

Software Development
with Go

Cloud-Native Programming
using Golang with Linux

and Docker

Nanik Tolaram

Software Development with Go: Cloud-Native Programming using Golang

with Linux and Docker

ISBN-13 (pbk): 978-1-4842-8730-9 ISBN-13 (electronic): 978-1-4842-8731-6
https://doi.org/10.1007/978-1-4842-8731-6

Copyright © 2023 by Nanik Tolaram

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: James Robinson-Prior
Development Editor: James Markham
Coordinating Editor: Gryffin Winkler
Copy Editor: Mary Behr

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1
New York Plaza, Suite 4600, New York, NY 10004-1562, USA. Phone 1-800-SPRINGER, fax (201)
348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media,
LLC is a California LLC and the sole member (owner) is Springer Science + Business Media
Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub (https://github.com/Apress). For more detailed information,
please visit www.apress.com/source-code.

Printed on acid-free paper

Nanik Tolaram
Sydney, NSW, Australia

https://doi.org/10.1007/978-1-4842-8731-6

I would like to dedicate this book to my late Dad who stood
by me and encouraged me to write my very first book when

I was 17 years old. To my dearest Mum who always
supported me in pursuing my dreams and encouraged me

to keep on going no matter what life brings. To my beautiful
wife and best friend for allowing me the time to write the

book and supporting me in every step of our life. To both my
sons, Rahul and Manav, for allowing me to spend time in

front of the computer on weekends to chase my dream and
passion. Last but not least, to God for giving me this life and

opportunity to be where I am in this world.

v

Table of Contents

About the Author ���xiii

About the Technical Reviewer ��xv

Acknowledgments ��xvii

Introduction ���xix

Part I: System Programming ��1

Chapter 1: System Calls ���3

Source Code ��3

What Is a System Call? ���4

C System Call ��5

sys/unix Package ��8

System Call in Go ��� 10

Summary���14

Chapter 2: System Calls Using Go���15

Source Code ��15

Syscall Package ��16

syscall Application ��� 16

Checking Disk Space ��� 18

Webserver with syscall �� 20

https://doi.org/10.1007/978-1-4842-8731-6_1
https://doi.org/10.1007/978-1-4842-8731-6_1#Sec1
https://doi.org/10.1007/978-1-4842-8731-6_1#Sec2
https://doi.org/10.1007/978-1-4842-8731-6_1#Sec3
https://doi.org/10.1007/978-1-4842-8731-6_1#Sec4
https://doi.org/10.1007/978-1-4842-8731-6_1#Sec5
https://doi.org/10.1007/978-1-4842-8731-6_1#Sec6
https://doi.org/10.1007/978-1-4842-8731-6_2
https://doi.org/10.1007/978-1-4842-8731-6_2#Sec1
https://doi.org/10.1007/978-1-4842-8731-6_2#Sec2
https://doi.org/10.1007/978-1-4842-8731-6_2#Sec3
https://doi.org/10.1007/978-1-4842-8731-6_2#Sec4
https://doi.org/10.1007/978-1-4842-8731-6_2#Sec5

vi

ELF Package��22

High-Level ELF Format �� 23

Dump Example �� 24

/sys Filesystem ���28

Reading AppArmor ��� 29

Summary���31

Chapter 3: Accessing proc File System ��33

Source Code ��33

Peeking Inside procfs ��34

Reading Memory Information ���38

Peeking Network Information �� 41

Using the procfs Library ��44

Code Sample ��� 44

Inside the procfs Library �� 46

Summary���48

Part II: Containers ���49

Chapter 4: Simple Containers ���51

Linux Namespace ��51

cgroups ���55

rootfs ���58

Gontainer Project ��63

Summary���70

Table of ConTenTs

https://doi.org/10.1007/978-1-4842-8731-6_2#Sec6
https://doi.org/10.1007/978-1-4842-8731-6_2#Sec7
https://doi.org/10.1007/978-1-4842-8731-6_2#Sec8
https://doi.org/10.1007/978-1-4842-8731-6_2#Sec9
https://doi.org/10.1007/978-1-4842-8731-6_2#Sec10
https://doi.org/10.1007/978-1-4842-8731-6_2#Sec11
https://doi.org/10.1007/978-1-4842-8731-6_3
https://doi.org/10.1007/978-1-4842-8731-6_3#Sec1
https://doi.org/10.1007/978-1-4842-8731-6_3#Sec2
https://doi.org/10.1007/978-1-4842-8731-6_3#Sec3
https://doi.org/10.1007/978-1-4842-8731-6_3#Sec4
https://doi.org/10.1007/978-1-4842-8731-6_3#Sec5
https://doi.org/10.1007/978-1-4842-8731-6_3#Sec6
https://doi.org/10.1007/978-1-4842-8731-6_3#Sec7
https://doi.org/10.1007/978-1-4842-8731-6_3#Sec8
https://doi.org/10.1007/978-1-4842-8731-6_4
https://doi.org/10.1007/978-1-4842-8731-6_4#Sec1
https://doi.org/10.1007/978-1-4842-8731-6_4#Sec2
https://doi.org/10.1007/978-1-4842-8731-6_4#Sec3
https://doi.org/10.1007/978-1-4842-8731-6_4#Sec4
https://doi.org/10.1007/978-1-4842-8731-6_4#Sec5

vii

Chapter 5: Containers with Networking ���71

Source Code ��71

Network Namespace ��� 72

Setting Up with the ip Tool ��� 74

Containers with Networks ��� 79

Summary ��� 88

Chapter 6: Docker Security ���89

Source Code ��89

seccomp Profiles ��89

libseccomp �� 91

Docker seccomp �� 95

Docker Proxy ���98

Container Attack Surface ��105

Summary���106

Part III: Application Security ��109

Chapter 7: Gosec and AST ��111

Source Code ��111

Abstract Syntax Tree ���111

Modules ��� 115

Sample Code ��� 116

gosec ��122

Inside gosec �� 123

Rules �� 128

Summary���130

Table of ConTenTs

https://doi.org/10.1007/978-1-4842-8731-6_5
https://doi.org/10.1007/978-1-4842-8731-6_5#Sec1
https://doi.org/10.1007/978-1-4842-8731-6_5#Sec2
https://doi.org/10.1007/978-1-4842-8731-6_5#Sec3
https://doi.org/10.1007/978-1-4842-8731-6_5#Sec4
https://doi.org/10.1007/978-1-4842-8731-6_5#Sec5
https://doi.org/10.1007/978-1-4842-8731-6_6
https://doi.org/10.1007/978-1-4842-8731-6_6#Sec1
https://doi.org/10.1007/978-1-4842-8731-6_6#Sec2
https://doi.org/10.1007/978-1-4842-8731-6_6#Sec3
https://doi.org/10.1007/978-1-4842-8731-6_6#Sec4
https://doi.org/10.1007/978-1-4842-8731-6_6#Sec5
https://doi.org/10.1007/978-1-4842-8731-6_6#Sec6
https://doi.org/10.1007/978-1-4842-8731-6_6#Sec7
https://doi.org/10.1007/978-1-4842-8731-6_7
https://doi.org/10.1007/978-1-4842-8731-6_7#Sec1
https://doi.org/10.1007/978-1-4842-8731-6_7#Sec2
https://doi.org/10.1007/978-1-4842-8731-6_7#Sec3
https://doi.org/10.1007/978-1-4842-8731-6_7#Sec4
https://doi.org/10.1007/978-1-4842-8731-6_7#Sec7
https://doi.org/10.1007/978-1-4842-8731-6_7#Sec8
https://doi.org/10.1007/978-1-4842-8731-6_7#Sec9
https://doi.org/10.1007/978-1-4842-8731-6_7#Sec10

