS 87
Chapter 4: Creating a Simple Query 89
Chapter 5: Getting More Than Simple Columns 125
Chapter 6: Filtering Your Data 175

PART III: WORKING WITH MULTIPLE TABLES 239
Chapter 7: Thinking in Sets 241
Chapter 8: INNER JOINs 273
Chapter 9: OUTER JOINs 321
Chapter 10: UNIONs 369
Chapter 11: Subqueries 399

PART IV: SUMMARIZING AND GROUPING DATA 441
Chapter 12: Simple Totals 443
Chapter 13: Grouping Data 471
Chapter 14: Filtering Grouped Data 505

PART V: MODIFYING SETS OF DATA 533
Chapter 15: Updating Sets of Data 535
Chapter 16: Inserting Sets of Data 573
Chapter 17: Deleting Sets of Data 603

viii Contents at a Glance

PART VI: INTRODUCTION TO SOLVING TOUGH PROBLEMS 625
Chapter 18: “NOT” and “AND” Problems 627
Chapter 19: Condition Testing 677
Chapter 20: Using Unlinked Data and “Driver” Tables 709
Chapter 21: Performing Complex Calculations on Groups 749
Chapter 22: Partitioning Data into Windows 793
 In Closing 857

PART VII: APPENDICES 859
Appendix A: SQL Standard Diagrams 861
Appendix B: Schema for the Sample Databases 877
Appendix C: Date and Time Types, Operations, and Functions 889
Appendix D: Suggested Reading 907

Index 909

 ix

Contents

Foreword xxi

Preface xxii

Acknowledgments xxiv

About the Author xxv

Introduction 1

Are You a Mere Mortal? 1

About This Book 2

What This Book Is Not 4

How to Use This Book 4

Reading the Diagrams Used in This Book 5

Sample Databases Used in This Book 9

“Follow the Yellow Brick Road” 12

PART I: RELATIONAL DATABASES AND SQL 13
Chapter 1: What Is Relational? 15

Topics Covered in This Chapter 15

Types of Databases 15

A Brief History of the Relational Model 16

In the Beginning . . . 16

Relational Database Systems 17

Anatomy of a Relational Database 19

Tables 20

Columns 21

Rows 21

Keys 22

Views 23

Relationships 25

What’s in It for You? 29

Where Do You Go from Here? 30

Summary 31

x Contents

Chapter 2: Ensuring Your Database Structure Is Sound 33

Topics Covered in This Chapter 33

Why Is this Chapter Here? 34

Why Worry about Sound Structures? 34

Fine-Tuning Columns 35

What’s in a Name? (Part One) 35

Smoothing Out the Rough Edges 38

Resolving Multipart Columns 40

Resolving Multivalued Columns 43

Fine-Tuning Tables 46

What’s in a Name? (Part Two) 46

Ensuring a Sound Structure 48

Resolving Unnecessary Duplicate Columns 50

Identification Is the Key 56

Establishing Solid Relationships 60

Establishing a Deletion Rule 63

Setting the Type of Participation 64

Setting the Degree of Participation 66

Is That All? 69

Summary 69

Chapter 3: A Concise History of SQL 71

Topics Covered in This Chapter 71

The Origins of SQL 72

Early Vendor Implementations 73

“. . . And Then There Was a Standard” 75

Evolution of the ANSI/ISO Standard 76

Other SQL Standards 79

Commercial Implementations 83

What the Future Holds 83

Why Should You Learn SQL? 84

Which Version of SQL Does this Book Cover? 84

Summary 85

 Contents xi

PART II: SQL BASICS 87
Chapter 4: Creating a Simple Query 89

Topics Covered in This Chapter 89

Introducing SELECT 90

The SELECT Statement 91

A Quick Aside: Data versus Information 93

Translating Your Request into SQL 95

Expanding the Field of Vision 100

Using a Shortcut to Request All Columns 101

Eliminating Duplicate Rows 103

Sorting Information 105

First Things First: Collating Sequences 107

Let’s Now Come to Order 108

Saving Your Work 111

Sample Statements 113

Summary 122

Problems for You to Solve 123

Chapter 5: Getting More Than Simple Columns 125

Topics Covered in This Chapter 125

What Is an Expression? 126

What Type of Data Are You Trying to Express? 127

Changing Data Types: The CAST Function 130

Specifying Explicit Values 132

Character String Literals 133

Numeric Literals 135

Datetime Literals 135

Types of Expressions 138

Concatenation 138

Mathematical Expressions 142

Date and Time Arithmetic 146

Using Expressions in a SELECT Clause 150

Working with a Concatenation Expression 151

Naming the Expression 152

Working with a Mathematical Expression 154

xii Contents

Working with a Date Expression 156

A Brief Digression: Value Expressions 157

That “Nothing” Value: Null 159

Introducing Null 160

The Problem with Nulls 162

Sample Statements 163

Summary 172

Problems for You to Solve 173

Chapter 6: Filtering Your Data 175

Topics Covered in This Chapter 175

Refining What You See Using WHERE 176

The WHERE Clause 176

Using a WHERE Clause 179

Defining Search Conditions 181

Comparison 181

Range 189

Set Membership 192

Pattern Match 194

Null 199

Excluding Rows with NOT 201

Using Multiple Conditions 204

Introducing AND and OR 205

Excluding Rows: Take Two 211

Order of Precedence 214

Checking for Overlapping Ranges 219

Nulls Revisited: A Cautionary Note 221

Expressing Conditions in Different Ways 225

Sample Statements 226

Summary 234

Problems for You to Solve 235

PART III: WORKING WITH MULTIPLE TABLES 239
Chapter 7: Thinking in Sets 241

Topics Covered in This Chapter 241

What Is a Set, Anyway? 242

Operations on Sets 243

 Contents xiii

Intersection 244

Intersection in Set Theory 244

Intersection between Result Sets 246

Problems You Can Solve with an Intersection 249

Difference 250

Difference in Set Theory 250

Difference between Result Sets 252

Problems You Can Solve with Difference 256

Union 257

Union in Set Theory 257

Combining Result Sets Using a Union 259

Problems You Can Solve with Union 261

SQL Set Operations 262

Classic Set Operations versus SQL 262

Finding Common Values: INTERSECT 262

Finding Missing Values: EXCEPT (DIFFERENCE) 265

Combining Sets: UNION 268

Summary 271

Chapter 8: INNER JOINs 273

Topics Covered in This Chapter 273

What Is a JOIN? 273

The INNER JOIN 274

What’s “Legal” to JOIN? 275

Column References 275

Syntax 276

Check Those Relationships! 291

Uses for INNER JOINs 293

Find Related Rows 293

Find Matching Values 293

Sample Statements 294

Two Tables 295

More Than Two Tables 300

Looking for Matching Values 306

Summary 316

Problems for You to Solve 316

xiv Contents

Chapter 9: OUTER JOINs 321

Topics Covered in This Chapter 321

What Is an OUTER JOIN? 321

The LEFT/RIGHT OUTER JOIN 323

Syntax 324

The FULL OUTER JOIN 344

Syntax 344

FULL OUTER JOIN on Non-Key Values 347

UNION JOIN 348

Uses for OUTER JOINs 349

Find Missing Values 349

Find Partially Matched Information 349

Sample Statements 350

Summary 365

Problems for You to Solve 366

Chapter 10: UNIONs 369

Topics Covered in This Chapter 369

What Is a UNION? 369

Writing Requests with UNION 372

Using Simple SELECT Statements 372

Combining Complex SELECT Statements 375

Using UNION More Than Once 379

Sorting a UNION 381

Uses for UNION 383

Sample Statements 385

Summary 395

Problems for You to Solve 396

Chapter 11: Subqueries 399

Topics Covered in This Chapter 399

What Is a Subquery? 400

Row Subqueries 400

Table Subqueries 402

Scalar Subqueries 402

 Contents xv

Subqueries as Column Expressions 402

Syntax 402

An Introduction to Aggregate Functions: COUNT and MAX 406

Subqueries as Filters 408

Syntax 408

Special Predicate Keywords for Subqueries 411

Uses for Subqueries 422

Build Subqueries as Column Expressions 422

Use Subqueries as Filters 423

Sample Statements 424

Subqueries in Expressions 425

Subqueries in Filters 430

Summary 437

Problems for You to Solve 438

PART IV: SUMMARIZING AND GROUPING DATA 441
Chapter 12: Simple Totals 443

Topics Covered in This Chapter 443

Aggregate Functions 444

Counting Rows and Values with COUNT 446

Computing a Total with SUM 450

Calculating a Mean Value with AVG 451

Finding the Largest Value with MAX 452

Finding the Smallest Value with MIN 454

Using More Than One Function 455

Using Aggregate Functions in Filters 457

Sample Statements 459

Summary 466

Problems for You to Solve 467

Chapter 13: Grouping Data 471

Topics Covered in This Chapter 471

Why Group Data? 472

The GROUP BY Clause 475

Syntax 475

Mixing Columns and Expressions 481

xvi Contents

Using GROUP BY in a Subquery in a WHERE Clause 483

Simulating a SELECT DISTINCT Statement 484

“Some Restrictions Apply” 485

Column Restrictions 486

Grouping on Expressions 488

Uses for GROUP BY 490

Sample Statements 491

Summary 501

Problems for You to Solve 501

Chapter 14: Filtering Grouped Data 505

Topics Covered in This Chapter 505

A New Meaning for “Focus Groups” 506

Where You Filter Makes a Difference 510

Should You Filter in WHERE or in HAVING? 510

Avoiding the HAVING COUNT Trap 513

Uses for HAVING 518

Sample Statements 519

Summary 527

Problems for You to Solve 528

PART V: MODIFYING SETS OF DATA 533
Chapter 15: Updating Sets of Data 535

Topics Covered in This Chapter 535

What Is an UPDATE? 536

The UPDATE Statement 536

Using a Simple UPDATE Expression 537

A Brief Aside: Transactions 540

Updating Multiple Columns 541

Using a Subquery to Filter Rows 543

Some Database Systems Allow a JOIN in the UPDATE Clause 546

Using a Subquery UPDATE Expression 548

Uses for UPDATE 551

Sample Statements 552

Summary 569

Problems for You to Solve 569

 Contents xvii

Chapter 16: Inserting Sets of Data 573

Topics Covered in This Chapter 573

What Is an INSERT? 573

The INSERT Statement 575

Inserting Values 575

Generating the Next Primary Key Value 578

Inserting Data by Using SELECT 581

Uses for INSERT 587

Sample Statements 588

Summary 598

Problems for You to Solve 598

Chapter 17: Deleting Sets of Data 603

Topics Covered in This Chapter 603

What Is a DELETE? 603

The DELETE Statement 604

Deleting All Rows 605

Deleting Some Rows 607

Uses for DELETE 611

Sample Statements 612

Summary 620

Problems for You to Solve 621

PART VI: INTRODUCTION TO SOLVING TOUGH PROBLEMS 625
Chapter 18: “NOT” and “AND” Problems 627

Topics Covered in This Chapter 627

A Short Review of Sets 628

Sets with Multiple AND Criteria 628

Sets with Multiple NOT Criteria 629

Sets Including Some Criteria but Excluding Others 630

Finding Out the “Not” Case 632

Using OUTER JOIN 632

Using NOT IN 635

Using NOT EXISTS 637

Using GROUP BY/HAVING 638

xviii Contents

Finding Multiple Matches in the Same Table 641

Using INNER JOIN 642

Using IN 644

Using EXISTS 646

Using GROUP BY/HAVING 648

Sample Statements 652

Summary 671

Problems for You to Solve 672

Chapter 19: Condition Testing 677

Topics Covered in This Chapter 677

Conditional Expressions (CASE) 678

Why Use CASE? 678

Syntax 678

Solving Problems with CASE 683

Solving Problems with Simple CASE 683

Solving Problems with Searched CASE 688

Using CASE in a WHERE Clause 691

Sample Statements 692

Summary 705

Problems for You to Solve 706

Chapter 20: Using Unlinked Data and “Driver” Tables 709

Topics Covered in This Chapter 709

What Is Unlinked Data? 710

Deciding When to Use a CROSS JOIN 713

Solving Problems with Unlinked Data 714

Solving Problems Using “Driver” Tables 717

Setting Up a Driver Table 717

Using a Driver Table 720

Sample Statements 725

Examples Using Unlinked Tables 726

Examples Using Driver Tables 736

Summary 743

Problems for You to Solve 744

 Contents xix

Chapter 21: Performing Complex Calculations on Groups 749

Topics in this Chapter 749

Grouping in Sub-Groups 750

Extending the GROUP BY Clause 753

Syntax 753

Getting Totals in a Hierarchy Using Rollup 754

Calculating Totals on Combinations Using CUBE 765

Creating a Union of Totals with GROUPING SETS 771

Variations on Grouping Techniques 775

Sample Statements 780

Examples using ROLLUP 781

Examples using CUBE 783

Examples using GROUPING SETS 786

Summary 788

Problems for You to Solve 789

Chapter 22: Partitioning Data into Windows 793

Topics in this Chapter 793

What You Can Do With a “Window” into Your Data 794

Syntax 798

Calculating a Row Number 814

Ranking Data 818

Splitting Data into Quintiles 824

Using Windows with Aggregate Functions 827

Sample Statements 834

Examples Using ROW_NUMBER 835

Examples Using RANK, DENSE_RANK, and PERCENT_RANK 838

Examples Using NTILE 842

Examples Using Aggregate Functions 844

Summary 852

Problems for You to Solve 853

In Closing 857

xx Contents

PART VII: APPENDICES 859
Appendix A: SQL Standard Diagrams 861
Appendix B: Schema for the Sample Databases 877

Sales Orders Example Database 878

Sales Orders Modify Database 879

Entertainment Agency Example Database 880

Entertainment Agency Modify Database 881

School Scheduling Example Database 882

School Scheduling Modify Database 883

Bowling League Example Database 884

Bowling League Modify Database 885

Recipes Database 886

“Driver” Tables 887
Appendix C: Date and Time Types, Operations, and Functions 889

IBM DB2 889

Microsoft Access 893

Microsoft SQL Server 895

MySQL 897

Oracle 901

PostgreSQL 904
Appendix D: Suggested Reading 907

Database Books 907

Books on SQL 908

Index 909

 xxi

Foreword

In the 30 years since the database language SQL was adopted as an

 international standard, and the 30 years since SQL database products appeared

on the market, SQL has become the predominant language for storing, modi-

fying, retrieving, and deleting data. Today, a significant portion of the world’s

data—and the world’s economy—is tracked using SQL databases.

SQL is everywhere because it is a very powerful tool for manipulating data. It is

in high-performance transaction processing systems. It is behind Web interfaces.

I’ve even found SQL in network monitoring tools and spam firewalls.

Today, SQL can be executed directly, embedded in programming languages, and

accessed through call interfaces. It is hidden inside GUI development tools, code

generators, and report writers. However visible or hidden, the underlying queries

are SQL. Therefore, to understand existing applications and to create new ones,

you need to understand SQL.

SQL Queries for Mere Mortals, Fourth Edition, provides a step-by-step, easy-

to-read introduction to writing SQL queries. It includes hundreds of examples

with detailed explanations. This book provides the tools you need to understand,

modify, and create SQL queries.

As a database consultant and a participant in both the U.S. and international

SQL standards committees, I spend a lot of time working with SQL. So, it is with

a certain amount of authority that I state, “The authors of this book not only

understand SQL, they also understand how to explain it.” Both qualities make

this book a valuable resource.

—Keith W. Hare, Senior Consultant,
JCC Consulting, Inc. Vice Chair, INCITS DM32.2

—the USA SQL Standards Committee; Convenor, ISO/IEC JTC1 SC32 WG3
—the International SQL Standards Committee

xxii

Preface

“Language is by its very nature a communal thing;
that is, it expresses never the exact thing

but a compromise—that which is common
to you, me, and everybody.”

—THOMAS ERNEST HULME, SPECULATIONS

Learning how to retrieve information from or manipulate information in a data-

base is commonly a perplexing exercise. However, it can be a relatively easy task

as long as you understand the question you’re asking or the change you’re trying

to make to the database. After you understand the problem, you can translate it

into the language used by any database system, which in most cases is Struc-

tured Query Language (SQL). You have to translate your request into an SQL

statement so that your database system knows what information you want to

retrieve or change. SQL provides the means for you and your database system

to communicate.

Throughout my many years as a database consultant, I’ve found that the

 number of people who merely need to retrieve information from a database or

perform simple data modifications in a database far outnumber those who are

charged with the task of creating programs and applications for a database.

Unfortunately, no books focus solely on this subject, particularly from a “mere

mortals” viewpoint. There are numerous good books on SQL, to be sure, but

most are targeted to database programming and development.

With this in mind, I decided it was time to write a book that would help people

learn how to query a database properly and effectively. I, along with my good

friend, Michael J. Hernandez, produced the first edition of this book in 2000.

We created a second edition in 2008 that introduced basic ways to change data

in your database using SQL. With the third edition in 2014, we stepped lightly

into the realm of tougher problems—the sorts of problems that make the heads

of even experienced users spin around three times. In this fourth edition, I

expand your knowledge of tougher problems by covering Window functions and

xxii

 Preface xxiii

Grouping Sets. The result of my effort is in your hands. This book is unique

among SQL books in that it focuses on SQL with little regard to any one specific

database system implementation. This fourth edition includes dozens of new

examples, and I included versions of the sample databases using Microsoft

Office Access, Microsoft SQL Server, and the popular open-source MySQL and

 PostgreSQL database systems. When you finish reading this book, you’ll have

the skills you need to retrieve or modify any information you require.

xxiv

Acknowledgments

Writing a book such as this is always a cooperative effort. There are always

 editors, colleagues, friends, and relatives willing to lend their support and

 provide valuable advice when I need it the most. These people continually

 provide me with encouragement, help me to remain focused, and motivate me

to see this project through to the end.

First and foremost, I want to thank my acquisitions editor, Trina MacDonald,

for helping me get signed up to produce this fourth edition. Thanks also to

 Developmental Editor, Rick Kughen, for shepherding me along the way. And I

can’t forget the production staff—they’re a great team! Next, I’d like to acknowl-

edge my technical editor, Doug Steele. I also had help from one of my database

friends, Ben Clothier. Thanks once again to all of you for your time and input

and for helping me to make this a solid treatise on SQL queries.

Finally, another very special thanks to Keith Hare for providing the Foreword.

As the Convenor of the International SQL Standards Committee, Keith is an SQL

expert par excellence. I have a lot of respect for Keith’s knowledge and expertise

on the subject, and I’m pleased to have his thoughts and comments at the

 beginning of my book.

 xxv

About the Author

John L. Viescas is an independent database consultant with more than

50 years of experience. He began his career as a systems analyst, designing

large database applications for IBM mainframe systems. He spent 6 years at

Applied Data Research in Dallas, Texas, where he directed a staff of more than

30 people and was responsible for research, product development, and customer

support of database products for IBM mainframe computers. While working

at Applied Data Research, John completed a degree in business finance at the

 University of Texas at Dallas, graduating cum laude.

John joined Tandem Computers, Inc., in 1988, where he was responsible for the

development and implementation of database marketing programs in Tandem’s

U.S. Western Sales region. He developed and delivered technical seminars on

Tandem’s relational database management system, NonStop SQL. John wrote

his first book, A Quick Reference Guide to SQL (Microsoft Press, 1989), as a

research project to document the similarities in the syntax among the ANSI-86

SQL standard, IBM’s DB2, Microsoft’s SQL Server, Oracle Corporation’s Oracle,

and Tandem’s NonStop SQL. He wrote the first edition of Running Microsoft

Access (Microsoft Press, 1992) while on sabbatical from Tandem. He has since

written four editions of Running, three editions of Microsoft Office Access Inside

Out (Microsoft Press, 2003, 2007, and 2010—the successor to the Running

series), Building Microsoft Access Applications (Microsoft Press, 2005), and

 Effective SQL (Addison-Wesley, 2017).

John formed his own company in 1993. He provides information systems

 management consulting for a variety of small to large businesses around the world,

with a specialty in the Microsoft Access and SQL Server database management

products. He maintains offices in Nashua, New Hampshire, and Paris, France.

He was recognized as a “Most Valuable Professional” (MVP) from 1993 to 2015 by

Microsoft Product Support Services for his assistance with technical questions on

public support forums. He set a landmark 20 consecutive years as an MVP in 2013.

You can visit John’s Web site at www.viescas.com or contact him by e-mail at

john@viescas.com.

http://www.viescas.com
mailto:john@viescas.com

xxvi

Reader Services

Register your copy of SQL Queries for Mere Mortals on the InformIT site for

 convenient access to updates and corrections as they become available. To

start the registration process, go to informit.com/register and log in or create

an account. Enter the product ISBN 9780134858333 and click Submit. Look

on the Registered Products tab for an Access Bonus Content link next to this

 product, and follow that link to access any available bonus materials. If you

would like to be notified of exclusive offers on new editions and updates, please

check the box to receive email from us.

http://informit.com/register

 1

Introduction

“I presume you’re mortal, and may err.”
—JAMES SHIRLEY, THE LADY OF PLEASURE

If you’ve used a computer more than casually, you have probably used
Structured Query Language or SQL—perhaps without even knowing
it. SQL is the standard language for communicating with most data-
base systems. Any time you import data into a spreadsheet or perform
a merge into a word processing program, you’re most likely using SQL in
some form or another. Every time you go online to an e-commerce site
on the Web and place an order for a book, a recording, a movie, or any of
the dozens of other products you can order, there’s a very high probabil-
ity that the code behind the web page you’re using is accessing its data-
bases with SQL. If you need to get information from a database system
that uses SQL, you can enhance your understanding of the language by
reading this book.

Are You a Mere Mortal?

You might ask, “Who is a mere mortal? Me?” The answer is not simple.
When I started to write this book, I thought was an expert in the data-
base language called SQL. Along the way, I discovered I am a mere mor-
tal, too, in several areas. I understood a few specific implementations of
SQL very well, but I unraveled many of the complex intricacies of the
language as I studied how it is used in many commercial products. So, if
you fit any of the following descriptions, you’re a mere mortal, too!

• If you use computer applications that let you access information
from a database system, you’re probably a mere mortal. The
first time you don’t get the information you expected using the
query tools built into your application, you’ll need to explore
the underlying SQL statements to find out why.

2 Introduction

• If you have recently discovered one of the many available desktop
database applications but are struggling with defining and query-
ing the data you need, you’re a mere mortal.

• If you’re a database programmer who needs to “think outside of the
box” to solve some complex problems, you’re a mere mortal.

• If you’re a database guru in one product but are now faced with
integrating the data from your existing system into another system
that supports SQL, you’re a mere mortal.

In short, anyone who has to use a database system that supports SQL
can use this book. As a beginning database user who has just discov-
ered that the data you need can be fetched using SQL, you will find that
this book teaches you all the basics and more. For an expert user who
is suddenly faced with solving complex problems or integrating multiple
systems that support SQL, this book will provide insights into leveraging
the complex abilities of the SQL database language.

About This Book

Everything you read in this book is based on the current International
Organization for Standardization (ISO) Standard for the SQL database
language – SQL/Foundation (document ISO/IEC 9075-2:2016), as cur-
rently implemented in most of the popular commercial database systems.
The ISO document was also adopted by the American National Stan-
dards Institute (ANSI), so this is truly an international standard. The
SQL you’ll learn here is not specific to any particular software product.

As you’ll learn in more detail in Chapter 3, “A Concise History of SQL,”
the SQL Standard defines both more and less than you’ll find imple-
mented in most commercial database products. Most database vendors
have yet to implement many of the more advanced features, but most do
support the core of the standard.

I researched a wide range of popular products to make sure that you
can use what I’m teaching in this book. Where I found parts of the core
of the language not supported by some major products, I warn you in
the text and show you alternate ways to state your database requests in
standard SQL. When I found significant parts of the SQL Standard sup-
ported by only a few vendors, I introduced you to the syntax and then
suggested alternatives.

 About This Book 3

I have organized this book into six major sections:

• Part I, “Relational Databases and SQL,” explains how modern
database systems are based on a rigorous mathematical model
and provides a brief history of the database query language that
has evolved into what is known as SQL. I also discuss some
 simple rules that you can use to make sure your database design
is sound.

• Part II, “SQL Basics,” introduces you to using the SELECT
 statement, creating expressions, and sorting information with an
ORDER BY clause. You’ll also learn how to filter data by using a
WHERE clause.

• Part III, “Working with Multiple Tables,” shows you how to formu-
late queries that draw data from more than one table. Here I show
you how to link tables in a query using the INNER JOIN, OUTER
JOIN, and UNION operators, and how to work with subqueries.

• Part IV, “Summarizing and Grouping Data,” discusses how to
obtain summary information and group and filter summarized
data. Here is where you’ll learn about the GROUP BY and
HAVING clauses.

• Part V, “Modifying Sets of Data,” explains how to write queries that
modify a set of rows in your tables. In the chapters in this sec-
tion, you’ll learn how to use the UPDATE, INSERT, and DELETE
statements.

• Part VI, “Introduction to Solving Tough Problems,” dips your toes
into more complex problems. In the chapters in this section, you’ll
expand your horizons to include solving complex “NOT” and “AND”
problems (multiple conditions on one table), performing logical
evaluations with CASE, and thinking “outside the box” using
“unlinked” tables (Cartesian Products). You’ll also learn how to use
additional keywords in GROUP BY to create subtotals and roll-ups
and to partition your output data into subsets.

At the end of the book in the appendices, you’ll find syntax diagrams for
all the SQL elements you’ve learned, layouts of the sample databases, a
list of date and time manipulation functions implemented in six of the
major database systems, and book recommendations to further your
study of SQL. You can download the five sample databases for the four

4 Introduction

database systems (Microsoft Access, Microsoft SQL Server, MySQL, and
PostgreSQL) from www.informit.com/title/9780134858333 and clicking
the Downloads tab.

What This Book Is Not

Although this book is based on the 2016 SQL Standard that was cur-
rent at the time of this writing, it does not cover every aspect of the
standard. In truth, many features in the 2016 SQL Standard won’t be
implemented for many years—if at all—in the major database system
implementations. The fundamental purpose of this book is to give you a
solid grounding in writing queries in SQL. Throughout the book, you’ll
find me recommending that you “consult your database documentation”
for how a specific feature might or might not work. That’s not to say I
covered only the lowest common denominator for any feature among
the major database systems. I do try to caution you when some systems
implement a feature differently or not at all.

You’ll find it difficult to create other than simple queries using a single
table if your database design is flawed. I included a chapter on data-
base design to help you identify when you will have problems, but that
one chapter includes only the basic principles. A thorough discussion of
database design principles and how to implement a design in a specific
database system is beyond the scope of this book.

This book is also not about how to solve a problem in the most
 efficient way. As you work through many of the later chapters, you’ll
find I suggest more than one way to solve a particular problem. In
some cases where writing a query in a particular way is likely to have
 performance problems on any system, I try to warn you about it. But
each database system has its own strengths and weaknesses. After you
learn the basics, you’ll be ready to move on to digging into the particular
 database system you use to learn how to formulate your query solutions
so that they run in a more optimal manner.

How to Use This Book

I have designed the chapters in this book to be read in sequence. Each
succeeding chapter builds on concepts taught in earlier chapters. How-
ever, you can jump into the middle of the book without getting lost. For

http://www.informit.com/title/9780134858333

 Reading the Diagrams Used in This Book 5

example, if you are already familiar with the basic clauses in a SELECT
statement and want to learn more about JOINs, you can jump right in to
Chapters 7, “Thinking in Sets,” 8, “INNER JOINs,” and 9, “OUTER JOINs.”

At the end of many of the chapters, you’ll find an extensive set of “Sample
Statements,” their solutions, and sample result sets. I recommend that
you study several of the samples to gain a better understanding of the
techniques involved and then try working out some of the later “Problems
for You to Solve” yourself without looking at the solutions I propose.

Note that where a particular query returns dozens of rows in the result
set, I show you only the first few rows to give you an idea of how the
answer should look. You might not see the same result on your sys-
tem, however, because each database system that supports SQL has its
own optimizer that figures out the fastest way to solve the query. Also,
the first few rows you see returned by your database system might not
exactly match the first few that I show you unless the query contains
an ORDER BY clause that requires the rows to be returned in a specific
sequence.

I’ve also included a complete set of problems for you to solve on your
own, which you’ll find at the end of most chapters. This gives you the
opportunity to really practice what you’ve just learned in the chapter.
Don’t worry—the solutions are included in the sample databases that
you can download from the book’s website. I’ve also included hints on
those problems that might be a little tricky.

After you have worked your way through the entire book, you’ll find the
complete SQL diagrams in Appendix A, “SQL Standard Diagrams,” to be
an invaluable reference for all the SQL techniques I showed you. You will
also be able to use the sample database layouts in Appendix B, “Schema
for the Sample Databases,” to help you design your own databases.

Reading the Diagrams Used in This Book

The numerous diagrams throughout the book illustrate the proper syn-
tax for the statements, terms, and phrases you’ll use when you work
with SQL. Each diagram provides a clear picture of the overall construc-
tion of the SQL element currently being discussed. You can also use any
of these diagrams as templates to create your own SQL statements or to
help you acquire a clearer understanding of a specific example.

6 Introduction

All the diagrams are built from a set of core elements and can be divided
into two categories: statements and defined terms. A statement is always
a major SQL operation, such as the SELECT statement I discuss in this
book, while a defined term is always a component used to build part of a
statement, such as a value expression, a search condition, or a predicate.
(Don’t worry—I’ll explain all these terms later in the book.) The only dif-
ference between a syntax diagram for a statement and a syntax diagram
for a defined term is the manner in which the main syntax line begins
and ends. I designed the diagrams with these differences so that you
can clearly see whether you’re looking at the diagram for an entire state-
ment or a diagram for a term that you might use within a statement.
Figure I-1 shows the beginning and end points for both diagram cate-
gories. Aside from this difference, the diagrams are built from the same
elements. Figure I-2 shows an example of each type of syntax diagram
and is followed by a brief explanation of each diagram element.

Defined Term Line

Statement Line

Figure I-1 Syntax line end points for statements and defined terms

SELECT

SELECT Statement

,
DISTINCT

FROM

Value Expression
alias

AS

WHERE Search Condition

*

,
table_name

1 2

3

8

9

5

10

7

8

4

column_name
.

correlation_name

Column Reference
11 12

6

6

table_name

Figure I-2 Sample statement and defined term diagrams

 Reading the Diagrams Used in This Book 7

 1. Statement start point—denotes the beginning of the main
syntax line for a statement. Any element that appears directly on
the main syntax line is a required element, and any element that
appears below it is an optional element.

 2. Main syntax line—determines the order of all required and
optional elements for the statement or defined term. Follow this
line from left to right (or in the direction of the arrows) to build
the syntax for the statement or defined term.

 3. Keyword(s)—indicates a major word in SQL grammar that is a
required part of the syntax for a statement or defined term. In a
diagram, keywords are formatted in capital letters and bold font.
(You don’t have to worry about typing a keyword in capital letters
when you actually write the statement in your database program,
but it does make the statement easier to read.)

 4. Literal entry—specifies the name of a value you explicitly sup-
ply to the statement. A literal entry is represented by a word or
phrase that indicates the type of value you need to supply. Literal
entries in a diagram are formatted in all lowercase letters.

 5. Defined term—denotes a word or phrase that represents some
operation that returns a final value to be used in this statement.
I’ll explain and diagram every defined term you need to know as
you work through the book. Defined terms are always formatted
in italic letters.

 6. Optional element—indicates any element or group of elements
that appears below the main syntax line. An optional element
can be a statement, keyword, defined term, or literal value and,
for purposes of clarity, appears on its own line. In some cases,
you can specify a set of values for a given option, with each value
separated by a comma (see number 8). Also, several optional
elements have a set of sub-optional elements (see number 7). In
general, you read the syntax line for an optional element from
left to right, in the same manner that you read the main syntax
line. Always follow the directional arrows and you’ll be in good
shape. Note that some options allow you to specify multiple values
or choices, so the arrow will flow from right to left. After you’ve
entered all the items you need, however, the flow will return to
normal from left to right. Fortunately, all optional elements work
the same way. After I show you how to use an optional element
later in the book, you’ll know how to use any other optional
 element you encounter in a syntax diagram.

8 Introduction

 7. Sub-optional element—denotes any element or group of elements
that appears below an optional element. Sub-optional elements
allow you to fine-tune your statements so that you can work with
more complex problems.

 8. Option list separator—indicates that you can specify more than
one value for this option and that each value must be separated
with a comma.

 9. Alternate option—denotes a keyword or defined term that can
be used as an alternative to one or more optional elements. The
syntax line for an alternate option bypasses the syntax lines of
the optional elements it is meant to replace.

 10. Statement end point—denotes the end of the main syntax line
for a statement.

 11. Defined term start point—denotes the beginning of the main
syntax line for a defined term.

 12. Defined term end point—denotes the end of the main syntax
line for a defined term.

Now that you’re familiar with these elements, you’ll be able to read all
the syntax diagrams in the book. And on those occasions when a dia-
gram requires further explanation, I provide you with the information
you need to read the diagram clearly and easily. To help you better
understand how the diagrams work, here’s a sample SELECT statement
that I built using Figure I-2.

SELECT FirstName, LastName, City, DOB AS DateOfBirth
FROM Students
WHERE City = 'El Paso'

This SELECT statement retrieves four columns from the Students table,
as I’ve indicated in the SELECT and FROM clauses. As you follow the
main syntax line from left to right, you see that you have to indicate at
least one value expression. A value expression can be a column name,
an expression created using column names, or simply a constant (literal)
value that you want to display. You can indicate as many columns as
you need with the value expression’s option list separator (a comma). This
is how I was able to use four column names from the Students table.
I was concerned that some people viewing the information returned by
this SELECT statement might not know what DOB means, so I assigned

 Sample Databases Used in This Book 9

an alias to the DOB column with the value expression’s AS sub-option.
Finally, I used the WHERE clause to make certain the SELECT state-
ment shows only those students who live in El Paso. (If this doesn’t quite
make sense to you just now, there’s no cause for alarm. You’ll learn all
this in great detail throughout the remainder of the book.)

You’ll find a full set of syntax diagrams in Appendix A. They show the
complete and proper syntax for all the statements and defined terms
that I discuss in the book. If you happen to refer to these diagrams as
you work through each chapter, you’ll notice a slight disparity between
some of the diagrams in a given chapter and the corresponding dia-
grams in the appendix. The diagrams in the chapters are just simplified
versions of the diagrams in the appendix. These simplified versions allow
me to explain complex statements and defined terms more easily and
give me the ability to focus on particular elements as needed. But don’t
worry—all the diagrams in the appendix will make perfect sense after
you work through the material in the book.

Sample Databases Used in This Book

On the book website at www.informit.com/title/9780134858333 you’ll
find a downloadable file on the Downloads tab containing nine sample
databases that I use for the example queries throughout the book. I’ve
also included diagrams of the database structures in Appendix B.

 1. Sales Orders. This is a typical order entry database for a store
that sells bicycles and accessories. (Every database book needs at
least one order entry example, right?)

 2. Entertainment Agency. I structured this database to manage
entertainers, agents, customers, and bookings. You would use a
similar design to handle event bookings or hotel reservations.

 3. School Scheduling. You might use this database design to regis-
ter students at a high school or community college. This database
tracks not only class registrations but also which instructors are
assigned to each class and what grades the students received.

 4. Bowling League. This database tracks bowling teams, team
members, the matches they played, and the results.

 5. Recipes. You can use this database to save and manage all your
favorite recipes. I even added a few that you might want to try.

http://www.informit.com/title/9780134858333

10 Introduction

In the sample files, you can find all five of the sample databases in four
different formats:

• Because of the great popularity of the Microsoft Office Access desk-
top database, I created one set of databases (.accdb file extension)
using Microsoft Access 2007 (Version 12.0) format. I chose the
Version 12 format of this product because it closely supports the
current ISO/IEC SQL Standard, and you can open database files
in this format using Access 2007, 2010, 2013, and later. You can
find these files in the MSAccess subfolder. (I tested all the sample
queries using Microsoft Access 2016.)

• The second format consists of database files (.mdf file extension)
created using Microsoft SQL Server 2016 Express Edition. You can
find these files in the MSSQLServer folder, and you can attach
these files to a Microsoft SQL Server 2016 or later server. I have
also included SQL command files (.sql file extension) that you can
use to create the samples on a Microsoft SQL Server from scratch.
You can find these files in the SQLScripts subfolder. You can
obtain a free copy of Microsoft SQL Server 2016 Express Edition at
www.microsoft.com/en-us/sql-server/sql-server-editions-express.

• I created the third set of databases using the popular open-source
MySQL version 5.7.18 Community Edition database system. You
can use the scripts (.sql file extension) that you will find in the
SQLScripts subfolder to create the database structure, load the
data, and create the sample views and stored procedures in your
own MySQL data folder. You can obtain a free copy of the commu-
nity edition of the MySQL database system at www.mysql.com/.

• The fourth set of databases uses the popular PostgreSQL version
9.6.3. As with MySQL, you can use the scripts (.sql file extension)
that you will find in the SQLScripts subfolder to create the
 database structure, load the data, and create the sample views
and functions. You can obtain a free copy of PostgreSQL at
www.postresql.org.

To install the sample files, see the file ReadMe.txt included in the files
you can download from www.informit.com/title/9780134858333

http://www.microsoft.com/en-us/sql-server/sql-server-editions-express
http://www.mysql.com/
http://www.postresql.org
http://www.informit.com/title/9780134858333

 Sample Databases Used in This Book 11

 ❖ Note Although I was very careful to use the most common and
simplest syntax for the CREATE TABLE, CREATE INDEX, CREATE
CONSTRAINT, and INSERT commands in the sample SQL scripts,
you (or your database administrator) might need to modify these files
slightly to work with your database system. If you’re working with a
database system on a remote server, you might need to gain permis-
sion from your database administrator to build the samples from the
SQL commands that I supplied.

For the chapters in Parts II, III, IV, and VI that focus on the SELECT
statement, you’ll find all the example statements and solutions in the
“example” version of each sample database (for example, SalesOrdersEx-
ample, Entertainment-AgencyExample). Because the examples in Part V
modify the sample data, I created “modify” versions of each of the sample
databases (for example, Sales-OrdersModify, EntertainmentAgencyMod-
ify). The sample databases for Part V also include additional columns
and tables not found in the SELECT examples that enable me to demon-
strate certain features of UPDATE, INSERT, and DELETE queries.

 ❖ Caution Throughout the book, I use ISO-Standard SQL when
I explain concepts and show you sample statements. In many cases,
I was able to use this SQL directly to create the sample Views,
 Functions, or Stored Procedures that you’ll find in the sample data-
bases. However, in many cases I had to modify the sample SQL so that
it would work correctly with the target database system. For example, to
create date expressions or calculations, I chose to use the appropriate
function supported by the target database system. (For a list of all date
and time functions supported by six of the major database systems, see
Appendix C, “Date and Time Types, Operations, and Functions.”)

Also, although I used scripts that closely match the original samples in
the book, Microsoft SQL Server, MySQL, and PostgreSQL will modify the
original SQL to “optimize” it before saving the view, function, or stored
procedure. If you use Design in SQL Server Management Studio or Alter
in MySQL Workbench or PostgreSQL pgAdmin to edit the view or proce-
dure, what you see saved in the database might differ considerably from
the script I used to define the view or procedure. When in doubt, always
refer to the companion script file to see the SQL that I used.

❖ Note Although I was very careful to use the most common and
simplest syntax for the CREATE TABLE, CREATE INDEX, CREATE
CONSTRAINT, and INSERT commands in the sample SQL scripts,
you (or your database administrator) might need to modify these files
slightly to work with your database system. If you’re working with a
database system on a remote server, you might need to gain permis-
sion from your database administrator to build the samples from the
SQL commands that I supplied.

❖ Caution Throughout the book, I use ISO-Standard SQL when
I explain concepts and show you sample statements. In many cases,
I was able to use this SQL directly to create the sample Views,
Functions, or Stored Procedures that you’ll find in the sample data-
bases. However, in many cases I had to modify the sample SQL so that
it would work correctly with the target database system. For example, to
create date expressions or calculations, I chose to use the appropriate
function supported by the target database system. (For a list of all date
and time functions supported by six of the major database systems, see
Appendix C, “Date and Time Types, Operations, and Functions.”)

Also, although I used scripts that closely match the original samples in
the book, Microsoft SQL Server, MySQL, and PostgreSQL will modify the
original SQL to “optimize” it before saving the view, function, or stored
procedure. If you use Design in SQL Server Management Studio or Alter
in MySQL Workbench or PostgreSQL pgAdmin to edit the view or proce-
dure, what you see saved in the database might differ considerably from
the script I used to define the view or procedure. When in doubt, always
refer to the companion script file to see the SQL that I used.

12 Introduction

“Follow the Yellow Brick Road”

—MUNCHKIN TO DOROTHY IN THE WIZARD OF OZ

Now that you’ve read through the Introduction, you’re ready to start
learning SQL, right? Well, maybe. At this point, you’re still in the house,
it’s still being tossed about by the tornado, and you haven’t left Kansas.

Before you make that jump to Chapter 4, “Creating a Sample Query,”
take my advice and read through the first three chapters. Chapter 1,
“What Is Relational?,” will give you an idea of how the relational data-
base was conceived and how it has grown to be the most widely used
type of database in the industry today. I hope this will give you some
amount of insight into the database system you’re currently using. In
Chapter 2, “Ensuring Your Database Structure Is Sound,” you’ll learn
how to fine-tune your data structures so that your data is reliable and,
above all, accurate. You’re going to have a tough time working with some
of the SQL statements if you have poorly designed data structures, so I
suggest you read this chapter carefully.

Chapter 3, “A Concise History of SQL,” is literally the beginning of the
“yellow brick road.” Here you’ll learn the origins of SQL and how it
evolved into its current form. You’ll also learn about some of the peo-
ple and companies who helped pioneer the language and why there are
so many varieties of SQL. Finally, you’ll learn how SQL came to be a
national and international standard and what the outlook for SQL will
be in the years to come.

After you’ve read these chapters, consider yourself well on your way
to Oz. Just follow the road I’ve laid out through each of the remaining
chapters. When you’ve finished the book, you’ll find that you’ve found
the wizard—and he is you.

Part I
Relational
Databases
and SQL

This page intentionally left blank

 15

1
What Is Relational?

“Knowledge is the small part of ignorance that we arrange and classify.”
—AMBROSE BIERCE

Topics Covered in This Chapter

Types of Databases

A Brief History of the Relational Model

Anatomy of a Relational Database

What’s in It for You?

Summary

Before jumping right into SQL, you should understand the logic behind
the structure of the databases that SQL supports. In this chapter, you’ll
learn why the relational database was invented, how it is constructed,
and why you should use it. This information provides the foundation you
need to understand what SQL really is all about and will eventually help
to clarify how you can leverage SQL to your best advantage.

Types of Databases

What is a database? As you probably know, a database is an organized col-
lection of data used to model some type of organization or organizational
process. It really doesn’t matter whether you’re using paper or an applica-
tion program to collect and store the data. You have a database as long as
you’re collecting and storing data in some organized manner for a specific
purpose. Throughout the remainder of this discussion, I’ll assume that
you’re using an application program to collect and maintain your data.

16 Chapter 1 What Is Relational?

Generally, two types of databases are used in database management:
operational databases and analytical databases.

Operational databases are the backbone of many companies, organiza-
tions, and institutions throughout the world today. This type of database
is primarily used to collect, modify, and maintain data on a day-to-day
basis. The type of data stored is dynamic, meaning that it changes con-
stantly and always reflects up-to-the-minute information. Organizations
such as retail stores, manufacturing companies, hospitals and clinics,
and publishing houses use operational databases because their data is
in a constant state of flux.

In contrast, an analytical database stores and tracks historical and
time-dependent data. It is a valuable asset for tracking trends, viewing
statistical data over a long period, or making tactical or strategic busi-
ness projections. The type of data stored is static, meaning that the
data is never (or very rarely) modified, although new data might often be
added. The information gleaned from an analytical database reflects a
point-in-time snapshot of the data and is usually not up to date. Chemi-
cal labs, geological companies, and marketing analysis firms are exam-
ples of organizations that use analytical databases. Note that the data
found in analytical databases is usually gleaned from an operational
database. For example, sales history each month might be summarized
and saved in an analytical database.

A Brief History of the Relational Model

Several types of database models exist. Some, such as hierarchical and
network, are used only on legacy systems, while others, such as rela-
tional, have gained wide acceptance. You might also encounter discus-
sions in other books about object, object-relational, or online analytical
processing (OLAP) models. In fact, there are extensions defined in the
SQL Standard that support these models, and some commercial data-
base systems have implemented some of these extensions. For my pur-
poses, however, I will focus strictly on the relational model and the core
of the international SQL Standard.

In the Beginning . . .

The relational database was first conceived in 1969 and has arguably
become the most widely used database model in database management

 A Brief History of the Relational Model 17

today. The father of the relational model, Dr. Edgar F. Codd (1923–2003),
was an IBM research scientist in the late 1960s and was at that time
looking into new ways to handle large amounts of data. His dissatisfac-
tion with database models and database products of the time led him to
begin thinking of ways to apply the disciplines and structures of mathe-
matics to solve the myriad problems he had been encountering. A math-
ematician by profession, he strongly believed that he could apply specific
branches of mathematics to solve problems such as data redundancy,
weak data integrity, and a database structure’s overdependence on its
physical implementation.

Dr. Codd formally presented his new relational model in a landmark
work titled “A Relational Model of Data for Large Shared Databanks” in
June 1970.1 He based his new model on two branches of mathematics—
set theory and first-order predicate logic. Indeed, the name of the model
itself is derived from the term relation, which is part of set theory.
(A widely held misconception is that the relational model derives its
name from the fact that tables within a relational database can be
related to one another. However, the term relation in the model is used
to describe what most relational database systems call a table. Now
that you know the truth, you’ll have a peaceful, restful sleep tonight!)
Fortunately, you don’t need to know the details of set theory or first-
order predicate logic to design and use a relational database. If you
use a good database design methodology—such as the one presented
in Mike Hernandez’s Database Design for Mere Mortals, Third Edition
 (Addison-Wesley, 2013)—you can develop a sound and effective data-
base structure that you can confidently use to collect and maintain
any data. (Well, OK, you do need to understand a little bit about predi-
cates and set theory to solve more complex problems. I cover the essen-
tials that you need to know about predicates—really a fancy name for a
 filter—in Chapter 6, “Filtering Your Data,” and the basics of set theory in
 Chapter 7, “Thinking in Sets.”)

Relational Database Systems

A relational database management system (RDBMS) is a software appli-
cation program you use to create, maintain, modify, and manipulate a
relational database. Many RDBMS programs also provide the tools you
need to create end-user applications that interact with the data stored

1. Communications of the ACM, June 1970, 377–87.

18 Chapter 1 What Is Relational?

in the database. RDBMS programs have continually evolved since their
first appearance, and they continue to become more full-featured and
powerful as advances occur in hardware technology and operating
environments.

In the earliest days of the relational database, RDBMSs were written for
use on mainframe computers. Two RDBMS programs prevalent in the early
1970s were System R, developed by IBM at its San Jose Research Labo-
ratory in California, and Interactive Graphics Retrieval System (INGRES),
developed at the University of California at Berkeley. These two programs
contributed greatly to the general appreciation of the relational model.

As the benefits of the relational database became more widely known,
many companies decided to make a slow move from hierarchical and
network database models to the relational database model, thus creating
a need for more and better mainframe RDBMS programs. The 1980s saw
the development of various commercial RDBMSs for mainframe comput-
ers by companies such as Oracle and IBM.

The early to mid-1980s saw the rise of the personal computer, and
with it, the development of PC-based RDBMS programs. Some of the
early entries in this category, from companies such as Ashton-Tate and
Fox Software, were nothing more than elementary file-based database-
management systems. True PC-based RDBMS programs began to emerge
with products developed by companies such as Microrim and Ansa
 Software. These companies helped to spread the idea and potential of
database management from the mainframe-dominated domain of infor-
mation systems departments to the desktop of the common end user.

The need to share data became apparent as more and more users
worked with databases throughout the late 1980s and early 1990s. The
concept of a centrally located database that could be made available to
multiple users seemed a very promising idea. This would certainly make
data management and database security much easier to implement.
Database vendors such as Microsoft and Oracle responded to this need
by developing client/server RDBMS programs.

The manner in which databases are used evolved immensely over the
years, and many organizations began to realize that a lot of useful
information could be gathered from data they stored in various rela-
tional and nonrelational databases. This prompted them to question
whether there was a way to mine the data for useful analytical infor-
mation that they could then use to make critical business decisions.

 Anatomy of a Relational Database 19

Furthermore, they wondered whether they could consolidate and inte-
grate their data into a viable knowledgebase for their organizations.
Indeed, these would be difficult questions to answer.

IBM proposed the idea of a data warehouse, which, as originally con-
ceived, would enable organizations to access data stored in any num-
ber of nonrelational databases. It was unsuccessful in its first attempts
at implementing data warehouses, primarily because of the complexities
and performance problems associated with such a task. Only since the
1990s has the implementation of data warehouses become more viable
and practical. William H. (Bill) Inmon, widely regarded as the father of
the data warehouse, is a strong and vocal advocate of the technology
and has been instrumental in its evolution. Data warehouses are now
more commonplace as companies move to leverage the vast amounts of
data they’ve stored in their databases over the years.

The Internet has had a significant impact on the way organizations use
databases. Many companies and businesses use the Web to expand
their consumer base, and much of the data they share with and gather
from these consumers is stored in a database. Developers commonly use
eXtensible Markup Language (XML) to assemble and consolidate data
from various relational and nonrelational systems.

There has been a considerable effort by various vendors to get their cli-
ents to create databases and store data in the “cloud”; that is, a loca-
tion that is completely apart from the client’s location. The idea is that
the client can access data from the cloud database via the Internet from
anywhere at any time. As an example of using the “cloud” for database
management, Microsoft’s focus in the last several releases of Microsoft
Access has been to migrate data from desktop devices to cloud servers.
Given the broad emergence and use of connected devices within the past
several years (as of this writing), it will be interesting to see how data-
base management systems evolve within this type of environment.

Anatomy of a Relational Database

According to the relational model, data in a relational database is stored
in relations, which are perceived by the user as tables. Each relation is
composed of tuples (records or rows) and attributes (fields or columns).
A relational database has several other characteristics, which are
 discussed in this section.

20 Chapter 1 What Is Relational?

Tables

Tables are the main structures in the database. Each table always rep-
resents a single, specific subject. The logical order of rows and columns
within a table is of absolutely no importance. Every table contains at
least one column—known as a primary key—that uniquely identifies
each of its rows. (In Figure 1-1, for example, CustomerID is the pri-
mary key of the Customers table.) In fact, data in a relational database
can exist independent of the way it is physically stored in the computer
because of these last two table characteristics. This is great news for
users because they aren’t required to know the physical location of a row
in order to retrieve its data.

The subject that a given table represents can be either an object or an
event. When the subject is an object, the table represents something
that is tangible, such as a person, place, or thing. Regardless of its type,
every object has characteristics that can be stored as data. You can then
process this data in an almost infinite number of ways. Pilots, prod-
ucts, machines, students, buildings, and equipment are all examples of
objects that can be represented by a table. Figure 1-1 illustrates one of
the most common examples of this type of table.

CustomerID FirstName LastName StreetAddress City State ZipCode

1010 Angel Kennedy 667 Red River Road Austin TX 78710

1011 Alaina Hallmark Route 2, Box 203B Woodinville WA 98072

1012 Liz Keyser 13920 S.E. 40th Street Bellevue WA 98006

1013 Rachel Patterson 2114 Longview Lane San Diego CA 92199

1014 Sam Abolrous 611 Alpine Drive Palm Springs CA 92263

1015 Darren Gehring 2601 Seaview Lane Chico CA 95926

Customers

COLUMNS

ROWS

Figure 1-1 A sample table

When the subject of a table is an event, the table represents something
that occurs at a given point in time and has characteristics you wish to
record. These characteristics can be stored as data and then processed
as information in the same manner as a table that represents some spe-
cific object. Examples of events you might need to record include judicial
hearings, distributions of funds, lab test results, and geological sur-
veys. In a sales orders database, an order can be considered both an
object (the physical piece of paper representing an order) and an event

 Anatomy of a Relational Database 21

(the shipment of the items ordered). Figure 1-2 shows an example of a
table representing an event that we all have experienced at one time or
 another—a doctor’s appointment.

Figure 1-2 A table representing events

Columns

A column is the smallest structure in the database, and it represents a
characteristic of the subject of the table to which it belongs. Columns
are the structures that store data. You can retrieve the data in these col-
umns and then present it as information in almost any configuration
imaginable. Remember that the quality of the information you get from
your data is in direct proportion to the amount of time you’ve dedicated to
ensuring the structural integrity and data integrity of the columns them-
selves. There is just no way to underestimate the importance of columns.

Every column in a properly designed database contains one and only
one value, and its name identifies the type of value it holds. This makes
entering data into a column very intuitive. If you see columns with names
such as FirstName, LastName, City, State, and ZipCode, you know exactly
what type of value goes into each column. You’ll also find it very easy to
sort the data by state or to look for everyone whose last name is Viescas.

Rows

A row represents a unique instance of the subject of a table. It is com-
posed of the entire set of columns in a table, regardless of whether or not
the columns contain any values. Because of the manner in which a table
is defined, each row is identified throughout the database by a unique
value in the primary key column(s) of that row.

In Figure 1-1, for example, each row represents a unique customer
within the table, and the CustomerID column identifies a given customer

22 Chapter 1 What Is Relational?

throughout the database. In turn, each row includes all the columns
within the table, and each column describes some aspect of the cus-
tomer represented by the row. Rows are a key factor in understanding
table relationships because you need to know how a row in one table
relates to other rows in another table.

Keys

Keys are special columns that play very specific roles within a table. The
type of key determines its purpose within the table. Although a table
might contain several types of keys, I will limit my discussion to the two
most important ones: the primary key and the foreign key.

A primary key consists of one or more columns that uniquely identify
each row within a table. (When a primary key is composed of two or
more columns, it is known as a composite primary key.) The primary key
is the most important for two reasons: Its value identifies a specific row
throughout the entire database, and its column identifies a given table
throughout the entire database. Primary keys also enforce table-level
integrity and help establish relationships with other tables. Every table
in your database should have a primary key.

The AgentID column in Figure 1-3 is a good example of a primary key
because it uniquely identifies each agent within the Agents table and
helps to guarantee table-level integrity by ensuring nonduplicate rows.
It is also used to establish relationships between the Agents table and
other tables in the database, such as the Entertainers table shown in
the example.

Primary
Key

Primary
Key

Foreign Key

EntertainerID AgentID EntertainerName EntertainerPhone <<other columns>>

1001 1 Carol Peacock Trio 555-2691 …

1002 3 Topazz 555-2591 …

1003 3 JV & the Deep Six 555-2511 …

Entertainers

AgentID AgentFirstName AgentLastName DateHired AgentHomePhone <<other columns>>

1 William Thompson 15-May-01 555-2681 …

2 Scott Bishop 10-Feb-03 555-2666 …

3 Carol Viescas 09-Sep-00 555-2571 …

Agents

Figure 1-3 Primary and foreign keys

 Anatomy of a Relational Database 23

When you determine that a pair of tables has a relationship to each
other, you typically establish the relationship by taking a copy of the
primary key from the first table and inserting it into the second table,
where it becomes a foreign key. (The term foreign key is derived from
the fact that the second table already has a primary key of its own, and
the primary key you are introducing from the first table is foreign to the
 second table.)

Figure 1-3 also shows a good example of a foreign key. In this example,
AgentID is the primary key of the Agents table, and it is a foreign key
in the Entertainers table. As you can see, the Entertainers table
already has a primary key—EntertainerID. In this relationship, AgentID
is the column that establishes the connection between Agents and
Entertainers.

Foreign keys are important not only for the obvious reason that they
help establish relationships between pairs of tables but also because
they help ensure relationship-level integrity. This means that the rows
in both tables will always be properly related because the values of a
foreign key must be drawn from the values of the primary key to which
it refers. Foreign keys also help you avoid the dreaded “orphaned rows,”
a classic example of which is an order row without an associated cus-
tomer. If you don’t know who placed the order, you can’t process it, and
you obviously can’t invoice it. That’ll throw off your quarterly sales!

Views

A view is a virtual table composed of columns from one or more tables
in the database. The tables that comprise the view are known as base
tables. The relational model refers to a view as virtual because it draws
data from base tables rather than storing any data on its own. In fact,
the only information about a view that is stored in the database is its
structure.

Views enable you to see the information in your database from many
different perspectives, thus providing great flexibility for working with
data. You can create views in a variety of ways—they are especially use-
ful when based on multiple related tables. For example, you can create
a view that summarizes information such as the total number of hours
worked by every carpenter within the downtown Seattle area. Or you
can create a view that groups data by specific columns. An example of

24 Chapter 1 What Is Relational?

this type of view is displaying the total number of employees in each
city within every state of a specified set of regions. Figure 1-4 presents
an example of a typical view.

In many RDBMS programs, a view is commonly implemented and referred
to as a saved query or, more simply, a query. In most cases, a query has all
the characteristics of a view, so the only difference is that it is referred to
by a different name. (I often wonder if someone in some marketing depart-
ment had something to do with this.) It’s important to note that some ven-
dors refer to a query by its real name. Regardless of what it’s called in your
RDBMS program, you’ll certainly use views in your database.

Customers
CustomerID CustFirstName CustLastName CustPhone <<other columns>>

10001 Doris Hartwig 555-2671 …

10002 Deb Waldal 555-2496 …

10003 Peter Brehm 555-2501 …

<< more rows here >>

EngagementNumber CustomerID StartDate EndDate StartTime <<other columns>>

3 10001 2016-09-10 2016-09-15 13:00 …

14 10001 2016-09-24 2016-09-29 16:00 …

17 10002 2016-09-29 2016-10-02 18:00 …

<< more rows here >>

Engagements

Customer_Engagements (view)
EngagementNumber CustFirstName CustLastName StartDate EndDate

3 Doris Hartwig 2016-09-10 2016-09-15

13 Peter Brehm 2016-09-17 2016-09-20

14 Doris Hartwig 2016-09-24 2016-09-29

17 Deb Waldal 2016-09-29 2016-10-02

<< more rows here >>

13 10003 2016-09-17 2016-09-20 20:00 …

Figure 1-4 A sample view

Having said that, the name of this book is SQL Queries for Mere Mortals,
but I’m really focused on teaching you how to build views. As you’ll learn
in Chapter 2, “Ensuring Your Database Structure Is Sound,” the correct
way to design a relational database is to break up your data so that you
have one table per subject or event. Most of the time, however, you’ll want
to get information about related subjects or events—which customers
placed what orders or what classes are taught by which instructors. To do
that, you need to build a view, and you need to know SQL to do that.

 Anatomy of a Relational Database 25

Relationships

If rows in a given table can be associated in some way with rows in
another table, the tables are said to have a relationship between them.
The manner in which the relationship is established depends on the type
of relationship. Three types of relationships can exist between a pair of
tables: one-to-one, one-to-many, and many-to-many. Understanding rela-
tionships is crucial to understanding how views work and, by definition,
how multi-table SQL queries are designed and used. (You’ll learn more
about this in Part III, “Working with Multiple Tables.”)

One-to-One

A pair of tables has a one-to-one relationship when a single row in the
first table is related to only one row in the second table, and a single row
in the second table is related to only one row in the first table. In this
type of relationship, one table is referred to as the primary table, and the
other is referred to as the secondary table. You establish this relation-
ship by taking the primary key of the primary table and inserting it into
the secondary table, where it becomes a foreign key. This is a special
type of relationship because in nearly all cases the foreign key also acts
as the primary key of the secondary table.

Figure 1-5 shows an example of a typical one-to-one relationship in
which Agents is the primary table and Compensation is the secondary
table. The relationship between these tables is such that a single row
in the Agents table can be related to only one row in the Compensation
table, and a single row in the Compensation table can be related to only
one row in the Agents table. Note that AgentID is indeed the primary key
in both tables but also serves as a foreign key in the secondary table.

AgentID AgentFirstName AgentLastName DateOfHire AgentHomePhone <<other columns>>

1 William Thompson 1997-05-15 555-2681 …

2 Scott Bishop 1998-02-05 555-2666 …

3 Carol Viescas 1997-11-19 555-2571 …

Agents

Salary CommissionRate <<other columns>>

$35,000.00 4.00% …

$27,000.00 4.00% …

$30,000.00 5.00% …

Compensation
AgentID

1

2

3

Figure 1-5 An example of a one-to-one relationship

26 Chapter 1 What Is Relational?

The selection of the table that will play the primary role in this type of
relationship depends on whether rows can exist in one table with no
matching row in the other table. You cannot add rows to the second-
ary table in a one-to-one relationship unless a matching row already
exists in the primary table. For example, a new agent might be hired,
but the compensation is not decided yet. You need to be able to define
the agent without requiring that a matching compensation row exists,
so Agent becomes the primary table. Also, defining a compensation row
for an employee who doesn’t exist does not make sense, so clearly com-
pensation is the secondary table. One-to-one relationships are not very
common and are usually found in cases where a table has been split into
two parts for confidentiality purposes.

One-to-Many

When a pair of tables has a one-to-many relationship, a single row in the
first table can be related to many rows in the second table, but a single
row in the second table can be related to only one row in the first table.
This relationship is established by taking the primary key of the table on
the “one” side and inserting it into the table on the “many” side, where it
becomes a foreign key.

Figure 1-6 shows a typical one-to-many relationship. In this example, a
single row in the Entertainers table can be related to many rows in the
Engagements table, but a single row in the Engagements table can be
related to only one row in the Entertainers table. As you probably have
guessed, EntertainerID is a foreign key in the Engagements table.

EntertainerID EntertainerName EntertainerPhone <<other columns>>

1001 Carol Peacock Trio 555-2691 …

1002 Topazz 555-2591 …

1003 JV & the Deep Six 555-2511 …

Entertainers

EngagementID EntertainerID CustomerID StartDate EndDate <<other columns>>

5 1003 10006 2007-09-11 2007-09-14 …

7 1002 10004 2007-09-11 2007-09-18 …

10 1003 10005 2007-09-17 2007-09-26 …

12 1001 10014 2007-09-18 2007-09-26 …

Engagements

Figure 1-6 An example of a one-to-many relationship

 Anatomy of a Relational Database 27

Many-to-Many

A pair of tables is in a many-to-many relationship when a single row in
the first table can be related to many rows in the second table, and a
single row in the second table can be related to many rows in the first
table. To establish this relationship properly, you must create what is
known as a linking table. This table provides an easy way to associate
rows from one table with those of the other and will help to ensure that
you have no problems adding, deleting, or modifying any related data.
You define a linking table by taking a copy of the primary key of each
table in the relationship and using them to form the structure of the
new table. These columns actually serve two distinct roles: Together
they form the composite primary key of the linking table, and separately
they each serve as a foreign key.

A many-to-many relationship that has not been properly established is
said to be unresolved. Figure 1-7 shows a clear example of an unresolved
many-to-many relationship. In this case, a single row in the Customers
table can be related to many rows in the Entertainers table, and a single
row in the Entertainers table can be related to many rows in the Cus-
tomers table.

Customers
CustomerID CustFirstName CustLastName CustPhone <<other columns>>

10002 Deb Waldal 555-2496 …

10003 Peter Brehm 555-2501 …

EntertainerID EntertainerName EntertainerPhone <<other columns>>

1001 Carol Peacock Trio 555-2691 …

1002 Topazz 555-2591 …

1003 JV & the Deep Six 555-2511 …

Entertainers

10001 Doris Hartwig 555-2671 …

Figure 1-7 An unresolved many-to-many relationship

This relationship is unresolved because of the inherent problem with a
many-to-many relationship. The issue is this: How do you easily associ-
ate rows from the first table with rows in the second table? To reframe
the question regarding the tables shown in Figure 1-7, how do you asso-
ciate a single customer with several entertainers or a specific entertainer
with several customers? (If you are running an entertainment booking

28 Chapter 1 What Is Relational?

agency, you certainly hope that any one customer will book multiple
entertainers over time and that any one entertainer has more than one
customer!) Do you insert a few columns from the Customers table into
the Entertainers table? Or do you add several columns from the Enter-
tainers table to the Customers table? Either of these approaches is going
to create some problems when you try to work with related data, not
least of which regards data integrity. The solution to this dilemma is to
create a linking table in the manner previously stated. By creating and
using the linking table, you can properly resolve the many-to-many rela-
tionship. Figure 1-8 shows this solution in practice.

Customers
CustomerID CustFirstName CustLastName CustPhone <<other columns>>

10001 Doris Hartwig 555-2671 …

10002 Deb Waldal 555-2496 …

10003 Peter Brehm 555-2501 …

EngagementID CustomerID EntertainerID StartDate <<other columns>>

43 10001 1001 2007-10-21 …

58 10001 1002 2007-12-01 …

62 10003 1005 2007-12-09 …

71 10002 1003 2007-12-22 …

125 10001 1003 2008-02-23 …

Engagements (linking table)

EntertainerID EntertainerName EntertainerPhone <<other columns>>

1001 Carol Peacock Trio 555-2691 …

1002 Topazz 555-2591 …

1003 JV & the Deep Six 555-2511 …

Entertainers

Figure 1-8 A properly resolved many-to-many relationship

The linking table in Figure 1-8 was created by taking the CustomerID
from the Customers table and the EntertainerID from the Entertainers
table and using them as the basis for a new table. As with any other table
in the database, the new linking table has its own name—Engagements.
In fact, the Engagements table is a good example of a table that stores the
information about an event. Entertainer 1003 (JV & the Deep Six) played
an engagement for customer 10001 (Doris Hartwig) on February 23. And
a linking table lets you store additional information about the link—like

 What’s in It for You? 29

the date and perhaps the cost of the engagement. The real advantage of
a linking table is that it allows you to associate any number of rows from
both tables in the relationship. As the example shows, you can now easily
associate a given customer with any number of entertainers or a specific
entertainer with any number of customers.

As I stated earlier, understanding relationships will pay great dividends
when you begin to work with multi-table SQL queries, so be sure to
revisit this section when you begin working on Part III of this book.

What’s in It for You?

Why should you be concerned with understanding relational data-
bases? Why should you even care what kind of environment you’re
using to work with your data? And in addition to all this, what’s really
in it for you? Here’s where the enlightenment starts and the fun begins.

The time you spend learning about relational databases is an invest-
ment, and it is to your distinct advantage to do so. You should develop
a good working knowledge of the relational database because it’s
the most widely used data model in existence today. Forget what you
read in the trades and what Harry over in the Information Technology
 Services department told you—a vast majority of the data being used
by businesses and organizations is being collected, maintained, and
manipulated in relational databases. Yes, there have been extensions to
the model, the application programs that work with relational databases
have been injected with object orientation, and relational databases
have been thoroughly integrated into the Web and the cloud. But no
matter how you slice it, dice it, and spice it, it’s still a relational data-
base! The relational database has been around for more than 40 years,
it’s still going strong, and it’s not going be replaced anytime in the
 foreseeable future.

Nearly all commercial database management software used today is
relational. (However, folks such as C. J. Date and Fabian Pascal might
seriously question whether any commercial implementation is truly rela-
tional!) If you want to be gainfully employed in the database field, you’d
better know how to design a relational database and how to implement
it using one of the popular RDBMS programs. And now that so many
companies and corporations depend on the Internet, the cloud, and

30 Chapter 1 What Is Relational?

connected services, you’d better have some Web development experience
under your belt as well.

Having a good working knowledge of relational databases is helpful in
many ways. For instance, the more you know about how relational data-
bases are designed, the easier it will be for you to develop end-user appli-
cations for a given database. You’ll also be surprised by how intuitive
your RDBMS program will become because you’ll understand why it pro-
vides the tools it does and how to use those tools to your best advantage.
Your working knowledge will be a great asset as you learn how to use
SQL because SQL is the standard language for creating, maintaining,
and working with a relational database.

Where Do You Go from Here?

Now that you know the importance of learning about relational data-
bases, you must understand that there is a difference between database
theory and database design. Database theory involves the principles
and rules that formulate the basis of the relational database model. It
is what is learned in the hallowed halls of academia and then quickly
dismissed in the dark dens of the real world. But theory is import-
ant, nonetheless, because it guarantees that the relational database is
structurally sound and that all actions taken on the data in the data-
base have predictable results. On the other hand, database design
involves the structured, organized set of processes used to design a
relational database. A good database design methodology will help you
ensure the integrity, consistency, and accuracy of the data in the data-
base and guarantee that any information you retrieve will be as accu-
rate and up to date as possible.

If you want to design and create enterprise-wide databases, or develop
web-based Internet commerce databases, or begin to delve into data
warehousing, you should seriously think about studying database the-
ory. This applies even if you’re not going to explore any of these areas but
are considering becoming a high-end database consultant. For the rest
of you who are going to design and create relational databases on a vari-
ety of platforms (which, I believe, is the vast majority of the people read-
ing this book), learning a good, solid database design methodology will
serve you well. Always remember that designing a database is relatively
easy, but implementing a database within a specific RDBMS program on

 Summary 31

a particular platform is another issue altogether. (Another story, another
book, another time.)

There are a number of good database design books on the market. Some,
such as Mike Hernandez’s companion book Database Design for Mere
Mortals, Third Edition (Addison-Wesley, 2013), deals only with data-
base design methodologies. Others, such as C. J. Date’s An Introduction
to Database Systems, Eighth Edition (Addison-Wesley, 2003), mix both
theory and design. (Be warned, though, that the books dealing with the-
ory are not necessarily light reading.) After you decide in which direc-
tion you want to go, select and purchase the appropriate books, grab a
double espresso (or your beverage of choice), and dig right in. After you
become comfortable with relational databases in general, you’ll find that
you will need to study and become very familiar with SQL.

And that’s why you’re reading this book.

Summary

I began this chapter with a brief discussion of the different types of
databases commonly found today. You learned that organizations work-
ing with dynamic data use operational databases, ensuring that the
information retrieved is always as accurate and up-to-the-minute as
possible. You also learned that organizations working with static data
use analytical databases.

I then looked at a brief history of the relational database model. I explained
that Dr. E. F. Codd created the model based on specific branches of math-
ematics and that the model has been in existence for nearly 50 years.
Database software, as you now know, has been developed for various
 computing environments and has steadily grown in power, performance,
and capability since the 1970s. From the mainframe to the desktop to the
Web to connected services, RDBMS programs are the backbone of many
organizations today.

Next, I looked at an anatomy of a relational database. I introduced you
to its basic components and briefly explained their purpose. You learned
about the three types of relationships and now understand their impor-
tance, not only regarding the database structure itself but also as they
relate to your understanding of SQL.

32 Chapter 1 What Is Relational?

Finally, I explained why it’s to your advantage to learn about relational
databases and how to design them. You now know that the relational
database is the most common type of database in use today and that
just about every database software program you’re likely to encoun-
ter will be used to support a relational database. You now have some
ideas of how to pursue your education on relational database theory and
design a little further.

In the next chapter, you’ll learn some techniques to fine-tune your exist-
ing database structures.

 33

2
Ensuring Your Database

Structure Is Sound

“We shape our buildings: thereafter, they shape us.”
—SIR WINSTON CHURCHILL

Topics Covered in This Chapter

Why Is This Chapter Here?

Why Worry about Sound Structures?

Fine-Tuning Columns

Fine-Tuning Tables

Establishing Solid Relationships

Is That All?

Summary

Most of you reading this book are probably working with an existing
database structure implemented on your favorite (I hope) RDBMS
 program. It’s hard for me to assume, at this point, whether or not
you—or the person who developed the database—really had the
 necessary knowledge and skills or the time to design the database
properly. Assuming the worst, you probably have a number of tables
that could use some fine-tuning. Fortunately, you’re about to learn
some techniques that will help you get your database in shape and will
ensure that you can easily retrieve the information you need from your
tables.

34 Chapter 2 Ensuring Your Database Structure Is Sound

Why Is this Chapter Here?

You might wonder why I’m discussing database design topics in this
book and why they’re included in a beginning chapter. The reason is
simple: If you have a poorly designed database structure, many of the
SQL statements you’ll learn to build in the remainder of the book will be,
at best, difficult to implement or, at worst, relatively useless. However, if
you have a well-designed database structure, the skills you learn in this
book will serve you well.

This chapter will not teach you the intricacies of database design, but it
will help you get your database in relatively good shape. I highly recom-
mend that you read through this chapter so that you can make certain
your table structures are sound.

 ❖ Note It is important to understand that I am about to discuss the
logical design of the database. I’m not teaching you how to create or
implement a database in a database management system that sup-
ports SQL because, as I mentioned in the Introduction, these subjects
are beyond the scope of this book.

Why Worry about Sound Structures?

If your database structure isn’t sound, you’ll have problems retrieving
seemingly simple information from your database, it will be difficult to
work with your data, and you’ll cringe every time you need to add or
delete columns in your tables. Other aspects of the database, such as
data integrity, table relationships, and the ability to retrieve accurate
information, are affected when you have poorly designed structures.
These issues are just the tip of the iceberg. And it goes on! Make sure
you have sound structures to avoid all this grief.

You can avoid many of these problems if you properly design your data-
base from the beginning. Even if you’ve already designed your database,
all is not lost. You can still apply the following techniques and gain the
benefits of a sound structure. However, you must be aware that the
quality of your final structures is in direct proportion to the amount

❖ Note It is important to understand that I am about to discuss the
logical design of the database. I’m not teaching you how to create or l
implement a database in a database management system that sup-
ports SQL because, as I mentioned in the Introduction, these subjects
are beyond the scope of this book.

 Fine-Tuning Columns 35

of time you invest in fine-tuning them. The more care and patience
you give to applying the techniques, the more you can guarantee your
success.

Let’s now turn to the first order of business in shaping up your struc-
tures: working with the columns.

Fine-Tuning Columns

Because columns are the most basic structures in a database, you must
ensure that they are in tip-top shape before you begin fine-tuning the
tables as a whole. Fixing the columns usually will eliminate some exist-
ing problems with a given table and help you avoid any potential prob-
lems that might have arisen.

What’s in a Name? (Part One)

As you learned in the previous chapter, a column represents a char-
acteristic of the subject of the table to which it belongs. If you give the
column an appropriate name, you should be able to identify the char-
acteristic it’s supposed to represent. A name that is ambiguous, vague,
or unclear is a sure sign of trouble and suggests that the purpose of the
column has not been carefully thought out. Use the following checklist
to test each of your column names:

• Is the name descriptive and meaningful to your entire organization?
If users in several departments are going to work with this data-
base, make certain you choose a name that is meaningful to every-
one who accesses this column. Semantics is a funny thing, and if
you use a word that has a different meaning to different groups of
people, you’re just inviting trouble.

• Is the column name clear and unambiguous? PhoneNumber is a
 column name that can be very misleading. What kind of phone
number is this column supposed to represent? A home phone?
A work phone? A cellular phone? Learn to be specific. If you need
to record each of these types of phone numbers, then create
 HomePhone, WorkPhone, and CellPhone columns.

36 Chapter 2 Ensuring Your Database Structure Is Sound

 ❖ Note An argument could be made that HomePhone, WorkPhone,
and CellPhone are actually a repeating group that should be moved
to a separate table that could hold multiple phone numbers for the
related customer or employee. Such a table would also have a column
to indicate the type of phone, and it would be possible for each related
person or company to have an unlimited list of phone numbers.
You’ll see more about this when I discuss table structures in the next
section.

In addition to making your column names clear and unambiguous,
be sure that you don’t use the same column name in several
tables. Let’s say you have three tables called Customers, Vendors,
and Employees. No doubt you will have City and State columns in
each of these tables, and the columns will have the same names in
all three tables. There isn’t a problem with this until you have to
refer to one particular column. How do you distinguish between,
say, the City column in the Vendors table, the City column in the
Customers table, and the City column in the Employees table? The
answer is simple: Add a short prefix to each of the column names.
For example, use the name VendCity in the Vendors table, CustCity
in the Customers table, and EmpCity in the Employees table. Now
you can easily make a clear reference to any of these columns. (You
can use this technique on any generic column such as FirstName,
LastName, and Address.)

Here’s the main thing to remember: Make sure that each column
in your database has a unique name and that it appears only once
in the entire database structure. The only exception to this rule is
when a column is being used to establish a relationship between
two tables.

 ❖ Note The degree to which you use prefixes within a table is a
matter of style. When a table contains generic column names, some
database designers will choose to prefix the generic names only,
while others elect to prefix all of the column names within the table.
Regardless of the prefix method you use, it is very important that you
use it consistently throughout the database structure.

❖ Note An argument could be made that HomePhone, WorkPhone,
and CellPhone are actually a repeating group that should be moved
to a separate table that could hold multiple phone numbers for the
related customer or employee. Such a table would also have a column
to indicate the type of phone, and it would be possible for each related
person or company to have an unlimited list of phone numbers.
You’ll see more about this when I discuss table structures in the next
section.

❖ Note The degree to which you use prefixes within a table is a
matter of style. When a table contains generic column names, some
database designers will choose to prefix the generic names only,
while others elect to prefix all of the column names within the table. l
Regardless of the prefix method you use, it is very important that you
use it consistently throughout the database structure.

 Fine-Tuning Columns 37

• Did you use an acronym or abbreviation as a column name? If you
did, change it! Acronyms can be hard to decipher and are easily
misunderstood. Imagine seeing a column named CAD_SW. How
would you know what the column represents? Use abbreviations
sparingly, and handle them with care. Use an abbreviation only
if it supplements or positively enhances the column name. It
shouldn’t detract from the meaning of the column name.

• Did you use a name that implicitly or explicitly identifies more than
one characteristic? These types of names are easy to spot because
they typically use the words and or or. Column names that con-
tain a back slash (\), a hyphen (-), or an ampersand (&) are dead
giveaways as well. If you have columns with names such as Phone\
Fax or Area or Location, review the data that they store and deter-
mine whether you need to deconstruct them into smaller, distinct
columns.

 ❖ Note The SQL Standard defines a regular identifier as a name that
must begin with a letter and can contain only letters, numbers, and
the underscore character. Spaces are not allowed. It also defines a
delimited identifier as a name—surrounded by double quotes—that
must start with a letter and can contain letters, numbers, the under-
score character, spaces, and a very specific set of special characters.
I recommend that you use the regular identifier naming convention
exclusively for your column names because many SQL implementa-
tions support only the regular identifier naming convention.

After using this checklist to revise your column names, you have one
task left: Make certain you use the singular form of the column name.
A column with a plural name such as Categories implies that it might
contain two or more values for any given row, which is not a good idea.
A column name is singular because it represents a single characteristic
of the subject of the table to which it belongs. A table name, on the other
hand, is plural because it represents a collection of similar objects or
events. You can distinguish table names from column names quite easily
when you use this naming convention.

❖ Note The SQL Standard defines a regular identifier as a name that r
must begin with a letter and can contain only letters, numbers, and
the underscore character. Spaces are not allowed. It also defines a t
delimited identifier as a name—surrounded by double quotes—that r
must start with a letter and can contain letters, numbers, the under-
score character, spaces, and a very specific set of special characters.
I recommend that you use the regular identifier naming conventionr
exclusively for your column names because many SQL implementa-
tions support only the regular identifier naming convention.

38 Chapter 2 Ensuring Your Database Structure Is Sound

 ❖ Note Although I recommended that you use the SQL Standard
naming convention, keep in mind that the column names might
change when you (or the database developer in charge of implementing
the database) begin implementing the database into a specific RDBMS
application. The names will need to conform to the naming convention
that developers commonly use for the RDBMS.

Smoothing Out the Rough Edges

Now that you’ve straightened out the column names, let’s focus on the
structure of the column itself. You might be fairly sure that your col-
umns are sound, but you can still do a few things to make certain
they’re built as efficiently as possible. Test your columns against the fol-
lowing checklist to determine whether or not your columns need a little
more work:

• Make sure the column represents a specific characteristic of the
subject of the table. The idea here is to determine whether the
column truly belongs in the table. If it isn’t germane to the
table, remove it, or perhaps move it to another table. The only
exceptions to this rule occur when the column is being used to
establish a relationship between this table and other tables in
the database or when it has been added to the table in support
of some task required by a database application. For example, in
the Classes table in Figure 2-1, the StaffLastName and Staff-
FirstName columns are unnecessary because of the presence of
the StaffID column. StaffID is being used to establish a rela-
tionship between the Classes table and the Staff table, and you
can view data from both tables simultaneously by using a view
or an SQL SELECT query. If you have unnecessary columns in
your tables, you can either remove them completely or use them
as the basis of a new table if they don’t appear anywhere else
in the database structure. (I’ll show you how to do this later in
this chapter.)

❖ Note Although I recommended that you use the SQL Standard
naming convention, keep in mind that the column names might
change when you (or the database developer in charge of implementing
the database) begin implementing the database into a specific RDBMS
application. The names will need to conform to the naming convention
that developers commonly use for the RDBMS.

 Fine-Tuning Columns 39

StaffFirstName

Jim

Tim

Mariya

Peter

StaffLastName

Glynn

Smith

Sergienko

Brehm

StaffStreetAddress

722 Moss Bay Blvd.

901 Pine Avenue

13920 S.E. 40th Street

30301 166th Ave. N.E.

StaffCity

Kirkland

Portland

Bellevue

Seattle

StaffState

WA

OR

WA

WA

Alaina

Carol

Hallmark

Viescas 722 Moss Bay Blvd.

Route 2, Box 203 B

Kirkland

Woodinville

WA

WA

StaffID

98020

98021

98019

98014

98023

98022

Staff

<<other columns>>

...

...

...

...

...

...

Classes

StaffLastName

Viescas

Brehm

StaffFirstName

Carol

Peter

Class

Elementary Algebra

Art History

Art History

ClassID

2907

1031

1030

<<other columns>>

...

...

...

Smith

Glynn

Sergienko

Tim

Jim

Mariya

Biological Principles

Drawing

Chemistry

2213

1006

2005

...

...

...

Hallmark AlainaChemistry2001 ...

StaffID

98022

98014

98014

98021

98020

98019

98023

Brehm Peter

ClassroomID

3445

1231

1231

1532

1627

1515

1519

Figure 2-1 A table with unnecessary columns

• Make certain that the column contains only a single value. A col-
umn that can potentially store several instances of the same
type of value is known as a multivalued column. (A column that
contains multiple phone numbers is an example of a multivalued
column.) Likewise, a column that can potentially store two or
more distinct values is known as a multipart column. (A column
that contains both an item number and an item description is
an example of a multipart column.) Multivalued and multipart
columns can wreak havoc in your database, especially when you
try to edit, delete, or sort the data. When you ensure that each
column stores only a single value, you go a long way toward guar-
anteeing data integrity and accurate information. But for the time
being, just try to identify any multivalued or multipart columns
and make a note of them. You’ll learn how to resolve them in the
next section.

40 Chapter 2 Ensuring Your Database Structure Is Sound

• Make sure the column does not store the result of a calculation or
concatenation. Calculated columns are not allowed in a properly
designed table. The issue here is the value of the calculated col-
umn itself. A column, unlike a cell in a spreadsheet, does not store
an actual calculation. When the value of any part of the calcula-
tion changes, the result value stored in the column is not updated.
The only ways to update the value are to do so manually or to write
some procedural code that will do it automatically. Either way, it
is incumbent on the user or you, the developer, to make certain
the value is updated. The preferred way to work with a calculation,
however, is to incorporate it into a SELECT statement. You’ll learn
the advantages of dealing with calculations in this manner when
you get to Chapter 5, “Getting More Than Simple Columns.”

• Make certain the column appears only once in the entire database.
If you’ve made the common mistake of inserting the same column
(for example, CompanyName) into several tables within the data-
base, you’re going to have a problem with inconsistent data. This
occurs when you change the value of the column in one table and
then you forget to make the same modification wherever else the
same column appears. Avoid this problem entirely by ensuring
that a column appears only once in the entire database structure.
(The only exception to this rule is when you’re using a column to
establish a relationship between two tables.)

 ❖ Note The most recent versions of some commercially available
database management systems allow you to define a column that is
the result of a calculated expression. You can define calculated col-
umns if your database system has this feature, but be aware that the
database system requires additional resources to keep the calculated
value current any time the value of one of the columns in the expres-
sion changes or you fetch a row containing a calculated column.

Resolving Multipart Columns

As I mentioned earlier, multipart and multivalued columns will wreak
havoc with data integrity, so you need to resolve them to avoid any

❖ Note The most recent versions of some commercially available
database management systems allow you to define a column that is
the result of a calculated expression. You can define calculated col-
umns if your database system has this feature, but be aware that the
database system requires additional resources to keep the calculated
value current any time the value of one of the columns in the expres-
sion changes or you fetch a row containing a calculated column.

 Fine-Tuning Columns 41

potential problems. Deciding which to resolve first is purely arbitrary, so
I’ll begin with multipart columns.

You’ll know if you have a multipart column by answering some very sim-
ple questions: “Can I take the current value of this column and break it
up into smaller, more distinct parts?” “Will I have problems extracting a
specific piece of information because it is buried in a column containing
other information?” If your answer to either question is “Yes,” you have a
multipart column. Figure 2-2 shows a poorly designed table with several
multipart columns.

MULTIPART COLUMNS

CustomerName

Gary Hallmark

Robert Brown

William Thompson

Suzanne Viescas

StreetAddress

15127 NE 24th, #383, Redmond, WA 98052

122 Spring River Drive, Duvall, WA 98019

Route 2, Box 203B, Auburn, WA 98002

672 Lamont Ave, Houston, TX 77201

PhoneNumber

425 555-2686

425 555-2681

253 555-2676

713 555-2491

John Viescas

Dean McCrae 4110 Old Redmond Rd., Redmond, WA 98052

15127 NE 24rh, #383, Redmond, WA 98052

425 555-2506

425 555-2511

CustomerID

1003

1004

1002

1001

1006

1005

Customers

Neil Patterson

Mariya Sergienko 901 Pine Avenue, Portland, OR 97208

233 West Valley Hwy, San Diego, CA 92199

503 555-2526

619 555-25411008

1007 ...

...

...

...

...

...

...

...

<<other columns>>

Figure 2-2 A table with multipart columns

The Customers table shown in the figure contains two multipart columns:
CustomerName, and StreetAddress. There’s also one column that is poten-
tially multipart: PhoneNumber. How can you sort the data by last name or
ZIP Code or search on state? You can’t because these values are embedded
in columns that contain other information. You can see that each column
can be broken into smaller columns. For example, CustomerName can be
broken into two distinct columns—CustFirstName and CustLastName.
(Note that I’m using the naming convention discussed earlier in this chap-
ter when I add the prefix Cust to the FirstName and LastName columns.)
When you identify a multipart column in a table, determine how many
parts there are to the value it stores, and then break the column into as
many smaller columns as appropriate. Figure 2-3 shows how to resolve
two of the multipart columns in the Customers table.

42 Chapter 2 Ensuring Your Database Structure Is Sound

CustomerID

1003

1004

1002

1001

1006

1005

Customers

1008

1007

CustCity

Portland

Redmond

Duvall

Auburn

Redmond

Houston

Redmond

San Diego

CustFirstName

Gary

Robert

William

Suzanne

John

Dean

Neil

Mariya

CustLastName

Hallmark

Brown

Thompson

Viescas

Viescas

McCrae

Patterson

Sergienko

CustAddress

Route 2, Box 203B

672 Lamont Ave

122 Spring River Drive

15127 NE 24th, #383

15127 NE 24th, #383

4110 Old Redmond Rd.

233 West Valley Hwy

901 Pine Avenue

CustState

WA

TX

WA

WA

WA

WA

CA

OR

CustZipcode

98002

77201

98019

98052

98052

98052

92199

97208

Figure 2-3 The resolution of the multipart columns in the Customers table

 ❖ Note Along with breaking down CustomerName and StreetAddress,
it might also be a good idea in a database storing phone numbers in
North America to break PhoneNumber into two distinct columns—
area code and the local phone number. In other countries, separating
out the city code portion of the phone number might be useful. In
truth, most business databases store a phone number as one col-
umn, but separating out the area or city code might be important for
databases that analyze demographic data. Unfortunately, I couldn’t
demonstrate this in Figure 2-3 due to space limitations.

Sometimes you might have difficulty recognizing a multipart col-
umn. Take a look at the Instruments table shown in Figure 2-4. At
first glance, there do not seem to be any multipart columns. On closer
inspection, however, you will see that InstrumentID is actually a mul-
tipart column. The value stored in this column represents two distinct
pieces of information: the category to which the instrument belongs—
such as AMP (amplifier), GUIT (guitar), and MFX (multi-effects unit)—
and its identification number. You should separate these two values
and store them in their own columns to ensure data integrity. Imag-
ine the difficulty of updating this column if the MFX category changed
to MFU. You would have to write code to parse the value in this col-
umn, test for the existence of MFX, and then replace it with MFU if it
does exist within the parsed value. It’s not so much that you couldn’t
do this, but you’d definitely be working harder than necessary, and
you shouldn’t have to go through this at all if your database is properly

❖ Note Along with breaking down CustomerName and StreetAddress,
it might also be a good idea in a database storing phone numbers in
North America to break PhoneNumber into two distinct columns—
area code and the local phone number. In other countries, separating
out the city code portion of the phone number might be useful. In
truth, most business databases store a phone number as one col-
umn, but separating out the area or city code might be important for
databases that analyze demographic data. Unfortunately, I couldn’t
demonstrate this in Figure 2-3 due to space limitations.

 Fine-Tuning Columns 43

designed. When you have columns such as the one in this example,
break them into smaller columns so that you will have sound, efficient
column structures.

InstrumentDescription

Fender Stratocaster

Player 2100 Multi-Effects

JCM 2000 Tube Super Lead

Manufacturer

Fender

Zoom

Marshall

InstrumentID

GUIT2201

MFX3349

AMP1001

Instruments

<<other columns>>

...

...

...

VC60 Pro Tube AmpCrateAMP5590 ...

Cry Baby Wah-WahDunlopSFX2227 ...

Twin Reverb ReissueFenderAMP2766 ...

Figure 2-4 An example of a subtle multipart column

Resolving Multivalued Columns

Resolving multipart columns is not very hard at all, but resolving
multivalued columns can be a little more difficult and will take some
work. Fortunately, identifying a multivalued column is easy. Almost
without exception, the data stored in this type of column contains
some commas, semicolons, or other common separator characters. The
separator characters are used to separate the various values within
the column itself. Figure 2-5 shows an example of a multivalued
column.

PilotLastName

Alborous

Wilson

Smith

PilotFirstName

Sam

Jim

David

Pilots

Certifications

727, 737, 757, MD80

737, 747, 757

757, MD80, DC9

PilotID

25100

25101

25102

<<other columns>>

...

...

...

HireDate

1994-07-11

1994-05-01

1994-09-11

Patterson

Hernandez

Bonnicksen

Kathryn

Michael

Kendra

727, 737, 747, 757

737, 757, DC10

757, MD80, DC9

25103

25104

25105

...

...

...

1994-07-11

1994-05-01

1994-09-11

Figure 2-5 A table with a multivalued column

44 Chapter 2 Ensuring Your Database Structure Is Sound

In this example, each pilot is certified to fly any number of planes, and
those certifications are stored in a single column called Certifications.
The manner in which the data is stored in this column is very trouble-
some because you are bound to encounter the same type of data integ-
rity problems associated with multipart columns. When you look at the
data more closely, you’ll see that it will be difficult for you to perform
searches and sorts on this column in an SQL query. Before you can
resolve this column in the appropriate manner, you must first under-
stand the true relationship between a multivalued column and the table
to which it is originally assigned.

The values in a multivalued column have a many-to-many relationship
with every row in its parent table: One specific value in a multivalued
column can be associated with any number of rows in the parent table,
and a single row in the parent table can be associated with any num-
ber of values in the multivalued column. In Figure 2-5, for example, a
specific aircraft in the Certifications column can be associated with any
number of pilots, and a single pilot can be associated with any number
of aircraft in the Certifications column. You resolve this many-to-many
relationship as you would any other many-to-many relationship within
the database—with a linking table.

You can create the linking table by using the multivalued column and
a copy of the primary key column from the original table as the basis
for the new table. Give the new linking table an appropriate name,
and designate both columns as a composite primary key. (In this case,
the combination of the values of both columns will uniquely identify
each row within the new table.) Now you can associate the values of
both columns in the linking table on a one-to-one basis. Figure 2-6
shows an example of this process using the Pilots table shown in
Figure 2-5.

Contrast the entries for Sam Alborous (PilotID 25100) in both the old
Pilots table and the new Pilot_Certifications table. The major advantage
of the new linking table is that you can now associate any number of
certifications with a single pilot. Asking certain types of questions is
now much easier as well. For example, you can determine which pilots
are certified to fly a Boeing 747 aircraft or retrieve a list of certifica-
tions for a specific pilot. You’ll also find that you can sort the data in any
order you wish, without any adverse effects.

 Fine-Tuning Columns 45

PilotLastName

Alborous

Wilson

Smith

PilotFirstName

Sam

Jim

David

Pilots

PilotID

25100

25101

25102

<<other columns>>

...

...

...

Patterson

Hernandez

Bonnicksen

Kathryn

Michael

Kendra

25103

25104

25105

...

...

...

HireDate

1994-07-11

1994-05-01

1994-09-11

1994-07-11

1994-05-01

1994-09-11

Pilot_Certifications (linking table)

PilotID

25100 8102

8103

8105

8106

8103

CertificationID

25100

25100

25100

25101

25101

25101

8104

8105

TypeofAircraft

Boeing 727

Boeing 737

Boeing 747

CertificationID

8102

8103

8104

Certifications

<<other columns>>

...

...

...

Boeing 757

McDonnell Douglas MD80

8105

8106

...

...

Figure 2-6 Resolving a multivalued column by using a linking table

 ❖ Note Some database management systems—most notably Microsoft
Office Access 2007 and later—allow you to explicitly define multival-
ued columns. The database system does this, however, by creating a
hidden system table similar to the linking table shown in Figure 2-6.
Frankly, I like to see and control my table designs, so I recommend
that you create the correct data structures yourself rather than
depend on a feature in your database system.

Your columns will be in good shape when you follow the procedures pre-
sented in this section. Now that you’ve refined the columns, let’s turn to
our second order of business and take a look at the table structures.

❖ Note Some database management systems—most notably Microsoft
Office Access 2007 and later—allow you to explicitly define multival-
ued columns. The database system does this, however, by creating a
hidden system table similar to the linking table shown in Figure 2-6.
Frankly, I like to see and control my table designs, so I recommend
that you create the correct data structures yourself rather than
depend on a feature in your database system.

46 Chapter 2 Ensuring Your Database Structure Is Sound

Fine-Tuning Tables

Tables serve as the basis for any SQL query you create. You’ll soon find
that poorly designed tables pose data integrity problems and are difficult
to work with when you create multi-table SQL queries. As a result, you
must make certain that your tables are structured as efficiently as pos-
sible so that you can easily retrieve the information you need.

What’s in a Name? (Part Two)

In the section on columns, you learned how important it is for a column
to have an appropriate name and why you should give serious thought to
naming your columns. You’ll soon learn that the same applies to tables
as well. By definition, a table should represent a single subject. If it rep-
resents more than one subject, it should be divided into smaller tables.
The name of the table must clearly identify the subject the table rep-
resents. You can be confident that the subject of the table has not been
carefully thought out if a table name is ambiguous, vague, or unclear.
Make sure your table names are sound by checking them against the
following checklist:

• Is the name unique and descriptive enough to be meaningful to your
entire organization? Giving your table a unique name ensures that
each table in the database represents a different subject and that
everyone in the organization will understand what the table rep-
resents. Defining a unique and descriptive name does take some
work on your part, but it’s well worth the effort in the long run.

• Does the name accurately, clearly, and unambiguously identify the
subject of the table? When the table name is vague or ambigu-
ous, you can bet that the table represents more than one subject.
For example, Dates is a vague table name. It’s hard to determine
exactly what this table represents unless you have a description of
the table at hand. Let’s say this table appears in a database used
by an entertainment agency. If you inspect this table closely, you’ll
probably find that it contains dates for client meetings and book-
ing dates for the agency’s stable of entertainers. This table clearly
represents two subjects. You can resolve this issue by dividing the
table into two new tables and give each table an appropriate name,
such as Client_Meetings and Entertainer_Schedules.

 Fine-Tuning Tables 47

• Does the name contain words that convey physical characteristics?
Avoid using words such as File, Record, and Table in the table
name because they introduce a level of confusion that you don’t
need. A table name that includes this type of word is very likely to
represent more than one subject. Consider the name Employee_
Record. On the surface, there doesn’t appear to be any problem
with this name. When you think about what an employee record is
supposed to represent, however, you’ll realize that there are poten-
tial problems. The name contains a word that we’re trying hard
to avoid, and it potentially represents three subjects: employees,
departments, and payroll. With this in mind, split the original
table (Employee_Record) into three new tables, one for each of the
three subjects.

• Did you use an acronym or abbreviation as a table name? If the
answer to this question is “Yes,” change the name right now!
Abbreviations rarely convey the subject of the table, and acronyms
are usually hard to decipher. Suppose your company database has
a table named SC. How do you know what the table represents
without knowing the meaning of the letters themselves? The fact is
that you can’t easily identify the subject of the table. What’s more,
you might find that the table means different things to different
departments in the company. (Now, this is scary.) The folks in
Personnel think it stands for Steering_Committees; the Informa-
tion Systems staff believes it to be System_Configurations, and the
people in Security insist that it represents Security_Codes. This
example clearly illustrates why you should avoid using abbrevia-
tions and acronyms in a table name.

• Did you use a name that implicitly or explicitly identifies more than
one subject? This is one of the most common mistakes you can
make with a table name, and it is relatively easy to identify. This
type of name typically contains the words and or or and characters
such as the back slash (\), hyphen (-), or ampersand (&). Facility\
Building and Department or Branch are typical examples. When
you name a table in this manner, you must clearly identify whether
it truly represents more than one subject. If it does, deconstruct
it into smaller tables, and then give the new tables appropriate
names.

48 Chapter 2 Ensuring Your Database Structure Is Sound

 ❖ Note Remember that the SQL Standard defines a regular identifier
as a name that must begin with a letter and can contain only letters,
numbers, and the underscore character. Spaces are not allowed. It
also defines a delimited identifier as a name—surrounded with double
quotes—that must start with a letter and can contain letters, numbers,
the underscore character spaces, and a very specific set of special
characters. I recommend that you use the regular identifier naming
convention exclusively for your table names because many SQL imple-
mentations support only the regular identifier naming convention.

After you’ve finished revising your table names, you have one more task
to perform: Check each table name again and make certain you used
the plural form of the name. You use the plural form because a table
stores a collection of instances of the subject of the table. For example,
an Employees table stores the data for many employees, not just one
employee. Using the plural form also helps you to distinguish a table
name from a column name.

 ❖ Note The guideline for using a plural form for a table name is a
particularly good one while you’re working on the logical design of the
database. It makes it very easy to differentiate table names from col-
umn names, especially when you’re displaying them on a projection
screen or when you’ve written them all across a whiteboard in a
conference room.

Keep in mind, however, that the table names might change when you
(or the database developer in charge of implementing the database)
begin implementing the database into a specific RDBMS application.
The names will then need to conform to the naming convention that
developers commonly use for the RDBMS.

Ensuring a Sound Structure

Let’s focus on the table structures now that you’ve revised the table
names. It’s imperative that the tables are properly designed so that you
can efficiently store data and retrieve accurate information. The time
you spend ensuring your tables are well built will pay dividends when

❖ Note Remember that the SQL Standard defines a regular identifier
as a name that must begin with a letter and can contain only letters,
numbers, and the underscore character. Spaces are not allowed. It t
also defines a delimited identifier as a name—surrounded with double r
quotes—that must start with a letter and can contain letters, numbers,
the underscore character spaces, and a very specific set of special
characters. I recommend that you use the regular identifier naming r
convention exclusively for your table names because many SQL imple-
mentations support only the regular identifier naming convention.

❖ Note The guideline for using a plural form for a table name is a
particularly good one while you’re working on the logical design of the
database. It makes it very easy to differentiate table names from col-
umn names, especially when you’re displaying them on a projection
screen or when you’ve written them all across a whiteboard in a
conference room.

Keep in mind, however, that the table names might change when you t
(or the database developer in charge of implementing the database)
begin implementing the database into a specific RDBMS application.
The names will then need to conform to the naming convention that
developers commonly use for the RDBMS.

 Fine-Tuning Tables 49

you need to create complex multi-table SQL queries. Use the following
checklist to determine whether your table structures are sound:

• Make sure the table represents a single subject. Yes, I know, I’ve
said this a number of times already, but I can’t overemphasize this
point. As long as you guarantee that each of your tables represents
a single subject, you greatly reduce the risk of potential data integ-
rity problems. Also, remember that the subject represented by the
table can be an object or event. By “object” I mean something that
is tangible, such as employees, vendors, machines, buildings, or
departments, whereas an “event” is something that happens at a
given point in time that has characteristics you want to record.
The best example of an event that everyone can relate to is a doc-
tor’s appointment. Although you can’t explicitly touch a doctor’s
appointment, it does have characteristics that you need to record,
such as the appointment date, the appointment time, the patient’s
blood pressure, and the patient’s temperature.

• Make certain each table has a primary key. You must assign a pri-
mary key to each table for two reasons. First, the primary key
uniquely identifies each row within a table, and second, it is used in
establishing table relationships. If you do not assign a primary key
to each table, you will eventually have data integrity problems and
problems with some types of multi-table SQL queries. You’ll learn
some tips on how to define a proper primary key later in this chapter.

• Make sure the table does not contain any multipart or multivalued
columns. Theoretically, you should have resolved these issues when
you refined the column structures. Nonetheless, it’s still a good
idea to review the columns one last time to ensure that you’ve com-
pletely removed every multipart or multivalued column.

• Make sure there are no calculated columns in the table. Although
you might believe that your current table structures are free of
calculated columns, you might have overlooked one or two during
the column refinement process. This is a good time to take another
look at the table structures and remove any calculated columns
you might have missed.

• Make certain the table is free of any unnecessary duplicate columns.
One of the hallmarks of a poorly designed table is the inclusion
of duplicate columns from other tables. You might feel compelled

50 Chapter 2 Ensuring Your Database Structure Is Sound

to add duplicate columns to a table for one of two reasons: 1) to
provide reference information or 2) to indicate multiple occurrences
of a particular type of value. Remember that earlier I talked about
HomePhone, WorkPhone, and CellPhone potentially being repeat-
ing or duplicate columns. These duplicate columns raise various
difficulties when you work with the data and attempt to retrieve
information from the table. Let’s now take a look at how to deal
with duplicate columns.

Resolving Unnecessary Duplicate Columns

Possibly the hardest part of ensuring well built structures is dealing
with duplicate columns. Here are a couple of examples that demonstrate
the proper way to resolve tables that contain duplicate columns.

Figure 2-7 illustrates an example of a table containing duplicate col-
umns that supply reference information.

These columns are unnecessary

Classes

StaffLastName

Viescas

Brehm

StaffFirstName

Carol

Peter

Class

Elementary Algebra

Art History

Art History

ClassID

2907

1031

1030

<<other columns>>

...

...

...

Smith

Glynn

Sergienko

Tim

Jim

Mariya

Biological Principles

Drawing

Chemistry

2213

1006

2005

...

...

...

Hallmark AlainaChemistry2001 ...

StaffID

98022

98014

98014

98021

98020

98019

98023

Brehm Peter

ClassroomID

3445

1231

1231

1532

1627

1515

1519

StaffFirstName

Jim

Tim

Mariya

Peter

StaffLastName

Glynn

Smith

Sergienko

Brehm

StaffStreetAddress

722 Moss Bay Blvd.

901 Pine Avenue

13920 S.E. 40th Street

30301 166th Ave. N.E.

StaffCity

Kirkland

Portland

Bellevue

Seattle

StaffState

WA

OR

WA

WA

Alaina

Carol

Hallmark

Viescas 722 Moss Bay Blvd.

Route 2, Box 203 B

Kirkland

Woodinville

WA

WA

StaffID

98020

98021

98019

98014

98023

98022

Staff

<<other columns>>

...

...

...

...

...

...

Figure 2-7 A table with duplicate columns added for reference information

 Fine-Tuning Tables 51

In this case, StaffLastName and StaffFirstName appear in the Classes
table so that a person viewing the table can see the name of the
 instructor for a given class. These columns are unnecessary because
of the one-to-many relationship that exists between the Classes and
Staff tables. (A single staff member can teach any number of classes,
but a single class is taught by one staff member.) StaffID establishes
the relationship between these tables, and the relationship itself lets
you view data from both tables simultaneously in an SQL query. With
this in mind, you can confidently remove the StaffLastName and Staff-
FirstName columns from the Classes table without any adverse effects.
 Figure 2-8 shows the revised Classes table structure.

StaffFirstName

Jim

Tim

Mariya

Peter

StaffLastName

Glynn

Smith

Sergienko

Brehm

StaffStreetAddress

722 Moss Bay Blvd.

901 Pine Avenue

13920 S.E. 40th Street

30301- 166th Ave. N.E.

StaffCity

Kirkland

Portland

Bellevue

Seattle

StaffState

WA

OR

WA

WA

Alaina

Carol

Hallmark

Viescas 722 Moss Bay Blvd.

Route 2, Box 203 B

Kirkland

Woodinville

WA

WA

StaffID

98020

98021

98019

98014

98023

98022

Staff

<<other columns>>

...

...

...

...

...

...

Classes

Class

Elementary Algebra

Art History

Art History

ClassID

2907

1031

1030

<<other columns>>

...

...

...

Biological Principles

Drawing

Chemistry

2213

1006

2005

...

...

...

Chemistry2001 ...

StaffID

98022

98014

98014

98021

98020

98019

98023

ClassroomID

3445

1231

1231

1532

1627

1515

1519

Figure 2-8 Resolving the duplicate reference columns

Keeping these unnecessary columns in the table automatically intro-
duces a major problem with inconsistent data. You must ensure that the
values of the StaffLastName and StaffFirstName columns in the Classes
table always match their counterparts in the Staff table. For example,
say a female staff member marries and decides to use her married name
as her legal name from that day forward. Not only do you have to be

52 Chapter 2 Ensuring Your Database Structure Is Sound

certain to make the appropriate change to her row in the Staff table, but
you must ensure that every occurrence of her name in the Classes table
changes as well. Again, it’s possible to do this (at least, technically), but
you’re working much harder than is necessary. Besides, one of the major
premises behind using a relational database is that you should enter a
piece of data only once in the entire database. (The only exception to this
rule is when you’re using a column to establish a relationship between
two tables.) As always, the best course of action is to remove all dupli-
cate columns from the tables in your database.

Figure 2-9 shows another clear example of a table containing duplicate
columns. This example illustrates how duplicate columns are mistakenly
used to indicate multiple occurrences of a particular type of value. In
this case, the three Committee columns are ostensibly used to show the
names of the committees in which the employee participates.

EmpLastName

Thompson

Wilson

Kennedy

Gehring

EmpFirstName

Sarah

Jim

John

Darren

Committee1

Steering

ISO 9000

Safety

Smith

Seidel

David

Manuela ISO 9000

Steering

EmployeeID

7006

7007

7005

7004

7009

7008

Employees

<<other columns>>

...

...

...

...

...

...

Viescas

Patterson

Michael

Neil

ISO 90007011

7010

...

...

Committee2

Safety

ISO 9000

Safety

Steering

Committee3

Steering

ISO 9000

Safety

Figure 2-9 A table with duplicate columns used to indicate multiple occurrences of
a particular type of value

It’s relatively easy to see why these duplicate columns will create prob-
lems. One problem concerns the actual number of Committee columns
in the table. What if a few employees end up belonging to four commit-
tees? For that matter, how can you tell exactly how many Committee
columns you’re going to need? If it turns out that several employees par-
ticipate in more than three committees, you’ll need to add more Commit-
tee columns to the table.

A second problem pertains to retrieving information from the table.
How do you retrieve those employees who are currently in the ISO 9000
committee? It’s not impossible, but you’ll have difficulty retrieving this

 Fine-Tuning Tables 53

information. You must execute three separate queries (or build a search
condition that tests three separate columns) in order to answer the ques-
tion accurately because you cannot be certain in which of the three
Committee columns the value ISO 9000 is stored. Now you’re expending
more time and effort than is truly necessary.

A third problem concerns sorting the data. You cannot sort the data by
committee in any practical fashion, and there’s no way that you’ll get the
committee names to line up correctly in alphabetical order. Although
these might seem like minor problems, they can be quite frustrating when
you’re trying to get an overall view of the data in some orderly manner.

If you study the Employees table in Figure 2-9 closely, you’ll soon real-
ize that there is a many-to-many relationship between the employees and
committees to which they belong. A single employee can belong to any
number of committees, and a single committee can be composed of any
number of employees. You can, therefore, resolve these duplicate columns
in the same manner that you would resolve any other many-to-many rela-
tionship—by creating a linking table. In the case of the Employees table,
create the linking table by using a copy of the primary key (EmployeeID)
and a single Committee column. Give the new table an appropriate name,
such as Committee_Members, designate both the EmployeeID and Com-
mittee columns as a composite primary key, remove the Committee col-
umns from the Employees table, and you’re done. (You’ll learn more
about primary keys later in this chapter.) Figure 2-10 shows the revised
Employees table and the new Committee_Members table.

EmployeeID

7006

7007

7005

7004

7009

7008

Employees

<<other columns>>

...

...

...

...

...

...

7011

7010

...

...

EmpCity

Lubbock

Salem

Portland

Chico

Fremont

Medford

Redmond

San Diego

EmpLastName

Thompson

Wilson

Kennedy

Gehring

EmpFirstName

Sarah

Jim

John

Darren

Smith

Seidel

David

Manuela

Viescas

Patterson

Michael

Neil

Committee

Steering

ISO 9000

Safety

ISO 9000

Steering

EmployeeID

7006

7005

7004

7009

7008

Safety7005

ISO 90007006

Steering7006

Committee_Members

Figure 2-10 The revised Employees table and the new Committee_Members table

54 Chapter 2 Ensuring Your Database Structure Is Sound

You’ve resolved the duplicate columns that were in the original Employ-
ees table, but you’re not quite finished yet. Keeping in mind that there
is a many-to-many relationship between the employees and the commit-
tees to which they belong, you might very well ask, “Where is the Com-
mittees table?” There isn’t one—yet! Chances are that a committee has
some other characteristics that you need to record, such as the name of
the room where the committee meets and the day of the month that the
meeting is held. It would be a good idea for you to create a real Commit-
tees table that includes columns such as CommitteeID, CommitteeName,
MeetingRoom, and MeetingDay. When you finish creating the new table,
replace the Committee column in the Committee_Members table with
the CommitteeID column from the new Committees table. The final
structures appear in Figure 2-11.

CommitteeName

ISO 9000

Budget

Steering

Safety

MeetingRoom

Main-South

11-C

12-D

12-B

Christmas 9-F

CommitteeID

102

103

101

100

104

Committees

MeetingDay

Wednesday

Tuesday

Tuesday

Monday

Monday

EmployeeID

7006

7007

7005

7004

7009

7008

Employees

<<other columns>>

...

...

...

...

...

...

7011

7010

...

...

EmpCity

Lubbock

Salem

Portland

Chico

Fremont

Medford

Redmond

San Diego

EmpLastName

Thompson

Wilson

Kennedy

Gehring

EmpFirstName

Sarah

Jim

John

Darren

Smith

Seidel

David

Manuela

Viescas

Patterson

Michael

Neil

CommitteeID

103

104

102

104

103

EmployeeID

7006

7005

7004

7009

7008

1027005

1047006

1037006

Committee_Members

Figure 2-11 The final Employees, Committee_Members, and Committees structures

 Fine-Tuning Tables 55

You gain a real advantage by structuring the tables in this manner
because you can now associate a single member with any number of
committees or a single committee with any number of employees. You
can then use an SQL query to view information from all three tables
simultaneously.

Let’s revisit the problem I mentioned earlier about multiple, though
uniquely named, columns potentially being a set of duplicate columns.
Consider the table shown in Figure 2-12.

EmployeeID

7006

7007

7005

7004

7009

7008

Employees

<<other columns>>

...

...

...

...

...

...

7011

7010

...

...

EmpCity

Lubbock

Salem

Portland

Chico

Fremont

Medford

Redmond

San Diego

EmpLastName

Thompson

Wilson

Kennedy

Gehring

EmpFirstName

Sarah

Jim

John

Darren

Smith

Seidel

David

Manuela

Viescas

Patterson

Michael

Neil

EmpHomePhone

555-3456

555-4567

555-2345

555-1234

555-7890

555-5689

555-4321

EmpWorkPhone

556-3456

556-4567

556-5678

556-2345

556-1234

556-7890

556-5689

555-4321

EmpCellPhone

889-3456

889-2345

889-1234

889-7890

889-5678

889-6789

Figure 2-12 Repeating phone number columns in an Employees table

What potential problems do you see? First, there’s wasted space in the
table when an employee doesn’t have a particular type of phone. But
there’s an even bigger problem. Can you guess what it is? What do you
do if an employee has two home phones or a fax line? What about key
employees who not only have a personal cell phone but also are given a
cell phone by the company? The solution is to create a separate Phone_
Numbers table and relate it back to the Employees table as shown in
Figure 2-13.

With this new design, I can store an unlimited set of phone num-
bers for each employee. If I need to store a new phone type, all I need
to do is define a data value for the PhoneType column. And notice that
there’s no wasted storage space for a home phone number for employee
7008—there simply is no Home phone row for that employee. Notice also
that each row in the Phone_Numbers table has a PhoneID with a unique
value for each row. You’ll learn more about the importance of uniquely
identifying each row in the next section.

56 Chapter 2 Ensuring Your Database Structure Is Sound

EmployeeID

7006

7007

7005

7004

7009

7008

Employees

<<other columns>>

...

...

...

...

...

...

7011

7010

...

...

EmpCity

Lubbock

Salem

Portland

Chico

Fremont

Medford

Redmond

San Diego

EmpLastName

Thompson

Wilson

Kennedy

Gehring

EmpFirstName

Sarah

Jim

John

Darren

Smith

Seidel

David

Manuela

Viescas

Patterson

Michael

Neil

EmployeeID

7006

7007

7005

7004

7010

7009

Phone_Numbers

7004

7011

PhoneNumber

555-3456

555-4567

555-2345

555-1234

555-7890

555-5678

555-1234

555-4321

PhoneID

3

4

2

1

PhoneType

Home

Home

Home

Home

6

5

Home

Home

8

7

Work

Home

Figure 2-13 Solving the phone number problem with a separate related table

You’re now close to completing the process of fine-tuning your table
structures. The last order of business is to make certain that each row
within a table can be uniquely identified and that the table itself can be
identified throughout the entire database.

Identification Is the Key

You learned in Chapter 1, “What Is Relational?” that the primary key is
one of the most important keys in a table because it uniquely identifies
each row within a table and officially identifies that table throughout the
database. It also establishes a relationship between a pair of tables. You
cannot underestimate the importance of the primary key—every table in
your database must have one!

 Fine-Tuning Tables 57

By definition, a primary key is a column or group of columns that
uniquely identifies each row within a table. A primary key is known as a
simple primary key (or just primary key for short) when it is composed of a
single column. A primary key is known as a composite primary key when
it is composed of two or more columns. Define a simple primary key when
you can because it’s more efficient and is much easier to use when estab-
lishing a table relationship. Use a composite primary key only when it’s
appropriate, such as when you’re defining and creating a linking table.

You can use an existing column or a combination of columns as the
primary key as long as they satisfy all the criteria in the following
checklist. When the column or columns that you propose to use as the
primary key do not conform to all the criteria, use a different column or
define a new column to act as the primary key for the table. Take some
time now and use this checklist to determine whether each primary key
in your database is sound:

• Do the columns uniquely identify each row in the table? Each row in
a table represents an instance of the subject of the table. A good pri-
mary key ensures that you have a means of accurately identifying or
referencing each row in this table from other tables in the database.
It also helps you to avoid having duplicate rows within the table.

• Does this column or combination of columns contain unique values?
As long as the values of the primary key are unique, you have a
means of ensuring that there are no duplicate rows in the table.

• Will these columns ever contain unknown values? This is a very
important question because a primary key cannot contain unknown
values. You should disqualify this column immediately if you think
it has even the slightest possibility of containing unknown values.

• Can the value of these columns ever be optional? You cannot use
this column as the primary key if the answer to this question is
“Yes.” If the value of the column can be optional, it implies that it
might be unknown at some point. As you learned in the previous
item, a primary key cannot contain unknown values.

• Is this a multipart column? It’s a good idea to ask yourself this
question, although you should have eliminated all your multipart
columns by now. If you missed a multipart column earlier, resolve
it now and try to use another column as the primary key, or use
the new separate columns together as a composite primary key.

58 Chapter 2 Ensuring Your Database Structure Is Sound

• Can the value of these columns ever be modified? The values of pri-
mary key columns should remain static. You should never change
the value of a column in a primary key unless you have a truly
compelling reason to do so. When the value of the column is sub-
ject to arbitrary changes, it is difficult for the column to remain in
conformance with the other points in this checklist.

As I stated earlier, a column or combination of columns must pass all
the points on this checklist with flying colors before it can be used as
a primary key. In Figure 2-14, PilotID serves as the primary key of the
Pilots table. But the question is this: Does PilotID conform to all the
points on the previous checklist? The primary key is sound if it does,
but if it doesn’t, you must either modify it to conform to all the points on
the checklist or select a different column as the primary key.

Pilots

Position

Captain

Captain

FirstOfficer

PilotPhone

555-3982

555-6657

555-1992

HireDate

1994-07-11

1994-05-01

1994-09-11

Navigator

Navigator

Captain

555-8832

555-9901

555-1106

1994-07-11

1994-05-01

1994-09-11

PilotAreaCode

206

206

915

972

360

206

PilotLastName

Alborous

Wilson

Smith

PilotFirstName

Sam

Jim

David

PilotID

25100

25101

25102

Patterson

Hernandez

Bonnicksen

Kathryn

Michael

Kendra

25103

25104

25105

Figure 2-14 Is PilotID a sound primary key?

As a matter of fact, PilotID is a sound primary key because it does con-
form to all the points on the checklist. But what happens when you don’t
have a column that can act as a primary key? Take the Employees table
in Figure 2-15, for example. Is there a column in this table that can act
as a primary key?

It’s very clear that this table doesn’t contain a column (or group of col-
umns) that can be used as a primary key. With the exception of Emp-
Phone, every column contains duplicate values. EmpZip, EmpAreaCode,
and EmpPhone all contain unknown values. Although you might be
tempted to use the combination of EmpLastName and EmpFirstName,
there’s no guarantee that you won’t employ a new person who is also
named Jim Wilson or David Smith. It’s evident that there is no column
you can use as the primary key for this table because the value of every
column in the table is subject to arbitrary change.

 Fine-Tuning Tables 59

Employees

EmpCity

Redmond

Salem

Portland

Chico

Fremont

Medford

Redmond

San Diego

EmpPhone

555-2621

555-2626

555-2641

555-2646

EmpAreaCode

503

425

541

510

555-2541

555-2511

619

425

HireDate

1998-12-31

1998-05-01

1998-09-11

1998-12-27

1998-05-01

1998-09-11

1998-05-01

1998-09-11

EmpState

WA

OR

OR

CA

CA

OR

WA

CA

EmpZip

98052

97208

95926

94538

97501

98052

92199

EmpLastName

Thompson

Wilson

Kennedy

Gehring

EmpFirstName

Sarah

Jim

John

Darren

Smith

Seidel

David

Manuela

Viescas

Patterson

Michael

Neil

Portland 555-2633503 1998-10-15OR 97207Viescas David

Figure 2-15 Does this table have a primary key?

What do you do now? You might be tempted to use some sort of national
identity number associated with each employee—for example, a Social
Security number in the U.S. or the Social Insurance number in Canada.
Be aware that although it is rare, it is possible for two or more people
to have the same number. When in doubt, the solution is to create an
artificial primary key. This is an arbitrary column you define and add
to the table for the sole purpose of using it as the table’s primary key.
The advantage of adding this arbitrary column is that you can ensure
that it conforms to all the points on the checklist. After you’ve added the
column to the table, designate it as the primary key, and you’re done!
That’s all there is to it. Figure 2-16 shows the Employees table with an
artificial primary key called EmployeeID.

<<other columns>>

...

...

...

...

...

...

...

...

Employees

EmpCity

Redmond

Salem

Portland

Chico

Fremont

Medford

Redmond

SanDiego

EmployeeID

98001

98002

98003

98004

98005

98006

98007

98008

EmpState

WA

OR

OR

CA

CA

OR

WA

CA

EmpZip

98052

97208

95926

94538

97501

98052

92199

EmpLastName

Thompson

Wilson

Kennedy

Gehring

EmpFirstName

Sarah

Jim

John

Darren

Smith

Seidel

David

Manuela

Viescas

Patterson

Michael

Neil

Portland OR 97207Viescas David98009 ...

Figure 2-16 The Employees table with the new artificial primary key

60 Chapter 2 Ensuring Your Database Structure Is Sound

 ❖ Note Although artificial primary keys are an easy way to solve
the problem, they don’t really guarantee that you won’t get dupli-
cate data in your table. For example, if someone adds a new row for
a person named John Kennedy and provides a new unique artificial
 EmployeeID value, how do you know that this second John Kennedy
isn’t the same as the employee 98002 already in the table?

The answer is to add a verification routine to your application code
that checks for a potentially duplicate name and warns the user. In
many database systems, you can write such validation code as some-
thing called a trigger that your database system automatically runs
each time a row is changed, added, or deleted. However, discussing
triggers is far beyond the scope of this book. Consult your database
system documentation for details.

At this point, you’ve done everything you can to strengthen and fine-
tune your table structures. Now I’ll take a look at how you can ensure
that all your table relationships are sound.

Establishing Solid Relationships

In Chapter 1, you learned that a relationship exists between a pair of
tables if rows in the first table are in some way associated with rows
in the second table. You also learned that the relationship itself can be
designated as one of three types: one-to-one, one-to-many, and many-to-
many. And you learned that each type of relationship is established in a
specific manner. Let’s review this for a moment.

 ❖ Note The diagram symbols shown in this section are part of the
diagramming method presented in Mike Hernandez’s book Database
Design for Mere Mortals, Third Edition (Addison-Wesley, 2013). PK indi-
cates a primary key column. FK indicates a foreign key column. CPK
indicates a column that is part of a composite primary key.

• You establish a one-to-one relationship by taking the primary
key from the primary table and inserting it into the subordinate
table, where it becomes a foreign key. This is a special type of

❖ Note Although artificial primary keys are an easy way to solve
the problem, they don’t really guarantee that you won’t get dupli-
cate data in your table. For example, if someone adds a new row for
a person named John Kennedy and provides a new unique artificial
EmployeeID value, how do you know that this second John Kennedy
isn’t the same as the employee 98002 already in the table?

The answer is to add a verification routine to your application code
that checks for a potentially duplicate name and warns the user. In
many database systems, you can write such validation code as some-
thing called a trigger that your database system automatically runs
each time a row is changed, added, or deleted. However, discussing
triggers is far beyond the scope of this book. Consult your database
system documentation for details.

❖ Note The diagram symbols shown in this section are part of the
diagramming method presented in Mike Hernandez’s book Database
Design for Mere Mortals, Third Edition (Addison-Wesley, 2013). PK indi-
cates a primary key column. FK indicates a foreign key column. CPK
indicates a column that is part of a composite primary key.

 Establishing Solid Relationships 61

relationship because in many cases the foreign key will also act as
the primary key of the subordinate table. Figure 2-17 shows how to
diagram this relationship.

Employees Employee_Confidential

EmployeeID PKEmployeeID PK

This line indicates that a single record in Employee_Confidential is
related to only one row in Employees.

This line indicates that a single record in Employees is

related to only one row in Employee_Confidential.

Figure 2-17 Diagramming a one-to-one relationship

• You establish a one-to-many relationship by taking the primary
key of the table on the “one” side and inserting it into the table on
the “many” side, where it becomes a foreign key. Figure 2-18 shows
how to diagram this type of relationship.

Students

This line indicates that a single row in

Instruments is related to only one row in
Students.

This “crow's foot” indicates that a single

row in Students is related to many
rows in Instruments.

Instruments

InstrumentID PKStudentID PK
StudentID FK

Figure 2-18 Diagramming a one-to-many relationship

• You establish a many-to-many relationship by creating a linking
table. Define the linking table by taking a copy of the primary key
of each table in the relationship and using them to form the struc-
ture of the new table. These columns commonly serve two distinct
roles: Together, they form the composite primary key of the linking
table; separately, they each serve as a foreign key. You would dia-
gram this relationship as shown in Figure 2-19.

62 Chapter 2 Ensuring Your Database Structure Is Sound

A many-to-many relationship is always resolved by using a linking table.
In this example, Pilot_Certifications is the linking table. A single pilot
can have any number of certifications, and a single certification can be
associated with any number of pilots.

Certifications

CertificationID PK

Pilots

PilotID PK

Pilot_Certifications

PilotID CPK
CertificationID CPK

Figure 2-19 Diagramming a many-to-many relationship

In order to make certain that the relationships among the tables in your
database are really solid, you must establish relationship characteristics
for each relationship. The characteristics you’re about to define indicate
what will occur when you delete a row, the type of participation a table
has within the relationship, and to what degree each table participates
within the relationship.

It’s important to note that the related columns that you use to link two
tables must be the same data type. For example, you can link a pri-
mary key of Int (Integer) data type only to a foreign key that is also Int.
You cannot link a number to character or date. The one exception to this
rule involves primary keys that are automatically generated by your data-
base system, known as AutoNumber, Identity, Serial, or Auto_Increment,
depending on the database system. For each of these, there is an underly-
ing numeric data type—Long Integer in Microsoft Access and Int in most
others—so it’s perfectly okay to link a primary key created this way to a col-
umn that is simply the underlying data type. So you can link an AutoNum-
ber in Microsoft Access to a Number / Long Integer foreign key in a related
table, or an Identity in Microsoft SQL Server to a column that is Int.

Before my discussion on relationship characteristics begins, I must
make one point perfectly clear: I present the following characteristics
within a generic and logical frame of reference. These characteristics
are important because they allow you to enforce relationship integ-
rity (referred to by some database systems as referential integrity). The

 Establishing Solid Relationships 63

manner in which you implement them, however, will vary from one data-
base software program to another. You will have to study your database
software’s documentation to determine whether these characteristics are
supported and, if so, how you can implement them.

Establishing a Deletion Rule

A deletion rule dictates what happens when a user makes a request to
delete a row in the primary table of a one-to-one relationship or in the
table on the “one” side of a one-to-many relationship. You can guard
against orphaned rows by establishing this rule. (Orphaned rows are
those rows in the subordinate table of a one-to-one relationship that
don’t have related rows in the primary table or rows in the table on the
“many” side of a one-to-many relationship that don’t have related rows in
the table on the “one” side.)

You can set two types of deletion rules for a relationship: restrict and
cascade.

• The restrict deletion rule does not allow you to delete the
requested row when there are related rows in the subordinate table
of a one-to-one relationship or in the table on the “many” side of a
one-to-many relationship. You must delete any related rows before
deleting the requested row. You’ll use this type of deletion rule as
a matter of course. In database systems that allow you to define
relationship rules, this is usually the default and sometimes the
only option.

• When the cascade deletion rule is in force, deleting the row on
the “one” side of a relationship causes the system to automatically
delete any related rows in the subordinate table of a one-to-one
relationship or in the table on the “many” side of a one-to-many
relationship. Use this rule very judiciously, or you might wind up
deleting rows you really wanted to keep! Not all database systems
support cascade deletion.

Regardless of the type of deletion rule you use, always examine your
relationship very carefully to determine which type of rule is appropri-
ate. You can use a very simple question to help you decide which type
of rule to use. First, select a pair of tables, and then ask yourself the
following question: “If a row in [name of primary or ‘one’ side table] is

64 Chapter 2 Ensuring Your Database Structure Is Sound

deleted, should related rows in [name of subordinate or ‘many’ side table]
be deleted as well?”

This question is framed in a generic sense so that you can understand
the premise behind it. To apply this question, substitute the phrases
within the square brackets with table names. Your question will look
something like this: “If a row in the Committees table is deleted, should
related rows in the Committee_Members table be deleted as well?”

Use a restrict deletion rule if the answer to this question is “No.” Oth-
erwise, use the cascade deletion rule. In the end, the answer to this
question greatly depends on how you use the data stored within the
database. This is why you must study the relationship carefully and
make certain you choose the right rule. Figure 2-20 shows how to dia-
gram the deletion rule for this relationship. Note that you’ll use (R) for a
restricted deletion rule and (C) for a cascade deletion rule.

(C)

Committees

This symbol indicates that related rows in the
Committee_Members table will be deleted when a
row in the Committees table is deleted.

Committee_Members

CommitteeID CPKCommitteeID PK
EmployeeID CPK

Figure 2-20 Diagramming the deletion rule for the Committees and
Committee_Members tables

Setting the Type of Participation

When you establish a relationship between a pair of tables, each table
participates in a particular manner. The type of participation assigned
to a given table determines whether a row must exist in that table
before you can enter a row into the other table. There are two types of
participation:

• Mandatory—At least one row must exist in this table before you
can enter any rows into the other table.

• Optional—There is no requirement for any rows to exist in this
table before you enter any rows in the other table.

 Establishing Solid Relationships 65

The type of participation you select for a pair of tables depends mostly
on the business logic of your organization. For example, let’s assume you
work for a large company consisting of several departments. Let’s also
assume that you have an Employees table, a Departments table, and
a Department_Employees table in the database you’ve created for your
company. All relevant information about an employee is in the Employ-
ees table, and all relevant information about a department is in the
Departments table. The Department_Employees table is a linking table
that allows you to associate any number of departments with a given
employee. Figure 2-21 shows these tables. (In this figure, I used simple
arrows pointing to the “many” side of the relationship.)

EmployeeID

7006

7007

7005

7004

7009

7008

Employees

<<other columns>>

...

...

...

...

...

...

7011

7010

...

...

EmpCity

Lubbock

Salem

Portland

Chico

Fremont

Medford

Redmond

San Diego

EmpLastName

Thompson

Wilson

Kennedy

Gehring

EmpFirstName

Sarah

Jim

John

Darren

Smith

Seidel

David

Manuela

Viescas

Patterson

Michael

Neil

DepartmentID

1000

1000

1001

1002

1004

EmployeeID

7007

7005

7004

7011

7010

10017005

10017008

10037009

Department_Employees

Position

Head

Floater

Staff

Head

Head

Floater

Head

Floater

DepartmentName

Legal

Accounting

InformationServices

HumanResources

Administration

DepartmentID

1002

1003

1001

1000

1004

Departments

Floor

7

5

6

7

5

Figure 2-21 The Employees, Departments, and Department_Employees tables

66 Chapter 2 Ensuring Your Database Structure Is Sound

In the last staff meeting, you were told to assign some of the staff to
a new Research and Development department. Now here’s the prob-
lem: You want to make certain you add the new department to the
Departments table so that you can assign staff to that department in
the Department_Employees table. This is where the type of participa-
tion characteristic comes into play. Set the type of participation for the
Departments table to mandatory and the type of participation for the
Department_Employees table to optional. By establishing these set-
tings, you ensure that a department must exist in the Departments
table before you can assign any employees to that department in the
Department_Employees table.

As with the deletion rule, study each relationship carefully to deter-
mine the appropriate type of participation setting for each table in the
relationship. You would diagram the type of participation as shown in
 Figure 2-22.

Departments

DepartmentID PK

Employees

EmployeeID PK

This second line identifies

a mandatory participation.

This circle identifies an

optional participation.

Department_Employees

DepartmentID CPK
EmployeeID CPK

Figure 2-22 Diagramming the type of participation for the Departments and
Department_Employees tables

Setting the Degree of Participation

Now that you’ve determined how each table will participate in the rela-
tionship, you must figure out to what degree each will participate. You
do this by determining the minimum and maximum number of rows
in one table that can be related to a single row in the other table. This
process is known as identifying a table’s degree of participation. The

 Establishing Solid Relationships 67

degree of participation for a given table is represented by two numbers
that are separated with a comma and enclosed within parentheses. The
first number indicates the minimum possible number of related rows,
and the second number indicates the maximum possible number of
related rows. For example, a degree of participation such as “(1,12)” indi-
cates that the minimum number of rows that can be related is 1 and the
 maximum is 12.

The degree of participation you select for various tables in your data-
base largely depends on how your organization views and uses the data.
Let’s say that you’re a booking agent for a talent agency and that two of
the tables in your database are Agents and Entertainers. Let’s further
assume that there is a one-to-many relationship between these tables—
one row in the Agents table can be related to many rows in the Enter-
tainers table, but a single row in the Entertainers table can be related
to only one row in the Agents table. In this case, I’ve ensured (in a gen-
eral sense) that an entertainer is assigned to only one agent. (I definitely
avoid the possibility of the entertainer playing one agent against another.
This is a good thing.)

In nearly all cases, the maximum number of rows on the “many” side
of a relationship will be infinite. However, in some cases your business
rules might dictate that you limit this participation. One example would
be to limit the number of students who can enroll in a class. In this
example, let’s assume that the boss wants to ensure that all his agents
have a fair shake at making good commissions and wants to keep the
infighting between agents down to a bare minimum. So he sets a new
policy stating that a single agent can represent a maximum of six enter-
tainers. (Although he thinks it might not work in the long run, he wants
to try it anyway.) In order to implement his new policy, he sets the degree
of participation for both tables to the following:

Agents (1,1)—An entertainer can be associated with one and only one
agent.

Entertainers (0,6)—Although an agent doesn’t have to be associated with
an entertainer at all, he or she cannot be associated with
more than six entertainers at any given time.

68 Chapter 2 Ensuring Your Database Structure Is Sound

Figure 2-23 shows how to diagram the degree of participation for these
tables.

(1,1)

(0,6)

Agents
Entertainers

EntertainerID PK

AgentID PK

AgentID FK

Figure 2-23 Diagramming the degree of participation for the Agents and
Entertainers tables

After setting the degree of participation, you should decide how you
want your database system to enforce the relationship. What you choose
depends on the features provided by your database system. The simplest
enforcement supported by most database systems is to restrict the val-
ues in the foreign key in the “many” table so that the user cannot enter a
value that is not in the related “one” table. You can indicate this by plac-
ing the letter R in parentheses next to the relationship line pointing to
the “one” table, as shown in Figure 2-24.

(1,1)

(0,6)

Agents
Entertainers

EntertainerID PK

AgentID PK

AgentID FK

(R)

Figure 2-24 A diagram of all the relationship characteristics for the Agents and
Entertainers tables

Some database systems allow you to define a rule that cascades (C) the
key value from the “one” table to the “many” table if the user changes
the value of the primary key in the “one” table. Essentially, the database
system corrects the foreign key value in related rows in the “many” table
when you change the value of the primary key in the “one” table. And
some database systems provide a feature that automatically deletes (D)
the rows in the “many” table when you delete a row in the “one” table.
Check your database system documentation for details.

 ❖ Note To enforce degree of participation constraints, you’ll have to
define one or more triggers or constraints in your database definition
(if your database system supports these features).

❖ Note To enforce degree of participation constraints, you’ll have to
define one or more triggers or constraints in your database definition
(if your database system supports these features).

 Summary 69

Is That All?

By using the techniques you learned in this chapter, you make the
 necessary beginning steps toward ensuring a fundamental level of data
integrity in your database. The next step is to begin studying the man-
ner in which your organization views and uses its data so that you can
establish and impose business rules for your database. But to really
get the most from your database, you should go back to the begin-
ning and run it through a thorough database design process using a
good design methodology. Unfortunately, these topics are beyond the
scope of this book. However, you can learn a good design methodology
from books such as Database Design for Mere Mortals, Third Edition
 (Addison-Wesley, 2013) by Michael J. Hernandez or Database Systems:
A Practical Approach to Design, Implementation, and Management, Sixth
Edition (Addison-Wesley, 2014) by Thomas Connolly and Carolyn Begg.
The point to remember is this: The more solid your database structure,
the easier it will be both to extract information from the data in the
database and to build applications programs for it.

Summary

I opened this chapter with a short discussion on why you should be con-
cerned with having sound structures in your database. You learned that
poorly designed tables can cause numerous problems, not the least of
which concern data integrity.

Next, I discussed fine-tuning the columns in each table. You learned
that giving your columns good names is very important because it
ensures that each name is meaningful and actually helps you to find
hidden problems with the column structure itself. You now know how
to fine-tune your column structures by ensuring they conform to a few
simple rules. These rules deal with issues such as guaranteeing that
each column represents a single characteristic of the table’s subject,
contains only a single value, and never stores a calculation. I also dis-
cussed the problems found in multipart and multivalued columns, and
you learned how to resolve them properly.

Fine-tuning the tables was the next issue I addressed. You learned
that the table names are just as important an issue as column names
for many of the same reasons. You now know how to give your tables
meaningful names and ensure that each table represents only a single

70 Chapter 2 Ensuring Your Database Structure Is Sound

subject. I then discussed a set of rules you can use to make certain each
table structure is sound. Although some of the rules seemed to duplicate
some of the efforts you made in fine-tuning your column structures, you
learned that the rules used for fine-tuning the table structures actually
add an extra level of insurance in making sure that the table structures
are as absolutely sound as they can be.

The next subject I tackled was primary keys. You learned the impor-
tance of establishing a primary key for each table in your database. You
now know that a primary key must conform to a specific set of charac-
teristics and that the column that will act as the primary key of a table
must be chosen very carefully. You also learned that you can create an
artificial primary key if there is no column in the table that conforms to
the complete set of characteristics for a primary key.

I closed this chapter with a discussion on establishing solid relation-
ships. After reviewing the three types of relationships, you learned how
to diagram each one. You then learned how to establish and diagram a
deletion rule for the relationship. This rule is important because it helps
you guard against orphaned rows. The last two topics I discussed were
the type of participation and degree of participation for each table within
the relationship. You learned that a table’s participation can be manda-
tory or optional and that you can set a specific range for the number of
related rows between each table.

In the next chapter, you’ll learn a little bit about the history of SQL and
how it evolved into the current version at press time, SQL:2016.

 71

3
A Concise History of SQL

“There is only one religion, though there are many versions of it.”
—GEORGE BERNARD SHAW, PLAYS PLEASANT AND UNPLEASANT

Topics Covered in This Chapter

The Origins of SQL

Early Vendor Implementations

“. . . And Then There Was a Standard”

Evolution of the ANSI/ISO Standard

Commercial Implementations

What the Future Holds

Why Should You Learn SQL?

Which Version of SQL Does This Book Cover?

Summary

The telling of history always involves vague and ambiguous accounts of
various incidents, political intrigue, and human foibles. The history of
SQL is no different than that of any other subject in this sense. SQL
has been around in one form or another since just after the dawn of the
relational model, and there are several detailed accounts of its long and
spotty existence. In this chapter, however, I take a close look at the ori-
gin, evolution, and future of this database language. I have two goals:
first, to give you an idea of how SQL matured into the language used by
a majority of relational database systems today, and second, to give you
a sense of why it is important for you to learn how to use SQL.

72 Chapter 3 A Concise History of SQL

The Origins of SQL

As you learned in Chapter 1, “What Is Relational?” Dr. E. F. Codd pre-
sented the relational database model to the world in 1970. Soon after
this landmark moment, organizations such as universities and research
laboratories began efforts to develop a language that could be used as
the foundation to a database system that supported the relational model.
Initial work led to the development of several languages in the mid- to
early 1970s, and later efforts resulted in the development of SQL and the
SQL-based databases in use today. But just where did SQL originate?
How did it evolve? What is its future? For the answers to these ques-
tions, I must begin the story at IBM’s Santa Teresa Research Laboratory
in San Jose, California.

IBM began a major research project in the early 1970s called System/R.
The goals of this project were to prove the viability of the relational
model and to gain some experience in designing and implementing a
relational database. The researchers’ initial endeavors between 1974 and
1975 proved successful, and they managed to produce a minimal proto-
type of a relational database.

In addition to their efforts to develop a working relational database,
researchers were also working to define a database language. The work
performed at this laboratory is arguably the most commercially signifi-
cant of the initial efforts to define such a language. In 1974, Dr. Donald
Chamberlin and his colleagues developed Structured English Query
Language (SEQUEL). The language allowed users to query a relational
database using clearly defined English-style sentences. Dr. Chamberlin
and his staff first implemented this new language in a prototype data-
base called SEQUEL-XRM.

The initial feedback and success of SEQUEL-XRM encouraged
Dr. Chamberlin and his staff to continue their research. They com-
pletely revised SEQUEL between 1976 and 1977 and named the new ver-
sion SEQUEL/2. However, they subsequently had to change the name
SEQUEL to SQL (Structured Query Language or SQL Query Language)
for legal reasons—someone else had already used the acronym SEQUEL.
To this day, many people still pronounce SQL as sequel, although the
widely accepted “official” pronunciation is es-cue-el. SQL provided several
new features, such as support for multi-table queries and shared data
access by multiple users.

 Early Vendor Implementations 73

Soon after the emergence of SQL, IBM began a new and more ambitious
project aimed at producing a prototype database that would further
substantiate the feasibility of the relational model. They called the new
prototype System R and based it on a large subset of SQL. After much
of the initial development work was completed, IBM installed System R
in a number of internal sites and selected client sites for testing and
evaluation. Many changes were made to System R and SQL based on the
experiences and feedback of users at these sites. IBM closed the proj-
ect in 1979 and concluded that the relational model was indeed a viable
database technology with commercial potential.

 ❖ Note One of the more important successes attributed to this proj-
ect is the development of SQL. But SQL’s roots are actually based in
a research language called Specifying Queries As Relational Expres-
sions (SQUARE). This language was developed in 1975 (predating the
System R project) and was designed to implement relational algebra
with English-style sentences.

You might well ask, “If IBM concluded that there was commercial poten-
tial, why did the company close the project?” I remember seeing a
demonstration of System R in the late 1970s. It had lots of “wow” fac-
tor, but on the hardware technology available at the time, even a sim-
ple query took minutes to run. It clearly had potential, but it definitely
needed better hardware and software to make the product appealing to
businesses.

Early Vendor Implementations

The work done at the IBM research lab during the 1970s was followed
with great interest in various technical journals, and the merits of the
new relational model were briskly debated at database technology sem-
inars. Toward the latter part of the decade, it became clear that IBM
was keenly interested in and committed to developing products based on
relational database technology and SQL. This, of course, led many ven-
dors to speculate how soon IBM would roll out its first product. Some
vendors had the good sense to start work on their own products as
quickly as possible and not wait around for IBM to lead the market.

❖ Note One of the more important successes attributed to this proj-
ect is the development of SQL. But SQL’s roots are actually based in
a research language called Specifying Queries As Relational Expres-
sions (SQUARE). This language was developed in 1975 (predating the
System R project) and was designed to implement relational algebra
with English-style sentences.

74 Chapter 3 A Concise History of SQL

In 1977, Relational Software, Inc. was formed by a group of engineers
in Menlo Park, California, to build a new relational database product
based on SQL. They called their product Oracle. Relational Software
shipped its product in 1979, beating IBM’s first product to market by
two years and providing the first commercially available relational data-
base management system (RDBMS). One of Oracle’s advantages was
that it ran on Digital’s VAX minicomputers instead of the more expen-
sive IBM mainframes. Relational Software has since been renamed
to Oracle Corporation and is one of the leading vendors of RDBMS
software.

Meanwhile, Michael Stonebraker, Eugene Wong, and several other pro-
fessors at the University of California’s Berkeley computer laboratories
were also researching relational database technology. Like the IBM
team, they developed a prototype relational database and dubbed their
product Ingres. Ingres included a database language called Query Lan-
guage (QUEL), which, in comparison to SQL, was much more structured
but made less use of English-like statements. Ingres was eventually con-
verted to an SQL-based RDBMS when it became clear that SQL was
emerging as the standard database language. Several professors left
Berkeley in 1980 to form Relational Technology, Inc., and in 1981 they
announced the first commercial version of Ingres. Relational Technology
has gone through several transformations and is now part of Computer
Associates International, Inc. Ingres (now owned and supported by a
company called Actian) is still one of the leading database products in
the industry today.

Now we come full circle back to IBM. IBM announced its own RDBMS
called SQL/Data System (SQL/DS) in 1981 and began shipping it in
1982. In 1983, the company introduced a new version of SQL/DS for
the VM/CMS operating system (one of several offered by IBM for their
mainframe systems) and announced a new RDBMS product called
Database 2 (DB2), which could be used on IBM mainframes using
IBM’s mainstream MVS operating system. First shipped in 1985, DB2
has become IBM’s premiere RDBMS, and its technology has been
incorporated into the entire IBM product line. By the way, IBM hasn’t
changed—it’s still IBM.

During the course of more than 40 years, I’ve seen what began as
research for the System R project become a force that impacts almost
every level of business today and evolve into a multibillion-dollar industry.

 “. . . And Then There Was a Standard” 75

“. . . And Then There Was a Standard”

With the flurry of activity surrounding the development of database
languages, you could easily wonder if anyone ever thought of standard-
ization. Although the idea was tossed about among the database com-
munity, there was never any consensus or agreement as to who should
set the standard or which dialect it should be based upon. So each ven-
dor continued to develop and improve its own database product in the
hope that it—and by extension, its dialect of SQL—would become the
industry standard.

Customer feedback and demand drove many vendors to include certain
elements in their SQL dialects, and in time an unofficial standard
emerged. It was a small specification by today’s standards, as it encom-
passed only those elements that were similar across the various SQL
 dialects. However, this specification (such as it was) did provide data-
base customers with a core set of criteria by which to judge the various
 database programs on the market, and it also gave users a small set of
knowledge that they could leverage from one database program to another.

In 1982, the American National Standards Institute (ANSI) responded to
the growing need for an official relational database language standard
by commissioning its X3 organization’s database technical commit-
tee, X3H2, to develop a proposal for such a standard. X3 is one of many
organizations overseen by ANSI. In turn, X3H2 is only one of many tech-
nical committees that report to X3. X3H2 was and continues to be com-
posed of database industry experts and representatives from almost
every major SQL-based database vendor. In the beginning, the commit-
tee reviewed and debated the advantages and disadvantages of various
proposed languages and also began work on a standard based on QUEL,
the database language for Ingres. But market forces and the increasing
commitment to SQL by IBM induced the committee to base its proposal
on SQL instead.

The X3H2 committee’s proposed standard was largely based on IBM’s
DB2 SQL dialect. The committee worked on several versions of its stan-
dard over the next two years and even improved SQL to some extent.
However, an unfortunate circumstance arose as a result of these
improvements: This new standard became incompatible with existing
major SQL dialects. X3H2 soon realized that the changes made to SQL
did not significantly improve it enough to warrant the incompatibilities,
so the committee reverted to the original version of the standard.

76 Chapter 3 A Concise History of SQL

ANSI ratified X3H2’s standard in 1986 as “ANSI X3.135-1986 Database
Language SQL,” which became commonly known as SQL/86. Although
X3H2 made some minor revisions to its standard before ANSI adopted it,
SQL/86 merely defined a minimal set of “least common denominator”
requirements to which database vendors could conform. In essence, it
conferred official status on the elements that were similar among the
various SQL dialects and that had already been implemented by many
database vendors. But the new standard finally provided a specific foun-
dation from which the language and its implementations could be devel-
oped further.

The International Organization for Standardization (ISO) approved its
own document (which corresponded exactly with ANSI SQL/86) as an
international standard in 1987 and published it as “ISO 9075-1987
Database Language SQL.” (Both standards are still often referred to as
just SQL/86.) The international database vendor community could now
work from the same standards as those vendors in the United States.
Despite the fact that SQL gained the status of an official standard, the
language was far from being complete.

Evolution of the ANSI/ISO Standard

SQL/86 was soon criticized in public reviews, by the government, and by
industry pundits such as C. J. Date. Some of the problems cited by these
critics included redundancy within the SQL syntax (there were several
ways to define the same query), lack of support for certain relational
operators, and lack of referential integrity. Although X3H2 knew of these
problems even before SQL/86 was published, the committee decided that
it was better to release a standard now (even though it still needed work)
than to have no standard at all.

Both ISO and ANSI addressed the criticism pertaining to referential
integrity by adopting refined versions of their standards. ISO published
“ISO 9075:1989 Database Language SQL with Integrity Enhancements”
in mid-1989, while ANSI adopted its “X3.135-1989 Database Language
SQL with Integrity Enhancements,” also often referred to as SQL/89, late
that same year. But the ANSI committee’s work for the year wasn’t over
just yet. X3H2 was still trying to address an important issue brought
forth by the government.

 Evolution of the ANSI/ISO Standard 77

Some government users complained that the specification explaining
how to embed SQL within a conventional programming language was
not an explicit component of the standard. (Although the specification
was included, it was relegated to an appendix.) Their concern was that
vendors might not support portable implementations of embedded SQL
because there was no specific requirement within the standard for them
to do so. X3H2 responded by developing a second standard that required
conformance to the embedding specification, publishing it as “ANSI
X3.168-1989 Database Language Embedded SQL.” It’s interesting to note
that ISO chose not to publish a corresponding standard because of a
lack of similar concern within the international community. This meant
that ISO had no specification for embedding SQL within a programming
language, a situation that would not change until ISO’s publication of its
SQL/92 Standard.

SQL/86 and SQL/89 were far from being complete standards—they
lacked some of the most fundamental features needed for commercial
database systems. For example, neither standard specified a way to
make changes to the database structure (including within the database
system itself) after it was defined. No one could modify or delete any
structural components (such as tables or columns) or make any changes
to the security of the database. For example, you could CREATE a table,
but the standard included no definition of the DROP command to delete
a table or the ALTER command to change it. Also, you could GRANT
security access to a table, but the standard did not define the REVOKE
command to allow removal of access authority. Ironically, these capabil-
ities were provided by all commercial SQL-based databases. They were
not included in either standard, however, because each vendor imple-
mented them in different ways. Other features were widely implemented
among many SQL-based databases but omitted from the standards.
Once again, it was an issue of varied implementations.

By the time SQL/89 was completed, both ANSI and ISO were already
working on major revisions to SQL that would make it a complete and
robust language. The new version would be referred to as SQL/92 (what
else?) and would include features that had already been widely imple-
mented by most major database vendors. But one of the main objectives
of both ANSI and ISO was to avoid defining a “least common denomi-
nator” standard yet again. As a result, they decided to both include fea-
tures that had not yet gained wide acceptance and add new features that
were substantially beyond those currently implemented.

78 Chapter 3 A Concise History of SQL

ANSI and ISO published their new SQL Standards—“X3.135-1992 Data-
base Language SQL” and “ISO/IEC 9075:1992 Database Language SQL,”
respectively—in October 1992. (Work on these documents was completed
in late 1991, but some final fine-tuning took place during 1992.) The
SQL/92 document is considerably larger than the one for SQL/89, but
it’s also much broader in scope. For example, it provides the means to
modify the database structure after it has been defined, supports addi-
tional operations for manipulating character strings as well as dates and
times, and defines additional security features. SQL/92 was a major step
forward from any of its predecessors.

Fortunately, the standards committees anticipated this situation to some
extent. To facilitate a smooth and gradual conformance to the new stan-
dard, ANSI and ISO defined SQL/92 on three levels:

ENTRY SQL Similar to SQL/89, this level also includes features
to make the transition from SQL/89 to SQL/92
easier as well as features that corrected errors in
the SQL/89 Standard. The idea was that this level
would be the easier to implement because most of
its features had already been widely incorporated
into existing products.

INTERMEDIATE
SQL

This level encompasses most of the features in
the new standard. Both committees’ decisions to
include certain features at this level were based
on several factors. The overall objectives were to
enhance the standard so that SQL better sup-
ported the concepts in the relational model and to
redefine syntax that was ambiguous or unclear.
It was an easy decision to include features that
were already implemented in some way by one or
more vendors and that met these objectives. Fea-
tures demanded by users of SQL database systems
were given high consideration as long as they met
these objectives and were relatively easy for most
vendors to implement. This level was meant to
ensure that it would be reasonably possible for a
given product to have as robust an implementation
as possible.

 Evolution of the ANSI/ISO Standard 79

FULL SQL The entire SQL/92 specification is encompassed
within this level. It obviously includes the more
complex features that were omitted in the first two
levels. This level includes features that, although
considered important to meet customer demands
or further “purify” the language, would be difficult
for most vendors to implement immediately. Unfor-
tunately, compliance with Full SQL was not yet a
requirement, so it would be some time before we
could expect database products to fully implement
the standard.

Although many database vendors continued work on implementing the
features in SQL/92, they also developed and implemented features of
their own. The additions they made to the SQL Standard are known as
extensions. For example, a vendor might provide more data types than
the six specified in SQL/92. Although these extensions provide more
functionality within a given product and allow vendors to differentiate
themselves from one another, there are drawbacks. The main problem
with adding extensions is that it caused each vendor’s dialect of SQL
to diverge further from the original standard. This, in turn, prevented
database developers from creating portable applications that could be
run using any SQL database.

Other SQL Standards

The ANSI/ISO SQL Standard is the most widely accepted standard to
date. This means, of course, that other standards in existence also
incorporate SQL in one form or another. These are some of the more sig-
nificant alternate standards:

X/OPEN A group of European vendors (collectively known as
X/OPEN) developed a set of standards that would help
establish a portable application environment based
on UNIX. The ability to port an application from one
 computer system to another without changing it is an
important issue in the European market. Although the
X/OPEN members have adopted SQL as part of this set
of standards, their version deviates from the ANSI/ISO
Standard in several areas.

80 Chapter 3 A Concise History of SQL

SAA IBM has always developed its own dialect of SQL, which
the company incorporated into its Systems Application
Architecture (SAA) specification. Integrating IBM’s SQL
dialect into the complete line of IBM database products
was one of the goals of the SAA specification. Although
this goal has never been achieved, SQL still plays an
important role in unifying IBM’s database products.

FIPS The National Institute of Standards and Technology
(NIST) made SQL a Federal Information Processing Stan-
dard (FIPS) beginning in 1987. Originally published as
“FIPS PUB 127,” it specifies the level to which an RDBMS
must conform to the ANSI/ISO Standard. Since then, all
relational database products used by the U.S. govern-
ment have been required to conform to the current FIPS
publication.

ODBC In 1989, a group of database vendors formed the SQL
Access group to address the problem of database
interoperability. Although these vendors’ first efforts
were somewhat unsuccessful, they widened their focus
to include a way to bind an SQL database to a user-
interface language. The result of their efforts was the
Call-Level Interface (CLI) specification published in 1992.
That same year, Microsoft published its Open Database
Connectivity (ODBC) specification, which was based on
the CLI Standard. ODBC has since become the de facto
means of accessing and sharing data among SQL data-
bases that support it.

These standards continually evolved as newer versions of ANSI/ISO SQL
were adopted, and they are sometimes independently developed as well.

In 1997, ANSI’s X3 organization was renamed the National Committee
for Information Technology Standards (NCITS), and the technical com-
mittee in charge of the SQL Standard was called ANSI NCITS-H2 and
has more recently become INCITS DM32.2. Because of the rapidly grow-
ing complexity of the SQL Standard, the ANSI and ISO standards com-
mittees agreed to break the standard into twelve separate numbered
parts and one addendum as they began to work on SQL3 (so named
because it’s the third major revision of the standard) so that work on
each part could proceed in parallel. Since 1997, two additional parts
have been defined.

 Evolution of the ANSI/ISO Standard 81

Table 3-1 shows the name and description of each part of the SQL
Standard, as well as the status of each part as of SQL:2016 (ISO/IEC
9075:2016).

Table 3-1 Structure of the SQL Standard

Name Status Description
Pages in
SQL:2016

Part 1: Framework
(SQL/Framework)

Completed in 1999 and
updated in 2003, 2008,
2011, and 2016.

Describes each part of the
standard and contains
information common to all
parts.

78

Part 2: Foundation
(SQL/Foundation)

The core 1992 standard
that has been updated
in 1999, 2003, 2008,
2011, and 2016.

Defines the syntax and
semantics of the data
definition and data manip-
ulation portions of the SQL
language.

1,707

SQL/OLAP
(Online Analytical
Processing)

Merged with Founda-
tion in 1999.

Describes the functions and
operations used for ana-
lytical processing. (This is
intended as an amendment
to SQL/Foundation.)

Part 3: Call-Level
Interface
(SQL/CLI)

Completed in 1995
and expanded in
1999, 2003, 2008,
and 2016.

Developed by the SQL
Access group, this part
corresponds to Microsoft’s
ODBC specification.

391

Part 4: Persistent
Stored Modules
(SQL/PSM)

Completed in 1996.
Stored routines and the
CALL statement moved
to Foundation in 1999.
Remaining standard
updated in 2003, 2011,
and 2016.

Defines procedural lan-
guage SQL statements that
are useful in user-defined
functions and procedures.
(Support for stored proce-
dures, stored functions,
the CALL statement, and
routine invocation was
eventually moved to SQL/
Foundation.)

188

Part 5: SQL/
Bindings

Specification for
 embedding SQL moved
to a separate part in
1999 and then was
embedded in Founda-
tion in 2003.

Specifies how SQL is
embedded in non-object
programming languages.
This part will be merged
into SQL/Foundation in the
next version of SQL.

Part 6: Transaction
(XA Specialization)

Canceled in 1999. SQL specialization of the
X/OPEN XA specification.

82 Chapter 3 A Concise History of SQL

Name Status Description
Pages in
SQL:2016

Part 7: SQL/
Temporal

Withdrawn in 2003. Defines support for storage
and retrieval of temporal
data. There has been some
difference of opinion on the
requirements and details
of Temporal, so work has
stalled over the last several
years.

Part 8: SQL/
Objects Extended
Objects

Merged into Founda-
tion in 1999.

Defines how application-
defined abstract data types
are handled by the RDBMS.

Part 9: Manage-
ment of External
Data (SQL/MED)

ISO version completed
in 2003 and revised in
2008 and 2016.

Defines additional syntax
and definitions to SQL/
Foundation that allow SQL
to access non-SQL data
sources (files).

471

Part 10: Object
Language Bindings
(SQL/OLB)

Completed in 1998 as
an ANSI-only stan-
dard, revised in 1999
by ISO, and revised
again in 2003, 2008,
and 2016.

Specifies the syntax and
semantics of embedding
SQL in the Java program-
ming language. This cor-
responds to another ANSI
standard, SQLJ Part 0.

376

Part 11: Informa-
tion and Definition
Schemas (SQL/
Schemata)

Extraction from Foun-
dation completed in
2003. Revised in 2008
and 2016.

Information and definition
schemas.

327

Part 12: SQL/
Replication

Project started in 2000
but dropped in 2003
due to lack of progress.

Defines support and facili-
ties for replicating an SQL
database.

Part 13: SQL
 Routines and
Types Using the
Java Programming
Language (SQL/
JRT)

Completed in 1999 as
an ANSI-only standard
based on SQL/92.
Revised as an inter-
national standard in
2003, 2008, and 2016.

Defines how Java code can
be used within an SQL
database.

151

Part 14: XML-
Related Specifica-
tions (SQL/XML)

Completed in 2003
and expanded in 2006,
2008, 2011, and 2016.

Defines how XML can be
used within an SQL data-
base. This part is aligned
with the W3C XQuery V1.1
specification.

444

 What the Future Holds 83

Commercial Implementations

As you read earlier in this chapter, SQL first appeared in the main-
frame environment. Products such as DB2, Ingres, and Oracle have
been around since 1979 and have legitimized the use of SQL as the pre-
ferred method of working with relational databases. During the 1980s,
relational databases hit the desktop on personal computers, and prod-
ucts such as R:BASE, dBase IV, and Super Base put the power of data
in tables at the user’s fingertips. However, it wasn’t until the very late
1980s and early 1990s that SQL became the language of choice for desk-
top relational databases. The product that arguably broke the dam was
Microsoft Access version 1 in 1992.

The early 1990s also heralded the advent of client/server computing,
and RDBMS programs such as Microsoft SQL Server and Informix-SE
have been designed to provide database services to users in numerous
types of multi-user environments. Since 2000, there has been a con-
certed effort to make database information available via the Internet.
Businesses have caught on to the idea of e-commerce, and those who
haven’t already established a Web presence are moving quickly to do so.
As a result, database developers are demanding more powerful client/
server databases and newer versions of long-established mainframe
RDBMS products that they can use to develop and maintain the data-
bases needed for their Web sites. One response has been to migrate data
to the “cloud” using servers shared over the Internet. Companies such
as Amazon, Microsoft, and IBM have introduced popular cloud services.
As one might expect, nearly all of these cloud servers use databases that
support SQL.

I could attempt to list all the mainstream products that support SQL,
but the list would go on for pages and pages. Suffice it to say that SQL in
commercial database systems is here to stay.

What the Future Holds

When Mike Hernandez and I first wrote this book in 1999, the standards
committees were just putting the finishing touches on SQL3, which
had been a long time in coming. Since then, SQL:1999, SQL:2003,
SQL:2008, SQL:2011, and SQL:2016 have been published. As of early
2017, both the ANSI and ISO committees are hard at work on a separate

84 Chapter 3 A Concise History of SQL

SQL/MM—Multimedia standard that has its own five parts: Framework,
Full Text, Spatial, Still Image, and Data Mining. Although the standards
committees started out far behind the commercial implementations in
1986, it’s fair to say that the SQL Standard long ago caught up with—
and in many areas is now staying ahead of—features in available data-
base systems.

Why Should You Learn SQL?

Learning SQL gives you the skills you need to retrieve information from
any relational database. It also helps you understand the mechanisms
behind the graphical query interfaces found in many RDBMS products.
Understanding SQL helps you craft complex queries and provides the
knowledge required to troubleshoot queries when problems occur.

Because SQL is found in a wide variety of RDBMS products, you can use
your skills across a variety of platforms. For example, after you learn SQL
in a product such as Microsoft Access, you can leverage your existing
knowledge if your company decides to move to Microsoft SQL Server, Ora-
cle Corporation’s Oracle, or IBM’s DB/2. You won’t have to relearn SQL—
you’ll just have to learn the differences between the first dialect that
you learn and the dialect used in another product. Imagine you learned
English in the UK and the found out you needed to drop the letter “u”
from certain words (favor instead of favour) when you moved to the US.

It bears repeating that SQL is here to stay. Many vendors have invested
huge amounts of money, time, and research to incorporate SQL into
their RDBMS products, and a vast number of businesses and organi-
zations have built much of their information technology infrastruc-
tures on those products. As you have probably surmised by what you’ve
learned in this chapter, SQL will continue to evolve to meet the changing
demands and requirements of the marketplace.

Which Version of SQL Does this
Book Cover?

Good question! Remember, this is a “Mere Mortals” book. The current
standard is nearly 5,000 pages long, so there is no way I am going to
try to teach you everything. What I strive to do in this book is give you

 Summary 85

a really solid grounding in the basics (as standardized in Framework
and Foundation) that are supported by virtually every commercial imple-
mentation. I also provide sample databases and solutions to all the prob-
lems I pose using four of the most popular implementations: Microsoft
Office Access 2016, Microsoft SQL Server 2016, MySQL version 5.7 Com-
munity Edition, and PostgreSQL version 9.6. If you were learning a lan-
guage, think of it as covering the basic present, past, and future tenses.
If you want to tackle the subjunctive, pluperfect, or progressive, you’ll
have to dig into more advanced books.

Summary

I began this chapter with a discussion on the origins of SQL. You
learned that SQL is a relational database language that was created
soon after the introduction of the relational model. I also explained that
the early evolution of SQL was closely tied to the evolution of the rela-
tional model itself.

Next, I discussed the initial implementations of the relational model by
various database vendors. You learned that the first relational databases
were implemented on mainframe computers. You also learned how IBM
and Oracle came to be big players in the database industry.

I then discussed the origin of the ANSI SQL Standard. You learned that
there was an unofficial standard before ANSI decided to define an offi-
cial one, and I discussed the ANSI X3H2 committee’s initial work on the
specification. I explained that although the new standard was basically
a set of “least common denominator” features, it did provide a foundation
from which the language could be further developed. You also learned
that the ISO published its own standard, which corresponded exactly
with the ANSI specification.

The evolution of the ANSI/ISO Standard was the next topic of discus-
sion, and you learned that various people and organizations criticized
the initial standards. I then discussed how ANSI/ISO responded to the
criticisms by adopting several revisions to the standard. You learned
how one version led to the next and how we arrived at the SQL/92 Stan-
dard. I explained how that standard defined various conformance lev-
els that allowed vendors to implement the standard’s features into their
products as smoothly as possible. Next, I discussed the progress that

86 Chapter 3 A Concise History of SQL

the SQL Standard has made since 1992, and I took a quick look at the
 evolution of commercial SQL databases.

I closed the chapter with a short discussion on the future of SQL. You
learned that SQL:2016 is a much more complex standard than SQL/92.
I also explained why SQL will continue to be developed, gave you some
good reasons for learning the language, and explained what parts of
SQL I cover in this book.

Part II
SQL Basics

This page intentionally left blank

 89

4
Creating a Simple Query

“Think like a wise man but communicate in the language of the people.”
—WILLIAM BUTLER YEATS

Topics Covered in This Chapter

Introducing SELECT

The SELECT Statement

A Quick Aside: Data versus Information

Translating Your Request into SQL

Eliminating Duplicate Rows

Sorting Information

Saving Your Work

Sample Statements

Summary

Problems for You to Solve

Now that you’ve learned a little bit about the history of SQL, it’s time to
jump right in and learn the language itself. As I mentioned in the Intro-
duction, I’m going to spend most of this book covering the data manip-
ulation portion of the language. So my initial focus will be on the true
workhorse of SQL—the SELECT statement.

90 Chapter 4 Creating a Simple Query

Introducing SELECT

Above all other keywords, SELECT truly lies at the heart of SQL. It is the
cornerstone of the most powerful and complex statement within the lan-
guage and the means by which you retrieve information from the tables
in your database. You use SELECT in conjunction with other keywords
and clauses to find and view information in an almost limitless number
of ways. Nearly any question regarding who, what, where, when, or even
what if and how many can be answered with SELECT. As long as you’ve
designed your database properly and collected the appropriate data, you
can get the answers you need to make sound decisions for your orga-
nization. As you’ll discover when you get to Part V, “Modifying Sets of
Data,” you’ll apply many of the techniques you learn about SELECT to
create UPDATE, INSERT, and DELETE statements.

The SELECT operation in SQL can be broken down into three smaller
operations, which I will refer to as the SELECT statement, the SELECT
expression, and the SELECT query. (Breaking down the SELECT opera-
tion in this manner will make it far easier to understand and to appre-
ciate its complexity.) Each of these operations provides its own set of
keywords and clauses, providing you with the flexibility to create a final
SQL statement that is appropriate for the question you want to pose to
the database. As you’ll learn in later chapters, you can even combine the
operations in various ways to answer very complex questions.

In this chapter, I’ll begin my discussion of the SELECT statement and
take a brief look at the SELECT query. I’ll then examine the SELECT
statement in more detail as you work through to Chapter 5, “Getting
More Than Simple Columns,” and Chapter 6, “Filtering Your Data.”

 ❖ Note In other books about relational databases, you’ll sometimes
see the word relation used for table, and you might encounter tuple
or record for row and perhaps attribute or field for column. However,
the SQL Standard specifically uses the terms table, row, and column
to refer to these particular elements of a database structure. I’ll stay
consistent with the SQL Standard and use these latter three terms
throughout the remainder of the book.

❖ Note In other books about relational databases, you’ll sometimes
see the word relation used for n table, and you might encounter tuple
or record for d row and perhaps w attribute or e field for d column. However,
the SQL Standard specifically uses the terms table, row, and column
to refer to these particular elements of a database structure. I’ll stay
consistent with the SQL Standard and use these latter three terms
throughout the remainder of the book.

 The SELECT Statement 91

The SELECT Statement

The SELECT statement forms the basis of every question you pose to the
database. When you create and execute a SELECT statement, you are
querying the database. (I know it sounds a little obvious, but I want to
make certain that everyone reading this starts from the same point of
reference.) In fact, many RDBMS programs allow you to save a SELECT
statement as a query, view, function, or stored procedure. Whenever
someone says she is going to query the database, you know that she’s
going to execute some sort of SELECT statement. Depending on the
RDBMS program, SELECT statements can be executed directly from
a command line window, from an interactive Query by Example (QBE)
grid, or from within a block of programming code. Regardless of how you
choose to define and execute it, the syntax of the SELECT statement is
always the same.

 ❖ Note Many database systems provide extensions to the SQL Stan-
dard to allow you to build complex programming statements (such
as If…Then…Else) in functions and stored procedures, but the spe-
cific syntax is unique to each different product. It is far beyond the
scope of this book to cover even one or two of these programming
languages—such as Microsoft SQL Server’s Transact-SQL or Oracle’s
PL/SQL. (I cover a basic form of If…Then…Else [CASE] defined in
the SQL Standard in Chapter 19, “Condition Testing.”) You’ll still use
the cornerstone SELECT statement when you build functions and
stored procedures for your particular database system. Throughout
this book, I’ll use the term view to refer to a saved SQL statement
even though you might embed your SQL statement in a function or
procedure.

A SELECT statement is composed of several distinct keywords, known
as clauses. You define a SELECT statement by using various configu-
rations of these clauses to retrieve the information you require. Some
of these clauses are required, although others are optional. Addition-
ally, each clause has one or more keywords that represent required or
optional values. These values are used by the clause to help retrieve the
information requested by the SELECT statement as a whole. Figure 4-1
shows a diagram of the SELECT statement and its clauses.

❖ Note Many database systems provide extensions to the SQL Stan-
dard to allow you to build complex programming statements (such
as If…ff Then… …Else) in functions and stored procedures, but the spe-
cific syntax is unique to each different product. It is far beyond the
scope of this book to cover even one or two of these programming
languages—such as Microsoft SQL Server’s Transact-SQL or Oracle’s
PL/SQL. (I cover a basic form of If…ff Then… …Else [CASE] defined in
the SQL Standard in Chapter 19, “Condition Testing.”) You’ll still use
the cornerstone SELECT statement when you build functions and
stored procedures for your particular database system. Throughout
this book, I’ll use the term view to refer to a saved SQL statement w
even though you might embed your SQL statement in a function or
procedure.

92 Chapter 4 Creating a Simple Query

SELECT Statement

SELECT

HAVING Search Condition

,
GROUP BY

,
FROM

WHERE Search Condition

column_name
,

table_name

column_name

Figure 4-1 A diagram of the SELECT statement

 ❖ Note The syntax diagram in Figure 4-1 reflects a rudimentary
SELECT statement. I’ll continue to update and modify the diagram as
I introduce and work with new keywords and clauses. So for those of
you who might have some previous experience with SQL statements,
just be patient and bear with me for the time being.

Here’s a brief summary of the clauses in a SELECT statement.

• SELECT—This is the primary clause of the SELECT statement and
is absolutely required. You use it to specify the columns you want
in the result set of your query. The columns themselves are drawn
from the table or view you specify in the FROM clause. (You can
also draw them from several tables simultaneously, but I’ll discuss
this later in Part III, “Working with Multiple Tables.”) You can also
use in this clause aggregate functions, such as Sum(HoursWorked),
or mathematical expressions, such as Quantity * Price.

• FROM—This is the second most important clause in the SELECT
statement and is also required. You use the FROM clause to specify
the tables or views from which to draw the columns you’ve listed in
the SELECT clause. You can use this clause in more complex ways,
but I’ll discuss this in later chapters.

❖ Note The syntax diagram in Figure 4-1 reflects a rudimentary
SELECT statement. I’ll continue to update and modify the diagram as
I introduce and work with new keywords and clauses. So for those of
you who might have some previous experience with SQL statements,
just be patient and bear with me for the time being.

 A Quick Aside: Data versus Information 93

• WHERE—This is an optional clause that you use to filter the rows
returned by the FROM clause. The WHERE keyword is followed by
an expression, technically known as a predicate, that evaluates
to true, false, or unknown. You can test the expression by using
standard comparison operators, Boolean operators, or special
operators. I’ll discuss all the elements of the WHERE clause in
Chapter 6.

• GROUP BY—When you use aggregate functions in the SELECT
clause to produce summary information, you use the GROUP BY
clause to divide the information into distinct groups. Your data-
base system uses any column or list of columns following the
GROUP BY keywords as grouping columns. The GROUP BY clause
is optional, and I’ll examine it further in Chapter 13, “Grouping
Data.”

• HAVING—The HAVING clause filters the result of aggregate func-
tions in grouped information. It is similar to the WHERE clause
in that the HAVING keyword is followed by an expression that
evaluates to true, false, or unknown. You can test the expression
by using standard comparison operators, Boolean operators, or
special operators. HAVING is also an optional clause, and I’ll take
a closer look at it in Chapter 14, “Filtering Grouped Data.”

You’re going to work with a very basic SELECT statement at first, so I’ll
focus on the SELECT and FROM clauses. I’ll add the other clauses, one
by one, as you work through the other chapters to build more complex
SELECT statements.

A Quick Aside: Data versus Information

Before you pose the first query to the database, one thing must be per-
fectly clear: There is a distinct difference between data and information.
In essence, data is what you store in the database, and information is
what you retrieve from the database. This distinction is important for
you to understand because it helps you to keep things in proper perspec-
tive. Remember that a database is designed to provide meaningful infor-
mation to someone within your organization. However, the information
can be provided only if the appropriate data exists in the database and

94 Chapter 4 Creating a Simple Query

if the database itself has been structured in such a way to support that
information. Let’s examine these terms in more detail.

The values that you store in the database are data. Data is static in the
sense that it remains in the same state until you modify it by some man-
ual or automated process. Figure 4-2 shows some sample data.

Katherine Ehrlich 89931 Active 79915

Figure 4-2 An example of basic data

On the surface, this data is meaningless. For example, there is no easy
way for you to determine what 89931 represents. Is it a ZIP Code? Is it
a part number? Even if you know it represents a customer identifica-
tion number, is it associated with Katherine Ehrlich? There’s no way
to know until the data is processed. After you process the data so that
it is meaningful and useful when you work with it or view it, the data
becomes information. Information is dynamic in that it constantly
changes relative to the data stored in the database and also in its abil-
ity to be processed and presented in an unlimited number of ways. You
can show information as the result of a SELECT statement, display it in
a form on your computer screen, or print it on paper as a report. But the
point to remember is that you must process your data in a manner that
enables you to turn it into meaningful information.

Figure 4-3 shows the data from the previous example transformed into
information on a customer screen. This illustrates how the data can be
manipulated in such a way that it is now meaningful to anyone who
views it.

Customer Information

Name (F/L):
Address:
City:
State: ZIP:

Katherine

TX 79915

7402 Taxco Avenue
El Paso 555-9284

554-0099

Active
Phone:
Fax:

Status:
Ehrlich 89931ID #:

Figure 4-3 An example of data processed into information

When you work with a SELECT statement, you use its clauses to
manipulate data, but the statement itself returns information. Get the
picture?

 Translating Your Request into SQL 95

There’s one last issue I need to address. When you execute a SELECT
statement, it usually retrieves one or more rows of information—the
exact number depends on how you construct the statement. These rows
are collectively known as a result set, which is the term I use throughout
the remainder of the book. This name makes perfect sense because you
always work with sets of data whenever you use a relational database.
(Remember that the relational model is based, in part, on set theory.)
You can easily view the information in a result set and, in many cases,
you can modify its data. But, once again, it all depends on how you con-
struct your SELECT statement.

So let’s get down to business and start using the SELECT statement.

Translating Your Request into SQL

When you request information from the database, it’s usually in the form
of a question or a statement that implies a question. For example, you
might formulate statements such as these:

“Which cities do our customers live in?”

“Show me a current list of our employees and their phone numbers.”

“What kind of classes do we currently offer?”

“Give me the names of the folks on our staff and the dates they
were hired.”

After you know what you want to ask, you can translate your request into
a more formal statement. You compose the translation using this form:

Select <item> from the <source>

Start by looking at your request and replacing words or phrases such as
“list,” “show me,” “what,” “which,” and “who” with the word “Select.” Next,
identify any nouns in your request, and determine whether a given noun
represents an item you want to see or the name of a table in which an
item might be stored. If it’s an item, use it as a replacement for <item> in
the translation statement. If it’s a table name, use it as a replacement for
<source>. If you translate the first question listed earlier, your statement
looks something like this:

Select city from the customers table

96 Chapter 4 Creating a Simple Query

After you define your translation statement, you need to turn it into a full-
fledged SELECT statement using the SQL syntax shown in Figure 4-4.

SELECT

SELECT Statement

,
FROMcolumn_name

,
table_name

Figure 4-4 The syntax of a simple SELECT statement

The first step, however, is to clean up your translation statement. You do
so by crossing out any word that is not a noun representing the name
of a column or table or that is not a word specifically used in the SQL
syntax. Here’s how the translation statement looks during the process of
cleaning it up:

Select city from the customers table

Remove the words you’ve crossed out, and you now have a complete
SELECT statement.

SELECT City FROM Customers

You can use the three-step technique I just presented on any request
you send to your database. In fact, I use this technique throughout most
of the book, and I encourage you to use it while you’re beginning to learn
how to build these statements. However, you’ll eventually merge these
steps into one seamless operation as you get more accustomed to writing
SELECT statements.

Remember that you’ll work mostly with columns and tables when you’re
beginning to learn how to use SQL. The syntax diagram in Figure 4-4
reflects this fact by using column_name in the SELECT clause and
table_name in the FROM clause. In the next chapter, you’ll learn how
to use other terms in these clauses to create more complex SELECT
statements.

You probably noticed that the request I used in the previous example
is relatively straightforward. It was easy to both redefine it as a trans-
lation statement and identify the column names that were present in

 Translating Your Request into SQL 97

the statement. But what if a request is not as straightforward and easy
to translate, and it’s difficult to identify the columns you need for the
SELECT clause? The easiest course of action is to refine your request
and make it more specific. For example, you can refine a request such as
“Show me the information on our clients” by recasting it more clearly as
“List the name, city, and phone number for each of our clients.” If refining
the request doesn’t solve the problem, you still have two other options.
Your first alternative is to determine whether the table specified in the
FROM clause of the SELECT statement contains any column names that
can help to clarify the request and thus make it easier to define a trans-
lation statement. Your second alternative is to examine the request more
closely and determine whether a word or phrase it contains implies any
column names. Whether you can use either or both alternatives depends
on the request itself. Just remember that you do have techniques avail-
able when you find it difficult to define a translation statement. Let’s
look at an example of each technique and how you can apply it in a typi-
cal scenario.

