

SQL Practice Problems
57 beginning, intermediate, and advanced
challenges for you to solve using a "learn-

by-doing" approach

Sylvia Moestl Vasilik

Copyright © 2016

by Sylvia Moestl Vasilik

All rights reserved. This book or any portion thereof
may not be reproduced

or used in any manner whatsoever without the
express written permission

of the publisher except for the use of brief quotations
in a book review.

ISBN: 978-1540422651

Ordering Information:
Special discounts are available on quantity purchases
by corporations, associations, and others. For details,

contact the publisher at
info@SQLPracticeProblems.com.

mailto:info@SQLPracticeProblems.com

How to use this book
This edition of SQL Practice Problems assumes that
you have some basic background knowledge about
relational databases and tables. However, I’ve added
some beginner level questions to gradually introduce
the various parts of the SQL Select statement for
those with less experience in SQL.
A note on the database used—the database used for
these problems, which you will set up in the in the
Installation Instructions, is not the standard
Northwind database. There have been multiple
modifications made to it, including additional tables,
and modified data, to support the problems in this
book. Do not try to use the standard Northwind
sample database that came with previous installations
of SQL Server, many of the problems will not work.
Do you need to finish all the problems? Absolutely
not. The introductory problems are fairly simple, so
you may want to skip directly to the Intermediate
Problems section. If you’re not a beginner, but not
sure where you should start, just take a look at the
problems and expected results in the Introductory
Problems section and make sure you understand the
concepts. If you do, start working on the Intermediate

Problems section.
If you’re uncertain about how to start on a problem,
the hints are designed to gradually walk you through
how to approach each problem. Try hard to solve the
problems first without the hints! The information will
stick better if you can do that. But if you’re stuck, the
hints will get you starting in thinking with a data
mindset.
If there’s code you want to copy from this book and
run on your server—believe it or not, I recommend
that you actually type it out, instead of copying and
pasting. Why go to the hassle of re-typing
something? Science shows that the act of typing
establishes it more firmly in your mind. Sometimes
when you just copy and paste, the code just goes
directly from one window in your computer to
another, without making much impression on your
memory. But when you type it out, you have to focus
much more, and that helps tremendously with
retaining the information.
Should you search online for answers, examples,
etc.? Absolutely. I expect you do research online
throughout the book, and in many places it’s
necessary. I do not include all the syntax in this book.
In my day-to-day work as a data engineer, I would be
lost without being able to do online research.
Sometimes I search online just for a reminder of a

certain syntax, sometimes for examples of a
particular type of code, and sometimes for
approaches to specific problems. Learning to find
answers online effectively can cut your problem-
solving time dramatically.
Once you finish all the questions, you’ll have some
very useful skills in data analysis and advanced
Select statement usage. This isn’t all there is to SQL,
of course. There’s also the syntax that let’s you
actually modify data (update, insert, delete), DDL
(data definition language, i.e. how to create and
modify database objects), programming concept such
as stored procedures, and of course many other
topics.
In this book, I’m only presenting problems involving
retrieving data with Select statements, because that’s
an area where it’s hard for people to get solid
practice with real life data problems, without actually
working as a data engineer or programmer. It’s also a
critical first step for almost any of the other database
topics.
Any feedback would be greatly appreciated. For any
questions or issues, please send email to
feedback@SQLPracticeProblems.com and I will be
happy to respond.

mailto:feedback@SQLPracticeProblems.com

Thank you for purchasing this book!

Table of Contents
How to use this book
Setup
Introductory Problems
1. Which shippers do we have?
2. Certain fields from Categories
3. Sales Representatives
4. Sales Representatives in the United States
5. Orders placed by specific EmployeeID
6. Suppliers and ContactTitles
7. Products with “queso” in ProductName
8. Orders shipping to France or Belgium
9. Orders shipping to any country in Latin America
10. Employees, in order of age
11. Showing only the Date with a DateTime field
12. Employees full name
13. OrderDetails amount per line item
14. How many customers?
15. When was the first order?
16. Countries where there are customers
17. Contact titles for customers
18. Products with associated supplier names
19. Orders and the Shipper that was used

Intermediate Problems
20. Categories, and the total products in each
category
21. Total customers per country/city
22. Products that need reordering
23. Products that need reordering, continued
24. Customer list by region
25. High freight charges
26. High freight charges - 2015
27. High freight charges with between
28. High freight charges - last year
29. Inventory list
30. Customers with no orders
31. Customers with no orders for EmployeeID 4

Advanced Problems
32. High-value customers
33. High-value customers - total orders
34. High-value customers - with discount
35. Month-end orders
36. Orders with many line items
37. Orders - random assortment
38. Orders - accidental double-entry
39. Orders - accidental double-entry details
40. Orders - accidental double-entry details,
derived table

41. Late orders
42. Late orders - which employees?
43. Late orders vs. total orders
44. Late orders vs. total orders - missing employee
45. Late orders vs. total orders - fix null
46. Late orders vs. total orders - percentage
47. Late orders vs. total orders - fix decimal
48. Customer grouping
49. Customer grouping - fix null
50. Customer grouping with percentage
51. Customer grouping - flexible
52. Countries with suppliers or customers
53. Countries with suppliers or customers, version
2
54. Countries with suppliers or customers -
version 3
55. First order in each country
56. Customers with multiple orders in 5 day period
57. Customers with multiple orders in 5 day
period, version 2

ANSWERS
Introductory Problems
1. Which shippers do we have?
2. Certain fields from Categories
3. Sales Representatives

4. Sales Representatives in the United States
5. Orders placed by specific EmployeeID
6. Suppliers and ContactTitles
7. Products with “queso” in ProductName
8. Orders shipping to France or Belgium
9. Orders shipping to any country in Europe
10. Employees, in order of age
11. Showing only the Date with a DateTime field
12. Employees full name
13. OrderDetails amount per line item
14. How many customers?
15. When was the first order?
16. Countries where there are customers
17. Contact titles for customers
18. Products with associated supplier names
19. Orders and the Shipper that was used

Intermediate Problems
20. Categories, and the total products in each
category
21. Total customers per country/city
22. Products that need reordering
23. Products that need reordering, continued
24. Customer list by region
25. High freight charges
26. High freight charges - 2015

27. High freight charges with between
28. High freight charges - last year
29. Inventory list
30. Customers with no orders
31. Customers with no orders for EmployeeID 4

Advanced Problems
32. High-value customers
33. High-value customers - total orders
34. High-value customers - with discount
35. Month-end orders
36. Orders with many line items
37. Orders - random assortment
38. Orders - accidental double-entry
39. Orders - accidental double-entry details
40. Orders - accidental double-entry details,
derived table
41. Late orders
42. Late orders - which employees?
43. Late orders vs. total orders
44. Late orders vs. total orders - missing employee
45. Late orders vs. total orders - fix null
46. Late orders vs. total orders - percentage
47. Late orders vs. total orders - fix decimal
48. Customer grouping
49. Customer grouping - fix null

50. Customer grouping with percentage
51. Customer grouping - flexible
52. Countries with suppliers or customers
53. Countries with suppliers or customers, version
2
54. Countries with suppliers or customers -
version 3
55. First order in each country
56. Customers with multiple orders in 5 day period
57. Customers with multiple orders in 5 day
period, version 2

Setup
This section will help you install Microsoft SQL
Server 2016, SQL Server Management Studio
(SSMS) and also walk you through setting up the
practice database. The setup of Microsoft SQL
Server 2016 and SSMS will take about 45 minutes,
with about 5 minutes of interaction here and there. It
may take one or two reboots of your system,
depending on which version of certain support files
you have (dot.net framework).
SQL Server 2016 will run with more recent versions
of Windows, including Windows 8 and Windows 10.
Please review this requirements page
(https://msdn.microsoft.com/en-
us/library/ms143506.aspx) for full details.
Install Steps
Pre-setup - To download the backup file necessary
in step 3, as well as a PDF version of this book and a
SQL setup script to use if you already have SQL
Server 2012 or SQL Server 2014, go to
www.SQLPracticeProblems.com. Click on the “Buy
Now” button. Don’t worry, you don’t actually have
to buy anything. Use the 100% off coupon code
“KCSPurch” to bypass the credit card information,

https://msdn.microsoft.com/en-us/library/ms143506.aspx

and get a download link sent directly to your email
for free.
You may want to consider viewing this book via the
PDF instead of the paper or Kindle copy, since you’ll
be able to click on the links, and copy and paste code
more easily.
Note: If you already have SQL Server 2012 or 2014
installed, and don’t want to install SQL Server 2016,
you don’t need to. There’s a setup script called
Northwind2012.sql (also works for SQL Server
2014) included in the zipped file that will allow you
to use your existing version. Open that file, and
follow the instructions. You can then skip all the
below steps.

1. Install MS SQL Server Express Edition 2016 -
Download and install MS SQL Server Express
Edition 2016 (https://www.microsoft.com/en-cy/sql-
server/sql-server-editions-express). It’s a free
download, and the Express Edition, unlike the
Developer Edition, doesn’t require you to jump
through any hoops with Live.Microsoft.com
subscriptions.Feel free to do the Basic install unless
you need it to go in a particular location on your hard
drive.
The install of Express Edition and SSMS (in the next
step) will take about 45 minutes. Almost all of this is

https://www.microsoft.com/en-cy/sql-server/sql-server-editions-express

hands-off. A reboot may be required, depending on
some of your system files.
2. SQL Server Management Studio (SSMS) 2016 -
Download and install SQL Server Management
Studio (SSMS) 2016 (https://msdn.microsoft.com/en-
us/library/mt238290.aspx).This is the tool that allows
you to interact with SQL Server. You can either do
this as a part of the MS SQL Server Express Edition
2016 install (there’s a link at the bottom), or
download it directly.
3. Move the practice database - The Northwind
database backup file is included in the zip file that
you downloaded. Unzip the file Northwind2016.bak
and place it in the backup directory of your SQL
Server Express Edition install. With the Basic install,
the default location is here: C:\Program
Files\Microsoft SQL
Server\MSSQL13.SQLEXPRESS\MSSQL\Backup.
This practice database is based on the Microsoft
sample Northwind database, but it’s been
substantially modified, so in order to be able to solve
the problems, you’ll need this version.
4. Setup the practice database - Follow the
instructions on this video
(https://www.youtube.com/embed/mBLhXiXIHW0?
rel=0) to restore the practice database that you just
downloaded onto your freshly installed SQL Server.

https://msdn.microsoft.com/en-us/library/mt238290.aspx
https://www.youtube.com/embed/mBLhXiXIHW0?rel=0

Questions or problems with the setup? Email me at
feedback@SQLPracticeProblems.com

mailto:feedback@SQLPracticeProblems.com

Introductory Problems

1. Which shippers do we have?
We have a table called Shippers. Return all the fields
from all the shippers

Expected Results
ShipperID CompanyName Phone
----------- -- ------------------------
1 Speedy Express (503) 555-9831
2 United Package (503) 555-3199
3 Federal Shipping (503) 555-9931

(3 row(s) affected)

Hint
The standard format for a select statement that
returns all columns and all rows is “Select * from
TableName”.

2. Certain fields from Categories
In the Categories table, selecting all the fields using
this SQL:
Select * from Categories

…will return 4 columns. We only want to see two
columns, CategoryName and Description.

Expected Results
CategoryName Description
--------------- --
Beverages Soft drinks, coffees, teas, beers, and ales
Condiments Sweet and savory sauces, relishes, spreads, and seasonings
Confections Desserts, candies, and sweet breads
Dairy Products Cheeses
Grains/Cereals Breads, crackers, pasta, and cereal
Meat/Poultry Prepared meats
Produce Dried fruit and bean curd
Seafood Seaweed and fish

(8 row(s) affected)

Hint
Instead of * in the Select statement, specify the
column names with a comma between them

3. Sales Representatives
We’d like to see just the FirstName, LastName, and
HireDate of all the employees with the Title of Sales
Representative. Write a SQL statement that returns
only those employees.

Expected Results
FirstName LastName HireDate
---------- -------------------- -----------------------
Nancy Davolio 2010-05-01 00:00:00.000
Janet Leverling 2010-04-01 00:00:00.000
Margaret Peacock 2011-05-03 00:00:00.000
Michael Suyama 2011-10-17 00:00:00.000
Robert King 2012-01-02 00:00:00.000
Anne Dodsworth 2012-11-15 00:00:00.000

(6 row(s) affected)

Hint
To filter out only certain rows from a table, use a
Where clause. The format for a where clause with a
string filter is:

Where
 FieldName = 'Filter Text'

4. Sales Representatives in the United
States
Now we’d like to see the same columns as above, but
only for those employees that both have the title of
Sales Representative, and also are in the United
States.

Expected Results
FirstName LastName HireDate
---------- -------------------- -----------------------
Nancy Davolio 2010-05-01 00:00:00.000
Janet Leverling 2010-04-01 00:00:00.000
Margaret Peacock 2011-05-03 00:00:00.000

(3 row(s) affected)

Hint
To apply multiple filters in a where clause, use “and”
to separate the filters.

5. Orders placed by specific EmployeeID
Show all the orders placed by a specific employee.
The EmployeeID for this Employee (Steven
Buchanan) is 5.

Expected Results
OrderID OrderDate
----------- -----------------------
10248 2014-07-04 08:00:00.000
10254 2014-07-11 02:00:00.000
10269 2014-07-31 00:00:00.000
10297 2014-09-04 21:00:00.000
10320 2014-10-03 12:00:00.000
10333 2014-10-18 18:00:00.000
10358 2014-11-20 05:00:00.000
10359 2014-11-21 14:00:00.000
10372 2014-12-04 10:00:00.000
10378 2014-12-10 00:00:00.000
10397 2014-12-27 17:00:00.000
10463 2015-03-04 13:00:00.000
10474 2015-03-13 16:00:00.000
10477 2015-03-17 02:00:00.000
10529 2015-05-07 01:00:00.000
10549 2015-05-27 03:00:00.000
10569 2015-06-16 15:00:00.000
10575 2015-06-20 22:00:00.000
10607 2015-07-22 09:00:00.000
10648 2015-08-28 22:00:00.000
10649 2015-08-28 00:00:00.000
10650 2015-08-29 06:00:00.000
10654 2015-09-02 07:00:00.000
10675 2015-09-19 06:00:00.000
10711 2015-10-21 03:00:00.000
10714 2015-10-22 03:00:00.000
10721 2015-10-29 08:00:00.000
10730 2015-11-05 07:00:00.000
10761 2015-12-02 08:00:00.000
10812 2016-01-02 02:00:00.000
10823 2016-01-09 17:00:00.000
10841 2016-01-20 21:00:00.000
10851 2016-01-26 00:00:00.000
10866 2016-02-03 01:00:00.000
10869 2016-02-04 09:00:00.000

10870 2016-02-04 12:00:00.000
10872 2016-02-05 06:00:00.000
10874 2016-02-06 14:00:00.000
10899 2016-02-20 09:00:00.000
10922 2016-03-03 02:00:00.000
10954 2016-03-17 16:00:00.000
11043 2016-04-22 17:00:00.000

(42 row(s) affected)

Hint
The EmployeeID is an integer field, and not a string
field. So, the value “5” does not need to be
surrounded by single quotes in the where clause.

6. Suppliers and ContactTitles
In the Suppliers table, show the SupplierID,
ContactName, and ContactTitle for those Suppliers
whose ContactTitle is not Marketing Manager.

Expected Results
SupplierID ContactName ContactTitle
----------- ------------------------------ ------------------------------
1 Charlotte Cooper Purchasing Manager
2 Shelley Burke Order Administrator
3 Regina Murphy Sales Representative
5 Antonio del Valle Saavedra Export Administrator
6 Mayumi Ohno Marketing Representative
8 Peter Wilson Sales Representative
9 Lars Peterson Sales Agent
11 Petra Winkler Sales Manager
12 Martin Bein International Marketing Mgr.
13 Sven Petersen Coordinator Foreign Markets
14 Elio Rossi Sales Representative
16 Cheryl Saylor Regional Account Rep.
17 Michael Björn Sales Representative
18 Guylène Nodier Sales Manager
19 Robb Merchant Wholesale Account Agent
20 Chandra Leka Owner
21 Niels Petersen Sales Manager
22 Dirk Luchte Accounting Manager
23 Anne Heikkonen Product Manager
24 Wendy Mackenzie Sales Representative
26 Giovanni Giudici Order Administrator
27 Marie Delamare Sales Manager
28 Eliane Noz Sales Representative
29 Chantal Goulet Accounting Manager

(24 row(s) affected)

Hint
To learn how to do the “not”, you can search online
for SQL comparison operators.

7. Products with “queso” in ProductName
In the products table, we’d like to see the ProductID
and ProductName for those products where the
ProductName includes the string “queso”.

Expected Results
ProductID ProductName
----------- --
11 Queso Cabrales
12 Queso Manchego La Pastora

(2 row(s) affected)

Hint
In an earlierproblem, we were looking for exact
matches — where our filter matched the value in the
field exactly. Here, we’re looking for rows where the
ProductName field has the value “queso” somewhere
in it.
Use the “like” operator, with wildcards, in the
answer. Feel free to do some research online to find
examples.

8. Orders shipping to France or Belgium
Looking at the Orders table, there’s a field called
ShipCountry. Write a query that shows the OrderID,
CustomerID, and ShipCountry for the orders where
the ShipCountry is either France or Belgium.