viii

Chapter 8: Scorecard ��131

Source Code ��131

What Is Scorecard? ���131

Setting Up Scorecard ��� 133

Running Scorecard �� 137

High-Level Flow ��� 139

GitHub ���145

GitHub API �� 145

GitHub Explorer �� 156

Summary���159

Part IV: Networking ��161

Chapter 9: Simple Networking ��163

Source Code ��163

TCP Networking ��163

TCP Client �� 164

TCP Server ��� 166

UDP Networking ��168

UDP Client �� 169

UDP Server �� 172

Concurrent Servers �� 174

Load Testing ��175

Summary���179

Chapter 10: System Networking ���181

Source Code ��181

Ping Utility ���181

Code Walkthrough ��� 182

Table of ConTenTs

https://doi.org/10.1007/978-1-4842-8731-6_8
https://doi.org/10.1007/978-1-4842-8731-6_8#Sec1
https://doi.org/10.1007/978-1-4842-8731-6_8#Sec2
https://doi.org/10.1007/978-1-4842-8731-6_8#Sec3
https://doi.org/10.1007/978-1-4842-8731-6_8#Sec4
https://doi.org/10.1007/978-1-4842-8731-6_8#Sec5
https://doi.org/10.1007/978-1-4842-8731-6_8#Sec6
https://doi.org/10.1007/978-1-4842-8731-6_8#Sec7
https://doi.org/10.1007/978-1-4842-8731-6_8#Sec8
https://doi.org/10.1007/978-1-4842-8731-6_8#Sec9
https://doi.org/10.1007/978-1-4842-8731-6_9
https://doi.org/10.1007/978-1-4842-8731-6_9#Sec1
https://doi.org/10.1007/978-1-4842-8731-6_9#Sec2
https://doi.org/10.1007/978-1-4842-8731-6_9#Sec3
https://doi.org/10.1007/978-1-4842-8731-6_9#Sec4
https://doi.org/10.1007/978-1-4842-8731-6_9#Sec5
https://doi.org/10.1007/978-1-4842-8731-6_9#Sec6
https://doi.org/10.1007/978-1-4842-8731-6_9#Sec7
https://doi.org/10.1007/978-1-4842-8731-6_9#Sec8
https://doi.org/10.1007/978-1-4842-8731-6_9#Sec9
https://doi.org/10.1007/978-1-4842-8731-6_9#Sec10
https://doi.org/10.1007/978-1-4842-8731-6_10
https://doi.org/10.1007/978-1-4842-8731-6_10#Sec1
https://doi.org/10.1007/978-1-4842-8731-6_10#Sec2
https://doi.org/10.1007/978-1-4842-8731-6_10#Sec3

ix

DNS Server ��188

Running a DNS Server ��� 188

DNS Forwarder �� 189

Pack and Unpack ��� 193

Summary���196

Chapter 11: Google gopacket ��199

Source Code ��199

gopacket ���200

Layer �� 200

Packet �� 204

Using gopacket ���205

pcap ��� 205

Networking Sniffer �� 206

Capturing With BPF �� 217

Summary���222

Chapter 12: Epoll Library ��223

Source Code ��224

Understanding epoll ��224

epoll in Golang ��226

Epoll Registration �� 227

Epoll Wait ��� 229

Epoll Library ��232

Summary���235

Table of ConTenTs

https://doi.org/10.1007/978-1-4842-8731-6_10#Sec4
https://doi.org/10.1007/978-1-4842-8731-6_10#Sec5
https://doi.org/10.1007/978-1-4842-8731-6_10#Sec6
https://doi.org/10.1007/978-1-4842-8731-6_10#Sec7
https://doi.org/10.1007/978-1-4842-8731-6_10#Sec8
https://doi.org/10.1007/978-1-4842-8731-6_11
https://doi.org/10.1007/978-1-4842-8731-6_11#Sec1
https://doi.org/10.1007/978-1-4842-8731-6_11#Sec2
https://doi.org/10.1007/978-1-4842-8731-6_11#Sec3
https://doi.org/10.1007/978-1-4842-8731-6_11#Sec5
https://doi.org/10.1007/978-1-4842-8731-6_11#Sec6
https://doi.org/10.1007/978-1-4842-8731-6_11#Sec7
https://doi.org/10.1007/978-1-4842-8731-6_11#Sec9
https://doi.org/10.1007/978-1-4842-8731-6_11#Sec13
https://doi.org/10.1007/978-1-4842-8731-6_11#Sec14
https://doi.org/10.1007/978-1-4842-8731-6_12
https://doi.org/10.1007/978-1-4842-8731-6_12#Sec1
https://doi.org/10.1007/978-1-4842-8731-6_12#Sec2
https://doi.org/10.1007/978-1-4842-8731-6_12#Sec3
https://doi.org/10.1007/978-1-4842-8731-6_12#Sec4
https://doi.org/10.1007/978-1-4842-8731-6_12#Sec5
https://doi.org/10.1007/978-1-4842-8731-6_12#Sec6
https://doi.org/10.1007/978-1-4842-8731-6_12#Sec7

x

Part V: Securing Linux ��239

Chapter 13: Vulnerability Scanner ��239

Source Code ��239

Vulnerability Scanners ��240

Using Vuls��241

Checking Out the Code �� 241

Running Scan �� 243

Learning From Vuls ���248

Port Scan ��� 248

Exec ��� 255

SQLite �� 257

Summary���263

Chapter 14: CrowdSec ��265

Source Code ��265

CrowdSec Project ��266

Using CrowdSec �� 266

crowdsec�db �� 270

Learning From CrowdSec��273

System Signal Handling ��� 274

Handling Service Dependencies �� 280

GeoIP Database ��� 285

Summary���290

Table of ConTenTs

https://doi.org/10.1007/978-1-4842-8731-6_13
https://doi.org/10.1007/978-1-4842-8731-6_13#Sec1
https://doi.org/10.1007/978-1-4842-8731-6_13#Sec2
https://doi.org/10.1007/978-1-4842-8731-6_13#Sec3
https://doi.org/10.1007/978-1-4842-8731-6_13#Sec4
https://doi.org/10.1007/978-1-4842-8731-6_13#Sec5
https://doi.org/10.1007/978-1-4842-8731-6_13#Sec6
https://doi.org/10.1007/978-1-4842-8731-6_13#Sec7
https://doi.org/10.1007/978-1-4842-8731-6_13#Sec8
https://doi.org/10.1007/978-1-4842-8731-6_13#Sec9
https://doi.org/10.1007/978-1-4842-8731-6_13#Sec10
https://doi.org/10.1007/978-1-4842-8731-6_14
https://doi.org/10.1007/978-1-4842-8731-6_14#Sec1
https://doi.org/10.1007/978-1-4842-8731-6_14#Sec2
https://doi.org/10.1007/978-1-4842-8731-6_14#Sec3
https://doi.org/10.1007/978-1-4842-8731-6_14#Sec4
https://doi.org/10.1007/978-1-4842-8731-6_14#Sec5
https://doi.org/10.1007/978-1-4842-8731-6_14#Sec6
https://doi.org/10.1007/978-1-4842-8731-6_14#Sec7
https://doi.org/10.1007/978-1-4842-8731-6_14#Sec8
https://doi.org/10.1007/978-1-4842-8731-6_14#Sec9