To illustrate the first technique, let’s say you’re trying to translate the
following request:

“I need the names and addresses of all our employees.”

This looks like a straightforward request on the surface. But if you
review this request again, you’ll find one minor problem: Although you
can determine the table you need (Employees) for the translation state-
ment, there’s nothing within the request that helps you identify the
specific columns you need for the SELECT clause. Although the words
“names” and “addresses” appear in the request, they are terms that are
general in nature. You can solve this problem by reviewing the table you
identified in the request and determining whether it contains any col-
umns you can substitute for these terms. If so, use the column names in
the translation statement. (You can opt to use generic versions of the col-
umn names in the translation statement if it will help you visualize the
statement more clearly. However, you will need to use the actual column
names in the SQL syntax.) In this case, look for column names in the
Employees table shown in Figure 4-5 that could be used in place of the
words “names” and “addresses.”

98 Chapter 4 Creating a Simple Query

EMPLOYEES

EmployeeID PK
EmpFirstName
EmpLastName
EmpStreetAddress
EmpCity
EmpState
EmpZipCode

EmpPhoneNumber
EmpAreaCode

Figure 4-5 The structure of the Employees table

To fully satisfy the need for “names” and “addresses,” you will indeed use
six columns from this table. EmpFirstName and EmpLastName will both
replace “names” in the request, and EmpStreetAddress, EmpCity, Emp-
State, and EmpZipCode will replace “addresses.” Now, apply the entire
translation process to the request, which I’ve repeated for your conve-
nience. (I’ll use generic forms of the column names for the translation
statement and the actual column names in the SQL syntax.)

“I need the names and addresses of all our employees.”

Translation Select first name, last name, street address, city, state,
and ZIP Code from the employees table

Clean Up Select first name, last name, street address, city, state,
and ZIP Code from the employees table

SQL SELECT EmpFirstName, EmpLastName,

 EmpStreetAddress, EmpCity,

 EmpState, EmpZipCode

FROM Employees

 ❖ Note This example clearly illustrates how to use multiple columns
in a SELECT clause. I’ll discuss this technique in more detail later in
this section.

The next example illustrates the second technique, which involves
searching for implied columns within the request. Let’s assume you’re
trying to put the following request through the translation process:

“What kind of classes do we currently offer?”

❖ Note This example clearly illustrates how to use multiple columns
in a SELECT clause. I’ll discuss this technique in more detail later in
this section.

 Translating Your Request into SQL 99

At first glance, it might seem difficult to define a translation statement
from this request. The request doesn’t indicate any column names, and
without even one item to select, you can’t create a complete translation
statement. What do you do now? Take a closer look at each word in the
request and determine whether there is one that implies a column name
within the Classes table. Before you read any further, take a moment to
study the request again. Can you find such a word?

In this case, the word “kind” might imply a column name in the Classes
table. Why? Because a kind of class can also be thought of as a cate-
gory of class. If there is a category column in the Classes table, then you
have the column name you need to complete the translation statement
and, by inference, the SELECT statement. Let’s assume that there is a
category column in the Classes table and take the request through the
three-step process once again.

“What kind of classes do we currently offer?”

Translation Select category from the classes table

Clean Up Select category from the classes table

SQL SELECT Category

FROM Classes

As the example shows, this technique involves using synonyms as
replacements for certain words or phrases within the request. If you
identify a word or phrase that might imply a column name, try to replace
it with a synonym. The synonym you choose might indeed identify a
column that exists in the database. However, if the first synonym that
comes to mind doesn’t work, try another. Continue this process until
you either find a synonym that does identify a column name or until
you’re satisfied that neither the original word nor any of its synonyms
represent a column name.

 ❖ Note Unless I indicate otherwise, all column names and table
names used in the SQL syntax portion of the examples are drawn
from the sample databases in Appendix B, “Schema for the Sample
Databases.” This convention applies to all examples for the remainder
of the book.

❖ Note Unless I indicate otherwise, all column names and table
names used in the SQL syntax portion of the examples are drawn
from the sample databases in Appendix B, “Schema for the Sample
Databases.” This convention applies to all examples for the remainder
of the book.

100 Chapter 4 Creating a Simple Query

Expanding the Field of Vision

You can retrieve multiple columns within a SELECT statement as easily
as you can retrieve a single column. List the names of the columns you
want to use in the SELECT clause, and separate each name in the list
with a comma. In the syntax diagram shown in Figure 4-6, the option to
use more than one column is indicated by a line that flows from right to
left beneath column_name. The comma in the middle of the line denotes
that you must insert a comma before the next column name you want to
use in the SELECT clause.

SELECT

Figure 4-6 The syntax for using multiple columns in a SELECT clause

The option to use multiple columns in the SELECT statement provides
you with the means to answer questions such as these:

“Show me a list of our employees and their phone numbers.”

Translation Select the last name, first name, and phone number of
all our employees from the employees table

Clean Up Select the last name, first name, and phone number
of all our employees from the employees table

SQL SELECT EmpLastName, EmpFirstName,

 EmpPhoneNumber

FROM Employees

“What are the names and prices of the products we carry, and under
what category is each item listed?”

Translation Select the name, price, and category of every product
from the products table

Clean Up Select the name, price, and category of every product
from the products table

SQL SELECT ProductName, RetailPrice,

 Category

FROM Products

 Translating Your Request into SQL 101

You gain the advantage of seeing a wider spectrum of information when
you work with several columns in a SELECT statement. Incidentally, the
sequence of the columns in your SELECT clause is not important—you
can list the columns in any order you want. This gives you the flexibility
to view the same information in a variety of ways.

For example, let’s say you’re working with the table shown in Figure 4-7,
and you’re asked to pose the following request to the database:

“Show me a list of subjects, the category each belongs to, and the code
we use in our catalog. But I’d like to see the name first, followed by the
category, and then the code.”

SUBJECTS

SubjectID PK
CategoryID FK
SubjectCode
SubjectName
SubjectDescription

Figure 4-7 The structure of the Subjects table

You can still transform this request into an appropriate SELECT state-
ment, even though the person making the request wants to see the
columns in a specific order. Just list the column names in the order
specified when you define the translation statement. Here’s how
the process looks when you transform this request into a SELECT
statement:

Translation Select the subject name, category ID, and subject code
from the subjects table

Clean Up Select the subject name, category ID, and subject code
from the subjects table

SQL SELECT SubjectName, CategoryID, SubjectCode

FROM Subjects

Using a Shortcut to Request All Columns

There is no limit to the number of columns you can specify in the SELECT
clause—in fact, you can list all the columns from the source table.

102 Chapter 4 Creating a Simple Query

The following example shows the SELECT statement you use to specify all
the columns from the Subjects table in Figure 4-7:

SQL SELECT SubjectID, CategoryID, SubjectCode,

 SubjectName, SubjectDescription

FROM Subjects

When you specify all the columns from the source table, you’ll have a lot
of typing to do if the table contains a number of columns! Fortunately,
the SQL Standard specifies the asterisk as a shortcut you can use to
shorten the statement considerably. The syntax diagram in Figure 4-8
shows that you can use the asterisk as an alternative to a list of col-
umns in the SELECT clause.

SELECT

Figure 4-8 The syntax for the asterisk shortcut

Place the asterisk immediately after the SELECT clause when you want
to specify all the columns from the source table in the FROM clause. For
example, here’s how the preceding SELECT statement looks when you
use the shortcut:

SQL SELECT *

FROM Subjects

You’ll certainly do less typing with this statement! However, one issue
arises when you create SELECT statements in this manner: The asterisk
represents all of the columns that currently exist in the source table, and
adding or deleting columns affects what you see in the result set of the
SELECT statement. (Oddly enough, the SQL Standard states that add-
ing or deleting columns should not affect your result set.) This issue is
important only if you must see the same columns in the result set con-
sistently. Your database system will not warn you if columns have been
deleted from the source table when you use the asterisk in the SELECT
clause, but it will raise a warning when it can’t find a column you
explicitly specified. Although this does not pose a real problem for our

 Eliminating Duplicate Rows 103

purposes, it will be an important issue when you delve into the world of
programming with SQL. My rule of thumb is this: Use the asterisk only
when you need to create a “quick and dirty” query to see all the informa-
tion in a given table. Otherwise, specify all the columns you need for the
query. In the end, the query will return exactly the information you need
and will be more self-documenting.

The examples we’ve seen so far are based on simple requests that
require columns from only one table. You’ll learn how to work with more
complex requests that require columns from several tables in Part III.

Eliminating Duplicate Rows

When working with SELECT statements, you’ll inevitably come across
result sets with duplicate rows. There is no cause for alarm if you see
such a result set. Use the DISTINCT keyword in your SELECT state-
ment, and the result set will be free and clear of all duplicate rows.
 Figure 4-9 shows the syntax diagram for the DISTINCT keyword.

As the diagram illustrates, DISTINCT is an optional keyword that pre-
cedes the list of columns specified in the SELECT clause. The DISTINCT
keyword asks your database system to evaluate the values of all the col-
umns as a single unit on a row-by-row basis and eliminate any redun-
dant rows it finds. The remaining unique rows are then returned to the
result set. The following example shows what a difference the DISTINCT
keyword can make under the appropriate circumstances.

SELECT

SELECT Statement

column_name
, ,

FROM table_name
DISTINCT

Figure 4-9 The syntax for the DISTINCT keyword

Let’s say you’re posing the following request to the database:

“Which cities are represented by our bowling league membership?”

104 Chapter 4 Creating a Simple Query

The question seems easy enough, so you take it through the translation
process.

Translation Select city from the bowlers table

Clean Up Select city from the bowlers table

SQL SELECT City

FROM Bowlers

The problem is that the result set for this SELECT statement shows
every occurrence of each city name found in the Bowlers table. For
example, if there are 20 people from Bellevue, 7 people from Kent,
and 14 people from Seattle, the result set displays 20 occurrences of
 Bellevue, 7 occurrences of Kent, and 14 occurrences of Seattle. Clearly,
this redundant information is unnecessary. All you want to see is
a single occurrence of each city name found in the Bowlers table. You
resolve this problem by using the DISTINCT keyword in the SELECT
statement to eliminate the redundant information.

Let’s run the request through the translation process once again using
the DISTINCT keyword. Note that I now include the word “distinct” in
both the Translation step and the Clean Up step.

“Which cities are represented by our bowling league membership?”

Translation Select the distinct city values from the bowlers table

Clean Up Select the distinct city values from the bowlers table

SQL SELECT DISTINCT City

FROM Bowlers

The result set for this SELECT statement displays exactly what you’re
looking for—a single occurrence of each distinct (or unique) city found in
the Bowlers table.

You can use the DISTINCT keyword on multiple columns as well. Let’s
modify the previous example by requesting both the city and the state
from the Bowlers table. The new SELECT statement looks like this:

SELECT DISTINCT City, State FROM Bowlers

 Sorting Information 105

This SELECT statement returns a result set that contains unique
records and shows definite distinctions between cities with the same
name. For example, it shows the distinction between “Portland, ME,”
“Portland, OR,” “Hollywood, CA,” and “Hollywood, FL.” It’s worthwhile
to note that most database systems sort the output in the sequence
in which you specify the columns, so you’ll see these values in the
sequence “Hollywood, CA,” “Hollywood, FL,” “Portland, ME,” and “Port-
land, OR.” However, the SQL Standard does not require the result to be
sorted in this order. If you want to guarantee the sort sequence, read on
to the next section to learn about the ORDER BY clause.

The DISTINCT keyword is a very useful tool under the right circum-
stances. Use it only when you really want to see unique rows in your
result set.

 ❖ Caution For database systems that include a graphical interface,
you can usually request that the result set of a query be displayed in
an updatable grid of rows and columns. You can type a new value in a
column on a row, and the database system updates the value stored in
your table. (Your database system actually executes an UPDATE query
on your behalf behind the scenes—you can read more about that in
Chapter 15, “Updating Sets of Data.”)

However, in all database systems that I studied, when you include the
DISTINCT keyword, the resulting set of rows cannot be updated. To
be able to update a column in a row, your database system needs to
be able to uniquely identify the specific row and column you want
to change. When you use DISTINCT, the values you see in each row
are the result of evaluating perhaps dozens of duplicate rows. If you
try to update one of the columns, your database won’t know which
specific row to change. Your database system also doesn’t know if per-
haps you mean to change all the rows with the same duplicate value.

Sorting Information

At the beginning of this chapter, I said that the SELECT operation
can be broken down into three smaller operations: the SELECT state-
ment, the SELECT expression, and the SELECT query. I also stated that

❖ Caution For database systems that include a graphical interface,
you can usually request that the result set of a query be displayed in
an updatable grid of rows and columns. You can type a new value in a
column on a row, and the database system updates the value stored in
your table. (Your database system actually executes an UPDATE query
on your behalf behind the scenes—you can read more about that in
Chapter 15, “Updating Sets of Data.”)

However, in all database systems that I studied, when you include the
DISTINCT keyword, the resulting set of rows cannot be updated. To
be able to update a column in a row, your database system needs to
be able to uniquely identify the specific row and column you want
to change. When you use DISTINCT, the values you see in each row
are the result of evaluating perhaps dozens of duplicate rows. If you
try to update one of the columns, your database won’t know which
specific row to change. Your database system also doesn’t know if per-
haps you mean to change all the rows with the same duplicate value.

106 Chapter 4 Creating a Simple Query

you can combine these operations in various ways to answer complex
requests. However, you also need to combine these operations in order to
sort the rows of a result set.

By definition, the rows of a result set returned by a SELECT statement
are unordered. The sequence in which they appear is typically based on
their physical position in the table. (The actual sequence is often deter-
mined dynamically by your database system based on how it decides to
most efficiently satisfy your request.) The only way to sort the result set
is to embed the SELECT statement within a SELECT query, as shown in
Figure 4-10. I define a SELECT query as a SELECT statement with an
ORDER BY clause. The ORDER BY clause of the SELECT query lets you
specify the sequence of rows in the final result set. As you’ll learn in later
chapters, you can actually embed a SELECT statement within another
SELECT statement or SELECT expression to answer very complex ques-
tions. However, the SELECT query cannot be embedded at any level.

SELECT Statement

SELECT Query

ASC
DESC

ORDER BY column_name

,

Figure 4-10 The syntax diagram for the SELECT query

 ❖ Note Throughout this book, I use the same terms you’ll find in
the SQL Standard or in common usage in most database systems.
Earlier versions of the SQL Standard, however, defined the ORDER BY
clause as part of a cursor (an object that you define inside an applica-
tion program), as part of an array (a list of values that form a logical
table such as a subquery, discussed in Chapter 11, “Subqueries”), or
as part of a scalar subquery (a subquery that returns only one value).
A complete discussion of cursors and arrays is beyond the scope of
this book.

Because nearly all implementations of SQL allow you to include an
ORDER BY clause at the end of a SELECT statement that you can
save in a view, I invented the term SELECT query to describe this type
of statement. This also allows me to discuss the concept of sorting

❖ Note Throughout this book, I use the same terms you’ll find in
the SQL Standard or in common usage in most database systems.
Earlier versions of the SQL Standard, however, defined the ORDER BY
clause as part of a cursor (an object that you define inside an applica-r
tion program), as part of an array (a list of values that form a logical y
table such as a subquery, discussed in Chapter 11, “Subqueries”), or
as part of a scalar subquery (a subquery that returns only one value). y
A complete discussion of cursors and arrays is beyond the scope of
this book.

Because nearly all implementations of SQL allow you to include an
ORDER BY clause at the end of a SELECT statement that you can
save in a view, I invented the term SELECT query to describe this type y
of statement. This also allows me to discuss the concept of sorting

 Sorting Information 107

the final output of a query for display online or for use in a report.
The latest 2016 standard uses the term <query specification> for
what I call a SELECT statement and the term <query expression> for
the construct that I have called SELECT query. In this one case, I’ll
deviate (with your permission) from the names in the standard and
use my terminology.

The ORDER BY clause allows you to sort the result set of the specified
SELECT statement by one or more columns and also provides the option
of specifying an ascending or descending sort order for each column.
The only columns you can use in the ORDER BY clause are those that
are currently listed in the SELECT clause. (Although this requirement
is specified in the SQL Standard, some vendor implementations allow
you to disregard it completely and include any column from any table
in the FROM clause. However, I comply with this requirement in all the
examples used throughout the book.) When you use two or more col-
umns in an ORDER BY clause, separate each column with a comma.
The SELECT query returns a final result set once the sort is complete.

 ❖ Note The ORDER BY clause does not affect the physical order of
the rows in a table. If you do need to change the physical order of the
rows, refer to your database software’s documentation for the proper
procedure.

First Things First: Collating Sequences

Before I look at some examples using the SELECT query, a brief word
on collating sequences is in order. The manner in which the ORDER BY
clause sorts the information depends on the collating sequence used by
your database software. The collating sequence determines the order of
precedence for every character listed in the current language character
set specified by your operating system. For example, it identifies whether
lowercase letters will be sorted before uppercase letters, or whether case
will even matter. Check your database software’s documentation, and
perhaps consult your database administrator to determine the default
collating sequence for your database. For more information on collating
sequences, see the subsection “Comparing String Values: A Caution” in
Chapter 6.

❖ Note The ORDER BY clause does not affect the physical order of t
the rows in a table. If you do need to change the physical order of the
rows, refer to your database software’s documentation for the proper
procedure.

the final output of a query for display online or for use in a report.
The latest 2016 standard uses the term <query specification> for
what I call a SELECT statement and the term t <query expression> for >
the construct that I have called SELECT query. In this one case, I’ll
deviate (with your permission) from the names in the standard and
use my terminology.

108 Chapter 4 Creating a Simple Query

Let’s Now Come to Order

With the availability of the ORDER BY clause, you can present the infor-
mation you retrieve from the database in a more meaningful fashion.
This applies to simple requests as well as complex ones. You can now
rephrase your requests so that they also indicate sorting requirements.
For example, a question such as “What are the categories of classes we
currently offer?” can be restated as “List the categories of classes we offer
and show them in alphabetical order.”

Before beginning to work with the SELECT query, you need to adjust
the way you define a translation statement. This involves adding a new
section at the end of the translation statement to account for the new
sorting requirements specified within the request. Use this new form to
define the translation statement:

Select <item> from the <source> and order by <column(s)>

Now that your request will include phrases such as “sort the results by
city,” “show them in order by year,” or “list them by last name and first
name,” study the request closely to determine which column or columns
you need to use for sorting purposes. This is a simple exercise because
most people use these types of phrases, and the columns needed for the
sort are usually self-evident. After you identify the appropriate column
or columns, use them as a replacement for <column(s)> in the trans-
lation statement. Let’s take a look at a simple request to see how this
works:

“List the categories of classes we offer and show them in alphabetical
order.”

Translation Select category from the classes table and order by
category

Clean Up Select category from the classes table and order by
category

SQL SELECT Category

FROM Classes

ORDER BY Category

In this example, you can assume that Category will be used for the
sort because it’s the only column indicated in the request. You can

 Sorting Information 109

also assume that the sort should be in ascending order because there’s
nothing in the request to indicate the contrary. This is a safe assump-
tion. According to the SQL Standard, ascending order is automatically
assumed if you don’t specify a sort order. However, if you want to be
absolutely explicit, insert ASC after Category in the ORDER BY clause.

In the following request, the column needed for the sort is more clearly
defined:

“Show me a list of vendor names in ZIP Code order.”

Translation Select vendor name and ZIP Code from the vendors table
and order by ZIP Code

Clean Up Select vendor name and ZIP Code from the vendors table
and order by ZIP Code

SQL SELECT VendName, VendZipCode

FROM Vendors

ORDER BY VendZipCode

In general, most people will tell you if they want to see their informa-
tion in descending order. When this situation arises and you need to dis-
play the result set in reverse order, insert the DESC keyword after the
appropriate column in the ORDER BY clause. For example, here’s how
you would modify the SELECT statement in the previous example when
you want to see the information sorted by ZIP Code in descending order:

SQL SELECT VendName, VendZipCode

FROM Vendors

ORDER BY VendZipCode DESC

 ❖ Note If there is more than one vendor in a given ZIP Code, your
database system determines the sort order of the vendor names
unless you add that to the ORDER BY clause.

The next example illustrates a more complex request that requires a mul-
ticolumn sort. The only difference between this example and the previous
two examples is that this example uses more columns in the ORDER BY

❖ Note If there is more than one vendor in a given ZIP Code, your
database system determines the sort order of the vendor names
unless you add that to the ORDER BY clause.

110 Chapter 4 Creating a Simple Query

clause. Note that the columns are separated with commas, which is in
accordance with the syntax diagram shown earlier in Figure 4-10.

“Display the names of our employees, including their phone number
and ID number, and list them by last name and first name.”

Translation Select last name, first name, phone number, and
employee ID from the employees table and order by
last name and first name

Clean Up Select last name, first name, phone number, and
employee ID from the employees table and order by
last name and first name

SQL SELECT EmpLastName, EmpFirstName,

 EmpPhoneNumber, EmployeeID

FROM Employees

ORDER BY EmpLastName, EmpFirstName

One of the interesting things you can do with the columns in an ORDER
BY clause is to specify a different sort order for each column. In the pre-
vious example, you can specify a descending sort for the column con-
taining the last name and an ascending sort for the column containing
the first name. Here’s how the SELECT statement looks when you make
the appropriate modifications:

SQL SELECT EmpLastName, EmpFirstName,

 EmpPhoneNumber, EmployeeID

FROM Employees

ORDER BY EmpLastName DESC, EmpFirstName ASC

Although you don’t need to use the ASC keyword explicitly, the state-
ment is more self-documenting if you include it.

The previous example brings an interesting question to mind: Is any
importance placed on the sequence of the columns in the ORDER BY
clause? The answer is “Yes!” The sequence is important because your
database system will evaluate the columns in the ORDER BY clause
from left to right. Also, the importance of the sequence grows in direct
proportion to the number of columns you use. Always sequence the col-
umns in the ORDER BY clause properly so that the result sorts in the
appropriate order.

 Saving Your Work 111

 ❖ Note The database products from Microsoft (Microsoft Office
Access and Microsoft SQL Server) include an interesting extension
that allows you to request a subset of rows based on your ORDER BY
clause by using the TOP keyword in the SELECT clause. For example,
you can find out the five most expensive products in the Sales Orders
database by requesting:

SELECT TOP 5 ProductName, RetailPrice
 FROM Products
 ORDER BY RetailPrice DESC

The database sorts all the rows from the Products table descending by
price and then returns the top five rows. Both database systems also
allow you to specify the number of rows returned as a percentage of
all the rows. For example, you can find out the top 10 percent of prod-
ucts by price by requesting:

SELECT TOP 10 PERCENT ProductName, RetailPrice
 FROM Products
 ORDER BY RetailPrice DESC

In fact, if you want to specify ORDER BY in a view, SQL Server
requires that you include the TOP keyword. If you want all rows, you
must specify TOP 100 PERCENT. For this reason, you’ll see that all
the sample views in SQL Server that include an ORDER BY clause
also specify TOP 100 PERCENT. There is no such restriction in Micro-
soft Access.

Saving Your Work

Save your SELECT statements—every major database software program
provides a way for you to save them! Saving your statements eliminates
the need to recreate them every time you want to make the same request
to the database. When you save your SELECT statement, assign a mean-
ingful name that will help you remember what type of information the
statement provides. And if your database software allows you to do so,
write a concise description of the statement’s purpose. The value of the
description will become quite clear when you haven’t seen a particular
SELECT statement for some time and you need to remember why you
constructed it in the first place.

❖ Note The database products from Microsoft (Microsoft Office
Access and Microsoft SQL Server) include an interesting extension
that allows you to request a subset of rows based on your ORDER BY
clause by using the TOP keyword in the SELECT clause. For example,
you can find out the five most expensive products in the Sales Orders
database by requesting:

SELECT TOP 5 ProductName, RetailPrice
 FROM Products
 ORDER BY RetailPrice DESC

The database sorts all the rows from the Products table descending by
price and then returns the top five rows. Both database systems also
allow you to specify the number of rows returned as a percentage of
all the rows. For example, you can find out the top 10 percent of prod-
ucts by price by requesting:

SELECT TOP 10 PERCENT ProductName, RetailPrice
 FROM Products
 ORDER BY RetailPrice DESC

In fact, if you want to specify ORDER BY in a view, SQL Server
requires that you include the TOP keyword. If you want all rows, you
must specify TOP 100 PERCENT. For this reason, you’ll see that all
the sample views in SQL Server that include an ORDER BY clause
also specify TOP 100 PERCENT. There is no such restriction in Micro-
soft Access.

112 Chapter 4 Creating a Simple Query

A saved SELECT statement is categorized as a query in some data-
base programs and as a view, function, or stored procedure in others.
Regardless of its designation, every database program provides you
with a means to execute, or run, the saved statement and work with its
result set.

 ❖ Note For the remainder of this discussion, I’ll use the word query
to represent the saved SELECT statement and execute to represent the
method used to work with it.

Two common methods are used to execute a query. The first is an inter-
active device (such as a command on a toolbar or query grid), and the
second is a block of programming code. You’ll use the first method quite
extensively. There’s no need to worry about the second method until you
begin working with your database software’s programming language.
Although it’s my job to teach you how to create and use SQL statements,
it’s your job to learn how to create, save, and execute them in your data-
base software program.

 ❖ Note You’ll find all the sample statements and problems saved in
the sample databases for Microsoft Access (queries), Microsoft SQL
Server (views), MySQL (views), and PostgreSQL (views).

Unlike most database systems, SQL Server has a small quirk about
using ORDER BY in views. Although you can certainly save a query
with an ORDER BY clause as a view, SQL Server ignores the ORDER
BY if you call the view from a program, another view, or from a com-
mand line utility. As a result, sample queries saved in SQL Server
that include ORDER BY will not be returned in the sequence specified
in the query. You must either open the view in the designer tool and
execute it from there or call the view with an additional ORDER BY
clause, as in SELECT * FROM <view name> ORDER BY <original
ORDER by specification>.

❖ Note For the remainder of this discussion, I’ll use the word query
to represent the saved SELECT statement and execute to represent thee
method used to work with it.

❖ Note You’ll find all the sample statements and problems saved in
the sample databases for Microsoft Access (queries), Microsoft SQL
Server (views), MySQL (views), and PostgreSQL (views).

Unlike most database systems, SQL Server has a small quirk about
using ORDER BY in views. Although you can certainly save a query
with an ORDER BY clause as a view, SQL Server ignores the ORDER
BY if you call the view from a program, another view, or from a com-
mand line utility. As a result, sample queries saved in SQL Server
that include ORDER BY will not be returned in the sequence specified
in the query. You must either open the view in the designer tool and
execute it from there or call the view with an additional ORDER BY
clause, as in SELECT * FROM <view name> ORDER BY <original
ORDER by specification>.

 Sample Statements 113

Sample Statements

Now that I’ve covered the basic characteristics of the SELECT state-
ment and SELECT query, let’s take a look at some examples of how these
operations are applied in different scenarios. These examples encom-
pass each of the sample databases, and they illustrate the use of the
SELECT statement, the SELECT query, and the two supplemental tech-
niques used to establish columns for the translation statement. I’ve also
included sample result sets that would be returned by these operations
and placed them immediately after the SQL syntax line. The name that
appears immediately above a result set has a twofold purpose: It iden-
tifies the result set itself, and it is also the name that I assigned to the
SQL statement in the example.

In case you’re wondering why I assigned a name to each SQL
statement, it’s because I saved them! In fact, I’ve named and saved all
the SQL statements that appear in the examples here and throughout
the remainder of the book. Each is stored in the appropriate sample
database (as indicated within the example), and I prefixed the names
of the queries relevant to this chapter with “CH04.” You can follow the
instructions in the Introduction of this book to load the samples onto
your computer. This gives you the opportunity to see these statements in
action before you try your hand at writing them yourself.

 ❖ Note Just a reminder: All the column names and table names
used in these examples are drawn from the sample database struc-
tures shown in Appendix B. Also keep in mind that for any query you
run which does not have an ORDER BY clause, the sequence of rows
returned is undefined. In most cases, the sequence of rows returned
by any such query in any of my sample databases (Microsoft SQL
Server, Microsoft Office Access, MySQL, or PostgreSQL) will not neces-
sarily match the sequence of rows I show you in this book. If you use
the SQL Scripts to load the samples into another database system,
you will see the same number of rows and the same data in those
rows, but the sequence might be different.

❖ Note Just a reminder: All the column names and table names
used in these examples are drawn from the sample database struc-
tures shown in Appendix B. Also keep in mind that for any query you
run which does not have an ORDER BY clause, the sequence of rows
returned is undefined. In most cases, the sequence of rows returned
by any such query in any of my sample databases (Microsoft SQL
Server, Microsoft Office Access, MySQL, or PostgreSQL) will not neces-
sarily match the sequence of rows I show you in this book. If you use
the SQL Scripts to load the samples into another database system,
you will see the same number of rows and the same data in those
rows, but the sequence might be different.

114 Chapter 4 Creating a Simple Query

Sales Orders Database

“Show me the names of all our vendors.”

Translation Select the vendor name from the vendors table

Clean Up Select the vendor name from the vendors table

SQL SELECT VendName

FROM Vendors

CH04_Vendor_Names (10 Rows)

VendName

Shinoman, Incorporated

Viscount

Nikoma of America

ProFormance

Kona, Incorporated

Big Sky Mountain Bikes

Dog Ear

Sun Sports Suppliers

Lone Star Bike Supply

Armadillo Brand

“What are the names and prices of all the products we carry?”

Translation Select product name, retail price from the products table

Clean Up Select product name, retail price from the products table

SQL SELECT ProductName, RetailPrice

FROM Products

 Sample Statements 115

CH04_Product_Price_List (40 Rows)

ProductName Retail Price

Trek 9000 Mountain Bike $1,200.00

Eagle FS-3 Mountain Bike $1,800.00

Dog Ear Cyclecomputer $75.00

Victoria Pro All Weather Tires $54.95

Dog Ear Helmet Mount Mirrors $7.45

Viscount Mountain Bike $635.00

Viscount C-500 Wireless Bike Computer $49.00

Kryptonite Advanced 2000 U-Lock $50.00

Nikoma Lok-Tight U-Lock $33.00

Viscount Microshell Helmet $36.00

<< more rows here >>

“Which states do our customers come from?”

Translation Select the distinct state values from the customers table

Clean Up Select the distinct state values from the customers table

SQL SELECT DISTINCT CustState

FROM Customers

CH04_Customer_States (4 Rows)

CustState

CA

OR

TX

WA

116 Chapter 4 Creating a Simple Query

Entertainment Agency Database

“List all entertainers and the cities they’re based in, and sort the
results by city and name in ascending order.”

Translation Select city and stage name from the entertainers table
and order by city and stage name

Clean Up Select city and stage name from the entertainers table
and order by city and stage name

SQL SELECT EntCity, EntStageName

FROM Entertainers

ORDER BY EntCity ASC, EntStageName ASC

CH04_Entertainer_Locations (13 Rows)

EntCity EntStageName

Auburn Caroline Coie Cuartet

Auburn Topazz

Bellevue Jazz Persuasion

Bellevue Jim Glynn

Bellevue Susan McLain

Redmond Carol Peacock Trio

Redmond JV & the Deep Six

Seattle Coldwater Cattle Company

Seattle Country Feeling

Seattle Julia Schnebly

<< more rows here >>

“Give me a unique list of engagement dates. I’m not concerned with
how many engagements there are per date.”

 Sample Statements 117

Translation Select the distinct start date values from the
 engagements table

Clean Up Select the distinct start date values from the
 engagements table

SQL SELECT DISTINCT StartDate

FROM Engagements

CH04_Engagement_Dates (64 Rows)

StartDate

2017-09-02

2017-09-11

2017-09-12

2017-09-16

2017-09-18

2017-09-19

2017-09-25

2017-09-30

2017-10-01

2017-10-02

<< more rows here >>

School Scheduling Database

“Can we view complete class information?”

Translation Select all columns from the classes table

Clean Up Select all columns * from the classes table

SQL SELECT *

FROM Classes

118 Chapter 4 Creating a Simple Query

CH04_Class_Information (132 Rows)

ClassID SubjectID ClassRoomID Credits StartDate StartTime Duration <<other
columns>>

1000 11 1231 5 2017-9-12 10:00 50 …

1002 12 1619 4 2017-9-11 15:30 110 …

1004 13 1627 4 2017-9-11 08:00 50 …

1006 13 1627 4 2017-9-11 09:00 110 …

1012 14 1627 4 2017-9-12 13:00 170 …

1020 15 3404 4 2017-9-12 13:00 110 …

1030 16 1231 5 2017-9-11 11:00 50 …

1031 16 1231 5 2017-9-11 14:00 50 …

1156 37 3443 5 2017-9-11 16:00 50 …

1162 37 3443 5 2017-9-11 09:00 80 …

<< more rows here >>

“Give me a list of the buildings on campus and the number of floors for
each building. Sort the list by building in ascending order.”

Translation Select building name and number of floors from the
buildings table, ordered by building name

Clean Up Select building name and number of floors from the
buildings table, ordered by building name

SQL SELECT BuildingName, NumberOfFloors

FROM Buildings

ORDER BY BuildingName ASC

CH04_Building_List (6 Rows)

BuildingName NumberOfFloors

Arts and Sciences 3

College Center 3

Instructional Building 3

Library 2

PE and Wellness 1

Technology Building 2

 Sample Statements 119

Bowling League Database

“Where are we holding our tournaments?”

Translation Select the distinct tourney location values from the
tournaments table

Clean Up Select the distinct tourney location values from the
tournaments table

SQL SELECT DISTINCT TourneyLocation

FROM Tournaments

CH04_Tourney_Locations (7 Rows)

TourneyLocation

Acapulco Lanes

Bolero Lanes

Imperial Lanes

Red Rooster Lanes

Sports World Lanes

Thunderbird Lanes

Totem Lanes

“Give me a list of all tournament dates and locations. I need the dates
in descending order and the locations in alphabetical order.”

Translation Select tourney date and location from the tournaments
table and order by tourney date in descending order and
location in ascending order

Clean Up Select tourney date and location from the tournaments
table and order by tourney date in descending order and
location in ascending order

SQL SELECT TourneyDate, TourneyLocation

FROM Tournaments

ORDER BY TourneyDate DESC, TourneyLocation ASC

120 Chapter 4 Creating a Simple Query

CH04_Tourney_Dates (20 Rows)

TourneyDate TourneyLocation

2018-08-16 Totem Lanes

2018-08-09 Imperial Lanes

2018-08-02 Sports World Lanes

2018-07-26 Bolero Lanes

2018-07-19 Thunderbird Lanes

2018-07-12 Red Rooster Lanes

2017-12-04 Acapulco Lanes

2017-11-27 Totem Lanes

2017-11-20 Sports World Lanes

2017-11-13 Imperial Lanes

<< more rows here >>

Recipes Database

“What types of recipes do we have, and what are the names of the
 recipes we have for each type? Can you sort the information by type
and recipe name?”

Translation Select recipe class ID and recipe title from the recipes
table and order by recipe class ID and recipe title

Clean Up Select recipe class ID and recipe title from the recipes
table and order by recipe class ID and recipe title

SQL SELECT RecipeClassID, RecipeTitle

FROM Recipes

ORDER BY RecipeClassID ASC, RecipeTitle ASC

CH04_Recipe_Classes_And_Titles (15 Rows)

RecipeClassID RecipeTitle

1 Fettuccini Alfredo

1 Huachinango Veracruzana

(Red Snapper, Veracruz style)

1 Irish Stew

 Sample Statements 121

RecipeClassID RecipeTitle

1 Pollo Picoso

1 Roast Beef

1 Salmon Filets in Parchment Paper

1 Tourtière

(French-Canadian Pork Pie)

2 Asparagus

2 Garlic Green Beans

3 Yorkshire Pudding

<< more rows here >>

“Show me a list of unique recipe class IDs in the recipes table.”

Translation Select the distinct recipe class ID values from the
 recipes table

Clean Up Select the distinct recipe class ID values from the
 recipes table

SQL SELECT DISTINCT RecipeClassID

FROM Recipes

CH04_Recipe_Class_Ids (6 Rows)

RecipeClassID

1

2

3

4

5

6

122 Chapter 4 Creating a Simple Query

Summary

In this chapter, I introduced the SELECT operation, and you learned
that it is one of four data manipulation operations in SQL. (The others
are UPDATE, INSERT, and DELETE, covered in Part V.) I also discussed
how the SELECT operation can be divided into three smaller operations:
the SELECT statement, the SELECT expression, and the SELECT query.

The discussion then turned to the SELECT statement, where you were
introduced to its component clauses. I covered the fact that the SELECT
and FROM clauses are the fundamental clauses required to retrieve
information from the database and that the remaining clauses—
WHERE, GROUP BY, and HAVING—are used to conditionally process
and filter the information returned by the SELECT clause.

I briefly diverged into a discussion of the difference between data and
information. You learned that the values stored in the database are data
and that information is data that has been processed in a manner that
makes it meaningful to the person viewing it. You also learned that the
rows of information returned by a SELECT statement are known as a
result set.

Retrieving information was the next topic of discussion, and I began by
presenting the basic form of the SELECT statement. You learned how to
build a proper SELECT statement by using a three-step technique that
involves taking a request and translating it into proper SQL syntax. You
also learned that you could use two or more columns in the SELECT
clause to expand the scope of information you retrieve from your data-
base. I followed this section with a quick look at the DISTINCT keyword,
which you learned is the means for eliminating duplicate rows from a
result set.

Next, I looked at the SELECT query and how it can be combined with
a SELECT statement to sort the SELECT statement’s result set. You
learned that this is necessary because the SELECT query is the only
SELECT operation that contains an ORDER BY clause. I went on to
show that the ORDER BY clause is used to sort the information by one
or more columns and that each column can have its own ascending or
descending sort specification. A brief discussion on saving your SELECT
statements followed, and you learned that you can save your statement
as a query or a view for future use.

 Problems for You to Solve 123

Finally, I presented a number of examples using various tables in the
sample databases. The examples illustrated how the various concepts
and techniques presented in this chapter are used in typical scenar-
ios and applications. In the next chapter, I’ll take a closer look at the
SELECT clause and show you how to retrieve something besides infor-
mation from a list of columns.

The following section presents a number of requests that you can work
out on your own.

Problems for You to Solve

Below, I show you the request statement and the name of the solution
query in the sample databases. If you want some practice, you can work
out the SQL you need for each request and then check your answer with
the query I saved in the samples. Don’t worry if your syntax doesn’t
exactly match the syntax of the queries I saved—as long as your result
set is the same.

Sales Orders Database

 1. “Show me all the information on our employees.”

You can find the solution in CH04_Employee_Information
(8 rows).

 2. “Show me a list of cities, in alphabetical order, where our vendors
are located, and include the names of the vendors we work with in
each city.”

You can find the solution in CH04_Vendor_Locations (10 rows).

Entertainment Agency Database

 1. “Give me the names and phone numbers of all our agents, and list
them in last name/first name order.”

You can find the solution in CH04_Agent_Phone_List (9 rows).

 2. “Give me the information on all our engagements.”

You can find the solution in CH04_Engagement_Information
(111 rows).

124 Chapter 4 Creating a Simple Query

 3. “List all engagements and their associated start dates. Sort
the records by date in descending order and by engagement in
 ascending order.”

You can find the solution in CH04_Scheduled_Engagements
(111 rows).

School Scheduling Database

 1. “Show me a complete list of all the subjects we offer.”

You can find the solution in CH04_Subject_List (56 rows).

 2. “What kinds of titles are associated with our faculty?”

You can find the solution in CH04_Faculty_Titles (3 rows).

 3. “List the names and phone numbers of all our staff, and sort them
by last name and first name.”

You can find the solution in CH04_Staff_Phone_List (27 rows).

Bowling League Database

 1. “List all of the teams in alphabetical order.”

You can find the solution in CH04_Team_List (10 rows).

 2. “Show me all the bowling score information for each of our
members.”

You can find the solution in CH04_Bowler_Score_Information
(1,344 rows).

 3. “Show me a list of bowlers and their addresses, and sort it in
 alphabetical order.”

You can find the solution in CH04_Bowler_Names_Addresses
(32 rows).

Recipes Database

 1. “Show me a list of all the ingredients we currently keep track of.”

You can find the solution in CH04_Complete_Ingredient_List
(79 rows).

 2. “Show me all the main recipe information, and sort it by the name of
the recipe in alphabetical order.”

You can find the solution in CH04_Main_Recipe_Information
(15 rows).

 125

5
Getting More Than

Simple Columns

“Facts are stubborn things.”
—TOBIAS SMOLLETT GIL BLAS DE SANTILLANE

Topics Covered in This Chapter

What Is an Expression?

What Type of Data Are You Trying to Express?

Changing Data Types: The CAST Function

Specifying Explicit Values

Types of Expressions

Using Expressions in a SELECT Clause

That “Nothing” Value: Null

Sample Statements

Summary

Problems for You to Solve

In Chapter 4, “Creating a Simple Query,” you learned how to use a
SELECT statement to retrieve information from one or more columns in
a table. This technique is useful if you’re posing only simple requests to
the database for some basic facts. However, you’ll need to expand your
SQL vocabulary when you begin working with complex requests. In this
chapter, I’ll introduce you to the concept of an expression as a way to
manipulate the data in your tables to calculate or generate new columns
of information. Next, I’ll discuss how the type of data stored in a column

126 Chapter 5 Getting More Than Simple Columns

can have an important impact on your queries and the expressions you
create. I’ll take a brief detour to the CAST function, which you can use
to actually change the type of data you include in your expressions.
You’ll learn to create a constant (or literal) value that you can use in cre-
ative ways in your queries. You’ll learn to use literals and values from
columns in your table to create expressions. You’ll learn how to adjust
the scope of information you retrieve with a SELECT statement by using
expressions to manipulate the data from which the information is drawn.
Finally, you’ll explore the special Null value and learn how it can impact
how you work with expressions that use columns from your tables.

What Is an Expression?

To get more than simple columns, you need to create an expression.
An expression is some form of operation involving numbers, character
strings, or dates and times. It can use values drawn from specific col-
umns in a table, constant (literal) values, or a combination of both. I’ll
show you how to generate literal values later in this chapter. After your
database completes the operation defined by the expression, the expres-
sion returns a value to the SQL statement for further processing. You
can use expressions to broaden or narrow the scope of the informa-
tion you retrieve from the database. Expressions are especially useful
when you are asking “what if” questions. Here’s a sample of the types of
requests you can answer using expressions:

“What is the total amount for each line item?”

“Give me a mailing list of employees, last name first.”

“Show me the start time, end time, and duration for each class.”

“Show the difference between the handicap score and the raw score
for each bowler.”

“What is the estimated per-hour rate for each engagement?”

“What if we raised the prices of our products by 5 percent?”

As you’ll learn as you work through this chapter, expressions are a
very valuable technique to add to your knowledge of SQL. You can use
expressions to “slice and dice” the plain-vanilla data in your columns
to create more meaningful results in your queries. You’ll also find that
expressions are very useful when you move on to Chapter 6, “Filtering
Your Data,” and beyond. You’ll use expressions to filter your data or to
link data from related tables.

 What Type of Data Are You Trying to Express? 127

What Type of Data Are You Trying
to Express?

The type of data used in an expression impacts the value the expression
returns, so let’s first look at some of the data types the SQL Standard
provides. Every column in the database has an assigned data type that
determines the kind of values the column can store. The data type also
determines the operations that can be performed on the column’s values.
You need to understand the basic data types before you can begin to cre-
ate literal values or combine columns and literals in an expression that
is meaningful and that returns a proper value.

The SQL Standard defines seven general categories of types of data—
character, national character, binary, numeric, Boolean, datetime, and
interval. In turn, each category contains one or more uniquely named
data types. Here’s a brief look at each of these categories and their data
types. (In the following list, I’ve broken the numeric category into two
subcategories: exact numeric and approximate numeric.)

CHARACTER The character data type stores a fixed- or varying-
length character string of one or more printable
 characters. The characters it accepts are usually
based upon the American Standard Code for Infor-
mation Interchange (ASCII) or the Extended Binary
Coded Decimal Interchange Code (EBCDIC) character
sets. A fixed-length character data type is known as
 CHARACTER or CHAR, and a varying-length char-
acter data type is known as CHARACTER VARYING,
CHAR VARYING, or VARCHAR. You can define the
length of data that you want to store in a character
data type, but the maximum length that you can
specify is defined by your database system. (This
rule applies to the national character data types as
well.) When the length of a character string exceeds a
 system-defined maximum (usually 255 or 1,024 char-
acters), you must use a CHARACTER LARGE OBJECT,
CHAR LARGE OBJECT, or CLOB data type. In many
systems, the alias for CLOB is TEXT or MEMO.

128 Chapter 5 Getting More Than Simple Columns

NATIONAL
CHARACTER

The national character data type is the same as the
character data type except that it draws its char-
acters from ISO-defined foreign language character
sets. NATIONAL CHARACTER, NATIONAL CHAR,
and NCHAR are names used to refer to a fixed-length
national character, and NATIONAL CHARACTER
VARYING, NATIONAL CHAR VARYING, and NCHAR
VARYING are names used to refer to a varying-length
national character. When the length of a character
string exceeds a system-defined maximum (usually
255 or 1,024 characters), you must use a NATIONAL
CHARACTER LARGE OBJECT, NCHAR LARGE
OBJECT, or NCLOB data type. In many systems, the
alias for NCLOB is NTEXT.

BINARY Use the BINARY LARGE OBJECT (or BLOB) data type
to store binary data such as images, sounds, videos,
or complex embedded documents such as word pro-
cessing files or spreadsheets. In many systems, the
names used for this data type include BINARY, BIT,
and BIT VARYING.

EXACT
NUMERIC

This data type stores whole numbers and numbers
with decimal places. The precision (the number of
significant digits) and the scale (the number of digits
to the right of the decimal place) of an exact numeric
can be user-defined and can only be equal to or less
than the maximum limits allowed by the database
system. NUMERIC, DECIMAL, DEC, SMALLINT,
INTEGER, INT, and BIGINT are all names used to
refer to this data type. One point you must remember
is that the SQL Standard—as well as most database
systems—defines a BIGINT as having a greater range
of values than INTEGER, and INTEGER as having
a greater range of values than a SMALLINT. Check
your database system’s documentation for the appli-
cable ranges. Some systems also support a TINYINT
data type that can hold a smaller range of values
than SMALLINT.

 What Type of Data Are You Trying to Express? 129

APPROXIMATE
NUMERIC

This data type stores numbers with decimal places
and exponential numbers. Names used to refer to
this data type include FLOAT, REAL, and DOUBLE
PRECISION. The approximate numeric data types
don’t have a precision and scale per se, but the SQL
Standard does allow a user-defined precision only for
a FLOAT data type. Any scale associated with these
data types is always defined by the database system.
Note that the SQL Standard and most database sys-
tems define the range of values for a DOUBLE PRECI-
SION data type to be greater than those of a REAL or
FLOAT data type. Check your documentation for these
ranges as well.

BOOLEAN This data type stores true and false values, usually
in a single binary bit. Some systems use BIT, INT, or
TINYINT to store this data type.

DATETIME Dates, times, and combinations of both are stored in
this data type. The SQL Standard defines the date
format as year-month-day and specifies time values
as being based on a 24-hour clock. Although most
database systems allow you to use the more com-
mon month/day/year or day/month/year date format
and time values based on an A.M./P.M. clock, I use the
date and time formats specified by the SQL Standard
throughout the book. The three names used to refer
to this data type are DATE, TIME, and TIMESTAMP.
You can use the TIMESTAMP data type to store a
combination of a date and time. Note that the names
and usages for these data types vary depending on
the database system you are using. Some systems
store both date and time in the DATE data type,
while others use TIMESTAMP or a data type called
 DATETIME. Consult your system documentation
for details.

INTERVAL This data type stores the quantity of time between
two datetime values, expressed as either year, month;
year/month; day, time; or day/time. Not all major
database systems support the INTERVAL data type, so
consult your system documentation for details.

130 Chapter 5 Getting More Than Simple Columns

Many database systems provide additional data types known as
extended data types beyond those specified by the SQL Standard.
(I listed a few of them in the previous list of data type categories.) Exam-
ples of extended data types include MONEY/CURRENCY and SERIAL/
ROWID/AUTOINCREMENT/IDENTITY (for unique row identifiers).

Because our primary focus is on the data manipulation portion of SQL,
you need be concerned only with the appropriate range of values for
each data type your database system supports. This knowledge will help
ensure that the expressions you define will execute properly, so be sure
to familiarize yourself with the data types provided by your RDBMS
program.

Changing Data Types: The CAST Function

You must be careful when you create an expression to make sure that
the data types of the columns and literals are compatible with the oper-
ation you are requesting. For example, it doesn’t make sense to try to
add character data to a number. But if the character column or literal
contains a number, you can use the CAST function to convert the value
before trying to add another number. Figure 5-1 shows you the CAST
function, which is supported in nearly all commercial database systems.

CAST Function

CAST Literal Value AS data_type
Column Reference

Figure 5-1 The syntax diagram for the CAST function

The CAST function converts a literal value or the value of a column into
a specific data type. This helps to ensure that the data types of the val-
ues in the expression are compatible. By compatible I mean that all col-
umns or literals in an expression are either characters, numbers, or
datetime values. (As with any rule, there are exceptions that I’ll mention
later.) All the values you use in an expression must generally be com-
patible in order for the operation defined within the expression to work
properly. Otherwise, your database system might raise an error message.

 Changing Data Types: The CAST Function 131

 ❖ Note Although most commercial database systems support the
CAST function, some do not. Those systems that do not support CAST
do have available a set of custom functions to achieve the same result.
Consult your system documentation for details.

Converting a value in a column or a literal from one data type to another
is a relatively intuitive and straightforward task. However, you’ll have to
keep the following restrictions in mind when you convert a value from its
original data type to a different data type:

• Let’s call this the “don’t put a ten-pound sack in a five-pound box”
rule. As mentioned earlier, you can define the maximum length of
the data you want to store in a character data type. If you try to
convert from one type of character field (for example, VARCHAR) to
another character type (such as CHARACTER) and the data stored
in the original column or literal is larger than the maximum length
specified in the receiving data type, your database system will trun-
cate the original character string. Your database system should also
give you a warning that the truncation is about to occur.

• Let’s call this the “don’t put a square peg in a round hole” rule.
You can convert a character column or literal to any other data
type, but the character data in the source column or literal must
be convertible to the target data type. For example, you can con-
vert a five-character ZIP Code to a number, but you will encounter
an error if your ZIP Code column contains Canadian or European
postal codes that have letters. Note that the database system
ignores any leading and/or trailing spaces when it converts a
character column value to a numeric or datetime value. Also, most
commercial systems support a wide range of character strings that
are recognizable as date or time values. Consult your system docu-
mentation for details.

• This is the “ten-pound sack” rule, version 2. When you convert a
numeric column’s value to another numeric data type, the cur-
rent contents of the convert-from column or literal had better fit
in the target data type. For example, you will likely get an error
if you attempt to convert a REAL value greater than 32,767 to a
SMALLINT. Additionally, numbers to the right of the decimal place
will be truncated or rounded as appropriate when you convert a

❖ Note Although most commercial database systems support the
CAST function, some do not. Those systems that do not support CAST
do have available a set of custom functions to achieve the same result.
Consult your system documentation for details.

132 Chapter 5 Getting More Than Simple Columns

number that has a decimal fraction to an INTEGER or SMALLINT.
The amount of truncation or rounding is determined by the data-
base system.

• But you can put “a square peg in a round hole” with certain limita-
tions. When you convert the value of a numeric column to a char-
acter data type, one of three possible results will occur:

1. It will convert successfully.

2. Your system will pad it with blanks if its length is shorter than
the defined length of the character column.

3. The database system will raise an error if the character
 representation of the numeric value is longer than the defined
length of the character column.

 ❖ Note Although the SQL Standard defines these restrictions, your
database system might allow you some leeway when you convert a
value from one data type to another. Some database systems provide
automatic conversion for you without requiring you to use the CAST
function. For example, some systems allow you to concatenate a num-
ber with text or to add text containing a number to another number
without an explicit conversion. Refer to your database system’s docu-
mentation for details.

It’s important to note that this list does not constitute the entire
set of restrictions defined by the SQL Standard. I listed only those
restrictions that apply to the data types I use in this book. For a more
in-depth discussion on data types and data conversion issues, please
refer to any of the books listed in Appendix D, “Suggested Reading.”

Keep the CAST function in mind as you work through the rest of this
book. You’ll see me use it whenever appropriate to make sure I’m work-
ing with compatible data types.

Specifying Explicit Values

The SQL Standard provides flexibility for enhancing the information
returned from a SELECT statement by allowing the use of constant
values such as character strings, numbers, dates, times, or a suitable

❖ Note Although the SQL Standard defines these restrictions, your
database system might allow you some leeway when you convert a
value from one data type to another. Some database systems provide
automatic conversion for you without requiring you to use the CAST
function. For example, some systems allow you to concatenate a num-
ber with text or to add text containing a number to another number
without an explicit conversion. Refer to your database system’s docu-
mentation for details.

It’s important to note that this list does not constitute the entire
set of restrictions defined by the SQL Standard. I listed only those
restrictions that apply to the data types I use in this book. For a more
in-depth discussion on data types and data conversion issues, please
refer to any of the books listed in Appendix D, “Suggested Reading.”

 Specifying Explicit Values 133

combination of these items, in any valid expression used within a
SELECT statement. The SQL Standard categorizes these types of values
as literal values and specifies the manner in which they are defined.

Character String Literals

A character string literal is a sequence of individual characters enclosed
in single quotes. Yes, I know that you are probably used to using double
quotes to enclose character strings, but I’m presenting these concepts
as the SQL Standard defines them. Figure 5-2 shows the diagram for a
character string literal.

Literal Value

'
' '

nonquote character '
Character String

Figure 5-2 The syntax diagram of a character string literal

Here are a few examples of the types of character string literals you can
define:

'This is a sample character string literal.'
'Here's yet another! '
'B-28'
'Seattle'

You probably noticed what seemed to be a double quote in both the dia-
gram and the second line of the previous example. Actually, it’s not a
double quote but two consecutive single quotes with no space between
them. The SQL Standard states that a single quote embedded within a
character string is represented by two consecutive single quotes. The
SQL Standard defines it this way so that your database system can dis-
tinguish between a single quote that defines the beginning or end of a
character string literal and a quote that you want to be included within
the literal. The following two lines illustrate how this works:

SQL 'The Vendor's name is:'

Displayed as The Vendor's name is:

134 Chapter 5 Getting More Than Simple Columns

As I mentioned earlier, you can use character string literals to enhance
the information returned by a SELECT statement. Although the infor-
mation you see in a result set is usually easy to understand, it’s very
likely that the information can be made clearer. For example, if you exe-
cute the following SELECT statement, the result set displays only the
vendor’s Web site address and the vendor’s name:

SQL SELECT VendWebPage, VendName
FROM Vendors

In some instances, you can enhance the clarity of the information by
defining a character string that provides supplementary descriptive text
and then adding it to the SELECT clause. Use this technique judiciously
because the character string literal will appear in each row of the result
set. Here’s how you might modify the previous example with a character
string literal:

SQL SELECT VendWebPage, 'is the Web site for',
 VendName
FROM Vendors

A row in the result set generated by this SELECT statement looks like
this:

www.viescas.com is the Web site for John Viescas Consulting

This somewhat clarifies the information displayed by the result set by
identifying the actual purpose of the web address. Although this is
a simple example, it illustrates what you can do with character string
literals. Later in this chapter, you’ll see how you can use them in
expressions.

 ❖ Note You’ll find this technique especially useful when working with
legacy databases that contain cryptic column names. However, you
won’t have to use this technique very often with your own databases if
you follow the recommendations in Chapter 2, “Ensuring Your Data-
base Structure Is Sound.”

❖ Note You’ll find this technique especially useful when working with
legacy databases that contain cryptic column names. However, you
won’t have to use this technique very often with your own databases if
you follow the recommendations in Chapter 2, “Ensuring Your Data-
base Structure Is Sound.”

http://www.viescas.com

 Specifying Explicit Values 135

Numeric Literals

A numeric literal is another type of literal you can use within a SELECT
statement. As the name implies, it consists of an optional sign and a
number and can include a decimal place, the exponent symbol, and an
exponential number. Figure 5-3 shows the diagram for a numeric literal.

Literal Value

Numeric

+
-

. numeric character

.

numeric character

numeric character

numeric charactere
E +

-

Figure 5-3 The syntax diagram of a numeric literal

Examples of numeric literals include the following:

427
–11.253
.554
0.3E–3

Numeric literals are most useful in expressions (for example, to multiply
by or to add a fixed number value), so I’ll postpone further discussion
until later in this chapter.

Datetime Literals

You can supply specific dates and times for use within a SELECT state-
ment by using date literals, time literals, and timestamp literals. The SQL
Standard refers to these literals collectively as datetime literals. Defining
these literals is a simple task, as Figure 5-4 shows.

136 Chapter 5 Getting More Than Simple Columns

Literal Value

Date

' yyyy-mm-dd '

Timestamp

' 'yyyy-mm-dd hh:mm

seconds fraction.
:ss

Time

' hh:mm '

seconds fraction.
:ss

Figure 5-4 The syntax diagram of date and time literals

Bear in mind a few points, however, when using datetime and interval
literals:

DATE The format for a date literal is year-month-day, which is
the format I follow throughout the book. However, many
SQL databases allow the more common month/day/year
format (United States) or day/month/year format (most
non-U.S. countries). The SQL Standard also specifies
that you include the DATE keyword before the literal,
but nearly all commercial implementations allow you to
simply specify the literal value surrounded by delimiter
characters—usually single quotes. I found one case, the
MySQL system, that requires you to specify a date literal
in quotes and then to use the CAST function to convert
the string to the DATE data type before you can use it
in date calculations. Microsoft Office Access requires
you to use a hashtag (#) character as the delimiter for
DATE literals.

TIME The hour format is based on a 24-hour clock. For
 example, 07:00 P.M. is represented as 19:00. The SQL
Standard also specifies that you include the TIME
 keyword before the literal, but nearly all commercial

 Specifying Explicit Values 137

implementations allow you to simply specify the literal
value surrounded by delimiter characters—usually single
quotes. I found one case, the MySQL system, that requires
you to specify a time literal in quotes and then to use the
CAST function to convert the string to the TIME data type
before you can use it in time calculations. Microsoft Office
Access requires you to use a hashtag (#) character as the
delimiter for TIME literals.

TIMESTAMP A timestamp literal is simply the combination of a date
and a time separated by a single space. The rules for for-
matting the date and the time within a timestamp follow
the individual rules for date and time. The SQL Standard
also specifies that you include the TIMESTAMP keyword
before the literal, but all commercial implementations
that support the TIMESTAMP data type allow you to
simply specify the literal value surrounded by delimiter
characters—usually single quotes.

 ❖ Note In some systems, you can also define an interval literal to use
in calculated expressions with datetime literals, but I won’t be cover-
ing that type of literal in this book. See your system documentation
for details.

You can find the diagrams for DATE, TIME, TIMESTAMP, and INTER-
VAL as defined by the SQL Standard in Appendix A, “SQL Standard
Diagrams.”

Here are some examples of datetime literals:

'2007-05-16'
'2016-11-22'
'21:00'
'03:30:25'
'2008-09-29 14:25:00'

Note that when using MySQL, you must explicitly convert any charac-
ter literal containing a date or a time or a date and a time by using the
CAST function. Here are some examples:

CAST('2016-11-22' AS DATE)
CAST('03:30:25' AS TIME)
CAST('2008-09-29 14:25:00' AS DATETIME)

❖ Note In some systems, you can also define an interval literal to use l
in calculated expressions with datetime literals, but I won’t be cover-
ing that type of literal in this book. See your system documentation
for details.

You can find the diagrams for DATE, TIME, TIMESTAMP, and INTER-
VAL as defined by the SQL Standard in Appendix A, “SQL Standard
Diagrams.”

138 Chapter 5 Getting More Than Simple Columns

As I noted previously, in order to follow the SQL Standard, you must pre-
cede each literal with a keyword indicating the desired value. Although
the DATE and TIME keywords are defined in the SQL Standard as
required components of date and time literals, respectively, most data-
base systems rarely support these keywords in this particular context
and require only the character string portion of the literal. Therefore,
I’ll refrain from using the keywords and instead use single quotes to
delimit a date or time literal that appears in any example throughout the
remainder of the book. I show you how to use dates and times in expres-
sions later in this chapter. See Appendix A for more details on forming
datetime literals that follow the SQL Standard.

Types of Expressions

You will generally use the following three types of expressions when
working with SQL statements:

CONCATENATION Combining two or more character columns or
literals into a single character string

MATHEMATICAL Adding, subtracting, multiplying, and dividing
numeric columns or literals

DATE AND TIME
ARITHMETIC

Applying addition or subtraction to dates
and times

Concatenation

The SQL Standard defines two sequential vertical bars as the concat-
enation operator. You can concatenate two character items by placing
a single item on either side of the concatenation operator. The result
is a single string of characters that is a combination of both items.
 Figure 5-5 shows the syntax diagram for the concatenation expression.

Concatenation

|| Character String Literal
Column Reference

Character String Literal
Column Reference

Figure 5-5 The syntax diagram for the concatenation expression

 Types of Expressions 139

 ❖ Note Of the major database systems, I found that only IBM’s DB2
and Informix, Oracle’s Oracle, and PostgreSQL support the SQL Stan-
dard operator for concatenation. Microsoft Office Access supports &
and + as concatenation operators, Microsoft SQL Server and Ingres
support +, and in MySQL you must use the CONCAT function. In all
the examples in the book, I use the SQL Standard || operator. In the
sample databases on the website for the book, I use the appropriate
operator for each database type (Microsoft Access, Microsoft SQL
Server, MySQL, and PostgreSQL).

Here’s a general idea of how the concatenation operation works:

Expression ColumnOne || ColumnTwo

Result ContentsOfColumnOneContentsOfColumnTwo

Let’s start with the easiest example in the world: concatenating two
character string literals, such as a first name and a last name:

Expression 'Mike' || 'Hernandez'

Result MikeHernandez

There are two points to consider in this example: First, single quotes are
required around each name because they are character string literals.
Second, the first and last names are right next to each other. Although
the operation combined them correctly, it might not be what you
expected. The solution is to add a space between the names by inserting
another character literal that contains a single space.

Expression 'Mike' || ' ' || 'Hernandez'

Result Mike Hernandez

The previous example shows that you can concatenate additional char-
acter values by using more concatenation operators. There is no limit
to the number of character values you can concatenate, but there is a
limit to the length of the character string the concatenation operation
returns. In general, the length of the character string returned by a
concatenation operation can be no greater than the maximum length

❖ Note Of the major database systems, I found that only IBM’s DB2
and Informix, Oracle’s Oracle, and PostgreSQL support the SQL Stan-
dard operator for concatenation. Microsoft Office Access supports &
and + as concatenation operators, Microsoft SQL Server and Ingres
support +, and in MySQL you must use the CONCAT function. In all
the examples in the book, I use the SQL Standard || operator. In the
sample databases on the website for the book, I use the appropriate
operator for each database type (Microsoft Access, Microsoft SQL
Server, MySQL, and PostgreSQL).

140 Chapter 5 Getting More Than Simple Columns

allowed for a varying-length character data type. Your database system
might handle this issue slightly differently, so check your documentation
for further details.

Concatenating two or more character strings makes perfect sense, but
you can also concatenate the values of two or more character columns
in the same fashion. For example, suppose you have two columns called
CompanyName and City. You can create an expression that concatenates
the value of each column by using the column names within the expres-
sion. Here’s an example that concatenates the values of both columns
with a character string:

Expression CompanyName || ' is based in ' || City

Result DataTex Consulting Group is based in Seattle

You don’t need to surround CompanyName or City with single quotes
because they are column references. (Remember column references from
the previous chapter?) You can use a column reference in any type of
expression, as you’ll see in the examples throughout the remainder of
the book.

Notice that all the concatenation examples so far concatenate charac-
ters with characters. I suppose you might be wondering if you need to
do anything special to concatenate a number or a date. Most database
systems give you some leeway in this matter. When the system sees you
trying to concatenate a character column or literal with a number or a
date, the system automatically casts the data type of the number or date
for you so that the concatenation works with compatible data types.

But you shouldn’t always depend on your database system to quietly do
the conversion for you. To concatenate a character string literal or the
value of a character column with a date literal or the value of a numeric
or date column, use the CAST function to convert the numeric or date
value to a character string. Here’s an example of using CAST to convert
the value of a date column called DateEntered:

Expression EntStageName || ' was signed with our agency
on ' || CAST(DateEntered as CHARACTER(10))

Result Modern Dance was signed with our agency on
1995-05-16

 Types of Expressions 141

 ❖ Note I specified an explicit length for the CHARACTER data type
because the SQL Standard specifies that the absence of a length spec-
ification defaults to a length of 1. I found that most major implemen-
tations give you some leeway in this regard and generate a character
string long enough to contain what you’re converting. You can check
your database documentation for details, but if you’re in doubt, always
specify an explicit length.

You should also use the CAST function to concatenate a numeric literal
or the value of a numeric column to a character data type. In the next
example, I use CAST to convert the value of a numeric column called
RetailPrice:

Expression ProductName || ' sells for ' ||
CAST(RetailPrice AS CHARACTER(8))

Result Trek 9000 Mountain Bike sells for 1200.00

A concatenation expression can use character strings, datetime values,
and numeric values simultaneously. The following example illustrates
how you can use all three data types within the same expression:

Expression 'Order Number ' || CAST(OrderNumber AS
CHARACTER(2)) || ' was placed on ' ||
CAST(OrderDate AS CHARACTER(10))

Result Order Number 1 was placed on 2017-09-02

 ❖ Note The SQL Standard defines a variety of functions that you can
use to extract information from a column or calculate a value across
a range of rows. I’ll cover some of these in more detail in Chapter 12,
“Simple Totals.” Most commercial database systems also provide vari-
ous functions to manipulate parts of strings or to format date, time, or
currency values. Check your system documentation for details.

Now that I’ve shown how to concatenate data from various sources into a
single character string, let’s look at the different types of expressions you
can create using numeric data.

❖ Note I specified an explicit length for the CHARACTER data type
because the SQL Standard specifies that the absence of a length spec-
ification defaults to a length of 1. I found that most major implemen-
tations give you some leeway in this regard and generate a character
string long enough to contain what you’re converting. You can check
your database documentation for details, but if you’re in doubt, always
specify an explicit length.

❖ Note The SQL Standard defines a variety of functions that you can
use to extract information from a column or calculate a value across
a range of rows. I’ll cover some of these in more detail in Chapter 12,
“Simple Totals.” Most commercial database systems also provide vari-
ous functions to manipulate parts of strings or to format date, time, or
currency values. Check your system documentation for details.

142 Chapter 5 Getting More Than Simple Columns

Mathematical Expressions

The SQL Standard defines addition, subtraction, multiplication, and
division as the operations you can perform on numeric data. The stan-
dard also defines common mathematical functions to calculate values
such as absolute value, modulus, exponentiation, and logarithms. Here
are the mathematical functions defined by the standard:

Function Purpose

ABS(<numeric expression>) Returns the absolute value of the
expression

MOD(<dividend>, <divisor>) Returns the remainder produced by
dividing the dividend by the divisor

LN(<numeric expression>) Returns the natural logarithm of the
expression

EXP(<numeric expression>) Returns the value of the natural
logarithm raised to the power of the
expression

POWER(<numeric base>, <numeric
exponent>)

Returns the value of the base raised to
the power of the exponent

SQRT(<numeric expression>) Returns the square root of the
expression

FLOOR(<numeric expression>) Returns the largest integer less than or
equal to the expression

CEIL(<numeric expression>)
 CEILING(<numeric expression>)

Returns the smallest integer greater
than or equal to the expression

WIDTH_BUCKET(<numeric value>,
<numeric lower bound>, <numeric
upper bound>, <numeric bucket
count>)

Divides the range between the lower
bound and the upper bound into the
number of equal “buckets” specified
by the count and returns a number
between 0 and the bucket count + 1
indicating where in the range the first
argument resides

Most RDBMS programs provide these operations, as well as a wide
array of scientific, trigonometric, statistical, and mathematical func-
tions. In this book, however, I focus only on the four basic operations

 Types of Expressions 143

defined by the SQL Standard—addition, subtraction, multiplication,
and division.

The order in which the four basic mathematical operations are
 performed—known as the order of precedence—is an important issue
when you create mathematical expressions. The SQL Standard gives
equal precedence to multiplication and division and specifies that
they should be performed before any addition or subtraction. This is
slightly contrary to the order of precedence you probably learned back
in school, where multiplication is done before division, division before
addition, and addition before subtraction, but it matches the order of
precedence used in most modern programming languages. Mathemati-
cal expressions are evaluated from left to right. This could lead to some
interesting results, depending on how you construct the expression!
So, I strongly recommend that you make extensive use of parenthe-
ses in complex mathematical expressions to ensure that they evaluate
properly.

If you remember how you created mathematical expressions back in
school, then you already know how to create them in SQL. In essence,
you use an optionally signed numeric value, a mathematical operator,
and another optionally signed numeric value to create the expression.
Figure 5-6 shows a diagram of this process.

Mathematical Expression

+
-

Numeric Literal
Column Reference +

-
Column Reference
Numeric Literal+

-
*
/

Figure 5-6 The syntax diagram for a mathematical expression

Here are some examples of mathematical expressions using numeric lit-
eral values, column references, and combinations of both:

25 + 35
–12 * 22
RetailPrice * QuantityOnHand
TotalScore / GamesBowled
RetailPrice – 2.50
TotalScore / 12

144 Chapter 5 Getting More Than Simple Columns

As mentioned earlier, you need to use parentheses to ensure that a com-
plex mathematical expression evaluates properly. Here’s a simple exam-
ple of how you might use parentheses in such an expression:

Expression (11 – 4) + (12 * 3)

Result 43

Pay close attention to the placement of parentheses in your expression
because it affects the expression’s resulting value. The two expressions
in the following example illustrate this quite clearly. Although both
expressions have the same numbers and operators, the placement of the
parentheses is entirely different and causes the expressions to return
completely different values.

Expression (23 * 11) + 12

Result 265

Expression 23 * (11 + 12)

Result 529

It’s easy to see why you need to be careful with parentheses, but don’t let
this stop you from using them. They are invaluable when working with
complex expressions.

You can also use parentheses as a way to nest operations within an
expression. When you use nested parenthetical operations, your data-
base system evaluates them left to right and then in an “innermost to
outermost” fashion. Here’s an example of an expression that contains
nested parenthetical operations:

Expression (12 * (3 + 4)) – (24 / (10 + (6 – 4)))

Result 82

Executing the operations within the expression is not really as difficult
as it seems. Here’s the order in which your database system evaluates
the expression:

 (3 + 4) = 7

 (12 * 7) = 84 12 times the result of the first operation

 (6 − 4) = 2

 Types of Expressions 145

 (10 + 2) = 12 10 plus the result of the third operation

 (24 / 12) = 2 24 divided by the result of the fourth operation

 84 − 2 = 82 84 minus the result of the second operation

As you can see, the system proceeds left to right but must evaluate inner
expressions when encountering an expression surrounded by parenthe-
ses. Effectively, (12 * (3 + 4)) and (24 / (10 + (6 − 4))) are on an equal
level, so your system will completely evaluate the leftmost expression
first, innermost to outermost. It then encounters the second expression
surrounded by parentheses and evaluates that one innermost to outer-
most. The final operation subtracts from the result of the left expression
the result of evaluating the right expression. (Does your head hurt yet?
Mine does!)

Although I used numeric literals in the previous example, I could just as
easily have used column references or a combination of numeric literals
and column references as well. The key point to remember here is that
you should plan and define your mathematical expressions carefully so
that they return the results you seek. Use parentheses to clearly define
the sequence in which you want operations to occur, and you’ll get the
result you expect.

When working with a mathematical expression, be sure that the val-
ues used in the expression are compatible. This is especially true of an
expression that contains column references. You can use the CAST func-
tion for this purpose exactly as you did within a concatenation expres-
sion. For example, say you have a column called TotalLength based on
an INTEGER data type that contains the whole number value 345, and
a column called Distance based on a REAL data type that contains the
value 138.65. To add the value of the Distance column to the value of
the TotalLength column, you should use the CAST function to convert
the Distance column’s value into an INTEGER data type or the Total-
Length column’s value into a REAL data type, depending on whether you
want the final result to be an INTEGER or a REAL data type. Assuming
you’re interested in adding only the integer values, you would accomplish
this with the following expression:

Expression TotalLength + CAST(Distance AS INTEGER)

Result 483

146 Chapter 5 Getting More Than Simple Columns

Not the answer you expected? Maybe you thought converting 138.65 to
an integer would round the value up? Although the SQL Standard states
that rounding during conversion using the CAST function depends on
your database system, most systems truncate a value with decimal
places when converting to an integer. So, I’m assuming my system also
does that and thus added 345 to 138, not the rounded value 139.

If you forget to ensure the compatibility of the column values within an
expression, your database system might raise an error message. If it
does, it will probably cancel the execution of the operations within the
expression as well. Most RDBMS systems handle such conversions auto-
matically without warning you, but they usually convert all numbers to
the most complex data type before evaluating the expression. In the pre-
vious example, your RDBMS would most likely convert TotalLength to
REAL (the more complex of the two data types). Your system will use
REAL because all INTEGER values can be contained within the REAL
data type. However, this might not be what you wanted. Those RDBMS
programs that do not perform this sort of automatic conversion are usu-
ally good about letting you know that it’s a data type mismatch problem,
so you’ll know what you need to do to fix your expression.

As you just learned, creating mathematical expressions is a relatively
easy task as long as you do a little planning and know how to use the
CAST function to your advantage. In our last discussion for this section,
I’ll show you how to create expressions that add and subtract dates and
times.

Date and Time Arithmetic

The SQL Standard defines addition and subtraction as the operations
you can perform on dates and times. Contrary to what you might expect,
many RDBMS programs differ in the way they implement these opera-
tions. Some database systems allow you to define these operations as
you would in a mathematical expression, while others require you to use
special built-in functions for these tasks. Refer to your database sys-
tem’s documentation for details on how your particular RDBMS handles
these operations. In this book, I discuss date and time expressions only
in general terms so that I can give you an idea of how these operations
should work.

 Types of Expressions 147

Date Expressions

Figure 5-7 shows the syntax for a date expression as defined by the SQL
Standard. As you can see, creating the expression is simple enough—
take one value and add it to or subtract it from a second value.

Date Expression

+
- Column Reference

Interval Literal

Date Literal *

* Subtract from a DATE or add to an INTERVAL

Numeric Literal
Column Reference

*
/

Date Literal

Interval Literal
Column Reference

Figure 5-7 The syntax diagram for a date expression

The SQL Standard further defines the valid operations and their results
as follows:

DATE plus or minus INTERVAL yields DATE

DATE minus DATE yields INTERVAL

INTERVAL plus DATE yields DATE

INTERVAL plus or minus INTERVAL yields INTERVAL

INTERVAL times or divided by NUMBER yields INTERVAL

Note that in the SQL Standard you can subtract only a DATE from a
DATE or add only a DATE to an INTERVAL.

When you use a column reference, make certain it is based on a DATE
or INTERVAL data type, as appropriate. If the column is not an accept-
able data type, you might have to use the CAST function to convert the
value you are adding or subtracting. The SQL Standard explicitly speci-
fies that you can perform these operations only using the indicated data
types, but many database systems convert the column’s data type for
you automatically. Your RDBMS will ultimately determine whether the
conversion is required, so check your documentation.

Although only a few commercial systems support the INTERVAL
data type, many of them allow you to use an integer value (such as

148 Chapter 5 Getting More Than Simple Columns

SMALLINT or INT) to add to or subtract from a date value. You can think
of this as adding and subtracting days. This allows you to answer ques-
tions such as “What is the date nine days from now?” and “What was the
date five days ago?” Note also that some database systems allow you to
add to or subtract from a datetime value using a fraction. For example,
adding 3.5 to a datetime value in Microsoft Access adds three days and
12 hours.

When you subtract a date from another date, you are calculating the
interval between the two dates. For example, you might need to subtract
a hire date from the current date to determine how long an employee has
been with the company. Although the SQL Standard indicates that you
can add only an interval to a date, many database systems (especially
those that do not support the INTERVAL data type) allow you to add
either a number or a date anyway. You can use this sort of calculation to
answer questions such as “When is the employee’s next review date?”

 ❖ Note The SQL Standard defines a variety of functions that you can
use to extract information from a column or calculate a value across
a range of rows. I’ll cover some of these in more detail in Chapter 12,
“Simple Totals.” Most commercial database systems also provide vari-
ous functions to manipulate parts of strings or to format date, time, or
currency values. Check your system documentation for details.

In this book, I’ll show you simple calculations using dates and assume
that you can at least add an integer number of days to a date value. I’ll
also assume that subtracting one date from another yields an integer
number of days between the two dates. If you apply these simple con-
cepts, you can create most of the date expressions that you’ll need. Here
are some examples of the types of date expressions you can define:

'2017-05-16' – 5
'2017-11-14' + 12
ReviewDate + 90
EstimateDate – DaysRequired
'2017-07-22' – '2017-06-13'
ShipDate – OrderDate

❖ Note The SQL Standard defines a variety of functions that you can
use to extract information from a column or calculate a value across
a range of rows. I’ll cover some of these in more detail in Chapter 12,
“Simple Totals.” Most commercial database systems also provide vari-
ous functions to manipulate parts of strings or to format date, time, or
currency values. Check your system documentation for details.

 Types of Expressions 149

Time Expressions

You can create expressions using time values as well, and Figure 5-8
shows the syntax. Date and time expressions are very similar, and the
same rules and restrictions that apply to a date expression also apply to
a time expression.

Time Expression

+
- Column Reference

Interval LiteralTime Literal
Column Reference

Time Literal *

* Subtract from a TIME or add to an INTERVAL

Interval Literal

Numeric Literal
Column Reference

*
/

Figure 5-8 The syntax diagram for a time expression

The SQL Standard further defines the valid operations and their results
as follows:

TIME plus or minus INTERVAL yields TIME

TIME minus TIME yields INTERVAL

INTERVAL plus or minus INTERVAL yields INTERVAL

INTERVAL times or divided by NUMBER yields INTERVAL

Note that in the SQL Standard you can subtract only a TIME from a
TIME or add only a TIME to an INTERVAL.

All the same “gotchas” I noted for date expressions apply to time expres-
sions. Also, for systems that support a combination DATETIME data
type, the time portion of the value is stored as a fraction of a day accu-
rate at least to seconds. When using systems that support datetime, you
can also usually add or subtract a decimal fraction value to a datetime
value. For example, 0.25 is 6 hours (one-fourth of a day). In this book,
I’ll assume that your system supports both adding and subtracting time
literals or columns. I make no assumption about adding or subtracting
decimal fractions. Again, check your documentation to find out what
your system actually supports.

150 Chapter 5 Getting More Than Simple Columns

Given our assumptions, here are some general examples of time
expressions:

'14:00' + '00:22'
'19:00' – '16:30'
StartTime + '00:19'
StopTime – StartTime

I said earlier that I would present date and time expressions only in
 general terms. My goal was to make sure that you understood date and
time expressions conceptually and that you had a general idea of the
types of expressions you should be able to create. Unfortunately, most
database systems do not implement the SQL Standard’s specification
for time expressions exactly, and many only partially support the spec-
ification for the date expression. As I noted, however, all database sys-
tems provide one or more functions that allow you to work with dates
and times. You can find a summary of these functions for six major
implementations in Appendix C, “Date and Time Types, Operations, and
Functions.” I strongly recommend that you study your database system’s
documentation to learn what types of functions your system provides.

Now that you know how to create the various types of expressions, the
next step is to learn how to use them.

 ❖ See Also Take a look at Appendix C for an overview of how six of
the most popular database systems deal with dates and times. I list
the data types and arithmetic operations supported along with a
 comprehensive list of date and time functions for each.

Using Expressions in a SELECT Clause

Knowing how to use expressions is arguably one of the most important
concepts you’ll learn in this book. You’ll use expressions for a variety
of purposes when working with SQL. For example, you would use an
expression to

• Create a calculated column in a query

• Search for a specific column value

❖ See Also Take a look at Appendix C for an overview of how six of
the most popular database systems deal with dates and times. I list
the data types and arithmetic operations supported along with a
comprehensive list of date and time functions for each.

 Using Expressions in a SELECT Clause 151

• Filter the rows in a result set

• Connect two tables in a JOIN operation

I’ll show you how to do this (and more) as you work through the rest
of the book. I begin by showing you how to use basic expressions in a
SELECT clause.

 ❖ Note Throughout this chapter, I use the “Request/Translation/
Clean Up/SQL” technique introduced in Chapter 4.

You can use basic expressions in a SELECT clause to clarify information
in a result set and to expand the result set’s scope of information. For
example, you can create expressions to concatenate first and last names,
calculate the total price of a product, determine how long it took to com-
plete a project, or specify a date for a patient’s next appointment. Let’s
look at how you might use a concatenation expression, a mathematical
expression, and a date expression in a SELECT clause. First, I’ll work
with the concatenation expression.

Working with a Concatenation Expression

Unlike mathematical and date expressions, you use concatenation
expressions only to enhance the readability of the information contained
in the result set of a SELECT statement. Suppose you are posing the fol-
lowing request:

“Show me a current list of our employees and their phone numbers.”

When translating this request into a SELECT statement, you can
improve the output of the result set somewhat by concatenating the first
and last names into a single column. Here’s one way you can translate
this request:

Translation Select the first name, last name, and phone number of all
our employees from the employees table

Clean Up Select the first name, last name, and phone number of all
our employees from the employees table

SQL SELECT EmpFirstName || ' ' || EmpLastName,

 'Phone Number: ' || EmpPhoneNumber

FROM Employees

❖ Note Throughout this chapter, I use the “Request/Translation/
Clean Up/SQL” technique introduced in Chapter 4.

152 Chapter 5 Getting More Than Simple Columns

The result for one of the rows will look something like this:

Mary Thompson Phone Number: 555-2516

You probably noticed that in addition to concatenating the first name
column, a space, and the last name column, I also concatenated the
character literal string “Phone Number: ” with the phone number col-
umn. This example clearly shows that you can easily use more than one
concatenation expression in a SELECT clause to enhance the readability
of the information in the result set. Remember that you can also concat-
enate values with different data types by using the CAST function. For
instance, I concatenate a character column value with a numeric column
value in the next example:

“Show me a list of all our vendors and their identification numbers.”

Translation Select the vendor name and vendor ID from the vendors table

Clean Up Select the vendor name and vendor ID from the vendors table

SQL SELECT 'The ID Number for ' || VendName ||

 ' is ' || CAST(VendorID AS CHARACTER)

FROM Vendors

Although the concatenation expression is a useful tool in a SELECT
statement, it is one that you should use judiciously. When you use con-
catenation expressions containing long character string literals, keep
in mind that the literals will appear in every row of the result set. You
might end up cluttering the final result with repetitive information
instead of enhancing it. Carefully consider your use of literals in concat-
enation expressions so that they work to your advantage.

Naming the Expression

When you use an expression in a SELECT clause, the result set includes
a new column that displays the result of the operation defined in the
expression. This new column is known as a calculated (or derived) col-
umn. For example, the result set for the following SELECT statement will
contain three columns—two “real” columns and one calculated column:

 Using Expressions in a SELECT Clause 153

SQL SELECT EmpFirstName || ' ' || EmpLastName,

 EmpPhoneNumber, EmpCity

FROM Employees

The two real columns are, of course, EmpPhoneNumber and EmpCity,
and the calculated column is derived from the concatenation expression
at the beginning of the SELECT clause.

According to the SQL Standard, you can optionally provide a name for
the new column by using the AS keyword. (In fact, you can assign a new
name to any column using the AS clause.) Almost every database sys-
tem, however, requires a name for a calculated column. Some database
systems require you to provide the name explicitly, while others actually
provide a generated name for you. Determine how your database system
handles this before you work with the examples. If you plan to reference
the result of the expression in your query, you should provide a name.

Figure 5-9 shows the syntax for naming an expression. You can use any
valid character string literal (enclosed in single quotes) for the name.
Some database systems relax this requirement when you’re naming an
expression and require quotes only when your column name includes
embedded spaces. However, I strongly recommend that you not use
spaces in your names because the spaces can be difficult to deal with in
some database programming languages.

SELECT AS

Figure 5-9 The syntax diagram for naming an expression

Now I’ll modify the SELECT statement in the previous example and sup-
ply a name for the concatenation expression:

SQL SELECT EmpFirstName || ' ' || EmpLastName AS

 EmployeeName, EmpPhoneNumber, EmpCity

FROM Employees

The result set for this SELECT statement will now contain three col-
umns called EmployeeName, EmpPhoneNumber, and EmpCity.

In addition to supplying a name for expressions, you can use the AS
keyword to supply an alias for a real column name. Suppose you have

154 Chapter 5 Getting More Than Simple Columns

a column called DOB and are concerned that some of your users might
not be familiar with this abbreviation. You can eliminate any possible
misinterpretation of the name by using an alias, as shown here:

SQL SELECT EmpFirstName || ' ' || EmpLastName AS

 EmployeeName, DOB AS DateOfBirth

FROM Employees

This SELECT statement produces a result set with two columns called
EmployeeName and DateOfBirth. You’ve now effectively eliminated any
possible confusion of the information displayed in the result set.

Providing names for your calculated columns has a minor effect on
the translation process. For example, here’s one possible version of the
translation process for the previous example:

“Give me a list of employee names and their dates of birth.”

Translation Select first name and last name as employee name and
DOB as date of birth from the employees table

Clean Up Select first name and || ‘ ’ || last name as EmployeeName
and DOB as DateOfBirth from the employees table

SQL SELECT EmpFirstName || ' ' || EmpLastName

 AS EmployeeName, DOB AS DateOfBirth

FROM Employees

After you become accustomed to using expressions, you won’t need to
state them quite as explicitly in your translation statements as I did
here. You’ll eventually be able to easily identify and define the expres-
sions you need as you construct the SELECT statement itself.

 ❖ Note Throughout the remainder of the book, I provide names for all
calculated columns within an SQL statement, as appropriate.

Working with a Mathematical Expression

Mathematical expressions are possibly the most versatile of the three
types of expressions, and you’ll probably use them quite often. For

❖ Note Throughout the remainder of the book, I provide names for all
calculated columns within an SQL statement, as appropriate.

 Using Expressions in a SELECT Clause 155

example, you can use a mathematical expression to calculate a line item
total, determine the average score from a given set of tests, calculate the
difference between two lab results, and estimate the total seating capac-
ity of a building. The real trick is to make certain your expression works,
and that is just a function of doing a little careful planning.

Here’s an example of how you might use a mathematical expression in a
SELECT statement:

“Display for each agent the agent name and projected income (sal-
ary plus commission), assuming each agent will sell $50,000 worth of
bookings.”

Translation Select first name and last name as agent name and salary plus
50000 times commission rate as projected income from the
agents table

Clean Up Select first name and || ‘ ‘ || last name as AgentName, and sal-
ary plus + 50000 times * commission rate as ProjectedIncome
from the agents table

SQL SELECT AgtFirstName || ' ' || AgtLastName

 AS AgentName,

 Salary + (50000 * CommissionRate)

 AS ProjectedIncome

FROM Agents

Notice that I added parentheses to make it crystal clear that I expect
the commission rate to be multiplied by 50,000 and then add the sal-
ary, not add 50,000 to the salary and then multiply by the commission
rate. As the example shows, you’re not limited to using a single type
of expression in a SELECT statement. Rather, you can use a variety of
expressions to retrieve the information you need in the result set. Here’s
another way you can write the previous SQL statement:

SQL SELECT AgtFirstName || ' ' || AgtLastName

 || ' has a projected income of ' ||

 CAST(Salary + (50000 * CommissionRate)

 AS CHARACTER) AS ProjectedIncome

FROM Agents

156 Chapter 5 Getting More Than Simple Columns

The information you can provide by using mathematical expressions is
virtually limitless, but you must properly plan your expressions and use
the CAST function as appropriate.

Working with a Date Expression

Using a date expression is similar to using a mathematical expression
in that you’re simply adding or subtracting values. You can use date
expressions for all sorts of tasks. For example, you can calculate an esti-
mated ship date, project the number of days it will take to finish a proj-
ect, or determine a follow-up appointment date for a patient. Here’s an
example of how you might use a date expression in a SELECT clause:

“How many days did it take to ship each order?”

Translation Select the order number and ship date minus order date
as days to ship from the orders table

Clean Up Select the order number and ship date minus – order
date as DaysToShip from the orders table

SQL SELECT OrderNumber,

 CAST(ShipDate – OrderDate AS INTEGER)

 AS DaysToShip

FROM Orders

You can use time expressions in the same manner.

“What would be the start time for each class if we began each class
ten minutes later than the current start time?”

Translation Select the start time and start time plus 10 minutes as
new start time from the classes table

Clean Up Select the start time and start time plus +
‘00:10’ minutes as NewStartTime from the classes table

SQL SELECT StartTime, StartTime + '00:10'

 AS NewStartTime

FROM Classes

 Using Expressions in a SELECT Clause 157

As I mentioned earlier, all database systems provide a function or set of
functions for working with date values. I did want to give you an idea of
how you might use dates and times in your SELECT statements, how-
ever, and I again recommend that you refer to your database system’s
documentation for details on the date and time functions your database
system provides.

A Brief Digression: Value Expressions

You now know how to use column references, literal values, and expres-
sions in a SELECT clause. You also know how to assign a name to a col-
umn reference or an expression. Now I’ll show you how this all fits into
the larger scheme of things.

The SQL Standard refers to a column reference, literal value, and
expression collectively as a value expression. Figure 5-10 shows how to
define a value expression.

Value Expression

+, -Date / Time

Expression

Types
Valid

Operators

Character ||

Numeric +, -, *, /

Interval +, -, *, / # Scalar value only

+
-

+
-
*
/
||

Value Expression

Literal Value

Column Reference

Function

(Value Expression)

CASE Expression

(SELECT Expression)#

Figure 5-10 The syntax diagram for a value expression

Let’s take a closer look at the components of a value expression:

• The syntax begins with an optional plus or minus sign. You use
either of these signs when you want the value expression to return
a signed numeric value. The value itself can be a numeric literal,
the value of a numeric column, a call to a function that returns a
numeric value (see our discussion of the CAST function earlier in

158 Chapter 5 Getting More Than Simple Columns

this chapter), or the return value of a mathematical expression.
You cannot use the plus or minus sign before an expression that
returns a character or datetime data type.

• You can see that the first list in the figure also includes (Value
Expression). This means that you can use a complex value expres-
sion comprised of other value expressions that include concatena-
tion or mathematical operators of their own. The parentheses force
the database system to evaluate this value expression first. (Don’t
worry about (SELECT Expression) and CASE Expression just yet—I
cover those in detail in Chapter 11, “Subqueries,” and Chapter 19,
“Condition Testing,” respectively.)

• The next item in the syntax is a list of operators. As you can see
in the inset box, the type of expression you use at the beginning
of the syntax determines which operators you can select from this
list.

• No, you’re not seeing things: Value Expression does appear after
the list of operators as well. The fact that you can use other value
expressions within a value expression allows you to create very
complex expressions.

By its very definition, a value expression returns a value that is used by
some component of an SQL statement. The SQL Standard specifies the
use of a value expression in a variety of statements and defined terms.
No matter where you use it, you’ll always define a value expression in the
same manner as you’ve learned here.

I’ll put this all into some perspective by showing you how a value expres-
sion is used in a SELECT statement. Figure 5-11 shows a modified ver-
sion of the SELECT statement syntax diagram presented in Figure 4-9
in Chapter 4. This new syntax gives you the flexibility to use literals,
 column references, expressions, or any combination of these within
a single SELECT statement. You can optionally name your value
 expressions with the AS keyword.

 That “Nothing” Value: Null 159

SELECT Statement

,
DISTINCT

,
FROM table_name

Value Expression
alias

AS

SELECT

Figure 5-11 The syntax diagram for the SELECT statement that includes
a value expression

Throughout the remainder of the book, I use the term value expression
to refer to a column reference, a literal value, or an expression, as appro-
priate. In later chapters, I discuss how to use a value expression in other
statements and show you a couple of other items that a value expression
represents.

Now, back to our regularly scheduled program.

That “Nothing” Value: Null

As you know, a table consists of columns and rows. Each column rep-
resents a characteristic of the subject of the table, and each row represents
a unique instance of the table’s subject. You can also think of a row as one
complete set of column values—each row contains exactly one value from
each column in the table. Figure 5-12 shows an example of a typical table.

Customers

CustomerID CustFirstName CustLastName CustStreetAddress CustCity CustCounty CustState

1001 Suzanne Viescas 15127 NE 24th, #383 Redmond King WA

1002 William Thompson 122 Spring River Drive Duvall King WA

1003 Gary Hallmark Route 2, Box 203B Auburn King WA

1004 Robert Brown 672 Lamont Ave Houston TX

1005 Dean McCrae 4110 Old Redmond Rd. Redmond WA

1006 John Viescas 15127 NE 24th, #383 Redmond King WA

1007 Mariya Sergienko 901 Pine Avenue Portland OR

1008 Neil Patterson 233 West Valley Hwy San Diego San Diego CA

Figure 5-12 A typical Customers table

160 Chapter 5 Getting More Than Simple Columns

So far I’ve shown how to retrieve information from the data in a table
with a SELECT statement and how to manipulate that data by using
value expressions. All of this works just fine because I’ve continually
made the assumption that each column in the table contains data. But
as Figure 5-12 clearly illustrates, a column sometimes might not contain
a value for a particular row in the table. Depending on how you use the
data, the absence of a value might adversely affect your SELECT state-
ments and value expressions. Before I discuss any implications, let’s first
examine how SQL regards missing values.

Introducing Null

In SQL, a Null represents a missing or an unknown value. You must
understand from the outset that a Null does not represent a zero, a char-
acter string of one or more blank spaces, or a “zero-length” character
string. The reasons are quite simple:

• A zero can have a very wide variety of meanings. It can represent
the state of an account balance, the current number of available
first-class ticket upgrades, or the current stock level of a particular
product.

• Although a character string of one or more blank spaces is guar-
anteed to be meaningless to most of us, it is something that is
definitely meaningful to SQL. A blank space is a valid character as
far as SQL is concerned, and a character string composed of three
blank spaces (' ') is just as legitimate as a character string com-
posed of several letters (‘a character string’).

• A zero-length string—two consecutive single quotes with no space
in between ('')—can be meaningful under certain circumstances.
In an employee table, for example, a zero-length string value in a
column called MiddleInitial might represent the fact that a par-
ticular employee does not have a middle initial in her name. Note,
however, that some implementations (notably Oracle) treat a zero-
length string in a VARCHAR as Null.

A Null is quite useful when used for its stated purpose, and the Cus-
tomers table in Figure 5-12 shows a clear example of this. In the Cust-
County column, each blank cell represents a missing or unknown

 That “Nothing” Value: Null 161

county name for the row in which it appears—a Null. In order to use
Nulls correctly, you must understand why they occur in the first place.

Missing values are commonly the result of human error. Consider
the row for Robert Brown, for example. If you’re entering the data for
Mr. Brown and you fail to ask him for the name of the county he lives
in, that data is considered missing and is represented in the row as a
Null. After you recognize the error, however, you can correct it by calling
Mr. Brown and asking him for the county name.

Unknown values appear in a table for a variety of reasons. One reason
might be that a specific value you need for a column is as yet undefined.
For example, you might have a Categories table in a School Scheduling
database that doesn’t have a category for a new set of classes that you
want to offer beginning in the fall session. Another reason a table might
contain unknown values is that the values are truly unknown. Let’s use
the Customers table in Figure 5-12 once again and consider the row for
Dean McCrae. Say that you’re entering the data for Mr. McCrae, and you
ask him for the name of the county he lives in. If neither of you knows
the county that includes the city in which he lives, then the value for the
county column in his row is truly unknown. This is represented in his
row as a Null. Obviously, you can correct the problem after either of you
determines the correct county name.

A column value might also be Null if none of its values apply to a par-
ticular row. Let’s assume for a moment that you’re working with an
employee table that contains a Salary column and an HourlyRate col-
umn. The value for one of these two columns is always going to be Null
because an employee cannot be paid both a fixed salary and an hourly
rate.

It’s important to note that there is a very slim difference between “does
not apply” and “is not applicable.” In the previous example, the value of
one of the two columns literally does not apply. But let’s assume you’re
working with a patient table that contains a column called HairColor
and you’re currently updating a row for an existing male patient. If that
patient is bald, then the value for that column is definitely not applica-
ble. Although you could just use a Null to represent a value that is not

162 Chapter 5 Getting More Than Simple Columns

applicable, I recommend that you use a true value such as “N/A” or “Not
Applicable.” This will make the information clearer in the long run.

As you can see, whether you allow Nulls in a table depends on the man-
ner in which you’re using the data. Now that I’ve shown you the positive
side of using Nulls, let’s take a look at the negative implication of using
Nulls.

The Problem with Nulls

The major drawback of Nulls is their adverse effect on mathematical
operations. Any operation involving a Null evaluates to Null. This is log-
ically reasonable—if a number is unknown, then the result of the oper-
ation is necessarily unknown. Note how a Null alters the outcome of the
operation in the next example:

(25 * 3) + 4 = 79
(Null * 3) + 4 = Null
(25 * Null) + 4 = Null
(25 * 3) + Null = Null

The same result occurs when an operation involves columns con-
taining Null values. For example, suppose you execute the following
SELECT statement (the statement is just an example—it won’t work as
coded in the sample database) and it returns the result set shown in
Figure 5-13.

SQL SELECT ProductID, ProductDescription, Category,

 Price, QuantityOnHand, Price *

 QuantityOnHand AS TotalValue

FROM Products

The operation represented by the TotalValue column is completed suc-
cessfully as long as both the Price and QuantityOnHand columns have
valid numeric values. Otherwise, TotalValue will contain a Null if either
Price or QuantityOnHand contains a Null. The good news is that Total-
Value will contain an appropriate value after you replace the Nulls in
Price and QuantityOnHand with valid numeric values. You can avoid
this problem completely by ensuring that the columns you use in a
mathematical expression do not contain Null values.

 Sample Statements 163

ProductDescription

Shur-Lok U-Lock

SpeedRite Cyclecomputer

SteelHead Microshell Helmet

SureStop 133-MB Brakes

Diablo ATM Mountain Bike

UltraVision Helmet Mount Mirrors

Category

Accessories

Accessories

Components

Bikes

Price

65.00

36.00

23.50

1,200.00

7.45

TotalValue

1,300.00

1,118.00

376.00

74.50

ProductID

70001

70002

70003

70004

70005

70006

QuantityOnHand

12

20

33

16

10

Figure 5-13 Nulls involved in a mathematical expression

This is not the only time I’ll be concerned with Nulls. In Chapter 12, we’ll
see how Nulls impact SELECT statements that summarize information.

Sample Statements

Now that you know how to use various types of value expressions in the
SELECT clause of a SELECT statement, let’s take a look, on the next few
pages, at some examples using the tables from four of the sample data-
bases. These examples illustrate the use of expressions to generate an
output column.

I’ve also included sample result sets that would be returned by these
operations and placed them immediately after the SQL syntax line. The
name that appears immediately above a result set is the name I gave
each query in the sample data on the companion website for the book,
www.informit.com/title/9780134858333. I stored each query in the
appropriate sample database (as indicated within the example) and pre-
fixed the names of the queries relevant to this chapter with “CH05.” You
can follow the instructions in the Introduction of this book to load the
samples onto your computer and try them.

 ❖ Note I’ve combined the Translation and Clean Up steps in the fol-
lowing examples so that you can begin to learn how to consolidate the
process. Although you’ll still work with all three steps during the body
of any given chapter, you’ll get a chance to work with the consolidated
process in each “Sample Statements” section.

❖ Note I’ve combined the Translation and Clean Up steps in the fol-
lowing examples so that you can begin to learn how to consolidate the
process. Although you’ll still work with all three steps during the body
of any given chapter, you’ll get a chance to work with the consolidated
process in each “Sample Statements” section.

http://www.informit.com/title/9780134858333

164 Chapter 5 Getting More Than Simple Columns

Sales Orders Database

“What is the inventory value of each product?”

Translation/
Clean Up

Select the product name, retail price times * quantity on
hand as InventoryValue from the products table

SQL SELECT ProductName,

 RetailPrice * QuantityOnHand AS

 InventoryValue

FROM Products

CH05_Product_Inventory_Value (40 Rows)

ProductName InventoryValue

Trek 9000 Mountain Bike $7,200.00

Eagle FS-3 Mountain Bike $14,400.00

Dog Ear Cyclecomputer $1,500.00

Victoria Pro All Weather Tires $1,099.00

Dog Ear Helmet Mount Mirrors $89.40

Viscount Mountain Bike $3,175.00

Viscount C-500 Wireless Bike Computer $1,470.00

Kryptonite Advanced 2000 U-Lock $1,000.00

<< more rows here >>

“How many days elapsed between the order date and the ship date for
each order?”

Translation/
Clean Up

Select the order number, order date, ship date, ship date
minus – order date as DaysElapsed from the orders table

SQL SELECT OrderNumber, OrderDate, ShipDate,

 CAST(ShipDate – OrderDate AS INTEGER)

 AS DaysElapsed

FROM Orders

 Sample Statements 165

CH05_Shipping_Days_Analysis (944 Rows)

OrderNumber OrderDate ShipDate DaysElapsed

1 2017-09-02 2017-09-05 3

2 2017-09-02 2017-09-04 2

3 2017-09-02 2017-09-05 3

4 2017-09-02 2017-09-04 2

5 2017-09-02 2017-09-02 0

6 2017-09-02 2017-09-06 4

7 2017-09-02 2017-09-05 3

8 2017-09-02 2017-09-02 0

9 2017-09-02 2017-09-05 3

10 2017-09-02 2017-09-05 3

<< more rows here >>

Entertainment Agency Database

“How long is each engagement due to run?”

Translation/
Clean Up

Select the engagement number, end date minus – start
date plus one + 1 as DueToRun from the engagements
table

SQL SELECT EngagementNumber,

 CAST(CAST(EndDate – StartDate

 AS INTEGER) + 1 AS CHARACTER)

 || ' day(s)' AS DueToRun

FROM Engagements

CH05_Engagement_Lengths (111 Rows)

EngagementNumber DueToRun

2 5 day(s)

3 6 day(s)

4 7 day(s)

5 4 day(s)

166 Chapter 5 Getting More Than Simple Columns

EngagementNumber DueToRun

6 5 day(s)

7 8 day(s)

8 8 day(s)

9 11 day(s)

10 10 day(s)

11 2 day(s)

<< more rows here >>

 ❖ Note You have to add “1” to the date expression in order to account
for each date in the engagement. Otherwise, you’ll get “0 day(s)” for an
engagement that starts and ends on the same date. You can also see
that I CAST the result of subtracting the two dates first as INTEGER
(in MySQL, Signed Integer) so that I could add the value 1, then CAST
the result of that to CHARACTER to ensure the concatenation works
as expected.

“What is the net amount for each of our contracts?”

Translation/
Clean Up

Select the engagement number, contract price, con-
tract price times * 0.12 as OurFee, contract price minus
– (contract price times * 0.12) as NetAmount from the
 engagements table

SQL SELECT EngagementNumber, ContractPrice,

 ContractPrice * 0.12 AS OurFee, ContractPrice

 −(ContractPrice * 0.12)

 AS NetAmount

FROM Engagements

CH05_Net_Amount_Per_Contract (111 Rows)

EngagementNumber ContractPrice OurFee NetAmount

2 $200.00 $24.00 $176.00

3 $590.00 $70.80 $519.20

4 $470.00 $56.40 $413.60

❖ Note You have to add “1” to the date expression in order to account
for each date in the engagement. Otherwise, you’ll get “0 day(s)” for an
engagement that starts and ends on the same date. You can also see
that I CAST the result of subtracting the two dates first as INTEGER
(in MySQL, Signed Integer) so that I could add the value 1, then CAST
the result of that to CHARACTER to ensure the concatenation works
as expected.

 Sample Statements 167

EngagementNumber ContractPrice OurFee NetAmount

5 $1,130.00 $135.60 $994.40

6 $2,300.00 $276.00 $2,024.00

7 $770.00 $92.40 $677.60

8 $1,850.00 $222.00 $1,628.00

9 $1,370.00 $164.40 $1,205.60

10 $3,650.00 $438.00 $3,212.00

11 $950.00 $114.00 $836.00

<< more rows here >>

School Scheduling Database

“List how many complete years each staff member has been with the
school as of October 1, 2017, and sort the result by last name and first
name.”

Translation/
Clean Up

Select last name || ‘, ’ || and first name concatenated with a
comma as Staff, date hired, and ((‘2017-10-01’ minus – date
hired) divided by / 365) as YearsWithSchool from the staff
table and sort order by last name and first name

SQL SELECT StfLastName || ', ' || StfFirstName

 AS Staff,

 DateHired,

 CAST(CAST('2017-10-01' − DateHired

 AS INTEGER) / 365 AS INTEGER)

 AS YearsWithSchool

FROM Staff

ORDER BY StfLastName, StfFirstName

CH05_Length_Of_Service (27 Rows)

Staff DateHired YearsWithSchool

Alborous, Sam 1990-11-20 26

Black, Alastair 1996-12-11 20

Bonnicksen, Joyce 1994-03-02 23

168 Chapter 5 Getting More Than Simple Columns

Staff DateHired YearsWithSchool

Brehm, Peter 1994-07-16 23

Brown, Robert 1997-02-09 20

Coie, Caroline 1991-01-28 26

DeGrasse, Kirk 1996-03-02 21

Ehrlich, Katherine 1993-03-08 24

Glynn, Jim 1993-08-02 23

Hallmark, Alaina 1992-01-07 24

<< more rows here >>

 ❖ Note The objective is to calculate the number of complete years of
service as of October 1, 2017. (Note that I used the CAST function to
ensure that the string literal is treated as a date.) For example, if a
staff member was hired on October 10, 2015, the answer should be 1,
not 2. The expression in this SELECT statement is technically cor-
rect and works as expected, but it returns the wrong answer when
there are any leap years between the hire date and October 1, 2017.
Strangely enough, the SQL Standard does not define any functions
for performing specialized date and time calculations. The Standard
defines only basic subtraction of two dates/times, addition of a date/
time and an interval, and multiplication or division by a number to
yield an interval.

You can correct this problem by using the appropriate date arith-
metic function provided by your database system. As mentioned
earlier, most database systems provide their own methods of work-
ing with dates and times, and you can find a summary of date and
time functions supported by six of the major database systems in
Appendix C. But be careful! For example, both Microsoft SQL Server
and Microsoft Office Access have a DateDiff function that lets you
calculate the difference in years, but the answer returned is simply
the difference between the year portion of the two dates. The number
of years between December 31, 2016 and January 1, 2017 is 1! I’ll
show you a more precise way to answer this problem in Chapter 19
using CASE.

❖ Note The objective is to calculate the number of complete years of e
service as of October 1, 2017. (Note that I used the CAST function to
ensure that the string literal is treated as a date.) For example, if a
staff member was hired on October 10, 2015, the answer should be 1,
not 2. The expression in this SELECT statement is technically cor-
rect and works as expected, but it returns the wrong answer when
there are any leap years between the hire date and October 1, 2017.
Strangely enough, the SQL Standard does not define any functions
for performing specialized date and time calculations. The Standard
defines only basic subtraction of two dates/times, addition of a date/
time and an interval, and multiplication or division by a number to
yield an interval.

You can correct this problem by using the appropriate date arith-
metic function provided by your database system. As mentioned
earlier, most database systems provide their own methods of work-
ing with dates and times, and you can find a summary of date and
time functions supported by six of the major database systems in
Appendix C. But be careful! For example, both Microsoft SQL Server
and Microsoft Office Access have a DateDiff function that lets you
calculate the difference in years, but the answer returned is simply
the difference between the year portion of the two dates. The number
of years between December 31, 2016 and January 1, 2017 is 1! I’ll
show you a more precise way to answer this problem in Chapter 19
using CASE.

 Sample Statements 169

“Show me a list of staff members, their salaries, and a proposed
7 percent bonus for each staff member.”

Translation/
Clean Up

Select the last name || ‘, ’ || and first name as
 StaffMember, salary, and salary times * 0.07 as Bonus
from the staff table

SQL SELECT StfLastName || ', ' || StfFirstName

 AS Staff, Salary, Salary * 0.07 AS Bonus

FROM Staff

CH05_Proposed_Bonuses (27 Rows)

Staff Salary Bonus

Alborous, Sam $60,000.00 $4,200.00

Black, Alastair $60,000.00 $4,200.00

Bonnicksen, Joyce $60,000.00 $4,200.00

Brehm, Peter $60,000.00 $4,200.00

Brown, Robert $49,000.00 $3,430.00

Coie, Caroline $52,000.00 $3,640.00

DeGrasse, Kirk $45,000.00 $3,150.00

Ehrlich, Katherine $45,000.00 $3,150.00

Glynn, Jim $45,000.00 $3,150.00

Hallmark, Alaina $57,000.00 $3,900.00

<< more rows here >>

Bowling League Database

“Display a list of all bowlers and addresses formatted suitably for a
mailing list, sorted by ZIP Code.”

170 Chapter 5 Getting More Than Simple Columns

Translation/
Clean Up

Select first name || ‘ ’ || and last name as FullName,
BowlerAddress, city || ‘, ’ || state || ‘ ’ || and ZIP Code as
CityStateZip, BowlerZip from the bowlers table and order
by ZIP Code

SQL SELECT BowlerFirstName || ' ' || BowlerLastName AS

 FullName,

 Bowlers.BowlerAddress,

 BowlerCity || ', ' || BowlerState || ' ' ||

 BowlerZip AS CityStateZip, BowlerZip

FROM Bowlers

ORDER BY BowlerZip

CH05_Names_Address_For_Mailing (32 Rows)

FullName BowlerAddress CityStateZip BowlerZip

Kathryn Patterson 16 Maple Lane Auburn, WA 98002 98002

Rachel Patterson 16 Maple Lane Auburn, WA 98002 98002

Ann Patterson 16 Maple Lane Auburn, WA 98002 98002

Neil Patterson 16 Maple Lane Auburn, WA 98002 98002

Megan Patterson 16 Maple Lane Auburn, WA 98002 98002

Carol Viescas 16345 NE 32nd Street Bellevue, WA 98004 98004

Sara Sheskey 17950 N 59th Seattle, WA 98011 98011

Richard Sheskey 17950 N 59th Seattle, WA 98011 98011

William Thompson 122 Spring Valley Drive Duvall, WA 98019 98019

Mary Thompson 122 Spring Valley Drive Duvall, WA 98019 98019

<< more rows here >>

 ❖ Note Notice that I included the BowlerZip column not only in the
CityStateZip expression but also as a separate column. Remember
that the SQL Standard enables you to sort only on columns that
are included in the SELECT clause. Even though you don’t need the

❖ Note Notice that I included the BowlerZip column not only in the
CityStateZip expression but also as a separate column. Remember
that the SQL Standard enables you to sort only on columns that
are included in the SELECT clause. Even though you don’t need the

 Sample Statements 171

BowlerZip again to create your mailing list, you should include the
column so that you can use it in the ORDER BY clause. Some data-
base systems, notably Microsoft Office Access, do not impose this
requirement, but remember that I’m strictly following the standard in
every query I use as an example.

“What was the point spread between a bowler’s handicap and raw
score for each match and game played?”

Translation/
Clean Up

Select bowler ID, match ID, game number, handicap
score, raw score, handicap score minus – raw score as
 PointDifference from the bowler scores table and order by
bowler ID, match ID, game number

SQL SELECT BowlerID, MatchID, GameNumber,

 HandiCapScore, RawScore, HandiCapScore

 − RawScore AS PointDifference

FROM Bowler_Scores

ORDER BY BowlerID, MatchID, GameNumber

CH05_Handicap_vs_RawScore (1344 Rows)

BowlerID MatchID GameNumber HandiCapScore RawScore PointDifference

1 1 1 192 146 46

1 1 2 192 146 46

1 1 3 199 153 46

1 5 1 192 145 47

1 5 2 184 137 47

1 5 3 199 152 47

1 10 1 189 140 49

1 10 2 186 137 49

1 10 3 210 161 49

<< more rows here >>

BowlerZip again to create your mailing list, you should include the
column so that you can use it in the ORDER BY clause. Some data-
base systems, notably Microsoft Office Access, do not impose this
requirement, but remember that I’m strictly following the standard in
every query I use as an example.

172 Chapter 5 Getting More Than Simple Columns

Summary

I began the chapter with a brief overview of expressions. I then explained
that you need to understand data types before you can build expres-
sions, and I went on to discuss each of the major data types in some
detail. I next showed you the CAST function and explained that you’ll
often use it to change the data type of a column or literal so that it’s
compatible with the type of expression you’re trying to build. I then cov-
ered all the ways that you can introduce a constant value—a literal—
into your expressions. I then introduced you to the concept of using an
expression to broaden or narrow the scope of information you retrieve
from the database. I also explained that an expression is some form of
operation involving numbers, character strings, or dates and times.

I continued our discussion of expressions and provided a concise over-
view of each type of expression. I showed you how to concatenate strings
of characters and how to concatenate strings with other types of data
by using the CAST function. I then showed you how to create mathe-
matical expressions, and I explained how the order of precedence affects
a given mathematical operation. I closed this discussion with a look at
date and time expressions. After showing you how the SQL Standard
handles dates and times, I revealed that most database systems provide
their own methods of working with dates and times.

I then proceeded to the subject of using expressions in a SELECT state-
ment, and I showed you how to incorporate expressions in the SELECT
clause. I then showed you how to use both literal values and columns
within an expression, as well as how to name the column that holds the
result value of the expression. Before ending this discussion, I took a
brief digression and introduced you to the value expression. I revealed
that the SQL Standard uses this term to refer to a column reference,
literal value, and expression collectively and that you can use a value
expression in various clauses of an SQL statement. (More on this in later
chapters, of course!)

I closed this chapter with a discussion on Nulls. You learned that a Null
represents a missing or an unknown value. I showed you how to use a
Null properly and explained that it can be quite useful under the right
circumstances. But I also discussed how Nulls adversely affect mathe-
matical operations. You now know that a mathematical operation involv-
ing a Null value returns a Null value. I also showed you how Nulls can
make the information in a result set inaccurate.

 Problems for You to Solve 173

In the next chapter, I’ll discuss the idea of retrieving a very specific set
of information. I’ll then show you how to use a WHERE clause to filter
the information retrieved by a SELECT statement.

The following section presents a number of requests that you can work
out on your own.

Problems for You to Solve

Below, I show you the request statement and the name of the solution
query in the sample databases. If you want some practice, you can work
out the SQL for each request and then check your answer with the query
I saved in the samples. Don’t worry if your syntax doesn’t exactly match
the syntax of the queries I saved—as long as your result set is the same.

Sales Orders Database

 1. “What if we adjusted each product price by reducing it 5 percent?”

You can find the solution in CH05_Adjusted_Wholesale_Prices
(90 rows).

 2. “Show me a list of orders made by each customer in descending
date order.”

(Hint: You might need to order by more than one column for the
information to display properly.)

You can find the solution in CH05_Orders_By_Customer_And_
Date (944 rows).

 3. “Compile a complete list of vendor names and addresses in vendor
name order.”

You can find the solution in CH05_Vendor_Addresses (10 rows).

Entertainment Agency Database

 1. “Give me the names of all our customers by city.”

(Hint: You’ll have to use an ORDER BY clause on one of the
columns.)

You can find the solution in CH05_Customers_By_City (15 rows).

 2. “List all entertainers and their Web sites.”

You can find the solution in CH05_Entertainer_Web_Sites (13 rows).

174 Chapter 5 Getting More Than Simple Columns

 3. “Show the date of each agent’s first six-month performance review.”

(Hint: You’ll need to use date arithmetic to answer this request.
Be sure to refer to Appendix C.)

You can find the solution in CH05_First_Performance_Review
(9 rows).

School Scheduling Database

 1. “Give me a list of staff members, and show them in descending
order of salary.”

You can find the solution in CH05_Staff_List_By_Salary (27 rows).

 2. “Can you give me a staff member phone list?”

You can find the solution in CH05_Staff_Member_Phone_List
(27 rows).

 3. “List the names of all our students, and order them by the cities
they live in.”

You can find the solution in CH05_Students_By_City (18 rows).

Bowling League Database

 1. “Show next year’s tournament date for each tournament location.”

(Hint: Add 364 days to get the same day of the week, and be sure
to refer to Appendix C.)

You can find the solution in CH05_Next_Years_Tourney_Dates
(20 rows).

 2. “List the name and phone number for each member of the league.”

You can find the solution in CH05_Phone_List (32 rows).

 3. “Give me a listing of each team’s lineup.”

(Hint: Base this query on the Bowlers table.)

You can find the solution in CH05_Team_Lineups (32 rows).

 175

6
Filtering Your Data

“I keep six honest-serving men (They taught me all I knew.) Their names
are What and Why and When and How and Where and Who.”

—RUDYARD KIPLING “I KEEP SIX HONEST-SERVING MEN”

Topics Covered in This Chapter

Refining What You See Using WHERE

Defining Search Conditions

Using Multiple Conditions

Nulls Revisited: A Cautionary Note

Expressing Conditions in Different Ways

Sample Statements

Summary

Problems for You to Solve

In the previous two chapters, I discussed the techniques you use to see
all the information in a given table. I also discussed how to create and
use expressions to broaden or narrow the scope of that information. In
this chapter, I’ll show you how to fine-tune what you retrieve by filtering
the information using a WHERE clause.

176 Chapter 6 Filtering Your Data

Refining What You See Using WHERE

The type of SELECT statement we’ve worked with so far retrieves all
the rows from a given table and uses them in the statement’s result
set. This is great if you really do need to see all the information the
table contains. But what if you want to find only the rows that apply
to a specific person, a specific place, a particular numeric value, or
a range of dates? These are not unusual requests. In fact, they are
the impetus behind many of the questions you commonly pose to the
database. You might, for example, have a need to ask the following
types of questions:

“Who are our customers in Seattle?”

“Show me a current list of our Bellevue employees and their
phone numbers.”

“What kind of music classes do we currently offer?”

“Give me a list of classes that earn three credits.”

“Which entertainers maintain a Web site?”

“Give me a list of engagements for the Caroline Coie Trio.”

“Give me a list of customers who placed orders in May.”

“Give me the names of our staff members who were hired on May 16,
1985.”

“What is the current tournament schedule for Red Rooster Lanes?”

“Which bowlers are on team 5?”

To answer these questions, you’ll have to expand your SQL vocabulary
once again by adding another clause to your SELECT statement: the
WHERE clause.

The WHERE Clause

You use a WHERE clause in a SELECT statement to filter the data the
statement draws from a table. The WHERE clause contains a search con-
dition that it uses as the filter. This search condition provides the mech-
anism needed to select only the rows you need or exclude the ones you
don’t want. Your database system applies the search condition to each
row in the logical table defined by the FROM clause. Figure 6-1 shows
the syntax of the SELECT statement with the WHERE clause.

 Refining What You See Using WHERE 177

A search condition contains one or more predicates, each of which is an
expression that tests one or more value expressions and returns a true,
false, or unknown answer. As you’ll learn later, you can combine multi-
ple predicates into a search condition using AND or OR Boolean opera-
tors. When the entire search condition evaluates to true for a particular
row, you will see that row in the final result set. Note that when a search
condition contains only one predicate, the terms search condition and
predicate are synonymous.

SELECT

SELECT Statement

,

DISTINCT

,
FROM table_name

Value Expression
alias

AS

WHERE Search Condition

Figure 6-1 The syntax diagram for a SELECT statement with a WHERE clause

Remember from Chapter 5, “Getting More Than Simple Columns,” that a
value expression can contain column names, literal values, functions, or
other value expressions. When you construct a predicate, you will typi-
cally include at least one value expression that refers to a column from
the tables you specify in the FROM clause.

The simplest and perhaps most commonly used predicate compares one
value expression (a column) to another (a literal). For example, if you
want only the rows from the Customers table in which the value of the
customer last name column is Smith, you write a predicate that com-
pares the last name column to the literal value “Smith.”

SQL SELECT CustLastName

FROM Customers

WHERE CustLastName = 'Smith'

The predicate in the WHERE clause is equivalent to asking this question
for each row in the Customers table: “Does the customer last name equal

178 Chapter 6 Filtering Your Data

‘Smith’?” When the answer to this question is yes (true) for any given
row in the Customers table, that row appears in the result set.

The SQL Standard defines 18 predicates, but I’ll cover the five basic ones
in this chapter: Comparison, BETWEEN, IN, LIKE, and IS NULL.

COMPARISON Use one of the six comparison operators to
compare one value expression to another
value expression. The six operators and their
meanings are
= equal to
<> not equal to
< less than
> greater than
<= less than or equal to
>= greater than or equal to

BETWEEN
(RANGE)

The BETWEEN predicate lets you test whether
the value of a given value expression falls
within a specified range of values. You specify
the range using two value expressions sepa-
rated by the AND keyword.

IN (MEMBERSHIP) You can test whether the value of a given value
expression matches an item in a given list of
values using the IN predicate.

LIKE (PATTERN
MATCH)

The LIKE predicate allows you to test whether
a character string value expression matches a
specified character string pattern.

IS NULL Use the IS NULL predicate to determine
whether a value expression evaluates to Null.

 ❖ Note Don’t worry too much about the other 13 predicates defined in
the current SQL Standard (Similar, Regex, Quantified, Exists, Unique,
Normalized, Match, Overlaps, Distinct, Member, Submultiset, Set, and
Type). Of these, I could not find any commercial implementation of 10
of them. MySQL and PostgreSQL support Regex. I’ll cover the other
two—Quantified and Exists—in Chapter 11, “Subqueries.”

❖ Note Don’t worry too much about the other 13 predicates defined in
the current SQL Standard (Similar, Regex, Quantified, Exists, Unique,
Normalized, Match, Overlaps, Distinct, Member, Submultiset, Set, and
Type). Of these, I could not find any commercial implementation of 10
of them. MySQL and PostgreSQL support Regex. I’ll cover the other
two—Quantified and Exists—in Chapter 11, “Subqueries.”

 Refining What You See Using WHERE 179

Using a WHERE Clause

Before I explore each of the basic predicates in the SQL Standard,
let’s first take a look at another example of how to construct a simple
WHERE clause. This time, I’ll give you a detailed walkthrough of the
steps to build your request.

 ❖ Note Throughout this chapter, I use the “Request/Translation/Clean
Up/SQL” technique introduced in Chapter 4, “Creating a Simple Query.”

Suppose you’re making the following request to the database:

“What are the names of our customers who live in the state of
Washington?”

When composing a translation statement for this type of request, you
must try to indicate the information you want to see in the result set as
explicitly and clearly as possible. You’ll expend more effort to rephrase a
request than you’ve been accustomed to so far, but the results will be well
worth the extra work. Here’s how you translate this particular request:

Translation Select first name and last name from the customers table for
those customers who live in Washington State

You’ll clean up this statement in the usual fashion, but you’ll also per-
form two extra tasks. First, look for any words or phrases that indicate
or imply some type of restriction. Dead giveaways are the words “where,”
“who,” and “for.” Here are some examples of the types of phrases you’re
trying to identify:

“. . . who live in Bellevue.”

“. . . for everyone whose ZIP Code is 98125.”

“. . . who placed orders in May.”

“. . . for suppliers in California.”

“. . . who were hired on May 16, 1985.”

“. . . where the area code is 425.”

“. . . for Mike Hernandez.”

❖ Note Throughout this chapter, I use the “Request/Translation/Clean
Up/SQL” technique introduced in Chapter 4, “Creating a Simple Query.”

180 Chapter 6 Filtering Your Data

When you find such a restriction, you’re ready for the second task. Study
the phrase, and try to determine which column is going to be tested,
what value that column is going to be tested against, and how the col-
umn is going to be tested. The answers to these questions will help you
formulate the search condition for your WHERE clause. Let’s apply these
questions to your translation statement.

Which column is going to be tested? State

What value is it going to be tested against? 'WA'

How is the column going to be tested? Using the “equal to” operator

You need to be familiar with the structure of the table you’re using to
answer the request. If necessary, have a copy of the table structure
handy before you begin to answer these questions.

 ❖ Note Sometimes the answers to these questions are evident, and
other times the answers are implied. I’ll show you how to make the
distinction and decipher the correct answers as I work through other
examples in this chapter.

After answering the questions, take them and create the appropriate
condition. Next, cross out the original restriction, and replace it with the
word WHERE and the search condition you just created. Here’s how your
Clean Up statement will look after you have completed this task:

Clean Up Select first name and last name from the customers table
for those customers who live in where state is equal to = 'WA'
 Washington State

Now you can turn this into a proper SELECT statement:

SQL SELECT CustFirstName, CustLastName

FROM Customers

WHERE CustState = 'WA'

The result set of your completed SELECT statement will display only
those customers who live in the state of Washington.

❖ Note Sometimes the answers to these questions are evident, and
other times the answers are implied. I’ll show you how to make the
distinction and decipher the correct answers as I work through other
examples in this chapter.

 Defining Search Conditions 181

That’s all there is to defining a WHERE clause. As I indicated at the
beginning of this section, it’s simply a matter of creating the appropriate
search condition and placing it in the WHERE clause. The real work,
however, is in defining the search conditions.

Defining Search Conditions

Now that you have an idea of how to create a simple WHERE clause, let’s
take a closer look at the five basic types of predicates you can define.

Comparison

The most common type of condition is one that uses a comparison pred-
icate to compare two value expressions to each other. As you can see in
Figure 6-2, you can define six different types of comparisons using the
following comparison predicate operators:

Comparison

Value Expression Value Expression=
<>
<
>

<=
>=

Figure 6-2 The syntax diagram for the comparison condition

= Equal To < Less Than <= Less Than or Equal To

<> Not Equal To > Greater Than >= Greater Than or Equal To

Comparing String Values: A Caution

You can easily compare numeric or datetime data, but you must pay
close attention when you compare character strings. For example, you
might not get the results you expect when you compare two seemingly
similar strings such as “Mike” and “MIKE.” The determining factor for
all character string comparisons is the collating sequence used by your
database system. The collating sequence also determines how character

182 Chapter 6 Filtering Your Data

strings are sorted and impacts how you use other comparison condi-
tions as well.

Because many different vendors have implemented SQL on machines
with different architectures and for many languages other than English,
the SQL Standard does not define any default collating sequence for
character string sorting or comparison. How characters are sorted from
“lowest” to “highest” depends on the database software you are using
and, in many cases, how the software was installed.

Many database systems use the ASCII collating sequence, which places
numbers before letters and all uppercase letters before all lowercase let-
ters. If your database supports the ASCII collating sequence, the charac-
ters are in the following sequence from lowest value to highest value:

. . . 0123456789 . . . ABC . . . XYZ . . . abc . . . xyz . . .

Some systems, however, offer a case-insensitive option. In these, for
example, lowercase a is considered equal to uppercase A. When your
database supports this option using ASCII as a base, characters are in
the following sequence from lowest value to highest value:

. . . 0123456789 . . . {Aa}{Bb}{Cc} . . . {Xx}{Yy}{Zz} . . .

Note that the characters enclosed in braces ({}) are considered equal
because no distinction is made between uppercase and lowercase. They
sort alphabetically irrespective of the case.

Database systems running on IBM mainframe systems use the
IBM-proprietary EBCDIC sequence. In a database system that uses
EBCDIC, all lowercase letters come first, then all uppercase letters, and
finally numbers. If your database supports EBCDIC, characters are in
the following sequence from lowest value to highest value:

. . . abc . . . xyz . . . ABC . . . XYZ . . . 0123456789 . . .

To drive this point home, let’s look at a set of sample column values to
see how different collating sequences affect how your database system
defines higher, lower, or equal values.

Here is a table of column values sorted using the ASCII character set,
case sensitive (numbers first, then uppercase, and then lowercase).

 Defining Search Conditions 183

Company Name

3rd Street Warehouse

5th Avenue Market

Al’s Auto Shop

Ashby’s Cleaners

Zebra Printing

Zercon Productions

allegheny & associates

anderson tree farm

zorn credit services

ztech consulting

Now, let’s turn off case sensitivity so that lowercase letters and their
uppercase equivalents are considered equal. The next table shows what
happens.

Company Name

3rd Street Warehouse

5th Avenue Market

Al’s Auto Shop

allegheny & associates

anderson tree farm

Ashby’s Cleaners

Zebra Printing

Zercon Productions

zorn credit services

ztech consulting

Finally, let’s see how these values are sorted on an IBM system using
the EBCDIC collating sequence (lowercase letters, uppercase letters, and
then numbers).

184 Chapter 6 Filtering Your Data

Company Name

allegheny & associates

anderson tree farm

zorn credit services

ztech consulting

Al’s Auto Shop

Ashby’s Cleaners

Zebra Printing

Zercon Productions

3rd Street Warehouse

5th Avenue Market

You can also encounter unexpected results when trying to compare
two character strings of unequal length, such as “John” and "John" or
“Mitch” and “Mitchell.” Fortunately, the SQL Standard clearly specifies
how the database system must handle this. Before your database com-
pares two character strings of unequal length, it must add the special
default pad character to the right of the smaller string until it is the
same length as the larger string. (The default pad character is a space in
most database systems.) Your database then uses its collating sequence
to determine whether the two strings are now equal to each other. As a
result, “John” and "John" are equal (after the padding takes place) and
“Mitch” and “Mitchell” are unequal.

 ❖ Note Some database systems differ from the SQL Standard in that
they ignore trailing blanks rather than pad the shorter string with a
default space. Therefore, “John” and “John ” are considered equal in
some systems, but for a different reason—because the trailing blanks
in the second item are disregarded. Be sure to test your database sys-
tem to determine how it handles this type of comparison and whether
it returns the type of results you expect.

In summary, check your database system’s documentation to determine
how it collates uppercase letters, lowercase letters, and numbers.

❖ Note Some database systems differ from the SQL Standard in that
they ignore trailing blanks rather than pad the shorter string with a
default space. Therefore, “John” and “John ” are considered equal in
some systems, but for a different reason—because the trailing blanks
in the second item are disregarded. Be sure to test your database sys-
tem to determine how it handles this type of comparison and whether
it returns the type of results you expect.

 Defining Search Conditions 185

Equality and Inequality

Although you’ve already seen a couple of examples, let’s take another
look at an equality comparison condition using the “equal to” operator.

Assume you’re making this request to the database:

“Show me the first and last names of all the agents who were hired on
March 14, 1977.”

Because you are going to search for a specific hire date, you can use an
equality comparison condition with an “equal to” operator to retrieve the
appropriate information. Now I’ll run this through the translation pro-
cess to define the appropriate SELECT statement:

Translation Select first name and last name from the agents table for all
agents hired on March 14, 1977

Clean Up Select first name and last name from the agents table for all
agents hired on where date hired = March 14, 1977 ‘1977-03-14’

SQL SELECT AgtFirstName, AgtLastName

FROM Agents

WHERE DateHired = '1977-03-14'

In this example, I tested the values of a specific column to determine
whether any values matched a given date value. In essence, I executed
an inclusive process—a given row in the Agents table will be included in
the result set only if the current value of the DateHired column for that
row matches the specified date. But what if you wanted to do the exact
opposite and exclude certain rows from the result set? In that case, you
would use a comparison condition with a “not equal to” operator.

Suppose you submit the following request:

“Give me a list of vendor names and phone numbers for all our ven-
dors, with the exception of those here in Bellevue.”

You’ve probably already determined that you need to exclude those ven-
dors based in Bellevue and that you’ll use a “not equal to” condition for
the task. The phrase “with the exception of” provides a clear indication
that the “not equal to” condition is appropriate. Keep this in mind as you
look at the translation process.

186 Chapter 6 Filtering Your Data

Translation Select vendor name and phone number from the vendors
table for all vendors except those based in ‘Bellevue’

Clean Up Select vendor name and phone number from the vendors
table for all vendors except those based in where city <>
'Bellevue'

SQL SELECT VendName, VendPhone

FROM Vendors

WHERE VendCity <> 'Bellevue'

 ❖ Note The SQL Standard uses the <> symbol for the “not equal
to” operator. Several RDBMS programs provide alternate notations,
such as != (supported by Microsoft SQL Server and Sybase) and ¬=
(supported by IBM’s DB2). Be sure to check your database system’s
documentation for the appropriate notation of this operator.

You’ve effectively excluded all vendors from Bellevue with this sim-
ple condition. Later in this chapter, I’ll show you a different method for
excluding rows from a result set.

Less Than and Greater Than

Often you want rows returned where a particular value in a column is
smaller or larger than the comparison value. This type of comparison
employs the “less than” (<), “less than or equal to” (<=), “greater than” (>),
or “greater than or equal to” (>=) comparison operators. The type of data
you compare determines the relationship between those values.

CHARACTER
STRINGS

This comparison determines whether the value of the
first value expression precedes (<) or follows (>) the
value of the second value expression in your database
system’s collating sequence. For example, you can
interpret a < c as “Does a precede c?” For details
about collating sequences, see the previous section,
“ Comparing String Values: A Caution.”

NUMBERS This comparison determines whether the value of the
first value expression is smaller (<) or larger (>) than
the value of the second value expression. For exam-
ple, you can interpret 10 > 5 as “Is 10 larger than 5?”

❖ Note The SQL Standard uses the <> symbol for the “not equal
to” operator. Several RDBMS programs provide alternate notations,
such as != (supported by Microsoft SQL Server and Sybase) and ¬=
(supported by IBM’s DB2). Be sure to check your database system’s
documentation for the appropriate notation of this operator.

 Defining Search Conditions 187

DATES/TIMES This comparison determines whether the value of the
first value expression is earlier (<) or later (>) than
the value of the second value expression. For exam-
ple, you can interpret ‘2007-05-16’ < ‘2007-12-15’ as
“Is May 16, 2007, earlier than December 15, 2007?”
Dates and times are evaluated in chronological order.

Let’s take a look at how you might use these comparison predicates to
answer a request.

“Are there any orders where the ship date was accidentally posted ear-
lier than the order date?”

You’ll use a “less than” comparison operator in this instance because
you want to determine whether any ship date was posted earlier than its
respective order date. Here’s how you translate this:

Translation Select order number from the orders table where the ship
date is earlier than the order date

Clean Up Select order number from the orders table where the ship
date is earlier than the < order date

SQL SELECT OrderNumber

FROM Orders

WHERE ShipDate < OrderDate

The SELECT statement’s result set will include only those rows from the
Orders table where the search condition is true.

The next example requires a “greater than” comparison operator to
retrieve the appropriate information.

“Are there any classes that earn more than four credits?”

Translation Select class ID from the classes table for all classes that
earn more than four credits

Clean Up Select class ID from the classes table for all classes that
earn more than four where credits > 4

SQL SELECT ClassID

FROM Classes

WHERE Credits > 4

188 Chapter 6 Filtering Your Data

The result set generated by this SELECT statement includes only classes
that earn five credits or more, such as Intermediate Algebra and Engi-
neering Physics.

Now, let’s take a look at some examples where you’re interested not only
in the values that might be greater than or less than but also equal to
the comparison value.

“I need the names of everyone we’ve hired since January 1, 1989.”

You use a “greater than or equal to” comparison for this because you want
to retrieve all hire dates from January 1, 1989, to the present, including
employees hired on that date. As you run through the translation pro-
cess, be sure to identify all the columns you need for the SELECT clause.

Translation Select first name and last name as EmployeeName from the
employees table for all employees hired since January 1, 1989

Clean Up Select first name and || ' ' || last name as EmployeeName
from the employees table for all employees hired since where
date hired >= January 1, 1989 ‘1989-01-01’

SQL SELECT FirstName || ' ' || LastName

 AS EmployeeName

FROM Employees

WHERE DateHired >= '1989-01-01'

Here’s another request you might make to the database:

“Show me a list of products with a retail price of fifty dollars or less.”

As you’ve probably deduced, you’ll use a “less than or equal to” compar-
ison for this request. This ensures that the SELECT statement’s result
set contains only those products that cost anywhere from one cent to
exactly fifty dollars. Here’s how you translate this request:

Translation Select product name from the products table for all products
with a retail price of fifty dollars or less

Clean Up Select product name from the products table for all products
with a where retail price of <= 50 fifty dollars or less

SQL SELECT ProductName

FROM Products

WHERE RetailPrice <= 50

 Defining Search Conditions 189

The examples you’ve seen so far use only a single type of comparison.
Later in this chapter, I’ll show you how to combine comparisons using
AND and OR.

Range

You can test the value of a value expression against a specific range
of values with a range condition. Figure 6-3 shows the syntax for this
condition.

Range

Value Expression Value ExpressionBETWEEN

AND Value Expression

Figure 6-3 The syntax diagram for the range condition

The range condition tests the value of a given value expression against a
range of values defined by two other value expressions. The BETWEEN
. . . AND predicate defines the range by using the value of the second
value expression as the start point and the value of the third value
expression as the end point. Both the start point and end point are part
of the range. A row is included in the result set only if the value of the
first value expression falls within the specified range.

There’s one “gotcha” about using BETWEEN . . . AND. The SQL Standard
actually defines two types of BETWEEN comparisons: ASYMMETRIC and
SYMMETRIC. The default, ASYMMETRIC, dictates that Value1 BETWEEN
Value2 AND Value3 is the same as Value1 >= Value2 AND Value1 <=
Value3. This means that Value2 must be less than or equal to Value3 for
the predicate to work properly. For example, the SQL Standard states that

MyColumn BETWEEN 5 AND 10

should be processed as

MyColumn >= 5 AND MyColumn <= 10

So, putting the larger value first, as in

MyColumn BETWEEN 10 AND 5

190 Chapter 6 Filtering Your Data

is interpreted according to the SQL Standard as

MyColumn >=10 AND MyColumn <= 5

which can never be true! (The column value can’t both be greater than
or equal to 10 and at the same time less than or equal to 5.) However,
some database systems allow Value2 to be greater than or equal to
Value3—the equivalent of using the SYMMETRIC keyword in the SQL
Standard. (I’m not aware of any major implementation that yet supports
the ASYMMETRIC and SYMMETRIC keywords.) Check your database
system documentation for details.

Here are a couple of examples that illustrate how you use a range
condition:

“Which staff members were hired in July 1986?”

The range condition is appropriate here because you want to retrieve the
names of everyone who was hired within a specific set of dates, in this
case, between July 1, 1986, and July 31, 1986. Let’s now run this through
the translation process and build the appropriate SELECT statement.

Translation Select first name and last name from the staff table where
the date hired is between July 1, 1986, and July 31, 1986

Clean Up Select first name and last name from the staff table where
the date hired is between July 1, 1986 '1986-07-01' and
July 31, 1986 '1986-07-31'

SQL SELECT FirstName, LastName

FROM Staff

WHERE DateHired

BETWEEN '1986-07-01' AND '1986-07-31'

Notice that I stated the range of dates more explicitly in the transla-
tion statement than in the request. Use this technique to translate the
request as clearly as possible and thus define the appropriate SELECT
statement.

You can also use a range condition on character string data quite effec-
tively, as shown in this example:

“Give me a list of students—along with their phone numbers—whose
last names begin with the letter B.”

 Defining Search Conditions 191

Translation Select last name, first name, and phone number from the
students table for all students whose last name begins
with the letter ‘B’

Clean Up Select last name, first name, and phone number from the
 students table for all students whose name begins with
the letter ‘B’ where last name between 'B' and 'Bz'

SQL SELECT StudLastName, StudFirstName,

 StudPhoneNumber

FROM Students

WHERE StudLastName BETWEEN 'B' AND 'Bz'

When creating a range for character string data, think carefully about
the values you want to include. For example, here are three possible
ways you might have indicated the start and end points for the required
range in this request. The results are quite different!

BETWEEN ‘A’ AND ‘B’ I know that many of you would not have
indicated ‘A’ as the start point because
you know the range would then include
everyone whose name begins with that
letter. However, this is a fairly typical
mistake.

BETWEEN ‘B’ AND ‘C’ Indicating the start and end points in
this manner probably returns the desired
results for my example. However, you
might get unexpected results based on the
character data you’re trying to compare.
Remember that the BETWEEN operator
includes the start and end points in the
range. Consequently, a student whose last
name is only the letter ‘C’ will be included
in the result set.

BETWEEN ‘B’ AND ‘BZ’ This is the clearest and most explicit
method of indicating the start and end
points—in most cases, it will return the
desired results. In the end, you must
understand your data in order to define the
correct range.

192 Chapter 6 Filtering Your Data

One more thing before I leave BETWEEN. Notice that the diagram in
Figure 6-3 says that you can use a value expression not only for the
two values in the BETWEEN clause but also for the first value. As I’ve
explained, a value expression can be as simple as a column name or a
simple literal or as complex as a character, mathematical, or datetime
expression. When you have a table that has two columns that define
a range of values (for example, StartDate and EndDate in the Engage-
ments table in the Entertainment Agency sample database), you can also
use BETWEEN to search for rows that contain a value BETWEEN the
values in the two columns. Here’s an example.

“Show me all engagements that are scheduled to occur on October 10,
2017.”

Translation Select engagement number, start date, and end date from the
engagements table for engagements where October 10, 2017, is
between the start date and the end date

Clean Up Select engagement number, start date, and end date from the
engagements table for engagements where October 10, 2017 is
'2017-10-10' between the start date and the end date

SQL SELECT EngagementNumber, StartDate, EndDate

FROM Engagements

WHERE '2017-10-10' BETWEEN StartDate AND EndDate

So far, I’ve shown you how to narrow the scope of your request using
a broad range of values and a more specific range of values. Now, let’s
take a look at how you can refine your requests even further by using an
explicit list of values.

Set Membership

You’ll use the membership condition to test the value of a value expres-
sion against a list of explicitly defined values. As you can see in
 Figure 6-4, the membership condition uses the IN predicate to deter-
mine whether the value of the first value expression matches any
value within a parenthetical list of values defined by one or more value
expressions.

 Defining Search Conditions 193

Membership

Value Expression IN Value Expression

,

Figure 6-4 The syntax diagram for the membership condition

Although theoretically, you can include an almost limitless number of
value expressions in the list, it makes more sense to use only a few. You
already have two conditions at your disposal that you can use to indi-
cate broader ranges of values. You can use the membership condition
most effectively when you define a finite list of values, as you’ll see in the
following examples.

Here’s a request you might make to the database:

“I need to know which bowling lanes sponsored tournaments for the
following 2017 dates: September 18, October 9, and November 6.”

This type of request lends itself to a membership condition because it
focuses on searching for a specific set of values. If the request were not
so explicit, you would most likely use a range condition instead. Here’s
how to translate this request:

Translation Select tourney location from the tournaments table where
the tourney date is in this list of dates: September 18, 2017;
October 9, 2017; November 6, 2017

Clean Up Select tourney location from the tournaments table where
the tourney date is in this list of dates: (September 18, 2017;
'2017-09-18',October 9 2017; '2017-10-09', November 6, 2017
'2017-11-06')

SQL SELECT TourneyLocation

FROM Tournaments

WHERE TourneyDate

 IN ('2017-09-18', '2017-10-09',

 '2017-11-06')

194 Chapter 6 Filtering Your Data

Here’s another request that requires a membership condition for its
answer:

“Which entertainers do we represent in Seattle, Redmond, and Bothell?”

Translation Select stage name from the entertainers table for all
 entertainers based in Seattle, Redmond, or Bothell

Clean Up Select stage name from the entertainers table for all
 entertainers based where city in (‘Seattle’, ‘Redmond’, or
‘Bothell’)

SQL SELECT EntStageName

FROM Entertainers

WHERE EntCity

 IN ('Seattle', 'Redmond', 'Bothell')

You might have noticed that I used the word “or” in the translation state-
ment’s list of cities instead of “and” as it appears in the original request.
The reason and logic for this is simple: There is only one entry in the
EntCity column for a given entertainer. A given row can’t contain Seattle
and Redmond and Bothell all at the same time, but a single row could
contain Seattle or Redmond or Bothell. This might seem a trivial point,
but using the proper words and phrases helps to clarify your Translation
and Clean Up statements and ensures that you define the most appro-
priate SELECT statement for your request. You’ll see that this small
point becomes even more important later in the chapter when you begin
using multiple conditions.

All the conditions you’ve learned so far use complete values as their cri-
teria. Now I’ll take a look at a condition that allows you to use partial
values as a criterion.

Pattern Match

The pattern match condition is useful when you need to find values that
are similar to a given pattern string or when you have only a partial
piece of information to use as a search criterion. Figure 6-5 shows the
syntax for this type of condition.

 Defining Search Conditions 195

ESCAPE Character String Literal

Pattern Match

Value Expression LIKE pattern_string

Figure 6-5 The syntax diagram for the pattern match condition

This condition takes the value of a value expression and uses the LIKE
predicate to test whether the value matches a defined pattern string. A
pattern string can consist of any logical combination of regular string
characters and two special wildcard characters: the percent sign (%) and
the underscore (_). The percent sign represents zero or more arbitrary
regular characters, and the underscore represents a single arbitrary reg-
ular character. The manner in which you define the pattern string deter-
mines which values are retrieved from the value expression. Table 6-1
shows samples of the different types of pattern strings you can define.

 ❖ Note One of the most popular database systems, Microsoft Office
Access, uses an asterisk (*) instead of the percent sign (%) and a ques-
tion mark (?) instead of an underscore (_). Access also supports using
a hashtag (#) to search for numeric characters in specific positions.
If you’re using Microsoft Access, substitute these characters in your
pattern strings for the LIKE predicate.

Table 6-1 Samples of Defined Pattern Strings

Pattern String Criterion Processed Sample Return Values

'Sha%' Character string can be
any length but must begin
with “Sha”

Shannon, Sharon, Shawn

'%son' Character string can be
any length but must end
with “son”

Benson, Johnson,
Morrison

'%han%' Character string can be any
length but must contain “han”

Buchanan, handel,
 Johansen, Nathanson

❖ Note One of the most popular database systems, Microsoft Office
Access, uses an asterisk (*) instead of the percent sign (%) and a ques-
tion mark (?) instead of an underscore (_). Access also supports using
a hashtag (#) to search for numeric characters in specific positions.g
If you’re using Microsoft Access, substitute these characters in your
pattern strings for the LIKE predicate.

196 Chapter 6 Filtering Your Data

Pattern String Criterion Processed Sample Return Values

'Ro_' Character string can be only
three characters in length
and must have “Ro” as the
first and second letters

Rob, Ron, Roy

'_im' Character string can be only
three characters in length
and must have “im” as the
second and third letters

Jim, Kim, Tim

'_ar_' Character string can be only
four characters in length and
must have “ar” as the second
and third letters

Bart, Gary, Mark

'_at%'’ Character string can be any
length but must have “at” as
the second and third letters

Gates, Matthews,
Patterson

'%ac_' Character string can be any
length but must have “ac” as
the second and third letters
from the end of the string

Apodaca, Tracy, Wallace

Let’s take a look at how you can use a pattern match condition by
 considering the following request:

“Give me a list of customers whose last names begin with ‘Mar’.”

Requests such as this one typically use phrases that indicate the need
for a pattern match condition. Here are a few examples of the types of
phrases you’re likely to encounter:

“. . . begin with ‘Her’.”

“. . . start with ‘Ba’.”

“. . . include the word ‘Park’.”

“. . . contain the letters ‘han’.”

“. . . have ‘ave’ in the middle of it.”

“. . . with ‘son’ at the end.”

“. . . ending in ‘ez’.”

 Defining Search Conditions 197

 ❖ Caution In many database systems, string comparison is case sen-
sitive. Several major database systems allow system administrators to
specify an option to use either case-sensitive or case-insensitive com-
parison when they install database servers. If your database system
is case sensitive, LIKE '%chi%' will find “roast chicken,” but it won’t
find “Chicken a la King” because the lowercase ‘c’ in the pattern string
is not equal to the uppercase ‘C’ in the column. Check your database
documentation to find out whether you need to deal with the differ-
ence between upper- and lowercase letters.

As you can see, it can be relatively easy to determine the type of pattern
string you need for a request. After you know the type of pattern you
need to create, you can continue with the translation process.

Translation Select last name and first name from the customers table
where the last name begins with ‘Mar’

Clean Up Select last name and first name from the customers table
where the last name begins with like ‘Mar%’

SQL SELECT CustLastName, CustFirstName

FROM Customers

WHERE CustLastName LIKE 'Mar%'

The result set for this SELECT statement includes names such as
Marks, Marshall, Martinez, and Marx because I was only concerned
with matching the first three letters of the last name.

Here’s how you might answer another request using a pattern match
condition:

“Show me a list of vendor names where the word ‘Forest’ appears in
the street address.”

Translation Select vendor name from the vendors table where the street
address contains the word ‘Forest’

Clean Up Select vendor name from the vendors table where the street
address contains the word like ‘%Forest%’

SQL SELECT VendName

FROM Vendors

WHERE VendStreetAddress LIKE '%Forest%'

❖ Caution In many database systems, string comparison is case sen-
sitive. Several major database systems allow system administrators to
specify an option to use either case-sensitive or case-insensitive com-
parison when they install database servers. If your database system
is case sensitive, LIKE '%chi%' will find “roast chicken,” but it won’t
find “Chicken a la King” because the lowercase ‘c’ in the pattern string
is not equal to the uppercase ‘C’ in the column. Check your database
documentation to find out whether you need to deal with the differ-
ence between upper- and lowercase letters.

198 Chapter 6 Filtering Your Data

In this case, a row from the Vendors table is included in the result set
only if the street address contains a street name such as Forest Park
Place, Forest Ridge Avenue, Evergreen Forest Drive, or Black Forest Road.

Although you can search for any pattern string using the appropriate wild-
card characters, you’ll run into a problem if the values you want to retrieve
include a percent sign or an underscore character. For example, you will
have a problem trying to retrieve the value MX_445 because it contains an
underscore character. You can circumvent this potential dilemma by using
the ESCAPE option of the LIKE predicate, as shown in Figure 6-5.

The ESCAPE option allows you to designate a single character string
literal—known as an escape character—to indicate how the database
system should interpret a percent sign or underscore character within
a pattern string. Place the escape character after the ESCAPE keyword
and enclose it within single quotes, as you would any character string
literal. When the escape character precedes a wildcard character in a
pattern string, the database system interprets that wildcard character
literally within the pattern string.

Here’s an example of how you might use the ESCAPE option:

“Show me a list of products that have product codes beginning with
‘G_00’ and ending in a single number or letter.”

Translation Select product name and product code from the products table
where the product code begins with ‘G_00’ and ends in a single
number or letter

Clean Up Select product name and product code from the products table
where the product code begins with like 'G_00_' and ends in a
single number or letter

SQL SELECT ProductName, ProductCode

FROM Products

WHERE ProductCode LIKE 'G_00_' ESCAPE '\'

It’s evident that you need to use the ESCAPE option to help answer this
request—otherwise, the database system interprets the underscore char-
acter in the pattern string as a wildcard character. Note that I included
the escape character in the Clean Up statement. You should do so in
your Clean Up statements as well because it ensures that you remember
to use the ESCAPE option when you define your SELECT statement.

 Defining Search Conditions 199

This SELECT statement will retrieve product codes such as G_002 and
G_00X. Because I want to search for one of the two characters that
are defined in the standard as a wildcard, I must include the ESCAPE
clause. If I ask for LIKE 'G_00_', the database system will return
rows where the product code has a ‘G’ for the first letter, any charac-
ter in the second position (because of the wildcard character), zeros in
the third and fourth positions, and any character in the fifth position.
When I define “\” as the escape character, the database system ignores
the escape character but interprets the first underscore character liter-
ally, not as a wildcard. Because I did not use the escape character just
before the second underscore, the database system interprets the second
underscore as a true wildcard character.

Keep in mind that the character you use as an escape character should
not be part of the values you’re trying to retrieve. It doesn’t make sense
to use “&” as an escape character if you’re searching for values such as
Martin & Lewis, Smith & Kearns, or Hernandez & Viescas. Also, remem-
ber that the escape character affects only the wildcard character that
immediately follows it. However, you can use as many escape characters
in your pattern string as are appropriate.

Null

Now that you’ve learned how to search for complete values and par-
tial values, let’s discuss searching for unknown values. You learned in
 Chapter 5 that a Null does not represent a zero, a character string of
one or more blank spaces, or a zero-length character string (a character
string that has no characters in it) because each of these items can be
meaningful in a variety of circumstances. You also learned that a Null
does represent a missing or unknown value. To retrieve Null values from
a value expression, you use the Null condition shown in Figure 6-6.

Null

Value Expression IS NULL

Figure 6-6 The syntax diagram for the Null condition

This condition takes the value of the value expression and deter-
mines whether it is Null using the IS NULL predicate. It’s quite a

200 Chapter 6 Filtering Your Data

straightforward operation. Let’s take a look at how you might use this
condition in the following examples:

“Give me a list of customers who didn’t specify what county they live in.”

Translation Select first name and last name as Customer from the
customers table where the county name is unspecified

Clean Up Select first name || ‘ ’ || and last name as Customer
from the customers table where the county name is null
unspecified

SQL SELECT CustFirstName || ' ' || CustLastName

AS Customer

FROM Customers

WHERE CustCounty IS NULL

The only customers who appear in the result set for this SELECT state-
ment are those who didn’t know or couldn’t remember what county they
live in, or those folks who live in Washington, D.C. (Washington, by the
way, is the only city in the entire United States that isn’t situated within
a county.)

Here’s another request you might make to the database:

“Which engagements do not yet have a contract price?”

Translation Select engagement number and contract price from the
engagements table for any engagement that does not have
a contract price

Clean Up Select engagement number and contract price from the
engagements table for any engagement that does not
have a where contract price is null

SQL SELECT EngagementNumber, ContractPrice

FROM Engagements

WHERE ContractPrice IS NULL

On the surface, this seems like a straightforward request—you’ll
just search for any engagement that has 0 as the contract price. But
looks can be deceiving, and they can lull you into making incorrect

 Defining Search Conditions 201

assumptions. If the entertainment agency in this example uses 0 as
the contract price for any promotional engagement, then zero is a valid,
meaningful value. Therefore, any contract price that is yet to be deter-
mined or negotiated is indeed (or should be) Null.

This example illustrates the fact that you do need to understand your
data in order to make meaningful, accurate requests to the database. If
you execute a SELECT statement and then think that the information
you see in a result set is erroneous, don’t panic. Your first impulse will
probably be to rewrite the entire SELECT statement because you believe
you’ve made some disastrous mistake in the syntax. Before you do any-
thing drastic, review the data you’re working with, and make certain you
have a clear idea of how it’s being used. After you have a better under-
standing of the data, you’ll often find that you need to make only minor
changes to your SELECT statement in order for it to retrieve the proper
information.

 ❖ Note You must use the Null condition to search for Null values
within a value expression. A condition such as <ValueExpression> =
Null is invalid because the value of the value expression cannot be
compared to something that is, by definition, unknown. In fact, using
Null in any comparison predicate yields “unknown,” and because
unknown is not “true,” the comparison will fail.

Excluding Rows with NOT

Up to this point, I’ve shown you how to include specific rows in a result
set. Let’s now take a look at how you exclude rows from a result set
by using the NOT operator. I’ve already shown you one simple way to
exclude rows from a result set by using an equality comparison con-
dition with a “not equal to” operator. You can also exclude rows with
other types of conditions by using the NOT operator. As you can see in
Figure 6-7, this operator is an optional component of the BETWEEN, IN,
LIKE, and IS NULL predicates. A SELECT statement will disregard any
rows that meet the condition expressed by any of these predicates when
you include the NOT operator. The rows that will be in the result set
instead are those that did not meet the condition.

❖ Note You must use the Null condition to search for Null values
within a value expression. A condition such as <ValueExpression> =
Null is invalid because the value of the value expression cannot be
compared to something that is, by definition, unknown. In fact, using
Null in any comparison predicate yields “unknown,” and because
unknown is not “true,” the comparison will fail.

202 Chapter 6 Filtering Your Data

Range

Value Expression Value ExpressionBETWEEN

NOT

AND Value Expression

Null

Value Expression NULL

NOT

IS

ESCAPE character string literal

Pattern Match

Value Expression LIKE

NOT

pattern_string

Membership

Value Expression IN

NOT

Value Expression

,

Figure 6-7 The syntax diagram for the NOT operator

The following examples illustrate how you can use NOT as part of a
search condition:

“Show me a list of all the orders we’ve taken, except for those posted in
July.”

A request such as this requires you to define a SELECT statement that
excludes rows meeting a specific criterion and commonly contains phrases
that indicate the need for a NOT operator as part of the search condition.
The types of phrases you’ll encounter are similar to those listed here.

“. . . that don’t begin with ‘Her’.”

“. . . that aren’t in the Administrative or Personnel departments.”

“. . . who have a fax number.”

“. . . who were hired before June 1 or after August 31.”

 Defining Search Conditions 203

You have to perform a bit of deductive work sometimes in order to trans-
late a phrase properly. Some phrases, such as the third phrase listed
above, do not explicitly indicate the need for a NOT operator. In this
case, the requirement is implied because you want to exclude everyone
who does not have a fax number. As you begin to work with requests
that contain these types of phrases, you’ll often find that you need to
analyze them carefully and possibly rewrite them in order to determine
whether you need to exclude certain rows from the result set. There’s
no easy rule of thumb I can give you here, but with a little patience and
practice it will become easier for you to determine whether you need a
NOT operator for a specific request.

After you’ve determined whether you need to exclude any information
from the result set, you can continue with the translation process.

“Show me a list of all the orders we’ve taken, except for those posted in
October.”

Translation Select order ID and order date from the orders table where
the order date does not fall between October 1, 2017, and
October 31, 2017

Clean Up Select order ID and order date from the orders table
where the order date does not fall between October 1, 2017,
'2017-10-01' and October 31, 2017 '2017-10-31'

SQL SELECT OrderID, OrderDate

FROM Orders

WHERE OrderDate NOT BETWEEN '2017-10-01'

 AND '2017-10-31'

This SELECT statement produces a result set that will not contain any
orders posted between October 1, 2017, and October 31, 2017. It will,
however, contain every other order in the Orders table. You can fur-
ther restrict the rows sent to the result set to only those orders taken in
2017 by using multiple conditions, which is an issue I’ll cover in the next
section.

Now let’s assume you’re working with the following request:

“I need the identification numbers of all faculty members who are not
professors or associate professors.”

204 Chapter 6 Filtering Your Data

Translation Select staff ID and title from the faculty table where the title is
not ‘professor’ or ‘associate professor’

Clean Up Select staff ID and title from the faculty table where the title is
not in ('professor', or 'associate professor')

SQL SELECT StaffID, Title

FROM Faculty

WHERE Title

NOT IN ('Professor', 'Associate Professor')

In this case, you need to exclude any staff member whose title is one of
those specified within the request, so you use a membership condition
with a NOT operator to send the correct rows to the result set.

Excluding rows from a result set becomes a relatively straightforward
process after you get accustomed to analyzing and rephrasing your
requests as the situation dictates. The real key, as you’ve seen so far, is
being able to determine the type of condition you need to answer a given
request.

Using Multiple Conditions

The requests I’ve worked with up to this point have been simple and
have required only a single condition to supply the answer. Now I’ll look
at how you can answer complex requests using multiple conditions. Let’s
begin by considering the following request:

“Give me the first and last names of customers who live in Seattle and
whose last names start with the letter ‘H’.”

Based on the knowledge you’ve gained thus far, you can ascertain that
this request requires an equality comparison condition and a pattern
match condition to supply an answer. You’ve identified the conditions
you need, but how do you combine them into one search condition? The
answer lies in the way the SQL Standard defines the syntax for a search
condition, as shown in Figure 6-8.

 Using Multiple Conditions 205

Search Condition

AND

OR

Predicate

(Search Condition)

Figure 6-8 The syntax diagram for the search condition

Introducing AND and OR

You can combine two or more conditions by using the AND and OR oper-
ators, and the complete set of conditions you’ve combined to answer a
given request constitutes a single search condition. As Figure 6-8 shows,
you can also combine a complete search condition with other conditions
by enclosing the search condition in parentheses. All this allows you to
create very complex WHERE clauses that precisely control which rows
are selected to be included in a result set.

Using AND

The first way you can combine two or more conditions is by using the
AND operator. You use this operator when all the conditions you com-
bine must be met in order for a row to be included in a result set. Let’s
use the sample request I made at the beginning of this section as an
example and apply this operator during the translation process.

“Give me the first and last names of customers who live in Seattle and
whose last names start with the letter ‘H’.”

Translation Select first name and last name from the customers table
where the city is ‘Seattle’ and the last name begins with ‘H’

Clean Up Select first name and last name from the customers table
where the city is = 'Seattle' and the last name begins with
like ‘H%’

SQL SELECT CustFirstName, CustLastName

FROM Customers

WHERE CustCity = 'Seattle'

 AND CustLastName LIKE 'H%'

206 Chapter 6 Filtering Your Data

You’ve accounted for both the equality comparison condition and the
pattern match condition required by the request, and you’ve ensured
that they must both be met by using the AND operator. Any row that
fails to meet either condition will be excluded from the result set.

You can chain any number of conditions you need to answer the request
at hand. Just keep in mind that all the conditions you’ve combined with
ANDs must be met in order for a row to be included in the result set.
Remember that the entire search condition must evaluate to true for a
row to appear in the result set. Figure 6-9 shows the result when you
combine two predicate expressions using the AND operator. If either of
the expressions evaluates to false, then the row is not selected.

AND True False

True
True

(Rows are selected)

False

(Rows are rejected)

False
False

(Rows are rejected)

False

(Rows are rejected)

Second Expression

F
ir

s
t
E

x
p

re
s
s
io

n

Figure 6-9 The result of combining two predicate expressions with the AND
operator

Using OR

The second way to combine two or more conditions is by using the OR
operator. You use this operator when either of the conditions you com-
bine can be met for a row to be included in a result set. Here’s an exam-
ple of how you might use an OR operator in a search condition:

“I need the name, city, and state of every staff member who lives in
Seattle or is from the state of Oregon.”

 Using Multiple Conditions 207

Translation Select first name, last name, city, and state from the staff
table where the city is ‘Seattle’ or the state is ‘OR’

Clean Up Select first name, last name, city, and state from the staff
table where the city is = 'Seattle' or the state is = 'OR'

SQL SELECT StfFirstName, StfLastName, StfCity, StfState

FROM Staff

WHERE StfCity = 'Seattle' OR StfState = 'OR'

In this case, you’ve accounted for both of the equality comparison condi-
tions you need to answer this request, and you’ve ensured that only one
of the conditions has to be met by using the OR operator. As long as a
row fulfills either condition, it will be included in the result set. To help
clarify the matter, Figure 6-10 shows the result of combining two predi-
cate expressions with an OR operator.

OR True False

True
True

(Rows are selected)

False
False

(Rows are rejected)

F
ir
s
t

E
x
p

re
s
s
io

n

True

(Rows are selected)

True

(Rows are selected)

Second Expression

Figure 6-10 The result of combining two predicate expressions with the OR
operator

Determining whether to use an AND operator to combine conditions is
relatively easy and straightforward. However, determining whether to
use an OR operator can be tricky sometimes. For example, consider the
following request:

“Show me a list of vendor names and phone numbers for all vendors
based in Washington and California.”

208 Chapter 6 Filtering Your Data

Your first impulse might be to use an AND operator because the condi-
tion seems obvious—you want vendors in Washington and California.
Unfortunately, you would be wrong. If you think about it, a vendor will
be based in either Washington or California because you can enter only
one state value in the state column for that vendor. The actual condition is
much clearer now, isn’t it? As I mentioned earlier in the chapter, you must
get into the habit of studying and analyzing your requests as they become
more complex. Try to look for implied conditions as best as you can.

Let’s continue and run this request through the translation process.

“Show me a list of vendor names and phone numbers for all vendors
based in Washington and California.”

Translation Select name, phone number, and state from the vendors table
where the state is ‘WA’ or ‘CA’

Clean Up Select name, phone number, and state from the vendors table
where the state is = 'WA' or state = 'CA'

SQL SELECT VendName, VendPhoneNumber, VendState

FROM Vendors

WHERE VendState = 'WA' OR VendState = 'CA'

You’ve accounted for both equality comparison conditions and ensured
that either one must be met by using the OR operator. Note, however,
that “state” appears in the search condition of the Clean Up and SQL
statements twice. This is necessary because each comparison condition
follows the same -syntax:

Value Expression <comparison operator> Value Expression

Remember that you cannot omit any clause, keyword, or defined term
from the syntax unless it is explicitly defined as an optional item.
Thus, a condition such as WHERE VendState = 'WA' OR 'CA' is com-
pletely invalid. You might ask why this is so. I’ll explain more about
the sequence in which expression operators get evaluated—the order of
precedence—later.

In this case, your database system evaluates the expression in strict
left-to-right sequence. So, VendState = 'WA' will be evaluated first.
For any given row, the result will be true if the state is Washington, and
false if it is not. Next, this true or false result gets “ORed” with the literal

 Using Multiple Conditions 209

value 'CA'—which is not a true or false value! Your database system
might return an error at this point ('CA'—a character string literal—is
an invalid data type for the OR operator), or it might return only the
rows where the state is Washington, or it might even first evaluate 'CA'
OR 'WA' as a Boolean expression and then compare VendState to True
or False!

Always make certain that your conditions are completely and correctly
defined. Otherwise, the search condition for your SELECT statement will
fail.

 ❖ Note I used this example to illustrate a common trap you’ll
 encounter when you use the OR operator. However, if you thought
you could use a membership condition such as WHERE VendState
IN ('WA', 'CA') to answer this request, you are absolutely cor-
rect. In some instances, you’ll find that there’s more than one way to
express a condition.

Using AND and OR Together

You can use both AND and OR to answer particularly tricky requests.
For example, you can answer the following type of request by using both
operators:

“I need to see the names of staff members who have a 425 area code
and a phone number that begins with 555, along with anyone who
was hired between October 1 and December 31 of 2007.”

It should be easy for you to decide what types of conditions you need
for this request by now. You’ve probably already determined that you
need three conditions to answer this request: an equality comparison
condition to find the area code, a pattern match condition to find the
phone numbers, and a range condition to find those staff members hired
between October 1 and December 31. All you have to do now is deter-
mine how you’re going to combine the conditions.

You need to combine the comparison and pattern match conditions
with an AND operator because they identify the phone numbers you’re
searching for and because both conditions must be met in order for a
row to be included in the result set. You then treat this combination

❖ Note I used this example to illustrate a common trap you’ll
encounter when you use the OR operator. However, if you thought
you could use a membership condition such as WHERE VendState
IN ('WA', 'CA') to answer this request, you are absolutely cor-
rect. In some instances, you’ll find that there’s more than one way to
express a condition.

210 Chapter 6 Filtering Your Data

of conditions as a single unit and combine it with the range condition
using an OR operator. Now a row will be included in the result set as
long as it meets either the combined condition or the range condition.

Here’s the request again and the translation:

“I need to see the names of staff members who have a 425 area code
and a phone number that begins with 555, along with anyone who
was hired between October 1 and December 31 of 2017.”

Translation Select first name, last name, area code, phone number, and
date hired from the staff table where the area code is 425
and the phone number begins with 555 or the date hired falls
between October 1, 2017, and December 31, 2017

Clean Up Select first name, last name, area code, phone number,
and date hired from the staff table where the area code is =
'425' and the phone number begins with like '555%' or the
date hired falls between October 1, 2017, '2017-10-01' and
 December 31, 2017 '2017-12-31'

SQL SELECT StfFirstName, StfLastName, StfAreaCode,

 StfPhoneNumber, DateHired

FROM Staff

WHERE (StfAreaCode = '425'

 AND StfPhoneNumber LIKE '555%')

OR DateHired

 BETWEEN '2017-10-01' AND '2017-12-31'

The previous example clearly demonstrates a situation where you can
use a search condition within a search condition. Before you translated
the request, I said that you needed to combine the comparison and pat-
tern match conditions with an AND operator and then treat them as a
single unit. When you treat a combined set of conditions as a single unit,
by definition, it becomes a search condition, and you should enclose it
in parentheses, exactly as I did in the example. It’s worth noting, how-
ever, that the SQL Standard and most database systems give AND pre-
cedence over OR as well as processing left to right, so I probably could
have gotten away with not placing parentheses around the two compar-
isons linked with AND. Always use parentheses to make it crystal clear

 Using Multiple Conditions 211

how you want the comparisons to be processed. See the topic “Order of
Precedence,” later in this chapter.

Here’s another example using AND and OR:

“I need the name and title of every professor or associate professor
who was hired on May 16, 1989.”

Translation Select first name, last name, title, and date hired from the staff
table where the title is ‘professor’ or ‘associate professor’ and the
date hired is May 16, 1989

Clean Up Select first name, last name, title, and date hired from the staff
table where the title is = 'professor' or title = 'associate professor'
and the date hired is = May 16, 1989 '1989-05-16'

SQL SELECT StfFirstName, StfLastName, Title, DateHired

FROM Staff

WHERE (Title = 'Professor'

 OR Title = 'Associate Professor')

 AND DateHired = '1989-05-16'

You’ve probably guessed that the two conditions combined with the OR
operator are being treated as a single search condition. This example
merely reinforces the fact that you can define a search condition with
either the AND or the OR operators. But once again, the key is mak-
ing certain that you enclose the search condition within parentheses to
make it perfectly clear how the comparisons should be processed.

Excluding Rows: Take Two

If you’re feeling a bit of déjà vu, don’t worry—I did discuss this already.
Well, at least to some extent. You learned earlier in this chapter that
the NOT operator is an option of the BETWEEN, IN, LIKE, and IS NULL
predicates. But as Figure 6-11 illustrates, NOT is also an option as the
first keyword of a search condition, and it allows you to exclude rows
from a result set just as you can by using NOT within a predicate. You
use this particular NOT operator before a single condition (predicate) or
an embedded search condition. Once again, you can express the same
condition in various ways.

212 Chapter 6 Filtering Your Data

NOT

AND

OR

Search Condition

Predicate

(Search Condition)

Figure 6-11 Including the NOT operator in a search condition

Let’s assume you’re posing the following request to the database:

“Show me the location and date of any tournament not being held at
Bolero Lanes, Imperial Lanes, or Thunderbird Lanes.”

You’ve probably already determined that you’ll use a membership condi-
tion to answer this request. Now you just need to determine how you’ll
define it. One approach you can take is using the NOT operator within
the predicate.

WHERE TourneyLocation NOT IN ('Bolero Lanes',
 'Imperial Lanes', 'Thunderbird Lanes')

Another approach you might consider is using the NOT operator as the
first keyword before the search condition.

WHERE NOT TourneyLocation IN ('Bolero Lanes',
 'Imperial Lanes', 'Thunderbird Lanes')

Either condition will exclude tournaments held at Bolero Lanes, Imperial
Lanes, and Thunderbird Lanes from the result set. However, one advan-
tage of using NOT before a search condition is that you can apply it to a
comparison condition. (Remember that the syntax for a comparison con-
dition does not include NOT as an optional operator.) But now you can
use a comparison condition to exclude rows from a result set. The follow-
ing example shows how you might use this type of condition:

“Show me the bowlers who live outside of Bellevue.”

Translation Select first name, last name, and city from the bowlers table
where the city is not ‘Bellevue’

Clean Up Select first name, last name, and city from the bowlers table
where the city is not = 'Bellevue'

 Using Multiple Conditions 213

SQL SELECT BowlerFirstName, BowlerLastName, BowlerCity

FROM Bowlers

WHERE NOT BowlerCity = 'Bellevue'

Yes, I know that you could have expressed this condition as WHERE
BowlerCity <> 'Bellevue'. This example simply emphasizes that you
can express a condition in various ways.

Now that you’ve learned how to use a NOT operator within a single con-
dition and a complete search condition, be aware of a problem that can
occur when you define a search condition with two NOT operators that
will include rows instead of excluding them. Here’s an example:

“Which staff members are not teachers or teacher’s aides?”

Translation Select first name, last name, and title from the staff table where
the title is not ‘teacher’ or ‘teacher’s aide’

Clean Up Select first name, last name, and title from the staff table where
the title is not in ('teacher', or 'teacher"s aide')

SQL SELECT StfFirstName, StfLastName, Title

FROM Staff

WHERE NOT Title

NOT IN ('Teacher', 'Teacher''s Aide')

 ❖ Note I bet you’re wondering about the two single quotes in the
'Teacher''s Aide' character string literal. The SQL Standard dic-
tates that you use a single quote to delimit a character string or date-
time literal. When you need to embed a single quote within a character
string literal, you must “clue in” your database system by entering the
single quote twice. If you don’t do that, the single quote acts as the end
delimiter of the character string. The “s Aide'” that would occur after
the second single quote would generate a syntax error!

I assume, of course, that one of the two NOT operators appears by mis-
take. You can still execute this SELECT statement, but it will send
the wrong rows to the result set. In this case, the two NOT operators
cancel each other—exactly like a double negative in arithmetic or in

❖ Note I bet you’re wondering about the two single quotes in the
'Teacher''s Aide' character string literal. The SQL Standard dic-
tates that you use a single quote to delimit a character string or date-
time literal. When you need to embed a single quote within a character
string literal, you must “clue in” your database system by entering the
single quote twice. If you don’t do that, the single quote acts as the end
delimiter of the character string. The “s Aide'” that would occur after
the second single quote would generate a syntax error!

214 Chapter 6 Filtering Your Data

language—and the IN predicate now determines which rows are sent to
the result set. So instead of seeing anyone other than a teacher or teach-
er’s aide in the result set, you’ll see only teachers and teacher’s aides.
Although you would not consciously define a search condition in this
manner, you could very well do it accidentally. Remember that it’s often
the simple mistakes that cause the most problems.

Order of Precedence

The SQL Standard specifies how a database system should evaluate sin-
gle conditions within a search condition and the order in which those
evaluations take place. You’ve already learned in this chapter how a
database evaluates each type of condition. Now I’ll show you how the
database determines when to evaluate each single condition.

By default, the database evaluates conditions from left to right. This is
particularly true in the case of simple conditions. In the following exam-
ple, the SELECT statement first searches for rows where the ship date is
equal to the order date and then determines which of those rows contain
customer number 1001. The rows that meet both conditions are then
sent to the result set.

SQL SELECT CustomerID, OrderDate, ShipDate

FROM Orders

WHERE ShipDate = OrderDate

 AND CustomerID = 1001

To have the SELECT statement search for a specific customer number
before evaluating the ship date, just switch the position of the condi-
tions. I’ll discuss why you might want to do this later in this section.

When a search condition contains various types of single conditions, the
database evaluates them in a specific order based on the operator used
in each condition. The SQL Standard defines the following order of pre-
cedence for operator evaluation.

Evaluation Order Type of Operator

1 Positive sign (+), negative sign (−)

2 Multiplication (*), division (/)

 Using Multiple Conditions 215

Evaluation Order Type of Operator

3 Addition (+), subtraction (−)

4 =, <>, <, >, <=, >=, BETWEEN, IN, LIKE, IS NULL

5 NOT

6 AND

7 OR

The following SELECT statement contains an example of the type of search
condition that causes the database system to follow the order of prece-
dence. In this case, the database performs the addition operation, executes
the comparisons, and determines whether either condition has been met.
Any row that meets either condition is then sent to the result set.

SQL SELECT CustomerID, OrderDate, ShipDate

FROM Orders

WHERE CustomerID = 1001

 OR ShipDate = OrderDate + 4

Prioritizing Conditions

You can greatly increase the accuracy of your search conditions by
understanding the order of precedence. This knowledge will help you for-
mulate exactly the right condition for the request at hand. But you must
be careful to avoid defining ambiguous conditions because they can pro-
duce unexpected results.

Let’s use the following example to take a look at this potential problem:

SQL SELECT CustFirstName, CustLastName, CustState,

 CustZipCode

FROM Orders

WHERE CustLastName = 'Patterson'

 AND CustState = 'CA'

 OR CustZipCode LIKE '%9'

216 Chapter 6 Filtering Your Data

In this instance, it’s difficult to determine the true intent of the search
condition because there are two ways you can interpret it.

 You’re looking for everyone named Patterson in the state of
 California or anyone with a ZIP Code that ends with a 9.

 You’re specifically looking for everyone named Patterson and
 anyone who lives in California or has a ZIP Code that ends
with a 9.

If you have memorized the evaluation order table, you know that the first
way is correct because your system should evaluate AND before OR. But
are you always going to remember the evaluation sequence? You can
avoid this ambiguity and make the search condition clearer by using
parentheses to combine and prioritize certain conditions. For example,
to follow the first interpretation of the search condition, you define the
WHERE clause in this manner.

WHERE (CustLastName = 'Patterson' AND CustState = 'CA') OR
CustZipCode LIKE '%9'

The parentheses ensure that the database analyzes and evaluates the
two comparison conditions before it performs the same processes on the
pattern match condition.

You could instead follow the second interpretation and define the
WHERE clause in this manner:

WHERE CustLastName = 'Patterson' AND (CustState = 'CA' OR
CustZipCode LIKE '%9')

In this case, the database analyzes and evaluates the first comparison
condition after it performs those processes on the second comparison
condition and the pattern match condition.

The idea of enclosing conditions in parentheses should be familiar to you
by now. You learned how to do this when I discussed combining condi-
tions earlier in this chapter. Now I’m trying to emphasize that the place-
ment of the parentheses can have a serious impact on the outcome of the
search condition.

You can define any number of parenthetical conditions and even embed
them as necessary. Similar to processing expressions, search conditions
are processed left to right and then innermost to outermost except that

 Using Multiple Conditions 217

when two or more conditions are at an equal level, the database system
processes AND first and then OR. Here’s how the database handles par-
enthetical search conditions:

• Parenthetical search conditions are processed before nonparen-
thetical search conditions.

• Two or more parenthetical search conditions are processed from
left to right.

• Embedded parenthetical search conditions within a search condi-
tion are processed from innermost to outermost.

After the database begins to analyze a given parenthetical condition, it
evaluates all expressions within the condition using the normal order
of precedence. If you carefully translate your request and make effec-
tive use of parentheses within the search condition, you’ll have better
results.

Less Is Better Than More

I said at the beginning of this section that the database initially evalu-
ates conditions from left to right and that it invokes the order of prece-
dence when you define and use complex conditions. I also said that the
manner in which you use parentheses in a search condition has a direct
impact on its outcome. Now I’ll pass along a simple, generic tip for speed-
ing up the search condition process: Ask for less. That is, select only
those columns you need to fulfill the request, and make the search con-
dition as specific as you can so that your database processes the fewest
rows possible. When you need to use multiple conditions, make certain
that the condition that excludes the most rows from the result set is pro-
cessed first so that your database can potentially find the answer faster.
(Here’s where your understanding of the order of precedence is really
beneficial.)