Expected Results
OrderID CustomerID ShipCountry
----------- ---------- ---------------
10248 VINET France
10251 VICTE France
10252 SUPRD Belgium
10265 BLONP France
10274 VINET France
10295 VINET France
10297 BLONP France
10302 SUPRD Belgium
10311 DUMON France
10331 BONAP France
10334 VICTE France
10340 BONAP France
10350 LAMAI France
10358 LAMAI France

... (skipping some rows)

10923 LAMAI France
10927 LACOR France
10930 SUPRD Belgium
10932 BONAP France
10940 BONAP France
10964 SPECD France
10971 FRANR France
10972 LACOR France
10973 LACOR France
10978 MAISD Belgium
11004 MAISD Belgium
11035 SUPRD Belgium
11038 SUPRD Belgium
11043 SPECD France
11051 LAMAI France
11076 BONAP France

(96 row(s) affected)

Hint
In the where clause, instead of combining the filters
with an “and” use the “or”.

9. Orders shipping to any country in Latin
America
Now, instead of just wanting to return all the orders
from France of Belgium, we want to show all the
orders from any Latin American country. But we
don’t have a list of Latin American countries in a
table in the Northwind database. So, we’re going to
just use this list of Latin American countries that
happen to be in the Orders table:
Brazil
Mexico
Argentina
Venezuela
It doesn’t make sense to use multiple Or statements
anymore, it would get too convoluted. Use the In
statement.

Expected Results
OrderID CustomerID ShipCountry
----------- ---------- ---------------
10250 HANAR Brazil
10253 HANAR Brazil
10256 WELLI Brazil
10257 HILAA Venezuela
10259 CENTC Mexico
10261 QUEDE Brazil
10268 GROSR Venezuela
10276 TORTU Mexico
10283 LILAS Venezuela
10287 RICAR Brazil
10997 LILAS Venezuela

... (skipping some rows)

11014 LINOD Venezuela
11019 RANCH Argentina
11022 HANAR Brazil
11039 LINOD Venezuela
11042 COMMI Brazil
11049 GOURL Brazil
11052 HANAR Brazil
11054 CACTU Argentina
11055 HILAA Venezuela
11059 RICAR Brazil
11065 LILAS Venezuela
11068 QUEEN Brazil
11069 TORTU Mexico
11071 LILAS Venezuela
11073 PERIC Mexico

(173 row(s) affected)

Hint
Here’s an example of the previous questions, about
orders shipping to France or Belgium, done as an In
statement instead of using multiple Where clauses.
Select
 OrderID
 ,CustomerID
 ,OrderDate
 ,ShipCountry
From Orders
where
 ShipCountry in ('France','Belgium')

10. Employees, in order of age
For all the employees in the Employees table, show
the FirstName, LastName, Title, and BirthDate.
Order the results by BirthDate, so we have the oldest
employees first.

Expected Results
FirstName LastName Title BirthDate
---------- -------------------- ------------------------------ -----------------------
Margaret Peacock Sales Representative 1955-09-19
00:00:00.000
Nancy Davolio Sales Representative 1966-12-08
00:00:00.000
Andrew Fuller Vice President, Sales 1970-02-19
00:00:00.000
Steven Buchanan Sales Manager 1973-03-04
00:00:00.000
Laura Callahan Inside Sales Coordinator 1976-01-09
00:00:00.000
Robert King Sales Representative 1978-05-29
00:00:00.000
Michael Suyama Sales Representative 1981-07-02
00:00:00.000
Janet Leverling Sales Representative 1981-08-30
00:00:00.000
Anne Dodsworth Sales Representative 1984-01-27
00:00:00.000

(9 row(s) affected)

Hint
You’ll need to use the Order by clause here for
sorting the results. Look online for examples.

11. Showing only the Date with a
DateTime field
In the output of the query above, showing the
Employees in order of BirthDate, we see the time of
the BirthDate field, which we don’t want. Show only
the date portion of the BirthDate field.

Expected Results
FirstName LastName Title DateOnlyBirthDate
---------- -------------------- ------------------------------ -----------------
Margaret Peacock Sales Representative 1955-09-19
Nancy Davolio Sales Representative 1966-12-08
Andrew Fuller Vice President, Sales 1970-02-19
Steven Buchanan Sales Manager 1973-03-04
Laura Callahan Inside Sales Coordinator 1976-01-09
Robert King Sales Representative 1978-05-29
Michael Suyama Sales Representative 1981-07-02
Janet Leverling Sales Representative 1981-08-30
Anne Dodsworth Sales Representative 1984-01-27

(9 row(s) affected)

Hint
Use the Convert function to convert the BirthDate
column (originally a DateTime column) to a Date
column.

12. Employees full name
Show the FirstName and LastName columns from
the Employees table, and then create a new column
called FullName, showing FirstName and LastName
joined together in one column, with a space in-
between.

Expected Results
FirstName LastName FullName
---------- -------------------- -------------------------------
Nancy Davolio Nancy Davolio
Andrew Fuller Andrew Fuller
Janet Leverling Janet Leverling
Margaret Peacock Margaret Peacock
Steven Buchanan Steven Buchanan
Michael Suyama Michael Suyama
Robert King Robert King
Laura Callahan Laura Callahan
Anne Dodsworth Anne Dodsworth

(9 row(s) affected)

Hint
Joining two fields like this is called concatenation.
Look online for examples of string concatenation
with SQL Server.

13. OrderDetails amount per line item
In the OrderDetails table, we have the fields
UnitPrice and Quantity. Create a new field,
TotalPrice, that multiplies these two together. We’ll
ignore the Discount field for now.
In addition, show the OrderID, ProductID, UnitPrice,
and Quantity. Order by OrderID and ProductID.

Expected Results
OrderID ProductID UnitPrice Quantity TotalPrice
----------- ----------- --------------------- -------- ---------------------
10248 11 14.00 12 168.00
10248 42 9.80 10 98.00
10248 72 34.80 5 174.00
10249 14 18.60 9 167.40
10249 51 42.40 40 1696.00
10250 41 7.70 10 77.00
10250 51 42.40 35 1484.00
10250 65 16.80 15 252.00
10251 22 16.80 6 100.80
10251 57 15.60 15 234.00
10251 65 16.80 20 336.00

... (skipping some rows)

11077 13 6.00 4 24.00
11077 14 23.25 1 23.25
11077 16 17.45 2 34.90
11077 20 81.00 1 81.00
11077 23 9.00 2 18.00
11077 32 32.00 1 32.00
11077 39 18.00 2 36.00
11077 41 9.65 3 28.95
11077 46 12.00 3 36.00
11077 52 7.00 2 14.00
11077 55 24.00 2 48.00
11077 60 34.00 2 68.00
11077 64 33.25 2 66.50
11077 66 17.00 1 17.00
11077 73 15.00 2 30.00
11077 75 7.75 4 31.00
11077 77 13.00 2 26.00

(2155 row(s) affected)

Hint
In this computed column, you need to use the
arithmetic operator for multiplication.

14. How many customers?
How many customers do we have in the Customers
table? Show one value only, and don’t rely on getting
the recordcount at the end of a resultset.

Expected Results
TotalCustomers

91

(1 row(s) affected)

Hint
In order to get the total number of customers, we
need to use what’s called an aggregate function.
Look online for an aggregate function that would
work for this problem.

15. When was the first order?
Show the date of the first order ever made in the
Orders table.

Expected Results
FirstOrder

2014-07-04 08:00:00.000

(1 row(s) affected)

Hint
There’s a aggregate function called Min that you
need to use for this problem.

16. Countries where there are customers
Show a list of countries where the Northwind
company has customers.

Expected Results
Country

Argentina
Austria
Belgium
Brazil
Canada
Denmark
Finland
France
Germany
Ireland
Italy
Mexico
Norway
Poland
Portugal
Spain
Sweden
Switzerland
UK
USA
Venezuela

(21 row(s) affected)

Hint
You’ll want to use the Group By clause for this
query.

17. Contact titles for customers
Show a list of all the different values in the
Customers table for ContactTitles. Also include a
count for each ContactTitle.
This is similar in concept to the previous question
“Countries where there are customers”, except we
now want a count for each ContactTitle.

Expected Results
ContactTitle TotalContactTitle
------------------------------ -----------------
Owner 17
Sales Representative 17
Marketing Manager 12
Sales Manager 11
Accounting Manager 10
Sales Associate 7
Marketing Assistant 6
Sales Agent 5
Assistant Sales Agent 2
Order Administrator 2
Assistant Sales Representative 1
Owner/Marketing Assistant 1

(12 row(s) affected)

Hint
The answer for this problem builds on multiple
concepts introduced in previous problem, such as
grouping, aggregate functions, and aliases.

18. Products with associated supplier
names
We’d like to show, for each product, the associated
Supplier. Show the ProductID, ProductName, and the
CompanyName of the Supplier. Sort by ProductID.
This question will introduce what may be a new
concept, the Join clause in SQL. The Join clause is
used to join two or more relational database tables
together in a logical way.
Here’s a data model of the relationship between
Products and Suppliers.

Expected Results
ProductID ProductName Supplier
----------- -- ------------------------------
1 Chai Exotic Liquids
2 Chang Exotic Liquids
3 Aniseed Syrup Exotic Liquids
4 Chef Anton's Cajun Seasoning New Orleans Cajun
Delights
5 Chef Anton's Gumbo Mix New Orleans Cajun Delights
6 Grandma's Boysenberry Spread Grandma Kelly's
Homestead
7 Uncle Bob's Organic Dried Pears Grandma Kelly's
Homestead
8 Northwoods Cranberry Sauce Grandma Kelly's
Homestead
9 Mishi Kobe Niku Tokyo Traders
10 Ikura Tokyo Traders

... (skipping some rows)

66 Louisiana Hot Spiced Okra New Orleans Cajun Delights
67 Laughing Lumberjack Lager Bigfoot Breweries
68 Scottish Longbreads Specialty Biscuits, Ltd.
69 Gudbrandsdalsost Norske Meierier
70 Outback Lager Pavlova, Ltd.
71 Flotemysost Norske Meierier
72 Mozzarella di Giovanni Formaggi Fortini s.r.l.
73 Röd Kaviar Svensk Sjöföda AB
74 Longlife Tofu Tokyo Traders
75 Rhönbräu Klosterbier Plutzer
Lebensmittelgroßmärkte AG
76 Lakkalikööri Karkki Oy
77 Original Frankfurter grüne Soße Plutzer
Lebensmittelgroßmärkte AG

(77 row(s) affected)

Hint
Just as a reference, here’s an example of what the
syntax for the Join looks like, using different tables
from the Northwind database. It will show all the
products, with the associated CategoryName.
Select
 ProductID
 ,ProductName
 ,CategoryName
From Products
 Join Categories
 on Products.CategoryID = Categories.CategoryID

19. Orders and the Shipper that was used
We’d like to show a list of the Orders that were
made, including the Shipper that was used. Show the
OrderID, OrderDate (date only), and CompanyName
of the Shipper, and sort by OrderID.
In order to not show all the orders (there’s more than
800), show only those rows with an OrderID of less
than 10300.

Expected Results
OrderID OrderDate Shipper
----------- ---------- --
10248 2014-07-04 Federal Shipping
10249 2014-07-05 Speedy Express
10250 2014-07-08 United Package
10251 2014-07-08 Speedy Express
10252 2014-07-09 United Package
10253 2014-07-10 United Package
10254 2014-07-11 United Package
10255 2014-07-12 Federal Shipping
10256 2014-07-15 United Package
10257 2014-07-16 Federal Shipping
10258 2014-07-17 Speedy Express
10259 2014-07-18 Federal Shipping
10260 2014-07-19 Speedy Express
10261 2014-07-19 United Package
10262 2014-07-22 Federal Shipping
10263 2014-07-23 Federal Shipping
10264 2014-07-24 Federal Shipping

... (skipping some rows)

10284 2014-08-19 Speedy Express
10285 2014-08-20 United Package
10286 2014-08-21 Federal Shipping
10287 2014-08-22 Federal Shipping
10288 2014-08-23 Speedy Express
10289 2014-08-26 Federal Shipping
10290 2014-08-27 Speedy Express
10291 2014-08-27 United Package
10292 2014-08-28 United Package
10293 2014-08-29 Federal Shipping
10294 2014-08-30 United Package
10295 2014-09-02 United Package
10296 2014-09-03 Speedy Express
10297 2014-09-04 United Package
10298 2014-09-05 United Package

10299 2014-09-06 United Package

(52 row(s) affected)

Hint
First, create a SQL statement that shows only the
rows and columns you need from the Orders table.
Then, work on adding the join to the Shipper table,
and the necessary field from that table.
This data model should help you visualize the join
between the Orders table and the Shippers table.

Hint
One thing to note for this problem is that when you
join two tables, the field that’s joined on does not
necessarily need to have the same name. Usually,
they do. However, in this case, the ShipVia field in
Orders is joined to ShipperID in Shippers.

Congratulations! You've completed the introductory

problems
Any questions or feedback on the problems, hints, or
answers? I'd like to hear from you. Please email me

at feedback@SQLPracticeProblems.com.

mailto:feedback@SQLPracticeProblems.com

Intermediate Problems

20. Categories, and the total products in
each category
For this problem, we’d like to see the total number of
products in each category. Sort the results by the total
number of products, in descending order.

Expected Results
CategoryName TotalProducts
--------------- -------------
Confections 13
Beverages 12
Condiments 12
Seafood 12
Dairy Products 10
Grains/Cereals 7
Meat/Poultry 6
Produce 5

(8 row(s) affected)

Hint
To solve this problem, you need to combine a join,
and a group by.
A good way to start is by creating a query that shows
the CategoryName and all ProductIDs associated
with it, without grouping. Then, add the Group by

21. Total customers per country/city
In the Customers table, show the total number of
customers per Country and City.

Expected Results
Country City TotalCustomer
--------------- --------------- -------------
UK London 6
Mexico México D.F. 5
Brazil Sao Paulo 4
Brazil Rio de Janeiro 3
Spain Madrid 3
Argentina Buenos Aires 3
France Paris 2
USA Portland 2
France Nantes 2
Portugal Lisboa 2
Finland Oulu 1
Italy Reggio Emilia 1
France Reims 1
Brazil Resende 1

... (skipping some rows)

Canada Montréal 1
Germany München 1
Germany Münster 1
Germany Aachen 1
USA Albuquerque 1
USA Anchorage 1
Denmark Århus 1
Spain Barcelona 1
Venezuela Barquisimeto 1
Italy Bergamo 1
Germany Berlin 1
Switzerland Bern 1
USA Boise 1
Sweden Bräcke 1
Germany Brandenburg 1
Belgium Bruxelles 1

(69 row(s) affected)

Hint
Just as you can have multiple fields in a Select
clause, you can also have multiple fields in a Group
By clause.

22. Products that need reordering
What products do we have in our inventory that
should be reordered? For now, just use the fields
UnitsInStock and ReorderLevel, where UnitsInStock
is less than the ReorderLevel, ignoring the fields
UnitsOnOrder and Discontinued.
Order the results by ProductID.

Expected Results
ProductID ProductName UnitsInStock ReorderLevel
----------- -- ------------ ------------
2 Chang 17 25
3 Aniseed Syrup 13 25
11 Queso Cabrales 22 30
21 Sir Rodney's Scones 3 5
30 Nord-Ost Matjeshering 10 15
31 Gorgonzola Telino 0 20
32 Mascarpone Fabioli 9 25
37 Gravad lax 11 25
43 Ipoh Coffee 17 25
45 Rogede sild 5 15
48 Chocolade 15 25
49 Maxilaku 10 15
56 Gnocchi di nonna Alice 21 30
64 Wimmers gute Semmelknödel 22 30
66 Louisiana Hot Spiced Okra 4 20
68 Scottish Longbreads 6 15
70 Outback Lager 15 30
74 Longlife Tofu 4 5

(18 row(s) affected)

Hint
We want to show all fields where the UnitsInStock is
less than the ReorderLevel. So in the Where clause,
use the following:
 UnitsInStock < ReorderLevel

23. Products that need reordering,
continued
Now we need to incorporate these fields—
UnitsInStock, UnitsOnOrder, ReorderLevel,
Discontinued—into our calculation. We’ll define
“products that need reordering” with the following:

UnitsInStock plus UnitsOnOrder are less than
or equal to ReorderLevel
The Discontinued flag is false (0).

Expected Results
ProductID ProductName UnitsInStock UnitsOnOrder
ReorderLevel Discontinued
----------- ----------------------- ------------ ------------ ------------ ------------
30 Nord-Ost Matjeshering 10 0 15 0
70 Outback Lager 15 10 30 0

(2 row(s) affected)

Hint
For the first part of the Where clause, you should
have something like this:
 UnitsInStock + UnitsOnOrder <= ReorderLevel

24. Customer list by region
A salesperson for Northwind is going on a business
trip to visit customers, and would like to see a list of
all customers, sorted by region, alphabetically.
However, he wants the customers with no region
(null in the Region field) to be at the end, instead of
at the top, where you’d normally find the null values.
Within the same region, companies should be sorted
by CustomerID.