xi

Part VI: Terminal User Interface��293

Chapter 15: ANSI and UI ���293

Source Code ��293

ANSI Escape Code ���294

ANSI-Based UI ���296

Color Table ��� 296

Styling Text �� 299

Open Source Library ���300

Gookit �� 300

Spinner �� 303

Summary���306

Chapter 16: TUI Framework ��307

uiprogress ���307

Code Flow �� 309

Updating Progress ��� 310

Bubbletea ��313

Init�� 315

Update ��� 318

View ��� 319

Summary���321

Part VII: Linux System ��325

Chapter 17: systemd ���325

Source Code ��325

systemd ��� 325

systemctl ��� 329

Hello Server systemd��� 332

Table of ConTenTs

https://doi.org/10.1007/978-1-4842-8731-6_15
https://doi.org/10.1007/978-1-4842-8731-6_15#Sec1
https://doi.org/10.1007/978-1-4842-8731-6_15#Sec2
https://doi.org/10.1007/978-1-4842-8731-6_15#Sec3
https://doi.org/10.1007/978-1-4842-8731-6_15#Sec4
https://doi.org/10.1007/978-1-4842-8731-6_15#Sec5
https://doi.org/10.1007/978-1-4842-8731-6_15#Sec6
https://doi.org/10.1007/978-1-4842-8731-6_15#Sec7
https://doi.org/10.1007/978-1-4842-8731-6_15#Sec8
https://doi.org/10.1007/978-1-4842-8731-6_15#Sec9
https://doi.org/10.1007/978-1-4842-8731-6_16
https://doi.org/10.1007/978-1-4842-8731-6_16#Sec1
https://doi.org/10.1007/978-1-4842-8731-6_16#Sec2
https://doi.org/10.1007/978-1-4842-8731-6_16#Sec3
https://doi.org/10.1007/978-1-4842-8731-6_16#Sec4
https://doi.org/10.1007/978-1-4842-8731-6_16#Sec5
https://doi.org/10.1007/978-1-4842-8731-6_16#Sec6
https://doi.org/10.1007/978-1-4842-8731-6_16#Sec7
https://doi.org/10.1007/978-1-4842-8731-6_16#Sec8
https://doi.org/10.1007/978-1-4842-8731-6_17
https://doi.org/10.1007/978-1-4842-8731-6_17#Sec1
https://doi.org/10.1007/978-1-4842-8731-6_17#Sec2
https://doi.org/10.1007/978-1-4842-8731-6_17#Sec4
https://doi.org/10.1007/978-1-4842-8731-6_17#Sec5

xii

go-systemd Library ��� 334

Summary ��� 345

Chapter 18: cadvisor ��347

Source Code ��347

Running cAdvisor ��347

Web User Interface ��352

Architecture ��355

Initialization ���357

Manager ��361

Monitoring Filesystem���368

Information from /sys and /proc ���371

Client Library ���375

Summary���375

 Index ���377

Table of ConTenTs

https://doi.org/10.1007/978-1-4842-8731-6_17#Sec6
https://doi.org/10.1007/978-1-4842-8731-6_17#Sec10
https://doi.org/10.1007/978-1-4842-8731-6_18
https://doi.org/10.1007/978-1-4842-8731-6_18#Sec1
https://doi.org/10.1007/978-1-4842-8731-6_18#Sec2
https://doi.org/10.1007/978-1-4842-8731-6_18#Sec3
https://doi.org/10.1007/978-1-4842-8731-6_18#Sec4
https://doi.org/10.1007/978-1-4842-8731-6_18#Sec5
https://doi.org/10.1007/978-1-4842-8731-6_18#Sec6
https://doi.org/10.1007/978-1-4842-8731-6_18#Sec7
https://doi.org/10.1007/978-1-4842-8731-6_18#Sec8
https://doi.org/10.1007/978-1-4842-8731-6_18#Sec9
https://doi.org/10.1007/978-1-4842-8731-6_18#Sec10

xiii

About the Author

Nanik Tolaram is a big proponent of open source software with over 20

years of industry experience. He has dabbled in different programming

languages like Java, JavaScript, C, and C++. He has developed different

products from the ground up while working in start-up companies. He is

a software engineer at heart, but he loves to write technical articles and

share his knowledge with others. He learned to program with Go during

the COVID-19 pandemic and hasn’t looked back.

xv

About the Technical Reviewer

Fabio Claudio Ferracchiati is a senior consultant and a senior

analyst/developer using Microsoft technologies. He works for BluArancio

(www.bluarancio.com). He is a Microsoft Certified Solution Developer for

.NET, a Microsoft Certified Application Developer for .NET, a Microsoft

Certified Professional, and a prolific author and technical reviewer.

Over the past ten years, he’s written articles for Italian and international

magazines and coauthored more than ten books on a variety of

computer topics.

http://www.bluarancio.com

xvii

Acknowledgments

Thanks to everyone on the Apress team who helped and guided me so

much. Special thanks to James Robinson-Prior who guided me through

the writing process and to Nirmal Selvaraj who made sure everything was

done correctly and things were on track.

Thanks to the technical reviewers for taking time from their busy

schedules to review my book and provide great feedback.

Finally, thanks to you, the reader, for spending time reading this book

and spreading the love of Go.

xix

Introduction

Go has been out for more than 10 years, and open source projects were

developed using Go. The aim of this book is to show you the way to use Go

to write a variety of applications that are useful in cloud-based systems.

Deploying applications into the cloud is a normal process that

developers do every day. There are many questions that developers ask

themselves about the cloud, like

• How do containers work in a cloud environment?

• How do cloud monitoring applications knows how

much memory is left for my virtual machines?

• How can I build a high performance networking server

in Linux environment?

• How do I scan code before deploying to the cloud

to stop code deployment if it contains related

information?

and many other cloud-relevant questions.

The book talk about different topics that are relevant in today’s cloud

environment. The approach is to explain each topic at a high level and

then help you understand it by going through the details with the code.

The book uses combination of open source projects hosted in GitHub and

sample code. The open source projects chosen are relevant to the topic.

You will get a good grasp about the tool and also how the code works

internally.

3

CHAPTER 1

System Calls
Linux provides a lot of features and provides applications access to

everything that the operating system has access to. When discussing

system calls, most people will turn their attention to using C because

it is the most common language to use when interfacing with the

operating system.

In this chapter, you will explore what system calls are and how you can

program in Go to make system calls. By the end of this chapter, you will

have learned the following:

• What a system call looks like in C

• Understanding the sys/unix Go package

• Exploring a project using system calls

If you are using Go for the first time, refer to the online documentation

at https://go.dev/doc/install. The online documentation will walk you

through the steps to install Go on your local computer. Go through the Go

tutorial that the Go documentation provides at https://go.dev/doc/.

 Source Code
The source code for this chapter is available from the https://github.

com/Apress/Software-Development-Go repository.

© Nanik Tolaram 2023
N. Tolaram, Software Development with Go,
https://doi.org/10.1007/978-1-4842-8731-6_1

https://go.dev/doc/install
https://go.dev/doc/
https://github.com/Apress/Software-Development-Go
https://github.com/Apress/Software-Development-Go
https://doi.org/10.1007/978-1-4842-8731-6_1#DOI

4

 What Is a System Call?
A system call is the interface provided by the underlying operating system

that your application is currently running on. Using this interface, your

application can communicate with the operating system to perform an

operation. In general, the operating system provides numerous services

that applications can take advantage of.

Figure 1-1 shows at a high level how an application uses system calls

to request some service operation to the operating system. The user

app will make a call to the provided system library, which in this case is

the Go library, and it will call the operating system service through the

provided interface. Data transfer flows in both directions for the different

components.

Figure 1-1. High-level view of a system call

Operating systems provide a large number of system calls that

applications can use. Figure 1-2 shows a snapshot list of system calls. For a

complete available Linux system call list, you can visit https://man7.org/

linux/man-pages/man2/syscalls.2.html.