I’ll demonstrate this tip with an example I used earlier in this section.

SQL SELECT CustomerID, OrderDate, ShipDate

FROM Orders

WHERE ShipDate = OrderDate

 AND CustomerID = 1001

218 Chapter 6 Filtering Your Data

In this instance, a row must fulfill both conditions for it to be included
in the result set. Placing the predicates in this order tells your data-
base to search for each ship date that is equal to its respective order
date first. Depending on the number of rows in the table, it could take
the database quite some time to evaluate this condition. Then the data-
base will search the rows that met the first condition to identify which
ones contain customer ID 1001.

Here’s perhaps a better way to define the condition:

SQL SELECT CustomerID, OrderDate, ShipDate

FROM Orders

WHERE CustomerID = 1001

 AND ShipDate = OrderDate

Now the database is more likely to search for the customer ID first. This
condition is more likely to produce a small number of rows, which means
that the database will need less time to search for the rows that match
the ship date predicate.

You should make this technique a common practice and apply it when
you define your search conditions. This will go a long way in helping to
ensure that your SELECT statements execute quickly and efficiently.
Be sure to study your database system’s documentation to learn what
other techniques you can apply to optimize the SELECT statement even
further.

 ❖ Note Virtually all commercial database systems include a query
optimizer that looks at your entire request and tries to figure out the
fastest way to return the answer. The indexes that your database
administrator has defined on columns in your tables have the biggest
influence on what most optimizers choose to do. But it doesn’t hurt to
make it a practice to include the most exclusive search condition first
to further influence your database system’s optimizer.

Now that you understand combining search conditions, let’s take a short
side trip to something more complex. What do you do when you want to

❖ Note Virtually all commercial database systems include a query
optimizer that looks at your entire request and tries to figure out the
fastest way to return the answer. The indexes that your database
administrator has defined on columns in your tables have the biggest
influence on what most optimizers choose to do. But it doesn’t hurt to
make it a practice to include the most exclusive search condition first
to further influence your database system’s optimizer.

 Using Multiple Conditions 219

find rows that contain a range of values compared to another range of
values? Read on!

Checking for Overlapping Ranges

BETWEEN works really well when you’re looking for a value in a single
column that is within a range of values. You also learned that you can
test a single value to see whether it is within the range defined by a pair
of start/end or low/high columns in your table. But what should you do
if you want to find out whether one range overlaps with another? For
example, you might want to know all the engagements (each has a start
date and an end date) that occur any time during the week of November
12, 2017, through November 18, 2017. You might be tempted to solve the
problem using BETWEEN like this:

“Show me the engagements that occur during the week of November 12,
2017, through November 18, 2017.”

Translation Select engagement number, start date, and end date
from the engagements table where start date is between
 November 12, 2017, and November 18, 2017 and end date
is between November 12, 2017, and November 18, 2017

Clean Up Select engagement number, start date, and end date
from the engagements table where start date is between
 November 12, 2017 '2017-11-12' and November 18, 2017
'2017-11-18' and end date is between November 12, 2017
'2017-11-17' and November 18, 2017 '2017-11-18'

SQL SELECT EngagementNumber, StartDate, EndDate

FROM Engagements

WHERE StartDate

 BETWEEN '2017-11-12' AND '2017-11-18'

AND EndDate BETWEEN '2017-11-12' AND '2017-11-18'

Close, but no cigar. You really want any engagement that has any
date that falls between the two dates in November. To understand why
a simple combination of BETWEEN clauses doesn’t work, consider
Figure 6-12.

220 Chapter 6 Filtering Your Data

Nov. 12, 2017 Nov. 18, 2017

A

B

C

D

Figure 6-12 Engagements that occur within the desired date span

As you can see in the figure, there are four possible engagement date
spans that can occur either entirely or partially within the week you
want.

• Some engagements occur entirely within the date span, as repre-
sented by line A.

• Some start before the date span but end within the date span, as
represented by line B.

• Others might start within the date span but end after the date
span, as represented by line C.

• And finally, some engagements might start before the date span
and not end until after the date span, as shown in line D.

If you think about the request as originally stated, the only engagements
you’ll find are those that are like line A. B gets excluded because the
start date is not between November 12 and November 18 even though
part of the engagement occurs within the desired date span. C gets
excluded because the end date is not between the two dates of interest.
And D gets excluded because both the start and end dates are outside
the range even though some dates of the engagement do occur entirely
within the date span of interest.

So, how do you solve this problem? You explicitly create a search condi-
tion for each of the four possible scenarios, like this:

WHERE (StartDate BETWEEN '2017-11-12' AND '2017-11-18'
AND EndDate BETWEEN '2017-11-12' AND '2017-11-18')
OR (StartDate <= '2017-11-12')

 Nulls Revisited: A Cautionary Note 221

AND EndDate BETWEEN '2017-11-12' AND '2017-11-18')
OR (StartDate BETWEEN '2017-11-12' AND '2017-11-18'
AND EndDate >= '2017-11-18')
OR (StartDate <= '2017-11-12'
AND EndDate >= '2017-11-18')

Not pretty, is it? But take a look at the figure again. What one thing
do all the start dates have in common? They’re all less than or equal
to the end date of the span! Likewise, the end dates are all greater
than or equal to the start date of the span. So the simple answer is as
follows:

SQL SELECT EngagementNumber, StartDate, EndDate

FROM Engagements

WHERE StartDate <= '2017-11-18'

AND EndDate >= '2017-11-12'

Isn’t that a lot simpler? Keep this solution in mind—you’ll need it to solve
one of the sample problems at the end of the chapter. Now back to my
regular programming—let’s revisit Nulls.

Nulls Revisited: A Cautionary Note

Now is as good a time as any to remind you about Nulls. You learned
in Chapter 5 that a Null represents the absence of a value and that an
expression processing a Null value will return a Null value. The same
holds true for search conditions as well. A predicate that evaluates a
Null value can never be true. This might seem confusing, but the pred-
icate can never be false either! The SQL Standard defines the result of
any predicate that evaluates a Null as unknown. Remember that a pred-
icate must be true for a row to be selected, so a false or unknown result
will reject the row.

To help clarify the matter, let’s reexamine in Figures 6-13 and 6-14 the
truth tables I first showed you in Figures 6-9 and 6-10. But this time,
let’s include the unknown result you will get if a Null is involved.

222 Chapter 6 Filtering Your Data

AND True False

True
True

(Rows are selected)

False

(Rows are rejected)

False
False

(Rows are rejected)

False

(Rows are rejected)

Second Expression
F

ir
s
t
E

x
p

re
s
s
io

n

Unknown

Unknown
Unknown

(Rows are rejected)

False

(Rows are rejected)

Unknown

(Rows are rejected)

False

(Rows are rejected)

Unknown

(Rows are rejected)

Figure 6-13 The result of combining two predicate expressions with the AND
 operator when either expression is Null (unknown)

OR True False

True
True

(Rows are selected)

False
False

(Rows are rejected)

F
ir
s
t

E
x
p

re
s
s
io

n

True

(Rows are selected)

True

(Rows are selected)

Second Expression

Unknown

True

(Rows are selected)

Unknown
True

(Rows are selected)

Unknown

(Rows are rejected)

Unknown

(Rows are rejected)

Unknown

(Rows are rejected)

Figure 6-14 The result of combining two predicate expressions with the OR
 operator when either expression is Null (unknown)

 Nulls Revisited: A Cautionary Note 223

You can see that an unknown result from evaluating a predicate on a
Null column really throws a monkey wrench into the picture! For exam-
ple, let’s assume you have a simple comparison predicate: A = B. If either
A or B for a given row is the Null value, then the result of the comparison
is unknown. Because the result is not true, the row won’t be selected. If
A = B is not true, you might expect that NOT (A = B) would be true. No!
This is unknown also. Figure 6-15 helps you understand how this is so.

(Expression)

True

False

NOT (Expression)

Unknown

False

True

Unknown

Figure 6-15 The result of applying NOT to a true/false/unknown value

Suppose you’re making the following request to the database:

“Let me see the names and phone numbers of King County residents
whose last names are Hernandez.”

Translation Select first name, last name, and phone number from the
customers table where the county name is ‘King’ and the
last name is ‘Hernandez’

Clean Up Select first name, last name, and phone number from the
customers table where the county name is = 'King' and the
last name is = 'Hernandez'

SQL SELECT CustFirstName, CustLastName,

 CustPhoneNumber

FROM Customers

WHERE CustCounty = 'King'

 AND CustLastName = 'Hernandez'

As you know, a row must meet both conditions to be included in the
result set. If either the county name or the last name is Null, the data-
base disregards the row completely.

224 Chapter 6 Filtering Your Data

Let’s now consider this request:

“Show me the names of all staff members who are graduate counselors
or were hired on September 1, 2007.”

Translation Select last name and first name from the staff table where the
title is ‘graduate counselor’ or date hired is September 1, 2007

Clean Up Select last name and first name from the staff table where the
title is = 'graduate counselor' or date hired is = September
1,2007 '2007-09-01'

SQL SELECT StfLastName, StfFirstName

FROM Staff

WHERE Title = 'Graduate Counselor'

 OR DateHired = '2007-09-01'

Although you might expect Nulls to have the same effect on conditions
combined with OR as they do on conditions combined with AND, that
is not necessarily the case. A row still has a chance of being included in
the result set as long as it meets either of these conditions. Take a look at
Figure 6-14 again. Based on the values of Title and DateHired, Table 6-2
shows how the database determines whether to send a row to the result
set when you combine the predicates with OR.

Table 6-2 Determining the Result Set with OR

Value of Title Value of DateHired Result

Graduate
Counselor

2007-09-01 The row is included in the result set
because it meets both conditions.

Graduate
Counselor

2007-11-15 The row is included in the result set
because it meets the first condition.

Registrar 2007-09-01 The row is included in the result set
because it meets the second condition.

Graduate
Counselor

Null The row is included in the result set
because it meets the first condition.

Null 2007-09-01 The row is included in the result set
because it meets the second condition.

Null Null The row is excluded from the result
set because it does not meet either
condition.

 Expressing Conditions in Different Ways 225

When you suspect that a result set is displaying incorrect information,
test any columns you’re using as criteria with the Null condition. This
will give you the opportunity to deal with any Null values as appropri-
ate, and you can then execute your original SELECT statement once
again. For example, if you think there might be a few graduate counsel-
ors missing from the result set, you could execute the following SELECT
statement to determine whether this is true:

SQL SELECT StfLastName, StfFirstName, Title

FROM Staff

WHERE Title IS NULL

If there are Null values in the Title column, this SELECT statement will
produce a result set that contains the names of all staff members who
do not have a title specified in the database. Now you can deal with this
data as appropriate and then return to your original SELECT statement.

I’m not done dealing with Nulls just yet. I’ll revisit Nulls once more in
Chapter 12, “Simple Totals,” when I discuss SELECT statements that
summarize data.

Expressing Conditions in Different Ways

One side benefit to everything you’ve learned in this chapter is that you
now can express a given condition in various ways. Let’s take a look at
this by considering the following request:

“Give me the name of every employee who was hired in October 2007.”

You need to search for hire dates that fall between October 1, 2007, and
October 31, 2007, to answer this request. Based on what you’ve already
learned, you can define the condition in two ways:

DateHired BETWEEN '2007-10-01' AND '2007-10-31'
DateHired >= '2007-10-01' AND DateHired <= '2007-10-31'

Both of these conditions will send the same rows to the result set—the
condition you choose to use is only a matter of preference. Some people
find the first expression easier to understand, although others prefer the
second expression.

226 Chapter 6 Filtering Your Data

Here are some other examples of equivalent conditions:

“Show me the vendors who are based in California, Oregon, or
Washington.”

VendState IN ('CA', 'OR', 'WA')
VendState = 'CA' OR VendState = 'OR' OR VendState = 'WA'

“Give me a list of customers whose last name begins with ‘H’.”

CustLastName >= 'H' AND CustLastName <= 'HZ'
CustLastName BETWEEN 'H' AND 'HZ'
CustLastName LIKE 'H%'

“Show me all the students who do not live in Seattle or Redmond.”

StudCity <> 'Seattle' AND StudCity <> 'Redmond'
StudCity NOT IN ('Seattle', 'Redmond')
NOT (StudCity = 'Seattle' OR StudCity = 'Redmond')

There’s no wrong way for you to define a condition, but you can define a
condition incorrectly by blatantly disregarding its syntax. (As you know,
this will cause the condition to fail.) However, some database systems
optimize certain types of conditions for speedy processing, making them
preferable to other equivalent conditions. Check your database system’s
documentation to determine whether your system has any preferred
methods for defining conditions.

Sample Statements

You’ve now learned all the techniques you need to build solid search
conditions. Let’s take a look at some examples of various types of search
conditions using the tables from each of the sample databases. These
examples illustrate the use of search conditions to filter your data.

I’ve also included sample result sets that would be returned by these
operations and placed them immediately after the SQL syntax line. The
name that appears immediately above a result set is the name I gave
each query in the sample data on the companion website for the book,
www.informit.com/title/9780134858333. I stored each query in the
appropriate sample database (as indicated within the example) and pre-
fixed the names of the queries relevant to this chapter with “CH06.”

http://www.informit.com/title/9780134858333

 Sample Statements 227

You can follow the instructions in the Introduction of this book to load
the samples onto your computer and try them.

 ❖ Note I’ve combined the Translation and Clean Up steps for all the
examples once again so that you can continue to learn how to consoli-
date the process.

Sales Orders Database

“Show me all the orders for customer number 1001.”

Translation/
Clean Up

Select the order number and customer ID from the
orders table where the customer ID is equal to = 1001

SQL SELECT OrderNumber, CustomerID

FROM Orders

WHERE CustomerID = 1001

CH06_Orders_for_Customer_1001 (44 Rows)

OrderNumber CustomerID

 2 1001

 7 1001

 16 1001

 52 1001

 55 1001

107 1001

137 1001

138 1001

151 1001

154 1001

<< more rows here >>

“Show me an alphabetized list of products with names that begin
with ‘Dog’.”

❖ Note I’ve combined the Translation and Clean Up steps for all the
examples once again so that you can continue to learn how to consoli-
date the process.

228 Chapter 6 Filtering Your Data

Translation/
Clean Up

Select the product name from the products table
where the product name like ‘Dog%’ and order by
product name

SQL SELECT ProductName

FROM Products

WHERE ProductName LIKE 'Dog%'

ORDER BY ProductName

CH06_Products_That_Begin_With_DOG (4 Rows)

ProductName

Dog Ear Aero-Flow Floor Pump

Dog Ear Cyclecomputer

Dog Ear Helmet Mount Mirrors

Dog Ear Monster Grip Gloves

 ❖ Note I just wanted to remind you that you place the ORDER BY
clause at the end of a SELECT statement. If necessary, review the
Sorting Information section in Chapter 4. Also, remember that if you
execute a SELECT against the saved view in Microsoft SQL Server,
it ignores the ORDER BY specification saved in the view. You have
to open the view in the designer and execute it from there to see the
sequence displayed above.

Entertainment Agency Database

“Show me an alphabetical list of entertainers based in Bellevue,
 Redmond, or Woodinville.”

Translation/
Clean Up

Select stage name, phone number, and city from the
entertainers table where the city is in ('Bellevue',
' Redmond', or 'Woodinville') and order by stage name

SQL SELECT EntStageName, EntPhoneNumber, EntCity

FROM Entertainers

WHERE EntCity

 IN ('Bellevue', 'Redmond', 'Woodinville')

ORDER BY EntStageName

❖ Note I just wanted to remind you that you place the ORDER BY
clause at the end of a SELECT statement. If necessary, review the d
Sorting Information section in Chapter 4. Also, remember that if you
execute a SELECT against the saved view in Microsoft SQL Server,
it ignores the ORDER BY specification saved in the view. You have
to open the view in the designer and execute it from there to see the
sequence displayed above.

 Sample Statements 229

CH06_Eastside_Entertainers (7 Rows)

EntStageName EntPhoneNumber EntCity

Carol Peacock Trio 555-2691 Redmond

Jazz Persuasion 555-2541 Bellevue

Jim Glynn 555-2531 Bellevue

JV & the Deep Six 555-2511 Redmond

Katherine Ehrlich 555-0399 Woodinville

Modern Dance 555-2631 Woodinville

Susan McLain 555-2301 Bellevue

“Show me all the engagements that run for four days.”

Translation/
Clean Up

Select engagement number, start date, and end date
from the engagements table where the CAST(end date
minus - start date AS INTEGER) is equal to = 3

SQL SELECT EngagementNumber, StartDate, EndDate

FROM Engagements

WHERE CAST(EndDate - StartDate AS INTEGER) = 3

CH06_FourDay Engagements (15 Rows)

EngagementNumber StartDate EndDate

5 2017-09-12 2017-09-15

13 2017-09-18 2017-09-22

17 2017-09-30 2017-10-03

21 2017-10-01 2017-10-04

56 2017-11-26 2017-11-29

58 2017-12-02 2017-12-05

59 2017-12-02 2017-12-05

63 2017-12-19 2017-12-22

70 2017-12-24 2017-12-27

95 2018-01-16 2018-01-19

<< more rows here >>

230 Chapter 6 Filtering Your Data

 ❖ Note An engagement runs from the start date through the end date.
When subtracting StartDate from EndDate, you get one less day than
the total number of days for the engagement. For this reason, I com-
pared the result of the calculation to 3, not 4.

School Scheduling Database

“Show me an alphabetical list of all the staff members and their sala-
ries if they make between $40,000 and $50,000 a year.”

Translation/
Clean Up

Select first name, last name, and salary from the
staff table where the salary is between 40000 and
50000, then order by last name, and first name

SQL SELECT StfFirstName, StfLastName, Salary

FROM Staff

WHERE Salary BETWEEN 40000 AND 50000

ORDER BY StfLastname, StfFirstName

CH06_Staff_Salaries_40K_T0_50K (14 Rows)

StfFirstName StfLastName Salary

Robert Brown $49,000.00

Kirk DeGrasse $45,000.00

Katherine Ehrlich $45,000.00

Jim Glynn $45,000.00

Liz Keyser $48,000.00

Ann Patterson $45,000.00

Maria Patterson $48,000.00

Mariya Sergienko $45,000.00

Tim Smith $40,000.00

Caleb Viescas $45,000.00

<< more rows here >>

❖ Note An engagement runs from the start date through the end date. h
When subtracting StartDate from EndDate, you get one less day than
the total number of days for the engagement. For this reason, I com-
pared the result of the calculation to 3, not 4.

 Sample Statements 231

“Show me a list of students whose last name is ‘Kennedy’ or who live
in Seattle.”

Translation/
Clean Up

Select first name, last name, and city from the
 students table where the last name is = 'Kennedy'
or the city is = 'Seattle'

SQL SELECT StudFirstName, StudLastName, StudCity

FROM Students

WHERE StudLastName = 'Kennedy'

 OR StudCity = 'Seattle'

CH06_Seattle_Students_And_Students_Named_Kennedy (4 Rows)

StudFirstName StudLastName StudCity

Doris Hartwig Seattle

John Kennedy Portland

Kendra Bonnicksen Seattle

Richard Lum Seattle

Bowling League Database

“List the ID numbers of the teams that won one or more of the first ten
matches in Game 3.”

Translation/
Clean Up

Select the team ID, match ID, and game number
from the match_games table where the game number
is = 3 and the match ID is between 1 and 10

SQL SELECT WinningTeamID, MatchID, GameNumber

FROM Match_Games

WHERE GameNumber = 3
AND MatchID BETWEEN 1 AND 10

CH06_Game3_Top_Ten_Matches (10 Rows)

WinningTeamID MatchID GameNumber

1 1 3

3 2 3

232 Chapter 6 Filtering Your Data

WinningTeamID MatchID GameNumber

5 3 3

7 4 3

3 5 3

4 6 3

5 7 3

8 8 3

2 9 3

1 10 3

“List the bowlers in teams 3, 4, and 5 whose last names begin with
the letter ‘H’.”

Translation/
Clean Up

Select first name, last name, and team ID from the
bowlers table where the team ID is either in (3, 4, or 5)
and the last name begins with the letter like 'H%'

SQL SELECT BowlerFirstName, BowlerLastName,
TeamID

FROM Bowlers

WHERE (TeamID IN (3,4,5))

 AND (BowlerLastName LIKE 'H%')

CH06_H_Bowlers_Teams_3_Through_5 (4 Rows)

BowlerFirstName BowlerLastName TeamID

Elizabeth Hallmark 4

Gary Hallmark 4

Kendra Hernandez 5

Michael Hernandez 5

Recipes Database

“List the recipes that have no notes.”

 Sample Statements 233

Translation/
Clean Up

Select the recipe title from the recipes table
where notes is empty Null

SQL SELECT RecipeTitle

FROM Recipes

WHERE Notes IS NULL

CH06_Recipes_With_No_Notes (6 rows)

RecipeTitle

Irish Stew

Salsa Buena

Fettuccini Alfredo

Mike’s Summer Salad

Roast Beef

Yorkshire Pudding

“Show the ingredients that are meats (ingredient class is 2) but that
aren’t chicken.”

Translation/
Clean Up

Select ingredient name from the ingredients table
where ingredient class ID is equal to = 2 and
 ingredient name does not contain like ‘%chicken%’

SQL SELECT IngredientName

FROM Ingredients

WHERE (IngredientClassID = 2)

 AND (IngredientName NOT LIKE '%chicken%')

CH06_Meats_That_Are_Not_Chicken (5 rows)

IngredientName

Beef

Bacon

T-bone Steak

New York Steak

Ground Pork

234 Chapter 6 Filtering Your Data

 ❖ Note PostgreSQL is case-sensitive, so the above query won’t work
as written because all the ingredient names contain ‘Chicken’, not
‘chicken’. Be sure to use IngredientName NOT LIKE ‘%Chicken%’ in
PostgreSQL. Of course, there could be an ingredient named “Ground
chicken,” so changing to an upper case “C” won’t catch that. To be
sure, you would have to include a second predicate to test for both
upper and lower case. You will need to do the same thing for SQL
Server or MySQL if your database was installed with the case-sensi-
tive option. (The default for both is not case-sensitive.)

Summary

In this chapter, I introduced you to the idea of filtering the information
you see in a result set by using a search condition in a WHERE clause.
You learned that a search condition uses combinations of predicates to
filter the data sent to the result set and that predicates are specific tests
you can apply to a value expression. I then introduced you to the five
basic types of predicates.

My discussion continued with an in-depth look at each of the five
basic types of predicates you can define within a search condition of
a WHERE clause. You learned how to compare values and how to test
whether a value falls within a specified range of values. You also learned
how to test whether a value matches one of a defined list of values or is
part of a specific pattern string. Additionally, you learned that you could
use the NOT operator to exclude rows from a result set.

I then discussed how to use multiple conditions by combining them with
AND and OR operators. You learned that a row must meet all conditions
combined with AND before it can be included in the result set, whereas
it must meet only one of those conditions if the conditions are combined
with OR. You also learned how to use AND and OR together to answer
complex requests. I then took a second look at using NOT to exclude
rows from a result set, and you learned that NOT can be used at two dif-
ferent levels in a search condition.

The order of precedence was the next topic of discussion, and you
learned how the database analyzes and evaluates conditions. You now
know that the database evaluates conditions in a specific order based on

❖ Note PostgreSQL is case-sensitive, so the above query won’t work
as written because all the ingredient names contain ‘Chicken’, not
‘chicken’. Be sure to use IngredientName NOT LIKE ‘%Chicken%’ in
PostgreSQL. Of course, there could be an ingredient named “Ground
chicken,” so changing to an upper case “C” won’t catch that. To be
sure, you would have to include a second predicate to test for both
upper and lower case. You will need to do the same thing for SQL
Server or MySQL if your database was installed with the case-sensi-
tive option. (The default for both is not case-sensitive.)

 Problems for You to Solve 235

the operator used in each condition. You also learned how to use paren-
theses to alter the order in which the database evaluates certain condi-
tions and to ensure that you avoid defining ambiguous conditions.

I took a brief detour to show you how to search for a range across
another range. The answer is surprisingly simple, and it doesn’t involve
using BETWEEN.

I next took another look at Nulls. Here you learned that Nulls affect con-
ditions in much the way that they affect expressions. You also know that
you should test for Null values if you suspect that a result set is display-
ing incorrect information.

Finally, I discussed the fact that the same condition can be expressed in
various ways. You now know, for example, that you can use three differ-
ent types of conditions to search for people whose last names begin with
the letter “H.”

In the next part of the book, I’ll introduce you to the idea of sets and the
types of operations you can perform on them. After you learn about sets,
you’ll be well on your way to learning how to define SELECT statements
using multiple tables.

The following section presents several requests that you can work out on
your own.

Problems for You to Solve

Below, I show you the request statement and the name of the solution
query in the sample databases. If you want some practice, you can work
out the SQL you need for each request and then check your answer with
the query I saved in the samples. Don’t worry if your syntax doesn’t
exactly match the syntax of the queries I saved—as long as your result
set is the same.

Sales Orders Database

 1. “Give me the names of all vendors based in Ballard, Bellevue, and
Redmond.”

You can find the solution in CH06_Ballard_Bellevue_Redmond_
Vendors (3 rows).

236 Chapter 6 Filtering Your Data

 2. “Show me an alphabetized list of products with a retail price of
$125.00 or more.”

(Hint: You’ll alphabetize the list using a clause I discussed in a
previous chapter.)

You can find the solution in CH06_Products_Priced_Over_125
(13 rows).

 3. “Which vendors do we work with that don’t have a Web site?”

You can find the solution in CH06_Vendors_With_No_Website
(4 rows).

Entertainment Agency Database

 1. “Let me see a list of all engagements that occurred during October
2017.”

(Hint: You need to solve this problem by testing for values in a
range in the table that contain any values in another range—the
first and last dates in October.)

You can find the solution in CH06_October_2017_Engagements
(24 rows).

 2. “Show me any engagements in October 2017 that start between
noon and 5 p.m.”

You can find the solution in CH06_October_Dates_Between_
Noon_and_Five (17 rows).

 3. “List all the engagements that start and end on the same day.”

You can find the solution in CH06_Single_Day_Engagements
(5 rows).

School Scheduling Database

 1. “Show me which staff members use a post office box as their
address.”

You can find the solution in CH06_Staff_Using_POBoxes (3 rows).

 2. “Can you show me which students live outside of the Pacific
Northwest?”

You can find the solution in CH06_Students_Residing_Outside_
PNW (5 rows).

 Problems for You to Solve 237

 3. “List all the subjects that have a subject code starting ‘MUS’.”

You can find the solution in CH06_Subjects_With_MUS_In_
SubjectCode (4 rows).

 4. “Produce a list of the ID numbers all the Associate Professors who
are employed full time.”

You can find the solution in CH06_Full_Time_Associate_
Professors (4 rows).

Bowling League Database

 1. “Give me a list of the tournaments held during September 2017.”

You can find the solution in CH06_September_2017_Tournament_
Schedule (4 rows).

 2. “What are the tournament schedules for Bolero, Red Rooster, and
Thunderbird Lanes?”

You can find the solution in CH06_Eastside_Tournaments
(9 rows).

 3. “List the bowlers who live on the Eastside (you know—Bellevue,
Bothell, Duvall, Redmond, and Woodinville) and who are on teams
5, 6, 7, or 8.”

(Hint: Use IN for the city list and BETWEEN for the team
numbers.)

You can find the solution in CH06_Eastside_Bowlers_On_
Teams_5_Through_8 (9 rows).

Recipes Database

 1. “List all recipes that are main courses (recipe class is 1) and that
have notes.”

You can find the solution in CH06_Main_Courses_With_Notes
(4 rows).

 2. “Display the first five recipes.”

(Hint: Use BETWEEN on the primary key of the table.)

You can find the solution in CH06_First_5_Recipes (5 rows).

This page intentionally left blank

Part III
Working with
Multiple Tables

This page intentionally left blank

 241

7
Thinking in Sets

“Small cheer and a great welcome makes a merry feast.”
—WILLIAM SHAKESPEARE COMEDY OF ERRORS, ACT 3, SCENE 1

Topics Covered in This Chapter

What Is a Set, Anyway?

Operations on Sets

Intersection

Difference

Union

SQL Set Operations

Summary

By now, you know how to create a set of information by asking for spe-
cific columns or expressions on columns (SELECT), how to sort the rows
(ORDER BY), and how to restrict the rows returned (WHERE). Up to this
point, I’ve been focusing on basic exercises involving a single table. But
what if you want to know something about information contained in
multiple tables? What if you want to compare or contrast sets of infor-
mation from the same or different tables?

Creating a meal by peeling, slicing, and dicing a single pile of potatoes or
a single bunch of carrots is easy. From here on out, most of the problems
I’m going to show you how to solve will involve getting data from multiple
tables. I’m not only going to show you how to put together a good stew—
I’m going to teach you how to be a chef!

242 Chapter 7 Thinking in Sets

Before digging into this chapter, you need to know that it’s all about
the concepts you must understand in order to successfully link two or
more sets of information. I’m also going to give you a brief overview of
some specific syntax defined in the SQL Standard that directly supports
the pure definition of these concepts. Be forewarned, however, that many
current commercial implementations of SQL do not yet support this
“pure” syntax. In later chapters, I’ll show you how to implement the con-
cepts you’ll learn here using SQL syntax that is commonly supported by
most major database systems. What I’m after here is not the letter of the
law but rather the spirit of the law.

What Is a Set, Anyway?

If you were a teenager any time from the mid-1960s onward, you might
have studied set theory in a mathematics course. (Remember New Math?
Maybe you’re not old enough!) If you were introduced to set algebra, you
probably wondered why any of it would ever be useful.

Now you’re trying to learn about relational databases and this quirky lan-
guage called SQL to build applications, solve problems, or just get answers
to your questions. Were you paying attention in algebra class? If so, solving
problems—particularly complex ones—in SQL will be much easier.

Actually, you’ve been working with sets from the beginning of this book.
In Chapter 1, “What Is Relational?,” you learned about the basic struc-
ture of a relational database—tables containing rows that are made up
of one or more columns. Each table in your database is a set of informa-
tion about one subject. In Chapter 2, “Ensuring Your Database Structure
Is Sound,” you learned how to verify that the structure of your data-
base is sound. Each table should contain the set of information related
to one and only one subject or action.

In Chapter 4, “Creating a Simple Query,” you learned how to build a
basic SELECT statement in SQL to retrieve a result set of information
that contains specific columns from a single table and how to sort
those result sets. In Chapter 5, “Getting More Than Simple Columns,”
you learned how to glean a new set of information from a table by writ-
ing expressions that operate on one or more columns. In Chapter 6,
“Filtering Your Data,” you learned how to restrict further the set of
information you retrieve from your tables by adding a filter (WHERE
clause) to your query.

 Operations on Sets 243

As you can see, a set can be as little as the data from one column from one
row in one table. Actually, you can construct a request in SQL that returns
no rows—an empty set. Sometimes it’s useful to discover that something
does not exist. A set can also be multiple columns (including columns you
create with expressions) from multiple rows fetched from multiple tables.
Each row in a result set is a member of the set. The values in the col-
umns are specific attributes of each member—data items that describe the
member of the set. In the next several chapters, I’ll show how to ask for
information from multiple sets of data and link these sets together to get
answers to more complex questions. First, however, you need to under-
stand more about sets and the logical ways to combine them.

Operations on Sets

In Chapter 1, I discussed how Dr. E. F. Codd invented the relational model
on which most modern databases and SQL are based. Two branches of
mathematics—set theory and first-order predicate logic—formed the foun-
dation of his new model.

To graduate beyond getting answers from only a single table, you need to
learn how to use result sets of information to solve more complex prob-
lems. These complex problems usually require using one of the common
set operations to link data from two or more tables. Sometimes, you’ll
need to get two different result sets from the same table and then com-
bine them to get your answer.

The three most common set operations are as follows:

• Intersection—You use this to find the common elements in two
or more different sets: “List all students and the classes for which
they are currently enrolled.” “Show me the recipes that contain
both lamb and rice.” “Show me the customers who ordered both
 bicycles and helmets.”

• Difference—You use this to find items that are in one set but not
another: “Show me the recipes that contain lamb but do not contain
rice.” “Show me the customers who ordered a bicycle but not a helmet.”

• Union—You use this to combine two or more similar sets: “Show
me all the recipes that contain either lamb or rice.” “Show me the
customers who ordered either a bicycle or a helmet.” “List the names
and addresses for both staff and students.”

244 Chapter 7 Thinking in Sets

In the following three sections, I’ll explain these basic set operations—
the ones you should have learned in high school algebra. The “SQL Set
Operations” section later in this chapter gives an overview of how these
operations are implemented in “pure” SQL.

Intersection

No, it’s not your local street corner. An intersection of two sets contains
the common elements of two sets. Let’s first take a look at an intersec-
tion from the pure perspective of set theory and then see how you can
use an intersection to solve business problems.

Intersection in Set Theory

An intersection is a very powerful mathematical tool often used by sci-
entists and engineers. As a scientist, you might be interested in find-
ing common points between two sets of chemical or physical sample
data. For example, a pharmaceutical research chemist might have two
compounds that seem to provide a certain beneficial effect. Finding the
commonality (the intersection) between the two compounds might help
discover what it is that makes the two compounds effective. Or, an engi-
neer might be interested in finding the intersection between one alloy
that is hard but brittle and another alloy that is soft but resilient.

Let’s take a look at intersection in action by examining two sets of num-
bers. In this example, each single number is a member of the set. The
first set of numbers is as follows:

1, 5, 8, 9, 32, 55, 78

The second set of numbers is as follows:

3, 7, 8, 22, 55, 71, 99

The intersection of these two sets of numbers is the numbers common to
both sets:

8, 55

The individual entries—the members—of each set don’t have to be just
single values. In fact, when solving problems with SQL, you’ll probably
deal with sets of rows.

 Intersection 245

According to set theory, when a member of a set is something more than
a single number or value, each member (or object) of the set has multiple
attributes or bits of data that describe the properties of each member.
For example, your favorite stew recipe is a complex member of the set of
all recipes that contains many different ingredients. Each ingredient is
an attribute of your complex stew member.

To find the intersection between two sets of complex set members, you
have to find the members that match on all the attributes. Also, all the
members in each set you’re trying to compare must have the same num-
ber and type of attributes. For example, suppose you have a complex
set like the one below, in which each row represents a member of the
set (a stew recipe), and each column denotes a particular attribute (an
ingredient).

Potatoes Water Lamb Peas

Rice Chicken Stock Chicken Carrots

Pasta Water Tofu Snap Peas

Potatoes Beef Stock Beef Cabbage

Pasta Water Pork Onions

A second set might look like the following:

Potatoes Water Lamb Onions

Rice Chicken Stock Turkey Carrots

Pasta Vegetable Stock Tofu Snap Peas

Potatoes Beef Stock Beef Cabbage

Beans Water Pork Onions

The intersection of these two sets is the one member whose attributes all
match in both sets:

Potatoes Beef Stock Beef Cabbage

246 Chapter 7 Thinking in Sets

Intersection between Result Sets

If the previous examples look like rows in a table or a result set to you,
you’re on the right track! When you’re dealing with rows in a set of data
that you fetch with SQL, the attributes are the individual columns. For
example, suppose you have a set of rows returned by a query like the fol-
lowing one. (These are recipes from my cookbook.)

Recipe Starch Stock Meat Vegetable

Lamb Stew Potatoes Water Lamb Peas

Chicken Stew Rice Chicken Stock Chicken Carrots

Veggie Stew Pasta Water Tofu Snap Peas

Irish Stew Potatoes Beef Stock Beef Cabbage

Pork Stew Pasta Water Pork Onions

A second query result set might look like the following. (These are
 recipes from my friend Mike’s cookbook.)

Recipe Starch Stock Meat Vegetable

Lamb Stew Potatoes Water Lamb Peas

Turkey Stew Rice Chicken Stock Turkey Carrots

Veggie Stew Pasta Vegetable Stock Tofu Snap Peas

Irish Stew Potatoes Beef Stock Beef Cabbage

Pork Stew Beans Water Pork Onions

The intersection of these two sets is the two members whose attributes
all match in both sets—that is, the two recipes that Mike and John have
in common.

Recipe Starch Stock Meat Vegetable

Lamb Stew Potatoes Water Lamb Peas

Irish Stew Potatoes Beef Stock Beef Cabbage

Sometimes it’s easier to see how intersection works using a set diagram.
A set diagram is an elegant yet simple way to diagram sets of information
and graphically represent how the sets intersect or overlap. You might

 Intersection 247

also have heard this sort of diagram called a Euler or Venn diagram.
(By the way, Leonard Euler was an eighteenth-century Swiss mathema-
tician, and John Venn used this particular type of logic diagram in 1880
in a paper he wrote while a Fellow at Cambridge University. So you can
see that “thinking in sets” is not a particularly modern concept!)

Let’s assume you have a nice database containing all your favorite reci-
pes. You really like the way onions enhance the flavor of beef, so you’re
interested in finding all recipes that contain both beef and onions.
 Figure 7-1 shows the set diagram that helps you visualize how to solve
this problem.

Recipes with Both
Beef and Onions

Recipes with
Beef

Recipes with
Onions

Figure 7-1 Finding out which recipes have both beef and onions

The upper circle represents the set of recipes that contain beef. The
lower circle represents the set of recipes that contain onions. Where
the two circles overlap is where you’ll find the recipes that contain
both—the intersection of the two sets. As you can imagine, you first ask
SQL to fetch all the recipes that have beef. In the second query, you ask
SQL to fetch all the recipes that have onions. As you’ll see later, you can
use a special SQL keyword—INTERSECT—to link the two queries to get
the final answer.

Yes, I know what you’re thinking. If your recipe table looks like the sam-
ples above, you could simply say the following:

“Show me the recipes that have beef as the meat ingredient and
onions as the vegetable ingredient.”

248 Chapter 7 Thinking in Sets

Translation Select the recipe name from the recipes table where meat ingredi-
ent is beef and vegetable ingredient is onions

Clean Up Select the recipe name from the recipes table where meat ingredi-
ent is = 'beef' and vegetable ingredient is = 'onions'

SQL SELECT RecipeName

FROM Recipes

WHERE MeatIngredient = 'Beef'

 AND VegetableIngredient = 'Onions'

Hold on now! If you remember the lessons you learned in Chapter 2, you
know that a single Recipes table probably won’t cut it. (Pun intended!)
What about recipes that have ingredients other than meat and vegeta-
bles? What about the fact that some recipes have many ingredients and
others have only a few? A correctly designed recipes database will have
a separate Recipe_Ingredients table with one row per recipe per ingredi-
ent. Each ingredient row will have only one ingredient, so no single row
can be both beef and onions at the same time. You’ll need first to find all
the beef rows, then find all the onions rows, and then intersect them on
RecipeID. (If you’re confused about why I’m criticizing the previous table
design, be sure to go back and read Chapter 2!)

How about a more complex problem? Let’s say you want to add car-
rots to the mix. A set diagram to visualize the solution might look like
Figure 7-2.

Recipes with
Beef

Recipes with
OnionsRecipes with

Carrots

Recipes with Beef,
Onions, and Carrots

Figure 7-2 Determining which recipes have beef, onions, and carrots

 Intersection 249

Got the hang of it? The bottom line is that when you’re faced with
solving a problem involving complex criteria, a set diagram can be an
invaluable way to see the solution expressed as the intersection of SQL
result sets.

Problems You Can Solve with an Intersection

As you might guess, you can use an intersection to find the matches
between two or more sets of information. Here’s just a small sample of
the problems you can solve using an intersection technique with data
from the sample databases:

“Show me customers and employees who have the same name.”

“Find all the customers who ordered a bicycle and also ordered a
helmet.”

“List the entertainers who played engagements for customers Bonnick-
sen and Rosales.”

“Show me the students who have an average score of 85 or better in
Art and who also have an average score of 85 or better in Computer
Science.”

“Find the bowlers who had a raw score of 155 or better at both Thun-
derbird Lanes and Bolero Lanes.”

“Show me the recipes that have beef and garlic.”

One of the limitations of using a pure intersection is that the values
must match in all the columns in each result set. This works well if
you’re intersecting two or more sets from the same table—for example,
customers who ordered bicycles and customers who ordered helmets. It
also works well when you’re intersecting sets from tables that have sim-
ilar columns—for example, customer names and employee names. In
many cases, however, you’ll want to find solutions that require a match
on only a few column values from each set. For this type of problem,
SQL provides an operation called a JOIN—an intersection on key values.
Here’s a sample of problems you can solve with a JOIN:

“Show me customers and employees who live in the same city.” (JOIN
on the city name.)

“List customers and the entertainers they booked.” (JOIN on the
engagement number.)

250 Chapter 7 Thinking in Sets

“Find the agents and entertainers who live in the same ZIP Code.”
(JOIN on the ZIP Code.)

“Show me the students and their teachers who have the same first
name.” (JOIN on the first name.)

“Find the bowlers who are on the same team.” (JOIN on the team ID.)

“Display all the ingredients for recipes that contain carrots.” (JOIN on
the ingredient ID.)

Never fear. In the next chapter I’ll show you all about solving these prob-
lems (and more) by using JOINs. And because so few commercial imple-
mentations of SQL support INTERSECT, I’ll show how to use a JOIN to
solve many problems that might otherwise require an INTERSECT.

Difference

What’s the difference between 21 and 10? If you answered 11, you’re on
the right track! A difference operation (sometimes also called subtract,
minus, or except) takes one set of values and removes the set of values
from a second set. What remains is the set of values in the first set that
are not in the second set. (As you’ll see later, EXCEPT is the keyword
used in the SQL Standard.)

Difference in Set Theory

Difference is another very powerful mathematical tool. As a scien-
tist, you might be interested in finding what’s different about two sets
of chemical or physical sample data. For example, a pharmaceutical
research chemist might have two compounds that seem to be very sim-
ilar, but one provides a certain beneficial effect and the other does not.
Finding what’s different about the two compounds might help uncover
why one works and the other does not. As an engineer, you might have
two similar designs, but one works better than the other. Finding the
difference between the two designs could be crucial to eliminating struc-
tural flaws in future buildings.

Let’s take a look at difference in action by examining two sets of num-
bers. The first set of numbers is as follows:

1, 5, 8, 9, 32, 55, 78

 Difference 251

The second set of numbers is as follows:

3, 7, 8, 22, 55, 71, 99

The difference of the first set of numbers minus the second set of num-
bers is the numbers that exist in the first set but not the second:

1, 5, 9, 32, 78

Note that you can turn the previous difference operation around. Thus,
the difference of the second set minus the first set is

3, 7, 22, 71, 99

The members of each set don’t have to be single values. In fact, you’ll
most likely be dealing with sets of rows when trying to solve problems
with SQL.

Earlier in this chapter I said that when a member of a set is something
more than a single number or value, each member of the set has mul-
tiple attributes (bits of information that describe the properties of each
member). For example, your favorite stew recipe is a complex member of
the set of all recipes that contains many different ingredients. You can
think of each ingredient as an attribute of your complex stew member.

To find the difference between two sets of complex set members, you
have to find the members that match on all the attributes in the second
set with members in the first set. Don’t forget that all of the members in
each set you’re trying to compare must have the same number and type
of attributes. Remove from the first set all the matching members you
find in the second set, and the result is the difference. For example, sup-
pose you have a complex set like the one below. Each row represents a
member of the set (a stew recipe), and each column denotes a particular
attribute (an ingredient).

Potatoes Water Lamb Peas

Rice Chicken Stock Chicken Carrots

Pasta Water Tofu Snap Peas

Potatoes Beef Stock Beef Cabbage

Pasta Water Pork Onions

252 Chapter 7 Thinking in Sets

A second set might look like this:

Potatoes Water Lamb Onions

Rice Chicken Stock Turkey Carrots

Pasta Vegetable Stock Tofu Snap Peas

Potatoes Beef Stock Beef Cabbage

Beans Water Pork Onions

The difference of the first set minus the second set is the objects in the
first set that don’t exist in the second set:

Potatoes Water Lamb Peas

Rice Chicken Stock Chicken Carrots

Pasta Water Tofu Snap Peas

Pasta Water Pork Onions

Difference between Result Sets

When you’re dealing with rows in a set of data fetched with SQL, the
attributes are the individual columns. For example, suppose you have a
set of rows returned by a query like the following one. (These are recipes
from John’s cookbook.)

Recipe Starch Stock Meat Vegetable

Lamb Stew Potatoes Water Lamb Peas

Chicken Stew Rice Chicken Stock Chicken Carrots

Veggie Stew Pasta Water Tofu Snap Peas

Irish Stew Potatoes Beef Stock Beef Cabbage

Pork Stew Pasta Water Pork Onions

A second query result set might look like the following. (These are reci-
pes from Mike’s cookbook.)

 Difference 253

Recipe Starch Stock Meat Vegetable

Lamb Stew Potatoes Water Lamb Peas

Turkey Stew Rice Chicken Stock Turkey Carrots

Veggie Stew Pasta Vegetable Stock Tofu Snap Peas

Irish Stew Potatoes Beef Stock Beef Cabbage

Pork Stew Beans Water Pork Onions

The difference between John’s recipes and Mike’s recipes (John’s minus
Mike’s) is all the recipes in John’s cookbook that do not appear in Mike’s
cookbook.

Recipe Starch Stock Meat Vegetable

Chicken Stew Rice Chicken Stock Chicken Carrots

Veggie Stew Pasta Water Tofu Snap Peas

Pork Stew Pasta Water Pork Onions

You can also turn this problem around. Suppose you want to find the
recipes in Mike’s cookbook that are not in John’s cookbook. Here’s the
answer:

Recipe Starch Stock Meat Vegetable

Turkey Stew Rice Chicken Stock Turkey Carrots

Veggie Stew Pasta Vegetable Stock Tofu Snap Peas

Pork Stew Beans Water Pork Onions

Again, I can use a set diagram to help visualize how a difference oper-
ation works. Let’s assume you have a nice database containing all your
favorite recipes. You really do not like the way onions taste with beef, so
you’re interested in finding all recipes that contain beef but not onions.
Figure 7-3 shows you the set diagram that helps you visualize how to
solve this problem.

254 Chapter 7 Thinking in Sets

Recipes with Beef
but Not Onions

Recipes with
Beef

Recipes with
Onions

Figure 7-3 Finding out which recipes have beef but not onions

The upper full circle represents the set of recipes that contain beef. The
lower full circle represents the set of recipes that contain onions. As
you remember from the discussion about INTERSECT, where the two
circles overlap is where you’ll find the recipes that contain both. The
dark-shaded part of the upper circle that’s not part of the overlapping
area represents the set of recipes that contain beef but do not contain
onions. Likewise, the part of the lower circle that’s not part of the over-
lapping area represents the set of recipes that contain onions but do
not contain beef.

You probably know that you first ask SQL to fetch all the recipes that
have beef. Next, you ask SQL to fetch all the recipes that have onions.
(As you’ll see later in this chapter, the special SQL keyword EXCEPT
links the two queries to get the final answer.)

Are you falling into the trap again? (You did read Chapter 2, didn’t you?)
If your recipe table looks like the samples earlier, you might think that
you could simply say the following:

“Show me the recipes that have beef as the meat ingredient and that
do not have onions as the vegetable ingredient.”

 Difference 255

Translation Select the recipe name from the recipes table where meat ingre-
dient is beef and vegetable ingredient is not onions

Clean Up Select the recipe name from the recipes table where meat ingre-
dient is = 'beef' and vegetable ingredient is not <> 'onions'

SQL SELECT RecipeName

FROM Recipes

WHERE MeatIngredient = 'Beef'

 AND VegetableIngredient <> 'Onions'

Again, as you learned in Chapter 2, a single Recipes table isn’t such a
hot idea. (Pun intended!) What about recipes that have ingredients other
than meat and vegetables? What about the fact that some recipes have
many ingredients and others have only a few? A correctly designed Reci-
pes database will have a separate Recipe_Ingredients table with one row
per recipe per ingredient. Each ingredient row will have only one ingredi-
ent, so no one row can be both beef and onions at the same time. You’ll
need first to find all the beef rows, then find all the onions rows, then
difference them on RecipeID.

How about a more complex problem? Let’s say you hate carrots, too. A
set diagram to visualize the solution might look like Figure 7-4.

Recipes with
Beef

Recipes with
OnionsRecipes with

Carrots

Recipes with Beef but
No Onions or Carrots

Figure 7-4 Finding out which recipes have beef but no onions or carrots

First you need to find the set of recipes that have beef, and then get
the difference with either the set of recipes containing onions or the set

256 Chapter 7 Thinking in Sets

containing carrots. Take that result and get the difference again with
the remaining set (onions or carrots) to leave only the recipes that have
beef but no carrots or onions (the light-shaded area in the upper circle).

Problems You Can Solve with Difference

Unlike intersection (which looks for common members of two sets), dif-
ference looks for members that are in one set but not in another set.
Here’s just a small sample of the problems you can solve using a differ-
ence technique with data from the sample databases:

“Show me customers whose names are not the same as any employee.”

“Find all the customers who ordered a bicycle but did not order a helmet.”

“List the entertainers who played engagements for customer Bonnick-
sen but did not play any engagement for customer Rosales.”

“Show me the students who have an average score of 85 or better in Art
but do not have an average score of 85 or better in Computer Science.”

“Find the bowlers who had a raw score of 155 or better at Thunderbird
Lanes but not at Bolero Lanes.”

“Show me the recipes that have beef but not garlic.”

One of the limitations of using a pure difference is that the values must
match in all the columns in each result set. This works well if you’re
finding the difference between two or more sets from the same table—
for example, customers who ordered bicycles and customers who ordered
helmets. It also works well when you’re finding the difference between
sets from tables that have similar columns—for example, customer
names and employee names.

In many cases, however, you’ll want to find solutions that require a
match on only a few column values from each set. For this type of
problem, SQL provides an OUTER JOIN operation, which is an inter-
section on key values that includes the unmatched values from one or
both of the two sets. Here’s a sample of problems you can solve with
an OUTER JOIN:

“Show me customers who do not live in the same city as any employ-
ees.” (OUTER JOIN on the city name.)

“List customers and the entertainers they did not book.” (OUTER JOIN
on the engagement number.)

 Union 257

“Find the agents who are not in the same ZIP Code as any enter-
tainer.” (OUTER JOIN on the ZIP Code.)

“Show me the students who do not have the same first name as any
teachers.” (OUTER JOIN on the first name.)

“Find the bowlers who have an average of 150 or higher who have
never bowled a game below 125.” (OUTER JOIN on the bowler ID from
two different tables.)

“Display all the ingredients for recipes that do not have carrots.”
(OUTER JOIN on the recipe ID.)

Don’t worry! I’ll show you all about solving these problems (and more)
using OUTER JOINs in Chapter 9, “OUTER JOINs.” Also, because only a
few commercial implementations of SQL support EXCEPT (the keyword for
difference), I’ll show how to use an OUTER JOIN to solve many problems
that might otherwise require an EXCEPT. In Chapter 18, “‘NOT’ and ‘AND’
Problems,” I’ll show you additional ways to solve EXCEPT problems.

Union

So far I’ve discussed finding the items that are common in two sets
(intersection) and the items that are different (difference). The third type
of set operation involves adding two sets (union).

Union in Set Theory

Union lets you combine two sets of similar information into one set. As
a scientist, you might be interested in combining two sets of chemical
or physical sample data. For example, a pharmaceutical research chem-
ist might have two different sets of compounds that seem to provide a
certain beneficial effect. The chemist can union the two sets to obtain a
single list of all effective compounds.

Let’s take a look at union in action by examining two sets of numbers.
The first set of numbers is as follows:

1, 5, 8, 9, 32, 55, 78

The second set of numbers is as follows:

3, 7, 8, 22, 55, 71, 99

258 Chapter 7 Thinking in Sets

The union of these two sets of numbers is the numbers in both sets
combined into one new set:

1, 5, 8, 9, 32, 55, 78, 3, 7, 22, 71, 99

Note that the values common to both sets, 8 and 55, appear only once
in the answer. Also, the sequence of the numbers in the result set is not
necessarily in any specific order. When you ask a database system to
perform a UNION, the values returned won’t necessarily be in sequence
unless you explicitly include an ORDER BY clause. In SQL, you can also
ask for a UNION ALL if you want to see the duplicate members.

The members of each set don’t have to be just single values. In fact, you’ll
probably deal with sets of rows when working with SQL.

To find the union of two or more sets of complex members, all the mem-
bers in each set you’re trying to union must have the same number and
type of attributes. For example, suppose you have a complex set like the
one below. Each row represents a member of the set (a stew recipe), and
each column denotes a particular attribute (an ingredient).

Potatoes Water Lamb Peas

Rice Chicken Stock Chicken Carrots

Pasta Water Tofu Snap Peas

Potatoes Beef Stock Beef Cabbage

Pasta Water Pork Onions

A second set might look like the following:

Potatoes Water Lamb Onions

Rice Chicken Stock Turkey Carrots

Pasta Vegetable Stock Tofu Snap Peas

Potatoes Beef Stock Beef Cabbage

Beans Water Pork Onions

The union of these two sets is the set of objects from both sets.
 Duplicates are eliminated.

 Union 259

Potatoes Water Lamb Peas

Rice Chicken Stock Chicken Carrots

Pasta Water Tofu Snap Peas

Potatoes Beef Stock Beef Cabbage

Pasta Water Pork Onions

Potatoes Water Lamb Onions

Rice Chicken Stock Turkey Carrots

Pasta Vegetable Stock Tofu Snap Peas

Beans Water Pork Onions

Combining Result Sets Using a Union

It’s a small leap from sets of complex objects to rows in SQL result sets.
When you’re dealing with rows in a set of data that you fetch with SQL,
the attributes are the individual columns. For example, suppose you
have a set of rows returned by a query like the following one. (These are
recipes from John’s cookbook.)

Recipe Starch Stock Meat Vegetable

Lamb Stew Potatoes Water Lamb Peas

Chicken Stew Rice Chicken Stock Chicken Carrots

Veggie Stew Pasta Water Tofu Snap Peas

Irish Stew Potatoes Beef Stock Beef Cabbage

Pork Stew Pasta Water Pork Onions

A second query result set might look like this one. (These are recipes
from Mike’s cookbook).

Recipe Starch Stock Meat Vegetable

Lamb Stew Potatoes Water Lamb Peas

Turkey Stew Rice Chicken Stock Turkey Carrots

Veggie Stew Pasta Vegetable Stock Tofu Snap Peas

Irish Stew Potatoes Beef Stock Beef Cabbage

Pork Stew Beans Water Pork Onions

260 Chapter 7 Thinking in Sets

The union of these two sets is all the rows in both sets. Maybe John and
Mike decided to write a cookbook together, too!

Recipe Starch Stock Meat Vegetable

Lamb Stew Potatoes Water Lamb Peas

Chicken Stew Rice Chicken Stock Chicken Carrots

Veggie Stew Pasta Water Tofu Snap Peas

Irish Stew Potatoes Beef Stock Beef Cabbage

Pork Stew Pasta Water Pork Onions

Turkey Stew Rice Chicken Stock Turkey Carrots

Veggie Stew Pasta Vegetable Stock Tofu Snap Peas

Pork Stew Beans Water Pork Onions

Let’s assume you have a nice database containing all your favorite reci-
pes. You really like recipes with either beef or onions, so you want a list
of recipes that contain either ingredient. Figure 7-5 shows you the set
diagram that helps you visualize how to solve this problem.

Recipes with Beef
or OnionsRecipes with

Beef

Recipes with
Onions

Figure 7-5 Finding out which recipes have either beef or onions

The upper circle represents the set of recipes that contain beef. The
lower circle represents the set of recipes that contain onions. The union
of the two circles gives you all the recipes that contain either ingredient,
with duplicates eliminated where the two sets overlap. As you probably
know, you first ask SQL to fetch all the recipes that have beef. In the
second query, you ask SQL to fetch all the recipes that have onions. As

 Union 261

you’ll see later, the SQL keyword UNION links the two queries to get the
final answer.

By now you know that it’s not a good idea to design a recipes database
with a single table. Instead, a correctly designed recipes database will
have a separate Recipe_Ingredients table with one row per recipe per
ingredient. Each ingredient row will have only one ingredient, so no one
row can be both beef or onions at the same time. You’ll need to first find
all the recipes that have a beef row, then find all the recipes that have
an onions row, and then union them.

Problems You Can Solve with Union

A union lets you “mush together” rows from two similar sets—with
the added advantage of no duplicate rows. Here’s a sample of the prob-
lems you can solve using a union technique with data from the sample
databases:

“Show me all the customer and employee names and addresses.”

“List all the customers who ordered a bicycle combined with all the
customers who ordered a helmet.”

“List the entertainers who played engagements for customer Bonnick-
sen combined with all the entertainers who played engagements for
customer Rosales.”

“Show me the students who have an average score of 85 or better in
Art together with the students who have an average score of 85 or bet-
ter in Computer Science.”

“Find the bowlers who had a raw score of 155 or better at Thunderbird
Lanes combined with bowlers who had a raw score of 140 or better at
Bolero Lanes.”

“Show me the recipes that have beef together with the recipes that
have garlic.”

As with other “pure” set operations, one of the limitations is that the val-
ues must match in all the columns in each result set. This works well
if you’re unioning two or more sets from the same table—for example,
customers who ordered bicycles and customers who ordered helmets. It
also works well when you’re performing a union on sets from tables that
have like columns—for example, customer names and addresses and
employee names and addresses. I’ll explore the uses of the SQL UNION
operator in detail in Chapter 10, “UNIONs.”

262 Chapter 7 Thinking in Sets

In many cases where you would otherwise union rows from the same
table, you’ll find that using DISTINCT (to eliminate the duplicate rows) with
complex criteria on joined tables will serve as well. I’ll show you all about
solving problems this way using JOINs in Chapter 8, “INNER JOINs.”

SQL Set Operations

Now that you have a basic understanding of set operations, let’s look
briefly at how they’re implemented in SQL.

Classic Set Operations versus SQL

As noted earlier, not many commercial database systems yet support set
intersection (INTERSECT) or set difference (EXCEPT) directly. The cur-
rent SQL Standard, however, clearly defines how these operations should
be implemented. I think that these set operations are important enough
to at least warrant an overview of the syntax.

As promised, I’ll show you alternative ways to solve an intersection or
difference problem in later chapters using JOINs. Because most data-
base systems do support UNION, Chapter 10 is devoted to its use. The
remainder of this chapter gives you an overview of all three operations.

Finding Common Values: INTERSECT

Let’s say you’re trying to solve the following seemingly simple problem:

“Show me the orders that contain both a bike and a helmet.”

Translation Select the distinct order numbers from the order details table
where the product number is in the list of bike and helmet
 product numbers

Clean Up Select the distinct order numbers from the order details table
where the product number is in the list of bike and helmet
 product numbers

SQL SELECT DISTINCT OrderNumber

FROM Order_Details

WHERE ProductNumber IN

 (1, 2, 6, 10, 11, 25, 26)

 SQL Set Operations 263

 ❖ Note Readers familiar with SQL might ask why I didn’t JOIN
Order_Details to Products and look for bike or helmet product names.
The simple answer is that I haven’t introduced the concept of a JOIN
yet, so I built this example on a single table using IN and a list of
known bike and helmet product numbers.

That seems to do the trick at first, but the answer includes orders that
contain either a bike or a helmet, and you really want to find ones that
contain both a bike and a helmet! If you visualize orders with bicycles
and orders with helmets as two distinct sets, it’s easier to understand
the problem. Figure 7-6 shows one possible relationship between the two
sets of orders using a set diagram.

Orders for Both
Bicycles and Helmets

Orders for
a Bicycle

Orders for
a Helmet

Figure 7-6 One possible relationship between two sets of orders

Actually, there’s no way to predict in advance what the relationship
between two sets of data might be. In Figure 7-6, some orders have a
bicycle in the list of products ordered, but no helmet. Some have a hel-
met, but no bicycle. The overlapping area, or intersection, of the two
sets is where you’ll find orders that have both a bicycle and a helmet.
 Figure 7-7 shows another case where all orders that contain a helmet
also contain a bicycle, but some orders that contain a bicycle do not con-
tain a helmet.

❖ Note Readers familiar with SQL might ask why I didn’t JOIN
Order_Details to Products and look for bike or helmet product names.
The simple answer is that I haven’t introduced the concept of a JOIN
yet, so I built this example on a single table using IN and a list of
known bike and helmet product numbers.

264 Chapter 7 Thinking in Sets

Seeing “both” in your request suggests you’re probably going to have to
break the solution into separate sets of data and then link the two sets
in some way. (Your request also needs to be broken into two parts.)

Orders for
a Bicycle

Orders for
a Helmet

Figure 7-7 All orders for a helmet also contain an order for a bicycle

“Show me the orders that contain a bike.”

Translation Select the distinct order numbers from the order details table
where the product number is in the list of bike product numbers

Clean Up Select the distinct order numbers from the order details table
where the product number is in the list of bike product numbers

SQL SELECT DISTINCT OrderNumber

FROM Order_Details

WHERE ProductNumber IN (1, 2, 6, 11)

“Show me the orders that contain a helmet.”

Translation Select the distinct order numbers from the order details table
where the product number is in the list of helmet product
numbers

Clean Up Select the distinct order numbers from the order details table
where the product number is in the list of helmet product
numbers

SQL SELECT DISTINCT OrderNumber

FROM Order_Details

WHERE ProductNumber IN (10, 25, 26)

Now you’re ready to get the final solution by using—you guessed it—an
intersection of the two sets. Figure 7-8 shows the SQL syntax diagram

 SQL Set Operations 265

that handles this problem. (Note that you can use INTERSECT more
than once to combine multiple SELECT statements.)

SELECT Expression

SELECT Statement SELECT StatementINTERSECT

ALL

Figure 7-8 Linking two SELECT statements with INTERSECT

You can now take the two parts of your request and link them with an
INTERSECT operator to get the correct answer:

SQL SELECT DISTINCT OrderNumber

FROM Order_Details

WHERE ProductNumber IN (1, 2, 6, 11)

INTERSECT

SELECT DISTINCT OrderNumber

FROM Order_Details

WHERE ProductNumber IN (10, 25, 26)

The sad news is that not many commercial implementations of SQL yet
support the INTERSECT operator. But all is not lost! Remember that the
primary key of a table uniquely identifies each row. (You don’t have to
match on all the fields in a row—just the primary key—to find unique
rows that intersect.) I’ll show you an alternative method (JOIN) in
 Chapter 8 that can solve this type of problem in another way. The good
news is that virtually all commercial implementations of SQL do support
JOIN.

Finding Missing Values: EXCEPT (DIFFERENCE)

Okay, let’s go back to the bicycles and helmets problem again. Let’s say
you’re trying to solve this seemingly simple request as follows:

“Show me the orders that contain a bike but not a helmet.”

266 Chapter 7 Thinking in Sets

Translation Select the distinct order numbers from the order details table
where the product number is in the list of bike product numbers
and product number is not in the list of helmet product numbers

Clean Up Select the distinct order numbers from the order details table
where the product number is in the list of bike product num-
bers and product number is not in the list of helmet product
numbers

SQL SELECT DISTINCT OrderNumber

FROM Order_Details

WHERE ProductNumber IN (1, 2, 6, 11)

 AND ProductNumber NOT IN (10, 25, 26)

Unfortunately, the answer shows you orders that contain only a bike!
The problem is that the first IN clause finds detail rows containing a
bicycle, but the second IN clause simply eliminates helmet rows. If you
visualize orders with bicycles and orders with helmets as two distinct
sets, you’ll find this easier to understand. Figure 7-9 shows one possible
relationship between the two sets of orders.

Orders for a Bicycle
but Not for a HelmetOrders for

a Bicycle

Orders for
a Helmet

Figure 7-9 Orders for a bicycle that do not also contain a helmet

Seeing “except” or “but not” in your request suggests you’re probably
going to have to break the solution into separate sets of data and then
link the two sets in some way. (Your request also needs to be broken into
two parts.)

 SQL Set Operations 267

“Show me the orders that contain a bike.”

Translation Select the distinct order numbers from the order details table
where the product number is in the list of bike product
numbers

Clean Up Select the distinct order numbers from the order details table
where the product number is in the list of bike product
numbers

SQL SELECT DISTINCT OrderNumber

FROM Order_Details

WHERE ProductNumber IN (1, 2, 6, 11)

“Show me the orders that contain a helmet.”

Translation Select the distinct order numbers from the order details table
where the product number is in the list of helmet product
numbers

Clean Up Select the distinct order numbers from the order details table
where the product number is in the list of helmet product
numbers

SQL SELECT DISTINCT OrderNumber

FROM Order_Details

WHERE ProductNumber IN (10, 25, 26)

Now you’re ready to get the final solution by using—you guessed it—a
difference of the two sets. SQL uses the EXCEPT keyword to denote a dif-
ference operation. Figure 7-10 shows you the SQL syntax diagram that
handles this problem.

SELECT Expression

SELECT Statement SELECT StatementEXCEPT
ALL

Figure 7-10 Linking two SELECT statements with EXCEPT

268 Chapter 7 Thinking in Sets

You can now take the two parts of your request and link them with an
EXCEPT operator to get the correct answer:

SQL SELECT DISTINCT OrderNumber

FROM Order_Details

WHERE ProductNumber IN (1, 2, 6, 11)

EXCEPT

SELECT DISTINCT OrderNumber

FROM Order_Details

WHERE ProductNumber IN (10, 25, 26)

Remember from my earlier discussion about the difference operation
that the sequence of the sets matters. In this case, you’re asking for
bikes “except” helmets. If you want to find out the opposite case—orders
for helmets that do not include bikes—you can turn it around as follows:

SQL SELECT DISTINCT OrderNumber

FROM Order_Details

WHERE ProductNumber IN (10, 25, 26)

EXCEPT

SELECT DISTINCT OrderNumber

FROM Order_Details

WHERE ProductNumber IN (1, 2, 6, 11)

The sad news is that not many commercial implementations of SQL yet
support the EXCEPT operator. Hang on to your helmet! Remember that
the primary key of a table uniquely identifies each row. (You don’t have
to match on all the fields in a row—just the primary key—to find unique
rows that are different.) I’ll show you an alternative method (OUTER
JOIN) in Chapter 9 that can solve this type of problem in another way.
The good news is that nearly all commercial implementations of SQL do
support OUTER JOIN.

Combining Sets: UNION

One more problem about bicycles and helmets, then I’ll pedal on to the
next chapter. Let’s say you’re trying to solve this request, which looks
simple enough on the surface:

 SQL Set Operations 269

“Show me the orders that contain either a bike or a helmet.”

Translation Select the distinct order numbers from the order details table
where the product number is in the list of bike and helmet
 product numbers

Clean Up Select the distinct order numbers from the order details table
where the product number is in the list of bike and helmet
 product numbers

SQL SELECT DISTINCT OrderNumber

FROM Order_Details

WHERE ProductNumber IN (1, 2, 6, 10, 11, 25, 26)

Actually, that works just fine! So why use a UNION to solve this
 problem? The truth is, you probably would not. However, if I make the
problem more complicated, a UNION would be useful:

“List the customers who ordered a bicycle together with the vendors
who provide bicycles.”

Unfortunately, answering this request involves creating a couple of queries
using JOIN operations, then using UNION to get the final result. Because
I haven’t shown you how to do a JOIN yet, I’ll save solving this problem for
Chapter 10. Gives you something to look forward to, doesn’t it?

Let’s get back to the “bicycles or helmets” problem and solve it with a
UNION. If you visualize orders with bicycles and orders with helmets as
two distinct sets, then you’ll find it easier to understand the problem.
 Figure 7-11 shows you one possible relationship between the two sets of
orders.

Orders for a Bicycle
or a Helmet

Orders for
a Bicycle

Orders for
a Helmet

Figure 7-11 Orders for bicycles or helmets

270 Chapter 7 Thinking in Sets

Seeing “either,” “or,” or “together” in your request suggests that you’ll need
to break the solution into separate sets of data and then link the two sets
with a UNION. This particular request can be broken into two parts:

“Show me the orders that contain a bike.”

Translation Select the distinct order numbers from the order details table
where the product number is in the list of bike product
numbers

Clean Up Select the distinct order numbers from the order details table
where the product number is in the list of bike product numbers

SQL SELECT DISTINCT OrderNumber

FROM Order_Details

WHERE ProductNumber IN (1, 2, 6, 11)

“Show me the orders that contain a helmet.”

Translation Select the distinct order numbers from the order details table
where the product number is in the list of helmet product
numbers

Clean Up Select the distinct order numbers from the order details table
where the product number is in the list of helmet product
numbers

SQL SELECT DISTINCT OrderNumber

FROM Order_Details

WHERE ProductNumber IN (10, 25, 26)

Now you’re ready to get the final solution by using—you guessed it—a
union of the two sets. Figure 7-12 shows the SQL syntax diagram that
handles this problem.

SELECT Expression

SELECT Statement SELECT StatementUNION
ALL

Figure 7-12 Linking two SELECT statements with UNION

 Summary 271

You can now take the two parts of your request and link them with a
UNION operator to get the correct answer:

SQL SELECT DISTINCT OrderNumber

FROM Order_Details

WHERE ProductNumber IN (1, 2, 6, 11)

UNION

SELECT DISTINCT OrderNumber

FROM Order_Details

WHERE ProductNumber IN (10, 25, 26)

The good news is that nearly all commercial implementations of SQL
support the UNION operator. As is perhaps obvious from the exam-
ples, a UNION might be doing it the hard way when you want to get an
“either-or” result from a single table. UNION is most useful for compiling
a list from several similarly structured but different tables. I’ll explore
UNION in much more detail in Chapter 10.

Summary

I began this chapter by discussing the concept of a set. Next, I discussed
each of the major set operations implemented in SQL in detail—intersec-
tion, difference, and union. I showed how to use set diagrams to visu-
alize the problem you’re trying to solve. Finally, I introduced you to the
basic SQL syntax and keywords (INTERSECT, EXCEPT, and UNION) for
all three operations just to whet your appetite.

At this point you’re probably saying, “Wait a minute, why did you show
me three kinds of set operations—two of which I probably can’t use?”
Remember the title of the chapter: “Thinking in Sets.” If you’re going to
be at all successful solving complex problems, you’ll need to break your
problem into result sets of information that you then link back together.

So, if your problem involves “it must be this, and it must be that,” you
might need to solve the “this” and then the “that” and then link them
to get your final solution. The SQL Standard defines a handy INTER-
SECT operation—but an INNER JOIN might work just as well. Read on
in Chapter 8.

272 Chapter 7 Thinking in Sets

Likewise, if your problem involves “it must be this, but it must not be
that,” you might need to solve the “this” and then the “that” and then
subtract the “that” from the “this” to get your answer. I showed you the
SQL Standard EXCEPT operation, but an OUTER JOIN might also do
the trick. Get the details in Chapters 9 and 18.

Finally, I showed you how to add sets of information using a UNION. As
promised, I’ll really get into UNION in Chapter 10.

 273

8
INNER JOINs

“Do not quench your inspiration and your imagination;
do not become the slave of your model.”

—VINCENT VAN GOGH

Topics Covered in This Chapter

What Is a JOIN?

The INNER JOIN

Uses for INNER JOINs

Sample Statements

Summary

Problems for You to Solve

Up to this point, I have primarily focused on solving problems using sin-
gle tables. You now know how to get simple answers from one table. You
also know how to get slightly more complex answers by using expres-
sions or by sorting the result set. In other words, you now can draw the
perfect eyes, chin, mouth, or nose. In this chapter, I’ll show you how to
link or join multiple parts to form a portrait.

What Is a JOIN?

In Chapter 2, “Ensuring Your Database Structure Is Sound,” I empha-
sized the importance of separating the data in your tables into individual
subjects. Most problems you need to solve in real life, however, require

274 Chapter 8 INNER JOINs

that you link data from multiple tables—customers and their orders,
customers and the entertainers they booked, bowlers and their scores,
students and the classes they took, or recipes and the ingredients you
need. To solve these more complex problems, you must link, or join, mul-
tiple tables to find your answer. You use the JOIN keyword to do so.

The previous chapter showed how useful it is to intersect two sets of
data to solve problems. As you recall, however, an INTERSECT involves
matching all the columns in both result sets to get the answer. A JOIN
is also an intersection, but it’s different because you ask your database
system to perform a JOIN only on the columns you specify. Thus, a JOIN
lets you intersect two very dissimilar tables on matching column values.
For example, you can use a JOIN to link customers to their orders by
matching the CustomerID in the Customers table to the CustomerID in
the Orders table.

As you’ll see later, you specify a JOIN as part of the FROM clause in an
SQL statement. A JOIN defines a “logical table” that is the result of link-
ing two tables or result sets. By placing the JOIN in a FROM clause, you
define a linking of tables from which the query extracts the final result
set. In other words, the JOIN replaces the single table name you learned
to use in the FROM clause in earlier chapters. As you’ll learn later in
this chapter, you can also specify multiple JOIN operations to create a
complex result set on more than two tables.

The INNER JOIN

The SQL Standard defines several ways to perform a JOIN, the most com-
mon of which is the INNER JOIN. Imagine for a moment that you’re link-
ing students and the classes for which they registered. You might have
some students who have been accepted to attend the school but have not
yet registered for any classes, and you might also have some classes that
are on the schedule but do not yet have any students registered.

An INNER JOIN between the Students table and the Classes table
returns rows in the Students table linked with the related rows in the
Classes table (via the Student_Schedules table)—but it returns neither
students who have not yet registered for any classes nor any classes for
which no student is registered. An INNER JOIN returns only those rows
where the linking values match in both of the tables or in result sets.

 The INNER JOIN 275

What’s “Legal” to JOIN?

Most of the time, you specify the primary key from one table and the
related foreign key from the second table as the link that JOIN uses. If
you remember from Chapter 2, a foreign key must be the same data type
as its related primary key. However, it’s also “legal” to JOIN two tables or
result sets on any columns that have what the SQL Standard calls “JOIN
eligible” data types.

In general, you can join a character column to another character column
or expression, any type of number column (for example, an integer) to
any other type of number column (perhaps a floating-point value), and
any date column to another date column. This allows you, for example,
to JOIN rows from the Customers table to rows from the Employees table
on the city or ZIP Code columns (perhaps to find out which Customers
and Employees live in the same city or postal region).

 ❖ Note Just because you can define a JOIN on any JOIN eligible
columns in two tables doesn’t mean you should. The linking columns
must have the same data meaning for the JOIN to make sense. For
example, it doesn’t make sense to JOIN customer name with employee
address even though both columns are character data type. You won’t
get any rows in the result set unless someone has put a name in the
employee address column by mistake. Likewise, it doesn’t make sense
to JOIN StudentID with ClassID even though both are numbers. You
might get some rows in the result set, but they won’t make any sense.

Even when it makes sense to JOIN linking columns, you might end up
constructing a request that takes a long time to solve. For example, if
you ask for a JOIN on columns for which your database administrator
has not defined an index, your database system might have to do a lot
of extra work. Also, if you ask for a JOIN on expressions—for example,
a concatenation of first name and last name from two tables—your
database system must not only form the result column from your
expression for all rows but also might have to perform multiple scans
of all the data in both tables to return the correct result.

Column References

Before I jump into the syntax for a JOIN, there’s a key bit of informa-
tion that I haven’t covered yet. Because you’ve been creating queries on

❖ Note Just because you can define a JOIN on any JOIN eligible n
columns in two tables doesn’t mean you should. The linking columns
must have the same data meaning for the JOIN to make sense. For
example, it doesn’t make sense to JOIN customer name with employee
address even though both columns are character data type. You won’t
get any rows in the result set unless someone has put a name in the
employee address column by mistake. Likewise, it doesn’t make sense
to JOIN StudentID with ClassID even though both are numbers. You
might get some rows in the result set, but they won’t make any sense.

Even when it makes sense to JOIN linking columns, you might end up
constructing a request that takes a long time to solve. For example, if
you ask for a JOIN on columns for which your database administrator
has not defined an index, your database system might have to do a lot
of extra work. Also, if you ask for a JOIN on expressions—for example,
a concatenation of first name and last name from two tables—your
database system must not only form the result column from your
expression for all rows but also might have to perform multiple scans
of all the data in both tables to return the correct result.

276 Chapter 8 INNER JOINs

a single table, you haven’t had to worry about qualifying column names.
But when you start to build queries that include multiple tables (as you
will when you use a JOIN), you’ll often include two or more tables that
each have columns with the same name. If you remember from Chapter 2,
I recommended that you create a foreign key in a related table by copying
the primary key—including its name—from one table into another.

So, how do you make it crystal clear to your database system which copy
of a field you are talking about in your query syntax? The simple answer
is that you provide a column reference that includes the table name.
 Figure 8-1 shows the diagram for a column reference.

column_name

Column Reference

.table_name

Figure 8-1 The syntax diagram of a column reference

Although you can use only the column name by itself in any clause in
a statement that you write in SQL, you can also explicitly qualify a col-
umn name with the name of its parent table. If the column name isn’t
unique in all the tables you include in your FROM clause, then you must
qualify the column name with the name of its parent table. Here’s how
you would write a simple SELECT statement on the Employees table to
incorporate qualified column names:

SQL SELECT Employees.FirstName, Employees.LastName,

 Employees.PhoneNumber

FROM Employees

Now that I’ve covered that little tidbit, you can move on to studying the
syntax of a JOIN operation.

Syntax

You can think of what you’ve studied so far as taking a nice ride down
a country lane or a quick jaunt across town to pick up some groceries.
Now let’s strap on our seat belts and venture out onto the highway—let’s
examine the INNER JOIN syntax.

 The INNER JOIN 277

Using Tables

I’ll start with something simple—an INNER JOIN on two tables.
Figure 8-2 shows the syntax for creating the query.

SELECT Value Expression

JOIN ON Search Condition

USING
,

column_name

FROM
INNER

DISTINCT

table_name

table_name

,

Figure 8-2 The syntax diagram of a query using an INNER JOIN on two tables

As you can see, the FROM clause is now just a little more complicated.
(I left out the WHERE and ORDER BY clauses for now to simplify
things.) Instead of a single table name, you specify two table names and
link them with the JOIN keyword. Note that the INNER keyword, which
is optional, specifies the type of JOIN. As you’ll learn in the next chap-
ter, you can also specify an OUTER JOIN. If you don’t explicitly state
the type of JOIN you want, the default is INNER. I recommend that you
always explicitly state the type of JOIN you want so that the nature of
your request is clear.

 ❖ Note Those who are following along with the complete syntax
diagrams in Appendix A, “SQL Standard Diagrams,” will find Table
Reference JOIN Table Reference described as part of the Joined
Table defined term. Table Reference can be either a table_name or a
Joined Table, and the FROM clause of a SELECT statement uses
Table Reference. I “rolled up” these complex definitions into a sin-
gle diagram to make it easy to study a simple two-table JOIN. I’ll be
using this same simplification technique in diagrams throughout the
remainder of this chapter.

The critical part of an INNER JOIN is the ON or USING clause that fol-
lows the second table and tells your database system how to perform the

❖ Note Those who are following along with the complete syntax
diagrams in Appendix A, “SQL Standard Diagrams,” will find Table
Reference JOIN Table Reference described as part of the Joined
Table defined term.e Table Reference can be either a e table_name or a
Joined Table, and the FROM clause of a SELECT statement uses
Table Reference. I “rolled up” these complex definitions into a sin-
gle diagram to make it easy to study a simple two-table JOIN. I’ll be
using this same simplification technique in diagrams throughout the
remainder of this chapter.

278 Chapter 8 INNER JOINs

JOIN. To solve the JOIN, your database system logically combines every
row in the first table with every row in the second table. (This combina-
tion of all rows from one table with all rows from a second table is called
a Cartesian product. I show you how to use a Cartesian product to solve
problems in Chapter 20, “Using Unlinked Data and ‘Driver’ Tables.”) It
then applies the criteria in the ON or USING clauses to filter out the
actual rows to be returned.

You learned about using a search condition to form a WHERE clause in
Chapter 6, “Filtering Your Data.” You can use a search condition in the
ON clause within a JOIN to specify a logical test that must be true in
order to return any two linked rows. Keep in mind that it only makes
sense to write a search condition that compares at least one column
from the first table with at least one column from the second table.
Although you can write a very complex search condition, you’ll typically
specify a simple equals comparison test on the primary key columns
from one table with the foreign key columns from the other table.

Let’s look at a simple example. In a well-designed database, you should
break out complex classification names into a second table and then link
the names back to the primary subject table via a simple key value. You
do this to help prevent data entry errors. Anyone using your database
chooses from a list of classification names rather than typing the name
(and perhaps misspelling it) in each row. For example, in the Recipes
sample database, recipe classes appear in a table separate from recipes.
Figure 8-3 shows the relationship between the Recipe_Classes and Reci-
pes tables.

RECIPES

RecipeID PK
RecipeTitle
RecipeClassID FK
Preparation
Notes

RECIPE_CLASSES

RecipeClassID PK
RecipeClassDescription

Figure 8-3 Recipe class descriptions are in a table separate from the Recipes table

When you want to retrieve information about recipes and the related
RecipeClassDescription from the database, you don’t want to see the
RecipeClassID code numbers from the Recipes table. Let’s see how to
approach this problem with a JOIN.

 The INNER JOIN 279

 ❖ Note Throughout this chapter, I use the “Request/Translation/
Clean Up/SQL” technique introduced in Chapter 4, “Creating a Simple
Query.”

“Show me the recipe title, preparation, and recipe class description of
all recipes in my database.”

Translation Select recipe title, preparation, and recipe class descrip-
tion from the recipe classes table joined with the recipes
table on recipe class ID in the recipe classes table match-
ing recipe class ID in the recipes table

Clean Up Select recipe title, preparation, and recipe class descrip-
tion from the recipe classes table inner joined with the
recipes table on recipe_classes.recipe class ID in the recipe
classes table matching = recipes.recipe class ID in the reci-
pes table

SQL SELECT RecipeTitle, Preparation,

 RecipeClassDescription

FROM Recipe_Classes INNER JOIN Recipes

 ON Recipe_Classes.RecipeClassID =

 Recipes.RecipeClassID

 ❖ Note You might have noticed that I’ve started to format the Clean
Up step into phrases that more closely mirror the final set of clauses
I need in SQL. As you begin to build more complex queries, I recom-
mend this technique to help you move from the Clean Up step to the
final SQL.

When beginning to use multiple tables in your FROM clause, you should
always fully qualify each column name with the table name, wherever
you use it, to make absolutely clear what column from what table you
want. (Now you know why I took a minute to explain a column refer-
ence!) Note that I had to qualify the name of RecipeClassID in the ON
clause because there are two columns named RecipeClassID—one in the
Recipes table and one in the Recipe_Classes table. I didn’t have to qual-
ify RecipeTitle, Preparation, or RecipeClassDescription in the SELECT
clause because each of these column names appears only once in all

❖ Note Throughout this chapter, I use the “Request/Translation/
Clean Up/SQL” technique introduced in Chapter 4, “Creating a Simple
Query.”

❖ Note You might have noticed that I’ve started to format the Clean
Up step into phrases that more closely mirror the final set of clauses
I need in SQL. As you begin to build more complex queries, I recom-
mend this technique to help you move from the Clean Up step to the
final SQL.

280 Chapter 8 INNER JOINs

the tables. If I want to include RecipeClassID in the output, I must tell
the database system which RecipeClassID I want—the one from Recipe_
Classes or the one from Recipes. To write the query with all the names
fully qualified, I should say this:

SQL SELECT Recipes.RecipeTitle,

 Recipes.Preparation,

 Recipe_Classes.RecipeClassDescription

FROM Recipe_Classes INNER JOIN Recipes

 ON Recipe_Classes.RecipeClassID =

 Recipes.RecipeClassID

 ❖ Note Although most commercial implementations of SQL support
the JOIN keyword, some do not. If your database does not support
JOIN, you can still solve the previous problem by listing all the tables
you need in the FROM clause and then moving your search condition
from the ON clause to the WHERE clause. In databases that do not
support JOIN, you solve the example problem like this:

SELECT Recipes.RecipeTitle, Recipes.Preparation,
 Recipe_Classes.RecipeClassDescription
FROM Recipe_Classes, Recipes
WHERE Recipe_Classes.RecipeClassID =
 Recipes.RecipeClassID

For a beginner, this syntax is probably much more intuitive for simple
queries. However, the SQL Standard syntax allows you to fully define
the source for the final result set entirely within the FROM clause.
Think of the FROM clause as fully defining a linked result set from
which the database system obtains your answer. In the SQL Stan-
dard, you use the WHERE clause only to filter rows out of the result
set defined by the FROM clause.

Not too difficult, is it? But what happened to the USING clause that I
showed you in Figure 8-2? If the matching columns in the two tables
have the same name and all you want to do is join on equal values, use
the USING clause and list the column names. Let’s do the previous prob-
lem again with USING.

“Show me the recipe title, preparation, and recipe class description of
all recipes in my database.”

❖ Note Although most commercial implementations of SQL support
the JOIN keyword, some do not. If your database does not support
JOIN, you can still solve the previous problem by listing all the tables
you need in the FROM clause and then moving your search condition
from the ON clause to the WHERE clause. In databases that do not
support JOIN, you solve the example problem like this:

SELECT Recipes.RecipeTitle, Recipes.Preparation,
 Recipe_Classes.RecipeClassDescription
FROM Recipe_Classes, Recipes
WHERE Recipe_Classes.RecipeClassID =
 Recipes.RecipeClassID

For a beginner, this syntax is probably much more intuitive for simple
queries. However, the SQL Standard syntax allows you to fully define
the source for the final result set entirely within the FROM clause.
Think of the FROM clause as fully defining a linked result set from
which the database system obtains your answer. In the SQL Stan-
dard, you use the WHERE clause only to filter rows out of the result
set defined by the FROM clause.

 The INNER JOIN 281

Translation Select recipe title, preparation, and recipe class description
from the recipe classes table joined with the recipes table
using recipe class ID

Clean Up Select recipe title, preparation, and recipe class description
from the recipe classes table inner joined with the recipes
table using recipe class ID

SQL SELECT Recipes.RecipeTitle,

 Recipes.Preparation,

 Recipe_Classes.RecipeClassDescription

FROM Recipe_Classes

INNER JOIN Recipes

USING (RecipeClassID)

Some database systems do not yet support USING. If you find that you
can’t use USING with your database, you can always get the same result
with an ON clause and an equals comparison.

 ❖ Note The SQL Standard also defines a NATURAL JOIN, which
links the two specified tables by matching all the columns with the
same name. If the only common columns are the linking columns and
your database supports NATURAL JOIN, you can solve the example
problem like this:

SELECT Recipes.RecipeTitle, Recipes.Preparation,
 Recipe_Classes.RecipeClassDescription
FROM Recipe_Classes
NATURAL INNER JOIN Recipes

Do not specify an ON or USING clause when using the NATURAL key-
word. Keep in mind that the INNER keyword is optional. If you specify
NATURAL JOIN, an INNER JOIN is assumed.

As mentioned earlier in this section, your database system logically cre-
ates the combination of every row in the first table with every row in the
second table and then applies the criteria you specify in ON or USING.
This sounds like a lot of extra work for your database to first build all
the combinations and then filter out the potentially few matching rows.

Rest assured that all modern relational database systems evaluate the
entire JOIN clause before starting to fetch rows. In the example I have
been using so far, many database systems begin to solve this request

❖ Note The SQL Standard also defines a NATURAL JOIN, which
links the two specified tables by matching all the columns with the
same name. If the only common columns are the linking columns and
your database supports NATURAL JOIN, you can solve the example
problem like this:

SELECT Recipes.RecipeTitle, Recipes.Preparation,
 Recipe_Classes.RecipeClassDescription
FROM Recipe_Classes
NATURAL INNER JOIN Recipes

Do not specify an ON or USING clause when using the NATURAL key-
word. Keep in mind that the INNER keyword is optional. If you specify
NATURAL JOIN, an INNER JOIN is assumed.

282 Chapter 8 INNER JOINs

by first fetching a row from Recipe_Classes. The database then uses an
internal link—an index (if one has been defined by the designer of the
tables)—to quickly find any matching rows in the Recipes table for the
first row in the Recipe_Classes table before moving on to the next row
in Recipe_Classes. In other words, your database uses a smart or opti-
mized plan to fetch only the rows that match. This won’t seem import-
ant when your database tables contain only a few hundred rows, but it
makes a big difference when your database has to deal with hundreds of
thousands of rows!

Assigning Correlation (Alias) Names to Tables

The SQL Standard defines a way to assign an alias name—known as a
correlation name in the Standard—to any table you list in your FROM
clause. This feature can be very handy for building complex queries
using tables that have long, descriptive names. You can assign a short
correlation name to a table to make it easier to explicitly reference col-
umns in a table with a long name.

Figure 8-4 shows how to assign a correlation name to a table in a FROM
clause.

SELECT Value Expression

JOIN

FROM

DISTINCT

table_name

table_name

AS
correlation_name INNER

ON Search Condition

USING
,

column_name

AS
correlation_name

,

Figure 8-4 Assigning a correlation (alias) name to a table in a FROM clause

To assign a correlation name to a table, follow the table name with the
optional keyword AS and then the correlation name you want to assign.

 The INNER JOIN 283

(As with all optional keywords, I recommend including AS in order to
make the query easier to read and understand.) After you have assigned
a correlation name to a table, you use that name in place of the origi-
nal table name in all other clauses, including the SELECT clause, the
search conditions in the ON and WHERE clauses, and the ORDER BY
clause. This can be confusing because you tend to write the SELECT
clause before you write the FROM clause. If you plan to give a table an
alias in the FROM clause, you must use that alias when you qualify col-
umn names in the SELECT clause.

Let’s reformulate the sample query I’ve been using with correlation
names just to see how it looks. The query using R as the correlation
name for the Recipes table and RC as the correlation name for the Rec-
ipe_Classes table is shown here:

SQL SELECT R.RecipeTitle, R.Preparation,

 RC.RecipeClassDescription

FROM Recipe_Classes AS RC

 INNER JOIN Recipes AS R

 ON RC.RecipeClassID = R.RecipeClassID

Suppose you want to add a filter to see only recipes of class Main course
or Dessert. (See Chapter 6 for details about defining filters.) After you
assign a correlation name, you must continue to use the new name in all
references to the table. Here’s the SQL:

SQL SELECT R.RecipeTitle, R.Preparation,

 RC.RecipeClassDescription

FROM Recipe_Classes AS RC

 INNER JOIN Recipes AS R

 ON RC.RecipeClassID = R.RecipeClassID

WHERE RC.RecipeClassDescription = 'Main course'

OR RC.RecipeClassDescription = 'Dessert'

You don’t have to assign a correlation name to all tables. In the previ-
ous example, I could have assigned a correlation name only to Recipes or
only to Recipe_Classes.

In some cases, you must assign a correlation name to a table in a com-
plex JOIN. Let’s hop over to the Bowling League database to examine a

284 Chapter 8 INNER JOINs

case where this is true. Figure 8-5 shows you the relationship between
the Teams and Bowlers tables.

TEAMS

TeamID PK
TeamName
CaptainID FK

BOWLERS

BowlerID PK

BowlerFirstName
BowlerLastName

BowlerStreetAddress
BowlerCity
BowlerState
BowlerZipCode
BowlerPhoneNumber
TeamID FK

BowlerMiddleInit

Figure 8-5 The relationships between Teams and Bowlers

As you can see, TeamID is a foreign key in the Bowlers table that lets
you find the information for all bowlers on a team. One of the bowlers on
a team is the team captain, so there’s also a link from BowlerID in the
Bowlers table to CaptainID in the Teams table.

If you want to list the team name, the name of the team captain, and the
names of all the bowlers in one request, you must include two copies of
the Bowlers table in your query—one to link to CaptainID to retrieve the
name of the team captain and another to link to TeamID to get a list of
all the team members. In this case, you must assign an alias name to
one or both copies of the Bowlers table so that your database system can
differentiate between the copy that links in the captain’s name and the
copy that provides the list of all team members. Later in this chapter,
I’ll show an example that requires including multiple copies of one table
and assigning alias names. You can find this example using the Bowling
League database in the “More Than Two Tables” subsection of “Sample
Statements.”

Embedding a SELECT Statement

Let’s make it more interesting. In most implementations of SQL, you
can substitute an entire SELECT statement for any table name in your
FROM clause. In the SQL Standard, an embedded SELECT statement
like this is called a derived table. If you think about it, using a SELECT
statement is simply a way to derive a subset of data from one or more
tables. Of course, you must assign a correlation name so that the result
of evaluating your embedded query has a name. Figure 8-6 shows how
to assemble a JOIN clause using embedded SELECT statements.

 The INNER JOIN 285

SELECT Value Expression

JOIN

FROM

DISTINCT

INNER

ON Search Condition

USING
,

column_name

AS
correlation_nameSELECT Statement

AS
correlation_nameSELECT Statement

,

Figure 8-6 Replacing table names with SELECT statements in a JOIN

Notice in the figure that a SELECT statement can include all query
clauses except an ORDER BY clause. Also, you can mix and match
SELECT statements with table names on either side of the INNER JOIN
keywords.

Let’s look at the Recipes and Recipe_Classes tables again. I’ll assume
that your request still needs only main courses and desserts. Here’s the
query again with the Recipe_Classes table filtered in a SELECT state-
ment that’s part of the INNER JOIN:

SQL SELECT R.RecipeTitle, R.Preparation,

 RCFiltered.ClassName

FROM

 (SELECT RecipeClassID,

 RecipeClassDescription AS ClassName

 FROM Recipe_Classes AS RC

 WHERE RC.ClassName = 'Main course' OR

 RC.ClassName = 'Dessert') AS RCFiltered

INNER JOIN Recipes AS R

 ON RCFiltered.RecipeClassID = R.RecipeClassID

286 Chapter 8 INNER JOINs

 ❖ Note Some database systems do not support embedding a SELECT
statement inside a FROM clause. If your system does not support this
feature, you can often save the inner SELECT statement as a view,
and use the view name in place of the select statement.

Watch out! First, when you decide to substitute a SELECT statement
for a table name, be sure to include not only the columns you want to
appear in the final result but also any linking columns needed to per-
form the JOIN. That’s why you see both RecipeClassID and Recipe-
ClassDescription in the embedded statement. Just for fun, I gave
RecipeClassDescription an alias name of ClassName in the embedded
statement. As a result, the SELECT clause asks for ClassName rather
than RecipeClassDescription. Note that the ON clause now references
the correlation name of the embedded SELECT statement—RCFiltered—
rather than the original name of the table or the correlation name I
assigned the table inside the embedded SELECT statement.

If your database system has a very smart optimizer, defining your
request this way should be just as fast as the previous example where
the filter on RecipeClassDescription was applied via a WHERE clause
after the JOIN. You would like to think that your database system, in
order to answer your request most efficiently, would first filter the
rows from Recipe_Classes before attempting to find any matching rows
in Recipes. It could be much slower to first join all rows from Recipe_
Classes with matching rows from Recipes and then apply the filter. If you
find it’s taking longer to solve this request than it should, moving the
WHERE clause into a SELECT statement within the JOIN might force
your database system to do the filtering on Recipe_Classes first.

Embedding JOINs within JOINs

Although you can solve many problems by linking only two tables,
you’ll often need to link three, four, or more tables to get all the data
you require. For example, you might want to fetch all the relevant infor-
mation about recipes—the type of recipe, the recipe name, and all the
ingredients for the recipe—in one query. Figure 8-7 shows the tables
required to answer this request.

❖ Note Some database systems do not support embedding a SELECT
statement inside a FROM clause. If your system does not support this
feature, you can often save the inner SELECT statement as a view,
and use the view name in place of the select statement.

 The INNER JOIN 287

RECIPE_INGREDIENTS

RecipeID CPK
RecipeSeqNo CPK
IngredientID FK
MeasureAmountID FK
Amount

MEASUREMENTS

MeasureAmountID PK
MeasurementDescription

INGREDIENTS

IngredientID PK
IngredientName
IngredientClassID FK
MeasureAmountID FK

RECIPES

RecipeID PK
RecipeTitle
RecipeClassID FK
Preparation
Notes

RECIPE_CLASSES

RecipeClassID PK
RecipeClassDescription

Figure 8-7 The tables needed from the Recipes sample database to fetch all the
information about recipes

Looks like you need to get data from five different tables! (The Measure-
ments and Recipe_Classes tables are “lookup” tables, hence the differ-
ence in the diagram.) Never fear—you can do this by constructing a more
complex FROM clause, embedding JOIN clauses within JOIN clauses.
Here’s the trick: Everywhere you can specify a table name, you can also
specify an entire JOIN clause surrounded with parentheses. Figure 8-8
is a simplified version of Figure 8-4. (I’ve left off correlation name clauses
and chosen the ON clause to form a simple JOIN of two tables.)

SELECT Value Expression

JOIN

FROM

DISTINCT

table_name

table_name

INNER
ON Search Condition

,

Figure 8-8 A simple INNER JOIN of two tables

To add a third table to the mix, just place an open parenthesis before the
first table name, add a close parenthesis after the search condition, and
insert INNER JOIN, a table name, the ON keyword, and another search
condition. Figure 8-9 shows how to do this.

288 Chapter 8 INNER JOINs

SELECT Value Expression

JOIN

FROM

DISTINCT

table_name

table_name

INNER
ON Search Condition

JOIN table_name

INNER
ON Search Condition

,

Figure 8-9 A simple INNER JOIN of three tables

If you think about it, the INNER JOIN of two tables inside the parenthe-
ses forms a logical table, or inner result set. This result set now takes
the place of the first simple table name in Figure 8-8. You can con-
tinue this process of enclosing an entire JOIN clause in parentheses
and then adding another JOIN keyword, table name, ON keyword, and
search condition until you have all the result sets you need. Let’s make a
request that needs data from all the tables shown in Figure 8-7 and see
how it turns out:

“I need the recipe type, recipe name, preparation instructions, ingredi-
ent names, ingredient step numbers, ingredient quantities, and ingre-
dient measurements from my recipes database, sorted in step number
sequence.”

Translation Select the recipe class description, recipe title, preparation
instructions, ingredient name, recipe sequence number,
amount, and measurement description from the recipe
classes table joined with the recipes table on recipe class
ID in the recipe classes table matching recipe class ID in
the recipes table, then joined with the recipe ingredients
table on recipe ID in the recipes table matching recipe
ID in the recipe ingredients table, then joined with the
ingredients table on ingredient ID in the ingredients table
matching ingredient ID in the recipe ingredients table, and
then finally joined with the measurements table on mea-
surement amount ID in the measurements table matching
measurement amount ID in the recipe ingredients table,
order by recipe title and recipe sequence number

 The INNER JOIN 289

Clean Up Select the recipe class description, recipe title, prepa-
ration instructions, ingredient name, recipe sequence
number, amount, and measurement description from the
recipe classes table inner joined with the recipes table on
recipe_classes.recipe class ID in the recipe classes table
matching = recipes.recipe class ID in the recipes table,
then inner joined with the recipe ingredients table on
recipes.recipe ID in the recipes table matching = recipe_
ingredients.recipe ID in the recipe ingredients table, then
inner joined with the ingredients table on ingredients.
ingredient ID in the ingredients table matching = ingre-
dients.ingredient ID in the recipe ingredients table, and
then finally inner joined with the measurements table
on measurements.measurement amount ID in the
 measurements table matching = recipe ingredients.
measurement amount ID in the recipe ingredients table,
order by recipe title and recipe sequence number

SQL SELECT Recipe_Classes.RecipeClassDescription,

 Recipes.RecipeTitle, Recipes.Preparation,

 Ingredients.IngredientName,

 Recipe_Ingredients.RecipeSeqNo,

 Recipe_Ingredients.Amount,

 Measurements.MeasurementDescription

FROM (((Recipe_Classes

 INNER JOIN Recipes

 ON Recipe_Classes.RecipeClassID =

 Recipes.RecipeClassID)

 INNER JOIN Recipe_Ingredients

 ON Recipes.RecipeID =

 Recipe_Ingredients.RecipeID)

 INNER JOIN Ingredients

 ON Ingredients.IngredientID =

 Recipe_Ingredients.IngredientID)

 INNER JOIN Measurements

 ON Measurements.MeasureAmountID =

 Recipe_Ingredients.MeasureAmountID

ORDER BY RecipeTitle, RecipeSeqNo

290 Chapter 8 INNER JOINs

Wow! Anyone care to jump in and add a filter for recipe class Main
courses? If you said you need to add the WHERE clause just before the
ORDER BY clause, you guessed the correct way to do it.

In truth, you can substitute an entire JOIN of two tables anywhere
you could otherwise place only a table name. In Figure 8-9, I implied
that you must first join the first table with the second table and then
join that result with the third table. You could also join the second and
third tables first (as long as the third table is, in fact, related to the
 second table and not the first one) and then perform the final join with
the first table. Figure 8-10 shows this alternate method.

SELECT Value Expression

JOINFROM

DISTINCT

table_name

table_name

INNER

JOIN table_name

INNER

ON Search Condition ON Search Condition

,

Figure 8-10 Joining more than two tables in an alternate sequence

Let’s look at the problem from a painting perspective. If you’re trying to
get pastel green, the mixing sequence doesn’t matter that much. You can
mix white with blue to get pastel blue and then mix in some yellow, or
you can mix blue with yellow to get green and then add some white to
get the final color.

To solve the request I just showed you using five tables, I could also have
stated the SQL as follows:

 The INNER JOIN 291

SQL SELECT Recipe_Classes.RecipeClassDescription,

 Recipes.RecipeTitle, Recipes.Preparation,

 Ingredients.IngredientName,

 Recipe_Ingredients.RecipeSeqNo,

 Recipe_Ingredients.Amount,

 Measurements.MeasurementDescription

FROM Recipe_Classes

 INNER JOIN (((Recipes

 INNER JOIN Recipe_Ingredients

 ON Recipes.RecipeID =

 Recipe_Ingredients.RecipeID)

 INNER JOIN Ingredients

 ON Ingredients.IngredientID =

 Recipe_Ingredients.IngredientID)

 INNER JOIN Measurements

 ON Measurements.MeasureAmountID =

 Recipe_Ingredients.MeasureAmountID)

 ON Recipe_Classes.RecipeClassID =

 Recipes.RecipeClassID

ORDER BY RecipeTitle, RecipeSeqNo

You need to be aware of this feature because you might run into this
sort of construction either in queries others have written or in the SQL
built for you by Query By Example software. Also, the optimizers in
some database systems are sensitive to the sequence of the JOIN defini-
tions. If you find your query using many JOINs is taking a long time to
execute on a large database, you might be able to get it to run faster by
changing the sequence of JOINs in your SQL statement. For simplicity,
I’ll build most of the examples later in this chapter using a direct con-
struction of JOINs by following a simple path from left to right and top to
bottom, using the diagrams that you can find in Appendix B, “Schema
for the Sample Databases.”

Check Those Relationships!

It should be obvious at this point that knowing the relationships
between your tables is of utmost importance. When you find that the

292 Chapter 8 INNER JOINs

columns of data you need reside in different tables, you might need to
construct a FROM clause as complicated as the one I just showed you
to be able to gather all the pieces in a way that logically makes sense.
If you don’t know the relationships between your tables and the linking
columns that form the relationships, you’ll paint yourself into a corner!

In many cases, you might have to follow a path through several relation-
ships to get the data you want. For example, let’s simplify the previous
request and just ask for recipe name and ingredient names:

“Show me the names of all my recipes and the names of all the ingre-
dients for each of those recipes.”

Translation Select the recipe title and the ingredient name from
the recipes table joined with the recipe ingredients
table on recipe ID in the recipes table matching recipe
ID in the recipe ingredients table, and then joined with
the ingredients table on ingredient ID in the ingredi-
ents table matching ingredient ID in the recipe ingre-
dients table

Clean Up Select the recipe title and the ingredient name from
the recipes table inner joined with the recipe ingredi-
ents table on recipes.recipe ID in the recipes table
matching = recipe_ingredients.recipe ID in the recipe
ingredients table, and then inner joined with the
ingredients table on ingredients.ingredient ID in the
ingredients table matching = recipe_ingredients.ingre-
dient ID in the recipe ingredients table

SQL SELECT Recipes.RecipeTitle,

 Ingredients.IngredientName

FROM (Recipes

INNER JOIN Recipe_Ingredients

 ON Recipes.RecipeID =

 Recipe_Ingredients.RecipeID)

INNER JOIN Ingredients

 ON Ingredients.IngredientID =

 Recipe_Ingredients.IngredientID

Did you notice that even though you don’t need any columns from the
Recipe_Ingredients table, you still must include it in the query? You
must do so because the only way that Recipes and Ingredients are
related is through the Recipe_Ingredients table.

 Uses for INNER JOINs 293

Uses for INNER JOINs

Now that you have a basic understanding of the mechanics for con-
structing an INNER JOIN, let’s look at some of the types of problems you
can solve with it.

Find Related Rows

As you know, the most common use for an INNER JOIN is to link tables
so that you can fetch columns from different tables that are related. Fol-
lowing is a sample list of the kinds of requests you can solve from the
sample databases using an INNER JOIN:

“Show me the vendors and the products they supply to us.”

“List employees and the customers for whom they booked an order.”

“Display agents and the engagement dates they booked.”

“List customers and the entertainers they booked.”

“Find the entertainers who played engagements for customers Berg or
Hallmark.”

“Display buildings and all the classrooms in each building.”

“List the faculty staff and the subject each teaches.”

“Display bowling teams and the name of each team captain.”

“List the bowling teams and all the team members.”

“Show me the recipes that have beef or garlic.”

“Display all the ingredients for recipes that contain carrots.”

I’ll show how to construct queries to answer requests like these (and
more) in the Sample Statements section of this chapter.

Find Matching Values

A more esoteric use of an INNER JOIN is finding rows in two or more
tables or result sets that match on one or more values that are not the
related key values. Remember that in Chapter 7, ‘Thinking in Sets,’ I
promised to show you how to perform the equivalent of an INTERSECT

294 Chapter 8 INNER JOINs

using an INNER JOIN. Following is a small sample of just some of the
requests you can solve using this technique:

“Show me customers and employees who have the same name.”

“Show me customers and employees who live in the same city.”

“Find all the customers who ordered a bicycle and also ordered a
helmet.”

“Find the agents and entertainers who live in the same postal code.”

“List the entertainers who played engagements for customers Bonnick-
sen and Rosales.”

“Show me the students and their teachers who have the same first
name.”

“Show me the students who have an average score of 85 or better in Art
and who also have an average score of 85 or better in Computer Science.”

“Find the bowlers who live in the same ZIP Code.”

“Find the bowlers who had a raw score of 155 or better at both Thunder-
bird Lanes and Bolero Lanes.”

“Find the ingredients that use the same default measurement amount.”

“Show me the recipes that have beef and garlic.”

The next section shows how to solve several problems like these.

Sample Statements

You now know the mechanics of constructing queries using INNER JOIN
and have seen some of the types of requests you can answer with an
INNER JOIN. Let’s take a look at a fairly robust set of samples, all of
which use INNER JOIN. These examples come from each of the sample
databases, and they illustrate how you can use an INNER JOIN to fetch
data from two tables, fetch data from more than two tables, and solve a
problem using matching values.

I’ve also included sample result sets that would be returned by these
operations and placed them immediately after the SQL syntax line. The
name that appears immediately above a result set is the name I gave

 Sample Statements 295

each query in the sample data on the companion website for the book,
www.informit.com/title/978013485833.

I stored each query in the appropriate sample database (as indicated
within the example) and prefixed the names of the queries relevant to
this chapter with “CH08.” You can follow the instructions in the Intro-
duction of this book to load the samples onto your computer and try
them.

 ❖ Note Because many of these examples use complex JOINs, your
database system might choose a different way to solve these queries.
For this reason, the first few rows I show you might not exactly match
the result you obtain, but the total number of rows should be the
same. To simplify the process, I have combined the Translation and
Clean Up steps for all the following examples.

Two Tables

I’ll start out with simple primary colors and show you sample requests
that require an INNER JOIN on only two tables.

Sales Orders Database

“Display all products and their categories.”

Translation/
Clean Up

Select category description and product name from the
categories table inner joined with the products table on
categories.category ID in the categories table matching =
products.category ID in the products table

SQL SELECT Categories.CategoryDescription,

 Products.ProductName

FROM Categories

 INNER JOIN Products

 ON Categories.CategoryID =

 Products.CategoryID

❖ Note Because many of these examples use complex JOINs, your
database system might choose a different way to solve these queries.
For this reason, the first few rows I show you might not exactly match
the result you obtain, but the total number of rows should be the
same. To simplify the process, I have combined the Translation and
Clean Up steps for all the following examples.

http://www.informit.com/title/978013485833

296 Chapter 8 INNER JOINs

CH08_Products_And_Categories (40 rows)

CategoryDescription ProductName

Accessories Dog Ear Cyclecomputer

Accessories Dog Ear Helmet Mount Mirrors

Accessories Viscount C-500 Wireless Bike Computer

Accessories Kryptonite Advanced 2000 U-Lock

Accessories Nikoma Lok-Tight U-Lock

Accessories Viscount Microshell Helmet

Accessories Viscount CardioSport Sport Watch

Accessories Viscount Tru-Beat Heart Transmitter

Accessories Dog Ear Monster Grip Gloves

<< more rows here >>

 ❖ Note Remember that in the absence of an ORDER BY clause,
each database system might return rows in a different sequence.
The sequence you see above matches that from Microsoft Access and
MySQL because both systems appear to fetch rows from Categories
first and then find the matching rows in Products, so the rows appear
in order by accessory name. In Microsoft SQL Server and PostgreSQL,
the systems fetch Products first and then look up the matching row
in Categories, so the sequence is different. Expect to see a difference
between systems whenever the query does not use ORDER BY.

Entertainment Agency Database

“Show me entertainers, the start and end dates of their contracts, and
the contract price.”

Translation/
Clean Up

Select entertainer stage name, start date, end date, and
contract price from the entertainers table inner joined
with the engagements table on entertainers.entertainer
ID in the entertainers table matching = engagements.
entertainer ID in the engagements table

❖ Note Remember that in the absence of an ORDER BY clause,
each database system might return rows in a different sequence.
The sequence you see above matches that from Microsoft Access and
MySQL because both systems appear to fetch rows from Categories
first and then find the matching rows in Products, so the rows appear
in order by accessory name. In Microsoft SQL Server and PostgreSQL,
the systems fetch Products first and then look up the matching row
in Categories, so the sequence is different. Expect to see a difference
between systems whenever the query does not use ORDER BY.

 Sample Statements 297

SQL SELECT Entertainers.EntStageName,

 Engagements.StartDate, Engagements.EndDate,

 Engagements.ContractPrice

FROM Entertainers

 INNER JOIN Engagements

 ON Entertainers.EntertainerID =

 Engagements.EntertainerID

CH08_Entertainers_And_Contracts (111 rows)

EntStageName StartDate EndDate ContractPrice

Carol Peacock Trio 2017-09-18 2017-09-26 $1,670.00

Carol Peacock Trio 2017-10-01 2017-10-07 $1,940.00

Carol Peacock Trio 2017-10-14 2017-10-15 $410.00

Carol Peacock Trio 2017-10-21 2017-10-21 $140.00

Carol Peacock Trio 2017-11-13 2017-11-19 $680.00

Carol Peacock Trio 2017-12-23 2017-12-26 $410.00

Carol Peacock Trio 2017-12-29 2018-01-07 $1,400.00

Carol Peacock Trio 2018-01-08 2018-01-08 $320.00

Carol Peacock Trio 2018-01-22 2018-01-30 $1,670.00

Carol Peacock Trio 2018-02-11 2018-02-19 $1,670.00

Carol Peacock Trio 2018-02-25 2018-02-28 $770.00

Topazz 2017-09-11 2017-09-18 $770.00

<< more rows here >>

School Scheduling Database

“List the subjects taught on Wednesday.”

Translation/
Clean Up

Select subject name from the subjects table inner joined
with the classes table on subjects.subject ID in the sub-
jects table matching = classes.subject ID in the classes
table where Wednesday schedule is = true

298 Chapter 8 INNER JOINs

SQL SELECT DISTINCT Subjects.SubjectName

FROM Subjects

INNER JOIN Classes

 ON Subjects.SubjectID

 = Classes.SubjectID

WHERE Classes.WednesdaySchedule = -1

 ❖ Note Because several sections of the same class might be sched-
uled on the same day of the week, I included the DISTINCT keyword to
eliminate the duplicates. Some databases do support a TRUE keyword,
but I chose to use a more universal “integer with all bits on” value: –1.
If your database system stores a true/false value as a single bit, you
can also test for a true value of 1. A false value is always the number
zero (0).

CH08_Subjects_On_Wednesday (34 rows)

SubjectName

Advanced English Grammar

Art History

Biological Principles

Chemistry

Composition—Fundamentals

Composition—Intermediate

Design

Drawing

Elementary Algebra

<< more rows here >>

Bowling League Database

“Display bowling teams and the name of each team captain.”

Translation/
Clean Up

Select team name and captain full name from the teams table
inner joined with the bowlers table on team captain ID equals
= bowler ID

❖ Note Because several sections of the same class might be sched-
uled on the same day of the week, I included the DISTINCT keyword to
eliminate the duplicates. Some databases do support a TRUE keyword,
but I chose to use a more universal “integer with all bits on” value: –1.
If your database system stores a true/false value as a single bit, you
can also test for a true value of 1. A false value is always the number
zero (0).

 Sample Statements 299

SQL SELECT Teams.TeamName, (Bowlers.BowlerLastName

 || ', ' || Bowlers.BowlerFirstName)

 AS CaptainName

FROM Teams

INNER JOIN Bowlers

 ON Teams.CaptainID = Bowlers.BowlerID

CH08_Teams_And_Captains (10 rows)

TeamName CaptainName

Marlins Fournier, David

Sharks Patterson, Ann

Terrapins Viescas, Carol

Barracudas Sheskey, Richard

Dolphins Viescas, Suzanne

Orcas Thompson, Sarah

Manatees Viescas, Michael

Swordfish Rosales, Joe

Huckleberrys Viescas, David

MintJuleps Hallmark, Alaina

Recipes Database

“Show me the recipes that have beef or garlic.”

Translation/
Clean Up

Select unique distinct recipe title from the recipes table
joined with the recipe ingredients table on recipes.recipe
ID in the recipes table matching = recipe_ingredients.
recipe ID in the recipe ingredients table where ingredient
ID is in the list of beef and garlic IDs (1, 9)

SQL SELECT DISTINCT Recipes.RecipeTitle

FROM Recipes

INNER JOIN Recipe_Ingredients

 ON Recipes.RecipeID =

 Recipe_Ingredients.RecipeID

WHERE Recipe_Ingredients.IngredientID IN (1, 9)

300 Chapter 8 INNER JOINs

 ❖ Note Because some recipes might have both beef and garlic, I
added the DISTINCT keyword to eliminate potential duplicate rows.

CH08_Beef_Or_Garlic_Recipes (5 rows)

RecipeTitle

Asparagus

Garlic Green Beans

Irish Stew

Pollo Picoso

Roast Beef

More Than Two Tables

Next, let’s add some spice by making requests that require a JOIN of
more than two tables.

Sales Orders Database

“Find all the customers who have ever ordered a bicycle helmet.”

Translation/
Clean Up

Select customer first name, customer last name from the
 customers table inner joined with the orders table on custom-
ers.customer ID in the customers table matching = orders.
customer ID in the orders table, then inner joined with
the order details table on orders.order number in the orders
table matching = order_details.order number in the order
details table, then inner joined with the products table on
products.product number in the products table matching =
order_details.product number in the order details table where
product name contains LIKE ‘%Helmet%’

SQL SELECT DISTINCT Customers.CustFirstName,

 Customers.CustLastName

FROM ((Customers INNER JOIN Orders

 ON Customers.CustomerID = Orders.CustomerID)

INNER JOIN Order_Details

 ON Orders.OrderNumber =

 Order_Details.OrderNumber)

❖ Note Because some recipes might have both beef and garlic, I
added the DISTINCT keyword to eliminate potential duplicate rows.

 Sample Statements 301

INNER JOIN Products

 ON Products.ProductNumber =

 Order_Details.ProductNumber

WHERE Products.ProductName LIKE '%Helmet%'

 ❖ Caution If your database system is case sensitive when performing
searches in character fields, you must be careful to enter the search
criteria using the correct case for the letters. For example, in many
database systems, ‘helmet’ is not the same as ‘Helmet’.

 ❖ Note Because a customer might have ordered a helmet more than
once, I included the DISTINCT keyword to eliminate duplicate rows.

CH08_Customers_Who_Ordered_Helmets (25 rows)

CustFirstName CustLastName

Andrew Cencini

Angel Kennedy

Caleb Viescas

Darren Gehring

David Smith

Dean McCrae

Estella Pundt

Gary Hallmark

Jim Wilson

John Viescas

<< more rows here >>

Entertainment Agency Database

“Find the entertainers who played engagements for customers Berg or
Hallmark.”

❖ Caution If your database system is case sensitive when performing
searches in character fields, you must be careful to enter the search
criteria using the correct case for the letters. For example, in many
database systems, ‘helmet’ is not the same as ‘Helmet’.

❖ Note Because a customer might have ordered a helmet more than
once, I included the DISTINCT keyword to eliminate duplicate rows.

302 Chapter 8 INNER JOINs

Translation/
Clean Up

Select unique distinct entertainer stage name from the
entertainers table inner joined with the engagements
table on entertainers.entertainer ID in the entertainers
table matching = engagements.entertainer ID in the
engagements table, then inner joined with the customers
table on customers.customer ID in the customers table
matching = engagements.customer ID in the engage-
ments table where the customer last name is = ‘Berg’ or
the customer last name is = ‘Hallmark’

SQL SELECT DISTINCT Entertainers.EntStageName

FROM (Entertainers

INNER JOIN Engagements

 ON Entertainers.EntertainerID =

 Engagements.EntertainerID)

INNER JOIN Customers

 ON Customers.CustomerID =

 Engagements.CustomerID

WHERE Customers.CustLastName = 'Berg'

 OR Customers.CustLastName = 'Hallmark'

CH08_Entertainers_For_Berg_
OR_Hallmark (8 rows)

EntStageName

Carol Peacock Trio

Coldwater Cattle Company

Country Feeling

Jim Glynn

JV & the Deep Six

Modern Dance

Susan McLain

Topazz

Bowling League Database

“List all the tournaments, the tournament matches, and the game
results.”

 Sample Statements 303

Translation/
Clean Up

Select tourney ID, tourney location, match ID, lanes, odd
lane team, even lane team, game number, game winner
from the tournaments table inner joined with the tourney
matches table on tournaments.tourney ID in the tour-
naments table matching = tourney_matches.tourney ID
in the tourney matches table, then inner joined with the
teams table aliased as odd team on oddteam.team ID in
the odd team table matches = tourney_matches.odd lane
team ID in the tourney matches table, then inner joined
with the teams table aliased as even team on eventeam.
team ID in the even team table matches = tourney_
matches.even lane team ID in the tourney matches table,
then inner joined with the match games table on match_
games.match ID in the match games table matches =
tourney_matches.match ID in the tourney matches table,
then inner joined with the teams table aliased as winner
on winner.team ID in the winner table matches = match_
games.winning team ID in the match games table

SQL SELECT Tournaments.TourneyID AS Tourney,

 Tournaments.TourneyLocation AS Location,

 Tourney_Matches.MatchID,

 Tourney_Matches.Lanes,

 OddTeam.TeamName AS OddLaneTeam,

 EvenTeam.TeamName AS EvenLaneTeam,

 Match_Games.GameNumber AS GameNo,

 Winner.TeamName AS Winner

FROM ((((Tournaments

 INNER JOIN Tourney_Matches

 ON Tournaments.TourneyID

 = Tourney_Matches.TourneyID)

 INNER JOIN Teams AS OddTeam

 ON OddTeam.TeamID

 = Tourney_Matches.OddLaneTeamID)

 INNER JOIN Teams AS EvenTeam

 ON EvenTeam.TeamID

 = Tourney_Matches.EvenLaneTeamID)

 INNER JOIN Match_Games

 ON Match_Games.MatchID

 = Tourney_Matches.MatchID)

 INNER JOIN Teams AS Winner

 ON Winner.TeamID

 = Match_Games.WinningTeamID

304 Chapter 8 INNER JOINs

 ❖ Note This is a really fun query because it requires three copies
of one table (Teams) to get the job done. I had to assign correlation
names to at least two of the tables to keep everything legal, but I went
ahead and gave them all alias names to reflect their specific roles in
the query.

CH08_Tournament_Match_Game_Results (168 rows)

Tourney Location MatchID Lanes OddLane
Team

EvenLane
Team

GameNo Winner

1 Red
Rooster
Lanes

 1 01-02 Marlins Sharks 1 Marlins

1 Red
Rooster
Lanes

 1 01-02 Marlins Sharks 2 Sharks

1 Red
Rooster
Lanes

 1 01-02 Marlins Sharks 3 Marlins

1 Red
Rooster
Lanes

 2 03-04 Terrapins Barracudas 1 Terrapins

1 Red
Rooster
Lanes

 2 03-04 Terrapins Barracudas 2 Barracudas

1 Red
Rooster
Lanes

 2 03-04 Terrapins Barracudas 3 Terrapins

1 Red
Rooster
Lanes

 3 05-06 Dolphins Orcas 1 Dolphins

1 Red
Rooster
Lanes

 3 05-06 Dolphins Orcas 2 Orcas

1 Red
Rooster
Lanes

 3 05-06 Dolphins Orcas 3 Dolphins

<< more rows here >>

❖ Note This is a really fun query because it requires three copiese
of one table (Teams) to get the job done. I had to assign correlation
names to at least two of the tables to keep everything legal, but I went
ahead and gave them all alias names to reflect their specific roles in
the query.

 Sample Statements 305

 ❖ Note Although the records appear to be sorted by tournament
and match, this is simply the sequence in which the database system
I used (in this case, Microsoft Access) chose to return the records. If
you want to ensure that the records are sorted in a specific sequence,
you must supply an ORDER BY clause.

Recipes Database

“Show me the main course recipes and list all the ingredients.”

Translation/
Clean Up

Select recipe title, ingredient name, measurement description,
and amount from the recipe classes table inner joined with
the recipes table on recipes.recipe class ID in the recipes table
matches = recipe_classes.recipe class ID in the recipe classes
table, then inner joined with the recipe ingredients table on rec-
ipes.recipe ID in the recipes table matches = recipe_ingredients.
recipe ID in the recipe ingredients table, then inner joined
with the ingredients table on ingredients.ingredient ID in the
ingredients table matches = recipe_ingredients.ingredient ID in
the recipe ingredients table, and finally inner joined with the
measurements table on measurements.measure amount ID in
the measurements table matches = recipe_ingredients.measure
amount ID in the recipe ingredients table, where recipe class
description is = ‘Main course’

SQL SELECT Recipes.RecipeTitle,

 Ingredients.IngredientName,

 Measurements.MeasurementDescription,

 Recipe_Ingredients.Amount

FROM (((Recipe_Classes

INNER JOIN Recipes

 ON Recipes.RecipeClassID =

 Recipe_Classes.RecipeClassID)

INNER JOIN Recipe_Ingredients

 ON Recipes.RecipeID =

 Recipe_Ingredients.RecipeID)

INNER JOIN Ingredients

 ON Ingredients.IngredientID =

 Recipe_Ingredients.IngredientID)

INNER JOIN Measurements

 ON Measurements.MeasureAmountID =

 Recipe_Ingredients.MeasureAmountID

WHERE Recipe_Classes.RecipeClassDescription

 = 'Main course'

❖ Note Although the records appear to be sorted by tournament
and match, this is simply the sequence in which the database system
I used (in this case, Microsoft Access) chose to return the records. If
you want to ensure that the records are sorted in a specific sequence,
you must supply an ORDER BY clause.

306 Chapter 8 INNER JOINs

 ❖ Caution You can find a MeasureAmountID in both the Ingredients
and the Recipe_Ingredients tables. If you define the final JOIN on
MeasureAmountID using the Ingredients table instead of the Recipe_
Ingredients table, you’ll get the default measurement for the ingredient
rather than the one specified for the ingredient in the recipe.

CH08_Main_Course_Ingredients (53 rows)

RecipeTitle IngredientName Measurement
Description

Amount

Irish Stew Beef Pound 1

Irish Stew Onion Whole 2

Irish Stew Potato Whole 4

Irish Stew Carrot Whole 6

Irish Stew Water Quarts 4

Irish Stew Guinness Beer Ounce 12

Fettuccini Alfredo Fettuccini Pasta Ounce 16

Fettuccini Alfredo Vegetable Oil Tablespoon 1

Fettuccini Alfredo Salt Teaspoon 3

<< more rows here >>

Looking for Matching Values

Finally, let’s add a third dimension to the picture. This last set of exam-
ples shows requests that use a JOIN on common values from two or
more result sets or tables. (If your database supports the INTERSECT
keyword, you can also solve many of these problems by intersecting the
result sets.)

Sales Orders Database

“Find all the customers who ordered a bicycle and also ordered a
helmet.”

This request seems simple enough—perhaps too simple. Let’s ask it a
different way so that it’s clearer what I need the database to do.

❖ Caution You can find a MeasureAmountID in both the Ingredients
and the Recipe_Ingredients tables. If you define the final JOIN on
MeasureAmountID using the Ingredients table instead of the Recipe_
Ingredients table, you’ll get the default measurement for the ingredient
rather than the one specified for the ingredient in the recipe.

 Sample Statements 307

“Find all the customers who ordered a bicycle, then find all the cus-
tomers who ordered a helmet, and finally list the common customers
so that we know who ordered both a bicycle and a helmet.”

Translation 1 Select customer first name and customer last name from
those common to the set of customers who ordered bicycles
and the set of customers who ordered helmets

Translation 2/
Clean Up

Select customer first name and customer last name from
(Select unique distinct customer name, customer first
name, customer last name from the customers table inner
joined with the orders table on customers.customer ID in
the customers table matches = orders.customer ID in the
orders table, then inner joined with the order details table
on orders.order number in the orders table matches =
order_details.order number in the order details table, then
inner joined with the products table on products.product
number in the products table matches = order_details.prod-
uct number in the order details table where product name
contains LIKE ‘%Bike’) as cust bikes inner joined with
(Select unique distinct customer ID from the customers
table inner joined with the orders table on customers.cus-
tomer ID in the customers table matches = orders.customer
ID in the orders table, then inner joined with the order
details table on orders.order number in the orders table
matches = order_details.order number in the order details
table, then joined with the products table on products.prod-
uct number in the products table matches = order_details.
product number in the order details table where product
name contains LIKE ‘%Helmet’) as cust helmets on cust
bikes.customer ID in the cust bikes table matches = cust
helmets.customer ID in the cust helmets table

SQL SELECT CustBikes.CustFirstName,

 CustBikes.CustLastName

FROM

 (SELECT DISTINCT Customers.CustomerID,

 Customers.CustFirstName,

 Customers.CustLastName

 FROM ((Customers

 INNER JOIN Orders

 ON Customers.CustomerID

 = Orders.CustomerID)

 INNER JOIN Order_Details

 ON Orders.OrderNumber =

 Order_Details.OrderNumber)

308 Chapter 8 INNER JOINs

 INNER JOIN Products

 ON Products.ProductNumber =

 Order_Details.ProductNumber

 WHERE Products.ProductName LIKE '%Bike')

 AS CustBikes

INNER JOIN

 (SELECT DISTINCT Customers.CustomerID

 FROM ((Customers

 INNER JOIN Orders

 ON Customers.CustomerID =

 Orders.CustomerID)

 INNER JOIN Order_Details

 ON Orders.OrderNumber =

 Order_Details.OrderNumber)

 INNER JOIN Products

 ON Products.ProductNumber =

 Order_Details.ProductNumber

 WHERE Products.ProductName LIKE '%Helmet')

 AS CustHelmets

ON CustBikes.CustomerID =

 CustHelmets.CustomerID

 ❖ Note I simplified the second embedded SELECT statement to fetch
only the CustomerID because that’s the only column I need for the
INNER JOIN of the two sets to work. I could have actually eliminated
the JOIN to the Customers table and fetched the CustomerID from
the Orders table. Remember that you can think of a SELECT state-
ment embedded in a FROM clause as a “logical table,” and I assigned
a unique name to each statement so that I could write the final ON
clause.

You could also solve this problem as the INTERSECT of the two sets,
but you would need to include all the output columns in both of the
result sets that you intersect. Quite frankly, this might not be the best
way to solve this problem. I’ll show you how to solve this problem more
efficiently in Chapter 11, “Subqueries,” when I teach you how to use
subqueries.

❖ Note I simplified the second embedded SELECT statement to fetch
only the CustomerID because that’s the only column I need for the
INNER JOIN of the two sets to work. I could have actually eliminated
the JOIN to the Customers table and fetched the CustomerID from
the Orders table. Remember that you can think of a SELECT state-
ment embedded in a FROM clause as a “logical table,” and I assigned
a unique name to each statement so that I could write the final ON
clause.

You could also solve this problem as the INTERSECT of the two sets,
but you would need to include all the output columns in both of the
result sets that you intersect. Quite frankly, this might not be the best
way to solve this problem. I’ll show you how to solve this problem more
efficiently in Chapter 11, “Subqueries,” when I teach you how to use
subqueries.

 Sample Statements 309

CH08_Customers_Both_Bikes_And_Helmets (21 rows)

CustFirstName CustLastName

William Thompson

Robert Brown

Dean McCrae

John Viescas

Mariya Sergienko

Neil Patterson

Andrew Cencini

Angel Kennedy

Liz Keyser

Rachel Patterson

<< more rows here >>

Entertainment Agency Database

“List the entertainers who played engagements for both customers
Berg and Hallmark.”

As you saw earlier, solving for Berg or Hallmark is easy. Let’s phrase the
request a different way so that it’s clearer what we need the database to
do for us.

“Find all the entertainers who played an engagement for Berg, then
find all the entertainers who played an engagement for Hallmark, and
finally list the common entertainers so that we know who played an
engagement for both.”

Translation 1 Select entertainer stage name from those common to
the set of entertainers who played for Berg and the set of
entertainers who played for Hallmark

Translation 2/
Clean Up

Select entertainer stage name from (Select unique dis-
tinct entertainer stage name from the entertainers table
inner joined with the engagements table on entertain-
ers.entertainer ID in the entertainers table matches =
engagements.entertainer ID in the engagements table,
then inner joined with the customers table on cus-
tomers.customer ID in the customers table matches =
 engagements.customer ID in the engagements table

310 Chapter 8 INNER JOINs

where customer last name is = ‘Berg’) as entberg inner
joined with (Select unique distinct entertainer stage
names from the entertainers table inner joined with
the engagements table on entertainers.entertainer
ID in the enter tainers table matches = engagements.
entertainer ID in the engagements table, then joined
with the customers table on customers.customer ID in
the customers table matches = engagements.customer ID
in the engagements table where customer last name is =
‘Hallmark’) as enthallmark on entberg.entertainer ID
in the entberg table matches = enthallmark.entertainer
ID in the enthallmark table

SQL SELECT EntBerg.EntStageName

FROM

 (SELECT DISTINCT Entertainers.EntertainerID,

 Entertainers.EntStageName

 FROM (Entertainers

 INNER JOIN Engagements

 ON Entertainers.EntertainerID =

 Engagements.EntertainerID)

 INNER JOIN Customers

 ON Customers.CustomerID =

 Engagements.CustomerID

 WHERE Customers.CustLastName = 'Berg')

 AS EntBerg INNER JOIN

 (SELECT DISTINCT Entertainers.EntertainerID,

 Entertainers.EntStageName

 FROM (Entertainers

 INNER JOIN Engagements

 ON Entertainers.EntertainerID =

 Engagements.EntertainerID)

 INNER JOIN Customers

 ON Customers.CustomerID =

 Engagements.CustomerID

 WHERE Customers.CustLastName = 'Hallmark')

 AS EntHallmark

ON EntBerg.EntertainerID =

 EntHallmark.EntertainerID

 Sample Statements 311

CH08_Entertainers_Berg_AND_Hallmark (4 rows)

EntStageName

Carol Peacock Trio

JV & the Deep Six

Modern Dance

Country Feeling

 ❖ Note This is another example of a request that can also be solved
with INTERSECT. It can also be solved more efficiently with subque-
ries, which you’ll learn about in Chapter 11.

School Scheduling Database

“Show me the students and teachers who have the same first name.”

Translation/
Clean Up

Select student full name and staff full name from the stu-
dents table inner joined with the staff table on students.first
name in the students table matches = staff.first name in the
staff table

SQL SELECT (Students.StudFirstName || ' ' ||

 Students.StudLastName) AS StudFullName,

 (Staff.StfFirstName || ' ' ||

 Staff.StfLastName) AS StfFullName

FROM Students

INNER JOIN Staff

 ON Students.StudFirstName = Staff.StfFirstName

CH08_Students_Staff_Same_FirstName (2 rows)

StudFullName StfFullName

Michael Viescas Michael Hernandez

David Hamilton David Smith

Bowling League Database

“Find the bowlers who had a raw score of 170 or better at both
 Thunderbird Lanes and Bolero Lanes.”

❖ Note This is another example of a request that can also be solved
with INTERSECT. It can also be solved more efficiently with subque-
ries, which you’ll learn about in Chapter 11.

312 Chapter 8 INNER JOINs

Yes, this is another “solve an intersection with a JOIN” problem. Let’s ask
it a different way so that it’s clearer what I need the database to do for us:

“Find all the bowlers who had a raw score of 170 or better at Thun-
derbird Lanes, then find all the bowlers who had a raw score of 170 or
better at Bolero Lanes, and finally list the common bowlers so that we
know who had good scores at both bowling alleys.”

Translation 1 Select bowler full name from those common to the set of
bowlers who have a score of 170 or better at Thunderbird
Lanes and the set of bowlers who have a score of 170 or
better at Bolero Lanes

Translation 2/
Clean Up

Select bowler full name from (Select unique distinct
bowler ID and bowler full name from the bowlers table
inner joined with the bowler scores table on bowlers.
bowler ID in the bowlers table matches = bowler_scores.
bowler ID in the bowler scores table, then inner joined
with the tourney matches table on tourney_matches.
match ID in the tourney matches table matches = bowler_
scores.match ID in the bowler scores table, and finally
inner joined with the tournaments table on tournaments.
tourney ID in the tournaments table matches = tourney_
matches.tourney ID in the tourney matches table where
tourney location is = ‘Thunderbird Lanes’ and raw score
is greater than or equal to >= 170) as bowlertbird inner
joined with (Select unique distinct bowler ID and bowler
full name from the bowlers table inner joined with the
bowler scores table on bowlers.bowler ID in the bowlers
table matches = bowler_scores.bowler ID in the bowler
scores table, then inner joined with the tourney matches
table on tourney_matches.match ID in the tourney
matches table matches = bowler_scores.match ID in the
bowler scores table, and finally inner joined with the
tournaments table on tournaments.tourney ID in the
tournaments table matches = tourney_matches.tourney
ID in the tourney matches table where tourney location
is = ‘Bolero Lanes’ and raw score is greater than or equal
to >= 170) as bowlerbolero on bowlertbird.bowler ID in the
bowlertbird table matches = bowlerbolero.bowler ID in the
bowlerbolero table

SQL SELECT BowlerTbird.BowlerFullName

FROM

 (SELECT DISTINCT Bowlers.BowlerID,

 (Bowlers.BowlerLastName || ', ' ||

 Bowlers.BowlerFirstName) AS BowlerFullName

 FROM ((Bowlers

 INNER JOIN Bowler_Scores

 Sample Statements 313

 ON Bowlers.BowlerID = Bowler_Scores.
BowlerID)

 INNER JOIN Tourney_Matches

 ON Tourney_Matches.MatchID =

 Bowler_Scores.MatchID)

 INNER JOIN Tournaments

 ON Tournaments.TourneyID =

 Tourney_Matches.TourneyID

 WHERE Tournaments.TourneyLocation =

 'Thunderbird Lanes'

 AND Bowler_Scores.RawScore >= 170)

 AS BowlerTbird INNER JOIN

 (SELECT DISTINCT Bowlers.BowlerID,

 (Bowlers.BowlerLastName || ', ' ||

 Bowlers.BowlerFirstName) AS
BowlerFullName

 FROM ((Bowlers

 INNER JOIN Bowler_Scores

 ON Bowlers.BowlerID = Bowler_Scores.
BowlerID)

 INNER JOIN Tourney_Matches

 ON Tourney_Matches.MatchID =

 Bowler_Scores MatchID)

 INNER JOIN Tournaments

 ON Tournaments.TourneyID =

 Tourney_Matches.TourneyID

 WHERE Tournaments.TourneyLocation =

 'Bolero Lanes'

 AND Bowler_Scores.RawScore >= 170)

 AS BowlerBolero

ON BowlerTbird.BowlerID = BowlerBolero.BowlerID

 ❖ Note Because a bowler might have had a high score at either bowl-
ing alley more than once, I added the DISTINCT keyword to eliminate
the duplicates. Again, this is a problem that might be better solved
with subqueries, which you’ll learn about in Chapter 11.

❖ Note Because a bowler might have had a high score at either bowl-
ing alley more than once, I added the DISTINCT keyword to eliminate
the duplicates. Again, this is a problem that might be better solved
with subqueries, which you’ll learn about in Chapter 11.

314 Chapter 8 INNER JOINs

CH08_Good_Bowlers_TBird_And_Bolero (11 rows)

BowlerFullName

Kennedy, John

Patterson, Neil

Kennedy, Angel

Patterson, Kathryn

Viescas, John

Viescas, Caleb

Thompson, Sarah

Thompson, Mary

Thompson, William

Patterson, Rachel

Clothier, Ben

Recipes Database

“Display all the ingredients for recipes that contain carrots.”

Translation/
Clean Up

Select recipe ID, recipe title, and ingredient name from the
recipes table inner joined with the recipe ingredients table on
recipes.recipe ID in the recipes table matches = recipe_ingre-
dients.recipe ID in the recipe ingredients table, inner joined
with the ingredients table on ingredients.ingredient ID in the
ingredients table matches = recipe_ingredients.ingredient ID
in the recipe ingredients table, then finally inner joined with
(Select recipe ID from the ingredients table inner joined with
the recipe ingredients table on ingredients.ingredient ID in
the ingredients table matches = recipe_ingredients.ingredient
ID in the recipe ingredients table where ingredient name is =
‘Carrot’) as carrots on recipes.recipe ID in the recipes table
matches = carrots.recipe ID in the carrots table

SQL SELECT Recipes.RecipeID, Recipes.RecipeTitle,

 Ingredients.IngredientName

FROM ((Recipes

INNER JOIN Recipe_Ingredients

 ON Recipes.RecipeID =

 Recipe_Ingredients.RecipeID)

 Sample Statements 315

INNER JOIN Ingredients

 ON Ingredients.IngredientID =

 Recipe_Ingredients.IngredientID)

INNER JOIN

 (SELECT Recipe_Ingredients.RecipeID

 FROM Ingredients

 INNER JOIN Recipe_Ingredients

 ON Ingredients.IngredientID =

 Recipe_Ingredients.IngredientID

 WHERE Ingredients.IngredientName = 'Carrot')

 AS Carrots

ON Recipes.RecipeID = Carrots.RecipeID

 ❖ Note This request can be solved more simply with a subquery. I’ll
show you how to do that in Chapter 11.

CH08_Recipes_Containing_Carrots (16 rows)

RecipeID RecipeTitle IngredientName

1 Irish Stew Beef

1 Irish Stew Onion

1 Irish Stew Potato

1 Irish Stew Carrot

1 Irish Stew Water

1 Irish Stew Guinness Beer

14 Salmon Filets in Parchment Paper Salmon

14 Salmon Filets in Parchment Paper Carrot

14 Salmon Filets in Parchment Paper Leek

14 Salmon Filets in Parchment Paper Red Bell Pepper

14 Salmon Filets in Parchment Paper Butter

<< more rows here >>

❖ Note This request can be solved more simply with a subquery. I’ll
show you how to do that in Chapter 11.

316 Chapter 8 INNER JOINs

Summary

In this chapter, I thoroughly discussed how to link two or more tables
or result sets on matching values. I began by defining the concept of a
JOIN, and then I went into the details about forming an INNER JOIN. I
discussed what is “legal” to use as the criteria for a JOIN but cautioned
you about making nonsensical JOINs.

I started out simply with examples joining two tables. I next showed how
to assign correlation (alias) names to tables within your FROM clause.
You might want to do this for convenience—or you might be required to
assign correlation names when you include the same table more than
once or use an embedded SELECT statement.

I showed how to replace a reference to a table with a SELECT statement
within your FROM clause. I next showed how to extend your horizons
by joining more than two tables or result sets. I wrapped up the discus-
sion of the syntax of an INNER JOIN by reemphasizing the importance of
having a good database design and understanding how your tables are
related.

I discussed some reasons why INNER JOINs are useful and gave you
specific examples. The rest of the chapter provided more than a dozen
examples of using INNER JOIN. I broke these examples into JOINs on
two tables, JOINs on more than two tables, and JOINs on matching val-
ues. In the next chapter, I’ll explore another variant of JOIN—an OUTER
JOIN.

The following section presents some requests to work out on your own.

Problems for You to Solve

Below, I show you the request statement and the name of the solution
query in the sample databases. If you want some practice, you can work
out the SQL you need for each request and then check your answer with
the query I saved in the samples. Don’t worry if your syntax doesn’t
exactly match the syntax of the queries I saved—as long as your result
set is the same.

 Problems for You to Solve 317

Sales Orders Database

 1. “List customers and the dates they placed an order, sorted in order
date sequence.”

(Hint: The solution requires a JOIN of two tables.)

You can find the solution in CH08_Customers_And_OrderDates
(944 rows).

 2. “List employees and the customers for whom they booked an order.”

(Hint: The solution requires a JOIN of more than two tables.)

You can find the solution in CH08_Employees_And_Customers
(211 rows).

 3. “Display all orders, the products in each order, and the amount
owed for each product, in order number sequence.”

(Hint: The solution requires a JOIN of more than two tables.)

You can find the solution in CH08_Orders_With_Products (3,973
rows).

 4. “Show me the vendors and the products they supply to us for prod-
ucts that cost less than $100.”

(Hint: The solution requires a JOIN of more than two tables.)

You can find the solution in CH08_Vendors_And_Products_Less_
Than_100 (66 rows).

 5. “Show me customers and employees who have the same last name.”

(Hint: The solution requires a JOIN on matching values.)

You can find the solution in CH08_Customers_Employees_Same_
LastName (16 rows).

 6. “Show me customers and employees who live in the same city.”

(Hint: The solution requires a JOIN on matching values.)

You can find the solution in CH08_Customers_Employees_Same_
City (10 rows).

Entertainment Agency Database

 1. “Display agents and the engagement dates they booked, sorted by
booking start date.”

(Hint: The solution requires a JOIN of two tables.)

You can find the solution in CH08_Agents_Booked_Dates (111 rows).

318 Chapter 8 INNER JOINs

 2. “List customers and the entertainers they booked.”

(Hint: The solution requires a JOIN of more than two tables.)

You can find the solution in CH08_Customers_Booked_
Entertainers (75 rows).

 3. “Find the agents and entertainers who live in the same postal code.”

(Hint: The solution requires a JOIN on matching values.)

You can find the solution in CH08_Agents_Entertainers_Same_
Postal (10 rows).

School Scheduling Database

 1. “Display buildings and all the classrooms in each building.”

(Hint: The solution requires a JOIN of two tables.)

You can find the solution in CH08_Buildings_Classrooms
(47 rows).

 2. “List students and all the classes in which they are currently
enrolled.”

(Hint: The solution requires a JOIN of more than two tables.)

You can find the solution in CH08_Student_Enrollments
(50 rows).

 3. “List the faculty staff and the subject each teaches.”

(Hint: The solution requires a JOIN of more than two tables.)

You can find the solution in CH08_Staff_Subjects (110 rows).

 4. “Show me the students who have a grade of 85 or better in art and
who also have a grade of 85 or better in any computer course.”

(Hint: The solution requires a JOIN on matching values.)

You can find the solution in CH08_Good_Art_CS_Students
(1 row).

Bowling League Database

 1. “List the bowling teams and all the team members.”

(Hint: The solution requires a JOIN of two tables.)

You can find the solution in CH08_Teams_And_Bowlers (32 rows).

 Problems for You to Solve 319

 2. “Display the bowlers, the matches they played in, and the bowler
game scores.”

(Hint: The solution requires a JOIN of more than two tables.)

You can find the solution in CH08_Bowler_Game_Scores (1,344
rows).

 3. “Find the bowlers who live in the same ZIP Code.”

(Hint: The solution requires a JOIN on matching values, and be
sure to not match bowlers with themselves.)

You can find the solution in CH08_Bowlers_Same_ZipCode
(92 rows).

Recipes Database

 1. “List all the recipes for salads.”

(Hint: The solution requires a JOIN of two tables.)

You can find the solution in CH08_Salads (1 row).

 2. “List all recipes that contain a dairy ingredient.”

(Hint: The solution requires a JOIN of more than two tables.)

You can find the solution in CH08_Recipes_Containing_Dairy
(2 rows).

 3. “Find the ingredients that use the same default measurement
amount.”

(Hint: The solution requires a JOIN on matching values.)

You can find the solution in CH08_Ingredients_Same_Measure
(628 rows).

 4. “Show me the recipes that have beef and garlic.”

(Hint: The solution requires a JOIN on matching values.)

You can find the solution in CH08_Beef_And_Garlic_Recipes
(1 row).

This page intentionally left blank

 321

9
OUTER JOINs

“The only difference between a problem and
a solution is people understand the solution.”

—CHARLES FRANKLIN KETTERING INVENTOR, 1876–1958

Topics Covered in This Chapter

What Is an OUTER JOIN?

The LEFT/RIGHT OUTER JOIN

The FULL OUTER JOIN

Uses for OUTER JOINs

Sample Statements

Summary

Problems for You to Solve

In the previous chapter, I covered all the “ins” of JOINs—linking two or
more tables or result sets using INNER JOIN to find all the rows that
match. Now it’s time to talk about the “outs”—linking tables and finding
out not only the rows that match but also the rows that don’t match.

What Is an OUTER JOIN?

As I explained in the previous chapter, the SQL Standard defines sev-
eral types of JOIN operations to link two or more tables or result sets.
An OUTER JOIN asks your database system to return not only the rows

322 Chapter 9 OUTER JOINs

that match on the criteria you specify but also the unmatched rows from
either one or both of the two sets you want to link.

Let’s suppose, for example, that you want to fetch information from the
School Scheduling database about students and the classes for which
they’re registered. As you learned in the previous chapter, an INNER
JOIN returns only students who have registered for a class and classes
for which a student has registered. It won’t return any students who
have been accepted at the school but haven’t signed up for any classes
yet, nor will it return any classes that are on the schedule but for which
no student has yet shown an interest.

What if you want to list all students and the classes for which they are
registered, if any? Conversely, suppose you want a list of all the classes
and the students who have registered for those classes, if any. To solve
this sort of problem, you need to ask for an OUTER JOIN.

Figure 9-1 uses a set diagram to show one possible relationship between
students and classes. As you can see, a few students haven’t registered
for a class yet, and a few classes do not yet have any students signed up
to take the class.

Students

Classes

Students and the
Classes for Which

They Are Registered

Figure 9-1 A possible relationship between students and classes

If you ask for all students and the classes for which they are registered,
you’ll get a result set resembling Figure 9-2.

You might ask, “What will I see for the students who haven’t registered
for any classes?” If you remember the concept of a Null or “nothing”

 The LEFT/RIGHT OUTER JOIN 323

value discussed in Chapter 5, “Getting More Than Simple Columns,”
you know what you’ll see: When you ask for all students joined with any
classes, your database system will return a Null value in all columns
from the Classes table when it finds a student who is not yet registered
for any classes. If you think about the concept of a difference between
two sets (discussed in Chapter 7, “Thinking in Sets”), the rows with a
Null value in the columns from the Classes table represent the difference
between the set of all students and the set of students who have regis-
tered for a class.

Students

Students and the
Classes for Which

They Are Registered
Students Not

Yet Registered

Figure 9-2 All students and the classes for which they are registered

Likewise, if you ask for all classes and any students who registered for
classes, the rows with Null values in the columns from the Students
table represent the difference between the set of all classes and the set
of classes for which students have registered. As I promised, using an
OUTER JOIN with a test for Null values is an alternate way to discover
the difference between two sets. Unlike a true EXCEPT operation that
matches on entire rows from the two sets, you can specify the match in
a JOIN operation on just a few specific columns (usually the primary key
and the foreign key).

The LEFT/RIGHT OUTER JOIN

You’ll generally use the OUTER JOIN form that asks for all the rows from
one table or result set and any matching rows from a second table or
result set. To do this, you specify either a LEFT OUTER JOIN or a RIGHT
OUTER JOIN.

324 Chapter 9 OUTER JOINs

What’s the difference between LEFT and RIGHT? Remember from the
previous chapter that to specify an INNER JOIN on two tables, you name
the first table, include the JOIN keyword, and then name the second
table. When you begin building queries using OUTER JOIN, the SQL
Standard considers the first table you name as the one on the “left,” and
the second table as the one on the “right.” So, if you want all the rows
from the first table and any matching rows from the second table, you’ll
use a LEFT OUTER JOIN. Conversely, if you want all the rows from the
second table and any matching rows from the first table, you’ll specify a
RIGHT OUTER JOIN.

Syntax

Let’s examine the syntax needed to build either a LEFT or RIGHT
OUTER JOIN.

Using Tables

I’ll start simply with defining an OUTER JOIN using tables. Figure 9-3
shows the syntax diagram for creating a query with an OUTER JOIN on
two tables.

SELECT Value Expression

JOIN

FROM

DISTINCT

table_name

table_name

ON Search Condition

USING
,

column_name

AS
correlation_name

LEFT
RIGHT

,

AS
correlation_name

OUTER

Figure 9-3 Defining an OUTER JOIN on two tables

Just like INNER JOIN (covered in Chapter 8, “INNER JOINs”), all the
action happens in the FROM clause. (I left out the WHERE and ORDER

 The LEFT/RIGHT OUTER JOIN 325

BY clauses for now to simplify things.) Instead of specifying a single
table name, you specify two table names and link them with the JOIN
keyword. If you do not specify the type of JOIN you want, your database
system assumes you want an INNER JOIN. In this case, because you
want an OUTER JOIN, you must explicitly state that you want either a
LEFT JOIN or a RIGHT JOIN. The OUTER keyword is optional.

 ❖ Note For those of you following along with the complete syntax
diagrams in Appendix A, “SQL Standard Diagrams,” note that I’ve
pulled together the applicable parts (from Select Statement, Table
Reference, and Joined Table) into simpler diagrams that explain the
specific syntax I’m discussing.

The critical part of any JOIN is the ON or USING clause that follows the
second table and tells your database system how to perform the JOIN.
Your database system logically combines every row in the first table with
every row in the second table to solve the JOIN. (This combination of all
rows from one table with all rows from a second table is called a Car-
tesian product.) It then applies the criteria in the ON or USING clause
to find the matching rows to be returned. Because you asked for an
OUTER JOIN, your database system also returns the unmatched rows
from either the “left” or “right” table.

You learned about using a search condition to form a WHERE clause in
Chapter 6, “Filtering Your Data.” You can use a search condition in the
ON clause within a JOIN to specify a logical test that must be true to
return any two linked rows. It only makes sense to write a search condi-
tion that compares at least one column from the first table with at least
one column from the second table. Although you can write a very com-
plex search condition, you can usually specify a simple equals compari-
son test on the primary key columns from one table with the foreign key
columns from the other table.

To keep things simple, let’s start with the same recipe classes and
recipes example I used in the last chapter. Remember that in a well-
designed database, you should break out complex classification names
into a second table and then link the names back to the primary sub-
ject table via a simple key value. In the Recipes sample database, recipe
classes appear in a table separate from recipes. Figure 9-4 shows the
relationship between the Recipe_Classes and Recipes tables.

❖ Note For those of you following along with the complete syntax
diagrams in Appendix A, “SQL Standard Diagrams,” note that I’ve
pulled together the applicable parts (from Select Statement, Table
Reference, and Joined Table) into simpler diagrams that explain the e
specific syntax I’m discussing.

326 Chapter 9 OUTER JOINs

RECIPES

RecipeID PK
RecipeTitle
RecipeClassID FK
Preparation
Notes

RECIPE_CLASSES

RecipeClassID PK
RecipeClassDescription

Figure 9-4 Recipe classes are in a separate table from recipes

When you originally set up the kinds of recipes to save in your database,
you might have started by entering all the recipe classes that came to
mind. Now that you’ve entered a number of recipes, you might be inter-
ested in finding out which classes don’t have any recipes entered yet.
You might also be interested in listing all the recipe classes along with
the names of recipes entered so far for each class. You can solve either
problem with an OUTER JOIN.

 ❖ Note Throughout this chapter, I use the “Request/Translation/
Clean Up/SQL” technique introduced in Chapter 4, “Creating a
Simple Query.”

“Show me all the recipe types and any matching recipes in my
database.”

Translation Select recipe class description and recipe title from the
recipe classes table left outer joined with the recipes table
on recipe class ID in the recipe classes table matching
recipe class ID in the recipes table

Clean Up Select recipe class description and recipe title from the
recipe classes table left outer joined with the recipes table
on recipe_classes.recipe class ID in the recipe classes
table matching = recipes.recipe class ID in the recipes
table

SQL SELECT Recipe_Classes.RecipeClassDescription,

 Recipes.RecipeTitle

FROM Recipe_Classes

LEFT OUTER JOIN Recipes

 ON Recipe_Classes.RecipeClassID =

 Recipes.RecipeClassID

❖ Note Throughout this chapter, I use the “Request/Translation/
Clean Up/SQL” technique introduced in Chapter 4, “Creating a
Simple Query.”

 The LEFT/RIGHT OUTER JOIN 327

When using multiple tables in your FROM clause, remember to qualify
fully each column name with the table name wherever you use it so that
it’s absolutely clear which column from which table you want. Note that
I had to qualify the name of RecipeClassID in the ON clause because
there are two columns named RecipeClassID—one in the Recipes table
and one in the Recipe_Classes table.

 ❖ Note Although most commercial implementations of SQL support
OUTER JOIN, some do not. If your database does not support OUTER
JOIN, you can still solve the problem by listing all the tables you need
in the FROM clause, then moving your search condition from the ON
clause to the WHERE clause. You must consult your database docu-
mentation to learn the specific nonstandard syntax that your data-
base requires to define the OUTER JOIN. For example, earlier versions
of Microsoft SQL Server support this syntax. (Notice the asterisk in
the WHERE clause.)

SELECT Recipe_Classes.RecipeClassDescription,
 Recipes.RecipeTitle
FROM Recipe_Classes, Recipes
WHERE Recipe_Classes.RecipeClassID *=
 Recipes.RecipeClassID

If you’re using Oracle, the optional syntax is as follows. (Notice the
plus sign in the WHERE clause.)

SELECT Recipe_Classes.RecipeClassDescription,
 Recipes.RecipeTitle
FROM Recipe_Classes, Recipes
WHERE Recipe_Classes.RecipeClassID =
 Recipes.RecipeClassID(+)

Quite frankly, these strange syntaxes were invented by database ven-
dors that wanted to provide this feature long before a clearer syntax
was defined in the SQL Standard. Thankfully, the SQL Standard syn-
tax allows you to fully define the source for the final result set entirely
within the FROM clause. Think of the FROM clause as fully defin-
ing a linked result set from which the database system obtains your
answer. In the SQL Standard, you use the WHERE clause only to filter
rows out of the result set defined by the FROM clause. Also, because
the specific syntax for defining an OUTER JOIN via the WHERE
clause varies by product, you might have to learn several different
syntaxes if you work with multiple nonstandard products.

❖ Note Although most commercial implementations of SQL support
OUTER JOIN, some do not. If your database does not support OUTER
JOIN, you can still solve the problem by listing all the tables you need
in the FROM clause, then moving your search condition from the ON
clause to the WHERE clause. You must consult your database docu-
mentation to learn the specific nonstandard syntax that your data-
base requires to define the OUTER JOIN. For example, earlier versions
of Microsoft SQL Server support this syntax. (Notice the asterisk in
the WHERE clause.)

SELECT Recipe_Classes.RecipeClassDescription,
 Recipes.RecipeTitle
FROM Recipe_Classes, Recipes
WHERE Recipe_Classes.RecipeClassID *=
 Recipes.RecipeClassID

If you’re using Oracle, the optional syntax is as follows. (Notice the
plus sign in the WHERE clause.)

SELECT Recipe_Classes.RecipeClassDescription,
 Recipes.RecipeTitle
FROM Recipe_Classes, Recipes
WHERE Recipe_Classes.RecipeClassID =
 Recipes.RecipeClassID(+)

Quite frankly, these strange syntaxes were invented by database ven-
dors that wanted to provide this feature long before a clearer syntax
was defined in the SQL Standard. Thankfully, the SQL Standard syn-
tax allows you to fully define the source for the final result set entirely
within the FROM clause. Think of the FROM clause as fully defin-
ing a linked result set from which the database system obtains your
answer. In the SQL Standard, you use the WHERE clause only to filter
rows out of the result set defined by the FROM clause. Also, because
the specific syntax for defining an OUTER JOIN via the WHERE
clause varies by product, you might have to learn several different
syntaxes if you work with multiple nonstandard products.

328 Chapter 9 OUTER JOINs

If you execute the example query in the Recipes sample database, you
should see 16 rows returned. Because I didn’t enter any soup recipes
in the database, you’ll get a Null value for RecipeTitle in the row where
RecipeClassDescription is ‘Soup’. To find only this one row, use this
approach.

“List the recipe classes that do not yet have any recipes.”

Translation Select recipe class description from the recipe classes
table left outer joined with the recipes table on recipe
class ID where recipe ID is empty

Clean Up Select recipe class description from the recipe classes
table left outer joined with the recipes table on recipe_
classes.recipe class ID in the recipes table matches =
recipes.recipe class ID in the recipes table where recipe
ID is empty NULL

SQL SELECT Recipe_Classes.RecipeClassDescription

FROM Recipe_Classes

LEFT OUTER JOIN Recipes

 ON Recipe_Classes.RecipeClassID =

 Recipes.RecipeClassID

WHERE Recipes.RecipeID IS NULL

If you think about it, I’ve just done a difference or EXCEPT operation
(see Chapter 7) using a JOIN. It’s somewhat like saying, “Show me all the
recipe classes except the ones that already appear in the recipes table.”
The set diagram in Figure 9-5 should help you visualize what’s going on.

Recipe
Classes

Recipes

Figure 9-5 A possible relationship between recipe classes and recipes

 The LEFT/RIGHT OUTER JOIN 329

In Figure 9-5, all recipes have a recipe class, but some recipe classes
exist for which no recipe has yet been defined. When I add the IS NULL
test, I’m asking for all the rows in the lighter outer circle that don’t have
any matches in the set of recipes represented by the darker inner circle.

Notice that the diagram for an OUTER JOIN on tables in Figure 9-3
also has the optional USING clause. If the matching columns in the two
tables have the same name and you want to join only on equal values,
you can use the USING clause and list the column names. Let’s do the
previous problem again with USING.

“Display the recipe classes that do not yet have any recipes.”

Translation Select recipe class description from the recipe classes
table left outer joined with the recipes table using recipe
class ID where recipe ID is empty

Clean Up Select recipe class description from the recipe classes
table left outer joined with the recipes table using recipe
class ID where recipe ID is empty NULL

SQL SELECT Recipe_Classes.RecipeClassDescription

FROM Recipe_Classes

LEFT OUTER JOIN Recipes

USING (RecipeClassID)

WHERE Recipes.RecipeID IS NULL

The USING syntax is a lot simpler, isn’t it? There’s one small catch: Any
column in the USING clause loses its table identity because the SQL Stan-
dard dictates that the database system must “coalesce” the two columns
into a single column. In this example, there’s only one RecipeClassID
 column as a result, so you can’t reference Recipes.RecipeClassID or
 Recipe_Classes.RecipeClassID in the SELECT clause or any other clause.

Be aware that some database systems do not yet support USING. If you
find that you can’t use USING with your database, you can always get
the same result with an ON clause and an equals comparison.

 ❖ Note The SQL Standard also defines a type of JOIN operation
called a NATURAL JOIN. A NATURAL JOIN links the two specified
tables by matching all the columns with the same name. If the only

❖ Note The SQL Standard also defines a type of JOIN operation
called a NATURAL JOIN. A NATURAL JOIN links the two specified
tables by matching all the columns with the same name. If the only

330 Chapter 9 OUTER JOINs

common columns are the linking columns and your database sup-
ports NATURAL JOIN, you can solve the example problem like this:

SELECT Recipe_Classes.RecipeClassDescription
FROM Recipe_Classes
NATURAL LEFT OUTER JOIN Recipes
WHERE Recipes.RecipeID IS NULL

Do not specify an ON or USING clause if you use the NATURAL
keyword.

Embedding a SELECT Statement

As you recall from Chapter 8, most SQL implementations let you sub-
stitute an entire SELECT statement for any table name in your FROM
clause. Of course, you must then assign a correlation name (see the sec-
tion “Assigning Correlation (Alias) Names to Tables” in Chapter 8) so that
the result of evaluating your embedded query has a name. Figure 9-6
shows how to assemble an OUTER JOIN clause using embedded
SELECT statements.

SELECT Value Expression

JOIN

FROM

DISTINCT

ON Search Condition

USING
,

column_name

AS
correlation_nameSELECT Statement

AS
correlation_nameSELECT Statement

LEFT
RIGHT

,

OUTER

Figure 9-6 An OUTER JOIN using SELECT statements

common columns are the linking columns and your database sup-
ports NATURAL JOIN, you can solve the example problem like this:

SELECT Recipe_Classes.RecipeClassDescription
FROM Recipe_Classes
NATURAL LEFT OUTER JOIN Recipes
WHERE Recipes.RecipeID IS NULL

Do not specify an ON or USING clause if you use the NATURAL
keyword.

 The LEFT/RIGHT OUTER JOIN 331

Note that a SELECT statement can include all query clauses except an
ORDER BY clause. Also, you can mix and match SELECT statements
with table names on either side of the OUTER JOIN keywords.

Let’s look at the Recipes and Recipe_Classes tables again. For this
example, let’s also assume that you are interested only in classes Sal-
ads, Soups, and Main courses. Here’s the query with the Recipe_Classes
table filtered in a SELECT statement that participates in a LEFT OUTER
JOIN with the Recipes table:

SQL SELECT RCFiltered.ClassName, R.RecipeTitle

FROM

 (SELECT RecipeClassID,

 RecipeClassDescription AS ClassName

 FROM Recipe_Classes AS RC

 WHERE RC.ClassName = 'Salads'

 OR RC.ClassName = 'Soup'

 OR RC.ClassName = 'Main Course')

 AS RCFiltered

LEFT OUTER JOIN Recipes AS R

 ON RCFiltered.RecipeClassID = R.RecipeClassID

You must be careful when using a SELECT statement in a FROM
clause. First, when you decide to substitute a SELECT statement for
a table name, you must be sure to include not only the columns you
want to appear in the final result but also any linking columns you
need to perform the JOIN. That’s why you see both RecipeClassID and
 RecipeClassDescription in the embedded statement. Just for fun, I gave
RecipeClassDescription an alias name of ClassName in the embedded
statement. As a result, the SELECT clause asks for ClassName rather
than RecipeClassDescription. Note that the ON clause now references
the correlation name (RCFiltered) of the embedded SELECT statement
rather than the original name of the table or the correlation name I
assigned the table inside the embedded SELECT statement.

As the query is stated for the actual Recipes sample database, you
see one row with RecipeClassDescription of Soup with a Null value
returned for RecipeTitle because there are no soup recipes in the sample

332 Chapter 9 OUTER JOINs

database. I could just as easily have built a SELECT statement on the
Recipes table on the right side of the OUTER JOIN. For example, I could
have asked for recipes that contain the word “beef” in their titles, as in
the following statement:

SQL SELECT RCFiltered.ClassName, R.RecipeTitle

FROM

 (SELECT RecipeClassID,

 RecipeClassDescription AS ClassName

 FROM Recipe_Classes AS RC

 WHERE RC.ClassName = 'Salads'

 OR RC.ClassName = 'Soup'
OR RC.ClassName = 'Main Course') AS RCFiltered

LEFT OUTER JOIN

 (SELECT Recipes.RecipeClassID, Recipes.Recipe

 Title

 FROM Recipes

 WHERE Recipes.RecipeTitle LIKE '%beef%')

 AS R

 ON RCFiltered.RecipeClassID = R.RecipeClassID

Keep in mind that the LEFT OUTER JOIN asks for all rows from the
result set or table on the left side of the JOIN, regardless of whether
any matching rows exist on the right side. The previous query not only
returns a Soup row with a Null RecipeTitle (because there are no soups
in the database at all) but also a Salad row with a Null. You might con-
clude that there are no salad recipes in the database. Actually, there are
salads in the database but no salads with “beef” in the title of the recipe!

 ❖ Note You might have noticed that you can enter a full search con-
dition as part of the ON clause in a JOIN. This is absolutely true, so it
is perfectly legal in the SQL Standard to solve the example problem as
follows:

SELECT Recipe_Classes.RecipeClassDescription,
 Recipes.RecipeTitle
FROM Recipe_Classes
LEFT OUTER JOIN Recipes

❖ Note You might have noticed that you can enter a full search con-
dition as part of the ON clause in a JOIN. This is absolutely true, so it
is perfectly legal in the SQL Standard to solve the example problem as
follows:

SELECT Recipe_Classes.RecipeClassDescription,
 Recipes.RecipeTitle
FROM Recipe_Classes
LEFT OUTER JOIN Recipes

 The LEFT/RIGHT OUTER JOIN 333

ON Recipe_Classes.RecipeClassID =
 Recipes.RecipeClassID
AND
 (Recipe_Classes.RecipeClassDescription = 'Salads'
OR Recipe_Classes.RecipeClassDescription = 'Soup'
OR Recipe_Classes.RecipeClassDescription =
 'Main Course')
AND Recipes.RecipeTitle LIKE '%beef%'

Unfortunately, I have discovered that some major implementations of
SQL solve this problem incorrectly or do not accept this syntax at all!
Therefore, I recommend that you always enter in the search condition
in the ON clause only criteria that compare columns from the two
tables or result sets. If you want to filter the rows from the underlying
tables, do so with a separate search condition in a WHERE clause in
an embedded SELECT statement.

Embedding JOINs within JOINs

Although you can solve many problems by linking just two tables, many
times you’ll need to link three, four, or more tables to get all the data to
solve your request. For example, you might want to fetch all the relevant
information about recipes—the type of recipe, the recipe name, and all
the ingredients for the recipe—in one query. Now that you understand
what you can do with an OUTER JOIN, you might also want to list all
recipe classes—even those that have no recipes defined yet—and all the
details about recipes and their ingredients. Figure 9-7 shows all the
tables needed to answer this request.

RECIPE_INGREDIENTS

RecipeID CPK
RecipeSeqNo CPK
IngredientID FK
MeasureAmountID FK
Amount

MEASUREMENTS

MeasureAmountID PK
MeasurementDescription

INGREDIENTS

IngredientID PK
IngredientName
IngredientClassID FK
MeasureAmountID FK

RECIPES

RecipeID PK
RecipeTitle
RecipeClassID FK
Preparation
Notes

RECIPE_CLASSES

RecipeClassID PK
RecipeClassDescription

Figure 9-7 The tables you need from the Recipes sample database to fetch all the
information about recipes

ON Recipe_Classes.RecipeClassID =
 Recipes.RecipeClassID
AND
 (Recipe_Classes.RecipeClassDescription = 'Salads'
OR Recipe_Classes.RecipeClassDescription = 'Soup'
OR Recipe_Classes.RecipeClassDescription =
 'Main Course')
AND Recipes.RecipeTitle LIKE '%beef%'

Unfortunately, I have discovered that some major implementations of
SQL solve this problem incorrectly or do not accept this syntax at all!
Therefore, I recommend that you always enter in the search condition
in the ON clause only criteria that compare columns from the two
tables or result sets. If you want to filter the rows from the underlying
tables, do so with a separate search condition in a WHERE clause in
an embedded SELECT statement.

334 Chapter 9 OUTER JOINs

Looks like you need data from five different tables! Just as in Chapter 8,
you can do this by constructing a more complex FROM clause, embed-
ding JOIN clauses within JOIN clauses. Here’s the trick: Everywhere
you can specify a table name, you can also specify an entire JOIN
clause surrounded with parentheses. Figure 9-8 shows a simplified ver-
sion of joining two tables. (I’ve left off the correlation name clauses and
chosen the ON clause to form a simple INNER or OUTER JOIN of two
tables.)

SELECT Value Expression

JOINFROM

DISTINCT

table_name table_name

ON Search Condition

INNER

,

OUTERRIGHT

LEFT

Figure 9-8 A simple JOIN of two tables

To add a third table to the mix, just place an open parenthesis before the
first table name, add a close parenthesis after the search condition, and
then insert another JOIN, a table name, the ON keyword, and another
search condition. Figure 9-9 shows how to do this.

If you think about it, the JOIN of two tables inside the parentheses
forms a logical table, or inner result set. This result set now takes the
place of the first simple table name in Figure 9-8. You can continue this
process of enclosing an entire JOIN clause in parentheses and then add-
ing another JOIN keyword, table name, ON keyword, and search condi-
tion until you have all the result sets you need. Let’s make a request that
needs data from all the tables shown in Figure 9-7 and see how it turns
out. (You might use this type of request for a report that lists all recipe
types with details about the recipes in each type.)

 The LEFT/RIGHT OUTER JOIN 335

SELECT Value Expression

JOIN

FROM

DISTINCT

table_name

table_name ON Search Condition

JOIN table_name ON Search Condition

,

INNER

OUTERRIGHT

LEFT

INNER

OUTERRIGHT

LEFT

Figure 9-9 A simple JOIN of three tables

“I need all the recipe types, and then the matching recipe names,
preparation instructions, ingredient names, ingredient step numbers,
ingredient quantities, and ingredient measurements from my recipes
database, sorted in recipe title and step number sequence.”

Translation Select the recipe class description, recipe title, prepa-
ration instructions, ingredient name, recipe sequence
number, amount, and measurement description from
the recipe classes table left outer joined with the
recipes table on recipe class ID in the recipe classes
table matching recipe ID in the recipes table, then
joined with the recipe ingredients table on recipe ID
in the recipes table matching recipe ID in the recipe
ingredients table, then joined with the ingredients
table on ingredient ID in the ingredients table match-
ing ingredient ID in the recipe ingredients table, and
then finally joined with the measurements table on
measurement amount ID in the measurements table
matching measurement amount ID in the recipe
ingredients table, order by recipe title and recipe
sequence number

336 Chapter 9 OUTER JOINs

Clean Up Select the recipe class description, recipe title, preparation
instructions, ingredient name, recipe sequence number,
amount, and measurement description from the recipe
classes table left outer joined with the recipes table on
recipe_classes.recipe class ID in the recipe classes table
matching = recipes.recipe class ID in the recipes table,
then inner joined with the recipe ingredients table on reci-
pes.recipe ID in the recipes table matching = recipe_ingre-
dients.recipe ID in the recipe ingredients table, then inner
joined with the ingredients table on ingredients.ingredient
ID in the ingredients table matching = recipe_ingredients.
ingredient ID in the recipe ingredients table, and then
finally inner joined with the measurements table on mea-
surements.measurement amount ID in the measurements
table matching = recipe_ingredients.measurement amount
ID in the recipe ingredients table, order by recipe title, and
recipe sequence number

SQL SELECT Recipe_Classes.RecipeClassDescription,

 Recipes.RecipeTitle, Recipes.Preparation,

 Ingredients.IngredientName,

 Recipe_Ingredients.RecipeSeqNo,

 Recipe_Ingredients.Amount,

 Measurements.MeasurementDescription

FROM (((Recipe_Classes

LEFT OUTER JOIN Recipes

 ON Recipe_Classes.RecipeClassID =

 Recipes.RecipeClassID)

INNER JOIN Recipe_Ingredients

 ON Recipes.RecipeID =

 Recipe_Ingredients.RecipeID)

INNER JOIN Ingredients

 ON Ingredients.IngredientID =

 Recipe_Ingredients.IngredientID)

INNER JOIN Measurements

 ON Measurements.MeasureAmountID =

 Recipe_Ingredients.MeasureAmountID

ORDER BY RecipeTitle, RecipeSeqNo

 The LEFT/RIGHT OUTER JOIN 337

In truth, you can substitute an entire JOIN of two tables anywhere you
might otherwise place only a table name. In Figure 9-9, I implied that
you must first join the first table with the second table and then join
that result with the third table. You could also join the second and third
tables first (as long as the third table is, in fact, related to the second
table and not the first one) and then perform the final JOIN with the
first table. Figure 9-10 shows you this alternate method.

SELECT Value Expression

JOINFROM

DISTINCT

table_name

table_name

ON Search Condition

JOIN table_name

ON Search Condition

,

INNER

OUTERRIGHT

LEFT

INNER

OUTERRIGHT

LEFT

Figure 9-10 Joining more than two tables in an alternate sequence

To solve the request I just showed you using five tables, I could have also
stated the SQL as follows:

SQL SELECT Recipe_Classes.RecipeClassDescription,

 Recipes.RecipeTitle, Recipes.Preparation,

 Ingredients.IngredientName,

 Recipe_Ingredients.RecipeSeqNo,

 Recipe_Ingredients.Amount,

 Measurements.MeasurementDescription

FROM Recipe_Classes LEFT OUTER JOIN

 (((Recipes

 INNER JOIN Recipe_Ingredients

338 Chapter 9 OUTER JOINs

 ON Recipes.RecipeID =

 Recipe_Ingredients.RecipeID)

 INNER JOIN Ingredients

 ON Ingredients.IngredientID =

 Recipe_Ingredients.IngredientID)

 INNER JOIN Measurements

 ON Measurements.MeasureAmountID =

 Recipe_Ingredients.MeasureAmountID)

ON Recipe_Classes.RecipeClassID =

 Recipes.RecipeClassID

ORDER BY RecipeTitle, RecipeSeqNo

Remember that the optimizers in some database systems are sensitive to
the sequence of the JOIN definitions. If your query with many JOINs is
taking a long time to execute on a large database, it might run faster if
you change the sequence of JOINs in your SQL statement.

You might have noticed that I used only one OUTER JOIN in the pre-
vious multiple-JOIN examples. You’re probably wondering whether it’s
possible or even makes sense to use more than one OUTER JOIN in a
complex JOIN. Let’s assume that there are not only some recipe classes
that don’t have matching recipe rows but also some recipes that don’t
have any ingredients defined yet. In the previous example, you won’t see
any rows from the Recipes table that do not have any matching rows in
the Recipe_Ingredients table because the INNER JOIN eliminates them.
Let’s ask for all recipes as well.

“I need all the recipe types, and then all the recipe names and prepa-
ration instructions, and then any matching ingredient names, ingredi-
ent step numbers, ingredient quantities, and ingredient measurements
from my recipes database, sorted in recipe title and step number
sequence.”

Translation Select the recipe class description, recipe title, preparation
instructions, ingredient name, recipe sequence number,
amount, and measurement description from the recipe
classes table left outer joined with the recipes table on

 The LEFT/RIGHT OUTER JOIN 339

recipe class ID in the recipe classes table matching recipe
class ID in the recipes table, then left outer joined with
the recipe ingredients table on recipe ID in the recipes
table matching recipe ID in the recipe ingredients table,
then joined with the ingredients table on ingredient ID
in the ingredients table matching ingredient ID in the
recipe ingredients table, and then finally joined with the
measurements table on measurement amount ID in the
measurements table matching measurement amount ID
in the recipe ingredients table, order by recipe title and
recipe sequence number

Clean Up Select the recipe class description, recipe title, preparation
instructions, ingredient name, recipe sequence number,
amount, and measurement description from the recipe
classes table left outer joined with the recipes table on
recipe_classes.recipe class ID in the recipe classes table
matching = recipes.recipe class ID in the recipes table,
then left outer joined with the recipe ingredients table on
recipes.recipe ID in the recipes table matching = recipe_
ingredients.recipe ID in the recipe ingredients table, then
inner joined with the ingredients table on ingredients.
ingredient ID in the ingredients table matching = recipe_
ingredients.ingredient ID in the recipe ingredients table,
and then finally inner joined with the measurements table
on measurements.measurement amount ID in the mea-
surements table matching = recipe_ingredients.measure-
ment amount ID in the recipe ingredients table, order by
recipe title and recipe sequence number

SQL SELECT Recipe_Classes.RecipeClassDescription,

 Recipes.RecipeTitle, Recipes.Preparation,

 Ingredients.IngredientName,

 Recipe_Ingredients.RecipeSeqNo,

 Recipe_Ingredients.Amount,

 Measurements.MeasurementDescription

FROM (((Recipe_Classes

LEFT OUTER JOIN Recipes

 ON Recipe_Classes.RecipeClassID =

 Recipes.RecipeClassID)

340 Chapter 9 OUTER JOINs

LEFT OUTER JOIN Recipe_Ingredients

 ON Recipes.RecipeID =

 Recipe_Ingredients.RecipeID)

INNER JOIN Ingredients

 ON Ingredients.IngredientID =

 Recipe_Ingredients.IngredientID)

INNER JOIN Measurements

 ON Measurements.MeasureAmountID =

 Recipe_Ingredients.MeasureAmountID

ORDER BY RecipeTitle, RecipeSeqNo

Be careful! This sort of multiple OUTER JOIN works as expected only
if you’re following a path of one-to-many relationships. Let’s look at the
relationships between Recipe_Classes, Recipes, and Recipe_Ingredients
again, as shown in Figure 9-11.

RECIPE_INGREDIENTS

RecipeID CPK
RecipeSeqNo CPK
IngredientID FK
MeasureAmountID FK
Amount

RECIPES

RecipeID PK
RecipeTitle
RecipeClassID FK
Preparation
Notes

RECIPE_CLASSES

RecipeClassID PK
RecipeClassDescription

Figure 9-11 The relationships between the Recipe_Classes, Recipes, and Recipe_
Ingredients tables

You might see a one-to-many relationship sometimes called a parent-child
relationship. Each parent row (on the “one” side of the relationship) might
have zero or more children rows (on the “many” side of the relationship).
Unless you have orphaned rows on the “many” side (for example, a row
in Recipes that has a Null in its RecipeClassID column), every row in the
child table should have a matching row in the parent table. So it makes
sense to say Recipe_Classes LEFT JOIN Recipes to pick up any par-
ent rows in Recipe_Classes that don’t have any children yet in Recipes.
 Recipe_Classes RIGHT JOIN Recipes should (barring any orphaned
rows) give you the same result as an INNER JOIN.