Expected Results
CustomerID CompanyName Region
---------- -- ---------------
OLDWO Old World Delicatessen AK
BOTTM Bottom-Dollar Markets BC
LAUGB Laughing Bacchus Wine Cellars BC
LETSS Let's Stop N Shop CA
HUNGO Hungry Owl All-Night Grocers Co. Cork
GROSR GROSELLA-Restaurante DF
SAVEA Save-a-lot Markets ID
ISLAT Island Trading Isle of Wight
LILAS LILA-Supermercado Lara
THECR The Cracker Box MT
RATTC Rattlesnake Canyon Grocery NM

... (skipping some rows)

SANTG Santé Gourmet NULL
SEVES Seven Seas Imports NULL
SIMOB Simons bistro NULL
SPECD Spécialités du monde NULL
SUPRD Suprêmes délices NULL
TOMSP Toms Spezialitäten NULL
TORTU Tortuga Restaurante NULL
VAFFE Vaffeljernet NULL
VICTE Victuailles en stock NULL
VINET Vins et alcools Chevalier NULL
WANDK Die Wandernde Kuh NULL
WARTH Wartian Herkku NULL
WILMK Wilman Kala NULL
WOLZA Wolski Zajazd NULL

(91 row(s) affected)

Hint
You won’t be able to sort directly on the Region field
here. You’ll need to sort on the Region field, and also
on a computed field that you create, which will give
you a secondary sort for when Region is null
First, without ordering, create a computed field that
has a value which will sort the way you want. In this
case, you can create a field with the Case statement,
which allows you do to if/then logic. You want a
field that is 1 when Region is null.
Take a look at the Examples section in the SQL
Server documentation for Case
(https://msdn.microsoft.com/en-
us/library/ms181765.aspx#examples).
Note that when filtering for null values, you can't use
“FieldName = Null”. You must use “FieldName is
null”.

https://msdn.microsoft.com/en-us/library/ms181765.aspx#examples

Hint
You should have something like this:
Select
 CustomerID
 ,CompanyName
 ,Region
 ,Case
 when Region is null then 1
 else 0
 End
From Customers

When the Region contains a null, you will have a 1 in
the final column. Now, just add the fields for the
Order By clause, in the right order.

25. High freight charges
Some of the countries we ship to have very high
freight charges. We'd like to investigate some more
shipping options for our customers, to be able to
offer them lower freight charges. Return the three
ship countries with the highest average freight
overall, in descending order by average freight.

Expected Results
ShipCountry AverageFreight
--------------- ---------------------
Austria 184.7875
Ireland 145.0126
USA 112.8794

(3 row(s) affected)

Hint
We'll be using the Orders table, and using the Freight
and ShipCountry fields.

Hint
You'll want to group by ShipCountry, and use the
Avg function. Don't worry about showing only the
top 3 rows until you have the grouping and average
freight set up.

Hint
You should have something like this:
Select
 ShipCountry
 ,AverageFreight = avg(freight)
From Orders
Group By ShipCountry
Order By AverageFreight desc;

Now you just need to show just the top 3 rows.

26. High freight charges - 2015
We're continuing on the question above on high
freight charges. Now, instead of using all the orders
we have, we only want to see orders from the year
2015.

Expected result
ShipCountry AverageFreight
--------------- ---------------------
Austria 178.3642
Switzerland 117.1775
France 113.991

(3 row(s) affected)

Hint
You need to add a Where clause to the query from
the previous problem. The field to filter on is
OrderDate.

Hint
When filtering on dates, you need to know whether
the date field is a DateTime, or a Date field. Is
OrderDate a Datetime or a Date field?

27. High freight charges with between
Another (incorrect) answer to the problem above is
this:
Select Top 3
 ShipCountry
 ,AverageFreight = avg(freight)
From Orders
Where
 OrderDate between '1/1/2015' and '12/31/2015'
Group By ShipCountry
Order By AverageFreight desc;

Notice when you run this, it gives Sweden as the
ShipCountry with the third highest freight charges.
However, this is wrong - it should be France.
What is the OrderID of the order that the (incorrect)
answer above is missing?

Expected Result
(no expected results this time - we’re looking for a
specific OrderID)

Hint
The Between statement is inclusive. Why isn’t it
showing the orders made on December 31, 2015?

Hint
Run this query, and look at the rows around
December 31, 2015. What do you notice? Look
specifically at the Freight field.
select * from orders order by OrderDate

28. High freight charges - last year
We're continuing to work on high freight charges.
We now want to get the three ship countries with the
highest average freight charges. But instead of
filtering for a particular year, we want to use the last
12 months of order data, using as the end date the last
OrderDate in Orders.

Expected Results
ShipCountry AverageFreight
--------------- ---------------------
Ireland 200.21
Austria 186.4596
USA 119.3032

(3 row(s) affected)

Hint
First, get the last OrderDate in Orders. Write a
simple select statement to get the highest value in the
OrderDate field using the Max aggregate function.

Hint
You should have something like this:
Select Max(OrderDate) from Orders

Now you need to get the date 1 year before the last
order date. Create a simple select statement that
subtracts 1 year from the last order date
You can use the DateAdd function for this. Note that
within DateAdd, you can use the subquery you
created above. Look online for some examples if you
need to.

Hint
You should have something like this:
Select Dateadd(yy, -1, (Select Max(OrderDate) from Orders))

Now you just need to put it in the where clause.

29. Inventory list
We're doing inventory, and need to show information
like the below, for all orders. Sort by OrderID and
Product ID.

Expected Results
EmployeeID LastName OrderID
ProductName Quantity
----------- -------------------- ----------- -- -----

5 Buchanan 10248 Queso Cabrales 12
5 Buchanan 10248 Singaporean Hokkien Fried
Mee 10
5 Buchanan 10248 Mozzarella di Giovanni 5
6 Suyama 10249 Tofu 9
6 Suyama 10249 Manjimup Dried Apples
40
4 Peacock 10250 Jack's New England Clam
Chowder 10
4 Peacock 10250 Manjimup Dried Apples
35
4 Peacock 10250 Louisiana Fiery Hot Pepper Sauce
15
3 Leverling 10251 Gustaf's Knäckebröd 6
3 Leverling 10251 Ravioli Angelo 15
3 Leverling 10251 Louisiana Fiery Hot Pepper Sauce
20
4 Peacock 10252 Sir Rodney's Marmalade 40
4 Peacock 10252 Geitost 25
4 Peacock 10252 Camembert Pierrot 40
3 Leverling 10253 Gorgonzola Telino 20
3 Leverling 10253 Chartreuse verte 42
3 Leverling 10253 Maxilaku 40
…
(total 2155 rows)

Hint
You'll need to do a join between 4 tables, displaying
only those fields that are necessary.

30. Customers with no orders
There are some customers who have never actually
placed an order. Show these customers.

Expected Results
Customers_CustomerID Orders_CustomerID
-------------------- -----------------
FISSA NULL
PARIS NULL

(2 row(s) affected)

Hint
One way of doing this is to use a left join, also
known as a left outer join.

Hint
Select
 Customers_CustomerID = Customers.CustomerID
 ,Orders_CustomerID = Orders.CustomerID
From Customers
 left join Orders
 on Orders.CustomerID = Customers.CustomerID

This is a good start. It shows all records from the
Customers table, and the matching records from the
Orders table. However, we only want those records
where the CustomerID in Orders is null. You still
need a filter

31. Customers with no orders for
EmployeeID 4
One employee (Margaret Peacock, EmployeeID 4)
has placed the most orders. However, there are some
customers who've never placed an order with her.
Show only those customers who have never placed
an order with her.

Expected Result
CustomerID CustomerID
---------- ----------
SEVES NULL
THEBI NULL
LAZYK NULL
GROSR NULL
PARIS NULL
FISSA NULL
SPECD NULL
LAUGB NULL
PRINI NULL
VINET NULL
FRANR NULL
CONSH NULL
NORTS NULL
PERIC NULL
DUMON NULL
SANTG NULL

(16 row(s) affected)

Hint
Building on the previous problem, you might think
you need to do something like this:

Select
 Customers.CustomerID
 ,Orders.CustomerID
From Customers
 left join Orders
 on Orders.CustomerID = Customers.CustomerID
Where
 Orders.CustomerID is null
 and Orders.EmployeeID = 4

…adding this filter in the where clause:
and Orders.EmployeeID = 4

However, this returns no records.
Note that with outer joins, the filters on the where
clause are applied after the join.

Congratulations! You've completed the intermediate

problems
Any questions or feedback on the problems, hints, or
answers? I'd like to hear from you. Please email me

at feedback@SQLPracticeProblems.com.

mailto:feedback@SQLPracticeProblems.com

Advanced Problems

32. High-value customers
We want to send all of our high-value customers a
special VIP gift. We're defining high-value
customers as those who've made at least 1 order with
a total value (not including the discount) equal to
$10,000 or more. We only want to consider orders
made in the year 2016.

Expected Result
CustomerID CompanyName OrderID
TotalOrderAmount
---------- -- ----------- ---------------------
QUICK QUICK-Stop 10865 17250.00
SAVEA Save-a-lot Markets 11030 16321.90
HANAR Hanari Carnes 10981 15810.00
KOENE Königlich Essen 10817 11490.70
RATTC Rattlesnake Canyon Grocery 10889 11380.00
HUNGO Hungry Owl All-Night Grocers 10897 10835.24

(6 row(s) affected)

Hint
First, let's get the necessary fields for all orders made
in the year 2016. Don't bother grouping yet, just
work on the Where clause. You'll need the
CustomerID, CompanyName from Customers;
OrderID from Orders; and Quantity and unit price
from OrderDetails. Order by the total amount of the
order, in descending order.

Hint
You should have something like this:
Select
 Customers.CustomerID
 ,Customers.CompanyName
 ,Orders.OrderID
 ,Amount = Quantity * UnitPrice
From Customers
 join Orders
 on Orders.CustomerID = Customers.CustomerID
 join OrderDetails
 on Orders.OrderID = OrderDetails.OrderID
Where
 OrderDate >= '20160101'
 and OrderDate < '20170101'

This gives you the total amount for each Order Detail
item in 2016 orders, at the Order Detail level. Now,
which fields do you need to group on, and which
need to be summed?

Hint
Select
 Customers.CustomerID
 ,Customers.CompanyName
 ,Orders.OrderID
 ,TotalOrderAmount = sum(Quantity * UnitPrice)
From Customers
 Join Orders
 on Orders.CustomerID = Customers.CustomerID
 Join OrderDetails
 on Orders.OrderID = OrderDetails.OrderID
Where
 OrderDate >= '20160101'
 and OrderDate < '20170101'
Group By
 Customers.CustomerID
 ,Customers.CompanyName
 ,Orders.OrderID

The fields at the Customer and Order level need to be
grouped by, and the TotalOrderAmount needs to be
summed.
How would you filter on the sum, in order to get
orders of $10,000 or more? Can you put it straight
into the where clause?

33. High-value customers - total orders
The manager has changed his mind. Instead of
requiring that customers have at least one individual
orders totaling $10,000 or more, he wants to define
high-value customers as those who have orders
totaling $15,000 or more in 2016. How would you
change the answer to the problem above?

Expected Result
CustomerID CompanyName TotalOrderAmount
---------- -- ---------------------
SAVEA Save-a-lot Markets 42806.25
ERNSH Ernst Handel 42598.90
QUICK QUICK-Stop 40526.99
HANAR Hanari Carnes 24238.05
HUNGO Hungry Owl All-Night Grocers 22796.34
RATTC Rattlesnake Canyon Grocery 21725.60
KOENE Königlich Essen 20204.95
FOLKO Folk och fä HB 15973.85
WHITC White Clover Markets 15278.90

(9 row(s) affected)

Hint
This query is almost identical to the one above, but
there's just a few lines you need to delete or comment
out, to group at a different level.

34. High-value customers - with discount
Change the above query to use the discount when
calculating high-value customers. Order by the total
amount which includes the discount.

Expected Result
CustomerID CompanyName TotalsWithoutDiscount
TotalsWithDiscount
---------- ------------------------------ --------------------- ----------------------
ERNSH Ernst Handel 42598.90 41210.6500244141
QUICK QUICK-Stop 40526.99
37217.3150024414
SAVEA Save-a-lot Markets 42806.25
36310.1097793579
HANAR Hanari Carnes 24238.05
23821.1999893188
RATTC Rattlesnake Canyon Grocery 21725.60
21238.2704410553
HUNGO Hungry Owl All-Night Grocers 22796.34
20402.119934082
KOENE Königlich Essen 20204.95
19582.7739868164
WHITC White Clover Markets 15278.90
15278.8999862671
FOLKO Folk och fä HB 15973.85
13644.0674972534
SUPRD Suprêmes délices 11862.50
11644.5999984741
BOTTM Bottom-Dollar Markets 12227.40
11338.5500488281

(11 row(s) affected)

Hint
To start out, just use the OrderDetails table. You'll
need to figure out how the Discount field is
structured.

Hint
You should have something like this:
Select
 OrderID
 ,ProductID
 ,UnitPrice
 ,Quantity
 ,Discount
 ,TotalWithDisccount = UnitPrice * Quantity * (1- Discount)
from OrderDetails

Note that Discount is applied as a percentage. So, if
there's a 0.15 in the discount field, you need to
multiply the UnitPrice * Quantity by .85 (1.00 - .15).
You need parenthesis around (1 - Discount) to make
sure that calculation is done first.

35. Month-end orders
At the end of the month, salespeople are likely to try
much harder to get orders, to meet their month-end
quotas. Show all orders made on the last day of the
month. Order by EmployeeID and OrderID

Expected Result
EmployeeID OrderID OrderDate
----------- ----------- -----------------------
1 10461 2015-02-28 00:00:00.000
1 10616 2015-07-31 00:00:00.000
2 10583 2015-06-30 00:00:00.000
2 10686 2015-09-30 00:00:00.000
2 10989 2016-03-31 00:00:00.000
2 11060 2016-04-30 00:00:00.000
3 10432 2015-01-31 00:00:00.000
3 10806 2015-12-31 00:00:00.000
3 10988 2016-03-31 00:00:00.000
3 11063 2016-04-30 00:00:00.000
4 10343 2014-10-31 00:00:00.000
4 10522 2015-04-30 00:00:00.000
4 10584 2015-06-30 00:00:00.000
4 10617 2015-07-31 00:00:00.000
4 10725 2015-10-31 00:00:00.000
4 10807 2015-12-31 00:00:00.000
4 11061 2016-04-30 00:00:00.000
4 11062 2016-04-30 00:00:00.000
5 10269 2014-07-31 00:00:00.000
6 10317 2014-09-30 00:00:00.000
7 10490 2015-03-31 00:00:00.000
8 10399 2014-12-31 00:00:00.000
8 10460 2015-02-28 00:00:00.000
8 10491 2015-03-31 00:00:00.000
8 10987 2016-03-31 00:00:00.000
9 10687 2015-09-30 00:00:00.000

(26 row(s) affected)

Hint
You can work on calculating this yourself, with a
combination of date functions such as DateAdd and
DateDiff. But feel free to shortcut the process by
doing some research online.

36. Orders with many line items
The Northwind mobile app developers are testing an
app that customers will use to show orders. In order
to make sure that even the largest orders will show
up correctly on the app, they'd like some samples of
orders that have lots of individual line items. Show
the 10 orders with the most line items, in order of
total line items.

Expected Result
OrderID TotalOrderDetails
----------- -----------------
11077 25
10979 6
10657 6
10847 6
10845 5
10836 5
10714 5
10670 5
10691 5
10698 5

(10 row(s) affected)

Hint
Using Orders and OrderDetails, you'll use Group by
and count() functionality.

37. Orders - random assortment
The Northwind mobile app developers would now
like to just get a random assortment of orders for beta
testing on their app. Show a random set of 2% of all
orders.

Expected Result
(note - your results will be different, because we’re
returning a random set)
OrderID

11034
10400
10948
10931
10942
10604
10350
10499
10927
10896
10774
10932
10592
10706
10479
10782
10898

(17 row(s) affected)

Hint
Note that in the below SQL, the RandomValue field
returns the same random value for each row. Do
some research online to figure out how to get a new
random value for each row.
Select
 OrderID
 , RandomValue = Rand()
From Orders

38. Orders - accidental double-entry
Janet Leverling, one of the salespeople, has come to
you with a request. She thinks that she accidentally
double-entered a line item on an order, with a
different ProductID, but the same quantity. She
remembers that the quantity was 60 or more. Show
all the OrderIDs with line items that match this, in
order of OrderID.

Expected Result
OrderID

10263
10263
10990
10658
11030

(5 row(s) affected)

Hint
You might start out with something like this:
Select
 OrderID
 ,ProductID
 ,Quantity
From OrderDetails
Where Quantity >= 60

However, this will only give us the orders where at
least one order detail has a quantity of 60 or more.
We need to show orders with more than one order
detail with a quantity of 60 or more. Also, the same
value for quantity needs to be there more than once.

Hint
In addition to grouping on the OrderID, we also need
to group by the Quantity, since we need to show the
order details that have the same quantity, within an
order. So, we need to group by both OrderID, and
Quantity.

39. Orders - accidental double-entry details
Based on the previous question, we now want to
show details of the order, for orders that match the
above criteria.