Chapter 1 SyStem CallS

https://man7.org/linux/man-pages/man2/syscalls.2.html
https://man7.org/linux/man-pages/man2/syscalls.2.html

5

Figure 1-2. Snapshot of a Linux system call

 C System Call
In this section, you will briefly look at how system calls normally work

inside a C program. This will give you an idea of how system calls are done

in C compared to how they are done in Go.

You will see a simple example of using a socket to connect to a server

and read the response. The code can be found inside the chapter1/c

directory. The code creates a socket and uses it to connect to a public

website named httpbin.org and print the response it receives to the

screen. Listing 1-1 shows the sample code.

Listing 1-1. Sample Code

#include<stdio.h>

#include<string.h>

#include<sys/socket.h>

#include<arpa/inet.h>

Chapter 1 SyStem CallS

http://httpbin.org

6

#include<netdb.h>

int main(int argc, char * argv[]) {

 int socket_desc;

 struct sockaddr_in server;

 char * message, server_reply[2000];

 struct hostent * host;

 const char * hostname = "httpbin.org";

 //Create socket

 socket_desc = socket(AF_INET, SOCK_STREAM, 0);

 if (socket_desc == -1) {

 printf("Could not create socket");

 }

 if ((server.sin_addr.s_addr = inet_addr(hostname)) ==

0xffffffff) {

 if ((host = gethostbyname(hostname)) == NULL) {

 return -1;

 }

 memcpy(& server.sin_addr, host -> h_addr, host ->

h_length);

 }

 server.sin_family = AF_INET;

 server.sin_port = htons(80);

 if (connect(socket_desc, (struct sockaddr *) & server,

sizeof(server)) < 0) {

 puts("connect error");

 return 1;

 }

 puts("Connected\n");

 //Send some data

Chapter 1 SyStem CallS

7

 message = "GET / HTTP/1.0\n\n";

 if (send(socket_desc, message, strlen(message), 0) < 0) {

 puts("Send failed");

 return 1;

 }

 puts("Data Send\n");

 //Receive a reply from the server

 if (recv(socket_desc, server_reply, 2000, 0) < 0) {

 puts("recv failed");

 }

 puts("Reply received\n");

 puts(server_reply);

 return 0;

}

To test the code, make sure you have a C compiler installed in your

machine. Follow the instructions outlined on the GCC website to install

the compiler and tools (https://gcc.gnu.org/). Use the following

command to compile the code:

cc sample.c -o sample

The code will be compiled to an executable named sample, and it can

be run by just typing ./sample on the command line. After a successful

run, it will print out the following:

Connected

Data Send

Reply received

HTTP/1.1 200 OK

Chapter 1 SyStem CallS

https://gcc.gnu.org/

8

Date: Tue, 01 Mar 2022 10:21:13 GMT

Content-Type: text/html; charset=utf-8

Content-Length: 9593

Connection: close

Server: gunicorn/19.9.0

Access-Control-Allow-Origin: *

Access-Control-Allow-Credentials: true

The code sample shows the system call that it uses to resolve the

address of httpbin.org to an IP address by using the gethostbyname

function. It also uses the connect function to use the newly created socket

to connect to the server.

In the next section, you will start exploring Go by using the standard

library to write code using system calls.

 sys/unix Package
The sys/unix package is a package provided by the Go language that

provides a system-level interface to interact with the operating system. Go

can run on a variety of operating systems, which means that it provides

different interfaces to applications for different operating systems.

Complete package documentation can be found at https://pkg.go.dev/

golang.org/x/sys/unix. Figure 1-3 shows different system calls in

different operating systems, in this case between Darwin and Linux.

Chapter 1 SyStem CallS

http://httpbin.org
https://pkg.go.dev/golang.org/x/sys/unix
https://pkg.go.dev/golang.org/x/sys/unix

9

Figure 1-3. System calls in Linux vs. Darwin

Listing 1-2 shows how to use system calls using the sys/unix package.

Listing 1-2. Go System Call

package main

import (

 u "golang.org/x/sys/unix"

 "log"

)

func main() {

 c := make([]byte, 512)

 log.Println("Getpid : ", u.Getpid())

 log.Println("Getpgrp : ", u.Getpgrp())

 log.Println("Getppid : ", u.Getppid())

 log.Println("Gettid : ", u.Gettid())

 _, err := u.Getcwd(c)

Chapter 1 SyStem CallS

10

 if err != nil {

 log.Fatalln(err)

 }

 log.Println(string(c))

}

The code prints out information that it obtained by calling the

following system calls:

Getpid Obtains the process id of the current running sample

app

Getpgrp Obtains the group process id of the current running

app

Getppid Obtains the parent process id of the current running

app

Gettid Obtains the caller’s thread it

Running the app on a Linux machine will result in output something

like the following:

2022/02/19 21:25:59 Getpid : 12057

2022/02/19 21:25:59 Getpgrp : 12057

2022/02/19 21:25:59 Getpgrp : 29162

2022/02/19 21:25:59 Gettid : 12057

2022/02/19 21:25:59 /home/nanik/

The other system call that the application uses is to get the current

working directory using the Getcwd function.

 System Call in Go
In the previous section, you looked at a simple example of using the sys/

unix package. In this section, you will explore more on system calls by

Chapter 1 SyStem CallS

11

looking at an open source project. The project can be found at https://

github.com/tklauser/statx. This project works similarly to the stat

command in Linux for printing out statistical information about a

particular file.

Change your directory to the statx project and compile and run the

app as follows:

go run statx.go ./README.md

You will see output as follows:

 File: ./README.md

 Size: 476 Blocks: 8

IO Block: 4096 regular file

Device: fd01h/64769d Inode: 2637168

Links: 1

Access: (0644/-rw-r--r--) Uid: (1000/ nanik)

Gid: (1000/ nanik)

Access: 2022-02-19 18:10:29.919351223 +1100 AEDT

Modify: 2022-02-19 18:10:29.919351223 +1100 AEDT

Change: 2022-02-19 18:10:29.919351223 +1100 AEDT

 Birth: 2022-02-19 18:10:29.919351223 +1100 AEDT

 Attrs: 0000000000000000 (-----....)

How does the application get all this information about the file? It

obtains the information from the operating system by making a system

call. Let's take a look at the code in Listing 1-3.

Listing 1-3. Code Using statx

import (

 "golang.org/x/sys/unix"

)

Chapter 1 SyStem CallS

https://github.com/tklauser/statx
https://github.com/tklauser/statx

12

func main() {

 log.SetFlags(0)

 flag.Parse()

 if len(flag.Args()) < 1 {

 flag.Usage()

 os.Exit(1)

 }

 for _, arg := range flag.Args() {

 var statx unix.Statx_t

 if err := unix.Statx(unix.AT_FDCWD, arg, flags, mask,

&statx); err != nil {

 dev := unix.Mkdev(statx.Dev_major, statx.Dev_minor)

}

As seen in the snippet, the application uses a unix.Statx system

call and it passes filename and other relevant arguments. The system

call is provided as part of the golang.org/x/sys/unix package, which is

declared as follows:

func Statx(dirfd int, path string, flags int, mask int,

stat *Statx_t) (err error)

Declaration and documentation of the Statx function system call can

be found in the following link: https://pkg.go.dev/golang.org/x/sys/

unix. Going through the documentation, there is not much information

about the parameters. As an alternative, you can take a look at the same

system call defined for Linux, which can be found at https://man7.org/

linux/man-pages/man2/statx.2.html. Figure 1-4 shows information about

the different parameters that the function call accepts and what they mean.