Likewise, it makes sense to ask for Recipes LEFT JOIN Recipe_Ingre-
dients because you might have some recipes for which no ingredients
have yet been entered. Recipes RIGHT JOIN Recipe_Ingredients
doesn’t work because the linking column (RecipeID) in Recipe_Ingredi-
ents is also part of that table’s compound primary key. Therefore, you are

 The LEFT/RIGHT OUTER JOIN 341

guaranteed to have no orphaned rows in Recipe_Ingredients because no
column in a primary key can contain a Null value.

Now, let’s take it one step further and ask for all ingredients, including
those not yet included in any recipes. First, take a close look at the rela-
tionships between the tables, including the Ingredients table, as shown
in Figure 9-12.

RECIPE_INGREDIENTS

RecipeID CPK
RecipeSeqNo CPK
IngredientID FK
MeasureAmountID FK
Amount

INGREDIENTS

IngredientID PK
IngredientName
IngredientClassID FK
MeasureAmountID FK

RECIPES

RecipeID PK
RecipeTitle
RecipeClassID FK
Preparation
Notes

RECIPE_CLASSES

RecipeClassID PK
RecipeClassDescription

Figure 9-12 The relationships between the Recipe_Classes, Recipes, Recipe_
 Ingredients, and Ingredients tables

Let’s try this request. (Caution: There’s a trap here!)

“I need all the recipe types, and then all the recipe names and prepa-
ration instructions, and then any matching ingredient step numbers,
ingredient quantities, and ingredient measurements, and finally all
ingredient names from my recipes database, sorted in recipe title and
step number sequence.”

Translation Select the recipe class description, recipe title, preparation
instructions, ingredient name, recipe sequence number,
amount, and measurement description from the recipe
classes table left outer joined with the recipes table on
recipe class ID in the recipe classes table matches class
ID in the recipes table, then left outer joined with the
recipe ingredients table on recipe ID in the recipes table
matches recipe ID in the recipe ingredients table, then
joined with the measurements table on measurement
amount ID in the measurements table matches measure-
ment amount ID in the measurements table, and then
finally right outer joined with the ingredients table on
ingredient ID in the ingredients table matches ingredient
ID in the recipe ingredients table, order by recipe title and
recipe sequence number

342 Chapter 9 OUTER JOINs

Clean Up Select the recipe class description, recipe title, preparation
instructions, ingredient name, recipe sequence number,
amount, and measurement description from the recipe
classes table left outer joined with the recipes table on
recipe_classes.recipe class ID in the recipe classes table
matches = recipes.class ID in the recipes table, then left
outer joined with the recipe ingredients table on recipes.
recipe ID in the recipes table matches = recipe_ingredi-
ents.recipe ID in the recipe ingredients table, then inner
joined with the measurements table on measurements.
measurement amount ID in the measurements table
matches = measurements.measurement amount ID in the
measurements table, and then finally right outer joined
with the ingredients table on ingredients.ingredient ID in
the ingredients table matches = recipe_ingredients.ingre-
dient ID in the recipe ingredients table, order by recipe
title, and recipe sequence number

SQL SELECT Recipe_Classes.RecipeClassDescription,

 Recipes.RecipeTitle, Recipes.Preparation,

 Ingredients.IngredientName,

 Recipe_Ingredients.RecipeSeqNo,

 Recipe_Ingredients.Amount,

 Measurements.MeasurementDescription

FROM (((Recipe_Classes

LEFT OUTER JOIN Recipes

 ON Recipe_Classes.RecipeClassID =

 Recipes.RecipeClassID)

LEFT OUTER JOIN Recipe_Ingredients

 ON Recipes.RecipeID =

 Recipe_Ingredients.RecipeID)

INNER JOIN Measurements

 ON Measurements.MeasureAmountID =

 Recipe_Ingredients.MeasureAmountID)

RIGHT OUTER JOIN Ingredients

 ON Ingredients.IngredientID =

 Recipe_Ingredients.IngredientID

ORDER BY RecipeTitle, RecipeSeqNo

 The LEFT/RIGHT OUTER JOIN 343

Do you think this will work? Actually, the answer is a resounding NO!
Most database systems analyze the entire FROM clause and then try
to determine the most efficient way to assemble the table links. Let’s
assume, however, that the database decides to fully honor how I’ve
grouped the JOINs within parentheses. This means that the database
system will work from the innermost JOIN first (Recipe_Classes joined
with Recipes) and then work outward.

Because some rows in Recipe_Classes might not have any matching
rows in Recipes, this first JOIN returns rows that have a Null value in
Recipes.RecipeClassID. Looking back at Figure 9-12, you can see that
there’s a one-to-many relationship between Recipe_Classes and Recipes.
Unless some recipes exist that haven’t been assigned a recipe class, I
should get all the rows from the Recipes table anyway! The next JOIN
with the Recipe_Ingredients table also asks for a LEFT OUTER JOIN.
I want all the rows, regardless of any Null values, from the previous
JOIN (of Recipe_Classes with Recipes) and any matching rows in Rec-
ipe_Ingredients. Again, because some rows in Recipe_Classes might not
have matching rows in Recipes or some rows in Recipes might not have
matching rows in Recipe_Ingredients, several of the rows might have a
Null in the IngredientID column from the Recipe_Ingredients table. What
I’m doing with both JOINs is “walking down” the one-to-many relation-
ships from Recipe_Classes to Recipes and then from Recipes to Recipe_
Ingredients. So far, so good. (By the way, the final INNER JOIN with
Measurements is inconsequential—I know that all Ingredients have a
valid MeasureAmountID.)

Now the trouble starts. The final RIGHT OUTER JOIN asks for all the
rows from Ingredients and any matching rows from the result of the
previous JOINs. Remember from Chapter 5 that a Null is a very spe-
cial value—it cannot be equal to any other value, not even another Null.
When I ask for all the rows in Ingredients, the IngredientID in all these
rows has a non-Null value. None of the rows from the previous JOIN that
have a Null in IngredientID will match at all, so the final JOIN throws
them away! You will see any ingredient that isn’t used yet in any recipe,
but you won’t see recipe classes that have no recipes or recipes that have
no ingredients.

If your database system decides to solve the query by performing the
JOINs in a different order, you might see recipe classes that have no

344 Chapter 9 OUTER JOINs

recipes and recipes that have no ingredients, but you won’t see ingredi-
ents not yet used in any recipe because of the Null matching problem.
Some database systems might recognize this logic problem and refuse to
solve your query at all—you’ll see something like an “ambiguous OUTER
JOINs” error message. The problem I’m now experiencing results from
trying to “walk back up” a many-to-one relationship with an OUTER
JOIN going in the other direction. Walking down the hill is easy, but
walking back up the other side requires special tools. What’s the solu-
tion to this problem? Read on to the next section to find out!

The FULL OUTER JOIN

A FULL OUTER JOIN is neither “left” nor “right”—it’s both! It includes all
the rows from both of the tables or result sets participating in the JOIN.
When no matching rows exist for rows on the “left” side of the JOIN, you
see Null values from the result set on the “right.” Conversely, when no
matching rows exist for rows on the “right” side of the JOIN, you see Null
values from the result set on the “left.”

Syntax

Now that you’ve been working with JOINs for a while, the syntax for a
FULL OUTER JOIN should be pretty obvious. You can study the syntax
diagram for a FULL OUTER JOIN in Figure 9-13.

SELECT Value Expression

JOINFROM

DISTINCT

ON Search Condition

USING
,

column_name

OUTERTable Reference FULL

Table Reference

,

Figure 9-13 The syntax diagram for a FULL OUTER JOIN

 The FULL OUTER JOIN 345

To simplify things, I’m now using the term table reference in place of a
table name, a SELECT statement, or the result of another JOIN. Let’s
take another look at the problem I introduced at the end of the previous
section. I can now solve it properly using a FULL OUTER JOIN.

“I need all the recipe types, and then all the recipe names and prepa-
ration instructions, and then any matching ingredient step numbers,
ingredient quantities, and ingredient measurements, and finally all
ingredient names from my recipes database, sorted in recipe title and
step number sequence.”

Translation Select the recipe class description, recipe title, preparation
instructions, ingredient name, recipe sequence number,
amount, and measurement description from the recipe
classes table full outer joined with the recipes table on
recipe class ID in the recipe classes table matches rec-
ipe class ID in the recipes table, then left outer joined
with the recipe ingredients table on recipe ID in the
recipes table matches recipe ID in the recipe ingredients
table, then joined with the measurements table on mea-
surement amount ID in the measurements table matches
measurement amount ID in the recipe ingredients table,
and then finally full outer joined with the ingredients
table on ingredient ID in the ingredients table matches
ingredient ID in the recipe ingredients table, order by
 recipe title and recipe sequence number

Clean Up Select the recipe class description, recipe title, preparation
instructions, ingredient name, recipe sequence number,
amount, and measurement description from the recipe
classes table full outer joined with the recipes table on
recipe_classes.recipe class ID in the recipe classes table
matches = recipes.recipe class ID in the recipes table, then
left outer joined with the recipe ingredients table on reci-
pes.recipe ID in the recipes table matches = recipe_ingre-
dients.recipe ID in the recipe ingredients table, then inner
joined with the measurements table on measurements.
measurement amount ID in the measurements table
matches = recipe_ingredients.measurement amount ID
in the recipe ingredients table, and then finally full outer
joined with the ingredients table on ingredients.ingredient
ID in the ingredients table matches = recipe_ingredients.
ingredient ID in the recipe ingredients table, order by
 recipe title and recipe sequence number

346 Chapter 9 OUTER JOINs

SQL SELECT Recipe_Classes.RecipeClassDescription,

 Recipes.RecipeTitle, Recipes.Preparation,

 Ingredients.IngredientName,

 Recipe_Ingredients.RecipeSeqNo,

 Recipe_Ingredients.Amount,

 Measurements.MeasurementDescription

FROM (((Recipe_Classes

FULL OUTER JOIN Recipes

 ON Recipe_Classes.RecipeClassID =

 Recipes.RecipeClassID)

 LEFT OUTER JOIN Recipe_Ingredients

 ON Recipes.RecipeID =

 Recipe_Ingredients.RecipeID)

 INNER JOIN Measurements

 ON Measurements.MeasureAmountID =

 Recipe_Ingredients.MeasureAmountID)

 FULL OUTER JOIN Ingredients

 ON Ingredients.IngredientID =

 Recipe_Ingredients.IngredientID

ORDER BY RecipeTitle, RecipeSeqNo

The first and last JOINs now ask for all rows from both sides of the
JOIN, so the problem with Nulls not matching is solved. You should now
see not only recipe classes for which there are no recipes and recipes
for which there are no ingredients but also ingredients that haven’t been
used in a recipe yet. You might get away with using a LEFT OUTER JOIN
for the first JOIN, but because you can’t predict in advance how your
database system decides to nest the JOINs, you should ask for a FULL
OUTER JOIN on both ends to ensure the right answer.

 ❖ Note As you might expect, database systems that do not support
the SQL Standard syntax for LEFT OUTER JOIN or RIGHT OUTER
JOIN also have a special syntax for FULL OUTER JOIN. You must con-
sult your database documentation to learn the specific nonstandard
syntax that your database requires to define the OUTER JOIN. For

❖ Note As you might expect, database systems that do not support
the SQL Standard syntax for LEFT OUTER JOIN or RIGHT OUTER
JOIN also have a special syntax for FULL OUTER JOIN. You must con-
sult your database documentation to learn the specific nonstandard
syntax that your database requires to define the OUTER JOIN. For

 The FULL OUTER JOIN 347

example, earlier versions of Microsoft SQL Server support the follow-
ing syntax. (Notice the asterisks in the WHERE clause.)

SELECT Recipe_Classes.RecipeClassDescription,
 Recipes.RecipeTitle
FROM Recipe_Classes, Recipes
WHERE Recipe_Classes.RecipeClassID *=*
 Recipes.RecipeClassID

Products that do not support any FULL OUTER JOIN syntax but do
support LEFT or RIGHT OUTER JOINs yield an equivalent result by
performing a UNION on a LEFT and RIGHT OUTER JOIN. I’ll discuss
UNION in more detail in the next chapter. Because the specific syntax
for defining a FULL OUTER JOIN using the WHERE clause varies by
product, you might have to learn several different syntaxes if you work
with multiple nonstandard products.

FULL OUTER JOIN on Non-Key Values

Thus far, I have been discussing using OUTER JOINs to link tables or
result sets on related key values. You can, however, solve some inter-
esting problems by using an OUTER JOIN on non-key values. For
example, the previous chapter showed how to find students and staff
who have the same first name in the School Scheduling database.
Suppose you’re interested in listing all staff members and all students
and showing the ones who have the same first name as well the staff
who do not match any student on first name and the students who
do not match any staff on first name. You can do that with a FULL
OUTER JOIN.

“Show me all the students and all the teachers and list together those
who have the same first name.”

Translation Select student full name and staff full name from the
students table full outer joined with the staff table on
first name in the students table matches first name in the
staff table

example, earlier versions of Microsoft SQL Server support the follow-
ing syntax. (Notice the asterisks in the WHERE clause.)

SELECT Recipe_Classes.RecipeClassDescription,
 Recipes.RecipeTitle
FROM Recipe_Classes, Recipes
WHERE Recipe_Classes.RecipeClassID *=*
 Recipes.RecipeClassID

Products that do not support any FULL OUTER JOIN syntax but do
support LEFT or RIGHT OUTER JOINs yield an equivalent result by
performing a UNION on a LEFT and RIGHT OUTER JOIN. I’ll discuss
UNION in more detail in the next chapter. Because the specific syntax
for defining a FULL OUTER JOIN using the WHERE clause varies by
product, you might have to learn several different syntaxes if you work
with multiple nonstandard products.

348 Chapter 9 OUTER JOINs

Clean Up Select student full name and staff full name from the
students table full outer joined with the staff table on stu-
dents.first name in the students table matches = staff.first
name in the staff table

SQL SELECT (Students.StudFirstName || ' ' ||

 Students.StudLastName) AS StudFullName,

 (Staff.StfFirstName || ' ' ||

 Staff.StfLastName) AS StfFullName

FROM Students

FULL OUTER JOIN Staff

ON Students.StudFirstName =

 Staff.StfFirstName

UNION JOIN

No discussion of OUTER JOINs would be complete without at least an
honorable mention to UNION JOIN. In the SQL Standard, a UNION JOIN
is a FULL OUTER JOIN with the matching rows removed. Figure 9-14
shows the syntax.

As you might expect, not many commercial implementations support a
UNION JOIN. Quite frankly, I’m hard pressed to think of a good reason
why you would want to do a UNION JOIN.

SELECT Value Expression

JOINFROM

DISTINCT

ON Search Condition

USING
,

column_name

UNIONTable Reference

Table Reference

,

Figure 9-14 The SQL syntax for a UNION JOIN

 Uses for OUTER JOINs 349

Uses for OUTER JOINs

Because an OUTER JOIN lets you see not only the matched rows but also
the unmatched ones, it’s great for finding out which, if any, rows in one
table do not have a matching related row in another table. It also helps you
find rows that have matches on a few rows but not on all. In addition, it’s
useful for creating input to a report where you want to show all categories
(regardless of whether matching rows exist in other tables) or all custom-
ers (regardless of whether a customer has placed an order). Following is a
small sample of the kinds of requests you can solve with an OUTER JOIN.

Find Missing Values

Sometimes you just want to find what’s missing. You do so by using an
OUTER JOIN with a test for Null. Here are some “missing value” prob-
lems you can solve:

“What products have never been ordered?”

“Show me customers who have never ordered a helmet.”

“List entertainers who have never been booked.”

“Display agents who haven’t booked an entertainer.”

“Show me tournaments that haven’t been played yet.”

“List the faculty members not teaching a class.”

“Display students who have never withdrawn from a class.”

“Show me classes that have no students enrolled.”

“List ingredients not used in any recipe yet.”

“Display missing types of recipes.”

Find Partially Matched Information

Particularly for reports, it’s useful to be able to list all the rows from
one or more tables along with any matching rows from related tables.
Here’s a sample of “partially matched” problems you can solve with an
OUTER JOIN:

“List all products and the dates for any orders.”

“Display all customers and any orders for bicycles.”

“Show me all entertainment styles and the customers who prefer those
styles.”

350 Chapter 9 OUTER JOINs

“List all entertainers and any engagements they have booked.”

“List all bowlers and any games they bowled over 160.”

“Display all tournaments and any matches that have been played.”

“Show me all subject categories and any classes for all subjects.”

“List all students and the classes for which they are currently enrolled.”

“Display all faculty and the classes they are scheduled to teach.”

“List all recipe types, all recipes, and any ingredients involved.”

“Show me all ingredients and any recipes they’re used in.”

Sample Statements

You now know the mechanics of constructing queries using OUTER
JOIN and have seen some of the types of requests you can answer with
an OUTER JOIN. Let’s look at a fairly robust set of samples, all of which
use OUTER JOIN. These examples come from each of the sample data-
bases, and they illustrate the use of the OUTER JOIN to find either
missing values or partially matched values.

I’ve also included sample result sets that would be returned by these
operations and placed them immediately after the SQL syntax line. The
name that appears immediately above a result set is the name I gave
each query in the sample data on the companion website for the book,
www.informit.com/title/9780134858333. I stored each query in the
appropriate sample database (as indicated within the example) and pre-
fixed the names of the queries relevant to this chapter with “CH09.” You
can follow the instructions in the Introduction of this book to load the
samples onto your computer and try them.

 ❖ Note Because many of these examples use complex JOINs, the
optimizer for your database system might choose a different way
to solve these queries. For this reason, the first few rows might not
exactly match the result you obtain, but the total number of rows
should be the same. To simplify the process, I have combined the
Translation and Clean Up steps for all the following examples.

❖ Note Because many of these examples use complex JOINs, the
optimizer for your database system might choose a different way
to solve these queries. For this reason, the first few rows might not
exactly match the result you obtain, but the total number of rows
should be the same. To simplify the process, I have combined the
Translation and Clean Up steps for all the following examples.

http://www.informit.com/title/9780134858333

 Sample Statements 351

Sales Orders Database

“What products have never been ordered?”

Translation/
Clean Up

Select product number and product name from the prod-
ucts table left outer joined with the order details table on
products.product number in the products table matches
= order_details.product number in the order details table
where the order detail order number is null

SQL SELECT Products.ProductNumber,

 Products.ProductName

FROM Products

LEFT OUTER JOIN Order_Details

 ON Products.ProductNumber =

 Order_Details.ProductNumber

WHERE Order_Details.OrderNumber IS NULL

CH09_Products_Never_Ordered (2 rows)

ProductNumber ProductName

4 Victoria Pro All Weather Tires

23 Ultra-Pro Rain Jacket

“Display all customers and any orders for bicycles.”

Translation 1 Select customer full name, order date, product name,
quantity ordered, and quoted price from the customers
table left outer joined with the orders table on customer
ID, then joined with the order details table on order
number, then joined with the products table on product
number, then finally joined with the categories table on
category ID where category description is “Bikes”

Translation 2/
Clean Up

Select customer full name, order date, product name,
quantity ordered, and quoted price from the customers
table left outer joined with (Select customer ID, order date,
product name, quantity ordered, and quoted price from
the orders table inner joined with the order details table
on orders.order number in the orders table matches =
order_details.order number in the order details table, then

352 Chapter 9 OUTER JOINs

joined with the products table on order_details.product
number in the order details table matches = products.
product number in the products table, then finally joined
with the categories table on categories.category ID in the
categories table matches = products.category ID in the
products table where category description is = ‘Bikes’)
as rd on customers.customer ID in the customers table
matches = rd.customerID in the embedded SELECT
statement

 ❖ Note Because I’m looking for specific orders (bicycles), I split the
translation process into two steps to show that the orders need to be
filtered before applying an OUTER JOIN.

SQL SELECT Customers.CustFirstName || ' ' ||

 Customers.CustLastName AS CustFullName,

 RD.OrderDate, RD.ProductName,

 RD.QuantityOrdered, RD.QuotedPrice

FROM Customers

LEFT OUTER JOIN

 (SELECT Orders.CustomerID, Orders.OrderDate,

 Products.ProductName,

 Order_Details.QuantityOrdered,

 Order_Details.QuotedPrice FROM ((Orders

 INNER JOIN Order_Details

 ON Orders.OrderNumber =

 Order_Details.OrderNumber)

 INNER JOIN Products

 ON Order_Details.ProductNumber =

 Products.ProductNumber)

 INNER JOIN Categories

 ON Categories.CategoryID =

 Products.CategoryID

WHERE Categories.CategoryDescription =

 'Bikes')

 AS RD

ON Customers.CustomerID = RD.CustomerID

❖ Note Because I’m looking for specific orders (bicycles), I split the
translation process into two steps to show that the orders need to be
filtered before applying an OUTER JOIN.

 Sample Statements 353

 ❖ Note This request is really tricky because you want to list all
customers OUTER JOINed with only the orders for bikes. If you turn
Translation 1 directly into SQL, you won’t find any of the customers
who have not ordered a bike! An OUTER JOIN from Customers to
Orders will return all customers and any orders. When you add the
filter to select only bike orders, that’s all you will get—customers who
ordered bikes.

Translation 2 shows you how to do it correctly—create an inner result
set that returns only orders for bikes, and then OUTER JOIN that
with Customers to get the final answer.

CH09_All_Customers_And_Any_Bike_Orders (914 rows)

CustFullName OrderDate ProductName Quantity
Ordered

QuotedPrice

Suzanne Viescas

William Thompson 2017-12-24 Trek 9000
 Mountain Bike

5 $1,164.00

William Thompson 2018-01-16 Trek 9000
 Mountain Bike

6 $1,164.00

William Thompson 2017-10-12 Viscount
 Mountain Bike

2 $635.00

William Thompson 2017-10-06 Viscount
 Mountain Bike

5 $615.95

William Thompson 2018-01-16 Trek 9000
 Mountain Bike

4 $1,200.00

William Thompson 2017-10-12 Trek 9000
 Mountain Bike

3 $1,200.00

William Thompson 2018-01-08 Trek 9000
 Mountain Bike

2 $1,200.00

<< more rows here >>

(Looks like William Thompson is a really good customer!)

❖ Note This request is really tricky because you want to list all
customers OUTER JOINed with only the orders for bikes. If you turn
Translation 1 directly into SQL, you won’t find any of the customers
who have not ordered a bike! An OUTER JOIN from Customers to
Orders will return all customers and any orders. When you add the l
filter to select only bike orders, that’s all you will get—customers who
ordered bikes.

Translation 2 shows you how to do it correctly—create an inner result
set that returns only orders for bikes, and then OUTER JOIN that
with Customers to get the final answer.

354 Chapter 9 OUTER JOINs

Entertainment Agency Database

“List entertainers who have never been booked.”

Translation/
Clean Up

Select entertainer ID and entertainer stage name
from the entertainers table left outer joined with the
 engagements table on entertainers.entertainer ID
in the entertainers table matches = engagements.enter-
tainer ID in the engagements table where engagement
number is null

SQL SELECT Entertainers.EntertainerID,

 Entertainers.EntStageName

FROM Entertainers

LEFT OUTER JOIN Engagements

 ON Entertainers.EntertainerID =

 Engagements.EntertainerID

WHERE Engagements.EngagementNumber IS NULL

CH09_Entertainers_Never_Booked (1 row)

EntertainerID EntStageName

1009 Katherine Ehrlich

“Show me all musical styles and the customers who prefer those styles.”

Translation/
Clean Up

Select style ID, style name, customer ID, cus-
tomer first name, and customer last name from
the musical styles table left outer joined with (the
musical preferences table inner joined with the
customers table on musical_preferences.customer
ID in the musical preferences table matches =
customers.customer ID in the customers table) on
musical_styles.style ID in the musical styles table
matches = musical_preferences.style ID in the
musical preferences table

SQL SELECT Musical_Styles.StyleID,

 Musical_Styles.StyleName,

 Customers.CustomerID,

 Customers.CustFirstName,

 Customers.CustLastName

 Sample Statements 355

FROM Musical_Styles

LEFT OUTER JOIN (Musical_Preferences

 INNER JOIN Customers

 ON Musical_Preferences.CustomerID =

 Customers.CustomerID)

 ON Musical_Styles.StyleID =

 Musical_Preferences.StyleID

CH09_All_Styles_And_Any_Customers (41 rows)

StyleID StyleName CustomerID CustFirstName CustLastName

1 40s Ballroom
Music

10015 Carol Viescas

1 40s Ballroom
Music

10011 Joyce Bonnicksen

2 50s Music

3 60s Music 10002 Deb Waldal

4 70s Music 10007 Liz Keyser

5 80s Music 10014 Mark Rosales

6 Country 10009 Sarah Thompson

7 Classical 10005 Elizabeth Hallmark

<< more rows here >>

(Looks like nobody likes 50s music!)

 ❖ Note I very carefully phrased the FROM clause to influence the
database system to first perform the INNER JOIN between Musi-
cal_Preferences and Customers, and then OUTER JOINed that with
Musical_Styles. If your database tends to process JOINs from left to
right, you might have to state the FROM clause with the INNER JOIN
first followed by a RIGHT OUTER JOIN to Musical_Styles. In Microsoft
Office Access, I had to state the INNER JOIN as an embedded SELECT
statement to get it to return the correct answer.

❖ Note I very carefully phrased the FROM clause to influence the
database system to first perform the INNER JOIN between Musi-
cal_Preferences and Customers, and then OUTER JOINed that with
Musical_Styles. If your database tends to process JOINs from left to
right, you might have to state the FROM clause with the INNER JOIN
first followed by a RIGHT OUTER JOIN to Musical_Styles. In Microsoft
Office Access, I had to state the INNER JOIN as an embedded SELECT
statement to get it to return the correct answer.

356 Chapter 9 OUTER JOINs

School Scheduling Database

“List the faculty members not teaching a class.”

Translation/
Clean Up

Select staff first name and staff last name from the
staff table left outer joined with the faculty classes
table on staff.staff ID in the staff table matches = fac-
ulty_classes.staff ID in the faculty classes table where
class ID is null

SQL SELECT Staff.StfFirstName, Staff.StfLastName,

FROM Staff LEFT OUTER JOIN Faculty_Classes

 ON Staff.StaffID = Faculty_Classes.StaffID

WHERE Faculty_Classes.ClassID IS NULL

CH09_Staff_Not_Teaching (5 rows)

StfFirstName StfLastName

Jeffrey Smith

Tim Smith

Kathryn Patterson

Joe Rosales III

Carolyn Coie

“Display students who have never withdrawn from a class.”

Translation/
Clean Up

Select student full name from the students table left
outer joined with (Select student ID from the student
schedules table inner joined with the student class
 status table on student_class_status.class status in
the student class status table matches = student_
schedules.class status in the student schedules
table where class status description is = ‘withdrew’)
as withdrew on students.student ID in the students
table matches = withdrew.student ID in the embeddedd
SELECT statement where the student_schedules.stu-
dent ID in the student schedules table is null

 Sample Statements 357

SQL SELECT Students.StudLastName || ', ' ||

 Students.StudFirstName AS StudFullName

FROM Students

LEFT OUTER JOIN

 (SELECT Student_Schedules.StudentID

 FROM Student_Class_Status

 INNER JOIN Student_Schedules

 ON Student_Class_Status.ClassStatus =

 Student_Schedules.ClassStatus

 WHERE Student_Class_Status.ClassStatus

 Description = 'withdrew')

 AS Withdrew

ON Students.StudentID = Withdrew.StudentID

WHERE Withdrew.StudentID IS NULL

 ❖ Note This is another example where you must apply the filter on
“withdrew” in an embedded SELECT statement. If you use that fil-
ter in the WHERE clause of the main query, you will get no results.
Remember that when you need to apply a filter to the “right” side of
a “left” join (or vice-versa), you must do it in an embedded SELECT
statement.

CH09_Students_Never_Withdrawn (16 rows)

StudFullName

Patterson, Kerry

Stadick, Betsy

Galvin, Janice

Hartwig, Doris

Bishop, Scott

Hallmark, Elizabeth

Sheskey, Sara

Smith, Karen

<< more rows here >>

❖ Note This is another example where you must apply the filter on
“withdrew” in an embedded SELECT statement. If you use that fil-
ter in the WHERE clause of the main query, you will get no results.
Remember that when you need to apply a filter to the “right” side of
a “left” join (or vice-versa), you must do it in an embedded SELECT
statement.

358 Chapter 9 OUTER JOINs

“Show me all subject categories and any classes for all subjects.”

Translation/
Clean Up

Select category description, subject name, classroom
ID, start date, start time, and duration from the cate-
gories table left outer joined with the subjects table on
categories.category ID in the categories table matches
= subjects.category ID in the subjects table, then left
outer joined with the classes table on subjects.subject
ID in the subjects table matches = classes.subject ID
in the classes table

SQL SELECT Categories.CategoryDescription,

 Subjects.SubjectName, Classes.ClassroomID,

 Classes.StartDate, Classes.StartTime,

 Classes.Duration

FROM (Categories

LEFT OUTER JOIN Subjects

 ON Categories.CategoryID = Subjects.
CategoryID)

LEFT OUTER JOIN Classes

 ON Subjects.SubjectID = Classes.SubjectID

 ❖ Note I was very careful again to construct the sequence and
 nesting of JOINs to be sure I got the answer I expected.

CH09_All_Categories_All_Subjects_Any_Classes (145 rows)

Category
Description

SubjectName ClassroomID StartDate StartTime Duration

Accounting Financial
Accounting
 Fundamentals I

3305 2017-09-11 16:00 50

Accounting Financial
Accounting
 Fundamentals I

3305 2018-01-15 16:00 50

Accounting Financial
Accounting
 Fundamentals II

3307 2017-09-12 13:00 80

❖ Note I was very careful again to construct the sequence and
nesting of JOINs to be sure I got the answer I expected.

 Sample Statements 359

Category
Description

SubjectName ClassroomID StartDate StartTime Duration

Accounting Fundamentals
of Managerial
Accounting

3307 2018-01-16 13:00 80

Accounting Intermediate
Accounting

Accounting Business Tax
Accounting

Art Introduction to Art 1231 2017-09-12 10:00 50

Art Introduction to Art 1231 2018-01-16 10:00 50

<< more rows here >>

Further down in the result set, you’ll find no classes scheduled for
Introduction to Business, Developing a Feasibility Plan, Introduction to
Entrepreneurship, and Information Technology I and II. You’ll also find
no subjects scheduled for categories Psychology, French, or German.

Bowling League Database

“Show me tournaments that haven’t been played yet.”

Translation/
Clean Up

Select tourney ID, tourney date, and tourney location from
the tournaments table left outer joined with the tourney
matches table on tournaments.tourney ID in the tourna-
ments table matches = tourney_matches.tourney ID in the
tourney matches table where match ID is null

SQL SELECT Tournaments.TourneyID,

 Tournaments.TourneyDate,

 Tournaments.TourneyLocation

FROM Tournaments

LEFT OUTER JOIN Tourney_Matches

 ON Tournaments.TourneyID =

 Tourney_Matches.TourneyID

WHERE Tourney_Matches.MatchID IS NULL

360 Chapter 9 OUTER JOINs

CH09_Tourney_Not_Yet_Played (6 rows)

TourneyID TourneyDate TourneyLocation

15 2018-07-12 Red Rooster Lanes

16 2018-07-19 Thunderbird Lanes

17 2018-07-26 Bolero Lanes

18 2018-08-02 Sports World Lanes

19 2018-08-09 Imperial Lanes

20 2018-08-16 Totem Lanes

List all bowlers and any games they bowled over 180.”

Translation 1 Select bowler name, tourney date, tourney location, match ID,
and raw score from the bowlers table left outer joined with the
bowler scores table on bowler ID, then inner joined with the
tourney matches table on match ID, then finally inner joined
with the tournaments table on tournament ID where raw score
in the bowler scores table is greater than 180

Can you see why the above translation won’t work? You need a filter on
one of the tables that is on the right side of the left join, so you need
to put the filter in an embedded SELECT statement. Let’s restate the
Translation step, clean it up, and solve the problem.

Translation 2/
Clean Up

Select bowler name, tourney date, tourney location, match
ID, and raw score from the bowlers table left outer joined with
(Select tourney date, tourney location, match ID, bowler ID,
and raw score from the bowler scores table inner joined with
the tourney matches table on bowler_scores.match ID in the
bowler scores table matches = tourney_matches.match ID in
the tourney matches table, then inner joined with the tour-
naments table on tournaments.tournament ID in the tour-
naments table matches = tourney_matches.tournament ID in
the tourney matches table where raw score is greater than >
180) as ti on bowlers.bowler ID in the bowlers table matches =
ti.bowler ID in the embedded SELECT statement

SQL SELECT Bowlers.BowlerLastName || ', ' ||

 Bowlers.BowlerFirstName AS BowlerName,

 TI.TourneyDate, TI.TourneyLocation,

 TI.MatchID, TI.RawScore FROM Bowlers

LEFT OUTER JOIN

 (SELECT Tournaments.TourneyDate,

 Sample Statements 361

 Tournaments.TourneyLocation,

 Bowler_Scores.MatchID,

 Bowler_Scores.BowlerID,

 Bowler_Scores.RawScore

 FROM (Bowler_Scores

 INNER JOIN Tourney_Matches

 ON Bowler_Scores.MatchID =

 Tourney_Matches.MatchID)

 INNER JOIN Tournaments

 ON Tournaments.TourneyID =

 Tourney_Matches.TourneyID

 WHERE Bowler_Scores.RawScore > 180)

 AS TI

ON Bowlers.BowlerID = TI.BowlerID

CH09_All_Bowlers_And_Scores_Over_180 (106 rows)

BowlerName TourneyDate TourneyLocation MatchID RawScore

Black, Alastair

Cunningham, David

Ehrlich, Zachary

Fournier, Barbara

Fournier, David

Hallmark, Alaina

Hallmark, Bailey

Hallmark, Elizabeth

Hallmark, Gary

Hernandez, Kendra

Hernandez, Michael

Kennedy, Angel 2017-11-20 Sports World Lanes 46 185

Kennedy, Angel 2017-10-09 Totem Lanes 22 182

<< more rows here >>

362 Chapter 9 OUTER JOINs

 ❖ Note You guessed it! This is another example where you must build
the filtered INNER JOIN result set first and then OUTER JOIN that
with the table from which you want “all” rows.

Recipes Database

“List ingredients not used in any recipe yet.”

Translation/
Clean Up

Select ingredient name from the ingredients table left
outer joined with the recipe ingredients table on ingre-
dients.ingredient ID in the ingredients table matches =
recipe_ingredients.ingredient ID in the recipe ingredients
table where recipe ID is null

SQL SELECT Ingredients.IngredientName

FROM Ingredients

LEFT OUTER JOIN Recipe_Ingredients

 ON Ingredients.IngredientID =

 Recipe_Ingredients.IngredientID

WHERE Recipe_Ingredients.RecipeID IS NULL

CH09_Ingredients_Not_Used (20 rows)

IngredientName

Halibut

Chicken, Fryer

Bacon

Iceberg Lettuce

Butterhead Lettuce

Scallop

Vinegar

Red Wine

<< more rows here >>

❖ Note You guessed it! This is another example where you must build
the filtered INNER JOIN result set first and then OUTER JOIN that
with the table from which you want “all” rows.

 Sample Statements 363

“I need all the recipe types, and then all the recipe names, and then
any matching ingredient step numbers, ingredient quantities, and
ingredient measurements, and finally all ingredient names from my
recipes database, sorted by recipe class description in descending
order, then by recipe title and recipe sequence number.”

Translation/
Clean Up

Select the recipe class description, recipe title, ingredient
name, recipe sequence number, amount, and measure-
ment description from the recipes table left outer joined
with the recipe ingredients table on recipes.recipe ID in
the recipes table matches = recipe_ingredients.recipe ID
in the recipe ingredients table, then inner joined with
the measurements table on measurements.measurement
amount ID in the measurements table matches = recipe_
ingredients.measurement amount ID in the recipe ingredi-
ents table, and then full outer joined with the ingredients
table on ingredients.ingredient ID in the ingredients
table matches = recipe_ingredients.ingredient ID in the
recipe ingredients table, then finally full outer joined with
the recipe classes table on recipe_classes.recipe class ID
in the recipe classes table matches = recipes.recipe class
ID, sorted order by RecipeClassDescription descending,
 RecipeTitle, and RecipeSeqNo.

SQL SELECT Recipe_Classes.RecipeClassDescription,

 Recipes.RecipeTitle,

 Ingredients.IngredientName,

 Recipe_Ingredients.RecipeSeqNo,

 Recipe_Ingredients.Amount,

 Measurements.MeasurementDescription

FROM (((Recipe_Classes

FULL OUTER JOIN Recipes

 ON Recipe_Classes.RecipeClassID =

 Recipes.RecipeClassID)

 LEFT OUTER JOIN Recipe_Ingredients

 ON Recipes.RecipeID =

 Recipe_Ingredients.RecipeID)

 INNER JOIN Measurements

 ON Measurements.MeasureAmountID =

 Recipe_Ingredients.MeasureAmountID)

364 Chapter 9 OUTER JOINs

 FULL OUTER JOIN Ingredients

 ON Ingredients.IngredientID =

 Recipe_Ingredients.IngredientID

ON Recipe_Classes.RecipeClassID =

 Recipes.RecipeClassID

ORDER BY RecipeClassDescription Desc,

RecipeTitle, RecipeSeqNo

 ❖ Note This sample is a request you saw me solve in the section on
FULL OUTER JOIN. I decided to include it here so that you can see the
actual result. You won’t find this query saved using this syntax in the
Microsoft Access or MySQL version of the sample database because
neither product supports a FULL OUTER JOIN. Instead, you can find
this problem solved with a UNION of two OUTER JOIN queries that
achieves the same result. You’ll learn about using UNION in the next
chapter. The result shown here is what you’ll see when you run the
query in Microsoft SQL Server or PostgreSQL.

CH09_All_Recipe_Classes_All_Recipes (109 rows)

RecipeClass
Description

RecipeTitle Ingredient
Name

Recipe
SeqNo

Amount Measurement
Description

Main course Irish Stew Beef 1 1 Pound

Main course Irish Stew Onion 2 2 Whole

Main course Irish Stew Potato 3 4 Whole

Main course Irish Stew Carrot 4 6 Whole

Main course Irish Stew Water 5 4 Quarts

Main course Irish Stew Guinness Beer 6 12 Ounce

Hors d'oeuvres Salsa Buena Jalapeno 1 6 Whole

Hors d'oeuvres Salsa Buena Tomato 2 2 Whole

<< more rows here >>

❖ Note This sample is a request you saw me solve in the section on
FULL OUTER JOIN. I decided to include it here so that you can see the
actual result. You won’t find this query saved using this syntax in the
Microsoft Access or MySQL version of the sample database because
neither product supports a FULL OUTER JOIN. Instead, you can find
this problem solved with a UNION of two OUTER JOIN queries that
achieves the same result. You’ll learn about using UNION in the next
chapter. The result shown here is what you’ll see when you run the
query in Microsoft SQL Server or PostgreSQL.

 Summary 365

 ❖ Note At the 33rd row in PostgreSQL, you’ll find the Recipe Class
“Soup” with no recipes or ingredients. At the end of the output in SQL
Server, you’ll find a number of ingredients beginning with Blue Cheese
and Halibut that have no Recipe Class or Recipe, with the Soup row at
the end.

Summary

In this chapter, I led you through the world of OUTER JOINs. I began
by defining an OUTER JOIN and comparing it to the INNER JOIN you
learned about in Chapter 8.

I next explained how to construct a LEFT or RIGHT OUTER JOIN, begin-
ning with simple examples using two tables, and then progressing to
embedding SELECT statements and constructing statements using mul-
tiple JOINs. I showed how an OUTER JOIN combined with a Null test is
equivalent to the difference (EXCEPT) operation I covered in Chapter 7.
I also discussed some of the difficulties you might encounter when con-
structing statements using multiple OUTER JOINs. I closed the discus-
sion of the LEFT and RIGHT OUTER JOIN with a problem requiring
multiple OUTER JOINs that can’t be solved with only LEFT or RIGHT.

In my discussion of FULL OUTER JOIN, I showed how you might need
to use this type of JOIN in combination with other INNER and OUTER
JOINs to get the correct answer. I also briefly explained a variant of the
FULL OUTER JOIN—the UNION JOIN.

I explained how OUTER JOINs are useful and listed a variety of requests
that you can solve using OUTER JOINs. The rest of the chapter showed
nearly a dozen examples of how to use OUTER JOIN. I provided several
examples for each of the sample databases and showed you the logic
behind constructing the solution statement for each request.

The following section presents a number of requests that you can work
out on your own.

❖ Note At the 33rd row in PostgreSQL, you’ll find the Recipe Class
“Soup” with no recipes or ingredients. At the end of the output in SQL
Server, you’ll find a number of ingredients beginning with Blue Cheese
and Halibut that have no Recipe Class or Recipe, with the Soup row at
the end.

366 Chapter 9 OUTER JOINs

Problems for You to Solve

Below, I show you the request statement and the name of the solution
query in the sample databases. If you want some practice, you can work
out the SQL you need for each request and then check your answer with
the query I saved in the samples. Don’t worry if your syntax doesn’t
exactly match the syntax of the queries I saved—as long as your result
set is the same.

Sales Orders Database

 1. “Show me customers who have never ordered a helmet.”

(Hint: This is another request where you must first build an
INNER JOIN to find all orders containing helmets and then do an
OUTER JOIN with Customers.)

You can find the solution in CH09_Customers_No_Helmets (3
rows).

 2. “Display customers who have no sales rep (employees) in the same
ZIP Code.”

You can find the solution in CH09_Customers_No_Rep_Same_Zip
(18 rows).

 3. “List all products and the dates for any orders.”

You can find the solution in CH09_All_Products_Any_Order_Dates
(2,681 rows).

Entertainment Agency Database

 1. “Display agents who haven’t booked an entertainer.”

You can find the solution in CH09_Agents_No_Contracts (1 row).

 2. “List customers with no bookings.”

You can find the solution in CH09_Customers_No_Bookings
(2 rows).

 3. “List all entertainers and any engagements they have booked.”

You can find the solution in CH09_All_Entertainers_And_Any_
Engagements (112 rows).

 Problems for You to Solve 367

School Scheduling Database

 1. “Show me classes that have no students enrolled.”

(Hint: You need only “enrolled” rows from Student_Classes, not
“completed” or “withdrew.”)

You can find the solution in CH09_Classes_No_Students_Enrolled
(118 rows).

 2. “Display subjects with no faculty assigned.”

You can find the solution in CH09_Subjects_No_Faculty (1 row).

 3. “List students not currently enrolled in any classes.”

(Hint: You need to find which students have an “enrolled” class
status in student schedules and then find the students who are
not in this set.)

You can find the solution in CH09_Students_Not_Currently_
Enrolled (2 rows).

 4. “Display all faculty and the classes they are scheduled to teach.”

You can find the solution in CH09_All_Faculty_And_Any_Classes
(135 rows).

Bowling League Database

 1. “Display matches with no game data.”

You can find the solution in CH09_Matches_Not_Played_Yet (1 row).

 2. “Display all tournaments and any matches that have been played.”

You can find the solution in CH09_All_Tourneys_Match_Results
(174 rows).

Recipes Database

 1. “Display missing types of recipes.”

You can find the solution in CH09_Recipe_Classes_No_Recipes
(1 row).

 2. “Show me all ingredients and any recipes they’re used in.”

You can find the solution in CH09_All_Ingredients_Any_Recipes
(108 rows).

368 Chapter 9 OUTER JOINs

 3. “List the salad, soup, and main course categories and any recipes.”

You can find the solution in CH09_Salad_Soup_Main_Courses
(9 rows).

 4. “Display all recipe classes and any recipes.”

You can find the solution in CH09_All_RecipeClasses_And_
Matching_Recipes (16 rows).

 369

10
UNIONs

“I beseech those whose piety will permit them reverently
to petition, that they will pray for this union.”

—SAM HOUSTON, TEXAS HERO

Topics Covered in This Chapter

What Is a UNION?

Writing Requests with UNION

Uses for UNION

Sample Statements

Summary

Problems for You to Solve

In Chapter 7, “Thinking in Sets,” I introduced three fundamental set
operations—intersection, difference, and union. Chapter 8, “INNER
JOINs,” showed how to perform the equivalent of an intersection opera-
tion by linking result sets on key values using INNER JOIN. Chapter 9,
“OUTER JOINs,” discussed how to ask for a set difference by using an
OUTER JOIN and testing for the Null value. This chapter explains how
to do the third operation, a UNION.

What Is a UNION?

A UNION lets you select the rows from two or more similar result sets
and combine them into a single result set. Notice that I said “rows,”
not “columns.” In Chapters 8 and 9, you learned how to bring together

370 Chapter 10 UNIONs

columns from two or more result sets using a JOIN. When you ask for a
JOIN, the columns from the result sets appear side by side. For example,
if you ask for the RecipeClassDescription from the Recipe_Classes table
and the RecipeTitle from the Recipes table with a JOIN, you get a result
set that looks like Figure 10-1.

RecipeClassDescription RecipeTitle
Main course Irish Stew
Main course Fettuccini Alfredo
Main course Pollo Picoso
Main course Roast Beef
Main course Huachinango Veracruzana

(Red Snapper, Veracruz style)
Main course Tourtière (French-Canadian Pork Pie)
Main course Salmon Filets in Parchment Paper
Vegetable Garlic Green Beans

<< more rows here >>

Figure 10-1 Fetching data from two tables using a JOIN

Let’s first take a quick look at the syntax for a basic UNION, as shown in
Figure 10-2.

SELECT Statement SELECT StatementUNION

ALL

Figure 10-2 The syntax diagram for a basic UNION statement

A UNION interleaves the rows from one result set with the rows from
another result set. You define each result set by writing a SELECT state-
ment that can include not only a complex JOIN in the FROM clause but
also WHERE, HAVING, and GROUP BY clauses. You then link them
with the UNION keyword. (You’ll learn about the GROUP BY clause in
 Chapter 13, “Grouping Data,” and the HAVING clause in Chapter 14,
“Filtering Grouped Data.”) If you ask for RecipeClassDescription from the
Recipe_Classes table UNION RecipeTitle from the Recipes table, you get
an answer that looks like Figure 10-3.

Notice that I get only one column in the result set. The name of the
column is inherited from the column in the first table we chose to
include in the SELECT expression, but it includes information on both
 RecipeTitle (Asparagus) and RecipeClassDescription (Dessert). Instead

 What Is a UNION? 371

of appearing side by side, the data from the two columns is interleaved
vertically.

RecipeClassDescription
Asparagus
Coupe Colonel
Dessert
Fettuccini Alfredo
Garlic Green Beans
Hors d’oeuvres
Huachinango Veracruzana
(Red Snapper, Veracruz style)
Irish Stew
<< more rows here >>

Figure 10-3 Fetching data from two tables using a UNION

If you studied the diagram in Figure 10-2, you’re probably wondering
what the optional keyword ALL is about. When you leave out that key-
word, your database system eliminates any rows that have duplicate val-
ues. For example, if there’s a RecipeClassDescription of Dessert and a
RecipeTitle of Dessert, you get only one Dessert row in the final result
set. Conversely, when you include the ALL keyword, no duplicate rows
are removed. Note that UNION ALL is likely to be much more efficient
because your database system doesn’t have to do extra work to look for
and eliminate any duplicate rows. If you’re certain that the queries you
are combining with UNION don’t contain any duplicate rows (or you don’t
care about duplicates), then always use the ALL keyword.

To perform a UNION, the two result sets must meet certain require-
ments. First, each of the two SELECT statements that you’re linking
with a UNION must have the same number of output columns speci-
fied after the SELECT keyword so that the result set will have the same
number of columns. Secondly, each corresponding column must be what
the SQL Standard calls “comparable.”

 ❖ Note The full SQL:2016 Standard allows you to UNION dissimilar
sets. However, most commercial implementations support the basic
or entry-level standard I’m describing here. You might find that your
database system allows you to use UNION in more creative ways.

As discussed in Chapter 6, “Filtering Your Data,” you should compare
only character values with character values, number values with number

❖ Note The full SQL:2016 Standard allows you to UNION dissimilar
sets. However, most commercial implementations support the basic
or entry-level standard I’m describing here. You might find that your
database system allows you to use UNION in more creative ways.

372 Chapter 10 UNIONs

values, or datetime values with datetime values. Although some database
systems allow mixing data types in a comparison, it really doesn’t make
sense to compare a character value such as “John” to a numeric value
such as 55. If it makes sense to compare two columns in a WHERE clause,
then the columns are comparable. This is what the SQL Standard means
when it requires that a column from one result set that you want to UNION
with a column from another result set must be of a comparable data type.

Writing Requests with UNION

In the previous chapters on INNER JOIN and OUTER JOIN, you studied
how to construct a SELECT statement using the SELECT, FROM, and
WHERE clauses. The focus of those two chapters was on constructing
complex JOINs within the FROM clause. To construct a UNION, you now
have to graduate to a SELECT expression that links two or more SELECT
statements with the UNION operator. Each SELECT statement can have
as simple or complex a FROM clause as you need to get the job done.

Using Simple SELECT Statements

Let’s start simply by creating a UNION of two simple SELECT statements
that use a single table in the FROM clause. Figure 10-4 shows the syn-
tax diagram for a UNION of two simple SELECT statements.

SELECT Value Expression

FROM

DISTINCT

table_name

ALL

,

UNION

SELECT Value Expression

FROM

DISTINCT

table_name

,

Figure 10-4 Using a UNION to combine two simple SELECT statements

 Writing Requests with UNION 373

Unlike when you ask for a JOIN, all the action happens in the UNION
operator that you specify to combine the two SELECT statements. As
mentioned earlier, if you leave out the optional ALL keyword, your data-
base system eliminates any duplicate rows it finds. This means that
the result set from your request might have fewer rows than the sum of
the number of rows returned from each result set participating in the
UNION. On the other hand, if you include the ALL keyword, the number
of rows in the result set will be equal to the sum of the number of rows
in the two participating result sets.

 ❖ Note The SQL Standard also defines a CORRESPONDING clause
that you can place after the UNION keyword to indicate that you want
the UNION performed by comparing columns that have the same
name in each result set. You can also further restrict the comparison
set by including a specific list of column names after the CORRE-
SPONDING keyword. I could not find a major commercial implementa-
tion of this feature, but you might find it supported in future releases
of the product you use.

Let’s create a simple UNION—a mailing list for customers and vendors
from the Sales Orders sample database. Figure 10-5 shows the two
tables needed.

VENDORS

VendorID PK
VendName
VendStreetAddress
VendCity
VendState
VendZipCode
VendPhoneNumber
VendFaxNumber
VendWebPage
VendEmailAddress

CUSTOMERS

CustomerID PK
CustFirstName
CustLastName
CustStreetAddress
CustCity
CustState
CustZipCode

CustPhoneNumber
CustAreaCode

Figure 10-5 The Customers and Vendors tables from the Sales Orders
sample database

Notice that there’s no “natural” relationship between these two tables,
but they do both contain columns that have similar meanings and data
types. In a mailing list, you need a name, street address, city, state,
and ZIP Code. Because all these fields in both tables are comparable

❖ Note The SQL Standard also defines a CORRESPONDING clause
that you can place after the UNION keyword to indicate that you want
the UNION performed by comparing columns that have the same
name in each result set. You can also further restrict the comparison
set by including a specific list of column names after the CORRE-
SPONDING keyword. I could not find a major commercial implementa-
tion of this feature, but you might find it supported in future releases
of the product you use.

374 Chapter 10 UNIONs

character data, I don’t need to worry about data types. (Some database
designers might make ZIP Code a number, but that’s OK too, as long as
the ZIP Code column from one table is a data type that’s comparable
with the data type of the ZIP Code column from the second table.)

One problem is that the name in the Vendors table is a single column,
but there are two name fields in Customers: CustFirstName and Cust-
LastName. To come up with the same number of columns from both
tables, I need to build an expression on the two columns from Custom-
ers to create a single column expression to UNION with the single name
column from Vendors. Let’s build the query.

 ❖ Note Throughout this chapter, I use the “Request/Translation/Clean
Up/SQL” technique introduced in Chapter 4, “Creating a Simple Query.”

“Build a single mailing list that consists of the name, address, city,
state, and ZIP Code for customers and the name, address, city, state,
and ZIP Code for vendors.”

Translation Select customer full name, customer address, customer city,
customer state, and customer ZIP Code from the customers
table combined with vendor name, vendor address, vendor city,
vendor state, and vendor ZIP Code from the vendors table

Clean Up Select customer full name, customer address, customer city,
customer state, and customer ZIP Code from the customers
table combined with union Select vendor name, vendor
address, vendor city, vendor state, and vendor ZIP Code from
the vendors table

SQL SELECT Customers.CustLastName || ', ' ||

 Customers.CustFirstName AS MailingName,

Customers.CustStreetAddress, Customers.CustCity,

 Customers.CustState, Customers.CustZipCode

FROM Customers

UNION

SELECT Vendors.VendName,

 Vendors.VendStreetAddress, Vendors.VendCity,

 Vendors.VendState, Vendors.VendZipCode

FROM Vendors

❖ Note Throughout this chapter, I use the “Request/Translation/Clean
Up/SQL” technique introduced in Chapter 4, “Creating a Simple Query.”

 Writing Requests with UNION 375

Notice that each SELECT statement generates five columns, but I had
to use an expression to combine the two name columns in the Cus-
tomers table into a single column. All the columns from both SELECT
statements are character data, so I have no problem with them being
comparable.

You might be wondering: “What are the names of the columns that are
output from this query?” Good question! The SQL Standard specifies
that when the names of respective columns are the same (for example,
the name of the fourth column of the first SELECT statement is the
same as the name of the fourth column of the second SELECT state-
ment), that’s the name of the output column. If the column names are
different (as in the example I just constructed), the SQL Standard states:
“If a <query expression body> immediately contains UNION or INTER-
SECT, and the <column name>s of a pair of corresponding columns of
the operand tables are not equivalent, then the result column has an
implementation-dependent <column name>.”

In plain English, this means that your database system decides what
names to assign to the output columns. Your system is compliant with
the SQL Standard as long as the name doesn’t appear in some other col-
umn position in one of the result sets participating in the UNION. Most
commercial database systems default to the names of the columns in
the first SELECT statement. For the previous example, this means that
you’ll see column names of MailingName, CustStreetAddress, CustCity,
CustState, and CustZipCode.

Notice that I did not include the ALL keyword in the UNION. Although it
is unlikely that a customer last name and first name will match a ven-
dor name (never mind the address, city, state, and ZIP Code), I wanted to
avoid duplicate mailing addresses. If you’re certain that you won’t have
any duplicates in two or more UNION sets, you can include the ALL key-
word. Using ALL most likely will cause the request to run faster because
your database system won’t have to do extra work attempting to remove
duplicates.

Combining Complex SELECT Statements

As you might imagine, the SELECT statements you combine with a
UNION operator can be as complex as you need to get the job done. The
only restriction is that both SELECT statements must ultimately provide

376 Chapter 10 UNIONs

the same number of columns, and the columns in each relative position
must be comparable data types.

Suppose you want a list of all the customers and the bikes they ordered
combined with all the vendors and the bikes they supply. First, let’s
identify all the tables I need. Figure 10-6 shows the tables needed to link
customers to products.

ORDERS

OrderNumber PK
OrderDate
ShipDate
CustomerID FK
EmployeeID FK

PRODUCTS

ProductNumber PK
ProductName
ProductDescription
RetailPrice
QuantityOnHand
CategoryID FK

ORDER_DETAILS

OrderNumber CPK
ProductNumber CPK
QuotedPrice
QuantityOrdered

CUSTOMERS

CustomerID PK
CustFirstName
CustLastName
CustStreetAddress
CustCity
CustState
CustZipCode

CustPhoneNumber
CustAreaCode

Figure 10-6 Table relationships to link customers to the products they ordered

Looks like I need to JOIN four tables. If I want to find vendors and the
products they sell, I need the tables shown in Figure 10-7.

PRODUCTS

ProductNumber PK
ProductName
ProductDescription
RetailPrice
QuantityOnHand
CategoryID FK

VENDORS

VendorID PK
VendName
VendStreetAddress
VendCity
VendState
VendZipCode
VendPhoneNumber
VendFaxNumber
VendWebPage
VendEmailAddress

PRODUCT_VENDORS

ProductNumber CPK
VendorID CPK
WholesalePrice
DaysToDeliver

Figure 10-7 Table relationships to link vendors to the products they sell

As discussed in Chapter 8, you can nest multiple JOIN clauses to link
several tables to gather the information you need to solve a complex
problem. For review, Figure 10-8 shows the syntax for nesting three
tables.

 Writing Requests with UNION 377

SELECT Value Expression

JOINFROM

DISTINCT

table_name

table_name

INNER

JOIN table_name

INNER

ON Search Condition ON Search Condition

,

WHERE Search Condition

Figure 10-8 The syntax for JOINing three tables

I now have all the pieces needed to solve the puzzle. I can build a com-
pound INNER JOIN to fetch the customer information, insert a UNION
keyword, and then build the compound INNER JOIN for the vendor
information.

“List customers and the bikes they ordered combined with vendors
and the bikes they sell.”

Translation Select customer full name and product name from the
 customers table joined with the orders table on customer
ID in the customers table matches customer ID in the
orders table, then joined with the order details table on
order number in the orders table matches order number in
the order details table, and then joined with the products
table on product number in the products table matches
product number in the order details table where product
name contains ‘bike’, combined with select vendor name and
product name from the vendors table joined with the prod-
uct vendors table on vendor ID in the vendors table matches
vendor ID in the product vendors table, and then joined with
the products table on product number in the products table
matches product number in the product vendors table where
product name contains ‘bike’

378 Chapter 10 UNIONs

Clean Up Select customer full name and product name from the
 customers table joined with the orders table on customers.
customer ID in the customers table matches = orders.
customer ID in the orders table, then joined with the order
details table on orders.order number in the orders table
matches = order_details.order number in the order details
table, and then joined with the products table on products.
product number in the products table matches = order_
details.product number in the order details table where
product name contains like ‘%bike%’, combined with union
select vendor name and product name from the vendors table
joined with the product vendors table on vendors.vendor ID
in the vendors table matches = product_vendors.vendor ID in
the product vendors table, and then joined with the prod-
ucts table on products.product number in the products table
matches = product_vendors.product number in the product
vendors table where product name contains like ‘%bike%’

SQL SELECT Customers.CustLastName || ', ' ||

 Customers.CustFirstName AS FullName,

 Products.ProductName, 'Customer' AS RowID

FROM ((Customers INNER JOIN Orders

 ON Customers.CustomerID = Orders.CustomerID)

INNER JOIN Order_Details

 ON Orders.OrderNumber =

 Order_Details.OrderNumber)

INNER JOIN Products

 ON Products.ProductNumber =

 Order_Details.ProductNumber

WHERE Products.ProductName LIKE '%bike%'

UNION

SELECT Vendors.VendName, Products.ProductName,

 'Vendor' AS RowID

FROM (Vendors

INNER JOIN Product_Vendors

 ON Vendors.VendorID = Product_Vendors.VendorID)

INNER JOIN Products

 ON Products.ProductNumber =

 Product_Vendors.ProductNumber

WHERE Products.ProductName LIKE '%bike%'

 Writing Requests with UNION 379

Well, that’s about the size of the King Ranch, but it gets the job done!
Notice that I also threw in a character string literal that I named RowID
in both SELECT statements so that it will be easy to see which rows
originate from Customers and which ones come from Vendors. You might
be tempted to insert a DISTINCT keyword in the first SELECT state-
ment because a really good customer might have ordered a particular
bike model more than once. Because I didn’t use the ALL keyword on
the UNION, the request will eliminate any duplicates anyway. If you add
DISTINCT, you might be asking your database system to perform extra
work to eliminate duplicates twice!

When you need to build a UNION query, I recommend that you build the
separate SELECT statements first. It’s easy then to copy and paste the
syntax for each SELECT statement into a new query, separating each
statement with the UNION keyword.

Using UNION More Than Once

So far, I have shown you only how to use a UNION to combine two result
sets. In truth, you can follow the second SELECT statement specification
with another UNION keyword and another SELECT statement. Although
some implementations limit the number of result sets you can combine
with UNION, in theory, you can keep adding UNION SELECT to your
heart’s content.

Suppose you need to build a single mailing list from three different
tables—Customers, Employees, and Vendors—perhaps to create a com-
bined list for holiday greeting labels. Figure 10-9 shows a diagram of the
syntax to build this list.

You can see that you need to create one SELECT statement to fetch all
the names and addresses from the Customers table, UNION that first
statement with a SELECT statement for the same information from
the Employees table, and finally, UNION that with a SELECT state-
ment for names and addresses from the Vendors table. (To simplify the
process, I have combined the Translation and Clean Up steps in this
example.)

380 Chapter 10 UNIONs

SELECT Value Expression

FROM

DISTINCT

table_name

ALL

,

UNION

SELECT Value Expression

FROM

DISTINCT

table_name

,

SELECT Value Expression

FROM

DISTINCT

table_name

,

ALL

UNION

Figure 10-9 Creating a UNION of three tables

“Create a single mailing list for customers, employees, and vendors.”

Translation/
Clean Up

Select customer full name, customer street address, customer
city, customer state, and customer ZIP Code from the cus-
tomers table combined with union Select employee full name,
employee street address, employee city, employee state, and
employee ZIP Code from the employees table combined with
union Select vendor name, vendor street address, vendor city,
vendor state, and vendor ZIP Code from the vendors table

SQL SELECT Customers.CustFirstName || ' ' ||

 Customers.CustLastName AS CustFullName,

 Customers.CustStreetAddress,

 Customers.CustCity,

 Customers.CustState, Customers.CustZipCode

 Writing Requests with UNION 381

FROM Customers

UNION

SELECT Employees.EmpFirstName || ' ' ||

 Employees.EmpLastName AS EmpFullName,

 Employees.EmpStreetAddress, Employees.EmpCity,

 Employees.EmpState,

 Employees.EmpZipCode

FROM Employees

UNION

SELECT Vendors.VendName, Vendors.VendStreetAddress,

 Vendors.VendCity, Vendors.VendState,

 Vendors.VendZipCode

FROM Vendors

Of course, if you want to filter the mailing list for a particular city, state,
or range of ZIP Codes, you can add a WHERE clause to any or all of
the SELECT statements. If, for example, you want to create a list of the
customers, employees, and vendors only in a particular state, you must
add a WHERE clause to each of the embedded SELECT statements. You
could also apply a filter to just one of the SELECT statements, for exam-
ple, to create a list of vendors in the state of Texas combined with all
customers and all employees.

Sorting a UNION

What about sorting the result of a UNION? You’ll find on many database
systems that the result set appears as though it is sorted by the output
columns from left to right. For example, in the UNION of three tables I
just built in the previous section, the rows will appear in sequence first
by name, then by street address, and so on.

To keep the postal service happy (and perhaps get a discount for a large
mailing), sort your rows by ZIP Code. You can add an ORDER BY clause
to do this, but the trick is that this clause must appear at the very end
after the last SELECT statement. The ORDER BY applies to the result of
the UNION, not the last SELECT statement. Figure 10-10 shows how to
do this.

382 Chapter 10 UNIONs

SELECT Statement
SELECT StatementUNION

ALL

ASC
DESC

ORDER BY column_name

,
column_#

Figure 10-10 Adding a sorting specification to a UNION query

As the diagram shows, you can loop through a UNION SELECT state-
ment as many times as you like to pick up all the result sets you need to
combine, but the ORDER BY clause must appear at the end. You might
ask, “What do I use for column_name or column_# in the ORDER BY
clause?” Remember that you’re sorting the output of all the previous
parts of the SELECT expression. As discussed earlier, the output names
of the columns are “implementation-dependent,” but most database sys-
tems use the column names generated by the first SELECT statement.

You can also specify the relative column number, starting with 1, as the
first output column. In a query that outputs name, street address, city,
state, and ZIP Code, you need to specify a column_# of 5 (ZIP Code is the
fifth column) to sort by ZIP.

Let’s sort the mailing list query using both techniques. Here’s the correct
syntax for sorting by column name:

SQL SELECT Customers.CustFirstName || ' ' ||

 Customers.CustLastName AS CustFullName,

 Customers.CustStreetAddress, Customers.CustCity,

 Customers.CustState, Customers.CustZipCode

FROM Customers

UNION

SELECT Employees.EmpFirstName || ' ' ||

 Employees.EmpLastName AS EmpFullName,

 Employees.EmpStreetAddress, Employees.EmpCity,

 Employees.EmpState, Employees.EmpZipCode

 Uses for UNION 383

FROM Employees

UNION

SELECT Vendors.VendName, Vendors.VendStreetAddress,

 Vendors.VendCity, Vendors.VendState,

 Vendors.VendZipCode

FROM Vendors

ORDER BY CustZipCode

Of course, I’m assuming that the name of the output column I want to
sort is the name of the column from the first SELECT statement. Using a
relative column number to specify the sort looks like this:

SQL SELECT Customers.CustFirstName || ' ' ||

 Customers.CustLastName AS CustFullName,

 Customers.CustStreetAddress,

 Customers.CustCity,

 Customers.CustState, Customers.CustZipCode

FROM Customers

UNION

SELECT Employees.EmpFirstName || ' ' ||

 Employees.EmpLastName AS EmpFullName,

 Employees.EmpStreetAddress, Employees.EmpCity,

 Employees.EmpState, Employees.EmpZipCode

FROM Employees

UNION

SELECT Vendors.VendName, Vendors.VendStreetAddress,

 Vendors.VendCity, Vendors.VendState,

 Vendors.VendZipCode

FROM Vendors

ORDER BY 5

Uses for UNION

You probably won’t use UNION as much as INNER JOIN and OUTER
JOIN. You most likely will use UNION to combine two or more simi-
lar result sets from different tables. Although you can use UNION to

384 Chapter 10 UNIONs

combine two result sets from the same table or set of tables, you usually
can solve those sorts of problems with a simple SELECT statement con-
taining a more complex WHERE clause. I include a couple of examples in
the “Sample Statements” section and show you the more efficient way to
solve the same problem with a WHERE clause instead of a UNION.

Here’s just a small sample of the types of problems you can solve with
UNION using the sample databases:

“Show me all the customer and employee names and addresses.”

“List all the customers who ordered a bicycle combined with all the
customers who ordered a helmet.” (This is one of those problems that
can also be solved with a single SELECT statement and a complex
WHERE clause.)

“Produce a mailing list for customers and vendors.”

“List the customers who ordered a bicycle together with the vendors
who provide bicycles.”

“Create a list that combines agents and entertainers.”

“Display a combined list of customers and entertainers.”

“Produce a list of customers who like contemporary music together
with a list of entertainers who play contemporary music.”

“Create a mailing list for students and staff.”

“Show me the students who have an average score of 85 or better in
Art together with the faculty members who teach Art and have a profi-
ciency rating of 9 or better.”

“Find the bowlers who had a raw score of 155 or better at Thunderbird
Lanes combined with bowlers who had a raw score of 140 or better at
Bolero Lanes.” (This is another problem that can also be solved with a
single SELECT statement and a complex WHERE clause.)

“List the tourney matches, team names, and team captains for the
teams starting on the odd lane together with the tourney matches,
team names, and team captains for the teams starting on the
even lane.”

“Create an index list of all the recipe titles and ingredients.”

“Display a list of all ingredients and their default measurement
amounts together with ingredients used in recipes and the measure-
ment amount for each recipe.”

 Sample Statements 385

Sample Statements

You now know the mechanics of constructing queries using UNION and
have seen some of the types of requests you can answer with a UNION.
Let’s take a look at a fairly robust set of samples using UNION from each
of the sample databases. These examples illustrate the use of the UNION
operation to combine sets of rows.

I’ve also included sample result sets that would be returned by these
operations and placed them immediately after the SQL syntax line. The
name that appears immediately above a result set is the name I gave
each query in the sample data on the companion website for this book,
www.informit.com/title/9780134858333. I stored each query in the
appropriate sample database (as indicated within the example), and I
prefixed the names of the queries relevant to this chapter with “CH10.”
You can follow the instructions in the Introduction of this book to load
the samples onto your computer and try them.

 ❖ Note Because many of these examples use complex JOINs, the
optimizer for your database system might choose a different way
to solve these queries. For this reason, the first few rows might not
exactly match the result you obtain, but the total number of rows
should be the same. To simplify the process, I have combined the
Translation and Clean Up steps for all the following examples.

Sales Orders Database

“Show me all the customer and employee names and addresses,
including any duplicates, sorted by ZIP Code.”

Translation/
Clean Up

Select customer first name, customer last name, customer
street address, customer city, customer state, and customer
ZIP Code from the customers table combined with union all
Select employee first name, employee last name, employee
street address, employee city, employee state, and employee
ZIP Code from the employees table, order by ZIP Code

❖ Note Because many of these examples use complex JOINs, the
optimizer for your database system might choose a different way
to solve these queries. For this reason, the first few rows might not
exactly match the result you obtain, but the total number of rows
should be the same. To simplify the process, I have combined the
Translation and Clean Up steps for all the following examples.

http://www.informit.com/title/9780134858333

386 Chapter 10 UNIONs

SQL SELECT Customers.CustFirstName,

 Customers.CustLastName,

 Customers.CustStreetAddress,

 Customers.CustCity,

 Customers.CustState, Customers.CustZipCode

FROM Customers

UNION ALL

SELECT Employees.EmpFirstName,

 Employees.EmpLastName,

 Employees.EmpStreetAddress, Employees.EmpCity,

 Employees.EmpState, Employees.EmpZipCode

FROM Employees

ORDER BY CustZipCode

CH10_Customers_UNION_ALL_Employees (36 rows)

CustFirst
Name

CustLast
Name

CustStreet
Address

CustCity CustState CustZip
Code

Estella Pundt 2500 Rosales Lane Dallas TX 75260

Robert Brown 672 Lamont Ave Houston TX 77201

Kirk DeGrasse 455 West Palm Ave San Antonio TX 78284

Kirk DeGrasse 455 West Palm Ave San Antonio TX 78284

Angel Kennedy 667 Red River Road Austin TX 78710

Maria Patterson 3445 Cheyenne Road El Paso TX 79915

Mark Rosales 323 Advocate Lane El Paso TX 79915

Caleb Viescas 4501 Wetland Road Long Beach CA 90809

<< more rows here >>

(Notice that Kirk DeGrasse must be both a customer and an employee.)

“List all the customers who ordered a bicycle combined with all the
customers who ordered a helmet.”

 Sample Statements 387

Translation/
Clean Up

Select customer first name, customer last name, and the constant ‘Bike’
from the customers table joined with the orders table on customers.
customer ID in the customers table matches = orders.customer ID in the
orders table, then joined with the order details table on orders.order num-
ber in the orders table matches = order_details.order number in the order
details table, and then joined with the products table on product number
in the products table matches = order_details.product number in the
order details table where product name contains like ‘%bike%,’ combined
with union Select customer first name, customer last name, and the
constant ‘Helmet’ from the customers table joined with the orders table on
customers.customer ID in the customers table matches = orders.customer
ID in the orders table, then joined with the order details table on orders.
order number in the orders table matches = order_details.order number in
the order details table, and then joined with the products table on product
number in the products table matches = order_details.product number in
the order details table where product name contains like ‘%helmet%’

SQL SELECT Customers.CustFirstName,

 Customers.CustLastName, 'Bike' AS ProdType

FROM ((Customers INNER JOIN Orders

 ON Customers.CustomerID = Orders.CustomerID)

INNER JOIN Order_Details

 ON Orders.OrderNumber =

 Order_Details.OrderNumber)

INNER JOIN Products

 ON Products.ProductNumber =

 Order_Details.ProductNumber

WHERE Products.ProductName LIKE '%bike%'

UNION

SELECT Customers.CustFirstName,

 Customers.CustLastName, 'Helmet' AS ProdType

FROM ((Customers INNER JOIN Orders

 ON Customers.CustomerID = Orders.CustomerID)

INNER JOIN Order_Details

 ON Orders.OrderNumber = Order_Details.OrderNumber)

INNER JOIN Products

 ON Products.ProductNumber =

 Order_Details.ProductNumber

WHERE Products.ProductName LIKE '%helmet%'

388 Chapter 10 UNIONs

CH10_Customer_Order_Bikes_UNION_Customer_Order_Helmets (52 rows)

CustFirstName CustLastName ProdType

Alaina Hallmark Bike

Andrew Cencini Bike

Andrew Cencini Helmet

Angel Kennedy Bike

Angel Kennedy Helmet

Caleb Viescas Bike

Caleb Viescas Helmet

Darren Gehring Bike

<< more rows here >>

Notice that this is one of those problems that can also be solved with a
single SELECT statement and a slightly more complex WHERE clause.
The one advantage of using a UNION is that it’s easy to add an artifi-
cial “set identifier” column (in this case, the ProdType column) to each
result set so that you can see which customers came from which result
set. However, most database systems solve a WHERE clause—even one
with complex criteria—much faster than they solve a UNION. Following
is the SQL to solve the same problem with a WHERE clause, but note
that this eliminates rows in which a customer ordered both a bike and
a helmet because I didn’t include the ProdType column. Doing so would
have required a CASE statement in the SELECT clause, which you won’t
learn about until Chapter 19, “Condition Testing.”

SQL SELECT DISTINCT Customers.CustFirstName,

 Customers.CustLastName

FROM ((Customers INNER JOIN Orders

 ON Customers.CustomerID = Orders.CustomerID)

INNER JOIN Order_Details

 ON Orders.OrderNumber = Order_Details.OrderNumber)

INNER JOIN Products

 ON Products.ProductNumber =

 Order_Details.ProductNumber

WHERE Products.ProductName LIKE '%bike%'

 OR Products.ProductName LIKE '%helmet%'

 Sample Statements 389

CH10_Customers_Bikes_Or_Helmets (27 rows)

CustFirstName CustLastName

Alaina Hallmark

Andrew Cencini

Angel Kennedy

Caleb Viescas

Darren Gehring

David Smith

Dean McCrae

Estella Pundt

<< more rows here >>

 ❖ Note You can see that you need a DISTINCT keyword to eliminate
duplicates when you don’t use UNION. Remember that UNION auto-
matically eliminates duplicates unless you specify UNION ALL. You
can specify DISTINCT in the UNION examples, but you’re asking your
database system to do more work than necessary.

Entertainment Agency Database

“Create a list that combines agents and entertainers.”

Translation/
Clean Up

Select agent full name, and the constant ‘Agent’ from the
agents table combined with union Select entertainer stage
name, and the constant ‘Entertainer’ from the entertainers
table

SQL SELECT Agents.AgtLastName || ', ' ||

 Agents.AgtFirstName AS Name, 'Agent' AS Type

FROM Agents

UNION

SELECT Entertainers.EntStageName,

 'Entertainer' AS Type

FROM Entertainers

❖ Note You can see that you need a DISTINCT keyword to eliminate
duplicates when you don’t use UNION. Remember that UNION auto-
matically eliminates duplicates unless you specify UNION ALL. You
can specify DISTINCT in the UNION examples, but you’re asking your
database system to do more work than necessary.

390 Chapter 10 UNIONs

CH10_Agents_UNION_Entertainers (22 rows)

Name Type

Bishop, Scott Agent

Carol Peacock Trio Entertainer

Caroline Coie Cuartet Entertainer

Coldwater Cattle Company Entertainer

Country Feeling Entertainer

Dumbwit, Daffy Agent

Jazz Persuasion Entertainer

Jim Glynn Entertainer

<< more rows here >>

School Scheduling Database

“Show me the students who have a grade of 85 or better in Art
together with the faculty members who teach Art and have a profi-
ciency rating of 9 or better.”

Translation/
Clean Up

Select student first name aliased as FirstName, student last
name aliased as LastName, and grade aliased as Score from
the students table joined with the student schedules table on
students.student ID in the students table matches = student_
schedules.student ID in the student schedules table, then
joined with the student class status table on student_class_sta-
tus.class status in the student class status table matches =
student_schedules.class status in the student schedules table,
then joined with the classes table on classes.class ID in the
classes table matches = student_schedules.class ID in the stu-
dent schedules table, and then joined with the subjects table
on subjects.subject ID in the subjects table matches = classes.
subject ID in the classes table where class status description
is = ‘completed’ and grade is greater than or equal to >= 85 and
category ID is = ‘ART’ combined with union Select staff first
name, staff last name, and proficiency rating aliased as Score
from the staff table joined with the faculty subjects table on
staff.staff ID in the staff table matches = faculty_subjects.staff
ID in the faculty subjects table, and then joined with the sub-
jects table on subjects.subject ID in the subjects table matches
= faculty_subjects.subject ID in the faculty subjects table where
proficiency rating is greater than > 8 and category ID is = ‘ART’

 Sample Statements 391

SQL SELECT Students.StudFirstName AS FirstName,

 Students.StudLastName AS LastName,

 Student_Schedules.Grade AS Score,

 'Student' AS Type

FROM (((Students INNER JOIN Student_Schedules

 ON Students.StudentID =

 Student_Schedules.StudentID)

INNER JOIN Student_Class_Status

 ON Student_Class_Status.ClassStatus =

 Student_Schedules.ClassStatus)

INNER JOIN Classes

 ON Classes.ClassID = Student_Schedules.ClassID)

INNER JOIN Subjects

 ON Subjects.SubjectID = Classes.SubjectID

WHERE Student_Class_Status.ClassStatusDescription =

 'Completed'

 AND Student_Schedules.Grade >= 85

 AND Subjects.CategoryID = 'ART'

UNION

SELECT Staff.StfFirstName, Staff.StfLastName,

 Faculty_Subjects.ProficiencyRating AS Score,

 'Faculty' AS Type

FROM (Staff INNER JOIN Faculty_Subjects

 ON Staff.StaffID = Faculty_Subjects.StaffID)

INNER JOIN Subjects

 ON Subjects.SubjectID = Faculty_Subjects.SubjectID

WHERE Faculty_Subjects.ProficiencyRating > 8

 AND Subjects.CategoryID = 'ART'

392 Chapter 10 UNIONs

CH10_Good_Art_Students_And_Faculty (12 rows)

FirstName LastName Score Type

Alaina Hallmark 10 Faculty

George Chavez 97.81 Student

John Kennedy 87.65 Student

Kerry Patterson 99.83 Student

Liz Keyser 10 Faculty

Mariya Sergienko 9 Faculty

Michael Hernandez 10 Faculty

<< more rows here >>

Bowling League Database

“List the tourney matches, team names, and team captains for the
teams starting on the odd lane together with the tourney matches,
team names, and team captains for the teams starting on the even
lane, and sort by tournament date and match number.”

Translation/
Clean Up

Select tourney location, tourney date, match ID, team name,
captain name and the constant ‘Odd Lane’ from the tour-
naments table joined with the tourney matches table on
tournaments.tourney ID in the tournaments table equals =
tourney_matches.tourney ID in the tourney matches table, then
joined with the teams table on tourney_matches.odd lane team
ID in the tourney matches table equals = teams.team ID in the
teams table, and then joined with the bowlers table on teams.
captain ID in the teams table equals = bowlers.bowler ID in the
bowlers table, combined with union all Select tourney location,
tourney date, match ID, team name, captain name and the
constant ‘Even Lane’ from the tournaments table joined with
the tourney matches table on tournaments.tourney ID in the
tournaments tab-le equals = tourney_matches.tourney ID in
the tourney matches table, then joined with the teams table
on tourney_matches.even lane team ID in the tourney matches
table equals = teams.team ID in the teams table, and then
joined with the bowlers table on teams.captain ID in the teams
table equals = bowlers.bowler ID in the bowlers table, order by
tourney date 2, and match ID 3

 Sample Statements 393

SQL SELECT Tournaments.TourneyLocation,

 Tournaments.TourneyDate,

 Tourney_Matches.MatchID, Teams.TeamName,

 Bowlers.BowlerLastName || ', ' ||

 Bowlers.BowlerFirstName AS Captain,

 'Odd Lane' AS Lane

FROM ((Tournaments INNER JOIN Tourney_Matches

 ON Tournaments.TourneyID =

 Tourney_Matches.TourneyID)

INNER JOIN Teams

 ON Teams.TeamID =

 Tourney_Matches.OddLaneTeamID)

INNER JOIN Bowlers

 ON Bowlers.BowlerID = Teams.CaptainID

UNION ALL

SELECT Tournaments.TourneyLocation,

 Tournaments.TourneyDate,

 Tourney_Matches.MatchID, Teams.TeamName,

 Bowlers.BowlerLastName || ', ' ||

 Bowlers.BowlerFirstName AS Captain,

 'Even Lane' AS Lane

FROM ((Tournaments INNER JOIN Tourney_Matches

 ON Tournaments.TourneyID =

 Tourney_Matches.TourneyID)

INNER JOIN Teams ON Teams.TeamID =

 Tourney_Matches.EvenLaneTeamID)

INNER JOIN Bowlers

 ON Bowlers.BowlerID = Teams.CaptainID

ORDER BY 2, 3

Notice that the two SELECT statements are almost identical! The only
difference is the first SELECT statement links Tourney_Matches with
Teams on OddLaneTeamID, and the second uses EvenLaneTeamID.
Also, note that I decided in the final solution to sort by relative col-
umn number (the second and third columns) rather than column name

394 Chapter 10 UNIONs

(TourneyDate and MatchID). Finally, you can use UNION ALL because a
team is never going to compete against itself.

CH10_Bowling_Schedule (114 rows)

Tourney
Location

Tourney
Date

MatchID TeamName Captain Lane

Red Rooster
Lanes

2017-09-04 1 Marlins Fournier, David Odd Lane

Red Rooster
Lanes

2017-09-04 1 Sharks Patterson, Ann Even Lane

Red Rooster
Lanes

2017-09-04 2 Barracudas Sheskey, Richard Even Lane

Red Rooster
Lanes

2017-09-04 2 Terrapins Viescas, Carol Odd Lane

Red Rooster
Lanes

2017-09-04 3 Dolphins Viescas, Suzanne Odd Lane

Red Rooster
Lanes

2017-09-04 3 Orcas Thompson, Sarah Even Lane

Red Rooster
Lanes

2017-09-04 4 Manatees Viescas, Michael Odd Lane

Red Rooster
Lanes

2017-09-04 4 Swordfish Rosales, Joe Even Lane

Thunderbird
Lanes

2017-09-11 5 Marlins Fournier, David Even Lane

Thunderbird
Lanes

2017-09-11 5 Terrapins Viescas, Carol Odd Lane

<< more rows here >>

Recipes Database

“Create an index list of all the recipe classes, recipe titles, and
ingredients.”

Translation/
Clean Up

Select recipe class description, and the constant ‘Recipe Class’
from the recipe classes table combined with union Select
recipe title, and the constant ‘Recipe’ from the recipes table
combined with union Select ingredient name, and the constant
‘ Ingredient’ from the ingredients table

 Summary 395

SQL SELECT Recipe_Classes.RecipeClassDescription

 AS IndexName, 'Recipe Class' AS Type

FROM Recipe_Classes

UNION

SELECT Recipes.RecipeTitle, 'Recipe' AS Type FROM
 Recipes

UNION

SELECT Ingredients.IngredientName,

 'Ingredient' AS Type

FROM Ingredients

CH10_Classes_Recipes_Ingredients (101 rows)

IndexName Type

Asparagus Ingredient

Asparagus Recipe

Bacon Ingredient

Balsamic vinaigrette dressing Ingredient

Beef Ingredient

Beef drippings Ingredient

Bird’s custard powder Ingredient

Black olives Ingredient

<< more rows here >>

Summary

I began the chapter by defining UNION and showing you the difference
between linking two tables with a JOIN and combining two tables with a
UNION.

I next explained how to construct a simple UNION using two SELECT
statements, each of which asked for columns from a single table. I
explained the significance of the ALL keyword and recommended that
you use it either when you know the queries produce no duplicates or
when you don’t care. I then progressed to combining two complex

396 Chapter 10 UNIONs

SELECT statements that each used a JOIN on multiple tables. Next,
I showed how to use UNION to combine more than two result sets.
I wrapped up my discussion of UNION syntax by showing how to sort
the result.

I explained how UNION is useful and listed a variety of requests that you
can solve using UNION. The “Sample Statements” section showed you
one or two examples of how to use UNION in each of the sample data-
bases, including the logic behind constructing these requests.

The following section presents some requests that you can work out on
your own.

Problems for You to Solve

Below, I show you the request statement and the name of the solution
query in the sample databases. If you want some practice, you can work
out the SQL you need for each request and then check your answer with
the query I saved in the samples. Don’t worry if your syntax doesn’t
exactly match the syntax of the queries I saved—as long as your result
set is the same.

Sales Orders Database

 1. “List the customers who ordered a helmet together with the vendors
who provide helmets.”

(Hint: This involves creating a UNION of two complex JOINs.)

You can find the solution in CH10_Customer_Helmets_Vendor_
Helmets (91 rows).

Entertainment Agency Database

 1. “Display a combined list of customers and entertainers.”

(Hint: Be careful to create an expression for one of the names
so that you have the same number of columns in both SELECT
statements.)

You can find the solution in CH10_Customers_UNION_
Entertainers (28 rows).

 Problems for You to Solve 397

 2. “Produce a list of customers who like contemporary music together
with a list of entertainers who play contemporary music.”

(Hint: You need to UNION two complex JOINs to solve this one.)

You can find the solution in CH10_Customers_Entertainers_
Contemporary (5 rows).

School Scheduling Database

 1. “Create a mailing list for students and staff, sorted by ZIP Code.”

(Hint: Try using a relative column number for the sort.)

You can find the solution in CH10_Student_Staff_Mailing_List
(45 rows).

Bowling League Database

 1. “Find the bowlers who had a raw score of 165 or better at Thunder-
bird Lanes combined with bowlers who had a raw score of 150 or
better at Bolero Lanes.”

(Hint: This is another of those problems that can also be solved
with a single SELECT statement and a complex WHERE clause.)

You can find the solution using UNION in CH10_Good_Bowlers_
TBird_Bolero_UNION (129 rows). You can find the solution using
WHERE in CH10_Good_Bowlers_TBird_Bolero_WHERE (135 rows).

 2. “Can you explain why the row counts are different in the previous
solution queries?”

(Hint: Try using UNION ALL in the first query.)

Recipes Database

 1. “Display a list of all ingredients and their default measurement
amounts together with ingredients used in recipes and the measure-
ment amount for each recipe.”

(Hint: You need one simple JOIN and one complex JOIN to
solve this.)

You can find the solution in CH10_Ingredient_Recipe_
Measurements (144 rows).

This page intentionally left blank

 399

11
Subqueries

“We can’t solve problems by using the same
kind of thinking we used when we created them.”

—ALBERT EINSTEIN

Topics Covered in This Chapter

What Is a Subquery?

Subqueries as Column Expressions

Subqueries as Filters

Uses for Subqueries

Sample Statements

Summary

Problems for You to Solve

In the previous three chapters, I showed you many ways to work with
data from more than one table. All the techniques I’ve covered to this
point have been focused on linking subsets of information—one or more
columns and one or more rows from an entire table or a query embed-
ded in the FROM clause. I’ve also explored combining sets of information
using the UNION operator. In this chapter, I’ll show you effective ways to
fetch a single column from a table or query and use it as a value expres-
sion in either a SELECT clause or a WHERE clause.

400 Chapter 11 Subqueries

There are two significant points you should learn in this chapter:

 1. There’s always more than one way to solve a particular problem in
SQL. In fact, this chapter will show you new ways to solve prob-
lems already covered in previous chapters.

 2. You can build complex filters that do not rely on the tables in
your FROM clause. This is an important concept because using
a subquery in a WHERE clause is the only way to get the correct
number of rows in your answer when you want rows from one
table based on the filtered contents from other related tables. I’ll
explain this in more detail later in the chapter.

 ❖ Note This chapter covers advanced concepts and assumes that
you’ve read and thoroughly understood Chapter 7, “Thinking in Sets”;
Chapter 8, “INNER JOINs”; and Chapter 9, “OUTER JOINs.”

What Is a Subquery?

Simply put, a subquery is a SELECT expression that you embed inside
one of the clauses of a SELECT statement to form your final query state-
ment. In this chapter, I’ll define more formally a subquery and show how
to use it other than in the FROM clause.

The SQL Standard defines three types of subqueries:

 1. Row subquery—an embedded SELECT expression that returns
more than one column and no more than one row

 2. Table subquery—an embedded SELECT expression that returns
one or more columns and zero to many rows

 3. Scalar subquery—an embedded SELECT expression that returns
only one column and no more than one row

Row Subqueries

You’ve already created queries that embed a SELECT statement in a
FROM clause to let you filter rows before joining that result with other
tables or queries. (That’s called a table subquery, as you’ll learn below.)

❖ Note This chapter covers advanced concepts and assumes that
you’ve read and thoroughly understood Chapter 7, “Thinking in Sets”;
Chapter 8, “INNER JOINs”; and Chapter 9, “OUTER JOINs.”

 What Is a Subquery? 401

A row subquery is a special form of a SELECT statement that returns
more than one column but only one row.

In the SQL Standard, you can use a row subquery to build something
the standard calls a row value constructor. When you create a WHERE
clause, you build a search condition that is typically some sort of com-
parison of one column from one of your tables either with another col-
umn or with a literal. The SQL Standard, however, allows you to build
a search condition that compares multiple values as a logical row with
another set of values as a logical row (two row value constructors). You
can enter the list of comparison values either by making a list in paren-
theses or by using a row subquery to fetch a single row from one of your
tables. The bad news is that not many commercial database systems
support this syntax.

Why might this be useful? Consider a Products table that has a com-
pound part identifier in two separate fields. The first part of the identi-
fier might be characters that indicate the subclass of parts (SKUClass),
such as CPU or DSK for a computer parts manufacturer. The second
part of the identifier could be a number that identifies the part within
the subclass (SKUNumber). Let’s say you want all parts that have a com-
bined identifier of DSK09775 or higher. Here’s an example of a WHERE
clause that uses a row value constructor to solve the problem:

SQL SELECT SKUClass, SKUNumber, ProductName

FROM Products

WHERE

 (SKUClass, SKUNumber)

 >= ('DSK', 9775)

The preceding WHERE clause asks for rows where the combination of
SKUClass and SKUNumber is greater than the combination of DSK and
9775. It’s the same as requesting the following:

SQL SELECT SKUClass, SKUNumber, ProductName

FROM Products

WHERE (SKUClass > 'DSK')

OR ((SKUClass = 'DSK')

AND (SKUNumber >= 9775))

Here’s where you could substitute a SELECT statement that returns a
single row of two columns—a row subquery—for the second part of the

402 Chapter 11 Subqueries

comparison (probably using a WHERE clause to limit the result to one
row). Most commercial databases support neither a row value construc-
tor nor row subqueries. That’s all I’m going to say about them in this
chapter.

Table Subqueries

Wait a minute! Didn’t I already show you how to embed a SELECT
expression returning multiple rows and columns inside a FROM clause
in the previous three chapters? The answer is yes—I snuck it in on you!
I’ve already liberally used table subqueries in the previous chapters to
specify a complex result that I then embedded in the FROM clause of
another query. In this chapter, I’ll show you how to use a table subquery
as the source for the list of comparison values for an IN predicate—
something about which you learned the basics in Chapter 6, “Filtering
Your Data.” I’ll also teach you a few new comparison predicate keywords
that are used only with table subqueries.

Scalar Subqueries

In this chapter, I’ll also show how to use a scalar subquery anywhere
you might otherwise use a value expression. A scalar subquery lets
you fetch a single column or calculated expression from another table
that does not have to be in the FROM clause of the main query. You can
use the single value fetched by a scalar subquery in the list of columns
you request in a SELECT clause or as a comparison value in a WHERE
clause.

Subqueries as Column Expressions

In Chapter 5, “Getting More Than Simple Columns,” you learned a lot
about using expressions to generate calculated columns to be output by
your query. I didn’t tell you then that you can also use a special type of
SELECT statement—a subquery—to fetch data from another table, even
if the table isn’t in your FROM clause.

Syntax

Let’s go back to the basics and take a look at a simple form of a SELECT
statement in Figure 11-1.

 Subqueries as Column Expressions 403

SELECT Value Expression

,

SELECT Statement

alias

AS

Table Reference

,
FROM

Figure 11-1 The syntax diagram for a simple SELECT statement

This looks simple, but it really isn’t! In fact, the value expression part
can be quite complex. Figure 11-2 shows all the options that can consti-
tute a value expression.

Value Expression

+, -Date / Time

Expression

Types
Valid

Operators

Character ||

Numeric +, -, *, /

Interval +, -, *, /

Scalar value only

+
-

+
-
*
/
||

Value Expression

Literal Value

Column Reference

Function

(Value Expression)

CASE Expression

(SELECT Expression)#

Figure 11-2 The syntax diagram for a value expression

In Chapter 5, I showed you how to create basic value expressions using
literal values, column references, and functions. I’ll explore CASE
Expression in Chapter 19, “Condition Testing.” Notice that SELECT
Expression now appears on the list. This means that you can embed
a scalar subquery in the list of expressions immediately following the
SELECT keyword. As noted earlier, a scalar subquery is a SELECT
expression that returns exactly one column and no more than one row.
This makes sense because you’re substituting the subquery where you
would normally enter a single column name or expression that results in
a single column.

404 Chapter 11 Subqueries

You might be wondering at this point, “Why is this useful?” A subquery
used in this way lets you pluck a single value from some other table or
query to include in the output of your query. You don’t need to reference
the table or query that is the source of the data in the FROM clause
of the subquery at all in the FROM clause of the outer query. In most
cases, you will need to add criteria in the WHERE clause of the sub-
query to make certain it returns no more than one row. You can even
have the criteria in the subquery reference a value being returned by the
outer query to pluck out the data related to the current row.

Let’s look at some simple examples using only the Customers and Orders
tables from the Sales Orders example database. Figure 11-3 shows the
relationship between these two tables.

ORDERS

OrderNumber PK
OrderDate
ShipDate
CustomerID FK
EmployeeID FK

CUSTOMERS

CustomerID PK
CustFirstName
CustLastName
CustStreetAddress
CustCity
CustState
CustZipCode

CustPhoneNumber
CustAreaCode

Figure 11-3 The Customers and Orders tables

Now, let’s build a query that lists all the orders for a particular date and
plucks the related customer last name from the Customers table using a
subquery.

 ❖ Note Throughout this chapter, I use the “Request/Translation/
Clean Up/SQL” technique introduced in Chapter 4, “Creating a Simple
Query.” Also, I include parentheses around the parts that are subque-
ries in the Clean Up step and indent the subqueries where possible to
help you see how I am using them.

“Show me all the orders shipped on October 3, 2017, and each order’s
related customer last name.”

❖ Note Throughout this chapter, I use the “Request/Translation/
Clean Up/SQL” technique introduced in Chapter 4, “Creating a Simple
Query.” Also, I include parentheses around the parts that are subque-
ries in the Clean Up step and indent the subqueries where possible to
help you see how I am using them.

 Subqueries as Column Expressions 405

Translation Select order number, order date, ship date, and also select the
related customer last name out of the customers table from the
orders table where ship date is October 3, 2017

Clean Up Select order number, order date, ship date, and also (select
the related customer last name out of the from customers
table) from the orders table where ship date is = October 3, 2017
‘2017-10-03’

SQL SELECT Orders.OrderNumber, Orders.OrderDate,
 Orders.ShipDate,
 (SELECT Customers.CustLastName
 FROM Customers
 WHERE Customers.CustomerID =
 Orders.CustomerID)
FROM Orders
WHERE Orders.ShipDate = '2017-10-03'

Notice that I had to restrict the value of the CustomerID in the subquery
to the value of the CustomerID in each row I’m fetching from the Orders
table. Otherwise, I’ll get all the rows in Customers in the subquery.
Remember that this must be a scalar subquery—a query that returns
only one value from one row—so I must do something to restrict what gets
returned to no more than one row. Because CustomerID is the primary
key of the Customers table, I can be confident that the match on the Cus-
tomerID column from the Orders table will return exactly one row.

Those of you who caught on to the concept of INNER JOIN in Chapter 8
are probably wondering why you would want to solve this problem as
just described rather than to JOIN Orders to Customers in the FROM
clause of the outer query. Right now I’m focusing on the concept of using
a subquery to create an output column with a very simple example. In
truth, you probably should solve this particular problem with the follow-
ing query using an INNER JOIN:

SQL SELECT Orders.OrderNumber, Orders.OrderDate,

 Orders.ShipDate, Customers.CustLastName

FROM Customers

INNER JOIN Orders

ON Customers.CustomerID = Orders.OrderID

WHERE Orders.ShipDate = '2017-10-03'

406 Chapter 11 Subqueries

An Introduction to Aggregate Functions: COUNT
and MAX

Now that you understand the basic concept of using a subquery to gen-
erate an output column, let’s expand your horizons and see how this fea-
ture can be really useful. First, I need to give you an overview of a couple
of aggregate functions. (I’ll cover all the aggregate functions in detail in
the next chapter.)

The SQL Standard defines many functions that calculate values in a
query. One subclass of functions—aggregate functions—lets you cal-
culate a single value for a group of rows in a result set. For example,
you can use an aggregate function to count the rows, find the largest or
smallest value within the set of rows, or calculate the average or total of
some value or expression across the result set.

Let’s take a look at a couple of these functions and then see how they
can be most useful in a subquery. Figure 11-4 shows the diagram for the
COUNT and MAX functions, which can generate an output column in a
SELECT clause.

MAX

COUNT

COUNT *

DISTINCT

Value Expression

Figure 11-4 Using the COUNT and MAX aggregate functions

You can use COUNT to determine the number of rows or the number of
non-Null values in a result set. Use COUNT(*) to find out how many rows
are in the entire set. If you specify a particular column in the result set
using COUNT(column_name), the database system counts the number of
rows with non-Null values in that column. You can also ask to count
only the unique values by adding the DISTINCT keyword.

Likewise, you can find the largest value in a column by using MAX. If
the value expression is numeric, you get the largest number value from
the column or expression you specify. If the value expression returns
a character data type, the largest value will depend on the collating
sequence of your database system. If the value expression is a date or
time, you get the latest date or time value from the column or expression.

Let’s use these functions in a subquery to solve a couple of interesting
problems:

 Subqueries as Column Expressions 407

“List all the customer names and a count of the orders they placed.”

Translation Select customer first name, customer last name, and also
select the count of orders from the orders table for this
customer from the customers table

Clean Up Select customer first name, customer last name, and also
(select the count of orders (*) from the orders table for this
customer where orders.customer ID = customers.customer
ID) from the customers table

SQL SELECT Customers.CustFirstName,
 Customers.CustLastName,
 (SELECT COUNT(*)
 FROM Orders
 WHERE Orders.CustomerID =
 Customers.CustomerID)
AS CountOfOrders
FROM Customers

Subqueries as output columns are starting to look interesting now! In
Part IV, “Summarizing and Grouping Data,” you’ll learn more about cre-
ative ways to use aggregate functions. But if all you want is a count of
related rows, a subquery is a good way to do it. In fact, if you don’t want
anything other than the customer name and the count of orders, this
is just about the only way to solve the problem. If you add the Orders
table to the FROM clause of the main query (FROM Customers INNER
JOIN Orders ON Customers.CustomerID = Orders.CustomerID),
you’ll get multiple rows for each customer who placed more than one
order. In Chapter 13, “Grouping Data,” you’ll learn about another way
that involves grouping the rows on customer name.

Let’s look at an interesting problem that takes advantage of another
aggregate function—MAX:

“Show me a list of customers and the last date on which they placed
an order.”

Translation Select customer first name, customer last name, and also
select the highest order date from the orders table for this
customer from the customers table

Clean Up Select customer first name, customer last name, and also
(select the highest max(order date) from the orders table for
this customer where orders.customer ID = customers.cus-
tomer ID) from the customers table

408 Chapter 11 Subqueries

SQL SELECT Customers.CustFirstName,
 Customers.CustLastName,
 (SELECT MAX(OrderDate)
 FROM Orders
 WHERE Orders.CustomerID =
 Customers.CustomerID) AS LastOrderDate
FROM Customers

As you can imagine, using MAX in this way works well for finding the
highest or most recent value from any related table. I’ll show you several
other ways to use these functions in the “Sample Statements” section
later in this chapter.

Subqueries as Filters

In Chapter 6, you learned how to filter the information retrieved by add-
ing a WHERE clause. You also learned how to use both simple and com-
plex comparisons to get only the rows you want in your result set. Now
I’ll build on your skills and show you how to use a subquery as one of
the comparison arguments to do more sophisticated filtering.

Syntax

Let’s revisit the SELECT statement from Figure 11-1 and look at the
syntax for building a query with a simple comparison predicate in a
WHERE clause. Figure 11-5 shows the simplified diagram.

SELECT Value Expression

,

SELECT Statement

alias
AS

Table Reference

,
FROM

WHERE Value Expression=
<>
<
>

<=
>=

column_name

Figure 11-5 Filtering a result using a simple comparison predicate

 Subqueries as Filters 409

As you remember from Figure 11-2, a value expression can be a sub-
query. In the simple example in Figure 11-5, you’re comparing the value
expression to a single column. Thus, the value expression must be a sin-
gle value—that is, a scalar subquery that returns exactly one column
and no more than one row. Let’s solve a simple problem requiring a com-
parison to a value returned from a subquery. In this example, I am going
to ask for all the details about customer orders, but I want only the last
order for each customer. Figure 11-6 shows the tables needed.

ORDERS

OrderNumber PK
OrderDate
ShipDate
CustomerID FK
EmployeeID FK

ORDER_DETAILS

OrderNumber CPK
ProductNumber CPK
QuotedPrice
QuantityOrdered

PRODUCTS

ProductNumber PK
ProductName
ProductDescription
RetailPrice
QuantityOnHand
CategoryID FK

CUSTOMERS

CustomerID PK
CustFirstName
CustLastName
CustStreetAddress
CustCity
CustState
CustZipCode

CustPhoneNumber
CustAreaCode

Figure 11-6 The tables required to list all the details about an order

“List customers and all the details from their last order.”

Translation Select customer first name, customer last name, order number,
order date, product number, product name, and quantity ordered
from the customers table joined with the orders table on cus-
tomer ID in the customers table equals customer ID in the orders
table, then joined with the order details table on order number in
the orders table equals order number in the order details table,
and then joined with the products table on product number in
the products table equals product number in the order details
table where the order date equals the maximum order date from
the orders table for this customer

410 Chapter 11 Subqueries

Clean Up Select customer first name, customer last name, order number,
order date, product number, product name, and quantity ordered
from the customers table inner joined with the orders table on
customers.customer ID in the customers table equals = orders.
customer ID in the orders table, then inner joined with the order
details table on orders.order number in the orders table equals =
order_details.order number in the order details table, and then
inner joined with the products table on products.product number
in the products table equals = order_details.product number in
the order details table where the order date equals = (select the
maximum (order date) from the orders table for this customer
where orders.customer ID = customers.customer ID)

SQL SELECT Customers.CustFirstName,

 Customers.CustLastName, Orders.OrderNumber,

 Orders.OrderDate,

 Order_Details.ProductNumber,

 Products.ProductName,

 Order_Details.QuantityOrdered

FROM ((Customers

INNER JOIN Orders

 ON Customers.CustomerID = Orders.CustomerID)

INNER JOIN Order_Details

 ON Orders OrderNumber =

 Order_Details.OrderNumber)

INNER JOIN Products

 ON Products.ProductNumber =

 Order_Details.ProductNumber

WHERE Orders.OrderDate =

 (SELECT MAX(OrderDate)

 FROM Orders AS O2

 WHERE O2.CustomerID = Customers.CustomerID)

Did you notice that I gave an alias name to the second reference to the
Orders table (that is, the Orders table in the subquery)? Even if you
leave out the alias name, many database systems will recognize that
you mean the copy of the Orders table within the subquery. In fact, the
SQL Standard dictates that any unqualified reference should be resolved
from the innermost query first. Still, I added the alias reference to make

 Subqueries as Filters 411

it crystal clear that the copy of the Orders table I’m referencing in the
WHERE clause of the subquery is the one in the FROM clause of the
subquery. If you follow this practice, your request will be much easier to
understand—either by you when you come back to it some months later
or by someone else who has to figure out what your request meant.

Special Predicate Keywords for Subqueries

The SQL Standard defines a number of special predicate keywords for
use in a WHERE clause with a subquery.

Set Membership: IN

You learned in Chapter 6 how to use the IN keyword in a WHERE clause
to compare a column or expression to a list of values. You now know
that each value expression in the IN list could be a scalar subquery. How
about using a subquery to generate the entire list? As Figure 11-7 shows,
you can certainly do that!

SELECT Value Expression

,

SELECT Statement

alias
AS

Table Reference

,
FROM

WHERE Value Expression IN

NOT

(SELECT Expression)

Value Expression

,

Figure 11-7 Using a subquery with an IN predicate

In this case, you can use a table subquery that returns one column and
as many rows as necessary to build the list. Let’s use the Recipes sam-
ple database for an example. Figure 11-8 shows the tables of interest.

412 Chapter 11 Subqueries

INGREDIENT_CLASSES

IngredientClassID PK
IngredientClassDescription

RECIPES

RecipeID PK
RecipeTitle
RecipeClassID FK
Preparation
Notes

INGREDIENTS

IngredientID PK
IngredientName
IngredientClassID FK
MeasureAmountID FK

RECIPE_INGREDIENTS

RecipeID CPK

RecipeSeqNo CPK
IngredientID FK
MeasureAmountID FK
Amount

Figure 11-8 The tables needed to list recipes and their ingredients

Let’s suppose you’re having someone over for dinner who just adores
seafood. Although you know you have some recipes containing seafood
ingredients, you’re not sure of all the ingredient names in your database.
You do know that you have an IngredientClassDescription of Seafood, so
you can join all the tables and filter on IngredientClassDescription—or
you can get creative and use subqueries and the IN predicate instead.

“List all my recipes that have a seafood ingredient.”

Translation Select recipe title from the recipes table where the
 recipe ID is in the selection of recipe IDs from the recipe
 ingredients table where the ingredient ID is in the
 selection of ingredient IDs from the ingredients table
joined with the ingredient classes table on ingredient
class ID in the ingredients table matches ingredient class
ID in the ingredient classes table where ingredient class
description is ‘seafood’

Clean Up Select recipe title from the recipes table where the recipe ID
is in the (selection of recipe IDs from the recipe ingredients
table where the ingredient ID is in the (selection of
 ingredient IDs from the ingredients table inner joined with
the ingredient classes table on ingredients.ingredient class
ID in the ingredients table matches = ingredient_classes.
ingredient class ID in the ingredient classes table where
ingredient class description is = ‘seafood’))

 Subqueries as Filters 413

SQL SELECT RecipeTitle

FROM Recipes

WHERE Recipes.RecipeID IN

 (SELECT RecipeID

 FROM Recipe_Ingredients

 WHERE Recipe_Ingredients.IngredientID IN

 (SELECT IngredientID

 FROM Ingredients

 INNER JOIN Ingredient_Classes

 ON Ingredients.IngredientClassID =

 Ingredient_Classes.IngredientClassID

 WHERE

 Ingredient_Classes.IngredientClassDescription

 = 'Seafood'))

Did it occur to you that you could put a subquery within a subquery?
I actually could have gone one level deeper by eliminating the INNER
JOIN from the second subquery. I could have stated the second subquery
using the following syntax:

SQL (SELECT IngredientID

 FROM Ingredients

 WHERE Ingredients.IngredientClassID IN

 (SELECT IngredientClassID

 FROM Ingredient_Classes

 WHERE

 Ingredient_Classes.IngredientClassDescription

 = 'Seafood'))

That would be overkill, however, because embedding IN clauses within
IN clauses only makes the query harder to read. I did so in the previous
example to show you that you can do it. It’s worth restating, though, that
just because you can do something doesn’t mean you should! I think
you’ll agree that it’s easier to see what’s going on by using a single IN

414 Chapter 11 Subqueries

predicate and a more complex JOIN in the subquery. Here’s another solu-
tion using this technique:

SQL SELECT RecipeTitle

FROM Recipes

WHERE Recipes.RecipeID IN

 (SELECT RecipeID

 FROM (Recipe_Ingredients

 INNER JOIN Ingredients

 ON Recipe_Ingredients.IngredientID =

 Ingredients.IngredientID)

 INNER JOIN Ingredient_Classes

 ON Ingredients.IngredientClassID =

 Ingredient_Classes.IngredientClassID

 WHERE

 Ingredient_Classes.IngredientClassDescription

 = 'Seafood'

You might be asking at this point, “Why go to all this trouble? Why not
just do the complex JOIN in the outer query and be done with it?” The
reason is that you’ll get the wrong answer! Actually, the rows returned
will all be rows from the Recipes table for seafood recipes, but you might
get some rows more than once. Let’s try to solve this without the sub-
query to see why you get duplicate rows.

SQL SELECT RecipeTitle

FROM ((Recipes

INNER JOIN Recipe_Ingredients

 ON Recipes.RecipeID =

 Recipe_Ingredients.RecipeID)

INNER JOIN Ingredients

 ON Recipe_Ingredients.IngredientID =

 Ingredients.IngredientID)

INNER JOIN Ingredient_Classes

 ON Ingredients.IngredientClassID =

 Ingredient_Classes.IngredientClassID

WHERE

Ingredient_Classes.IngredientClassDescription

 = 'Seafood'

 Subqueries as Filters 415

If you look back at Figure 11-8, you can see that the Recipe_ Ingredients
table might have many rows for each row in the Recipes table. The result
set defined by the FROM clause will contain at least as many rows as
there are in Recipe_Ingredients, with the RecipeTitle column value
repeated many times. Even when I add the filter to restrict the result to
ingredients in class Seafood, I will still get more than one row per recipe
in any recipe that has more than one seafood ingredient.

Yes, you could include the DISTINCT keyword, but the odds are your
database system will have to do more work to eliminate the duplicates.
Although this statement saved as a view probably won’t be updatable in
most database systems because the single output column might have
duplicate values in many rows, keep in mind that a view using DIS-
TINCT will never be updatable because DISTINCT masks the unique
identity of each underlying row, so your database system won’t know
which row to update.

Using this subquery technique also becomes really important when you
want to list more than just the recipe title. For example, suppose you
also want to list all the ingredients from any recipe that has a seafood
ingredient. If you use a complex JOIN in the outer query and filter for an
ingredient class of Seafood as I just did, all you will get is seafood ingre-
dients—you won’t get all the other ingredients for the recipes. Let’s ask
one additional and slightly more complex request:

“List recipes and all ingredients for each recipe for recipes that have a
seafood ingredient.”

Translation Select recipe title and ingredient name from the recipes
table joined with the recipe ingredients table on recipe
ID in the recipes table equals recipe ID in the recipe
ingredients table, and then joined with the ingredients
table on ingredient ID in the ingredients table equals
ingredient ID in the recipe ingredients table where the
recipe ID is in the selection of recipe IDs from the recipe
ingredients table joined with the ingredients table on
ingredient ID in the recipe ingredients table equals
ingredient ID in the ingredients table, and then joined
with the ingredient classes table on ingredient class ID
in the ingredients table equals ingredient class ID in the
ingredient classes table where ingredient class descrip-
tion is ‘seafood’

416 Chapter 11 Subqueries

Clean Up Select recipe title, and ingredient name from the
 recipes table inner joined with the recipe ingredients
table on recipes.recipe ID in the recipes table equals =
recipe_ingredients.recipe ID in the recipe ingredients
table, and then inner joined with the ingredients table
on ingredients.ingredient ID in the ingredients table
equals = recipe_ingredients.ingredient ID in the recipe
ingredients table where the recipe ID is in the (selection
of recipe IDs from the recipe ingredients table inner
joined with the ingredients table on recipe_ingredients.
ingredient ID in the recipe ingredients table equals =
ingredients.ingredient ID in the ingredients table, and
then inner joined with the ingredient classes table on
ingredients.ingredient class ID in the ingredients table
equals = ingredient_classes.ingredient class ID in the
ingredient classes table where ingredient class
 description is = ‘seafood’)

SQL SELECT Recipes.RecipeTitle,

 Ingredients.IngredientName

FROM (Recipes

INNER JOIN Recipe_Ingredients

 ON Recipes.RecipeID =

 Recipe_Ingredients.RecipeID)

INNER JOIN Ingredients

 ON Ingredients.IngredientID =

 Recipe_Ingredients.IngredientID

WHERE Recipes.RecipeID IN

 (SELECT RecipeID

 FROM (Recipe_Ingredients

 INNER JOIN Ingredients

 ON Recipe_Ingredients.IngredientID =

 Ingredients.IngredientID)

 INNER JOIN Ingredient_Classes

 ON Ingredients.IngredientClassID =

 Ingredient_Classes.IngredientClassID

WHERE

Ingredient_Classes.IngredientClassDescription

 = 'Seafood')

 Subqueries as Filters 417

The key here is that the complex INNER JOIN in the main part of the
query retrieves all the ingredients for the recipes selected, and the com-
plex subquery returns a list of recipe IDs for just the seafood recipes. It
seems like I’m doing a complex JOIN twice, but there’s method in the
madness!

Quantified: ALL, SOME, and ANY

As you have just seen, the IN predicate lets you compare a column or
expression to a list to see whether that column or expression is in the
list. In other words, the column or expression equals one of the members
of the list. If you want to find out whether the column or expression is
greater than or less than any, all, or some of the items in the list, you
can use a quantified predicate. Figure 11-9 shows the syntax.

SELECT Value Expression

,

SELECT Statement

alias
AS

Table Reference

,
FROM

WHERE Value Expression ALL

ANY

SOME
(SELECT Expression)=

<>
<
>

<=
>=

Figure 11-9 Using a quantified predicate in a SELECT statement

In this case, the SELECT expression must be a table subquery that
returns exactly one column and zero or more rows. When the subquery
returns more than one row, the values in the rows make up a list. As
you can see, this predicate combines a comparison operator with a key-
word that tells your database system how to apply the operator to the
members of the list. When you use the keyword ALL, the comparison
must be true for all the values returned by the subquery. When you use
either of the keywords SOME or ANY, the comparison need be true for
only one value in the list.

418 Chapter 11 Subqueries

If you think about it, when the subquery returns multiple rows, asking
for = ALL will always be false unless all the values returned by the sub-
query are the same and the value expression on the left of the compari-
son equals all of them. By the same logic, you might think that <> ANY
will always be false if the value expression on the left does equal any
of the values in the list. In truth, the SQL Standard treats SOME and
ANY the same. So if you say <> SOME or <> ANY, then the predicate is
true if the value expression on the left does not equal at least one of the
values in the list. Another confusing point is that if the subquery returns
no rows, then any comparison predicate with the ALL keyword is true,
and any comparison predicate with the SOME or ANY keyword is false.

Let’s work through a couple of requests to see quantified predicates
in action. First, let’s do a problem in the Recipes database. Refer to
 Figure 11-8 to see the tables I’ll use.

“Show me the recipes that have beef or garlic.”

Translation Select recipe title from the recipes table where recipe ID
is in the selection of recipe IDs from the recipe ingredi-
ents table where ingredient ID equals any of the selec-
tion of ingredient IDs from the ingredients table where
ingredient name is ‘beef’ or ‘garlic’

Clean Up Select recipe title from the recipes table where recipe ID
is in the (selection of recipe IDs from the recipe ingredi-
ents table where ingredient ID equals = any of the (selec-
tion of ingredient IDs from the ingredients table where
ingredient name is in ‘beef’ or ‘garlic’))

SQL SELECT Recipes.RecipeTitle

FROM Recipes

WHERE Recipes.RecipeID IN

 (SELECT Recipe_Ingredients.RecipeID

 FROM Recipe_Ingredients

 WHERE Recipe_Ingredients.IngredientID = ANY

 (SELECT Ingredients.IngredientID

 FROM Ingredients

 WHERE Ingredients.IngredientName

 IN ('Beef', 'Garlic')))

 Subqueries as Filters 419

Do you get the feeling I could have also used IN instead of = ANY? If so,
you’re right! I could have also created a JOIN between Recipe_Ingredi-
ents and Ingredients in the first subquery to return the requisite list of
RecipeIDs. As I stated at the beginning of the chapter, there’s almost
always more than one way to solve a particular problem in SQL. Some-
times, using a quantified predicate might make your request clearer.

Let’s now solve a more complex problem to show you the real power of
quantified predicates. This example uses the Sales Orders sample data-
base, and Figure 11-10 shows the tables involved.

PRODUCTS

ProductNumber PK
ProductName
ProductDescription
RetailPrice
QuantityOnHand
CategoryID FK

CATEGORIES

CategoryID PK
CategoryDescription

Figure 11-10 The relationship of the Categories and Products tables

“Find all accessories that are priced greater than any clothing item.”

Translation Select product name and retail price from the products
table joined with the categories table on category ID in
the products table matches category ID in the catego-
ries table where category description is ‘accessories’ and
retail price is greater than all the selection of retail price
from the products table joined with the categories table
on category ID in the products table matches category ID
in the categories table where category name is ‘clothing’

Clean Up Select product name and retail price from the products
table inner joined with the categories table on products.
category ID in the products table matches = catego-
ries.category ID in the categories table where category
description is = ‘accessories’ and retail price is greater
than > all the (selection of retail price from the products
table inner joined with the categories table on products.
category ID in the products table matches = categories.
category ID in the categories table where category name
is = ‘clothing’)

420 Chapter 11 Subqueries

SQL SELECT Products.ProductName,

 Products.RetailPrice

FROM Products

INNER JOIN Categories

 ON Products.CategoryID

 = Categories.CategoryID

WHERE Categories.CategoryDescription =

 'Accessories'

AND Products.RetailPrice > ALL

 (SELECT Products.RetailPrice

 FROM Products

 INNER JOIN Categories

 ON Products.CategoryID =

 Categories.CategoryID

 WHERE Categories.CategoryDescription =

 'Clothing')

What’s happening here? The subquery fetches all the prices for clothing
items. The outer query then lists all accessories whose prices are greater
than all the prices in the clothing items subquery. Note that you could
also solve this query by finding the RetailPrice that is greater than the
MAX price fetched in a subquery, but the point here is to demonstrate a
use of ALL.

Existence: EXISTS

Both set membership (IN) and quantified (SOME, ANY, ALL) predicates
perform a comparison with a value expression—usually a column from
the source you specify in the FROM clause of your outer query. Some-
times it’s useful to know simply that a related row EXISTS in the result
set returned by a subquery. In Chapter 8, I showed a technique for
solving AND problems using complex INNER JOINs. You can also use
EXISTS to solve those same sorts of problems. Let’s take another look at
a problem I solved in Chapter 8.

 Subqueries as Filters 421

“Find all the customers who ordered a bicycle.”

Translation Select customer ID, customer first name, and customer
last name from the customers table where there exists
some row from the orders table joined with the order
details table on order ID in the orders table equals
order ID in the order details table, and then joined with
the products table on product ID in the products table
equals product ID in the order details table where cate-
gory ID equals 2 (Bikes) and the orders table customer
ID equals the customers table customer ID

Clean Up Select customer ID, customer first name, and customer
last name from the customers table where there exists
some row (select * from the orders table inner joined
with the order details table on orders.order ID in the
orders table equals = order_details.order ID in the order
details table, and then inner joined with the products
table on products.product ID in the products table
equals = order_details.product ID in the order details
table where product name category ID equals = 2 (Bikes)
and the orders table customer ID equals = the custom-
ers table customer ID)

SQL SELECT Customers.CustomerID,

 Customers.CustFirstName,

 Customers.CustLastName

FROM Customers

WHERE EXISTS

 (SELECT *

 FROM (Orders

 INNER JOIN Order_Details

 ON Orders.OrderNumber =

 Order_Details.OrderNumber)

 INNER JOIN Products

 ON Products.ProductNumber =

 Order_Details.ProductNumber

 WHERE Products.CategoryID = 2

 AND Orders.CustomerID =

 Customers.CustomerID)

422 Chapter 11 Subqueries

Notice that you can use any column name from any of the tables in the
FROM clause as the column to be fetched in the SELECT clause of the
subquery. I chose to use the shorthand “*” for all columns. (Remem-
ber from the discussion earlier in “An Introduction to Aggregate Func-
tions: COUNT and MAX,” that using * or a column name in the COUNT
function does make a difference. It does not matter in this case.) Stated
another way, this query is asking, “Give me the customers for whom
there exists some row in order details for a bike.” Because I didn’t match
on the OrderID column, I don’t care which column gets returned by the
subquery. Also, I took a shortcut by using CategoryID = 2 because I
know that this category covers all bike products. That’s more efficient
than doing an additional JOIN to the Products table and using a test on
the ProductName column for LIKE '%Bike%'.

 ❖ Note Because this is such an interesting query, I saved this
solution as CH11_Customer_Ordered_Bikes_EXISTS in the sample
database. You can find the INNER JOIN solution in CH11_Custom-
ers_Ordered_Bikes_JOIN. Because the INNER JOIN depends on using
DISTINCT to avoid returning duplicate rows, the JOIN solution won’t
be updatable. You can also solve this using IN, but I’ll leave that as a
challenge for you to solve! (Hint: I saved a sample query using IN in
the sample database so that you can check your work.)

Uses for Subqueries

At this point, you should have a pretty good understanding of the con-
cept of using a subquery either to generate an output column or to per-
form a complex comparison in a WHERE clause. The best way to give
you an idea of the wide range of uses for subqueries is to list some prob-
lems you can solve with subqueries and then present a robust set of
examples in the “Sample Statements” section.

Build Subqueries as Column Expressions

As mentioned earlier in this chapter, using a subquery to fetch a single
value from a related table is probably more effectively done with a JOIN.
When you consider aggregate functions, however, subqueries to fetch the
result of a function calculation make the idea much more interesting. I’ll
explore this use of aggregate functions further in the next chapter. In

❖ Note Because this is such an interesting query, I saved this
solution as CH11_Customer_Ordered_Bikes_EXISTS in the sample
database. You can find the INNER JOIN solution in CH11_Custom-
ers_Ordered_Bikes_JOIN. Because the INNER JOIN depends on using
DISTINCT to avoid returning duplicate rows, the JOIN solution won’t
be updatable. You can also solve this using IN, but I’ll leave that as a
challenge for you to solve! (Hint: I saved a sample query using IN in
the sample database so that you can check your work.)

 Uses for Subqueries 423

the meantime, here are some problems you can solve using a subquery
to generate an output column:

“List vendors and a count of the products they sell to us.”

“Display products and the latest date the product was ordered.”

“Show me entertainers and the count of each entertainer’s
engagements.”

“Display all customers and the date of the last booking each made.”

“List all staff members and the count of classes each teaches.”

“Display all subjects and the count of classes for each subject on
Monday.”

“Show me all the bowlers and a count of games each bowled.”

“Display the bowlers and the highest game each bowled.”

“List all the meats and the count of recipes each appears in.”

“Show me the types of recipes and the count of recipes in each type.”

Use Subqueries as Filters

Now that you know about subqueries, you can really expand your kit
of tools for solving complex queries. In this chapter, I explored many
interesting ways to use subqueries as filters in a WHERE clause. In
Chapter 14, “Filtering Grouped Data,” I’ll show you how to use subque-
ries as filters for groups of information in a HAVING clause.

Here’s a sample of problems you can solve using subqueries as a filter for
rows in a WHERE clause. Note that I solved many of these same prob-
lems in earlier chapters. Now, you get to think about solving them an
alternate way by using a subquery!

 ❖ Note As a hint, I’ve included the keyword(s) you can use to solve
the problem in parentheses after the problem statement.

 “List customers who ordered bikes.” (IN)

“Display customers who ordered clothing or accessories.” (= SOME)

“Find all the customers who ordered a bicycle helmet.” (IN)

“What products have never been ordered?” (NOT IN)

❖ Note As a hint, I’ve included the keyword(s) you can use to solve
the problem in parentheses after the problem statement.

424 Chapter 11 Subqueries

“List customers who have booked entertainers who play country or
country rock.” (IN)

“Find the entertainers who played engagements for customers
 Bonnicksen or Rosales.” (= SOME)

“Display agents who haven’t booked an entertainer.” (NOT IN)

“List the entertainers who played engagements for customer
 Bonnicksen.” (EXISTS)

“Display students enrolled in a class on Tuesday.” (IN)

“Display students who have never withdrawn from a class.” (NOT IN)

“List the subjects taught on Wednesday.” (IN)

“Display team captains with a current average higher than all other
members on their team.” (> ALL)

“List all the bowlers who have a current average that’s less than all
the other bowlers on the same team.” (< ALL)

“Display all the ingredients for recipes that contain carrots.” (IN)

“List the ingredients that are used in some recipe where the
 measurement amount in the recipe is not the default measurement
amount.” (<> SOME)

Sample Statements

You now know the mechanics of constructing queries using subqueries
and have seen some of the types of requests you can answer with a sub-
query. Let’s take a look at a fairly robust set of samples, all of which use
one or more subqueries. These examples come from each of the sample
databases, and they illustrate the use of the subqueries to either gener-
ate an output column or act as a filter.

I’ve also included sample result sets that would be returned by these
operations and placed them immediately after the SQL syntax line. The
name that appears immediately above a result set is the name I gave
each query in the sample data on the companion website for this book,
www.informit.com/title/9780134858333. I stored each query in the
appropriate sample database (as indicated within the example), and I
prefixed the names of the queries relevant to this chapter with “CH11.”

http://www.informit.com/title/9780134858333

 Sample Statements 425

You can follow the instructions in the Introduction of this book to load
the samples onto your computer and try them.

 ❖ Note Remember that all the column names and table names used
in these examples are drawn from the sample database structures
shown in Appendix B, “Schema for the Sample Databases.” Because
many of these examples use complex JOINs, your database system
might choose a different way to solve these queries. For this reason,
the first few rows might not exactly match the result you obtain, but
the total number of rows should be the same. To simplify the pro-
cess, I have combined the Translation and Clean Up steps for all the
following examples.

Subqueries in Expressions

Sales Orders Database

“List vendors and a count of the products they sell to us.”

Translation/
Clean Up

Select vendor name and also (select the count(*) of prod-
ucts from the product vendors table where the product
vendor table vendor ID equals = the vendors table ven-
dor ID) from the vendors table

SQL SELECT VendName,

 (SELECT COUNT(*)

 FROM Product_Vendors

 WHERE Product_Vendors.VendorID =

 Vendors.VendorID)

 AS VendProductCount

FROM Vendors

 ❖ Note I assigned an alias name to the subquery in the SELECT
clause so that the output displays a meaningful name. If you don’t
do that, your database system will generate something like Expr1.

❖ Note Remember that all the column names and table names used
in these examples are drawn from the sample database structures
shown in Appendix B, “Schema for the Sample Databases.” Because
many of these examples use complex JOINs, your database system
might choose a different way to solve these queries. For this reason,
the first few rows might not exactly match the result you obtain, but
the total number of rows should be the same. To simplify the pro-
cess, I have combined the Translation and Clean Up steps for all the
following examples.

❖ Note I assigned an alias name to the subquery in the SELECT
clause so that the output displays a meaningful name. If you don’t
do that, your database system will generate something like Expr1.

426 Chapter 11 Subqueries

CH11_Vendors_Product_Count (10 rows)

VendName VendProductCount

Shinoman, Incorporated 3

Viscount 6

Nikoma of America 5

ProFormance 3

Kona, Incorporated 1

Big Sky Mountain Bikes 22

Dog Ear 9

Sun Sports Suppliers 5

Lone Star Bike Supply 30

Armadillo Brand 6

Entertainment Agency Database

“Display all customers and the date of the last booking each made.”

Translation/
Clean Up

Select customer first name, customer last name, and
also (select the highest MAX(start date) from the engage-
ments table where the engagements table customer ID
equals = the customers table customer ID) from the
 customers table

SQL SELECT Customers.CustFirstName,

 Customers.CustLastName,

 (SELECT MAX(StartDate)

 FROM Engagements

 WHERE Engagements.CustomerID =

 Customers.CustomerID)

 AS LastBooking

FROM Customers

CH11_Customers_Last_Booking (15 rows)

CustFirstName CustLastName LastBooking

Doris Hartwig 2018-02-24

Deb Waldal 2018-02-18

 Sample Statements 427

CustFirstName CustLastName LastBooking

Peter Brehm 2018-02-27

Dean McCrae 2018-02-25

Elizabeth Hallmark 2018-02-20

Matt Berg 2018-02-24

Liz Keyser 2018-02-20

Darren Gehring

Sarah Thompson 2018-02-25

<< more rows here >>

 ❖ Note The LastBooking column for some customers is blank (Null)
because those customers have no bookings.

School Scheduling Database

“Display all subjects and the count of classes for each subject on
Monday.”

Translation/
Clean Up

Select subject name and also (select the count(*) of
classes from the classes table where Monday schedule is =
true and the classes table subject ID equals = the subjects
table subject ID) from the subjects table

SQL SELECT Subjects.SubjectName,

 (SELECT COUNT(*)

 FROM Classes

 WHERE MondaySchedule = 1

 AND Classes.SubjectID = Subjects.SubjectID)

 AS MondayCount

FROM Subjects

 ❖ Note Be sure to use the test for true that your database system
supports. Remember that some database systems require you to com-
pare to a keyword TRUE or to the integer value 1 or –1.

❖ Note The LastBooking column for some customers is blank (Null)
because those customers have no bookings.

❖ Note Be sure to use the test for true that your database system
supports. Remember that some database systems require you to com-
pare to a keyword TRUE or to the integer value 1 or –1.

428 Chapter 11 Subqueries

CH11_Subjects_Monday_Count (56 rows)

SubjectName MondayCount

Financial Accounting Fundamentals I 2

Financial Accounting Fundamentals II 0

Fundamentals of Managerial Accounting 0

Intermediate Accounting 0

Business Tax Accounting 0

Introduction to Business 0

Developing A Feasibility Plan 0

Introduction to Entrepreneurship 0

<< more rows here >>

 ❖ Note Rather than return a Null value when there are no rows, the
COUNT aggregate function returns a zero.

Bowling League Database

“Display the bowlers and the highest game each bowled.”

Translation/
Clean Up

Select bowler first name, bowler last name, and also (select
the highest MAX(raw score) from the bowler scores table
where the bowler scores table bowler ID equals = the bowlers
table bowler ID) from the bowlers table

SQL SELECT Bowlers.BowlerFirstName,

 Bowlers.BowlerLastName,

 (SELECT MAX(RawScore)

 FROM Bowler_Scores

 WHERE Bowler_Scores.BowlerID =

 Bowlers.BowlerID)

 AS HighScore

FROM Bowlers

❖ Note Rather than return a Null value when there are no rows, the
COUNT aggregate function returns a zero.

 Sample Statements 429

CH11_Bowler_High_Score (32 rows)

BowlerFirstName BowlerLastName HighScore

Barbara Fournier 164

David Fournier 178

John Kennedy 191

Sara Sheskey 149

Ann Patterson 165

Neil Patterson 179

David Viescas 195

Stephanie Viescas 150

<< more rows here >>

Recipes Database

“List all the meats and the count of recipes each appears in.”

Translation/
Clean Up

Select ingredient class description, ingredient name, and also
(select the count(*) of rows from the recipe ingredients table
where the recipe ingredients table ingredient ID equals = the
ingredients table ingredient ID) from the ingredient classes
table inner joined with the ingredients table on ingredient_
classes.ingredient class ID in the ingredients classes table
matches = ingredients.ingredient class ID in the ingredients
table where ingredient class description is = ‘meat’

SQL SELECT Ingredient_Classes.IngredientClassDescription,

 Ingredients.IngredientName,

 (SELECT COUNT(*)

 FROM Recipe_Ingredients

 WHERE Recipe_Ingredients.IngredientID =

 Ingredients.IngredientID)

AS RecipeCount

FROM Ingredient_Classes

INNER JOIN Ingredients

 ON Ingredient_Classes.IngredientClassID =

 Ingredients.IngredientClassID

WHERE

 Ingredient_Classes.IngredientClassDescription

 = 'Meat'

430 Chapter 11 Subqueries

CH11_Meat_Ingredient_Recipe_Count (11 rows)

IngredientClassDescription IngredientName RecipeCount

Meat Beef 2

Meat Chicken, Fryer 0

Meat Bacon 0

Meat Chicken, Pre-cut 0

Meat T-bone Steak 0

Meat Chicken Breast 0

Meat Chicken Leg 1

Meat Chicken Wing 0

Meat Chicken Thigh 1

Meat New York Steak 0

Meat Ground Pork 1

Subqueries in Filters

Sales Orders Database

“Display customers who ordered clothing or accessories.”

Translation/
Clean Up

Select customer ID, customer first name, customer last
name from the customers table where customer ID is equal
to = any of the (selection of customer ID from the orders
table inner joined with the order details table on orders.
order number in the orders table matches = order_details.
order number in the order details table, then inner joined
with the products table on products.product number in the
products table matches = order_details.product number in
the order details table, and then inner joined with the cate-
gories table on categories.category ID in the categories table
matches = products.category ID in the products table where
-category description is = ‘clothing’ or category description
is = ‘accessories’)

 Sample Statements 431

SQL SELECT Customers.CustomerID,

 Customers.CustFirstName,

 Customers.CustLastName

FROM Customers

WHERE Customers.CustomerID = ANY

 (SELECT Orders.CustomerID

 FROM ((Orders

 INNER JOIN Order_Details

 ON Orders.OrderNumber =

 Order_Details.OrderNumber)

 INNER JOIN Products

 ON Products.ProductNumber =

 Order_Details.ProductNumber)

 INNER JOIN Categories

 ON Categories.CategoryID =

 Products.CategoryID

 WHERE Categories.CategoryDescription

 = 'Clothing'

 OR Categories.CategoryDescription

 = 'Accessories')

CH11_Customers_Clothing_OR_Accessories (27 rows)

CustomerID CustFirstName CustLastName

1001 Suzanne Viescas

1002 William Thompson

1003 Gary Hallmark

1004 Robert Brown

1005 Dean McCrae

1006 John Viescas

1007 Mariya Sergienko

1008 Neil Patterson

<< more rows here >>

432 Chapter 11 Subqueries

 ❖ Note Just for fun, I solved this query by using = ANY. Can you
think of a solution using IN or EXISTS? You can find these solutions
in the sample database saved as CH11_Customers_Clothing_OR_
Accessories_IN and CH11_Customers_Clothing_OR_Accessories_
EXISTS. If you look at the scripts I supplied for MySQL, you’ll find
that I used ANY in the script, but if you look in the sample database,
you’ll find that MySQL and PostgreSQL converted the actual stored
view to use IN. Go figure.

Entertainment Agency Database

“List the entertainers who played engagements for customer Berg.”

Translation/
Clean Up

Select entertainer ID, and entertainer stage name from the
entertainers table where there exists (select * some row from
the customers table inner joined with the engagements table
on customers.customer ID in the customers table matches =
engagements.customer ID in the engagements table where cus-
tomer last name is = ‘Berg’ and the engagements table enter-
tainer ID equals = the entertainers table entertainer ID)

SQL SELECT Entertainers.EntertainerID,

 Entertainers.EntStageName FROM Entertainers WHERE
 EXISTS

 (SELECT *

 FROM Customers

 INNER JOIN Engagements

 ON Customers.CustomerID =

 Engagements.CustomerID

 WHERE Customers.CustLastName = 'Berg'

 AND Engagements.EntertainerID =

 Entertainers.EntertainerID)

CH11_Entertainers_Berg_EXISTS (6 rows)

EntertainerID EntStageName

1001 Carol Peacock Trio

1003 JV & the Deep Six

1004 Jim Glynn

❖ Note Just for fun, I solved this query by using = ANY. Can you
think of a solution using IN or EXISTS? You can find these solutions
in the sample database saved as CH11_Customers_Clothing_OR_
Accessories_IN and CH11_Customers_Clothing_OR_Accessories_
EXISTS. If you look at the scripts I supplied for MySQL, you’ll find
that I used ANY in the script, but if you look in the sample database,
you’ll find that MySQL and PostgreSQL converted the actual stored
view to use IN. Go figure.

 Sample Statements 433

EntertainerID EntStageName

1006 Modern Dance

1007 Coldwater Cattle Company

1008 Country Feeling

 ❖ Note Just for a bit of challenge, I decided to solve this problem
using EXISTS. Can you solve it using IN? You can find the second
solution in CH11_Entertainers_Berg_IN.

School Scheduling Database

“Display students who have never withdrawn from a class.”

Translation/
Clean Up

Select student ID, student first name, and student last name
from the students table where the student ID is not in the
(selection of student ID from the student schedules table inner
joined with the student class status table on student_sched-
ules.class status in the student schedules table matches =
student_class_status.class status in the student class status
table where class status description is = ‘withdrew’)

SQL SELECT Students.StudentID,

 Students.StudFirstName,

 Students.StudLastName

FROM Students

WHERE Students.StudentID NOT IN

 (SELECT Student_Schedules.StudentID

 FROM Student_Schedules

 INNER JOIN Student_Class_Status

 ON Student_Schedules.ClassStatus =

 Student_Class_Status.ClassStatus

 WHERE

 Student_Class_Status.ClassStatusDescription

 = 'Withdrew')

❖ Note Just for a bit of challenge, I decided to solve this problem
using EXISTS. Can you solve it using IN? You can find the second
solution in CH11_Entertainers_Berg_IN.

434 Chapter 11 Subqueries

 ❖ Note This is a pretty simple query that finds all the students who
ever withdrew from a class in the subquery and then asks for all the
students NOT IN this list. Can you think how you would solve this
with an OUTER JOIN?

CH11_Students_Never_Withdrawn (16 rows)

StudentID StudFirstName StudLastName

1001 Kerry Patterson

1003 Betsey Stadick

1004 Janice Galvin

1005 Doris Hartwig

1006 Scott Bishop

1007 Elizabeth Hallmark

1008 Sara Sheskey

1009 Karen Smith

<< more rows here >>

Bowling League Database

“Display team captains with a handicap score higher than all other
members on their teams.”

Translation/
Clean Up

Select team name, bowler ID, bowler first name, bowler last
name, and handicap score from the bowlers table inner
joined with the teams table on bowlers.bowler ID in the
bowlers table matches = teams.captain ID in the teams table
inner joined with the bowler scores table on bowlers.bowler
ID in the bowlers table matches = bowler_scores.bowler ID in
the bowler scores table where the handicap score is greater
than > all the (selection of handicap score from bowlers
as B2 inner joined with the bowler scores table as BS2 on
B2.bowler ID in the B2 table matches = BS2.bowler ID in the
BS2 table where the B2 table bowler ID is not equal <> the
bowlers table bowler ID and the B2 table team ID is equal =
to the bowlers table team ID)

❖ Note This is a pretty simple query that finds all the students who
ever withdrew from a class in the subquery and then asks for all the
students NOT IN this list. Can you think how you would solve this
with an OUTER JOIN?

 Sample Statements 435

SQL SELECT Teams.TeamName, Bowlers.BowlerID,

 Bowlers.BowlerFirstName,

 Bowlers.BowlerLastName,

 Bowler_Scores.HandiCapScore

FROM (Bowlers

INNER JOIN Teams

 ON Bowlers.BowlerID = Teams.CaptainID)

INNER JOIN Bowler_Scores

 ON Bowlers.BowlerID = Bowler_Scores.BowlerID

WHERE Bowler_Scores.HandiCapScore > All

 (SELECT BS2.HandiCapScore

 FROM Bowlers AS B2

 INNER JOIN Bowler_Scores AS BS2

 ON B2.BowlerID = BS2.BowlerID

 WHERE B2.BowlerID <> Bowlers.BowlerID

 AND B2.TeamID = Bowlers.TeamID)

 ❖ Note I explicitly gave aliases to the second copy of the Bowlers
table and the second copy of the Bowler_Scores table in the subquery
to make it crystal clear what’s going on. I specifically do not want to
compare against the score of the current bowler—that would cause
the > ALL predicate to fail. I also want to compare only with the other
bowlers on the same team.

CH11_Team_Captains_High_Score (1 row)

TeamName BowlerID BowlerFirstName BowlerLastName HandiCapScore

Huckleberrys 7 David Viescas 224

Recipes Database

“Display all the ingredients for recipes that contain carrots.”

 ❖ Note I promised in Chapter 8 that I would show you how to solve
this problem with a subquery. I keep my promises!

❖ Note I explicitly gave aliases to the second copy of the Bowlers
table and the second copy of the Bowler_Scores table in the subquery
to make it crystal clear what’s going on. I specifically do not want to
compare against the score of the current bowler—that would cause
the > ALL predicate to fail. I also want to compare only with the other
bowlers on the same team.

❖ Note I promised in Chapter 8 that I would show you how to solve
this problem with a subquery. I keep my promises!

436 Chapter 11 Subqueries

Translation/
Clean Up

Select recipe title and ingredient name from the recipes
table inner joined with the recipe ingredients table on
recipes.recipe ID in the recipes table matches = recipe_
ingredients.recipe ID in the recipe ingredients table, and
then inner joined with the ingredients table on ingre-
dients.ingredient ID in the ingredients table matches =
recipe_ingredients.ingredient ID in the recipe ingredients
table where recipe ID is in the (selection of recipe ID from
the ingredients table inner joined with the recipe ingre-
dients table on ingredients.ingredient ID in the ingredi-
ents table matches = recipe_ingredients.ingredient ID in
the recipe ingredients table where ingredient name is =
‘carrot’)

SQL SELECT Recipes.RecipeTitle,

 Ingredients.IngredientName

FROM (Recipes

INNER JOIN Recipe_Ingredients

 ON Recipes.RecipeID =

 Recipe_Ingredients.RecipeID)

INNER JOIN Ingredients

 ON Ingredients.IngredientID =

 Recipe_Ingredients.IngredientID

WHERE Recipes.RecipeID

IN

 (SELECT Recipe_Ingredients.RecipeID

 FROM Ingredients

 INNER JOIN Recipe_Ingredients

 ON Ingredients.IngredientID =

 Recipe_Ingredients.IngredientID

 WHERE Ingredients.IngredientName = 'carrot')

 ❖ Note If you place the filter for ‘carrot’ in the outer query, you will
see only carrot ingredients in the output. In this problem, you want to
see all the ingredients from any recipe that uses carrots, so the sub-
query is a good way to solve it. This query result appears to be sorted
by recipe title even though there is no ORDER BY clause. If you want
to ensure this sequence in any database system, be sure to include an
ORDER BY clause.

❖ Note If you place the filter for ‘carrot’ in the outer query, you will
see only carrot ingredients in the output. In this problem, you want to
see all the ingredients from any recipe that uses carrots, so the sub-l
query is a good way to solve it. This query result appears to be sorted
by recipe title even though there is no ORDER BY clause. If you want
to ensure this sequence in any database system, be sure to include an
ORDER BY clause.

 Summary 437

CH11_Recipes_Ingredients_With_Carrots (16 rows)

RecipeTitle IngredientName

Irish Stew Beef

Irish Stew Onion

Irish Stew Potato

Irish Stew Carrot

Irish Stew Water

Irish Stew Guinness Beer

Salmon Filets in Parchment Paper Salmon

Salmon Filets in Parchment Paper Carrot

Salmon Filets in Parchment Paper Leek

<< more rows here >>

Summary

I began the chapter with a definition of the three types of subqueries
defined by the SQL Standard—row, table, and scalar—and recalled that
I had already covered how to use table subqueries in a FROM clause. I
also briefly described the use of a row subquery and explained that not
many commercial implementations support this yet.

Next, I showed how to use a subquery to generate a column expression
in a SELECT clause. I discussed a simple example and then introduced
two aggregate functions that are useful for fetching related summary
information from another table. (I’ll cover all the aggregate functions in
detail in the next chapter.)

I then discussed using subqueries to create complex filters in the
WHERE clause. I first covered simple comparisons and then introduced
special comparison keywords—IN, SOME, ANY, ALL, and EXISTS—that
are useful for building predicates with subqueries.

I summarized why subqueries are useful and provided a sample list of
problems to solve using subqueries. The rest of the chapter showed exam-
ples of how to use subqueries. I broke these examples into two groups:
using subqueries in column expressions and using subqueries in filters.

The following section presents several requests that you can work out on
your own.

438 Chapter 11 Subqueries

Problems for You to Solve

Below, I show you the request statement and the name of the solution
query in the sample databases. If you want some practice, you can work
out the SQL you need for each request and then check your answer with
the query I saved in the samples. Don’t worry if your syntax doesn’t
exactly match the syntax of the queries I saved—as long as your result
set is the same.

Sales Orders Database

 1. “Display products and the latest date each product was ordered.”

(Hint: Use the MAX aggregate function.)

You can find the solution in CH11_Products_Last_Date (40 rows).
Do you see any blank dates in the result? Can you explain why?

 2. “List customers who ordered bikes.”

(Hint: Build a filter using IN.)

You can find the solution in CH11_Customers_Ordered_Bikes_IN
(23 rows).

 3. “What products have never been ordered?”

(Hint: Build a filter using NOT IN.)

You can find the solution in CH11_Products_Not_Ordered (2 rows).

Entertainment Agency Database

 1. “Show me all entertainers and the count of each entertainer’s
engagements.”

(Hint: Use the COUNT aggregate function.)

You can find the solution in CH11_Entertainer_Engagement_
Count (13 rows).

 2. “List customers who have booked entertainers who play country or
country rock.”

(Hint: Build a filter using IN.)

You can find the solution in CH11_Customers_Who_Like_Country
(13 rows).

 Problems for You to Solve 439

 3. “Find the entertainers who played engagements for customers Berg
or Hallmark.”

(Hint: Build a filter using = SOME.)

You can find the solution in CH11_Entertainers_Berg_OR_Hall-
mark_SOME (8 rows).

 4. “Display agents who haven’t booked an entertainer.”

(Hint: Build a filter using NOT IN.)

You can find the solution in CH11_Bad_Agents (1 row).

School Scheduling Database

 1. “List all staff members and the count of classes each teaches.”

(Hint: Use the COUNT aggregate function.)

You can find the solution in CH11_Staff_Class_Count (27 rows).

 2. “Display students enrolled in a class on Tuesday.”

(Hint: Build a filter using IN.)

You can find the solution in CH11_Students_In_Class_Tuesdays
(18 rows).

 3. “List the subjects taught on Wednesday.”

(Hint: Build a filter using IN.)

You can find the solution in CH11_Subjects_On_Wednesday
(34 rows).

Bowling League Database

 1. “Show me all the bowlers and a count of games each bowled.”

(Hint: Use the COUNT aggregate function.)

You can find the solution in CH11_Bowlers_And_Count_Games
(32 rows).

 2. “List all the bowlers who have a raw score that’s less than all of the
other bowlers on the same team.”

(Hint: Build a filter using < ALL. Also use DISTINCT in case a
bowler has multiple games with the same low score.)

You can find the solution in CH11_Bowlers_Low_Score (3 rows).

440 Chapter 11 Subqueries

Recipes Database

 1. “Show me the types of recipes and the count of recipes in each
type.”

(Hint: Use the COUNT aggregate function.)

You can find the solution in CH11_Count_Of_Recipe_Types
(7 rows).

 2. “List the ingredients that are used in some recipe where the mea-
surement amount in the recipe is not the default measurement
amount.”

(Hint: Build a filter using <> SOME.)

You can find the solution in CH11_Ingredients_Using_NonStan-
dard_Measure (21 rows).

Part IV
Summarizing
and Grouping
Data

This page intentionally left blank

 443

12
Simple Totals

“There are two kinds of statistics: the kind
you look up and the kind you make up.”

—REX STOUT DEATH OF A DOXY: A NERO WOLFE NOVEL

Topics Covered in This Chapter

Aggregate Functions

Using Aggregate Functions in Filters

Sample Statements

Summary

Problems for You to Solve

You now know how to select the columns you need for a given request,
define expressions that add extra levels of detail, join the appropriate
tables that supply the columns you require, and define conditions to
 filter the data sent to the result set. I’ve shown you all these techniques
so that you can learn how to retrieve detailed information from one or
more tables in the database. In this and the next two chapters, I’ll show
you how to take a step back and look at the data from a much broader
perspective, otherwise known as “seeing the big picture.”

In this chapter, you’ll learn how to use aggregate functions to produce
basic summary information. In Chapter 13, “Grouping Data,” I’ll show
you how to organize data into groups with the GROUP BY clause of the
SELECT statement, and in Chapter 14, “Filtering Grouped Data,” I’ll
show you various filtering techniques you can apply to the data after
it is grouped. And finally in Chapter 21, “Complex Calculations on
Groups,” you’ll learn how to become a “grouping master.”

444 Chapter 12 Simple Totals

Aggregate Functions

The requests you’ve been working with so far have required answers
involving individual column values from the rows returned by the FROM
and WHERE clauses. However, you’ll often encounter requests, such as
the following, that require only calculated values across multiple rows
for an answer:

“How many of our customers live in Seattle?”

“What is the lowest price and highest price we’ve assigned to any item
in our inventory?”

“How many classes is Mike Hernandez teaching?”

“What time does our earliest class begin?”

“What is the average length of a class?”

“What is the total amount for order number 12?”

The SQL Standard provides a set of aggregate functions that allow you
to calculate a single value from the rows in a result set or from the val-
ues returned by a value expression. You can apply a given function to
all the rows or values, or you can use a WHERE clause to apply the
function to a specific set of rows or values. For example, you can use an
aggregate function to determine the largest or smallest value of a value
expression, count the number of rows in a result set, or calculate a total
using only distinct values from a value expression. Figure 12-1 shows
the syntax for the basic aggregate functions supported by all database
systems.

Aggregate Functions

MAX
AVG

COUNT
COUNT *

DISTINCT
Value Expression

SUM

MIN

alias
AS

Figure 12-1 The syntax diagram for aggregate functions

As you can see, aggregate functions have a very simple and straight-
forward syntax. In the previous chapter, I discussed using two of the

 Aggregate Functions 445

aggregate functions in a subquery either to return a single calculated
value in a SELECT clause or to fetch a calculated value that you can use
in a predicate in a WHERE clause. I’ll show you a few more examples of
this usage in this chapter.

 ❖ Note The 2016 SQL Standard defines a dozen or more additional
aggregate operations, but many are not yet implemented in any major
commercial database system. In this chapter, I focus on the basic
aggregate functions supported by all major systems. After you learn
how to work with these, consult your database documentation to learn
whether more functions are available to use in your SQL statements.

Each aggregate function returns a single value, regardless of whether it
is processing the rows in a result set or the values returned by a value
expression. Except COUNT(*), all aggregate functions automatically
disregard Null values. You can use several aggregate functions at the same
time in the list of value expressions immediately following the SELECT
keyword, and you can even mix value expressions containing aggregate
functions with value expressions containing literal values. But you need to
be careful once you’ve started including aggregate expressions.

When you include an aggregate expression, you’re asking your database
system to calculate one value across a group of rows. You’ll learn in the
next chapter that you can define the groups you want by using the GROUP
BY clause. However, in this chapter, I’m looking at simple queries that
do not explicitly specify groups. In the absence of a group specification,
the group of records that your database uses to calculate any aggregate
expression is all the rows returned by your FROM and WHERE clauses.

If you think about it, it doesn’t make sense to also include a value expres-
sion using a column from one of your tables that isn’t inside an aggregate
function. Remember that I introduced you to the COUNT and MAX aggre-
gate functions in Chapter 11, “Subqueries.” Consider the following SQL:

SQL SELECT LastName, COUNT(*) As CountOfStudents

FROM Students

Including the COUNT function without specifying any groups asks your
database system to count all the rows in the result set returned from the

❖ Note The 2016 SQL Standard defines a dozen or more additional
aggregate operations, but many are not yet implemented in any major
commercial database system. In this chapter, I focus on the basic
aggregate functions supported by all major systems. After you learn
how to work with these, consult your database documentation to learn
whether more functions are available to use in your SQL statements.

446 Chapter 12 Simple Totals

FROM clause. COUNT(*) returns a single value—the count of all the rows
in the Students table—so the query should return one row. Which Last-
Name should your database system display? The answer is it can’t figure
out which one to choose, so the above statement is illegal.

It is valid, however, to include a literal expression to enhance your
output further. You can do this because a literal expression is simply a
constant—it has the same value for all rows. So, it’s perfectly legal to use
the following SQL:

SQL SELECT 'The number of students is: ', COUNT(*)

 As CountOfStudents

FROM Students

This returns one row:

The number of students is: 18

Now that I’ve gotten that little warning out of the way, let’s look at each
of these aggregate functions and how you might use them to answer a
request.

Counting Rows and Values with COUNT

The SQL Standard defines two versions of the COUNT function.
COUNT(*) processes rows in a result set and COUNT (value expression)
processes values returned by a value expression.

Counting All the Rows

You use COUNT(*) to determine how many rows exist in a result set. The
COUNT(*) function counts all the rows in a result set, including redun-
dant rows and rows containing Null values. Here’s a simple example of
the type of question you can answer with this function.

 ❖ Note Throughout this chapter, I use the “Request/Translation/
Clean Up/SQL” technique introduced in Chapter 4, “Creating a
Simple Query.” All examples assume you have thoroughly studied and
understood the concepts covered in previous chapters, especially the
chapters on JOINs and subqueries.

❖ Note Throughout this chapter, I use the “Request/Translation/
Clean Up/SQL” technique introduced in Chapter 4, “Creating a
Simple Query.” All examples assume you have thoroughly studied and
understood the concepts covered in previous chapters, especially the
chapters on JOINs and subqueries.

 Aggregate Functions 447

“Show me the total number of employees we have in our company.”

Translation Select the count of employees from the employees table

Clean Up Select the count of employees (*)

from the employees table

SQL SELECT COUNT(*)

FROM Employees

Note that I use “(*)” in the Clean Up statement to indicate that I want
to count all the rows in the Employees table. You should add the
 asterisk in your Clean Up step when you work with this type of request
because it helps ensure that you use the correct COUNT function. The
SELECT statement in this example generates a result set consisting of a
 single-column row containing a numeric value that represents the total
number of rows in the Employees table.

There is virtually no restriction on the number of rows the COUNT(*)
function processes. I say “virtually” because most database systems
return the count as an integer, which limits the value to 2,147,483,647
rows. You can indicate which rows COUNT(*) should include by using a
WHERE clause. For example, here’s how you define a SELECT statement
that counts all the rows in the Employees table for those employees who
live in Washington state:

SQL SELECT COUNT(*)

FROM Employees

WHERE EmpState = 'WA'

As I work through this chapter, you’ll see that you can use a WHERE
clause to filter the rows or values processed by any aggregate function.

When you use an aggregate function in a SELECT statement, you might
or might not see a column name in the result set for the return value
of the function. Some database systems provide a default column name,
and others do not. But you can use the AS option of the function’s syn-
tax to provide a meaningful column name for the result set. Here’s how
you might apply this option to the previous example:

SQL SELECT COUNT(*) AS TotalWashingtonEmployees

FROM Employees

WHERE EmpState = 'WA'

448 Chapter 12 Simple Totals

Now the result set consists of a column called TotalWashingtonEm-
ployees that contains the return value of the COUNT(*) function. As the
 syntax diagram in Figure 12-1 indicates, you can apply this technique to
any aggregate function.

Counting Values in a Column or Expression

You use the COUNT(value expression) function to count the total num-
ber of non-Null values returned by a value expression. (This expression
is more commonly known as COUNT, which is the name I’ll use for the
remainder of the book.) It counts all values returned by a value expres-
sion, regardless of whether they are unique or duplicate, but automati-
cally excludes any Null values from the final count. You can use COUNT
to answer this type of request:

“How many customers were able to indicate which county they live in?”

Here you need to determine how many actual values exist in the county
column. Remember that COUNT(*) includes Null values as well, so it
won’t provide you with the correct answer. Instead, you use the COUNT
function and translate the request in this manner:

Translation Select the count of non-Null county values as
 NumberOfKnownCounties from the customers table

Clean Up Select the count of non-Null (county) values as
 NumberOfKnownCounties from the customers table

SQL SELECT COUNT(CustCounty)

 AS NumberOfKnownCounties

FROM Customers

Note that the Translation and Clean Up statements explicitly ask for non-
Null values. Although you already know that this function processes only
non-Null values, it’s a good idea to add this to both statements so that
you’ll be sure to use the correct COUNT function. The SELECT statement
defined here will generate a single row that contains a numeric value
representing the count of rows containing non-Null county names found
in the CustCounty column. Basically, you get the same answer using
COUNT(*) if you include WHERE CustCounty IS NOT NULL.

Remember that the COUNT function treats duplicate county names as
though they were unique and includes every one of them in the final

 Aggregate Functions 449

count. You can, however, use the function’s DISTINCT option to exclude
duplicate values from the count. The next example shows how you might
apply it to a given request.

“How many unique county names are there in the customers table?”

Translation Select the count of unique non-Null county names as
 NumberOfUniqueCounties from the customers table

Clean Up Select the count of unique non-Null (distinct county) names
as NumberOfUniqueCounties from the customers table

SQL SELECT COUNT(DISTINCT CustCounty)

 AS NumberOfUniqueCounties

FROM Customers

When you use the DISTINCT option, the database retrieves all the non-
Null values from the county column, eliminates the duplicates, and then
counts the values that remain. The database goes through much of this
same process whenever you use DISTINCT with the SUM, AVG, MIN, or
MAX functions.

In this next example, I use a slightly altered version of the previous
request to show that you can apply a filter to the COUNT function.

“How many unique county names are there in the customers table for
the state of Oregon?”

Translation Select the count of unique non-Null county names as
NumberOfUniqueOregonCounties from the customers table
where the state is ‘OR’

Clean Up Select the count of unique non-Null (distinct county) names
as NumberOfUniqueOregonCounties from the customers
table where the state is = ‘OR’

SQL SELECT COUNT(DISTINCT CustCounty)

 AS NumberOfUniqueOregonCounties

FROM Customers

WHERE CustState = 'OR'

It’s important to note that you cannot use DISTINCT with COUNT(*). This
is a reasonable restriction because COUNT(*) counts all rows in a table,
regardless of whether any are redundant or contain Null values.

450 Chapter 12 Simple Totals

Computing a Total with SUM

You can calculate a total for a numeric value expression with the SUM
function. It processes all the non-Null values of the value expression and
returns a final total to the result set. Note that if the value expression in
all the rows is Null or if the result of evaluating the FROM and WHERE
clauses is an empty set, then SUM returns a Null. Here’s a sample
request you can answer with SUM:

“What is the total amount we pay in salaries to our employees in
Washington?”

Translation Select the sum of salary as TotalSalaryAmount from the
employees table where the state is ‘WA’

Clean Up Select the sum of (salary) as TotalSalaryAmount from the
employees table where the state is = ‘WA’

SQL SELECT SUM(Salary) AS TotalSalaryAmount

FROM Employees

WHERE EmpState = 'WA'

The value expression I used here was a simple column reference. How-
ever, you can also use SUM on a value expression consisting of a
numeric expression, as I demonstrate in the next example:

“How much is our current inventory worth?”

Translation Select the sum of wholesale price times quantity on hand
as TotalInventoryValue from the products table

Clean Up Select the sum of (wholesale price times * quantity on hand)
as TotalInventoryValue from the products table

SQL SELECT SUM(WholesalePrice * QuantityOnHand)

 AS TotalInventoryValue

FROM Products

As you know, a row must contain actual values in the WholesalePrice
and QuantityOnHand columns in order for it to be processed by the
SUM function. In this instance, the database processes the expression
for all qualifying rows in the Products table, totals the results with the
SUM function, and then sends the grand total to the result set.

 Aggregate Functions 451

Here’s an example of how to use SUM to calculate a total for a unique set
of numeric values:

“Calculate a total of all unique wholesale costs for the products we sell.”

Translation Select the sum of unique wholesale costs as
 SumOfUniqueWholesaleCosts from the products table

Clean Up Select the sum of unique (distinct wholesale costs) as
SumOfUniqueWholesaleCosts from the products table

SQL SELECT SUM(DISTINCT WholesaleCost)

 AS SumOfUniqueWholesaleCosts

FROM Products

Calculating a Mean Value with AVG

Another function you can use on numeric values is AVG, which calcu-
lates the arithmetic mean of all non-Null values returned by a value
expression. You can use AVG to answer a request such as this:

“What is the average contract amount for vendor number 10014?”

Translation Select the average of contract price as AverageContractPrice
from the vendor contracts table where the vendor ID is
10014

Clean Up Select the average of avg (contract price) as
 AverageContractPrice from the vendor contracts
table where the vendor ID is = 10014

SQL SELECT AVG(ContractPrice)

 AS AverageContractPrice

FROM Vendor_Contracts

WHERE VendorID = 10014

As you work with your Clean Up statement, be sure to cross out the
word “average” and replace it with “avg” to help keep you from acciden-
tally using “Average” in the SELECT clause. “Average” is not a valid SQL
keyword, so the SELECT statement will fail if you try to use it.

You can also use AVG to process a numeric expression, just as you did
with the SUM function. Remember that you cannot use AVG with a
value expression that is not numeric. Most database systems will give

452 Chapter 12 Simple Totals

you an error if you try to use these functions with character string or
datetime data.

“What is the average item total for order 64?”

Translation Select the average of price times quantity ordered as
 AverageItemTotal from the order details table where
order ID is 64

Clean Up Select the average of avg (price times * quantity ordered) as
AverageItemTotal from the order details table where order
ID is = 64

SQL SELECT AVG(Price * QuantityOrdered)

 AS AverageItemTotal

FROM Order_Details

WHERE OrderID = 64

Keep in mind that a row must contain actual values in the columns
Price and QuantityOrdered for that row to be processed by the AVG
function. Otherwise, the numeric expression evaluates to Null, and the
AVG function disregards the row entirely. As with SUM, if the value
expression in all rows is Null or the result of evaluating the FROM and
WHERE clauses is an empty set, AVG returns a Null value.

In this next example, I use the DISTINCT option to average a unique set
of numeric values:

“Calculate an average of all unique product prices.”

Translation Select the average of unique prices as UniqueProductPrices
from the products table

Clean Up Select the average of unique avg (distinct prices) as
 UniqueProductPrices from the products table

SQL SELECT AVG(DISTINCT Price)

 AS UniqueProductPrices

FROM Products

Finding the Largest Value with MAX

You can determine the largest value returned by a value expression with
the MAX function. The MAX function can process any type of data, and
the value it returns depends on the data it processes.

 Aggregate Functions 453

CHARACTER
STRINGS

The value that MAX returns is based on the collating
sequence used by your database system or com-
puter. For example, if your database uses the ASCII
character set and is case-insensitive, it sorts com-
pany names in this manner: “. . . 4th Dimension
 Productions . . . Al’s Auto Shop . . . allegheny &
associates . . . Zercon Productions . . . zorn credit
 services.” In this instance, MAX will return “zorn
credit services” as the MAX value.

NUMBERS MAX returns the largest number.

DATETIME MAX evaluates dates and times in chronological order
and returns the most recent (or latest) date or time.

Here are a couple of examples of how you might use MAX to answer a
request:

“What is the largest amount paid on a contract?”

Translation Select the maximum contract price as
 LargestContractPrice from the engagements table

Clean Up Select the maximum (contract price) as
 LargestContractPrice from the engagements table

SQL SELECT MAX(ContractPrice)

 AS LargestContractPrice

FROM Engagements

“What was the largest line item total for order 3314?”

Translation Select the maximum price times quantity ordered as
 LargestItemTotal from the order details table where the
order ID is 3314

Clean Up Select the maximum (price times * quantity ordered) as
LargestItemTotal from the order details table where the
order ID is = 3314

SQL SELECT MAX(Price * QuantityOrdered)

 AS LargestItemTotal

FROM Order_Details

WHERE OrderID = 3314

454 Chapter 12 Simple Totals

You might be tempted to use the DISTINCT option to return a unique
instance of the highest or most recent value. Although the SQL Standard
specifies DISTINCT as an option for the MAX function, DISTINCT does
not affect the MAX function whatsoever. There can be only one maxi-
mum value, regardless of whether or not it is distinct. For example, if
you’re looking for the most recent hire date in the Agents table, both of
the following expressions return the same value:

SELECT MAX(DateHired) FROM Agents
SELECT MAX(DISTINCT DateHired) FROM Agents

I present both versions of the function because they are part of the cur-
rent SQL Standard, but I recommend that you use the MAX function
without the DISTINCT option. When you include DISTINCT, you’re ask-
ing your database system to do extra and unnecessary work first to find
the unique values and then figure out which one is the largest or latest.

Finding the Smallest Value with MIN

The MIN function allows you to determine the smallest value returned by
a value expression. It works like the MAX function but returns the oppo-
site value: the first character string (based on the collating sequence),
the smallest number, and the earliest date or time.

You can answer requests such as these with the MIN function:

“What is the lowest price we charge for a product?”

Translation Select the minimum price as LowestProductPrice from the
products table

Clean Up Select the minimum (price) as LowestProductPrice from
the products table

SQL SELECT MIN(Price) AS LowestProductPrice

FROM Products

“What was the lowest line item total for order 3314?”

Translation Select the minimum price times quantity ordered as
 LowestItemTotal from the order details table where the
order ID is 3314

 Aggregate Functions 455

Clean Up Select the minimum (price times * quantity ordered) as
LowestItemTotal from the order details table where the
order ID is = 3314

SQL SELECT MIN(Price * QuantityOrdered)

 AS LowestItemTotal

FROM Order_Details

WHERE OrderID = 3314

It’s important to note that the DISTINCT option has no affect whatso-
ever on the MIN function. (As you know, this was the case with the MAX
function as well.) There can be only one minimum value, regardless of
whether or not it is distinct. For example, both of the following expres-
sions return the same value:

SELECT MIN(DateHired) FROM Agents
SELECT MIN(DISTINCT DateHired) FROM Agents

I present both versions of the function because they are part of the cur-
rent SQL Standard, but, just as I mentioned for MAX, I recommend
that you use the MIN function without the DISTINCT option. When you
include DISTINCT, you’re asking your database system to do extra and
unnecessary work first to find the unique values and then figure out
which one is the lowest or earliest.

Using More Than One Function

As I mentioned at the beginning of this section, you can use several
aggregate functions at the same time. This gives you the ability to show
contrasting information using a single SELECT statement. For example,
you can use the MIN and MAX functions to show the earliest and most
recent order dates for a specific customer, or the MAX, MIN, and AVG
functions to show the highest, lowest, and average grades for a given
student. Here are other examples of how you might use two or more
aggregate functions:

“Show me the earliest and most recent review dates for the employees
in the advertising department.”

Translation Select the minimum review date as EarliestReviewDate and
the maximum review date as RecentReviewDate from the
employees table where the department is ‘Advertising’

456 Chapter 12 Simple Totals

Clean Up Select the minimum review date as EarliestReviewDate,
and the maximum review date as RecentReviewDate from
the employees table where the department is = ‘Advertising’

SQL SELECT MIN(ReviewDate) AS EarliestReviewDate,

 MAX(ReviewDate) AS RecentReviewDate

FROM Employees

WHERE Department = 'Advertising'

“How many different products were ordered on order number 553, and
what was the total cost of that order?”

Translation Select the unique count of product ID as
 TotalProductsPurchased and the sum of price times
 quantity ordered as OrderAmount from the order details
table where the order number is 553

Clean Up Select the unique count of (DISINCT product ID) as
 TotalProductsPurchased, and the sum of (price times *
quantity ordered) as OrderAmount from the order details
table where the order number is = 553

SQL SELECT COUNT(DISTINCT ProductID) AS

TotalProductsPurchased,

 SUM(Price * QuantityOrdered) AS OrderAmount

FROM Order_Details

WHERE OrderNumber = 553

You must keep in mind a couple of restrictions when you work with
two or more aggregate functions. The first is that you cannot embed
one aggregate function within another. (The one exception is you
can embed an aggregate function inside another if you’re using it in a
 Window function. See Chapter 22.) This restriction makes the following
 expression illegal:

SUM(AVG(LineItemTotal))

The second is that you cannot use a subquery as the value expression
of an aggregate function. For example, the following expression is illegal
under this restriction:

AVG((SELECT Price FROM Products WHERE Category = 'Bikes'))

 Using Aggregate Functions in Filters 457

Despite these restrictions, you’ve learned how easily you can use aggre-
gate functions in a SELECT clause to retrieve relatively complex statisti-
cal information. Let’s now look at how you might use aggregate functions
to filter the information in a result set.

Using Aggregate Functions in Filters

Because an aggregate function returns a single value, you can use it as
part of a comparison predicate in a search condition. You have to place
the aggregate function within a subquery, however, and then use the
subquery as part of the comparison predicate. If you’re thinking that
this sounds familiar, you’re right. In Chapter 11, you learned how to use
a subquery as part of a search condition in a WHERE clause and an
aggregate function within a subquery. So you already know, in a general
sense, how to use an aggregate function to filter the data sent to a result
set. Now let’s expand on that knowledge.

Using an aggregate function as part of a comparison predicate allows
you to test the value of a value expression against a single statistical
value. Although you could use a literal value for the task, a subquery
gives you more flexibility and provides a more dynamic aspect to the
condition. For example, suppose you’re making the following request to
the database:

“List the products that have a retail price less than or equal to the over-
all average retail price.”

One method you can use to answer this request is to calculate the over-
all average retail price manually and then plug that specific value into a
comparison predicate.

Translation Select the product name from the products table where the
retail price is less than or equal to $196.03

Clean Up Select the product name from the products table where the
retail price is less than or equal to <= $196.03

SQL SELECT ProductName

FROM Products

WHERE RetailPrice <= 196.03

Hey, why do more work than necessary? You can use an aggregate func-
tion in a subquery and let the database system do the work for you.

458 Chapter 12 Simple Totals

Translation Select the product name from the products table where the
retail price is less than or equal to the overall average retail
price in the products table

Clean Up Select the product name from the products table where the
retail price is less than or equal to the <= overall (select
average avg retail price in the from products table)

SQL SELECT ProductName

FROM Products

WHERE RetailPrice <=

 (SELECT AVG(RetailPrice)

 FROM Products)

I saved this query as CH12_Products_LTE_Avg_Price in the Sales Orders
sample database.

It should be obvious that using a subquery with an aggregate function is
your best course of action. If you use a literal value, you must be certain
that you always recalculate the average contract price before executing
the SELECT statement, just in case you’ve modified any existing retail
prices. You then have to make sure that you enter the value correctly
in the comparison predicate. But you won’t have to worry about any of
this if you use a subquery instead. The AVG function is always evaluated
whenever you execute the SELECT statement, and it always returns the
correct value regardless of whether you’ve modified any of the contract
prices. (This is true for any aggregate function you use in a subquery.)

You can limit the rows that an aggregate function evaluates by using
a WHERE clause in the subquery. This allows you to narrow the scope
of the statistical value returned by the aggregate function. You already
learned how to apply a WHERE clause to a subquery back in Chapter 11,
so let’s look at an example of how you might apply this technique:

“List the engagement number and contract price of all engagements
that have a contract price larger than the total amount of all contract
prices for the entire month of September 2017.”

Translation Select engagement number and contract price from the
engagements table where the contract price is greater
than the sum of all contract prices of engagements dated
between September 1, 2017, and September 30, 2017

 Sample Statements 459

Clean Up Select engagement number, and contract price from
the engagements table where the contract price is
 greater than > the (select sum of all (contract prices)
from engagements where dated start date between
 September 1, 2017, ‘2017-09-01’ and September 30, 2017
‘2017-09-30’)

SQL SELECT EngagementNumber, ContractPrice

FROM Engagements

WHERE ContractPrice >

 (SELECT SUM(ContractPrice) FROM Engagements

 WHERE StartDate BETWEEN '2017-09-01'

 AND '2017-09-30')

I saved this query as CH12_Engagements_GT_SUM_September in the
Entertainment Agency sample database.

You might find that you rarely have a need to use aggregate functions in
filters, but they certainly come in handy when you have to answer those
occasional off-the-wall requests.

Sample Statements

In this chapter, you’ve learned how to use aggregate functions in a
SELECT clause and within a subquery being used as part of a compari-
son predicate. Now let’s look at some examples of working with aggregate
functions using the tables from each of the sample databases. These
examples illustrate the use of the aggregate functions as output columns
and in subqueries.

I’ve also included sample result sets that would be returned by these
operations and placed them immediately after the SQL syntax line. The
name that appears immediately above a result set is the name I gave
each query in the sample data on the companion website for this book,
www.informit.com/title/9780134858333. I stored each query in the
appropriate sample database (as indicated within the example), and I
prefixed the names of the queries relevant to this chapter with “CH12.”
You can follow the instructions in the Introduction of this book to load
the samples onto your computer and try them.

http://www.informit.com/title/9780134858333

460 Chapter 12 Simple Totals

 ❖ Note Remember that all the column names and table names used
in these examples are drawn from the sample database structures
shown in Appendix B, “Schema for the Sample Databases.” Because
many of these examples use complex JOINs, your database system
might choose a different way to solve these queries. For this reason,
the first few rows might not exactly match the result you obtain, but
the total number of rows should be the same. To simplify the process,
I have combined the Translation and Clean Up steps for all the
following examples.

Sales Orders Database

“How many customers do we have in the state of California?”

Translation/
Clean Up

Select the count(*) as NumberOfCACustomers of all
 customers from the customers table where the
state is = ‘CA’

SQL SELECT COUNT(*) AS NumberOfCACustomers

FROM Customers

WHERE CustState = 'CA'

CH12_Number_Of_California_Customers (1 Row)

NumberOfCACustomers

7

“List the product names and numbers that have a quoted price greater
than or equal to the overall average retail price in the products table.”

Translation/
Clean Up

Select the product name, and the product number from
the products table inner joined with the order details table
on products.product number in the products table
matches = order_details.product number in the order
details table where the quoted price is greater than or
equal to >= (select the average avg(retail price) in the from
products table)

❖ Note Remember that all the column names and table names used
in these examples are drawn from the sample database structures
shown in Appendix B, “Schema for the Sample Databases.” Because
many of these examples use complex JOINs, your database system
might choose a different way to solve these queries. For this reason,
the first few rows might not exactly match the result you obtain, but
the total number of rows should be the same. To simplify the process,
I have combined the Translation and Clean Up steps for all the
following examples.

 Sample Statements 461

SQL SELECT DISTINCT Products.ProductName,

 Products.ProductNumber

FROM Products

INNER JOIN Order_Details

ON Products.ProductNumber =

 Order_Details.ProductNumber

WHERE Order_Details.QuotedPrice >=

 (SELECT AVG(RetailPrice)

 FROM Products)

 ❖ Note I chose to ask for DISTINCT products because (I hope) a
particular product might have been ordered more than once. I need to
see each product name and number only once.

CH12_Quoted_Price_vs_Average_Retail_Price (4 Rows)

ProductName ProductNumber

Eagle FS-3 Mountain Bike 2

GT RTS-2 Mountain Bike 11

Trek 9000 Mountain Bike 1

Viscount Mountain Bike 6

Entertainment Agency Database

“List the engagement number and contract price of contracts that occur
on the earliest date.”

Translation/
Clean Up

Select engagement number, and contract price from
the engagements table where the start date is equal
to the = earliest (select min(start date) in the from
engagements table)

SQL SELECT EngagementNumber, ContractPrice

FROM Engagements

WHERE StartDate =

 (SELECT MIN(StartDate) FROM Engagements)

❖ Note I chose to ask for DISTINCT products because (I hope) a
particular product might have been ordered more than once. I need to
see each product name and number only once.

462 Chapter 12 Simple Totals

CH12_Earliest_Contracts (1 Row)

EngagementNumber ContractPrice

2 $200.00

“What was the total value of all engagements booked in October 2017?”

Translation/
Clean Up

Select the sum of (contract price) as TotalBookedValue
from the engagements table where the start date is
between October 1, 2017 ‘2017-10-01’ and October 31, 2017
‘2017-10-31’

SQL SELECT SUM(ContractPrice) AS TotalBookedValue

FROM Engagements

WHERE StartDate

 BETWEEN '2017-10-01' AND '2017-10-31'

CH12_Total_Booked_Value_For_October_2017 (1 Row)

TotalBookedValue

$30,125.00

School Scheduling Database

“What is the largest salary we pay to any staff member?”

Translation/
Clean Up

Select the maximum (salary) as LargestStaffSalary from
the staff table

SQL SELECT Max(Salary) AS LargestStaffSalary

FROM Staff

CH12_Largest_Staff_Salary (1 Row)

LargestStaffSalary

$60,000.00

 Sample Statements 463

“What is the total salary amount paid to our staff in California?”

Translation/
Clean Up

Select the sum of (salary) as TotalAmountPaid from the
staff table for all our California staff where state = ‘CA’

SQL SELECT SUM(Salary) AS TotalAmountPaid

FROM Staff

WHERE StfState = 'CA'

CH12_Total_Salary_Paid_To_California_Staff (1 Row)

TotalAmountPaid

$209,000.00

Bowling League Database

“How many tournaments have been played at Red Rooster Lanes?”

Translation/
Clean Up

Select the count of (tourney location)s as
 NumberOfTournaments from the tournaments table
where the tourney location is = ‘Red Rooster Lanes’

SQL SELECT COUNT(TourneyLocation)

 AS NumberOfTournaments

FROM Tournaments

WHERE TourneyLocation = 'Red Rooster Lanes'

 ❖ Note Because the query filters on TourneyLocation, I could have
also used COUNT(*).

CH12_Number_Of_Tournaments_At_Red_Rooster_Lanes (1 Row)

NumberOfTournaments

3

❖ Note Because the query filters on TourneyLocation, I could have
also used COUNT(*).

464 Chapter 12 Simple Totals

“List the last name and first name, in alphabetical order, of every
bowler whose personal average score is greater than or equal to the
overall average score.”

Translation/
Clean Up

Select the last name, and first name from the bowlers table
where the (select average avg(raw score) from the bowlers
scores table as BS for the current bowler where BS.bowler
ID = bowlers.bowler ID) is greater than or equal to the
>= overall (select avg(raw score) score in the from bowler
scores table) sorted order by last name, and first name

SQL SELECT Bowlers.BowlerLastName,

 Bowlers.BowlerFirstName

FROM Bowlers

WHERE (SELECT AVG(RawScore)

FROM Bowler_Scores AS BS

WHERE BS.BowlerID = Bowlers.BowlerID)

>=(SELECT AVG(RawScore) FROM Bowler_Scores)

ORDER BY Bowlers.BowlerLastName,

 Bowlers.BowlerFirstName

CH12_Better_Than_Overall_Average (17 Rows)

BowlerLastName BowlerFirstName

Cunningham David

Fournier David

Hallmark Alaina

Hallmark Gary

Hernandez Michael

Kennedy Angel

Kennedy John

Patterson Kathryn

Patterson Neil

Patterson Rachel

Clothier Ben

 Sample Statements 465

BowlerLastName BowlerFirstName

Thompson Mary

Thompson Sarah

Thompson William

Viescas Caleb

Viescas David

Viescas John

 ❖ Note You can see that this is a creative use of two subqueries in
the WHERE clause to solve the problem.