Expected Result
OrderID ProductID UnitPrice Quantity Discount
----------- ----------- --------------------- -------- -------------
10263 16 13.90 60 0.25
10263 30 20.70 60 0.25
10263 24 3.60 65 0
10263 74 8.00 65 0.25
10658 60 34.00 55 0.05
10658 21 10.00 60 0
10658 40 18.40 70 0.05
10658 77 13.00 70 0.05
10990 34 14.00 60 0.15
10990 21 10.00 65 0
10990 55 24.00 65 0.15
10990 61 28.50 66 0.15
11030 29 123.79 60 0.25
11030 5 21.35 70 0
11030 2 19.00 100 0.25
11030 59 55.00 100 0.25

(16 row(s) affected)

Hint
There are many ways of doing this, including CTE
(common table expression) and derived tables. I
suggest using a CTE and a subquery. Here's a good
article on CTEs (https://technet.microsoft.com/en-
us/library/ms175972.aspx).
This is an example of a simple CTE in Northwind. It
returns orders made by the oldest employee:
;with OldestEmployee as (
Select top 1
 EmployeeID
from Employees
order by BirthDate
)
Select
 OrderID
 ,OrderDate
from Orders
where
 EmployeeID in (Select EmployeeID from OldestEmployee)

https://technet.microsoft.com/en-us/library/ms175972.aspx

40. Orders - accidental double-entry
details, derived table
Here's another way of getting the same results as in
the previous problem, using a derived table instead of
a CTE. However, there's a bug in this SQL. It returns
20 rows instead of 16. Correct the SQL.
Problem SQL:
Select
 OrderDetails.OrderID
 ,ProductID
 ,UnitPrice
 ,Quantity
 ,Discount
From OrderDetails
 Join (
 Select
 OrderID
 From OrderDetails
 Where Quantity >= 60
 Group By OrderID, Quantity
 Having Count(*) > 1
) PotentialProblemOrders
 on PotentialProblemOrders.OrderID = OrderDetails.OrderID
Order by OrderID, ProductID

Hint
Your first step should be to run the SQL in the
derived table
Select
 OrderID
From OrderDetails
Where Quantity >= 60
Group By OrderID, Quantity
Having Count(*) > 1

What do you notice about the results?

Hint
There are 2 rows for OrderID 10263, because there
are 2 sets of rows that have the same, identical
quantity, that's 60 or above.
When you do a join to a table that has duplicates, you
will get duplicates in the output as well, unless you
take steps to avoid it.
Find a single keyword that you can easily add to
avoid duplicates in SQL.

41. Late orders
Some customers are complaining about their orders
arriving late. Which orders are late?

Expected Result
OrderID OrderDate RequiredDate ShippedDate
----------- ---------- ------------ -----------
10264 2014-07-24 2014-08-21 2014-08-23
10271 2014-08-01 2014-08-29 2014-08-30
10280 2014-08-14 2014-09-11 2014-09-12
10302 2014-09-10 2014-10-08 2014-10-09
10309 2014-09-19 2014-10-17 2014-10-23
10380 2014-12-12 2015-01-09 2015-01-16
10423 2015-01-23 2015-02-06 2015-02-24
10427 2015-01-27 2015-02-24 2015-03-03
10433 2015-02-03 2015-03-03 2015-03-04
10451 2015-02-19 2015-03-05 2015-03-12
10483 2015-03-24 2015-04-21 2015-04-25
10515 2015-04-23 2015-05-07 2015-05-23
10523 2015-05-01 2015-05-29 2015-05-30
10545 2015-05-22 2015-06-19 2015-06-26
10578 2015-06-24 2015-07-22 2015-07-25
10593 2015-07-09 2015-08-06 2015-08-13
10596 2015-07-11 2015-08-08 2015-08-12
10663 2015-09-10 2015-09-24 2015-10-03
10687 2015-09-30 2015-10-28 2015-10-30
10660 2015-09-08 2015-10-06 2015-10-15
10705 2015-10-15 2015-11-12 2015-11-18
10709 2015-10-17 2015-11-14 2015-11-20
10726 2015-11-03 2015-11-17 2015-12-05
10727 2015-11-03 2015-12-01 2015-12-05
10749 2015-11-20 2015-12-18 2015-12-19
10777 2015-12-15 2015-12-29 2016-01-21
10779 2015-12-16 2016-01-13 2016-01-14
10788 2015-12-22 2016-01-19 2016-01-19
10807 2015-12-31 2016-01-28 2016-01-30
10816 2016-01-06 2016-02-03 2016-02-04
10827 2016-01-12 2016-01-26 2016-02-06
10828 2016-01-13 2016-01-27 2016-02-04
10847 2016-01-22 2016-02-05 2016-02-10
10924 2016-03-04 2016-04-01 2016-04-08

10927 2016-03-05 2016-04-02 2016-04-08
10960 2016-03-19 2016-04-02 2016-04-08
10970 2016-03-24 2016-04-07 2016-04-24
10978 2016-03-26 2016-04-23 2016-04-23
10998 2016-04-03 2016-04-17 2016-04-17

(39 row(s) affected)

Hint
To determine which orders are late, you can use a
combination of the RequiredDate and ShippedDate.
It's not exact, but if ShippedDate is actually AFTER
RequiredDate, you can be sure it's late.

42. Late orders - which employees?
Some salespeople have more orders arriving late than
others. Maybe they're not following up on the order
process, and need more training. Which salespeople
have the most orders arriving late?

Expected Result
EmployeeID LastName TotalLateOrders
----------- -------------------- ---------------
4 Peacock 10
3 Leverling 5
8 Callahan 5
9 Dodsworth 5
7 King 4
2 Fuller 4
1 Davolio 3
6 Suyama 3

(8 row(s) affected)

Hint
The answer from the problem above is a good
starting point. You'll need to join to the Employee
table to get the last name, and also add Count to
show the total late orders.

43. Late orders vs. total orders
Andrew, the VP of sales, has been doing some more
thinking some more about the problem of late orders.
He realizes that just looking at the number of orders
arriving late for each salesperson isn't a good idea. It
needs to be compared against the total number of
orders per salesperson. Return results like the
following:

Expected Result
EmployeeID LastName AllOrders LateOrders
----------- -------------------- ----------- -----------
1 Davolio 123 3
2 Fuller 96 4
3 Leverling 127 5
4 Peacock 156 10
6 Suyama 67 3
7 King 72 4
8 Callahan 104 5
9 Dodsworth 43 5

(8 row(s) affected)

Hint
You can use more than one CTE in a query. That
would be a straightforward way of solving this
problem.

Hint
Here are 2 SQL statements that could be put into
CTEs and put together into a final SQL statement.
-- Late orders
Select
 EmployeeID
 ,TotalOrders = Count(*)
From Orders
Where
 RequiredDate <= ShippedDate
Group By
 EmployeeID

-- Total orders
Select
 EmployeeID
 ,TotalOrders = Count(*)
From Orders
Group By
 EmployeeID

44. Late orders vs. total orders - missing
employee
There's an employee missing in the answer from the
problem above. Fix the SQL to show all employees
who have taken orders.

Expected Result
EmployeeID LastName AllOrders LateOrders
----------- -------------------- ----------- -----------
1 Davolio 123 3
2 Fuller 96 4
3 Leverling 127 5
4 Peacock 156 10
5 Buchanan 42 NULL
6 Suyama 67 3
7 King 72 4
8 Callahan 104 5
9 Dodsworth 43 5

(9 row(s) affected)

Hint
How many rows are returned when you run just the
AllOrders CTE? How about when you run just the
LateOrders CTE?

Hint
You'll want to add a left join (also known as a left
outer join), to make sure that we show a row, even if
there are no late orders.

45. Late orders vs. total orders - fix null
Continuing on the answer for above query, let's fix
the results for row 5 - Buchanan. He should have a 0
instead of a Null in LateOrders.

Expected Result
EmployeeID LastName AllOrders LateOrders
----------- -------------------- ----------- -----------
1 Davolio 123 3
2 Fuller 96 4
3 Leverling 127 5
4 Peacock 156 10
5 Buchanan 42 0
6 Suyama 67 3
7 King 72 4
8 Callahan 104 5
9 Dodsworth 43 5

(9 row(s) affected)

Hint
Find a function to test if a value is null, and return a
different value when it is.

46. Late orders vs. total orders - percentage
Now we want to get the percentage of late orders
over total orders.

Expected Result
EmployeeID LastName AllOrders LateOrders
PercentLateOrders
----------- -------------------- ----------- ----------- -------------------
1 Davolio 123 3 0.0243902439024
2 Fuller 96 4 0.0416666666666
3 Leverling 127 5 0.0393700787401
4 Peacock 156 10 0.0641025641025
5 Buchanan 42 0 0.0000000000000
6 Suyama 67 3 0.0447761194029
7 King 72 4 0.0555555555555
8 Callahan 104 5 0.0480769230769
9 Dodsworth 43 5 0.1162790697674

(9 row(s) affected)

Hint
By dividing late orders by total orders, you should be
able to get the percentage of orders that are late.
However, there's a common problem people run into,
which is that an integer divided by an integer returns
an integer. For instance, if you run the following
SQL to divide 3 by 2:
select 3/2

You’ll get 1 instead of 1.5, because it will return the
closest integer.
Do some research online to find the answer to this
issue.

47. Late orders vs. total orders - fix
decimal
So now for the PercentageLateOrders, we get a
decimal value like we should. But to make the output
easier to read, let's cut the PercentLateOrders off at 2
digits to the right of the decimal point.

Expected Result
EmployeeID LastName AllOrders LateOrders
PercentLateOrders
----------- -------------------- ----------- ----------- -------------------
1 Davolio 123 3 0.02
2 Fuller 96 4 0.04
3 Leverling 127 5 0.04
4 Peacock 156 10 0.06
5 Buchanan 42 0 0.00
6 Suyama 67 3 0.04
7 King 72 4 0.06
8 Callahan 104 5 0.05
9 Dodsworth 43 5 0.12

(9 row(s) affected)

Hint
One straightforward way of doing this would be to
explicitly convert PercentageLateOrders to a specific
Decimal data type. With the Decimal datatype, you
can specify how many digits you want to the right of
the decimal point

Hint
The calculation PercentLateOrders is getting a little
long and complicated, and it can be tricky to get all
the commas and parenthesis correct.
One way to simplify it is to break it down with an
actual value instead of a calculation.
For instance:
Select convert(decimal(10,2), 0.0243902439024)

48. Customer grouping
Andrew Fuller, the VP of sales at Northwind, would
like to do a sales campaign for existing customers.
He'd like to categorize customers into groups, based
on how much they ordered in 2016. Then, depending
on which group the customer is in, he will target the
customer with different sales materials.
The customer grouping categories are 0 to 1,000,
1,000 to 5,000, 5,000 to 10,000, and over 10,000.
A good starting point for this query is the answer
from the problem “High-value customers - total
orders. We don’t want to show customers who don’t
have any orders in 2016.
Order the results by CustomerID.

Expected Result
CustomerID CompanyName TotalOrderAmount
CustomerGroup
---------- -- --------------------- -------------
ALFKI Alfreds Futterkiste 2302.20 Medium
ANATR Ana Trujillo Emparedados y helados 514.40 Low
ANTON Antonio Moreno Taquería 660.00 Low
AROUT Around the Horn 5838.50 High
BERGS Berglunds snabbköp 8110.55 High
BLAUS Blauer See Delikatessen 2160.00 Medium
BLONP Blondesddsl père et fils 730.00 Low
BOLID Bólido Comidas preparadas 280.00 Low
BONAP Bon app' 7185.90 High
BOTTM Bottom-Dollar Markets 12227.40 Very
High
BSBEV B's Beverages 2431.00 Medium
CACTU Cactus Comidas para llevar 1576.80 Medium
CHOPS Chop-suey Chinese 4429.40 Medium

... (skipping some rows)

SPLIR Split Rail Beer & Ale 1117.00 Medium
SUPRD Suprêmes délices 11862.50 Very High
THEBI The Big Cheese 69.60 Low
THECR The Cracker Box 326.00 Low
TOMSP Toms Spezialitäten 910.40 Low
TORTU Tortuga Restaurante 1874.50 Medium
TRADH Tradição Hipermercados 4401.62 Medium
TRAIH Trail's Head Gourmet Provisioners 237.90 Low
VAFFE Vaffeljernet 4333.50 Medium
VICTE Victuailles en stock 3022.00 Medium
WANDK Die Wandernde Kuh 1564.00 Medium
WARTH Wartian Herkku 300.00 Low
WELLI Wellington Importadora 1245.00 Medium
WHITC White Clover Markets 15278.90 Very
High
WILMK Wilman Kala 1987.00 Medium
WOLZA Wolski Zajazd 1865.10 Medium

(81 row(s) affected)

Hint
This is the SQL from the problem “High-value
customers - total orders”, but without the filter for
order totals over 10,000.

Select
 Customers.CustomerID
 ,Customers.CompanyName
 ,TotalOrderAmount = SUM(Quantity * UnitPrice)
From Customers
 Join Orders
 on Orders.CustomerID = Customers.CustomerID
 Join OrderDetails
 on Orders.OrderID = OrderDetails.OrderID
Where
 OrderDate >= '20160101'
 and OrderDate < '20170101'
Group By
 Customers.CustomerID
 ,Customers.CompanyName
Order By TotalOrderAmount Desc;

Hint
You can use the above SQL in a CTE (common table
expression), and then build on it, using a Case
statement on the TotalOrderAmount.

49. Customer grouping - fix null
There's a bug with the answer for the previous
question. The CustomerGroup value for one of the
rows is null.
Fix the SQL so that there are no nulls in the
CustomerGroup field.

Expected Result
(Including only a subset of the output)

CustomerID CompanyName TotalOrderAmount
CustomerGroup
---------- ------------------------------- --------------------- -------------
LILAS LILA-Supermercado 5994.06 High
LINOD LINO-Delicateses 10085.60 Very High
LONEP Lonesome Pine Restaurant 1709.40 Medium
MAGAA Magazzini Alimentari Riuniti 1693.00 Medium
MAISD Maison Dewey 5000.20 High
MORGK Morgenstern Gesundkost 245.00 Low
NORTS North/South 45.00 Low
OCEAN Océano Atlántico Ltda. 3031.00 Medium
OLDWO Old World Delicatessen 5337.65 High
OTTIK Ottilies Käseladen 3012.70 Medium
PERIC Pericles Comidas clásicas 1496.00 Medium
PICCO Piccolo und mehr 4393.75 Medium
PRINI Princesa Isabel Vinhos 2633.90 Medium
QUEDE Que Delícia 1353.60 Medium
QUEEN Queen Cozinha 7007.65 High
QUICK QUICK-Stop 40526.99 Very High
RANCH Rancho grande 1694.70 Medium
RATTC Rattlesnake Canyon Grocery 21725.60 Very High
REGGC Reggiani Caseifici 4263.00 Medium
RICAR Ricardo Adocicados 7312.00 High

Hint
What is the total order amount for CustomerID
MAISD? How does that relate to our CustomerGroup
boundaries?

Hint
Using “between” works well for integer values.
However, the value we're working with is Money,
which has decimals. Instead of something like:
when TotalOrderAmount between 0 and 1000 then 'Low'

You'll need to something like this:
when TotalOrderAmount >= 0 and TotalOrderAmount < 1000 then 'Low'

50. Customer grouping with percentage
Based on the above query, show all the defined
CustomerGroups, and the percentage in each. Sort by
the total in each group, in descending order.

Expected Result
CustomerGroup TotalInGroup PercentageInGroup
------------- ------------ ---------------------------------------
Medium 35 0.432098765432
Low 20 0.246913580246
High 13 0.160493827160
Very High 13 0.160493827160

(4 row(s) affected)

Hint
As a starting point, you can use the answer from the
problem “Customer grouping - fix null”.

Hint
We no longer need to show the CustomerID and
CompanyName in the final output. However, we
need to count how many customers are in each
CustomerGrouping. You can create another CTE
level in order to get the counts in each
CustomerGrouping for the final output.

51. Customer grouping - flexible
Andrew, the VP of Sales is still thinking about how
best to group customers, and define low, medium,
high, and very high value customers. He now wants
complete flexibility in grouping the customers, based
on the dollar amount they've ordered. He doesn’t
want to have to edit SQL in order to change the
boundaries of the customer groups.
How would you write the SQL?
There's a table called CustomerGroupThreshold that
you will need to use. Use only orders from 2016.

Expected Result
(The expected results are the same as for the original
problem, it’s just that we’re getting the answer
differently.)

CustomerID CompanyName TotalOrderAmount
CustomerGroupName
---------- -- --------------------- -----------------

ALFKI Alfreds Futterkiste 2302.20 Medium
ANATR Ana Trujillo Emparedados y helados 514.40 Low
ANTON Antonio Moreno Taquería 660.00 Low
AROUT Around the Horn 5838.50 High
BERGS Berglunds snabbköp 8110.55 High
BLAUS Blauer See Delikatessen 2160.00 Medium
BLONP Blondesddsl père et fils 730.00 Low
BOLID Bólido Comidas preparadas 280.00 Low
BONAP Bon app' 7185.90 High
BOTTM Bottom-Dollar Markets 12227.40 Very
High
BSBEV B's Beverages 2431.00 Medium
CACTU Cactus Comidas para llevar 1576.80 Medium
CHOPS Chop-suey Chinese 4429.40 Medium
COMMI Comércio Mineiro 513.75 Low

... (skipping some rows)

SPLIR Split Rail Beer & Ale 1117.00 Medium
SUPRD Suprêmes délices 11862.50 Very High
THEBI The Big Cheese 69.60 Low
THECR The Cracker Box 326.00 Low
TOMSP Toms Spezialitäten 910.40 Low
TORTU Tortuga Restaurante 1874.50 Medium
TRADH Tradição Hipermercados 4401.62 Medium
TRAIH Trail's Head Gourmet Provisioners 237.90 Low
VAFFE Vaffeljernet 4333.50 Medium
VICTE Victuailles en stock 3022.00 Medium

WANDK Die Wandernde Kuh 1564.00 Medium
WARTH Wartian Herkku 300.00 Low
WELLI Wellington Importadora 1245.00 Medium
WHITC White Clover Markets 15278.90 Very
High
WILMK Wilman Kala 1987.00 Medium
WOLZA Wolski Zajazd 1865.10 Medium

(81 row(s) affected)

Hint
As a starting point, use the SQL of the first CTE
from the problem “Customer grouping with
percentage”
Select
 Customers.CustomerID
 ,Customers.CompanyName
 ,TotalOrderAmount = SUM(Quantity * UnitPrice)
From Customers
 join Orders
 on Orders.CustomerID = Customers.CustomerID
 join OrderDetails
 on Orders.OrderID = OrderDetails.OrderID
Where
 OrderDate >= '20160101'
 and OrderDate < '20170101'
Group By
 Customers.CustomerID
 ,Customers.CompanyName

Hint
When thinking about how to use the table
CustomerGroupThreshold, note that when joining to
a table, you don't need to only use an equi-join (i.e.,
“=“ in the join). You can also use other operators,
such as between, and greater than/less than (> and <).