Chapter 1 SyStem CallS

http://golang.org/x/sys/unix
https://pkg.go.dev/golang.org/x/sys/unix
https://pkg.go.dev/golang.org/x/sys/unix
https://man7.org/linux/man-pages/man2/statx.2.html
https://man7.org/linux/man-pages/man2/statx.2.html

13

Figure 1-4. Linux statx

On successful return from calling the unix.Statx function, the

application processes the information that is inside the statx variable

to extract information. The variable is of type Statx_t, which is defined

as follows in the sys/unix package. The struct contains a fair amount of

data pertaining to the file that the application has access to. Using this

information, the application will print out information such as file size,

type of file, user id, and group id.

Chapter 1 SyStem CallS

14

type Statx_t struct {

 Mask uint32

 Blksize uint32

 Attributes uint64

 Nlink uint32

 Uid uint32

 Gid uint32

 Mode uint16

 _ [1]uint16

 Ino uint64

 Blocks uint64

 Attributes_mask uint64

 Atime StatxTimestamp

 ...

 Dev_major uint32

 Dev_minor uint32

 ...

}

 Summary
In this chapter, you learned what system calls are and how to write a

simple application to interface with the operating system by using the

sys/unix package. You dug deeper into system calls by looking at an open

source project to learn how it uses the system calls to provide statistical

information about a particular file.

In the next chapters, you will explore system calls more and you will

look at various ways to interface with the operating system using Go.

Chapter 1 SyStem CallS

15

CHAPTER 2

System Calls Using
Go
In this chapter, you will explore writing applications that perform system-

level operations using system calls. The operating system provides a lot of

ways for applications to extract information and perform operations. You

will look at the different ways to extract system-level information and use

both the Go standard library and system files.

In this chapter, you will learn the following:

• How to use syscall packages

• How to understand and read ELF format files

• How to use the /sys filesystem

• How to write a simple application to read disk statistics

 Source Code
The source code for this chapter is available from the https://github.

com/Apress/Software-Development-Go repository.

© Nanik Tolaram 2023
N. Tolaram, Software Development with Go,
https://doi.org/10.1007/978-1-4842-8731-6_2

https://github.com/Apress/Software-Development-Go
https://github.com/Apress/Software-Development-Go
https://doi.org/10.1007/978-1-4842-8731-6_2#DOI

16

 Syscall Package
The syscall package is the standard library provided by Go that provides

function calls that interface with the log-level operating system. The

following are some of the functionalities provided by the package:

• Change directory

• Duplicate file descriptor

• Get current working directory

• …and many more

 syscall Application
Let’s take the existing application from Chapter 1 and convert it to use

the syscall package. The app can be seen inside the chapter2/syscalls

directory. Open terminal and run the sample as follows:

go run main.go

You will see the following output:

2022/07/17 19:20:42 Getpid : 23815

2022/07/17 19:20:42 Getpgrp : 23712

2022/07/17 19:20:42 Getpgrp : 23712

2022/07/17 19:20:42 Gettid : 23815

2022/07/17 19:20:42 /home/nanik/go/chapter2/syscal

The sample code uses system calls to get information about itself such

as the process id assigned by the operating system for itself, the parent id,

and others. The following shows how it uses the syscall package:

package main

import (

Chapter 2 SyStem CallS USing go

https://doi.org/10.1007/978-1-4842-8731-6_1

17

 "log"

 s "syscall"

)

func main() {

 ...

 log.Println("Getpid : ", s.Getpid())

 ...

 _, err := s.Getcwd(c)

 ...

}

The code is the same except for replacing the golang.org/x/sys/

unix package with the syscall package, while the function call remains

the same.

Figure 2-1 shows the comparison between the sys/unix and syscall

packages. As you can see, there are functions providing the same

functionality available in both packages.

Chapter 2 SyStem CallS USing go

http://golang.org/x/sys/unix
http://golang.org/x/sys/unix

18

Figure 2-1. sys/unix vs. syscall

 Checking Disk Space
You are going to take a look at an example application that can be found

inside the chapter2/diskspace directory. The application uses the

syscall package to obtain hard disk information such as free space, total

space, and such.

Open terminal and run the sample as follows:

go run main.go

You will see the following output:

Total Disk Space : 460.1 GB

Total Disk Used : 322.4 GB

Total Disk Free : 137.7 GB

Chapter 2 SyStem CallS USing go

19

The output shows in gigabytes the total size of the drive, total amount

of disk used, and total amount of disk free. The following code snippet

shows how the disk information is obtained using the syscall package:

func main() {

 var statfs = syscall.Statfs_t{}

 var total uint64

 var used uint64

 var free uint64

 err := syscall.Statfs("/", &statfs)

 if err != nil {

 fmt.Printf("[ERROR]: %s\n", err)

 } else {

 total = statfs.Blocks * uint64(statfs.Bsize)

 free = statfs.Bfree * uint64(statfs.Bsize)

 used = total - free

 }

 ...

}

As seen in the above code snippet, the application uses the syscall.

Statfs function call to get information about the path. In this case, it’s the

root directory. The result is populated into the statfs variable, which is of

type Statfs_t. The Statfs_t struct declaration looks like the following:

type Statfs_t struct {

 Type int64

 Bsize int64

 Blocks uint64

 Bfree uint64

 Bavail uint64

 Files uint64

 Ffree uint64

Chapter 2 SyStem CallS USing go

20

 Fsid Fsid

 Namelen int64

 Frsize int64

 Flags int64

 Spare [4]int64

}

 Webserver with syscall
Let’s take a look at another example using the syscall package, which can

be found inside the chapter2/webserversyscall directory. The sample

code is a web server that uses the syscall package to create a socket

connection.

Open terminal and run the sample as follows:

go run main.go

You will see the following output:

2022/07/17 19:27:49 Listening on 127.0.0.1 : 8888

The web server is now ready to accept connection on port 8888. Open

your browser and type in http://localhost:8888. You will get a response

in your browser: Server with syscall

The following code snippet shows the function that takes care of

starting up the server that listens on port 8888:

func startServer(host string, port int) (int, error) {

 fd, err := syscall.Socket(syscall.AF_INET, syscall.SOCK_

STREAM, 0)

 if err != nil {

 log.Fatal("error (listen) : ", err)

 }

Chapter 2 SyStem CallS USing go

21

 sa := &syscall.SockaddrInet4{Port: port}

 addrs, err := net.LookupHost(host)

 ...

 for _, addr := range addrs {

 ...

 }

 ...

 return fd, nil

}

The code performs the following process:

• Creates a socket

• Binds a socket to port 8888

• Listens for an incoming request

The code use syscall.Socket to create a socket. Once it is able to

create a socket, it will bind it to the specified port 8888 by calling syscall.

Bind, as shown in the following code snippet:

for _, addr := range addrs {

 ...

 if err = syscall.Bind(fd, srv); err != nil {

 log.Fatal("error (bind) : ", err)

 }

}

On successful completion of the binding process, the code starts

listening for incoming requests, as shown here:

if err = syscall.Listen(fd, syscall.SOMAXCONN); err != nil {

 log.Fatal("error (listening) : ", err)

} else {

 log.Println("Listening on ", host, ":", port)

}

Chapter 2 SyStem CallS USing go

22

The syscall.Listen is called, passing syscall.SOMAXCONN as the

parameter. This instructs the operating system that the code wants to have

the maximum queue allocated to take care of pending connections when

they happen. Now the server is ready to accept connections.

The next part of the code accepts and processes incoming requests,

which can be seen in the following code snippet:

for {

 cSock, cAddr, err := syscall.Accept(fd)

 if err != nil {

 ...