Recipes Database

“How many recipes contain a beef ingredient?”

Translation/
Clean Up

Select the count (*) of recipes as NumberOfRecipes from
the recipes table where the recipe ID is in the (selection of
recipe IDs in the from recipe ingredients table inner joined
with the ingredients table on recipe_ingredients.ingredient
ID in the recipe ingredients table matches = ingredients.
ingredient ID in the ingredients table where the ingredient
name is like ‘%Beef%’)

SQL SELECT COUNT(*) AS NumberOfRecipes

FROM Recipes

WHERE Recipes.RecipeID IN

 (SELECT RecipeID

 FROM Recipe_Ingredients

 INNER JOIN Ingredients ON

 Recipe_Ingredients.IngredientID =

 Ingredients.IngredientID

 WHERE Ingredients.IngredientName

 LIKE '%Beef%')

❖ Note You can see that this is a creative use of two subqueries in
the WHERE clause to solve the problem.

466 Chapter 12 Simple Totals

CH12_Recipes_With_Beef_Ingredient (1 Row)

NumberOfRecipes

3

“How many ingredients are measured by the cup?”

Translation/
Clean Up

Select the count (*) of ingredients as NumberOfIngredients
from the ingredients table inner joined with the measure-
ments table on ingredients.measure amount ID in
the ingredients table matches = measurements.measure
amount ID in the measurements table where the measure-
ment description is = ‘Cup’

SQL SELECT COUNT(*) AS NumberOfIngredients

FROM Ingredients

INNER JOIN Measurements

ON Ingredients.MeasureAmountID =

 Measurements.MeasureAmountID

WHERE MeasurementDescription = 'Cup'

CH12_Number_of_Ingredients_Measured_by_the_Cup (1 Row)

NumberOfIngredients

12

Summary

I began this chapter by introducing you to aggregate functions. You
learned about five different functions and that you can use them in the
SELECT and WHERE clauses of a SELECT statement. You also learned
that each aggregate function—except COUNT(*)—disregards all Null
 values as it performs its operation.

Next, I showed how to use each aggregate function. You learned how to
count rows or values with the COUNT functions, how to find the larg-
est and smallest values with the MAX and MIN functions, how to cal-
culate a mean average with the AVG function, and how to total a set of

 Problems for You to Solve 467

values with the SUM function. I also showed how to use the DISTINCT
option with each function and explained that DISTINCT does not affect
the MAX and MIN functions.

I closed the chapter by showing you how to use aggregate functions in
filters. You now know that you can use an aggregate function within
a subquery and then use the subquery as part of the filter. You also
learned that you can apply a filter to the subquery as well so that the
aggregate function bases its value on a specific set of data.

I’ve only just begun to show you what you can do with aggregate func-
tions. In the next two chapters, I’ll show you how to provide more sophis-
ticated statistical information by using aggregate functions on grouped
data and how to apply a filter to aggregate calculations.

The following section presents some requests that you can work out on
your own.

Problems for You to Solve

Below, I show you the request statement and the name of the solution
query in the sample databases. If you want some practice, you can work
out the SQL you need for each request and then check your answer with
the query I saved in the samples. Don’t worry if your syntax doesn’t
exactly match the syntax of the queries I saved—as long as your result
set is the same.

Sales Orders Database

 1. “What is the average retail price of a mountain bike?”

You can find the solution in CH12_Average_Price_Of_A_
Mountain_Bike (1 row – value: $1321.25).

 2. “What was the date of our most recent order?”

You can find the solution in CH12_Most_Recent_Order_Date
(1 row – value: 2018-03-01).

 3. “What was the total amount for order number 8?”

You can find the solution in CH12_Total_Amount_For_Order_
Number_8 (1 row – value: $1492.60).

468 Chapter 12 Simple Totals

Entertainment Agency Database

 1. “What is the average salary of a booking agent?”

You can find the solution in CH12_Average_Agent_Salary
(1 row – value: $24850.00).

 2. “Show me the engagement numbers for all engagements that have
a contract price greater than or equal to the overall average contract
price.”

(Hint: You’ll have to use a subquery to answer this request.)

You can find the solution in CH12_Contract_Price_GE_Average_
Contract_Price (43 rows).

 3. “How many of our entertainers are based in Bellevue?”

You can find the solution in CH12_Number_Of_Bellevue_
Entertainers (1 row – value: 3).

 4. “Which engagements occur earliest in October 2017?”

You can find the solution in CH12_Earliest_October_Engagements
(3 rows).

School Scheduling Database

 1. “What is the current average class duration?”

You can find the solution in CH12_Average_Class_Duration
(1 row – value: 78.939 – but SQL Server truncates to 78).

 2. “List the last name and first name of each staff member who has
been with us since the earliest hire date.”

(Hint: You’ll have to use a subquery containing an aggregate
 function that evaluates the DateHired column.)

You can find the solution in CH12_Most_Senior_Staff_Members
(1 row – value: “Alborous, Sam”).

 3. “How many classes are held in room 3346?”

You can find the solution in CH12_Number_Of_Classes_Held_
In_Room_3346 (1 row – value: 10).

Bowling League Database

 1. “What is the largest handicap held by any bowler at the current
time?”

You can find the solution in CH12_Current_Highest_Handicap
(1 row – value: 52).

 Problems for You to Solve 469

 2. “Which locations hosted tournaments on the earliest tournament
date?”

You can find the solution in CH12_Tourney_Locations_For_
Earliest_Date (1 row – value: “Red Rooster Lanes”).

 3. “What is the last tournament date we have on our schedule?”

You can find the solution in CH12_Last_Tourney_Date
(1 row – value: 2018-08-16).

Recipes Database

 1. “Which recipe requires the most cloves of garlic?”

(Hint: You’ll need to use INNER JOINs and a subquery to answer
this request. Note that the measurement is “cloves” for all recipes,
so you don’t have to filter for that.)

You can find the solution in CH12_Recipe_With_Most_Cloves_of_
Garlic (1 row – value: “Roast Beef”).

 2. “Count the number of main course recipes.”

(Hint: To search on “Main course” recipes requires a JOIN
between Recipe_Classes and Recipes, but you can also cheat and
just look for RecipeClassID = 1.)

You can find the solution in CH12_Number_Of_Main_Course_
Recipes (1 row – value: 7).

 3. “Calculate the total number of teaspoons of salt in all recipes.”

(Hint: Salt happens to be measured in teaspoons in all recipes,
so you don’t have to filter for that.)

You can find the solution in CH12_Total_Salt_Used (1 row –
value: 8.75).

This page intentionally left blank

 471

13
Grouping Data

“Don’t drown yourself with details. Look at the whole.”
—MARSHAL FERDINAND FOCH COMMANDER-IN-CHIEF, ALLIED ARMIES IN FRANCE

Topics Covered in This Chapter

Why Group Data?

The GROUP BY Clause

“Some Restrictions Apply”

Uses for GROUP BY

Sample Statements

Summary

Problems for You to Solve

Chapter 12, “Simple Totals,” explained how to use the aggregate func-
tions (COUNT, MIN, MAX, AVG, and SUM) to ask SQL to calculate a
value across all the rows in the table defined in your FROM and WHERE
clauses. I pointed out, however, that after you include any value expres-
sion that contains an aggregate function in your SELECT clause, all
your value expressions must either be a literal constant or contain an
aggregate function. This characteristic is useful if you want to see only
one row of totals across a result set, but what if you want to see some
subtotals? In this chapter, I’ll show you how to ask for subtotals by
grouping your data. I’ll show you how to do more complex subtotals in
Chapter 21, “Performing Complex Calculations on Groups.”

472 Chapter 13 Grouping Data

Why Group Data?

When you’re working in the Sales Orders database, finding out the
 number of orders (COUNT), the total sales (SUM), the average of sales
(AVG), the smallest order (MIN), or the largest order (MAX) is useful,
indeed. And if you want to calculate any of these values by customer,
order date, or product, you can add a filter (WHERE) to fetch the rows
for one particular customer or product. But what if you want to see
 subtotals for all customers, displaying the customer name along with
the subtotals? To do that, you need to ask your database system to group
the rows.

Likewise, in the Entertainment Agency database, it’s easy to find out the
number of contracts, the total contract price, the smallest contract price,
or the largest contract price for all contracts. You can even filter the
rows so that you see these calculations for one particular entertainer,
one particular customer, or across a specific range of dates. Again, if
you want to see one total row for each customer or entertainer, you must
group the rows.

Are you starting to get the idea? When you ask your database system to
group rows on column values or expressions, it forms subsets of rows
based on matching values. You can then ask your database to calcu-
late aggregate values on each group. Let’s look at a simple example from
the Entertainment Agency database. First, I need to build a query that
fetches the columns of interest—entertainer name and contract price.
Here’s the SQL:

SQL SELECT Entertainers.EntStageName,

 Engagements.ContractPrice

FROM Entertainers

INNER JOIN Engagements

ON Entertainers.EntertainerID =

 Engagements.EntertainerID

ORDER BY EntStageName

The result looks like the following table. (In the sample database, I saved
this request as CH13_Entertainers_And_ContractPrices.)

 Why Group Data? 473

EntStageName ContractPrice

Carol Peacock Trio $140.00

Carol Peacock Trio $1,670.00

Carol Peacock Trio $770.00

Carol Peacock Trio $1,670.00

Carol Peacock Trio $1,670.00

Carol Peacock Trio $320.00

Carol Peacock Trio $1,400.00

Carol Peacock Trio $680.00

Carol Peacock Trio $410.00

Carol Peacock Trio $1,940.00

Carol Peacock Trio $410.00

Caroline Coie Cuartet $1,250.00

Caroline Coie Cuartet $2,450.00

Caroline Coie Cuartet $1,490.00

Caroline Coie Cuartet $1,370.00

<< more rows here >>

You already know that you can count all the rows, or find the smallest,
largest, sum, or average of the ContractPrice column—as long as you
eliminate the EntStageName column. However, you can keep this column
if you ask your database to group on it. If you ask to group on enter-
tainer stage name, your database will form one group containing the first
eleven rows (“Carol Peacock Trio”), a second group containing the next
eleven rows (“Caroline Coie Cuartet”), and so on through the entire table.
You can now ask for the COUNT of the rows or the SUM, MIN, MAX, or
AVG of the ContractPrice column, and you will get one aggregate row per
entertainment group. The result looks like the following table.

474 Chapter 13 Grouping Data

EntStageName NumContracts TotPrice MinPrice MaxPrice AvgPrice

Carol Peacock Trio 11 $11,080.00 $140.00 $1,940.00 $1,007.27

Caroline Coie
Cuartet

11 $15,070.00 $290.00 $2,450.00 $1,370.00

Coldwater Cattle
Company

8 $14,875.00 $350.00 $3,800.00 $1,859.38

Country Feeling 15 $34,080.00 $275.00 $14,105.00 $2,272.00

Jazz Persuasion 7 $5,480.00 $500.00 $1,670.00 $782.86

Jim Glynn 9 $3,030.00 $110.00 $770.00 $336.67

Julia Schnebly 8 $4,345.00 $275.00 $875.00 $543.13

JV & the Deep Six 10 $17,150.00 $950.00 $3,650.00 $1,715.00

Modern Dance 10 $14,600.00 $650.00 $2,930.00 $1,460.00

Saturday Revue 9 $11,550.00 $290.00 $2,930.00 $1,283.33

Susan McLain 6 $2,670.00 $230.00 $800.00 $445.00

Topazz 7 $6,620.00 $590.00 $1,550.00 $945.71

<< more rows here >>

Looks interesting, doesn’t it? I bet you’d like to know how I did that! I’ll
show you all the details in the following sections.

 ❖ Note Remember in the Introduction that I warned you that
results from each database system won’t necessarily match the
sort order you see in examples in this book unless you include an
ORDER BY clause. Even when you include that specification, the
system might return results in columns not included in the ORDER
BY clause in a different sequence because of different optimization
techniques.

If you’re running the examples in Microsoft SQL Server, simply
 selecting the rows from the view does not honor any ORDER BY
clause specified in the view. You must open the design of the view
and execute it from there for the ORDER BY clause to be honored.

❖ Note Remember in the Introduction that I warned you that
results from each database system won’t necessarily match the
sort order you see in examples in this book unless you include an
ORDER BY clause. Even when you include that specification, the
system might return results in columns not included in the ORDER
BY clause in a different sequence because of different optimization
techniques.

If you’re running the examples in Microsoft SQL Server, simply
selecting the rows from the view does not honor any ORDER BY
clause specified in the view. You must open the design of the view
and execute it from there for the ORDER BY clause to be honored.

 The GROUP BY Clause 475

The GROUP BY Clause

As you discovered in Chapter 12, you can find out all sorts of interest-
ing information by using aggregate functions. However, you might have
noticed that all the examples I gave you applied the aggregate functions
across all the rows returned by the FROM and WHERE clauses. You
could filter the result set down to one group using the WHERE clause,
but there was really no way to look at the results from multiple groups
in one request. To accomplish this summarizing by group in a single
request, I need to add one more major clause to your SQL vocabulary—
GROUP BY.

Syntax

Let’s take a close look at the GROUP BY clause. Figure 13-1 shows the
basic diagram for a SELECT statement with GROUP BY added.

SELECT Value Expression

,

SELECT Statement

alias
AS

Table Reference
,

FROM
WHERE Search Condition

Column Reference
,

GROUP BY

Figure 13-1 The syntax diagram of a SELECT statement with a GROUP BY clause

As you recall from earlier chapters, you define the tables that are the
source of your data in the FROM clause. Your FROM clause can be as
simple as a single table name or as complex as a JOIN of multiple tables.
As discussed in Chapter 8, “INNER JOINs,” you can even embed an
entire table subquery (a SELECT statement) as a table reference. Next,
you can optionally provide a WHERE clause to include or exclude certain

476 Chapter 13 Grouping Data

rows supplied by the FROM clause. I covered the WHERE clause in
detail in Chapter 6, “Filtering Your Data.”

When you add a GROUP BY clause, you specify the columns in the log-
ical table formed by the FROM and WHERE clauses that you want your
database system to use as the definition for groups of rows. Rows that
have the same values in the list of columns you specify will be gathered
into a group. You can use the columns that you list in the GROUP BY
clause in value expressions in your SELECT clause, and you can use
any of the aggregate functions I discussed in the previous chapter to
perform calculations across each group.

 ❖ Note When you use GROUP BY, you’ll often see the results
returned by your database system as though they are sorted by the
columns you specified. This happens because some optimizers first
sort the data internally to make it faster to process your GROUP BY.
Keep in mind that if you want a specific sort order, you must also
include an ORDER BY clause.

Let’s apply the GROUP BY clause to see how you can calculate informa-
tion about contract prices by entertainment group—the sample I tanta-
lized you with earlier. Figure 13-2 shows the tables needed to solve this
problem.

ENGAGEMENTS

EngagementNumber PK
StartDate
EndDate
StartTime
StopTime
ContractPrice
CustomerID FK
AgentID FK
EntertainerID FK

ENTERTAINERS
EntertainerID PK
EntStageName

DateEntered

EntStreetAddress
EntCity
EntState
EntZipCode
EntPhoneNumber
EntWebPage
EntEmailAddress

EntSSN

Figure 13-2 The relationship between the Entertainers and Engagements tables

 ❖ Note Throughout this chapter, I use the “Request/Translation/
Clean Up/SQL” technique introduced in Chapter 4, “Creating a Simple
Query.”

❖ Note When you use GROUP BY, you’ll often see the results
returned by your database system as though they are sorted by the
columns you specified. This happens because some optimizers first
sort the data internally to make it faster to process your GROUP BY.
Keep in mind that if you want a specific sort order, you must also
include an ORDER BY clause.

❖ Note Throughout this chapter, I use the “Request/Translation/
Clean Up/SQL” technique introduced in Chapter 4, “Creating a Simple
Query.”

 The GROUP BY Clause 477

“Show me for each entertainment group the group name, the count of
contracts for the group, the total price of all the contracts, the lowest
contract price, the highest contract price, and the average price of all
the contracts.”

(Hint: When you see a request that wants the count, total, smallest,
 largest, or average of values at a detail level [contracts] for each value at
a higher level [entertainers], you are going to need to use aggregate func-
tions and grouping in your request. Remember that for each entertainer
there are most likely many contracts.)

Translation Select entertainer name, the count of contracts, the
sum of the contract price, the lowest contract price,
the highest contract price, and the average con-
tract price from the entertainers table joined with
the engagements table on entertainer ID, grouped by
 entertainer name

Clean Up Select entertainer name, the count of (*) contracts, the
sum of the (contract price), the lowest min(contract
price), the highest max(contract price), and the
average avg(contract price) from the entertainers table
inner joined with the engagements table on entertain-
ers.entertainer ID in the entertainers table matches =
engagements.entertainer ID in the engagements table,
grouped by entertainer name

SQL SELECT Entertainers.EntStageName,

 COUNT(*) AS NumContracts,

 SUM(Engagements.ContractPrice) AS TotPrice,

 MIN(Engagements.ContractPrice) AS MinPrice,

 MAX(Engagements.ContractPrice) AS MaxPrice,

 AVG(Engagements.ContractPrice) AS AvgPrice

FROM Entertainers

INNER JOIN Engagements

ON Entertainers.EntertainerID =

 Engagements.EntertainerID

GROUP BY Entertainers.EntStageName

Note that I substituted MIN for “lowest,” MAX for “highest,” and AVG
for “average,” as I showed you in the previous chapter. I also asked for

478 Chapter 13 Grouping Data

COUNT(*) because I want to count all the engagement (contract) rows
regardless of any Null values. Adding the GROUP BY clause is what gets
me the aggregate calculations per entertainment group. It also allows
me to include the entertainer name in the SELECT clause. (I saved this
request as CH13_Aggregate_Contract_Info_By_Entertainer in the sample
database.)

Do you suppose the above query returns a row for each entertainer?
What about entertainers who have never been booked? If you remember
what you learned in Chapter 9 about OUTER JOIN, you might be tempted
to solve the problem like this:

SQL SELECT Entertainers.EntStageName,

 COUNT(*) AS NumContracts,

 SUM(Engagements.ContractPrice) AS TotPrice,

 MIN(Engagements.ContractPrice) AS MinPrice,

 MAX(Engagements.ContractPrice) AS MaxPrice,

 AVG(Engagements.ContractPrice) AS AvgPrice

FROM Entertainers

LEFT OUTER JOIN Engagements

ON Entertainers.EntertainerID =

 Engagements.EntertainerID

GROUP BY Entertainers.EntStageName

One interesting point about all the aggregate functions is that they
ignore rows that have a Null value. The above query will return a blank
or Null value for TotPrice, MinPrice, MaxPrice, and AvgPrice for the
one entertainer who has no engagements, but you’ll find that NumCon-
tracts is 1! How can that be? Well, this SQL asks for COUNT(*)—count
any row returned. The OUTER JOIN returns exactly one row for the
entertainer with no booking, so the count of 1 is correct. (I saved this
request as CH13_Aggregate_Contract_Info_All_Entertainers_WRONG in
the sample database.) However, if you remember from the previous
chapter, you can also COUNT(value expression), and that tells your
database system to add to the count only if it finds a non-Null value in
the value expression or column name you specify. Let’s tweak the query
one more time.

 The GROUP BY Clause 479

SQL SELECT Entertainers.EntStageName,

 COUNT(Engagements.EntertainerID) AS NumContracts,

 SUM(Engagements.ContractPrice) AS TotPrice,

 MIN(Engagements.ContractPrice) AS MinPrice,

 MAX(Engagements.ContractPrice) AS MaxPrice,

 AVG(Engagements.ContractPrice) AS AvgPrice

FROM Entertainers

LEFT OUTER JOIN Engagements

ON Entertainers.EntertainerID =

 Engagements.EntertainerID

GROUP BY Entertainers.EntStageName

Because the EntertainerID column from the Engagements table for the
one entertainer who has no bookings is Null, nothing gets counted. If
you run this query, you should see the correct value 0 in NumContracts
for the one entertainer who has no engagements. (I saved this request as
CH13_Aggregate_Contract_Info_All_Entertainers in the sample database.)

What if you want (or need) to group on more than one value? Let’s look
at this same problem, but from the perspective of customers rather than
entertainers, and let’s assume you want to display in your result set
both the customer’s last name and first name. Figure 13-3 shows the
necessary tables.

ENGAGEMENTS

EngagementNumber PK
StartDate
EndDate
StartTime
StopTime
ContractPrice
CustomerID FK
AgentID FK
EntertainerID FK

CUSTOMERS
CustomerID PK
CustFirstName
CustLastName
CustStreetAddress
CustCity
CustState
CustZipCode

CustPhoneNumber
CustAreaCode

Figure 13-3 The relationship between the Customers and Engagements tables

“Show me for each customer the customer first and last names, the
count of contracts for the customer, the total price of all the contracts,
the lowest contract price, the highest contract price, and the average
price of all the contracts.”

480 Chapter 13 Grouping Data

Translation Select customer last name, customer first name, the count of
contracts, the sum of the contract price, the lowest contract
price, the highest contract price, and the average contract
price from the customers table joined with the engagements
table on customer ID, grouped by customer last name and
customer first name

Clean Up Select customer last name, customer first name, the count
of (*) contracts, the sum of the (contract price), the lowest
 min(contract price), the highest max(contract price), and the
average avg(contract price) from the customers table inner
joined with the engagements table on customers.customer ID
in the customers table matches = engagements.customer ID in
the engagements table, grouped by customer last name, and
customer first name

SQL SELECT Customers.CustLastName,

 Customers.CustFirstName,

 COUNT(*) AS NumContracts,

 SUM(Engagements.ContractPrice) AS TotPrice,

 MIN(Engagements.ContractPrice) AS MinPrice,

 MAX(Engagements.ContractPrice) AS MaxPrice,

 AVG(Engagements.ContractPrice) AS AvgPrice

FROM Customers

INNER JOIN Engagements

ON Customers.CustomerID =

 Engagements.CustomerID

GROUP BY Customers.CustLastName,

 Customers.CustFirstName

The result looks like the following table. (In the Entertainment
Agency sample database, I saved this request as CH13_Aggregate_
Contract_Info_By_Customer.)

CustLast
Name

CustFirst
Name

Num
Contracts

TotPrice MinPrice MaxPrice AvgPrice

Berg Matt 9 $13,170.00 $200.00 $2,675.00 $1,463.33

Brehm Peter 7 $7,250.00 $290.00 $3,800.00 $1,035.71

Ehrlich Zachary 13 $12,455.00 $230.00 $1,550.00 $958.08

 The GROUP BY Clause 481

CustLast
Name

CustFirst
Name

Num
Contracts

TotPrice MinPrice MaxPrice AvgPrice

Hallmark Elizabeth 8 $25,585.00 $410.00 $14,105.00 $3,198.13

Hartwig Doris 8 $10,795.00 $140.00 $2,750.00 $1,349.38

Keyser Liz 7 $4,685.00 $200.00 $1,490.00 $669.29

McCrae Dean 11 $11,800.00 $290.00 $2,570.00 $1,072.73

Patterson Kerry 7 $6,815.00 $110.00 $2,930.00 $973.57

<< more rows here >>

Because it takes two columns to display the customer name, I had to
include them both in the GROUP BY clause. Remember that if you want
to include a column in the output that is not the result of an aggregate
calculation, you must also include it in the GROUP BY clause. I did not
include ContractPrice in the GROUP BY clause because that’s the column
I’m using in many of the aggregate function expressions. If I had included
ContractPrice, I would have gotten unique groups of customers and
prices. MIN, MAX, and AVG will all return that grouped price. COUNT
will be greater than one only if more than one contract with the same
price exists for a given customer. If you think about it, though, grouping
by customer and price and asking for a COUNT would be a good way to
find customers who have multiple contracts at the same price.

Do you suppose this query includes customers who have no bookings?
If you answered “No,” you’re correct! To fetch data for all customers
regardless of whether they’ve booked an engagement, you must use an
OUTER JOIN and be careful to COUNT one of the columns from the
 Engagements table. The solution is similar to the problem discussed ear-
lier for entertainers and engagements.

Mixing Columns and Expressions

Suppose you want to list the customer name as one output column, the
full customer address as another output column, the last engagement
date, and the sum of engagement contract prices. The customer name
is in two columns: CustFirstName and CustLastName. The columns
you need for a full address are CustStreetAddress, CustCity, CustState,
and CustZipCode. Let’s see how you should construct the SQL for this
request. (I saved this request as CH13_Customers_Last_Booking in the
Entertainment Agency sample database.)

482 Chapter 13 Grouping Data

“Show me for each customer the customer full name, the customer full
address, the latest contract date for the customer, and the total price of
all the contracts.”

Translation Select customer last name and customer first name as
 CustomerFullName; street address, city, state, and ZIP Code as
CustomerFullAddress; the latest contract start date; and the
sum of the contract price from the customers table joined with
the engagements table on customer ID, grouped by customer
last name, customer first name, customer street address,
 customer city, customer state, and customer ZIP Code

Clean Up Select customer last name and || ‘, ’ || customer first name
as CustomerFullName, street address, || ‘, ‘ || city, || ‘, ‘ ||
state, and || ‘ ‘ || ZIP Code as CustomerFullAddress, the
 latest max(contract start date) as latest date, and the sum of
the (contract price) as total contract price from the customers
table inner joined with the engagements table on customers.
customer ID in the customers table matches = engagements.
customer ID in the engagements table grouped by customer
last name, customer first name, customer street address,
 customer city, customer state, and customer ZIP Code

SQL SELECT Customers.CustLastName || ', ' ||

 Customers.CustFirstName AS CustomerFullName,

 Customers.CustStreetAddress || ', ' ||

 Customers.CustCity || ', ' ||

 Customers.CustState || ' ' ||

 Customers.CustZipCode AS CustomerFullAddress,

 MAX(Engagements.StartDate) AS LatestDate,

 SUM(Engagements.ContractPrice),

 AS TotalContractPrice

FROM Customers

INNER JOIN Engagements

ON Customers.CustomerID =

 Engagements.CustomerID

GROUP BY Customers.CustLastName,

 Customers.CustFirstName,

 Customers.CustStreetAddress,

 Customers.CustCity, Customers.CustState,

 Customers.CustZipCode

 The GROUP BY Clause 483

Notice that I had to list every one of the columns that I used in an out-
put expression that did not include an aggregate function. I used Start-
Date and ContractPrice in aggregate expressions, so I don’t need to list
them in the GROUP BY clause. In fact, it doesn’t make sense to group
on either StartDate or ContractPrice because I want to use these in
an aggregate calculation across multiple customers. If, for example, I
grouped on StartDate, MAX(StartDate) would return the grouping value,
and the expression SUM(ContractPrice) would return only the sum of
contract prices for a customer on any given date. You wouldn’t get the
sum of more than one contract unless a customer had more than one
contract for a given date—not likely.

Using GROUP BY in a Subquery in a WHERE Clause

In Chapter 11, “Subqueries,” I introduced the COUNT and MAX aggre-
gate functions to show how to filter rows using an aggregate value
fetched with a subquery. In Chapter 12 I showed how to use MIN,
AVG, and SUM in a subquery filter as well. Let’s look at a request that
requires both a subquery with an aggregate function and a GROUP BY
clause in the subquery:

“Display the engagement contract whose price is greater than the sum
of all contracts for any other customer.”

Translation Select customer first name, customer last name, engagement
start date, and engagement contract price from the customers
table joined with the engagements table on customer ID where
the contract price is greater than the sum of all contract prices
from the engagements table for customers other than the cur-
rent customer, grouped by customer ID

Clean Up Select customer first name, customer last name, engagement
start date, and engagement contract price from the customers
table inner joined with the engagements table on customers.
customer ID in the customers table matches = engagements.
customer ID in the engagements table where the contract price
is greater than > ALL (select the sum of all (contract prices)
from the engagements table as E2 for where E2.customers ID
<> other than the current customers.customer ID, grouped by
E2.customer ID)

484 Chapter 13 Grouping Data

SQL SELECT Customers.CustFirstName,

 Customers.CustLastName,

 Engagements.StartDate,

 Engagements.ContractPrice

FROM Customers

INNER JOIN Engagements

ON Customers.CustomerID =

 Engagements.CustomerID

WHERE Engagements.ContractPrice > ALL

 (Select SUM(ContractPrice)

 FROM Engagements AS E2

 WHERE E2.CustomerID <> Customers.CustomerID

 GROUP BY E2.CustomerID)

Let’s analyze what the subquery is doing. For each engagement that the
query looks at in the JOIN of the Customers and Engagements tables,
the subquery calculates the SUM of all contract prices for all other
customers and groups them by customer ID. Because there are multi-
ple customers in the database, the subquery will return multiple SUM
 values—one for each of the other customers. For this reason, I cannot
ask for a simple greater than (>) comparison. I can, however, use the
quantified greater than all (> ALL) comparison to check a set of values
as you learned in Chapter 11. If you run this query in the sample Enter-
tainment Agency database for this chapter (I saved it as CH13_Biggest_
Big_Contract), you’ll find that one contract fits the bill, as shown here:

CustFirstName CustLastName StartDate ContractPrice

Elizabeth Hallmark 2018-01-22 $14,105.00

Simulating a SELECT DISTINCT Statement

Did it occur to you that you can use a GROUP BY clause and not include
any aggregate functions in your SELECT clause? Sure you can! When
you do this, you get the same effect as using the DISTINCT keyword
 covered in Chapter 4. (See the “Eliminating Duplicate Rows” section in
that chapter.)

 “Some Restrictions Apply” 485

Let’s look at a simple request that requires unique values and solve it
using both techniques:

“Show me the unique city names from the customers table.”

Translation 1 Select the unique city names from the customers table

Clean Up Select the unique distinct city names from the customers table

SQL SELECT DISTINCT Customers.CustCity

FROM Customers

Translation 2 Select city name from the customers table, grouped by
city name

Clean Up Select city name from the customers table, grouped by city name

SQL SELECT Customers.CustCity

FROM Customers

GROUP BY Customers.CustCityName

Remember that GROUP BY groups all the rows on the grouping
column(s) you specify and returns one row per group. This is a slightly
different way to get to the same result that you obtain with the DIS-
TINCT keyword. Which one is better? I think that DISTINCT might be
a clearer statement of what you want if all you want is unique rows,
but you might find that your database system solves the problem faster
when you use GROUP BY. In addition, GROUP BY lets you obtain more
information about your data. Consider the following query:

SQL SELECT Customers.CustCity, Count(*) as

 CustPerCity

FROM Customers

GROUP BY Customers.CustCityName

With this query, you not only fetch the unique city names but also find
out how many customers are in each city. Is that cool or what?

“Some Restrictions Apply”

I already mentioned that adding a GROUP BY clause places certain
restrictions on constructing your request. Let’s review those restrictions
to make sure you don’t fall into common traps.

486 Chapter 13 Grouping Data

Column Restrictions

When you add a GROUP BY clause, you’re asking your database system
to form unique groups of rows from those returned by the tables defined
in your FROM clause and filtered by your WHERE clause. You can use
as many aggregate expressions as you like in your SELECT clause, and
these expressions can use any of the columns in the table defined by
the FROM and WHERE clauses. As I pointed out in an earlier example,
it probably does not make sense to reference a column in an aggregate
expression and also include that column in your grouping specification.

If you choose to also include expressions that reference columns but do
not include an aggregate function, you must list all columns you use this
way in the GROUP BY clause. One of the most common mistakes is to
assume that you can reference columns in nonaggregate expressions as
long as the columns come from unique rows. For example, let’s look at
an incorrect request that includes a primary key value—something that
I know by definition is unique:

“Display the customer ID, customer full name, and the total of all
engagement contract prices.”

Translation Select customer ID, customer first name, and customer last
name as CustFullName, and the sum of contract prices
as TotalPrice from the customers table joined with the
 engagements table on customer ID, grouped by customer ID

Clean Up Select customer ID, customer first name and || ‘ ‘ || customer
last name as CustFullName, and the sum of (contract price)s
as TotalPrice from the customers table inner joined with the
engagements table on customers.customer ID in the customers
table matches = engagements.customer ID in the engagements
table, grouped by customer ID

SQL SELECT Customers.CustomerID,

 Customers.CustFirstName || ' ' ||

 Customers.CustLastName AS CustFullName,

 SUM(Engagements.ContractPrice) AS TotalPrice

FROM Customers

INNER JOIN Engagements

ON Customers.CustomerID =

 Engagements.CustomerID

GROUP BY Customers.CustomerID

 “Some Restrictions Apply” 487

I know that CustomerID is unique per customer. Grouping on
CustomerID alone should be sufficient to fetch unique customer first and
last name information within the groups formed by CustomerID. How-
ever, SQL is a language based on syntax, not semantics. In other words,
SQL does not take into account any knowledge that could be implied
by the design of your database tables—including whether columns are
primary keys. SQL demands that your request be syntactically “pure”
and translatable without any knowledge of the underlying table design.
So, the above SQL statement will fail on a database system that is fully
compliant with the SQL Standard because I’ve included columns in the
SELECT clause that are not in an aggregate function and are also not
in the GROUP BY clause (CustFirstName and CustLastName). (Surpris-
ingly, a query constructed like the above does work in MySQL and Post-
greSQL.) The correct SQL request is as follows:

SQL SELECT Customers.CustomerID,

 Customers.CustFirstName || ' ' ||

 Customers.CustLastName AS CustFullName,

 SUM(Engagements.ContractPrice) AS TotalPrice

FROM Customers

INNER JOIN Engagements

ON Customers.CustomerID =

 Engagements.CustomerID

GROUP BY Customers.CustomerID,

 Customers.CustFirstName,

 Customers.CustLastName

This might seem like overkill, but it’s the correct way to do it!

 ❖ Note In some database systems, you must exactly duplicate the
expressions you use in the SELECT clause in the GROUP BY clause.
Oracle and Microsoft Office Access are examples of systems that either
support or require this. (Microsoft Office Access lets you do it either
way.) In my example, instead of listing the separate columns, you
would have to end the SQL with this:

GROUP BY Customers.CustomerID,
 Customers.CustFirstName || ' ' ||
 Customers.CustLastName

❖ Note In some database systems, you must exactly duplicate the
expressions you use in the SELECT clause in the GROUP BY clause.s
Oracle and Microsoft Office Access are examples of systems that either
support or require this. (Microsoft Office Access lets you do it either
way.) In my example, instead of listing the separate columns, you
would have to end the SQL with this:

GROUP BY Customers.CustomerID,
 Customers.CustFirstName || ' ' ||
 Customers.CustLastName

488 Chapter 13 Grouping Data

This isn’t compliant with the SQL Standard, but you might find that
this is the only way you can get your request to work on your system.

Grouping on Expressions

I showed you earlier some correct examples of creating expressions that
do not include aggregate functions. One of the most common mistakes is
to attempt to group on the expression you create in the SELECT clause
rather than on the individual columns. Remember that the GROUP BY
clause must refer to columns created by the FROM and WHERE clauses.
It cannot use an expression you create in your SELECT clause.

Let’s take another look at an example I solved earlier to show you what
I mean, but this time, let’s make the mistake. (I’m skipping the Transla-
tion and Clean Up steps here because I covered them earlier.)

“Show me for each customer in the state of Washington the customer
full name, the customer full address, the latest contract date for the
customer, and the total price of all the contracts.”

SQL SELECT Customers.CustLastName || ', ' ||

 Customers.CustFirstName AS CustomerFullName,

 Customers.CustStreetAddress || ', ' ||

 Customers.CustCity || ', ' ||

 Customers.CustState || ' ' ||

 Customers.CustZipCode AS CustomerFullAddress,

 MAX(Engagements.StartDate) AS LatestDate,

 SUM(Engagements.ContractPrice)

 AS TotalContractPrice

FROM Customers

INNER JOIN Engagements

ON Customers.CustomerID =

 Engagements.CustomerID

WHERE Customers.CustState = 'WA'

GROUP BY CustomerFullName,

 CustomerFullAddress

This isn’t compliant with the SQL Standard, but you might find that
this is the only way you can get your request to work on your system.

 “Some Restrictions Apply” 489

Some database systems will let you get away with this, but it’s not
 correct. The CustomerFullName and CustomerFullAddress columns
don’t exist until after your database system has evaluated the FROM,
WHERE, and GROUP BY clauses. The GROUP BY clause won’t find these
columns in the result created in the FROM and WHERE clauses, so on
a database system that strictly adheres to the SQL Standard you’ll get a
syntax error.

I showed you earlier one correct way to solve this: You must list
all the columns you use in both the CustomerFullName and
 CustomerFullAddress expressions. Another way is to make the FROM
clause generate the calculated columns by embedding a table subquery.
Here’s what it looks like:

SQL SELECT CE.CustomerFullName,

 CE.CustomerFullAddress,

 MAX(CE.StartDate) AS LatestDate,

 SUM(CE.ContractPrice) AS TotalContractPrice

FROM

 (SELECT Customers.CustLastName || ', ' ||

 Customers.CustFirstName AS CustomerFullName,

 Customers.CustStreetAddress || ', ' ||

 Customers.CustCity || ', ' ||

 Customers.CustState || ' ' ||

 Customers.CustZipCode AS CustomerFullAddress,

 Engagements.StartDate,

 Engagements.ContractPrice

 FROM Customers

 INNER JOIN Engagements

 ON Customers.CustomerID =

 Engagements.CustomerID

 WHERE Customers.CustState = 'WA')

AS CE

GROUP BY CE.CustomerFullName,

 CE.CustomerFullAddress

490 Chapter 13 Grouping Data

This works now because I’ve generated the CustomerFullName and Cus-
tomerFullAddress columns as output in the FROM clause. You have to
admit, though, that this makes the query very complex. In truth, it’s
better to just list all the individual columns you plan to use in nonaggre-
gate expressions rather than try to generate the expressions as columns
inside the FROM clause. I saved this last request as CH13_Customers_
Total_Contract in the Entertainment Agency sample database.

Uses for GROUP BY

At this point, you should have a fairly good understanding of how to ask
for subtotals across groups using aggregate functions and the GROUP
BY clause. The best way to give you an idea of the wide range of uses for
GROUP BY is to list some problems you can solve with this new clause
and then present a robust set of examples in the “Sample Statements”
section:

“Show me each vendor and the average by vendor of the number of
days to deliver products.”

“Display for each product the product name and the total sales.”

“List for each customer and order date the customer full name and the
total cost of items ordered on each date.”

“Display each entertainment group ID, entertainment group member,
and the amount of pay for each member based on the total contract
price divided by the number of members in the group.”

“Show each agent name, the sum of the contract price for the engage-
ments booked, and the agent’s total commission.”

“For completed classes, list by category and student the category
name, the student name, and the student’s average grade in all
classes taken in that category.”

“Display by category the category name and the count of classes
offered.”

“List each staff member and the count of classes each is scheduled to
teach.”

“Show me for each tournament and match the tournament ID, the
 tournament location, the match number, the name of each team, and
the total of the handicap score for each team.”

 Sample Statements 491

“Display for each bowler the bowler name and the average of the
bowler’s raw game scores.”

“Show me how many recipes exist for each class of ingredient.”

“If I want to cook all the recipes in my cookbook, how much of each
ingredient must I have on hand?”

Sample Statements

You now know the mechanics of constructing queries using a GROUP BY
clause and have seen some of the types of requests you can answer. Let’s
take a look at a set of samples, all of which request that the information
be grouped. These examples come from each of the sample databases.

I’ve also included sample result sets that would be returned by these
operations and placed them immediately after the SQL syntax line. The
name that appears immediately above a result set is the name I gave
each query in the sample data on the companion website for this book,
www.informit.com/title/9780134858333. I stored each query in the
appropriate sample database (as indicated within the example), and I
prefixed the names of the queries relevant to this chapter with “CH13.”
You can follow the instructions in the Introduction of this book to load
the samples onto your computer and try them.

 ❖ Note Remember that all the column names and table names used
in these examples are drawn from the sample database structures
shown in Appendix B, “Schema for the Sample Databases.” To simplify
the process, I have combined the Translation and Clean Up steps for
all the examples.

These samples assume you have thoroughly studied and understood
the concepts covered in previous chapters, especially the chapters on
JOINs and subqueries.

Sales Orders Database

“List for each customer and order date the customer full name and the
total cost of items ordered on each date.”

❖ Note Remember that all the column names and table names used
in these examples are drawn from the sample database structures
shown in Appendix B, “Schema for the Sample Databases.” To simplify
the process, I have combined the Translation and Clean Up steps for
all the examples.

These samples assume you have thoroughly studied and understood
the concepts covered in previous chapters, especially the chapters on
JOINs and subqueries.

http://www.informit.com/title/9780134858333

492 Chapter 13 Grouping Data

Translation/
Clean Up

Select customer first name and || ‘ ‘ || customer last
name as CustFullName, order date, and the sum of
(quoted price times * quantity ordered) as TotalCost from
the customers table inner joined with the orders table on
customers.customer ID in the customers table matches =
orders.customer ID in the orders table, and then inner
joined with the order details table on orders.order num-
ber in the orders table matches = order_details.order
number in the order details table, grouped by customer
first name, customer last name, and order date

SQL SELECT Customers.CustFirstName || ' ' ||

 Customers.CustLastName AS CustFullName,

 Orders.OrderDate,

 SUM(Order_Details.QuotedPrice *

 Order_Details.QuantityOrdered) AS TotalCost

FROM (Customers

INNER JOIN Orders

ON Customers.CustomerID = Orders.CustomerID)

INNER JOIN Order_Details

ON Orders.OrderNumber =

 Order_Details.OrderNumber

GROUP BY Customers.CustFirstName,

 Customers.CustLastName, Orders.OrderDate

CH13_Order_Totals_By_Customer_And_Date (847 rows)

CustFullName OrderDate TotalCost

Alaina Hallmark 2017-09-03 $4,699.98

Alaina Hallmark 2017-09-15 $4,433.95

Alaina Hallmark 2017-09-22 $353.25

Alaina Hallmark 2017-09-23 $3,951.90

Alaina Hallmark 2017-10-01 $10,388.68

Alaina Hallmark 2017-10-13 $3,088.00

Alaina Hallmark 2017-10-23 $6,775.06

Alaina Hallmark 2017-10-31 $15,781.10

<< more rows here >>

 Sample Statements 493

Entertainment Agency Database

“Display each entertainment group ID, entertainment group member,
and the amount of pay for each member based on the total contract
price divided by the number of members in the group.”

 ❖ Note This one is really tricky because each member might belong
to more than one entertainer group. You must sum the contract prices
for each entertainer and then divide by the count of members in that
group (assuming each member gets equal pay). Fetching the count
requires a subquery filtered on the current entertainer ID (the ID of
the group, not the ID of the member), which means you also must
group by entertainer ID. Oh yes, and don’t forget to exclude members
who are not active (Status = 3).

Translation/
Clean Up

Select entertainer ID, member first name, member last
name, and the sum of (contract price)s divided by /
the (select count(*) of active members from entertainer
members as EM2 in the current entertainer group where
status is not equal to <> not active 3 and the EM2 table
entertainer ID equals = the entertainer members table
entertainer ID) from the members table inner joined with
the entertainer members table on members.member ID
in the members table matches = entertainer_members.
member ID in the entertainer members table, then
inner joined with the entertainers table on entertainers.
entertainer ID in the entertainers table matches = enter-
tainer_members.entertainer ID in the entertainer
members table, and finally inner joined with the engage-
ments table on entertainers.entertainer ID in the
entertainers table matches = engagements.entertainer ID
in the engagements table, where member status is
not equal to <> not active 3, grouped by entertainer ID,
member first name, and member last name, sorted order
by member last name

SQL SELECT Entertainers.EntertainerID,

 Members.MbrFirstName, Members.MbrLastName,

 SUM(Engagements.ContractPrice)/

 (SELECT COUNT(*)

 FROM Entertainer_Members AS EM2

❖ Note This one is really tricky because each member might belong
to more than one entertainer group. You must sum the contract prices
for each entertainer and then divide by the count of members in that
group (assuming each member gets equal pay). Fetching the count
requires a subquery filtered on the current entertainer ID (the ID of
the group, not the ID of the member), which means you also must
group by entertainer ID. Oh yes, and don’t forget to exclude members
who are not active (Status = 3).

494 Chapter 13 Grouping Data

 WHERE EM2.Status <> 3

 AND EM2.EntertainerID =

 Entertainers.EntertainerID)

 AS MemberPay

FROM ((Members

INNER JOIN Entertainer_Members

ON Members.MemberID =

 Entertainer_Members.MemberID)

INNER JOIN Entertainers

ON Entertainers.EntertainerID =

 Entertainer_Members.EntertainerID)

INNER JOIN Engagements

ON Entertainers.EntertainerID =

 Engagements.EntertainerID

WHERE Entertainer_Members.Status <> 3

GROUP BY Entertainers.EntertainerID,

 Members.MbrFirstName, Members.MbrLastName

ORDER BY Members.MbrLastName

CH13_Member_Pay (39 rows)

EntertainerID MbrFirstName MbrLastName MemberPay

1010 Kendra Bonnicksen $2,887.50

1013 Kendra Bonnicksen $3,767.50

1007 Robert Brown $2,975.00

1008 Robert Brown $6,816.00

1008 George Chavez $6,816.00

1013 George Chavez $3,767.50

1010 Caroline Coie $2,887.50

1013 Caroline Coie $3,767.50

<< more rows here >>

 Sample Statements 495

School Scheduling Database

“For completed classes, list by category and student the category
name, the student name, and the student’s average grade of all
classes taken in that category.”

Translation/
Clean Up

Select category description, student first name, student last
name, and the average AVG(of grade) as AvgOfGrade from the
categories table inner joined with the subjects table on cate-
gories.category ID in the categories table matches = subjects.
category ID in the subjects table, then inner joined with the
classes table on subjects.subject ID in the subjects table
matches = classes.subject ID in the classes table, then inner
joined with the student schedules table on classes.class ID in
the classes table matches = student_schedules.class ID in the
student schedules table, then inner joined with the student
class status table on student_class_status.class status in the
student class status table matches = student_schedules.class
status in the student schedules table, and finally inner joined
with the students table on students.student ID in the
students table matches = student_schedules.student ID in
the student schedules table where class status description is
= ‘Completed,’ grouped by category description, student first
name, and student last name

SQL SELECT Categories.CategoryDescription,

 Students.StudFirstName,

 Students.StudLastName,

 AVG(Student_Schedules.Grade) AS AvgOfGrade

FROM ((((Categories

INNER JOIN Subjects

ON Categories.CategoryID = Subjects.CategoryID)

INNER JOIN Classes

ON Subjects.SubjectID = Classes.SubjectID)

INNER JOIN Student_Schedules

ON Classes.ClassID = Student_Schedules.ClassID)

INNER JOIN Student_Class_Status

ON Student_Class_Status.ClassStatus =

 Student_Schedules.ClassStatus)

496 Chapter 13 Grouping Data

INNER JOIN Students

ON Students.StudentID =

 Student_Schedules.StudentID

WHERE Student_Class_Status.ClassStatusDescription =

 'Completed'

GROUP BY Categories.CategoryDescription,

 Students.StudFirstName,

 Students.StudLastName

CH13_Student_GradeAverage_By_Category (63 rows)

Category
Description

StudFirst
Name

StudLast
Name

AvgOfGrade

Accounting Doris Hartwig 80.51

Accounting Elizabeth Hallmark 91.12

Accounting Kendra Bonnicksen 88.50

Accounting Richard Lum 79.61

Accounting Sarah Thompson 77.34

Art Doris Hartwig 82.19

Art George Chavez 83.63

Art John Kennedy 87.65

Art Kerry Patterson 99.83

Art Michael Viescas 73.37

<< more rows here >>

Bowling League Database

“Show me for each tournament and match the tournament ID, the tour-
nament location, the match number, the name of each team, and the
total of the handicap score for each team.”

 Sample Statements 497

Translation/
Clean Up

Select tourney ID, tourney location, match ID, team name,
and the sum of (handicap score) as TotHandiCapScore
from the tournaments table inner joined with the tourney
matches table on tournaments.tourney ID in the tournaments
table matches = tourney_matches.tourney ID in the tourney
matches table, then inner joined with the match games table
on tourney_matches.match ID in the tourney matches table
matches = match_games.match ID in the match games table,
then inner joined with the bowler scores table on match_
games.match ID in the match games table matches = bowler_
scores.match ID in the bowler scores table and match_games.
game number in the match games table matches = bowler_
scores.game number in the bowler scores table, then inner
joined with the bowlers table on bowlers.bowler ID in the
bowlers table matches = bowler_scores.bowler ID in the bowler
scores table, and finally inner joined with the teams table on
teams.team ID in the teams table matches = bowlers.team ID
in the bowlers table, grouped by tourney ID, tourney location,
match ID, and team name

SQL SELECT Tournaments.TourneyID,

 Tournaments.TourneyLocation,

 Tourney_Matches.MatchID, Teams.TeamName,

 SUM(Bowler_Scores.HandicapScore)

 AS TotHandiCapScore

FROM ((((Tournaments

INNER JOIN Tourney_Matches

ON Tournaments.TourneyID =

 Tourney_Matches.TourneyID)

INNER JOIN Match_Games

ON Tourney_Matches.MatchID =

 Match_Games.MatchID)

INNER JOIN Bowler_Scores

ON (Match_Games.MatchID =

 Bowler_Scores.MatchID) AND

 (Match_Games.GameNumber =

 Bowler_Scores.GameNumber))

INNER JOIN Bowlers

ON Bowlers.BowlerID = Bowler_Scores.BowlerID)

498 Chapter 13 Grouping Data

INNER JOIN Teams

ON Teams.TeamID = Bowlers.TeamID

GROUP BY Tournaments.TourneyID,

 Tournaments.TourneyLocation,

 Tourney_Matches.MatchID, Teams.TeamName

As you can see, the difficult part of this request is assembling the com-
plex JOIN clauses to link all the tables in the correct manner.

CH13_Tournament_Match_Team_Results (112 rows)

Tourney
ID

Tourney
Location

MatchID TeamName TotHandi
CapScore

1 Red Rooster Lanes 1 Marlins 2351

1 Red Rooster Lanes 1 Sharks 2348

1 Red Rooster Lanes 2 Barracudas 2289

1 Red Rooster Lanes 2 Terrapins 2391

1 Red Rooster Lanes 3 Dolphins 2389

1 Red Rooster Lanes 3 Orcas 2395

1 Red Rooster Lanes 4 Manatees 2292

1 Red Rooster Lanes 4 Swordfish 2353

2 Thunderbird Lanes 5 Marlins 2297

2 Thunderbird Lanes 5 Terrapins 2279

<< more rows here >>

 “Display the highest raw score for each bowler.”

Translation/
Clean Up

Select bowler first name, bowler last name, and the
 maximum (raw score) as HighScore from the bowlers table
inner joined with the bowler scores table on bowlers.bowler
ID in the bowlers table matches = bowler_scores.bowler ID in
the bowler scores table, grouped by bowler first name, and
bowler last name

 Sample Statements 499

SQL SELECT Bowlers.BowlerFirstName,

 Bowlers.BowlerLastName,

 MAX(Bowler_Scores.RawScore) AS HighScore

FROM Bowlers

INNER JOIN Bowler_Scores

ON Bowlers.BowlerID = Bowler_Scores.BowlerID

GROUP BY Bowlers.BowlerFirstName,

 Bowlers.BowlerLastName

CH13_Bowler_High_Score_Group (32 rows)

BowlerFirstName BowlerLastName HighScore

Alaina Hallmark 180

Alastair Black 164

Angel Kennedy 194

Ann Patterson 165

Bailey Hallmark 164

Barbara Fournier 164

Caleb Viescas 193

Carol Viescas 150

David Cunningham 180

David Fournier 178

<< more rows here >>

Recipes Database

“Show me how many recipes exist for each class of ingredient.”

 ❖ Note The challenge here is that you don’t want to count a
particular recipe class more than once per recipe. For example, if
a recipe contains multiple herbs or dairy ingredients, that recipe
should be counted only once per class. Sounds like it’s time to use
COUNT(DISTINCT value expression), doesn’t it?

❖ Note The challenge here is that you don’t want to count a
particular recipe class more than once per recipe. For example, if
a recipe contains multiple herbs or dairy ingredients, that recipe
should be counted only once per class. Sounds like it’s time to use
COUNT(DISTINCT value expression), doesn’t it?nn

500 Chapter 13 Grouping Data

Translation/
Clean Up

Select ingredient class description, and the unique count
of (distinct recipe ID) as CountOfRecipeID from the ingredi-
ent classes table inner joined with the ingredients table on
 ingredient_classes.ingredient class ID in the ingredient
classes table matches = ingredients.ingredient class ID in the
ingredients table, and then inner joined with the recipe ingre-
dients table on ingredients.ingredient ID in the ingredients
table matches = recipe_ingredients.ingredient ID in the recipe
ingredients table, grouped by ingredient class description

SQL SELECT

 Ingredient_Classes.IngredientClassDescription,

 Count(DISTINCT RecipeID) AS CountOfRecipeID

FROM (Ingredient_Classes

INNER JOIN Ingredients

ON Ingredient_Classes.IngredientClassID =

 Ingredients.IngredientClassID)

INNER JOIN Recipe_Ingredients

ON Ingredients.IngredientID =

 Recipe_Ingredients.IngredientID

GROUP BY

 Ingredient_Classes.IngredientClassDescription

CH13_IngredientClass_Distinct_Recipe_Count (19 rows)

IngredientClassDescription CountOfRecipeID

Bottle 1

Butter 3

Cheese 2

Chips 1

Condiment 2

Dairy 2

Fruit 1

Grain 2

Herb 1

<< more rows here >>

 Problems for You to Solve 501

 ❖ Note Because Microsoft Access does not support COUNT
DISTINCT, you’ll find that the query in the Access sample database
first selects the DISTINCT values of RecipeID using a table subquery
in the FROM clause and then counts the resulting rows.

Summary

I began the chapter by explaining to you why you might want to group
data to get multiple subtotals from a result set. After tantalizing you
with an example, I proceeded to show how to use the GROUP BY clause
to solve the example problem and several others. I also showed how to
mix column expressions with aggregate functions.

I next explored an interesting example of using GROUP BY in a subquery
that acts as a filter in a WHERE clause. I subsequently pointed out that
constructing a query using GROUP BY and no aggregate functions is the
same as using DISTINCT in your SELECT clause. Then I warned you to
carefully construct your GROUP BY clause to include the columns and
not the expressions.

I wrapped up my discussion of the GROUP BY clause by explaining some
common pitfalls. I showed that SQL does not consider any knowledge of
primary keys. I also explained common mistakes you might make when
using column expressions in your SELECT clause.

I summarized why the GROUP BY clause is useful and gave you a
sample list of problems you can solve using GROUP BY. The rest of the
chapter provided examples of how to build requests that require the
GROUP BY clause.

The following section presents several requests that you can work out on
your own.

Problems for You to Solve

Below, I show you the request statement and the name of the solution
query in the sample databases. If you want some practice, you can work
out the SQL you need for each request and then check your answer with
the query I saved in the samples. Don’t worry if your syntax doesn’t

❖ Note Because Microsoft Access does not support COUNT
DISTINCT, you’ll find that the query in the Access sample database
first selects the DISTINCT values of RecipeID using a table subquery
in the FROM clause and then counts the resulting rows.

502 Chapter 13 Grouping Data

exactly match the syntax of the queries I saved—as long as your result
set is the same.

Sales Orders Database

 1. “Show me each vendor and the average by vendor of the number of
days to deliver products.”

(Hint: Use the AVG aggregate function and group on vendor.)

You can find the solution in CH13_Vendor_Avg_Delivery (10 rows).

 2. “Display for each product the product name and the total sales.”

(Hint: Use SUM with a calculation of quantity times price and
group on product name.)

You can find the solution in CH13_Sales_By_Product (38 rows).

 3. “List all vendors and the count of products sold by each.”

You can find the solution in CH13_Vendor_Product_Count_Group
(10 rows).

 4. Challenge: Now solve problem 3 by using a subquery.

You can find the solution in CH13_Vendor_Product_Count_
Subquery (10 rows).

Entertainment Agency Database

 1. “Show each agent’s name, the sum of the contract price for the
engagements booked, and the agent’s total commission.”

(Hint: You must multiply the sum of the contract prices by the
agent’s commission. Be sure to group on the commission rate
as well!)

You can find the solution in CH13_Agent_Sales_And_
Commissions (8 rows).

School Scheduling Database

 1. “Display by category the category name and the count of classes
offered.”

(Hint: Use COUNT and group on category name.)

You can find the solution in CH13_Category_Class_Count
(15 rows).

 Problems for You to Solve 503

 2. “List each staff member and the count of classes each is scheduled
to teach.”

(Hint: Use COUNT and group on staff name.)

You can find the solution in CH13_Staff_Class_Count (22 rows).

 3. Challenge: Now solve problem 2 by using a subquery.

You can find the solution in CH13_Staff_Class_Count_Subquery
(27 rows).

 4. Can you explain why the subquery solution returns five more
rows? Is it possible to modify the query in question 2 to return 27
rows? If so, how would you do it?

(Hint: Think about using an OUTER JOIN.)

Bowling League Database

 1. “Display for each bowler the bowler name and the average of the
bowler’s raw game scores.”

(Hint: Use the AVG aggregate function and group on bowler
name.)

You can find the solution in CH13_Bowler_Averages (32 rows).

 2. “Calculate the current average and handicap for each bowler.”

(Hint: This is a “friendly” league, so the handicap is 90 percent of
200 minus the raw average. Be sure to round the raw average and
convert it to an integer before subtracting it from 200, and then
round and truncate the final result. Although the SQL Standard
doesn’t define a ROUND function, most commercial database sys-
tems provide one. Check your product documentation for details.)

You can find the solution in CH13_Bowler_Average_Handicap
(32 rows).

 3. Challenge: “Display the highest raw score for each bowler,” but
solve it by using a subquery.

You can find the solution in CH13_Bowler_High_Score_Subquery
(32 rows).

504 Chapter 13 Grouping Data

Recipes Database

 1. “If I want to cook all the recipes in my cookbook, how much of each
ingredient must I have on hand?”

(Hint: Use SUM and group on ingredient name and measurement
description.)

You can find the solution in CH13_Total_Ingredients_Needed
(65 rows).

 2. “List all meat ingredients and the count of recipes that include each
one.”

You can find the solution in CH13_Meat_Ingredient_Recipe_
Count_Group (4 rows).

 3. Challenge: Now solve problem 2 by using a subquery.

You can find the solution in CH13_Meat_Ingredient_Recipe_
Count_Subquery (11 rows).

 4. Can you explain why the subquery solution returns seven more
rows? Is it possible to modify the query in question 2 to return
11 rows? If so, how would you do it?

(Hint: Think about using an OUTER JOIN.)

 505

14
Filtering Grouped Data

“Let schoolmasters puzzle their brain,
With grammar, and nonsense, and learning; Good liquor,

I stoutly maintain, Gives genius a better discerning.”
—OLIVER GOLDSMITH

Topics Covered in This Chapter

A New Meaning of “Focus Groups”

Where You Filter Makes a Difference

Uses for HAVING

Sample Statements

Summary

Problems for You to Solve

In Chapter 12, “Simple Totals,” I gave you the details about all the
aggregate functions defined in the SQL Standard. I followed that up in
 Chapter 13, “Grouping Data,” with a discussion of how to ask your data-
base system to group sets of rows and then calculate aggregate values in
each group. One of the advantages to grouping is that you can also display
value expressions based on the grouping columns to identify each group.

In this chapter, I’ll put the final piece of the summarizing and grouping
puzzle into place. After you group rows and calculate aggregate values,
it’s often useful to filter further the final result using a predicate on an
aggregate calculation. As you will soon see, you need the last piece of
this puzzle—the HAVING clause—to do that.

506 Chapter 14 Filtering Grouped Data

A New Meaning for “Focus Groups”

You now know that once you’ve gathered your information into groups
of rows, you can request the MIN, MAX, AVG, SUM, or COUNT of all the
values in each group. Suppose you want to refine further the final result
set—to focus the groups—by testing one of the aggregate values. Let’s
take a look at a simple request:

“Show me the entertainer groups that play in a jazz style and have
more than three members.”

Doesn’t sound too difficult, does it? Figure 14-1 shows the tables needed
to solve this request.

ENTERTAINER_STYLES
EntertainerID CPK
StyleID CPK

MUSICAL_STYLES
StyleID PK
StyleName

ENTERTAINER_MEMBERS

EntertainerID CPK
MemberID CPK
Status

ENTERTAINERS
EntertainerID PK
EntStageName

DateEntered

EntStreetAddress
EntCity
EntState
EntZipCode
EntPhoneNumber
EntWebPage
EntEmailAddress

EntSSN

Figure 14-1 The tables needed to figure out which entertainers play jazz and also
have more than three members

 ❖ Note I again use the “Request/Translation/Clean Up/SQL”
technique introduced in Chapter 4, “Creating a Simple Query.” I also
use some JOIN and subquery techniques you learned in Chapter 8,
“INNER JOINs”; Chapter 9, “OUTER JOINs”; and Chapter 11,
“Subqueries.”

Without knowing about the HAVING clause, you’d probably be tempted
to solve it in the following incorrect manner:

❖ Note I again use the “Request/Translation/Clean Up/SQL”
technique introduced in Chapter 4, “Creating a Simple Query.” I also
use some JOIN and subquery techniques you learned in Chapter 8,
“INNER JOINs”; Chapter 9, “OUTER JOINs”; and Chapter 11,
“Subqueries.”

 A New Meaning for “Focus Groups” 507

Translation Select the entertainer stage name and the count of mem-
bers from the entertainers table joined with the entertainer
members table on entertainer ID in the entertainers table
matches entertainer ID in the entertainer members table
where the entertainer ID is in the selection of entertainer
IDs from the entertainer styles table joined with the musi-
cal styles table on style ID in the entertainer styles table
matches style ID in the musical styles table where the
stylename is ‘Jazz’ and where the count of the members is
greater than 3, grouped by entertainer stage name

Clean Up Select the entertainer stage name and the count(*) of mem-
bers as CountOfMembers from the entertainers table inner
joined with the entertainer members table on entertainers.
entertainer ID in the entertainers table matches = enter-
tainer_members.entertainer ID in the entertainer members
table where the entertainer ID is in the (selection of enter-
tainer IDs from the entertainer styles table inner joined
with the musical styles table on entertainer_styles.style ID
in the entertainer styles table matches = musical_styles.
style ID in the musical styles table where the style name is
= ‘Jazz’) and where the count(*) of the members is greater
than > 3, grouped by entertainer stage name

SQL SELECT Entertainers.EntStageName,

 COUNT(*) AS CountOfMembers

FROM Entertainers

INNER JOIN Entertainer_Members

ON Entertainers.EntertainerID =

 Entertainer_Members.EntertainerID

WHERE Entertainers.EntertainerID

IN

 (SELECT Entertainer_Styles.EntertainerID

 FROM Entertainer_Styles

 INNER JOIN Musical_Styles

 ON Entertainer_Styles.StyleID =

 Musical_Styles.StyleID

 WHERE Musical_Styles.StyleName = 'Jazz')

AND COUNT(*) > 3

GROUP BY Entertainers.EntStageName

508 Chapter 14 Filtering Grouped Data

What’s wrong with this picture? The key is that any column you reference
in a WHERE clause (remember Chapter 6, “Filtering Your Data”?) must be
a column in one of the tables defined in the FROM clause. Is COUNT(*) a
column generated from the FROM clause? I don’t think so! In fact, you can
calculate COUNT for each group only after the rows are grouped.

Looks like I need a new clause after GROUP BY. Figure 14-2 shows the
entire syntax for a SELECT statement, including the new HAVING clause.

SELECT

table_name.*

Value Expression

correlation_name.*
,

SELECT Statement

HAVING Search Condition

WHERE Search Condition

Column Reference
,

GROUP BY

DISTINCT

*
alias

AS

Table Reference
,

FROM

Figure 14-2 The SELECT statement and all its clauses

Because the HAVING clause acts on rows after they have been grouped,
the SQL Standard defines some restrictions on the columns you refer-
ence in any predicate in the search condition. Note that when you do
not have a GROUP BY clause, the HAVING clause operates on all rows
returned by the FROM and WHERE clauses as though they are a single
group. Frankly, I can’t think of a good reason why you would want to
construct a request with a HAVING clause and no GROUP BY clause.

The restrictions are the same as those for columns referenced in the
SELECT clause of a grouped query. Any reference to a column in a pred-
icate within the search condition of a HAVING clause either must name
a column listed in the GROUP BY clause or must be enclosed within an
aggregate function. This makes sense because any column comparisons
must use something generated from the grouped rows—either a group-
ing value or an aggregate calculation across rows in each group.

 A New Meaning for “Focus Groups” 509

Now that you know a bit about HAVING, let’s solve the earlier problem in
the correct way:

“Show me the entertainer groups that play in a jazz style and have
more than three members.”

Translation Select the entertainer stage name and the count of mem-
bers from the entertainers table joined with the entertainer
members table on entertainer ID in the entertainers table
matches entertainer ID in the entertainer members table
then inner joined with the entertainer styles table on
style ID in the entertainers table matches style ID in the
entertainer styles table, then inner joined with the musi-
cal styles table on style ID in the entertainer styles table
matches style ID in the musical styles table where the style
name is ‘Jazz,’ grouped by entertainer stage name, and
having the count of the members greater than 3

Clean Up Select the entertainer stage name and the count(*) of mem-
bers as CountOfMembers from the entertainers table inner
joined with the entertainer members table on entertainers.
entertainer ID in the entertainers table matches = enter-
tainer_members.entertainer ID in the entertainer members
table then inner joined with the entertainer styles table on
entertainers.style ID in the entertainers table matches =
entertainer_styles.style ID in the entertainer styles table,
then inner joined with the musical styles table on enter-
tainer_styles.style ID in the entertainer styles table matches =
musical_styles.style ID in the musical styles table where the
style name is = ‘Jazz’, grouped by entertainer stage name, and
having the count(*) of the members greater than > 3

SQL SELECT Entertainers.EntertainerID,

 Entertainers.EntStageName,

 Count(Entertainer_Members.EntertainerID)

 AS CountOfMembers

FROM ((Entertainers INNER JOIN Entertainer_Members

ON Entertainers.EntertainerID =

 Entertainer_Members.EntertainerID)

INNER JOIN Entertainer_Styles

ON Entertainers.EntertainerID =

 Entertainer_Styles.EntertainerID)

INNER JOIN Musical_Styles

ON Musical_Styles.StyleID =

 Entertainer_Styles.StyleID

510 Chapter 14 Filtering Grouped Data

WHERE Musical_Styles.StyleName = 'Jazz'

GROUP BY Entertainers.EntertainerID,

 Entertainers.EntStageName

HAVING

Count(Entertainer_Members.EntertainerID) > 3

Although I also included the COUNT in the final output of the
request, I didn’t need to do that to ask for COUNT(*) in the HAV-
ING clause. As long as any calculated value or column reference
I use in HAVING can be derived from the grouped rows, I’m OK. I
saved this query in the Entertainment Agency sample database as
CH14_Jazz_Entertainers_More_Than_3.

Where You Filter Makes a Difference

You now know two ways to filter your final result set: WHERE and
HAVING. You also know that there are certain limitations on the pred-
icates you can use within a search condition in a HAVING clause. In
some cases, however, you have the choice of placing a predicate in either
clause. Let’s take a look at the reasons for putting your filter in the
WHERE clause instead of the HAVING clause.

Should You Filter in WHERE or in HAVING?

You learned in Chapter 6 about five major types of predicates you can
build to filter the rows returned by the FROM clause of your request.
These are comparison (=, <>, <, >, >=, <=), range (BETWEEN), set mem-
bership (IN), pattern match (LIKE), and Null (IS NULL). In Chapter 11, I
expanded your horizons by showing you how to use a subquery as one
of the arguments in comparison and set membership predicates. Also, I
introduced you to two additional classes of predicates—quantified (ANY,
SOME, ALL) and existence (EXISTS)—that require a subquery as one of
the arguments.

Keep in mind that the search condition in a WHERE clause filters rows
before your database system groups them. In general, when you want to
ultimately group only a subset of rows, it’s better to eliminate unwanted
rows first in the WHERE clause. For example, let’s assume you want to
solve the following problem:

 Where You Filter Makes a Difference 511

“Show me the states on the west coast of the United States where the
total of the orders is greater than $1 million.”

Figure 14-3 shows the tables needed to solve this problem.

ORDERS

OrderNumber PK
OrderDate
ShipDate
CustomerID FK
EmployeeID FK

ORDER_DETAILS

OrderNumber CPK
ProductNumber CPK
QuotedPrice
QuantityOrdered

CUSTOMERS
CustomerID PK
CustFirstName
CustLastName
CustStreetAddress
CustCity
CustState
CustZipCode

CustPhoneNumber
CustAreaCode

Figure 14-3 The tables needed to sum all orders by state

You could legitimately state the request in the following manner, placing
the predicate on customer state into the HAVING clause:

SQL SELECT Customers.CustState,

 SUM(Order_Details.QuantityOrdered *

 Order_Details.QuotedPrice) AS SumOfOrders

FROM (Customers

 INNER JOIN Orders

 ON Customers.CustomerID = Orders.CustomerID)

INNER JOIN Order_Details

ON Orders.OrderNumber =

 Order_Details.OrderNumber

GROUP BY Customers.CustState

HAVING SUM(Order_Details.QuantityOrdered *

 Order_Details.QuotedPrice) > 1000000

AND CustState IN ('WA', 'OR', 'CA')

Because you are grouping on the state column, you can construct a pred-
icate on that column in the HAVING clause, but you might be asking
your database system to do more work than necessary. As it turns out,
the total of all orders for customers in the state of Texas also exceeds $1
million. If you place the filter on customer state in the HAVING clause as
shown here, your database will calculate the total for all the rows in Texas

512 Chapter 14 Filtering Grouped Data

as well, evaluate the first predicate in the HAVING clause and keep the
result, and then finally throw it out when the Texas group isn’t one you
want. In my sample database, I have customers only in the states of CA,
TX, OR, and WA. You can imagine how this performance problem would
be compounded if you had customers in all 50 states. Your database would
do the calculation for all states and then throw out all but three of them!

If you want to calculate a result based on grouping by customer state
but want only customers in Washington, Oregon, and California, it
makes more sense to filter down to the rows in those three states using
a WHERE clause before you ask to GROUP BY state. If you don’t do so,
the FROM clause returns rows for all customers in all states and must
do extra work to group rows you’re not even going to need. Here’s the
better way to solve the problem:

Translation Select customer state and the sum of quantity ordered
times quoted price as SumOfOrders from the custom-
ers table joined with the orders table on customer ID in
the customers table matches customer ID in the orders
table, and then joined with the order details table on
order number in the orders table matches order number
in the order details table where customer state is in the
list ‘WA’, ‘OR’, ‘CA’, grouped by customer state, and hav-
ing the sum of the orders greater than $1 million

Clean Up Select customer state, and the sum of (quantity ordered
times * quoted price) as SumOfOrders from the custom-
ers table inner joined with the orders table on customers.
customer ID in the customers table matches = orders.
customer ID in the orders table, and then joined with
the order details table on orders.order number in the
orders table matches = order_details.order number in
the order details table where customer state is in the list
(‘WA’, ‘OR’, ‘CA’), grouped by customer state, and having
the sum of the orders (quantity ordered * quoted price)
greater than > $1 million 1000000

SQL SELECT Customers.CustState,

 SUM(Order_Details.QuantityOrdered *

 Order_Details.QuotedPrice) AS SumOfOrders

FROM (Customers

 INNER JOIN Orders

ON Customers.CustomerID = Orders.CustomerID)

INNER JOIN Order_Details

 Where You Filter Makes a Difference 513

ON Orders.OrderNumber =

 Order_Details.OrderNumber

WHERE Customers.CustState IN ('WA', 'OR', 'CA')
GROUP BY Customers.CustState

HAVING SUM(Order_Details.QuantityOrdered *

 Order_Details.QuotedPrice) > 1000000

Notice that you must repeat the expression in the HAVING clause; you
cannot use the alias name assigned in the SELECT clause. I saved this
query in the sample database as CH14_West_Coast_Big_Order_States.

Avoiding the HAVING COUNT Trap

Often, you might want to know which categories of items have fewer
than a certain number of members. For example, you might want to
know which entertainment groups have two or fewer members, which
recipes have two or fewer dairy ingredients, or which subjects have three
or fewer full-time professors teaching. The trick here is you also want to
know which categories have zero members.

Let’s look at a request that illustrates the trap you can fall into:

“Show me the subject categories that have fewer than three full profes-
sors teaching that subject.”

Figure 14-4 shows the tables needed to solve this problem.

FACULTY
StaffID PK
Title
Status
Tenured

FACULTY_CATEGORIES

StaffID CPK
CategoryID CPK

CATEGORIES
CategoryID PK
CategoryDescription
DepartmentID

Figure 14-4 The tables needed to find out which categories have fewer than three
faculty teaching in that category

Translation Select category description and the count of staff ID
as ProfCount from the categories table joined with the
faculty categories table on category ID in the categories
table matches category ID in the faculty categories table,
and then joined with the faculty table on staff ID in
the faculty table matches staff ID in the faculty catego-
ries table where title is ‘Professor,’ grouped by category
description, and having the count of staff ID less than 3

514 Chapter 14 Filtering Grouped Data

Clean Up Select category description and the count of (staff ID)
as ProfCount from the categories table inner joined
with the faculty categories table on categories.category
ID in the categories table matches = faculty_categories.
category ID in the faculty categories table, and then
inner joined with the faculty table on faculty.staff ID in
the faculty table matches = faculty_categories.staff ID
in the faculty categories table where title is = ‘Profes-
sor,’ grouped by category description, and having the
count of (staff ID) less than < 3

SQL SELECT Categories.CategoryDescription,

 COUNT(Faculty_Categories.StaffID) AS

 ProfCount

FROM (Categories

INNER JOIN Faculty_Categories

ON Categories.CategoryID =

 Faculty_Categories.CategoryID)

INNER JOIN Faculty

ON Faculty.StaffID = Faculty_Categories.StaffID

WHERE Faculty.Title = 'Professor'

GROUP BY Categories.CategoryDescription

HAVING COUNT(Faculty_Categories.StaffID) < 3

Looks good, doesn’t it? Below is the result set returned from this query.

CH14_Subjects_Fewer_3_Professors_WRONG

CategoryDescription ProfCount

Accounting 1

Business 2

Computer Information Systems 1

Economics 1

Geography 1

History 1

Journalism 1

Math 1

Political Science 1

 Where You Filter Makes a Difference 515

Do you notice that the result set lists no subject categories with zero pro-
fessors? This happened because the COUNT function is counting only
the rows that are left in the Faculty_Categories table after filtering for
full professors. I threw away any potential zero rows with the WHERE
clause!

Just to confirm my suspicions that some categories exist with no full
professors, let’s construct a query that will test my theory. Remem-
ber that the COUNT aggregate function will return a zero if I ask it to
count an empty set, and I can get an empty set if I force the request to
consider how many rows exist for a specific subject category. I do this
by forcing the query to look at the subject categories one at a time. I’ll
be counting category rows, not faculty subject rows. Consider the fol-
lowing SELECT statement:

SQL SELECT COUNT(Faculty.StaffID)

AS BiologyProfessors

FROM (Faculty

INNER JOIN Faculty_Categories

ON Faculty.StaffID =

 Faculty_Categories.StaffID)

INNER JOIN Categories

ON Categories.CategoryID =

 Faculty_Categories.CategoryID

WHERE Categories.CategoryDescription =

 'Biology'

AND Faculty.Title = 'Professor'

BiologyProfessors

0

I saved this query as CH14_Count_Of_Biology_Professors in the sam-
ple database. As you can see, there really are no full professors in the
School Scheduling sample database who teach biology. I asked the query
to consider just one subject category. Because there are no rows that
are both Professor and Biology, I get a legitimate empty set. The COUNT
function, therefore, returns a zero.

516 Chapter 14 Filtering Grouped Data

Now that I know this, I can embed this request as a subquery in a
WHERE clause that extracts a match on category ID from the outer
query. This forces the request to consider the categories one at a time as
it fetches the category descriptions one row at a time from the Categories
table in the outer request. The SQL is as follows:

SQL SELECT Categories.CategoryDescription,

 (SELECT COUNT(Faculty.StaffID)

 FROM (Faculty

 INNER JOIN Faculty_Categories

 ON Faculty.StaffID =

 Faculty_Categories.StaffID)

 INNER JOIN Categories AS C2

 ON C2.CategoryID =

 Faculty_Categories.CategoryID

 WHERE C2.CategoryID = Categories.CategoryID

 AND Faculty.Title = 'Professor')

 AS ProfCount

FROM Categories

WHERE

 (SELECT COUNT(Faculty.StaffID)

 FROM (Faculty

 INNER JOIN Faculty_Categories

 ON Faculty.StaffID =

 Faculty_Categories.StaffID)

 INNER JOIN Categories AS C3

 ON C3.CategoryID =

 Faculty_Categories.CategoryID

 WHERE C3.CategoryID = Categories.CategoryID

 AND Faculty.Title = 'Professor') < 3

I saved this query as CH14_Subjects_Fewer_3_Professors_RIGHT in the
sample database. Notice that I also included a copy of the subquery in
the SELECT clause so that I can see the actual counts per category. This
now works correctly because the subquery in the WHERE clause legiti-
mately returns zero for a category that has no full professors. The cor-
rect result is below.

 Where You Filter Makes a Difference 517

CH14_Subjects_Fewer_3_Professors_RIGHT

CategoryDescription ProfCount

Accounting 1

Biology 0

Business 2

Chemistry 0

Computer Information Systems 1

Computer Science 0

Economics 1

Geography 1

History 1

Journalism 1

Math 1

Physics 0

Political Science 1

Psychology 0

French 0

German 0

As you can see, many subject categories actually have no full professors
assigned to teach the subject. Although this final solution does not use
HAVING at all, I include it to make you aware that HAVING isn’t always
the clear solution for this type of problem. Keep in mind that you can
still use HAVING for many “. . . having fewer than . . .” problems. For
example, if you want to see all customers who spent less than $500 last
month, but you don’t care about customers who bought nothing at all,
then the HAVING solution works just fine (and will most likely execute
faster). However, if you also need to see customers who bought nothing,
you will have to use the non-HAVING technique I just showed you.

But “having” said all that (pun intended), there actually is a way to solve
this problem using GROUP BY and HAVING. Recall from Chapter 13 that
I showed you how to get a zero count in a query that joined entertainers
and engagements using an OUTER JOIN. The trick to solve the subject

518 Chapter 14 Filtering Grouped Data

categories and professors problem is to use a subquery in the FROM
clause that filters for professors. You must do this so that the result set
you use in the JOIN is already filtered before you do the JOIN. I have
left the final solution up to you in the “Problems for You to Solve” sec-
tion at the end of this chapter. Never fear—the solution is in the sample
database!

Uses for HAVING

At this point, you should have a good understanding of how to ask for
subtotals across groups using aggregate functions and the GROUP BY
clause and how to filter the grouped data using HAVING. The best way
to give you an idea of the wide range of uses for HAVING is to list some
problems you can solve with this new clause and then present a set of
examples in the “Sample Statements” section.

“Show me each vendor and for each vendor, the average of the number
of days to deliver products, but display only the vendors whose aver-
age number of days to deliver is greater than the average number of
delivery days for all vendors.”

“Display for each product the product name and the total sales that
are greater than the average of sales for all products in that category.”

“List for each customer and order date the customer full name and the
total cost of items ordered that is greater than $1,000.”

“How many orders are for only one product?”

“Which agents booked more than $3,000 worth of business in Decem-
ber 2017?”

“Show me the entertainers who have more than two overlapped
bookings.”

“Show each agent name, the sum of the contract price for the engage-
ments booked, and the agent’s total commission for agents whose total
commission is more than $1,000.”

“Do any team captains have a raw score that is higher than any other
member of the team?”

“Display for each bowler the bowler name and the average of the bowl-
er’s raw game scores for bowlers whose average is greater than 155.”

“List the bowlers whose highest raw scores are at least 20 higher than
their current averages.”

 Sample Statements 519

“For completed classes, list by category and student the category name,
the student name, and the student’s average grade of all classes taken
in that category for those students who have an average of 90 or better.”

“Display by category the category name and the count of classes
offered for those categories that have three or more classes.”

“List each staff member and the count of classes each is scheduled to
teach for those staff members who teach at least one but fewer than
three classes.”

“List the recipes that contain both beef and garlic.”

“Sum the amount of salt by recipe class, and display those recipe
classes that require more than three teaspoons.”

“For what type of recipe do I have two or more recipes?”

Sample Statements

You now know the mechanics of constructing queries using a HAVING
clause and have seen some of the types of requests you can answer. Let’s
take a look at a set of samples, all of which request that the informa-
tion be grouped and then filtered on an aggregate value from the group.
These examples come from each of the sample databases.

 ❖ Note Remember in the Introduction that I warned you that results
from each database system won’t necessarily match the sort order you
see in examples in this book unless you include an ORDER BY clause.
Even when you include that specification, the system might return
results in columns not included in the ORDER BY clause in a different
sequence because of different optimization techniques.

If you’re running the examples in Microsoft SQL Server, simply select-
ing the rows from the view does not honor any ORDER BY clause
specified in the view. For the ORDER BY clause to be honored, you
must open the design of the view and execute it from there.

Also, when you use GROUP BY, you’ll often see the results returned
by your database system as though they are sorted by the columns
you specified. This happens because some optimizers first sort the
data internally to make it faster to process your GROUP BY. Keep in
mind that if you want a specific sort order, you must also include an
ORDER BY clause.

❖ Note Remember in the Introduction that I warned you that results
from each database system won’t necessarily match the sort order you
see in examples in this book unless you include an ORDER BY clause.
Even when you include that specification, the system might return
results in columns not included in the ORDER BY clause in a different
sequence because of different optimization techniques.

If you’re running the examples in Microsoft SQL Server, simply select-
ing the rows from the view does not honor any ORDER BY clause
specified in the view. For the ORDER BY clause to be honored, you
must open the design of the view and execute it from there.

Also, when you use GROUP BY, you’ll often see the results returned
by your database system as though they are sorted by the columns
you specified. This happens because some optimizers first sort the
data internally to make it faster to process your GROUP BY. Keep in
mind that if you want a specific sort order, you must also include an
ORDER BY clause.

520 Chapter 14 Filtering Grouped Data

I’ve also included sample result sets that would be returned by these
operations and placed them immediately after the SQL syntax line. The
name that appears immediately above a result set is the name I gave
each query in the sample data on the companion website for this book,
www.informit.com/title/9780134858333. I stored each query in the
appropriate sample database (as indicated within the example), and I
prefixed the names of the queries relevant to this chapter with “CH14.”
You can follow the instructions in the Introduction of this book to load
the samples onto your computer and try them.

 ❖ Note Remember that all the column names and table names used
in these examples are drawn from the sample database structures
shown in Appendix B, “Schema for the Sample Databases.” To simplify
the process, I have combined the Translation and Clean Up steps for
all the examples. These samples assume you have thoroughly studied
and understood the concepts covered in previous chapters, especially
the chapters on JOINs and subqueries.

Sales Orders Database

“List for each customer and order date the customer’s full name and
the total cost of items ordered that is greater than $1,000.”

Translation/
Clean Up

Select customer first name and || ' ‘ || customer last name
as CustFullName, order date, and the sum of (quoted price
times * quantity ordered) as TotalCost from the custom-
ers table inner joined with the orders table on customers.
customer ID in the customers table matches = orders.
customer ID in the orders table, and then inner joined
with the order details table on orders.order number in
the orders table matches = order_details.order number in
the order details table, grouped by customer first name,
customer last name, and order date, having the sum of
(quoted price times * quantity ordered) greater than > 1000

SQL SELECT Customers.CustFirstName || ' ' ||

 Customers.CustLastName AS CustFullName,

 Orders.OrderDate,

 SUM(Order_Details.QuotedPrice *

 Order_Details.QuantityOrdered)

 AS TotalCost

FROM (Customers

❖ Note Remember that all the column names and table names used
in these examples are drawn from the sample database structures
shown in Appendix B, “Schema for the Sample Databases.” To simplify
the process, I have combined the Translation and Clean Up steps for
all the examples. These samples assume you have thoroughly studied
and understood the concepts covered in previous chapters, especially
the chapters on JOINs and subqueries.

http://www.informit.com/title/9780134858333

 Sample Statements 521

INNER JOIN Orders

ON Customers.CustomerID = Orders.CustomerID)

INNER JOIN Order_Details

ON Orders.OrderNumber =

 Order_Details.OrderNumber

GROUP BY Customers.CustFirstName,

 Customers.CustLastName, Orders.OrderDate

HAVING SUM(Order_Details.QuotedPrice *

 Order_Details.QuantityOrdered) > 1000

CH14_Order_Totals_By_Customer_And_Date_GT1000 (649 rows)

CustFullName OrderDate TotalCost

Alaina Hallmark 2017-09-03 $4,699.98

Alaina Hallmark 2017-09-15 $4,433.95

Alaina Hallmark 2017-09-22 $3,951.90

Alaina Hallmark 2017-09-23 $10,388.68

Alaina Hallmark 2017-10-01 $3,088.00

Alaina Hallmark 2017-10-13 $6,775.06

Alaina Hallmark 2017-10-23 $15,781.10

Alaina Hallmark 2017-10-31 $15,969.50

<< more rows here >>

Entertainment Agency Database

“Which agents booked more than $3,000 worth of business in
 December 2017?”

Translation/
Clean Up

Select the agent first name, agent last name, and the sum
of (contract price) as TotalBooked from the agents table
inner joined with the engagements table on agents.agent
ID in the agents table matches = engagements.agent ID in
the engagements table where the engagement start date is
between December 1, 2017, ‘2017-12-01’ and December 31,
2017, ‘2017-12-31’, grouped by agent first name, and agent
last name, and having the sum of (contract price) greater
than > 3000

522 Chapter 14 Filtering Grouped Data

SQL SELECT Agents.AgtFirstName, Agents.AgtLastName,

 SUM(Engagements.ContractPrice)

 AS TotalBooked

FROM Agents

INNER JOIN Engagements

ON Agents.AgentID = Engagements.AgentID

WHERE Engagements.StartDate

BETWEEN '2017-12-01' AND '2017-12-31'

GROUP BY Agents.AgtFirstName, Agents.AgtLastName

HAVING SUM(Engagements.ContractPrice) > 3000

CH14_Agents_Book_Over_3000_12_2017 (2 rows)

AgtFirstName AgtLastName TotalBooked

Marianne Weir $6,000.00

William Thompson $3,340.00

 ❖ Caution If your database uses a data type that stores both dates
and times, the BETWEEN search condition might not work as
expected because the user could have entered both a date and a time
value in what you expect to contain only a date. (I entered only dates
in the Microsoft Office Access samples where I was forced to use the
Date/Time data type.) When a date and time column contains both
a date and a time, the value is greater than just the date portion.
For example, 2017-12-31 12:00:00 is greater than 2017-12-31, so the
BETWEEN search condition will fail to fetch that row. If you suspect
this might be the case, you should write the above search condition as

StartDate >= '2017-12-01' AND StartDate < '2018-01-01'

The second search condition ensures that you fetch all the rows for
December 31, 2017, even if some of the rows have a time value in them.

School Scheduling Database

“For completed classes, list by category and student the category
name, the student name, and the student’s average grade of all
classes taken in that category for those students who have an average
higher than 90.”

❖ Caution If your database uses a data type that stores both dates
and times, the BETWEEN search condition might not work as
expected because the user could have entered both a date and a time
value in what you expect to contain only a date. (I entered only dates
in the Microsoft Office Access samples where I was forced to use the
Date/Time data type.) When a date and time column contains both
a date and a time, the value is greater than just the date portion.
For example, 2017-12-31 12:00:00 is greater than 2017-12-31, so the
BETWEEN search condition will fail to fetch that row. If you suspect
this might be the case, you should write the above search condition as

StartDate >= '2017-12-01' AND StartDate < '2018-01-01'

The second search condition ensures that you fetch all the rows for
December 31, 2017, even if some of the rows have a time value in them.

 Sample Statements 523

Translation/
Clean Up

Select category description, student first name, student last
name, and the average avg(of grade) as AvgOfGrade from the cat-
egories table inner joined with the subjects table on categories.
category ID in the categories table matches = subjects.category
ID in the subjects table, then inner joined with the classes table
on subjects.subject ID in the subjects table matches = classes.
subject ID in the classes table, then inner joined with the stu-
dent schedules table on classes.class ID in the classes table
matches = student_schedules.class ID in the student schedules
table, then inner joined with the student class status table on
student_class_status.class status in the student class status
table matches = student_schedules.class status in the student
schedules table, and finally inner joined with the students table
on students.student ID in the students table matches = student_
schedules.student ID in the student schedules table where class
status description is = ‘Completed,’ grouped by category descrip-
tion, student first name, and student last name, and having the
average avg(of grade) greater than > 90

SQL SELECT Categories.CategoryDescription,

 Students.StudFirstName,

 Students.StudLastName,

 AVG(Student_Schedules.Grade) AS AvgOfGrade

FROM ((((Categories

INNER JOIN Subjects

ON Categories.CategoryID = Subjects.CategoryID)

INNER JOIN Classes

ON Subjects.SubjectID = Classes.SubjectID)

INNER JOIN Student_Schedules

ON Classes.ClassID = Student_Schedules.ClassID)

INNER JOIN Student_Class_Status

ON Student_Class_Status.ClassStatus =

 Student_Schedules.ClassStatus)

INNER JOIN Students

ON Students.StudentID =

 Student_Schedules.StudentID

WHERE Student_Class_Status.ClassStatusDescription =

 'Completed'

GROUP BY Categories.CategoryDescription,

524 Chapter 14 Filtering Grouped Data

 Students.StudFirstName,

 Students.StudLastName

HAVING AVG(Student_Schedules.Grade) > 90

CH14_A_Students (17 rows)

CategoryDescription StudFirstName StudLastName AvgOfGrade

Accounting Elizabeth Hallmark 91.12

Art Kerry Patterson 99.83

Biology Brannon Jones 94.54

Biology Karen Smith 93.05

Chemistry Richard Lum 98.31

Computer Information
Systems

Janice Galvin 90.56

Computer Information
Systems

John Kennedy 92.36

Computer Information
Systems

Steve Pundt 98.01

English Brannon Jones 91.66

English Janice Galvin 91.44

<< more rows here >>

“List each staff member and the count of classes each is scheduled to
teach for those staff members who teach at least one but fewer than
three classes.”

 ❖ Note I avoided the HAVING COUNT zero problem by specifically
stating that I want staff members who teach at least one class.

Translation/
Clean Up

Select staff first name, staff last name, and the count of
classes (*) as ClassCount from the staff table inner joined with
the faculty classes table on staff.staff ID in the staff table
matches = faculty_classes.staff ID in the faculty classes table,
grouped by staff first name, and staff last name, and having
the count of classes (*) less than < 3

❖ Note I avoided the HAVING COUNT zero problem by specifically
stating that I want staff members who teach at least one class.

 Sample Statements 525

SQL SELECT Staff.StfFirstName, Staff.StfLastName,

 COUNT(*) AS ClassCount

FROM Staff

INNER JOIN Faculty_Classes

ON Staff.StaffID = Faculty_Classes.StaffID

GROUP BY Staff.StfFirstName, Staff.StfLastName

HAVING COUNT(*) < 3

CH14_Staff_Class_Count_1_To_3 (2 rows)

StfFirstName StfLastName ClassCount

Luke Patterson 2

Michael Hernandez 2

Bowling League Database

“List the bowlers whose highest raw scores are more than 20 pins
higher than their current averages.”

Translation/
Clean Up

Select bowler first name, bowler last name, the average
avg(raw score) as CurrentAverage, and the maximum (raw
score) as HighGame from the bowlers table inner joined
with the bowler scores table on bowlers.bowler ID in the
bowlers table matches = bowler_scores.bowler ID in the
bowler scores table, grouped by bowler first name, and
bowler last name, and having the maximum (raw score)
greater than > the average avg(raw score) plus + 20

SQL SELECT Bowlers.BowlerFirstName,

 Bowlers.BowlerLastName,

 AVG(Bowler_Scores.RawScore) AS CurrentAverage,

 MAX(Bowler_Scores.RawScore) AS HighGame

FROM Bowlers INNER JOIN Bowler_Scores

ON Bowlers.BowlerID = Bowler_Scores.BowlerID

GROUP BY Bowlers.BowlerFirstName,

 Bowlers.BowlerLastName

HAVING MAX(Bowler_Scores.RawScore) >

 (AVG(Bowler_Scores.RawScore) + 20)

526 Chapter 14 Filtering Grouped Data

CH14_Bowlers_Big_High_Score (15 rows)

BowlerFirstName BowlerLastName CurrentAverage HighGame

Alaina Hallmark 158 180

Angel Kennedy 163 194

Ben Clothier 163 192

Caleb Viescas 164 193

David Fournier 157 178

David Viescas 168 195

Gary Hallmark 157 179

John Kennedy 166 191

John Viescas 168 193

<< more rows here >>

Recipes Database

“List the recipes that contain both beef and garlic.”

Translation/
Clean Up

Select recipe title from the recipes table where the recipe
ID is in the (selection of recipe ID from the ingredients
table inner joined with the recipe ingredients table on
 recipe_ingredients.ingredient ID in the recipe ingredients
table matches = ingredients.ingredient ID in the ingredients
table where the ingredient name is = ‘Beef’ or the ingredi-
ent name is = ‘Garlic,’ grouped by recipe ID and having the
count of the values in (recipe ID) equal to = 2)

SQL SELECT Recipes.RecipeTitle

FROM Recipes

WHERE Recipes.RecipeID

IN (SELECT Recipe_Ingredients.RecipeID

 FROM Ingredients

 INNER JOIN Recipe_Ingredients

 ON Ingredients.IngredientID =

 Recipe_Ingredients.IngredientID

 WHERE Ingredients.IngredientName = 'Beef'

 OR Ingredients.IngredientName = 'Garlic'

 GROUP BY Recipe_Ingredients.RecipeID

 HAVING COUNT(Recipe_Ingredients.RecipeID) = 2)

 Summary 527

CH14_Recipes_Beef_And_Garlic (1 row)

RecipeTitle

Roast Beef

 ❖ Note This illustrates a creative use of GROUP BY and HAVING in
a subquery to find recipes that have both ingredients. When a recipe
has neither of the ingredients, the recipe won’t appear in the sub-
query. When a recipe has only one of the ingredients, the count will be
1, so the row will be eliminated. Only when a recipe has both will the
COUNT be 2. Be careful, though. If a particular recipe calls for both
minced and whole garlic but no beef, this technique won’t work! You
will get a COUNT of 2 for the two garlic entries, so the recipe will be
selected even though it has no beef.

If you wonder why I used an OR operator when I want both beef and
garlic, be sure to review the Using OR topic in the Using Multiple Con-
ditions section in Chapter 6. I showed you an alternative way to solve
this problem in Chapter 8. In Chapter 18, “‘Not’ and ‘And’ Problems,”
I’ll show you another creative way to solve this problem.

Summary

I started the chapter with a discussion about focusing the groups you
form by using the HAVING clause to filter out groups based on aggregate
calculations. I introduced the syntax of this final clause for a SELECT
statement and explained a simple example.

Next, I showed an example of when to use the WHERE clause rather
than the HAVING clause to filter rows. I explained that when you have a
choice, you’re better off placing your filter in the WHERE clause. Before
you got too comfortable with HAVING, I showed you a common trap
to avoid when counting groups that might contain a zero result. I also
showed you an alternative way to solve this type of problem.

Finally, I summarized why the HAVING clause is useful and gave you
a sample list of problems you can solve using HAVING. The rest of the
chapter provided examples of how to build requests that require the
HAVING clause.

❖ Note This illustrates a creative use of GROUP BY and HAVING in
a subquery to find recipes that have both ingredients. When a recipe h
has neither of the ingredients, the recipe won’t appear in the sub-
query. When a recipe has only one of the ingredients, the count will be
1, so the row will be eliminated. Only when a recipe has both will the
COUNT be 2. Be careful, though. If a particular recipe calls for both
minced and whole garlic but no beef, this technique won’t work! You
will get a COUNT of 2 for the two garlic entries, so the recipe will be
selected even though it has no beef.

If you wonder why I used an OR operator when I want both beef and
garlic, be sure to review the Using OR topic in the Using Multiple Con-
ditions section in Chapter 6. I showed you an alternative way to solve
this problem in Chapter 8. In Chapter 18, “‘Not’ and ‘And’ Problems,”
I’ll show you another creative way to solve this problem.

528 Chapter 14 Filtering Grouped Data

The following section presents several requests that you can work out on
your own.

Problems for You to Solve

Below, I show you the request statement and the name of the solution
query in the sample databases. If you want some practice, you can work
out the SQL you need for each request and then check your answer with
the query I saved in the samples. Don’t worry if your syntax doesn’t
exactly match the syntax of the queries I saved—as long as your result
set is the same.

Sales Orders Database

 1. “Show me each vendor and the average by vendor of the number of
days to deliver products that are greater than the average delivery
days for all vendors.”

(Hint: You need a subquery to fetch the average delivery time for
all vendors.)

You can find the solution in CH14_Vendor_Avg_Delivery_GT_
Overall_Avg (5 rows).

 2. “Display for each product the product name and the total sales
that is greater than the average of sales for all products in that
category.”

(Hint: To calculate the comparison value, you must first SUM
the sales for each product within a category and then AVG those
sums by category.)

You can find the solution in CH14_Sales_By_Product_GT_
Category_Avg (13 rows).

 3. “How many orders are for only one product?”

(Hint: You need to use an inner query in the FROM clause that
lists the order numbers for orders having only one row and then
COUNT those rows in the outer SELECT clause.)

You can find the solution in CH14_Single_Item_Order_Count
(1 row).

 Problems for You to Solve 529

Entertainment Agency Database

 1. “Show me the entertainers who have more than two overlapped
bookings.”

(Hint: Use a subquery to find those entertainers with overlapped
bookings HAVING a COUNT greater than 2. Remember that in
Chapter 6, I showed you how to compare for overlapping ranges
efficiently.)

You can find the solution in CH14_Entertainers_MoreThan_2_
Overlap (1 row).

 2. “Show each agent’s name, the sum of the contract price for the
engagements booked, and the agent’s total commission for agents
whose total commission is more than $1,000.”

(Hint: Use the similar problem from Chapter 13 and add a HAVING
clause.)

You can find the solution in CH14_Agent_Sales_Big_Commissions
(4 rows).

School Scheduling Database

 1. “Display by category the category name and the count of classes
offered for those categories that have three or more classes.”

(Hint: JOIN categories to subjects and then to classes. COUNT the
rows and add a HAVING clause to get the final result.)

You can find the solution in CH14_Category_Class_Count_3_Or_
More (14 rows).

 2. “List each staff member and the count of classes each is scheduled
to teach for those staff members who teach fewer than three
classes.”

(Hint: This is a HAVING COUNT zero trap! Use subqueries
instead.)

You can find the solution in CH14_Staff_Teaching_LessThan_3
(7 rows).

 3. “Show me the subject categories that have fewer than three full
professors teaching that subject.”

I did show you one way to correctly solve this problem in the
section “Avoiding the HAVING COUNT Trap” using subqueries.
Now try to solve it correctly using JOINs and GROUP BY.

530 Chapter 14 Filtering Grouped Data

(Hint: Consider using OUTER JOIN and a subquery in the FROM
clause.)

You can find the solution in CH14_Subjects_Fewer_3_Professors_
Join_RIGHT (16 rows).

 4. “Count the classes taught by every staff member.”

(Hint: This really isn’t a HAVING problem, but you might
be tempted to solve it incorrectly using a GROUP BY using
COUNT(*).)

You can find the correct solution in CH14_Staff_Class_
Count_Subquery (27 rows) and CH14_Staff_Class_Count_
GROUPED_RIGHT (27 rows). The incorrect solution is in
CH14_Staff_Class_Count_GROUPED_WRONG (22 rows).

Bowling League Database

 1. “Do any team captains have a raw score that is higher than any
other member of the team?”

(Hint: You find out the top raw score for captains by JOINing
teams to bowlers on captain ID and then to bowler scores. Use a
HAVING clause to compare the MAX value for all other members
from a subquery.)

You can find the solution in CH14_Captains_Who_Are_Hotshots
(0 rows). (There are no captains who bowl better than their
teammates!)

 2. “Display for each bowler the bowler name and the average of the
bowler’s raw game scores for bowlers whose average is greater
than 155.”

(Hint: You need a simple HAVING clause comparing the AVG to a
numeric literal.)

You can find the solution in CH14_Good_Bowlers (17 rows).

 3. “List the last name and first name of every bowler whose average
raw score is greater than or equal to the overall average score.”

(Hint: I showed you how to solve this in Chapter 12 in the
“Sample Statements” section with a subquery in a WHERE
clause. Now solve it using HAVING!) (use closing parenthesis, not
backslash)

You can find the solution in CH14_Better_Than_Overall_Average_
HAVING (17 rows).

 Problems for You to Solve 531

Recipes Database

 1. “Sum the amount of salt by recipe class, and display those recipe
classes that require more than three teaspoons.”

(Hint: This requires a complex JOIN of five tables to filter out salt
and teaspoon, SUM the result, and then eliminate recipe classes
that use more than three teaspoons.)

You can find the solution in CH14_Recipe_Classes_Lots_Of_Salt
(1 row).

 2. “For what class of recipe do I have two or more recipes?”

(Hint: JOIN recipe classes with recipes, count the result, and keep
the ones with two or more with a HAVING clause.)

You can find the solution in CH14_Recipe_Classes_Two_Or_More
(4 rows).

This page intentionally left blank

Part V
Modifying Sets
of Data

This page intentionally left blank

 535

15
Updating Sets of Data

“It is change, continuing change, inevitable change,
that is the dominant factor in society today.”

—ISAAC ASIMOV

Topics Covered in This Chapter

What Is an UPDATE?

The UPDATE Statement

Uses for UPDATE

Sample Statements

Summary

Problems for You to Solve

As you learned in Part II, “SQL Basics”; Part III, “Working with Multi-
ple Tables”; and Part IV, “Summarizing and Grouping Data”; using the
SELECT statement to fetch data from your tables can be both fun and
challenging. (Okay, so maybe some of it is a lot more challenging than
fun!) If all you need to do is answer questions, then you don’t need this
part of my book. However, most real-world applications not only answer
complex questions but also allow the user to change, add, or delete data.
In addition to defining the SELECT statement that you’ve been learning
about to retrieve data, the SQL Standard also defines three statements
that allow you to modify your data. In this chapter, you’ll learn about the
first of those statements—UPDATE.

536 Chapter 15 Updating Sets of Data

What Is an UPDATE?

The SELECT statement lets you retrieve sets of data from your tables.
The UPDATE statement also works with sets of data, but you can use it
to change the values in one or more columns and in one or more rows.
By now, you should also be very familiar with expressions. To change a
value in a column, you simply assign an expression to the column.

But you must be careful because UPDATE is very powerful. Most of the
time you’ll want to update only one or a few rows. If you’re not careful,
you can end up changing thousands of rows. To avoid this problem, I’ll
show you a technique for testing your statement first.

 ❖ Note You can find all the sample statements and solutions
in the “modify” version of the respective sample databases—
SalesOrdersModify, EntertainmentAgencyModify, SchoolScheduling-
Modify, and BowlingLeagueModify.

The UPDATE Statement

The UPDATE statement is actually much simpler than the SELECT
statement that you have been learning about in the previous chapters.
The UPDATE statement has only three clauses: UPDATE, SET, and an
optional WHERE clause, as shown in Figure 15-1.

UPDATE Statement

UPDATE table_name SET

column_name

,

= Value Expression

Search ConditionWHERE

DEFAULT
NULL

Figure 15-1 The syntax diagram of the UPDATE statement

❖ Note You can find all the sample statements and solutions
in the “modify” version of the respective sample databases—
SalesOrdersModify, EntertainmentAgencyModify, SchoolScheduling-
Modify, and BowlingLeagueModify.

 The UPDATE Statement 537

After the UPDATE keyword, you specify the name of the table that
you want to update. The SET keyword begins one or more clauses
that assign a new value to a column in the table. You must include at
least one assignment clause, and you can include as many assignment
clauses as you need to change the value of multiple columns in each
row. Use the optional WHERE clause to restrict the rows that are to be
updated in the target table.

Using a Simple UPDATE Expression

Let’s look at an example using a simple assignment of an expression to
the column you want to update.

 ❖ Note Throughout this chapter, I use the “Request/Translation/
Clean Up/SQL” technique introduced in Chapter 4, “Creating a
Simple Query.”

“Increase the retail price of all products by 10 percent.”

Ah, this is somewhat tricky. You’ll find it tough to directly translate your
original request into SQL-like English because you don’t usually state
the clauses in the same order required by the UPDATE statement. Take
a close look at your request and figure out (a) the name of the target
table and (b) the names of the columns you need to update. Restate your
request in that order, and then proceed with the translation, like this:

“Change products by increasing the retail price by 10 percent.”

Translation Update the products table by setting the retail price equal to
the retail price plus 10 percent of the price

Clean Up Update the products table by setting the retail price equal to
= the retail price plus + (.10 percent of the * retail price)

SQL UPDATE Products

SET Price = Price + (0.1 * Price)

Notice that you cannot say SET Price + 10 percent. You must state
the column to be updated to the left of the equals sign and then cre-
ate an expression to calculate the new value you want. If the new value
involves using the old or current value of the column, then you must ref-
erence the column name as needed to the right of the equals sign. One
rule that’s very clear in the SQL Standard is that your database system

❖ Note Throughout this chapter, I use the “Request/Translation/
Clean Up/SQL” technique introduced in Chapter 4, “Creating a
Simple Query.”

538 Chapter 15 Updating Sets of Data

must evaluate all the assignment expressions before it updates any rows.
So your database will resolve the two references to the Price column to
the right of the equals sign by fetching the value of the Price column
before it makes any changes.

You’ll find this sort of assignment statement common in any program-
ming language. Although it might appear to you that you’re assigning
the value of a column to itself, you’re really grabbing the value before it
changes, adding 10 percent of the value, and then assigning the result to
the column to update it to a new value.

Updating Selected Rows

Are you always going to want to update all rows in a table? Probably not.
To limit the rows changed by your UPDATE statement, you need to add a
WHERE clause. Let’s consider another problem:

“My clothing supplier just announced a price increase of 4 percent.
Update the price of the clothing products and add 4 percent.”

Let’s restate that:

“Modify products by increasing the retail price by 4 percent for prod-
ucts that are clothing (category 3).”

Translation Update the products table by setting the retail price equal to
retail price times 1.04 for all products in category 3

Clean Up Update the products table by setting the retail price equal to =
retail price times * 1.04 for all where products in category ID = 3

SQL UPDATE Products

SET RetailPrice = RetailPrice * 1.04

WHERE CategoryID = 3

 ❖ Note I simplified the calculation in the query by multiplying the
original value by 1.04 rather than adding the original value to 0.04
times the original value. The result is mathematically the same and
might actually execute faster because one mathematical operation
(price times 1.04) is more efficient than two (price plus price times .04).

❖ Note I simplified the calculation in the query by multiplying the
original value by 1.04 rather than adding the original value to 0.04
times the original value. The result is mathematically the same and
might actually execute faster because one mathematical operation
(price times 1.04) is more efficient than two (price plus price times .04).

 The UPDATE Statement 539

After tackling subqueries in Chapter 11, this was easy, right? Just
wait—you’ll use subqueries extensively in your WHERE clauses, and I’ll
cover that later in this chapter.

Safety First: Ensure You’re Updating the Correct Rows

Even for simple UPDATE queries, I strongly recommend that you verify
that you’re going to be updating the correct rows. How do you do that?
As I mentioned, most of the time you’ll add a WHERE clause to select a
subset of rows to update. Why not build a SELECT query first to return
the rows that you intend to update? Continuing with my example, let’s
ask the database to return a column that lets me ensure that I have the
correct rows, the value I want to update, and the expression I intend to
assign to the column I’m changing.

“List the product name, retail price, and retail price plus 4 percent from
the products table for the products in category 3.”

Translation Select product name, retail price, and retail price times 1.04
from the products table for products in category ID 3

Clean Up Select product name, retail price, and retail price times *
1.04 from the products table for where products in category
ID = 3

SQL SELECT ProductName, RetailPrice,
 RetailPrice * 1.04 As NewPrice FROM Products

WHERE CategoryID = 3

Figure 15-2 shows the result.

ProductName RetailPrice NewPrice
Ultra-Pro Rain Jacket $85.00 $88.40
StaDry Cycling Pants $69.00 $71.76
Kool-Breeze Rocket Top Jersey $32.00 $33.28
Wonder Wool Cycle Socks $19.00 $19.76

Figure 15-2 Verifying the rows you want to update

Note that I included the product name so I can see exactly what I want
to update. If this is the result I want, I can transform the SELECT
statement into the correct UPDATE statement by removing elements I
don’t need and swapping the FROM and SELECT clauses. Figure 15-3

540 Chapter 15 Updating Sets of Data

shows how to transform this SELECT statement into the correct
UPDATE syntax.

Simply cross out the words you don’t need, move the table name to the
UPDATE clause, move the target field and expression to the SET clause
separated by an equals sign, copy your WHERE clause, and you’re done.

SELECT ProductName, RetailPrice,
RetailPrice * 1.04 As NewPrice

FROM Products
WHERE CategoryID = 3

UPDATE Products
SET RetailPrice = RetailPrice * 1.04
WHERE CategoryID = 3

Figure 15-3 Converting a SELECT query into an UPDATE statement

A Brief Aside: Transactions

Before I get too much further into changing data, you need to know
about an important feature available in SQL. The SQL Standard defines
something called a transaction that you can use to protect a series of
changes you’re making to the data in your tables. You can think of a
transaction in SQL just like a transaction you might make online or at
a store to buy something. You initiate the transaction when you send in
your order. Paying for the item you ordered is part of the transaction.
The transaction is completed when you receive and accept the merchan-
dise. But if the merchandise doesn’t arrive, you might apply for a refund.
Or if the merchandise is unsatisfactory, you return it and ask for your
money back.

The SQL Standard provides three statements that mimic this scenario.
You can use START TRANSACTION before you begin your changes to
indicate that you want to protect and verify the changes you’re about
to make. Think of this as sending in your order. You make the changes
to your database—register the payment and register the receipt. If
everything completes satisfactorily, you can use COMMIT to make the
changes permanent. If something went wrong (the payment or receipt
update failed), you can use ROLLBACK to restore the data as it was
before you started the transaction.

 The UPDATE Statement 541

This buying and selling example might seem silly, but transactions are a
very powerful feature of SQL, especially when you need to make changes
to multiple rows or to rows in several tables. Using a transaction ensures
that either all changes are successful or none are. You don’t want to reg-
ister the payment without receipt of the goods, and you don’t want to
mark the goods received without receiving the payment. Note that this
applies to changing your data not only with the UPDATE statement
described in this chapter but also with INSERT and DELETE, which are
described in the next two chapters.

Not all database systems implement transactions, and the syntax to
use transaction processing varies slightly depending on the particular
database system. Some database systems allow you to nest transac-
tions inside each other so that you can establish multiple commit points.
Some end-user database systems, such as Microsoft Office Access, start
a transaction for you behind the scenes every time you run a query that
changes your data. If you’ve used Microsoft Access, you know that it
prompts you with a message indicating how many rows will be changed
and whether any will fail—and you can either accept the changes or
cancel them (ROLLBACK). As always, consult your database documenta-
tion for details.

Updating Multiple Columns

As implied by the diagram of the UPDATE statement in Figure 15-1, you
can specify more than one column to change by including additional
assignment statements separated by columns. Keep in mind that your
database applies all the changes you specify to every row returned as a
result of evaluating your WHERE clause. Let’s take a look at an update
you might want to perform in the School Scheduling database:

“Modify classes by changing the classroom to 1635 and the schedule
dates from Monday-Wednesday-Friday to Tuesday- Thursday-Saturday
for all drawing classes (subject ID 13).”

Translation Update classes and set classroom ID to 1635, Mon-
day schedule to false, Wednesday schedule to false,
Friday schedule to false, Tuesday schedule to true,
Thursday schedule to true, and Saturday schedule to
true for all classes that are subject ID 13

542 Chapter 15 Updating Sets of Data

Clean Up Update classes and set classroom ID to = 1635,
Monday schedule to = 0 false, Wednesday schedule to
= 0 false, Friday schedule to = 0 false, Tuesday sched-
ule to = 1 true, Thursday schedule to = 1 true, and
 Saturday schedule to = 1 true for all classes that are
where subject ID = 13

SQL UPDATE Classes SET ClassRoomID = 1635,

 MondaySchedule = 0,

 WednesdaySchedule = 0,

 FridaySchedule = 0,

 TuesdaySchedule = 1,

 ThursdaySchedule = 1,

 SaturdaySchedule = 1

WHERE SubjectID = 13

 ❖ Note Remember that most database systems use the value 0 for
false and the value 1 or –1 for true. Check your database documenta-
tion for details.

Perhaps you want to make doubly sure that you’re changing only the
classes scheduled on Monday-Wednesday-Friday. To do that, add criteria
to your WHERE clause like this:

SQL UPDATE Classes SET ClassRoomID = 1635,

 MondaySchedule = 0,

 WednesdaySchedule = 0, FridaySchedule = 0,

 TuesdaySchedule = 1, ThursdaySchedule = 1,

 SaturdaySchedule = 1

WHERE SubjectID = 13

 AND MondaySchedule = 1

 AND WednesdaySchedule = 1

 AND FridaySchedule = 1

Notice that you’re filtering for the value you expect to find in the field
before your UPDATE statement changes the value. With this modified
query, you’re finding all rows for SubjectID 13 that have a true (1) value

❖ Note Remember that most database systems use the value 0 for
false and the value 1 or –1 for true. Check your database documenta-
tion for details.

 The UPDATE Statement 543

in the Monday, Wednesday, and Friday schedule fields. For each row that
matches these criteria, your UPDATE statement will change the Class-
RoomID and the schedule fields. If you try to run this query a second
time, you should find that your database updates no rows because you
eliminated all rows that qualify by changing the field values the first
time you ran the query.

Using a Subquery to Filter Rows

In the examples in previous sections, I’ve updated the products in cate-
gory 3 and the classes in subject 13. In the real world, code values like
this don’t have much meaning. You’d probably much rather say “cloth-
ing products” or “drawing classes.” In a SELECT query, you can add the
related tables to your FROM clause with JOIN specifications and then
display the more meaningful value from the related table. As always, you
must be familiar with your table relationships to make this connection.
Figure 15-4 shows the tables I need for my example.

PRODUCTS
ProductNumber PK
ProductName
ProductDescription
RetailPrice
QuantityOnHand
CategoryID FK

CATEGORIES
CategoryID PK
CategoryDescription

Figure 15-4 The tables needed to relate category descriptions to products

Let’s look again at the verification query I built to check my update of
products, but this time, let’s add the Categories table:

SQL SELECT ProductName, RetailPrice,

 RetailPrice * 1.04 As NewPrice

FROM Products INNER JOIN Categories

 ON Products.CategoryID = Categories.CategoryID

WHERE Categories.CategoryDescription = 'Clothing'

Filtering on the value Clothing makes a lot more sense than selecting
the category ID value 3. However, notice that the diagram of the UPDATE
statement in Figure 15-1 shows that I can supply only a table name fol-
lowing the UPDATE keyword. I cannot specify the INNER JOIN needed to

544 Chapter 15 Updating Sets of Data

include the Categories table so that I can filter on the more meaningful
value. So what’s the solution?

Remember from Chapter 11, “Subqueries,” that I can create a filter in a
WHERE clause to test a value fetched from a related table. Let’s solve the
price update problem again using a subquery so that I can apply a more
meaningful filter value.

“Modify products by increasing the retail price by 4 percent for
products that are clothing.”

Translation Update the products table by setting the retail price equal to
retail price times 1.04 for the products whose category ID is
equal to the selection of the category ID from the categories
table where the category description is clothing

Clean Up Update the products table by setting the retail price equal
to = retail price times * 1.04 for the products whose where
category ID is equal to = the (selection of the category ID
from the categories table where the category description is =
‘Clothing’)

SQL UPDATE Products

SET RetailPrice = RetailPrice * 1.04

WHERE CategoryID =

 (SELECT CategoryID

 FROM Categories

 WHERE CategoryDescription = 'Clothing')

That’s not as straightforward as a simple WHERE clause on a column
from a joined table, but it gets the job done.

 ❖ Caution Notice that I used an equals comparison for the Cate-
goryID column in the Products table and the value returned by the
subquery. As I noted in Chapter 11, if you want to use an equals
comparison in a predicate with a subquery, the subquery must return
only one value. If more than one row in the Categories table had the
value Clothing in the category description field, this query would
fail. However, in my example, I’m reasonably certain that filtering for

❖ Caution Notice that I used an equals comparison for the Cate-
goryID column in the Products table and the value returned by the
subquery. As I noted in Chapter 11, if you want to use an equals
comparison in a predicate with a subquery, the subquery must return
only one value. If more than one row in the Categories table had the
value Clothing in the category description field, this query would
fail. However, in my example, I’m reasonably certain that filtering for

 The UPDATE Statement 545

Clothing will return only one value for CategoryID. Whenever you’re
not sure that a subquery will return only one value, you should use
the IN predicate rather than the “equal to” operator.

Let’s solve the problem of updating classes by using the same technique.
I want to use the subject code or subject name from the Subjects table
rather than the numeric and meaningless subject ID. Figure 15-5 shows
the tables involved.

CLASSES

ClassID PK
SubjectID FK
ClassRoomID FK
StartTime
Duration
MondaySchedule
TuesdaySchedule
WednesdaySchedule
ThursdaySchedule
FridaySchedule
SaturdaySchedule

SUBJECTS

SubjectCode
SubjectName
SubjectDescription

SubjectID PK
CategoryID FK

Figure 15-5 The tables needed to relate subject names to classes

Let’s solve the update problem again by using a subquery filter.

“Modify classes by changing the classroom to 1635 and the schedule
dates from Monday-Wednesday-Friday to Tuesday- Thursday-Saturday
for all drawing classes.”

Translation Update classes and set classroom ID to 1635, Monday sched-
ule to false, Wednesday schedule to false, Friday schedule to
false, Tuesday schedule to true, Thursday schedule to true,
and Saturday schedule to true for all classes whose subject
ID is in the selection of subject IDs from the subjects table
where subject name is ‘Drawing’

Clean Up Update classes and set classroom ID to = 1635, Monday
schedule to = 0 false, Wednesday schedule to = 0 false,
Friday schedule to = 0 false, Tuesday schedule to = 1 true,
Thursday schedule to = 1 true, and Saturday schedule to
= 1 true for all classes whose where subject ID is in the
(selection of subject IDs from the subjects table where
subject name is = ‘Drawing’)

Clothing will return only one value for CategoryID. Whenever you’re
not sure that a subquery will return only one value, you should use
the IN predicate rather than the “equal to” operator.

546 Chapter 15 Updating Sets of Data

SQL UPDATE Classes SET ClassRoomID = 1635,

 MondaySchedule = 0,

 WednesdaySchedule = 0, FridaySchedule = 0,

 TuesdaySchedule = 1, ThursdaySchedule = 1,

 SaturdaySchedule = 1

WHERE SubjectID IN

 (SELECT SubjectID

 FROM Subjects

 WHERE SubjectName = 'Drawing')

Notice that even though I’m fairly certain that only one subject ID has a
subject name equal to Drawing, I decided to play it safe and use the IN
predicate.

Some Database Systems Allow a JOIN
in the UPDATE Clause

Several database systems, most notably the ones from Microsoft
 (Microsoft Access and Microsoft SQL Server), allow you to specify a
joined table in the FROM clause of an UPDATE query. The restriction is
that the JOIN must be from the primary key in one table to the foreign
key in another table so that the database system can figure out which
specific row or rows you intend to update. This allows you to avoid a
subquery in the WHERE clause when you want to filter rows based on a
value in a related table.

If your database system allows this, you can solve the problem of modi-
fying the information on drawing classes as follows:

SQL UPDATE Classes INNER JOIN Subject

 ON Classes.SubjectID = Subjects.SubjectID

SET ClassRoomID = 1635, MondaySchedule = 0,

 WednesdaySchedule = 0, FridaySchedule = 0,

 TuesdaySchedule = 1, ThursdaySchedule = 1,

 SaturdaySchedule = 1

WHERE Subjects.SubjectName = 'Drawing'

 Some Database Systems Allow a JOIN in the UPDATE Clause 547

As you can see, this avoids having to use a subquery to filter the rows.
In some ways, this syntax is also easier to understand. You can also
use this syntax to join a related table that supplies one of the values in
your update calculation rather than use a subquery in the SET clause.
Be sure to check the documentation for your database system to see
if this feature is supported. You’ll note that I’ve used this technique to
solve some of the sample queries in the Microsoft Access versions of the
 sample databases.

By the way, the SQL Standard allows the target table to be a view, which
could imply a joined table. However, the standard specifies that the rules
for updating a view are defined by the implementation, which allows
database system vendors to either always require a simple table name
or otherwise restrict what you can do using a view or joined table. As
always, check your database documentation for details.

As you might imagine, you can make the subquery as complex as nec-
essary to allow you to filter the target table properly. For example, if you
want to change the start time for all classes taught by one professor, you
need to JOIN the Faculty_Classes and Staff tables in the FROM clause of
the subquery. Figure 15-6 shows the tables involved.

Let’s say you want to change the start time of all classes taught by
Kathryn Patterson to 2:00 PM. (You probably wouldn’t want to do this
because you might end up with multiple classes starting at the same
time, but this makes an interesting example.) Your solution might look
as follows.

FACULTY_CLASSES
StaffID CPK
ClassID CPK

CLASSES

ClassID PK
SubjectID FK
ClassRoomID FK
StartTime
Duration
MondaySchedule
TuesdaySchedule
WednesdaySchedule
ThursdaySchedule
FridaySchedule
SaturdaySchedule

STAFF
StaffID PK
StfFirstName
StfLastName
StfStreetAddress
StfCity
StfState
StfZipCode

StfPhoneNumber
DateHired
Salary
Position

StfAreaCode

Figure 15-6 The tables needed to relate staff names to classes

548 Chapter 15 Updating Sets of Data

“Change the classes table by setting the start time to 2:00 PM for all
classes taught by Kathryn Patterson.”

Translation Update the classes table by setting the start time to 2:00
PM for all classes whose class ID is in the selection of
class IDs of faculty classes joined with staff on staff ID
in the faculty classes table matches staff ID in the staff
table where the staff first name is ‘Kathryn’ and the staff
last name is ‘Patterson’

Clean Up Update the classes table by setting the start time to =
2:00 PM. ‘14:00:00’ for all classes whose where class ID
is in the (selection of class IDs of from faculty classes
inner joined with staff on faculty_classes.staff ID in the
faculty classes table matches = staff.staff ID in the staff
table where the staff first name is = ‘Kathryn’ and the
staff last name is = ‘Patterson’)

SQL UPDATE Classes SET StartTime = '14:00:00'

WHERE ClassID IN

 (SELECT ClassID

 FROM Faculty_Classes INNER JOIN Staff

 ON Faculty_Classes.StaffID = Staff.StaffID

 WHERE StfFirstName = 'Kathryn'

 AND StfLastName = 'Patterson')

So the trick is to identify the relationships between the target table
and any related table(s) you need to specify the criteria in the WHERE
clause. You did this in Chapter 8, “INNER JOINs,” and Chapter 9,
“OUTER JOINs,” as you assembled the FROM clause of queries on mul-
tiple tables. When building an UPDATE statement, you can put only
the target table after the UPDATE keyword, so you must take the other
tables and put them in a subquery that returns the column that you can
link back to the target table.

Using a Subquery UPDATE Expression

If you thought I was done using subqueries, you were wrong. Notice in
Figure 15-1 that the value that you can assign to a column in a SET
clause can be a value expression. Just for review, Figure 15-7 shows how
to construct a value expression.

 Some Database Systems Allow a JOIN in the UPDATE Clause 549

Value Expression

+, -Date / Time

Expression

Types
Valid

Operators

Character ||

Numeric +, -, *, /

Interval +, -, *, / # Scalar value only

+
-

+
-
*
/
||

Value Expression

Literal Value

Column Reference

Function

(Value Expression)

CASE Expression

(SELECT Expression)#

Figure 15-7 The syntax diagram for a value expression

In Chapter 2, “Ensuring Your Database Structure Is Sound,” I advised
you to not include calculated fields in your tables. As with most rules,
there are exceptions. Consider the Orders table in the Sales Orders sam-
ple database. If your business handles extremely large orders (thousands
of order detail rows), you might want to consider including an order total
field in the Orders table. Including this calculated field lets you run que-
ries to examine the total of all items ordered without having to fetch and
total thousands of detail rows. If you choose to do this, you must include
code in your application that keeps the calculated total up to date every
time a change is made to any related order detail row.

 ❖ Note Many database systems provide a feature—often called a
trigger—that enables you to run code within the database system
whenever data is added, updated, or deleted. (The act of adding,
updating, or deleting data “triggers” your code.) The trigger code can
then perform additional complex validations or even run additional
update, insert, or delete queries to modify data in related tables. You
can imagine how code you write in a trigger could potentially update
calculated values in related tables.

Some database systems (notably Microsoft SQL Server) also enable
you to define calculated columns as part of your table design. Clearly,
such features cause your database system to do additional work
whenever you work with the data in your tables, so you should care-
fully consider using such features and do so sparingly. Consult your
database documentation for details.

❖ Note Many database systems provide a feature—often called a
trigger—that enables you to run code within the database system rr
whenever data is added, updated, or deleted. (The act of adding,
updating, or deleting data “triggers” your code.) The trigger code can
then perform additional complex validations or even run additional
update, insert, or delete queries to modify data in related tables. You
can imagine how code you write in a trigger could potentially update
calculated values in related tables.

Some database systems (notably Microsoft SQL Server) also enable
you to define calculated columns as part of your table design. Clearly,
such features cause your database system to do additional work
whenever you work with the data in your tables, so you should care-
fully consider using such features and do so sparingly. Consult your
database documentation for details.

550 Chapter 15 Updating Sets of Data

So far, I’ve been assigning a literal value or a value expression contain-
ing a literal value, an operator, and a column name to columns in the
SET clause. Notice that you can also assign the value of another column
in the target table, but you’ll rarely want to do that. The most interesting
possibility is that you can use a SELECT expression (a subquery) that
returns a single value (such as a sum) from another table and assign
that value to your column. You can include criteria in the subquery (a
WHERE clause) that filters the values from the other table based on a
value in the table you’re updating.

So, to update a total in one table (Orders) using a sum of an expression
on columns in a related table (Order_Details), you can run an UPDATE
query using a subquery. In the subquery, you’ll sum the value of quan-
tity ordered times quoted price and place it in the calculated field, and
you’ll add a WHERE clause to make sure you’re summing values from
related rows in the Order_Details table for each row in the Orders table.
Your request might look like this:

“Change the orders table by setting the order total to the sum of quan-
tity ordered times quoted price for all related order detail rows.”

Translation Update the orders table by setting the order total to the
sum of quantity ordered times quoted price from the
order details table where the order number matches
the order number in the orders table

Clean Up Update the orders table by setting the order total to
= the (select sum of (quantity ordered times * quoted
price) from the order details table where the order_
details.order number matches the = orders.order num-
ber in the orders table)

SQL UPDATE Orders

SET OrderTotal =

 (SELECT SUM(QuantityOrdered * QuotedPrice)

 FROM Order_Details

 WHERE Order_Details.OrderNumber =

 Orders.OrderNumber)

 ❖ Note I saved this query as CH15_Update_Order_Totals_Subquery in
the Sales Orders Modify sample database.
❖ Note I saved this query as CH15_Update_Order_Totals_Subquery in
the Sales Orders Modify sample database.

 Uses for UPDATE 551

Notice that I didn’t include a WHERE clause to filter the orders that the
database will update. If you execute this query in application code, you’ll
probably want to filter the order number so that the database updates
only the order that you know was changed. Some database systems
actually let you define a calculated field like this and specify how the
field should be updated by your database system. As noted earlier, most
database systems also support something called a trigger that the data-
base system runs on your behalf each time a row in a specified table is
changed, added, or deleted. For systems that include these features, you
can use this UPDATE query syntax in either the definition of the table or
in the trigger you define to run when a value changes. As usual, consult
your database documentation for details.

Uses for UPDATE

At this point, you should have a good understanding of how to update
one or more columns in a table using either a simple literal or a complex
subquery expression. You also know how to filter the rows that will be
changed by your UPDATE statement. The best way to give you an idea
of the wide range of uses for the UPDATE statement is to list some prob-
lems you can solve with this statement and then present a set of exam-
ples in the “Sample Statements” section.

“Reduce the quoted price by 2 percent for orders shipped more than
30 days after the order date.”

“Add 6 percent to all agent salaries.”

“Change the tournament location to ‘Oasis Lanes’ for all tournaments
originally scheduled at ‘Sports World Lanes.’”

“Recalculate the grade point average for all students based on classes
completed.”

“Apply a 5 percent discount to all orders for customers who purchased
more than $50,000 in the month of October 2017.”

“Correct the engagement contract price by multiplying the enter-
tainer daily rate times number of days and adding a 15 percent
commission.”

“Update the city and state for all bowlers by looking up the names by
ZIP Code.”

552 Chapter 15 Updating Sets of Data

“For all students and staff in ZIP codes 98270 and 98271, change the
area code to 360.”

“Make sure the retail price for all bikes is at least a 45 percent markup
over the wholesale price of the vendor with the lowest cost.”

“Apply a 2 percent discount to all engagements for customers who
booked more than $3,000 worth of business in the month of October
2017.”

“Change the name of the ‘Huckleberrys’ bowling team to ‘Manta
Rays.’”

“Increase the salary of full-time tenured staff by 5 percent.”

“Set the retail price of accessories to the wholesale price of the highest
priced vendor plus 35 percent.”

“Add 0.5 percent to the commission rate of agents who have sold more
than $20,000 in engagements.”

“Calculate and update the total pins, games bowled, current average,
and current handicap for all bowlers.”

Sample Statements

You now know the mechanics of constructing UPDATE queries. Let’s
look at a set of samples, all of which request that one or more columns
in a table be changed in some way. These examples come from four of
the sample databases.

 ❖ Caution Because the sample queries you’ll find in the modified ver-
sions of the sample databases change your data, be aware that some
of the queries will work as expected only once. For example, after you
run an UPDATE query to change the name of a customer or bowl-
ing team using a WHERE clause to find the row you want to change,
subsequent attempts to find the row to change will fail because of the
change you made the first time you ran the query. Consider restoring
the databases from the sample scripts or a backup copy if you want to
work through the problems again.

❖ Caution Because the sample queries you’ll find in the modified ver-
sions of the sample databases change your data, be aware that some
of the queries will work as expected only once. For example, after you
run an UPDATE query to change the name of a customer or bowl-
ing team using a WHERE clause to find the row you want to change,
subsequent attempts to find the row to change will fail because of the
change you made the first time you ran the query. Consider restoring
the databases from the sample scripts or a backup copy if you want to
work through the problems again.

 Sample Statements 553

Also, if you’re using MySQL, the default in the Query Editor in MySQL
Workbench is to allow only “safe” updates that include specification
of the Primary Key in the WHERE clause. Many of the queries shown
here won’t run with that enabled. Go to Edit / Preferences / SQL Edi-
tor and clear the Safe Updates checkbox near the bottom.

I’ve also included a view of each target table before and after executing
the update and a count of the number of rows that should be changed
by each sample UPDATE statement. The name that appears immediately
before the count of rows changed is the name I gave each query in the
sample data on the companion website for the book. Also, I created a
companion SELECT query (stored as a View in MySQL, PostgreSQL, and
Microsoft SQL Server) for each UPDATE query that you can use to see
exactly what will be changed. The name of the companion query is the
name of the original query with _Query appended to the name. I stored
each query in the appropriate sample database (as indicated within the
example) and prefixed the names of the queries relevant to this chapter
with “CH15.” You can find the sample data on the companion website for
this book, www.informit.com/title/9780134858333. You can follow the
instructions in the Introduction of this book to load the samples onto
your computer and try them.

 ❖ Note Remember that all the column names and table names used
in these examples are drawn from the sample database structures
shown in Appendix B, “Schema for the Sample Databases.” To simplify
the process, I have combined the Translation and Clean Up steps for
all the examples. These samples assume you have thoroughly studied
and understood the concepts covered in previous chapters, especially
the chapter on subqueries.

All of the sample statements have a companion SELECT statement
that shows the rows affected and any new values before you run the
actual UPDATE statement. These additional queries (views) have the
name of the actual UPDATE statement appended with _Query. For
example, the UPDATE statement named CH15_Update_Order_Totals_
Subquery has a companion CH15_Update_Order_Totals_Subquery_
Query that simply shows you the rows affected without changing
any data.

Also, if you’re using MySQL, the default in the Query Editor in MySQL
Workbench is to allow only “safe” updates that include specification
of the Primary Key in the WHERE clause. Many of the queries shown
here won’t run with that enabled. Go to Edit / Preferences / SQL Edi-
tor and clear the Safe Updates checkbox near the bottom.

❖ Note Remember that all the column names and table names used
in these examples are drawn from the sample database structures
shown in Appendix B, “Schema for the Sample Databases.” To simplify
the process, I have combined the Translation and Clean Up steps for
all the examples. These samples assume you have thoroughly studied
and understood the concepts covered in previous chapters, especially
the chapter on subqueries.

All of the sample statements have a companion SELECT statement
that shows the rows affected and any new values before you run the
actual UPDATE statement. These additional queries (views) have the
name of the actual UPDATE statement appended with _Query. For
example, the UPDATE statement named CH15_Update_Order_Totals_
Subquery has a companion CH15_Update_Order_Totals_Subquery_
Query that simply shows you the rows affected without changing
any data.

http://www.informit.com/title/9780134858333

554 Chapter 15 Updating Sets of Data

Sales Orders Database

“Reduce the quoted price by 2 percent for orders shipped more than 30
days after the order date.”

Let’s restate the problem so that it more closely follows the SQL syntax.

“Change order details by setting the quoted price to quoted price times
0.98 for all orders where the shipped date is more than 30 days later
than the order date.”

Translation/
Clean Up

Update the order details table by setting the quoted price
equal to = the quoted price times * 0.98 where the order
ID is in the (selection of order IDs from the orders table
where ship date minus – order date is greater than > 30

SQL UPDATE Order_Details

SET QuotedPrice = QuotedPrice * 0.98

WHERE OrderID IN

 (SELECT OrderID

 FROM Orders

 WHERE (ShipDate - OrderDate) > 30)

 ❖ Note This query solution assumes your database system allows
you to subtract one date from another to obtain the number of days
between the two dates. Consult your database documentation for
details.

Order_Details Table Before Executing the UPDATE Query –
CH15_Adjust_Late_Order_Prices_Query

OrderNumber ProductNumber QuotedPrice UpdatedPrice

291 1 $1,200.00 1176

291 14 $139.95 137.15

291 30 $43.65 42.78

371 9 $32.01 31.37

371 22 $79.54 77.95

❖ Note This query solution assumes your database system allows
you to subtract one date from another to obtain the number of days
between the two dates. Consult your database documentation for
details.

 Sample Statements 555

OrderNumber ProductNumber QuotedPrice UpdatedPrice

371 35 $37.83 37.07

387 1 $1,200.00 1176

387 6 $635.00 622.3

<< more rows here >>

Order_Details Table After Executing CH15_Adjust_Late_Order_Prices
(29 rows changed)

OrderNumber ProductNumber QuotedPrice QuantityOrdered

291 1 $1,176.00 4

291 14 $137.15 2

291 30 $42.78 6

371 9 $31.37 6

371 22 $77.95 5

371 35 $37.07 6

387 1 $1,176.00 4

387 6 $622.30 4

<< more rows here >>

 “Make sure the retail price for all bikes is at least a 45 percent markup
over the wholesale price of the vendor with the lowest cost.”

Restated, the request is as follows:

“Change the products table by setting the retail price equal to 1.45
times the wholesale price of the vendor that has the lowest cost for the
product where the retail price is not already equal to 1.45 times the
wholesale price and the category ID is 2.”

Translation/
Clean Up

Update the products table by setting the retail price
equal to = 1.45 times * the (selection of the unique
distinct wholesale price from the product vendors table
where the product vendors table’s product number is
equal to = the products table’s product number and the

556 Chapter 15 Updating Sets of Data

wholesale price is equal to = the (selection of the
 minimum (wholesale price) from the product vendors
table where the product vendors table’s product num-
ber is equal to = the products table’s product number))
where the retail price is less than < 1.45 times the
(selection of the unique distinct wholesale price from
the product vendors table where the product vendors
table’s product number is equal to = the products
table’s product number and the wholesale price is
equal to = the (selection of the minimum (wholesale
price) from the product vendors table where the product
vendors table’s product number is equal to = the prod-
ucts table’s product number)) and the category ID is
equal to = 2

SQL UPDATE Products

SET RetailPrice = ROUND(1.45 *

 (SELECT DISTINCT WholeSalePrice

 FROM Product_Vendors

 WHERE Product_Vendors.ProductNumber

 = Products.ProductNumber

 AND WholeSalePrice =

 (SELECT MIN(WholeSalePrice)

 FROM Product_Vendors

 WHERE Product_Vendors.ProductNumber

 = Products.ProductNumber)), 0)

WHERE RetailPrice < 1.45 *

 (SELECT DISTINCT WholeSalePrice

 FROM Product_Vendors

 WHERE Product_Vendors.ProductNumber

 = Products.ProductNumber

 AND WholeSalePrice =

 (SELECT MIN(WholeSalePrice)

 FROM Product_Vendors

 WHERE Product_Vendors.ProductNumber

 = Products.ProductNumber))

 AND CategoryID = 2

 Sample Statements 557

 ❖ Note You’ll find this query solved with a JOIN in the UPDATE
clause in the Microsoft Access sample database because Access does
not support a subquery that uses DISTINCT in the SET clause. (It
declares the query not updatable because of the DISTINCT.)

Notice also that the solution rounds the resulting price to the nearest
dollar (zero decimal places). You’ll find that most commercial imple-
mentations support a ROUND function even though this function is
not explicitly defined in the SQL Standard.

I could have also included a subquery to find the category ID that is
equal to (or IN) the category IDs from the Categories table where cate-
gory description is equal to Bikes, but I thought the query was com-
plex enough without adding another subquery. Finally, I selected the
DISTINCT wholesale price because more than one vendor might have
the same low price. I want only one value from the subquery for the
comparison.

Products Table Before Executing the UPDATE Query – CH15_Adjust_Bike_
Retail_Price_Query (1 row)

ProductNumber ProductName RetailPrice UpdatedPrice

2 Eagle FS-3 Mountain Bike $1,800.00 1840

Products Table After Executing CH15_Adjust_Bike_Retail_Price (1 row changed)

ProductNumber ProductName RetailPrice

2 Eagle FS-3 Mountain Bike $1,840.00

 ❖ Note If you scan the Product_Vendors table for all the bikes (prod-
uct IDs 1, 2, 6, and 11), you’ll find that only product 2 has a current
retail price that is less than 1.45 times the lowest wholesale price
for that product from any vendor. The wholesale price for bike 2 from
vendor ID 6 is $1,269, and 1.45 times this amount is $1,840.05, which
the query rounded to the nearest dollar.

❖ Note You’ll find this query solved with a JOIN in the UPDATE
clause in the Microsoft Access sample database because Access does
not support a subquery that uses DISTINCT in the SET clause. (It
declares the query not updatable because of the DISTINCT.)

Notice also that the solution rounds the resulting price to the nearest
dollar (zero decimal places). You’ll find that most commercial imple-
mentations support a ROUND function even though this function is
not explicitly defined in the SQL Standard.

I could have also included a subquery to find the category ID that is
equal to (or IN) the category IDs from the Categories table where cate-
gory description is equal to Bikes, but I thought the query was com-
plex enough without adding another subquery. Finally, I selected the
DISTINCT wholesale price because more than one vendor might have
the same low price. I want only one value from the subquery for the
comparison.

❖ Note If you scan the Product_Vendors table for all the bikes (prod-
uct IDs 1, 2, 6, and 11), you’ll find that only product 2 has a current
retail price that is less than 1.45 times the lowest wholesale price
for that product from any vendor. The wholesale price for bike 2 from
vendor ID 6 is $1,269, and 1.45 times this amount is $1,840.05, which
the query rounded to the nearest dollar.

558 Chapter 15 Updating Sets of Data

Entertainment Agency Database

“Add 6 percent to all agent salaries.”

Restated, the request is as follows:

“Change the agents table by adding 6 percent to all salaries.”

Translation/
Clean Up

Update the agents table by setting salary equal to =
 salary times * 1.06

SQL UPDATE Agents

SET Salary = ROUND(Salary * 1.06, 0)

 ❖ Note I’ve again used the common ROUND function found in most
commercial implementations and have specified rounding to zero dec-
imal places. Check your database system documentation for specific
details about rounding in your implementation.

Agents Table Before Executing the UPDATE Query – CH15_Give_Agents_
6Percent_Raise_Query (9 rows)

AgentID AgtFirstName AgtLastName Salary NewSalary

1 William Thompson $35,000.00 37100

2 Scott Bishop $27,000.00 28620

3 Carol Viescas $30,000.00 31800

4 Karen Smith $22,000.00 23320

5 Marianne Wier $24,500.00 25970

6 John Kennedy $33,000.00 34980

7 Caleb Viescas $22,100.00 23426

8 Maria Patterson $30,000.00 31800

9 Daffy Dumbwit $50.00 53

❖ Note I’ve again used the common ROUND function found in most
commercial implementations and have specified rounding to zero dec-
imal places. Check your database system documentation for specific
details about rounding in your implementation.

 Sample Statements 559

Agents Table After Executing CH15_Give_Agents_6Percent_Raise (9 rows changed)

AgentID AgtFirstName AgtLastName Salary

1 William Thompson $37,100.00

2 Scott Bishop $28,620.00

3 Carol Viescas $31,800.00

4 Karen Smith $23,320.00

5 Marianne Wier $25,970.00

6 John Kennedy $34,980.00

7 Caleb Viescas $23,426.00

8 Maria Patterson $31,800.00

9 Daffy Dumbwit $53.00

“Correct the engagement contract price by multiplying the enter-
tainer daily rate by the number of days and adding a 15 percent
commission.”

Let’s restate that:

“Modify the engagements table by setting the contract price to
1.15 times the number of days for the contract times the entertainer
daily rate.”

Translation/
Clean Up

Update the engagements table by setting the contract
price equal to = 1.15 times * the (end date minus – the
start date plus + 1) and then times the * (selection of
the entertainer price per day from the entertainers table
where the entertainers table entertainer ID is equal to =
the engagements table entertainer ID

SQL UPDATE Engagements

SET Engagements.ContractPrice =

 ROUND(1.15 * (EndDate - StartDate + 1) *

 (SELECT EntPricePerDay

 FROM Entertainers

 WHERE Entertainers.EntertainerID =

 Engagements.EntertainerID), 0)

560 Chapter 15 Updating Sets of Data

 ❖ Note This query solution assumes your database system allows
you to subtract one date from another to obtain the number of days
between the two dates. Consult your database documentation for
details.

I add 1 to the difference to obtain the actual number of days because
the entertainment occurs on both the first and the last days of the
engagement. It’s clear you need to do this for an engagement that is
booked for only one day. The start and end days are the same, so the
difference is zero, but the engagement played for exactly one day.

Microsoft Access uses “banker’s rounding” on fractions equal to
exactly 0.5, so the result is rounded to the nearest even number. For
example, 3.5 rounds to 4, and 2.5 rounds to 2. This can make some
results different by one dollar.

Entertainer Prices per Day

EntertainerID EntStageName EntPricePerDay

1001 Carol Peacock Trio $175.00

1002 Topazz $120.00

1003 JV & the Deep Six $275.00

1004 Jim Glynn $60.00

1005 Jazz Persuasion $125.00

1006 Modern Dance $250.00

1007 Coldwater Cattle Company $275.00

1008 Country Feeling $280.00

1009 Katherine Ehrlich $145.00

1010 Saturday Revue $250.00

1011 Julia Schnebly $90.00

1012 Susan McLain $75.00

1013 Caroline Coie Cuartet $250.00

❖ Note This query solution assumes your database system allows
you to subtract one date from another to obtain the number of days
between the two dates. Consult your database documentation for
details.

I add 1 to the difference to obtain the actual number of days because
the entertainment occurs on both the first and the last days of the
engagement. It’s clear you need to do this for an engagement that is
booked for only one day. The start and end days are the same, so the
difference is zero, but the engagement played for exactly one day.

Microsoft Access uses “banker’s rounding” on fractions equal to
exactly 0.5, so the result is rounded to the nearest even number. For
example, 3.5 rounds to 4, and 2.5 rounds to 2. This can make some
results different by one dollar.

 Sample Statements 561

Engagements Table Before Executing the UPDATE Query – CH15_Calculate_
Entertainment_ContractPrice_Query (111 rows)

Engagement
Number

ContractPrice NewContractPrice EntertainerID

2 $200.00 345 1004

3 $590.00 863 1005

4 $470.00 483 1004

5 $1,130.00 1265 1003

6 $2,300.00 1610 1008

7 $770.00 1104 1002

8 $1,850.00 2530 1007

9 $1,370.00 3163 1010

10 $3,650.00 3163 1003

<< more rows here >>

Engagements Table After Executing CH15_Calculate_Entertainment_ContractPrice
(111 rows changed)

EngagementNumber Contract
Price

EntertainerID

2 $345.00 1004

3 $862.00 1005

4 $483.00 1004

5 $1,265.00 1003

6 $1,610.00 1008

7 $1,104.00 1002

8 $2,530.00 1007

9 $3,162.00 1010

10 $3,162.00 1003

<< more rows here >>

562 Chapter 15 Updating Sets of Data

 ❖ Note The original contract price values in the Engagements table
are simply random values within a reasonable range that I chose
when I created the original sample data. This update query clearly
corrects each value to a more reasonable charge based on each enter-
tainer’s daily rate.

School Scheduling Database

“For all students in ZIP Codes 98270 and 98271, change the area code
to 360.”

Restated, the problem is as follows:

“Change the students table by setting the area code to 360 for all stu-
dents who live in ZIP Codes 98270 and 98271.”

Translation/
Clean Up

Update the students table by setting the area code equal
to = ‘360’ where the student zip code is in the list (‘98270’,
and ‘98271’)

SQL UPDATE Students

SET Students.StudAreaCode = '360'

WHERE Students.StudZipCode IN ('98270', '98271')

Students Table Before Executing the UPDATE Query CH15_Fix_Student_
AreaCode_Query (2 rows)

Student
ID

Stud
FirstName

Stud
LastName

Stud
ZipCode

Stud
AreaCode

NewStud
AreaCode

1007 Elizabeth Hallmark 98271 253 360

1017 George Chavez 98270 206 360

Students Table After Executing CH15_Fix_Student_AreaCode (2 rows changed)

StudentID StudFirstName StudLastName StudZipCode StudAreaCode

1001 Kerry Patterson 78284 210

1007 Elizabeth Hallmark 98271 360

1008 Sara Sheskey 97208 503

<< more rows here >>

❖ Note The original contract price values in the Engagements table
are simply random values within a reasonable range that I chose
when I created the original sample data. This update query clearly
corrects each value to a more reasonable charge based on each enter-
tainer’s daily rate.

 Sample Statements 563

StudentID StudFirstName StudLastName StudZipCode StudAreaCode

1016 Steve Pundt 75204 972

1017 George Chavez 98270 360

1018 Richard Lum 98115 206

1019 Daffy Dumbwit 98002 425

“Recalculate the grade point average for all students based on classes
completed.”

Restated, the request looks like this:

“Modify the students table by setting the grade point average to the
sum of the credits times the grade divided by the sum of the credits.”

Translation/
Clean Up

Update the students table by setting the student GPA
equal to = the (selection of the sum of (credits times *
grade) divided by / the sum of (credits) from the classes
table inner joined with the student schedules table on
classes.class ID in the classes table matches = student_
schedules.class ID in the student schedules table where
the class status is = complete 2 and the student sched-
ules table student ID is equal to = the students table
student ID)

SQL UPDATE Students SET Students.StudGPA =

 (SELECT ROUND (SUM(Classes.Credits *

 Student_Schedules.Grade) /

 SUM(Classes.Credits), 3)

 FROM Classes

 INNER JOIN Student_Schedules

 ON Classes.ClassID = Student_
 Schedules.ClassID

 WHERE (Student_Schedules.ClassStatus = 2)

 AND (Student_Schedules.StudentID =

 Students.StudentID))

564 Chapter 15 Updating Sets of Data

Students Table Before Executing the UPDATE Query – CH15_Update_Student_
GPA_Query (19 rows)

StudentID StudFirstName StudLastName StudGPA NewStudGPA

1001 Kerry Patterson 74.465 81.075

1002 David Hamilton 78.755 80.09

1003 Betsy Stadick 85.235 80.31

1004 Janice Galvin 81 85.042

1005 Doris Hartwig 72.225 85.135

1006 Scott Bishop 88.5 77.512

1007 Elizabeth Hallmark 87.65 72.098

1008 Sara Sheskey 84.625 85.695

<< more rows here >>

Students Table After Executing the CH15_Update_Student_GPA Query (19 rows changed)

StudentID StudFirstName StudLastName StudGPA

1001 Kerry Patterson 81.075

1002 David Hamilton 80.09

1003 Betsy Stadick 80.31

1004 Janice Galvin 85.042

1005 Doris Hartwig 85.135

1006 Scott Bishop 77.512

1007 Elizabeth Hallmark 72.098

1008 Sara Sheskey 85.695

<< more rows here >>

 ❖ Note Because Microsoft Access does not support using subqueries
with aggregate functions, you’ll find this query solved as a series of
calls to built-in functions using a predefined view on the Student_
Schedules and Classes tables. Also, if you use the SQL shown above,
you will get a Null result for the last student who hasn’t registered for

❖ Note Because Microsoft Access does not support using subqueries
with aggregate functions, you’ll find this query solved as a series of
calls to built-in functions using a predefined view on the Student_
Schedules and Classes tables. Also, if you use the SQL shown above,
you will get a Null result for the last student who hasn’t registered for

 Sample Statements 565

any classes. In all four sample databases, I avoid the Null and substi-
tute a 0 value using functions available in each database system. In
Chapter 19, “Condition Testing,” I’ll show you how to avoid this prob-
lem using CASE.

Bowling League Database

“Calculate and update the total pins, games bowled, current average,
and current handicap for all bowlers.”

 ❖ Note You calculated the handicap using a SELECT query in the
“Problems for You to Solve” section of Chapter 13, “Grouping Data.” For
a hint, see the CH13_Bowler_Average_Handicap query in the Bowling
League sample database. Remember that the handicap is 90 percent
of 200 minus the bowler’s average.

Let’s restate the problem like this:

“Modify the bowlers table by calculating the total pins, games bowled,
current average, and current handicap from the bowler scores table.”

Translation/
Clean Up

Update the bowlers table by setting the total pins equal
to = the (selection of the sum of the (raw score) from the
bowler scores table where the bowler scores table bowler
ID is equal to = the bowlers table bowler ID), and the
games bowled equal to = the (selection of the count of
the (raw score) from the bowler scores table where the
bowler scores table bowler ID is equal to = the bowlers
table bowler ID), and the current average equal to =
the (selection of the average avg of the (raw score) from the
bowler scores table where the bowler scores table bowler ID
is equal to = the bowlers table bowler ID), and the current
handicap equal to = the (selection of 0.9 times * (200 minus
– the average avg of the (raw score)) from the bowler scores
table where the bowler scores table bowler ID is equal to =
the bowlers table bowler ID)

any classes. In all four sample databases, I avoid the Null and substi-
tute a 0 value using functions available in each database system. In
Chapter 19, “Condition Testing,” I’ll show you how to avoid this prob-
lem using CASE.

❖ Note You calculated the handicap using a SELECT query in the
“Problems for You to Solve” section of Chapter 13, “Grouping Data.” For
a hint, see the CH13_Bowler_Average_Handicap query in the Bowling
League sample database. Remember that the handicap is 90 percent
of 200 minus the bowler’s average.

566 Chapter 15 Updating Sets of Data

SQL UPDATE Bowlers SET Bowlers.BowlerTotalPins =

 (SELECT SUM(RawScore)

 FROM Bowler_Scores

 WHERE Bowler_Scores.BowlerID =

 Bowlers.BowlerID),

 Bowlers.BowlerGamesBowled =

 (SELECT COUNT(Bowler_Scores.RawScore)

 FROM Bowler_Scores

 WHERE Bowler_Scores.BowlerID =

 Bowlers.BowlerID),

 Bowlers.BowlerCurrentAverage =

 (SELECT ROUND(AVG(Bowler_Scores.RawScore), 0)

 FROM Bowler_Scores

 WHERE Bowler_Scores.BowlerID =

 Bowlers.BowlerID),

 Bowlers.BowlerCurrentHcp =

 (SELECT ROUND(0.9 *

 (200 - ROUND(AVG(Bowler_Scores.RawScore),

 0)), 0)

 FROM Bowler_Scores

 WHERE Bowler_Scores.BowlerID =

 Bowlers.BowlerID)

Bowlers Table Before Executing the UPDATE Query – CH15_Calc_Bowler_Pins_
Avg_Hcp_Query (34 rows)

Bowler
ID

Bowler
Total
Pins

New
Bowler
Total
Pins

Bowler
Games
Bowled

New
Bowler
Games
Bowled

Bowler
Current
Average

New
Bowler
Current
Average

Bowler
Current
Hcp

New
Bowler
Current
Hcp

1 5790 6242 39 42 148 149 47 46

2 6152 6581 39 42 158 157 38 39

3 6435 6956 39 42 165 166 32 31

4 5534 5963 39 42 142 142 52 52

5 5819 6269 39 42 149 149 46 46

6 6150 6654 39 42 158 158 38 38

 Sample Statements 567

Bowler
ID

Bowler
Total
Pins

New
Bowler
Total
Pins

Bowler
Games
Bowled

New
Bowler
Games
Bowled

Bowler
Current
Average

New
Bowler
Current
Average

Bowler
Current
Hcp

New
Bowler
Current
Hcp

7 6607 7042 39 42 169 168 28 29

8 5558 5983 39 42 143 142 51 52

9 5874 6319 39 42 151 150 44 45

10 6184 6702 39 42 159 160 37 36

<< more rows here >>

Bowlers Table After Executing CH15_Calc_Bowler_Pins_Avg_Hcp (34 rows changed)

BowlerID <<other
columns>>

Bowler
TotalPins

Bowler
GamesBowled

Bowler
CurrentAverage

Bowler
CurrentHcp

1 … 6242 42 149 46

2 … 6581 42 157 39

3 … 6956 42 166 31

4 … 5963 42 142 52

5 … 6269 42 149 46

6 … 6654 42 158 38

7 … 7042 42 168 29

8 … 5983 42 142 52

9 … 6319 42 150 45

10 … 6702 42 160 36

<< more rows here >>

 ❖ Note Because Microsoft Access does not support using subqueries
with aggregate functions, you’ll find this query solved as a series of
calls to built-in functions. Also, if you use the SQL shown above, you
will get a Null result for the last two bowlers who haven’t bowled any
games. In all four sample databases, I avoid the Null and substitute
a 0 value using functions available in each database system. In
Chapter 19, I’ll show you how to avoid this problem using CASE.

❖ Note Because Microsoft Access does not support using subqueries
with aggregate functions, you’ll find this query solved as a series of
calls to built-in functions. Also, if you use the SQL shown above, you
will get a Null result for the last two bowlers who haven’t bowled any
games. In all four sample databases, I avoid the Null and substitute r
a 0 value using functions available in each database system. In
Chapter 19, I’ll show you how to avoid this problem using CASE.

568 Chapter 15 Updating Sets of Data

“Change the tournament location to ‘Oasis Lanes’ for all tournaments
originally scheduled at ‘Sports World Lanes.’”

Restated, the problem is as follows:

“Modify the tournaments table by changing the tournament location
to ‘Oasis Lanes’ for all tournaments originally scheduled at ‘Sports
World Lanes.’”

Translation/
Clean Up

Update the tournaments table by setting the tourney
location equal to = ‘Oasis Lanes’ where the original tour-
ney location is equal to = ‘Sports World Lanes’

SQL UPDATE Tournaments

SET TourneyLocation = 'Oasis Lanes'

WHERE TourneyLocation = 'Sports World Lanes'

Tournaments Table Before Executing the UPDATE Query – CH15_Change_
Tourney_Location_Query (3 rows)

TourneyID TourneyLocation NewTourneyLocation

5 Sports World Lanes Oasis Lanes

12 Sports World Lanes Oasis Lanes

18 Sports World Lanes Oasis Lanes

Tournaments Table After Executing CH15_Change_Tourney_Location
(3 rows changed)

TourneyID TourneyDate TourneyLocation

<< more rows here >>

5 2017-10-02 Oasis Lanes

<< more rows here >>

12 2017-11-20 Oasis Lanes

<< more rows here >>

18 2018-08-02 Oasis Lanes

19 2018-08-09 Imperial Lanes

20 2018-08-16 Totem Lanes

 Problems for You to Solve 569

Summary

I started the chapter with a brief discussion about the UPDATE state-
ment used to change data in tables rather than to fetch data. I intro-
duced the syntax of the UPDATE statement and explained a simple
example to update one column in all the rows in a table using an
expression.

Next, I showed an example of how to use the WHERE clause to filter the
rows you are updating. I also showed you how to construct a SELECT
query first to verify that you’ll be updating the correct rows, and
I showed you how to map the clauses in your SELECT query into the
UPDATE statement you need. Next, I explained the importance of trans-
actions and how you can use them to protect against errors or to ensure
that either all changes or no changes are made to your tables. I contin-
ued my discussion by showing you how to update multiple columns in a
table with a single UPDATE query.

Then I entered the realm of using subqueries in your UPDATE queries.
I explained how to use a subquery to create a more complex filter in your
WHERE clause. Finally, I showed you how to use a subquery to generate
a new value to assign to a column in your SET clause. The rest of the
chapter provided examples of how to build UPDATE queries.

The following section presents several problems that you can work out
on your own.

Problems for You to Solve

Below, I show you the request statement and the name of the solution
query in the sample databases. If you want some practice, you can work
out the SQL you need for each request and then check your answer with
the query I saved in the samples. Don’t worry if your syntax doesn’t
exactly match the syntax of the queries I saved—as long as your result is
the same.

570 Chapter 15 Updating Sets of Data

Sales Orders Database

 1. “Apply a 5 percent discount to all orders for customers who
 purchased more than $50,000 in the month of October 2017.”

(Hint: You need a subquery within a subquery to fetch the order
numbers for all orders where the customer ID of the order is
in the set of customers who ordered more than $50,000 in the
month of October.)

You can find the solution in CH15_Give_Discount_To_Good_
October_Customers (639 rows changed). Be sure to run CH15_
Update_Order_Totals_Subquery to correct the totals in the
Orders table after executing this query.

 2. “Set the retail price of accessories (category = 1) to the wholesale
price of the highest-priced vendor plus 35 percent.”

(Hint: See CH15_Adjust_Bike_Retail_Price in the Sample State-
ments for the technique.)

You can find the solution in CH15_Adjust_Accessory_Retail_Price
(11 rows changed).

Entertainment Agency Database

 1. “Apply a 2 percent discount to all engagements for customers who
booked more than $3,000 worth of business in the month of October
2017.”

(Hint: Use an aggregate subquery to find those customers with
engagements in October HAVING total bookings greater than
$3,000.)

You can find the solution in CH15_Discount_Good_Customers_
October (34 rows changed).

 2. “Add 0.5 percent to the commission rate of agents who have sold
more than $20,000 in engagements.”

(Hint: Use an aggregate subquery to find those agents HAVING
total bookings greater than $20,000.)

You can find the solution in CH15_Reward_Good_Agents (3 rows
changed).

 Problems for You to Solve 571

School Scheduling Database

 1. “Increase the salary of full-time tenured staff by 5 percent.”

(Hint: Use a subquery in the WHERE clause to find matching
staff IDs in the faculty table that have a status of full-time and
a tenured field value of true, that is, 1 or –1, depending on your
database system.)

You can find the solution in CH15_Give_FullTime_Tenured_Raise
(21 rows changed).

 2. “For all staff in zip codes 98270 and 98271, change the area code
to 360.”

You can find the solution in CH15_Fix_Staff_AreaCode (2 rows
changed).

Bowling League Database

 1. “Change the name of the ‘Huckleberrys’ bowling team to ‘Manta
Rays.’”

You can find the solution in CH15_Change_Huckleberry_Name
(1 row changed).

 2. “Update the city and state for all bowlers by looking up the names
by ZIP Code.”

(Hint: Use a subquery to fetch the matching city name and
another subquery to fetch the matching state from the WAZips
table.)

You can find the solution in CH15_Update_Bowler_City_State
(6 rows changed).

This page intentionally left blank

 573

16
Inserting Sets of Data

“I was brought up to believe that the only thing worth
doing was to add to the sum of accurate information in the world.”

—MARGARET MEADE

Topics Covered in This Chapter

What Is an INSERT?

The INSERT Statement

Uses for INSERT

Sample Statements

Summary

Problems for You to Solve

To this point, you have learned how to fetch information from your
tables in creative ways. In the previous chapter, you learned how to mod-
ify existing data by using the UPDATE statement. But how do you put
data into your tables to begin with? The data certainly doesn’t appear
magically on its own! You’ll learn the answer in this chapter—how to use
the INSERT statement to add rows into your tables.

What Is an INSERT?

Most commercial database systems come with one or more graphical
interface programs that let you work with data displayed on your screen.
For example, you can open any table in Microsoft Office Access by sim-
ply finding the table object and opening it. Access displays the data in
something it calls a datasheet that looks like a grid with columns and

574 Chapter 16 Inserting Sets of Data

rows. You scroll to the end of the display to find a blank row, type data
into the columns on that row, and then move to another row to insert a
new row in your table. You can also use Access to work with tables in
Microsoft SQL Server in the same manner. You can do something sim-
ilar using the MySQL query browser, and Microsoft’s SQL Server, IBM’s
DB2, and Oracle Corporation’s Oracle database provide equivalent tools.
Also, you can purchase graphical design tools for PostgreSQL from
third-party providers such as SQL Maestro.

But what’s really happening when you type in new data and tell the
system to save it? The graphical interface tools actually execute a com-
mand using SQL to add the data you just entered to your table. The SQL
statement that these programs use is INSERT. If you browse through
the sample files, you can find scripts that I generated to load the
data into the sample databases. For example, the first few lines of the
01 EntertainmentAgencyData.SQL file look like this:

USE EntertainmentAgencyExample;
INSERT INTO Customers
 (CustomerID, CustFirstName, CustLastName, CustStreetAddress,
 CustCity, CustState, CustZipCode, CustPhoneNumber)
 VALUES (10001, 'Doris', 'Hartwig', '4726 - 11th Ave. N.E. ',
 'Seattle' 'WA', '98105', '555-2671');
INSERT INTO Customers
 (CustomerID, CustFirstName, CustLastName, CustStreetAddress,
 CustCity, CustState, CustZipCode, CustPhoneNumber)
 VALUES (10002, 'Deb', 'Waldal', '908 W. Capital Way',
 'Tacoma', 'WA', '98413', '555-2496');

The first command (USE) tells the database system which database
to use for the following commands. Each INSERT statement tells
the database system to add exactly one row to a specific table. This
might seem like a tedious process to load thousands of records into
a sample database, but you’ll find that each script to load data actu-
ally runs in just a few seconds. For some of the simpler tables, I used
the graphical user interface to directly type in the data. To generate
data for other sample tables, I wrote some application code to create
and execute the INSERT statements. If you’re familiar with Microsoft
Office Access and Visual Basic, you can find code to generate sam-
ple data in the zfrmSellProducts form in the Sales Orders sample
database.

 The INSERT Statement 575

If you write any applications—whether for desktop systems or for the
Web—you’ll create code to generate and execute the appropriate INSERT
statement when your user enters new data. Most of the time, you’ll use
the INSERT . . . VALUES version to add the data. In this chapter, you’ll
also learn about a second form of the INSERT statement that makes it
easy to copy data from one table to another.

 ❖ Note You can find all the sample statements and solutions
in the “modify” version of the respective sample databases—
SalesOrdersModify, EntertainmentAgencyModify, SchoolScheduling-
Modify, and BowlingLeagueModify.

The INSERT Statement

SQL has two main versions of the INSERT statement. In the first version,
you include the VALUES keyword and list the values that you want your
database system to add as a single new row in a specified target table. The
second version lets you use a SELECT clause to fetch data from a table to
insert into your target table. Let’s take a look at the VALUES version first.

Inserting Values

Although SQL is primarily designed to work with sets of data, much of
the time you’ll use INSERT to add a single row of data to one of your
tables. The simplest way to add one row to a table is to use the INSERT
statement with the VALUES clause. Figure 16-1 shows the diagram for
this statement.

INSERT Statement: Values

VALUES Value Expression
DEFAULT
NULL ,

INSERT INTO table_name
column_name

,

Figure 16-1 The syntax diagram of the INSERT statement using the
VALUES clause

❖ Note You can find all the sample statements and solutions
in the “modify” version of the respective sample databases—
SalesOrdersModify, EntertainmentAgencyModify, SchoolScheduling-
Modify, and BowlingLeagueModify.

576 Chapter 16 Inserting Sets of Data

As you can see, you begin the statement with the INSERT INTO key-
words. Next, specify the name of the table where you want to add the
row. If you’re going to supply values for all the columns in the sequence
in which those columns are defined in the table, you can omit the
 column name list. (For example, I could have omitted specifying the
 column name list in the INSERT statements I use to load the sample
data because I’m supplying a value for every column.) However, even
when you plan to supply values for all columns, I recommend that
you include the list of columns for which you intend to specify a data
value. If you don’t do that, your query will break if someone later adds a
 column to the table definition or changes the sequence of columns in the
table. You specify the column name list by entering a left parenthesis,
the column names separated by commas if you specify more than one,
and a closing right parenthesis.

 ❖ Note The SQL Standard indicates that table_name can also be a
view name, but the view must be “updatable and insertable.” Many
database systems support inserting rows into views, and each data-
base system has its own rules about what constitutes an updatable or
insertable view.

In most cases, a view isn’t insertable if you use the DISTINCT keyword
or if one of the output columns is the result of an expression or an
aggregate function. Some database systems also support defining the
view using JOIN and ON keywords in place of table_name. Consult
your database system documentation for details. In this chapter, I’ll
exclusively use a single table as the target for each INSERT statement.

Finally, specify the VALUES keyword, a left parenthesis, a list of value
expressions separated by commas, and a closing right parenthesis. Note
that you must specify each value in the same sequence that you specified
them in the column name list. That is, the first value expression supplies
the value for the first column in the list, the second value expression for
the second column in the list, and so on. If you’re including values for
all columns and did not include the column name list, your values must
be in the same sequence as the columns in the table definition. If you
want your database system to use the default value defined for a column,
use the DEFAULT keyword. (But you’ll get an error if no default value is
defined.) To supply the Null value, use the NULL keyword. (But you’ll get
an error if the column is defined to not allow Null values.)

❖ Note The SQL Standard indicates that table_name can also be a
view name, but the view must be “updatable and insertable.” Many
database systems support inserting rows into views, and each data-
base system has its own rules about what constitutes an updatable or
insertable view.

In most cases, a view isn’t insertable if you use the DISTINCT keyword
or if one of the output columns is the result of an expression or an
aggregate function. Some database systems also support defining the
view using JOIN and ON keywords in place of table_name. Consult
your database system documentation for details. In this chapter, I’ll
exclusively use a single table as the target for each INSERT statement.

 The INSERT Statement 577

Remember from earlier chapters that a value expression can be quite
complex and can even include a subquery to fetch a single value from
the target table or another table. For review, Figure 16-2 shows the
diagram of a value expression.

Value Expression

+, -Date / Time

Expression

Types
Valid

Operators

Character ||

Numeric +, -, *, /

Interval +, -, *, / # Scalar value only

+
-

+
-
*
/
||

Value Expression

Literal Value

Column Reference

Function

(Value Expression)

CASE Expression

(SELECT Expression)#

Figure 16-2 Use a value expression, whose syntax is shown here, in a
 VALUES clause to specify the value of each column in your target table

 ❖ Note Not all database systems allow you to use a SELECT
expression or a CASE expression in the VALUES clause of an INSERT
statement. Check your database documentation for details.

Let’s look at how to add one row to the Employees table in the Sales
Orders sample database. As with all queries, you should know the struc-
ture of the table. Figure 16-3 shows the design of the Employees table.

EMPLOYEES
EmployeeID PK
EmpFirstName
EmpLastName
EmpStreetAddress
EmpCity
EmpState
EmpZipCode

EmpPhoneNumber
EmpAreaCode

Figure 16-3 The Employees table in the Sales Orders sample database

Now let’s formulate a request.

❖ Note Not all database systems allow you to use a SELECT
expression or a CASE expression in the VALUES clause of an INSERT
statement. Check your database documentation for details.

578 Chapter 16 Inserting Sets of Data

 ❖ Note Throughout this chapter, I use the “Request/Translation/
Clean Up/SQL” technique introduced in Chapter 4, “Creating a
Simple Query.”

“Add new employee Susan Metters at 16547 NE 132nd St, Woodinville,
WA 98072, with area code 425 and phone number 555-7825.”

You typically won’t list the columns you need in your original request,
but keep them in mind as you go to the Translation step. Here’s how you
might translate the request to add a new employee row:

Translation Insert into the employees table in the columns first name,
last name, street address, city, state, ZIP Code, area code,
and phone number the values Susan, Metters, 16547 NE
132nd St, Woodinville, WA, 98072, 425, and 555-7825

Clean Up Insert into the employees table in the columns (first name,
last name, street address, city, state, ZIP Code, area code,
and phone number) the values (‘Susan’, ‘Metters’, ‘16547 NE
132nd St’, ‘Woodinville’, ‘WA’, ‘98072’, 425, and ‘555-7825’)

SQL INSERT INTO Employees

 (EmpFirstName, EmpLastName,

 EmpStreetAddress, EmpCity, EmpState,

 EmpZipCode, EmpAreaCode, EmpPhoneNumber)

VALUES ('Susan', 'Metters',

 '16547 NE 132nd St', 'Woodinville', 'WA',

 '98072', 425, '555-7825')

You can find this query saved as CH16_Add_Employee in the modify
 version of the Sales Orders sample database.

Are you wondering why I didn’t include the primary key (EmployeeID) of
the Employees table? If so, read on!

Generating the Next Primary Key Value

In the example query in the previous section, I didn’t include the pri-
mary key—EmployeeID. In all database systems, the primary key must
have a value. Won’t this query fail?

❖ Note Throughout this chapter, I use the “Request/Translation/
Clean Up/SQL” technique introduced in Chapter 4, “Creating a
Simple Query.”

 The INSERT Statement 579

The answer is no, but only because I took advantage of a special fea-
ture that you’ll find in nearly all commercial database implementa-
tions. When you’re not concerned about the value of the primary key in
a table—except that the value must be unique—you can usually define
the primary key using a special data type that the database system will
increment for you every time you insert a new row. In Microsoft Access,
use the data type called AutoNumber. (The data type is actually an inte-
ger with special attributes.) In Microsoft SQL Server and IBM DB2, use
the Identity data type (also an integer), and in PostgreSQL, use the serial
data type (also an integer). For MySQL, use an integer with the special
AUTO_INCREMENT attribute. The SQL syntax used in my example
works in all three types of sample databases because I used this special
feature for the primary key fields in nearly all the sample tables in the
modify versions.

The Oracle database system is a bit different. Rather than provide a spe-
cial data type, Oracle lets you define a Sequence pseudo-column, and
you reference the NEXTVAL property of the pseudo-column every time
you need a unique value for a new row. In Oracle, let’s assume you pre-
viously defined a pseudo-column called EmpID. You can write your SQL
like this:

SQL INSERT INTO Employees (EmployeeID, EmpFirstName,

 EmpLastName, EmpStreetAddress, EmpCity,

 EmpState, EmpZipCode, EmpAreaCode,

 EmpPhoneNumber)

VALUES (EmpID.NEXTVAL, 'Susan', 'Metters',

 '16547 NE 132nd St', 'Woodinville', 'WA',

 '98072', 425, '555-7825')

Note that I’m now providing a value for each column in the table in the
sequence that the columns are defined in the table definition. I could
eliminate the optional column name list and write the SQL like this:

SQL INSERT INTO Employees

VALUES (EmpID.NEXTVAL, 'Susan', 'Metters',

 '16547 NE 132nd St', 'Woodinville', 'WA',

 '98072', 425, '555-7825')

580 Chapter 16 Inserting Sets of Data

As noted earlier, I don’t recommend that you omit the column name list
because your query will fail if your database administrator adds a col-
umn or changes the sequence of the column definitions. I present this
option only for completeness.

If you really have your thinking cap on, you might wonder whether you
could just as easily generate the next value by using a subquery expres-
sion. The SQL standard certainly supports this, and your SQL might
look like this:

SQL INSERT INTO Employees (EmployeeID, EmpFirstName,

 EmpLastName, EmpStreetAddress, EmpCity,

 EmpState, EmpZipCode, EmpAreaCode,

 EmpPhoneNumber)

VALUES ((SELECT MAX(EmployeeID)

 FROM Employees) + 1, 'Susan', 'Metters',

 '16547 NE 132nd St', 'Woodinville', 'WA',

 '98072', 425, '555-7825')

Unfortunately, several of the major database systems do not yet support
a subquery in a VALUES clause. Check your database documentation for
details.

 ❖ Note If you want to insert a value into an IDENTITY column in
Microsoft SQL Server, you must first execute this command:

SET IDENTITY_INSERT <table_name> ON;

Be sure to set the option to OFF after you have finished the INSERT.

When you insert your own values into an auto-increment column in
Microsoft Access, Microsoft SQL Server, or MySQL, those database
systems automatically update the “next” value when appropriate; how-
ever, PostgreSQL does not. After you insert rows providing your own
number for a SERIAL column in PostgreSQL, you must reset the last
value like this:

SELECT setval('tablename_serialcolname_seq', <number>)

In this command, tablename is the name of your table, serialcolname
is the name of the SERIAL column in that table, and <number> is
the last value you supplied.

❖ Note If you want to insert a value into an IDENTITY column in
Microsoft SQL Server, you must first execute this command:

SET IDENTITY_INSERT <table_name> ON;

Be sure to set the option to OFF after you have finished the INSERT.

When you insert your own values into an auto-increment column in
Microsoft Access, Microsoft SQL Server, or MySQL, those database
systems automatically update the “next” value when appropriate; how-
ever, PostgreSQL does not. After you insert rows providing your own
number for a SERIAL column in PostgreSQL, you must reset the last
value like this:

SELECT setval('tablename_serialcolname_seq', <number>)

In this command, tablename is the name of your table, serialcolname
is the name of the SERIAL column in that table, and <number> is
the last value you supplied.

 The INSERT Statement 581

Inserting Data by Using SELECT

Because I’ve focused so far on inserting only a single row at a time,
you’re probably wondering why I named this chapter “Inserting Sets
of Data.” In one sense, values for multiple columns in one row is a set
of data, but you probably think of a set as consisting of multiple rows.
Never fear—you can also insert a set of rows by using a SELECT
expression in place of the VALUES clause. Because a SELECT expres-
sion fetches rows from one or more tables, you can think of an INSERT
statement with SELECT as a powerful way to copy data. Figure 16-4
shows the syntax diagram for an INSERT statement using a SELECT
expression.

INSERT Statement: SELECT

INSERT INTO table_name
column_name

,

SELECT Expression

Figure 16-4 The syntax diagram of the INSERT statement using a
SELECT expression

Notice that this variant of the INSERT statement begins in the same
way. Following the INSERT INTO keywords, specify the name of the table
that is the target of this insert. If your SELECT expression returns the
same number of columns and in the same order as in your target table,
you can omit the optional column name list. But as I recommended
 earlier, even when you plan to supply values for all columns, I recom-
mend that you include the list of columns for which you intend to spec-
ify a data value. If you don’t do that, your query will break if someone
later adds a column to the table definition or changes the sequence of
 columns in the table.

If you examine the SQL diagrams in Appendix A, “SQL Standard Dia-
grams,” you’ll find that a SELECT expression is simply a SELECT state-
ment that is optionally combined with additional SELECT statements
using the UNION, INTERSECT, or EXCEPT operations. (See Chapter 7,

582 Chapter 16 Inserting Sets of Data

“Thinking in Sets,” for an explanation of these three operations and
Chapter 10, “UNIONs,” for a detailed description of UNION.) Figure 16-5
shows the syntax diagram for a SELECT statement.

SELECT

table_name.*

Value Expression

correlation_name.*
,

SELECT Statement

HAVING Search Condition

WHERE Search Condition

Column Reference
,

GROUP BY

DISTINCT

*
alias

AS

Table Reference
,

FROM

Figure 16-5 The syntax diagram of a SELECT statement

You might recall from earlier chapters that a table reference can be a
single table name, a list of tables separated by commas, or a complex
JOIN of two or more tables. A search condition can be a simple compar-
ison of a column to a value; a more complex test using BETWEEN, IN,
LIKE, or NULL; or a very complex predicate using subqueries. In short,
you have all the power of SELECT queries that you’ve learned about in
earlier chapters at your disposal to specify the set of rows that you want
to copy to a table.

Let’s dig in and work through some examples that you can solve using
INSERT with a SELECT expression. Here’s a simple request that requires
copying the data from a row in one table into another table:

“We just hired customer David Smith. Copy to the Employees table all
the details for David Smith from the Customers table.”

As when building any query, you need to be familiar with the structure
of the tables involved. Figure 16-6 shows the design of the two tables.