52. Countries with suppliers or customers
Some Northwind employees are planning a business
trip, and would like to visit as many suppliers and
customers as possible. For their planning, they’d like
to see a list of all countries where suppliers and/or
customers are based.

Expected Results
Country

Argentina
Australia
Austria
Belgium
Brazil
Canada
Denmark
Finland
France
Germany
Ireland
Italy
Japan
Mexico
Netherlands
Norway
Poland
Portugal
Singapore
Spain
Sweden
Switzerland
UK
USA
Venezuela

(25 row(s) affected)

Hint
Use the Union statekent for this. It’s a good way of
putting together a simple resultset from multiple SQL
statements.

53. Countries with suppliers or customers,
version 2
The employees going on the business trip don’t want
just a raw list of countries, they want more details.
We’d like to see output like the below, in the
Expected Results.

Expected Result
SupplierCountry CustomerCountry
--------------- ---------------
NULL Argentina
Australia NULL
NULL Austria
NULL Belgium
Brazil Brazil
Canada Canada
Denmark Denmark
Finland Finland
France France
Germany Germany
NULL Ireland
Italy Italy
Japan NULL
NULL Mexico
Netherlands NULL
Norway Norway
NULL Poland
NULL Portugal
Singapore NULL
Spain Spain
Sweden Sweden
NULL Switzerland
UK UK
USA USA
NULL Venezuela

(25 row(s) affected)

Hint
A good way to start would be with a list of countries
from the Suppliers table, and a list of countries from
the Customers table. Use either Distinct or Group by
to avoid duplicating countries. Sort by country name

Hint
You should have something like this:
Select Distinct Country from Customers
Select Distinct Country from Suppliers

You can combine these with a CTEs or derived
tables.
Note that there’s a specific type of outer join you’ll
need, designed to return rows from either resultset.
What is it? Look online for the different types of
outer join available.

54. Countries with suppliers or customers -
version 3
The output of the above is improved, but it’s still not
ideal
What we’d really like to see is the country name, the
total suppliers, and the total customers.

Expected Result
Country TotalSuppliers TotalCustomers
--------------- -------------- --------------
Argentina 0 3
Australia 2 0
Austria 0 2
Belgium 0 2
Brazil 1 9
Canada 2 3
Denmark 1 2
Finland 1 2
France 3 11
Germany 3 11
Ireland 0 1
Italy 2 3
Japan 2 0
Mexico 0 5
Netherlands 1 0
Norway 1 1
Poland 0 1
Portugal 0 2
Singapore 1 0
Spain 1 5
Sweden 2 2
Switzerland 0 2
UK 2 7
USA 4 13
Venezuela 0 4

(25 row(s) affected)

Hint
You should be able to use the above query, and make
a few changes to the CTE source queries to show the
total number of Supplier countries and Customer
countries. You won’t be able to use the Distinct
keyword anymore.

Hint
When joining the 2 CTEs together, you can use a
computed column, with the IsNull function to show a
non-null Country field, instead of the Supplier
country or the Customer country.

55. First order in each country
Looking at the Orders table—we’d like to show
details for each order that was the first in that
particular country, ordered by OrderID.
So, we need one row per ShipCountry, and
CustomerID, OrderID, and OrderDate should be of
the first order from that country.

Expected Results
ShipCountry CustomerID OrderID OrderDate
--------------- ---------- ----------- ----------
Argentina OCEAN 10409 2015-01-09
Austria ERNSH 10258 2014-07-17
Belgium SUPRD 10252 2014-07-09
Brazil HANAR 10250 2014-07-08
Canada MEREP 10332 2014-10-17
Denmark SIMOB 10341 2014-10-29
Finland WARTH 10266 2014-07-26
France VINET 10248 2014-07-04
Germany TOMSP 10249 2014-07-05
Ireland HUNGO 10298 2014-09-05
Italy MAGAA 10275 2014-08-07
Mexico CENTC 10259 2014-07-18
Norway SANTG 10387 2014-12-18
Poland WOLZA 10374 2014-12-05
Portugal FURIB 10328 2014-10-14
Spain ROMEY 10281 2014-08-14
Sweden FOLKO 10264 2014-07-24
Switzerland CHOPS 10254 2014-07-11
UK BSBEV 10289 2014-08-26
USA RATTC 10262 2014-07-22
Venezuela HILAA 10257 2014-07-16

(21 row(s) affected)

Hint
Your first step will probably be to create a query like
this:
Select
 ShipCountry
 ,CustomerID
 ,OrderID
 ,OrderDate = convert(date, OrderDate)
From orders
Order by
 ShipCountry
 ,OrderID

…which shows all the rows in the Order table, sorted
first by Country and then by OrderID.

Hint
Your next step is to create a computed column that
shows the row number for each order, partitioned
appropriately.
There’s a class of functions called Window functions
or Ranking functions that you can use for this
problem. Specifically, use the Row_Number()
function, with the Over and Partition clause, to get
the number, per country, of a particular order.

Hint
You’ll have something like this:
Select
 ShipCountry
 ,CustomerID
 ,OrderID
 ,OrderDate = convert(date, OrderDate)
 ,RowNumberPerCountry =
 Row_Number()
 over (Partition by ShipCountry Order by ShipCountry, OrderID)
From Orders

Because of some limitations with Window functions,
you can’t directly filter the computed column created
above. Use a CTE to solve the problem.

56. Customers with multiple orders in 5
day period
There are some customers for whom freight is a
major expense when ordering from Northwind.
However, by batching up their orders, and making
one larger order instead of multiple smaller orders in
a short period of time, they could reduce their freight
costs significantly.
Show those customers who have made more than 1
order in a 5 day period. The sales people will use this
to help customers reduce their costs.
Note: There are more than one way of solving this
kind of problem. For this problem, we will not be
using Window functions.

Expected Result
CustomerID InitialOrderID InitialOrderDate NextOrderID NextOrderDate
DaysBetween
---------- -------------- ---------------- ----------- ------------- -----------
ANTON 10677 2015-09-22 10682 2015-09-25 3
AROUT 10741 2015-11-14 10743 2015-11-17 3
BERGS 10278 2014-08-12 10280 2014-08-14 2
BERGS 10444 2015-02-12 10445 2015-02-13 1
BERGS 10866 2016-02-03 10875 2016-02-06 3
BONAP 10730 2015-11-05 10732 2015-11-06 1
BONAP 10871 2016-02-05 10876 2016-02-09 4
BONAP 10932 2016-03-06 10940 2016-03-11 5
BOTTM 10410 2015-01-10 10411 2015-01-10 0
BOTTM 10944 2016-03-12 10949 2016-03-13 1
BOTTM 10975 2016-03-25 10982 2016-03-27 2
BOTTM 11045 2016-04-23 11048 2016-04-24 1
BSBEV 10538 2015-05-15 10539 2015-05-16 1
BSBEV 10943 2016-03-11 10947 2016-03-13 2

... (skipping some rows)

SEVES 10800 2015-12-26 10804 2015-12-30 4
SUPRD 10841 2016-01-20 10846 2016-01-22 2
SUPRD 11035 2016-04-20 11038 2016-04-21 1
TRADH 10830 2016-01-13 10834 2016-01-15 2
TRADH 10834 2016-01-15 10839 2016-01-19 4
TRAIH 10574 2015-06-19 10577 2015-06-23 4
VICTE 10806 2015-12-31 10814 2016-01-05 5
VICTE 10843 2016-01-21 10850 2016-01-23 2
VINET 10737 2015-11-11 10739 2015-11-12 1
WARTH 10412 2015-01-13 10416 2015-01-16 3
WELLI 10803 2015-12-30 10809 2016-01-01 2
WELLI 10900 2016-02-20 10905 2016-02-24 4
WHITC 10693 2015-10-06 10696 2015-10-08 2
WILMK 10873 2016-02-06 10879 2016-02-10 4

(71 row(s) affected)

Hint
You can use a self-join, with 2 instances of the
Orders table, joined by CustomerID. Good naming
for the table aliases (table instances) are important
for readability. Don't name them Order1 and Order2.

Hint
Select
 InitialOrder.CustomerID
 ,InitialOrderID = InitialOrder.OrderID
 ,InitialOrderDate = InitialOrder.OrderDate
 ,NextOrderID = NextOrder.OrderID
 ,NextOrderDate = NextOrder.OrderDate
from Orders InitialOrder
 join Orders NextOrder
 on InitialOrder.CustomerID = NextOrder.CustomerID
Order by
 InitialOrder.CustomerID
 ,InitialOrder.OrderID

This is a good start. You will need to filter on
additional fields in the join clause between
InitialOrder and NextOrder, because as it is, this
returns far too many orders. It has what's called a
cartesian product between the 2 instances of the
Orders table. This means that for the total number of
orders for a particular customer in Orders, you'll have
that number, squared, in the output.
Look at some of the OrderID and OrderDate values
in InitialOrder and NextOrder. Some of them
definitely disqualify a row based on our criteria.

Hint
Should the OrderID of the NextOrder ever be less
than or equal to the OrderID of the NextOrder?

Hint
Based on the hint above, we added a where clause.

Select
 InitialOrder.CustomerID
 ,InitialOrderID = InitialOrder.OrderID
 ,InitialOrderDate = InitialOrder.OrderDate
 ,NextOrderID = NextOrder.OrderID
 ,NextOrderDate = NextOrder.OrderDate
from Orders InitialOrder
 join Orders NextOrder
 on InitialOrder.CustomerID = NextOrder.CustomerID
where
 InitialOrder.OrderID < NextOrder.OrderID
Order by
 InitialOrder.CustomerID
 ,InitialOrder.OrderID

Adding this filter:
and InitialOrder.OrderID < NextOrder.OrderID

…has cut down the output a lot. However, we still
need to filter for the 5 day period.
Create a new field called DaysBetween that
calculates the number of days between the
InitialOrder OrderDate and the NextOrder
OrderDate. Use the DateDiff function.

Hint
You should now have a line like this:
 DaysBetween = datediff(dd, InitialOrder.OrderDate,
NextOrder.OrderDate)
Use this calculation in the Where clause to filter for 5
days or less between orders.

57. Customers with multiple orders in 5
day period, version 2
There’s another way of solving the problem above,
using Window functions. We would like to see the
following results.

Expected Results
CustomerID OrderDate NextOrderDate DaysBetweenOrders
---------- ---------- ------------- -----------------
ANTON 2015-09-22 2015-09-25 3
AROUT 2015-11-14 2015-11-17 3
BERGS 2014-08-12 2014-08-14 2
BERGS 2015-02-12 2015-02-13 1
BERGS 2016-02-03 2016-02-06 3
BONAP 2015-11-05 2015-11-06 1
BONAP 2016-02-05 2016-02-09 4
BONAP 2016-03-06 2016-03-11 5
BOTTM 2015-01-10 2015-01-10 0
BOTTM 2016-03-12 2016-03-13 1
BOTTM 2016-03-25 2016-03-27 2
BOTTM 2016-04-23 2016-04-24 1

... (skipping some rows)

SAVEA 2016-03-27 2016-03-30 3
SAVEA 2016-04-17 2016-04-17 0
SEVES 2015-12-26 2015-12-30 4
SUPRD 2016-01-20 2016-01-22 2
SUPRD 2016-04-20 2016-04-21 1
TRADH 2016-01-13 2016-01-15 2
TRADH 2016-01-15 2016-01-19 4
TRAIH 2015-06-19 2015-06-23 4
VICTE 2015-12-31 2016-01-05 5
VICTE 2016-01-21 2016-01-23 2
VINET 2015-11-11 2015-11-12 1
WARTH 2015-01-13 2015-01-16 3
WELLI 2015-12-30 2016-01-01 2
WELLI 2016-02-20 2016-02-24 4
WHITC 2015-10-06 2015-10-08 2
WILMK 2016-02-06 2016-02-10 4

(69 row(s) affected)

Hint
The window function to use here is the Lead
function.
Look up some examples of the Lead function online.
As a first step, write SQL using the Lead function to
return results like the following. The NextOrderDate
is a computed column that uses the Lead function.
CustomerID OrderDate NextOrderDate
---------- ---------- -------------
ALFKI 2015-08-25 2015-10-03
ALFKI 2015-10-03 2015-10-13
ALFKI 2015-10-13 2016-01-15
ALFKI 2016-01-15 2016-03-16
ALFKI 2016-03-16 2016-04-09
ALFKI 2016-04-09 NULL
ANATR 2014-09-18 2015-08-08
ANATR 2015-08-08 2015-11-28
ANATR 2015-11-28 2016-03-04
ANATR 2016-03-04 NULL

Hint
You should have something like this:
Select
 CustomerID
 ,OrderDate = convert(date, OrderDate)
 ,NextOrderDate =
 convert(
 date
 ,Lead(OrderDate,1)
 OVER (Partition by CustomerID order by CustomerID,
OrderDate)
)
From Orders
Order by
 CustomerID
 ,OrderID

Now, take the output of this, and using a CTE and
the DateDiff function, filter for rows which match
our criteria.

Congratulations! You've completed the advanced

problems
Any questions or feedback on the problems, hints, or
answers? I'd like to hear from you. Please email me

at feedback@SQLPracticeProblems.com.

mailto:feedback@SQLPracticeProblems.com

ANSWERS

Introductory Problems

1. Which shippers do we have?

Answer
Select
 *
From Shippers

Discussion
This is a basic select statement, returning all rows,
just to get you warmed up.
Most of the time, a simple select statement like this is
written all on one line, like this:
Select * From Shippers

But because we’ll be getting more complex quickly,
we’ll start out with formatting it with separate lines
for each clause, which we’ll be doing in future
questions.

2. Certain fields from Categories

Answer
Select
 CategoryName
 ,Description
from Categories

Discussion
Instead of doing a “Select *”, we specify the column
names, and only get those columns returned.

3. Sales Representatives

Answer
Select
 FirstName
 ,LastName
 ,HireDate
From Employees
Where
 Title = 'Sales Representative'

Discussion
This is a simple filter against a string datatype. When
comparing a value to a string datatype, you need to
enclose the value in single quotes.
What happens when you don’t? Try running the
following:
Select
 FirstName
 ,LastName
 ,HireDate
From Employees
Where
 Title = Sales Representative

Notice that SQL Server gives the error:
Incorrect syntax near 'Representative'.

What about if you compare against a number? Try
the following:
Select
 FirstName
 ,LastName
 ,HireDate
From Employees
Where
 Title = 1

You should get a conversion failure error.

4. Sales Representatives in the United
States

Answer
Select
 FirstName
 ,LastName
 ,HireDate
From Employees
Where
 Title = 'Sales Representative'
 and Country = 'USA'

Discussion
You can have as many filters in the where clause as
you need. I usually indent all the filters, and put them
on new lines, in order to make it easier to read.

5. Orders placed by specific EmployeeID

Answer
Select
 OrderID
 ,OrderDate
From Orders
Where
 EmployeeID = 5

Discussion
This simple query filters for one value in the
EmployeeID field, using the “=” comparison
operator.
Here’s another set of very commonly used
comparison operators that you’re probably familiar
with from math class:

> Greater than
< Less than
>= Greater than or equal to
<= Less than or equal to

6. Suppliers and ContactTitles

Answer
Select
 SupplierID
 ,ContactName
 ,ContactTitle
From Suppliers
Where
 ContactTitle <> 'Marketing Manager'

Discussion
Another way of expressing the Not is by using the
following
!=

So, the below is equivalent to the answer with “<>”.
Select
 CompanyName
 ,ContactName
 ,ContactTitle
From Suppliers
Where
 ContactTitle != 'Marketing Manager'

7. Products with “queso” in ProductName

Answer
Select
 ProductID
 ,ProductName
From Products
Where
 ProductName like '%queso%'

Discussion
The “Like” operator is always used with wildcards,
such as the percent symbol (%), which substitutes for
any number of characters.
Note that even though the search string used a
lowercase “q” with the Like clause
ProductName like '%queso%'

the resulting rows both had an uppercase Q.
Queso Cabrales
Queso Manchego La Pastora

This is because the default installation of SQL Server
is case insensitive, although it is also possible to have
a case-sensitive installation.

8. Orders shipping to France or Belgium

Answer
Select
 OrderID
 ,CustomerID
 ,ShipCountry
From Orders
where
 ShipCountry = 'France'
 or ShipCountry = 'Belgium'

Discussion
This is a very simple example, but in many situations
you will have multiple where clauses, with combined
“Or” and “And” sections.
In this situation, an alternative would have been to
use the “In” operator. We’ll do that in a future
problem.