 }

 go func(clientSocket int, clientAddress syscall.Sockaddr) {

 err := syscall.Sendmsg(clientSocket, []byte(message),

[]byte{}, clientAddress, 0)

 ...

 syscall.Close(clientSocket)

 }(cSock, cAddr)

}

The code uses syscall.Accept to start accepting incoming requests,

as can be seen in the for{} loop. On every accepted request, the code

processes the request by processing it in a separate go routine. This allows

the server to be able to process incoming requests without being blocked.

 ELF Package
The standard library provides different packages that can be used to

interact with different parts of the operating system. In the previous

sections, you looked at interacting on a system level by using the different

standard library packages. In this section, you will look at the debug/elf

package.

Chapter 2 SyStem CallS USing go

23

This package provides interfaces for applications to interact with

ELF files. ELF stands for the Executable Linkable Format, which means

that an ELF file can be an executable or object file that is used for linking

processes to create an executable file. I will not go into detail on ELF; more

information can be found at https://linux.die.net/man/5/elf.

 High-Level ELF Format
ELF is a common standard file format for executable files, object code,

shared libraries, and core dumps; it is cross platform. Figure 2-2 shows at

high level the structure of an ELF file.

Figure 2-2. ELF file structure

Chapter 2 SyStem CallS USing go

https://linux.die.net/man/5/elf

24

Figure 2-3 shows output of the header section of a sample application

compiled on my local machine.

Figure 2-3. ELF file header section

 Dump Example
In this section, you will take a look at an open source project named

GoPlay, which is hosted at https://github.com/n4ss/GoPlay. It can also

be found inside the chapter2/GoPlay directory. This is a simple app that

dumps the contents of a Go ELF executable file. You will look at how the

application uses the Go library to read the ELF file

Compile the GoPlay application to create an executable using the

following command:

go build main.go

Now compile GoPlay and run it as follows:

./goplay -action=dump -filename=./goplay

Chapter 2 SyStem CallS USing go

https://github.com/n4ss/GoPlay

25

You are instructing GoPlay to dump the contents of the goplay

executable, which will give you output something like the following:

Tracing program : "[path]goplay".

Action : "dump".

DynStrings:

Symbols:

 go.go

 runtime.text

 cmpbody

 countbody

 memeqbody

 indexbody

 indexbytebody

 gogo

 callRet

 gosave_systemstack_switch

 setg_gcc

 aeshashbody

 debugCall32

 debugCall64

 runtime.(*cpuProfile).addNonGo

 _cgo_init

 runtime.mainPC

 go.itab.syscall.Errno,error

 runtime.defaultGOROOT.str

 runtime.buildVersion.str

 type.*

 runtime.textsectionmap

Chapter 2 SyStem CallS USing go

26

Let’s start analyzing how the code works and what system calls it is

using to get what information out from the executable file.

func main() {

 file, err := os.Stat(*filename)

 f, err := os.Open(*filename)

 switch *action {

 case "dump": os.Exit(dump_elf(*filename))

 }

 } else {

 goto Usage

 }

}

On startup, the application uses the os.Stat system call to check

whether the executable file specified as the parameter exists and opens

it using os.Open if it does exist. Once open, it will use the function dump_

elf(..) to dump the file contents. The following is a snippet of the function:

func dump_elf(filename string) int {

 file, err := elf.Open(filename)

 if err != nil {

 fmt.Printf("Couldn't open file : \"%s\" as an ELF.\n")

 return 2

 }

 dump_dynstr(file)

 dump_symbols(file)

 return 0

}

Chapter 2 SyStem CallS USing go

27

The function uses another system call named elf.Open, which is

available inside the debug/elf package. This is similar to the os.Open

function but with the additional functionality that the opened file is

prepared to be read as an ELF file. On returning from calling elf.Open,

the returned file variable will be populated with information about the

internals of the ELF file.

Once the file is open, it calls dump_symbols to dump the file contents.

The dump_symbols function dumps all symbols information from the file,

which is made available by calling the file.Symbols() function. The

application just prints the Name field.

func dump_symbols(file *elf.File) {

 fmt.Printf("Symbols:\n")

 symbols, _ := file.Symbols()

 for _, e := range symbols {

 if !strings.EqualFold(e.Name, "") {

 fmt.Printf("\t%s\n", e.Name)

 }

 }

}

The following is the struct definition of the Symbol struct. As you can

see, it contains useful information.

type Symbol struct {

 Name string

 Info, Other byte

 Section SectionIndex

 Value, Size uint64

Chapter 2 SyStem CallS USing go

28

 // Version and Library are present only for the

dynamic symbol

 // table.

 Version string

 Library string

}

The other function called to dump ELF information is dump_dynstr:

func dump_dynstr(file *elf.File) {

 fmt.Printf("DynStrings:\n")

 dynstrs, _ := file.DynString(elf.DT_NEEDED)

 ...

 dynstrs, _ = file.DynString(elf.DT_SONAME)

 ...

 dynstrs, _ = file.DynString(elf.DT_RPATH)

 ...

 dynstrs, _ = file.DynString(elf.DT_RUNPATH)

 ...

}

This function is used to obtain certain parts of the ELF file, which are

passed as parameters when calling the file.DynString function. For

example, when calling

dynstrs, _ = file.DynString(elf.DT_SONAME)

the code will get information about the shared library name of the file.

 /sys Filesystem
In this section, you will look at a different way of reading system-level information.

You will not use a function to read system information; rather, you will use system

directories that are made available by the operating system for user applications.

Chapter 2 SyStem CallS USing go

29

The directory that you want to read is the /sys directory, which is a

virtual filesystem containing device drivers, device information, and other

kernel features. Figure 2-4 shows what the /sys directory contains on a

Linux machine.

Figure 2-4. Inside the /sys directory

 Reading AppArmor
Some of the information that is provided by Linux inside the /sys

directory is related to AppArmor (short for Application Armor). What is

AppArmor? It is a kernel security module that gives system administrators

the ability to restrict application capabilities with a profile. This gives

system administrators the power to select which resources a particular

application can have access to. For example, a system administrator can

define Application A to have network access or raw socket access, while

Application B does not have access to network capabilities.

Let’s look at an example application to read AppArmor information

from the /sys filesystem, specifically whether AppArmor is enabled and

whether it is enforced. The following is the sample code that can be found

inside the chapter2/apparmor directory:

import (

 "fmt"

Chapter 2 SyStem CallS USing go

30

 ...

)

const (

 appArmorEnabledPath = "/sys/module/apparmor/parameters/

enabled"

 appArmorModePath = "/sys/module/apparmor/parameters/mode"

)

func appArmorMode() (mode string) {

 content, err := ioutil.ReadFile(appArmorModePath)

 ...

 return strings.TrimSpace(string(content))

}

func appArmorEnabled() (support bool) {

 content, err := ioutil.ReadFile(appArmorEnabledPath)

 ...

 return strings.TrimSpace(string(content)) == "Y"

}

func main() {

 fmt.Println("AppArmor mode : ", appArmorMode())

 fmt.Println("AppArmor is enabled : ", appArmorEnabled())

}

Since the code is accessing a system filesystem, you must run it using

root. Compile the code and run it as follows:

sudo ./apparmor

The code reads the information from the directory using the standard

library ioUtil.ReadFile, which is just like reading a file, so it’s simpler

than using the function calls that you looked at in the previous sections.

Chapter 2 SyStem CallS USing go

31

 Summary
In this chapter, you looked at using system calls to interface with the

operating system. You looked at using the syscall standard library that

provides a lot of function calls to interface with the operating system

and wrote a sample application to print out disk space information.

You looked at how the debug/elf standard library is used to read Go

ELF file information. Lastly, you looked at the /sys filesystem to extract

information that you want to read to understand whether the operating

system supports AppArmor.