 The INSERT Statement 583

CUSTOMERS
CustomerID PK
CustFirstName
CustLastName
CustStreetAddress
CustCity
CustState
CustZipCode

CustPhoneNumber
CustAreaCode

EMPLOYEES
EmployeeID PK
EmpFirstName
EmpLastName
EmpStreetAddress
EmpCity
EmpState
EmpZipCode

EmpPhoneNumber
EmpAreaCode

Figure 16-6 The Customers and Employees tables in the Sales Orders
sample database

Let’s restate the request so that it’s easier to translate into an INSERT query:

“Copy to the Employees table the relevant columns in the Customers
table for customer David Smith.”

Translation Insert into the employees table in the columns first name,
last name, street address, city, state, ZIP code, area code, and
phone number the selection of the first name, last name, street
address, city, state, ZIP code, area code, and phone number col-
umns from the customers table where the customer first name is
‘David’ and the customer last name is ‘Smith’

Clean Up Insert into the employees table in the columns (first name, last
name, street address, city, state, ZIP code, area code, and phone
number) the (selection of the first name, last name, street address,
city, state, ZIP code, area code, and phone number columns from
the customers table where the customer first name is = ‘David’
and the customer last name is = ‘Smith’)

SQL INSERT INTO Employees

 (EmpFirstName, EmpLastName, EmpStreetAddress,

 EmpCity, EmpState, EmpZipCode,

 EmpAreaCode, EmpPhoneNumber)

 SELECT Customers.CustFirstName,

 Customers.CustLastName,

 Customers.CustStreetAddress,

 Customers.CustCity,

 Customers.CustState, Customers.CustZipCode,

 Customers.CustAreaCode,

 Customers.CustPhoneNumber

584 Chapter 16 Inserting Sets of Data

 FROM Customers

 WHERE (Customers.CustFirstName = ‘David’)

 AND (Customers.CustLastName = ‘Smith’)

Notice that I did not include the EmployeeID column because I’m depending
on the database system to generate the next unique value for the new row(s)
being inserted. You can find this query saved as CH16_Copy_Customer_To_
Employee in the modified version of the Sales Orders sample database.

Because there’s only one customer named David Smith, this query cop-
ies exactly one row to the Employees table. This still isn’t a set of rows,
but you can see how easy it is to use a SELECT expression to fetch the
values you need to insert when they’re available in another table.

Let’s move on to a problem that could potentially insert hundreds of rows.
In every active database application that collects new information over
time, you might want to design a feature that allows the user to archive
or copy to a backup table all transactions that occurred at some point in
the past. The idea is that you don’t want old historical data slowing down
the processing of new data by making your application wade through
thousands of rows that represent transactions that occurred long ago.

So, you might want to write an INSERT statement that copies transactions
that happened earlier than a specific date into a table reserved for historical
data. (In the next chapter, I’ll show you how to delete the copied or archived
transactions from the active table.) A typical request might look like this:

“Archive all engagements earlier than January 1, 2018.”

In this particular case, both the Engagements table and the Engagements_
Archive table have the same design, as shown in Figure 16-7.

ENGAGEMENTS

EngagementNumber PK
StartDate
EndDate
StartTime
StopTime
ContractPrice
CustomerID FK
AgentID FK
EntertainerID FK

ENGAGEMENTS_ARCHIVE

EngagementNumber PK
StartDate
EndDate
StartTime
StopTime
ContractPrice
CustomerID
AgentID
EntertainerID

Figure 16-7 The Engagements and Engagements_Archive tables
in the Entertainment Agency sample database

 The INSERT Statement 585

This is one case where you can safely leave out the column name list.
The translation is very easy, and it looks like this:

Translation Insert into the engagements archive table the selection
of all columns from the engagements table where the
 engagement end date is earlier than January 1, 2018

Clean Up Insert into the engagements archive table the selection
of all columns * from the engagements table where the
engagement end date is earlier than < January 1, 2018
‘2018-01-01’

SQL INSERT INTO Engagements_Archive

 SELECT Engagements.*

 FROM Engagements

 WHERE Engagements.EndDate

 < '2018-01-01'

That’s almost too easy, right? But remember that I recommended that
you always explicitly list the column names. If you do that, your query
will still run even if someone adds a new column to either table or
changes the sequence of the columns. It’s a bit more effort, but I recom-
mend writing your SQL for this problem to look like this:

SQL INSERT INTO Engagements_Archive

 (EngagementNumber, StartDate, EndDate,

 StartTime, StopTime, ContractPrice,

 CustomerID, AgentID, EntertainerID)

 SELECT Engagements.EngagementNumber,

 Engagements.StartDate, Engagements.EndDate,

 Engagements.StartTime, Engagements.StopTime,

 Engagements.ContractPrice,

 Engagements.CustomerID,

 Engagements.AgentID,

Engagements.EntertainerID FROM Engagements

 WHERE Engagements.EndDate < '2018-01-01'

You’ll find this query saved as CH16_Archive_Engagements in the
 modify version of the Entertainment Agency sample database.

586 Chapter 16 Inserting Sets of Data

Now let’s look at a creative way to use a SELECT expression. Consider
the following request:

“Add a new product named ‘Hot Dog Spinner’ with a retail price of
$895 in the Bikes category.”

You can see the tables you need in Figure 16-8.

PRODUCTS
ProductNumber PK
ProductName
ProductDescription
RetailPrice
QuantityOnHand
CategoryID FK

CATEGORIES
CategoryID PK
CategoryDescription

Figure 16-8 The Products table and the related Categories table in the
Sales Orders database

Your target table is clearly the Products table, but that table requires a
numeric value in the CategoryID field. The request says “in the Bikes cat-
egory,” so how do you suppose you can find the related CategoryID that
you need for the Products table? Use a SELECT expression! You want to
supply values also for the ProductName and RetailPrice columns, but
remember that a SELECT statement can include literal values for some
or all output columns. So you can fetch the related category ID from the
Categories table and supply the other values you intend to insert as literal
values. Let’s restate the request and then solve it. (You can find this query
saved as CH16_Add_Product in the sample Sales Orders Modify database.)

“Add a row to the products table using the values ‘Hot Dog Spinner’ for
the product name, $895 for the retail price, and the category ID from
the categories table for the category ‘Bikes.’”

Translation Insert into the products table in the columns product
name, retail price, and category ID the selection of ‘Hot Dog
Spinner’ as the product name, 895 as the retail price, and
category ID from the categories table where the category
description is equal to ‘Bikes’

Clean Up Insert into the products table in the columns (product
name, retail price, and category ID) the selection of ‘Hot Dog
Spinner’ as the product name, 895 as the retail price, and
category ID from the categories table where the category
description is equal to = ‘Bikes’

 Uses for INSERT 587

SQL INSERT INTO Products

 (ProductName, RetailPrice, CategoryID)

SELECT 'Hot Dog Spinner' AS ProductName,

 895 AS RetailPrice, CategoryID

FROM Categories

WHERE CategoryDescription = 'Bikes'

You might think using a SELECT expression is useful only for copying
entire rows, but as you have just seen, it’s also useful to fetch one or
more discrete values from a table that can supply the values you need.
You’ll find some interesting applications of this technique in the “Sample
Statements” section later in this chapter.

Uses for INSERT

At this point, you should have a good understanding of how to insert
one or more rows in a table using either a simple VALUES clause or a
SELECT expression. The best way to give you an idea of the wide range
of uses for the INSERT statement is to list some problems you can solve
with this statement and then present a set of examples in the “Sample
Statements” section. Here’s just a small list of the types of problems you
can solve with INSERT:

“Create a new bowler record for Matthew Patterson by copying the
record for Neil Patterson.”

“In the Entertainment database, create a new customer record for
 Kendra Hernandez at 457 211th St NE, Bothell, WA 98200, with a
phone number of 555-3945.”

“In the Sales Order database, create a new customer record for Mary
Baker at 7834 W 32nd Ct, Bothell, WA 98011, with area code 425 and
phone number 555-9876.”

“Create a new subject category called ‘Italian’ with a subject code of
‘ITA’ in the Humanities department.”

“Add a new team called the ‘Aardvarks’ with no captain assigned.”

“Add a new engagement for customer Matt Berg booking entertainer
Jazz Persuasion from 7 PM to 11 PM on August 15 and 16, 2018, that
was booked by agent Karen Smith.”

588 Chapter 16 Inserting Sets of Data

“Add a new vendor named Hot Dog Bikes at 1234 Main Street,
 Chicago, IL 60620, with phone number (773) 555-6543, fax number
(773) 555-6542, website address http://www.hotdogbikes.com/, and
e-mail address Sales@hotdogbikes.com.”

“Add a new class for subject ID 4 (Intermediate Accounting) to be
taught in classroom 3315 for five credits starting on January 16, 2018,
at 3:00 PM for 80 minutes on Tuesdays and Thursdays.”

“Archive the tournament, tourney match, match game, and bowler
scores for all matches played in 2017.”

“Add ‘New Age’ to the list of musical styles.”

“Archive all orders and order details for orders placed before
 January 1, 2018.”

“Angel Kennedy wants to register as a student. Her husband is
already enrolled. Create a new student record for Angel using the infor-
mation from John’s record.”

“Duplicate all the tournaments and tourney matches played in 2017 for
the same week in 2019.”

“Agent Marianne Wier would like to book some entertainers, so cre-
ate a new customer record by copying relevant fields from the agents
table.”

“Customer Liz Keyser wants to order again the products ordered on
December 11, 2017. Use June 12, 2018, as the order date and June 15,
2018, as the shipped date.”

“Staff member Tim Smith wants to enroll as a student. Create a new
student record from Tim’s staff record.”

“Customer Doris Hartwig would like to rebook the entertainers she
hired to play on December 1, 2017, for August 1, 2018.”

“Customer Angel Kennedy wants to order again all the products
ordered during the month of November 2017. Use June 15, 2018, as the
order date and June 18, 2018, as the shipped date.”

Sample Statements

You now know the mechanics of constructing INSERT queries. Let’s look
at a set of samples, all of which request that one or more rows be added
to a table. These examples come from four of the sample databases.

http://www.hotdogbikes.com/
mailto:Sales@hotdogbikes.com

 Sample Statements 589

 ❖ Caution Because the sample queries you’ll find in the modified
versions of the sample databases change your data, be aware that
some of the queries will work as expected only once. For example,
after you run an INSERT query to archive orders using a WHERE
clause to find the rows you want to copy, subsequent attempts to
archive the data again will fail because you will be inserting duplicate
Primary Key values in the archive tables. Consider restoring the
databases from the sample scripts or a backup copy if you want to
work through the problems again.

I’ve also included a view of the data that the sample INSERT state-
ment should add to the target table and a count of the number of rows
that should be added. The name that appears immediately before the
count of rows inserted is the name I gave each query in the sample data
on the companion website for the book. Also, I created a companion
SELECT query (stored as a View in MySQL and Microsoft SQL Server) for
each INSERT query that you can use to see exactly what will be added.
The name of the companion query is the name of the original query
with _Query appended to the name. I stored each query in the appropri-
ate sample database (as indicated within the example) and prefixed the
names of the queries relevant to this chapter with “CH16.” You can find the
 sample data on the companion website for this book, www.informit.com/
title/9780134858333. You can follow the instructions in the Introduction
of this book to load the samples onto your computer and try them.

 ❖ Note Remember that all the column names and table names used
in these examples are drawn from the sample database structures
shown in Appendix B, “Schema for the Sample Databases.” To simplify
the process, I have combined the Translation and Clean Up steps for
all the examples. These samples assume you have thoroughly studied
and understood the concepts covered in previous chapters.

Sales Orders Database

“Add a new vendor named Hot Dog Bikes at 1234 Main Street,
Chicago, IL 60620, with phone number (773) 555-6543, fax number
(773) 555-6542, Web site address http://www.hotdogbikes.com/, and
e-mail address Sales@hotdogbikes.com.”

❖ Caution Because the sample queries you’ll find in the modified
versions of the sample databases change your data, be aware that
some of the queries will work as expected only once. For example,
after you run an INSERT query to archive orders using a WHERE
clause to find the rows you want to copy, subsequent attempts to
archive the data again will fail because you will be inserting duplicate
Primary Key values in the archive tables. Consider restoring the
databases from the sample scripts or a backup copy if you want to
work through the problems again.

❖ Note Remember that all the column names and table names used
in these examples are drawn from the sample database structures
shown in Appendix B, “Schema for the Sample Databases.” To simplify
the process, I have combined the Translation and Clean Up steps for
all the examples. These samples assume you have thoroughly studied
and understood the concepts covered in previous chapters.

http://www.informit.com/title/9780134858333
http://www.informit.com/title/9780134858333
http://www.hotdogbikes.com/
mailto:Sales@hotdogbikes.com

590 Chapter 16 Inserting Sets of Data

Translation/
Clean Up

Insert into the vendors table in the columns (VendName,
VendStreetAddress, VendCity, VendState, VendZipCode,
VendPhoneNumber, VendFaxNumber, VendWebPage,
and VendEMailAddress) the values (‘Hot Dog Bikes’, ‘1234
Main Street’, ‘Chicago’, ‘IL’, ‘60620’, ‘(773) 555-6543’, ‘(773)
555-6542’, ‘http://www.hotdogbikes.com/’, and ‘Sales@
hotdogbikes.com’)

SQL INSERT INTO Vendors

 (VendName, VendStreetAddress, VendCity,

 VendState, VendZipCode, VendPhoneNumber,

 VendFaxNumber, VendWebPage,

 VendEMailAddress)

VALUES ('Hot Dog Bikes', '1234 Main Street',

 'Chicago', 'IL', '60620', '(773) 555-6543',

 '(773) 555-6542', 'http://www.hotdogbikes.com/',

 'Sales@hotdogbikes.com')

Row Inserted into the Vendors Table by CH16_Add_Vendor (1 row added)

Vend
Name

Vend
Street
Address

Vend
City

Vend
State

Vend
ZipCode

Vend
Phone
Number

Vend
Fax
Number

Vend
Web
Page

Vend
EMail
Address

Hot
Dog
Bikes

1234
Main
Street

Chicago IL 60620 (773)
555-6543

(773)
555-6542

http://www
.hotdogbikes
.com/

Sales@
hotdog-
bikes.com

“Archive all orders and order details for orders placed before
 January 1, 2018.”

 ❖ Note To archive all the information about an order, you need to
copy data from both the Orders and the Order_Details tables, so you
need two queries. Be sure to run the INSERT query for the orders first
because rows in the Orders_Details_Archive table have foreign keys
in the OrderID column that point to the same column in the Orders_
Archive table.

If your system supports transactions (see the discussion in
 Chapter 15, “Updating Sets of Data”), you can start a transaction,
run the query to copy orders followed by the query to copy order

❖ Note To archive all the information about an order, you need to
copy data from both the Orders and the Order_Details tables, so you
need two queries. Be sure to run the INSERT query for the orders first
because rows in the Orders_Details_Archive table have foreign keys
in the OrderID column that point to the same column in the Orders_
Archive table.

If your system supports transactions (see the discussion in
Chapter 15, “Updating Sets of Data”), you can start a transaction,
run the query to copy orders followed by the query to copy order

http://www.hotdogbikes.com/�
mailto:$$$�Sales@hotdogbikes.com�
mailto:$$$�Sales@hotdogbikes.com�
http://www.hotdogbikes.com/Sales@
http://www.hotdogbikes.com/Sales@
http://www.hotdogbikes.com/Sales@
http://www.hotdogbikes.com/Sales@
http://hotdog-bikes.com
http://hotdog-bikes.com

 Sample Statements 591

details, and then commit both INSERT actions if both ran with no
errors. If the second query causes an error, you can roll back the
transaction, which will ensure that none of the orders rows are cop-
ied. There’s no point in copying only half the information about orders.

Because you’re archiving rows by date, the query to archive order
details must use a subquery filter for all order ID values that appear
in the Orders table before the specified date.

Translation 1/
Clean Up

Insert into the orders archive table the selection of order
number, order date, ship date, customer ID, employee ID,
and order total from the orders table where the order date
is earlier than < ‘2018-01-01’

SQL INSERT INTO Orders_Archive

 SELECT OrderNumber, OrderDate, ShipDate,

 CustomerID, EmployeeID, OrderTotal

 FROM Orders

 WHERE OrderDate < '2018-01-01'

Rows Inserted into the Orders_Archive Table by CH16_Archive_2017_Orders
(594 rows added)

Order
Number

OrderDate ShipDate CustomerID EmployeeID OrderTotal

1 2017-09-02 2017-09-05 1018 707 $12,751.85

2 2017-09-02 2017-09-04 1001 703 $816.00

3 2017-09-02 2017-09-05 1002 707 $11,912.45

4 2017-09-02 2017-09-04 1009 703 $6,601.73

5 2017-09-02 2017-09-02 1024 708 $5,544.75

6 2017-09-02 2017-09-06 1014 702 $9,820.29

7 2017-09-02 2017-09-05 1001 708 $467.85

8 2017-09-02 2017-09-02 1003 703 $1,492.60

9 2017-09-02 2017-09-05 1007 708 $69.00

10 2017-09-02 2017-09-05 1012 701 $2,607.00

<< more rows here >>

details, and then commit both INSERT actions if both ran with no
errors. If the second query causes an error, you can roll back the
transaction, which will ensure that none of the orders rows are cop-
ied. There’s no point in copying only half the information about orders.

Because you’re archiving rows by date, the query to archive order
details must use a subquery filter for all order ID values that appear
in the Orders table before the specified date.

592 Chapter 16 Inserting Sets of Data

Translation 2/
Clean Up

Insert into the order details archive table the selection of
order number, product number, quoted price, and quantity
ordered from the order details table where the order num-
ber is in the (selection of the order number from the orders
table where the order date is earlier than < ‘2018-01-01’)

SQL INSERT INTO Order_Details_Archive

 SELECT OrderNumber, ProductNumber,

 QuotedPrice, QuantityOrdered

FROM Order_Details

WHERE Order_Details.OrderNumber IN

 (SELECT OrderNumber

 FROM Orders

 WHERE Orders.OrderDate < '2018-01-01')

Rows Inserted into the Order_Details_Archive Table by CH16_Archive_2017_
Order_Details (2499 rows added)

OrderNumber ProductNumber QuotedPrice QuantityOrdered

1 1 $1,200.00 2

1 6 $635.00 3

1 11 $1,650.00 4

1 16 $28.00 1

1 21 $55.00 3

1 26 $121.25 5

1 40 $174.60 6

2 27 $24.00 4

2 40 $180.00 4

3 1 $1,164.00 5

<< more rows here >>

 ❖ Note Neither query follows my recommendation to always include
the column name list, but I wrote these two queries this way to show
you examples where the column name list is not absolutely required.

❖ Note Neither query follows my recommendation to always include
the column name list, but I wrote these two queries this way to show
you examples where the column name list is not absolutely required.

 Sample Statements 593

Entertainment Agency Database

“Create a new customer record for Kendra Hernandez at 457 211th St
NE, Bothell, WA 98200, with a phone number of 555-3945.”

Translation/
Clean Up

Insert into the customers table in the columns (customer
first name, customer last name, customer street address,
customer city, customer state, customer ZIP Code, and
customer phone number) the values (‘Kendra’, ‘Hernandez’,
‘457 211th St NE’, ‘Bothell’, ‘WA’, ‘98200’, and ‘555-3945’)

SQL INSERT INTO Customers

 (CustFirstName, CustLastName,

 CustStreetAddress, CustCity, CustState,

 CustZipCode, CustPhoneNumber)

VALUES ('Kendra', 'Hernandez',

 '457 211th St NE', 'Bothell', 'WA',

 '98200', '555-3945')

Row Inserted into the Customers Table by CH16_Add_Customer (1 row added)

CustFirst
Name

CustLast
Name

CustStreet
Address

Cust
City

Cust
State

Cust
ZipCode

CustPhone
Number

Kendra Hernandez 457 211th St NE Bothell WA 98200 555-3945

“Add a new engagement for customer Matt Berg booking entertainer
Jazz Persuasion from 7 PM to 11 PM on August 15 and 16, 2018, which
was booked by agent Karen Smith.”

 ❖ Note If you look at the Engagements table, you’ll find that you need
the customer ID for Matt Berg from the Customers table, the enter-
tainer ID for Jazz Persuasion from the Entertainers table, and the
agent ID for Karen Smith from the Agents table. You can fetch these
values by using a SELECT expression.

Be careful that you include the three tables you need in the FROM
clause with no JOIN criteria. Also, don’t forget to calculate the con-
tract price by using the price per day from the Entertainers table with
a 15 percent markup. This technique works because there is only one
customer named Matt Berg, only one agent named Karen Smith, and
only one entertainment group called Jazz Persuasion. If there happens
to be more than one agent or customer with these names, you’ll get
more than one row inserted into the Engagements table.

❖ Note If you look at the Engagements table, you’ll find that you need
the customer ID for Matt Berg from the Customers table, the enter-
tainer ID for Jazz Persuasion from the Entertainers table, and the
agent ID for Karen Smith from the Agents table. You can fetch these
values by using a SELECT expression.

Be careful that you include the three tables you need in the FROM
clause with no JOIN criteria. Also, don’t forget to calculate the con-
tract price by using the price per day from the Entertainers table with
a 15 percent markup. This technique works because there is only one
customer named Matt Berg, only one agent named Karen Smith, and
only one entertainment group called Jazz Persuasion. If there happens
to be more than one agent or customer with these names, you’ll get
more than one row inserted into the Engagements table.

594 Chapter 16 Inserting Sets of Data

Translation/
Clean Up

Insert into the engagements table into the (customer ID,
entertainer ID, agent ID, start date, end date, start time,
end time, and contract price) columns the selection of cus-
tomer ID, entertainer ID, agent ID, and the values
August 15, 2018 ‘2018-08-15’, August 16, 2018 ‘2018-08-
16’, ‘07:00:00 p.m.’ ‘19:00:00’, ‘11:00:00 p.m.’ ‘23:00:00’,
and the (entertainer price per day times * 2 times * 1.15)
from the customers, entertainers, and agents tables where
the customer first name is = ‘Matt’ and the customer last
name is = ‘Berg’ and the entertainer stage name is = ‘Jazz
 Persuasion’ and the agent first name is = ‘Karen’ and the
agent last name is = ‘Smith’

SQL INSERT INTO Engagements

 (CustomerID, EntertainerID, AgentID,

 StartDate, EndDate,

 StartTime, StopTime,

 ContractPrice)

 SELECT Customers.CustomerID,

 Entertainers.EntertainerID, Agents.AgentID,

 '2018-08-15', '2018-08-16',

 '19:00:00', '23:00:00',

 ROUND(EntPricePerDay * 2 * 1.15, 0)

 FROM Customers, Entertainers, Agents

 WHERE (Customers.CustFirstName = 'Matt')

 AND (Customers.CustLastName = 'Berg')

 AND (Entertainers.EntStageName =

 'Jazz Persuasion')

 AND (Agents.AgtFirstName = 'Karen')

 AND (Agents.AgtLastName = 'Smith')

 ❖ Note You might have noticed that I used three tables with no JOIN
in the FROM clause. When you do this, you get all rows from the first
table combined with all rows from the second table and all rows from
the third table—something called a Cartesian product. It works in this
case because I am filtering out the specific customer, entertainer, and
agent combination that I want, getting one row from each table, which
results in one row returned by the SELECT. I’ll go into more detail
about using tables in this way in Chapter 20, “Using Unlinked Data
and ‘Driver’ Tables.”

❖ Note You might have noticed that I used three tables with no JOIN
in the FROM clause. When you do this, you get all rows from the first
table combined with all rows from the second table and all rows from
the third table—something called a Cartesian product. It works in this n
case because I am filtering out the specific customer, entertainer, and
agent combination that I want, getting one row from each table, which
results in one row returned by the SELECT. I’ll go into more detail
about using tables in this way in Chapter 20, “Using Unlinked Data
and ‘Driver’ Tables.”

 Sample Statements 595

Row Inserted into the Engagements Table by CH16_Add_Engagement (1 row added)

Customer
ID

Entertainer
ID

Agent
ID

Start
Date

End
Date

Start
Time

Stop
Time

Contract
Price

10006 1005 4 2018-08-15 2018-08-16 19:00:00 23:00:00 $288.00

School Scheduling Database

“Create a new subject category called ‘Italian’ with a subject code of
‘ITA’ in the Humanities department.”

 ❖ Note You need the department ID for the Humanities department,
so the solution requires a SELECT expression using the Departments
table.

Translation/
Clean Up

Insert into the categories table the selection of ‘ITA’ as
the category ID, ‘Italian’ as the category description,
and department ID from the departments table where
department name is = ‘Humanities’

SQL INSERT INTO Categories

 SELECT 'ITA' AS CategoryID,

 'Italian' AS CategoryDescription,

 Departments.DepartmentID

 FROM Departments

 WHERE Departments.DeptName = 'Humanities'

Row Inserted into the Categories Table by CH16_Add_Category (1 row added)

CategoryID CategoryDescription DepartmentID

ITA Italian 3

“Add a new class for subject ID 4 (Intermediate Accounting) to be
taught in classroom 3315 for five credits starting on January 16, 2018,
at 3:00 PM for 80 minutes on Tuesdays and Thursdays.”

 ❖ Note You can assume that the default value for all schedule days is
zero or false, so you need to include a true or 1 value only for Tuesday
and Thursday.

❖ Note You need the department ID for the Humanities department,
so the solution requires a SELECT expression using the Departments
table.

❖ Note You can assume that the default value for all schedule days is
zero or false, so you need to include a true or 1 value only for Tuesday
and Thursday.

596 Chapter 16 Inserting Sets of Data

Translation/
Clean Up

Insert into the classes table into the columns (subject ID,
classroom ID, credits, start date, start time, duration,
 Tuesday schedule, and Thursday schedule) the values
(4, 3315, 5, January 16, 2018 ‘2018-01-16’, 3 PM ‘15:00:00’,
80, 1, and 1)

SQL INSERT INTO Classes

 (SubjectID, ClassRoomID, Credits,

 StartDate, StartTime, Duration,

 TuesdaySchedule, ThursdaySchedule)

 VALUES (4, 3315, 5, '2018-01-16', '15:00:00',

 80, 1, 1)

Row Inserted into the Classes Table by CH16_Add_New_Accounting_Class (1 row added)

Subject
ID

ClassRoom
ID

Credits Start
Date

Start
Time

Duration Tuesday
Schedule

Thursday
Schedule

4 3315 5 2018-01-16 15:00:00 80 1 1

Bowling League Database

“Create a new bowler record for Matthew Patterson by copying the
record for Neil Patterson.”

 ❖ Note Be sure to set the total pins, games bowled, current average,
and current handicap columns to zero.

Translation/
Clean Up

Insert into the bowlers table into the columns (bowler last
name, bowler first name, bowler address, bowler city, bowler
state, bowler zip, bowler phone number, team ID, bowler
total pins, bowler games bowled, bowler current average,
and bowler current handicap) the selection of bowler last
name, the value ‘Matthew’, bowler address, bowler city,
bowler state, bowler zip, bowler phone number, team ID,
and the values 0, 0, 0, and 0 from the bowlers table where
the bowler last name is = ‘Patterson’ and the bowler first
name is = ‘Neil’

SQL INSERT INTO Bowlers

 (BowlerLastName, BowlerFirstName,

 BowlerAddress, BowlerCity,

❖ Note Be sure to set the total pins, games bowled, current average,
and current handicap columns to zero.

 Sample Statements 597

 BowlerState, BowlerZip,

 BowlerPhoneNumber, TeamID,

 BowlerTotalPins, BowlerGamesBowled,

 BowlerCurrentAverage, BowlerCurrentHcp)

 SELECT Bowlers.BowlerLastName, 'Matthew',

 Bowlers.BowlerAddress, Bowlers.BowlerCity,

 Bowlers.BowlerState, Bowlers.BowlerZip,

 Bowlers.BowlerPhoneNumber, Bowlers.TeamID,

 0, 0,

 0, 0

 FROM Bowlers

 WHERE (Bowlers.BowlerLastName = 'Patterson')

 AND (Bowlers.BowlerFirstName = 'Neil')

Row Inserted into the Bowlers Table by CH16_Add_Bowler (1 row added)

Bowler
LastName

Bowler
FirstName

Bowler
Address

Bowler
City

Bowler
State

Bowler
Zip

Patterson Matthew 16 Maple Auburn WA 98002

Bowler
PhoneNumber

TeamID Bowler
TotalPins

Bowler
GamesBowled

BowlerCurrent
Average

Bowler
CurrentHcp

(206) 555-3487 2 0 0 0 0

“Add a new team called the ‘Aardvarks’ with no captain assigned.”

Translation/
Clean Up

Insert into the teams table into the columns (team name,
and captain ID) the values (‘Aardvarks’, and Null)

SQL INSERT INTO Teams

 (TeamName, CaptainID)

VALUES ('Aardvarks', NULL)

Row Inserted into the Teams Table by CH16_Add_Team (1 row added)

TeamName CaptainID

Aardvarks NULL

598 Chapter 16 Inserting Sets of Data

Summary

I started the chapter with a brief discussion about the INSERT state-
ment used to add data in tables. I introduced the syntax of the INSERT
statement and explained a simple example of adding one row using a
values list.

Next, I discussed the features in most database systems that allow
you to generate the next unique value in a table to use as the primary
key value for new rows. I explained that Microsoft SQL Server provides
an Identity data type, Microsoft Access provides an AutoNumber
data type, and MySQL has an AUTO_INCREMENT attribute for this
 purpose. I briefly explained the use of the Sequence pseudo- column
in the Oracle database system. And finally, I explained how to use a
 subquery in a VALUES clause to obtain the previous maximum value
and add 1.

I explored using a SELECT expression in your INSERT statements
to copy one or more rows. First, I reviewed the syntax of the SELECT
expression. Next, I showed you how to copy one row from one table to
another. I explored copying multiple rows using an example to copy old
records to history archive tables. Finally, I showed you how a SELECT
expression is often useful for fetching one or more values from a related
table to create values to add to your table. The rest of the chapter pro-
vided examples of how to build UPDATE queries.

The following section presents several problems that you can work out
on your own.

Problems for You to Solve

Below, I show you the request statement and the name of the solution
query in the sample databases. If you want some practice, you can work
out the SQL you need for each request and then check your answer with
the query I saved in the samples. Don’t worry if your syntax doesn’t
exactly match the syntax of the queries I saved—as long as your result is
the same.

 Problems for You to Solve 599

Sales Orders Database

 1. “Customer Liz Keyser wants to order again the products ordered on
December 12, 2017. Use June 12, 2018, as the order date and June
15, 2018, as the shipped date.”

(Hint: You need to copy rows in both the Orders and Order_
Details tables, in that order. Assume that you can add 1000 to
the OrderID column value that you find for the December 12
order for Liz Keyser to generate the new order number. If you’re
working in Microsoft SQL Server, be sure to SET IDENTITY_
INSERT Orders ON for the insertion into the Orders table. And
if you’re working in PostgreSQL, be sure to use SetVal to set the
value of Orders_OrderNumber_seq after the INSERT.)

You can find the solution in CH16_Copy_Dec12_Order_For_Keyser
(1 row added) and CH16_Copy_Dec12_OrderDetails_For_Keyser
(4 rows added).

 ❖ Note Adding a fixed value to generate a new primary key value
isn’t recommended because you would have to determine in advance
how many numbers you could safely skip to get your query to work.
In truth, there are ways to avoid using system functions within each
database type that will return the “next” valid value for you to use.
However, that sort of programming is beyond the scope of a “Mere
Mortals” book. I tell you to add a safe fixed number to make it easy to
answer the problem question, but understand that this isn’t the best
way to do it.

 2. “Create a new customer record for Mary Baker at 7834 W 32nd
Ct., Bothell, WA, 98011, with area code 425 and phone number
555-9876.”

You can find the solution in CH16_Add_Sales_Customer (1 row
added).

 3. “Customer Angel Kennedy wants to order again all the products
ordered during the month of November 2017. Use June 15, 2018, as
the order date and June 18, 2018, as the shipped date.”

(Hint: You need to copy rows in both the Orders and Order_
Details tables. Assume that you can add 1000 to the OrderID
column value that you find for the November orders for Angel

❖ Note Adding a fixed value to generate a new primary key value
isn’t recommended because you would have to determine in advance
how many numbers you could safely skip to get your query to work.
In truth, there are ways to avoid using system functions within each
database type that will return the “next” valid value for you to use.
However, that sort of programming is beyond the scope of a “Mere “
Mortals” book. I tell you to add a safe fixed number to make it easy to ”
answer the problem question, but understand that this isn’t the best
way to do it.

600 Chapter 16 Inserting Sets of Data

Kennedy to generate the new order number. See the remind-
ers for problem #1 above if you’re working in Microsoft SQL
Server or PostgreSQL.)

You can find the solution in CH16_Copy_November_Orders_
For_AKennedy (6 rows added) and CH16_Copy_November_
OrderDetails_For_AKennedy (34 rows added).

Entertainment Agency Database

 1. “Agent Marianne Wier would like to book some entertainers, so
create a new customer record by copying relevant fields from the
Agents table.”

(Hint: Simply copy the relevant columns from the Agents table to
the Customers table.)

You can find the solution in CH16_Copy_Agent_To_Customer
(1 row added).

 2. “Add ‘New Age’ to the list of musical styles.”

You can find the solution in CH16_Add_Style (1 row added).

 3. “Customer Doris Hartwig would like to rebook the entertainers she
hired to play on December 2, 2017, for August 1, 2018.”

(Hint: Use a SELECT expression that joins the Customers and
Engagements tables, and provide the new engagement dates as
 literal values.)

You can find the solution in CH16_Duplicate_Engagement (1 row
added).

School Scheduling Database

 1. “Angel Kennedy wants to register as a student. Her husband, John,
is already enrolled. Create a new student record for Angel using the
information from John’s record.”

You can find the solution in CH16_Add_Student (1 row added).

 2. “Staff member Tim Smith wants to enroll as a student. Create a
new student record from Tim’s staff record.”

You can find the solution in CH16_Enroll_Staff (1 row added).

 Problems for You to Solve 601

Bowling League Database

 1. “Archive the tournament, tourney match, match game, and bowler
scores for all matches played in 2017.”

(Hint: You need to write four queries to archive rows in the
 Tournaments, Tourney_Matches, Match_Games, and Bowler_
Scores tables. You must copy Tournaments first, Tourney_
Matches second, Match_Games third, and finally Bowler_Scores
in order to honor referential integrity rules.)

You can find the solution in CH16_Archive_2017_Tournaments_1
(14 rows added), CH16_Archive_2017_Tournaments_2 (57 rows
added), CH16_Archive_2017_Tournaments_3 (168 rows added),
and CH16_Archive_2017_Tournaments_4 (1,344 rows added).

 2. “Duplicate all the tournaments and tourney matches played in 2017
for the same week in 2019.”

(Hint: Assume that you can add 25 to the TourneyID column
value for the 2017 tournaments to generate the new tourna-
ment ID. You’ll need to copy rows in both the Tournaments and
the Tourney_Matches tables. If you’re working in Microsoft SQL
Server, be sure to SET IDENTITY_INSERT Orders ON for the
insertion into the Tournaments table. And if you’re working in
PostgreSQL, be sure to use SetVal to set the value of Tourna-
ments_TournamentID_seq after the INSERT.)

Note also that you cannot simply add two years or 730 days to
the dates because the objective is to play the tournaments on the
same day of the week—52 weeks times 7 is 364, not 365. Also,
be sure you filter for the correct dates in both statements—you’ll
need a subquery in the second one. You can find the solution in
CH16_Copy_2017_Tournaments_1 (14 rows added) and CH16_
Copy_2017_ Tournaments_2 (57 rows added).

This page intentionally left blank

 603

17
Deleting Sets of Data

“I came to love my rows, my beans,
though so many more than I wanted.”

—HENRY DAVID THOREAU

Topics Covered in This Chapter

What Is a DELETE?

The DELETE Statement

Uses for DELETE

Sample Statements

Summary

Problems for You to Solve

Now you know how to change data by using an UPDATE statement.
You also have learned how to add data by using an INSERT statement.
But what about getting rid of unwanted data? For that, you need to use
what is arguably the simplest but also the most dangerous statement in
SQL—DELETE.

What Is a DELETE?

You learned in the previous chapter that adding data to your tables is
fairly straightforward. You can add one row at a time by using a VALUES
clause, or you can copy multiple rows by using a SELECT expression.
But what do you do if you added a row in error? How do you remove rows
you’ve copied to archive tables? How do you delete a customer who isn’t

604 Chapter 17 Deleting Sets of Data

sending you any orders? How do you remove a student who applied for
admission but then didn’t sign up for any classes? If you want to start
over with empty tables, how do you remove all the rows? The answer to
all these questions is this: Use a DELETE statement. Just like all the
other statements in SQL, a DELETE statement works with sets of rows.
As you’ll learn in this chapter, the simplest DELETE statement removes
all the rows from the table you specify. But most of the time you’ll want
to specify the subset of rows to delete. If you guessed that you add a
WHERE clause to do that, you’re absolutely correct.

 ❖ Note You can find all the sample statements and solutions in
the “modify” version of the respective sample databases—
SalesOrdersModify, EntertainmentAgencyModify,
SchoolSchedulingModify, and BowlingLeagueModify.

The DELETE Statement

The DELETE statement has only three keywords: DELETE, FROM, and
WHERE. You can see the diagram of the DELETE statement in Figure 17-1.

DELETE Statement

DELETE FROM table_name
Search ConditionWHERE

Figure 17-1 The syntax diagram of the DELETE statement

I said that the DELETE statement is perhaps the simplest statement in
SQL, and I wasn’t kidding! But it’s also the most dangerous statement
that you can execute. If you do not include a WHERE clause, the state-
ment removes all the rows in the table you specify. This can be useful
when you’re testing a new application, for example, so you can empty
all the rows from existing tables but keep the table structure. You might
also design an application that has working or temporary tables that
you load with data to perform a specific task. For example, it’s common
to use an INSERT statement to copy rows from a very complex SELECT
expression into a table that you subsequently use for several static

❖ Note You can find all the sample statements and solutions in
the “modify” version of the respective sample databases—
SalesOrdersModify, EntertainmentAgencyModify,
SchoolSchedulingModify, and BowlingLeagueModify.

 The DELETE Statement 605

reports. A DELETE statement with no WHERE clause is handy in this
case to clean out the old rows before running a new set of reports.

 ❖ Note The SQL Standard indicates that table_name can also be
a query (or view) name, but the table implied by the query name
must be “updatable.” Many database systems support deleting rows
from views, and each database system has its own rules about what
constitutes an updatable view. In most cases, a view isn’t updatable if
you use the DISTINCT keyword or if one of the output columns is the
result of an expression or an aggregate function.

Some database systems also support defining the view (a derived
table in SQL Standard terminology) using JOIN and ON keywords
in place of table_name. In systems that support using a derived
table, you must also specify which table in the JOIN is the target of
the delete immediately after the FROM keyword in the form table_
name.*. Consult your database system documentation for details. In
this chapter, I’ll exclusively use a single table as the target for each
DELETE statement.

Deleting All Rows

Deleting all rows is almost too easy. Let’s construct a DELETE statement
using the Bowlers table in the Bowling League sample database.

 ❖ Note Throughout this chapter, I use the “Request/Translation/
Clean Up/SQL” technique introduced in Chapter 4, “Creating a
Simple Query.”

“Delete all bowlers.”

Translation Delete all rows from the bowlers table

Clean Up Delete all rows from the bowlers table

SQL DELETE

FROM Bowlers

❖ Note The SQL Standard indicates that table_name can also be
a query (or view) name, but the table implied by the query name
must be “updatable.” Many database systems support deleting rows
from views, and each database system has its own rules about what
constitutes an updatable view. In most cases, a view isn’t updatable if
you use the DISTINCT keyword or if one of the output columns is the
result of an expression or an aggregate function.

Some database systems also support defining the view (a derived
table in SQL Standard terminology) using JOIN and ON keywords
in place of table_name. In systems that support using a derived
table, you must also specify which table in the JOIN is the target of
the delete immediately after the FROM keyword in the form table_
name.*. Consult your database system documentation for details. In
this chapter, I’ll exclusively use a single table as the target for each
DELETE statement.

❖ Note Throughout this chapter, I use the “Request/Translation/
Clean Up/SQL” technique introduced in Chapter 4, “Creating a
Simple Query.”

606 Chapter 17 Deleting Sets of Data

If you execute this statement in the sample database, will it actually
delete all rows? The answer is no, because I defined a constraint (a refer-
ential integrity rule as discussed in Chapter 2, “Ensuring Your Database
Structure Is Sound”) between the Bowlers table and the Bowler_Scores
table. If any rows exist for a particular bowler in the Bowler_Scores
table, your database system should not allow you to delete the row in the
Bowlers table for that bowler.

Two bowlers in the modified version of the Bowling League sample
database do not have any scores, so you should be able to delete those
records with this simple DELETE statement. Even if you really didn’t
mean to delete any rows at all, those two rows will be gone forever.
Well, maybe. First, many database systems maintain a log of changes
you make to tables. It is sometimes possible to recover lost data from
the system logs. Remember also my brief discussion about transactions
in Chapter 15, “Updating Sets of Data.” If you start a transaction (or the
system starts one for you), you can roll back any pending changes if you
encounter any errors.

You might also remember that I told you that Microsoft Office Access is
one database system that automatically starts a transaction for you
whenever you execute a query from the user program interface. If you try
to run this query in Microsoft Access, it will first prompt you with a warn-
ing about how many rows are about to be deleted. You can cancel the
delete at that point when you realize that the database is about to attempt
to delete all the rows in the table. If you let the system continue beyond
the first warning, you’ll receive the error dialog box shown in Figure 17-2.

Figure 17-2 Some database systems warn you if executing a DELETE statement
will cause errors

You can see that 32 of the 34 records in the table won’t be deleted
because of “key violations.” This is an obtuse way to tell you: “Hey,
dummy, you’ve still got rows in the Bowler_Scores table for some of these
bowlers you’re trying to delete.” Click No at this point, and the database
system will execute a ROLLBACK on your behalf—none of the rows will

 The DELETE Statement 607

be deleted. Click Yes, and the database system executes a COMMIT to
permanently delete the two rows for bowlers who have no scores.

In the “Sample Statements” section later in this chapter, I’ll show you
two ways to safely delete bowlers who haven’t bowled any games if that’s
what you really want to do.

Deleting Some Rows

Most of the time, you’ll want to limit the rows that you delete. You can
do that by adding a WHERE clause to specifically filter the rows to be
deleted. Your WHERE clause can be as simple or as complex as any
you’ve learned about for SELECT or UPDATE statements.

Using a Simple WHERE Clause

Let’s start with something simple. Suppose you want to delete in the
Sales Orders database any orders that have a zero order total. Your
request might look like this:

“Delete orders that have a zero order total.”

Translation Delete from the orders table where the order total is zero

Clean Up Delete from the orders table where the order total is = zero 0

SQL DELETE FROM Orders

WHERE OrderTotal = 0

The WHERE clause uses a simple comparison predicate to find only the
rows that have an order total equal to zero. If you execute this query in
the sample database, you’ll find that it deletes 11 rows. You can find this
query saved as CH17_Delete_Zero_OrdersA.

Safety First: Ensuring That You’re Deleting the Correct Rows

Even for simple DELETE queries, I strongly recommend that you verify
that you’ll be deleting the correct rows. How do you do that? As I men-
tioned, most of the time you’ll add a WHERE clause to select a subset of
rows to delete. Why not build a SELECT query first to return the rows
that you intend to remove?

“List all the columns from the Orders table for the orders that have a
zero order total.”

608 Chapter 17 Deleting Sets of Data

Translation Select all columns from the orders table where the order total
is zero

Clean Up Select all columns * from the orders table where the order
total is = zero 0

SQL SELECT * FROM Orders

WHERE OrderTotal = 0

If you run this query on the Sales Orders sample database, your result
should look like Figure 17-3.

OrderNumb OrderDate ShipDate CustomerID EmployeeID OrderTotal

198

216

305

361

484

523

629

632

689

753

816

1002

1016

1013

1016

1021

1003

1014

1001

1015

1013

1011

703

707

708

706

707

704

704

706

705

701

701

$0.00

$0.00

$0.00

$0.00

$0.00

$0.00

$0.00

$0.00

$0.00

$0.00

$0.00

2017-10-08

2017-10-12

2017-11-01

2017-11-12

2017-12-09

2017-12-15

2018-01-08

2018-01-08

2018-01-15

2018-01-28

2018-02-09

2017-10-10

2017-10-12

2017-11-05

2017-11-13

2017-12-10

2017-12-17

2018-01-12

2018-01-12

2018-01-16

2018-01-30

2018-02-12

Figure 17-3 Verifying the rows you want to delete

Note that I used the shortcut * character to indicate I wanted to see all
columns. If the result set shows all the rows you want to delete, you can
transform your SELECT statement into the correct DELETE statement
by simply replacing SELECT * with DELETE. Figure 17-4 shows how to
transform this SELECT statement into the correct DELETE syntax.

SELECT *
FROM Orders

WHERE OrderTotal = 0

DELETE
FROM Orders

WHERE OrderTotal = 0
Figure 17-4 Converting a verifying SELECT query into a DELETE statement

 The DELETE Statement 609

This conversion is so simple that it would be silly not to create the
SELECT statement first to make sure you’re deleting the rows you want.
Remember, unless you’ve protected your DELETE inside a transaction,
after you execute a DELETE statement, the rows are gone for good.

Using a Subquery

The query explained in the previous section to delete all orders that
have a zero order total seems simple enough. But keep in mind that the
Order Total column is a calculated value. (I showed you how to calcu-
late and set the total using an UPDATE query in Chapter 15.) What if
the user or the application failed to run the update after adding, chang-
ing, or deleting one or more order detail rows? Your simple query might
attempt to delete an order that still has rows in the Order_Details table,
and it might miss some orders that had all the order details removed but
didn’t have the total updated.

A safer way to ensure that you’re deleting orders that have no order
details is to use a subquery to check for matching rows in the Order_
Details table. Your request might look like this:

“Delete all orders that have no items ordered.”

Translation Delete the rows from the orders table where the order
number is not in the selection of the order number from
the order details table

Clean Up Delete the rows from the orders table where the order
number is not in the (selection of the order number from
the order details) table

SQL DELETE FROM Orders

WHERE OrderNumber NOT IN

 (SELECT OrderNumber

 FROM Order_Details)

That’s a bit more complex than the simple comparison for an order total
equal to zero, but it ensures that you delete only orders that have no
matching rows in the Order_Details table. You can find this query saved
as CH17_Delete_Zero_OrdersB in the sample database. This more com-
plex query might actually find and delete some rows that have a nonzero
order total that wasn’t correctly updated when the last order item was
deleted.

610 Chapter 17 Deleting Sets of Data

To construct the WHERE clause for DELETE queries, you’ll probably use
IN, NOT IN, EXISTS, or NOT EXISTS quite frequently. (Reread Chapter 11,
“Subqueries,” if you need a refresher.) Let’s look at one more example that
requires a complex WHERE clause to filter the rows to be deleted.

“Delete all orders and order details for orders placed before January 1,
2018, which have been copied to the archive tables.”

Remember that in Chapter 16, “Inserting Sets of Data,” I showed you
how to use INSERT to copy a set of old rows to one or more archive
tables. After you copy the rows, you can often make the processing in
the main part of your application more efficient by deleting the rows that
you have archived. As implied by the request, you need to delete rows
from two tables, so let’s break it down into two requests. You need to
delete from the Order_Details table first because a defined referential
integrity rule won’t let you delete rows in the Orders table if matching
rows exist in the Order_Details table.

“Delete all order details for orders placed before January 1, 2018,
which have been copied to the archive table.”

Do you see a potential danger here? One way to solve the problem would be
to simply delete rows from orders that were placed before January 1, 2018.

Translation Delete rows from the order details table where the order
 number is in the selection of the order number from the orders
table where the order date is earlier than January 1, 2018

Clean Up Delete rows from the order details table where the order
 number is in the (selection of the order number from the
orders table where the order date is earlier than < January 1,
2018 ‘2018-01-01’)

SQL DELETE FROM Order_Details

WHERE OrderNumber IN

 (SELECT OrderNumber

 FROM Orders

 WHERE OrderDate < '2018-01-01')

You can find this query saved as CH17_Delete_Archived_Order_Details_
Unsafe. What if someone else promised to run the INSERT query to
archive the rows but really didn’t? If you run this query, you’ll delete all
the order details for orders placed before January 1, 2018, regardless of

 Uses for DELETE 611

whether the rows actually exist in the archive table. A safer way is to
delete only the rows that you first verify are in the archive table. Let’s try
again.

Translation Delete rows from the order details table where the order
number is in the selection of order number from the
order details archive table

Clean Up Delete rows from the order details table where the order
number is in the (selection of order number from the
order details archive) table

SQL DELETE FROM Order_Details

WHERE OrderNumber IN

 (SELECT OrderNumber

 FROM Order_Details_Archive)

You can find this query saved as CH17_Delete_Archived_Order_Details_
OK. Notice that the query doesn’t care at all about the order date. How-
ever, it is much safer because it is deleting only the rows in the main
table that have a matching order number in the archive table. If you want
to be sure you’re deleting rows from orders that are before January 1,
2018, and that are already in the archive table, you can use both IN
predicates in your query combined with the AND Boolean operator.

Uses for DELETE

At this point, you should have a good understanding of how to delete one
or more rows in a table—either all the rows or a selection of rows deter-
mined by using a WHERE clause. The best way to give you an idea of the
wide range of uses for the DELETE statement is to list some problems
you can solve with this statement and then present a set of examples in
the “Sample Statements” section. Here’s just a small list of the types of
problems that you can solve with DELETE:

“Delete products that have never been ordered.”

“Delete all entertainers who have never been hired.”

“Delete bowlers who have not bowled any games.”

“Delete all students who are not registered for any class.”

“Delete any categories that have no products.”

612 Chapter 17 Deleting Sets of Data

“Delete customers who have never booked an entertainer.”

“Delete teams that have no bowlers assigned.”

“Delete all classes that have never had a student registered.”

“Delete customers who haven’t placed an order.”

“Delete musical styles that aren’t played by any entertainer.”

“Delete all bowling matches that have not been played.”

“Delete subjects that have no classes.”

“Delete all engagements that have been copied to the archive table.”

“Delete all the tournament data that has been copied to the archive
tables.”

“Delete vendors who do not provide any products.”

“Delete members who are not part of an entertainment group.”

“Delete employees who haven’t sold anything.”

Sample Statements

You now know the mechanics of constructing DELETE queries. Let’s
take a look at a set of samples, all of which request that one or more
rows be deleted from a table. These examples come from four of the sam-
ple databases.

 ❖ Caution Because the sample queries you’ll find in the modified
versions of the sample databases change your data, be aware that
some of the queries will work as expected only once. For example,
after you run a DELETE query to remove orders using a WHERE
clause to find the rows you want to copy, subsequent attempts to
delete the data again will fail because those rows were deleted the
first time you ran the query. Consider restoring the databases from
the sample scripts or a backup copy if you want to work through the
problems again.

I’ve also included a view of the data that the sample DELETE state-
ment should remove from the target table and a count of the number
of rows that should be deleted. The name that appears immediately
before the count of rows deleted is the name I gave each query in the
sample data on the companion website for the book, www.informit.com/

❖ Caution Because the sample queries you’ll find in the modified
versions of the sample databases change your data, be aware that
some of the queries will work as expected only once. For example,
after you run a DELETE query to remove orders using a WHERE
clause to find the rows you want to copy, subsequent attempts to
delete the data again will fail because those rows were deleted the
first time you ran the query. Consider restoring the databases from
the sample scripts or a backup copy if you want to work through the
problems again.

http://www.informit.com/

 Sample Statements 613

title/9780134858333. Also, I created a companion SELECT query
(stored as a View in MySQL and Microsoft SQL Server) for each DELETE
query that you can use to see exactly what will be deleted. The name
of the companion query is the name of the original query with _Query
appended to the name. I stored each query in the appropriate sample
database (as indicated within the example) and prefixed the names
of the queries relevant to this chapter with “CH17.” You can find the
 sample data on the companion website for this book, www.informit.com/
title/9780134858333. You can follow the instructions in the Introduction
of this book to load the samples onto your computer and try them.

 ❖ Note Remember that all the column names and table names used
in these examples are drawn from the sample database structures
shown in Appendix B, “Schema for the Sample Databases.” To simplify
the process, I have combined the Translation and Clean Up steps for
all the examples. These samples assume you have thoroughly studied
and understood the concepts covered in previous chapters.

Sales Orders Database

“Delete customers who haven’t placed an order.”

Translation/
Clean Up

Delete rows from the customers table where the customer
ID is not in the (selection of the customer ID from the
orders) table

SQL DELETE

FROM Customers

WHERE CustomerID NOT IN

 (SELECT CustomerID

 FROM Orders)

Row Deleted from the Customers Table by CH17_Delete_Customers_Never_Ordered
(1 row deleted)

Customer
ID

Cust
First
Name

Cust
Last
Name

Cust
Street
Address

Cust
City

Cust
State

Cust
Zip
Code

Cust
Area
Code

Cust
Phone
Number

1028 Jeffrey Tirekicker 15622 NE
42nd Ct

Redmond WA 98052 425 555-9999

❖ Note Remember that all the column names and table names used
in these examples are drawn from the sample database structures
shown in Appendix B, “Schema for the Sample Databases.” To simplify
the process, I have combined the Translation and Clean Up steps for
all the examples. These samples assume you have thoroughly studied
and understood the concepts covered in previous chapters.

http://www.informit.com/title/9780134858333
http://www.informit.com/title/9780134858333

614 Chapter 17 Deleting Sets of Data

 ❖ Note If you ran the CH16_Add_Customer query from the previous
chapter, you will see two rows deleted. The second row will be for
Kendra Hernandez.

“Delete vendors who do not provide any products.”

Translation/
Clean Up

Delete rows from the vendors table where the vendor ID
 is not in the (selection of vendor ID from the product
vendors) table

SQL DELETE

FROM Vendors

WHERE VendorID NOT IN

 (SELECT VendorID

 FROM Product_Vendors)

Row Deleted from the Vendors Table by CH17_Delete_Vendors_No_Products
(1 row deleted)

Vendor
ID

VendName VendStreet
Address

Vend
City

Vend
State

Vend
ZipCode

<<other
columns>>

11 Astro Paper-
Products

5639N.
Riverside

Chicago IL 60637 …

 ❖ Note If you executed the CH16_Add_Vendor query from the
 previous chapter, you will see two rows deleted. The second row will
be for Hot Dog Bikes.

Entertainment Agency Database

“Delete all entertainers who have never been hired.”

 ❖ Note Before you can delete any Entertainer row, you must
first delete any related rows from both Entertainer_Members and
Entertainer_Styles.

❖ Note If you ran the CH16_Add_Customer query from the previous
chapter, you will see two rows deleted. The second row will be for
Kendra Hernandez.

❖ Note If you executed the CH16_Add_Vendor query from the
previous chapter, you will see two rows deleted. The second row will
be for Hot Dog Bikes.

❖ Note Before you can delete any Entertainer row, you must
first delete any related rows from both Entertainer_Members and
Entertainer_Styles.

 Sample Statements 615

Translation 1/
Clean Up

Delete rows from the entertainer members table where
the entertainer ID is not in the (selection of entertainer
ID from the engagements) table

SQL DELETE

FROM Entertainer_Members

WHERE EntertainerID NOT IN

 (SELECT EntertainerID

 FROM Engagements)

Row Deleted from the Entertainer_Members Table by CH17_Delete_Entertainers_
Not_Booked1 (1 row deleted)

EntertainerID MemberID Status

1009 121 2

Translation 2/
Clean Up

Delete rows from the entertainer styles table where the
entertainer ID is not in the (selection of entertainer ID
from the engagements) table

SQL DELETE

FROM Entertainer_Styles

WHERE EntertainerID NOT IN

 (SELECT EntertainerID

 FROM Engagements)

Rows Deleted from the Entertainer_Styles Table by CH17_Delete_Entertainers_
Not_Booked2 (3 rows deleted)

EntertainerID StyleID

1009 7

1009 14

1009 21

Translation 3/
Clean Up

Delete rows from the entertainers table where the
 entertainer ID is not in the (selection of entertainer ID
from the engagements) table

616 Chapter 17 Deleting Sets of Data

SQL DELETE

FROM Entertainers

WHERE EntertainerID NOT IN

 (SELECT EntertainerID

 FROM Engagements)

Row Deleted from the Entertainers Table by CH17_Delete_Entertainers_Not_Booked3
(1 row deleted)

Entertainer
ID

EntStage
Name

Ent
SSN

EntStreet
Address

Ent
City

Ent
State

Ent
ZipCode

 <<other
columns>>

1009 Katherine
Ehrlich

888-61-
1103

777 Fenexet
Blvd

Woodin-
ville

WA 98072 …

“Delete all engagements that have been copied to the archive table.”

Translation/
Clean Up

Delete rows from the engagements table where the
engagement ID is in the (selection of engagement ID from
the engagements archive) table

SQL DELETE

FROM Engagements

WHERE EngagementID IN

 (SELECT EngagementID

 FROM Engagements_Archive)

 ❖ Note To find rows to delete, you must first run the CH16_Archive_
Engagements query to copy data to the archive table. The archive
table in the original sample database is empty.

Rows Deleted from the Engagements Table by CH17_Remove_Archived_Engagements
(56 rows deleted if you first run CH16_Archive_Engagements)

Engage-
ment
Number

Start
Date

End
Date

Start
Time

Stop
Time

Contract
Price

Customer
ID

Agent
ID

Enter-
tainer
ID

2 2017-09-02 2017-09-06 13:00 15:00 $200.00 10006 4 1004

3 2017-09-11 2017-09-16 13:00 15:00 $590.00 10001 3 1005

❖ Note To find rows to delete, you must first run the CH16_Archive_
Engagements query to copy data to the archive table. The archive
table in the original sample database is empty.

 Sample Statements 617

Engage-
ment
Number

Start
Date

End
Date

Start
Time

Stop
Time

Contract
Price

Customer
ID

Agent
ID

Enter-
tainer
ID

4 2017-09-12 2017-09-18 20:00 0:00 $470.00 10007 3 1004

5 2017-09-12 2017-09-15 16:00 19:00 $1,130.00 10006 5 1003

6 2017-09-11 2017-09-15 15:00 21:00 $2,300.00 10014 7 1008

<< more rows here >>

School Scheduling Database

“Delete all classes that have never had a student registered.”

 ❖ Note You need to delete the rows from the Faculty_Classes table
first and then delete from the Classes table because the database has
an integrity rule that won’t let you delete rows in the Classes table
when matching rows exist in the Faculty_Classes table.

Translation 1/
Clean Up

Delete from the faculty classes table where the class
ID is not in the (selection of class ID from the student
 schedules) table

SQL DELETE

FROM Faculty_Classes

WHERE ClassID NOT IN

 (SELECT ClassID

 FROM Student_Classes)

Rows Deleted from the Faculty_Classes Table by CH17_Delete_Classes_No_
Students_1 (113 rows deleted)

ClassID StaffID

1002 98036

1002 98036

1004 98019

1006 98045

1012 98030

❖ Note You need to delete the rows from the Faculty_Classes table
first and then delete from the Classes table because the database has
an integrity rule that won’t let you delete rows in the Classes table
when matching rows exist in the Faculty_Classes table.

618 Chapter 17 Deleting Sets of Data

ClassID StaffID

1031 98005

1183 98005

1184 98011

1196 98028

1560 98028

<< more rows here >>

Translation 2/
Clean Up

Delete from the classes table where the class ID is not in
the (selection of class ID from the student schedules) table

SQL DELETE

FROM Classes

WHERE ClassID NOT IN

 (SELECT ClassID

 FROM Student_Schedules)

Rows Deleted from the Classes Table by CH17_Delete_Classes_No_Students_2
(115 rows deleted)

Class
ID

Subject
ID

Classroom
ID

Credits Start
Date

Start
Time

Duration Monday
Schedule

<<other
columns>>

1002 12 1619 4 2017-09-11 15:30 110 Yes …

1004 13 1627 4 2017-09-11 8:00 50 Yes …

1006 13 1627 4 2017-09-11 9:00 110 Yes …

1012 14 1627 4 2017-10-11 13:00 110 No …

1031 16 1231 5 2017-09-11 14:00 50 Yes …

1183 38 3415 5 2017-09-11 13:00 50 Yes …

1184 38 3415 5 2017-09-11 14:00 50 Yes …

1196 39 3415 5 2017-09-11 15:00 50 Yes …

<< more rows here >>

Bowling League Database

“Delete bowlers who have not bowled any games.”

 Sample Statements 619

 ❖ Note You can solve this request by deleting bowlers whose number
of games bowled is zero or by deleting bowlers who have no rows in
the Bowler_Scores table. The second method is safer because it doesn’t
depend on the calculated value of the games bowled, but let’s solve it
both ways.

Translation 1/
Clean Up

Delete rows from the bowlers table where the bowler
games bowled is = zero 0

SQL DELETE

FROM Bowlers

WHERE BowlerGamesBowled = 0

Rows Deleted from the Bowlers Table by CH17_Delete_Bowlers_No_Games
(2 rows deleted)

Bowler
ID

Bowler
LastName

Bowler
FirstName

<<other
columns>>

Bowler
Games
Bowled

Bowler
Current
Average

Bowler
Current
Hcp

33 Patterson Kerry … 0 0 0

34 Patterson Maria … 0 0 0

Translation 2/
Clean Up

Delete rows from the bowlers table where the bowler ID is
not in the (selection of bowler ID from the bowler scores)
table

SQL DELETE

FROM Bowlers

WHERE BowlerID NOT IN

 (SELECT BowlerID

 FROM Bowler_Scores)

Rows Deleted from the Bowlers Table by CH17_Delete_Bowlers_No_Games_Safe
(2 rows deleted)

Bowler
ID

Bowler
LastName

Bowler
FirstName

<<other
columns>>

Bowler
Games
Bowled

Bowler
Current
Average

Bowler
Current
Hcp

33 Patterson Kerry … 0 0 0

34 Patterson Maria … 0 0 0

❖ Note You can solve this request by deleting bowlers whose number
of games bowled is zero or by deleting bowlers who have no rows in
the Bowler_Scores table. The second method is safer because it doesn’t
depend on the calculated value of the games bowled, but let’s solve it
both ways.

620 Chapter 17 Deleting Sets of Data

 ❖ Note If you ran the CH16_Add_Bowler query in the previous
 chapter, you should see three rows deleted in both queries. (Matthew
Patterson will be the third row.)

“Delete teams that have no bowlers assigned.”

Translation/
Clean Up

Delete from the teams table where the team ID is not in
the (selection of team ID from the bowlers) table

SQL DELETE

FROM Teams

WHERE TeamID NOT IN

 (SELECT TeamID

 FROM Bowlers)

Rows Deleted from the Bowlers Table by CH17_Delete_Teams_No_Bowlers (2 rows
deleted)

TeamID TeamName CaptainID

9 Huckleberrys 7

10 Never Show Ups 22

 ❖ Note If you ran the CH16_Add_Team query in the previous chapter,
you should see three rows deleted in both queries. (Aardvarks will be
the third row.)

Summary

I started the chapter with a brief discussion about the DELETE
 statement used to delete rows from tables. I introduced the syntax of
the DELETE statement and explained a simple example of deleting all
the rows in a table. I briefly reviewed transactions and showed you
how the Microsoft Access database system uses transactions to help
 protect you from mistakes.

❖ Note If you ran the CH16_Add_Bowler query in the previous
chapter, you should see three rows deleted in both queries. (Matthew
Patterson will be the third row.)

❖ Note If you ran the CH16_Add_Team query in the previous chapter,
you should see three rows deleted in both queries. (Aardvarks will be
the third row.)

 Problems for You to Solve 621

Next, I discussed using a WHERE clause to limit the rows you are delet-
ing. I explained how to use a SELECT statement to verify the rows you
plan to delete and how to convert the SELECT statement into a DELETE
statement. Finally, I extensively explored using subqueries to test for
rows to delete based on the existence or nonexistence of related rows in
other tables. The rest of the chapter provided examples of how to build
DELETE queries.

The following section presents several problems that you can work out
on your own.

Problems for You to Solve

Below, I show you the request statement and the name of the solution
query in the sample databases. If you want some practice, you can work
out the SQL you need for each request and then check your answer with
the query I saved in the samples. Don’t worry if your syntax doesn’t
exactly match the syntax of the queries I saved—as long as your result is
the same.

Sales Orders Database

 1. “Delete products that have never been ordered.”

(Hint: You need to delete from the Product_Vendors table first and
then from the Products table.)

You can find the solution in CH17_Delete_Products_Never_
Ordered_1 (4 rows deleted) and CH17_Delete_Products_Never_
Ordered_2 (2 rows deleted). Note that you will see three rows
deleted in the second query if you ran the CH16_Add_Product
query in the previous chapter.

 2. “Delete employees who haven’t sold anything.”

You can find the solution in CH17_Delete_Employees_No_Orders
(1 row deleted). Note that you will see two rows deleted if you
 executed the CH16_Add_Employee query from the previous
chapter.

 3. “Delete any categories that have no products.”

You can find the solution in CH17_Delete_Categories_No_Products
(1 row deleted).

622 Chapter 17 Deleting Sets of Data

Entertainment Agency Database

 1. “Delete customers who have never booked an entertainer.”

Caution: Before you can delete a customer, you must ensure no
rows exist in both the Engagements and the Musical_Preferences
table.

You can find the solutions in CH17_Delete_Customers_Never_
Booked1 (5 rows deleted) and CH17_Delete_Customers_Never_
Booked2 (2 rows deleted). Note that you will see three rows deleted
in the second query if you ran the CH16_Add_Customer query in
the previous chapter.

 2. “Delete musical styles that aren’t played by any entertainer.”

Caution: If you look for StyleID values that do not exist only in the
Entertainer_Styles table, the query will fail because some of the
selected styles also exist in the Musical_Preferences table.

You can find the solution in CH17_Delete_Styles_No_Entertainer
(5 rows deleted). You will see eight rows deleted if you executed
the CH16_Add_Style query in the previous chapter.

 3. “Delete members who are not part of an entertainment group.”

You can find the solution in CH17_Delete_Members_Not_In_Group
(0 rows deleted).

School Scheduling Database

 1. “Delete all students who are not registered for any class.”

You can find the solution in CH17_Delete_Students_No_Classes
(1 row deleted). You will see two rows deleted if you ran the CH16_
Add_Student query from the previous chapter.

 2. “Delete subjects that have no classes.”

(Hint: You need to delete rows from both the Faculty_Subjects and
the Subjects tables. In the second query, be sure that you don't
delete subjects that are a prerequisite for another subject that has
classes scheduled.)

You can find the solution in CH17_Delete_Subjects_No_
Classes_1 (64 rows deleted if you ran CH17_Delete_Classes_
No_Studentss_2 first; 8 rows deleted otherwise) and

 Problems for You to Solve 623

CH17_Delete_Subjects_No_Classes_2 (33 rows deleted if you
ran CH17_Delete_Classes_No_Students_2 first; 4 rows deleted
otherwise).

Bowling League Database

 1. “Delete all the tournament data that has been copied to the
archive tables.”

(Hint: You need to delete rows from the Bowler_Scores, Match_
Games, Tourney_Matches, and Tournaments tables. You should
find no rows to delete unless you have executed the four archive
queries from Chapter 16.)

You can find the solution in CH17_Delete_Archived_2017_
Tournaments_1 (1,344 rows deleted), CH17_Delete_
Archived_2017_Tournaments_2 (168 rows deleted),
CH17_Delete_Archived_2017_Tournaments_3 (57 rows
deleted), and CH17_Delete_Archived_2017_Tournaments_4
(14 rows deleted). You are incorrect if your solution looks like
CH17_Delete_Archived_Tournaments_1_WRONG.

 2. “Delete all bowling matches that have not been played.”

Caution: Make sure there are no matching rows in both the
Bowler_Scores table and the Match_Games table.

You can find the solution in CH17_Delete_Matches_Not_Played
(58 rows deleted if you ran the CH16_Copy_2017_Tournaments
queries; 1 row deleted otherwise).

This page intentionally left blank

Part VI
Introduction to
Solving Tough
Problems

This page intentionally left blank

 627

18
“NOT” and “AND” Problems

“For every complex problem, there’s an answer
that is clear, simple, and wrong.”

—H. L. MENCKEN

Topics Covered in This Chapter

A Short Review of Sets

Finding Out the “NOT” Case

Finding Multiple Match in the Same Tables

Sample Statements

Summary

Problems for You to Solve

At this point (especially if you’ve been a good student and have worked
through all the sample statements and problems), you should be very
comfortable with the basics of the SQL database language. Now, in the
words of a famous Louisiana chef, it’s time to “kick it up a notch.” In
this chapter, I’m going to walk you through more complex problems to
find out when something “is not” and when something “is” under mul-
tiple conditions. In Chapter 19, “Condition Testing,” I’ll introduce you to
logic testing in a Value Expression using CASE. In Chapter 20, “Using
Unlinked Data and ‘Driver’ Tables,” I’ll prompt you to “think outside
the box” using disconnected tables to solve problems. In Chapter 21,
 “Performing Complex Calculations on Groups,” I’ll show you how to get
subtotals when you group data, and in Chapter 22, “Partitioning Data
into ‘Windows,” I’ll lead you through looking at “windows” of related
data. Let’s get started!

628 Chapter 18 “NOT” and “AND” Problems

A Short Review of Sets

Remember in Chapter 7, “Thinking in Sets,” I used Venn diagrams to
help you visualize how you need the overlapping part of two sets to solve
“and” problems and the excluded part of two sets to solve “not” prob-
lems. Solving a problem requiring something to be “not” one criterion is
easy (recipes that do not have beef), but it starts to get tough when your
result must satisfy two or more “not” criteria (recipes that do not have
beef OR carrots OR onions). The same is surely true when you’re look-
ing for something that “is” with one criterion (recipes that have cheese).
It gets a bit tougher when a set of things must satisfy two (recipes that
have beef AND onions), and it becomes a head-scratcher when a set must
satisfy three or more criteria (recipes that have beef AND onions AND
carrots). And it can be mind-boggling to visualize a set of things that IS
one or more criteria but is also NOT several other criteria.

Sets with Multiple AND Criteria

Let’s take a look at the multiple “AND” (“IS”) case first because that’s
easier to visualize. Figure 18-1 shows you a possible solution for recipes
that have beef AND onions AND carrots.

Recipes with
Beef

Recipes with
OnionsRecipes with

Carrots

Recipes with Beef,
Onions, and Carrots

Figure 18-1 Recipes that have beef and onions and carrots

Looks pretty simple, doesn’t it? But keep in mind that recipes with their
ingredients are themselves sets of data with two or more rows. (You can’t
think of a recipe that has only one ingredient, can you?) If you try to
solve the problem with a search condition like this:

WHERE Ingredient IN ('Beef', 'Onions', 'Carrots')

 A Short Review of Sets 629

you’ll get the wrong answer! Why? Well, remember that your database
system tests each row against the search condition. If a recipe has beef
OR onions OR carrots, the preceding search condition will be true. You
want recipes that have all three, not just one. You need something more
complex to find the recipes that have all three items, not just one, so you
should state the problem like this:

“Find the recipes whose list of ingredients includes beef AND whose
list of ingredients includes onions AND whose list of ingredients
includes carrots.”

In Chapter 8, “INNER JOINs,” I showed you one way to search for recipes
with two ingredients using individual SELECT statements inside the FROM
clause (CH08_Beef_And_Garlic_Recipes). In Chapter 14, “Filtering Grouped
Data,” I showed another way to do this for two ingredients with a creative
use of GROUP BY and HAVING (CH14_Beef_And_Garlic_Recipes). In this
chapter, I’ll show you some additional ways to tackle a problem like this.

Sets with Multiple NOT Criteria

Excluding multiple criteria involves finding all the items that DO include
one of the criteria and then subtracting (removing) them all from the set
of all items. If I want to find all recipes that do not have beef or onions or
carrots, the Venn diagram looks like Figure 18-2.

Recipes with
Beef

Recipes with
OnionsRecipes with

Carrots

Recipes without Beef,
Onions, and Carrots

Figure 18-2 Recipes that do not have beef, onions, or carrots

630 Chapter 18 “NOT” and “AND” Problems

Think of it as finding all the recipes that have beef and removing them
from the set of all recipes, then finding the recipes that have onions
and removing all of those, and finally finding the set of recipes that
includes carrots and removing those as well. What you have left is the
answer. Again, you might be tempted to solve it with a search condition
like this:

WHERE Ingredient NOT IN ('Beef', 'Onions', 'Carrots')

From the previous discussion, you should be able to see why this won’t
work. A search condition like the preceding one will return any recipe
that has some ingredient other than beef, onions, or carrots. It will find
and eliminate a recipe that has ONLY those three ingredients, but that
would be a strange recipe, indeed! Because ingredients for any recipe
form a set, you need to think of the problem like this:

“Find the recipes whose list of ingredients does not include beef, and
whose list of ingredients does not include onions, and whose list of
ingredients does not include carrots.”

Stated another way, you could also do:

“Find the recipes that are NOT in the list of recipes whose list of ingre-
dients includes beef or onions or carrots.”

I haven’t solved this particular problem in previous chapters, but rest
assured I will show you some ways to do it in this one.

Sets Including Some Criteria but Excluding
Others

Just for completeness, let’s take a quick look at the case where you want
to include items that meet one or more criteria but exclude items that
also meet one or more criteria. Suppose you want all recipes that have
beef but do not want any recipes that have onions or carrots. Figure 18-3
shows you a possible situation for this problem.

I bet you can figure this one out on your own, but to make sure you
really “get it,” you should not try to solve the problem like this:

WHERE Ingredient = 'Beef' AND Ingredient NOT IN ('Onions',
'Carrot')

 A Short Review of Sets 631

Recipes with
Beef

Recipes with
OnionsRecipes with

Carrots

Recipes with Beef but

No Onions or Carrots

Figure 18-3 Recipes that have beef but do not have onions or carrots

A search like this will certainly find all recipes that have beef, but it
will also include any recipe that has any ingredient other than onions or
carrots, including all the recipes that have beef! Oops. Again, the ingre-
dients for a recipe form a set, so you need to think of solving the problem
like this:

“Find the recipes whose list of ingredients includes beef, and whose
list of ingredients does not include onions, and whose list of ingredi-
ents does not include carrots.”

Let’s move on now to finding out exactly how to solve these complex
“NOT” and “AND” problems.

 ❖ Note I’m going to show you several techniques for solving both
“NOT” and “AND” problems without regard to performance. In truth,
some methods might perform terribly in one database system but
be the best solution in another. You can learn about advanced tech-
niques for discovering performance problems in Effective SQL: 61 Spe-
cific Ways to Write Better SQL (Addison-Wesley, ISBN 978-0134578897)
that I wrote with Ben Clothier and Doug Steele. Having said that, I do
comment when appropriate where I think one technique is more likely
to run faster than another.

❖ Note I’m going to show you several techniques for solving both
“NOT” and “AND” problems without regard to performance. In truth,
some methods might perform terribly in one database system but
be the best solution in another. You can learn about advanced tech-
niques for discovering performance problems in Effective SQL: 61 Spe-
cific Ways to Write Better SQL (Addison-Wesley, ISBN 978-0134578897)L
that I wrote with Ben Clothier and Doug Steele. Having said that, I do
comment when appropriate where I think one technique is more likely
to run faster than another.

632 Chapter 18 “NOT” and “AND” Problems

Finding Out the “Not” Case

You might recall that you’ve already learned how to solve simple “not”
cases. In Chapter 9, “OUTER JOINs,” I showed you, for example, how to
find any ingredients not used in any recipe (CH09_Ingredients_Not_Used),
customers who haven’t ordered a helmet (CH09_Customers_No_Helmets),
and any agents who have no contracts (CH09_Agents_No_Contracts). In
Chapter 11, “Subqueries,” I showed you how to find students who have
never withdrawn (CH11_Students_Never_Withdrawn) and products not
ordered (CH11_Products_Not_Ordered). Now let’s learn how to handle mul-
tiple “not” criteria using four different techniques:

• OUTER JOIN

• NOT IN

• NOT EXISTS

• GROUP BY/HAVING

 ❖ Note Throughout this chapter, I use the “Request/Translation/
Clean Up/SQL” technique introduced in Chapter 4, “Creating a Sim-
ple Query.” Because this process should now be very familiar to you,
I have combined the Translation/Clean Up steps for all the following
examples to simplify the process.

Using OUTER JOIN

In Chapter 9, you learned that you can use an OUTER JOIN with an
IS NULL test to find rows in one table that do not have a matching row
in another table. An example is the query to find ingredients that are
not used:

“List ingredients not used in any recipe yet.”

Translation/
Clean Up

Select ingredient name from the ingredients table left
outer joined with the recipe ingredients table on ingre-
dients.ingredient ID in the ingredients table matches =
recipe_ingredients.ingredient ID in the recipe ingredients
table where recipe ID is null

❖ Note Throughout this chapter, I use the “Request/Translation/
Clean Up/SQL” technique introduced in Chapter 4, “Creating a Sim-
ple Query.” Because this process should now be very familiar to you,
I have combined the Translation/Clean Up steps for all the following
examples to simplify the process.

 Finding Out the “Not” Case 633

SQL SELECT Ingredients.IngredientName

FROM Ingredients LEFT OUTER JOIN
Recipe_Ingredients

 ON Ingredients.IngredientID =
 Recipe_Ingredients.IngredientID

WHERE Recipe_Ingredients.RecipeID IS NULL

CH09_Ingredients_Not_Used (20 rows)

IngredientName

Halibut

Chicken, Fryer

Bacon

Iceberg Lettuce

Butterhead Lettuce

Scallop

Vinegar

Red Wine

<< more rows here >>

Notice that this works because where there is no match in the second
table, your database engine returns a Null value for any column in that
table. You can use the same technique to exclude rows from the sec-
ond table that match certain criteria, but you must combine the OUTER
JOIN technique that you learned in Chapter 9 with a subquery that you
learned how to use in Chapter 11. You must do this because the second
“table” that you want to match with must first be filtered by the exclud-
ing criteria.

Let’s solve the beef, onions, carrots problem using an OUTER JOIN and
a subquery:

“Find the recipes that have neither beef, nor onions, nor carrots.”

634 Chapter 18 “NOT” and “AND” Problems

Translation/
Clean Up

Select recipe ID and recipe title from the recipes table left outer
joined with the (selection of recipe IDs from the recipe ingre-
dients table inner joined with the ingredients table on Recipe_
Ingredients.recipe ID in the recipe ingredients table matches =
Ingredients.recipe ID in the ingredients table where ingredient
name is in the values (‘Beef’, ‘Onion’, or ‘Carrot’)) where the
recipe ID in the selection is NULL empty

SQL SELECT Recipes.RecipeID, Recipes.RecipeTitle

FROM Recipes LEFT JOIN

 (SELECT Recipe_Ingredients.RecipeID

 FROM Recipe_Ingredients INNER JOIN Ingredients

 ON Recipe_Ingredients.IngredientID =

 Ingredients.IngredientID

 WHERE Ingredients.IngredientName

 IN ('Beef', 'Onion', 'Carrot'))

 AS RBeefCarrotOnion

 ON Recipes.RecipeID = RBeefCarrotOnion.RecipeID

WHERE RBeefCarrotOnion.RecipeID Is Null;

CH18_Recipes_NOT_Beef_Onion_Carrot_OUTERJOIN (8 rows)

RecipeID RecipeTitle

4 Garlic Green Beans

5 Fettuccini Alfredo

6 Pollo Picoso

7 Mike’s Summer Salad

8 Trifle

10 Yorkshire Pudding

12 Asparagus

15 Coupe Colonel

What is happening is the query to the right of the OUTER JOIN is find-
ing the recipe ID for all recipes that have beef, onions, or carrots, then
the OUTER JOIN with an IS NULL test eliminates all those recipe IDs

 Finding Out the “Not” Case 635

from consideration—including only the recipes that do not match. You
might be tempted to directly do a join on the recipe ingredients table and
ingredients table and put the criteria for beef, onion, and carrot in the
final WHERE clause. However, as I explained in Chapter 9, applying a
filter to the “right” side of a “left” join (or vice-versa) effectively nullifies
the “outer” part of the join. The result will be as though you had asked
for an INNER JOIN, which won’t solve the problem.

Using NOT IN

You have already seen in Chapter 11 how to use NOT IN to solve simple
“not” queries. For example, in the Sales Orders database, you can find a
query to discover which products have never been ordered (CH11_Prod-
ucts_Not_Ordered). In the Entertainment database, there is a query to
list agents who haven’t booked anything (CH11_Bad_Agents). But as you
might suspect, it gets a bit tricky when you want to find rows using mul-
tiple “not” criteria.

Let’s solve our old friend in the Recipes database using NOT IN. First,
let’s do it the hard way using three separate NOT IN clauses.

“Find the recipes that have neither beef, nor onions, nor carrots.”

Translation/
Clean Up

Select recipe ID and recipe title from the recipes table
where the recipe ID is not in the (selection of recipe IDs
from the recipe ingredients table inner joined with the
ingredients table on Recipe_Ingredients.recipe ID in the
recipe ingredients table matches = Ingredients.recipe ID
in the ingredients table where ingredient name is = ‘Beef’)
and the recipe ID is not in the (selection of recipe IDs from
the recipe ingredients table inner joined with the ingredi-
ents table on Recipe_Ingredients.recipe ID in the recipe
ingredients table matches = Ingredients.recipe ID in the
ingredients table where ingredient name is = ‘Onion’) and
the recipe ID is not in the (selection of recipe IDs from the
recipe ingredients table inner joined with the ingredients
table on Recipe_Ingredients.recipe ID in the recipe
ingredients table matches = Ingredients.recipe ID in the
ingredients table where ingredient name is = ‘Carrot’)

636 Chapter 18 “NOT” and “AND” Problems

SQL SELECT Recipes.RecipeID, Recipes.RecipeTitle

FROM Recipes

WHERE Recipes.RecipeID NOT IN

 (SELECT Recipe_Ingredients.RecipeID

 FROM Recipe_Ingredients

 INNER JOIN Ingredients

 ON Recipe_Ingredients.IngredientID =

 Ingredients.IngredientID

 WHERE Ingredients.IngredientName = 'Beef')

 AND Recipes.RecipeID NOT IN

 (SELECT Recipe_Ingredients.RecipeID

 FROM Recipe_Ingredients

 INNER JOIN Ingredients

 ON Recipe_Ingredients.IngredientID =

 Ingredients.IngredientID

 WHERE Ingredients.IngredientName = 'Onion')

 AND Recipes.RecipeID NOT IN

 (SELECT Recipe_Ingredients.RecipeID

 FROM Recipe_Ingredients

 INNER JOIN Ingredients

 ON Recipe_Ingredients.IngredientID =

 Ingredients.IngredientID

 WHERE Ingredients.IngredientName = 'Carrot');

Whew! This query is doing three eliminations, first eliminating all recipes
that have beef, then eliminating all recipes that have onions, and finally
eliminating all recipes that have carrots. (You can find this query saved
as CH18_Recipes_NOT_Beef_Onion_Carrot_NOTIN_1.) But if you think
about it, if you can collect all the recipes that have neither beef nor onions
nor carrots in one subquery, you can do a single elimination like this:

“Find the recipes that have neither beef, nor onions, nor carrots.”

Translation/
Clean Up

Select recipe ID and recipe title from the recipes table
where the recipe ID is not in the (selection of recipe IDs
from the recipe ingredients table inner joined with the
ingredients table on Recipe_Ingredients.recipe ID in the
recipe ingredients table matches = Ingredients.recipe ID
in the ingredients table where ingredient name is in the
values (‘Beef’, ‘Onion’, or ‘Carrots’))

 Finding Out the “Not” Case 637

SQL SELECT Recipes.RecipeID, Recipes.RecipeTitle

FROM Recipes

WHERE Recipes.RecipeID NOT IN

 (SELECT Recipe_Ingredients.RecipeID

 FROM Recipe_Ingredients

 INNER JOIN Ingredients

 ON Recipe_Ingredients.IngredientID =

 Ingredients.IngredientID

 WHERE Ingredients.IngredientName

 IN ('Beef', 'Onion', 'Carrot'));

That’s really lots simpler, and, in fact, this is arguably the simplest way
to solve a multiple “not” problem. It’s also very efficient because your
database system will run the subquery once then use the result from
that to eliminate recipes that match. You can find this query saved
in the Recipes sample database as CH18_Recipes_NOT_Beef_Onion_
Carrot_NOTIN_2.

Using NOT EXISTS

In Chapter 11, you also learned about using EXISTS and a subquery to
search for related data on a single criterion. You can imagine how this
can be expanded to handle multiple criteria. And it’s a simple matter
to use NOT EXISTS to handle the “not” case. Let’s solve our trusty not
beef-onions-carrots again using NOT EXISTS.

“Find the recipes that have neither beef, nor onions, nor carrots.”

Translation/
Clean Up

Select recipe ID and recipe title from the recipes table
where does not exist the (selection of recipe IDs from the
recipe ingredients table inner joined with the ingredients
table on Recipe_Ingredients.recipe ID in the recipe
 ingredients table matches = Ingredients.recipe ID in the
ingredients table where ingredient name is in the values
(‘Beef’, ‘Onion’, or ‘Carrot’) and the Recipe_Ingredients.
recipe ID from the recipe ingredients table matches the =
Recipes.recipe ID from the recipes table)

638 Chapter 18 “NOT” and “AND” Problems

SQL SELECT Recipes.RecipeID, Recipes.RecipeTitle

FROM Recipes

WHERE NOT EXISTS

 (SELECT Recipe_Ingredients.RecipeID

 FROM Recipe_Ingredients

 INNER JOIN Ingredients

 ON Recipe_Ingredients.IngredientID =

 Ingredients.IngredientID

 WHERE Ingredients.IngredientName

 IN ('Beef', 'Onion', 'Carrot')

 AND Recipe_Ingredients.RecipeID =

 Recipes.RecipeID);

This operates similarly to the principles behind the NOT IN solution. You
first find all the recipes that include beef, onions, or carrots, and then
eliminate them by matching on recipe ID and using NOT EXISTS. The
one drawback to this approach is the subquery must make a reference
to a field in the main query. This means that your database system must
execute the subquery once for every row it finds in the Recipes table—
once for each unique RecipeID value. (In some more advanced books, you
will find this sort of subquery called a “correlated” subquery because the
subquery is, in effect, co-dependent on each row in the outer query.) You
can find this query saved as CH18_Recipes_NOT_Beef_Onion_Carrot_
NOTEXISTS in the Recipes sample database.

Using GROUP BY/HAVING

In Chapter 14 you learned how to find out if there are “n” or more rows that
qualify for one or more criteria. For example, in the Entertainment data-
base, you can find a query to show you the entertainers who play jazz and
have three or more members (CH14_Jazz_Entertainers_More_Than_3).

Did it occur to you that you could test for a count of zero to find sets
of data that do not qualify? Sure you can! Let’s solve our handy, not
beef-onions-carrots using GROUP BY and HAVING COUNT = 0.

“Find the recipes that have neither beef, nor onions, nor carrots.”

 Finding Out the “Not” Case 639

Translation/
Clean Up

Select recipe ID and recipe title from the recipes table
left joined with the (selection of recipe ID from the recipe
ingredients table inner joined with the ingredients table
on Ingredients.ingredient ID in the ingredients table
equals matches = Recipe_Ingredients.ingredient ID in the
recipe ingredients table where ingredient name is in the
values (‘beef’, ‘onion’, or ‘carrot’)) AS RIBOC on Recipes.
recipe ID in the recipes table equals matches = RIBOC.
recipe ID in the selection where RIBOC.recipe ID in the
selection is NULL empty, then grouped by recipe ID and
recipe title and having the count of RIBOC.recipe ID in
the selection equals zero = 0

SQL SELECT Recipes.RecipeID, Recipes.RecipeTitle

FROM Recipes LEFT JOIN

 (SELECT Recipe_Ingredients.RecipeID

 FROM Recipe_Ingredients

 INNER JOIN Ingredients

 ON Ingredients.IngredientID =

 Recipe_Ingredients.IngredientID

 WHERE Ingredients.IngredientName

 IN ('Beef', 'Onion', 'Carrot')) AS RIBOC

 ON Recipes.RecipeID = RIBOC.RecipeID

WHERE RIBOC.RecipeID IS NULL

GROUP BY Recipes.RecipeID, Recipes.RecipeTitle

HAVING COUNT(RIBOC.RecipeID) = 0;

If you noticed that this looks a lot like the LEFT JOIN solution, you’re
absolutely correct! In fact, the LEFT JOIN solution for a single table is
the better method because it avoids the overhead of grouping the rows.
If you want to do this sort of exclusion on a JOIN of two or more tables
and some other criteria, however, using GROUP BY and COUNT is a
good way to do it. Remember that you learned in Chapter 13, “Group-
ing Data,” that when you use COUNT (or, for that matter, any aggregate
function) on a column and that column contains a Null value in some
rows, the aggregate function ignores the Null values. This is why, when
the LEFT JOIN returns no rows from the subquery, COUNT(RIBOC.Rec-
ipeID) = 0 works. When a recipe has no rows matching in the set of reci-
pes that have beef, onions, or carrots, the COUNT is zero. (You can find
this query saved as CH18_Recipes_NOT_Beef_Onion_Carrot_GROUPBY
in the Recipes sample database.)

640 Chapter 18 “NOT” and “AND” Problems

Let’s look at an example where the GROUP BY and HAVING make more
sense:

“Find the recipes that have butter but have neither beef, nor onions,
nor carrots.”

Translation/
Clean Up

Select recipe ID and recipe title from the recipes table
inner joined with the recipe ingredients table on
Recipes.recipe ID in the recipes table equals = Recipe_
Ingredients.recipe ID in the recipe ingredients table, then
inner joined with the ingredients table on Ingredients.
ingredient ID in the ingredients table equals = Recipe_
Ingredients.ingredient ID in the recipe ingredients table,
then left joined with the (selection of recipe ID from the
recipe ingredients table inner joined with the ingredients
table on Ingredients.ingredient ID in the ingredients
table equals = Recipe_Ingredients.ingredient ID in the
recipe ingredients table where ingredient name is in the
values (‘beef’, ‘onion’, or ‘carrot’)) AS RIBOC on Recipes.
recipe ID in the recipes table equals RIBOC.recipe IDin
the selection where ingredient name in the ingredients
table equals = ‘Butter’ and RIBOC.recipe ID in the
selection is NULL empty, then grouped by recipe ID and
recipe title and having the count of RIBOC.recipe ID in
the selection equals zero = 0

SQL SELECT Recipes.RecipeID, Recipes.RecipeTitle

FROM ((Recipes INNER JOIN Recipe_Ingredients

 ON Recipes.RecipeID
 = Recipe_Ingredients.RecipeID)

INNER JOIN Ingredients

 ON Ingredients.IngredientID =

 Recipe_Ingredients.IngredientID)

LEFT JOIN

 (SELECT Recipe_Ingredients.RecipeID

 FROM Recipe_Ingredients

 INNER JOIN Ingredients

 ON Ingredients.IngredientID =

 Recipe_Ingredients.IngredientID

 Finding Multiple Matches in the Same Table 641

 WHERE Ingredients.IngredientName IN

 ('Beef', 'Onion', 'Carrot')) AS RIBOC

 ON Recipes.RecipeID=RIBOC.RecipeID

WHERE Ingredients.IngredientName = 'Butter'

 AND RIBOC.RecipeID IS NULL

GROUP BY Recipes.RecipeID, Recipes.RecipeTitle

HAVING COUNT(RIBOC.RecipeID) = 0;

CH18_Recipes_Butter_NOT_Beef_Onion_Carrot_GROUPBY (2 rows)

RecipeID RecipeTitle

5 Fettuccini Alfredo

12 Asparagus

Now, this makes more sense because the JOIN between Recipes, Recipe_
Ingredients, and Ingredients will certainly return multiple rows, but I
want only one row per recipe to appear in the final result. The GROUP
BY accomplishes returning one row per recipe, and the HAVING elimi-
nates all recipes that have beef, onions, or carrots in the ingredients.

That pretty much covers the different ways to solve “not” problems that
have multiple criteria. I’ll show you some more sample statements and
challenge you with some problems later in the chapter.

Finding Multiple Matches in the
Same Table

Now, let’s look at the other side of the coin—queries that need to find
matches on multiple criteria. You had a taste of this in Chapter 8 when you
learned how to find customers who have ordered both a bike and a helmet
in the Sales Orders Database (CH08_Customers_Both_Bikes_And_Helmets),
and in the Entertainment database to discover entertainers who played for

642 Chapter 18 “NOT” and “AND” Problems

both Berg and Hallmark (CH08_Entertainers_Berg_AND_Hallmark). Let’s
explore the many ways to solve this type of problem in more detail:

• INNER JOIN

• IN

• EXISTS

• GROUP BY/HAVING

Using INNER JOIN

Remember from Chapter 7 that you can find matching items in two sets
by performing an intersection of the two sets. I also told you that it’s
most common when working in SQL to perform an intersection on key
values using an INNER JOIN. Because the Primary Key of each row in a
table uniquely identifies each row, an intersection on Primary Key values
will show you the rows that are common to two sets.

So, one way to find rows that match multiple criteria is to create a set
of data (using a subquery) for each criterion and then JOIN the multi-
ple sets on Primary Key values. Let’s work through an example from the
Entertainment database:

“List the customers who have booked Carol Peacock Trio, Caroline Coie
Cuartet, and Jazz Persuasion.”

Translation/
Clean Up

Select the unique DISTINCT CPT.customer ID, CPT.cust
omer first name, and CPT.customer last name from the
(selection of customer id, customer first name, customer
last name from the customers table inner joined with
the engagements table on Customers.customer ID in the
customers table equals = Engagements.customer ID in the
engagements table then inner joined with the entertainers
table on Engagements.entertainer ID in the engagements
table equals = Entertainers.entertainer ID in the enter-
tainers table where Entertainers.entertainer stage name
in the entertainers table equals = ‘Carol Peacock Trio’) AS
CPT inner joined with the (selection of customer id from
the customers table inner joined with the engagements
table on Customers.customer ID in the customers table
equals = Engagements.customer ID in the engagements
table then inner joined with the entertainers table on
Engagements.entertainer ID in the engagements table
equals = Entertainers.entertainer ID in the entertainers
table where Entertainers.entertainer stage name in the

 Finding Multiple Matches in the Same Table 643

entertainers table equals = ‘Caroline Coie Cuartet’) AS CCC
on CPT.customer ID in the first selection equals = CCC.
customer ID in the second selection inner joined with the
(selection of customer id from the customers table inner
joined with the engagements table on Customers.customer
ID in the customers table equals = Engagements.customer
ID in the engagements table then inner joined with the
entertainers table on Engagements.entertainer ID in the
engagements table equals = Entertainers.entertainer ID
in the entertainers table where Entertainers.entertainer
stage name in the entertainers table equals = ‘Jazz Per-
suasion’) AS JP on CCC.customer ID in the second selec-
tion equals = JP.customer ID in the third selection

SQL SELECT DISTINCT CPT.CustomerID, CPT.CustFirstName,

 CPT.CustLastName

FROM ((SELECT Customers.CustomerID,

 Customers.CustFirstName, Customers.CustLastName

 FROM (Customers INNER JOIN Engagements

 ON Customers.CustomerID =

 Engagements.CustomerID)

 INNER JOIN Entertainers

 ON Engagements.EntertainerID =

 Entertainers.EntertainerID

 WHERE Entertainers.EntStageName =

 'Carol Peacock Trio') As CPT

 INNER JOIN

 (SELECT Customers.CustomerID

 FROM (Customers INNER JOIN Engagements

 ON Customers.CustomerID =

 Engagements.CustomerID)

 INNER JOIN Entertainers

 ON Engagements.EntertainerID =

 Entertainers.EntertainerID

 WHERE Entertainers.EntStageName =

 'Caroline Coie Cuartet') As CCC

 ON CPT.CustomerID = CCC.CustomerID)

 INNER JOIN

 (SELECT Customers.CustomerID

 FROM (Customers INNER JOIN Engagements

644 Chapter 18 “NOT” and “AND” Problems

 ON Customers.CustomerID =

 Engagements.CustomerID)

 INNER JOIN Entertainers

 ON Engagements.EntertainerID =

 Entertainers.EntertainerID

 WHERE Entertainers.EntStageName =

 'Jazz Persuasion') As JP

 ON CCC.CustomerID = JP.CustomerID;

CH18_Customers_Peacock_Coie_Jazz_INNERJOIN (2 rows)

CustomerID CustFirstName CustLastName

10004 Dean McCrae

10010 Zachary Ehrlich

The three SELECT expressions in the FROM clause fetch the three sets I
want—one for customers who booked Carol Peacock Trio; one for custom-
ers who booked Caroline Coie Cuartet; and one for customers who booked
Jazz Persuasion. I included the customer name fields in the first query so
that I can display those fields in the final result, but all I need in the sec-
ond and third queries is the CustomerID field (the Primary Key of the Cus-
tomers table) to perform the JOIN to find out who booked all three groups.
Finally, I used the DISTINCT keyword to eliminate any duplicate rows pro-
duced when a customer booked one of the entertainers multiple times.

If you look back in Chapter 8, you’ll find I use the same technique to
solve CH08_Entertainers_Berg_AND_Hallmark. The only difference is
that I used DISTINCT in each of the subqueries instead of in the outer
SELECT statement.

Using IN

Let’s solve our customers booking three entertainment groups problem
using IN. When you want to find a match on multiple criteria using IN,
you might be tempted to do it this simple way:

SELECT Customers.CustomerID, Customers.CustFirstName,
 Customers.CustLastName
FROM Customers
WHERE Customers.CustomerID IN

 Finding Multiple Matches in the Same Table 645

 (SELECT Customers.CustomerID
 FROM (Customers INNER JOIN Engagements
 ON Customers.CustomerID = Engagements.CustomerID)
 INNER JOIN Entertainers
 ON Engagements.EntertainerID = Entertainers.
 EntertainerID
WHERE Entertainers.EntStageName IN
 ('Carol Peacock Trio', 'Caroline Coie Cuartet',
 'Jazz Persuasion'))

Why won’t this work? The answer is you’ll get any customer who booked
any of the three groups. You won’t get only the customers who booked
all three groups! You can find this query saved as CH18_Customers_
Peacock_Coie_Jazz_IN_WRONG in the Entertainment sample database.

Remember that to find the customers who booked all three, you need an
intersection of three sets: one for the customers who booked Carol Peacock
Trio; one for the customers who booked Caroline Coie Cuartet; and one for
customers who booked Jazz Persuasion. To solve this with IN, you need
three IN clauses, and you must find the customers who are IN the first set
AND IN the second set AND IN the third set. Let’s take a whack at it:

“List the customers who have booked Carol Peacock Trio, Caroline Coie
Cuartet, and Jazz Persuasion.”

Translation/
Clean Up

Select customer ID, customer first name, and customer last
name from the customers table where customerID is in the
(selection of customer id from the engagements table inner
joined with the entertainers table on Engagements.entertainer
ID in the engagements table equals = Entertainers.entertainer
ID in the entertainers table where Entertainers.entertainer
stage name in the entertainers table equals = ‘Carol Peacock
Trio’) and customer id is in the (selection of customer id from
the engagements table inner joined with the entertainers table
on Engagements.entertainer ID in the engagements table
equals = Entertainers.entertainer ID in the entertainers
table where Entertainers.entertainer stage name in the enter-
tainers table equals = ‘Caroline Coie Cuartet’) and customer
id is in the (selection of customer id from the engagements
table inner joined with the entertainers table on Engage-
ments.entertainer ID in the engagements table equals =
 Entertainers.entertainer ID in the entertainers table where
Entertainers.entertainer stage name in the entertainers
table equals = ‘Jazz Persuasion’)

646 Chapter 18 “NOT” and “AND” Problems

SQL SELECT Customers.CustomerID,

 Customers.CustFirstName,

 Customers.CustLastName

FROM Customers

WHERE Customers.CustomerID IN

 (SELECT Engagements.CustomerID

 FROM Engagements INNER JOIN Entertainers

 ON Engagements.EntertainerID =

 Entertainers.EntertainerID

 WHERE Entertainers.EntStageName =

 'Carol Peacock Trio')

AND Customers.CustomerID IN

 (SELECT Engagements.CustomerID

 FROM Engagements INNER JOIN Entertainers

 ON Engagements.EntertainerID =

 Entertainers.EntertainerID

 WHERE Entertainers.EntStageName =

 'Caroline Coie Cuartet')

AND Customers.CustomerID IN

 (SELECT Engagements.CustomerID

 FROM Engagements INNER JOIN Entertainers

 ON Engagements.EntertainerID =

 Entertainers.EntertainerID

 WHERE Entertainers.EntStageName =

 'Jazz Persuasion');

You should get the same two rows that you found in the solution for
INNER JOIN. I have specifically spaced out the three subqueries in the
preceding SQL so that you can clearly see how to fetch the three sets.
You can find this query in the Entertainment sample database saved as
CH18_Customers_Peacock_Coie_Jazz_IN_RIGHT.

Using EXISTS

To solve our customers who booked three specific groups problem using
EXISTS, you’ll use a technique similar to the one you used to solve the

 Finding Multiple Matches in the Same Table 647

problem using IN. The key difference is that each of your subqueries
must also match on customer ID. Because you’re testing for the exis-
tence of each set, each set must match the customer ID being examined
in the current row. Here’s how to do it:

“List the customers who have booked Carol Peacock Trio, Caroline Coie
Cuartet, and Jazz Persuasion.”

Translation/
Clean Up

Select customer ID, customer first name, and customer last
name from the customers table where there exists the (select-
ion of customer id from the engagements table inner joined
with the entertainers table on Engagements.entertainer ID in
the engagements table equals = Entertainers.entertainer ID
in the entertainers table where Entertainers.entertainer stage
name in the entertainers table equals = ‘Carol Peacock Trio’
and the Engagements.customer ID in the engagements
table equals the = Customers.customer ID in the customers
table) and there exists the (selection of customer id from the
engagements table inner joined with the entertainers table on
Engagements.entertainer ID in the engagements table equals
= Entertainers.entertainer ID in the entertainers table where
Entertainers.entertainer stage name in the entertainers table
equals = ‘Caroline Coie Cuartet’ and the Engagements.cus-
tomer ID in the engagements table equals the = Customers.
customer ID in the customers table) and there exists the (select-
ion of customer id from the engagements table inner joined
with the entertainers table on Engagements.entertainer ID in
the engagements table equals = Entertainers.entertainer ID
in the entertainers table where Entertainers.entertainer stage
name in the entertainers table equals = ‘Jazz Persuasion’ and
the Engagements.customer ID in the engagements table equals
the = Customers.customer ID in the customers table)

SQL SELECT Customers.CustomerID,

 Customers.CustFirstName, Customers.CustLastName

FROM Customers

WHERE EXISTS

 (SELECT Engagements.CustomerID

 FROM Engagements INNER JOIN Entertainers

 ON Engagements.EntertainerID =

 Entertainers.EntertainerID

 WHERE Entertainers.EntStageName =

 'Carol Peacock Trio'

648 Chapter 18 “NOT” and “AND” Problems

 AND Engagements.CustomerID =

 Customers.CustomerID)

AND EXISTS

 (SELECT Engagements.CustomerID

 FROM Engagements INNER JOIN Entertainers

 ON Engagements.EntertainerID =

 Entertainers.EntertainerID

 WHERE Entertainers.EntStageName =

 'Caroline Coie Cuartet'

 AND Engagements.CustomerID =

 Customers.CustomerID)

AND EXISTS

 (SELECT Engagements.CustomerID

 FROM Engagements INNER JOIN Entertainers

 ON Engagements.EntertainerID =

 Entertainers.EntertainerID

 WHERE Entertainers.EntStageName =

 'Jazz Persuasion'

 AND Engagements.CustomerID =

 Customers.CustomerID);

This operates similarly to the principles behind the IN solution. You find
the three sets of customers who have booked each of the groups and
test using EXISTS. The one drawback to this approach is that the sub-
queries must make a reference to a field in the main query. This means
that your database system must execute each of the subqueries once for
every row it finds in the Customers table—once for each unique Cus-
tomerID value. (In some more advanced books, you will find this sort
of subquery called a “correlated” subquery because the subquery is, in
effect, co-dependent on each row in the outer query.) You can find this
query saved as CH18_Customers_Peacock_Coie_Jazz_EXISTS in the
Entertainment sample database.

Using GROUP BY/HAVING

You could try to solve your customers who booked three specific enter-
tainers using GROUP BY and HAVING, but it would be difficult. When
I did it for recipes and ingredients, I knew that any one ingredient

 Finding Multiple Matches in the Same Table 649

appears only once in the Recipe_Ingredients table. That’s not the case
for customers and entertainers because a customer can choose to book
an entertainer more than once. Sure, I could do something with group-
ings on SELECT DISTINCT, but why bother when there are several other
ways to solve the problem?

Instead, let’s tackle an interesting problem in the Entertainment sample
database that is really best solved with GROUP BY and HAVING. Here’s
the problem:

“Display customers and groups where the musical styles of the group
match all of the musical styles preferred by the customer.”

This is a “match many” problem because each customer potentially
has told the agency that there are several styles that they prefer. The
difficulty is the “many” isn’t a fixed list—the list of potential matches
changes with each customer!

Let’s take a look at the tables you need to see how you might begin to
construct the request. Figure 18-4 shows the tables you need to find
entertainers and all the styles they play, and Figure 18-5 shows the
tables you need to find customers and all the styles they prefer.

ENTERTAINERS

EntertainerID PK
EntStageName

DateEntered

EntStreetAddress
EntCity
EntState
EntZipCode
EntPhoneNumber
EntWebPage
EntEmailAddress

EntSSN

ENTERTAINER_STYLES

EntertainerID CPK
StyleID CPK

MUSICAL _STYLES

StyleID PK
StyleName

Figure 18-4 Tables to list all entertainers and the styles that they play

CUSTOMERS

CustomerID PK
CustFirstName
CustLastName
CustStreetAddress
CustCity
CustState
CustZipCode
CustPhoneNumber

MUSICAL_STYLES

StyleID PK
StyleName

MUSICAL_PREFERENCES

CustomerID CPK
StyleID CPK

Figure 18-5 Tables to list all customers and the styles they prefer

650 Chapter 18 “NOT” and “AND” Problems

Do you see any column that is common in the two sets of tables? How
about the StyleID column? In fact, you probably don’t need the Musi-
cal_Styles table at all unless you also want to list the matching style.
If you look at the full diagram for the Entertainment Agency sam-
ple database, you won’t see a direct relationship between StyleID in
the Musical_ Preferences table and StyleID in the Entertainer_Styles table.
However, it’s perfectly legal to ask for a JOIN between those two tables on
StyleID because the columns in both tables are the same data type. It’s
also logical to do a JOIN this way because the columns you need to use in
the JOIN have the same meaning. You want to find all styles that match
between customers and entertainers, and you specifically want to find the
matches where the number (COUNT) of matches between the two equals
the total number of styles preferred by the customer. Let’s get started:

“Display customers and groups where the musical styles of the group
match all of the musical styles preferred by the customer.”

Translation/
Clean Up

Select customer ID, customer first name, customer last
name, entertainer ID, entertainer stage name, and
the count of (style ID) from the customers table inner
joined with the musical preferences table on Customers.
customer ID in the customers table matches = Musical_
Styles.customer ID in the musical styles table then inner
joined with the entertainer styles table on Musical_
Styles.style ID in the musical styles table matches =
Entertainer_Styles.style ID in the entertainer styles table
and finally inner joined with the entertainers table on
Entertainers.entertainer ID in the entertainers table
matches = Entertainer_Styles.entertainer ID in the
entertainer styles table grouped by customer ID, customer
first name, customer last name, entertainer ID, and
entertainer stage name and having the count of (style ID)
= equal to the (selection of the count(*) of all rows from the
musical preferences table where the Musical_Preferences.
customer ID in the musical preferences table matches the
= Customers.customer ID in the customers table)

SQL SELECT Customers.CustomerID,

 Customers.CustFirstName,

 Customers.CustLastName,

 Entertainers.EntertainerID,

 Entertainers.EntStageName,

 Count(Musical_Preferences.StyleID) AS

 CountOfStyleID

 Finding Multiple Matches in the Same Table 651

FROM ((Customers INNER JOIN Musical_Preferences

 ON Customers.CustomerID =

 Musical_Preferences.CustomerID)

INNER JOIN Entertainer_Styles

 ON Musical_Preferences.StyleID =

 Entertainer_Styles.StyleID)

INNER JOIN Entertainers

ON Entertainers.EntertainerID =

 Entertainer_Styles.EntertainerID

GROUP BY Customers.CustomerID,

 Customers.CustFirstName,

 Customers.CustLastName,

 Entertainers.EntertainerID,

 Entertainers.EntStageName

HAVING Count(Musical_Preferences.StyleID) =

 (SELECT Count(*)

 FROM Musical_Preferences

 WHERE Musical_Preferences.CustomerID =

 Customers.CustomerID);

 ❖ Note You could get the same result by doing:

HAVING Count(Musical_Preferences.StyleID) =
 (SELECT Count(*)
 FROM Entertainer_Styles
 WHERE Entertainer_Styles.EntertainerID =

Entertainers.EntertainerID)

CH18_Entertainers_Fully_Match_Customers_Style (8 rows)

CustomerID CustFirstName CustLastName EntertainerID EntStageName CountOfStyleID

10002 Deb Waldal 1003 JV & the
Deep Six

2

10003 Peter Brehm 1002 Topazz 2

10005 Elizabeth Hallmark 1009 Katherine
Ehrlich

2

❖ Note You could get the same result by doing:

HAVING Count(Musical_Preferences.StyleID) =
 (SELECT Count(*)
 FROM Entertainer_Styles
 WHERE Entertainer_Styles.EntertainerID =

Entertainers.EntertainerID)

652 Chapter 18 “NOT” and “AND” Problems

CustomerID CustFirstName CustLastName EntertainerID EntStageName CountOfStyleID

10005 Elizabeth Hallmark 1011 Julia
Schnebly

2

10008 Darren Gehring 1001 Carol Peacock
Trio

2

10010 Zachary Ehrlich 1005 Jazz
Persuasion

3

10012 Kerry Patterson 1001 Carol Peacock
Trio

2

10013 Estella Pundt 1005 Jazz
Persuasion

2

This works because each customer or entertainer has a style listed only
once. Note that you don’t need to know how many styles you have to
match on—the query does that for you. I included the CountOfStyleID
column only to demonstrate that the number of style preferences var-
ies from customer to customer. Imagine what a sales tool this would be
when one of the customers in the list calls up asking for a group recom-
mendation. The agent can confidently recommend at least one group per
customer where the group plays all the styles the customer prefers.

Sample Statements

You now know the mechanics of constructing queries that solve complex
“not” and “and” questions and have seen some of the types of requests
you can answer. Let’s take a look at a fairly robust set of samples that
solve a variety of “not” and “and” problems. These examples come from
each of the sample databases, and they illustrate the use of the JOINs,
IN, EXISTS, and grouping to find answers requiring multiple search
criteria.

 ❖ Note Remember in the Introduction that I warned you that results
from each database system won’t necessarily match the sort order you
see in examples in this book unless you include an ORDER BY clause.

❖ Note Remember in the Introduction that I warned you that results
from each database system won’t necessarily match the sort order you
see in examples in this book unless you include an ORDER BY clause.

 Sample Statements 653

Even when you include that specification, the system might return
results in columns not included in the ORDER BY clause in a different
sequence because of different optimization techniques.

If you’re running the examples in Microsoft SQL Server, simply select-
ing the rows from the view does not honor any ORDER BY clause
specified in the view. You must open the design of the view and exe-
cute it from there to see the ORDER BY clause honored.

Also, when you use GROUP BY, you’ll often see the results returned by
your database system as though the rows are sorted by the columns
you specified. This happens because some optimizers first sort the
data internally to make it faster to process your GROUP BY. Keep in
mind that if you want a specific sort order, you must also include an
ORDER BY clause.

I’ve also included sample result sets that would be returned by these
operations and placed them immediately after the SQL syntax line. The
name that appears immediately above a result set is the name I gave
each query in the sample data on the companion website for the book,
www.informit.com/title/9780134858333. I stored each query in the
appropriate sample database (as indicated within the example), using
“CH18” as the leading part of the query or view name. You can follow the
instructions at the beginning of this book to load the samples onto your
computer and try them out.

 ❖ Note Remember that all of the field names and table names used
in these examples are drawn from the sample database structures
shown in Appendix B, “Schema for the Sample Databases.”

Because many of these examples use complex joins, the optimizer
for your database system may choose a different way to solve these
queries. For this reason, the first few rows I show you may not exactly
match the result you obtain, but the total number of rows should be
the same.

Sales Order Database

“Find all the customers who ordered a bicycle and also ordered a
helmet.”

Even when you include that specification, the system might return
results in columns not included in the ORDER BY clause in a different
sequence because of different optimization techniques.

If you’re running the examples in Microsoft SQL Server, simply select-
ing the rows from the view does not honor any ORDER BY clause
specified in the view. You must open the design of the view and exe-
cute it from there to see the ORDER BY clause honored.

Also, when you use GROUP BY, you’ll often see the results returned by
your database system as though the rows are sorted by the columns
you specified. This happens because some optimizers first sort the
data internally to make it faster to process your GROUP BY. Keep in
mind that if you want a specific sort order, you must also include an
ORDER BY clause.

❖ Note Remember that all of the field names and table names used
in these examples are drawn from the sample database structures
shown in Appendix B, “Schema for the Sample Databases.”

Because many of these examples use complex joins, the optimizer
for your database system may choose a different way to solve these
queries. For this reason, the first few rows I show you may not exactly
match the result you obtain, but the total number of rows should be
the same.

http://www.informit.com/title/9780134858333

654 Chapter 18 “NOT” and “AND” Problems

 ❖ Note In Chapter 8, I solved this problem using an INNER JOIN of
two SELECT DISTINCT subqueries. Here, I solve it using EXISTS.

Translation/
Clean Up

Select customer ID, customer first name, and customer
last name from the customers table where there exists
some row in (SELECT * FROM the orders table inner
joined with the order details table on orders.order number
in the orders table equals = order_details.order number
in the order details table, and then inner joined with the
products table on products.product ID in the products
table equals = order_details.product ID in the order details
table where product name contains LIKE ‘%Bike’ and
Orders.customer ID in the orders table equals = the Cus-
tomers.customer ID in the customers table), and there
also exists some row in (SELECT * FROM the orders table
inner joined with the order details table on orders.order ID
in the orders table equals = order_details.order ID in
the order details table, and then inner joined with the
products table on products.product ID in the products
table equals = order_details.product ID in the order details
table where product name contains LIKE ‘%Helmet’ and
the Orders.customer ID in the orders table equals = the
Customers.customer ID in the customers table)

SQL SELECT Customers.CustomerID,

 Customers.CustFirstName,

 Customers.CustLastName

FROM Customers

WHERE EXISTS

 (SELECT *

 FROM (Orders INNER JOIN Order_Details

 ON Orders.OrderNumber =

 Order_Details.OrderNumber)

 INNER JOIN Products

 ON Products.ProductNumber =

 Order_Details.ProductNumber

 WHERE Products.ProductName LIKE '%Bike'

 AND Orders.CustomerID =

 Customers.CustomerID)

❖ Note In Chapter 8, I solved this problem using an INNER JOIN of
two SELECT DISTINCT subqueries. Here, I solve it using EXISTS.

 Sample Statements 655

AND EXISTS

 (SELECT *

 FROM (Orders INNER JOIN Order_Details

 ON Orders.OrderNumber =

 Order_Details.OrderNumber)

 INNER JOIN Products

 ON Products.ProductNumber =

 Order_Details.ProductNumber

 WHERE Products.ProductName LIKE '%Helmet'

 AND Orders.CustomerID =

 Customers.CustomerID)

CH18_Cust_Bikes_And_Helmets_EXISTS (21 rows)

CustomerID CustFirstName CustLastName

1002 William Thompson

1004 Robert Brown

1005 Dean McCrae

1006 John Viescas

1007 Mariya Sergienko

1008 Neil Patterson

1009 Andrew Cencini

1010 Angel Kennedy

1012 Liz Keyser

1013 Rachel Patterson

<< more rows here >>

“Find all the customers who have not ordered either bikes or tires.”

 ❖ Note I simplified this a bit because I know the category ID for bikes
is 2, and the category ID for tires is 6. If I didn’t know this, I should
have included an additional JOIN to the Categories table and then
looked for ‘Bikes’ and ‘Tires’.

❖ Note I simplified this a bit because I know the category ID for bikes
is 2, and the category ID for tires is 6. If I didn’t know this, I should
have included an additional JOIN to the Categories table and then
looked for ‘Bikes’ and ‘Tires’.

656 Chapter 18 “NOT” and “AND” Problems

Translation/
Clean Up

Select customer ID, customer first name, and customer
last name from the customers table where customer ID is
not in the (selection of customer ID from the orders table
inner joined with the order details table on Orders.order
number in the orders table equals = Order_Details.order
number in the order details table, and then inner joined
with the products table on Products.product ID in the
products table equals = Order_Details.product ID in the
order details table where product category is = 2), and cus-
tomer ID is not in the (selection of customer ID from the
orders table inner joined with the order details table on
Orders.order number in the orders table equals = Order_
Details.order number in the order details table, and then
inner joined with the products table on Products.product
ID in the products table equals = Order_Details.product ID
in the order details table where product category ID is = 6)

SQL SELECT Customers.CustomerID, Customers.
CustFirstName,

 Customers.CustLastName

FROM Customers

WHERE Customers.CustomerID NOT IN

 (SELECT CustomerID

 FROM (Orders INNER JOIN Order_Details

 ON Orders.OrderNumber =

 Order_Details.OrderNumber)

 INNER JOIN Products

 ON Order_Details.ProductNumber =

 Products.ProductNumber

 WHERE Products.CategoryID = 2)

 AND Customers.CustomerID NOT IN

 (SELECT CustomerID

 FROM (Orders INNER JOIN Order_Details

 ON Orders.OrderNumber =

 Order_Details.OrderNumber)

 INNER JOIN Products

 ON Order_Details.ProductNumber =

 Products.ProductNumber

 WHERE Products.CategoryID = 6)

 Sample Statements 657

CH18_Customers_Not_Bikes_Or_Tires_NOTIN_2 (2 rows)

CustomerID CustFirstName CustLastName

1022 Caleb Viescas

1028 Jeffrey Tirekicker

 ❖ Note I would expect Jeffrey Tirekicker to show up in any query
that asks for customers who haven’t bought certain items because
this customer has never bought anything! See CH18_Customers_No_
Orders_JOIN and CH18_Customers_No_Orders_NOT_IN to verify this.

Entertainment Database

“List the entertainers who played engagements for customers Berg and
Hallmark.”

 ❖ Note I solved this problem in Chapter 8 with a JOIN of two complex
table subqueries. This time, I’ll use EXISTS.

Translation/
Clean Up

Select entertainer ID, and entertainer stage name from
the entertainers table where there exists (SELECT * some
row from the customers table inner joined with
the engagements table on customers.customer ID in the
customers table matches = engagements.customer ID in
the engagements table where customer last name is =
‘Berg’ and the engagements table entertainer ID equals =
the Entertainers.entertainer ID in the entertainers table),
and there also exists (SELECT * some row from the cus-
tomers table inner joined with the engagements table on
customers.customer ID in the customers table matches=
engagements.customer ID in the engagements table where
customer last name is = ‘Hallmark’ and the Engagements.
entertainer ID in the engagements table equals = the
Entertainers.entertainer ID in the entertainers table)

SQL SELECT Entertainers.EntertainerID,

 Entertainers.EntStageName

FROM Entertainers

WHERE EXISTS

 (SELECT *

❖ Note I would expect Jeffrey Tirekicker to show up in any query
that asks for customers who haven’t bought certain items because
this customer has never bought anything! See CH18_Customers_No_
Orders_JOIN and CH18_Customers_No_Orders_NOT_IN to verify this.

❖ Note I solved this problem in Chapter 8 with a JOIN of two complex
table subqueries. This time, I’ll use EXISTS.

658 Chapter 18 “NOT” and “AND” Problems

 FROM Customers INNER JOIN Engagements

 ON Customers.CustomerID =

 Engagements.CustomerID

 WHERE Customers.CustLastName = 'Berg'

 AND Engagements.EntertainerID =

 Entertainers.EntertainerID)

AND EXISTS

 (SELECT *

 FROM Customers INNER JOIN Engagements

 ON Customers.CustomerID =

 Engagements.CustomerID

 WHERE Customers.CustLastName = 'Hallmark'

 AND Engagements.EntertainerID =

 Entertainers.EntertainerID)

CH18_Entertainers_Berg_AND_Hallmark_EXISTS (4 rows)

EntertainerID EntStageName

1001 Carol Peacock Trio

1003 JV & the Deep Six

1006 Modern Dance

1008 Country Feeling

“Display agents who have never booked a Country or Country Rock
group.”

Translation/
Clean Up

Select agent ID, agent first name, and agent last name
from the agents table where agent ID is not in the (select-
ion of agent ID from the engagements table inner joined
with the engagements table on Engagements.entertainer
ID in the engagements table equals = Entertainers.enter-
tainer ID in the entertainers table, and then inner joined
with the entertainer styles table on Entertainers.enter-
tainer ID in the entertainers table equals = Entertainer_
Styles.entertainer ID in the entertainer styles table, and
then inner joined with the musical styles table on Enter-
tainer_Styles.style ID in the entertainer styles table equals
= Musical_Styles.style ID in the musical styles table where
style name is in (‘Country’, or ‘Country Rock’))

 Sample Statements 659

SQL SELECT Agents.AgentID, Agents.AgtFirstName,

 Agents.AgtLastName

FROM Agents

WHERE Agents.AgentID NOT IN

 (SELECT Engagements.AgentID

 FROM ((Engagements INNER JOIN Entertainers

 ON Engagements.EntertainerID =

 Entertainers.EntertainerID)

 INNER JOIN Entertainer_Styles

 ON Entertainers.EntertainerID =

 Entertainer_Styles.EntertainerID)

 INNER JOIN Musical_Styles

 ON Entertainer_Styles.StyleID =

 Musical_Styles.StyleID

 WHERE Musical_Styles.StyleName IN

 ('Country', 'Country Rock'));

CH18_Agents_Not_Book_Country_CountryRock (3 rows)

AgentID AgtFirstName AgtLastName

2 Scott Bishop

8 Maria Patterson

9 Daffy Dumbwit

 ❖ Note I would expect Daffy Dumbwit to show up in any query that
asks for agents who haven’t booked certain items because this agent
has never booked anything!

School Scheduling Database

“List students who have a grade of 85 or better in both art and com-
puter science.”

 ❖ Note I showed you how to solve this problem in Chapter 8 with an
INNER JOIN of two DISTINCT subqueries. Here’s how to solve it using IN.

❖ Note I would expect Daffy Dumbwit to show up in any query that
asks for agents who haven’t booked certain items because this agent
has never booked anything!

❖ Note I showed you how to solve this problem in Chapter 8 with an
INNER JOIN of two DISTINCT subqueries. Here’s how to solve it using IN.

660 Chapter 18 “NOT” and “AND” Problems

Translation/
Clean Up

Select student ID, student first name, and student last
name from the students table where student ID is in the
(selection of student ID from the student schedules table
inner joined with the classes table on Classes.student ID
in the classes table equals = Student_Schedules.student
ID in the student schedules table, then inner joined with
the subjects table on Subjects.subject ID in the subjects
table equals = Classes.subject ID in the classes styles
table, and then inner joined with the categories table on
Categories.category ID in the categories table equals =
Subjects.category ID in the subjects table where category
description is equal to = ‘art’ and grade is greater than
or equal to >= 85) and student ID is in the (selection of
student ID from the student schedules table inner joined
with the classes table on Classes.student ID in the
classes table equals = Student_Schedules.student ID in
the student schedules table, then inner joined with the
subjects table on Subjects.subject ID in the subjects table
equals = Classes.subject ID in the classes styles table,
and then inner joined with the categories table on Catego-
ries.category ID in the categories table equals = Subjects.
category ID in the subjects table where category descrip-
tion contains LIKE ‘%computer%’ and grade is greater
than or equal to >= 85)

SQL SELECT Students.StudentID,
 Students.StudFirstName, Students.StudLastName

FROM Students

WHERE Students.StudentID IN

 (SELECT Student_Schedules.StudentID

 FROM ((Student_Schedules INNER JOIN Classes

 ON Classes.ClassID =

 Student_Schedules.ClassID)

 INNER JOIN Subjects

 ON Subjects.SubjectID = Classes.SubjectID)

 INNER JOIN Categories

 ON Categories.CategoryID = Subjects.
 CategoryID

 WHERE Categories.CategoryDescription = 'Art'

 AND Student_Schedules.Grade >= 85)

 Sample Statements 661

AND Students.StudentID IN

 (SELECT Student_Schedules.StudentID

 FROM ((Student_Schedules INNER JOIN Classes

 ON Classes.ClassID =

 Student_Schedules.ClassID)

 INNER JOIN Subjects

 ON Subjects.SubjectID = Classes.SubjectID)

 INNER JOIN Categories

 ON Categories.CategoryID = Subjects.
CategoryID

 WHERE Categories.CategoryDescription LIKE

 '%Computer%'

 AND Student_Schedules.Grade >= 85);

CH18_Good_Art_CS_Students_IN (1 row)

StudentID StudFirstName StudLastName

1011 John Kennedy

“Show me students registered for classes for which they have not com-
pleted the prerequisite course.”

 ❖ Note This is an interesting combination of “and” and “not.” The
query needs to compare an unknown number of classes for which a
student has registered with an unknown number of those classes that
have prerequisites for which the student has not previously registered
or completed. (The problem assumes that it’s OK if a student is con-
currently registered for a prerequisite course.)

Let’s restate that so it’s a bit clearer how you should solve this problem.

“Show the students and the courses for which they are registered that
have prerequisites for which there is not a registration for this student
in the prerequisite course (and the student did not withdraw) with a
start date of the prerequisite course that is equal to or earlier than the
current course.”

❖ Note This is an interesting combination of “and” and “not.” The
query needs to compare an unknown number of classes for which a
student has registered with an unknown number of those classes that
have prerequisites for which the student has not previously registered
or completed. (The problem assumes that it’s OK if a student is con-
currently registered for a prerequisite course.)

662 Chapter 18 “NOT” and “AND” Problems

Translation/
Clean Up

Select student ID, student first name, student last name
start date, subject code, subject name, and subject pre-
req from the students table inner joined with the student
schedules table on Students.student ID in the
students table equals = Student_Schedules.student ID in
the student schedules table, then inner joined with the
classes table on Classes.class ID in the classes table
equals = Student_Schedules.class ID in the student
schedules table, and then inner joined with the subjects
table on Subjects.subject ID in the subjects table
equals = Classes.subject ID in the classes table where
subject prereq is not null and subject prereq is not in the
(selection of subject code from the subjects table inner
joined with the classes table aliased as c2 on Subjects.
subject ID in the subjects table equals = C2.subject ID
in the c2 aliased table, and then inner joined with the
student schedules table on C2.class ID in the c2 aliased
table equals = Student_Schedules.class ID in the student
schedules table, and then inner joined with the student
class status table on Student_Schedules.class status in
the student schedules table equals = Student_Class_
Status.class status in the student class status table
where class status description does not equal <> ‘with-
drew’ and Student_Schedules.student ID in the student
schedules table equals = Students.student ID in the
students table and C2.start date in the aliased c2 table
is less than or equal to <= Classes.start date in the
classes table)

SQL SELECT Students.StudentID,

 Students.StudFirstName,

 Students.StudLastName, Classes.StartDate,

 Subjects.SubjectCode, Subjects.SubjectName,

 Subjects.SubjectPreReq

FROM ((Students INNER JOIN Student_Schedules

 ON Students.StudentID =

 Student_Schedules.StudentID)

INNER JOIN Classes

 ON Classes.ClassID =

 Student_Schedules.ClassID)

INNER JOIN Subjects

 ON Subjects.SubjectID = Classes.SubjectID

WHERE Subjects.SubjectPreReq IS NOT NULL

 AND Subjects.SubjectPreReq NOT IN

 Sample Statements 663

 (SELECT Subjects.SubjectCode

FROM ((Subjects INNER JOIN Classes AS C2

 ON Subjects.SubjectID = C2.SubjectID)

INNER JOIN Student_Schedules

 ON C2.ClassID = Student_Schedules.ClassID)

 INNER JOIN Student_Class_Status

 ON Student_Schedules.ClassStatus =

 Student_Class_Status.ClassStatus

 WHERE

 Student_Class_Status.ClassStatusDescription

 <> 'Withdrew'

 AND Student_Schedules.StudentID =

 Students.StudentID

 AND C2.StartDate <= Classes.StartDate);

CH18_Students_Missing_Prerequisites (5 rows)

StudentID StudFirst
Name

StudLast
Name

StartDate Subject
Code

SubjectName Prerequisite

1005 Doris Hartwig 2017-09-11 ENG 102 Composition-
Intermediate

ENG 101

1007 Elizabeth Hallmark 2017-09-11 ENG 102 Composition-

Intermediate

ENG 101

1012 Sarah Thompson 2017-09-11 ENG 102 Composition-

Intermediate

ENG 101

1014 Kendra Bonnicksen 2017-09-11 ENG 102 Composition-

Intermediate

ENG 101

1018 Richard Lum 2017-09-11 ENG 102 Composition-

Intermediate

ENG 101

Bowling League Database

“List the bowlers, the match number, the game number, the handicap
score, the tournament date, and the tournament location for bowlers
who won a game with a handicap score of 190 or less at Thunderbird
Lanes, Totem Lanes, and Bolero Lanes.”

664 Chapter 18 “NOT” and “AND” Problems

 ❖ Note You first need to find all bowlers who won a game with a
handicap score of 190 or less at one of the three locations, then verify
that the bowler ID is also in the list of bowlers who won a game with a
handicap score of 190 or less at each of the three locations. (Remem-
ber, not in (a, b, c) but in (a) AND in (b), AND in (c).)

Translation/
Clean Up

Select bowler ID, bowler first name, bowler last name,
match ID, game number, handicap score, tourney date,
and tourney location from the bowlers table inner joined
with the bowler scores table on Bowlers.bowler ID in the
bowlers table equals = Bowler_Scores.bowler ID in the
bowler scores table, then inner joined with the tourney
matches table on Bowler_Scores.match ID in the bowler
scores table equals = Tourney_Matches.match ID in the
tourney matches table, and then inner joined with
the tournaments table on Tournaments.tourney ID in the
tournaments table equals = Tourney_Matches.tourney ID
in the tourney matches table where handicap score is less
than or equal to <= 190 and won game equals = 1 and
tourney location is in the list (‘Thunderbird Lanes’, ‘Totem
Lanes’, and ‘Bolero Lanes’) and bowler ID is in the (select-
ion of bowler ID from the tournaments table inner joined
with the tourney matches table on Tournaments.tourney
ID in the tournaments table equals = Tourney_Matches.
tourney ID in the tourney matches table, and then inner
joined with the bowler scores table on Tourney_Matches.
match ID in the tourney matches table equals = Bowler_
Scores.match ID in the bowler scores table where won
game equals = 1 and handicap score is less than or equal
to <= 190 and tourney location equals = ‘Thunderbird
Lanes’) and bowler ID is in the (selection of bowler ID
from the tournaments table inner joined with the tourney
matches table on Tournaments.tourney ID in the tourna-
ments table equals = Tourney_Matches.tourney ID in the
tourney matches table, and then inner joined with the
bowler scores table on Tourney_Matches.match ID in
the tourney matches table equals = Bowler_Scores.match
ID in the bowler scores table where won game equals = 1
and handicap score is less than or equal to <= 190 and
tourney location equals = ‘Totem Lanes’) and bowler ID is
in the (selection of bowler ID from the tournaments table
inner joined with the tourney matches table on Tourna-
ments.tourney ID in the tournaments table equals = Tour-
ney_Matches.tourney ID in the tourney matches table,
and then inner joined with the bowler scores table on

❖ Note You first need to find all bowlers who won a game with a
handicap score of 190 or less at one of the three locations, then verify
that the bowler ID is also in the list of bowlers who won a game with a
handicap score of 190 or less at each of the three locations. (Remem-
ber, not in (a, b, c) but in (a) AND in (b), AND in (c).)

 Sample Statements 665

Tourney_Matches.match ID in the tourney matches table
equals = Bowler_Scores.match ID in the bowler scores
table where won game equals = 1 and handicap score is
less than or equal to <= 190 and tourney location equals
= ‘Bolero Lanes’)

SQL SELECT Bowlers.BowlerID, Bowlers.BowlerFirstName,

 Bowlers.BowlerLastName, Bowler_Scores.MatchID,

 Bowler_Scores.GameNumber,

 Bowler_Scores.HandiCapScore,

 Tournaments.TourneyDate,

 Tournaments.TourneyLocation

FROM ((Bowlers INNER JOIN Bowler_Scores

 ON Bowlers.BowlerID = Bowler_Scores.BowlerID)

INNER JOIN Tourney_Matches

 ON Bowler_Scores.MatchID =

 Tourney_Matches.MatchID)

INNER JOIN Tournaments

 ON Tournaments.TourneyID =

 Tourney_Matches.TourneyID

WHERE (Bowler_Scores.HandiCapScore <= 190)

 AND (Bowler_Scores.WonGame = 1

 AND (Tournaments.TourneyLocation IN

 ('Thunderbird Lanes', 'Totem Lanes',

 'Bolero Lanes'))

 AND (Bowlers.BowlerID IN

 (SELECT Bowler_Scores.BowlerID

 FROM (Tournaments INNER JOIN Tourney_Matches

 ON Tournaments.TourneyID =

 Tourney_Matches.TourneyID)

 INNER JOIN Bowler_Scores

 ON Tourney_Matches.MatchID =

 Bowler_Scores.MatchID

 WHERE Bowler_Scores.WonGame = 1

 AND Bowler_Scores.HandiCapScore <=190

 AND Tournaments.TourneyLocation =

 'Thunderbird Lanes'))

666 Chapter 18 “NOT” and “AND” Problems

 AND (Bowlers.BowlerID IN

 (SELECT Bowler_Scores.BowlerID

 FROM (Tournaments INNER JOIN Tourney_Matches

 ON Tournaments.TourneyID =

 Tourney_Matches.TourneyID)

 INNER JOIN Bowler_Scores

 ON Tourney_Matches.MatchID =

 Bowler_Scores.MatchID

 WHERE Bowler_Scores.WonGame = 1

 AND Bowler_Scores.HandiCapScore <=190

 AND Tournaments.TourneyLocation =

 'Totem Lanes'))

 AND (Bowlers.BowlerID IN

 (SELECT Bowler_Scores.BowlerID

 FROM (Tournaments INNER JOIN Tourney_Matches

 ON Tournaments.TourneyID =

 Tourney_Matches.TourneyID)

 INNER JOIN Bowler_Scores

 ON Tourney_Matches.MatchID =

 Bowler_Scores.MatchID

 WHERE Bowler_Scores.WonGame = 1

 AND Bowler_Scores.HandiCapScore <=190

 AND Tournaments.TourneyLocation =

 'Bolero Lanes'));

CH18_Bowlers_Won_LowScore_TBird_Totem_Bolero_RIGHT (11 rows)

Bowler
ID

Bowler
FirstName

Bowler
LastName

Match
ID

Game
Number

HandiCap
Score

Tourney
Date

Tourney
Location

13 Elizabeth Hallmark 10 1 189 2017-09-18 Bolero Lanes

13 Elizabeth Hallmark 24 3 190 2017-10-09 Totem Lanes

13 Elizabeth Hallmark 34 1 189 2017-10-30 Thunderbird
Lanes

19 John Viescas 7 3 185 2017-09-11 Thunderbird
Lanes

 Sample Statements 667

Bowler
ID

Bowler
FirstName

Bowler
LastName

Match
ID

Game
Number

HandiCap
Score

Tourney
Date

Tourney
Location

19 John Viescas 12 1 181 2017-09-18 Bolero Lanes

19 John Viescas 36 1 179 2017-10-30 Thunderbird
Lanes

19 John Viescas 52 2 185 2017-11-27 Totem Lanes

25 Megan Patterson 7 1 188 2017-09-11 Thunderbird
Lanes

25 Megan Patterson 21 1 189 2017-10-09 Totem Lanes

25 Megan Patterson 35 1 187 2017-10-30 Thunderbird
Lanes

25 Megan Patterson 39 2 181 2017-11-06 Bolero Lanes

 ❖ Note You can also find the incorrect IN solution saved as CH18_
Bowlers_Won_LowScore_TBird_Totem_Bolero_WRONG in the Bowling
League sample database.

“Show me the bowlers who have not bowled a raw score better than
165 at Thunderbird Lanes and Bolero Lanes.”

Translation/
Clean Up

Select bowler ID, bowler last name, and bowler first
name from the bowlers table where bowler ID is not in
the (selection of bowler ID from the tournaments table
inner joined with the tourney matches table on Tour-
naments.tourney ID in the tournaments table equals =
Tourney_Matches.tourney ID in the tourney matches
table, then inner joined with the bowler scores table on
Tourney_Matches.match ID in the tourney matches
table equals = Bowler_Scores.match ID in the bowler
scores table where raw score is greater than > 165 and
tourney location is in the list of (‘Thunderbird Lanes’,
and ‘Bolero Lanes))

SQL SEL ECT Bowlers.BowlerID, Bowlers.

 BowlerLastName, Bowlers.BowlerFirstName

FROM Bowlers

WHERE Bowlers.BowlerID NOT IN

(SELECT Bowler_Scores.BowlerID

❖ Note You can also find the incorrect IN solution saved as CH18_
Bowlers_Won_LowScore_TBird_Totem_Bolero_WRONG in the Bowling
League sample database.

668 Chapter 18 “NOT” and “AND” Problems

FROM (Tournaments INNER JOIN Tourney_Matches

 ON Tournaments.TourneyID =

 Tourney_Matches.TourneyID)

 INNER JOIN Bowler_Scores

 ON Tourney_Matches.MatchID =

 Bowler_Scores.MatchID

WHERE (Bowler_Scores.RawScore > 165)

 AND (Tournaments.TourneyLocation IN

 ('Thunderbird Lanes', 'Bolero Lanes')))

CH18_Bowlers_LTE_165_Thunderbird_Bolero (15 rows)

BowlerID BowlerLastName BowlerFirstName

1 Fournier Barbara

4 Sheskey Sara

5 Patterson Ann

8 Viescas Stephanie

9 Black Alastair

12 Viescas Carol

13 Hallmark Elizabeth

16 Sheskey Richard

17 Hernandez Kendra

20 Viescas Suzanne

<< more rows here >>

Recipes Database

“Display the ingredients that are not used in the recipes for Irish Stew,
Pollo Picoso, and Roast Beef.”

Translation/
Clean Up

Select ingredient ID, and ingredient name from the
ingredients table where ingredient ID is not in the
(selection of ingredient ID from the recipe ingredients
table inner joined with the recipes table on Recipe_
Ingredients.recipe ID in the recipe ingredients table
equals = Recipes.recipe ID in the recipes table where
recipe title is in the list of (‘Irish Stew’, ‘Pollo Picoso’,
and ‘Roast Beef’))

 Sample Statements 669

SQL SELECT Ingredients.IngredientID,

 Ingredients.IngredientName

FROM Ingredients

WHERE Ingredients.IngredientID NOT IN

 (SELECT Recipe_Ingredients.IngredientID

 FROM Recipe_Ingredients INNER JOIN Recipes

 ON Recipe_Ingredients.RecipeID =

 Recipes.RecipeID

 WHERE RecipeTitle IN

 ('Irish Stew', 'Pollo Picoso', 'Roast Beef'))

CH18_Ingredients_NOTIN_IrishStew_PolloPicoso_RoastBeef (67 rows)

IngredientID IngredientName

7 Tomato

8 Jalapeno

12 Halibut

13 Chicken, Fryer

14 Bacon

15 Romaine Lettuce

16 Iceberg Lettuce

17 Butterhead Lettuce

18 Scallop

19 Salmon

<< more rows here >>

“List the pairs of recipes where both recipes have at least the same
three ingredients.”

 ❖ Note This is similar to the query I showed you earlier matching
customers and entertainers who play all the customer’s preferred
styles. Do you suppose you need two copies of the recipes and recipe
ingredients tables?

❖ Note This is similar to the query I showed you earlier matching
customers and entertainers who play all the customer’s preferred
styles. Do you suppose you need two copies of the recipes and recipe
ingredients tables?

670 Chapter 18 “NOT” and “AND” Problems

Translation/
Clean Up

Select Recipes.recipe ID and Recipes.recipe title in the
first copy of the recipes table and R2.recipe ID AS R2ID
and R2.recipe title AS R2Title in the second copy of the
recipes table, and the count of (Recipe_Ingredients.recipe
ID) AS CountOfRecipeID in the first copy of the recipe
ingredients table from the recipes table inner joined with
the recipe ingredients table on Recipes.recipe ID in the
recipes table equals = Recipe_Ingredients.recipe ID in
the recipe ingredients table, then inner joined with the
second copy of the recipe ingredients table AS RI2 on Rec-
ipe_Ingredients.ingredient ID in the recipe ingredients
table equals = RI2.ingredient ID in the second copy of the
recipe ingredients table, then inner joined with the second
copy of the recipes table AS R2 on R2.recipe ID in the
second copy of the recipes table equals = RI2.recipe ID in
the second copy of the recipe ingredients table where RI2.
recipe ID in the second copy of the recipe ingredients table
is greater than > Recipes.recipe ID in the first copy of the
recipes table, grouped by Recipes.recipe ID in the first
copy of the recipes table, Recipes.recipe title in the first
copy of the recipes table, R2.recipe ID in the second copy
of the recipes table, and R2.recipe title in the second copy
of the recipes table, and having the count of matching
(Recipe_Ingredients.ingredient ID) in the recipe ingredi-
ents table greater than > 3

SQL SELECT Recipes.RecipeID, Recipes.RecipeTitle,

 R2.RecipeID AS R2ID, R2.RecipeTitle AS R2Title,

 Count(Recipe_Ingredients.RecipeID)

 AS CountOfRecipeID

FROM ((Recipes INNER JOIN Recipe_Ingredients

 ON Recipes.RecipeID =

 Recipe_Ingredients.RecipeID)

INNER JOIN Recipe_Ingredients AS RI2

 ON Recipe_Ingredients.IngredientID =

 RI2.IngredientID)

INNER JOIN Recipes AS R2

 ON R2.RecipeID = RI2.RecipeID

WHERE RI2.RecipeID > Recipes.RecipeID

GROUP BY Recipes.RecipeID, Recipes.RecipeTitle,

 R2.RecipeID, R2.RecipeTitle

HAVING Count(Recipe_Ingredients.RecipeID) >= 3;

 Summary 671

CH18_Recipes_AtLeast_3_Same_Ingredients (4 rows)

RecipeID RecipeTitle R2ID R2Title CountOf
RecipeID

2 Salsa Buena 11 Huachinango Veracruzana
(Red Snapper, Veracruz style

3

2 Salsa Buena 13 Tourtière (French-Canadian
Pork Pie)

3

6 Pollo Picoso 9 Roast Beef 3

11 Huachinango Veracruzana
(Red Snapper, Veracruz
style)

13 Tourtière (French-Canadian
Pork Pie)

4

 ❖ Note I threw in the check to make sure the ID of the second recipe
is always higher than the ID of the first so that I don’t get a pair of
recipes listed twice. Following the SQL Standard, I could have put that
filter in the JOIN on the two copies of the Recipe_Ingredients tables,
but I chose to put the filter in the WHERE clause to ensure compati-
bility with most database systems.

Summary

I began the chapter with a review of sets to help you get a picture of
how you go about solving problems that involve multiple “not” and “and”
criteria. I then followed that with an extensive review of four different
ways to approach solving problems with multiple “not” criteria, including
OUTER JOIN, NOT IN, NOT EXISTS, and GROUP BY/HAVING.

I then covered four different ways to think about solving problems with
multiple “and” criteria: INNER JOIN, IN, EXISTS, and GROUP BY/
HAVING. To help cement the concepts, I provided five sets of sample
statements for each of the sample databases. I was careful to include one
“and” example and one “not” example for each sample database.

The following section presents several requests that you can work out on
your own.

❖ Note I threw in the check to make sure the ID of the second recipe
is always higher than the ID of the first so that I don’t get a pair of
recipes listed twice. Following the SQL Standard, I could have put that
filter in the JOIN on the two copies of the Recipe_Ingredients tables,
but I chose to put the filter in the WHERE clause to ensure compati-
bility with most database systems.

672 Chapter 18 “NOT” and “AND” Problems

Problems for You to Solve

Below, I show you the request statement and the name of the solution
query in the sample databases. If you want some practice, you can work
out the SQL you need for each request and then check your answer with
the query I saved in the samples. Don’t worry if your syntax doesn’t
exactly match the syntax of the queries I saved—as long as your Result
Set is the same.

Sales Order Database

 1. “Display the customers who have never ordered bikes or tires.”

I showed you how to solve this earlier using NOT IN on multiple
subqueries. Can you figure out a way to solve it more simply using
NOT IN? You can find the solution in CH18_Customers_Not_
Bikes_Or_Tires_NOTIN_1 (2 rows).

 2. “List the customers who have purchased a bike but not a helmet.”

First, solve this problem using EXISTS and NOT EXISTS. The
solution is in CH18_Cust_Bikes_No_Helmets_EXISTS (2 rows). For
extra credit, solve the problem using IN and NOT IN. You can find
the solution in CH18_Customer_Bikes_No_Helmets (2 rows).

 3. “Show me the customer orders that have a bike but do not have a
helmet.”

This might seem to be the same as problem 2 above, but it’s not.
Show me the orders, not the customers. Solve it using EXISTS
and NOT EXISTS. You can find the solution in CH18_Orders_
Bikes_No_Helmet_EXISTS (402 rows).

 4. “Display the customers and their orders that have a bike and a
helmet in the same order.”

Solve this problem using EXISTS. You can find the solution in
CH18_Customers_Bikes_And_Helmets_Same_Order (184 rows).

 5. “Show the vendors who sell accessories, car racks, and clothing.”

Solve this problem using IN. You can find the solution in CH18_
Vendors_Accessories_CarRacks_Clothing (3 rows).

 Problems for You to Solve 673

Entertainment Database

 1. “List the entertainers who play the Jazz, Rhythm and Blues, and
Salsa styles.”

Solve the problem using IN, but be careful to not take the easy
way out! You can find the solution in CH18_Entertainers_Jazz_
RhythmBlues_Salsa_IN (1 row). CH18_Entertainers_Jazz_
RhythmBlues_Salsa_IN_WRONG shows you the incorrect IN
solution (4 rows). For extra credit, solve the problem using GROUP
BY and HAVING. You can find the solution in CH18_Entertainers_
Jazz_RhythmBlues_Salsa_HAVING (1 row).

 2. “Show the entertainers who did not have a booking in the 90 days
preceding May 1, 2018.”

You can solve this problem using NOT IN, but be careful to
use the date and time function appropriate for your database
system. You can find the solution in CH18_Entertainers_Not_
Booked_90Days_Before_May1_2018 (2 rows).

 3. “Display the customers who have not booked Topazz or Modern
Dance.”

You can solve this problem in a couple of different ways using
NOT IN. You can find one solution in CH18_Customers_Not_
Booked_Topazz_Or_ModernDance (6 rows).

 4. “List the entertainers who have performed for Hartwig, McCrae, and
Rosales.”

There are several ways to solve this. You can find the solution
using EXISTS in CH18_Entertainers_Hartwig_McCrae_AND_
Rosales_EXISTS (2 rows).

 5. “Display the customers who have never booked an entertainer.”
“Show the entertainers who have no bookings.”

You can solve both problems using a simple NOT IN. You can find
the solutions in CH18_Customers_No_Bookings_NOT_IN (2 rows),
and CH18_Entertainers_Never_Booked_NOT_IN (1 row).

School Scheduling Database

 1. “Show students who have a grade of 85 or better in both Art and
Computer Science.”

I showed you earlier how to solve this problem using IN. Now solve
it using EXISTS. You can find the solution in CH18_Good_Art_
CS_Students_EXISTS (1 row).

674 Chapter 18 “NOT” and “AND” Problems

 2. “Display the staff members who are teaching classes for which they
are not accredited.”

The trick is to find rows in the faculty classes table that are not in
the faculty subjects table.

You can find the solution in CH18_Staff_Teaching_NonAccredited_
Classes (4 rows).

 3. “List the students who have passed all completed classes with a
grade of 80 or better.”

As you might suspect, this is best done with GROUP BY and
HAVING. You can find the solution in CH18_Students_Passed_
All_Grade_GTE_80 (3 rows).

 4. Solve three of the following simple NOT problems: “Find classes
with no students.” “Display staff members not teaching.” “Show
which students have never withdrawn.” “List students not currently
enrolled.” “Find subjects that have no faculty assigned.”

You can find the solutions in: CH18_Classes_No_Students_
Enrolled_NOT_IN (118 rows), CH18_Staff_Not_Teaching_EXISTS
(5 rows), CH18_Students_Never_Withdrawn_EXISTS (16 rows),
CH18_Students_Not_Currently_Enrolled_NOT_IN (2 rows), and
CH18_Subjects_No_Faculty_NOT_IN (1 row).

Bowling League Database

 1. “Display the bowlers who have never bowled a raw score greater
than 150.”

You can find one way to solve this in CH18_Mediocre_Bowlers
(7 rows).

 2. “Show the bowlers who have a raw score greater than 170 at both
Thunderbird Lanes and Bolero Lanes.”

I have shown you how to solve this using an INNER JOIN of
SELECT DISTINCT queries. Now solve it using EXISTS. You can
find the solution in CH18_Good_Bowlers_TBird_And_Bolero_
EXISTS (11 rows).

 3. “List the tournaments that have not yet been played.”

This is an easy one to solve using NOT IN. You can find the
solution in CH18_Tourney_Not_Yet_Played_NOT_IN (6 rows).

 Problems for You to Solve 675

Recipes Database

 1. “Show me the recipes that have beef and garlic.”

Solve the problem this time using EXISTS. You can find the
solution in CH18_Recipes_Beef_And_Garlic (1 row).

 2. “List the recipes that have beef, onion, and carrot.”

This time, solve the problem using IN, but do it carefully! You can
find the solution in CH18_Recipes_Beef_Onion_Carrot (1 row).

 3. “Which recipes use no dairy products (cheese, butter, dairy)?”

Solve this using NOT IN, but be careful you do it correctly. You
can find the correct solution in CH18_Recipes_No_Dairy_RIGHT
(10 rows). If you did it incorrectly, your solution might look like
CH18_Recipes_No_Dairy_WRONG (15 rows).

 4. Solve both of the following using NOT IN: “Display ingredients
not used in any recipe.” “Show recipe classes for which there is no
recipe.”

You can find the solution in CH18_Ingredients_No_Recipe
(20 rows) and CH18_Recipe_Classes_No_Recipes_NOT_IN (1 row).

This page intentionally left blank

 677

19
Condition Testing

“The only real mistake is the one from which we learn nothing.”
—JOHN POWELL

Topics Covered in This Chapter

Conditional Expressions (CASE)

Solving Problems with CASE

Sample Statements

Summary

Problems for You to Solve

You might remember that way back in Chapter 4, “Creating a Simple
Query,” I explained the difference between data and information. You
store data in the rows and columns in your tables, but you often need
a query to turn that data into useful information. Sometimes, turning
data into information requires you to perform complex calculations or
transformations of your data to get what you want. It could be some-
thing as simple as formatting a salutation for the name line of address
labels. Or, you might need to use a complex mathematical expression.
When the “calculation” of information you want is based on the values
you find in columns not related to your final expression, you need to
be able to perform some “If . . . Then . . . Else” sorts of comparisons to
create the correct expression. I’ll show you how to solve these types of
 problems in this chapter.

678 Chapter 19 Condition Testing

Conditional Expressions (CASE)

When you need to test the data in one column to determine how to handle
data in another column, you need to be able to say something like “If the
value in column ‘a’ is ‘x’, then return expression ‘y’, else return expression
‘z’.” The SQL Standard provides a handy syntax to accomplish this: CASE.

Why Use CASE?

Because systems to express a set of values are all man-made and have
evolved over time, there are many different way to measure, weigh, or
express values in your data. Is the distance measure in feet and inches
or in centimeters? Is the temperature expressed as Celsius or Fahren-
heit? Is the weight in pounds or kilograms? Some man-invented systems
are bizarre, indeed: The Gregorian calendar that most people use to
mark the passage of time has 28, 29, 30, or 31 days in a month, and a
year can have 365 or 366 days!

You’ll also often encounter a case where your table is designed with
 columns containing code values to represent certain information. A very
common example is using “M” or “F” to indicate gender. A database that
contains numerical values from multiple different systems might have
a column to tell you whether the reading is in Celsius (“C”) or Fahren-
heit (“F”), or the distance is in meters (“M”) or the Imperial inches and
feet (“I”). Sometimes, the indication is within the data value itself. For
example in a system handling money, a negative number indicates a
“debit” whereas a positive number indicates a “credit.” Other times, the
method to decode a value is embedded in the format of the data itself—
any month, day, and year value is, by definition, using the bizarre Gre-
gorian system. Remember that in Chapter 5, “Getting More Than Simple
Columns,” I showed you a primitive way to calculate years of service that
will be correct for most cases. I also promised to show you the accurate
way to do it in this chapter. As always, I keep my promises!

All these situations require that you perform some sort of test to dis-
cover the correct expression you need to use to fetch the information you
want. CASE is the solution for all these problems and more.

Syntax

Let’s dig right in and explore the syntax for a CASE expression. First, let’s
look at where you can use it. Figure 19-1 shows you the diagram for Value
Expression, which is the one place where you can use a CASE expression.

 Conditional Expressions (CASE) 679

That might seem fairly limiting at first glance, but remember that you can
use a Value Expression in many places. You can use a Value Expression
in the list of items you want returned in the SELECT clause. You can also
use it in a predicate in any Search Condition that you can use in the ON
clause of a JOIN, a WHERE clause, or a HAVING clause. Now let’s exam-
ine the syntax of a CASE Expression. Figure 19-2 shows you the diagram.

Value Expression

+, - Date / Time

Expression
Types

Valid
Operators

Character ||

Numeric +, -, *, /

Interval +, -, *, / # Scalar value only

+
-

+
-
*
/
||

Value Expression

Literal Value

Column Reference

Function

(SELECT Expression)#

(Value Expression)

CASE Expression

Figure 19-1 A diagram of a Value Expression

CASE Expression

Simple When Clause

Searched When Clause

WHEN
NULL

Value Expression Value Expression THEN Value Expression

WHEN

NULL

Search Condition THEN Value Expression

CASE Simple When Clause END

Searched When Clause NULL
Value Expression

ELSE

Figure 19-2 The diagram for the CASE Expression

680 Chapter 19 Condition Testing

A CASE Expression actually has two forms:

• Simple: In the Simple version, you use the keyword CASE and
immediately follow the keyword with the Value Expression (which
can include another CASE Expression) that you want to test. You
can then write multiple WHEN/THEN clauses to compare the Value
Expression to one or more single values and specify what Value
Expression should be returned “when” the value expression in the
WHEN clause has a value equal to the Value Expression you spec-
ified after the CASE keyword. Note that this is simply an equals
test. And if none of your WHEN cases qualify, you can optionally
specify an ELSE clause at end to provide a value or NULL.

• Searched: If you want to perform a more complex comparison
test, such as greater than, less than, IN, BETWEEN, or EXISTS,
you must use the Searched form of the CASE Expression. In the
Searched form, you immediately follow the CASE keyword with
one or more WHEN/THEN clauses. In this form, you can specify
a Search Condition after the WHEN keyword to perform any sort
of complex comparison of values, including using a subquery to
fetch related data from another table. For review, let’s take a look
at Search Condition and Predicate again. Note that for both Simple
and Searched CASE expressions, evaluation of the expression ends
when your database system finds the first WHEN clause that is
true. As with Simple CASE expressions, you can optionally provide
an ELSE value to return if none of your WHEN conditions are true.
Figure 19-3 shows you the diagram for Search Condition.

NOT

AND

OR

Search Condition

(Search Condition) IS

NOT

TRUE

FALSE

UNKNOWN

Predicate

Figure 19-3 The diagram of a Search Condition

Note that you do not need to include the IS [NOT] TRUE/FALSE/
UNKNOWN portion because your database automatically evaluates the
THEN expression when your Search Condition is true. Figures 19-4 and
19-5 show you the diagrams for a Predicate.

 Conditional Expressions (CASE) 681

Figure 19-4 The diagram of a Predicate: Part 1 of 2

682 Chapter 19 Condition Testing

Predicate (cont.)

Null

Value Expression NULL

NOT

IS

Quantified

Value Expression =
<>
<
>
<=
>=

ALL

ANY

SOME

(SELECT Expression)

Existence

(SELECT Expression)EXISTS

ESCAPE character

Pattern Match

Value Expression LIKE

NOT

pattern_string

Set Membership

Value Expression IN

NOT

(SELECT Expression)

(Value Expression)
,

Figure 19-5 The diagram of a Predicate: Part 2 of 2

As you can see, the options you can include in a Search Condition that
you specify after a WHEN keyword are very extensive. The ability to use
a SELECT Expression that returns one or more values from another
related table is particularly powerful.

In the following section, I’ll explore and explain several examples that
show you ways you can use a CASE Expression.

 Solving Problems with CASE 683

Solving Problems with CASE

Let’s take a look at some real-world examples from the School Schedul-
ing sample database. In the following sections, I’ll show you how to con-
struct Simple CASE and Searched CASE expressions. In the last section,
I’ll also show you a simple example of using CASE in a WHERE clause.

 ❖ Note Throughout this chapter, I use the “Request/Translation/
Clean Up/SQL” technique introduced in Chapter 4, “Creating a Simple
Query.” Because this process should now be very familiar to you,
I have combined the Translation/Clean Up steps for all the following
examples to simplify the process.

Solving Problems with Simple CASE

“Simple” CASE is called that because it’s, well, very simple. You specify
an expression that you want tested, and in the WHEN clauses list values
to which you want the expression compared. If the comparison is equal,
the CASE Expression returns the expression you specified in the THEN
clause. If none of the values are equal, you can also specify an ELSE
clause to return an expression.

One common way to use Simple CASE is to examine a code value in
a column and transform it into something more meaningful. Suppose
you have a column in a table about people that indicates the person’s
gender. A database designer might define such a column—an efficiently
stored single character—to store the values “M” or “F” to indicate Male
or Female, respectively. In a report, most people would understand see-
ing the M or F, but wouldn’t it be nice to spell it out? Here’s how to do it
using CASE and the rows from the Students table:

“Prepare a list of IDs, student names, and the gender of the student
spelled out.”

Clearly, you need to use CASE and the name of the Gender column, then
compare to the valid codes using WHEN and return out the equivalent
word using THEN. Just for safety, let’s include an ELSE clause in case I
encounter any rows with no value in the Gender column.

❖ Note Throughout this chapter, I use the “Request/Translation/
Clean Up/SQL” technique introduced in Chapter 4, “Creating a Simple
Query.” Because this process should now be very familiar to you,
I have combined the Translation/Clean Up steps for all the following
examples to simplify the process.

684 Chapter 19 Condition Testing

Translation/
Clean Up

Select student ID, student first name, student last name,
and (CASE gender when the gender code is ‘M’, then
 display ‘Male’, when the gender code is ‘F’, then display
‘Female’, and else display ‘Not Specified’ END) from the
students table

SQL SELECT StudentID, StudFirstName, StudLastName,

 (CASE StudGender WHEN 'M' THEN 'Male'

 WHEN 'F' THEN 'Female'

 ELSE 'Not Specified' END) AS Gender

FROM Students

 ❖ Note Although the SQL Standard doesn’t require parentheses
around the CASE expression, I found that both Microsoft SQL Server
and MySQL didn’t understand the clause without the parentheses.
It never hurts to add parentheses to make it crystal clear what you
intend, so I added them in all my examples.

Also, Microsoft Office Access does not support CASE at all.
Access does have a built-in function (Immediate If or IIf) that serves
a similar purpose. If you look at the examples in the Access data-
bases, you’ll find I used IIf as a way to solve the problem in a similar
fashion. I recommend you reference the examples in Microsoft SQL
Server, MySQL, and PostgreSQL to see examples that follow the SQL
Standard.

You can find this query in the School Scheduling sample database saved
as CH19_Student_Gender.

Now let’s look at an example of using Simple CASE that’s a bit more
complex. In Chapter 15, “Updating Sets of Data,” I showed you how to
calculate and update each student’s current grade point average (GPA)
using information from the Classes and Student Schedules tables. I
commented at the time that the sample queries use functions specific
to each database (NZ in Access, IsNull in SQL Server, IfNull in MySQL,
and COALESCE in PostgreSQL) to avoid a divide by zero problem when
I encounter a student who has not completed any courses. I noted that I
would show you how to avoid this problem using CASE, and, as always, I
keep my promises.

❖ Note Although the SQL Standard doesn’t require parentheses
around the CASE expression, I found that both Microsoft SQL Server
and MySQL didn’t understand the clause without the parentheses.
It never hurts to add parentheses to make it crystal clear what you
intend, so I added them in all my examples.

Also, Microsoft Office Access does not support CASE at all.
Access does have a built-in function (Immediate If or IIf) that serves
a similar purpose. If you look at the examples in the Access data-
bases, you’ll find I used IIf as a way to solve the problem in a similar
fashion. I recommend you reference the examples in Microsoft SQL
Server, MySQL, and PostgreSQL to see examples that follow the SQL
Standard.

 Solving Problems with CASE 685

Just for review, here’s the problem from Chapter 15:

“Modify the students table by setting the grade point average to the
sum of the credits times the grade divided by the sum of the credits.”

Translation/
Clean Up

Update the students table by setting the student GPA
equal to = the (selection of the sum of (credits times *
grade) divided by / the sum of (credits) from the classes
table inner joined with the student schedules table on
Classes.class ID in the classes table matches = Student_
Schedules.class ID in the student schedules table where
the class status is = complete 2 and the student schedules
table student ID is equal to = the students table student ID)

SQL UPDATE Students

SET Students.StudGPA =

 (SELECT ROUND(SUM(Classes.Credits *

 Student_Schedules.Grade) /

 SUM(Classes.Credits), 3)

 FROM Classes

 INNER JOIN Student_Schedules =

 ON Classes.ClassID

 Student_Schedules.ClassID

 WHERE (Student_Schedules.ClassStatus = 2)

 AND (Student_Schedules.StudentID =

 Students.StudentID))

What I want to do is avoid performing a divide by SUM(Classes.Credits)
when the student has completed no classes. The sum would be 0, and a
divide by 0 would normally generate an error. Because there is no GPA
field in the Students table in the Example database (there is one in the
Modify version that allows me to run an UPDATE), let’s solve this as a
simple query. Figure 19-6 shows you the tables you need.

Just for fun, let’s be a little more stringent this time and declare that
a student not only has to have completed the class but also must have
passed the class with a grade of 67 or better. (“Completed” but with a
grade of 50 shouldn’t get credit!) I want to list all students, so let’s cre-
ate a subquery on the Classes, Student_Schedules, and Student_Class_
Status tables and then OUTER JOIN that with the Students table.

686 Chapter 19 Condition Testing

STUDENT_SCHEDULES

ClassID CPK
StudentID CPK
ClassStatus FK
Grade

STUDENTS

StudentID PK
StudFirstName
StudLastName
StudStreetAddress
StudCity
StudState
StudZipCode

StudPhoneNumber
StudAreaCode

StudBirthDate
StudGender
StudMaritalStatus
StudMajor

CLASSES

ClassID PK
SubjectID FK
ClassRoomID FK

StartTime
Duration
MondaySchedule
TuesdaySchedule
WednesdaySchedule
ThursdaySchedule
FridaySchedule
SaturdaySchedule

StartDate
Credits

STUDENT_CLASS_STATUS

ClassStatus PK
ClassStatusDescription

Figure 19-6 Tables you need to calculate a student’s grade point average (GPA)

Because you need to SUM credits times grade and divide by the sum of
credits, you’ll need a GROUP BY clause. To avoid a divide by zero, you
need to count some field in the subquery (all fields returned by the sub-
query will be Null if any student failed to complete and pass any course)
and use CASE to see if the result is 0. Let’s put the query together:

“Display for all students the Student ID, first name, last name, the
number of classes completed, the total credits, and the grade point
average for classes that were completed with a grade of 67 or better.”

Translation/
Clean Up

Select student ID, student first name, student last name, the
count of (student ID), the sum of (credits), and CASE when the
count of (student ID) is WHEN 0, then return 0, else return
the sum of (credits times the * grade) divided by / the sum of
(credits) from the students table left joined with the (selection of
student ID, grade, and credits from the student schedules table
inner joined with the student class status table on Student_
Schedules.class status in the student schedules table matches
= Student_Class_Status.class status in the student class status
table, then inner joined with the classes table on Student_
Schedules.class ID in the student schedules table matches =
Classes.class ID in the classes table where the class status
description equals = ‘Completed’ and the grade is greater
than or equal to >= 67) AS SClasses on Students.student ID
in the students table matches = SClasses.student ID in the
 selection grouped by student ID, student first name, and
 student last name

 Solving Problems with CASE 687

SQL SELECT Students.StudentID, Students.StudFirstName,

 Students.StudLastName,

 COUNT(SClasses.StudentID) AS NumberCompleted,

 SUM(SClasses.Credits) AS TotalCredits,

 (CASE COUNT(SClasses.StudentID)

 WHEN 0 THEN 0

 ELSE ROUND(SUM(SClasses.Credits * SClasses.Grade)

 / SUM(SClasses.Credits), 3) END) AS GPA

FROM Students LEFT OUTER JOIN

 (SELECT Student_Schedules.StudentID,

 Student_Schedules.Grade, Classes.Credits

 FROM (Student_Schedules INNER JOIN

 Student_Class_Status

 ON Student_Schedules.ClassStatus =

 Student_Class_Status.ClassStatus)

 INNER JOIN Classes

 ON Student_Schedules.ClassID =

 Classes.ClassID

 WHERE

 (Student_Class_Status.ClassStatusDescription =

 'Completed')

 AND (Student_Schedules.Grade >= 67))

 AS SClasses

ON Students.StudentID = SClasses.StudentID

GROUP BY St udents.StudentID, Students.StudFirstName,
Students.StudLastName;

Should there be a student who has not completed and passed a class,
the number of classes, credits, and grade point average will all be
zero for that student. I avoid a divide by zero problem using absolutely
 standard SQL—I don’t have to depend on a non-standard function in the
database system. I saved this example in the school scheduling example
database as CH19_Student_GPA_Avoid_0_Passed.

688 Chapter 19 Condition Testing

Solving Problems with Searched CASE

If you think using Simple CASE is a bit mind twisting, you’re in for a
whole lot of fun getting familiar with Searched CASE. With Simple
CASE, all you can logically perform is simple equal comparisons (maybe
that’s why they call it “simple”). Searched CASE, on the other hand, lets
you perform multiple complex comparisons on different fields and even
subqueries. Basically, anything you can specify in a Search Condition
in the ON clause of a JOIN, a WHERE clause, or a HAVING clause is fair
game. Let’s work through a couple of problems that require you to use
Searched CASE to solve them.

Remember in Chapter 5 I showed you how to calculate a staff member’s
full years of service as of a certain date by finding the difference in days
between the date hired and the target date and then dividing by 365
days in a year. I warned you that the calculation is imprecise because
it doesn’t account for the leap years between the two dates. In fact, the
answer will be incorrect by one day for each intervening leap year. This
matters only when the month and day of the date hired is close to the
month and day of the target date, so most of the time, dividing by 365
will give you the correct answer.

I also promised you that I would show you how to perform the calcula-
tion exactly using CASE. Basically, you need to subtract the year of the
date hired from the year of the target date, then adjust the value by one
year if the month and day of the hired date fall later in the year than the
month and date of the target date. The idea is you don’t want to give a
year’s credit to a staff member whose anniversary date hasn’t occurred
yet in the target year. (You want to calculate only full years of service.)

So, you can imagine that you start with the difference between the two
years, then subtract 1 if the month of the date hired is greater than
the month of the target date or the month of the date hired is equal to
the month of the target date but the day of the date hired is later in that
month. The calculation looks like the following:

Years of service = ((year of target) - (year of date hired)) –
 (If month of date hired < month of target then 0
 If month of date hired > month of target then 1
 If month of date hired = month of target and
 day of date hired > target then 1
 Else 0)

 Solving Problems with CASE 689

What I need to do is convert the “If . . . Then . . . Else” part of the preced-
ing calculation into a Searched CASE statement. Here’s how to do it:

“For all staff members, list staff ID, first name, last name, date hired,
and length of service in complete years as of October 1, 2017, sorted by
last name and first name.”

Translation/
Clean Up

Select staff ID, staff first name, staff last name, date hired,
and calculate the year of the date (2017-10-1) minus the -
year of the (date hired) minus - (CASE when the month of
the (date hired) is less than < 10 then 0, when the month
of the (date hired) is greater than > 10 then 1, and when
the day of the (date hired) is greater than > 1 then 1 else 0
END) as the length of service from the staff table ordered
by staff last name, and staff first name

SQL SELECT StaffID, StfFirstName, StfLastname,

 YEAR(CAST('2017-10-01' As Date))

 - YEAR(DateHired) -

 - CASE WHEN Month(DateHired) < 10

 THEN 0

 WHEN Month(DateHired) > 10

 THEN 1

 WHEN Day(DateHired) > 1

 THEN 1

 ELSE 0 END) AS LengthOfService

FROM Staff

ORDER BY StfLastName, StfFirstName;

 ❖ Note Nearly all database systems have built-in YEAR, MONTH, and
DAY functions (in Oracle use EXTRACT) to obtain the year part of a
date, so I decided to use these functions in my example even though
they are not specifically defined in the SQL Standard. Also, because I
know the “target” date that I want, I directly coded the values 10 and
1 in the CASE statement. If you were using something like today’s
date from your database system, you would have to extract the month
and day parts to do the comparison.

I saved this query as CH19_Length_Of_Service in the School Scheduling
sample database. If you open this query and CH05_Length_Of_Service

❖ Note Nearly all database systems have built-in YEAR, MONTH, and
DAY functions (in Oracle use EXTRACT) to obtain the year part of a
date, so I decided to use these functions in my example even though
they are not specifically defined in the SQL Standard. Also, because I
know the “target” date that I want, I directly coded the values 10 and
1 in the CASE statement. If you were using something like today’s
date from your database system, you would have to extract the month
and day parts to do the comparison.

690 Chapter 19 Condition Testing

side by side, you’ll find that the answer for years of service for Jeffrey Smith
is one year less in the accurate CASE example. Jeffrey Smith’s date hired
is October 6, 1991—five days later than the target date. The error occurs
because there were more than six leap years between 1991 and 2017.

You might be wondering why I didn’t explicitly test for month equals 10.
Remember that your database system keeps evaluating the WHEN
clauses until it finds the first one that is true. If month isn’t less than 10
and month isn’t greater than 10, then obviously month must equal 10.
There’s no need to test that explicitly.

Now let’s look at another example using Searched CASE. Suppose that
you want to create a mailing list, and you have gender and marital sta-
tus information in your table, but you don’t have a salutation (Mr., Mrs.,
and so on). Let’s generate one using a CASE test on the fields you do
have. Because you need tests on more than one column, you must use a
Searched CASE.

“Create a student mailing list that includes a generated salutation,
first name and last name, the street address, and a city, state, and ZIP
code field.”

Translation/
Clean Up

Select (CASE when the gender is male = ‘M’ then return
‘Mr.’, when the marital status is single = ‘S’ then return
‘Ms.’ else return ‘Mrs.’ END) concatenated with || student
first name concatenated with a space || ‘ ‘ and student last
name as the name line, student street address as the street
line, student city concatenated with a comma and a space
|| ‘, ‘ then concatenated with || student state and two
spaces || ‘ ‘, then concatenated with || student ZIP code as
the city line from the students table

SQL SELECT

 (CASE WHEN StudGender = 'M' THEN 'Mr. '

 WHEN StudMaritalStatus = 'S' THEN 'Ms. '

 ELSE 'Mrs. ' END)

 || StudFirstName || ' ' || StudLastName

 AS NameLine,

 StudStreetAddress AS StreetLine,

 StudCity || ', ' || StudState || ' ' ||

 StudZipCode AS CityLine

FROM Students

 Solving Problems with CASE 691

All male students will be addressed as “Mr.”, so there’s no reason to test
the marital status of male students. If the student is not male, then
there’s no reason to test the gender again because the only other value
I expect is “F” for female. Finally, if the female student is single, the sal-
utation will be “Ms.” Otherwise, use “Mrs.” for women who are Married
(“M”), Divorced (“D”), or Widowed (“W”). If you construct your WHEN/
THEN pairs intelligently, you don’t have to test for every possible com-
bination. I saved this query in the Student Scheduling database as
CH19_Student_Mailing_List.

Using CASE in a WHERE Clause

Just to cover all the bases, let’s take a look at how you might use CASE
in a WHERE (or HAVING) clause. Quite frankly, I cannot think of an
example where it wouldn’t be clearer to simply construct your predicate
using all the available predicate expressions. As I’ve said many times
before, just because you can do something doesn’t mean you should!
Let’s give it a shot anyway to see what it might look like:

“List all students who are ‘Male’.”

Translation/
Clean Up

Select student ID, student first name, student last name,
and ‘Male’ as gender from the students table where ‘Male’
equals = (CASE when the student gender is ‘M’ then return
‘Male’ else return ‘Nomatch’ END)

SQL SELECT StudentID, StudFirstName, StudLastName,

 'Male' AS Gender

FROM Students

WHERE ('Male' = (CASE StudGender

 WHEN 'M' THEN 'Male'

 ELSE 'Nomatch' END));

The trick here is the request asked for “Male” students, so I took that lit-
erally. To generate a true “Male” value I had to use CASE to return that
word when gender is “M”. Frankly, it would be much easier to simply say:

WHERE Gender = 'M'

Not that you’ll find it very useful, but you can find this query saved in
the School Scheduling sample database as CH19_Male_Students.

692 Chapter 19 Condition Testing

Sample Statements

You now know the mechanics of constructing queries using CASE and
have seen some of the types of requests you can answer with CASE.
Let’s take a look at a fairly robust set of samples, all of which use either
Simple or Searched CASE. These examples come from each of the sam-
ple databases, and they illustrate the use of the CASE to perform logical
evaluations in Value Expressions.

 ❖ Note Remember in the Introduction I warned you that results from
each database system won’t necessarily match the sort order you see
in examples in this book unless you include an ORDER BY clause.
Even when you include that specification, the system might return
results in columns not included in the ORDER BY clause in a different
sequence because of different optimization techniques.

If you’re running the examples in Microsoft SQL Server, simply
selecting the rows from the view does not honor any ORDER BY
clause specified in the view. You must open the design of the view and
execute it from there to see the ORDER BY clause honored.

Also, when you use GROUP BY, you’ll often see the results returned by
your database system as though the rows are sorted by the columns
you specified. This happens because some optimizers first sort the
data internally to make it faster to process your GROUP BY. Keep in
mind that if you want a specific sort order, you must also include an
ORDER BY clause.

I’ve also included sample result sets that would be returned by these oper-
ations and placed them immediately after the SQL syntax line. The name
that appears immediately above a result set is the name I gave each query
in the sample data that you’ll find on the book’s website (www.informit.com/
title/9780134858333). I stored each query in the appropriate sample data-
base (as indicated within the example), using “CH19” as the leading part of
the query or view name. You can follow the instructions in the Introduction
to this book to load the samples onto your computer and try them out.

 ❖ Note Remember that all of the field names and table names used
in these examples are drawn from the sample database structures
shown in Appendix B, “Schema for the Sample Databases.”

❖ Note Remember in the Introduction I warned you that results from
each database system won’t necessarily match the sort order you see
in examples in this book unless you include an ORDER BY clause.
Even when you include that specification, the system might return
results in columns not included in the ORDER BY clause in a different
sequence because of different optimization techniques.

If you’re running the examples in Microsoft SQL Server, simply
selecting the rows from the view does not honor any ORDER BY
clause specified in the view. You must open the design of the view and
execute it from there to see the ORDER BY clause honored.

Also, when you use GROUP BY, you’ll often see the results returned by
your database system as though the rows are sorted by the columns
you specified. This happens because some optimizers first sort the
data internally to make it faster to process your GROUP BY. Keep in
mind that if you want a specific sort order, you must also include an
ORDER BY clause.

❖ Note Remember that all of the field names and table names used
in these examples are drawn from the sample database structures
shown in Appendix B, “Schema for the Sample Databases.”

http://www.informit.com/title/9780134858333
http://www.informit.com/title/9780134858333

 Sample Statements 693

Because many of these examples use complex joins, the optimizer
for your database system might choose a different way to solve these
queries. For this reason, the first few rows I show you may not exactly
match the result you obtain, but the total number of rows should be
the same. Keep in mind that for any SQL Server View that contains an
ORDER BY clause, you must open the view in Design mode first and
then execute it to see the specified order. If you SELECT * from the
View, SQL Server does not honor the ORDER BY clause.

Sales Order Database

“List all products and display whether the product was sold in
December 2017.”

Translation/
Clean Up

Select product number, product name, and (CASE
when product number is in the (selection of product
number from the order details table inner joined with
the orders table on Orders.order number in the orders
table matches = Order_Details.order number in the
order details table where the order date is between
‘2017-12-01 and ‘2017-12-31’) then return ‘Ordered’ else
return ‘Not Ordered’ END) as product ordered from the
products table

SQL SELECT ProductNumber, ProductName,

 (CASE WHEN Products.ProductNumber IN

 (SELECT Order_Details.ProductNumber

 FROM Order_Details INNER JOIN Orders

 ON Orders.OrderNumber =

 Order_Details.OrderNumber

 WHERE (Orders.OrderDate BETWEEN

 CAST('2017-12-01' AS Date) AND

 CAST('2017-12-31' AS Date)))

 THEN 'Ordered'

 ELSE 'Not Ordered' END) AS

 ProductOrdered

FROM Products;

Because many of these examples use complex joins, the optimizer
for your database system might choose a different way to solve these
queries. For this reason, the first few rows I show you may not exactly
match the result you obtain, but the total number of rows should be
the same. Keep in mind that for any SQL Server View that contains an
ORDER BY clause, you must open the view in Design mode first and
then execute it to see the specified order. If you SELECT * from the
View, SQL Server does not honor the ORDER BY clause.