9. Orders shipping to any country in
Europe

Answer
Select
 OrderID
 ,CustomerID
 ,ShipCountry
From Orders
where
 ShipCountry in
 (
 'Brazil'
 ,'Mexico'
 ,'Argentina'
 ,'Venezuela'
)

Discussion
Using the In statement like this is a very common
scenario when writing SQL. Whenever there’s more
than just a few—say 2 or 3—values that we’re
filtering for, I will generally put them on separate
lines. It’s easier to read, understand, and modify.
Also, many times the list of items you’re filtering for
will be coming from somewhere else—for instance, a
spreadsheet—and will already be on separate lines.

10. Employees, in order of age

Answer
Select
 FirstName
 ,LastName
 ,Title
 ,BirthDate
From Employees
Order By Birthdate

Discussion
This is a simple example of an Order By clause.
By default, SQL Server sorts by ascending order
(first to last). To sort in desending order (last to first),
run the following, with the desc keyword:
Select
 FirstName
 ,LastName
 ,Title
 ,BirthDate
From Employees
Order By Birthdate desc -- keyword desc for last to first search

11. Showing only the Date with a
DateTime field

Answer
Select
 FirstName
 ,LastName
 ,Title
 ,DateOnlyBirthDate = convert(date, BirthDate)
From Employees
Order By Birthdate

Discussion
What we’re using here is called a computed column,
also sometimes called a calculated column. Anytime
you’re doing something besides just returning the
column, as it is stored in the database, you’re using a
computed column. In this case, we’re applying a
function to convert the datatype returned.
Note that we’ve added a name, DateOnlyBirthDate,
for our computed column. This is called an “alias”.
DateOnlyBirthDate = convert(date, BirthDate)

If you don’t actually specify the column alias, you
get an empty column header, which is very
unhelpful.

12. Employees full name

Answer

Select
 FirstName
 ,LastName
 ,FullName = FirstName + ' ' + LastName
From Employees

Discussion
This is another example of the computed column. In
this case, instead of applying a function to a field,
we’re concatenating two fields.
Another way to do concatenation, as of SQL Server
2012, is using the Concat function, as below.
Select
 FirstName
 ,LastName
 ,FullName = concat(FirstName , ' ' , LastName)
From Employees

The Concat function isn’t very well known yet, since
SQL programmers are more familiar with using the +
operator to concatenate strings. However, there are
benefits to using Concat — mainly when there are
nulls in the data.

13. OrderDetails amount per line item

Answer
Select
 OrderID
 ,ProductID
 ,UnitPrice
 ,Quantity
 ,TotalPrice = UnitPrice * Quantity
From OrderDetails
Order by
 OrderID
 ,ProductID

Discussion
Here we have another example of a computed
column, this time using the arithmetic operator
“*”for multiplication.
A note on aliases—I believe the alias structure that I
have above, with the alias name first and the
computation after, is easiset to read.
However, you’ll also very frequently see this
structure, using “as”:

Select
 OrderID
 ,ProductID
 ,UnitPrice
 ,Quantity
 ,UnitPrice * Quantity as TotalPrice -- Alias using "as"
From OrderDetails
Order by
 OrderID
 ,ProductID

14. How many customers?

Answer
Select
 TotalCustomers = count(*)
from Customers

Discussion
Aggregates functions and grouping are very
important when retrieving data. In almost all cases,
when doing data analysis, you’ll be using multiple
groupings and aggregates.

15. When was the first order?

Answer
Select
 FirstOrder = min(OrderDate)
From Orders

Discussion
For the aggregate function Count, you don’t need to
specify a column name - just count(*) will work.
However, for other aggregate functions such as Min,
Avg, Sum, etc, you will need to specify a column
name since you’re not just counting all rows.

16. Countries where there are customers

Answer
Select
 Country
From Customers
Group by
 Country

Discussion
The Group By clause is a cornerstone of SQL. With
most data analysis of any complexity at all, you’ll be
using multiple Group By clauses, so they’re
important to understand.
Another way of getting the same results is to use the
Distinct keyword, as below:
Select distinct
 Country
From Customers

It looks simpler, and it is, for queries that are very
straightforward. But in everyday use, you’ll almost
always be using the Group By instead of Distinct,
because you’ll need to use additional aggregate
functions such as Count, and Sum.

17. Contact titles for customers

Answer
Select
 ContactTitle
 ,TotalContactTitle = count(*)
From Customers
Group by
 ContactTitle
Order by
 count(*) desc

Discussion
This particular construction, with a grouping, and
then a count of the total in each group, is very
common both on its own, and as a part of other
queries.

18. Products with associated supplier
names

Answer
Select
 ProductID
 ,ProductName
 ,Supplier = CompanyName
From Products
 Join Suppliers
 on Products.SupplierID = Suppliers.SupplierID

Discussion
Joins can range from the very simple, which we have
here, to the very complex. You need to understand
them thoroughly, as they’re critical in writing
anything but the simplest SQL.
One thing you’ll see when reading SQL code is,
instead of something like the answer above,
something like this:
Select
 ProductID
 ,ProductName
 ,Supplier = CompanyName
From Products P -- Aliased table
 Join Suppliers S -- Aliased table
 on P.SupplierID = S.SupplierID

Notice that the Products table and Suppliers table is
aliased, or renamed, with one letter aliases—P and S.
If this is done, the P and S need to be used in the On
clause as well.
I’m not a fan of this type of aliasing, although it’s
common. The only benefit is avoiding some typing,
which is trivial. But the downside is severe—it leads
to code that is much harder to read.
It’s not so much a problem in small chunks of SQL
like this one. However, in long, convoluted SQL,
you’ll find yourself wondering what the one-letter
aliases mean, always needing to refer back to the
From clause, and translate in your head.

The only time I use tables aliases is if the table name
is extremely long. And then, I use table alias names
that are understandable, just shortened.

19. Orders and the Shipper that was used

Answer
Select
 OrderID
 ,OrderDate = convert(date, OrderDate)
 ,Shipper = CompanyName
From Orders
 join Shippers
 on Shippers.ShipperID = Orders.ShipVia
Where
 OrderID < 10300
Order by
 OrderID

Discussion
One common coding practice is to write the SQL as
follows, with a table alias added to each column in
the Select statement:

Select
 O.OrderID
 ,OrderDate = convert(date, O.OrderDate)
 ,Shipper = S.CompanyName
From Orders O
 join Shippers S
 on S.ShipperID = O.ShipVia
Where
 O.OrderID < 10300
Order by
 O.OrderID

In this case O is prefixed to the fields from the
Orders table, and S to the fields from the Shippers
table.
Usually I don’t do this—I think it just adds extra text
without enhancing readability.
However, it is sometimes impossible to run SQL
without prefixing the column name with the table
name. For instance, try running the following:
Select
 ProductID
 ,ProductName
 ,Supplier = CompanyName
 ,SupplierID
From Products
 Join Suppliers

 on Products.SupplierID = Suppliers.SupplierID

What error do you get? Fix the error by adding a
table name in front of the SupplierID.
Adding a table name to SupplierID is necessary
because otherwise SQL Server doesn’t know if you
want to return the SupplierID from Products or
Suppliers.

Intermediate Problems

20. Categories, and the total products in
each category

Answer
Select
 CategoryName
 ,TotalProducts = count(*)
From Products
 Join Categories
 on Products.CategoryID = Categories.CategoryID
Group by
 CategoryName
Order by
 count(*) desc

Discussion
We’re expanding our knowledge of grouping here
with a very common scenario—grouping across two
joined tables. In this case, the tables have what’s
called a parent-child relationship. The parent table is
Categories, and the child table is Products.

21. Total customers per country/city

Answer
Select
 Country
 ,City
 ,TotalCustomer = Count(*)
From Customers
Group by
 Country
 ,City
Order by
 count(*) desc

Discussion
Note that once you have a Group by clause in a SQL
statement, every field that appears in the Select
statement needs to either appear in the Group by
clause, or needs to have some kind of aggregate
function applied to it.
For instance, try running the following, with the City
in the Group by clause commented out, so we’re no
longer grouping by City.
Select
 Country
 ,City
 ,TotalCustomer = Count(*)
From Customers
Group by
 Country
 --,City
Order by
 count(*) desc

When you run this, you should receive this error
message:
Msg 8120, Level 16, State 1, Line 3
Column 'Customers.City' is invalid in the select list because it is not
contained in either an aggregate function or the GROUP BY clause.

This means that the query engine doesn't know which
City that you want to display. Every field in the
Select clause needs to either have an aggregate
function (like Sum, Count, etc), or also be in the

Group by. The reason behind this is that there could
potentially be multiple different cities for any one
value in the Country, and the database engine
wouldn’t know whinch one to show.

22. Products that need reordering

Answer
Select
 ProductID
 ,ProductName
 ,UnitsInStock
 ,ReorderLevel
From Products
Where
 UnitsInStock <= ReorderLevel
Order by ProductID

Discussion
This is a straightforward query on one table. Instead
of using a string or numeric value to filter, we’re
using another field.

23. Products that need reordering,
continued

Answer
Select
 ProductID
 ,ProductName
 ,UnitsInStock
 ,UnitsOnOrder
 ,ReorderLevel
 ,Discontinued
From Products
Where
 UnitsInStock + UnitsOnOrder <= ReorderLevel
 and Discontinued = 0
Order by ProductID

Discussion
Instead of writing
and Discontinued = 0

…you can also write the following if you find it
easier to read:
and Discontinued = convert(bit, 'FALSE')

SQL Server will automatically convert it to 0.

24. Customer list by region

Answer
Select
 CustomerID
 ,CompanyName
 ,Region
From Customers
Order By
 Case
 when Region is null then 1
 else 0
 End
 ,Region
 ,CustomerID

Discussion
Once we have the Case expression set up correctly,
you just need to create an Order By clause for it, and
add the additional fields for sorting (Region and
CustomerID).
If we had wanted to include the sorting field in the
output , you could write this:
Select
 CustomerID
 ,CompanyName
 ,Region
 ,RegionOrder=
 Case
 when Region is null then 1
 else 0
 End
From Customers
Order By
 RegionOrder
 ,Region
 ,CustomerID

You would not need to repeat the case statement in
the Order By, you can just refer to the alias -
RegionOrder.

25. High freight charges

Answer
Select Top 3
 ShipCountry
 ,AverageFreight = Avg(freight)
From Orders
Group By ShipCountry
Order By AverageFreight desc;

Discussion
Using Top is the easiest and most commonly used
method of showing only a certain number of records.
Another way is by using Offset, as below.
Select
 ShipCountry
 ,AverageFreight = AVG(freight)
From Orders
Group By ShipCountry
Order by AverageFreight DESC
OFFSET 0 ROWS FETCH FIRST 3 ROWS ONLY

26. High freight charges - 2015

Answer
Select Top 3
 ShipCountry
 ,AverageFreight = avg(freight)
From Orders
Where
 OrderDate >= '20150101'
 and OrderDate < '20160101'
Group By ShipCountry
Order By AverageFreight desc;

Discussion
An alternate way to write the where clause is this:
Where
 OrderDate >= '1/1/2015'
 and OrderDate < '1/1/2016'

Depending on which date format you're used to, it
may be easier to read. However, using the format
YYYYMMDD will be correct world-wide,
regardless of the DateFormat setting in SQL Server.
And here’s still another way of writing this:
Select Top 3
 ShipCountry
 ,AverageFreight = avg(freight)
From Orders
Where
 year(OrderDate) = 2015 -- using Year function
Group By ShipCountry
Order By AverageFreight desc;

This looks straightforward and is easy to read.
However, when you put a function such as Year on
the OrderDate field, we can’t use the index anymore.
Also, you can only filter for specific calendar years,
so it’s not very flexible.

27. High freight charges with between

Answer
The OrderID that’s causing the different results is
10806.

Discussion
There’s an order made on December 31, 2015 with a
really high value in the Freight field. This would
have skewed the results, and put France in third place
for highest freight charges, but only if it were
included in the Where clause.
This SQL would have worked fine if OrderDate were
a Date field, instead of DateTime.

OrderDate between '1/1/2015' and '12/31/2015'

However, since it’s a DateTime field, it gives an
incorrect answer because it's not taking into account
records where the OrderDate is during the day on
December 31, 2015.
Note that for a DateTime field, the value

12/31/2015
is equivalent only to

2015-12-31 00:00:00.000
…and not to values that have a time component.

28. High freight charges - last year

Answer
Select TOP (3)
 ShipCountry
 ,AverageFreight = Avg(freight)
From Orders
Where
 OrderDate >= Dateadd(yy, -1, (Select max(OrderDate) from Orders))
Group by ShipCountry
Order by AverageFreight desc;

Discussion
Using SQL like this that can generate a dynamic date
range is critical for most data analysis work. Most
reports and queries will need to be flexible, without
hard-coded date values.

29. Inventory list

Answer
Select
 Employees.EmployeeID
 ,Employees.LastName
 ,Orders.OrderID
 ,Products.ProductName
 ,OrderDetails.Quantity
From Employees
 join Orders
 on Orders.EmployeeID = Employees.EmployeeID
 join OrderDetails
 on Orders.OrderID = OrderDetails.OrderID
 join Products
 on Products.ProductID = OrderDetails.ProductID
Order by
 Orders.OrderID
 ,Products.ProductID

Discussion
This problem is more practice with basic joins and
multiple tables.
You can replace Join with Inner Join, but mostly
people just use Join.

30. Customers with no orders

Answer
Select
 Customers_CustomerID = Customers.CustomerID
 ,Orders_CustomerID = Orders.CustomerID
From Customers
 left join Orders
 on Orders.CustomerID = Customers.CustomerID
Where
 Orders.CustomerID is null

Discussion
There are many ways of getting the same results. The
main options are the Left Join with Is Null, Not In,
and Not Exists.
Above, we used the Left Join option. When
performance is equivalent, I prefer the Not In
method, shown below.
Select CustomerID
From Customers
Where
 CustomerID not in (select CustomerID from Orders)

I believe this is the easiest to read and understand.

Another option is to use Not Exists. This requires a
correlated subquery.
Select CustomerID
From Customers
Where Not Exists
 (
 Select CustomerID
 from Orders
 where
 Orders.CustomerID = Customers.CustomerID
)

Performance for the different options can be affected
by whether or not the fields are indexed or nullable.
For additional reading on the details, check out this
article: NOT IN vs. NOT EXISTS vs. LEFT JOIN /

IS NULL: SQL Server
(https://explainextended.com/2009/09/15/not-in-vs-
not-exists-vs-left-join-is-null-sql-server/).

https://explainextended.com/2009/09/15/not-in-vs-not-exists-vs-left-join-is-null-sql-server/

31. Customers with no orders for
EmployeeID 4

Answer
Select
 Customers.CustomerID
 ,Orders.CustomerID
From Customers
 left join Orders
 on Orders.CustomerID = Customers.CustomerID
 and Orders.EmployeeID = 4
Where
 Orders.CustomerID is null

Discussion
Because the filters in the Where clause are applied
after the results of the Join, we need the EmployeeID
= 4 filter in the Join clause, instead of the Where
clause.
Run the below query and review the results. It should
give you a better sense of how the left join with “is
null” works. Note that the Where clause is
commented out.
Select
 Customers.CustomerID
 ,Orders.CustomerID
 ,Orders.EmployeeID
From Customers
 left join Orders
 on Orders.CustomerID = Customers.CustomerID
 and Orders.EmployeeID = 4
-- Where
-- Orders.CustomerID is null

The most common way to solve this kind of problem
is as above, with a left join. However, here are some
alternatives using Not In and Not Exists.
Select CustomerID
From Customers
Where
 CustomerID not in (select CustomerID from Orders where EmployeeID
= 4)

Select CustomerID
From Customers
Where Not Exists
 (

 Select CustomerID
 from Orders
 where Orders.CustomerID = Customers.CustomerID
 and EmployeeID = 4
)

Advanced Problems

32. High-value customers

Answer
Select
 Customers.CustomerID
 ,Customers.CompanyName
 ,Orders.OrderID
 ,TotalOrderAmount = SUM(Quantity * UnitPrice)
From Customers
 Join Orders
 on Orders.CustomerID = Customers.CustomerID
 Join OrderDetails
 on Orders.OrderID = OrderDetails.OrderID
Where
 OrderDate >= '20160101'
 and OrderDate < '20170101'
Group by
 Customers.CustomerID
 ,Customers.CompanyName
 ,Orders.Orderid
Having Sum(Quantity * UnitPrice) > 10000
Order by TotalOrderAmount DESC

Discussion
If you tried putting this filter
and sum(Quantity * UnitPrice) >= 10000

… in the where clause, you got an error. Aggregate
functions can only be used to filter (with some
exceptions) in the Having clause, not the Where
clause.

33. High-value customers - total orders

Answer
Select
 Customers.CustomerID
 ,Customers.CompanyName
 --,Orders.OrderID
 ,TotalOrderAmount = SUM(Quantity * UnitPrice)
From Customers
 Join Orders
 on Orders.CustomerID = Customers.CustomerID
 Join OrderDetails
 on Orders.OrderID = OrderDetails.OrderID
Where
 OrderDate >= '20160101'
 and OrderDate < '20170101'
Group by
 Customers.CustomerID
 ,Customers.CompanyName
 --,Orders.Orderid
Having sum(Quantity * UnitPrice) > 15000
Order by TotalOrderAmount desc;

Discussion
All that was necessary here was to comment out
references in the Select clause and the Group By
clause to OrderID. By doing that, we're grouping at
the Customer level, and not at the Order level.