Chapter 2 SyStem CallS USing go

33

CHAPTER 3

Accessing proc File
System
In Chapter 2, you looked at the /sys filesystem in Linux and wrote a simple

app to extract information from it. In this chapter, you are going to take a

look at another system directory called /proc. The /proc directory is also

known as procfs, and it contains useful information about processes that

are currently running. The kernel uses it as an information center for all

related processes.

In this chapter, you will learn how to do the following:

• Look at the different information available

inside procfs

• Write an application to read procfs

• Use an open source library to interface with procfs

 Source Code
The source code for this chapter is available from the https://github.

com/Apress/Software-Development-Go repository.

© Nanik Tolaram 2023
N. Tolaram, Software Development with Go,
https://doi.org/10.1007/978-1-4842-8731-6_3

https://doi.org/10.1007/978-1-4842-8731-6_2
https://github.com/Apress/Software-Development-Go
https://github.com/Apress/Software-Development-Go
https://doi.org/10.1007/978-1-4842-8731-6_3#DOI

34

 Peeking Inside procfs
In this section, you will look at procfs and see what it contains. Use the

following command in your terminal to view what is available inside the

/proc directory:

ls /proc -la

You will see output like the following:

dr-xr-xr-x 423 root root 0 Jul 17 17:55 .

drwxr-xr-x 20 root root 4096 May 25 13:21 ..

dr-xr-xr-x 9 root root 0 Jul 17 17:55 1

dr-xr-xr-x 9 root root 0 Jul 17 17:56 10

dr-xr-xr-x 9 nanik nanik 0 Jul 17 18:02 10023

dr-xr-xr-x 9 nanik nanik 0 Jul 17 18:02 10057

dr-xr-xr-x 9 nanik nanik 0 Jul 17 18:02 10075

dr-xr-xr-x 9 root root 0 Jul 17 17:56 101

...

-r--r--r-- 1 root root 0 Jul 17 17:56

execdomains

-r--r--r-- 1 root root 0 Jul 17 17:56 fb

-r--r--r-- 1 root root 0 Jul 17 17:55

filesystems

dr-xr-xr-x 5 root root 0 Jul 17 17:56 fs

-r--r--r-- 1 root root 0 Jul 17 17:56

interrupts

-r--r--r-- 1 root root 0 Jul 17 17:56 iomem

-r--r--r-- 1 root root 0 Jul 17 17:56 ioports

dr-xr-xr-x 59 root root 0 Jul 17 17:56 irq

-r--r--r-- 1 root root 0 Jul 17 17:56

kallsyms

-r--r--r-- 1 root root 0 Jul 17 17:56 keys

Chapter 3 aCCessing proC File system

35

-r--r--r-- 1 root root 0 Jul 17 17:56

key-users

-r-------- 1 root root 0 Jul 17 17:56 kmsg

-r-------- 1 root root 0 Jul 17 17:56

kpagecgroup

-r-------- 1 root root 0 Jul 17 17:56

kpagecount

...

dr-xr-xr-x 5 root root 0 Jul 17

17:56 sysvipc

lrwxrwxrwx 1 root root 0 Jul 17 17:55

thread-self -> 17987/

task/17987

-r-------- 1 root root 0 Jul 17 17:56

timer_list

dr-xr-xr-x 6 root root 0 Jul 17 17:56 tty

-r--r--r-- 1 root root 0 Jul 17 17:55 uptime

-r--r--r-- 1 root root 0 Jul 17 17:56 version

-r-------- 1 root root 0 Jul 17 17:56

vmallocinfo

-r--r--r-- 1 root root 0 Jul 17 17:56 vmstat

-r--r--r-- 1 root root 0 Jul 17 17:56

zoneinfo

The output contains a lot of numerical directories. These directories

correspond to the process id of applications running in the system,

and inside these directories is more detailed information about the

corresponding process, such as the command used to run the process,

memory maps to executables and library files, and more.

Let’s take a look at one of the processes that is running on my system.

I picked the process id that is allocated for the Goland IDE. In this case, the

process id is 4280. Table 3-1 shows the information from inside /proc/4280.

Chapter 3 aCCessing proC File system

36

Ta
bl

e
3-

1.
 I

n
fo

rm
at

io
n

 fr
om

 /
pr

oc
/4

28
0

Di
re

ct
or

y
Co

nt
en

t

/p
ro
c/
42

80
/

cm
dl
in
e

/b
in
/s
h.
/g
ol
an
d.
sh

/p
ro
c/
42

80
/

cg
ro
up

14
:m
is
c:
/

13
:r
dm
a:
/

11
:h
ug
et
lb
:/

10
:n
et
_p
ri
o:
/

9:
pe
rf
_e
ve
nt
:/

8:
ne
t_
cl
s:
/

7:
fr
ee
ze
r:
/

6:
de
vi
ce
s:
/

4:
bl
ki
o:
/

3:
cp
ua
cc
t:
/

2:
cp
u:
/

1:
cp
us
et
:/

0:
:/
us
er
.s
li
ce
/u
se

r-
10
00
.s
li
ce
/u
se
r@
10
00
.s
er
vi
ce
/a
pp
.s
li
ce
/a
pp
-o
rg
.g
no
me
.

Te
rm
in
al
.s
li
ce
/v
te

-s
pa
wn
-9
c8
27
74
2-
8e
1f
-4
2d
8-
bb
25
-7
91
19
71
2b
0d
8.
sc
op
e (c

on
ti

n
u

ed
)

Chapter 3 aCCessing proC File system

37

Di
re

ct
or

y
Co

nt
en

t

/p
ro
c/
42

80
/

mo
un
ti
nf

o

24
 3
1
0:
22
 /
 /
sy
s

rw
,n
os
ui
d,
no
de
v,
no
ex
ec
,r
el
at
im
e
sh
ar
ed
:7
 -
 s
ys

fs
 s
ys
fs
 r
w

..
.

27
 2
6
0:
24
 /
 /
de
v/

pt
s
rw
,n
os
ui
d,
no
ex
ec
,r
el
at
im
e
sh
ar
ed
:3
 -
 d
ev
pt

s
de
vp
ts
 r
w,

gi
d=
5,
mo
de
=6
20
,p
tm

xm
od
e=
00
0

28
 3
1
0:
25
 /
 /
ru
n

rw
,n
os
ui
d,
no
de
v,
no
ex
ec
,r
el
at
im
e
sh
ar
ed
:5
 -
 t
mp

fs
 t
mp
fs
 r
w,

si
ze
=1
60
78
88
k,
mo
de

=7
55
,i
no
de
64

..
.

Ta
bl

e
3-

1.
 (

co
n

ti
n

u
ed

)
Chapter 3 aCCessing proC File system

38

As you can see from the table, there is much information that can be

extracted that is relevant to the process id 4280. This information gives us

better visibility about the application, resources the application uses, user

and group information, and more.

 Reading Memory Information
In the previous section, you learned what procfs is all about and looked

at some of the process information that can be viewed. You looked at

extracting the information by going into the /proc directory and using

standard tools like ls and cat to view file and directory content.

In this section, you are going to write a simple application to read

system memory information from procfs. The sample code can be found

inside the chapter3/readingmemory directory. Run the application using

the following command:

go run main.go

You will see output like the following:

MemTotal = 32320240 KB, MemFree = 3260144 KB, MemUsed =

29060096 KB

MemTotal = 32320240 KB, MemFree = 3146556 KB, MemUsed =

29173684 KB

MemTotal = 32320240 KB, MemFree = 3074524 KB, MemUsed =

29245716 KB

MemTotal = 32320240 KB, MemFree = 3068300 KB, MemUsed =

29251940 KB

MemTotal = 32320240 KB, MemFree = 3264940 KB, MemUsed =

29055300 KB

MemTotal = 32320240 KB, MemFree = 3269584 KB, MemUsed =

29050656 KB

MemTotal = 32320240 KB, MemFree = 3270340 KB, MemUsed =

29049900 KB

Chapter 3 aCCessing proC File system

39

The application continuously prints memory information (total

memory, free memory, and used memory) in kilobytes of the local device.