694 Chapter 19 Condition Testing

CH19_Products_Ordered_Dec_2017 (40 rows)

ProductNumber ProductName ProductOrdered

1 Trek 9000 Mountain Bike Ordered

2 Eagle FS-3 Mountain Bike Ordered

3 Dog Ear Cyclecomputer Ordered

4 Victoria Pro All Weather Tires Not Ordered

5 Dog Ear Helmet Mount Mirrors Ordered

6 Viscount Mountain Bike Ordered

7 Viscount C-500 Wireless Bike Computer Ordered

8 Kryptonite Advanced 2000 U-Lock Ordered

<< more rows here >>

“Display products and a sale rating based on number sold (poor <=
200 sales, Average > 200 and <= 500, Good > 500 and <= 1000,
 Excellent > 1000).”

Translation/
Clean Up

Select product number, product name, and (CASE when
the (selection of the sum of (quantity ordered) from the
order details table where the Order_Details.product number
in the order details table equals = the Products.product
number in the products table) is less than or equal to <=
200 then return ‘Poor’ when the (selection of the sum of
(quantity ordered) from the order details table where the
Order_Details.product number in the order details table
equals = the Products.product number in the products
table) is less than or equal to <= 500 then return ‘Average’
when the (selection of the sum of (quantity ordered) from
the order details table where the Order_Details.product
number in the order details table equals = the Products.
product number in the products table) is less than or equal
to <= 1000 then return ‘Good’ else return ‘Excellent’ END)
as sales quality from the products table

SQL SELECT ProductNumber, ProductName,

 (CASE WHEN

 (SELECT SUM(QuantityOrdered)

 FROM Order_Details

 WHERE (Order_Details.ProductNumber =

 Products.ProductNumber)) <= 200

 Sample Statements 695

 THEN 'Poor'

 WHEN

 (SELECT SUM(QuantityOrdered)

 FROM Order_Details

 WHERE (Order_Details.ProductNumber =

 Products.ProductNumber)) <= 500

 THEN 'Average'

 WHEN

 (SELECT SUM(QuantityOrdered)

 FROM Order_Details

 WHERE (Order_Details.ProductNumber =

 Products.ProductNumber)) <= 1000

 THEN 'Good'

 ELSE 'Excellent' END) AS SalesQuality

FROM Products

CH19_Products_And_SalesQuality (40 rows)

ProductNumber ProductName SalesQuality

1 Trek 9000 Mountain Bike Excellent

2 Eagle FS-3 Mountain Bike Poor

3 Dog Ear Cyclecomputer Poor

4 Victoria Pro All Weather Tires Excellent

5 Dog Ear Helmet Mount Mirrors Poor

6 Viscount Mountain Bike Good

7 Viscount C-500 Wireless Bike Computer Average

8 Kryptonite Advanced 2000 U-Lock Poor

<< more rows here >>

 ❖ Note Even though the request specified criteria such as > 200 and
<= 500, you don’t need to specify the greater than part in each WHEN
because the previous WHEN for <= 200 is already not true. (If the sum
is not <= 200, then it is, by definition, greater than 200.) It would be

❖ Note Even though the request specified criteria such as > 200 and
<= 500, you don’t need to specify the greater than part in each WHEN
because the previous WHEN for <= 200 is already not true. (If the sum
is not <= 200, then it is, by definition, greater than 200.) It would be

696 Chapter 19 Condition Testing

nice to run the subquery only once in a Simple CASE format, but I
can’t do that because the tests are not strictly for equality. A database
system with a smart optimizer will recognize that all three subqueries
are the same and execute it just once per row.

Entertainment Database

“List entertainers and display whether the entertainer was booked on
Christmas 2017 (December 25).”

Translation/
Clean Up

Select entertainer ID, entertainer stage name and (CASE
when entertainer ID is in the (selection of the entertainer
ID from the engagements table where ‘2017-12-25’ is
between start date and end date) then return ‘Booked’ else
return ‘Not Booked’ END) as booked Xmas 2017 from the
 entertainers table

SQL SELECT EntertainerID, EntStageName,

 (CASE WHEN EntertainerID IN

 (SELECT EntertainerID

 FROM Engagements

 WHERE CAST('2017-12-25' AS Date)

 BETWEEN StartDate AND

 EndDate)

 THEN 'Booked'

 ELSE 'Not Booked' END) AS BookedXmas2017

FROM Entertainers;

CH19_Entertainers_Booked_Xmas_2017 (13 rows)

EntertainerID EntStageName BookedXmas2017

1001 Carol Peacock Trio Booked

1002 Topazz Not Booked

1003 JV & the Deep Six Booked

1004 Jim Glynn Not Booked

1005 Jazz Persuasion Booked

1006 Modern Dance Booked

nice to run the subquery only once in a Simple CASE format, but I
can’t do that because the tests are not strictly for equality. A database
system with a smart optimizer will recognize that all three subqueries
are the same and execute it just once per row.

 Sample Statements 697

EntertainerID EntStageName BookedXmas2017

1007 Coldwater Cattle Company Not Booked

1008 Country Feeling Not Booked

<< more rows here >>

 ❖ Note Remember that engagements have both a start and an end
date, so you want the engagements where December 25, 2017 is any-
where in the span (BETWEEN) those two dates.

“Find customers who like Jazz but not Standards (using Searched
CASE in the WHERE clause).”

Translation/
Clean Up

Select customer ID, customer first name and customer
last name from the customers table where true 1 equals =
(CASE when customer is not in the (selection of the cus-
tomer ID from the musical preferences table inner joined
with the musical styles table on Musical_Preferences.style
ID in the musical preferences table equals = Musical_Styles.
style ID in the musical styles table where style name equals
= ‘Jazz’) then return 0 when customer is in the (selection of
the customer ID from the musical preferences table inner
joined with the musical styles table on Musical_Preferences.
style ID in the musical preferences table equals = Musical_
Styles.style ID in the musical styles table where style name
equals = ‘Standards’) then return 0 else return 1 END)

SQL SELECT CustomerID, CustFirstName, CustLastName

FROM Customers

WHERE (1 =

 (CASE WHEN CustomerID NOT IN

 (SELECT CustomerID

 FROM Musical_Preferences

 INNER JOIN Musical_Styles

 ON Musical_Preferences.StyleID =

 Musical_Styles.StyleID

 WHERE Musical_Styles.StyleName =

 'Jazz')

❖ Note Remember that engagements have both a start and an end
date, so you want the engagements where December 25, 2017 is any-
where in the span (BETWEEN) those two dates.

698 Chapter 19 Condition Testing

 THEN 0

 WHEN CustomerID IN

 (SELECT CustomerID

 FROM Musical_Preferences

 INNER JOIN Musical_Styles

 ON Musical_Preferences.StyleID =

 Musical_Styles.StyleID

 WHERE Musical_Styles.StyleName =

 'Standards')

 THEN 0 ELSE 1 END));

 ❖ Note Although the request asks for customers that do like Jazz
and do not like Standards, keep in mind that evaluation of WHEN/
THEN clauses ends with the first one that is true. Because of that, I
coded the tests logically “backward.” First, I eliminated the custom-
ers who do not like Jazz, and then I eliminated the customers who do
like Standards. If I had specified a test for customers who do like Jazz
first, that would have selected all Jazz customers without ever testing
for those in that set who might not like Standards.

CH19_Customers_Jazz_Not_Standards (2 rows)

CustomerID CustFirstName CustLastName

10010 Zachary Ehrlich

10013 Estella Pundt

School Scheduling Database

“Show what new salaries for full-time faculty would be if you gave a
5 percent raise to instructors, a 4 percent raise to associate professors,
and a 3.5 percent raise to professors.”

Translation/
Clean Up

Select staff ID, staff first name, staff last name, title, sta-
tus, salary, and (CASE when title is WHEN ‘Instructor’ then
return salary times * 1.05 when ‘Associate Professor’ then
return salary times * 1.04 when ‘Professor’ then return

❖ Note Although the request asks for customers that do like Jazz
and do not like Standards, keep in mind that evaluation of WHEN/
THEN clauses ends with the first one that is true. Because of that, I
coded the tests logically “backward.” First, I eliminated the custom-
ers who do not like Jazz, and then I eliminated the customers who do
like Standards. If I had specified a test for customers who do like Jazz
first, that would have selected all Jazz customers without ever testing
for those in that set who might not like Standards.

 Sample Statements 699

salary times * 1.035 else return salary END) as new
salary from the staff table inner joined with the faculty
table on Staff.staff ID in the staff table equals = Faculty.
staff ID in the faculty table where status equals =
‘Full Time’

SQL SELECT StaffID, StfFirstName, StfLastname, Title,

 Status, Salary,

 (CASE Title

 WHEN 'Instructor'

 THEN ROUND(Salary * 1.05, 0)

 WHEN 'Associate Professor'

 THEN ROUND(Salary * 1.04, 0)

 WHEN 'Professor'

 THEN ROUND(Salary * 1.035, 0)

 ELSE Salary END) AS NewSalary

FROM Staff INNER JOIN Faculty

 ON Staff.StaffID = Faculty.StaffID

WHERE Faculty.Status = 'Full Time';

CH19_FullTime_Instructor_Raises (22 rows)

StaffID StfFirstName StfLastName Title Status Salary NewSalary

98005 Suzanne Viescas Instructor Full Time $44,000.00 $46,200.00

98007 Gary Hallmark Associate
Professor

Full Time $53,000.00 $55,120.00

98011 Ann Patterson Instructor Full Time $45,000.00 $47,250.00

98012 Robert Brown Instructor Full Time $49,000.00 $51,450.00

98013 Deb Waldal Instructor Full Time $44,000.00 $46,200.00

98014 Peter Brehm Professor Full Time $60,000.00 $62,100.00

98019 Mariya Sergienko Instructor Full Time $45,000.00 $47,250.00

98020 Jim Glynn Instructor Full Time $45,000.00 $47,250.00

<< more rows here >>

700 Chapter 19 Condition Testing

 “List all students, the classes for which they enrolled, the grade they
received, and a conversion of the grade number to a letter.”

 ❖ Note I’ll use a conversion scheme common to schools in the United
States where 97 to 100 is A+, 93 to 96.99 is A, 90 to 92.99 is A-, and
so on in 10 point increments down to 60 to 62.99, which is D-, and
anything less is failing or F.

Translation/
Clean Up

Select student ID student first name, student last name, class
ID start date, subject code, subject name, grade, and (CASE
when the grade is between 97 and 100 then return ‘A+’,

 when the grade is between 93 and 96.99 then return ‘A’,

 when the grade is between 90 and 92.99 then return ‘A-’,

 when the grade is between 87 and 89.99 then return ‘B+’,

 when the grade is between 83 and 86.99 then return ‘B’,

 when the grade is between 80 and 82.99 then return ‘B-’,

 when the grade is between 77 and 79.99 then return ‘C+’,

 when the grade is between 73 and 76.99 then return ‘C’,

 when the grade is between 70 and 72.99 then return ‘C-’,

 when the grade is between 67 and 69.99 then return ‘D+’,

 when the grade is between 63 and 66.99 then return ‘D’,

 when the grade is between 60 and 62.99 then return ‘D-’,

else return ‘F’ END) as letter grade from the students table
inner joined with the student schedules table on Students.stu-
dent ID in the students table equals = Student_Schedules.stu-
dent ID in the student schedules table, then inner joined with
the classes table on Student_Schedules.class ID in the student
schedules table equals = Classes.class ID in the classes table,
then inner joined with the subjects table on Classes.subject ID
in the classes table equals = Subjects.subject ID in the sub-
jects table, and then finally inner joined with the student class
status table on Student_Schedules.class status in the student
schedules table equals = Student_Class_Status.class status in
the student class status table where class status description
equals = ‘Completed’

❖ Note I’ll use a conversion scheme common to schools in the United
States where 97 to 100 is A+, 93 to 96.99 is A, 90 to 92.99 is A-, and
so on in 10 point increments down to 60 to 62.99, which is D-, and
anything less is failing or F.

 Sample Statements 701

SQL SELECT Students.StudentID, Students.StudFirstName,

Students.StudLastName, Classes.ClassID,

Classes.StartDate, Subjects.SubjectCode,

Subjects.SubjectName, Student_Schedules.Grade,

 (CASE WHEN Grade BETWEEN 97 AND 100 THEN 'A+'

 WHEN Grade BETWEEN 93 AND 96.99 THEN 'A'

 WHEN Grade BETWEEN 90 AND 92.99 THEN 'A-'

 WHEN Grade BETWEEN 87 AND 89.99 THEN 'B+'

 WHEN Grade BETWEEN 83 AND 86.99 THEN 'B'

 WHEN Grade BETWEEN 80 AND 82.99 THEN 'B-'

 WHEN Grade BETWEEN 77 AND 79.99 THEN 'C+'

 WHEN Grade BETWEEN 73 AND 76.99 THEN 'C'

 WHEN Grade BETWEEN 70 AND 72.99 THEN 'C-'

 WHEN Grade BETWEEN 67 AND 69.99 THEN 'D+'

 WHEN Grade BETWEEN 63 AND 66.99 THEN 'D'

 WHEN Grade BETWEEN 60 AND 62.99 THEN 'D-'

 ELSE 'F' END) AS LetterGrade

FROM (((Students INNER JOIN Student_Schedules

ON Students.StudentID = Student_Schedules.StudentID)

INNER JOIN Classes

ON Student_Schedules.ClassID = Classes.ClassID)

INNER JOIN Subjects

ON Classes.SubjectID = Subjects.SubjectID)

INNER JOIN Student_Class_Status

ON Student_Schedules.ClassStatus =

 Student_Class_Status.ClassStatus

WHERE Student_Class_Status.ClassStatusDescription =

 'Completed';

CH19_Students_Classes_Letter_Grades (68 rows)

Student
ID

StudFirst
Name

StudLast
Name

ClassID StartDate Subject
Code

Subject
Name

Grade Letter
Grade

1001 Kerry Patterson 1000 2017-09-12 ART
100

Introduction
to Art

99.83 A+

1001 Kerry Patterson 1168 2017-09-11 ENG
101

 Composition -
Fundamentals

70 C-

702 Chapter 19 Condition Testing

Student
ID

StudFirst
Name

StudLast
Name

ClassID StartDate Subject
Code

Subject
Name

Grade Letter
Grade

1001 Kerry Patterson 2907 2017-09-11 MAT
097

Elementary
Algebra

67.33 D+

1001 Kerry Patterson 3085 2017-09-11 HIS
111

U.S. History
to 1877

87.14 B+

1002 David Hamilton 1156 2017-09-11 ENG
101

Composition -
Fundamentals

86.33 B

1002 David Hamilton 1500 2017-09-11 MUS
100

Music in
the Western
World

85.72 B

1002 David Hamilton 2889 2017-09-11 MAT
080

Preparatory
Mathematics

68.22 D+

1003 Betsy Stadick 1156 2017-09-11 ENG
101

Composition
Fundamentals

71.09 C-

<< more rows here >>

Bowling League Database

“List Bowlers and display ‘fair’ (average < 140), ‘average’ (average >= 140
and < 160), ‘good’ (average >= 160 and < 185), ‘excellent’ (average >= 185).”

Translation/
Clean Up

Select bowler ID, bowler last name, bowler first name,
the average of (raw score), and (CASE when the average
of (raw score) is less than < 140, then return ‘Fair’, when
the average of (raw score) is less than < 160, then return
‘Average’, when the average of (raw score) is less than < 185,
then return ‘Good’, else return ‘Excellent’ END) as bowler
rating from the bowlers table inner joined with the bowler
scores table on Bowlers.bowler ID in the bowlers table
equals = Bowler_Scores.bowler ID in the bowler scores table
grouped by bowler ID, bowler last name, and bowler first
name

SQL SELECT Bowlers.BowlerID, Bowlers.BowlerLastName,
Bowlers.BowlerFirstName,

 CAST(AVG(RawScore) AS Int) AS BowlerAverage,

 (CASE

 WHEN CAST(AVG(Bowler_Scores.RawScore) AS Int)

 < 140

 Sample Statements 703

 THEN 'Fair'

 WHEN CAST(AVG(Bowler_Scores.RawScore) AS Int)

 < 160

 THEN 'Average'

 WHEN CAST(AVG(Bowler_Scores.RawScore) AS Int)

 < 185

 THEN 'Good'

 ELSE 'Excellent' END) AS BowlerRating

FROM Bowlers INNER JOIN Bowler_Scores

ON Bowlers.BowlerID = Bowler_Scores.BowlerID

GROUP BY Bowlers.BowlerID, Bowlers.BowlerLastName,

 Bowlers.BowlerFirstName;

CH19_Bowler_Ratings (32 rows)

BowlerID BowlerLastName BowlerFirstName BowlerAverage BowlerRating

1 Fournier Barbara 148 Average

2 Fournier David 156 Average

3 Kennedy John 165 Good

4 Sheskey Sara 141 Average

5 Patterson Ann 149 Average

6 Patterson Neil 158 Average

7 Viescas David 167 Good

8 Viescas Stephanie 142 Average

<< more rows here >>

 ❖ Note Remember that your database system stops at the first
WHEN/THEN that is true, so you do not need to check for >= as
well as <.

❖ Note Remember that your database system stops at the first
WHEN/THEN that is true, so you do not need to check for >= as
well as <.

704 Chapter 19 Condition Testing

“Show all tournaments with either their match details or ‘Not
Played Yet.’”

Translation/
Clean Up

Select tourney ID, tourney date, tourney location, and
(CASE when the match ID is empty NULL then return
‘Not Played Yet’ else return ‘Match: ’ concatenated with
|| match ID concatenated with || ‘ Lanes: ’ concatenated
with || lanes concatenated with || ‘ Odd Lane Team: ’
concatenated with || Teams.team name from the teams
table concatenated with || ‘ Even Lane Team: ’ concate-
nated with || Teams_1.team name from the second copy
of the teams table from the tourney matches table inner
joined with the teams table on Tourney_Matches.odd lane
team ID in the tourney matches table equals = Teams.team
ID in the teams table, then inner joined with a second copy
of the teams table AS Teams_1 on Tourney_Matches.even
lane team in the tourney matches table equals = Teams_1.
team ID in the second copy of the teams table, then RIGHT
outer joined with the tournaments table on Tourney_
Matches.tourney ID in the tourney matches table equals =
Tournaments.tourney ID in the tournaments table

SQL SELECT Tournaments.TourneyID,

 Tournaments.TourneyDate,

 Tournaments.TourneyLocation,

 (CASE WHEN Tourney_Matches.MatchID IS NULL

 THEN 'Not Played Yet'

 ELSE 'Match: ' ||

 CAST(Tourney_Matches.MatchID AS char)

 || ' Lanes: ' || Tourney_Matches.Lanes

 || ' Odd Lane Team: '

 || Teams.TeamName || ' Even Lane Team: '

 || Teams_1.TeamName END) AS Match

FROM ((Tourney_Matches INNER JOIN Teams

 ON Tourney_Matches.OddLaneTeamID =

 Teams.TeamID)

INNER JOIN Teams AS Teams_1

 ON Tourney_Matches.EvenLaneTeamID =

 Teams_1.TeamID)

RIGHT OUTER JOIN Tournaments

 ON Tourney_Matches.TourneyID =

 Tournaments.TourneyID;

 Summary 705

CH19_All_Tournaments_Any_Matches (63 rows)

TourneyID TourneyDate TourneyLocation Match

1 2017-09-04 Red Rooster
Lanes

Match: 2 Lanes: 03-04 Odd
Lane Team: Terrapins Even
Lane Team: Barracudas

1 2017-09-04 Red Rooster
Lanes

Match: 3 Lanes: 05-06 Odd
Lane Team: Dolphins Even
Lane Team: Orcas

1 2017-09-04 Red Rooster
Lanes

Match: 4 Lanes: 07-08 Odd
Lane Team: Manatees Even
Lane Team: Swordfish

1 2017-09-04 Red Rooster
Lanes

Match: 1 Lanes: 01-02 Odd
Lane Team: Marlins Even
Lane Team: Sharks

2 2017-09-11 Thunderbird
Lanes

Match: 5 Lanes: 21-22 Odd
Lane Team: Terrapins Even
Lane Team: Marlins

2 2017-09-11 Thunderbird
Lanes

Match: 6 Lanes: 23-24 Odd
Lane Team: Barracudas Even
Lane Team: Sharks

2 2017-09-11 Thunderbird
Lanes

Match: 7 Lanes: 25-26 Odd
Lane Team: Dolphins Even
Lane Team: Manatees

2 2017-09-11 Thunderbird
Lanes

Match: 8 Lanes: 27-28 Odd
Lane Team: Swordfish Even
Lane Team: Orcas

<< more rows here >>

 ❖ Note You should find tournaments 15–20 at the end of the list
marked “Not Played Yet.”

Summary

I began this chapter with a discussion of why CASE is useful and an
examination of the syntax of not only the CASE Expression but also
Search Condition and Predicate in which you might use a Value
Expression constructed with CASE. Next, I explained how to solve

❖ Note You should find tournaments 15–20 at the end of the list
marked “Not Played Yet.”

706 Chapter 19 Condition Testing

problems using Simple CASE and gave you some examples. I then cov-
ered Searched CASE with detailed explanations using examples. I then
showed you how to use CASE in a WHERE clause, but I noted that you
can often specify what you want more clearly with predicate expressions.
Finally, I gave you two examples each from four of the sample databases
that showed you other ways to use Simple CASE, Searched CASE, and
CASE within a WHERE clause.

The following section presents several requests that you can work out on
your own.

Problems for You to Solve

Below, I show you the request statement and the name of the solution
query in the sample databases. If you want some practice, you can work
out the SQL you need for each request and then check your answer with
the query I saved in the samples. Don’t worry if your syntax doesn’t
exactly match the syntax of the queries I saved—as long as your Result
Set is the same.

Sales Order Database

 1. “Show all customers and display whether they placed an order in
the first week of December 2017.”

(Hint: Use a Searched CASE and the dates December 1, 2017 and
December 7, 2017.)

You can find the solution in CH19_Customers_Ordered_First-
Week_Dec2017 (28 rows).

 2. “List customers and the state they live in spelled out.”

(Hint: Use a Simple CASE and look for WA, OR, CA, and TX.)

You can find the solution in CH19_Customers_State_Names
(28 rows).

 3. “Display employees and their age as of February 15, 2018.”

(Be sure to use the functions to extract Year, Month, and
Day portions of a date value that are supported by your database
system.)

You can find the solution in CH19_Employee_Age_Feb152018
(8 rows).

 Problems for You to Solve 707

Entertainment Database

 1. “Display Customers and their preferred styles, but change 50’s,
60’s, 70’s, and 80’s music to ‘Oldies’.”

(Hint: Use a Simple CASE expression.)

You can find the solution in CH19_Customer_Styles_Oldies
(36 rows).

 2. “Find Entertainers who play Jazz but not Contemporary musical
styles.”

(Hint: Use a Searched CASE in the WHERE clause and be careful
to think in the negative.)

You can find the solution in CH19_Entertainers_Jazz_Not_
Contemporary (1 row).

School Scheduling Database

 1. “Display student Marital Status based on a code.”

(Hint: Use Simple CASE in the SELECT clause. M = Married,
S = Single, D = Divorced, W = Widowed)

You can find the solution in CH19_Student_Marital_Status
(18 rows).

 2. “Calculate student age as of November 15, 2017.”

(Be sure to use the functions to extract Year, Month, and Day
 portions of a date value that are supported by your database
system.)

You can find the solution in CH19_Student_Age_Nov15_2017
(18 rows).

Bowling League Database

 1. “List all bowlers and calculate their averages using the sum of pins
divided by games played, but avoid a divide by zero error.”

(Hint: Use Simple CASE in a query using an OUTER JOIN and
GROUP BY.)

You can find the solution in CH19_Bowler_Averages_Avoid_0_
Games (32 rows).

708 Chapter 19 Condition Testing

 2. “List tournament date, tournament location, match number, teams
on the odd and even lanes, game number, and either the winner or
‘Match not played.’”

(Hint: Use an outer join between tournaments, tourney matches,
teams, and a second copy of teams with a subquery using match
games and a third copy of teams to indicate the winning team.
Use a Searched Case to decide whether to display “not played” or
the match results in the SELECT list.)

You can find the solution in CH19_All_Tourney_Matches
(169 rows – one row on November 13, 2017 for match number 57
that was not played).

 709

20
Using Unlinked Data and

“Driver” Tables

“If you only have a hammer, you tend to see every problem as a nail.”
—ABRAHAM MASLOW

Topics Covered in This Chapter

What Is Unlinked Data?

Solving Problems with Unlinked Data

Solving Problems Using “Driver” Tables

Sample Statements

Summary

Problems for You to Solve

Before you start this chapter, make sure you get a good night’s sleep!
And while I’m doling out warnings, perhaps you should also make sure
your seatbelt is securely fastened. I promised that I would introduce
you to concepts that make you think “outside the box.” In this chapter,
I am going to tackle problems that can be solved using unlinked data—
problems where you will use more than one table in your FROM clause,
but you won’t specify any linking criteria using an ON clause. Let’s get
started.

 ❖ Caution I am going to use the CASE expression extensively in
this chapter. If you are not familiar with using CASE, I strongly
recommend you work through Chapter 19, “Condition Testing,” before
tackling this chapter.

❖ Caution I am going to use the CASE expression extensively in
this chapter. If you are not familiar with using CASE, I strongly
recommend you work through Chapter 19, “Condition Testing,” before
tackling this chapter.

710 Chapter 20 Using Unlinked Data and “Driver” Tables

What Is Unlinked Data?

As you learned beginning in Chapter 7, “Thinking in Sets,” most prob-
lems you’ll solve using SQL involve gathering data from more than one
table. In Chapter 8, “INNER JOINs,” I showed you how to fetch infor-
mation from multiple tables by linking them on matching data in the
Primary and Foreign keys where all the values match. In Chapter 9,
“OUTER JOINs,” I showed you how to fetch all the rows from one table
and any matching information from a related table again using match-
ing data in the Primary and Foreign keys. In this chapter, I’ll use mul-
tiple tables, but I will purposefully not match on key values—I will be
using “unlinked” tables.

Let’s take a look at the SQL syntax to create unlinked tables. First,
 Figure 20-1 shows you the syntax for the SELECT Statement.

SELECT

SELECT Statement

HAVING Search Condition

DISTINCT

Column Reference

,
GROUP BY

Table Reference
,

FROM

WHERE Search Condition

table_name.*

Value Expression

correlation_name.*

,

*

alias
AS

Figure 20-1 The SELECT Statement

You need to study the Table Reference to understand how to put
unlinked tables in a FROM clause. Figure 20-2 shows you the full dia-
gram for Table Reference.

 What Is Unlinked Data? 711

Table Reference

table_name

column_name()
,

Joined Table
AS

correlation_name
(SELECT Expression)

Figure 20-2 The structure of a Table Reference

And finally, you need to study the diagram for Joined Table. Even
though you really aren’t going to “join” unlinked tables, the SQL Stan-
dard does show you how to do it in the Joined Table definition, as shown
in Figure 20-3.

Joined Table

ON Search Condition

USING
,

column_name()
*Note: If you include the NATURAL

or CROSS keywords, you cannot

use the ON or USING clauses.

NATURAL* INNER

LEFT

RIGHT

FULL

UNION

OUTER

JOIN Table Reference

(Joined Table)

CROSS*

Table Reference

Figure 20-3 The diagram for Joined Table

To get unlinked tables, you need to do what the SQL Standard calls a
CROSS JOIN. So what do you get when you put two or more tables in
the FROM clause of your SQL using a CROSS JOIN? The result is some-
thing called a Cartesian Product. You’ll get all rows from the first table
matched with all rows from the second table, and the total number of
rows you will get will be the product of the number of rows in the first

712 Chapter 20 Using Unlinked Data and “Driver” Tables

table times the number of rows in the second table. Let’s take a look at a
simple example:

SELECT Customers.CustLastName,
 Products.ProductName
FROM Customers CROSS JOIN Products;

In the Sales Orders sample database, you can find 28 customers and 40
products, so you’ll get 28 times 40 rows or 1,120 rows! The result looks
like this:

CustLastName ProductName

Viescas Trek 9000 Mountain Bike

Thompson Trek 9000 Mountain Bike

Hallmark Trek 9000 Mountain Bike

Brown Trek 9000 Mountain Bike

McCrae Trek 9000 Mountain Bike

Viescas Trek 9000 Mountain Bike

Sergienko Trek 9000 Mountain Bike

Patterson Trek 9000 Mountain Bike

Cencini Trek 9000 Mountain Bike

Kennedy Trek 9000 Mountain Bike

<< more rows here >>

You might be asking: Why is this useful? Let’s say you need to produce a
catalog of all products that is customized for each customer. Your sales
department has asked you to create the information to be able to say
“Dear Mr. Thompson” or “Dear Mrs. Brown,” print a mailing label on the
outside cover, and then list all the products available. You could cer-
tainly include the Orders and Order_Details tables to fully link Custom-
ers with Products, but then you would get only the products that each
customer had ever purchased. To solve your problem, you need to use
unlinked tables that result in a Cartesian Product to get the informa-
tion you need. (By the way, I saved the query to produce the list of all
customers and products as CH20_Customer_Catalog in the Sales Orders
sample database.)

 What Is Unlinked Data? 713

 ❖ Note The SQL Standard allows you to simply list tables separated
by commas when you want to use unlinked tables (see Figure 20-1
of the SELECT Statement shown previously), and nearly all database
systems accept this syntax. However, as you have learned, the SQL
Standard also defines the keywords CROSS JOIN to explicitly indicate
that you intend to get the Cartesian Product of the table reference on
the left with the table reference on the right.

When you save a View in Microsoft SQL Server using only commas to
separate the table names, you’ll find the view saved with the commas
replaced with CROSS JOIN. When you save a View in MySQL using
only commas, you’ll find the view saved with the commas replaced
with JOIN. (CROSS is the default if you don’t specify INNER or OUTER
and do not include an ON clause.) PostgreSQL leaves the commas
but replaces INNER JOIN with just JOIN—the default being INNER
when not specified. Go figure! Microsoft Office Access doesn’t support
CROSS JOIN, so I created all the sample queries using only the lowest
common denominator—the comma syntax. I will, however, continue
to use CROSS JOIN in the text and in the Clean Up steps to make
it clear that’s what I am doing. In the SQL statements in the sample
databases, I’ll use only commas.

Deciding When to Use a CROSS JOIN

Deciding to use a CROSS JOIN isn’t easy. You can think of these types of
queries in two categories:

• Using data from two or more of the main data tables in your
database—the tables that you built to store all the subjects and
actions described by your application.

I mentioned Customers and all Products previously in this chapter. The
same might apply to all Agents and Entertainers, Students and Courses,
or even Teams unlinked with a second copy of the Teams table to list all
potential matches.

• Using data from one or more of your main data tables and a
“helper” or “driver” table that contains rows, for example, for all
dates across a relevant time period.

❖ Note The SQL Standard allows you to simply list tables separated
by commas when you want to use unlinked tables (see Figure 20-1
of the SELECT Statement shown previously), and nearly all database
systems accept this syntax. However, as you have learned, the SQL
Standard also defines the keywords CROSS JOIN to explicitly indicate
that you intend to get the Cartesian Product of the table reference on
the left with the table reference on the right.

When you save a View in Microsoft SQL Server using only commas to
separate the table names, you’ll find the view saved with the commas
replaced with CROSS JOIN. When you save a View in MySQL using
only commas, you’ll find the view saved with the commas replaced
with JOIN. (CROSS is the default if you don’t specify INNER or OUTER
and do not include an ON clause.) PostgreSQL leaves the commas
but replaces INNER JOIN with just JOIN—the default being INNER
when not specified. Go figure! Microsoft Office Access doesn’t support
CROSS JOIN, so I created all the sample queries using only the lowest
common denominator—the comma syntax. I will, however, continue
to use CROSS JOIN in the text and in the Clean Up steps to make
it clear that’s what I am doing. In the SQL statements in the sample
databases, I’ll use only commas.

714 Chapter 20 Using Unlinked Data and “Driver” Tables

You certainly have date information in your database, such as the
OrderDate in the Orders table. But when you want to look at all dates
across a range regardless of whether an order was placed on that date,
you need a driver table to supply all the values. You can also use driver
tables to supply “lookup” values such as a translation from Gender
code to the relevant word or conversion of a grade point to a letter grade
defined by a range of grade points.

Solving Problems with Unlinked Data

Normally when you set about solving problems using data in your main
data tables, you figure out where the data you want is stored and then
gather all the tables required to link that data in some meaningful way.
When the data you want is in two or more tables, you think about using
a JOIN to link the tables, including any intervening tables necessary to
logically link all the tables even if you don’t actually need data columns
from some of those tables.

Solving problems with unlinked data involves breaking this mold and
“thinking outside of the box” to get the answer you want. Let’s take a
look again at the Customers and Products “catalog” problem, but let’s
complicate it by flagging any products the customers have already
ordered.

 ❖ Note Throughout this chapter, I use the “Request/Translation/
Clean Up/SQL” technique introduced in Chapter 4, “Creating a Simple
Query.” Because this process should now be very familiar to you,
I have combined the Translation/Clean Up steps for all the following
examples to simplify the process.

“Produce a list of all customer names and address and all products
that we sell and indicate the products the customer has already
purchased.”

From what you learned in Part III, “Working with Multiple Tables,” you
would look at your table relationships to start to figure out how to pro-
ceed. Figure 20-4 shows you the standard way you would link Cus-
tomers and Products, using the Orders and Order_Details tables as
intermediaries.

❖ Note Throughout this chapter, I use the “Request/Translation/
Clean Up/SQL” technique introduced in Chapter 4, “Creating a Simple
Query.” Because this process should now be very familiar to you,
I have combined the Translation/Clean Up steps for all the following
examples to simplify the process.

 Solving Problems with Unlinked Data 715

ORDER_DETAILS

OrderNumber CPK
ProductNumber CPK
QuotedPrice
QuantityOrdered

PRODUCTS
ProductNumber PK
ProductName
ProductDescription
RetailPrice
QuantityOnHand
CategoryID FK

CUSTOMERS
CustomerID PK
CustFirstName
CustLastName
CustStreetAddress
CustCity
CustState
CustZipCode

CustPhoneNumber
CustAreaCode

ORDERS

OrderNumber PK
OrderDate
ShipDate
CustomerID FK
EmployeeID FK

Figure 20-4 The normal way to connect Customers to Products

Remember that I want all customers (including those who haven’t
ordered anything) and all Products (including products never ordered).
If you have your thinking cap on, you might come up with using a FULL
OUTER JOIN (see Chapter 9), and you are correct—that would be one
way to do it. Keep in mind that not all database systems support FULL
OUTER JOINs, so that might not be a solution for you. You could also
create one query (view) that LEFT JOINs Customers with Orders and
Order_Details, and then use that query in another query to RIGHT JOIN
with the Products table. When (remember CASE?) a key field in the
Order_Details table is not Null, then indicate that the customer has pre-
viously ordered the product.

But this chapter is about solving problems with unlinked tables, so let’s
tackle the problem head-on by using a CROSS JOIN of Customers and
Products and a subquery in the SELECT clause to do a lookup to see if
the customer ever ordered the product. Just for fun, let’s also look up the
category description for each product. Here’s how to do it:

Translation/
Clean Up

Select customer first name, customer last name, customer
street address, customer city, customer state, customer zip
code, category description, product number, product name,
retail price, and (CASE when the customer ID is in the (select-
ion of customer ID from the orders table inner joined with the
order details table on Orders.order number in the orders table
equals = Order_Details.order number in the order details
table where the Products.product number in the products
table equals the = Order_Details.product number in the order
details table then display ‘You purchased this!’, else ‘ ‘ END)
display a blank from the customers table and the CROSS
JOIN categories table inner joined with the products table
on Categories.category ID in the categories table equals =
Products.category ID in the products table sorted ORDER BY
customer ID, category description, and product number

716 Chapter 20 Using Unlinked Data and “Driver” Tables

SQL SELECT Customers.CustomerID, Customers.

CustFirstName,

 Customers.CustLastName,

 Customers.CustStreetAddress,

 Customers.CustCity, Customers.CustState,

 Customers.CustZipCode,

 Categories.CategoryDescription,

 Products.ProductNumber, Products.ProductName,

 Products.RetailPrice,

 (CASE WHEN Customers.CustomerID IN

 (SELECT Orders.CustomerID

 FROM ORDERS INNER JOIN Order_Details

 ON Orders.OrderNumber =

 Order_Details.OrderNumber

 WHERE Order_Details.ProductNumber =

 Products.ProductNumber)

 THEN 'You purchased this! '

 ELSE ' ' END) AS ProductOrdered

FROM Customers, Categories INNER JOIN Products

 ON Categories.CategoryID = Products.CategoryID

ORDER BY Customers.CustomerID,

 Categories.CategoryDescription,

 Products.ProductNumber;

Yes, there is an INNER JOIN to link Categories with Products, but the
key part of the FROM clause is the CROSS JOIN with the Customers
table. You can find this query saved as CH20_Customer_All_Products_
PurchasedStatus in the Sales Orders sample database. As expected, the
query returns 1,120 rows.

 ❖ Note Recall from Chapter 19 that Microsoft Office Access does not
support the CASE expression. In the samples I created in the Access
databases, you’ll find that I used a built-in function called Immediate
If (IIf) that serves a similar purpose.

❖ Note Recall from Chapter 19 that Microsoft Office Access does not
support the CASE expression. In the samples I created in the Access
databases, you’ll find that I used a built-in function called Immediate
If (IIf) that serves a similar purpose.

 Solving Problems Using “Driver” Tables 717

Solving Problems Using “Driver” Tables

Let’s move on now to solving problems that require you to set up one
or more tables containing a list of values that you’ll CROSS JOIN with
other tables in your database to get your answer. I call this sort of table
a “driver” table because the contents of the table “drive” the result you
get. (If you also own Effective SQL that I wrote with my good friends,
Doug Steele and Ben Clothier, we decided to call them “tally” tables in
that book, but they’re the same thing.) Arguably, the most common type
of driver table contains a list of dates or weeks or months that you can
CROSS JOIN with your data to list all days or weeks or months and any
matching events that occur on those dates.

Another use of a driver table is to define a categorization of values across
a set of defined ranges. Examples include assigning a letter grade to a
grade point score, rating instructors based on their proficiency rating,
evaluating bowlers based on their average score, categorizing product
prices, or categorizing the amount spent by a customer.

A really creative use of a driver table lets you “pivot” your data to display
a result that looks more like a spreadsheet. A common example would be
to display sales or purchases by month, with the months listed across by
product or customer.

Setting Up a Driver Table

The SQL Standard defines WITH RECURSIVE that allows you to exe-
cute a stated SQL query multiple times in a loop. This can be useful to
load a driver table with consecutive dates across a date range. Unfor-
tunately, only a few database systems support this. To load my large
driver tables, I resorted to using Visual Basic in Microsoft Office Access
to perform the recursion necessary to load hundreds of rows into a
date range table. (You can actually find some of the code I used if you
dig around in the sample databases that are in Microsoft Office Access
format.)

When your driver table is a simple set of ranges to translate to a value,
it’s easy enough to load the data by hand. For example, here’s the list

718 Chapter 20 Using Unlinked Data and “Driver” Tables

of values I entered into the ztblLetterGrades table you can find in the
School Scheduling sample database:

LetterGrade LowGradePoint HighGradePoint

A 93 96.99

A- 90 92.99

A+ 97 120

B 83 86.99

B- 80 82.99

B+ 87 89.99

C 73 76.99

C- 70 72.99

C+ 77 79.99

D 63 66.99

D- 60 62.99

D+ 67 69.99

F 0 59.99

This should look familiar because it’s the same list of ranges that I used in
the CH19_Students_Classes_Letter_Grades query in the previous chapter.
(By the way, I named all the driver tables using a “ztbl” prefix to clearly sep-
arate them from the main data tables in each database.) One clear advan-
tage to setting up a table like this is that you can easily change the range
values should the need arise. You don’t have to go digging in the CASE
clauses in each query that depends on the ranges to obtain the answer.

As I noted previously, a really creative use of a driver table lets you pivot
your result to look like a spreadsheet. Quite a few database systems pro-
vide nonstandard ways to pivot data, but I’ll show you how to create a
pivot using standard SQL and a driver table. You can find one such table
I created for this purpose in the Sales Orders sample database called
ztblMonths. Here is what part of the table looks like:

MonthYear YearNumber MonthNumber MonthStart MonthEnd

January 2017 2017 1 1/1/2017 1/31/2017

February 2017 2017 2 2/1/2017 2/29/2017

 Solving Problems Using “Driver” Tables 719

MonthYear YearNumber MonthNumber MonthStart MonthEnd

March 2017 2017 3 3/1/2017 3/31/2017

April 2017 2017 4 4/1/2017 4/30/2017

May 2017 2017 5 5/1/2017 5/31/2017

June 2017 2017 6 6/1/2017 6/30/2017

July 2017 2017 7 7/1/2017 7/31/2017

August 2017 2017 8 8/1/2017 8/31/2017

<< more rows here >>

Additional columns…

January February March April May June

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 0

0 0 0 0 0 0

<< more rows here >>

Additional columns…

July August September October November December

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

<< more rows here >>

720 Chapter 20 Using Unlinked Data and “Driver” Tables

Looks a bit strange, doesn’t it? The little secret is you’ll use a WHERE
clause to match the rows in this driver table with the date of the order,
and then you will build columns by multiplying the total sales times the
value found in a particular column to get a total for that month. When the
order occurs in January 2017, only the January column on the matching
row contains a 1 to result in 1 times quantity times the price. The value
won’t be added to the columns for the other months because zero times
any value is always zero. Another way to think of it is the ones and zeros
define the horizontal “buckets” for each value encountered in your query
that calculates the values you want to display. When a date matches the
range defined by the row in the driver table, the 1 indicates the correct
horizontal bucket in which to place the value. So, when a value is in Jan-
uary 2017, that value ends up in the January column by multiplying the
column value times the expression that calculates the total.

Using a Driver Table

Let’s use the two driver tables described in the previous section to solve
problems. First, I want to display a grade letter based on each student’s
numeric grade received for a class. I solved this problem using CASE in
the previous chapter. Now I’ll solve it using the driver table.

“List all students, the classes for which they enrolled, the grade they
received, and a conversion of the grade number to a letter.”

Translation/
Clean UP

Select Students.student ID from the students table, Students.
student first name from the students table, Students.student
last name from the students table, Classes.class ID from the
classes table, Classes.start date from the classes table, Sub-
jects.subject code from the subjects table, Subjects.subject
name from the subjects table, Student_Schedules.grade from
the student_schedules table, and ztblLetterGrades.letter grade
from the letter grades driver table from ztblLetterGrades the
letter grades driver table and CROSS JOIN the students table
inner joined with the student schedules table on Students.stu-
dent ID in the students table equals = Student_Schedules.stu-
dent ID in the student schedules table, then inner joined with
the classes table on Student_Schedules.class ID in the student
schedules table equals = Classes.class ID in the classes table,
then inner joined with the subjects table on Classes.subject ID
in the classes table equals = Subjects.subject ID in the subjects
table, then inner joined with the student class status table on

 Solving Problems Using “Driver” Tables 721

Student_Schedules.class status in the student schedules table
equals = Student_Class_Status.class status in the student
class status table where Student_Class_Status.class status
description in the student class status table equals = ‘Com-
pleted’ and Student_Schedules.grade in the student schedules
table is between ztblLetterGrades.low grade point in the letter
grades driver table and ztblLetterGrades.high grade point in
the letter grades driver table

SQL SELECT Students.StudentID, Students.StudFirstName,

 Students.StudLastName, Classes.ClassID,

 Classes.StartDate,

 Subjects.SubjectCode, Subjects.SubjectName,

 Student_Schedules.Grade,

 ztblLetterGrades.LetterGrade

FROM ztblLetterGrades, (((Students

INNER JOIN Student_Schedules

 ON Students.StudentID =

 Student_Schedules.StudentID)

INNER JOIN Classes

 ON Student_Schedules.ClassID = Classes.ClassID)

INNER JOIN Subjects

 ON Classes.SubjectID = Subjects.SubjectID)

INNER JOIN Student_Class_Status

 ON Student_Schedules.ClassStatus =

 Student_Class_Status.ClassStatus

WHERE

 (Student_Class_Status.ClassStatusDescription =

 'Completed')

 AND (Student_Schedules.Grade Between

 ztblLetterGrades.LowGradePoint

 AND ztblLetterGrades.HighGradePoint);

You can find this query saved as CH20_Students_Classes_Letter_Grades
in the School Scheduling sample database. You’ll find that it returns
the same 68 rows as the CH19_Student_Classes_Letter_Grades that I
showed you in Chapter 19.

722 Chapter 20 Using Unlinked Data and “Driver” Tables

Now let’s take a look at using the second driver table.

“Show product sales for each product for all months, listing the months
as columns.”

Translation/
Clean Up

Select Products.product name from the products table, the
sum of (Order_Details.quoted price from the order details table
times * Order_Details.quantity ordered from the order details
table times * ztblMonths.January from the months driver table)
as January, the sum of (Order_Details.quoted price from the
order details table times * Order_Details.quantity ordered from
the order details table times * ztblMonths.February from the
months driver table) as February, the sum of (Order_Details.
quoted price from the order details table times * Order_
Details.quantity ordered from the order details table times *
ztblMonths.March from the months driver table) as March,
the sum of (Order_Details.quoted price from the order details
table times * Order_Details.quantity ordered from the order
details table times * ztblMonths.April from the months driver
table) as April, the sum of (Order_Details.quoted price from
the order details table times * Order_Details.quantity ordered
from the order details table times * ztblMonths.May from the
months driver table) as May, the sum of (Order_Details.quoted
price from the order details table times * Order_Details.quan-
tity ordered from the order details table times * ztblMonths.
June from the months driver table) as June, the sum of
(Order_Details.quoted price from the order details table times
* Order_Details.quantity ordered from the order details table
times * ztblMonths.July from the months driver table) as July,
the sum of (Order_Details.quoted price from the order details
table times * Order_Details.quantity ordered from the order
details table times * ztblMonths.August from the months driver
table) as August, the sum of (Order_Details.quoted price from
the order details table times * Order_Details.quantity ordered
from the order details table times * ztblMonths.September from
the months driver table) as September, the sum of (Order_
Details.quoted price from the order details table times * Order_
Details.quantity ordered from the order details table times *
ztblMonths.October from the months driver table) as October,
the sum of (Order_Details.quoted price from the order details
table times * Order_Details.quantity ordered from the order
details table times * ztblMonths.November from the months
driver table) as November, and the sum of (Order_Details.quoted
price from the order details table times * Order_Details.quan-
tity ordered from the order details table times * ztblMonths.
December from the months driver table) as December from

 Solving Problems Using “Driver” Tables 723

ztblMonths the months driver table CROSS JOIN and the
products table then inner joined with the order details table
on Products.product number in the products table equals =
Order_Details.product number in the order details table then
inner joined with the orders table on Orders.order number in
the orders table equals = Order_Details.order number in the
order details table where Orders.order date in the orders table is
between ztblMonths.month start in the months driver table and
ztblMonths.month end in the months driver table grouped by
Products.product name in the products table

SQL SELECT Products.ProductName,

 SUM(Order_Details.QuotedPrice *

 Order_Details.QuantityOrdered *

 ztblMonths.January)

 AS January,

 SUM(Order_Details.QuotedPrice *

 Order_Details.QuantityOrdered *

 ztblMonths.February)

 AS February,

 SUM(Order_Details.QuotedPrice *

 Order_Details.QuantityOrdered *

 ztblMonths.March)

 AS March,

 SUM(Order_Details.QuotedPrice *

 Order_Details.QuantityOrdered *

 ztblMonths.April)

 AS April,

 SUM(Order_Details.QuotedPrice *

 Order_Details.QuantityOrdered *

 ztblMonths.May)

 AS May,

 SUM(Order_Details.QuotedPrice *

 Order_Details.QuantityOrdered *

 ztblMonths.June)

 AS June,

724 Chapter 20 Using Unlinked Data and “Driver” Tables

 SUM(Order_Details.QuotedPrice *

 Order_Details.QuantityOrdered *

 ztblMonths.July)

 AS July,

 SUM(Order_Details.QuotedPrice *

 Order_Details.QuantityOrdered *

 ztblMonths.August)

 AS August,

 SUM(Order_Details.QuotedPrice *

 Order_Details.QuantityOrdered *

 ztblMonths.September)

 AS September,

 SUM(Order_Details.QuotedPrice *

 Order_Details.QuantityOrdered *

 ztblMonths.October)

 AS October,

 SUM(Order_Details.QuotedPrice *

 Order_Details.QuantityOrdered *

 ztblMonths.November)

 AS November,

 SUM(Order_Details.QuotedPrice *

 Order_Details.QuantityOrdered *

 ztblMonths.December)

 AS December

FROM ztblMonths, (Products

INNER JOIN Order_Details

 ON Products.ProductNumber =

 Order_Details.ProductNumber)

INNER JOIN Orders

 ON Orders.OrderNumber = Order_Details.OrderNumber

WHERE Orders.OrderDate BETWEEN ztblMonths.MonthStart

 AND ztblMonths.MonthEnd

GROUP BY Products.ProductName;

 Sample Statements 725

The “magic” happens when you restrict the row returned by the driver
table to the month that matches the date in the orders table. When the
date falls in January, only the January column has the value 1. That
places the amount for that row in January in the correct “bucket” to be
finally summed to get your pivoted result. You can find this query saved
in the Sales Orders sample database as CH20_Product_Sales_Month_
Pivot. The query returns 38 rows, but there are 40 products in the Prod-
ucts table. The two missing rows occur because two of the products have
never been sold. (See CH09_Products_Never_Ordered to discover those
two products.)

Sample Statements

You now know the mechanics of constructing queries using CROSS JOIN
and driver tables and have seen some of the types of requests you can
answer with these techniques. Let’s take a look at a fairly robust set of
samples, all of which use CROSS JOIN between two data tables or with
a driver table. These examples come from each of the sample databases,
and they illustrate the use of these techniques to solve “thinking outside
the box” problems.

 ❖ Note Remember in the Introduction that I warned you that results
from each database system won’t necessarily match the sort order you
see in examples in this book unless you include an ORDER BY clause.
Even when you include that specification, the system might return
results in columns not included in the ORDER BY clause in a different
sequence because of different optimization techniques.

If you’re running the examples in Microsoft SQL Server, simply select-
ing the rows from the view does not honor any ORDER BY clause
specified in the view. You must open the design of the view and exe-
cute it from there to see the ORDER BY clause honored.

Also, when you use GROUP BY, you’ll often see the results returned by
your database system as though the rows are sorted by the columns
you specified. This happens because some optimizers first sort the
data internally to make it faster to process your GROUP BY. Keep in
mind that if you want a specific sort order, you must also include an
ORDER BY clause.

❖ Note Remember in the Introduction that I warned you that results
from each database system won’t necessarily match the sort order you
see in examples in this book unless you include an ORDER BY clause.
Even when you include that specification, the system might return
results in columns not included in the ORDER BY clause in a different
sequence because of different optimization techniques.

If you’re running the examples in Microsoft SQL Server, simply select-
ing the rows from the view does not honor any ORDER BY clause
specified in the view. You must open the design of the view and exe-
cute it from there to see the ORDER BY clause honored.

Also, when you use GROUP BY, you’ll often see the results returned by
your database system as though the rows are sorted by the columns
you specified. This happens because some optimizers first sort the
data internally to make it faster to process your GROUP BY. Keep in
mind that if you want a specific sort order, you must also include an
ORDER BY clause.

726 Chapter 20 Using Unlinked Data and “Driver” Tables

I’ve also included sample result sets that would be returned by these
operations and placed them immediately after the SQL syntax line. The
name that appears immediately above a result set is the name I gave
each query in the sample data that you’ll find on the book’s website,
www.informit.com/title/9780134858333. I stored each query in the
appropriate sample database (as indicated within the example), using
“CH20” as the leading part of the query or view name. You can follow the
instructions in the Introduction to this book to load the samples onto
your computer and try them out.

 ❖ Note Remember that all of the field names and table names used
in these examples are drawn from the sample database structures
shown in Appendix B, “Schema for the Sample Databases.”

Because many of these examples use complex joins, the optimizer
for your database system may choose a different way to solve these
queries. For this reason, the first few rows I show you may not exactly
match the result you obtain, but the total number of rows should be
the same. Keep in mind that for any SQL Server View that contains an
ORDER BY clause, you must open the view in Design mode first and
then execute it to see the specified order. If you SELECT * from the
View, SQL Server does not honor the ORDER BY clause.

Examples Using Unlinked Tables

This first set of sample statements shows you problems you can solve
using unlinked tables. All of them use a CROSS JOIN between two data
tables.

Sales Order Database

“List all employees and customers who live in the same state and
indicate whether the customer has ever placed an order with the
employee.”

Translation/
Clean Up

Select employee first name, employee last name, customer
first name, customer last name, customer area code,
customer phone number, and (CASE when the customer
ID in the customers table is in the (selection of Orders.
customer ID from the orders table where Orders.employee

❖ Note Remember that all of the field names and table names used
in these examples are drawn from the sample database structures
shown in Appendix B, “Schema for the Sample Databases.”

Because many of these examples use complex joins, the optimizer
for your database system may choose a different way to solve these
queries. For this reason, the first few rows I show you may not exactly
match the result you obtain, but the total number of rows should be
the same. Keep in mind that for any SQL Server View that contains an
ORDER BY clause, you must open the view in Design mode first and
then execute it to see the specified order. If you SELECT * from the
View, SQL Server does not honor the ORDER BY clause.

http://www.informit.com/title/9780134858333

 Sample Statements 727

ID in the orders table equals = Employees.employee ID)
in the employees table then display ‘Ordered from you.’
else display ‘ ‘ END) from employees and CROSS JOIN
customers where the Employees.employee state in the
employees table equals = Customer.customer state in the
customers table

SQL SELECT Employees.EmpFirstName,

 Employees.EmpLastName,

 Customers.CustFirstName,

 Customers.CustLastName,

 Customers.CustAreaCode,

 Customers.CustPhoneNumber,

 (CASE WHEN Customers.CustomerID IN

 (SELECT Orders.CustomerID

 FROM Orders

 WHERE Orders.EmployeeID =

 Employees.EmployeeID)

 THEN 'Ordered from you. '

 ELSE ' ' END) AS CustStatus

FROM Employees, Customers

WHERE Employees.EmpState = Customers.CustState;

CH20_Employees_Same_State_Customers (83 rows)

Emp
FirstName

Emp
LastName

Cust
FirstName

Cust
LastName

Cust
AreaCode

Cust
PhoneNumber

Cust
Status

Ann Patterson William Thompson 425 555-2681 Ordered
from you.

Ann Patterson Gary Hallmark 253 555-2676 Ordered
from you.

Ann Patterson Dean McCrae 425 555-2506 Ordered
from you.

Ann Patterson John Viescas 425 555-2511 Ordered
from you.

Ann Patterson Andrew Cencini 206 555-2601 Ordered
from you.

728 Chapter 20 Using Unlinked Data and “Driver” Tables

Emp
FirstName

Emp
LastName

Cust
FirstName

Cust
LastName

Cust
AreaCode

Cust
PhoneNumber

Cust
Status

Ann Patterson Liz Keyser 425 555-2556 Ordered
from you.

Ann Patterson Julia Schnebly 206 555-9936 Ordered
from you.

Ann Patterson Suzanne Viescas 425 555-2686 Ordered
from you.

Ann Patterson Jeffrey Tirekicker 425 555-9999

Ann Patterson Joyce Bonnicksen 425 555-2726 Ordered
from you.

<< more rows here >>

 ❖ Note If you’re really sharp, you probably figured out that I could
have solved the problem using an INNER JOIN between Employees
and Customers ON EmpState = CustState. As I have stated many
times before, there’s almost always more than one way to solve a prob-
lem. Now you know how to solve it using a CROSS JOIN.

Entertainment Database

“List all customer preferences and the count of first, second, and third
preferences.”

 ❖ Note This is a bit tricky because you first need to “pivot” each cus-
tomer’s first, second, and third preferences (as indicated by the Pref-
erenceSeq column), and then count them. You could use a driver table
to help perform the pivot, but with only three unique values to pivot
into columns, it’s just as easy to do it with CASE.

Translation/
Clean Up

Select Musical_Styles.style ID from the musical styles table, Musi-
cal_Styles.style name from the musical styles table, the count of
(RankedPeferences.first style) from the ranked preferences query
as first preference, the count of (RankedPreferences.second style)
from the ranked preferences query as second preference, and the

❖ Note If you’re really sharp, you probably figured out that I could
have solved the problem using an INNER JOIN between Employees
and Customers ON EmpState = CustState. As I have stated many
times before, there’s almost always more than one way to solve a prob-
lem. Now you know how to solve it using a CROSS JOIN.

❖ Note This is a bit tricky because you first need to “pivot” each cus-
tomer’s first, second, and third preferences (as indicated by the Pref-
erenceSeq column), and then count them. You could use a driver table
to help perform the pivot, but with only three unique values to pivot
into columns, it’s just as easy to do it with CASE.

 Sample Statements 729

count of (RankedPreferences.third style) from the ranked prefer-
ences query as third preference from the musical styles table and
CROSS JOIN the (selection of (CASE when Musical_Preferences.
preference sequence in the musical preferences table is = 1 then
return the Musical_Preferences.style ID from the musical prefer-
ences table else return Null END) as first style, (CASE when Musi-
cal_Preferences.preference sequence in the musical preferences
table is = 2 then return the Musical_Preferences.style ID from the
musical preferences table else return Null END) as second style,
(CASE when Musical_Preferences.preference sequence in the musi-
cal preferences table is = 3 then return the Musical_Preferences.
style ID from the musical preferences table else return Null END)
as third style from the musical preferences table) as ranked pref-
erences where Musical_Styles.style ID in the musical styles table
equals = RankedPreferences.first style in the ranked preferences
query or Musical_Styles.style ID in the musical styles table equals
= RankedPreferences.second style in the ranked preferences query
or Musical_Styles.style ID in the musical styles table equals =
RankedPreferences.third style in the ranked preferences query
grouped by style ID, and style name having the count of (first
style) > greater than 0 or the count of (second style) > greater than
0 or the count of (third style) > greater than 0 ordered by first pref-
erence descending, second preference descending, third preference
descending, and style ID

SQL SELECT Musical_Styles.StyleID,

 Musical_Styles.StyleName,

 COUNT(RankedPreferences.FirstStyle)

 AS FirstPreference,

 COUNT(RankedPreferences.SecondStyle)

 AS SecondPreference,

 COUNT(RankedPreferences.ThirdStyle)

 AS ThirdPreference

FROM Musical_Styles,

 (SELECT (CASE WHEN

 Musical_Preferences.PreferenceSeq = 1

 THEN Musical_Preferences.StyleID

 ELSE Null END) As FirstStyle,

 (CASE WHEN

 Musical_Preferences.PreferenceSeq = 2

 THEN Musical_Preferences.StyleID

 ELSE Null END) As SecondStyle,

730 Chapter 20 Using Unlinked Data and “Driver” Tables

 (CASE WHEN

 Musical_Preferences.PreferenceSeq = 3

 THEN Musical_Preferences.StyleID

 ELSE Null END) AS ThirdStyle

 FROM Musical_Preferences) AS RankedPreferences

WHERE Musical_Styles.StyleID =

 RankedPreferences.FirstStyle

 OR Musical_Styles.StyleID =

 RankedPreferences.SecondStyle

 OR Musical_Styles.StyleID =

 RankedPreferences.ThirdStyle

GROUP BY StyleID, StyleName

HAVING COUNT(FirstStyle) > 0

 OR COUNT(SecondStyle) > 0

 OR COUNT(ThirdStyle) > 0

ORDER BY FirstPreference DESC,

 SecondPreference DESC,

 ThirdPreference DESC, StyleID;

CH20_Customer_Style_Preference_Rankings (20 rows)

StyleID StyleName FirstPreference SecondPreference ThirdPreference

21 Standards 2 2 0

15 Jazz 2 1 0

19 Rhythm and Blues 2 0 1

22 Top 40 Hits 2 0 0

10 Contemporary 1 2 0

8 Classic Rock & Roll 1 1 0

20 Show Tunes 1 1 0

3 60’s Music 1 0 0

11 Country Rock 1 0 0

14 Chamber Music 1 0 0

23 Variety 1 0 0

<< more rows here >>

 Sample Statements 731

Notice that although there are 25 distinct musical styles defined in the
database, the query returns only 20 rows. The styles that are missing
aren’t ranked first, second, or third by any customer.

School Scheduling Database

“List all students who have completed English courses and rank them
by Quintile on the grades they received.”

A Quintile divides a group into five equal ranges. When applied to stu-
dent rankings, a quintile will be 20% of students—those in the top
20 percent are in the first quintile, those in the next 20% are in the
second quintile, and so on. To solve this, you need to CROSS JOIN two
queries:

 1. A query that assigns a ranking number to each student who com-
pleted an English course. You can calculate the rank by counting the
number of students who have a grade greater than or equal to the
current student’s grade. The student with the highest grade will be
ranked #1, the student with the second highest grade #2, and so on.

 2. A query that counts all students who completed an English
course. You can use this count times 0.2, 0.4, 0.6, and 0.8 to
figure out the quintile. The students whose rank (as calculated by
the first query) is less than or equal to 0.2 times the total number
of students is in the first quintile.

Translation/
Clean Up

Select S1.subject ID from the first query, S1.student first name
from the first query, S1.student last name from the first query,
S1.class status from the first query, S1.grade from the first query,
S1.category ID from the first query, S1.subject name from the first
query, S1.rank in category from the first query, StudCount.num-
ber of students from the student count query, and (CASE when
the rank in category <= is less than or equal to 0.2 * times the
number of students then return ‘First’ when the rank in category
<= is less than or equal to 0.4 * times the number of students then
return ‘Second’ when the rank in category <= is less than or equal
to 0.6 * times the number of students then return ‘Third’ when the
rank in category <= is less than or equal to 0.8 * times the num-
ber of students then return ‘Fourth’ else return ‘Fifth’ END) as the
quintile from the (selection of Subjects.subject ID in the subjects
table, Students.student first name in the students table, Students.
student last name in the students table, Student_Schedules.class
status in the student schedules table, Student_Schedules.grade in
the student schedules table, Subjects.category ID in the subjects
table, Subjects.subject name in the subjects table, and the

732 Chapter 20 Using Unlinked Data and “Driver” Tables

(selection of the count(*) of all rows from the classes table inner
joined with the student schedules table AS SS2 on Classes.class ID
in the classes table = equals SS2.class ID in the student schedules
table, then inner joined with the subjects table AS S3 on S3.subject
ID in the subjects table = equals Classes.subject ID in the classes
table where S3.category ID in the subjects table = equals ‘ENG’
and SS2.grade in the student schedules table >= is greater than or
equal to Student_Schedules.grade in the student schedules table)
as rank in category) from the subjects table inner joined with the
classes table on Subjects.subject ID in the subjects table = equals
Classes.subject ID in the classes table, then inner joined with the
student schedules table on Student_Schedules.class ID in the stu-
dent schedules table = equals Classes.class ID in the classes table,
then inner joined with the students table on Students.student ID
in the students table = equals Student_Schedules.student ID in the
student schedules table where Student_Schedules.class status in
the student schedules table = equals 2 and Subjects.category ID
in the subjects table = equals ‘ENG’) AS S1 CROSS JOIN and the
(selection of the count(*) of all rows as number of students from the
classes table AS C2 inner joined with the student schedules table
AS SS3 on C2.class id in the classes table = equals SS3.class ID
in the student schedules table, then inner joined with the subjects
table AS S2 on S2.subject ID in the subjects table = equals C2.sub-
ject ID in the classes table where SS3.class status in the student
schedules table = equals 2 and S2.category ID in the subjects table
= equals ‘ENG’) As student count ordered by S1.grade in the first
query descending

SQL SELECT S1.SubjectID, S1.StudFirstName,

 S1.StudLastName,

 S1.ClassStatus, S1.Grade, S1.CategoryID,

 S1.SubjectName,

 S1.RankInCategory, StudCount.NumStudents,

 (CASE WHEN RankInCategory <= 0.2 * NumStudents

 THEN 'First'

 WHEN RankInCategory <= 0.4 * NumStudents

 THEN 'Second'

 WHEN RankInCategory <= 0.6 * NumStudents

 THEN 'Third'

 WHEN RankInCategory <= 0.8 * NumStudents

 THEN 'Fourth'

 ELSE 'Fifth' END) AS Quintile

 Sample Statements 733

FROM

 (SELECT Subjects.SubjectID,

 Students.StudFirstName,

 Students.StudLastName,

 Student_Schedules.ClassStatus,

 Student_Schedules.Grade, Subjects.CategoryID,

 Subjects.SubjectName,

 (SELECT Count(*)

 FROM (Classes

 INNER JOIN Student_Schedules AS SS2

 ON Classes.ClassID = SS2.ClassID)

 INNER JOIN Subjects As S3

 ON S3.SubjectID = Classes.SubjectID

 WHERE S3.CategoryID = 'ENG'

 AND SS2.Grade >=

 Student_Schedules.Grade)

 AS RankInCategory

 FROM ((Subjects INNER JOIN Classes

 ON Subjects.SubjectID = Classes.SubjectID)

 INNER JOIN Student_Schedules

 ON Student_Schedules.ClassID =

 Classes.ClassID)

 INNER JOIN Students

 ON Students.StudentID =

 Student_Schedules.StudentID

 WHERE Student_Schedules.ClassStatus = 2 AND

 Subjects.CategoryID = 'ENG') AS S1,

 (SELECT Count(*) AS NumStudents

 FROM (Classes AS C2 INNER JOIN

 Student_Schedules AS SS3

 ON C2.ClassID = SS3.ClassID)

 INNER JOIN Subjects AS S2

 ON S2.SubjectID = C2.SubjectID

 WHERE SS3.ClassStatus = 2 And S2.CategoryID = 'ENG')

 AS StudCount

ORDER BY S1.Grade DESC;

734 Chapter 20 Using Unlinked Data and “Driver” Tables

 CH20_English_Student_Quintiles (18 rows)

Subject
ID

Stud
First
Name

Stud
Last
Name

Class
Status

Grade Category Subject
Name

RankIn
Category

Num
Students

Quintile

37 Scott Bishop 2 98.07 ENG Composition -
Fundamentals

1 18 First

37 Sara Sheskey 2 97.59 ENG Composition -
Fundamentals

2 18 First

37 John Kennedy 2 93.01 ENG Composition -
Fundamentals

3 18 First

37 Brannon Jones 2 91.66 ENG Composition -
Fundamentals

4 18 Second

37 Janice Galvin 2 91.44 ENG Composition -
Fundamentals

5 18 Second

38 Kendra Bonnicksen 2 88.91 ENG Composition -
Intermediate

6 18 Second

37 George Chavez 2 88.54 ENG Composition -
Fundamentals

7 18 Second

37 Mari-
anne

Wier 2 87.4 ENG Composition -
Fundamentals

8 18 Third

<< more rows here >>

 ❖ Note This query uses the grade from each English class to rank
the students, so it is possible to see a student listed more than once if
the student has completed more than one English class. To rank stu-
dents for all English classes taken, you would first have to calculate
the average of credits times grade divided by credits for each student
and then rank those results.

Bowling League Database

“List all potential matches between teams without duplicating any
team pairing.”

To solve this problem, you need two copies of the Teams table in your
FROM clause. That will give you all combinations of two teams, but you
obviously don’t want to list a team bowling itself. Think about deal-
ing with each team one at a time. When looking at Team 1, you need
to match it with any team that has a higher TeamID value. Looking at

❖ Note This query uses the grade from each English class to rank
the students, so it is possible to see a student listed more than once if
the student has completed more than one English class. To rank stu-
dents for all English classes taken, you would first have to calculate
the average of credits times grade divided by credits for each student
and then rank those results.

 Sample Statements 735

Team 2, you’ve already matched it with Team 1 on the first pass, but
any higher value in TeamID will work. So as long as the TeamID in the
second copy of the table has a higher value than the TeamID in the first
copy of the table, you’re good to go!

Translation/
Clean Up

Select Teams.team ID from the 1st copy of the teams table as
team1 ID, Teams.TeamName from the 1st copy of the teams
table as team1 name, Teams_1.team ID from the 2nd copy of
the teams table as team1 name, and Teams_1.team name from
the 2nd copy of the teams table as team2 name from the teams
table CROSS JOIN and a 2nd copy of the teams table AS Team_1
where Teams_1.team ID in the 2nd copy of the teams table is
greater than > Teams.team ID in the 1st copy of the teams table
ordered by Teams.team ID in the 1st copy of the teams table,
and Teams_1.team ID in the 2nd copy of the teams table

SQL SELECT Teams.TeamID AS Team1ID,

 Teams.TeamName AS Team1Name,

 Teams_1.TeamID AS Team2ID,

 Teams_1.TeamName AS Team2Name

FROM Teams, Teams AS Teams_1

WHERE Teams_1.TeamID > Teams.TeamID

ORDER BY Teams.TeamID, Teams_1.TeamID;

CH20_Team_Pairings (45 rows)

Team1ID Team1Name Team2ID Team2Name

1 Marlins 2 Sharks

1 Marlins 3 Terrapins

1 Marlins 4 Barracudas

1 Marlins 5 Dolphins

1 Marlins 6 Orcas

1 Marlins 7 Manatees

1 Marlins 8 Swordfish

1 Marlins 9 Huckleberrys

1 Marlins 10 MintJuleps

2 Sharks 3 Terrapins

2 Sharks 4 Barracudas

<< more rows here >>

736 Chapter 20 Using Unlinked Data and “Driver” Tables

 ❖ Note You might look at this query and ask: “Couldn’t I also solve
this with an INNER JOIN moving the WHERE clause to an ON clause?”
You would be absolutely correct for most database systems that support
something other than an equijoin in the ON clause. As usual, there’s
always more than one way to solve a particular problem using SQL.

Examples Using Driver Tables

Let’s move on to solving some problems using driver tables. All the fol-
lowing solutions use driver tables that I’ve already built for you in the
sample databases.

Sales Order Database

“The warehouse manager has asked you to print an identification
label for each item in stock.”

You can look up the quantity on hand in the Products table. The trick
here is to use a driver table that has one column of integers, and each
row has a successive value from 1 to the maximum number you might
have in stock. You can use ztblSeqNumbers in the sample database for
this purpose.

Translation/
Clean Up

Select ztblSeqNumbers.Sequence from the sequence
driver table, Products.product number from the products
table, and Products.product name from the products
table from ztblSeqNumbers the sequence driver table
CROSS JOIN and the products table where ztblSeqNum-
bers.sequence in the sequence driver table is less than
or equal to <= Products.quantity on hand in the products
table ordered by Products.product number from the prod-
ucts table, and ztblSequenceNumbers.sequence from the
sequence driver table

SQL SELECT ztblSeqNumbers.Sequence,

 Products.ProductNumber,

 Products.ProductName

FROM ztblSeqNumbers, Products

WHERE ztblSeqNumbers.Sequence <=

 Products.QuantityOnHand

ORDER BY Products.ProductNumber,

 ztblSeqNumbers.Sequence;

❖ Note You might look at this query and ask: “Couldn’t I also solve
this with an INNER JOIN moving the WHERE clause to an ON clause?”
You would be absolutely correct for most database systems that support
something other than an equijoin in the ON clause. As usual, there’s
always more than one way to solve a particular problem using SQL.

 Sample Statements 737

CH20_Product_Stock_Labels (813 rows)

Sequence ProductNumber ProductName

1 1 Trek 9000 Mountain Bike

2 1 Trek 9000 Mountain Bike

3 1 Trek 9000 Mountain Bike

4 1 Trek 9000 Mountain Bike

5 1 Trek 9000 Mountain Bike

6 1 Trek 9000 Mountain Bike

1 2 Eagle FS-3 Mountain Bike

2 2 Eagle FS-3 Mountain Bike

<< more rows here >>

Entertainment Database

“Produce a booking calendar that lists for all weeks in January 2018
any engagement during that week.”

 ❖ Note Remember to find an engagement that occurs in any part of
a date span you need to find engagements that begin before or on the
end date of the span and end after or on the start date of the span.
You need to do a similar thing to find weeks in which any part of the
week falls in January 2018.

Translation/
Clean Up

Select ztblWeeks.week start from the weeks driver table,
ztblWeeks.week end from the weeks driver table, Enter-
tainers.entertainer ID from the entertainers table, Enter-
tainers.entertainer stage name from the entertainers table,
Customers.customer first name from the customers table,
Customers.customer last name from the customers table,
Engagements.start date from the engagements table, and
Engagements.end date from the engagements table from
ztblWeeks the weeks driver table CROSS JOIN and the
customers table inner joined with the engagements table
on Customers.customer ID in the customers table equals

❖ Note Remember to find an engagement that occurs in any part of
a date span you need to find engagements that begin before or on the
end date of the span and end after or on the start date of the span.
You need to do a similar thing to find weeks in which any part of the
week falls in January 2018.

738 Chapter 20 Using Unlinked Data and “Driver” Tables

= Engagements.customer ID in the engagements table,
then inner joined with the entertainers table on Enter-
tainers.entertainer ID in the entertainers table equals
= Engagements.entertainer ID in the engagements table
where ztblWeeks.week start in the weeks driver table is
less than or equal to <= ‘2018-01-31’ and ztblWeeks.week
end in the weeks driver table is greater than or equal to >=
‘2018-01-01’ and Engagements.start date in the engage-
ments table is less than or equal to <= ztblWeeks.week
end in the weeks driver table and Engagements.end date
in the engagements table is greater than or equal to >=
ztblWeeks.week start in the weeks driver table

SQL SELECT ztblWeeks.WeekStart, ztblWeeks.WeekEnd,

 Entertainers.EntertainerID,

 Entertainers.EntStageName,

 Customers.CustFirstName, Customers.
 CustLastName,

 Engagements.StartDate, Engagements.EndDate

FROM ztblWeeks, (Customers INNER JOIN Engagements

 ON Customers.CustomerID =

 Engagements.CustomerID)

INNER JOIN Entertainers

 ON Entertainers.EntertainerID =

 Engagements.EntertainerID

WHERE ztblWeeks.WeekStart <= '2018-01-31' AND

 ztblWeeks.WeekEnd >= '2018-01-01' AND

 Engagements.StartDate <= ztblWeeks.WeekEnd AND

 Engagements.EndDate >= ztblWeeks.WeekStart;

CH20_All_Weeks_Jan2018_All_Engagements (50 rows)

Week
Start

WeekEnd Entertainer
ID

EntStage
Name

CustFirst
Name

CustLast
Name

Start
Date

End
Date

2017-
12-31

2018-
01-05

1001 Carol
Peacock
Trio

Mark Rosales 2017-
12-30

2018-
01-08

2018-
01-07

2018-
01-12

1001 Carol
Peacock
Trio

Mark Rosales 2017-
12-30

2018-
01-08

 Sample Statements 739

Week
Start

WeekEnd Entertainer
ID

EntStage
Name

CustFirst
Name

CustLast
Name

Start
Date

End
Date

2018-
01-07

2018-
01-12

1001 Carol
Peacock
Trio

Matt Berg 2017-
01-09

2018-
01-09

2018-
01-21

2018-
01-26

1001 Carol
Peacock
Trio

Dean McCrae 2017-
01-23

2018-
01-31

2018-
01-28

2018-
02-02

1001 Carol
Peacock
Trio

Dean McCrae 2018-
01-23

2018-
01-31

2017-
12-31

2018-
01-05

1002 Topazz Estella Pundt 2018-
01-02

2018-
01-10

2018-
01-07

2018-
01-12

1002 Topazz Estella Pundt 2018-
01-02

2018-
01-10

2017-
12-31

2018-
01-05

1003 JV & the
Deep Six

Carol Viescas 2017-
12-31

2018-
01-05

2018-
01-07

2018-
01-12

1003 JV & the
Deep Six

Mark Rosales 2018-
01-09

2018-
01-10

2018-
01-28

2018-
02-02

1003 JV & the
Deep Six

Zachary Ehrlich 2018-
01-29

2018-
02-02

<< more rows here >>

School Scheduling Database

“Display a list of classes by semester, date, and subject.”

 ❖ Note This is a bit tricky because the Classes table has an unnor-
malized list of days listed as columns. When a class is scheduled for
a given day, the value is 1 or “true” for that column. I need to use the
ztblSemesterDays driver table and include a class when the semes-
ter matches and the day of the week in the driver table has the “flag”
turned on in the appropriate day column. Because some database
systems use -1 (Microsoft Office Access, for example) and others use
1 for “true,” I will test for not equal to 0 to determine whether the
 column has a “true” value.

❖ Note This is a bit tricky because the Classes table has an unnor-
malized list of days listed as columns. When a class is scheduled for
a given day, the value is 1 or “true” for that column. I need to use the
ztblSemesterDays driver table and include a class when the semes-
ter matches and the day of the week in the driver table has the “flag”
turned on in the appropriate day column. Because some database
systems use -1 (Microsoft Office Access, for example) and others use
1 for “true,” I will test for not equal to 0 to determine whether the
column has a “true” value.

740 Chapter 20 Using Unlinked Data and “Driver” Tables

Translation/
Clean Up

Select ztblSemesterDays.semester no from the semester driver table,
ztblSemesterDays.semester date from the semester driver table,
Classes.start time from the classes table, ztblSemesterDays.semester
day name from the semester driver table, Subjects.subject code from
the subjects table, Subjects.subject name from the subjects table,
Class_Rooms.building code from the class rooms table, Class_Rooms.
class room ID from the class rooms table from ztblSemesterDays
the semester driver table CROSS JOIN and the subjects table then
inner joined with the classes table on Subjects.subject ID in the
subjects table equals = Classes.subject ID in the classes table then
inner joined with the class rooms table on Class_Rooms.class room
ID in the class rooms table equals = Classes.class room ID in the
classes table where Classes.semester number in the classes table
equals = ztblSemesterDays.semester no in the semester driver table
and 1 equals = (CASE when ztblSemesterDays.semester day name
in the semester driver table equals = ‘Monday’ and Classes. Mon-
day schedule in the classes table does not equal <> 0 then return 1
when ztblSemesterDays.semester day name in the semester driver
table equals = ‘Tuesday’ and Classes.Tuesday schedule in the classes
table does not equal <> 0 then return 1 when ztblSemesterDays.
semester day name in the semester driver table equals = ‘Wednes-
day’ and Classes.Wednesday schedule in the classes table does not
equal <> 0 then return 1 when ztblSemesterDays.semester day name
in the semester driver table equals = ‘Thursday’ and Classes.Thurs-
day schedule in the classes table does not equal <> 0 then return 1
when ztblSemesterDays.semester day name in the semester driver
table equals = ‘Friday’ and Classes.Friday schedule in the classes
table does not equal <> 0 then return 1 when ztblSemesterDays.
semester day name in the semester driver table equals = ‘Saturday’
and Classes.Saturday schedule in the classes table does not equal
<> 0 then return 1 else return 0 END) ordered by ztblSemesterDays.
semester no in the semester driver table, ztblSemesterDays.semes-
ter date in the semester driver table, Subjects.subject code in the
subjects table, Class_Rooms.building code in the class rooms table,
Class_Rooms.class room ID in the class rooms table, and Classes.
start time in the classes table

SQL SELECT ztblSemesterDays.SemesterNo,

 ztblSemesterDays.SemDate, Classes.StartTime,

 ztblSemesterDays.SemDayName, Subjects.SubjectCode,

 Subjects.SubjectName, Class_Rooms.BuildingCode,

 Class_Rooms.ClassRoomID

FROM ztblSemesterDays, (Subjects

INNER JOIN Classes

 ON Subjects.SubjectID = Classes.SubjectID)

 Sample Statements 741

INNER JOIN Class_Rooms

 ON Class_Rooms.ClassRoomID =

 Classes.ClassRoomID

WHERE Classes.SemesterNumber =

 ztblSemesterDays.SemesterNo

AND Classes.StartDate <= ztblSemesterDays.SemDate

AND 1 =

(CASE WHEN ztblSemesterDays.SemDayName = 'Monday'

 AND Classes.MondaySchedule <> 0 THEN 1

 WHEN ztblSemesterDays.SemDayName = 'Tuesday'

 AND Classes.TuesdaySchedule <> 0 THEN 1

 WHEN ztblSemesterDays.SemDayName = 'Wednesday'

 AND Classes.WednesdaySchedule <> 0 THEN 1

 WHEN ztblSemesterDays.SemDayName = 'Thursday'

 AND Classes.ThursdaySchedule <> 0 THEN 1

 WHEN ztblSemesterDays.SemDayName = 'Friday'

 AND Classes.FridaySchedule <> 0 THEN 1

 WHEN ztblSemesterDays.SemDayName = 'Saturday'

 AND Classes.SaturdaySchedule <> 0 THEN 1

 ELSE 0 END)

ORDER BY ztblSemesterDays.SemesterNo,

 ztblSemesterDays.SemDate, Subjects.SubjectCode,

 Class_Rooms.BuildingCode,

 Class_Rooms.ClassRoomID,

 Classes.StartTime;

CH20_Class_Schedule_Calendar (7,221 rows)

Semester
No

SemDate Start
Time

SemDay
Name

Subject
Code

Subject
Name

Building Class
RoomID

1 2018-09-11 16:00 Monday ACC 210 Financial
Accounting
Fundamentals I

IB 3305

1 2018-09-11 15:30 Monday ART 101 Design AS 1619

1 2018-09-11 8:00 Monday ART 111 Drawing AS 1627

1 2018-09-11 9:00 Monday ART 111 Drawing AS 1627

742 Chapter 20 Using Unlinked Data and “Driver” Tables

Semester
No

SemDate Start
Time

SemDay
Name

Subject
Code

Subject
Name

Building Class
RoomID

1 2018-09-11 11:00 Monday ART 251 Art History LB 1231

1 2018-09-11 14:00 Monday ART 251 Art History LB 1231

1 2018-09-11 10:00 Monday BIO 100 Biological
Principles

AS 1532

1 2018-09-11 12:00 Monday BIO 101 General Biology AS 1532

1 2018-09-11 13:30 Monday BIO 280 Microbiology AS 1530

1 2018-09-11 7:30 Monday CHE 101 Chemistry AS 1519

<< more rows here >>

Bowling League Database

“Print a bowler mailing list, but skip the first three labels on the first
page that have already been used.”

 ❖ Note What you want to do is produce three blank name and
address lines to bypass the used labels, and then list all the bowlers
and their addresses. You can use ztblSkipLabels in a SELECT state-
ment that substitutes blanks for all the fields and stops when the
number in the driver table becomes greater than the number of labels
you want to skip. Follow that with a UNION ALL of a SELECT state-
ment to produce the names and addresses for all bowlers. You must
use a UNION ALL because a simple UNION would eliminate all the
duplicate blank lines you produced in the first query.

Translation /
Clean Up

Select blanks ‘ ‘ as bowler last name, blanks ‘ ‘ as bowler
first name, blanks ‘ ‘ as bowler address, blanks ‘ ‘ as
bowler city, blanks ‘ ‘ as bowler state, blanks ‘ ‘ as bowler
zip from ztblSkipLabels the skip labels driver table where
the ztblSkipLabels.label count in the skip labels driver
table is less than or equal to <= 3 unioned with all rows
in select bowler last name, bowler first name, bowler
address, bowler city, bowler state, and bowler zip from the
bowlers table ordered by bowler zip, and bowler last name

❖ Note What you want to do is produce three blank name and
address lines to bypass the used labels, and then list all the bowlers
and their addresses. You can use ztblSkipLabels in a SELECT state-
ment that substitutes blanks for all the fields and stops when the
number in the driver table becomes greater than the number of labels
you want to skip. Follow that with a UNION ALL of a SELECT state-
ment to produce the names and addresses for all bowlers. You must
use a UNION ALL because a simple UNION would eliminate all the
duplicate blank lines you produced in the first query.

 Summary 743

SQL SELECT ' ' As BowlerLastName, ' ' As
BowlerFirstName,

 ' ' As BowlerAddress, ' ' As BowlerCity,

 ' ' As BowlerState, ' ' As BowlerZip

FROM ztblSkipLabels

WHERE ztblSkipLabels.LabelCount <= 3

UNION ALL

SELECT BowlerLastName, BowlerFirstName,

 BowlerAddress, BowlerCity, BowlerState,

 BowlerZip

FROM Bowlers

ORDER BY BowlerZip, BowlerLastName;

CH20_Bowler_Mailing_Skip_3 (35 rows)

BowlerLast
Name

BowlerFirst
Name

Bowler
Address

Bowler
City

Bowler
State

Bowler
Zip

Patterson Kathryn 16 Maple Lane Auburn WA 98002

Patterson Rachel 16 Maple Lane Auburn WA 98002

Patterson Ann 16 Maple Lane Auburn WA 98002

Patterson Neil 16 Maple Lane Auburn WA 98002

Patterson Megan 16 Maple Lane Auburn WA 98002

Viescas Carol 16345 NE
32nd Street

Bellevue WA 98004

Sheskey Sara 17950 N 59th Seattle WA 98011

<< more rows here >>

Summary

I started this chapter with a definition of unlinked data and a discus-
sion of how to use CROSS JOIN to handle unlinked data in your queries.
At the end of the first section, I outlined the two cases where a CROSS

744 Chapter 20 Using Unlinked Data and “Driver” Tables

JOIN can be useful—linking main data tables with each other and
 linking main data tables with a “driver” table.

I next covered solving problems using main data tables linked to each
other and explained a complex example. After that, I covered using a
driver table, showing you how to set one up and discussing another two
examples. Finally, I showed you and explained examples from four of
the sample databases using both main tables linked to each other and a
driver table linked to one or more main tables. I encourage you to try to
work out the problems presented in the final section that follows.

Problems for You to Solve

The following problems show you the request statement and the name of
the solution query in the sample databases. If you want some practice,
you can work out the SQL you need for each request and then check
your answer with the query I saved in the samples. Don’t worry if your
syntax doesn’t exactly match the syntax of the queries I saved—as long
as your Result Set is the same.

Sales Order Database

 1. “List months and the total sales by products for each month.”

(Hint: Use the ztblMonths driver table I provided.)

You can find the solution in CH20_Product_Sales_ByMonth
(253 rows).

 2. “Produce a customer mailing list, but skip the five labels already
used on the first page of the labels.”

(Hint: Use the ztblSeqNumbers driver table I provided.)

You can find the solution in CH20_Customer_Mailing_Skip_5
(33 rows).

 3. “The sales manager wants to send out 10% discount coupons for
customers who made large purchases in December 2017. Use the
ztblPurchaseCoupons table to determine how many coupons each
customer gets based on the total purchases for the month.”

(Hint: You need to CROSS JOIN the driver table with the Custom-
ers table joined with a subquery that calculates the total spend
for each customer.)

You can find the solution in CH20_Customer_Dec_2017_Order_
Coupons (27 rows).

 Problems for You to Solve 745

 4. “Using the solution to #3 above, print out one 10% off coupon based
on the number of coupons each customer earned.”

(Hint: Use the ztblSeqNumbers driver table that I provided with
the query in the above problem.)

You can find the solution in CH20_Customer_Discount_Coupons_
Print (309 rows).

 5. “Display all months in 2017 and 2018, all products, and the total
sales (if any) registered for the product in the month.”

(Hint: Use a CROSS JOIN between the ztblMonths driver table
and the Products table and use a subquery to fetch the product
sales for each product and month.)

You can find the solution in CH20_Product_Sales_All_
Months_2017_2018 (960 rows).

 6. “Display all products and categorize them from Affordable to
Expensive.”

(Hint: Use a CROSS JOIN with ztblPriceRanges.) You can find the
solution in CH20_Product_Price_Ranges (40 rows).

Entertainment Database

 1. “List all agents and any entertainers who haven’t had a booking
since February 1, 2018.”

(Hint: Use a CROSS JOIN between Agents and Entertainers and
use NOT IN on a subquery in the WHERE clause to find enter-
tainers not booked since February 1, 2018.)

You can find the solution in CH20_Agents_Entertainers_
Unbooked_Feb1_2018 (162 rows).

 2. “Show all entertainer styles and the count of the first, second, and
third strengths.”

(Hint: This is similar to the CH20_Customer_Style_Preference_
Rankings query I showed you earlier. Use a CROSS JOIN of the
Musical_Styles table with a subquery that “pivots” the strengths
into three columns, then count the columns.)

You can find the solution in CH20_Entertainer_Style_Strength_
Rankings (17 rows).

746 Chapter 20 Using Unlinked Data and “Driver” Tables

 3. “Display customers and their first, second, and third-ranked pref-
erences along with entertainers and their first, second, and third-
ranked strengths, then match customers to entertainers when the
first or second preference matches the first or second strength.”

(Hint: Create a query on musical styles and customers and pivot
the first, second, and third strengths using a CASE expression.
You will need to use MAX and GROUP BY because the pivot will
return Null values for some of the positions. Do the same with
entertainers and musical styles, then CROSS JOIN the two sub-
queries and return the rows where the preferences and strengths
match in the first two positions.)

You can find the solution in CH20_Customers_Match_
Entertainers_FirstSecond_PrefStrength (6 rows).

 4. “List all months across and calculate each entertainer’s income per
month.”

(Hint: Use the ztblMonths driver table to pivot the amounts per
month and use SUM to total the amounts per entertainer.)

You can find the solution in CH20_Entertainer_BookingAmount_
ByMonth (12 rows).

 5. “Display all dates in December 2017 and any entertainers booked
on those days.”

(Hint: Build a subquery using a CROSS JOIN between the
ztblDays driver table and a JOIN on entertainers and engage-
ments, then LEFT JOIN that with ztblDays again to get all dates.)

You can find the solution in CH20_All_December_Days_Any_
Bookings (79 rows).

 6. “Produce a customer mailing list, but skip the four labels already
used on the first page of labels.”

You can find the solution in CH20_Customer_Mailing_Skip_4
(19 rows).

School Scheduling Database

 1. “List all students and the classes they could take, excluding the
subjects enrolled or already completed. Be sure to list any subject
prerequisite.”

(Hint: Do a CROSS JOIN between students and subjects joined
with classes, and use a subquery to eliminate classes found in

 Problems for You to Solve 747

the student schedules table for the current student where the
class status in the student schedules table is not 1 (enrolled) or
2 (completed).)

You can find the solution in CH20_Students_Additional_Courses
(1,894 rows).

 2. “Display a count of students by gender and marital status by state
of residence in columns across.”

(Hint: Use the ztblGenderMatrix and ztblMaritalStatusMatrix
driver tables to pivot your values.)

You can find the solution in
CH20_Student_Crosstab_Gender_MaritalStatus (4 rows).

 3. “Calculate an average proficiency rating for all teaching staff across
the subjects they teach and show an overall rating based on the
 values found in the ztblProfRatings driver table.”

You can find the solution in CH20_Staff_Proficiency_Ratings
(24 rows).

 4. “Create a mailing list for students, but skip the first two labels
already used on the first page.”

You can find the solution in CH20_Student_Mailing_Skip_2
(20 rows).

Bowling League Database

 1. “Show bowlers and a rating of their raw score averages based on
the values found in the ztblBowlerRatings driver table.”

You can find the solution in CH20_Bowler_Ratings (32 rows).

 2. “List all weeks from September through December 2017 and the
location of any tournament scheduled for those weeks.”

You can find the solution in CH20_Tournament_Week_
Schedule_2017 (19 rows).

This page intentionally left blank

 749

21
Performing Complex

Calculations on Groups

Before a group can enter the open society, it must first close ranks.
STOKELY CARMICHAEL

Topics in this Chapter

Grouping in Sub-Groups

Extending the GROUP BY Clause

Getting Totals in a Hierarchy Using ROLLUP

Calculating Totals on Combinations Using CUBE

Creating a Union of Totals with GROUPING SETS

Variations on Grouping Techniques

Sample Statements

Summary

Problems for You to Solve

In Part IV, I showed you how to summarize and group data. Specifically,
in Chapter 12, “Simple Totals,” I showed how to calculate totals, counts,
and other aggregate functions, in Chapter 13, “Grouping Data,” I showed
how to group data, and in Chapter 14, “Filtering Grouped Data,” I
showed both how to filter the grouped data, as well as how to filter the
data that gets grouped. However, I’ve always found that it can be a some-
what limited way to report the data. You can only group one specific way
at a time, and sometimes that’s just not enough.

Let’s see whether we can do a little more with grouping in this chapter.

750 Chapter 21 Performing Complex Calculations on Groups

Grouping in Sub-Groups

In Chapter 13, I showed how to use the GROUP BY clause to specify one
or more columns to specify how to group the aggregated data. When you
specify more than one column, the aggregation is done for each unique
combination of values for all of those columns.

Let's look at our Student Population. Using the techniques I’ve already
shown in Chapter 13, I can build a query to fetch the data summarizing
by state, gender, and marital status. Here’s the SQL:

SQL SELECT StudState, StudGender, StudMaritalStatus,

 Count(*) AS Number

FROM Students

GROUP BY StudState, StudGender, StudMaritalStatus;

The result looks like the following table. (I saved this request as CH21_
Students_State_Gender_MaritalStatus_Count_GROUP_BY in the School
Scheduling Example database.)

StudState StudGender StudMaritalStatus Number

CA F W 1

CA M S 1

OR F M 1

OR F S 1

OR M S 2

TX F S 2

TX M S 1

WA F D 1

WA F M 1

WA F S 3

WA M S 4

It’s a useful way of looking at the data, but what if I also want to know
the total number of students by State, or the total number of Female

 Grouping in Sub-Groups 751

students? I’d have to create one or more additional queries for any other
breakdowns I want to see.

What if there were another way to retrieve the data? Perhaps I could
return something like the following:

State Gender MaritalStatus Number

Any State Any Gender Any Status 18

Any State Any Gender D 1

Any State Any Gender M 2

Any State Any Gender S 14

Any State Any Gender W 1

Any State F Any Status 10

Any State F D 1

Any State F M 2

Any State F S 6

Any State F W 1

Any State M Any Status 8

Any State M S 8

CA Any Gender Any Status 2

CA Any Gender S 1

CA Any Gender W 1

CA F Any Status 1

CA F W 1

CA M Any Status 1

CA M S 1

OR Any Gender Any Status 4

OR Any Gender M 1

OR Any Gender S 3

OR F Any Status 2

752 Chapter 21 Performing Complex Calculations on Groups

State Gender MaritalStatus Number

OR F M 1

OR F S 1

OR M Any Status 2

OR M S 2

TX Any Gender Any Status 3

TX Any Gender S 3

TX F Any Status 2

TX F S 2

TX M Any Status 1

TX M S 1

WA Any Gender Any Status 9

WA Any Gender D 1

WA Any Gender M 1

WA Any Gender S 7

WA F Any Status 5

WA F D 1

WA F M 1

WA F S 3

WA M Any Status 4

WA M S 4

This new table may require some explanation. Look at the shaded rows:
they represent the 11 rows of data returned by the first query that
give the number of students broken down by the various combination
of State, Gender, and Marital Status. However, let’s look at some of the
other rows in that table. In them, one or more of the columns represents
all the values. For instance, the first row represents the total number of
students, regardless of the state they’re from, their gender, or their mar-
ital status (18 in this case). The next row represents the total number of
Divorced students, regardless of the state they’re from or their gender

 Extending the GROUP BY Clause 753

(one in this case). The sixth row represents the total number of Female
students, regardless of the state they’re from or their marital status
(10 in this case).

Does this look like it might be useful in analyzing the demographics of
your student population? I’ll show you how to achieve this in the follow-
ing section. (And if you’re curious and want to look at the SQL, I saved
the above request as CH21_Students_State_Gender_MaritalStatus_
Count_CUBE_No_Nulls in the Student Scheduling sample database.)

Extending the GROUP BY Clause

What I talked about in Chapter 13 applies to the more comprehensive
groupings I’m going to talk about in this chapter. In fact, when you look
at the syntax for these more comprehensive groupings, you’ll see it’s
almost identical to the diagram shown there.

Syntax

Let’s take a close look at the complete GROUP BY clause. Figure 21-1
shows the basic diagram for a SELECT statement with GROUP BY
expanded to show the additional features you’ll learn about in this chap-
ter. If you compare this figure to Figure 13-1, you can see the difference
is the addition of one of three different keywords (ROLLUP, CUBE, or
GROUPING SETS), plus the fact that the Column Reference clause for
each of these is enclosed in parentheses.

As you might expect, each of the different keywords results in different
results being returned.

 ❖ Note Because the extensions to GROUP BY are just variations on
the GROUP BY syntax, all of the restrictions discussed in Chapter 13
apply equally here. Specifically, any column that’s listed in the
SELECT clause that’s not part of an aggregate expression must be
included in the GROUP BY clause, and the GROUP BY clause must
refer to columns created by the FROM and WHERE, not by expressions
created in the SELECT clause.

❖ Note Because the extensions to GROUP BY are just variations on
the GROUP BY syntax, all of the restrictions discussed in Chapter 13
apply equally here. Specifically, any column that’s listed in the
SELECT clause that’s not part of an aggregate expression must be
included in the GROUP BY clause, and the GROUP BY clause must
refer to columns created by the FROM and WHERE, not by expressions
created in the SELECT clause.

754 Chapter 21 Performing Complex Calculations on Groups

DISTINCT
SELECT

FROM
WHERE Search Condition

Column ReferenceGROUP BY

ROLLUP

CUBE

GROUPING SETS

HAVING

AS

SELECT Statement

Value Expression

Table Reference

table_name.*

correlation_name.*

alias

*

,

,

,

Column Reference(

(

(

(

(

(

(

)

)

)

)

)

)

)

Search Condition

,

Column Reference
,

Column Reference

,
Column Reference

,
Column Reference

,
Column Reference

,

Column Reference

,

,

Figure 21-1 Full syntax for the GROUP BY clause

Getting Totals in a Hierarchy Using Rollup

As you’ve already seen, when you use GROUP BY, the results summa-
rize the data for all existing combinations of values that exist for those
columns. When you add ROLLUP to the grouping clause, your database

 Getting Totals in a Hierarchy Using Rollup 755

system adds new rows to produce group subtotals, plus a grand total.
If there are n columns listed in the ROLLUP, there will be n + 1 levels
of subtotals. Note that the subtotals are added from right to left, so the
order in which you list the columns in the clause is important.

 ❖ Note You can find all the sample statements and solutions in the
respective sample databases—SalesOrdersExample, Entertainment
AgencyExample, RecipesExample, SchoolSchedulingExample, and
BowlingLeagueExample. Because neither Microsoft Access nor MySQL
support grouping sets, you’ll find the sample solutions only in the
Microsoft SQL Server and PostgreSQL sample databases.

Suppose you wanted a total by student state, student gender, and stu-
dent marital status, but with subtotals by state and by state and gender.
Your request might look like the following:

 ❖ Note Throughout this chapter, I use the “Request/Translation/
Clean Up/SQL” technique introduced in Chapter 4, “Creating a
Simple Query.” Because this process should now be very familiar
to you, I have combined the Translation/Clean Up steps for all the
following examples to simplify the process.

“Show me the count for all unique combinations of student state,
 student gender, and student marital status, summarized for each
 combination of state and gender and the total by state.”

Translation/
Clean Up

Select the student state, student gender, student marital
status, and the count (*) of rows from the Students table,
grouped by and rolled up by student state, student gen-
der, and student marital status

SQL SELECT StudState, StudGender, StudMaritalStatus,

 Count(*) AS Number

FROM Students

GROUP BY ROLLUP

 (StudState, StudGender, StudMaritalStatus);

❖ Note You can find all the sample statements and solutions in the
respective sample databases—SalesOrdersExample, Entertainment
AgencyExample, RecipesExample, SchoolSchedulingExample, and
BowlingLeagueExample. Because neither Microsoft Access nor MySQL
support grouping sets, you’ll find the sample solutions only in the
Microsoft SQL Server and PostgreSQL sample databases.

❖ Note Throughout this chapter, I use the “Request/Translation/
Clean Up/SQL” technique introduced in Chapter 4, “Creating a
Simple Query.” Because this process should now be very familiar
to you, I have combined the Translation/Clean Up steps for all the
following examples to simplify the process.

756 Chapter 21 Performing Complex Calculations on Groups

 ❖ Note When you find yourself using “summarized for each unique
combination” of a subset but not all combinations, you should replace
that with the ROLLUP keyword.

That request results look like the following table. (I saved this request as
CH21_Students_State_Gender_MaritalStatus_Count_ROLLUP_Order1 in
the School Scheduling Example database.)

StudState StudGender StudMaritalStatus Number

CA F W 1

CA F NULL 1

CA M S 1

CA M NULL 1

CA NULL NULL 2

OR F M 1

OR F S 1

OR F NULL 2

OR M S 2

OR M NULL 2

OR NULL NULL 4

TX F S 2

TX F NULL 2

TX M S 1

TX M NULL 1

TX NULL NULL 3

WA F D 1

WA F M 1

WA F S 3

WA F NULL 5

WA M S 4

❖ Note When you find yourself using “summarized for each unique
combination” of a subset but not all combinations, you should replace
that with the ROLLUP keyword.

 Getting Totals in a Hierarchy Using Rollup 757

StudState StudGender StudMaritalStatus Number

WA M NULL 4

WA NULL NULL 9

NULL NULL NULL 18

Let’s look at those results. When a column on a particular row is Null,
you can interpret that to mean that it represents all the values.

 ❖ Note Remember in the Introduction that I warned you that results
from each database system won’t necessarily match the sort order you
see in examples in this book unless you include an ORDER BY clause.
Even when you include that specification, the system might return
results in columns not included in the ORDER BY clause in a different
sequence because of different optimization techniques.

If you’re running the examples in Microsoft SQL Server, simply select-
ing the rows from the view does not honor any ORDER BY clause
specified in the view. You must open the design of the view and exe-
cute it from there to see the ORDER BY clause honored.

Also, when you use GROUP BY, you’ll often see the results returned by
your database system as though the rows are sorted by the columns
you specified. This happens because some optimizers first sort the
data internally to make it faster to process your GROUP BY. Keep in
mind that if you want a specific sort order, you must also include an
ORDER BY clause.

The first row shows that there is one widowed female from California.
Because there are no other females from California, the second row
summarizes that there is one female from California. (Remember that
the Null value in the StudMaritalStatus means “Any Status”). The third
row shows that there is one single male from California. Again, because
there are no other males from California, the fourth row summarizes
that there is one male from California. After covering all the genders and
marital statuses recorded in the table, the fifth row summarizes that
there are two students from California.

Rows six and seven indicate that there’s one married female from Oregon
and one single female from Oregon respectively. That’s all the females

❖ Note Remember in the Introduction that I warned you that results
from each database system won’t necessarily match the sort order you
see in examples in this book unless you include an ORDER BY clause.
Even when you include that specification, the system might return
results in columns not included in the ORDER BY clause in a different
sequence because of different optimization techniques.

If you’re running the examples in Microsoft SQL Server, simply select-
ing the rows from the view does not honor any ORDER BY clause
specified in the view. You must open the design of the view and exe-
cute it from there to see the ORDER BY clause honored.

Also, when you use GROUP BY, you’ll often see the results returned by
your database system as though the rows are sorted by the columns
you specified. This happens because some optimizers first sort the
data internally to make it faster to process your GROUP BY. Keep in
mind that if you want a specific sort order, you must also include an
ORDER BY clause.

758 Chapter 21 Performing Complex Calculations on Groups

from Oregon, so row eight summarizes that there are two females from
Oregon.

This summarization continues to be interspersed with the grouping
results until the last row, which summarizes that there are eighteen stu-
dents in total.

Because there are three columns listed in the ROLLUP clause (Stud-
State, StudGender, and StudMaritalStatus, in that order), there are four
levels of subtotals:

 1. Unique combinations of StudState, StudGender, and
StudMaritalStatus

 2. Unique combinations of StudState and StudGender regardless of
StudMaritalStatus values

 3. Unique values of StudState regardless of StudGender and Stud-
MaritalStatus values

 4. Grand total

 ❖ Note The query actually returns Null as the value for the columns
that are being rolled up. If you like, you can use the CASE expression
or the ISNULL or COALESCE functions (in SQL Server) or the CASE
expression or COALESCE function (in PostgreSQL) to convert that
Null value to something more meaningful in the results.

Perhaps the user would like to see words instead of Null. This query
actually returns Null as the value for the columns that are being rolled
up. However, that will not always be the case if the column in your table
actually contains NULL values. (None of the columns do in this case.)
So, you could use the CASE expression or the ISNULL or COALESCE
functions (in SQL Server) or the CASE expression or COALESCE func-
tion (in PostgreSQL) to convert that Null value to something more mean-
ingful in the results. But there’s a better way. There’s a cool function
called GROUPING as shown in Figure 21-2.

GROUPING ()Column Reference

,

Figure 21-2 The GROUPING function

❖ Note The query actually returns Null as the value for the columns
that are being rolled up. If you like, you can use the CASE expression
or the ISNULL or COALESCE functions (in SQL Server) or the CASE
expression or COALESCE function (in PostgreSQL) to convert that
Null value to something more meaningful in the results.

 Getting Totals in a Hierarchy Using Rollup 759

This handy little function—when used on a column that is being
grouped using CASE, ROLLUP, or GROUPING SETS—returns a numeric
value to indicate the level of grouping. When the value returned is zero,
the value is not “rolled up” or “summarized,” so you can display the
column value. When the value is other than zero, the column is being
summarized, so it will definitely contain a Null value. You can use this
function in a CASE expression (See Chapter 19, “Condition Testing”) to
decide whether to display the column value or an “Any” literal.

So, the request could have been like this:

“Show me the count for all unique combinations of student state,
 student gender, and student marital status, summarized for each
 combination of state and gender and the total by state. Show ‘Any
State,’ ‘Any Gender,’ or ‘Any Status’ for the subtotaled rows.”

Translation/
Clean Up

Select when (CASE WHEN the grouping level of GROUP-
ING(student state) is = 0 then display student state
else ‘Any State’ END), when (CASE WHEN the grouping
level of GROUPING(student gender) is = 0 then dis-
play student gender else ‘Any Gender’ END), when (CASE
WHEN the grouping level of GROUPING(student marital
status) is = 0 then display student marital status else
‘Any Status’ END), and the count (*) of rows from the Stu-
dents table, grouped by and rolled up by student state,
student gender, and student marital status

SQL SELECT (CASE WHEN GROUPING(StudState) = 0

 THEN StudState

 ELSE 'Any State' END) AS State,

 (CASE WHEN GROUPING(StudGender) = 0

 THEN StudGender

 ELSE 'Any Gender') AS Gender,

 (CASE WHEN GROUPING(StudMaritalStatus) = 0

 THEN StudMaritalStatus

 ELSE 'Any Status') AS MaritalStatus,

 Count(*) AS Number

FROM Students

GROUP BY ROLLUP (StudState, StudGender,

 StudMaritalStatus);

760 Chapter 21 Performing Complex Calculations on Groups

That query returns the following table (I saved this request as CH21_
Students_State_Gender_MaritalStatus_Count_ROLLUP_No_Nulls in the
School Scheduling Example database.):

State Gender MaritalStatus Number

CA F W 1

CA F Any Status 1

CA M S 1

CA M Any Status 1

CA Any Gender Any Status 2

OR F M 1

OR F S 1

OR F Any Status 2

OR M S 2

OR M Any Status 2

OR Any Gender Any Status 4

TX F S 2

TX F Any Status 2

TX M S 1

TX M Any Status 1

TX Any Gender Any Status 3

WA F D 1

WA F M 1

WA F S 3

WA F Any Status 5

WA M S 4

WA M Any Status 4

WA Any Gender Any Status 9

Any State Any Gender Any Status 18

 Getting Totals in a Hierarchy Using Rollup 761

The above request returns four levels of subtotals:

 1. Unique combinations of StudState, StudGender, and
StudMaritalStatus

 2. Unique combinations of StudState and StudGender regardless of
StudMaritalStatus values

 3. Unique values of StudState regardless of StudGender and Stud-
MaritalStatus values

 4. Grand total

 ❖ Note The query above illustrates the rule that the GROUP BY
clause must refer to columns created by the FROM and WHERE, not
by expressions created in the SELECT clause. You can see that the
columns have been assigned aliases in the SELECT clause, but the
GROUP BY clause cannot use those aliases: it must use the original
names of the columns.

Let’s take a look at what happens when you use a different column
sequence in ROLLUP. Consider the following request:

“Show me the count for all unique combinations of student marital sta-
tus, student gender, and student state, summarized for each combina-
tion of marital status with gender and a total by marital status.”

Translation/
Clean Up

Select the student marital status, student gender, student
state, and the count (*) of rows from the Students table,
grouped by and rolled up by student marital status, stu-
dent gender, and student state

SQL SELECT StudMaritalStatus, StudGender, StudState,

 Count(*) AS Number

FROM Students

GROUP BY ROLLUP

 (StudMaritalStatus, StudGender, StudState);

The result returned looks like the following table. (I saved this request as
CH21_Students_State_Gender_MaritalStatus_Count_ROLLUP_Order2 in
the School Scheduling Example database.)

❖ Note The query above illustrates the rule that the GROUP BY
clause must refer to columns created by the FROM and WHERE, not
by expressions created in the SELECT clause. You can see that the
columns have been assigned aliases in the SELECT clause, but the
GROUP BY clause cannot use those aliases: it must use the original
names of the columns.

762 Chapter 21 Performing Complex Calculations on Groups

StudMaritalStatus StudGender StudState Number

D F WA 1

D F NULL 1

D NULL NULL 1

M F OR 1

M F WA 1

M F NULL 2

M NULL NULL 2

S F OR 1

S F TX 2

S F WA 3

S F NULL 6

S M CA 1

S M OR 2

S M TX 1

S M WA 4

S M NULL 8

S NULL NULL 14

W F CA 1

W F NULL 1

W NULL NULL 1

NULL NULL NULL 18

Rather than 24 rows returned by the first query, there are now only
21 rows returned. Whereas before it was easy to see that there are two
students from California, four students from Oregon, three students
from Texas, and nine students from Washington making up the 18 stu-
dents at the school, now it’s easy to see that there is one divorced stu-
dent, two married students, fourteen single students, and one widowed
student.

 Getting Totals in a Hierarchy Using Rollup 763

And because the three columns listed in the ROLLUP clause are Stud-
MaritalStatus, StudGender, and StudState, in that order, the four levels
of subtotals are:

 1. Unique combinations of StudMaritalStatus, StudGender, and
StudState

 2. Unique combinations of StudMaritalStatus and StudGender
regardless of StudState values

 3. Unique values of StudMaritalStatus regardless of StudGender and
StudState values

 4. Grand total

Notice that the focus is now on marital status, so that is the first col-
umn in the ROLLUP. Putting gender second generates a subtotal for each
combination of marital status and gender, and finally adding state cre-
ates totals for each combination of marital status, gender, and state. The
totals are “rolled up” first into gender and then into marital status, with
a final “rolled up” grand total of the count of all rows.

If the request is as follows:

“Show me the count for all unique combinations of student state, stu-
dent gender, and student marital status, summarized for each combi-
nation of marital status with gender and a total by marital status.”

Translation/
Clean Up

Select the student state, student gender, student marital
status, and the count (*) of rows from the Students table,
grouped by and rolled up by student marital status,
 student gender, and student state

SQL SELECT StudState, StudGender, StudMaritalStatus,

 Count(*) AS Number

FROM Students

GROUP BY ROLLUP

 (StudMaritalStatus, StudGender, StudState);

All I did was change the order of the columns in the SELECT clause.
The result returned looks like the following table. (I saved this request as
CH21_Students_State_Gender_MaritalStatus_Count_ROLLUP_Order3 in
the School Scheduling Example database.)

764 Chapter 21 Performing Complex Calculations on Groups

StudState StudGender StudMaritalStatus Number

WA F D 1

NULL F D 1

NULL NULL D 1

OR F M 1

WA F M 1

NULL F M 2

NULL NULL M 2

OR F S 1

TX F S 2

WA F S 3

NULL F S 6

CA M S 1

OR M S 2

TX M S 1

WA M S 4

NULL M S 8

NULL NULL S 14

CA F W 1

NULL F W 1

NULL NULL W 1

NULL NULL NULL 18

There are still 21 rows returned, and you still get the following sets of totals:

 1. Unique combinations of StudMaritalStatus, StudGender, and
StudState

 2. Unique combinations of StudMaritalStatus and StudGender
regardless of StudState values

 3. Unique values of StudMaritalStatus regardless of StudGender and
StudState values

 4. Grand total

 Calculating Totals on Combinations Using CUBE 765

However, because I listed the StudState column first, it appears first in
the output.

 ❖ Note It should be noted that MySQL does, in fact, support the
ROLLUP extension. However, the syntax for using it is different, which
is why I chose to omit it from the examples. Check your MySQL doc-
umentation for more information. (MySQL does not, however, support
either the CUBE or GROUPING SETS extensions.)

Calculating Totals on Combinations
Using CUBE

You saw how using ROLLUP results in group subtotals from right to left,
plus a grand total. The CUBE extension will generate those same group
subtotals, but will also produce subtotals for all combinations of the col-
umns specified in the CUBE clause. If there are n columns listed in the
CUBE, there will be 2n subtotal combinations generated.

You’ve already seen the results of using the CUBE extension as
the second table of results above, although I will admit that I cheated
and added an ORDER BY clause to make the different subtotal rows
stand out.

If the request were as follows:

“Show me the count for all combinations of student state, student gen-
der, and student marital status, with summarized sets for each com-
bination of state, gender, and marital status, for each combination of
state and gender, state and marital status, gender and marital status,
and for each state, gender, and marital status on its own.”

Translation /
Clean Up

Select the student state, student gender, student marital
status, and the count (*) of rows from the Students table,
summarized in sets GROUP BY CUBE student state,
student gender, and student marital status and by all
combinations of pairs of student state, student gender
and student marital status

❖ Note It should be noted that MySQL does, in fact, support the
ROLLUP extension. However, the syntax for using it is different, which
is why I chose to omit it from the examples. Check your MySQL doc-
umentation for more information. (MySQL does not, however, support
either the CUBE or GROUPING SETS extensions.)

766 Chapter 21 Performing Complex Calculations on Groups

SQL SELECT StudState, StudGender, StudMaritalStatus,

 Count(*) AS Number

FROM Students

GROUP BY CUBE

 (StudState, StudGender, StudMaritalStatus);

 ❖ Note When you find yourself using “and each combination of …
every combination” or “summarized in sets,” you should replace that
with the CUBE keyword.

The results look like the following table. (I saved this request as
CH21_Students_State_Gender_MaritalStatus_Count_CUBE_Order1 in the
School Scheduling Example database.)

StudState StudGender StudMaritalStatus Number

WA F D 1

NULL F D 1

NULL NULL D 1

OR F M 1

WA F M 1

NULL F M 2

NULL NULL M 2

OR F S 1

TX F S 2

WA F S 3

NULL F S 6

CA M S 1

OR M S 2

TX M S 1

WA M S 4

NULL M S 8

❖ Note When you find yourself using “and each combination of …
every combination” or “summarized in sets,” you should replace that
with the CUBE keyword.

 Calculating Totals on Combinations Using CUBE 767

StudState StudGender StudMaritalStatus Number

NULL NULL S 14

CA F W 1

NULL F W 1

NULL NULL W 1

NULL NULL NULL 18

CA NULL S 1

CA NULL W 1

CA NULL NULL 2

OR NULL M 1

OR NULL S 3

OR NULL NULL 4

TX NULL S 3

TX NULL NULL 3

WA NULL D 1

WA NULL M 1

WA NULL S 7

WA NULL NULL 9

CA F NULL 1

OR F NULL 2

TX F NULL 2

WA F NULL 5

NULL F NULL 10

CA M NULL 1

OR M NULL 2

TX M NULL 1

WA M NULL 4

NULL M NULL 8

768 Chapter 21 Performing Complex Calculations on Groups

There are three columns listed in the CUBE, so your database system
generates 23, or 8, subtotals:

 1. Unique combinations of StudState, StudGender, and
StudMaritalStatus

 2. Unique combinations of StudState and StudGender regardless of
StudMaritalStatus values

 3. Unique combinations of StudState and StudMaritalStatus regard-
less of StudGender values

 4. Unique combinations of StudGender and StudMaritalStatus
regardless of StudState values

 5. Unique values of StudState regardless of StudGender and Stud-
MaritalStatus values

 6. Unique values of StudGender regardless of StudState and Stud-
MaritalStatus values

 7. Unique values of StudMaritalStatus regardless of StudState and
StudGender combinations

 8. Grand total

As you might expect from the fact that a CUBE produces subtotals for all
combinations of the columns specified in the GROUP BY CUBE clause,
changing the order of the columns in the SQL statement doesn’t affect
the results (other than the order).

If instead, the request was as follows:

“Show me the count for all combinations of student marital status, stu-
dent gender, and student state, with summarized sets for each com-
bination of marital status, gender, and state, for each combination of
state and gender, state and marital status, gender and marital status,
and for each state, gender, and marital status on its own.”

Translation/
Clean Up

Select the student marital status, student gender, student
state, and the count (*) of rows from the Students table,
summarized in sets GROUP BY CUBE student marital
 status, student gender, and student state and by all combina-
tions of pairs of student marital status, student gender and
student state

 Calculating Totals on Combinations Using CUBE 769

SQL SELECT StudMaritalStatus, StudGender, StudState,

 Count(*) AS Number

FROM Students

GROUP BY CUBE

 (StudMaritalStatus, StudGender, StudState);

You will see results as shown in the following table. (I saved this request
as CH21_Students_State_Gender_MaritalStatus_Count_CUBE_Order2 in
the School Scheduling Example database.)

StudMaritalStatus StudGender StudState Number

W F CA 1

NULL F CA 1

S M CA 1

NULL M CA 1

NULL NULL CA 2

M F OR 1

S F OR 1

NULL F OR 2

S M OR 2

NULL M OR 2

NULL NULL OR 4

S F TX 2

NULL F TX 2

S M TX 1

NULL M TX 1

NULL NULL TX 3

D F WA 1

M F WA 1

S F WA 3

770 Chapter 21 Performing Complex Calculations on Groups

StudMaritalStatus StudGender StudState Number

NULL F WA 5

S M WA 4

NULL M WA 4

NULL NULL WA 9

NULL NULL NULL 18

D NULL WA 1

D NULL NULL 1

M NULL OR 1

M NULL WA 1

M NULL NULL 2

S NULL CA 1

S NULL OR 3

S NULL TX 3

S NULL WA 7

S NULL NULL 14

W NULL CA 1

W NULL NULL 1

D F NULL 1

M F NULL 2

S F NULL 6

W F NULL 1

NULL F NULL 10

S M NULL 8

NULL M NULL 8

If you look closely at the two sets of results, you’ll see that the 43 rows
in both represent the same results. The changes are the order of the
 columns, and the order of the rows is different.

 Creating a Union of Totals with GROUPING SETS 771

Creating a Union of Totals with
GROUPING SETS

The third possible extension for GROUP BY is GROUPING SETS. As you
can probably imagine, calculating all of the possible subtotals in a cube
can require a lot of resources, particularly when there are many dimen-
sions in the data, and not all of the subtotals may be of interest to you. If
you don’t need all of the subtotals, but want more than either GROUP BY
alone or GROUP BY ROLLUP can provide, GROUPING SETS may be the
answer for you.

Using GROUPING SETS is similar to having several different GROUP BY
queries combined by a UNION statement.

On the simplest level, the request might be as follows:

“Show me the count for all combinations of student state, student
 gender, and student marital status, with subtotals for each of student
state, student gender, and student marital status.”

Translation /
Clean Up

Select the student state, student gender, student marital
status, and the count (*) of rows from the Students table,
grouped by and in GROUPING SETS of student state,
 student gender, and student marital status

SQL SELECT StudState, StudGender, StudMaritalStatus,

 Count(*) AS Number

FROM Students

GROUP BY GROUPING SETS

 (StudState, StudGender, StudMaritalStatus);

This will return results shown the following table. (I saved this request as
CH21_Students_State_Gender_MaritalStatus_Count_GROUPING_SETS
in the School Scheduling Example database.)

StudState StudGender StudMaritalStatus Number

NULL NULL D 1

NULL NULL M 2

NULL NULL S 14

772 Chapter 21 Performing Complex Calculations on Groups

StudState StudGender StudMaritalStatus Number

NULL NULL W 1

NULL F NULL 10

NULL M NULL 8

CA NULL NULL 2

OR NULL NULL 4

TX NULL NULL 3

WA NULL NULL 9

Yes, if your database system doesn’t support the GROUPING SETS syn-
tax, you can obtain the same results by using the UNION operator on
three separate GROUP BY queries, as follows:

SQL SELECT NULL AS StudState, NULL AS StudGender,

 StudMaritalStatus, Count(*) AS Number

FROM Students

GROUP BY StudMaritalStatus

UNION

SELECT NULL, StudGender, NULL, Count(*)

FROM Students

GROUP BY StudGender

UNION

SELECT StudState, NULL, NULL, Count(*)

FROM Students

GROUP BY StudState;

(I saved this request as CH21_Students_State_Gender_MaritalStatus_
Count_GROUP_BY_UNION in the School Scheduling Example database.)

Where the power of GROUPING SETS comes in is that they give you the
flexibility to choose which subtotals you wish to see.

Let’s examine the following request.

 Creating a Union of Totals with GROUPING SETS 773

“Show me the count for all combinations of student state, student gen-
der, and student marital status, with subtotals for student state, for
the combination of student state and student gender and for the com-
bination of student state and student marital status, but no grand total
by student state, student gender, and student marital status.”

 ❖ Note When you find yourself asking for a subtotal on the combina-
tion as well as the individual columns and some but not all combina-
tions of columns, you should replace that with the sets of GROUPING
SETS. This is particularly true if you do not need a grand total across
all the grouped columns because CUBE and ROLLUP do return a
grand total, but GROUPING SETS does not return a grand total
unless you include an empty set in the GROUPING SETS list.

Translation/
Clean Up

Select the student state, student gender, student marital
status, and the count (*) of rows from the Students table,
grouped by and in GROUPING SETS of the combination of
student state and student gender, and by the combination
of student state and student marital status

SQL SELECT StudState, StudGender, StudMaritalStatus,

 Count(*) AS Number

FROM Students

GROUP BY GROUPING SETS

 (StudState,

 (StudState, StudGender),

 (StudState, StudMaritalStatus));

This will return results as shown in the following table. (I saved this
request as CH21_Students_State_Gender_MaritalStatus_Count_GROUP-
ING_SETS_1 in the School Scheduling Example database.)

StudState StudGender StudMaritalStatus Number

CA NULL S 1

CA NULL W 1

CA NULL NULL 2

OR NULL M 1

❖ Note When you find yourself asking for a subtotal on the combina-
tion as well as the individual columns and some but not all combina-
tions of columns, you should replace that with the sets of GROUPING
SETS. This is particularly true if you do not need a grand total across
all the grouped columns because CUBE and ROLLUP do return a
grand total, but GROUPING SETS does not return a grand total
unless you include an empty set in the GROUPING SETS list.

774 Chapter 21 Performing Complex Calculations on Groups

StudState StudGender StudMaritalStatus Number

OR NULL S 3

OR NULL NULL 4

TX NULL S 3

TX NULL NULL 3

WA NULL D 1

WA NULL M 1

WA NULL S 7

WA NULL NULL 9

CA F NULL 1

OR F NULL 2

TX F NULL 2

WA F NULL 5

CA M NULL 1

OR M NULL 2

TX M NULL 1

WA M NULL 4

If you look carefully at those results, you’ll see three different sets of
subtotals:

 1. Unique values of StudState, regardless of values of StudGender or
StudMaritalStatus

 2. Unique combinations of StudState and StudGender, regardless of
values of StudMaritalStatus

 3. Unique combinations of StudState and StudMaritalStatus,
regardless of values of StudGender

Notice that unlike ROLLUP that asks for subtotals to be “rolled up”
right to left or CUBE that asks for subtotals of all combinations, you
can exactly specify the combinations of columns on which you want
subtotals.

 Variations on Grouping Techniques 775

You can get a nearly identical result by using a GROUP BY column
 followed by a CUBE on the remaining columns. I’ll show you how to do
that in the following section.

Variations on Grouping Techniques

If you take a closer look at Figure 21-1, you should be able to figure
out that it’s perfectly legal to use combinations of simple grouping col-
umns, ROLLUP, CUBE, and GROUPING SETS in a GROUP BY clause.
You can also list combinations of columns in the list of columns you
pass to ROLLUP, CUBE, or GROUPING SETS. Quite frankly, I’m hard-
pressed to think of a case in which you would want to use a combina-
tion of ROLLUP, CUBE, and/or GROUPING SETS, but it is reasonable to
“promote” one or more columns to simple grouping columns or to specify
sub-groups of columns within a grouped set. Let’s take a look at a couple
of examples.

Suppose you don’t need all the subtotals; your request could be as
follows:

“Show me the count for all combinations of student state, student gen-
der, and student marital status. Summarize by student state and by
the combination of student state and student marital status.”

Translation/
Clean Up

Select the student state, student gender, student marital
status, and the count (*) of rows from the Students table,
grouped by and in a GROUPING SETS set of student
state, student gender, and student marital status

SQL SELECT StudState, StudGender, StudMaritalStatus,

 Count(*) AS Number

FROM Students

GROUP BY GROUPING SETS (StudState,

 (StudGender, StudMaritalStatus));

The returned results look like the following table. (I saved this request as
CH21_Students_State_Gender_MaritalStatus_Count_GROUPING_
SETS_2 in the School Scheduling Example database.)

776 Chapter 21 Performing Complex Calculations on Groups

StudState StudGender StudMaritalStatus Number

NULL F D 1

NULL F M 2

NULL F S 6

NULL M S 8

NULL F W 1

CA NULL NULL 2

OR NULL NULL 4

TX NULL NULL 3

WA NULL NULL 9

There are only two different sets of subtotals:

 1. Unique values of StudState, regardless of values of StudGender or
StudMaritalStatus

 2. Unique combinations of StudGender and StudMaritalStatus,
regardless of values of StudState

“Show me the count for all combinations of student state, student gen-
der, and student marital status, with subtotals for each state and for
each combination of gender and marital status.”

The database system returned this result because I specified two dif-
ferent sets of columns in the GROUPING SETS list: StudState by itself
and StudGender and StudMaritalStatus in a group. You can see that the
result is a total for each of the states and a total for each of the combina-
tions of gender and marital status.

Now, let’s see what happens when you “promote” one of the columns
by moving it out of the grouping sets clause and using it as a simple
grouped column. Take a look at the following request.

Translation/
Clean Up

Select the student state, student gender, student marital
status, and the count (*) of rows from the Students table,
grouped by student state and rolled up by student gender
and student marital status

 Variations on Grouping Techniques 777

SQL SELECT StudState, StudGender, StudMaritalStatus,

 Count(*) AS Number

FROM Students

GROUP BY StudState,

 ROLLUP (StudMaritalStatus, StudGender);

In that case, the results look like the following table. (I saved this request
as CH21_Students_State_Gender_MaritalStatus_Count_ROLLUP_Partial
in the School Scheduling Example database.)

StudState StudGender StudMaritalStatus Number

CA F W 1

CA F NULL 1

CA M S 1

CA M NULL 1

CA NULL NULL 2

OR F M 1

OR F S 1

OR F NULL 2

OR M S 2

OR M NULL 2

OR NULL NULL 4

TX F S 2

TX F NULL 2

TX M S 1

TX M NULL 1

TX NULL NULL 3

WA F D 1

WA F M 1

WA F S 3

WA F NULL 5

778 Chapter 21 Performing Complex Calculations on Groups

StudState StudGender StudMaritalStatus Number

WA M S 4

WA M NULL 4

WA NULL NULL 9

You can see that it groups by StudState, but does a ROLLUP on the com-
bination of StudGender and StudMaritalStatus, resulting in three levels
of subtotals:

 1. StudState and unique combinations of StudGender and
StudMaritalStatus

 2. StudState and unique values of StudGender regardless of Stud-
MaritalStatus values

 3. StudState, regardless of StudGender and StudMaritalStatus values

By moving StudState outside the GROUPING SETS, I get the same
results as you saw in CH21_Students_State_Gender_MaritalStatus_
Count_CUBE_Order1 earlier, but without the grand totals row.

Let’s try that again, but this time use CUBE instead of GROUPING SETS
and sort the results to make it easier to see what’s happening. I’ll skip
the request and Translation/Cleanup and go straight to the SQL.

SQL SELECT StudState, StudGender, StudMaritalStatus,

 Count(*) AS Number

FROM Students

GROUP BY StudState,

 CUBE (StudMaritalStatus, StudGender)

ORDER BY StudState, StudGender, StudMaritalStatus

That gives you in the following result:

StudState StudGender StudMaritalStatus Number

CA NULL NULL 2

CA NULL S 1

CA NULL W 1

 Variations on Grouping Techniques 779

StudState StudGender StudMaritalStatus Number

CA F NULL 1

CA F W 1

CA M NULL 1

CA M S 1

OR NULL NULL 4

OR NULL M 1

OR NULL S 3

OR F NULL 2

OR F M 1

OR F S 1

OR M NULL 2

OR M S 2

TX NULL NULL 3

TX NULL S 3

TX F NULL 2

TX F S 2

TX M NULL 1

TX M S 1

WA NULL NULL 9

WA NULL D 1

WA NULL M 1

WA NULL S 7

WA F NULL 5

WA F D 1

WA F M 1

WA F S 3

WA M NULL 4

WA M S 4

780 Chapter 21 Performing Complex Calculations on Groups

I saved this example as CH21_Students_State_Gender_MaritalStatus_
CUBE_Partial in the School Scheduling sample database.

Because StudState is now outside the CUBE, it doesn’t participate
directly in the cubing action, but you do get a total for all states and all
combinations of gender and marital status. Notice that moving one col-
umn out now avoids the grand total column—a result similar to what
you would get with GROUPING SETS and multiple combinations of col-
umns. Does your head hurt yet?

Feel free to play with other variations or combinations using my sample
databases. You can simply copy the SQL from one of the Views and tin-
ker with it to see what happens.

Sample Statements

You now know the mechanics of constructing queries using grouping
sets and have seen some of the types of requests you can answer with
grouping sets. Let’s stop worrying about the gender or marital status of
students and take a look at a fairly robust set of samples, all of which
use one or more grouping set specifications. These examples come from
each of the sample databases, and they illustrate the use of the grouping
sets to generate subtotals in various ways.

I’ve also included sample result sets that would be returned by these
operations and placed them immediately after the SQL syntax line. The
name that appears immediately above a result set is the name I gave
each query in the sample data on the companion website for this book,
www.informit.com/title/9780134858333. I stored each query in the
appropriate sample database (as indicated within the example), and I
prefixed the names of the queries relevant to this chapter with “CH21.”
You can follow the instructions in the Introduction of this book to load
the samples onto your computer and try them.

 ❖ Note Remember that all the column names and table names used
in these examples are drawn from the sample database structures
shown in Appendix B, “Schema for the Sample Databases.” Because
many of these examples use complex JOINs, your database system
might choose a different way to solve these queries. For this reason,

❖ Note Remember that all the column names and table names used
in these examples are drawn from the sample database structures
shown in Appendix B, “Schema for the Sample Databases.” Because
many of these examples use complex JOINs, your database system
might choose a different way to solve these queries. For this reason,

http://www.informit.com/title/9780134858333

 Sample Statements 781

the first few rows might not exactly match the result you obtain, but
the total number of rows should be the same. To simplify the process,
I have combined the Translation and Clean Up steps for all the follow-
ing examples.

Examples using ROLLUP

Sales Orders Database

“For each category of product, show me, by state, the count of orders
and how much revenue the customers have generated. Give me a sub-
total for each category plus a grand total.”

Translation/
Clean Up

Select CategoryDescription, CustState, the count of DIS-
TINCT orders.OrderNumber, and the sum of (QuotedPrice
times * QuantityOrdered) as Price from the Order_Details
table inner joined with the Orders table on Orders.Order-
Number = Order_Details.OrderNumber inner joined with
the Customers table on Customers.CustomerID = Orders.
CustomerID inner joined with the Products table on Prod-
ucts.ProductNumber = Order_Details.ProductNumber inner
joined with the Categories table on Categories.CategoryID =
Products.Category ID summarized by GROUP BY ROLLUP
(CategoryDescription and CustState)

talSQL SELECT PC.CategoryDescription, C.CustState,

 COUNT(DISTINCT O.OrderNumber) AS OrderCount,

 SUM(OD.QuotedPrice * QuantityOrdered) AS Revenue

FROM Order_Details AS OD

 INNER JOIN Orders AS O

 ON O.OrderNumber = OD.OrderNumber

 INNER JOIN Customers AS C

 ON C.CustomerID = O.CustomerID

 INNER JOIN Products AS P

 ON P.ProductNumber = OD.ProductNumber

 INNER JOIN Categories AS PC

 ON PC.CategoryID = P.CategoryID

GROUP BY ROLLUP

 (PC.CategoryDescription, C.CustState)

the first few rows might not exactly match the result you obtain, but
the total number of rows should be the same. To simplify the process,
I have combined the Translation and Clean Up steps for all the follow-
ing examples.

782 Chapter 21 Performing Complex Calculations on Groups

CH21_ProductCategory_CustomerState_Revenue_ROLLUP (31 rows)

CategoryDescription CustState OrderCount Price

Accessories CA 174 $85,201.52

Accessories OR 122 $56,551.79

Accessories TX 112 $89,104.78

Accessories WA 37 $141,212.93

Accessories NULL 94 $372,071.02

Bikes CA 69 $729,481.45

<< more rows here >>

Tires NULL 257 $25,249.24

Components NULL 586 $244242.53

NULL NULL 933 $4,630,731.37

Just for comparison, if you GROUP BY the two columns, you get one
total for each combination of category description and state, with no
grand total. If you CUBE the two columns, you get a total for each com-
bination of category description and state, subtotals by category, subto-
tals by state, and a grand total. Because the request asked for a subtotal
only by category, I used ROLLUP.

School Scheduling Database

“Show me how many sessions are scheduled for each classroom over
the next two semesters. Give me subtotals by building, by classroom,
by semester, and by subject, plus a grand total.”

Because this involves a rather tricky bit of SQL due to the unnormalized
list of days in the Classes table, I’m going to use the solution presented
in CH20_Class_Schedule_Calendar, which returns one row for each indi-
vidual class session, as a starting point. You might wish to review that
example in the previous chapter if you’re uncertain.

Translation/
Clean Up

Select BuildingCode, ClassRoomID, SemesterNo, Sub-
jectCode, and the count of classes Count(*) from the
CH20_Class_Schedule_Calendar view summarized
by GROUP BY ROLLUP (BuildingCode, ClassRoomID,
SemesterNo, SubjectCode)

 Sample Statements 783

talSQL SELECT BuildingCode, ClassRoomID, SemesterNo,

 SubjectCode, Count(*) AS NumberOfSessions

FROM CH20_Class_Schedule_Calendar

GROUP BY ROLLUP(BuildingCode, ClassRoomID,

 SemesterNo, SubjectCode);

CH21_Building_ClassRoom_Semester_Subject_Count_ROLLUP (212 rows)

BuildingCode ClassRoomID SemesterNo SubjectCode NumberOfSessions

AS 1514 1 JRN 104 29

AS 1514 1 NULL 29

AS 1514 2 JRN 104 29

AS 1514 2 NULL 29

AS 1514 NULL NULL 58

<< more rows here >>

TB 1642 2 CIS 114 58

TB 1642 2 NULL 58

TB 1642 NULL NULL 117

TB NULL NULL NULL 439

NULL NULL NULL NULL 7221

Examples using CUBE

Bowling League Database

“I want to know the average handicap score for each bowler by team
and city. Give me subtotals for each combination of team and city, for
each team, for each city, plus a grand total.”

Translation/
Clean Up

Select TeamName, BowlerCity, and the average of
Avg(HandicapScore) as AvgHandicap from the Teams
table inner joined with the Bowlers table on Bowlers.
TeamID = Teams.TeamID inner joined with the Bowler_
Scores table on Bowler_Scores.BowlerID = Bowlers.
BowlerID summarized in sets by GROUP BY CUBE
(TeamName, and BowlerState)

784 Chapter 21 Performing Complex Calculations on Groups

SQL SELECT T.TeamName, B.BowlerCity,

 Avg(BS.HandicapScore) AS AvgHandicap

FROM Teams AS T

 INNER JOIN Bowlers AS B

 ON B.TeamID = T.TeamID

 INNER JOIN Bowler_Scores AS BS

 ON BS.BowlerID = B.BowlerID

GROUP BY CUBE (T.TeamName, B.BowlerCity);

The clue here is the request asks not only for the average for each combi-
nation of team and city and for subtotals by all individual columns. This
calls for CUBE.

CH21_Team_City_AverageHandicapScore_CUBE (44 rows)

TeamName BowlerCity AvgHandicap

Barracudas Auburn 197

Manatees Auburn 196

Sharks Auburn 196

Swordfish Auburn 193

NULL Auburn 196

Marlins Ballard 196

Terrapins Ballard 195

NULL Ballard 196

Terrapins Bellevue 194

<< more rows here >>

Sales Orders Database

“For each category of product, show me, by state, how much quantity
the vendors have on hand. Give me subtotals for each category, for
each state, plus a grand total.”

 Sample Statements 785

Translation/
Clean Up

Select CategoryDescription, VendState, and the sum
of (QuantityOfHand) as Price from the Products table
inner joined with the Categories table on Orders.Order-
Number = Categories.CategoryID = Products.CategoryID
inner joined with the Product_Vendors table on Prod-
uct_Vendors.ProductNumber = Products.ProductNumber
inner joined with the Vendors table on Vendors.VendorID
= Product_Vendors.VendorID summarized in sets by
GROUP BY CUBE (CategoryDescription, and VendState)

SQL SELECT PC.CategoryDescription, V.VendState,

 SUM(P.QuantityOnHand) AS QOH

FROM Products AS P

 INNER JOIN Categories AS PC

 ON PC.CategoryID = P.CategoryID

 INNER JOIN Product_Vendors AS PV

 ON PV.ProductNumber = P.ProductNumber

 INNER JOIN Vendors AS V

 ON V.VendorID = PV.VendorID

GROUP BY CUBE (PC.CategoryDescription,

 V.VendState)

CH21_ProductCategory_VendorState_QOH_CUBE (39 rows)

CategoryDescription VendState QOH

Accessories AK 48

Bikes AK 8

Car racks AK 14

Clothing AK 94

Components AK 278

Tires AK 60

NULL AK 502

Accessories CA 54

NULL NULL 1914

786 Chapter 21 Performing Complex Calculations on Groups

CategoryDescription VendState QOH

Accessories NULL 642

Bikes NULL 48

Car racks NULL 28

Clothing NULL 222

Components NULL 794

Tires NULL 180

<< more rows here >>

Examples using GROUPING SETS

Bowling League Database

“Show me how many games each bowler has participated in, summa-
rized by both team and city.”

Translation/
Clean Up

Select TeamName, BowlerCity, and the count count(*) of
from the Teams table inner joined with the Bowlers table
on Bowlers.TeamID = Teams.TeamID inner joined with
the Bowler_Scores table on Bowler_Scores.BowlerID
= Bowlers.BowlerID summarized both by GROUP BY
GROUPING SETS (TeamName, and BowlerCity)

SQL SELECT T.TeamName, B.BowlerCity, Count(*) AS

 GamesBowled

FROM Teams AS T

 INNER JOIN Bowlers AS B

 ON B.TeamID = T.TeamID

 INNER JOIN Bowler_Scores AS BS

 ON BS.BowlerID = B.BowlerID

GROUP BY GROUPING SETS (T.TeamName,

 B.BowlerCity);

Notice that I didn’t ask for subtotals for each team and city combination.
I only want summaries by team and by city, so GROUPING SETS is ideal.

 Sample Statements 787

CH21_Team_City_GamesBowled_GROUPING_SETS (18 rows)

TeamName BowlerCity GamesBowled

NULL Auburn 210

NULL Ballard 84

NULL Bellevue 42

NULL Bothell 84

NULL Duvall 126

NULL Kirkland 126

NULL Redmond 294

NULL Seattle 168

NULL Tacoma 42

NULL Woodinville 168

Barracudas NULL 168

Dolphins NULL 168

Manatees NULL 168

Marlins NULL 168

Orcas NULL 168

Sharks NULL 168

Swordfish NULL 168

Terrapins NULL 168

Entertainment Agency Database

“Show me counts of our customers summarized by both style and
zip code.”

Translation/
Clean Up

Select StyleName, CustZipCode, and the count count(*) of
from the Customers table inner joined with the Musical_
Preferences table on Musical_Preferences.CustomerID =
Customers.CustomerID inner joined with the Musical_
Styles table on Musical_Styles.StyleID = Musical_Styles.
Style summarized both by GROUP BY GROUPING SETS
(StyleName, and CustZipCode)

788 Chapter 21 Performing Complex Calculations on Groups

talSQL SELECT MS.StyleName, C.CustZipCode, Count(*) AS

 Instances

FROM Customers AS C

 INNER JOIN Musical_Preferences AS MP

 ON MP.CustomerID = C.CustomerID

 INNER JOIN Musical_Styles AS MS

 ON MS.StyleID = MP.StyleID

GROUP BY GROUPING SETS (MS.StyleName,

 C.CustZipCode)

CH21_Style_CustomerZipCode_Count_GROUPING_SETS (27 rows)

StyleName CustZipCode Instances

NULL 98002 2

NULL 98006 14

NULL 98033 7

NULL 98052 4

NULL 98105 2

NULL 98115 3

NULL 98413 4

40’s Ballroom Music NULL 2

60’s Music NULL 1

70’s Music NULL 1

80’s Music NULL 1

<< more rows here >>

Summary

I began the chapter by describing to you why you might need to group
data differently from how you were shown in Chapter 13. This included
an example illustrating one possibility.

 Problems for You to Solve 789

I went on to explain the difference between the three extensions to
GROUP BY:

• GROUP BY ROLLUP

• GROUP BY CUBE

• GROUP BY GROUPING SETS

I kept mentioning that the three keywords ROLLUP, CUBE and GROUP-
ING SETS are simply extensions of the GROUP BY syntax I discussed in
Chapter 13, so all restrictions from that chapter apply equally here.

I summarized why these extensions to GROUP BY can be useful, and I
provided you with examples of how to build requests that require these
extensions to the GROUP BY clause.

The following section presents some requests that you can work out on
your own.

Problems for You to Solve

Below, I show you the request statement and the name of the solution
query in the sample databases. (Hint: the name of the saved query lets
you know whether you should use ROLLUP, CUBE, or GROUPING SETS.)
If you want some practice, you can work out the SQL you need for each
request and then check your answer with the query I saved in the sam-
ples. Don’t worry if your syntax doesn’t exactly match the syntax of the
queries I saved—as long as your result set is the same.

Bowling League Database

 1. “Show me how many bowlers live in each city. Give me totals for
each combination of Team and City, for each Team, for each City
plus a grand total.”

You can find my solution in CH21_Team_City_Count_CUBE
(44 rows).

 2. “Show me the average raw score for each bowler. Give me totals by
Team and by City.”

You can find my solution in CH21_Team_City_AverageRawScore_
GROUPING_SETS (18 rows).

790 Chapter 21 Performing Complex Calculations on Groups

 3. “Show me the average handicap score for each bowler. For each
team, give me average for each city in which the bowlers live. Also
give me the average for each team, and the overall average for the
entire league.”

You can find my solution in CH21_Team_City_AverageHandicap-
Score_ROLLUP (34 rows).

Entertainment Agency Database

 1. “For each city where our entertainers live, show me how many dif-
ferent musical styles are represented. Give me totals for each combi-
nation of City and Style, for each City plus a grand total.”

You can find my solution in CH21_EntertainerCity_Style_ROLLUP
(36 rows).

 2. “For each city where our customers live, show me how many differ-
ent musical styles they’re interested in. Give me total counts by city,
total counts by style and total counts for each combination of city
and style.”

You can find my solution in CH21_CustomerCity_Style_GROUP-
ING_SETS (18 rows).

 3. “Give me an analysis of all the bookings we’ve had. I want to see
the number of bookings and the total charge broken down by the
city the agent lives in, the city the customer lives in, and the combi-
nation of the two.”

You can find my solution in CH21_AgentCity_CustomerCity_
Count_Charge_GROUPING_SETS (34 rows).

Recipes Database

 1. “I want to know how many recipes there are in each of the rec-
ipe classes in my cookbook, plus an overall total of all the recipes
regardless of recipe class. Make sure to include any recipe classes
that don’t have any recipes in them.”

You can find my solution in CH21_RecipeClass_Recipe_Counts_
ROLLUP (8 rows).

 2. “I want to know the relationship between RecipeClasses and Ingre-
dientClasses. For each recipe class, show me how many different
ingredient classes are represented, and for each ingredient class,
show me how many different recipe classes are represented.”

You can find my solution in CH21_RecipeClass_IngredClass_
Counts_GROUPING_SETS (25 rows).

 Problems for You to Solve 791

 3. “I want to know even more about the relationship between
 RecipeClasses and IngredientClasses. Show me how many recipes
there are in each combination of recipe class and ingredient class.
Also show me how many recipes there are in each ingredient class
regardless of the recipe class, how many recipes there are in each
recipe class regardless of the ingredient class, and how many reci-
pes there are in total.”

You can find my solution in CH21_RecipeClass_IngredClass_
CUBE (61 rows).

Sales Orders Database

 1. “For each category of product, show me, by state, how much reve-
nue the customers have generated. Give me subtotals for each state,
for each category, plus a grand total.”

You can find my solution in CH21_ProductCategory_Customer-
State_Revenue_CUBE (35 rows).

 2. “For each category of product, show me, by state, how much quan-
tity the vendors have on hand. Give me subtotals for each state
within a category, plus a grand total.”

You can find my solution in CH21_ProductCategory_VendorState_
QOH_ROLLUP (33 rows).

 3. “For each of our vendors, let me know how many products they
supply in each category. I want to see this broken down by state.
For each state, show me the number of products in each category.
Show me the number of products for all categories and a grand total
as well.”

Note that the counts will not represent the number of different
products that are sold!

You can find my solution in CH21_VendorState_Category_Count_
ROLLUP (43 rows).

School Scheduling Database

 1. “Summarize the number of class sessions scheduled, showing
semester, building, classroom, and subject. Give me subtotals for
each semester, for each combination of building and classroom and
for each subject.”

You can find my solution in CH21_Semester_Building_Class-
Room_Subject_Count_GROUPING_SETS (82 rows).

792 Chapter 21 Performing Complex Calculations on Groups

 2. “For each department, show me the number of courses that could
be offered, and whether they’re taught by a Professor, an Associate
Professor, or an Instructor. Give me total courses per department and
total courses overall as well.”

Note that the number of courses returned will be greater than the
number of courses offered by the school because some courses
could be taught by more than instructors.

You can find my solution in CH21_Department_Title_Count_
ROLLUP (20 rows).

 3. “I want to know how many courses our students have been in con-
tact with. Give me totals by whether they completed the course, are
currently enrolled in it or withdrew. I’d also like to see this broken
down by student major. May as well give me the total courses com-
pleted, enrolled and withdrawn while you’re at it. Don’t worry about
splitting it up by semester.”

You can find my solution in CH21_Major_ClassStatus_Count_
GROUPING_SETS (26 rows).

 793

22
Partitioning Data into Windows

In my head there are several windows, that I do know, but perhaps
it is always the same one, open variously on the parading universe.

SAMUEL BECKETT

Topics in this Chapter

What You Can Do with a “Window” into Your Data

Calculating a Row Number

Ranking Data

Splitting Data into Quintiles

Using Windows with Aggregate Functions

Sample Statements

Summary

Problems for You to Solve

I’ve shown you several different ways that you can group and aggregate
data, but I still haven’t shown you everything.

In earlier incarnations of the SQL standards, there really was no ability
to work with data where the results depended on adjacent rows. It was
always felt that the order of the rows didn’t matter, as long as you could
match the rows to your filters. While the ability to sort the data using
the ORDER BY clause existed, it was seen as being related to presenta-
tion, not to data manipulation. This meant that operations such as gen-
erating running sums, where the sum on a particular row is dependent
on the values of the rows that precede that row, were very difficult (or
even impossible) to write using only SQL.

794 Chapter 22 Partitioning Data into Windows

With the introduction of the SQL:2003 Standard, though, this changed.
The SQL:2003 Standard introduced the concept of window func-
tions, which are functions that are applied to a set of rows defined by
a window descriptor and return a single value for each row from the
 underlying query.

I intend to delve into the world of window functions in this chapter. Don’t
worry if you use an Apple computer: window functions have nothing to
do with the PC operating system. In fact, Microsoft’s SQL Server was
late coming to the party with respect to window functions; they weren’t
introduced until SQL Server 2017, and they still aren’t in Microsoft
Access!

 ❖ Note You can find all the sample statements and solutions for the
respective sample databases—SalesOrdersExample, Entertainment-
AgencyExample, RecipesExample, SchoolSchedulingExample, and
BowlingLeagueExample. Because neither Microsoft Access nor MySQL
support window functions, you’ll find the sample solutions only in the
Microsoft SQL Server and PostgreSQL example databases.

What You Can Do With a “Window” into
Your Data

In all the examples I’ve shown you to aggregate data so far, the aggre-
gated data is replaced by a subtotal row. You lose the actual details of
the data that went into the aggregation.

For instance, if you wanted to know how many styles of music each cus-
tomer prefers, you might use a query like this:

SQL SELECT CustomerID, C.CustFirstName || ' ' || C.CustLastName

 AS Customer,

 COUNT(*) AS Preferences

FROM Customers AS C

 INNER JOIN Musical_Preferences AS MP

 ON MP.CustomerID = C.CustomerID

GROUP BY C.CustFirstName, C.CustLastName;

❖ Note You can find all the sample statements and solutions for the
respective sample databases—SalesOrdersExample, Entertainment-tt
AgencyExample, RecipesExample, SchoolSchedulingExample, and
BowlingLeagueExample. Because neither Microsoft Access nor MySQL
support window functions, you’ll find the sample solutions only in the
Microsoft SQL Server and PostgreSQL example databases.

 What You Can Do With a “Window” into Your Data 795

You will obtain results like the following table. (I saved this request as
CH22_Customers_PreferredStyles_Count in the Entertainment Agency
Example database.)

CustomerID Customer Preferences

10001 Doris Hartwig 2

10002 Deb Waldal 2

10003 Peter Brehm 2

10004 Dean McCrae 2

10005 Elizabeth Hallmark 2

10006 Matt Berg 2

10007 Liz Keyser 3

10008 Darren Gehring 2

10009 Sarah Thompson 3

10010 Zachary Ehrlich 3

10011 Joyce Bonnicksen 3

10012 Kerry Patterson 2

10013 Estella Pundt 2

10014 Mark Rosales 3

10015 Carol Viescas 3

Great. This does let you know exactly how many preferences each
 customer has indicated. However, it doesn’t tell you what their prefer-
ences are!

What if we could use a window function to figure out the total number of
preferences for customers but also return what each of their preferences
is? It turns out you can get results like the following table:

CustomerID Customer StyleName Preferences

10001 Doris Hartwig Contemporary 2

10001 Doris Hartwig Top 40 Hits 2

796 Chapter 22 Partitioning Data into Windows

CustomerID Customer StyleName Preferences

10002 Deb Waldal 60’s Music 2

10002 Deb Waldal Classic Rock & Roll 2

10003 Peter Brehm Motown 2

10003 Peter Brehm Rhythm and Blues 2

10004 Dean McCrae Jazz 2

10004 Dean McCrae Standards 2

10005 Elizabeth Hallmark Classical 2

10005 Elizabeth Hallmark Chamber Music 2

10006 Matt Berg Folk 2

10006 Matt Berg Variety 2

10007 Liz Keyser 70’s Music 3

10007 Liz Keyser Classic Rock & Roll 3

10007 Liz Keyser Rhythm and Blues 3

10008 Darren Gehring Contemporary 2

10008 Darren Gehring Standards 2

10009 Sarah Thompson Country 3

10009 Sarah Thompson Country Rock 3

10009 Sarah Thompson Modern Rock 3

10010 Zachary Ehrlich Jazz 3

10010 Zachary Ehrlich Rhythm and Blues 3

10010 Zachary Ehrlich Salsa 3

10011 Joyce Bonnicksen 40’s Ballroom Music 3

10011 Joyce Bonnicksen Classical 3

10011 Joyce Bonnicksen Standards 3

10012 Kerry Patterson Contemporary 2

10012 Kerry Patterson Show Tunes 2

 What You Can Do With a “Window” into Your Data 797

CustomerID Customer StyleName Preferences

10013 Estella Pundt Jazz 2

10013 Estella Pundt Salsa 2

10014 Mark Rosales 80’s Music 3

10014 Mark Rosales Modern Rock 3

10014 Mark Rosales Top 40 Hits 3

10015 Carol Viescas 40’s Ballroom Music 3

10015 Carol Viescas Show Tunes 3

10015 Carol Viescas Standards 3

 ❖ Note If you’re really on your toes, you would probably tell me, “But,
John, I already know how to get that result using a subquery, like
this”:

SELECT CustomerID, CustFirstName || ' ' || CustLastName,
 StyleName, (SELECT COUNT(*)
 FROM Musical_Preferences AS MP
 WHE RE MP.CustomerID = Customers.

CustomerID)
 AS Preferences
FROM Customers INNER JOIN Musical_Preferences
 ON Customers.CustomerID = Musical_Preferences.

CustomerID
INNER JOIN Musical_Styles
 ON Musical_Styles.StyleID = Musical_Preferences.

StyleID;

And you would be correct! But the focus of this chapter is to show you
another, perhaps more efficient, way to get that result.

Now we know not only that Doris Hartwig has specified two preferences,
but we also know that the two styles she prefers are Contemporary and
Top 40 Hits! I’m sure you can see that these results could be far more
useful.

❖ Note If you’re really on your toes, you would probably tell me, “But,
John, I already know how to get that result using a subquery, like
this”:

SELECT CustomerID, CustFirstName || ' ' || CustLastName,
 StyleName, (SELECT COUNT(*)
 FROM Musical_Preferences AS MP
 WHERE MP.CustomerID = Customers.

CustomerID)
 AS Preferences
FROM Customers INNER JOIN Musical_Preferences
 ON Customers.CustomerID = Musical_Preferences.

CustomerID
INNER JOIN Musical_Styles
 ON Musical_Styles.StyleID = Musical_Preferences.

StyleID;

And you would be correct! But the focus of this chapter is to show you
another, perhaps more efficient, way to get that result.

798 Chapter 22 Partitioning Data into Windows

So how do you go about achieving results such as this? You guessed
it: you use window functions. So without further ado, let me show
you how.

Syntax

Let’s take a close look at the syntax for window functions. Figure 22-1
shows the basic diagram. Note that they are only valid in SELECT and
ORDER BY clauses. Hmmm, that looks pretty complicated, doesn't it?

ROW_NUMBER

OVER

PARTITION BY

ORDER BY
ASC
DESC

Column Reference

()
RANK ()
DENSE_RANK
PERCENT_RANK ()

)

()

NTILE unsigned integer

column_name

()

(

,

,

Figure 22-1 Syntax of the primary Window functions

But that’s not all! (Sounds like a TV game show, doesn’t it?) And you can
“power up” an Aggregate Function by turning it into a window, as shown
in Figure 22-2.

 ❖ Note As you can imagine from how lengthy those lists in
 Figures 22-1 and 22-2 are, window functions are a huge topic; more
than can possibly be covered in a single chapter. As a result, I will be
not covering ALL of the window functions, just the ones that I think
are most useful. However, you can find syntax for all the window
functions in Appendix A.

❖ Note As you can imagine from how lengthy those lists in
Figures 22-1 and 22-2 are, window functions are a huge topic; more
than can possibly be covered in a single chapter. As a result, I will be
not covering ALL of the window functions, just the ones that I think
are most useful. However, you can find syntax for all the window
functions in Appendix A.

 What You Can Do With a “Window” into Your Data 799

* Cannot use with BETWEEN CURRENT ROW

** Cannot use with BETWEEN unsigned integer FOLLOWING

*** Must include an ORDER BY clause

OVER (

)

PARTITION BY Column Reference

Aggregate Function

,

ORDER BY

ROWS
RANGE

UNBOUNDED PRECEDING

CURRENT ROW

BETWEEN UNBOUNDED PRECEDING

UNBOUNDED FOLLOWING

CURRENT ROW

CURRENT ROW**

unsigned integer PRECEDING

unsigned integer PRECEDING*AND

unsigned integer

unsigned integer FOLLOWING

unsigned integer FOLLOWING

PRECEDING

ASC
DESC

column_name

,

Figure 22-2 Extended syntax when using an Aggregate Function

You can see that the Aggregate Functions (COUNT, SUM, AVG, MIN, and
MAX) I taught you about in Chapter 12, “Simple Totals,” are in those
figures, along with several new ones: ROW_NUMBER(), RANK(), DENSE_
RANK(), PERCENT_RANK(), and NTILE(), but there seems to be a lot
more that can be specified as well.

The clause that allows you to use the windows functions is OVER(). That
clause lets you define the range on which the aggregate functions are
applied.

800 Chapter 22 Partitioning Data into Windows

The key difference between GROUP BY and OVER() is that GROUP BY
applies aggregations across the entire query, rolling up the specified
non-aggregate fields, thereby reducing the number of rows returned
(usually). With OVER(), however, the same number of rows will be
returned as the base query. Any aggregations will be returned for each
row in the range identified in the OVER() clause.

Within the OVER() clause, there are several predicates which can be
used:

PARTITION BY

ORDER BY

ROWS (or RANGE)

The PARTITION BY predicate specifies how the window should be
divided. In the example above, I’m dividing the window by the customer.
The SQL for the table above that includes a Preferences column looks
like this:

SQL SELECT C.CustomerID,

 C.CustFirstName || ' ' || C.CustLastName AS Customer,

 MS.StyleName,

 COUNT(*) OVER (

 PARTITION BY C.CustomerID

) AS Preferences

FROM Customers AS C

 INNER JOIN Musical_Preferences AS MP

 ON MP.CustomerID = C.CustomerID

 INNER JOIN Musical_Styles AS MS

 ON MS.StyleID = MP.StyleID;

Now you know how to create that “magical” table I showed you at the
beginning of the chapter. I saved this query as CH22_Customers_
PreferredStyles_Details_Count in the Entertainment sample database.

If I don’t specify anything for the PARTITION BY predicate, the database
system applies the function over the entire result set.

 What You Can Do With a “Window” into Your Data 801

 ❖ Note Throughout this chapter, I use the “Request/Translation/
Clean Up/SQL” technique introduced in Chapter 4, “Creating a Simple
Query.” Because this process should now be very familiar to you,
I have combined the Translation/Clean Up steps for all the following
examples to simplify the process.

“For each customer, show me the musical preference styles they’ve
selected. Show me a running total of the number of styles selected for
all the customers.”

Translation/
Clean Up

Select the customer CustomerID, CustFirstName || ' ' ||
CustLastName, StyleName, and the count(*) OVER with no
partition but ordered by CustomerID from the Customers
table, inner joined with the Musical_Preferences table on
Musical_Preferences.CustomerID = Customers.Customer
ID inner joined with the Musical_Styles table on Musical_
Styles.StyleID = Musical_Preferences.StyleID

SQL SELECT C.CustomerID,

 C.CustFirstName || ' ' || C.CustLastName AS
Customer,

 MS.StyleName,

 COUNT(*) OVER (

 ORDER BY C.CustomerID

) AS Preferences

FROM Customers AS C

 INNER JOIN Musical_Preferences AS MP

 ON MP.CustomerID = C.CustomerID

 INNER JOIN Musical_Styles AS MS

 ON MS.StyleID = MP.StyleID;

That query returns results like the following table. (I saved this request
as CH22_Customers_PreferredStyles_Details_NO_PARTITION in the
Entertainment Agency Example database.)

CustomerID Customer StyleName Preferences

10001 Doris Hartwig Contemporary 2

10001 Doris Hartwig Top 40 Hits 2

❖ Note Throughout this chapter, I use the “Request/Translation/
Clean Up/SQL” technique introduced in Chapter 4, “Creating a Simple
Query.” Because this process should now be very familiar to you,
I have combined the Translation/Clean Up steps for all the following
examples to simplify the process.

802 Chapter 22 Partitioning Data into Windows

CustomerID Customer StyleName Preferences

10002 Deb Waldal 60’s Music 4

10002 Deb Waldal Classic Rock & Roll 4

10003 Peter Brehm Motown 6

10003 Peter Brehm Rhythm and Blues 6

10004 Dean McCrae Jazz 8

10004 Dean McCrae Standards 8

10005 Elizabeth Hallmark Classical 10

10005 Elizabeth Hallmark Chamber Music 10

10006 Matt Berg Folk 12

10006 Matt Berg Variety 12

10007 Liz Keyser 70’s Music 15

10007 Liz Keyser Classic Rock & Roll 15

10007 Liz Keyser Rhythm and Blues 15

10008 Darren Gehring Contemporary 17

10008 Darren Gehring Standards 17

10009 Sarah Thompson Country 20

10009 Sarah Thompson Country Rock 20

10009 Sarah Thompson Modern Rock 20

10010 Zachary Ehrlich Jazz 23

10010 Zachary Ehrlich Rhythm and Blues 23

10010 Zachary Ehrlich Salsa 23

10011 Joyce Bonnicksen 40’s Ballroom Music 26

10011 Joyce Bonnicksen Classical 26

10011 Joyce Bonnicksen Standards 26

10012 Kerry Patterson Contemporary 28

10012 Kerry Patterson Show Tunes 28

10013 Estella Pundt Jazz 30

10013 Estella Pundt Salsa 30

 What You Can Do With a “Window” into Your Data 803

CustomerID Customer StyleName Preferences

10014 Mark Rosales 80’s Music 33

10014 Mark Rosales Modern Rock 33

10014 Mark Rosales Top 40 Hits 33

10015 Carol Viescas 40’s Ballroom Music 36

10015 Carol Viescas Show Tunes 36

10015 Carol Viescas Standards 36

I still get the same data, but the totals are different. Rather than indi-
cating the number of preferences for each customer, I’m now getting a
running total. The totals in both rows for Doris Hartwig are still two,
corresponding to the two preference styles she’s indicated, but now the
totals for Deb Waldal are four (her two preference styles added to Doris’s
two preference styles), the totals for Peter Brehm are six (his two prefer-
ence styles added to Deb’s two preference styles and Doris’s two) and so
on. Basically, I’ve generated a running sum of the preferences count.

Note that you can specify a different OVER() clause for each aggregate
function. For instance, you can get both counts of preferences per cus-
tomer plus overall counts of preferences using a query like the following:

“For each customer, show me the musical preference styles they’ve
selected. Show me both the total for each customer plus a running total
of the number of styles selected for all the customers.”

Translation/
Clean Up

Select the customer CustomerID, CustFirstName || ' ' ||
CustLastName, StyleName, the count(*) OVER partition
by CustomerID ordered by CustomerID and the count(*)
OVER with no partition but ordered by CustomerID from the
Customers table, inner joined with the Musical_Preferences
table on Musical_Preferences.CustomerID = Customers.
Customer ID inner joined with the Musical_Styles table on
Musical_Styles.StyleID = Musical_Preferences.StyleID

SQL SELECT C.CustomerID,

 C. CustFirstName || ' ' || C.CustLastName AS
Customer,

 MS.StyleName,

804 Chapter 22 Partitioning Data into Windows

 COUNT(*) OVER (

 PARTITION BY C.CustomerID

 ORDER BY C.CustomerID

) AS CustomerPreferences,

 COUNT(*) OVER (

 ORDER BY C.CustomerID

) AS TotalPreferences

FROM Customers AS C

 INNER JOIN Musical_Preferences AS MP

 ON MP.CustomerID = C.CustomerID

 INNER JOIN Musical_Styles AS MS

 ON MS.StyleID = MP.StyleID;

That will return results like the following table. (I saved this request as
CH22_Customers_PreferredStyles_Details_Multiple_Counts in the Enter-
tainment Agency Example database.)

CustomerID Customer StyleName Customer
Preferences

Total
Preferences

10001 Doris Hartwig Contemporary 2 2

10001 Doris Hartwig Top 40 Hits 2 2

10002 Deb Waldal 60’s Music 2 4

10002 Deb Waldal Classic Rock & Roll 2 4

10003 Peter Brehm Motown 2 6

10003 Peter Brehm Rhythm and Blues 2 6

10004 Dean McCrae Jazz 2 8

10004 Dean McCrae Standards 2 8

10005 Elizabeth Hallmark Classical 2 10

10005 Elizabeth Hallmark Chamber Music 2 10

10006 Matt Berg Folk 2 12

10006 Matt Berg Variety 2 12

10007 Liz Keyser 70’s Music 3 15

 What You Can Do With a “Window” into Your Data 805

CustomerID Customer StyleName Customer
Preferences

Total
Preferences

10007 Liz Keyser Classic Rock & Roll 3 15

10007 Liz Keyser Rhythm and Blues 3 15

10008 Darren Gehring Contemporary 2 17

10008 Darren Gehring Standards 2 17

10009 Sarah Thompson Country 3 20

10009 Sarah Thompson Country Rock 3 20

10009 Sarah Thompson Modern Rock 3 20

10010 Zachary Ehrlich Jazz 3 23

10010 Zachary Ehrlich Rhythm and Blues 3 23

10010 Zachary Ehrlich Salsa 3 23

10011 Joyce Bonnicksen 40’s Ballroom Music 3 26

10011 Joyce Bonnicksen Classical 3 26

10011 Joyce Bonnicksen Standards 3 26

10012 Kerry Patterson Contemporary 2 28

10012 Kerry Patterson Show Tunes 2 28

10013 Estella Pundt Jazz 2 30

10013 Estella Pundt Salsa 2 30

10014 Mark Rosales 80’s Music 3 33

10014 Mark Rosales Modern Rock 3 33

10014 Mark Rosales Top 40 Hits 3 33

10015 Carol Viescas 40’s Ballroom Music 3 36

10015 Carol Viescas Show Tunes 3 36

10015 Carol Viescas Standards 3 36

Note that this now gives me both a total count of preferences by cus-
tomer as well as a running total over all customers. As its name sug-
gests, the ORDER BY predicate controls the order in which the rows are

806 Chapter 22 Partitioning Data into Windows

returned. I could change the ORDER BY predicate in the previous query
like this:

“For each customer, show me the musical preference styles they’ve
selected. Show me both the total for each customer plus a running total
of the number of styles selected for all the customers. I want to see the
customers sorted by name.”

Translation/
Clean Up

Select the CustomerID, CustFirstName || ' ' || CustLast-
Name, StyleName, the count(*) OVER partition by Custo-
merID ordered by CustLastName, CustFirstName and the
count(*) OVER with no partition but ordered by CustLast-
Name, CustFirstName from the Customers table, inner
joined with the Musical_Preferences table on Musical_Pref-
erences.CustomerID = Customers.Customer ID inner joined
with the Musical_Styles table on Musical_Styles.StyleID =
Musical_Preferences.StyleID

SQL SELECT C.CustomerID,

 C.CustFirstName || ' ' || C.CustLastName

 AS Customer,

 MS.StyleName,

 COUNT(*) OVER (

 PARTITION BY C.CustomerID

 ORDER BY C.CustLastName, C.CustFirstName

) AS CustomerPreferences,

 COUNT(*) OVER (

 ORDER BY C.CustLastName, C.CustFirstName

) AS TotalPreferences

FROM Customers AS C

 INNER JOIN Musical_Preferences AS MP

 ON MP.CustomerID = C.CustomerID

 INNER JOIN Musical_Styles AS MS

 ON MS.StyleID = MP.StyleID;

This returns results like the following table. (I saved this request as
CH22_Customers_PreferredStyles_Details_Multiple_Counts_Sort1 in the
Entertainment Agency Example database.)

 What You Can Do With a “Window” into Your Data 807

CustomerID Customer StyleName Customer
Preferences

Total
Preferences

10006 Matt Berg Folk 2 2

10006 Matt Berg Variety 2 2

10011 Joyce Bonnicksen 40’s Ballroom Music 3 5

10011 Joyce Bonnicksen Classical 3 5

10011 Joyce Bonnicksen Standards 3 5

10003 Peter Brehm Motown 2 7

10003 Peter Brehm Rhythm and Blues 2 7

10010 Zachary Ehrlich Jazz 3 10

10010 Zachary Ehrlich Rhythm and Blues 3 10

10010 Zachary Ehrlich Salsa 3 10

10008 Darren Gehring Contemporary 2 12

10008 Darren Gehring Standards 2 12

10005 Elizabeth Hallmark Classical 2 14

10005 Elizabeth Hallmark Chamber Music 2 14

10001 Doris Hartwig Contemporary 2 16

10001 Doris Hartwig Top 40 Hits 2 16

10007 Liz Keyser 70’s Music 3 19

10007 Liz Keyser Classic Rock & Roll 3 19

10007 Liz Keyser Rhythm and Blues 3 19

10004 Dean McCrae Jazz 2 21

10004 Dean McCrae Standards 2 21

10012 Kerry Patterson Contemporary 2 23

10012 Kerry Patterson Show Tunes 2 23

10013 Estella Pundt Jazz 2 25

10013 Estella Pundt Salsa 2 25

10014 Mark Rosales 80’s Music 3 28

10014 Mark Rosales Modern Rock 3 28

10014 Mark Rosales Top 40 Hits 3 28

808 Chapter 22 Partitioning Data into Windows

CustomerID Customer StyleName Customer
Preferences

Total
Preferences

10009 Sarah Thompson Country 3 31

10009 Sarah Thompson Country Rock 3 31

10009 Sarah Thompson Modern Rock 3 31

10015 Carol Viescas 40’s Ballroom Music 3 34

10015 Carol Viescas Show Tunes 3 34

10015 Carol Viescas Standards 3 34

10002 Deb Waldal 60’s Music 2 36

10002 Deb Waldal Classic Rock & Roll 2 36

You can see that the final output is now sorted by customer last name
and first name, not by customer ID. Note, however, that ORDER BY
clause should be consistent with the PARTITION clause, or the results
you get might be confusing.

“For each customer, show me the musical preference styles they’ve
selected. Show me both the total for each customer plus a running total
of the number of styles selected for all the customers. I want to see the
styles sorted by name.”

Translation/
Clean Up

Select the customer CustomerID, CustFirstName || ' ' ||
CustLastName, StyleName, the count(*) OVER partition
by CustomerID ordered by StyleName and the count(*)
OVER with no partition but ordered by StyleName from the
Customers table, inner joined with the Musical_Preferences
table on Musical_Preferences.CustomerID = Customers.
Customer ID inner joined with the Musical_Styles table on
Musical_Styles.StyleID = Musical_Preferences.StyleID

SQL SELECT C.CustomerID,

 C. CustFirstName || ' ' || C.CustLastName AS
Customer,

 MS.StyleName,

 COUNT(*) OVER (

 PARTITION BY C.CustomerID

 ORDER BY MS.StyleName

) AS CustomerPreferences,

 What You Can Do With a “Window” into Your Data 809

 COUNT(*) OVER (

 ORDER BY MS.StyleName

) AS TotalPreferences

FROM Customers AS C

 INNER JOIN Musical_Preferences AS MP

 ON MP.CustomerID = C.CustomerID

 INNER JOIN Musical_Styles AS MS

 ON MS.StyleID = MP.StyleID;

That query would lead to results like the following table. (I saved this
request as CH22_Customers_PreferredStyles_Details_Multiple_Counts_
Sort2 in the Entertainment Agency Example database.) This time, the
output is sorted by style name, as I requested.

CustomerID Customer StyleName Customer
Preferences

Total
Preferences

10011 Joyce Bonnicksen 40’s Ballroom Music 1 2

10015 Carol Viescas 40’s Ballroom Music 1 2

10002 Deb Waldal 60’s Music 1 3

10007 Liz Keyser 70’s Music 1 4

10014 Mark Rosales 80’s Music 1 5

10005 Elizabeth Hallmark Chamber Music 1 6

10007 Liz Keyser Classic Rock & Roll 2 8

10002 Deb Waldal Classic Rock & Roll 2 8

10005 Elizabeth Hallmark Classical 2 10

10011 Joyce Bonnicksen Classical 2 10

10012 Kerry Patterson Contemporary 1 13

10008 Darren Gehring Contemporary 1 13

10001 Doris Hartwig Contemporary 1 13

10009 Sarah Thompson Country 1 14

10009 Sarah Thompson Country Rock 2 15

10006 Matt Berg Folk 1 16

810 Chapter 22 Partitioning Data into Windows

CustomerID Customer StyleName Customer
Preferences

Total
Preferences

10004 Dean McCrae Jazz 1 19

10010 Zachary Ehrlich Jazz 1 19

10013 Estella Pundt Jazz 1 19

10014 Mark Rosales Modern Rock 2 21

10009 Sarah Thompson Modern Rock 3 21

10003 Peter Brehm Motown 1 22

10003 Peter Brehm Rhythm and Blues 2 25

10007 Liz Keyser Rhythm and Blues 3 25

10010 Zachary Ehrlich Rhythm and Blues 2 25

10010 Zachary Ehrlich Salsa 3 27

10013 Estella Pundt Salsa 2 27

10015 Carol Viescas Show Tunes 2 29

10012 Kerry Patterson Show Tunes 2 29

10011 Joyce Bonnicksen Standards 3 33

10015 Carol Viescas Standards 3 33

10008 Darren Gehring Standards 2 33

10004 Dean McCrae Standards 2 33

10001 Doris Hartwig Top 40 Hits 2 35

10014 Mark Rosales Top 40 Hits 3 35

10006 Matt Berg Variety 2 36

The TotalPreferences counts still look okay (two people like 40’s Ball-
room Music, so the value for TotalPreferences is 2 for both those rows,
one person likes 60’s Music, so the value for TotalPreferences for that
style is 3. TotalPreferences is a running total—the total for the previous
style plus the total for the current style and so on). The CustomerPrefer-
ences counts are a little harder to figure out, but they are simply a run-
ning sum of the number of preferences specified by each customer. The
first row for any given customer shows the value 1, the second row the
value 2, and so on.

 What You Can Do With a “Window” into Your Data 811

 ❖ Note It is possible to include an OVER() clause with no optional
clauses. The result is the aggregate you specified calculated for all the
rows returned by the FROM and WHERE clauses and displayed on
each row. For example, this query:

SELECT C.CustomerID,
 C.CustFirstName || ' ' || C.CustLastName AS Customer,
 MS.StyleName,
 COUNT(*) OVER () AS NumRows
FROM Customers AS C
 INNER JOIN Musical_Preferences AS MP
 ON MP.CustomerID = C.CustomerID
 INNER JOIN Musical_Styles AS MS
 ON MS.StyleID = MP.StyleID;

. . . returns the count of all rows in the NumRows column. You can
think of it as a way to display all rows and get a grand total without
having to include a GROUP BY clause.

The ROWS (or RANGE) predicate allows you to further limit the rows of
data that are included within the partition. It does this by letting you
specify a range of rows with respect to the current row.

The ROWS clause lets you specify the range physically by specify-
ing a fixed number of rows preceding or following the current row. For
instance, you can specify ROWS BETWEEN CURRENT ROW AND 1
FOLLOWING, which would mean that the rows to be considered are sim-
ply this row and the one right after it.

The RANGE clause lets you specify the range logically by specifying a
range of values with respect to the value in the current row.

 ❖ Note Both the ROWS and RANGE clauses require that the ORDER
BY clause be specified. If ORDER BY specifies multiple columns, CUR-
RENT ROW FOR RANGE considers all columns in the ORDER BY list
when determining what constitutes the range.

Let’s look at an example to see the difference between using ROWS and
RANGES when calculating the total number of preferences. (Don’t worry,

❖ Note It is possible to include an OVER() clause with no optional
clauses. The result is the aggregate you specified calculated for all the
rows returned by the FROM and WHERE clauses and displayed on
each row. For example, this query:

SELECT C.CustomerID,
 C.CustFirstName || ' ' || C.CustLastName AS Customer,
 MS.StyleName,
 COUNT(*) OVER () AS NumRows
FROM Customers AS C
 INNER JOIN Musical_Preferences AS MP
 ON MP.CustomerID = C.CustomerID
 INNER JOIN Musical_Styles AS MS
 ON MS.StyleID = MP.StyleID;

. . . returns the count of all rows in the NumRows column. You can
think of it as a way to display all rows and get a grand total without
having to include a GROUP BY clause.

❖ Note Both the ROWS and RANGE clauses require that the ORDER
BY clause be specified. If ORDER BY specifies multiple columns, CUR-
RENT ROW FOR RANGE considers all columns in the ORDER BY list
when determining what constitutes the range.

812 Chapter 22 Partitioning Data into Windows

I’ll be talking more about using aggregate functions like SUM with the
OVER() clause in a little bit.) Let’s just go straight to the SQL, asking
for a SUM of the COUNT OVER ROWS and a SUM of the COUNT OVER
RANGE to see the difference.

“For each city where we have customers, show me the customer and
the number of musical preference styles they’ve selected. Also give me
a running total by city, both for each customer in the city as well as for
the city overall.”

SQL SELECT C.CustCity,

 C.CustFirstName || ' ' || C.CustLastName AS Customer,

 COUNT(*) AS Preferences,

 SUM(COUNT(*)) OVER (

 ORDER BY C.CustCity

 ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW

) AS TotalUsingRows,

 SUM(COUNT(*)) OVER (

 ORDER BY C.CustCity

 RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW

) AS TotalUsingRange

FROM Customers AS C

 INNER JOIN Musical_Preferences AS MP

 ON MP.CustomerID = C.CustomerID

GROUP BY C.CustCity, C.CustFirstName, C.CustLastName;

That query would lead to results like the following table. (I saved this
request as CH22_Customer_ByCity_PreferredStyles_Sums in the Enter-
tainment Agency Example database.)

CustCity Customer Preferences Total
UsingRows

Total
UsingRange

Auburn Elizabeth Hallmark 2 2 2

Bellevue Estella Pundt 2 4 16

Bellevue Joyce Bonnicksen 3 7 16

Bellevue Liz Keyser 3 10 16

 What You Can Do With a “Window” into Your Data 813

CustCity Customer Preferences Total
UsingRows

Total
UsingRange

Bellevue Mark Rosales 3 13 16

Bellevue Sarah Thompson 3 16 16

Kirkland Darren Gehring 2 18 23

Kirkland Peter Brehm 2 20 23

Kirkland Zachary Ehrlich 3 23 23

Redmond Dean McCrae 2 25 27

Redmond Kerry Patterson 2 27 27

Seattle Carol Viescas 3 30 32

Seattle Doris Hartwig 2 32 32

Tacoma Deb Waldal 2 34 36

Tacoma Matt Berg 2 36 36

Look at the two calculated SUM fields. The first (TotalUsingRows)
included a ROWS predicate ROWS BETWEEN UNBOUNDED PRECED-
ING AND CURRENT ROW, while the second (TotalUsingRange) included
a RANGE predicate RANGE BETWEEN UNBOUNDED PRECEDING AND
CURRENT ROW.