34. High-value customers - with discount

Answer

Select
 Customers.CustomerID
 ,Customers.CompanyName
 ,TotalsWithoutDiscount = SUM(Quantity * UnitPrice)
 ,TotalsWithDiscount = SUM(Quantity * UnitPrice * (1- Discount))
From Customers
 Join Orders
 on Orders.CustomerID = Customers.CustomerID
 Join OrderDetails
 on Orders.OrderID = OrderDetails.OrderID
Where
 OrderDate >= '20160101'
 and OrderDate < '20170101'
Group by
 Customers.CustomerID
 ,Customers.CompanyName
Having sum(Quantity * UnitPrice * (1- Discount)) > 10000
Order by TotalsWithDiscount DESC;

Discussion
Note that you need to use the new calculation for
order totals with discounts in the Select clause, the
Having clause, and also the Order by clause. In the
Order by clause, you can re-use the alias that you
created in the Select clause, but in the Having clause,
you need to repeat the calculation.

35. Month-end orders

Answer
Select
 EmployeeID
 ,OrderID
 ,OrderDate
From Orders
Where OrderDate = EOMONTH(OrderDate)
Order by
 EmployeeID
 ,OrderID

Discussion
Very frequently the end of the month will be needed
in queries and reports. The function EOMONTH was
introduced in SQL Server 2012, so before that point,
developers had to use a combination of functions like
the below:
Where OrderDate = dateadd(month,1 + datediff(month,0,OrderDate),-1)

36. Orders with many line items

Answer
Select top 10
 Orders.OrderID
 ,TotalOrderDetails = count(*)
From Orders
 Join OrderDetails
 on Orders.OrderID = OrderDetails.OrderID
Group By Orders.OrderID
Order By count(*) desc

Discussion
What happens when you select the top 50 instead of
top 10? There are many more rows that have 5 as the
TotalOrderDetails. If you want to show all of them
you can use the With Ties option as below:
Select top 10 With Ties
 Orders.OrderID
 ,TotalOrderDetails = count(*)
From Orders
 Join OrderDetails
 on Orders.OrderID = OrderDetails.OrderID
Group By Orders.OrderID
Order By count(*) desc

Note that the same query, with the “With Ties”
keyword, now returns 37 rows because there are
many rows with a value of 5 for TotalOrderDetails.

37. Orders - random assortment

Answer
Select top 2 percent
 OrderID
From Orders
Order By NewID()

Discussion
The NewID() function creates a globally unique
identifier (GUID). When you order by this identifier,
you get a random sorting. In this case, we're using
top 2 percent

...to get the top 2 percent instead of a specific number
of rows.
Using NewID() on a very large table can cause some
problems, see this article
(https://msdn.microsoft.com/en-
us/library/cc441928.aspx) for more details.

https://msdn.microsoft.com/en-us/library/cc441928.aspx

38. Orders - accidental double-entry

Answer
Select
 OrderID
From OrderDetails
Where Quantity >= 60
Group By
 OrderID
 ,Quantity
Having Count(*) > 1

Discussion
This SQL shows orders that have at least 1 order
detail with a quantity of 60 or more (the Where
clause), and the quantity is duplicated within the
order (the Group by and Having clause). This occurs
because we're grouping on both OrderID and
Quantity.

39. Orders - accidental double-entry details

Answer
;with PotentialDuplicates as (
 Select
 OrderID
 From OrderDetails
 Where Quantity >= 60
 Group By OrderID, Quantity
 Having Count(*) > 1
)
Select
 OrderID
 ,ProductID
 ,UnitPrice
 ,Quantity
 ,Discount
From OrderDetails
Where
 OrderID in (Select OrderID from PotentialDuplicates)
Order by
 OrderID
 ,Quantity

Discussion
There are quite a few different ways of getting the
same results for this problem. Based on years of
painful troubleshooting caused by poorly-written,
tangled SQL, I suggest that writing easily
understandable, straightforward code is one of the
most important things to strive for. Using a well
thought-out CTE is one way of doing this.
In the next problem, we'll look at another way of
getting the same result.

40. Orders - accidental double-entry
details, derived table

Answer
Select
 OrderDetails.OrderID
 ,ProductID
 ,UnitPrice
 ,Quantity
 ,Discount
From OrderDetails
 Join (
 Select distinct
 OrderID
 From OrderDetails
 Where Quantity >= 60
 Group By OrderID, Quantity
 Having Count(*) > 1
) PotentialProblemOrders
 on PotentialProblemOrders.OrderID = OrderDetails.OrderID
Order by OrderID, ProductID

Discussion
Note the Distinct keyword, added after the Select in
the derived table. This gives us only distinct rows in
the output, which avoids the problem with duplicate
OrderIDs.

41. Late orders

Answer
Select
 OrderID
 ,OrderDate = convert(date, OrderDate)
 ,RequiredDate = convert(date, RequiredDate)
 ,ShippedDate = convert(date, ShippedDate)
From Orders
Where
 RequiredDate <= ShippedDate

Discussion
This is a straight-forward query that we'll use as a
base for future problems.

42. Late orders - which employees?

Answer
Select
 Employees.EmployeeID
 ,LastName
 ,TotalLateOrders = Count(*)
From Orders
 Join Employees
 on Employees.EmployeeID = Orders.EmployeeID
Where
 RequiredDate <= ShippedDate
Group By
 Employees.EmployeeID
 ,Employees.LastName
Order by TotalLateOrders desc

Discussion
Note that both the LastName and the EmployeeID
from the Employees table need to be included in the
Group by clause, otherwise we get the error:
Msg 8120, Level 16, State 1, Line 3
Column 'Employees.LastName' is invalid in the select list because it is not
contained in either an aggregate function or the GROUP BY clause.

Technically, EmployeeID is a primary key field, and
since we’re grouping by that already, there can only
be one LastName associated with an EmployeeID.
However, the database engine doesn’t know this, and
still requires the LastName in the Group by clause.

43. Late orders vs. total orders

Answer
;With LateOrders as (
 Select
 EmployeeID
 ,TotalOrders = Count(*)
 From Orders
 Where
 RequiredDate <= ShippedDate
 Group By
 EmployeeID
)
, AllOrders as (
 Select
 EmployeeID
 ,TotalOrders = Count(*)
 From Orders
 Group By
 EmployeeID
)
Select
 Employees.EmployeeID
 ,LastName
 ,AllOrders = AllOrders.TotalOrders
 ,LateOrders = LateOrders.TotalOrders
From Employees
 Join AllOrders
 on AllOrders.EmployeeID = Employees.EmployeeID
 Join LateOrders
 on LateOrders.EmployeeID = Employees.EmployeeID

Discussion
The above query is almost correct, but if you're
paying careful attention, you'll realize it has a slight
problem. We'll learn more in the next problem.

44. Late orders vs. total orders - missing
employee

Answer
;With LateOrders as (
 Select
 EmployeeID
 ,TotalOrders = Count(*)
 From Orders
 Where
 RequiredDate <= ShippedDate
 Group By
 EmployeeID
)
, AllOrders as (
 Select
 EmployeeID
 ,TotalOrders = Count(*)
 From Orders
 Group By
 EmployeeID
)
Select
 Employees.EmployeeID
 ,LastName
 ,AllOrders = AllOrders.TotalOrders
 ,LateOrders = LateOrders.TotalOrders
From Employees
 Join AllOrders
 on AllOrders.EmployeeID = Employees.EmployeeID
 Left Join LateOrders
 on LateOrders.EmployeeID = Employees.EmployeeID

Discussion
If we wanted to show all employees, even if they had
no orders, we would also have needed to use a Left
Join for AllOrders.

45. Late orders vs. total orders - fix null

Answer
;With LateOrders as (
 Select
 EmployeeID
 ,TotalOrders = Count(*)
 From Orders
 Where
 RequiredDate <= ShippedDate
 Group By
 EmployeeID
)
, AllOrders as (
 Select
 EmployeeID
 ,TotalOrders = Count(*)
 From Orders
 Group By
 EmployeeID
)
Select
 Employees.EmployeeID
 ,LastName
 ,AllOrders = AllOrders.TotalOrders
 ,LateOrders = IsNull(LateOrders.TotalOrders, 0)
From Employees
 Join AllOrders
 on AllOrders.EmployeeID = Employees.EmployeeID
 Left Join LateOrders
 on LateOrders.EmployeeID = Employees.EmployeeID

Discussion
Using a straightforward IsNull on LateOrder is the
best way to solve this problem.
Another way to write it would be using a Case
statement
LateOrders =
 Case
 When LateOrders.TotalOrders is null Then 0
 Else LateOrders.TotalOrders
 End
But when you don’t need any other logic besides a
test for null, IsNull is the way to go.

46. Late orders vs. total orders - percentage

Answer
;With LateOrders as (
 Select
 EmployeeID
 ,TotalOrders = Count(*)
 From Orders
 Where
 RequiredDate <= ShippedDate
 Group By
 EmployeeID
)
, AllOrders as (
 Select
 EmployeeID
 ,TotalOrders = Count(*)
 From Orders
 Group By
 EmployeeID
)
Select
 Employees.EmployeeID
 ,LastName
 ,AllOrders = AllOrders.TotalOrders
 ,LateOrders = IsNull(LateOrders.TotalOrders, 0)
 ,PercentLateOrders =
 (IsNull(LateOrders.TotalOrders, 0) * 1.00) / AllOrders.TotalOrders
From Employees
 Join AllOrders
 on AllOrders.EmployeeID = Employees.EmployeeID
 Left Join LateOrders
 on LateOrders.EmployeeID = Employees.EmployeeID

Discussion
If you just add a field like this:
PercentLateOrders = LateOrders.TotalLateOrders/AllOrders.TotalOrders

…you'll get 0 for all the fields, although that's
obviously not correct. But this is what happens when
you divide two integers together. You need to
convert one of them to a data type such as decimal. A
common way to convert to a decimal datatype is by
multiplying by 1.00
Note that you need to convert the integer to a decimal
before you do the division. If you do it after the
division, like this:
(IsNull(LateOrders.TotalOrders, 0) / AllOrders.TotalOrders) * 1.00

… you'll still get 0.

47. Late orders vs. total orders - fix
decimal

Answer
;With LateOrders as (
 Select
 EmployeeID
 ,TotalOrders = Count(*)
 From Orders
 Where
 RequiredDate <= ShippedDate
 Group By
 EmployeeID
)
, AllOrders as (
 Select
 EmployeeID
 ,TotalOrders = Count(*)
 From Orders
 Group By
 EmployeeID
)
Select
 Employees.EmployeeID
 ,LastName
 ,AllOrders = AllOrders.TotalOrders
 ,LateOrders = IsNull(LateOrders.TotalOrders, 0)
 ,PercentLateOrders =
 Convert(
 Decimal (10,2)
 ,(IsNull(LateOrders.TotalOrders, 0) * 1.00) /
AllOrders.TotalOrders
)
From Employees

 Join AllOrders
 on AllOrders.EmployeeID = Employees.EmployeeID
 Left Join LateOrders
 on LateOrders.EmployeeID = Employees.EmployeeID

Discussion
Rounding, truncating, and converting data types can
get complicated, and there are many ways that you
could get unexpected results. Always check your
results carefully, and know whether you want
rounding, or truncation.
Frequently, when creating this kind of query, you’ll
put the output into a tool like Excel, and do any
additional formatting such as setting the decimal
precision there. However, it’s good to at least know
how to do it in SQL.
You may have noticed that I added some new lines in
the calculation to make it easier to read. This isn’t
necessary, but it’s good programming practice, and
easier to read and troubleshoot compared to having
everything on one line.

48. Customer grouping

Answer
;with Orders2016 as (
 Select
 Customers.CustomerID
 ,Customers.CompanyName
 ,TotalOrderAmount = SUM(Quantity * UnitPrice)
 From Customers
 Join Orders
 on Orders.CustomerID = Customers.CustomerID
 Join OrderDetails
 on Orders.OrderID = OrderDetails.OrderID
 Where
 OrderDate >= '20160101'
 and OrderDate < '20170101'
 Group by
 Customers.CustomerID
 ,Customers.CompanyName
)
Select
 CustomerID
 ,CompanyName
 ,TotalOrderAmount
 ,CustomerGroup =
 Case
 when TotalOrderAmount between 0 and 1000 then 'Low'
 when TotalOrderAmount between 1001 and 5000 then 'Medium'
 when TotalOrderAmount between 5001 and 10000 then 'High'
 when TotalOrderAmount > 10000 then 'Very High'
 End
from Orders2016
Order by CustomerID

Discussion
(Note - there's a small bug in the above SQL, which
we'll review in the next problem.)
The CTE works well for this problem, but it's not
strictly necessary. You could also use SQL like this:
Select
 Customers.CustomerID
 ,Customers.CompanyName
 ,TotalOrderAmount = SUM(Quantity * UnitPrice)
 ,CustomerGroup =
 Case
 when SUM(Quantity * UnitPrice) between 0 and 1000 then 'Low'
 when SUM(Quantity * UnitPrice) between 1001 and 5000 then
'Medium'
 when SUM(Quantity * UnitPrice) between 5001 and 10000 then
'High'
 when SUM(Quantity * UnitPrice) > 10000 then 'Very High'
 End
From Customers
 Join Orders
 on Orders.CustomerID = Customers.CustomerID
 Join OrderDetails
 on Orders.OrderID = OrderDetails.OrderID
Where
 OrderDate >= '20160101'
 and OrderDate < '20170101'
Group By
 Customers.CustomerID
 ,Customers.CompanyName

This gives the same result, but notice that the
calculation for getting the TotalOrderAmount was
repeated 5 times, including the 4 times in the Case
statement.

It's best to avoid repeating calculations like this. The
calculations will usually be quite complex and
difficult to read, and you want to have them only in
one place. In something simple, like Quantity *
UnitPrice, it's not necessarily a problem. But most of
the time, you should avoid repeating any calculations
and code. An easy way to remember this is with the
acronym DRY - “Don’t Repeat Yourself”. Here’s an
article
(https://en.wikipedia.org/wiki/Don%27t_repeat_yourself
on the topic.

https://en.wikipedia.org/wiki/Don%27t_repeat_yourself

49. Customer grouping - fix null

Answer
;with Orders2016 as (
 Select
 Customers.CustomerID
 ,Customers.CompanyName
 ,TotalOrderAmount = SUM(Quantity * UnitPrice)
 From Customers
 Join Orders
 on Orders.CustomerID = Customers.CustomerID
 Join OrderDetails
 on Orders.OrderID = OrderDetails.OrderID
 Where
 OrderDate >= '20160101'
 and OrderDate < '20170101'
 Group by
 Customers.CustomerID
 ,Customers.CompanyName
)
Select
 CustomerID
 ,CompanyName
 ,TotalOrderAmount
 ,CustomerGroup =
 case
 when TotalOrderAmount >= 0 and TotalOrderAmount < 1000
then 'Low'
 when TotalOrderAmount >= 1000 and TotalOrderAmount < 5000
then 'Medium'
 when TotalOrderAmount >= 5000 and TotalOrderAmount <10000
then 'High'
 when TotalOrderAmount >= 10000 then 'Very High'
 end
from Orders2016

Order by CustomerID

Discussion
As you've been seeing in the above problems,
knowing the data types you're working with and
understanding the differences between them is
important to get the right results. Using “between”
would have been fine for integer values, but not for
Money.

50. Customer grouping with percentage

Answer
;with Orders2016 as (
 Select
 Customers.CustomerID
 ,Customers.CompanyName
 ,TotalOrderAmount = SUM(Quantity * UnitPrice)
 From Customers
 join Orders
 on Orders.CustomerID = Customers.CustomerID
 join OrderDetails
 on Orders.OrderID = OrderDetails.OrderID
 Where
 OrderDate >= '20160101'
 and OrderDate < '20170101'
 Group By
 Customers.CustomerID
 ,Customers.CompanyName
)
,CustomerGrouping as (
 Select
 CustomerID
 ,CompanyName
 ,TotalOrderAmount
 ,CustomerGroup =
 case
 when TotalOrderAmount >= 0 and TotalOrderAmount < 1000
then 'Low'
 when TotalOrderAmount >= 1000 and TotalOrderAmount <
5000 then 'Medium'
 when TotalOrderAmount >= 5000 and TotalOrderAmount
<10000 then 'High'
 when TotalOrderAmount >= 10000 then 'Very High'
 end

 from Orders2016
 -- Order by CustomerID
)
Select
 CustomerGroup
 , TotalInGroup = Count(*)
 , PercentageInGroup = Count(*) * 1.0/ (select count(*) from
CustomerGrouping)
from CustomerGrouping
group by CustomerGroup
order by TotalInGroup desc

Discussion
In the answer we added an intermediate CTE called
CustomerGrouping. CustomerGrouping is referenced
twice - once to get the total number of customers in
the group, and once to get the total, as the
denominator for the percentage.
Notice that the Order by in the second CTE is
commented out. If you leave it in, you get this error:
Msg 1033, Level 15, State 1, Line 32
The ORDER BY clause is invalid in views, inline functions, derived
tables, subqueries, and common table expressions, unless TOP, OFFSET
or FOR XML is also specified.