Each value in the TotalUsingRows column is the value in the Preferences
column for that row added to the value in the TotalUsingRows column
for the preceding row. In other words, using the SUM aggregate function
with the ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT
ROW predicate results in a running total.

The values in the TotalUsingRange column are quite different (although
the values on the first and last rows are the same). The RANGE pre-
dicate creates a range of all rows with the same value for the column
specified in the ORDER BY predicate (CustCity) as the current row. In
other words, the first row is the sum of Preferences for all rows corre-
sponding to the city of the first row (Auburn). There are five rows for
Bellevue, with preferences 2, 3, 3, 3, 3, respectively. Those five values
result in 14 when added together. That value is added to the value for the
 previous range so that the TotalUsingRange column shows 16 for the five
 Bellevue rows. Similarly, there are three rows for Kirkland, which total 7.

814 Chapter 22 Partitioning Data into Windows

That total for Kirkland is added to the value for the previous range (16),
resulting in the TotalUsingRange column showing 23 for the range con-
sisting of the three Kirkland rows. You can still call it a running total,
but the running total for each row in the range is the same. Looking
at it another way, the value in the TotalUsingRange column for any
city matches the last row for that city in the TotalUsingRows column
(Auburn, Elizabeth Hallmark; Bellevue, Sarah Thompson; Kirkland,
Zachary Ehrlich; and so on).

One thing that should be pointed out is that it’s only possible to use the
ROWS (or RANGE) predicate with aggregate functions. Figure 22-3 sum-
marizes the rules.

Function

ROW_NUMBER()

RANK()

DENSE_RANK()

PERCENT_RANK()

NTILE(n)

Aggregate Function

Required

Required

Required

Required

Required

Optional

Required

Required

Required

Required

Required

Optional

Optional

Optional

Optional

Optional

Optional

Optional

Not allowed

Not allowed

Not allowed

Not allowed

Not allowed

Optional

OVER clause PARTITION BY ORDER BY ROWS or RANGE

Figure 22-3 The clauses that are required and optional for each window function

Calculating a Row Number

One of the new functions introduced in Figure 22-1 is ROW_NUMBER().
As you might expect from the name, this allows you to assign unique
numbers to each row.

“Assign a number for each customer. Show me their CustomerID, their
name and their state. Return the customers in alphabetic order.”

Translation/
Clean Up

Select the ROW_NUMBER (*) OVER ordered by CustLast-
Name, CustFirstName, the customer and state CustomerID,
CustFirstName || ' ' || CustLastName, CustState from the
Customers table

SQL SELECT ROW_NUMBER() OVER (

 ORDER BY CustLastName, CustFirstName

) AS RowNumber,

 C.CustomerID,

 Calculating a Row Number 815

 C.CustFirstName || ' ' || C.CustLastName

 AS CustomerName,

 C.CustState

FROM Customers AS C;

That query would lead to results like the following table. (I saved this
request as CH22_Customers_Numbering in the Sales Orders Example
database.)

RowNumber CustomerID CustomerName CustState

1 1014 Sam Abolrous CA

2 1020 Joyce Bonnicksen WA

3 1004 Robert Brown TX

4 1009 Andrew Cencini WA

5 1026 Kirk DeGrasse TX

6 1019 Zachary Ehrlich CA

7 1015 Darren Gehring CA

8 1011 Alaina Hallmark WA

9 1003 Gary Hallmark WA

10 1010 Angel Kennedy TX

11 1012 Liz Keyser WA

12 1005 Dean McCrae WA

13 1027 Luke Patterson OR

14 1025 Maria Patterson TX

15 1008 Neil Patterson CA

16 1013 Rachel Patterson CA

17 1021 Estella Pundt TX

18 1024 Mark Rosales TX

19 1023 Julia Schnebly WA

816 Chapter 22 Partitioning Data into Windows

RowNumber CustomerID CustomerName CustState

20 1017 Manuela Seidel OR

21 1007 Mariya Sergienko OR

22 1018 David Smith CA

23 1002 William Thompson WA

24 1028 Jeffrey Tirekicker WA

25 1022 Caleb Viescas CA

26 1006 John Viescas WA

27 1001 Suzanne Viescas WA

28 1016 Jim Wilson OR

Of course, because ROW_NUMBER is a window function, we can use the
OVER clause to partition the table differently.

“Assign a number for each customer within their state. Show me their
CustomerID, their name, and their state. Return the customers in
alphabetic order.”

Translation/
Clean Up

Select the ROW_NUMBER() OVER partition by CustState,
ordered by CustLastName, CustFirstName, the CustomerID,
CustFirstName || ' ' || CustLastName, and CustState from
the Customers table

SQL SELECT ROW_NUMBER() OVER (

 PARTITION BY CustState

 ORDER BY CustLastName, CustFirstName

) AS RowNumber,

 C.CustomerID,

 C. CustFirstName || ' ' || C.CustLastName AS
CustomerName,

 C.CustState

FROM Customers AS C;

That query would lead to results like the following table. (I saved this
request as CH22_Customers_Numbering_By_State in the Sales Orders
Example database.)

 Calculating a Row Number 817

RowNumber CustomerID CustomerName CustState

1 1014 Sam Abolrous CA

2 1019 Zachary Ehrlich CA

3 1015 Darren Gehring CA

4 1008 Neil Patterson CA

5 1013 Rachel Patterson CA

6 1018 David Smith CA

7 1022 Caleb Viescas CA

1 1027 Luke Patterson OR

2 1017 Manuela Seidel OR

3 1007 Mariya Sergienko OR

4 1016 Jim Wilson OR

1 1004 Robert Brown TX

2 1026 Kirk DeGrasse TX

3 1010 Angel Kennedy TX

4 1025 Maria Patterson TX

5 1021 Estella Pundt TX

6 1024 Mark Rosales TX

1 1020 Joyce Bonnicksen WA

2 1009 Andrew Cencini WA

3 1011 Alaina Hallmark WA

4 1003 Gary Hallmark WA

5 1012 Liz Keyser WA

6 1005 Dean McCrae WA

7 1023 Julia Schnebly WA

8 1002 William Thompson WA

9 1028 Jeffrey Tirekicker WA

10 1006 John Viescas WA

11 1001 Suzanne Viescas WA

818 Chapter 22 Partitioning Data into Windows

Because I asked for a partition by state, the RowNumber column
restarts at 1 for each different state, and the rows are sorted by cus-
tomer last name and first name within each state.

Ranking Data

Another one of the new functions introduced in Figure 22-1 is RANK().
As you might expect from the name, this allows you to rank rows of data
relative to one another.

“List all students who have completed English courses and rank them
by the grade they received.”

Translation/
Clean Up

Select the SubjectID, StudFirstName, StudLastName,
SubjectName, Grade, and RANK() OVER ordered by Grade
DESC from the Students table inner joined with the Stu-
dent_Schedules table on Students.StudentID = Student_
Schedules.StudentID inner joined with the Classes table on
Classes.ClassID = Student_Schedules.ClassID inner joined
with the Subjects table on Subjects.SubjectID = Classes.
SubjectID where ClassStatus = 2 and CategoryID = ‘ENG’

SQL SELECT Su.SubjectID, St.StudFirstName,

 St.StudLastName, Su.SubjectName,

 SS.Grade,

 RANK() OVER (

 ORDER BY SS.Grade DESC

) AS Rank

FROM Students AS St

 INNER JOIN Student_Schedules AS SS

 ON SS.StudentID = St.StudentID

 INNER JOIN Classes AS C

 ON C.ClassID = SS.ClassID

 INNER JOIN Subjects AS Su

 ON Su.SubjectID = C.SubjectID

WHERE SS.ClassStatus = 2

 AND Su.CategoryID = 'ENG';

That query would lead to results like the following table. (I saved this
request as CH22_English_Students_Rank in the School Scheduling
Example database.)

 Ranking Data 819

SubjectID Stud
FirstName

Stud
LastName

SubjectName Grade Rank

37 Scott Bishop Composition -
Fundamentals

98.07 1

37 Sara Sheskey Composition -
Fundamentals

97.59 2

37 John Kennedy Composition -
Fundamentals

93.01 3

37 Brannon Jones Composition -
Fundamentals

91.66 4

37 Janice Galvin Composition -
Fundamentals

91.44 5

38 Kendra Bonnicksen Composition -
Intermediate

88.91 6

37 George Chavez Composition -
Fundamentals

88.54 7

37 Marianne Wier Composition -
Fundamentals

87.4 8

37 David Hamilton Composition -
Fundamentals

86.33 9

37 Steve Pundt Composition -
Fundamentals

82.58 10

38 Doris Hartwig Composition -
Intermediate

81.66 11

37 Michael Viescas Composition -
Fundamentals

77.59 12

38 Elizabeth Hallmark Composition -
Intermediate

72.88 13

37 Karen Smith Composition -
Fundamentals

72.05 14

37 Betsy Stadick Composition -
Fundamentals

71.09 15

37 Kerry Patterson Composition -
Fundamentals

70 16

38 Sarah Thompson Composition -
Intermediate

67.6 17

38 Richard Lum Composition -
Intermediate

67.19 18

820 Chapter 22 Partitioning Data into Windows

In this case, there are no duplicate grade values, so the ranking is sim-
ply the grades in descending order.

If two or more rows tie for a rank in the same partition, each of the tied rows
receives the same rank. If we take the above table and give both Brannon
Jones and Janice Galvin a grade of 91.66 for Composition – Fundamentals,
both Brannon and Janice would be listed at rank value 4, and Kendra Bon-
nicksen would still have rank 6, with the value 5 skipped. Like this:

SubjectID StudFirstName StudLastName SubjectName Grade Rank

37 Scott Bishop Composition -
Fundamentals

98.07 1

37 Sara Sheskey Composition -
Fundamentals

97.59 2

37 John Kennedy Composition -
Fundamentals

93.01 3

37 Brannon Jones Composition -
Fundamentals

91.66 4

37 Janice Galvin Composition -
Fundamentals

91.66 4

38 Kendra Bonnicksen Composition -
Intermediate

88.91 6

<< more rows here >>

Figure 22-1 also included the DENSE_RANK() and PERCENT_RANK()
functions. The difference between those two functions and RANK() is
straightforward. Because there is only one distinct value that precedes
the row, the DENSE_RANK() function would not skip a value. It would
return the value 5 for Kendra Bonnicksen. This is one more than the
number of distinct rows that come before the current row. The numbers
returned by the DENSE_RANK function do not have gaps and always
have consecutive ranks.

The PERCENT_RANK() function, however, returns a number that rep-
resents the percentage of values less than the current value in the
group, excluding the highest value. In the absence of ties, the PERCENT_
RANK() function will always return 0 for the first value in the group,
and 1 for the last value in a group. For the remaining rows in the parti-
tion, the PERCENT_RANK function ranks a value by calculating its rank

 Ranking Data 821

minus 1 (rk − 1), and dividing that value by the number of rows in the
partition minus 1 (nr − 1). Here’s the formula:

)(
)(

=
−
−

PERCENT RANK
rk
nr

_
1
1

Let’s take a look at an example.

“List all bowlers in the league, ranking them by their average handi-
capped score. Show all three of RANK(), DENSE_RANK(), and PER-
CENT_RANK() to show the difference. (Remember that bowling scores
are reported as rounded integer values.)”

Translation/
Clean Up

Select the BowlerID, BowlerName, ROUND(AVG(HandiCapScore), 0),
RANK() OVER ordered by ROUND(AVG(HandiCapScore), 0) DESC
AS Rank, DENSE_RANK () OVER ordered by ROUND(AVG(Handi-
CapScore), 0) DESC AS DenseRank and PERCENT_RANK () OVER
ordered by ROUND(AVG(HandiCapScore), 0) DESC AS PercentRank
from table Bowlers inner joined with the Bowler_Scores table ON
Bowler_Scores.BowlerID = Bowlers.BowlerID, grouped by BowlerID,
BowlerFirstName and BowlerLastName

SQL SELECT B.BowlerID,

 B.BowlerFirstName || ' ' || B.BowlerLastName

 AS BowlerName,

 ROUND(AVG(BS.HandiCapScore), 0) AS AvgHandicap,

 RANK () OVER (

 ORDER BY ROUND(AVG(BS.HandiCapScore), 0) DESC)

 AS Rank,

 DENSE_RANK () OVER (

 ORDER BY ROUND(AVG(BS.HandiCapScore), 0) DESC)

 AS DenseRank,

 PERCENT_RANK () OVER (

 ORDER BY ROUND(AVG(BS.HandiCapScore), 0) DESC)

 AS PercentRank

FROM Bowlers AS B

 INNER JOIN Bowler_Scores AS BS

 ON BS.BowlerID = B.BowlerID

GROUP BY B.BowlerID, B.BowlerFirstName,

 B.BowlerLastName;

822 Chapter 22 Partitioning Data into Windows

 ❖ Note I rounded the averages because that’s what a real bowling
league does. You need a rounded integer value to be able to calculate
the handicap. I had to include the rounded expression in each of the
ORDER BY clauses to get the correct answer. And if you look at the
code I had to use in Microsoft SQL Server, I also CAST the Handi-
CapScore column AS FLOAT because, if I don’t do that, the database
system returns a truncated, not rounded, average value.

That query would lead to results like the following table. (I saved this
request as CH22_Bowlers_Average_Score_Rankings in the Bowling
League Example database.)

BowlerID BowlerName Avg
Handicap

Rank Dense
Rank

Percent
Rank

15 Kathryn Patterson 198 1 1 0

6 Neil Patterson 198 1 1 0

27 William Thompson 198 1 1 0

19 John Viescas 198 1 1 0

25 Megan Patterson 197 5 2 0.129032258064516

3 John Kennedy 197 5 2 0.129032258064516

29 Bailey Hallmark 197 5 2 0.129032258064516

14 Gary Hallmark 197 5 2 0.129032258064516

2 David Fournier 196 9 3 0.258064516129032

31 Ben Clothier 196 9 3 0.258064516129032

11 Angel Kennedy 196 9 3 0.258064516129032

26 Mary Thompson 196 9 3 0.258064516129032

7 David Viescas 196 9 3 0.258064516129032

1 Barbara Fournier 196 9 3 0.258064516129032

24 Sarah Thompson 196 9 3 0.258064516129032

18 Michael Hernandez 195 16 4 0.483870967741936

10 Doug Steele 195 16 4 0.483870967741936

❖ Note I rounded the averages because that’s what a real bowling
league does. You need a rounded integer value to be able to calculate
the handicap. I had to include the rounded expression in each of the
ORDER BY clauses to get the correct answer. And if you look at the
code I had to use in Microsoft SQL Server, I also CAST the Handi-
CapScore column AS FLOAT because, if I don’t do that, the database
system returns a truncated, not rounded, average value.

 Ranking Data 823

BowlerID BowlerName Avg
Handicap

Rank Dense
Rank

Percent
Rank

12 Carol Viescas 195 16 4 0.483870967741936

9 Alastair Black 195 16 4 0.483870967741936

5 Ann Patterson 195 16 4 0.483870967741936

22 Alaina Hallmark 195 16 4 0.483870967741936

16 Richard Sheskey 194 22 5 0.67741935483871

20 Suzanne Viescas 194 22 5 0.67741935483871

28 Michael Viescas 194 22 5 0.67741935483871

23 Caleb Viescas 194 22 5 0.67741935483871

21 Zachary Ehrlich 194 22 5 0.67741935483871

4 Sara Sheskey 194 22 5 0.67741935483871

13 Elizabeth Hallmark 194 22 5 0.67741935483871

30 Rachel Patterson 194 22 5 0.67741935483871

32 Joe Rosales 193 30 6 0.935483870967742

8 Stephanie Viescas 193 30 6 0.935483870967742

17 Kendra Hernandez 193 30 6 0.935483870967742

You can see the difference between the values in the Rank and Dense-
Rank columns. The first four bowlers (Kathryn Patterson, Neil Patterson,
William Thompson, and John Viescas) all have the same highest aver-
age score (198), so they’re each ranked 1 by both functions. The next
four people (Megan Patterson, John Kennedy, Bailey Hallmark, and Gary
Hallmark) also have the same average score (197), so the values in the
Rank and DenseRank columns are the same for all of them as well.
Since four bowlers have been ranked before them, the RANK() function
returns a value of 5, one more than the number already ranked. How-
ever, there’s only one distinct value ahead of them (198), so the DENSE_
RANK() function returns a value of 2, one more than the number of
distinct values.

Ranking continues in this manner. The next seven bowlers (David
Fournier, Ben Clothier, Angel Kennedy, Mary Thompson, David Viescas,
Barbara Fournier, and Sarah Thompson) have the same average score
(196). Since eight bowlers have already been ranked ahead of them, the

824 Chapter 22 Partitioning Data into Windows

RANK() function returns 9 for each of them. However, there are only
two distinct values ahead of them (198 and 197), so the DENSE_RANK()
function returns 3. Finally, Joe Rosales, Stephanie Viescas, and Kendra
Hernandez all get a rank of 30 (because twenty-nine bowlers have
already been ranked ahead of them) and a dense rank of 6 (because
there are only five distinct values ahead of theirs)

Look, too, at the PercentRank column. Once again, since Kathryn
 Patterson, Neil Patterson, William Thompson, and John Viescas have
the highest average score, the PERCENT_RANK() function returns 0
for their rows. The next four bowlers (Megan Patterson, John Kennedy,
 Bailey Hallmark, and Gary Hallmark) are all ranked as 5, and there are
32 rows in the partition. As explained above, that means the PERCENT_
RANK function returns

))
)

((
()(

−
−

=
−
−

=
rk
nr

1
1

5 1
32 1

 0.129032258064516

Similarly, the next seven bowlers (David Fournier, Ben Clothier, Angel
Kennedy, Mary Thompson, David Viescas, Barbara Fournier, and Sarah
Thompson) are all ranked and 9, so the PERCENT_RANK function
returns

))
)

((
()(

−
−

=
−
−

=
rk
nr

1
1

9 1
32 1

 0.258064516129032

One thing that doesn’t show up in this example is the fact that, should
the last row represent a single individual, the PERCENT_RANK function
would return 1 for that row. Because Joe Rosales, Stephanie Viescas,
and Kendra Hernandez are tied for last place, the PERCENT_RANK func-
tion returns the same value for all three of them:

))
)

((
()(

−
−

=
−
−

=
rk
nr

1
1

30 1
32 1

 0.935483870967742

Splitting Data into Quintiles

You may remember that I showed you how to calculate quintiles in
Chapter 20, “Using Unlinked Data and ‘Driver’ Tables.” You may also
recall that you needed to CROSS JOIN two separate queries (one that
assigned a ranking number to each student who completed an English

 Splitting Data into Quintiles 825

course and one that counted all students who completed an English
course). That’s a lot of data retrieval that can be prevented through the
use of window functions! In fact, one of the aggregate functions intro-
duced along with window functions is NTILE, which lets you divide the
data into as many different ranges as you want.

“List all students who have completed English courses, rank them by
the grades they received, and indicate the Quintile into which they fall.”

Translation/
Clean Up

Select the SubjectID, StudFirstName, StudLastName, Subject-
Name, Grade, RANK() OVER ordered by Grade DESC and NTILE
(5) OVER ordered by Grade DESC from the Students table inner
joined with the Student_Schedules table on Students.StudentID
= Student_Schedules.StudentID inner joined with the Classes
table on Classes.ClassID = Student_Schedules.ClassID inner
joined with the Subjects table on Subjects.SubjectID = Classes.
SubjectID where ClassStatus = 2 and CategoryID = ’ENG’

SQL SELECT Su.SubjectID, St.StudFirstName,

 St.StudLastName,

 SS.ClassStatus,

 SS.Grade, Su.CategoryID,

 Su.SubjectName,

 RANK() OVER (ORDER BY Grade DESC) AS Rank,

 NTILE(5) OVER(ORDER BY Grade DESC) AS Quintile

FROM Subjects AS Su

 INNER JOIN Classes AS C

 ON C.SubjectID = S.SubjectID

 INNER JOIN Student_Schedules AS SS

 ON SS.ClassID = C.ClassID)

 INNER JOIN Students AS St

 ON St.StudentID = SS.StudentID

WHERE SS.ClassStatus = 2

 AND Su.CategoryID = 'ENG';

That query would lead to results like the following table. (I saved this
request as CH22_English_Students_Quintiles in the School Scheduling
Example database.)

826 Chapter 22 Partitioning Data into Windows

Subject
ID

Stud
FirstName

Stud
LastName

Subject
Name

Grade Rank Quintile

37 Scott Bishop Composition -
Fundamentals

98.07 1 1

37 Sara Sheskey Composition -
Fundamentals

97.59 2 1

37 John Kennedy Composition -
Fundamentals

93.01 3 1

37 Brannon Jones Composition -
Fundamentals

91.66 4 1

37 Janice Galvin Composition -
Fundamentals

91.44 5 2

38 Kendra Bonnicksen Composition -
Intermediate

88.91 6 2

37 George Chavez Composition -
Fundamentals

88.54 7 2

37 Marianne Wier Composition -
Fundamentals

87.4 8 2

37 David Hamilton Composition -
Fundamentals

86.33 9 3

37 Steve Pundt Composition -
Fundamentals

82.58 10 3

38 Doris Hartwig Composition -
Intermediate

81.66 11 3

37 Michael Viescas Composition -
Fundamentals

77.59 12 3

38 Elizabeth Hallmark Composition -
Intermediate

72.88 13 4

37 Karen Smith Composition -
Fundamentals

72.05 14 4

37 Betsy Stadick Composition -
Fundamentals

71.09 15 4

37 Kerry Patterson Composition -
Fundamentals

70 16 5

 Using Windows with Aggregate Functions 827

Subject
ID

Stud
FirstName

Stud
LastName

Subject
Name

Grade Rank Quintile

38 Sarah Thompson Composition -
Intermediate

67.6 17 5

38 Richard Lum Composition -
Intermediate

67.19 18 5

 ❖ Note The more astute of you might notice that the quintiles
returned are slightly different in this example from those returned by
the example in Chapter 20, CH20_English_Student_Quintiles.

The NTILE() function is used to distribute rows into a specified num-
ber of groups, When the number of rows is not divisible equally by
the number of groups, larger groups will come before smaller groups.
For instance, if you have 10 rows of data, NTILE(2) can divide the
rows into two equal size groups, but NTILE(3) will put 4 in the first
group, and 3 in each of the second and third groups. That’s what
happened in this case: there were 18 rows being divided into five
groups, so the groups were 4, 4, 4, 3 and 3. That’s different from the
algorithm used to distribute the rows among the five groups in the
CH20_English_Student_Quintiles.

One approach is not necessarily better or worse than the other.
If there had been twenty students, the quintiles would have been
the same.

Using Windows with Aggregate
Functions

As I already pointed out, you can use any of the Aggregate Functions I
showed you in Chapter 12 with the OVER() clause. You saw the full dia-
gram earlier as Figure 22–2. I’ve already shown the use of the COUNT(*)
function and SUM(COUNT(*)), but let’s take a quick look at it again in
conjunction with the ROWS and RANGE predicates.

Remember that both the ROWS and RANGE predicates limit the data
on which the aggregate function will work. Using the same ROWS
BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW predicate

❖ Note The more astute of you might notice that the quintiles
returned are slightly different in this example from those returned by
the example in Chapter 20, CH20_English_Student_Quintiles.

The NTILE() function is used to distribute rows into a specified num-
ber of groups, When the number of rows is not divisible equally by
the number of groups, larger groups will come before smaller groups.
For instance, if you have 10 rows of data, NTILE(2) can divide the
rows into two equal size groups, but NTILE(3) will put 4 in the first
group, and 3 in each of the second and third groups. That’s what
happened in this case: there were 18 rows being divided into five
groups, so the groups were 4, 4, 4, 3 and 3. That’s different from the
algorithm used to distribute the rows among the five groups in the
CH20_English_Student_Quintiles.

One approach is not necessarily better or worse than the other.
If there had been twenty students, the quintiles would have been
the same.

828 Chapter 22 Partitioning Data into Windows

in conjunction with the COUNT(*) function really doesn’t provide much.
It’ll let you count all the rows “in front” of the current row: in other
words, it’ll simply provide you with the same values as the ROW_
NUMBER() function you’ve already seen. Using RANGE BETWEEN
UNBOUNDED PRECEDING AND CURRENT ROW potentially is more
useful: it’ll give you a running total by range.

“Give a count of how many detail lines are associated with each order
placed. I want to see the order number, the product purchased and a
count of how many items are on the invoice. I’d also like to see how
many detail lines there are in total.”

Translation/
Clean Up

Select the OrderNumber, ProductName, COUNT(*) OVER
partition by OrderNumber, COUNT(*) OVER order by Order-
Number rows between unbounded preceding and current
row, COUNT(*) OVER order by OrderNumber ranges between
unbounded preceding and current row from the Orders table
inner joined with the Order_Details table on Order_Details.
OrderNumber = Orders.OrderNumber inner joined with the
Products table on Products.ProductNumber = OrderDetails.
ProductNumber

SQL SELECT O.OrderNumber AS OrderNo, P.ProductName,

 COUNT(*) OVER (

 PARTITION BY O.OrderNumber

) AS Total,

 COUNT(*) OVER (

 ORDER BY O.OrderNumber

 ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT
 ROW

) AS TotalUsingRows,

 COUNT(*) OVER (

 ORDER BY O.OrderNumber

 RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT
 ROW

) AS TotalUsingRange

FROM Orders AS O

 INNER JOIN Order_Details AS OD

 ON OD.OrderNumber = O.OrderNumber

 INNER JOIN Products AS P

 ON P.ProductNumber = OD.ProductNumber;

 Using Windows with Aggregate Functions 829

That query would lead to results like the following table. (I saved this
request as CH22_Order_Counts_ByInvoice_ROWS_RANGE in the Sales
Orders Example database.)

OrderNo ProductName Total Total
UsingRows

Total
UsingRange

1 Trek 9000 Mountain Bike 7 1 7

1 Viscount Mountain Bike 7 2 7

1 GT RTS-2 Mountain Bike 7 3 7

1 ProFormance ATB All-
Terrain Pedal

7 4 7

1 Dog Ear Aero-Flow Floor
Pump

7 5 7

1 Glide-O-Matic Cycling
Helmet

7 6 7

1 Ultimate Export 2G Car
Rack

7 7 7

2 X-Pro All Weather Tires 2 8 9

2 Ultimate Export 2G Car
Rack

2 9 9

3 Trek 9000 Mountain Bike 8 10 17

3 Viscount Mountain Bike 8 11 17

<< more rows here >>

You can see that there are seven separate products associated with
order 1, so the Total column contains 7 for each of the rows. Similarly,
the two separate rows associated with order 2 both have 2 for Total
associated with them. (Only part of order 3 is shown, but you can see
that the two rows that are shown both have the same value associated
with them as well.)

As mentioned, the TotalUsingRows column is simply consecutive num-
bers, the same as the ROW_NUMBER() function would provide.

Finally, the TotalUsingRange column shows the total number of prod-
ucts by order. In other words, it shows 7 for all seven rows in order 1,
then 9 for both rows in order 2 (corresponding to the seven rows from
order 1 plus the two rows from order 2). You can see that the Total

830 Chapter 22 Partitioning Data into Windows

column indicates that there are eight rows in order 3, so the Total-
UsingRange column contains 17 (7 + 2 + 8) for the rows associated with
order 3.

Of course, other aggregate functions can be useful. For instance, per-
haps you want to see the details of all the orders your customers have
placed, and you’d like to see the Order total associated with each.

“List all orders placed, including the customer name, the order number,
the product name, the quantity ordered, the quoted price and the total
price per order.”

Translation/
Clean Up

Select the CustFirstName || ' ' ||, CustLastName, Order-
Number, ProductName, QuantityOrdered, QuotedPrice, and
SUM(QuotedPrice) OVER partition by OrderNumber from
the Orders table inner joined with the Order_Details table
on Order_Details.OrderNumber = Orders.OrderNumber inner
joined with the Customers table on Customers.CustomerID =
Orders.CustomerID inner joined with the Products table on
Products.ProductNumber = OrderDetails.ProductNumber

SQL SELECT C.CustFirstName || ' ' || C.CustLastName

 AS Customer,

 O.OrderNumber AS Order, P.ProductName,

 OD.QuantityOrdered AS Quantity,

 OD.QuotedPrice AS Price,

 SUM(OD.QuotedPrice) OVER (

 PARTITION BY O.OrderNumber

) AS OrderTotal

FROM Orders AS O

 INNER JOIN Order_Details AS OD

 ON OD.OrderNumber = O.OrderNumber

 INNER JOIN Customers AS C

 ON C.CustomerID = O.CustomerID

 INNER JOIN Products AS P

 ON P.ProductNumber = OD.ProductNumber;

That query would lead to results like the following table. (I saved this
request as CH22_Order_Totals_ByInvoice in the Sales Orders Example
database.)

 Using Windows with Aggregate Functions 831

Customer Order ProductName Quantity Price OrderTotal

David Smith 1 Trek 9000 Mountain Bike 2 1200.00 3863.85

David Smith 1 Viscount Mountain Bike 3 635.00 3863.85

David Smith 1 GT RTS-2 Mountain Bike 4 1650.00 3863.85

David Smith 1 ProFormance ATB
All-Terrain Pedal

1 28.00 3863.85

David Smith 1 Dog Ear Aero-Flow Floor Pump 3 55.00 3863.85

David Smith 1 Glide-O-Matic Cycling Helmet 5 121.25 3863.85

David Smith 1 Ultimate Export 2G Car Rack 6 174.60 3863.85

Suzanne
Viescas

2 X-Pro All Weather Tires 4 24.00 204.00

Suzanne
Viescas

2 Ultimate Export 2G Car Rack 4 180.00 204.00

William
Thompson

3 Trek 9000 Mountain Bike 5 1164.00 3824.29

William
Thompson

3 Viscount Mountain Bike 5 615.95 3824.29

<< more rows here >>

You can see that the seven separate rows associated with order 1 all
have the same OrderTotal associated with them, while the two separate
rows associated with order 2 all have the same OrderTotal associated
with them. (Only part of order 3 is shown, but you can see that the two
rows that are shown both have the same value associated with them as
well.)

Let’s look at one more example of using the ROWS predicate. (Although I
can’t see a legitimate use for this example, hopefully, it’ll give you a little
more insight into how the ROWS predicate works!)

“List all engagements booked, showing the customer, the start date,
the contract price and the sum of the current row plus the row before
and after. Also, show the sum of the current row plus the row before
and after partitioned by customer.”

832 Chapter 22 Partitioning Data into Windows

Translation/
Clean Up

Select the CustFirstName || ' ' ||, CustLastName, StartDate, Con-
tractPrice, SUM(ContractPrice) OVER order by CustLastName,
CustFirstName rows between 1 preceding and 1 following and
 SUM(ContractPrice) OVER partition by CustLastName, CustFirst-
Name order by CustLastName, CustFirstName rows between 1 pre-
ceding and 1 following from the Engagements table inner joined with
the Customers table on Customers.CustomerID = Engagements.Custo-
merID = Orders.CustomerID

SQL SELECT C.CustFirstName || ' ' || C.CustLastName AS Customer,

 E.StartDate, E.ContractPrice,

 SUM(E.ContractPrice) OVER (

 ORDER BY C.CustLastName, C.CustFirstName

 ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING

) AS SumOf3,

 SUM(E.ContractPrice) OVER (

 PARTITION BY C.CustLastName, C.CustFirstName

 ORDER BY C.CustLastName, C.CustFirstName

 ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING

) AS PartitionedSumOf3

FROM Engagements AS E

 INNER JOIN Customers AS C

 ON C.CustomerID = E.CustomerID;

That query would lead to results like the following table. (I saved this
request as CH22_Odd_Contract_Sums in the Entertainment Agency
Example database.)

Customer StartDate ContractPrice SumOf3 PartitionedSumOf3

Matt Berg 2017-09-02 200.00 1330.00 1330.00

Matt Berg 2017-09-12 1130.00 3180.00 3180.00

Matt Berg 2017-09-19 1850.00 5655.00 5655.00

Matt Berg 2017-10-14 2675.00 6450.00 6450.00

Matt Berg 2017-10-23 1925.00 6150.00 6150.00

Matt Berg 2017-12-31 1550.00 3795.00 3795.00

Matt Berg 2018-01-09 320.00 3540.00 3540.00

 Using Windows with Aggregate Functions 833

Customer StartDate ContractPrice SumOf3 PartitionedSumOf3

Matt Berg 2018-02-12 1670.00 3840.00 3840.00

Matt Berg 2018-02-24 1850.00 4320.00 3520.00

Peter Brehm 2018-02-17 800.00 2940.00 1090.00

Peter Brehm 2018-01-07 290.00 1860.00 1860.00

Peter Brehm 2018-01-30 770.00 1380.00 1380.00

Peter Brehm 2018-02-27 320.00 1590.00 1590.00

Peter Brehm 2017-12-10 500.00 4620.00 4620.00

Peter Brehm 2017-10-07 3800.00 5070.00 5070.00

Peter Brehm 2017-09-18 770.00 6120.00 4570.00

Zachary Ehrlich 2017-10-03 1550.00 3690.00 2920.00

Zachary Ehrlich 2017-09-19 1370.00 4170.00 4170.00

Zachary Ehrlich 2017-10-08 1250.00 3030.00 3030.00

<< more rows here >>

The column labeled SumOf3 represents the sum of the ContractPrice for
the current row, plus the ContractPrice on the previous row and the fol-
lowing row. Look at the first row, where it’s 1330.00. There is no previous
row, the ContractPrice on that row is 200.00, and the ContractPrice on
the next row is 1130.00, so the sum is indeed 1330.00. For the second
row, the ContractPrice on the previous row is 200.00, the ContractPrice
on the current row is 1130.00, and the ContractPrice on the following
row is 1850.00, so the value in the SumOf3 column is 200.00 + 1130.00 +
1850.00, or 3180.00. Look down to the tenth row (the first row for Peter
Brehm). Even though it’s for a different customer, there is a previous row
(remember, I only specified ORDER BY, not PARTITION BY!), with a Con-
tractPrice of 1850.00. The ContractPrice on the current row is 800.00,
and on the next row it is 290.00, so the SumOf3 value for that row is
1850.00 + 800.00 + 290.00, or 2940.00.

The first eight rows are all for the same customer (Matt Berg), so there’s
no difference between the value in the SumOf3 and the Partitioned-
SumOf3 columns. However, the ninth row is the last row for Matt, so there
isn’t a following row. That means that the value in PartitionedSumOf3 is

834 Chapter 22 Partitioning Data into Windows

simply the value of the ContractPrice on the previous row (1670.00) plus
the value of the ContractPrice on the current row (1850.00), or 3520.00.
Now, there’s no previous row for the tenth row (the first row for Peter
Brehm), so the PartitionedSumOf3 is the value of the ContractPrice for the
current row (800.00) plus the value of the ContractPrice for the following
row (290.00), or 1090.00.

Sample Statements

You now know the mechanics of constructing queries using window
functions and have seen some of the types of requests you can answer
with window functions. Let’s take a look at a fairly robust set of samples,
all of which use one or more window functions. These examples come
from each of the sample databases, and they illustrate the use of the
window functions.

 ❖ Note Remember in the Introduction that I warned you that results
from each database system won’t necessarily match the sort order you
see in examples in this book unless you include an ORDER BY clause.
Even when you include that specification, the system might return
results in columns not included in the ORDER BY clause in a different
sequence because of different optimization techniques.

If you’re running the examples in Microsoft SQL Server, simply select-
ing the rows from the view does not honor any ORDER BY clause
specified in the view. You must open the design of the view and exe-
cute it from there to see the ORDER BY clause honored.

Also, when you use GROUP BY, you’ll often see the results returned by
your database system as though the rows are sorted by the columns
you specified. This happens because some optimizers first sort the
data internally to make it faster to process your GROUP BY. Keep in
mind that if you want a specific sort order, you must also include an
ORDER BY clause.

I’ve also included sample result sets that would be returned by these
operations and placed them immediately after the SQL syntax line. The
name that appears immediately above a result set is the name I gave
each query in the sample data on the companion website for this book,

❖ Note Remember in the Introduction that I warned you that results
from each database system won’t necessarily match the sort order you
see in examples in this book unless you include an ORDER BY clause.
Even when you include that specification, the system might return
results in columns not included in the ORDER BY clause in a different
sequence because of different optimization techniques.

If you’re running the examples in Microsoft SQL Server, simply select-
ing the rows from the view does not honor any ORDER BY clause
specified in the view. You must open the design of the view and exe-
cute it from there to see the ORDER BY clause honored.

Also, when you use GROUP BY, you’ll often see the results returned by
your database system as though the rows are sorted by the columns
you specified. This happens because some optimizers first sort the
data internally to make it faster to process your GROUP BY. Keep in
mind that if you want a specific sort order, you must also include an
ORDER BY clause.

 Sample Statements 835

www.informit.com/title/9780134858333. I stored each query in the
appropriate sample database (as indicated within the example), and I
prefixed the names of the queries relevant to this chapter with “CH22.”
You can follow the instructions in the Introduction of this book to load
the samples onto your computer and try them.

 ❖ Note Remember that all the column names and table names used in
these examples are drawn from the sample database structures shown
in Appendix B, “Schema for the Sample Databases.” Because many of
these examples use complex JOINs, your database system might choose
a different way to solve these queries. For this reason, the first few rows
might not exactly match the result you obtain, but the total number of
rows should be the same. To simplify the process, I have combined the
Translation and Clean Up steps for all the following examples.

Examples Using ROW_NUMBER

Entertainment Agency Database

“I’d like a list of all of the engagements. Show me the start date for
each engagement, the name of the customer, and the entertainer. Num-
ber the engagements overall, plus number the engagements within
each start date.”

Translation/
Clean Up

Select the StartDate, CustFirstName || ' ' || CustLast-
Name AS Customer, EntStartName AS Entertaine, the
ROW_NUMBER() ordered by StartDate AS Number and the
ROW_NUMBER() partitioned by StartDate and ordered by
StartDate AS NumberByDate from the Engagements table
inner joined with the Entertainers table on Entertainers.
EntertainerID = Engagements.EntertainerID inner joined
with the Customers table on Customers.CustomerID =
Engagements.CustomerID

SQL SELECT ROW_NUMBER() OVER (

 ORDER BY Engagements.StartDate

) AS Number,

 Engagements.StartDate,

❖ Note Remember that all the column names and table names used in
these examples are drawn from the sample database structures shown
in Appendix B, “Schema for the Sample Databases.” Because many of
these examples use complex JOINs, your database system might choose
a different way to solve these queries. For this reason, the first few rows
might not exactly match the result you obtain, but the total number of
rows should be the same. To simplify the process, I have combined the
Translation and Clean Up steps for all the following examples.

http://www.informit.com/title/9780134858333

836 Chapter 22 Partitioning Data into Windows

 ROW_NUMBER() OVER (

 PARTITION BY Engagements.StartDate

 ORDER BY Engagements.StartDate

) AS NumberByDate,

 Customers.CustFirstName || ' ' ||

 Customers.CustLastName AS Customer,

 Entertainers.EntStageName AS Entertainer

FROM Engagements

 INNER JOIN Entertainers

 ON Entertainers.EntertainerID =

 Engagements.EntertainerID

 INNER JOIN Customers

 ON Customers.CustomerID =

 Engagements.CustomerID;

CH22_Engagements_Numbered (111 rows)

Number StartDate Number
ByDate

Customer Entertainer

1 2017-09-02 1 Matt Berg Jim Glynn

2 2017-09-11 1 Doris Hartwig Jazz Persuasion

3 2017-09-11 2 Mark Rosales Country Feeling

4 2017-09-12 1 Dean McCrae Topazz

5 2017-09-12 2 Liz Keyser Jim Glynn

6 2017-09-12 3 Matt Berg JV & the Deep Six

7 2017-09-16 1 Elizabeth
Hallmark

Country Feeling

8 2017-09-18 1 Elizabeth
Hallmark

JV & the Deep Six

9 2017-09-18 2 Peter Brehm Modern Dance

10 2017-09-19 1 Matt Berg Coldwater Cattle Company

11 2017-09-19 2 Zachary Ehrlich Saturday Revue

12 2017-09-19 3 Mark Rosales Carol Peacock Trio

13 2017-09-25 1 Doris Hartwig Country Feeling

 Sample Statements 837

Number StartDate Number
ByDate

Customer Entertainer

14 2017-09-25 2 Liz Keyser Caroline Coie Cuartet

15 2017-09-30 1 Deb Waldal Saturday Revue

16 2017-09-30 2 Sarah Thompson Jim Glynn

<< more rows here >>

110 2018-02-27 1 Peter Brehm Julia Schnebly

111 2018-03-04 1 Mark Rosales JV & the Deep Six

Recipes Database

“I’d like a numbered list of all of the recipes. Number the recipes over-
all, plus number each recipe within its recipe class. Sort the lists
alphabetically by recipe name within recipe class. Don’t forget to
include any recipe classes that don’t have any recipes in them.”

Translation/
Clean Up

Select the RecipeClassDescription, the RecipeTitle, the
ROW_NUMBER() ordered by RecipeClassDescription,
RecipeTitle AS OverallNumber and the ROW_NUMBER()
partitioned by RecipeClassDescription and ordered by
RecipeTitle AS ClassNumber from the Recipe_Classes table
inner joined with the Recipes table on Recipes.RecipeClass
ID = Recipe_Classes.RecipeClassID

SQL SELECT ROW_NUMBER() OVER (

 ORDER BY RC.RecipeClassDescription,
R.RecipeTitle

) AS OverallNumber,

 RC.RecipeClassDescription,

 ROW_NUMBER() OVER (

 PARTITION BY RC.RecipeClassDescription

 ORDER BY R.RecipeTitle

) AS NumberInClass,

 R.RecipeTitle

FROM Recipe_Classes AS RC

 LEFT JOIN Recipes AS R

 ON R.RecipeClassID = RC.RecipeClassID;

838 Chapter 22 Partitioning Data into Windows

CH22_Recipe_Classes_Numbered (16 rows)

Overall
Number

RecipeClass
Description

Number
InClass

RecipeTitle

1 Dessert 1 Coupe Colonel

2 Dessert 2 Trifle

3 Hors d’oeuvres 1 Machos Nachos

4 Hors d’oeuvres 2 Salsa Buena

5 Main course 1 Fettuccini Alfredo

6 Main course 2 Huachinango Veracruzana
(Red Snapper, Veracruz style)

7 Main course 3 Irish Stew

8 Main course 4 Pollo Picoso

9 Main course 5 Roast Beef

10 Main course 6 Salmon Filets in Parchment Paper

11 Main course 7 Tourtière (French-Canadian Pork Pie)

12 Salad 1 Mike’s Summer Salad

13 Soup 1 NULL

14 Starch 1 Yorkshire Pudding

15 Vegetable 1 Asparagus

16 Vegetable 2 Garlic Green Beans

Examples Using RANK, DENSE_RANK, and
PERCENT_RANK

Sales Orders Database

“Rank all employees by the number of orders with which they’re
associated.”

Translation/
Clean Up

Select the EmployeeID, EmpFirstName || ' ' || EmpLastName
AS EmployeeName, COUNT(DISTINCT OrderNumber) AS
OrdersReceived and RANK() OVER ordered by COUNT(DIS-
TINCT OrderNumber DESC from the Employees table inner
joined with the Orders table ON Orders.EmployeeID = Employ-
ees.EmployeeID inner joined with the Order_Details table on
OrderDetails.OrderNumber = Orders.OrderNumber, grouped by
EmployeeID, EmpFirstName and EmpLastName

 Sample Statements 839

SQL SE LECT E.EmployeeID, E.EmpFirstName || ' ' ||

 E.EmpLastName AS Employee,

 COUNT(DISTINCT O.OrderNumber) AS OrdersReceived,

 RANK() OVER (

 ORDER BY COUNT(DISTINCT O.OrderNumber) DESC

) AS Rank

FROM Employees AS E

 INNER JOIN Orders AS O

 ON O.EmployeeID = E.EmployeeID

 INNER JOIN Order_Details AS OD

 ON OD.OrderNumber = O.OrderNumber

GROUP BY E.EmployeeID, E.EmpFirstName,

 E.EmpLastName;

CH22_Employee_Sales_Ranked (8 rows)

EmployeeID Employee OrdersReceived Rank

707 Kathryn Patterson 138 1

708 Susan McLain 129 2

702 Mary Thompson 117 3

704 Carol Viescas 117 3

705 Kirk DeGrasse 115 5

701 Ann Patterson 109 6

706 David Viescas 104 7

703 Matt Berg 104 7

If you’re wondering why I included the Order_Details table in the above
SQL, the answer is that I know there are some rows in the Orders table
that do not have any matching rows in the Order_Details table. I don’t
want to include orders that have no items specified, so including the
Order_Details in an INNER JOIN with the Orders table eliminates those
“empty” orders.

840 Chapter 22 Partitioning Data into Windows

School Scheduling Database

“Rank the staff by how long they’ve been with us as of January 1,
2018. I don’t want to see any gaps in the rank numbers.”

(Remember that I showed you how to calculate the years of service in
CH19_Length_Of_Service)

Translation/
Clean Up

Select the StaffID, StfFirstName || ' ' || StfLastName
AS StaffName, LengthOfService, and DENSE_
RANK() OVER ordered by LengthOfService DESC from
table Staff

SQL SELECT StaffID, StfFirstName || ' ' || StfLastname

 AS StaffName,

 YEAR(CAST('2018-01-01' As Date)) -

 YEAR(DateHired) -

 (CASE WHEN Month(DateHired) < 10

 THEN 0

 WHEN Month(DateHired) > 10

 THEN 1

 WHEN Day(DateHired) > 1

 THEN 1

 ELSE 0 END

) AS LengthOfService,

 DENSE_RANK() OVER (ORDER BY YEAR

 (CAST('2018-01-01' As Date)) - YEAR(DateHired) -

 (CASE WHEN Month(DateHired) < 10

 THEN 0

 WHEN Month(DateHired) > 10

 THEN 1

 WHEN Day(DateHired) > 1

 THEN 1

 ELSE 0 END

) DESC) AS Rank

FROM Staff;

 Sample Statements 841

CH22_Staff_Service_Ranked (27 rows)

StaffID StaffName LengthOfService Rank

98036 Sam Abolrous 27 1

98062 Caroline Coie 27 1

98025 Carol Viescas 26 2

98028 Alaina Hallmark 26 2

98010 Jeffrey Smith 26 2

98011 Ann Patterson 26 2

98007 Gary Hallmark 25 3

98020 Jim Glynn 25 3

98043 Kathryn Patterson 25 3

98052 Katherine Ehrlich 25 3

98013 Deb Waldal 24 4

98014 Peter Brehm 24 4

98005 Suzanne Viescas 24 4

98048 Joyce Bonnicksen 24 4

98059 Maria Patterson 24 4

98040 Jim Wilson 23 5

98030 Liz Keyser 22 6

98063 Kirk DeGrasse 22 6

98064 Luke Patterson 21 7

98055 Alastair Black 21 7

98057 Joe Rosales III 21 7

98012 Robert Brown 21 7

98021 Tim Smith 21 7

98019 Mariya Sergienko 20 8

98045 Michael Hernandez 20 8

98053 Caleb Viescas 18 9

98042 David Smith 18 9

842 Chapter 22 Partitioning Data into Windows

Examples Using NTILE

Bowling League Database

“Rank all the teams from best to worst based on the average handicap
score of all the players. Arrange the teams into four quartiles.”

Translation/
Clean Up

Select the TeamName, AVG(HandiCapScore) and NTILE(4)
OVER ordered by AVG(HandiCapScore) DESC from the
Teams table inner joined with the Bowlers table ON Bowl-
ers.TeamID = Teams.TeamID inner joined with the Bowler_
Scores table on BowlerScores.BowlerID = Bowlers.BowerID,
grouped by TeamName

SQL SELECT Teams.TeamName,

 ROUND(AVG(Bowler_Scores.HandiCapScore), 0)

 AS AvgTeamHandicap,

 NTILE(4) OVER (

 ORDER BY ROUND(AVG(Bowler_Scores.HandiCap-
Score), 0)

 DESC) AS Quartile

FROM Teams INNER JOIN Bowlers

 ON Bowlers.TeamID = Teams.TeamID

 INNER JOIN Bowler_Scores

 ON Bowler_Scores.BowlerID = Bowlers.BowlerID

GROUP BY Teams.TeamName;

CH22_Teams_In_Quartiles (8 rows)

TeamName AvgTeamHandicap Quartile

Marlins 196 1

Barracudas 196 1

Manatees 196 2

Swordfish 195 2

Orcas 195 3

Dolphins 195 3

Sharks 195 4

Terrapins 195 4

 Sample Statements 843

I bet you’re wondering what’s going on here. Because there’s so lit-
tle difference between the team handicaps, the database system sorts
the teams by average handicap and then applies the value 1 to the first
two rows, 2 to the second two rows, 3 to the fifth and sixth rows, and 4
to the remaining ones. In fact, the sorting within an equal is arbitrary
and can vary from system to system. If you run both the Microsoft SQL
Server and PostgreSQL examples, you’ll find that the choice of “top two”
is entirely different.

Entertainment Agency Database

“Rank all the entertainers based on the number of engagements booked
for each. Arrange the entertainers into three groups. Remember to include
any entertainers who haven't been booked for any engagements.”

Translation/
Clean Up

Select the EntStageName, COUNT(Engagements.Enter-
tainerID), and NTILE(3) OVER ordered by COUNT(Engage-
ments.EntertainerID) DESC from the Entertainers table
left joined with the Engagements table ON Engagements.
EntertainerID = Entertainers.EntertainerID, grouped by
EntStageName

SQL SELECT Entertainers.EntStageName AS Entertainer,

 COUNT(Engagements.EntertainerID) AS Gigs,

 NTILE(3) OVER (

 ORDER BY COUNT(Engagements.EntertainerID) DESC

) AS [Group]

FROM Entertainers

 LEFT JOIN Engagements

 ON Engagements.EntertainerID = Entertainers.

 EntertainerID

GROUP BY Entertainers.EntStageName;

CH22_Entertainer_3_Groups (13 rows)

Entertainer Gigs Group

Country Feeling 15 1

Carol Peacock Trio 11 1

Caroline Coie Cuartet 11 1

JV & the Deep Six 10 1

844 Chapter 22 Partitioning Data into Windows

Entertainer Gigs Group

Modern Dance 10 1

Saturday Revue 9 2

Jim Glynn 9 2

Julia Schnebly 8 2

Coldwater Cattle Company 8 2

Jazz Persuasion 7 3

Topazz 7 3

Susan McLain 6 3

Katherine Ehrlich 0 3

Examples Using Aggregate Functions

Bowling League Database

“For each team, show me the details of all of the games bowled by the
team captains. Include the date and location for each tournament, their
handicap score, whether or not they won the game. Include counts for
how many games they won and their average handicap score.”

Translation/
Clean Up

Select the TeamName, BowlerFirstName || ' ' || BowlerLast-
Name AS Captain, TourneyDate, TourneyLocation, Handi-
CapScore, CASE WonGame WHEN 1 THEN ‘Won’ ELSE ‘Lost’
END As WonGame, SUM(CAST(WonGame AS INT) OVER
partitioned by TeamName AS TotalWindws, AVG(HandiCap-
Score) OVER (partitioned by TeamName) AS AvgHandicap
from table Teams inner joined with the Bowlers table ON
Bowler.BowlerID = Teams.CaptainID inner joined with the
Bowler_Scores table on Bowler_Scores.BowlerID = Teams.
CaptainID inner joined with the Match_Games table on
MatchGames.MatchID = Bowler_Scores.MatchID and Match-
Games.GameNumber = Bowler_Scores.GameNumber inner
joined with the Tourney_Matches table on Tourney_Matches.
MatchID = Match_Games.MatchID inner joined with the
Tournaments table on Tournaments.TourneyID = Tourney_
Matches.TourneyID

 Sample Statements 845

SQL SELECT Teams.TeamName,

 B.BowlerFirstName || ' ' || B.BowlerLastName

 AS Captain,

 T.TourneyDate, T.TourneyLocation,

 BS.HandiCapScore,

 CASE BS.WonGame

 WHEN 1 THEN 'Won'

 ELSE 'Lost'

 END AS WonGame,

 SUM(CAST(BS.WonGame AS INT)) OVER (

 PARTITION BY Teams.TeamName

) AS TotalWins,

 AVG(BS.HandiCapScore) OVER (

 PARTITION BY Teams.TeamName

) AS AvgHandicap

FROM Teams

 INNER JOIN Bowlers AS B

 ON B.BowlerID = Teams.CaptainID

 INNER JOIN Bowler_Scores AS BS

 ON BS.BowlerID = B.BowlerID

 INNER JOIN Match_Games AS MG

 ON MG.MatchID = BS.MatchID

 AND MG.GameNumber = BS.GameNumber

 INNER JOIN Tourney_Matches AS TM

 ON TM.MatchID = MG.MatchID

 INNER JOIN Tournaments AS T

 ON T.TourneyID = TM.TourneyID;

CH22_Comparing_Team_Captains (420 rows)

TeamName Captain Tourney
Date

Tourney
Location

HandiCap
Score

Won
Game

Total
Wins

Avg
Handicap

Barracudas Richard
Sheskey

2017-09-04 Red Rooster
Lanes

195 Won 25 194

Barracudas Richard
Sheskey

2017-09-04 Red Rooster
Lanes

191 Lost 25 194

Barracudas Richard
Sheskey

2017-09-04 Red Rooster
Lanes

195 Won 25 194

846 Chapter 22 Partitioning Data into Windows

TeamName Captain Tourney
Date

Tourney
Location

HandiCap
Score

Won
Game

Total
Wins

Avg
Handicap

Barracudas Richard
Sheskey

2017-09-11 Thunderbird
Lanes

201 Won 25 194

Barracudas Richard
Sheskey

2017-09-11 Thunderbird
Lanes

201 Won 25 194

Barracudas Richard
Sheskey

2017-09-11 Thunderbird
Lanes

188 Won 25 194

Barracudas Richard
Sheskey

2017-09-18 Bolero Lanes 196 Won 25 194

Barracudas Richard
Sheskey

2017-09-18 Bolero Lanes 189 Lost 25 194

Barracudas Richard
Sheskey

2017-09-18 Bolero Lanes 193 Won 25 194

Barracudas Richard
Sheskey

2017-09-25 Imperial
Lanes

190 Lost 25 194

Barracudas Richard
Sheskey

2017-09-25 Imperial
Lanes

188 Lost 25 194

Barracudas Richard
Sheskey

2017-09-25 Imperial
Lanes

198 Won 25 194

Barracudas Richard
Sheskey

2017-10-02 Sports World
Lanes

195 Lost 25 194

Barracudas Richard
Sheskey

2017-10-02 Sports World
Lanes

189 Won 25 194

Barracudas Richard
Sheskey

2017-10-02 Sports World
Lanes

190 Lost 25 194

Barracudas Richard
Sheskey

2017-10-09 Totem Lanes 191 Lost 25 194

Barracudas Richard
Sheskey

2017-10-09 Totem Lanes 200 Won 25 194

Barracudas Richard
Sheskey

2017-10-09 Totem Lanes 191 Lost 25 194

Barracudas Richard
Sheskey

2017-10-16 Acapulco
Lanes

190 Won 25 194

Barracudas Richard
Sheskey

2017-10-16 Acapulco
Lanes

200 Won 25 194

Barracudas Richard
Sheskey

2017-10-16 Acapulco
Lanes

187 Lost 25 194

<< more rows here >>

 Sample Statements 847

 ❖ Note I could have just as easily partitioned by BowlerFirstName,
BowlerLastName rather than by TeamName, but I feel it’s usually a
good idea not to group (or partition) by people names, since they’re
often not unique. Other possibilities would have been BowlerID or
CaptainID.

Sales Orders Database

I’ll confess that this is yet another somewhat artificial example of using
ROWS to try and give you another example of how it works.

“For each order, give me a list of the customer, the product, and the
quantity ordered. Give me the total quantity of products for each order.
As well, for every group of three products on the invoice, show me their
total and the highest and lowest value.”

Translation/
Clean Up

Select the CustFirstName || ' ' || CustLastName, Order-
Number, ProductName, QuantityOrders, SUM(Quantity-
Ordered) OVER (partitioned by OrderNumber) AS
TotalQuantity, SUM(QuantityOrdered) OVER (partitioned by
OrderNumber ordered by OrderNumber ROWS BETWEEN 1
PRECEDING AND 1 FOLLOWING) AS Quantity3, MIN(Quan-
tityOrdered) OVER (partitioned by OrderNumber ordered
by OrderNumber ROWS BETWEEN 1 PRECEDING AND
1 FOLLOWING) AS Minimum3, MAX(QuantityOrdered)
OVER (partitioned by OrderNumber ordered by OrderNum-
ber ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING)
AS Maximum3 from the Orders table inner joined with the
Order_Details table ON Order_Details.OrderNumber = Orders.
OrderNumber inner joined with the Customers table on
Customers.CustomerID = Orders.CustomerID inner joined
with the Products table on Products.ProductNumber = Order_
Details.ProductNumber

SQL SELECT O.OrderNumber,

 C.CustFirstName || ' ' || C.CustLastName AS
Customer,

 O.OrderNumber,

 P.ProductName,

 OD.QuantityOrdered,

 SUM(OD.QuantityOrdered) OVER (

 PARTITION BY O.OrderNumber

) AS TotalQuantity,

❖ Note I could have just as easily partitioned by BowlerFirstName,
BowlerLastName rather than by TeamName, but I feel it’s usually a
good idea not to group (or partition) by people names, since they’re
often not unique. Other possibilities would have been BowlerID or
CaptainID.

848 Chapter 22 Partitioning Data into Windows

 SUM(OD.QuantityOrdered) OVER (

 PARTITION BY O.OrderNumber

 ORDER BY O.OrderNumber

 ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING

) AS Quantity3,

 MIN(OD.QuantityOrdered) OVER (

 PARTITION BY O.OrderNumber

 ORDER BY O.OrderNumber

 ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING

) AS Minimum3,

 MAX(OD.QuantityOrdered) OVER (

 PARTITION BY O.OrderNumber

 ORDER BY O.OrderNumber

 ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING

) AS Maximum3

FROM Orders AS O

 INNER JOIN Order_Details AS OD

 ON OD.OrderNumber = O.OrderNumber

 INNER JOIN Customers AS C

 ON C.CustomerID = O.CustomerID

 INNER JOIN Products AS P

 ON P.ProductNumber = OD.ProductNumber;

CH22_Orders_Min_Max (3973 rows)

Order
Number

Customer Product
Name

Quantity
Ordered

Total
Quantity

Quantity3 Minimum3 Maximum3

1 David
Smith

Trek 9000
Mountain Bike

2 24 5 2 3

1 David
Smith

Viscount
Mountain Bike

3 24 9 2 4

1 David
Smith

GT RTS-2
Mountain Bike

4 24 8 1 4

1 David
Smith

ProFormance
ATB All- Terrain
Pedal

1 24 8 1 4

 Sample Statements 849

Order
Number

Customer Product
Name

Quantity
Ordered

Total
Quantity

Quantity3 Minimum3 Maximum3

1 David
Smith

Dog Ear
 Aero-Flow Floor
Pump

3 24 9 1 5

1 David
Smith

Glide-O-Matic
Cycling Helmet

5 24 14 3 6

1 David
Smith

Ultimate
Export 2G Car
Rack

6 24 11 5 6

2 Suzanne
Viescas

X-Pro All
Weather Tires

4 8 8 4 4

2 Suzanne
Viescas

Ultimate
Export 2G Car
Rack

4 8 8 4 4

3 William
Thompson

Trek 9000
Mountain Bike

5 28 10 5 5

3 William
Thompson

Viscount
Mountain Bike

5 28 11 1 5

3 William
Thompson

GT RTS-2
Mountain Bike

1 28 8 1 5

3 William
Thompson

ProFormance
ATB All- Terrain
Pedal

2 28 6 1 3

3 William
Thompson

Dog Ear
 Aero-Flow Floor
Pump

3 28 8 2 3

3 William
Thompson

Glide-O-Matic
Cycling Helmet

3 28 11 3 5

3 William
Thompson

True Grip Com-
petition Gloves

5 28 12 3 5

3 William
Thompson

Cosmic Elite
Road Warrior
Wheels

4 28 9 4 5

4 Andrew
Cencini

Trek 9000
Mountain Bike

4 19 7 3 4

<< more rows here >>

850 Chapter 22 Partitioning Data into Windows

The QuantityOrdered column is hopefully straightforward to under-
stand. The first order (number 1, ordered by David Smith) consisted of
seven products. David ordered 2 Trek 9000 Mountain Bikes, 3 Viscount
Mountain Bikes, 4 GT RTS-2 Mountain Bikes, 1 ProFormance ATB
All-Terrain Pedal, 3 Dog Ear Aero-Flow Floor Pumps, 5 Glide-O-Matic
Cycling Helmets, and 6 Ultimate Export 2G Car Racks, for a total of 24
items. The second order (number 2, ordered by Suzanne Viescas) con-
sisted of 4 X-Pro All Weather Tires and 4 Ultimate Export 2G Car Racks
for a total of 8 items. That’s pretty standard.

The other three columns are the off-beat ones. I asked for the products
on each invoice to be divided into groups of three, and for the sum, the
minimum and the maximum of each of those groups. Remember how
ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING works. Because
I’m partitioning on Order, there is no preceding row for the first product
on the first order (Trek 9000 Mountain Bike), so only the current row
(with a quantity of 2) and the following row (with a quantity of 3) are
considered. The total of those quantities is 5, the minimum is 2, and the
maximum is 3. The next row (Viscount Mountain Bike) does have a pre-
ceding row, so there are three quantities to be considered: 2 (the preced-
ing row), 3 (the current row), and 4 (the following row). The sum of those
quantities is 9, the minimum is 2, and the maximum is 4. Skip down to
the seventh row (Ultimate Export 2G Car Rack). Again, because I’m par-
titioning on Order, there is no following row, so only the preceding row
(with a quantity of 5) and the current row (with a quantity of 6) are con-
sidered. The total of those two quantities is 11, the minimum is 5, and
the maximum is 6.

Because the second order consists of only two rows, those two rows
(both with quantities of 4) are the only ones considered in both cases.
The sum of the quantities of those two rows is 8, the minimum is 4, and
the maximum is 4.

For the third order, there is no preceding row for the Trek 9000 Moun-
tain Bike row, so only it and the following Viscount Mountain Bike row
are considered for the first calculation. Similarly, there is no following
row for the Cosmic Elite Road Warrior Wheels row, so only it and the
preceding True Grip Competition Gloves row are considered for the last
calculation.

 Sample Statements 851

School Scheduling Database

“For each subject, give me the highest mark that’s been received. Also,
show me the highest mark that’s been received for each category of
subjects, as well as the highest mark that’s been received overall.”

Translation/
Clean Up

Select the CategoryID, SubjectCode, SubjectName, MAX(Grade)
OVER (partioned by SubjectID) AS SubjectMax, MAX(Grade) OVER
(partitioned by CategoryID) AS CategoryMax, MAX(Grade) OVER()
AS OverallMax from the Subjects table inner joined with the Classes
table ON Classes.ClassID = Subjects.ClassID inner joined with the
Student_Schedules table on Student_Schedules.ClassID = Classes.
ClassID where ClassStatus = 2

SQL SELECT DISTINCT Subjects.CategoryID,

 Subjects.SubjectCode, Subjects.SubjectName,

 MAX(Student_Schedules.Grade) OVER (

 PARTITION BY Subjects.SubjectID

) AS SubjectMax,

 MAX(Student_Schedules.Grade) OVER (

 PARTITION BY Subjects.CategoryID

) AS CategoryMax,

 MAX(Student_Schedules.Grade) OVER (

) AS OverallMax

FROM Subjects

 INNER JOIN Classes

 ON Classes.SubjectID = Subjects.SubjectID

 INNER JOIN Student_Schedules

 ON Student_Schedules.ClassID = Classes.ClassID

WHERE Student_Schedules.ClassStatus = 2;

CH22_Top_Marks (14 rows)

CategoryID SubjectCode SubjectName Subject
Max

Category
Max

Overall
Max

ACC ACC 210 Financial Accounting
Fundamentals I

91.12 91.12 99.83

ART ART 100 Introduction to Art 99.83 99.83 99.83

852 Chapter 22 Partitioning Data into Windows

CategoryID SubjectCode SubjectName Subject
Max

Category
Max

Overall
Max

ART ART 210 Computer Art 87.65 99.83 99.83

ART ART 251 Art History 97.81 99.83 99.83

BIO BIO 101 General Biology 94.54 94.54 99.83

CHE CHE 139 Fundamentals of
Chemistry

98.31 98.31 99.83

CIS CIS 101 Microcomputer
Applications

98.01 98.01 99.83

ENG ENG 101 Composition -
Fundamentals

98.07 98.07 99.83

ENG ENG 102 Composition -
Intermediate

88.91 98.07 99.83

HIS HIS 111 U.S. History to 1877 87.14 87.14 99.83

MAT MAT 080 Preparatory
Mathematics

93.19 94.33 99.83

MAT MAT 097 Elementary Algebra 94.33 94.33 99.83

MUS MUS 100 Music in the Western
World

97.84 97.84 99.83

MUS MUS 101 First Year Theory and
Ear Training

86.57 97.84 99.83

Summary

I began the chapter by describing to you why you might want to aggre-
gate data differently from how you were shown in previous chapters and
included an example to show one possibility.

I then explored ways to use “windows” into your data and talked about
how the OVER() clause is the key to using window functions, and I
explained the difference between GROUP BY and OVER().

I showed you how PARTITION BY, ORDER BY, and ROWS or RANGE
influence your results.

 Problems for You to Solve 853

• The PARTITION BY predicate divides the result set from the query
into data subsets.

• The ORDER BY predicate controls the order that the rows are
evaluated.

• The ROWS or RANGE predicate determines the subset of rows
within the partition that are to be applied (and can only be used
with aggregate functions).

I went on to show that window functions include all of the aggregate
functions I’d already shown you, plus several others: ROW_NUMBER,
RANK, DENSE_RANK, PERCENT_RANK and NTILE. Then I described
the use of both the PARTITION BY and ORDER BY predicates with the
OVER() clause. Finally, I gave several examples of how to use window
functions to solve real-world problems.

The following section presents some requests that you can work out on
your own.

Problems for You to Solve

Bowling League Database

 1. “Divide the teams into quartiles based on the best raw score bowled
by any member of the team.”

You can find my solution in CH22_Team_Quartiles_Best_Raw-
Score (8 rows).

 2. “Give me a list of all of the bowlers in the league. Number the
bowlers overall, plus number them within their teams, sorting their
names by LastName then FirstName.”

You can find my solution in CH22_Bowler_Numbers (32 rows).

 3. “Rank all of the bowlers in the league by their average handicap
score. Show me the “standard” ranking, but also show me the
 ranking with no gaps.”

You can find my solution in CH22_Bowler_Ranks (32 rows).

Entertainment Agency Database

 1. “Rank all the agents based on the total dollars associated with the
engagements that they’ve booked. Make sure to include any agents
that haven’t booked any acts.”

You can find my solution in CH22_Agent_Ranks (9 rows).

854 Chapter 22 Partitioning Data into Windows

 2. “Give me a list of all of the engagements our entertainers are booked
for. Show me the entertainer’s stage name, the customer’s name, and
the start date for each engagements, as well as the total number of
engagements booked for each entertainer.”

You can find my solution in CH22_Entertainer_Engagements
(111 rows).

 3. “Give me a list of all of the Entertainers and their members. Number
each member within a group.”

You can find my solution in CH22_Entertainer_Lists (40 rows).

Recipes Database

 1. “Give me a list of all of the recipes I've got. For each recipe, I want
to see all of the ingredients in the recipe, plus a count of how many
different ingredients there are.”

You can find my solution in CH22_Recipe_Ingredient_Counts
(88 rows).

 2. “I’d like a list of all the different ingredients, with each recipe that
contains that ingredient. While you’re at it, give me a count of how
many recipes there are that use each ingredient.”

You can find my solution in CH22_Ingredient_Recipe_Counts
(88 rows).

 3. “I want a numbered list of all of the ingredients. Number the ingredi-
ents overall, plus number each ingredient within its ingredient class.
Sort the lists alphabetically by ingredient within ingredient class.
Don’t forget to include any ingredient classes that don’t have any
ingredients in them.”

You can find my solution in CH22_Ingredients_By_ Ingredient_
Class (83 rows, including four classes with no ingredients in
them).

Sales Orders Database

 1. “Show totals for each invoice, ranking them from highest purchase
value to lowest.”

You can find my solution in CH22_Order_Totals_RankedBy-
InvoiceTotal (933 rows).

 Problems for You to Solve 855

 2. “Produce a list of each category and the total purchase price of all
products in each category. Include a column showing the total pur-
chase price regardless of category as well.”

You can find my solution in CH22_Sales_Totals (6 rows).

How would you write this differently if you knew there were cate-
gories that had no sales in them? (The sample database does have
sales in each category, but you can always add a new category
with no sales to see whether your query works!) My solution is
CH22_Sales_Totals_Handle_Nulls. If you didn't add a new cate-
gory, it would return the same as CH22_Sales_Totals (6 rows). If
you did add a new category, it would return seven rows.

 3. “Rank each customer by the number of orders which they’ve placed.
Be sure to include customers that haven’t placed any orders yet.”

You can find my solution in CH22_Customer_Order_Counts_
Ranked (28 rows, including Jeffrey Tirekicker having placed no
orders).

School Scheduling Database

 1. “Rank the students in terms of the number of classes they’ve
completed.”

You can find my solution in CH22_Student_Class_Totals_Rank
(18 rows). (Pretty homogenous class, isn’t it?)

 2. “Rank the faculty in terms of the number of classes they’re
teaching.”

You can find my solution in CH22_Staff_Class_Totals_Rank
(22 rows).

 3. “Arrange the students into 3 groups depending on their average
grade for each of the classes they’ve completed.”

You can find my solution in CH22_Student_AverageGrade_Groups
(18 rows).

 4. “For each student, give me a list of each course he or she has com-
pleted and the mark he or she got in that course. Show me their
overall average for all the completed courses, plus, for every group
of three courses, show me their average and the highest and lowest
marks of the three highest marks that have been received.”

You can find my solution in CH22_Marks_Min_Max (68 rows).

This page intentionally left blank

 857

In Closing

“That is what learning is. You suddenly understand something
you’ve understood all your life, but in a new way.”

—DORIS LESSING

You now have all the tools you need to query or change data in a
 database successfully. You’ve learned how to create both simple and
complex SELECT statements and how to work with various types of
data. You’ve also learned how to filter data with search conditions,
work with multiple tables using JOINs, and produce statistical infor-
mation by grouping data. You learned how to update, add, and delete
data in your tables. And finally, you learned to “think out of the box”
to build solutions to “NOT” and “AND” problems, use condition testing,
work with unlinked tables, perform complex grouping, and look at
“windows” into your data.

As with any new endeavor, there’s always more to learn. Your next task
is to take the techniques you’ve learned in this book and apply them
within your database system. Be sure to refer to your database system’s
documentation to determine whether there are any differences between
standard SQL syntax and the SQL syntax your database uses. If your
database allows you to create queries using a graphical interface, you’ll
probably find that the interface now makes more sense and is much
 easier to use.

Also remember that I focused only on the data manipulation por-
tion of SQL—there are still many parts to SQL that you can delve into
should you be so inspired. For example, you could learn how to create
data structures; incorporate several tables and commands into a single
view, function, or stored procedure; or embed SQL statements within
an application program. If you want to learn more about SQL, I suggest
you start with any of the books I’ve listed in Appendix D, “Suggested
Reading.”

858 In Closing

I hope you’ve enjoyed reading this book as much as I’ve enjoyed writing
it. I know that books on this subject tend to be rather dry, so I decided
to have a little fun and inject some humor wherever I could. There’s
 absolutely no reason why learning should be boring and tedious. On the
contrary, you should look forward to learning something new each day.

Writing a book is always a humbling experience. It makes you realize
just how much more there is to learn about the subject at hand. And
as you work through the writing process, it is inevitable that you’ll see
things from a fresh perspective and in a different light. I found out just
how much Doris Lessing’s statement rings true.

I hope you will, too.

Part VII
Appendices

This page intentionally left blank

 861

A
SQL Standard Diagrams

Here are the complete diagrams for all the SQL grammar and syntax

we’ve covered throughout the book.

862 Appendix A SQL Standard Diagrams

DISTINCT
SELECT

FROM
WHERE Search Condition

Column ReferenceGROUP BY

ROLLUP

CUBE

GROUPING SETS

HAVING

AS

SELECT Statement

Value Expression

Table Reference

table_name.*

correlation_name.*

alias

*

,

,

,

Column Reference(

(

(

(

(

(

(

)

)

)

)

)

)

)

Search Condition

,

Column Reference
,

Column Reference

,
Column Reference

,
Column Reference

,
Column Reference

,

Column Reference

,

,

 SQL Standard Diagrams 863

Value Expression

+, -Date / Time

Expression
Types

Valid
Operators

Character ||
Numeric +, -, *, /

Interval +, -, *, /

Scalar value only

+
-

+
-
*
/
||

Value Expression
Literal Value
Column Reference
Function

(Value Expression)
CASE Expression

(SELECT Expression)#

864 Appendix A SQL Standard Diagrams

 SQL Standard Diagrams 865

866 Appendix A SQL Standard Diagrams

 SQL Standard Diagrams 867

Set (Aggregate Functions)

GROUPING Column Reference

,

868 Appendix A SQL Standard Diagrams

* Cannot use with BETWEEN CURRENT ROW
** Cannot use with BETWEEN unsigned integer FOLLOWING
*** Must include an ORDER BY clause

OVER (

)

PARTITION BY Column Reference

Aggregate Function

,

ORDER BY

ROWS
RANGE

UNBOUNDED PRECEDING

CURRENT ROW

BETWEEN UNBOUNDED PRECEDING

UNBOUNDED FOLLOWING

CURRENT ROW

CURRENT ROW**

unsigned integer PRECEDING

unsigned integer PRECEDING*AND

unsigned integer

unsigned integer FOLLOWING

unsigned integer FOLLOWING

PRECEDING

ASC
DESC

column_name

,

Functions (cont.)

Window Functions (valid only in SELECT and ORDER BY clauses)

 SQL Standard Diagrams 869

ROW_NUMBER

OVER

PARTITION BY

ORDER BY
ASC
DESC

Column Reference

()
RANK ()
DENSE_RANK
PERCENT_RANK ()

)

()

NTILE unsigned integer

column_name

()

(

,

,

Functions (cont.)

Window Functions (cont.) (valid only in SELECT and ORDER BY clauses)

870 Appendix A SQL Standard Diagrams

* Cannot use with BETWEEN CURRENT ROW
** Cannot use with BETWEEN unsigned integer FOLLOWING

ROWS
RANGE

UNBOUNDED PRECEDING

CURRENT ROW

BETWEEN UNBOUNDED PRECEDING

UNBOUNDED FOLLOWING

CURRENT ROW

CURRENT ROW**

unsigned integer PRECEDING

unsigned integer PRECEDING*AND

unsigned integer

unsigned integer FOLLOWING

unsigned integer FOLLOWING

PRECEDING

Functions (cont.)

Window Functions (cont.)

[Functions on this page not covered in the book.]

LEAD

OVER

PARTITION BY

ORDER BY
ASC
DESC

Column Reference

Value Expression

column_name

(

,

,

,

,

(valid only in SELECT and ORDER BY clauses)

LAG unsigned
integer

(Value Expression)

 SQL Standard Diagrams 871

* Cannot use with BETWEEN CURRENT ROW
** Cannot use with BETWEEN unsigned integer FOLLOWING

)
ROWS
RANGE

UNBOUNDED PRECEDING

CURRENT ROW

BETWEEN UNBOUNDED PRECEDING

UNBOUNDED FOLLOWING

CURRENT ROW

CURRENT ROW**

unsigned integer PRECEDING

unsigned integer PRECEDING*AND

unsigned integer

unsigned integer FOLLOWING

unsigned integer FOLLOWING

PRECEDING

Functions (cont.)

Window Functions (cont.)

[Functions on this page not covered in the book.]

FIRST_VALUE

OVER

PARTITION BY

ORDER BY
ASC
DESC

Column Reference

()

NTH_VALUE (Value Expression , number)

column_name

(

,

,

(valid only in SELECT and ORDER BY clauses)

LAST_VALUE

872 Appendix A SQL Standard Diagrams

CASE Expression

Simple When Clause

Searched When Clause

WHEN
NULL

Value Expression Value Expression THEN Value Expression

WHEN

NULL

Search Condition THEN Value Expression

CASE Simple When Clause END

Searched When Clause NULL
Value Expression

ELSE

 SQL Standard Diagrams 873

Joined Table

*Note: If you include the NATURAL
or CROSS keywords, you cannot
use the ON or USING clauses.

Table Reference
NATURAL

CROSS*

* INNER
LEFT
RIGHT
FULL
UNION

OUTER

JOIN Table Reference
ON Search Condition

USING
,

column_name

(Joined Table)

874 Appendix A SQL Standard Diagrams

 SQL Standard Diagrams 875

*Some systems allow you
to use an “updatable” Table
Reference or View name.

876 Appendix A SQL Standard Diagrams

*Some systems allow you
to use an “updatable” Table
Reference or View name.

*Some systems allow you
to use an “updatable” Table
Reference or View name.

 877

B
Schema for the Sample Databases

878 Appendix B Schema for the Sample Databases

Sales Orders Example Database

ORDER_DETAILS

OrderNumber CPK
ProductNumber CPK
QuotedPrice
QuantityOrdered

Many-to-many table Lookup table

PRODUCTS

ProductNumber PK
ProductName
ProductDescription
RetailPrice
QuantityOnHand
CategoryID FK

CATEGORIES

CategoryID PK
CategoryDescription

VENDORS

VendorID PK
VendName
VendStreetAddress
VendCity
VendState
VendZipCode
VendPhoneNumber
VendFaxNumber
VendWebPage
VendEmailAddress

PRODUCT_VENDORS

ProductNumber CPK
VendorID CPK
WholesalePrice
DaysToDeliver

CUSTOMERS

CustomerID PK
CustFirstName
CustLastName
CustStreetAddress
CustCity
CustState
CustZipCode

CustPhoneNumber
CustAreaCode

Does not include Chapter
20 “driver” tables

EMPLOYEES

EmployeeID PK
EmpFirstName
EmpLastName
EmpStreetAddress
EmpCity
EmpState
EmpZipCode

EmpPhoneNumber
EmpAreaCode

ORDERS

OrderNumber PK
OrderDate
ShipDate
CustomerID FK
EmployeeID FK

 Sales Orders Modify Database 879

Sales Orders Modify Database

ORDER_DETAILS

OrderNumber CPK
ProductNumber CPK
QuotedPrice
QuantityOrdered

PRODUCTS

ProductNumber PK
ProductName
ProductDescription
RetailPrice
QuantityOnHand
CategoryID FK

CATEGORIES

CategoryID PK
CategoryDescription

VENDORS

VendorID PK
VendName
VendStreetAddress
VendCity
VendState
VendZipCode
VendPhoneNumber
VendFaxNumber
VendWebPage
VendEmailAddress

PRODUCT_VENDORS

ProductNumber CPK
VendorID CPK
WholesalePrice
DaysToDeliver

EMPLOYEES

EmployeeID PK
EmpFirstName
EmpLastName
EmpStreetAddress
EmpCity
EmpState
EmpZipCode

EmpPhoneNumber
EmpAreaCode

CUSTOMERS

CustomerID PK
CustFirstName
CustLastName
CustStreetAddress
CustCity
CustState
CustZipCode

CustPhoneNumber
CustAreaCode

ORDERS

OrderNumber PK
OrderDate
ShipDate
CustomerID FK
EmployeeID FK
OrderTotal

ORDERS_ARCHIVE

OrderNumber PK
OrderDate
ShipDate
CustomerID
EmployeeID
OrderTotal*

ORDER_DETAILS_ARCHIVE

OrderNumber CPK
ProductNumber CPK
QuotedPrice
QuantityOrdered

880 Appendix B Schema for the Sample Databases

Entertainment Agency Example Database

AGENTS

AgentID PK
AgtFirstName
AgtLastName
AgtStreetAddress
AgtCity
AgtState
AgtZipCode
AgtPhoneNumber
DateHired
Salary
CommissionRate

CUSTOMERS

CustomerID PK
CustFirstName
CustLastName
CustStreetAddress
CustCity
CustState
CustZipCode
CustPhoneNumber

MUSICAL_STYLES

StyleID PK
StyleName

ENGAGEMENTS

EngagementNumber PK
StartDate
EndDate
StartTime
StopTime
ContractPrice
CustomerID FK
AgentID FK
EntertainerID FK

MEMBERS

MemberID PK
MbrFirstName
MbrLastName
MbrPhoneNumber
Gender

ENTERTAINER_MEMBERS

EntertainerID CPK
MemberID CPK
Status

ENTERTAINERS

EntertainerID PK
EntStageName

DateEntered

EntStreetAddress
EntCity
EntState
EntZipCode
EntPhoneNumber
EntWebPage
EntEmailAddress

EntSSNMUSICAL_PREFERENCES

CustomerID CPK
StyleID CPK

PreferenceSeq

ENTERTAINER_STYLES
EntertainerID CPK
StyleID CPK

StyleStrength

Does not include Chapter

20 “driver” tables

 Entertainment Agency Modify Database 881

Entertainment Agency Modify Database

AGENTS

AgentID PK
AgtFirstName
AgtLastName
AgtStreetAddress
AgtCity
AgtState
AgtZipCode
AgtPhoneNumber
DateHired
Salary
CommissionRate

CUSTOMERS

CustomerID PK
CustFirstName
CustLastName
CustStreetAddress
CustCity
CustState
CustZipCode
CustPhoneNumber

MUSICAL_STYLES

StyleID PK
StyleName

ENGAGEMENTS

EngagementNumber PK
StartDate
EndDate
StartTime
StopTime
ContractPrice
CustomerID FK
AgentID FK
EntertainerID FK

MEMBERS

MemberID PK
MbrFirstName
MbrLastName
MbrPhoneNumber
Gender

ENTERTAINER_MEMBERS

EntertainerID CPK
MemberID CPK
Status

ENTERTAINERS

EntertainerID PK
EntStageName

DateEntered

EntStreetAddress
EntCity
EntState
EntZipCode
EntPhoneNumber
EntWebPage
EntEmailAddress

EntSSN

EntPricePerDay

ENGAGEMENTS_ARCHIVE

EngagementNumber PK
StartDate
EndDate
StartTime
StopTime
ContractPrice
CustomerID
AgentID
EntertainerID

MUSICAL_PREFERENCES

CustomerID CPK
StyleID CPK

ENTERTAINER_STYLES

EntertainerID CPK
StyleID CPK

882 Appendix B Schema for the Sample Databases

School Scheduling Example Database

FACULTY_SUBJECTS

StaffID CPK
SubjectID CPK
ProficiencyRating

FACULTY

StaffID PK
Title
Status
Tenured

FACULTY_CLASSES

StaffID CPK
ClassID CPK

FACULTY_CATEGORIES

StaffID CPK
CategoryID CPK

STUDENT_SCHEDULES

ClassID CPK
StudentID CPK
ClassStatus FK
Grade

BUILDINGS

BuildingCode PK

NumberofFloors
ElevatorAccess
SiteParkingAvailable

BuildingName

CATEGORIES

CategoryID PK
CategoryDescription
DepartmentID

Does not include Chapter
20 “driver” tables

STAFF

StaffID PK
StfFirstName
StfLastName
StfStreetAddress
StfCity
StfState
StfZipCode

StfPhoneNumber

DateHired

Salary

Position

StfAreaCode

DEPARTMENTS

DepartmentID PK

DeptName

DeptChair FK

SUBJECTS

SubjectCode
SubjectName

SubjectDescription

SubjectID PK
CategoryID FK

SubjectPreReq

SubjectEstClassSize

CLASSES

ClassID PK
SubjectID FK
ClassRoomID FK

StartTime
Duration
MondaySchedule
TuesdaySchedule
WednesdaySchedule
ThursdaySchedule
FridaySchedule
SaturdaySchedule

StartDate

Credits
SemesterNumber

STUDENT_CLASS_STATUS

ClassStatus PK
ClassStatusDescription

CLASSROOMS

ClassRoomID PK
BuildingCode FK
PhoneAvailable

Capacity

MAJORS

MajorID PK

Major

STUDENTS

StudentID PK
StudFirstName
StudLastName
StudStreetAddress
StudCity
StudState
StudZipCode

StudPhoneNumber
StudAreaCode

StudBirthDate
StudGender
StudMaritalStatus

StudMajor

 School Scheduling Modify Database 883

School Scheduling Modify Database

FACULTY_SUBJECTS

StaffID CPK
SubjectID CPK
ProficiencyRating

FACULTY

StaffID PK
Title
Status
Tenured

FACULTY_CLASSES

StaffID CPK
ClassID CPK

FACULTY_CATEGORIES

StaffID CPK
CategoryID CPK

STUDENT_SCHEDULES

ClassID CPK
StudentID CPK
ClassStatus FK
Grade

CLASSROOMS

ClassRoomID PK
BuildingCode FK
PhoneAvailable

BUILDINGS

BuildingCode PK

NumberOfFloors
ElevatorAccess
SiteParkingAvailable

BuildingName

CATEGORIES

CategoryID PK
CategoryDescription
DepartmentID

STAFF

StaffID PK
StfFirstName
StfLastName
StfStreetAddress
StfCity
StfState
StfZipCode

StfPhoneNumber

DateHired

Salary

Position

StfAreaCode

DEPARTMENTS

DepartmentID PK

DeptName

DeptChair FK

SUBJECTS

SubjectCode

SubjectName

SubjectDescription

SubjectID PK

CategoryID FK

SubjectPreReq

CLASSES

ClassID PK
SubjectID FK
ClassRoomID FK

StartTime
Duration
MondaySchedule
TuesdaySchedule
WednesdaySchedule
ThursdaySchedule
FridaySchedule
SaturdaySchedule

StartDate
Credits

STUDENT_CLASS_STATUS

CategoryID PK
CategoryDescription

STUDENTS

StudentID PK
StudFirstName
StudLastName
StudStreetAddress
StudCity
StudState
StudZipCode

StudPhoneNumber
StudAreaCode

StudGPA
StudMajor

MAJORS

MajorID PK

Major

884 Appendix B Schema for the Sample Databases

Bowling League Example Database

TOURNAMENTS

TourneyID PK
TourneyDate
TourneyLocation

TEAMS

TeamID PK
TeamName
CaptainID FK

BOWLER_SCORES

BowlerID CPK
RawScore
HandiCapScore
WonGame

GameNumber CPK
MatchID CPK

MATCH_GAMES

MatchID CPK
GameNumber CPK
WinningTeamID FK

TOURNEY_MATCHES

MatchID PK

Lanes
TourneyID FK

OddLaneTeamID FK
EvenLaneTeamID FK

BOWLERS

BowlerID PK

BowlerFirstName
BowlerLastName

BowlerStreetAddress
BowlerCity
BowlerState
BowlerZipCode
BowlerPhoneNumber
TeamID FK

BowlerMiddleInit

Does not include Chapter
20 “driver” tables

 Bowling League Modify Database 885

Bowling League Modify Database

TOURNAMENTS

TourneyID PK
TourneyDate
TourneyLocation

TEAMS

TeamID PK
TeamName
CaptainID FK

BOWLER_SCORES

BowlerID CPK
RawScore
HandiCapScore
WonGame

GameNumber CPK
MatchID CPK

MATCH_GAMES

MatchID CPK
GameNumber CPK
WinningTeamID FK

TOURNEY_MATCHES

MatchID PK

Lanes
TourneyID FK

OddLaneTeamID FK
EvenLaneTeamID FK

BOWLERS

BowlerID PK

BowlerFirstName
BowlerLastName

BowlerStreetAddress
BowlerCity
BowlerState
BowlerZipCode
BowlerPhoneNumber
TeamID
BowlerTotalPins
BowlerGamesBowled
BowlerCurrentAverage
BowlerCurrentHcp

FK

BowlerMiddleInit

TOURNAMENTS_ARCHIVE

TourneyID PK
TourneyDate
TourneyLocation TOURNEY_MATCHES_ARCHIVE

MatchID PK

Lanes
TourneyID FK

OddLaneTeamID
EvenLaneTeamID

MATCH_GAMES_ARCHIVE

MatchID CPK
GameNumber CPK
WinningTeamID

BOWLER_SCORES_ARCHIVE

BowlerID CPK
RawScore
HandiCapScore
WonGame

GameNumber CPK
MatchID CPK

886 Appendix B Schema for the Sample Databases

Recipes Database

INGREDIENT_CLASSES

IngredientClassID PK
IngredientClassDescription

MEASUREMENTS

MeasureAmountID PK
MeasurementDescription

INGREDIENTS

IngredientID PK
IngredientName
IngredientClassID FK
MeasureAmountID FK

RECIPES

RecipeID PK
RecipeTitle
RecipeClassID FK
Preparation
Notes

RECIPE_CLASSES

RecipeClassID PK
RecipeClassDescription

RECIPE_INGREDIENTS

RecipeID CPK
RecipeSeqNo CPK
IngredientID FK
MeasureAmountID FK
Amount

 “Driver” Tables 887

“Driver” Tables

LowSpend
High Spend
NumCoupons

PK

Sales Orders Example

School Scheduling Example

Entertainment Agency Example

Bowling League Example

Sales and
School

Sales and
Entertainment

Entertainment and
Bowling

ztblPurchaseCoupons

PriceCategory
LowPrice
HighPrice

PK

ztblPurchaseRanges

Gender
Male
Female

PK

ztblGenderMatrix

SemesterNo
SemDate
SemDayName

CPK
CPK

ztblSemesterDays

BowlerRating
BowlerLowAvg
BowlerHighAvg

PK

ztblBowlerRatings
Sequence PK

ztblSeqNumbers

MonthYear
YearNumber
MonthNumber
MonthStart
MonthEnd
January
February
March
April
May
June
July
August
September
October
November
December

CPK
CPK

ztblMonths

WeekStart
WeekEnd

PK

ztblWeeks

LabelCount

ztblSkipLabels

DateField PK

ztblDays

LetterGrade
LowGradePoint
HighGradePoint

PK

ztblLetterGrades

MaritalStatus
Single
Married
Widowed
Divorced

PK

ztblMaritalStatus

ProfRatingDesc
ProfRatingLow
ProfRatingHigh

PK

ztblProfRatings

PK

This page intentionally left blank

 889

C
Date and Time Types,

Operations, and Functions

As mentioned in Chapter 5, “Getting More Than Simple Columns,” each
database system has a variety of functions that you can use to fetch
or manipulate date and time values. Each database system also has
its own rules regarding data types and date and time arithmetic. The
SQL Standard specifically defines three functions, CURRENT_DATE,
CURRENT_TIME, and CURRENT_TIMESTAMP, but not all commercial
database systems support all three function calls. To help you work with
date and time values in your database system, we provide a summary
of the data types and arithmetic operations supported. Following that,
we’ve compiled a list of functions for five of the major database systems
that you can use to work with date and time values. The lists in this
appendix include the function name and a brief description of its use.
Consult your database documentation for the specific syntax to use with
each function.

IBM DB2

Data Types Supported

DATE

TIME

TIMESTAMP

Arithmetic Operations Supported

DATE + <year, month, or day duration or date duration> = DATE

DATE +/− TIME = TIMESTAMP

TIME + <hour, minute, or second duration or time duration> = TIME

890 Appendix C Date and Time Types, Operations, and Functions

TIMESTAMP + <date, or time, or date and time duration> =
TIMESTAMP

DATE − DATE = date duration (DECIMAL(8,0) value containing
yyyymmdd)

DATE − <year, month, or day duration or date duration> = DATE

TIME − TIME = time duration (DECIMAL(6,0) value containing
hhmmss)

TIME − <hour, minute, or second duration or time duration> = TIME

TIMESTAMP − TIMESTAMP = time duration (DECIMAL(20,6) value
containing yyyymmddhhmmss.microseconds)

TIMESTAMP − <date, or time, or date and time duration> =
TIMESTAMP

Functions

Function Name Description

ADD_MONTHS
(<expression>, <number>)

Adds a specified number of months to a date or
timestamp value.

CURDATE Obtains the current date value.

CURRENT_DATE Obtains the current date value.

CURRENT_TIME Obtains the current time value in the local
time zone.

CURRENT_TIMESTAMP Obtains the current date and time in the local
time zone.

CURTIME Obtains the current time value in the local
time zone.

DATE(<expression>) Evaluates the expression and returns a date.

DAY(<expression>) Evaluates the expression and returns the day part
of a date, timestamp, or date interval.

DAYNAME(<expression>) Evaluates the expression and returns the name of
the day of a date, timestamp, or date interval.

DAYOFMONTH
(<expression>)

Evaluates the expression and returns the day part
(value between 1 and 31) of a date or timestamp.

DAYOFWEEK
(<expression>)

Evaluates the expression and returns the day
 number of the week, where 1 = Sunday.

 IBM DB2 891

Function Name Description

DAYOFWEEK_ISO
(<expression>)

Evaluates the expression and returns the day
 number of the week, where 1 = Monday.

DAYOFYEAR
(<expression>)

Evaluates the expression and returns the day
number (value between 1 and 366) of the year.

DAYS(<expression>) Evaluates the expression and returns the number
of days since January 1, 0001, plus 1.

HOUR(<expression>) Evaluates the expression and returns the hour
part of a time or timestamp.

JULIAN_DAY
(<expression>)

Evaluates the expression and returns the number
of days from January 1, 4713 B.C., to the date
 specified in the expression.

LAST_DAY(<expression>) Returns the last day of the month indicated by the
date in the expression.

MICROSECOND
(<expression>)

Evaluates the timestamp or duration in the expres-
sion and returns the microsecond part.

MIDNIGHT_SECONDS
(<expression>)

Evaluates the time or timestamp and returns the
number of seconds between midnight and the time
in the expression.

MINUTE
(<expression>)

Evaluates the expression and returns the minute
part of a time, timestamp, or time interval.

MONTH
(<expression>)

Evaluates the expression and returns the month
part of a date, timestamp, or date interval.

MONTHNAME
(<expression>)

Evaluates the expression and returns the name of
the month of a date, timestamp, or date interval.

MONTHS_BETWEEN
(<expression1>,
<expression2>)

Evaluates both expressions as a date or timestamp
and returns the approximate number of months
between the two values. If expression1 is later than
expression2, the value is positive.

NEXT_DAY
(<expression>,
<dayname>)

Evaluates the expression and returns as a
 timestamp the date of the first day specified in
<dayname> (a string containing “MON”, “TUE”, etc.)
following the date in the expression.

NOW Obtains the current date and time in the local
time zone.

QUARTER
(<expression>)

Evaluates the expression and returns the number
of the quarter part of a year in which the date in
the expression occurs.

892 Appendix C Date and Time Types, Operations, and Functions

Function Name Description

ROUND_TIMESTAMP
(<expression>,
<format string>)

Evaluates the expression and rounds it to the near-
est interval specified in the format string.

SECOND(<expression>) Evaluates the expression and returns the seconds
part of a time, timestamp, or time interval.

TIME(<expression>) Evaluates the expression and returns the time part
of a time or timestamp value.

TIMESTAMP
(<expression1>,
[<expression2>])

Converts separate date or datetime (expression1)
and time (expression2) values into a timestamp.

TIMESTAMP_ FORMAT
(<expression1>,
<expression2>)

Returns a timestamp by formatting the string in
expression1 using the format string in expression2.

TIMESTAMP_ISO
(<expression>)

Evaluates the date, time, or timestamp in the
expression and returns a timestamp. If the expres-
sion contains only a date, the timestamp contains
that date and zero for the time. If the expression
contains only a time, the timestamp contains the
current date and the time specified.

TIMESTAMPDIFF
(<numeric expression>,
<string expression>)

The numeric expression must contain a
code numeric value where 1 = microseconds,
2 = seconds, 4 = minutes, 8 = hours, 16 = days,
32 = weeks, 64 = months, 128 = quarters, and
256 = years. The string expression must be the
result of subtracting two timestamps and convert-
ing the result to a string. The function returns the
estimated number of requested intervals repre-
sented by the string.

TRUNC_TIMESTAMP
(<expression>,
<format string>)

Evaluates the expression and truncates it to the
nearest interval specified in the format string.

WEEK(<expression>) Evaluates the expression and returns the week
number of the date part of the value, where
 January 1 starts the first week.

WEEK_ISO(<expression>) Evaluates the expression and returns the week num-
ber of the date part of the value, where the first week
of the year is the first week containing a Thursday.

YEAR(<expression>) Evaluates the expression and returns the year part
of a date or timestamp.

 Microsoft Access 893

Microsoft Access

Data Types Supported

Date/Time

Arithmetic Operations Supported

Date/Time + Date/Time = Date/Time

(Value is the result of adding the number of days and fractions of a
day in each value. December 31, 1899 is day 0.)

Date/Time − Date/Time = number of days and fractions of days
between the two values

Date/Time +/− integer = Date/Time

(Adds or subtracts the number of days in the integer)

Date/Time +/− fraction = Date/Time

(Adds or subtracts the time represented by the fraction − 0.5 = 12 hours)

Date/Time +/− integer.fraction = Date/Time

Functions

Function Name Description

CDate(<expression>) Converts the expression to a date value.

Date Obtains the current date value.

DateAdd(<interval>,
<number>,
<expression>)

Adds the specified number of the interval to the
date or Date/Time expression.

DateDiff(<interval>,
<expression1>,
<expression2>,
<firstdayofweek>,
<firstdayofyear>)

Returns the specified number of intervals between
the Date/Time in expression1 and the Date/Time
in expression2. You can optionally specify a first
day of the week other than Sunday and a first week
of the year to start on January 1, the first week
that has at least four days, or the first full week.

DatePart(<interval>,
<expression>,
<firstdayofweek>,
<firstdayofyear>)

Extracts the part of the date or time from the
expression as specified by the interval. You can
optionally specify a first day of the week other
than Sunday and a first week of the year to start
on January 1, the first week that has at least four
days, or the first full week.

894 Appendix C Date and Time Types, Operations, and Functions

Function Name Description

DateSerial(<year>,
<month>, <day>)

Returns the date value corresponding to the
 specified year, month, and day.

DateValue(<expression>) Evaluates the expression and returns a Date/Time
value.

Day(<expression>) Evaluates the expression and returns the day part
of a date.

Hour(<expression>) Evaluates the expression and returns the hour
part of a time.

IsDate(<expression>) Evaluates the expression and returns True if the
expression is a valid date value.

Minute(<expression>) Evaluates the expression and returns the minute
part of a time value.

Month(<expression>) Evaluates the expression and returns the month
part of a date value.

MonthName
(<expression>,
<abbreviate>)

Evaluates the expression (which must be an integer
value from 1 to 12) and returns the equivalent
month name. The name is abbreviated if the abbre-
viated argument is True.

Now Obtains the current date and time value in the
local time zone.

Second(<expression>) Evaluates the expression and returns the seconds
part of a time.

Time Obtains the current time value in the local time zone.

TimeSerial(<hour>,
<minute>, <second>)

Returns the time value corresponding to the
 specified hour, minute, and second.

TimeValue
(<expression>)

Evaluates the expression and returns the time
portion.

WeekDay(<expression>,
<firstdayofweek>)

Evaluates the expression and returns an inte-
ger representing the day of the week. Optionally,
you can specify a first day of the week other than
Sunday.

WeekDayName
(<daynumber>,
<abbreviate>,
<firstdayofweek>)

Returns the day of the week according to the
 specified day number. Optionally, you can ask to
have the name abbreviated, and you can specify a
first day of the week other than Sunday.

Year(<expression>) Evaluates the expression and returns the year part
of a date.

 Microsoft SQL Server 895

Microsoft SQL Server

Data Types Supported

date

time

smalldatetime

datetime

datetime2

datetimeoffset

Arithmetic Operations Supported

datetime + datetime = datetime

(Value is the result of adding the number of days and fractions of a
day in each value. January 1, 1900 is day 0.)

datetime +/− integer = datetime

(Adds or subtracts the number of days in the integer)

datetime +/− fraction = datetime

(Adds or subtracts the time represented by the fraction − 0.5 = 12 hours)

datetime +/− integer.fraction = datetime

datetime − datetime = number of days and fractions of days between
the two values

smalldatetime + smalldatetime = smalldatetime

(Value is the result of adding the number of days and fractions of a
day in each value. January 1, 1900 is day 0.)

smalldatetime +/− integer = smalldatetime

(Adds or subtracts the number of days in the integer)

smalldatetime +/− fraction = smalldatetime

(Adds or subtracts the time represented by the fraction − 0.5 = 12 hours)

smalldatetime + integer.fraction = smalldatetime

smalldatetime − smalldatetime = number of days and fractions of
days between the two values

896 Appendix C Date and Time Types, Operations, and Functions

Functions

Function Name Description

CURRENT_TIMESTAMP Obtains the current date and time in the local
time zone.

DATEADD(<interval>,
<number>, <expression>)

Adds the specified number of the interval to
the date or datetime expression.

DATEDIFF
(<interval>, <expression1>,
<expression2>)

Returns the specified number of intervals
between the datetime in expression1 and the
datetime in expression2.

DATEFROMPARTS(<year>,
<month>, <day>)

Returns the date value for a specified year,
month, and day

DATENAME(<interval>,
<expression>)

Evaluates the expression and returns a string
containing the name of the interval specified.
If the interval is a month or a day of a week,
the name is spelled out.

DATEPART(<interval>,
<expression>)

Extracts as an integer the part of the date or
time from the expression as specified by the
interval.

DATETIMEFROMPARTS
(<year>, <month>, <day>,
<hour>, <minute>, <second>,
<millisecond>)

Returns the datetime value for a specified
year, month, day, hour, minute, second, and
millisecond.

DATETIME2FROMPARTS
(<year>, <month>, <day>,
<hour>, <minute>, <second>,
<fraction>, <precision>)

Returns the datetime2 value for a specified
year, month, day, hour, minute, second, and
fraction with the specified precision.

DAY(<expression>) Evaluates the expression and returns the day
part of a date.

EOMONTH(<date>
[,<months>])

Adds the optional number of months to the
date specified and returns the last day of that
month.

GETDATE() Obtains the current date as a datetime value.

GETUTCDATE() Obtains the current UTC (Coordinated Uni-
versal Time) date as a datetime value.

ISDATE(<expression>) Evaluates the expression and returns 1 if the
expression is a valid date value.

 MySQL 897

Function Name Description

MONTH(<expression>) Evaluates the expression and returns the
month part of a date value as an integer.

SMALLDATETIMEFROM-
PARTS(<year>, <month>,
<day>, <hour>, <minute>,
<second>)

Returns the smalldatetime value for a
 specified year, month, day, hour, minute, and
second.

SWITCHOFFSET
(<datetimeoffset>, <offset>)

Changes the time zone offset of the date-
timeoffset value to the specified offset and
returns a datetimeoffset.

SYSDATETIME() Returns the current date and time as a
 datetime2 value.

SYSDATETIMEOFFSET() Returns the current date and time (including
time zone offset) as a datetimeoffset value.

SYSUTCDATETIME() Returns the current UTC date and time as a
datetime2 value.

TIMEFROMPARTS(<hour>,
<minute>, <second>,
 <fraction>, <precision>)

Returns the time value for a specified hour,
minute, second, and fraction with the
 specified precision.

TODATETIMEOFFSET
(<datetime2>, <offset>)

Converts the datetime2 value using the
 specified time zone offset and returns a date-
timeoffset value.

YEAR(<expression>) Evaluates the expression and returns the year
part of a date as an integer.

MySQL

Data Types Supported

date

datetime

timestamp

time

year

898 Appendix C Date and Time Types, Operations, and Functions

Arithmetic Operations Supported

date +/− Interval <interval [year/quarter/month/week/day]> = date

datetime +/− Interval <interval [year/quarter/month/week/day/hour/
minute/second]> = datetime

timestamp +/− Interval <interval [year/quarter/month/week/day/
hour/minute/second]> = timestamp

time +/− Interval <interval [hour/minute/second]> = time

 ❖ Note It is also legal to add or subtract an integer or decimal value
to or from any of the date and time data types, but MySQL will first
convert the date or time value to a number and then perform the
operation. For example, adding 30 to the date value ‘2017-11-15’ yields
the number 20171145. Adding 100 to the time value ‘12:20:00’ yields
122100. Be sure to use the INTERVAL keyword when performing date
and time arithmetic.

Functions

Function Name Description

ADDDATE(<expression>,
<days>)

Adds the specified number of days to the date
value in the expression.

ADDDATE(<expression>,
INTERVAL <amount>
<units>)

Adds the specified interval quantity to the date
value in the expression.

ADDTIME(<expression>,
<time>)

Adds the specified amount of time to the time or
datetime expression value.

CONVERT_TZ(<datetime>,
<from tz>, <to tz>)

Converts the datetime value from the specified
time zone to the specified time zone.

CURRENT_DATE,
CURDATE()

Obtains the current date value.

CURRENT_TIME,
CURTIME()

Obtains the current time value in the local
time zone.

CURRENT_TIMESTAMP Obtains the current date and time in the local
time zone.

DATE(<expression>) Extracts the date from a datetime expression.

❖ Note It is also legal to add or subtract an integer or decimal value
to or from any of the date and time data types, but MySQL will first
convert the date or time value to a number and then perform the
operation. For example, adding 30 to the date value ‘2017-11-15’ yields
the number 20171145. Adding 100 to the time value ‘12:20:00’ yields
122100. Be sure to use the INTERVAL keyword when performing date
and time arithmetic.

 MySQL 899

Function Name Description

DATE_ADD(<expression>,
INTERVAL <interval>
<quantity>)

Adds the specified interval quantity to the date
or datetime value in the expression.

DATE_SUB(<expression>,
INTERVAL <interval>
<quantity>)

Subtracts the specified interval quantity from
the date or datetime value in the expression.

DATEDIFF(<expression1>,
<expression2>)

Subtracts the second datetime expression from
the first datetime expression and returns the
number of days between the two.

DAY(<expression>) Evaluates the expression and returns the day
part of a date as a number from 1 to 31.

DAYNAME(<expression>) Evaluates the expression and returns the day
name of the date or datetime value.

DAYOFMONTH
(<expression>)

Evaluates the expression and returns the day
part of a date as a number from 1 to 31.

DAYOFWEEK(<expression>) Evaluates the expression and returns the
day number within the week for the date or
 datetime value, where 1 = Sunday.

DAYOFYEAR(<expression>) Evaluates the expression and returns the day
number of the year, a value from 1 to 366.

EXTRACT(<unit> FROM
<expression>)

Evaluates the expression and returns the unit
portion (such as year or month) specified.

FROM_DAYS(<number>) Returns the date that is the number of
days since December 31, 1 B.C. Day 366 is
 January 1, 01.

HOUR(<expression>) Evaluates the expression and returns the hour
part of a time.

LAST_DAY(<expression>) Returns the last day of the month indicated by
the date in the expression.

LOCALTIME,
LOCALTIMESTAMP

See the NOW function.

MAKEDATE(<year>,
<dayofyear>)

Returns a date for the specified year and day of
year (1–366).

MAKETIME(<hour>,
<minute>, <second>)

Returns a time for the specified hour, minute,
and second.

900 Appendix C Date and Time Types, Operations, and Functions

Function Name Description

MICROSECOND
(<expression>)

Evaluates the expression and returns the
microsecond portion of a time or datetime
value.

MINUTE(<expression>) Evaluates the expression and returns the min-
ute part of a time or datetime value.

MONTH(<expression>) Evaluates the expression and returns the
month part of a date value.

MONTHNAME
(<expression>)

Evaluates the expression and returns the
name of the month of a date or datetime value.

NOW() Obtains the current date and time value in the
local time zone.

QUARTER(<expression>) Evaluates the expression and returns the num-
ber of the quarter part of a year in which the
date in the expression occurs.

SECOND(<expression>) Evaluates the expression and returns the
 seconds part of a time or datetime value.

STR_TO_DATE
(<expression>, <format>)

Evaluates the expression according to the for-
mat specified and returns a date, datetime, or
time value.

SUBDATE(<expression>,
INTERVAL <interval>
<quantity>)

See the DATE_SUB function.

SUBTIME(<expression1>,
<expression2>)

Subtracts the time in expression2 from the
datetime or time in expression1 and returns a
time or datetime answer.

TIME(<expression>) Evaluates the expression and returns the time
part of a time or datetime value.

TIME_TO_SEC
(<expression>)

Evaluates the time in the expression and
returns the number of seconds.

TIMEDIFF(<expression1>,
<expression2>)

Subtracts the time or datetime value in expres-
sion2 from the time or datetime value in
expression1 and returns the difference.

TIMESTAMP(<expression>) Evaluates the expression and returns a date-
time value.

TIMESTAMP(<expression1>,
<expression2>)

Adds the time in expression2 to the date or
datetime in expression1 and returns a datetime
value.

 Oracle 901

Function Name Description

TIMESTAMPADD
(<interval>, <number>,
<expression>)

Adds the specified number of the interval to
the date or datetime expression.

TIMESTAMPDIFF
(<interval>, <expression1>,
<expression2>)

Returns the specified number of intervals
between the date or datetime in expression1
and the date or datetime in expression2.

TO_DAYS(<expression>) Evaluates the date in the expression and
returns the number of days since year 0.

UTC_DATE Obtains the current UTC (Coordinated
 Universal Time) date.

UTC_TIME Obtains the current UTC (Coordinated
 Universal Time) time.

UTC_TIMESTAMP Obtains the current UTC (Coordinated
 Universal Time) date and time.

WEEK(<expression>,
<mode>)

Evaluates the expression and returns the week
number of the date part of the value using the
mode specified.

WEEKDAY(<expression>) Evaluates the expression and returns an inte-
ger representing the day of the week, where 0 is
Monday.

WEEKOFYEAR
(<expression>)

Evaluates the date expression and returns the
week number (1–53), assuming the first week
has more than three days.

YEAR(<expression>) Evaluates the expression and returns the year
part of a date.

Oracle

Data Types Supported

DATE

TIMESTAMP

INTERVAL YEAR TO MONTH

INTERVAL DAY TO SECOND

902 Appendix C Date and Time Types, Operations, and Functions

Arithmetic Operations Supported

DATE + INTERVAL = DATE

DATE + numeric = DATE

DATE − DATE = numeric (days and fraction of a day)

DATE − TIMESTAMP = INTERVAL

DATE − INTERVAL = DATE

DATE − numeric = DATE

INTERVAL + DATE = DATE

INTERVAL + TIMESTAMP = TIMESTAMP

INTERVAL + INTERVAL = INTERVAL

INTERVAL − INTERVAL = INTERVAL

INTERVAL * numeric = INTERVAL

INTERVAL / numeric = INTERVAL

Functions

Function Name Description

ADD_MONTHS(<date>,
<integer>)

Returns the date plus the specified number of
months.

CURRENT_DATE Obtains the current date value.

CURRENT_TIMESTAMP Obtains the current date, time, and time-
stamp in the local time zone.

DBTIMEZONE Obtains the time zone of the database.

EXTRACT(<interval> FROM
<expression>)

Evaluates the expression and returns the
requested interval (year, month, day, etc.).

LOCALTIMESTAMP Obtains the current date and time in the
local time zone.

MONTHS_BETWEEN
(<expression1>,
<expression2>)

Calculates the months and fractions
of months between expression2 and
expression1.

NEW_TIME(<expression>,
<timezone1>, <timezone2>)

Evaluates the date expression as though it
is the first time zone and returns the date in
the second time zone.

 Oracle 903

Function Name Description

NEXT_DAY(<expression>,
<dayname>)

Evaluates the expression and returns the
date of the first day specified in
<dayname> (a string containing “MONDAY”,
“TUESDAY”, etc.) following the date in the
expression.

NUMTODSINTERVAL
(<number>, <unit>)

Converts the number to an interval in
the unit specified (DAY, HOUR, MINUTE,
SECOND).

NUMTOYMINTERVAL
(<number>, <unit>)

Converts the number to an interval in the
unit specified (YEAR, MONTH).

ROUND(<expression>,
<interval>)

Rounds a date value to the interval specified.

SESSIONTIMEZONE Obtains the time zone of the current session.

SYSDATE Obtains the current date and time on the
database server.

SYSTIMESTAMP Obtains the current date, time, and time zone
on the database server.

TO_DATE(<expression>,
<format>)

Converts the string expression to a date data
type using the format specified.

TO_DSINTERVAL
(<expression>)

Converts the string expression to a
days-to- seconds interval.

TO_TIMESTAMP
(<expression>, <format>)

Converts the string expression to a time-
stamp data type using the format specified.

TO_TIMESTAMP_TZ
(<expression>, <format>)

Converts the string expression to a
 timestamp with time zone data type using
the format specified.

TO_YMINTERVAL Converts the string expression to a
years-to-months interval.

TRUNC(<expression>,
<interval>)

Truncates a date value to the interval
specified.

904 Appendix C Date and Time Types, Operations, and Functions

PostgreSQL

Data Types Supported

DATE

TIME (with or without time zone)

TIMESTAMP (with or without time zone)

INTERVAL

Arithmetic Operations Supported

DATE +/− INTERVAL = TIMESTAMP

DATE +/− numeric = DATE

DATE + TIME = TIMESTAMP

DATE − DATE = integer

TIME +/− INTERVAL = TIME

TIME − TIME = INTERVAL

TIMESTAMP +/− INTERVAL = TIMESTAMP

TIMESTAMP − TIMESTAMP = INTERVAL

INTERVAL +/− INTERVAL = INTERVAL

INTERVAL * numeric = INTERVAL

INTERVAL / numeric = INTERVAL

Functions

Function Name Description

AGE(<timestamp>,
<timestamp>)

Subtract arguments, producing a “symbolic”
result that uses years and months.

AGE(<timestamp>) Subtract from current_date (at midnight).

CLOCK_TIMESTAMP() Current date and time (changes during state-
ment execution).

CURRENT_DATE Current date.

CURRENT_TIME Current time of day.

CURRENT_TIMESTAMP Current date and time (start of current
transaction).

 PostgreSQL 905

Function Name Description

DATE_PART(<text>,
<timestamp>)

Get subfield specified by <text> (‘year’, ‘month’,
‘day’, etc.) from <timestamp> (equivalent to
EXTRACT)

DATE_PART(<text>,
<interval>)

Get subfield specified by <text> (‘day’, ‘minute’,
‘second’, and so on) from <interval> (equivalent
to EXTRACT)

DATE_TRUNC(<text>,
<timestamp>)

Truncate <timestamp> to precision specified by
<text> (‘microseconds’, ‘milliseconds’, ‘minute’,
and the like)

EXTRACT(<text> FROM
<timestamp>)

Get subfield specified by <text> (‘year’, ‘month’,
‘day’, and so on) from <timestamp>

EXTRACT(<text> FROM
<interval>)

Get subfield specified by <text> (days, minutes,
seconds, and the like) from <interval>

ISFINITE(<date>) Test for finite date (not +/− infinity)

ISFINITE(<timestamp>) Test for finite time stamp (not +/− infinity)

ISFINITE(<interval>) Test for finite interval

JUSTIFY_DAYS
(<interval>)

Adjust interval so 30-day time periods are
 represented as months

JUSTIFY_HOURS
(<interval>)

Adjust interval so 24-hour time periods are
 represented as day

JUSTIFY_INTERVAL
(<interval>)

Adjust interval using justify_days and justify_
hours, with additional sign adjustments

LOCALTIME Current time of day

LOCALTIMESTAMP Current date and time (start of current
transaction)

NOW() Current date and time (start of current
transaction)

STATEMENT_
TIMESTAMP()

Current date and time (start of current
statement)

TIMEOFDAY() Current date and time (like clock_timestamp,
but as a text string)

TRANSACTION_
TIMESTAMP()

Current date and time (start of current
transaction)

This page intentionally left blank

 907

D
Suggested Reading

These are the books I recommend you read if you want to learn more

about database design or expand your knowledge of SQL. Keep in mind

that some of these books will be challenging because they are more tech-

nical in nature. Also, some authors assume that you have a fairly signifi-

cant background in computers, databases, and programming.

Database Books

Connolly, Thomas, and Carolyn Begg. Database Systems: A Practical

Approach to Design, Implementation, and Management (6th ed.). Essex,

England: Addison-Wesley, 2014.

Coronel, Carlos and Steven Morris. Database Systems: Design,

 Implementation, and Management (11th ed.). Stamford, CT: Cengage

Learning, 2015.

Date, C.J. An Introduction to Database Systems (8th ed.). Boston,

MA: Addison-Wesley, 2003.

Date, C.J. Database in Depth: Relational Theory for Practitioners.

 Sebastopol, CA: O’Reilly Media, 2005.

Date, C.J. Database Design and Relational Theory: Normal Forms and

All That Jazz. Sebastopol, CA: O’Reilly Media, 2012.

Hernandez, Michael J. Database Design for Mere Mortals (3rd ed.).

 Boston, MA: Addison-Wesley, 2013.

908 Appendix D Suggested Reading

Books on SQL

Bowman, Judith S., Sandra L. Emerson, and Marcy Darnovsky.

The Practical SQL Handbook: Using SQL Variants (4th ed.). Boston,

MA: Addison-Wesley, 2001.

Celko, Joe. Joe Celko’s SQL for Smarties: Advanced SQL Programming

(5th ed.). Burlington, MA: Morgan Kaufmann Publishers, 2014.

Date, C.J., and Hugh Darwen. A Guide to the SQL Standard (4th ed.).

Reading, MA: Addison-Wesley, 1996.

Rockoff, Larry. The Language of SQL (2nd ed.). Boston, MA:

 Addison-Wesley, 2016.

Viescas, John L., Douglas J. Steele, and Ben G. Clothier. Effective

SQL: 61 Ways to Write Better SQL. Boston, MA: Addison-Wesley, 2016.

 909 909

Index

Symbols
* (asterisk), 195
|| (concatenation operator), 138
> (greater than), 186–188
>= (greater than or equal to), 186
< (less than), 186–188
<= (less than or equal to), 186
() (parentheses), 144, 210–211, 216

CASE (conditional expressions), 684
% (percent sign), 195
? (question mark), 195
_ (underscore), 195

Numbers
2016 SQL Standard, 4

A
ABS, 142
Access, CASE (conditional expressions),

684
Actian, 74
adding sorting specifications to UNION,

382
aggregate expressions, 445
aggregate functions, 444–446, 798–799

AVG, calculating mean values,
451–452

Bowling League Database, 844–846
COUNT, 406–408, 446
COUNT (value expression), 448–449
COUNT(*), 446

counting all the rows, 446–448

in filters, 457–459
grouping data, 477–478
MAX, 406–408

finding largest values, 452–454
MIN, finding smallest values,

454–455
Null values, 445
OVER(), 803–805
Sales Orders Database, 847–850
sample statements, 459–466

Bowling League Database, 463–465
Entertainment Agency Database,

461–462
Recipes Database, 465–466
Sales Orders Database,

460–461
School Scheduling Database,

462–463
School Scheduling Database, 851–852
subqueries, 457–458
SUM, computing totals, 450–451
syntax diagrams, 444
using more than one function, 455–457
windows functions, 827–834

alias names, assigning to tables, INNER
JOIN, 282–284

ALL, 371, 375, 417–420
all rows, deleting with DELETE statement,

605–607
alphabetical order, sorting by, 108
American National Standards Institute

(ANSI), 2, 75
evolution of SQL/86, 76–79

910 analytical databases

analytical databases, 16
AND, 205–206

finding multiple matches in the same
table

EXISTS, 646–648
GROUP BY, 648–652
HAVING, 648–652
IN, 644–646
INNER JOIN, 642–644

sample statements, 652–657
Bowling League Database,

663–668
Entertainment Agency Database,

657–659
Recipes Database, 668–671
Sales Orders Database, 653–657
School Scheduling Database,

659–663
sets with multiple AND criteria,

628–629
using with OR, 209–211

ANSI (American National Standards
Institute), 2, 75

evolution of SQL/86, 76–79
ANSI NCITS-H2, 80
ANSI/ISO standards, 76–79
ANY, 417–420
APPROXIMATE NUMERIC, 129
arithmetic operations

IBM DB2, 890–908
Microsoft Access, 893
Microsoft SQL Server, 895
MySQL, 898
Oracle, 902
PostgreSQL, 904

artificial primary keys, 60
assigning correlation names to tables,

INNER JOIN, 282–284
asterisks (*), 195

shortcuts, 102–103
ASYMMETRIC, 189–190
attributes. See columns
AVG, calculating mean values,

451–452
avoiding HAVING COUNT trap,

513–518

B
base tables, views (relational databases), 23
BETWEEN comparisons, 189–190
BETWEEN predicate, 178, 189–192

checking for overlapping ranges,
219–220

BETWEEN…AND, 189
BINARY, 128
blank spaces, 160
BOOLEAN, 129
Bowling League Database

aggregate functions, 463–465, 844–846
AND, 663–668
CASE (conditional expressions),

702–705
CUBE, 783–784
DELETE statement, 618–620
driver tables, 742–743
expressions, 169–171
GROUP BY, 496–499
GROUPING SETS, 786–787
HAVING clause, 525–526
INNER JOIN

looking for matching values, 311–314
more than two tables,

302–305
two tables, 298–299

INSERT statement, 596–597
NOT, 663–668
NTILE(), 842–843
OUTER JOIN, 359–361
search conditions, 231–232
SELECT statement, 119–120
subqueries

in expressions, 428–429
in filters, 434–435

UNION, 392–394
unlinked tables, 734–735
UPDATE statement, 565–568

C
calculated columns, 40
calculating

mean values with AVG, 451–452
row number with ROW_NUMBER,

814–818

 comparison predicate 911

totals on combinations using CUBE,
765–770

Call-Level Interface (CLI), 80
Cartesian product, 277–278, 325, 711–712
cascade deletion rule, 63
CASE (conditional expressions), 678

parentheses, 684
reasons for using, 678
sample statements, 692–693

Bowling League Database, 702–705
Entertainment Agency Database,

696–698
Sales Orders Database,

693–696
School Scheduling Database, 698–702

searched CASE, solving problems,
688–691

simple CASE, solving problems,
683–687

syntax, 678–682
WHERE clause, 691

CASE expression, syntax diagrams, 679
case sensitivity, 183

string comparison, 197
CAST function

changing data types, 130–132
concatenation expressions, 141

CEIL, 142
Chamberlin, Dr. Donald, 72
changing, data types, CAST function,

130–132
CHARACTER, 127
character string literals, 133–134
checking, relationships, INNER JOIN,

291–292
classic set operations versus SQL,

259–262
EXCEPT, 265–268
INTERSECT, 262–265
UNION, 268–271

clauses
FROM clause, 279–280, 343

embedding SELECT statements, 286
OUTER JOIN, 324–325, 327

CORRESPONDING clause, 373
HAVING. See HAVING clause

ORDER BY clause. See ORDER BY
clause

SELECT statement, 91, 92–93
USING clause, 280–281
VALUES clause, INSERT statement,

575–578
WHERE clause. See WHERE clause

CLI (Call-Level Interface), 80
cloud servers, 83
Codd, Dr. Edgar F.16–17, 72
collating sequences, 107
column expressions, subqueries,

402–405, 422–423
column references, 275–276

syntax diagrams, 276
column restrictions, GROUP BY,

486–488
columns

calculated columns, 40
counting values in, 448–449
fine-tuning, 35

naming conventions, 35–38
structure of columns, 38–40

mixing with expressions,
481–483

multipart columns, 39
resolving, 40–43

multiple columns, updating, 541–543
multivalued columns, 39

resolving, 43–45
relational databases, 21
requesting all columns with SELECT

statement, 101–103
resolving duplicate columns, 50–56
retrieving multiple columns with

SELECT statement, 100–101
combining

sets, UNION, 257–259, 268–271
UNION. See UNION

commercial implementations of SQL, 83
COMMIT, 540
common values, finding with INTERSECT,

262–265
comparing string values, 181–184
comparison predicate, 178, 181

aggregate functions as filters, 457–458
comparing string values, 181–184

912 comparison predicate

equality and inequality, 185–186
less than and greater than, 186–188

composite primary keys, 57
Computer Associates International,

Inc., 74
computing totals with SUM, 450–451
concatenation expressions, 138–141

CAST function, 141
syntax diagrams, 138

conditional expressions. See CASE
(conditional expressions)

conditions
expressing, 225–226
multiple conditions, 204–205

converting values into data types, CAST
function, 130–132

correlation names, assigning to tables
(INNER JOIN), 282–284

CORRESPONDING clause, 373
COUNT, 406–408, 445–446

counting all the rows, 446–448
counting values in columns or

expressions, 448–449
HAVING clause, 513–518

COUNT (value expression), 446, 448–449
COUNT(*), 827–828

counting all the rows, 446–448
counting

all the rows, COUNT(*), 446–448
values in columns or expressions,

448–449
CROSS JOIN, 713

deciding when to use, 713–714
sample statements, 725–726
unlinked tables, 711–712, 715–716

CUBE, 778–779
Bowling League Database, 783–784
calculating totals on combinations,

765–770
Sales Orders Database, 784–786

D
data

fetching from two tables
with JOIN, 370
with UNION, 371

grouping, 472–474

with aggregate functions, 477–478
with GROUP BY. See GROUP BY
mixing columns and expressions,

481–483
versus information, 93–95
inserting

with INSERT statements. See INSERT
statement

with SELECT expressions, 581–587
ranking, with RANK(), 818–824
splitting into quintiles, 824–827
unlinked data. See unlinked data

data types
APPROXIMATE NUMERIC, 129
BINARY, 128
BOOLEAN, 129
changing with CAST function, 130–132
CHARACTER, 127
DATETIME, 129
EXACT NUMERIC, 128
extended data types, 130
for IBM DB2, 857, 889
INTERVAL, 129, 147–148
JOIN eligible data types, 275
for Microsoft Access, 893
for Microsoft SQL Server, 895
MySQL, 897
NATIONAL CHARACTER, 128
Oracle, 901
PostgreSQL, 904

data warehouses, 19
database design, 30–31, 34–35
database structures, 34–35
database theory, 30–31
databases

analytical databases, 16
operational databases, 16
relational database model,

16–17
relational databases. See relational

databases
sample databases, 9–11
types of, 15–16

DATE, 136, 138
Date, C. J., 76
date and time arithmetic expressions,

138, 146

 Entertainment Agency Database 913

date expressions, 147–148
time expressions, 149–150

date expressions, 147–148, 156–157
SELECT statement, time expressions,

156
syntax diagrams, 147

DATETIME, 129
datetime literals, 135–138
DB2, 74
DEFAULT keyword, 576
default pad character, 184
degree of participation, relationships,

66–68
DELETE statement, 604–605

deleting
all rows, 605–607
some rows, 607–611

sample statements, 612–613
Bowling League Database, 618–620
Entertainment Agency Database,

614–617
Sales Orders Database, 613–614
School Scheduling Database,

617–618
syntax diagrams, 604
uses for, 611–612
VALUES clause, 603–604
WHERE clause, 603–604

deleting. See also resolving
all rows with DELETE statement,

605–607
duplicate rows with SELECT statement,

50–56
some rows with DELETE statement,

607–611
deletion rule, relationships,

63–64
delimited identifiers, 37, 48
DENSE_RANK(), 820, 823–824
derived tables, 284
descending order, sorting by, 109
design, database design, 30–31, 34–35
diagrams. See also Appendix A; syntax

diagrams
predicates, 681–682
Search Condition, 680
SELECT queries, 106

SELECT statement, 92
utilizing, 5–9

difference, 243, 250
problems you can solve with, 256–257
result sets, 252–256
set theory, 250–252

DISTINCT, 103–105, 415, 576
GROUP BY, 485
MAX, 454
MIN, 455
UNION, 389

driver tables, 717
Bowling League Database, 742–743
Entertainment Agency Database,

737–739
Sales Orders Database, 736–737
School Scheduling Database,

739–742
setting up, 717–720
using, 720–725

dynamic data, 16

E
eliminating. See deleting
embedding

INNER JOIN in SELECT statements,
284–286

JOINs within JOINs, 286–291
OUTER JOIN, 333–344

SELECT statements in OUTER JOINs,
330–333

Entertainment Agency Database
aggregate functions, 461–462
AND, 657–659
CASE (conditional expressions),

696–698
DELETE statement, 614–617
driver tables, 737–739
expressions, 165–167
GROUP BY, 493–494
GROUPING SETS, 787–788
HAVING clause, 521–522
INNER JOIN

looking for matching values,
309–311

more than two tables, 301–302
two tables, 296–297

914 Entertainment Agency Database

INSERT statement, 593–595
NOT, 657–659
NTILE(), 843–844
OUTER JOIN, 354–355
ROW_NUMBER(), 835–837
search conditions, 228–230
SELECT statement, 116–117
subqueries

in expressions, 426–427
in filters, 432–433

UNION, 389–390
unlinked tables, 728–731
UPDATE statement, 558–562

Entry SQL, 78
equality, comparison predicate, 185–186
ESCAPE option, LIKE predicate,

198–199
Euler, Leonard, 246–247
Euler diagram, 246–247
events, relational databases, 20
evolution of SQL/86, 76–79
EXACT NUMERIC, 128
EXCEPT, 265–268
excluding rows with NOT, 201–204,

211–214
executing queries, 112
EXISTS, 420–422

AND, 654–655, 657–658
finding multiple matches in the same

table, 646–648
EXP, 142
explicit values, specifying,

132–133
expressing conditions, 225–226
expressions, 126

aggregate expressions, 445
counting values in, 448–449
grouping with GROUP BY, 488–490
mixing with columns, 481–483
sample statements, 163

Bowling League Database, 169–171
Entertainment Agency Database,

165–167
Sales Orders Database,

164–165
School Scheduling Database,

167–169

SELECT clause, 150–151
concatenation expressions, 151–152
naming, 152–154

SELECT expression, 372
SELECT statement

date expressions, 156–157
mathematical expressions, 154–156

subqueries, sample statements,
425–430

types of
data, 127–130
concatenation expressions, 138–141
date and time arithmetic expressions,

138, 146–150
mathematical expressions, 138,

142–146
UPDATE expressions, subqueries,

548–551
value expressions, 157–159

syntax diagrams, 549
extended data types, 130
eXtensible Markup Language (XML), 19
extensions, SQL/92, 79

F
Federal Information Processing Standard

(FIPS), 80
fetching data

from two tables with JOIN, 370
from two tables with UNION,

371
fields. See columns
filter rows, subqueries, 543–546
filtering

deciding between WHERE and
HAVING, 510–513

grouped data, 506–510
filters

aggregate functions, 457–459
subqueries, 408–411
subqueries as, 423–424

sample statements, 430–437
finding

common values, INTERSECT,
262–265

largest values with MAX, 452–454

 grouping 915

matching values with INNER JOINs,
293–294

sample statements, 306–316
missing values

EXCEPT, 265–268
OUTER JOIN, 349

multiple matches in the same table
EXISTS, 646–648
GROUP BY, 648–652
HAVING, 648–652
IN, 644–646
INNER JOIN, 642–644

partially matched information, OUTER
JOIN, 349–350

related rows, INNER JOIN, 293
smallest values with MIN, 454–455

fine-tuning
columns, 35

naming conventions, 35–38
resolving multipart columns, 40–43
resolving multivalued columns, 43–45
structure of columns, 38–40

tables, 46
naming conventions, 46–48
relationships, 60–63
relationships, deletion rule, 63–64
relationships, participation, 64–68
resolving duplicate columns, 50–56
structure of tables, 48–50

FIPS (Federal Information Processing
Standard), 80

FLOOR, 142
foreign keys, relational databases, 22–23
FROM clause, 279–280, 343

embedding, SELECT statements, 286
INNER JOIN, 277
OUTER JOIN, 324–325, 327
SELECT statement, 92, 331

FULL OUTER JOIN, 344–347
non-key values, 347–348
syntax, 344–347
syntax diagrams, 344

Full SQL, 79
functions

aggregate functions. See aggregate
functions

CAST function, 130–132

IBM DB2, 890–892
Microsoft Access, 893–894
Microsoft SQL Server, 896–897
MySQL, 898–901
Oracle, 902–903

future of SQL (Structured Query
Language), 83–84

G
generating primary key values with

INSERT statements, 578–580
greater than (>), 186–188
greater than or equal to (>=), 186
GROUP BY, 475, 692, 725, 757, 761

column restrictions, 486–488
finding multiple matches in the same

table, 648–652
grouping expressions, 488–490
mixing columns and expressions,

481–483
versus OVER(), 800
sample statements, 491–501

Bowling League Database, 496–499
Entertainment Agency Database,

493–494
Recipes Database, 499–500
Sales Orders Database, 491–492
School Scheduling Database,

495–496
SELECT statement, 93
sets with multiple NOT criteria,

638–641
simulating SELECT DISTINCT

statements, 484–485
in subqueries in WHERE clauses,

483–484
syntax, 475–481, 753
syntax diagrams, 475
uses for, 490–491

grouped data, filtering, 506–510
grouping

calculating totals on combinations with
CUBE, 765–770

creating a union of totals with
GROUPING SETS, 771–775

CUBE, 778–779

916 grouping

data, 472–474
aggregate functions, 477–478
GROUP BY. See GROUP BY
mixing columns and expressions,

481–483
expressions, with GROUP BY,

488–490
GROUPING SETS, 775–776
ROLLUP, 777–778
sample statements, 780–781

CUBE, 783–786
GROUPING SETS, 786–788
ROLLUP, 781–783

in sub-groups, 750–753
totals in hierarchies, ROLLUP,

754–765
variations on techniques,

775–780
GROUPING function, 758
GROUPING SETS, 775–776

Bowling League Database, 786–787
creating union of totals, 771–775
Entertainment Agency Database,

787–788

H
HAVING

filtering, 510–513
grouped data, 508–510

finding multiple matches in the same
table, 648–652

sample statements, 519–527
Bowling League Database, 525–526
Entertainment Agency Database,

521–522
Recipes Database, 526–527
Sales Orders Database, 520–521
School Scheduling Database,

522–525
SELECT statement, 93
sets with multiple NOT criteria,

638–641
uses for, 518–519

HAVING COUNT trap, avoiding,
513–518

Hernandez, Mike, 17
hierarchies, totals, ROLLUP, 754–765

history of SQL (Structured Query
Language)

commercial implementations, 83
early vendor implementations, 73–74
origins of, 72–73
standards, 75–76

I
IBM, 18, 19, 74

early vendor implementations, 73–74
System R, 72, 73

IBM DB2
arithmetic operations, 890–908
data types, 857, 889
functions, 890–892
Identity data type, 579

identifiers
delimited identifiers, 37, 48
regular identifiers, 37, 48

Identity data type, 579
IN, finding multiple matches in the same

table, 644–646
IN predicate, 178

membership condition, 192–194
for subqueries, 411–417

INCITS DM32.2, 80
inequality, comparison predicate, 185–186
information

versus data, 93–95
sorting with SELECT statement,

105–107
Ingres, 74
INGRES (Interactive Graphics Retrieval

System), 18
Inmon, William H., 19
INNER JOIN, 274, 713

assigning correlation names to tables,
282–284

FROM clause, 277
embedding

JOINs within JOINs, 286–291
SELECT statements, 284–286

finding
matching values, 293–294
multiple matches in the same table,

642–644
related rows, 293

 less than (<) 917

relationships, checking,
291–292

sample statements, 295
looking for matching values, 306–316
more than two tables, 300–306
two tables, 295–300

syntax, 276
syntax diagrams, 277
tables, 277–282

INSERT INTO, 576
INSERT statement, 573–575

generating primary key values,
578–580

inserting values, 575–578
sample statements, 588–589

Bowling League Database, 596–597
Entertainment Agency Database,

593–595
Sales Orders Database, 589–592
School Scheduling Database,

595–596
SELECT expression, 581
syntax diagrams with VALUES clause,

575
uses for, 587–588

inserting
data

with INSERT statement. See INSERT
statement

with SELECT expressions, 581–587
values, with INNER JOINs, 575–578

Interactive Graphics Retrieval System
(INGRES), 18

Intermediate SQL, 78
International Organization for

Standardization. See ISO
(International Organization for
Standardization)

INTERSECT, 262–265
intersection, 243, 244

problems you can solve with,
249–250

result sets, 246–249
set theory, 244–245

INTERVAL, 129, 147–148
IS NULL, 634–635
IS NULL predicate, 178

ISO (International Organization for
Standardization), 2, 76

evolution of SQL/86, 76–79

J
JOIN, 273–274

determining what is legal to join,
275

embedding within JOINs, 286–291
OUTER JOIN, 333–344

fetching data from two tables, 370
INNER JOIN. See INNER JOIN
NATURAL JOIN, 329–330
OUTER JOIN. See OUTER JOIN
UNION JOIN, 348
UPDATE clause, 546–548

JOIN eligible data types, 275

K
keys

primary keys, tables, 56–60
relational databases, 22–23

keywords
DATE, 138
DEFAULT keyword, 576
DISTINCT, 103–105, 576
GROUP BY, 93
HAVING, 93
INSERT INTO, 576
special predicate keywords

ALL, 417–420
ANY, 417–420
EXISTS, 420–422
IN, 411–417
SOME, 417–420

TIME, 138
TOP, 111
VALUES, 576
WHERE, 93

L
largest values, finding with MAX,

452–454
LEFT OUTER JOIN, 323–324, 332
less than (<), 186–188

918 less than or equal to (<=)

less than or equal to (<=), 186
LIKE predicate, 178

ESCAPE option, 198–199
pattern match condition,

194–199
linking

multiple tables, embedding JOINs
within JOINs, 286–291

SELECT statements with INTERSECT,
265

linking tables, 44–45
literal values, 132–133

character string literals, 133–134
datetime literals, 135–138
numeric literals, 135

LN, 142

M
mandatory participation, 64
many-to-many relationships,

61–62
relational databases, 27–29

matches, finding multiple matches in the
same table

EXISTS, 646–648
GROUP BY, 648–652
HAVING, 648–652
IN, 644–646
INNER JOIN, 642–644

matching values, finding with INNER
JOINs, 293–294

sample statements, 306–316
mathematical expressions, 138,

142–146
Nulls, 163
parentheses, 144
SELECT statement, 154–156
syntax diagrams, 143

MAX, 406–408
finding largest values,

452–454
mean values, calculating with AVG,

451–452
membership condition, IN predicate,

192–194
mere mortals, 1–2
Microsoft Access, 19, 195

arithmetic operations, 893
data types, 893
functions, 893–894

Microsoft Office Access, CASE (conditional
expressions), 684

Microsoft SQL Server
arithmetic operations, 895
data types, 895
functions, 896–897
Identity data type, 579
ORDER BY clause, 653, 757

MIN, finding smallest values, 454–455
missing values, 161

finding with OUTER JOIN, 349
MOD, 142
multicolumn sorts, 109–110
multipart columns, 39

resolving, 40–43
multiple columns, updating, 541–543
multiple conditions, 204–205
multiple tables, linking (embedding JOINs

within JOINs),
286–291

multivalued columns, 39
resolving, 43–45

MySQL
arithmetic operations, 898
data types, 897
functions, 898–901
ROLLUP, 765

N
names, qualifying in ON clause, 279–280
naming conventions

for columns, 35–38
for tables, 46–48

naming expressions (SELECT clause),
152–154

NATIONAL CHARACTER, 128
National Committee for Information

Technology Standards (NCITS), 80
National Institute of Standards and

Technology (NIST), 80
NATURAL JOIN, 281, 329–330
NCITS (National Committee for

Information Technology Standards),
80

 OUTER JOIN 919

nested parenthetical operations, 144
NEXTVAL property, Oracle, 579
NIST (National Institute of Standards and

Technology), 80
non-key values, FULL OUTER JOIN,

347–348
NOT

excluding rows, 201–204, 211–214
sample statements, 652–657

Bowling League Database, 663–668
Entertainment Agency Database,

657–659
Recipes Database, 668–671
Sales Orders Database, 653–657
School Scheduling Database,

659–663
sets with multiple NOT criteria,

629–630
GROUP BY, 638–641
HAVING, 638–641
NOT EXISTS, 637–638
NOT IN, 635–637
OUTER JOIN, 632–635

syntax diagrams, 202
NOT EXISTS, sets with multiple NOT

criteria, 637–638
NOT IN, sets with multiple NOT criteria,

635–637
NTILE(), 824–827

Bowling League Database, 842–843
Entertainment Agency Database,

843–844
Null, 159–162, 199–201, 221–225

aggregate functions, 445
problems with, 162–163

Null condition, syntax diagrams,
199

numeric literals, 135

O
objects, relational databases, 20
ODBC (Open Database Connectivity), 80
ON clause

qualifying names, 279–280
search conditions, 278

one-to-many relationships, 61
relational databases, 26

one-to-one relationships, 60–61
relational databases, 25–26

Open Database Connectivity (ODBC), 80
operational databases, 16
operations, set operations, 243–244
operators

AND, 205–206
using with OR, 209–211

NOT operator, excluding rows, 211–214
OR, 206–209

determining result sets, 224
using with AND, 209–211

optional participation, 64
OR, 205, 206–209

determining result sets, 224
using with AND, 209–211

Oracle
arithmetic operations, 902
data types, 901
functions, 902–903
NEXTVAL property, 579

Oracle Corporation, 74
ORDER BY, 106–107, 474, 652–653, 692,

725, 757
predicates, 805–810
sorting SELECT queries, 108–111
UNION, 382

order of precedence, 143
search conditions, 214–215

less is more, 217–218
prioritizing, 215–217

origins of SQL (Structured Query
Language), 72–73

orphaned rows, 63
OUTER JOIN, 321–323, 349, 713

embedding
JOINs within JOINs, 333–344
SELECT statements, 330–333

finding
missing values, 349
partially matched information,

349–350
FULL OUTER JOIN. See FULL OUTER

JOIN
grouping data types, 478
LEFT OUTER JOIN, 323–324
RIGHT OUTER JOIN, 323–324

920 OUTER JOIN

sample statements, 350–365
Bowling League Database, 359–361
Entertainment Agency Database,

354–355
Recipes Database, 362–364
Sales Orders Database, 351–353
School Scheduling Database, 356–359

sets with multiple NOT criteria,
632–635

syntax, 324–330
tables, 324–330

OVER(), 799, 811
aggregate functions, 803–805
versus GROUP BY, 800
predicates

ORDER BY, 805–810
PARTITION BY, 800–801
ROWS (or RANGE), 811–814

overlapping ranges, checking for, 219–221

P
parentheses, 210–211, 216

CASE expression, 684
mathematical expressions, 144

partially matched information, finding
with OUTER JOIN, 349–350

participation, relationships, 64–68
PARTITION BY, 800–801
pattern match condition, 194–199

syntax diagrams, 195
pattern strings, samples, 195–196
percent sign (%), 195
PERCENT_RANK(), 820–821, 824
PostgreSQL, 904–905

arithmetic operations, 904
data types, 904
functions, 904–905

POWER, 142
predicates, 93, 177

BETWEEN . . . AND, 189
BETWEEN, 178

range condition, 189–192
combining with AND, 205–206
comparison, 178
comparison predicate, aggregate

functions as filters,
457–458

diagrams, 681–682
IN, 178

membership condition,
192–194

IS NULL, 178
unknown values, 199–201

LIKE, 178
ESCAPE option, 198–199
pattern match condition,

194–199
OR, 206–209
ORDER BY, 805–810
PARTITION BY, 800–801
ROWS (or RANGE), 811–814

primary key values, generating with
INSERT statements,
578–580

primary keys, 20
relational databases, 22–23
tables, 56–60

primary tables, one-to-one relationships,
25

prioritizing search conditions, order of
precedence,
215–217

problems, solving
with searched CASE, 688–691
with simple CASE, 683–687
with unlinked data, 714–716

Q
qualifying names, ON clause, 279–280
quantified predicates, (SOME, ANY, ALL),

417–420
QUEL (Query Language), 74
queries

executing, 112
RDBMS (relational database

management system), 24
SELECT queries. See SELECT query

query expression, 106–107
Query Language (QUEL), 74
query optimizers, 218
query specification, 106–107
question mark (?), 195
quintiles, splitting, data, 824–827
quotes, single quote, 133

 ROLLBACK 921

R
RANGE, 811–814, 827–828
range condition, 189–192
ranges, overlapping ranges (checking for),

219–221
RANK(), 818–824
ranking data, with RANK(), 818–824
RDBMS (relational database management

system), 17–19, 74
REAL, 146
reasons for learning SQL (Structured

Query Language), 84
Recipes Database

aggregate functions, 465–466
AND, 668–671
GROUP BY, 499–501
HAVING clause, 526–527
INNER JOIN

looking for matching values,
314–315

more than two tables, 305–306
two tables, 299–300

NOT, 668–671
OUTER JOIN, 362–364
ROW_NUMBER(), 837–838
search conditions, 232–233
SELECT statement, 120–121
subqueries

in expressions, 429–430
in filters, 435–437

UNION, 394–395
records. See rows
referential integrity, 62–63
refining searches, 176
regular identifiers, 37, 48
related rows, finding with INNER JOINs,

293
relational database management system

(RDBMS), 17–19, 74
relational database model, 16–17
relational databases

columns, 21
keys, 22–23
reasons for learning, 29–30
relations, 19
relationships, 25

many-to-many, 27–29

one-to-many, 26
one-to-one, 25–26

rows, 21–22
tables, 20–21
views, 23–24

Relational Software, Inc., 74
Relational Technology, Inc., 74
relations. See tables
relationships

checking with INNER JOIN,
291–292

deletion rule, 63–64
many-to-many relationships,

61–62
one-to-many relationships, 61
one-to-one relationships,

60–61
participation, 64–68
relational databases, 25

many-to-many, 27–29
one-to-many, 26
one-to-one, 25–26

tables, 60–63
requests

translating into SQL, SELECT
statement, 95–99

writing with UNION, 372
combining complex SELECT

statements, 375–379
using simple SELECT statements,

372–375
resolving. See also deleting

duplicate columns, 50–56
multipart columns, 40–43
multivalued columns, 43–45

restrict deletion rule, 63
restrictions, column restrictions

(GROUP BY), 486–488
result sets

determining with OR, 224
difference, 252–256
intersection, 246–249
union, combining, 259–261

retrieving multiple columns, with SELECT
statement, 100–101

RIGHT OUTER JOIN, 323–324
ROLLBACK, 540

922 ROLLUP

ROLLUP, 777–778
MySQL, 765
Sales Orders Database, 781–782
sample statements, 781–782
School Scheduling Database, 782–783
totals in hierarchies, 754–765

row numbers, calculating with ROW_
NUMBER, 814–818

row subqueries, 400–402
row value constructors, 401
ROW_NUMBER(), 814–818, 827–828,

829
Entertainment Agency Database,

835–837
Recipes Database, 837–838

rows
counting with COUNT(*), 446–448
deleting all rows with DELETE

statement, 605–607
deleting some rows with DELETE

statement, 607–611
eliminating duplicates with SELECT

statement, 103–105
excluding, with NOT, 201–204,

211–214
filter rows, subqueries, 543–546
related rows, finding with INNER JOIN,

293
relational databases, 21–22
selected rows, updating, 631–633

ROWS (or RANGE), 811–814, 827–828

S
SAA (Systems Application Architecture),

80
Sales Orders Database

aggregate functions, 460–461,
847–850

AND, 653–657
CASE (conditional expressions),

693–696
CUBE, 784–786
DELETE statement, 613–614
driver tables, 736–737
expressions, 164–165
GROUP BY, 491–492
HAVING clause, 520–521

INNER JOIN
looking for matching values, 306–309
more than two tables, 300–301
two tables, 295–296

INSERT statement, 589–592
NOT, 653–657
OUTER JOIN, 351–353
ROLLUP, 781–782
search conditions, 227–228
SELECT statement, 114–115
subqueries

in expressions, 425–426
in filters, 430–431

UNION, 385–389
unlinked tables, 726–728
UPDATE statement, 554–557
windows functions, 838–839

sample databases, 9–11
sample statements

aggregate functions, 459–466
Bowling League Database, 463–465
Entertainment Agency Database,

461–462
Recipes Database, 465–466
Sales Orders Database, 460–461
School Scheduling Database,

462–463
AND, 652–657

Bowling League Database, 663–668
Entertainment Agency Database,

657–659
Recipes Database, 668–671
Sales Orders Database, 653–657
School Scheduling Database, 659–663

CASE (conditional expressions),
692–693

Bowling League Database, 702–705
Entertainment Agency Database,

696–698
Sales Orders Database, 693–696
School Scheduling Database,

698–702
CROSS JOIN, 725–726
DELETE statement, 612–613

Bowling League Database, 618–620
Entertainment Agency Database,

614–617

 sample statements 923

Sales Orders Database, 613–614
School Scheduling Database, 617–618

expressions, 163–171
Bowling League Database, 169–171
Entertainment Agency Database,

165–167
Sales Orders Database, 164–165
School Scheduling Database, 167–169

GROUP BY, 491–501
Bowling League Database, 496–499
Entertainment Agency Database,

493–494
Recipes Database, 499–500
Sales Orders Database, 491–492
School Scheduling Database,

495–496
grouping, 780–781

CUBE, 783–786
GROUPING SETS, 786–788
ROLLUP, 781–783

HAVING clause, 519–527
Bowling League Database, 525–526
Entertainment Agency Database,

521–522
Recipes Database, 526–527
Sales Orders Database,

520–521
School Scheduling Database, 522–525

INNER JOIN, 295
looking for matching values, 306–316
more than two tables, 300–306
two tables, 295–300

INSERT statement, 588–589
Bowling League Database, 596–597
Entertainment Agency Database,

593–595
Sales Orders Database, 589–592
School Scheduling Database,

595–596
NOT, 652–657

Bowling League Database, 663–668
Entertainment Agency Database,

657–659
Recipes Database, 668–671
Sales Orders Database, 653–657
School Scheduling Database,

659–663

OUTER JOIN, 350–365
Bowling League Database, 359–361
Entertainment Agency Database,

354–355
Recipes Database, 362–364
Sales Orders Database, 351–353
School Scheduling Database, 356–359

search conditions, 226–227
Bowling League Database, 231–232
Entertainment Agency Database,

228–229
Recipes Database, 232–233
Sales Orders Database, 227–228
School Scheduling Database, 230–231

SELECT queries, 113–121
SELECT statement, 113–121

Bowling League Database, 119–120
Entertainment Agency Database,

116–117
Recipes Database, 120–121
Sales Orders Database, 114–115
School Scheduling Database, 117–118

subqueries, 424–425
Bowling League Database, 428–429,

434–435
Entertainment Agency Database,

426–427, 432–433
in expressions, 425–430
in filters, 430–437
Recipes Database, 429–430, 435–437
Sales Orders Database,

425–426, 430–431
School Scheduling Database, 427–428,

433–434
UNION, 385–395

Bowling League Database, 392–394
Entertainment Agency Database,

389–390
Recipes Database, 394–395
Sales Orders Database,

385–389
School Scheduling Database,

390–392
unlinked data

driver tables, 736–743
unlinked tables, 726–736

UPDATE statement, 552–553

924 sample statements

Bowling League Database, 565–568
Entertainment Agency Database,

558–562
Sales Orders Database, 554–557
School Scheduling Database,

562–565
windows functions, 834–835

aggregate functions, 844–852
NTILE(), 842–844
RANK(), DENSE_RANK, and

PERCENT_RANK, 838–841
ROW_NUMBER(), 835–838

samples, defined pattern strings,
195–196

saved queries, RDBMS (relational
database management system), 24

saving SELECT statement, 111–112
scalar subqueries, 400, 402
schema for sample databases. See

Appendix B
School Scheduling Database

aggregate functions, 462–463,
851–852

AND, 659–663
CASE (conditional expressions),

698–702
DELETE statement, 617–618
driver tables, 739–742
expressions, 167–169
GROUP BY, 495–496
HAVING clause, 522–525
INNER JOIN

looking for matching values, 311
two tables, 297–298

INSERT statement, 595–596
NOT, 659–663
OUTER JOIN, 356–359
ROLLUP, 782–783
search conditions, 230–231
SELECT statement, 117–118
subqueries

in expressions, 427–428
in filters, 433–434

UNION, 390–392
unlinked tables, 731–734
UPDATE statement, 562–565
windows functions, 840–841

search conditions, 177
AND, 205–206
OR, 206–209
order of precedence, 214–215

less is more, 217–218
prioritizing, 215–217

sample statements, 226–233
Bowling League Database, 231–232
Entertainment Agency Database,

228–229
Recipes Database, 232–233
Sales Orders Database, 227–228
School Scheduling Database,

230–231
syntax diagrams, 205, 680

searched CASE, solving problems,
688–691

searching, for unknown values,
199–201

secondary tables, one-to-one
relationships, 25

SELECT clause, expressions, 150–151
concatenation expressions, 151–152
naming, 152–154

SELECT DISTINCT statements,
simulating, 484–485

SELECT expression, 372
inserting data, 581–587

SELECT queries, 106
diagrams, 106
sample statements, 113–121
sorting information, 108–111

SELECT statement, 90, 91–93
FROM clause, 331
clauses, 91, 92–93
complex SELECT statements,

combining, 375–379
data versus information, 93–95
date expressions, time expressions,

156
diagrams, 92
embedding

INNER JOIN, 284–286
OUTER JOINs, 330–333

expressions
date expressions, 156–157
mathematical expressions, 154–156

 some rows, deleting with DELETE statement 925

GROUP BY, syntax diagrams, 475
requesting all columns, 101–103
retrieving multiple columns,

100–101
rows, eliminating duplicates, 103–105
sample statements, 113–121

Bowling League Database, 119–120
Entertainment Agency Database,

116–117
Recipes Database, 120–121
Sales Orders Database, 114–115
School Scheduling Database,

117–118
saving, 111–112
simple SELECT statements

syntax diagrams, 403
writing requests with UNION,

372–375
sorting information, 105–107
translating requests into SQL, 95–99
WHERE clause, 176–178

using, 179–181
selected rows, updating, 631–633
SEQUEL (Structured English Query

Language), 72
SEQUEL-XRM, 72
set diagrams, 246–247
set membership, IN predicate, 411–417
set operations, 243–244

classic set operations versus SQL
EXCEPT, 265–268
INTERSECT, 262–265
UNION, 268–271

classic versus SQL, 259–262
difference, 243, 250

problems you can solve with,
256–257

result sets, 252–256
set theory, 250–252

intersection, 243, 244
problems you can solve with, 249–250
result sets, 246–249
set theory, 244–245

union, 243
combining result sets, 259–261
problems you can solve with, 261–262
set theory, 257–259

set theory
difference, 250–252
intersection, 244–245
union, 257–259

sets, 242–243, 628
AND, multiple AND criteria, 628–629
combining

with UNION, 268–271
with union, 257–259

finding multiple matches in the same
table

EXISTS, 646–648
GROUP BY, 648–652
HAVING, 648–652
IN, 644–646
INNER JOIN, 642–644

including some criteria but excluding
others, 630–631

NOT
GROUP BY, 638–641
HAVING, 638–641
multiple NOT criteria, 629–630
NOT EXISTS, 637–638
NOT IN, 635–637
OUTER JOIN, 632–635

shortcuts, requesting all columns with
SELECT statement, 101–103

simple CASE, solving problems,
683–687

simple primary keys, 57
simple SELECT statements, syntax

diagrams, 403
simple UPDATE expression, 537–538
simple WHERE clause, deleting some

rows, 607
simulating SELECT DISTINCT statements,

GROUP BY, 484–485
single quote, 133
smallest values, finding, with MIN,

454–455
solving problems

with searched CASE, 688–691
with simple CASE, 683–687
with unlinked data, 714–716

SOME, 417–420
some rows, deleting with DELETE

statement, 607–611

926 sort order

sort order, 108–109
sorting

by alphabetical order, 108
information

ORDER BY clause, SELECT queries,
108–111

SELECT statement, 105–107
UNION, 381–383

special predicate keywords, subqueries
ALL, 417–420
ANY, 417–420
EXISTS, 420–422
IN predicate, 411–417
SOME, 417–420

specifying, explicit values, 132–133
Specifying Queries As Relational

Expressions (SQUARE), 73
splitting data into quintiles, 824–827
SQL (Structured Query Language)

commercial implementations, 83
future of, 83–84
history of SQL (Structured Query

Language)
early vendor implementations,

73–74
evolution of SQL/86, 76–79
standards, 75–76

origins of, 72–73
reasons for learning, 84
set operations

classic versus SQL, 259–262
EXCEPT, 265–268
INTERSECT, 262–265
UNION, 268–271

standards. See standards
SQL Standard, structure of,

81–82
SQL/86, 76

evolution of, 76–79
SQL/89, 76–77
SQL/92, 78–79
SQL:2016, 83–84
SQL/Data System (SQL/DS), 74
SQL/DS (SQL/Data System), 74
SQRT, 142
SQUARE (Specifying Queries As

Relational Expressions), 73

standards
evolution of SQL/86, 76–79
FIPS (Federal Information Processing

Standard), 80
history of SQL (Structured Query

Language), 75–76
ODBC (Open Database Connectivity),

80
SAA (Systems Application Architecture),

80
SQL Standard, structure of, 81–82
SQL/89, 76–77
SQL/92, 78–79
X/OPEN, 79

START TRANSACTION, 540
static data, 16
Stonebraker, Michael, 74
string comparison, case sensitivity,

197
string values, comparing, 181–184
structure of

columns, fine-tuning, 38–40
databases, 34–35
SQL Standard, 81–82
tables, 48–50

Structured English Query Language
(SEQUEL), 72

sub-groups, grouping, 750–753
subqueries, 400, 422

aggregate functions, 457–458
COUNT, 406–408
MAX, 406–408

as column expressions, 402–405,
422–423

deleting some rows, DELETE statement,
609–611

in filter rows, 543–546
as filters, 408–411, 423–424
row subqueries, 400–402
sample statements, 424–425

Bowling League Database,
428–429, 434–435

Entertainment Agency Database,
426–427, 432–433

in expressions, 425–430
in filters, 430–437
Recipes Database, 429–430, 435–437

 tables 927

Sales Orders Database, 425–426,
430–431

School Scheduling Database, 427–428,
433–434

scalar subqueries, 400, 402
special predicate keywords

ALL, 417–420
ANY, 417–420
EXISTS, 420–422
IN predicate, 411–417
SOME, 417–420

table subqueries, 400, 402
UPDATE expressions, 548–551
in WHERE clauses, GROUP BY,

483–484
subtotal combinations, calculating with

CUBE, 765–770
SUM, computing totals, 450–451
SYMMETRIC, 189–190
syntax

CASE (conditional expressions),
678–682

FULL OUTER JOIN, 344–347
GROUP BY, 475–481, 753
INNER JOIN, 276
OUTER JOIN, 324–330
subqueries as column expressions,

402–405
subqueries as filters, 408–411
windows functions, 798–800

syntax diagrams
aggregate functions, 444
CASE expression, 679
column references, 276
comparison condition, 181
concatenation expressions, 138
date and time literals, 136
date expressions, 147
DELETE statement, 604
FULL OUTER JOIN, 344
INSERT statement with SELECT

expressions, 581
INSERT statement with VALUES

clause, 575
mathematical expressions, 143
naming expressions, 153
NOT operator, 202

Null condition, 199
numeric literals, 135
pattern match condition, 195
predicates, 681–682
query using INNER JOIN on two tables,

277
range condition, 189
search conditions, 205
SELECT statement that includes value

expression, 159
SELECT statement with GROUP BY

clause, 475
SELECT statement with WHERE

clause, 177
simple SELECT statements, 403
time expressions, 149
UNION JOIN, 348
UNION statement, 370
using UNION to combine two simple

SELECT statements, 372
utilizing, 5–9
Value Expression, 679
value expressions, 157, 549

System R, 18, 72, 73

T
table references, 345
table subqueries, 400, 402
tables

assigning correlation names to, INNER
JOIN, 282–284

derived tables, 284
driver tables, 717

Bowling League Database, 742–743
Entertainment Agency Database,

737–739
Sales Orders Database, 736–737
School Scheduling Database, 739–742
setting up, 717–720
using, 720–725

fine-tuning, 46
naming conventions, 46–48
relationships, 60–63
relationships, deletion rule, 63–64
relationships, participation, 64–68
resolving duplicate columns, 50–56
structure of tables, 48–50

928 tables

INNER JOIN, 277–282
linking, embedding JOINs within

JOINs, 286–291
linking tables, 44–45
naming conventions, 46–48
OUTER JOIN, 324–330
primary keys, 56–60
relational databases, 20–21
unlinked tables, 713

creating, 710–712
techniques for grouping, variations on,

775–780
TIME, 136
time expressions, 149–150

SELECT statement, 156
syntax diagrams, 149

TIMESTAMP, 137, 138
TOP, 111
totals

calculating totals on combinations,
using CUBE, 765–770

computing with SUM, 450–451
creating a union of totals, with

GROUPING SETS, 771–775
in hierarchies, ROLLUP, 754–765

transactions, 540–541
translating requests into SQL, SELECT

statement, 95–99
translation statements, 108
triggers, 549, 551
tuple. See rows
type of participation, relationships, 64–68
types of data, expressions, 127–130
types of expressions

concatenation expressions, 138–141
date and time arithmetic expressions,

138, 146
date expressions, 147–148
time expressions, 149–150

mathematical expressions, 138,
142–146

U
underscore (_), 195
UNION, 268–271, 369–372

combining three tables, 380
DISTINCT, 389

fetching data from two tables,
371

sample statements, 385–395
Bowling League Database, 392–394
Entertainment Agency Database,

389–390
Recipes Database, 394–395
Sales Orders Database, 385–389
School Scheduling Database,

390–392
sorting, 381–383
syntax diagrams, 370

combining two simple SELECT
statements, 372

uses for, 383–384
using more than once, 379–381
writing requests, 372

combining complex SELECT
statements, 375–379

using simple SELECT statements,
372–375

union, 243
problems you can solve with,

261–262
result sets, combining, 259–261
set theory, 257–259

UNION ALL, 371
UNION JOIN, 348
union of totals, creating with GROUPING

SETS, 771–775
unknown values. See Null, 161
unlinked data, 710–713

driver tables, 717
setting up, 717–720
using, 720–725

sample statements
driver tables, 736–743
unlinked tables, 726–736

solving problems, 714–716
unlinked tables, 713

Bowling League Database, 734–735
creating, 710–712
Entertainment Agency Database,

728–731
Sales Orders Database, 726–728
School Scheduling Database,

731–734

 windows functions 929

UPDATE clause, JOIN, 546–548
UPDATE expressions

simple UPDATE expression,
537–538

subqueries, 548–551
UPDATE statement, 536–537

sample statements, 552–553
Bowling League Database, 565–568
Entertainment Agency Database,

558–562
Sales Orders Database, 554–557
School Scheduling Database,

562–565
subqueries in filter rows,

543–546
updating

multiple columns, 541–543
selected rows, 631–633

uses for, 551–552
updating

multiple columns, 541–543
selected rows, 631–633

USING clause, 280–281
USING syntax, OUTER JOIN, 329

V
Value Expression, 679–680

syntax diagram, 679
value expressions, 157–159

syntax diagrams, 157, 549
values

converting into data types, CAST
function, 130–132

finding largest values, with MAX,
452–454

inserting with INSERT statements,
575–578

literal values, 132–133
matching values, finding with INNER

JOIN, 293–294
mean values, calculating with AVG,

451–452
missing values, 161

finding with OUTER JOIN, 349
non-key values, FULL OUTER JOIN,

347–348
Null, 159–162

smallest values, finding with MIN,
454–455

unknown values, 161
VALUES clause

DELETE statement, 603–604
INSERT statement, 575–578
syntax diagrams, INSERT statement,

575
VALUES keyword, 576
Venn, John, 246–247
Venn diagram, 246–247
verifying you’re updating the correct rows,

632–633
DELETE statement, 607–608

views, relational databases, 23–24
VM/CMS operating system, 74

W
WHERE clause, 176–178

CASE (conditional expressions), 691
comparison predicate, 181

comparing string values, 181–184
equality and inequality, 185–186
less than and greater than, 186–188

DELETE statement, 603–604
deleting, some rows, 607
filtering, 510–513
IS NULL, unknown values, 199–201
LIKE predicate, pattern match

condition, 194–199
IN predicate, membership condition,

192–194
range condition, 189–192
row subqueries, 401–402
SELECT statement, 93
subqueries

as filters, 423–424
GROUP BY, 483–484

using, 179–181
WIDTH_BUCKET, 142
windows functions, 794–798

aggregate functions, 827–834
calculating row number, 814–818
OVER()

ORDER BY clause, 805–810
PARTITION BY, 800–801
ROWS (or RANGE), 811–814

930 windows functions

ranking data with RANK(), 818–824
Sales Orders Database, 838–839
sample statements, 834–835

aggregate functions, 844–852
NTILE(), 842–844
RANK(), DENSE_RANK, and

PERCENT_RANK, 838–841
ROW_NUMBER(), 835–838

School Scheduling Database, 840–841
splitting data into quintiles with

NTILE(), 824–827
syntax, 798–800

WITH RECURSIVE, 717
Wong, Eugene, 74
writing requests with UNION, 372

combining complex SELECT
statements, 375–379

using simple SELECT statements,
372–375

X–Y
X3, 75
X3H2, 75–76

evolution of SQL/86, 76–79
XML (eXtensible Markup Language), 19
X/OPEN, 79

Z
zero, 160
zero-length string, 160

This page intentionally left blank

Addison-Wesley • Adobe Press • Cisco Press • Microsoft Press • Pearson IT Certification • Prentice Hall • Que • Sams • Peachpit Press

Register Your Product at informit.com/register
save 35% on your next purchase

• Automatically receive a coupon for 35% off your next purchase, valid
for 30 days. Look for your code in your InformIT cart or the Manage
Codes section of your account page.

• Download available product updates.
• Access bonus material if available.*

• Check the box to hear from us and receive exclusive offers on new
editions and related products.

*Registration benefits vary by product. Benefits will be listed on your account page under
Registered Products.

InformIT.com—The Trusted Technology Learning Source
InformIT is the online home of information technology brands at Pearson, the world’s
foremost education company. At InformIT.com, you can:

• Shop our books, eBooks, software, and video training
• Take advantage of our special offers and promotions (informit.com/promotions)
• Sign up for special offers and content newsletter (informit.com/newsletters)
• Access thousands of free chapters and video lessons

Connect with InformIT—Visit informit.com/community

http://informit.com/register
http://InformIT.com
http://InformIT.com
http://informit.com/promotions
http://informit.com/newsletters
http://informit.com/community

	Cover
	Half Title
	Title Page
	Copyright Page
	Contents
	Foreword
	Preface
	Acknowledgments
	About the Author
	Introduction
	Are You a Mere Mortal?
	About This Book
	What This Book Is Not
	How to Use This Book
	Reading the Diagrams Used in This Book
	Sample Databases Used in This Book
	“Follow the Yellow Brick Road”

	PART I: RELATIONAL DATABASES AND SQL
	Chapter 1: What Is Relational?
	Topics Covered in This Chapter
	Types of Databases
	A Brief History of the Relational Model
	In the Beginning
	Relational Database Systems

	Anatomy of a Relational Database
	Tables
	Columns
	Rows
	Keys
	Views
	Relationships

	What’s in It for You?
	Where Do You Go from Here?

	Summary

	Chapter 2: Ensuring Your Database Structure Is Sound
	Topics Covered in This Chapter
	Why Is this Chapter Here?
	Why Worry about Sound Structures?
	Fine-Tuning Columns
	What’s in a Name? (Part One)
	Smoothing Out the Rough Edges
	Resolving Multipart Columns
	Resolving Multivalued Columns

	Fine-Tuning Tables
	What’s in a Name? (Part Two)
	Ensuring a Sound Structure
	Resolving Unnecessary Duplicate Columns
	Identification Is the Key

	Establishing Solid Relationships
	Establishing a Deletion Rule
	Setting the Type of Participation
	Setting the Degree of Participation

	Is That All?
	Summary

	Chapter 3: A Concise History of SQL
	Topics Covered in This Chapter
	The Origins of SQL
	Early Vendor Implementations
	“. . . And Then There Was a Standard”
	Evolution of the ANSI/ISO Standard
	Other SQL Standards

	Commercial Implementations
	What the Future Holds
	Why Should You Learn SQL?
	Which Version of SQL Does this Book Cover?
	Summary

	PART II: SQL BASICS
	Chapter 4: Creating a Simple Query
	Topics Covered in This Chapter
	Introducing SELECT
	The SELECT Statement
	A Quick Aside: Data versus Information
	Translating Your Request into SQL
	Expanding the Field of Vision
	Using a Shortcut to Request All Columns

	Eliminating Duplicate Rows
	Sorting Information
	First Things First: Collating Sequences
	Let’s Now Come to Order

	Saving Your Work
	Sample Statements
	Summary
	Problems for You to Solve

	Chapter 5: Getting More Than Simple Columns
	Topics Covered in This Chapter
	What Is an Expression?
	What Type of Data Are You Trying to Express?
	Changing Data Types: The CAST Function
	Specifying Explicit Values
	Character String Literals
	Numeric Literals
	Datetime Literals

	Types of Expressions
	Concatenation
	Mathematical Expressions
	Date and Time Arithmetic

	Using Expressions in a SELECT Clause
	Working with a Concatenation Expression
	Naming the Expression
	Working with a Mathematical Expression
	Working with a Date Expression
	A Brief Digression: Value Expressions

	That “Nothing” Value: Null
	Introducing Null
	The Problem with Nulls

	Sample Statements
	Summary
	Problems for You to Solve

	Chapter 6: Filtering Your Data
	Topics Covered in This Chapter
	Refining What You See Using WHERE
	The WHERE Clause
	Using a WHERE Clause

	Defining Search Conditions
	Comparison
	Range
	Set Membership
	Pattern Match
	Null
	Excluding Rows with NOT

	Using Multiple Conditions
	Introducing AND and OR
	Excluding Rows: Take Two
	Order of Precedence
	Checking for Overlapping Ranges

	Nulls Revisited: A Cautionary Note
	Expressing Conditions in Different Ways
	Sample Statements
	Summary
	Problems for You to Solve

	PART III: WORKING WITH MULTIPLE TABLES
	Chapter 7: Thinking in Sets
	Topics Covered in This Chapter
	What Is a Set, Anyway?
	Operations on Sets
	Intersection
	Intersection in Set Theory
	Intersection between Result Sets
	Problems You Can Solve with an Intersection

	Difference
	Difference in Set Theory
	Difference between Result Sets
	Problems You Can Solve with Difference

	Union
	Union in Set Theory
	Combining Result Sets Using a Union
	Problems You Can Solve with Union

	SQL Set Operations
	Classic Set Operations versus SQL
	Finding Common Values: INTERSECT
	Finding Missing Values: EXCEPT (DIFFERENCE)
	Combining Sets: UNION

	Summary

	Chapter 8: INNER JOINs
	Topics Covered in This Chapter
	What Is a JOIN?
	The INNER JOIN
	What’s “Legal” to JOIN?
	Column References
	Syntax
	Check Those Relationships!

	Uses for INNER JOINs
	Find Related Rows
	Find Matching Values

	Sample Statements
	Two Tables
	More Than Two Tables
	Looking for Matching Values

	Summary
	Problems for You to Solve

	Chapter 9: OUTER JOINs
	Topics Covered in This Chapter
	What Is an OUTER JOIN?
	The LEFT/RIGHT OUTER JOIN
	Syntax

	The FULL OUTER JOIN
	Syntax
	FULL OUTER JOIN on Non-Key Values
	UNION JOIN

	Uses for OUTER JOINs
	Find Missing Values
	Find Partially Matched Information

	Sample Statements
	Summary
	Problems for You to Solve

	Chapter 10: UNIONs
	Topics Covered in This Chapter
	What Is a UNION?
	Writing Requests with UNION
	Using Simple SELECT Statements
	Combining Complex SELECT Statements
	Using UNION More Than Once
	Sorting a UNION

	Uses for UNION
	Sample Statements
	Summary
	Problems for You to Solve

	Chapter 11: Subqueries
	Topics Covered in This Chapter
	What Is a Subquery?
	Row Subqueries
	Table Subqueries
	Scalar Subqueries

	Subqueries as Column Expressions
	Syntax
	An Introduction to Aggregate Functions: COUNT and MAX

	Subqueries as Filters
	Syntax
	Special Predicate Keywords for Subqueries

	Uses for Subqueries
	Build Subqueries as Column Expressions
	Use Subqueries as Filters

	Sample Statements
	Subqueries in Expressions
	Subqueries in Filters

	Summary
	Problems for You to Solve

	PART IV: SUMMARIZING AND GROUPING DATA
	Chapter 12: Simple Totals
	Topics Covered in This Chapter
	Aggregate Functions
	Counting Rows and Values with COUNT
	Computing a Total with SUM
	Calculating a Mean Value with AVG
	Finding the Largest Value with MAX
	Finding the Smallest Value with MIN
	Using More Than One Function

	Using Aggregate Functions in Filters
	Sample Statements
	Summary
	Problems for You to Solve

	Chapter 13: Grouping Data
	Topics Covered in This Chapter
	Why Group Data?
	The GROUP BY Clause
	Syntax
	Mixing Columns and Expressions
	Using GROUP BY in a Subquery in a WHERE Clause
	Simulating a SELECT DISTINCT Statement

	“Some Restrictions Apply”
	Column Restrictions
	Grouping on Expressions

	Uses for GROUP BY
	Sample Statements
	Summary
	Problems for You to Solve

	Chapter 14: Filtering Grouped Data
	Topics Covered in This Chapter
	A New Meaning for “Focus Groups”
	Where You Filter Makes a Difference
	Should You Filter in WHERE or in HAVING?
	Avoiding the HAVING COUNT Trap

	Uses for HAVING
	Sample Statements
	Summary
	Problems for You to Solve

	PART V: MODIFYING SETS OF DATA
	Chapter 15: Updating Sets of Data
	Topics Covered in This Chapter
	What Is an UPDATE?
	The UPDATE Statement
	Using a Simple UPDATE Expression
	A Brief Aside: Transactions
	Updating Multiple Columns
	Using a Subquery to Filter Rows

	Some Database Systems Allow a JOIN in the UPDATE Clause
	Using a Subquery UPDATE Expression

	Uses for UPDATE
	Sample Statements
	Summary
	Problems for You to Solve

	Chapter 16: Inserting Sets of Data
	Topics Covered in This Chapter
	What Is an INSERT?
	The INSERT Statement
	Inserting Values
	Generating the Next Primary Key Value
	Inserting Data by Using SELECT

	Uses for INSERT
	Sample Statements
	Summary
	Problems for You to Solve

	Chapter 17: Deleting Sets of Data
	Topics Covered in This Chapter
	What Is a DELETE?
	The DELETE Statement
	Deleting All Rows
	Deleting Some Rows

	Uses for DELETE
	Sample Statements
	Summary
	Problems for You to Solve

	PART VI: INTRODUCTION TO SOLVING TOUGH PROBLEMS
	Chapter 18: “NOT” and “AND” Problems
	Topics Covered in This Chapter
	A Short Review of Sets
	Sets with Multiple AND Criteria
	Sets with Multiple NOT Criteria
	Sets Including Some Criteria but Excluding Others

	Finding Out the “Not” Case
	Using OUTER JOIN
	Using NOT IN
	Using NOT EXISTS
	Using GROUP BY/HAVING

	Finding Multiple Matches in the Same Table
	Using INNER JOIN
	Using IN
	Using EXISTS
	Using GROUP BY/HAVING

	Sample Statements
	Summary
	Problems for You to Solve

	Chapter 19: Condition Testing
	Topics Covered in This Chapter
	Conditional Expressions (CASE)
	Why Use CASE?
	Syntax

	Solving Problems with CASE
	Solving Problems with Simple CASE
	Solving Problems with Searched CASE
	Using CASE in a WHERE Clause

	Sample Statements
	Summary
	Problems for You to Solve

	Chapter 20: Using Unlinked Data and “Driver” Tables
	Topics Covered in This Chapter
	What Is Unlinked Data?
	Deciding When to Use a CROSS JOIN

	Solving Problems with Unlinked Data
	Solving Problems Using “Driver” Tables
	Setting Up a Driver Table
	Using a Driver Table

	Sample Statements
	Examples Using Unlinked Tables
	Examples Using Driver Tables

	Summary
	Problems for You to Solve

	Chapter 21: Performing Complex Calculations on Groups
	Topics in this Chapter
	Grouping in Sub-Groups
	Extending the GROUP BY Clause
	Syntax

	Getting Totals in a Hierarchy Using Rollup
	Calculating Totals on Combinations Using CUBE
	Creating a Union of Totals with GROUPING SETS
	Variations on Grouping Techniques
	Sample Statements
	Examples using ROLLUP
	Examples using CUBE
	Examples using GROUPING SETS

	Summary
	Problems for You to Solve

	Chapter 22: Partitioning Data into Windows
	Topics in this Chapter
	What You Can Do With a “Window” into Your Data
	Syntax

	Calculating a Row Number
	Ranking Data
	Splitting Data into Quintiles
	Using Windows with Aggregate Functions
	Sample Statements
	Examples Using ROW_NUMBER
	Examples Using RANK, DENSE_RANK, and PERCENT_RANK
	Examples Using NTILE
	Examples Using Aggregate Functions

	Summary
	Problems for You to Solve

	In Closing

	PART VII: APPENDICES
	Appendix A: SQL Standard Diagrams
	Appendix B: Schema for the Sample Databases
	Sales Orders Example Database
	Sales Orders Modify Database
	Entertainment Agency Example Database
	Entertainment Agency Modify Database
	School Scheduling Example Database
	School Scheduling Modify Database
	Bowling League Example Database
	Bowling League Modify Database
	Recipes Database
	“Driver” Tables

	Appendix C: Date and Time Types, Operations, and Functions
	IBM DB2
	Microsoft Access
	Microsoft SQL Server
	MySQL
	Oracle
	PostgreSQL

	Appendix D: Suggested Reading
	Database Books
	Books on SQL

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X-Y