51. Customer grouping - flexible

Answer
;with Orders2016 as (
 Select
 Customers.CustomerID
 ,Customers.CompanyName
 ,TotalOrderAmount = SUM(Quantity * UnitPrice)
 From Customers
 Join Orders
 on Orders.CustomerID = Customers.CustomerID
 Join OrderDetails
 on Orders.OrderID = OrderDetails.OrderID
 Where
 OrderDate >= '20160101'
 and OrderDate < '20170101'
 Group by
 Customers.CustomerID
 ,Customers.CompanyName
)
Select
 CustomerID
 ,CompanyName
 ,TotalOrderAmount
 ,CustomerGroupName
from Orders2016
 Join CustomerGroupThresholds
 on Orders2016.TotalOrderAmount between
 CustomerGroupThresholds.RangeBottom and
CustomerGroupThresholds.RangeTop
Order by CustomerID

Discussion
Note that this gives the same results as the original
problem. However, instead of using hard-coded
values in the Case statement to define the boundaries
of the CustomerGroups, you have them in a table.
The benefit of this is that you don't need to duplicate
the following code in every query where you need to
group customers, since it's defined in the table.
,CustomerGroup =
 case
 when TotalOrderAmount >= 0 and TotalOrderAmount < 1000 then
'Low'
 when TotalOrderAmount >= 1000 and TotalOrderAmount < 5000
then 'Medium'
 when TotalOrderAmount >= 5000 and TotalOrderAmount <10000
then 'High'
 when TotalOrderAmount >= 10000 then 'Very High'
 end

Also, take a look at the values in
CustomerGroupThresholds.
select * From CustomerGroupThresholds

Note that there's no overlap between the rows, with
regards to the RangeBottom and RangeTop. If it
were a data type besides Money (which goes to 4
decimal places), there might be gaps or overlap.

52. Countries with suppliers or customers

Answer
Select Country From Customers
Union
Select Country From Suppliers
Order by Country

Discussion
There are 2 ways of using the Union statement. One
is a simple Union as in the answer here. Using a
simple Union statement eliminates all the duplicates
in the resultset.

You can also use Union All. Try it and take a look at
the resultset:
Select distinct Country From Customers
Union All
Select distinct Country From Suppliers
Order by Country

Notice that within the individual SQL statements,
I’ve put a Distinct. However, there are still duplicates
in the final output, because we have Union All,
which doesn’t eliminate duplicates.

53. Countries with suppliers or customers,
version 2

Answer
;With SupplierCountries as
 (Select Distinct Country from Suppliers)
,CustomerCountries as
 (Select Distinct Country from Customers)
Select
 SupplierCountry = SupplierCountries .Country
 ,CustomerCountry = CustomerCountries .Country
From SupplierCountries
 Full Outer Join CustomerCountries
 on CustomerCountries.Country = SupplierCountries.Country

Discussion
The Full Outer join isn’t commonly used, but in
certain situations it’s critical. Another way that these
queries could have been joined is via a derived table,
like below.

Select
 SupplierCountry = SupplierCountries .Country
 ,CustomerCountry = CustomerCountries .Country
From (Select Distinct Country from Suppliers) SupplierCountries
 Full Outer Join (Select Distinct Country from Customers)
CustomerCountries
 on CustomerCountries.Country = SupplierCountries.Country

In this instance, you get the identical output to the
CTE option, but I think the CTE option is easier to
read.
Why are CTEs, in general, easier to read? The main
reason is that the code can be more logically
structured, and read from top to bottom without
needing to jump around to different sections. See this
article (http://www.essentialsql.com/non-recursive-
ctes/) for more details.
Are CTEs always the answer? No, not always. The
main case in which you should switch from a CTE to
something else (for instance, a table variable or
temporary table) would be when you need to
reference the results of the select statement multiple
times, in a longer piece of code

http://www.essentialsql.com/non-recursive-ctes/

54. Countries with suppliers or customers -
version 3

Answer
;With SupplierCountries as
 (Select Country , Total = Count(*) from Suppliers group by Country)
,CustomerCountries as
 (Select Country , Total = Count(*) from Customers group by Country)
Select
 Country = isnull(SupplierCountries.Country,
CustomerCountries.Country)
 ,TotalSuppliers= isnull(SupplierCountries.Total,0)
 ,TotalCustomers= isnull(CustomerCountries.Total,0)
From SupplierCountries
 Full Outer Join CustomerCountries
 on CustomerCountries.Country = SupplierCountries.Country

Discussion
Note that we had to switch from Distinct to Group
By in the CTE, because we needed to get the total
with Count(*), for which you need to do a Group By.
The Full Outer type join is not very commonly used,
but in some situations, it’s the only thing that will get
the results we want.

55. First order in each country

Answer
;with OrdersByCountry as
(
 Select
 ShipCountry
 ,CustomerID
 ,OrderID
 ,OrderDate = convert(date, OrderDate)
 ,RowNumberPerCountry =
 Row_Number()
 over (Partition by ShipCountry Order by ShipCountry, OrderID)
 From Orders
)
Select
 ShipCountry
 ,CustomerID
 ,OrderID
 ,OrderDate
From OrdersByCountry
Where
 RowNumberPerCountry = 1
Order by
 ShipCountry

Discussion
Before Window functions were available, in previous
versions of SQL Server, there were other options to
get the same results.
The below returns the same resultset as we got with
the Row_Number() function:
;with FirstOrderPerCountry as (
 Select
 ShipCountry
 ,MinOrderID = min(OrderID)
 From Orders
 Group by
 ShipCountry)
Select
 Orders.ShipCountry
 ,CustomerID
 ,OrderID
from FirstOrderPerCountry
 Join Orders
 on Orders.OrderID = FirstOrderPerCountry.MinOrderID
Order by
 Orders.ShipCountry

However, what if we had wanted to order by
something else, and not the OrderID? For instance,
the ShippedDate? Since ShippedDate isn’t a unique
value like OrderID, we would not have been able to
join on it.
There are workarounds for this issue, but a Window
function is definitely easier.

56. Customers with multiple orders in 5
day period

Answer
Select
 InitialOrder.CustomerID
 ,InitialOrderID = InitialOrder.OrderID
 ,InitialOrderDate = convert(date, InitialOrder.OrderDate)
 ,NextOrderID = NextOrder.OrderID
 ,NextOrderDate = convert(date, NextOrder.OrderDate)
 ,DaysBetween = datediff(dd, InitialOrder.OrderDate,
NextOrder.OrderDate)
from Orders InitialOrder
 join Orders NextOrder
 on InitialOrder.CustomerID = NextOrder.CustomerID
where
 InitialOrder.OrderID < NextOrder.OrderID
 and datediff(dd, InitialOrder.OrderDate, NextOrder.OrderDate) <= 5
Order by
 InitialOrder.CustomerID
 ,InitialOrder.OrderID

Discussion
Including multiple instances of a table is one way of
finding the answer we need.
When aliasing tables and columns, be careful to
name them something meaningful, that you can read
and understand your SQL.

57. Customers with multiple orders in 5
day period, version 2

Answer
;With NextOrderDate as (
 Select
 CustomerID
 ,OrderDate = convert(date, OrderDate)
 ,NextOrderDate =
 convert(
 date
 ,Lead(OrderDate,1)
 OVER (Partition by CustomerID order by CustomerID,
OrderDate)
)
 From Orders
)
Select
 CustomerID
 ,OrderDate
 ,NextOrderDate
 ,DaysBetweenOrders = DateDiff (dd, OrderDate, NextOrderDate)
From NextOrderDate
Where
 DateDiff (dd, OrderDate, NextOrderDate) <= 5

Discussion
There’s two main ways of solving this problem, the
first using multiple instances of the table (which we
did in the first version of the problem), and the other
using Window functions.
Which is better? If we’re okay with getting a
narrower resultset, I’d prefer this version, using the
Lead window function, instead of the previous
solution.
But if we need multiple columns from the following
order, then it’s best to use the first version.
Otherwise, you’d need multiple calculated columns
with the same Partition and Order by.
Notice that the row count between the 2 answers are
slightly different, 71 and 69. You can use this SQL to
look at one difference in more detail.
Select
 CustomerID
 ,OrderID
 ,OrderDate
From Orders
Where
 CustomerID = 'ERNSH'
 Order by
 CustomerID
 ,OrderID

What causes the difference between the 2 answers?

Congratulations!

You’re finished! If you have a moment, I would
really appreciate a review of the book on
Amazon.com (https://www.amazon.com/SQL-
Practice-Problems-learn-doing/dp/1540422658).
Your honest opinon can help people decide between
the many SQL learning options available.
Now that you’ve completed the practice problems,
you’ve improved your SQL skills tremendously. If
you’ve just read through the book without actually
writing out the SQL—that’s a great start! I encourage
you to go through the problems again, this time
actually working out the SQL, and not looking at the
answers and hints unless you need to.

Any comments and sugggestions are most welcome!

Please email me at:
feedback@SQLPracticeProblems.com.

Thank you!

Sylvia Moestl Vasilik

https://www.amazon.com/SQL-Practice-Problems-learn-doing/dp/1540422658
mailto:feedback@SQLPracticeProblems.com

目录

How to use this book 4
Setup 14
Introductory Problems 18

1.Which shippers do we have? 19
2.Certain fields from Categories 22
3.Sales Representatives 25
4.Sales Representatives in the United States 28
5.Orders placed by specific EmployeeID 31
6.Suppliers and ContactTitles 35
7.Products with “queso” in ProductName 38
8.Orders shipping to France or Belgium 41
9.Orders shipping to any country in Latin America 44
10.Employees, in order of age 47
11.Showing only the Date with a DateTime field 50
12.Employees full name 53
13.OrderDetails amount per line item 56
14.How many customers? 59
15.When was the first order? 62
16.Countries where there are customers 65
17.Contact titles for customers 68
18.Products with associated supplier names 71
19.Orders and the Shipper that was used 74

Intermediate Problems 79
20.Categories, and the total products in each category 80
21.Total customers per country/city 83
22.Products that need reordering 86
23.Products that need reordering, continued 89
24.Customer list by region 92
25.High freight charges 96
26.High freight charges - 2015 101
27.High freight charges with between 105

28.High freight charges - last year 109
29.Inventory list 114
30.Customers with no orders 117
31.Customers with no orders for EmployeeID 4 121

Advanced Problems 124
32.High-value customers 125
33.High-value customers - total orders 130
34.High-value customers - with discount 133
35.Month-end orders 137
36.Orders with many line items 140
37.Orders - random assortment 143
38.Orders - accidental double-entry 146
39.Orders - accidental double-entry details 150
40.Orders - accidental double-entry details, derived table 153
41.Late orders 156
42.Late orders - which employees? 160
43.Late orders vs. total orders 163
44.Late orders vs. total orders - missing employee 167
45.Late orders vs. total orders - fix null 171
46.Late orders vs. total orders - percentage 174
47.Late orders vs. total orders - fix decimal 177
48.Customer grouping 181
49.Customer grouping - fix null 186
50.Customer grouping with percentage 190
51.Customer grouping - flexible 194
52.Countries with suppliers or customers 199
53.Countries with suppliers or customers, version 2 202
54.Countries with suppliers or customers - version 3 206
55.First order in each country 210
56.Customers with multiple orders in 5 day period 215
57.Customers with multiple orders in 5 day period, version 2 222

ANSWERS 226
Introductory Problems 226

1.Which shippers do we have? 227

2.Certain fields from Categories 230

3.Sales Representatives 232
4.Sales Representatives in the United States 234
5.Orders placed by specific EmployeeID 236
6.Suppliers and ContactTitles 238
7.Products with “queso” in ProductName 240
8.Orders shipping to France or Belgium 242
9.Orders shipping to any country in Europe 244
10.Employees, in order of age 246
11.Showing only the Date with a DateTime field 248
12.Employees full name 250
13.OrderDetails amount per line item 252
14.How many customers? 254
15.When was the first order? 256
16.Countries where there are customers 258
17.Contact titles for customers 260
18.Products with associated supplier names 262
19.Orders and the Shipper that was used 265

Intermediate Problems 268
20.Categories, and the total products in each category 269
21.Total customers per country/city 272
22.Products that need reordering 275
23.Products that need reordering, continued 277
24.Customer list by region 279
25.High freight charges 281
26.High freight charges - 2015 283
27.High freight charges with between 285
28.High freight charges - last year 287
29.Inventory list 289
30.Customers with no orders 291
31.Customers with no orders for EmployeeID 4 294

Advanced Problems 296
32.High-value customers 297

33.High-value customers - total orders 300
34.High-value customers - with discount 302

35.Month-end orders 304
36.Orders with many line items 306
37.Orders - random assortment 308
38.Orders - accidental double-entry 310
39.Orders - accidental double-entry details 312
40.Orders - accidental double-entry details, derived table 314
41.Late orders 316
42.Late orders - which employees? 318
43.Late orders vs. total orders 320
44.Late orders vs. total orders - missing employee 322
45.Late orders vs. total orders - fix null 324
46.Late orders vs. total orders - percentage 326
47.Late orders vs. total orders - fix decimal 328
48.Customer grouping 331
49.Customer grouping - fix null 334
50.Customer grouping with percentage 337
51.Customer grouping - flexible 340
52.Countries with suppliers or customers 342
53.Countries with suppliers or customers, version 2 344
54.Countries with suppliers or customers - version 3 346
55.First order in each country 348
56.Customers with multiple orders in 5 day period 350
57.Customers with multiple orders in 5 day period, version 2 352

	How to use this book
	Setup
	Introductory Problems
	1.Which shippers do we have?
	2.Certain fields from Categories
	3.Sales Representatives
	4.Sales Representatives in the United States
	5.Orders placed by specific EmployeeID
	6.Suppliers and ContactTitles
	7.Products with “queso” in ProductName
	8.Orders shipping to France or Belgium
	9.Orders shipping to any country in Latin America
	10.Employees, in order of age
	11.Showing only the Date with a DateTime field
	12.Employees full name
	13.OrderDetails amount per line item
	14.How many customers?
	15.When was the first order?
	16.Countries where there are customers
	17.Contact titles for customers
	18.Products with associated supplier names
	19.Orders and the Shipper that was used

	Intermediate Problems
	20.Categories, and the total products in each category
	21.Total customers per country/city
	22.Products that need reordering
	23.Products that need reordering, continued
	24.Customer list by region
	25.High freight charges
	26.High freight charges - 2015
	27.High freight charges with between
	28.High freight charges - last year
	29.Inventory list
	30.Customers with no orders
	31.Customers with no orders for EmployeeID 4

	Advanced Problems
	32.High-value customers
	33.High-value customers - total orders
	34.High-value customers - with discount
	35.Month-end orders
	36.Orders with many line items
	37.Orders - random assortment
	38.Orders - accidental double-entry
	39.Orders - accidental double-entry details
	40.Orders - accidental double-entry details, derived table
	41.Late orders
	42.Late orders - which employees?
	43.Late orders vs. total orders
	44.Late orders vs. total orders - missing employee
	45.Late orders vs. total orders - fix null
	46.Late orders vs. total orders - percentage
	47.Late orders vs. total orders - fix decimal
	48.Customer grouping
	49.Customer grouping - fix null
	50.Customer grouping with percentage
	51.Customer grouping - flexible
	52.Countries with suppliers or customers
	53.Countries with suppliers or customers, version 2
	54.Countries with suppliers or customers - version 3
	55.First order in each country
	56.Customers with multiple orders in 5 day period
	57.Customers with multiple orders in 5 day period, version 2

	ANSWERS
	Introductory Problems
	1.Which shippers do we have?
	2.Certain fields from Categories
	3.Sales Representatives
	4.Sales Representatives in the United States
	5.Orders placed by specific EmployeeID
	6.Suppliers and ContactTitles
	7.Products with “queso” in ProductName
	8.Orders shipping to France or Belgium
	9.Orders shipping to any country in Europe
	10.Employees, in order of age
	11.Showing only the Date with a DateTime field
	12.Employees full name
	13.OrderDetails amount per line item
	14.How many customers?
	15.When was the first order?
	16.Countries where there are customers
	17.Contact titles for customers
	18.Products with associated supplier names
	19.Orders and the Shipper that was used

	Intermediate Problems
	20.Categories, and the total products in each category
	21.Total customers per country/city
	22.Products that need reordering
	23.Products that need reordering, continued
	24.Customer list by region
	25.High freight charges
	26.High freight charges - 2015
	27.High freight charges with between
	28.High freight charges - last year
	29.Inventory list
	30.Customers with no orders
	31.Customers with no orders for EmployeeID 4

	Advanced Problems
	32.High-value customers
	33.High-value customers - total orders
	34.High-value customers - with discount
	35.Month-end orders
	36.Orders with many line items
	37.Orders - random assortment
	38.Orders - accidental double-entry
	39.Orders - accidental double-entry details
	40.Orders - accidental double-entry details, derived table
	41.Late orders
	42.Late orders - which employees?
	43.Late orders vs. total orders
	44.Late orders vs. total orders - missing employee
	45.Late orders vs. total orders - fix null
	46.Late orders vs. total orders - percentage
	47.Late orders vs. total orders - fix decimal
	48.Customer grouping
	49.Customer grouping - fix null
	50.Customer grouping with percentage
	51.Customer grouping - flexible
	52.Countries with suppliers or customers
	53.Countries with suppliers or customers, version 2
	54.Countries with suppliers or customers - version 3
	55.First order in each country
	56.Customers with multiple orders in 5 day period
	57.Customers with multiple orders in 5 day period, version 2