Let’s look at the code to understand how it works.

func main() {

 sampler := &sampler{

 rate: 1 * time.Second,

 }

 ...

 for {

 select {

 case sampleSet := <-sampler.sample:

 ...

 fmt.Printf("total = %v KB, free = %v KB, used =

%v KB\n",

 s.total, s.free, s.used)

 }

 }

}

On startup, the code initializes the Sampler struct and goes into a loop

waiting on the data to be made available from SampleSetChan. Once the

data arrives, it prints out the memory information into the console.

The data sampling code that collects the data and sends it to the

channel is seen below. The StartSampling function spins off a Go routine

that calls GetMemSample to extract the memory information and sleep after

sending the data to the SampleSetChan channel.

func (s *sampler) start() *sampler {

 ...

Chapter 3 aCCessing proC File system

40

 go func() {

 for {

 var ss sample

 ss.memorySample = getMemorySample()

 s.sample <- ss

 time.Sleep(s.rate)

 }

 }()

 ...

}

The crux of reading the memory information can be seen in the

following GetMemSample function:

func getMemorySample() (samp memory) {

 ...

 contents, err := ioutil.ReadFile(memInfo)

 if err != nil {

 return

 }

 reader := bufio.NewReader(bytes.NewBuffer(contents))

 for {

 line, _, err := reader.ReadLine()

 if err == io.EOF {

 break

 }

 ...

 if ok && len(fields) == 3 {

 ...

 switch fieldName {

 case "total:":

 samp.total = val

Chapter 3 aCCessing proC File system

41

 case "free:":

 samp.free = val

 }

 }

 }

 ...

}

The memory information is collected from the /proc/meminfo

directory. The collected data is parsed and only values that it is interested

in are stored, namely total memory, free memory, and calculated value of

memory used.

This is how the raw data looks like when reading the /proc/meminfo

directory:

MemTotal: 32320240 kB

MemFree: 927132 kB

MemAvailable: 5961720 kB

...

HugePages_Total: 0

HugePages_Free: 0

HugePages_Rsvd: 0

HugePages_Surp: 0

Hugepagesize: 2048 kB

Hugetlb: 0 kB

...

 Peeking Network Information
In this section, you will now look at network information that can be

extracted out from procfs. There is a directory named /proc/net/

sockstat that looks like the following in raw format:

Chapter 3 aCCessing proC File system

42

sockets: used 3229

TCP: inuse 49 orphan 0 tw 82 alloc 64 mem 90

UDP: inuse 28 mem 139

UDPLITE: inuse 0

RAW: inuse 0

FRAG: inuse 0 memory 0

Table 3-2 explains the meaning of the different fields shown in the raw

information above

Table 3-2. /proc/net data breakdown

sockets Used total number of all protocol sockets used

tCp inuse total number of tCp sockets listening

orphan total number of tCp sockets that do not belong to any process

(a.k.a. orphans)

tw total number of tCp sockets that are time waiting or waiting to

be closed

alloc total number of tCp sockets that have been allocated

mem total number of pages allocated to tCp

UDp inuse the number of UDp sockets in use

mem total number of pages allocated to UDp

UDplite inuse total number of lightweight UDp in use

raW inuse total number of raw protocols in use

Frag inuse number of ip segments used

memory total amount of memory in KB allocated for fragmentation reassembly

Chapter 3 aCCessing proC File system

43

Now that you have a good idea of what the different values mean, let’s

take a look at how to extract this information using Go. The sample code is

inside the chapter3/sockstat directory. Open terminal and run the code

using the following command:

go run main.go

Figure 3-1 shows the output.

Figure 3-1. sockstat sample output

Let’s explore the code to understand what it is doing. When the app

starts up, it opens the /proc/net/sockstat directory. On success, the code

reads and parses it to the format suitable for displaying to the console.

const (

 ...

 netstat = "/proc/net/sockstat"

)

 ...

func main() {

 fs, err := os.Open(netstat)

 ...

 m := make(map[string]int64)

 for {

 line, err := readLine(reader)

 if bytes.HasPrefix(line, []byte(sockets)) ||

 bytes.HasPrefix(line, []byte(tcp)) ||

Chapter 3 aCCessing proC File system

44

 bytes.HasPrefix(line, []byte((udp))) {

 idx := bytes.Index(line, []byte((colon)))

 ...

 }

 ...

 }

 ...

}

As you can see, it is straightforward to write an application to read

system- level information from procfs. To write an application to read

procfs, the following is the information you will need to know beforehand:

• In what directory is the required information located?

• Do you need root access to access the information?

• How will you parse the raw data properly and handle

data parsing issues?

 Using the procfs Library
You now understood what kind of information available inside the

/proc directory and you’ve also seen how to write code and parse the

information. In this section, you are going to take a look at an open source

library that provides access to different information available in the /proc

directory. The project can be found at https://github.com/jandre/procfs.

 Code Sample
Open your terminal and change to the chapter3/jandreprocfs directory

and run the code using the following command:

go run main.go

Chapter 3 aCCessing proC File system

https://github.com/jandre/procfs

45

You will see output that looks like Figure 3-2

Figure 3-2. Output running procfs sample code

The following code snippet uses the jandre/procfs library to read the

information:

package main

import (

 "github.com/jandre/procfs"

 ...

)

func main() {

 processes, _ := procfs.Processes(false)

 table := tablewriter.NewWriter(os.Stdout)

 for _, p := range processes {

 table.Append([]string{strconv.Itoa(p.Pid), p.Exe, p.Cwd})

 }

 table.Render()

}

The sample code is simpler than the previous code that you looked at

in the previous sections. It uses the procfs.Processes(..) function call to

obtain all the current processes.

Chapter 3 aCCessing proC File system

46

 Inside the procfs Library
Let’s take a look a bit deeper into the library to investigate what exactly it

is doing. You are going to dive into the following procfs.Processes(..)

function call. The Processes function call inside the library looks like the

following:

func Processes(lazy bool) (map[int]*Process, error) {

 ...

 files, err := ioutil.ReadDir("/proc")

 if err != nil {

 return nil, err

 }

 ...

 fetch := func(pid int) {

 proc, err := NewProcess(pid, lazy)

 if err != nil {

 ...

 done <- nil

 } else {

 done <- proc

 }

 }

 todo := len(pids)

 for _, pid := range pids {

 go fetch(pid)

 }

 ...

 for ;todo > 0; {

Chapter 3 aCCessing proC File system

47

 proc := <-done

 todo--

 if proc != nil {

 processes[proc.Pid] = proc

 }

 }

 return processes, nil

}

At a high level, Figure 3-3 shows what the function is actually doing.

Figure 3-3. Processes(..) function flow

The function reads processes information from the /proc directory,

and it traverses through it by reading each process information in a

separate Go routine that calls the fetch(pid) function. The function

extracts and parses information of the process id that it is assigned. Once

collected, it passes into the channel that the Processes(..) function is

waiting on; in this case, it is called the done channel.

Chapter 3 aCCessing proC File system

48

All the heavy lifting of opening and traversing through the /proc

directory including parsing the results is taken care of by the library. The

application can just focus on the output that it receives.

 Summary
In this chapter, you looked at the /proc file system and learned about the

system information that applications have access to. You looked at sample

code to read information from inside the /proc directory that is related to

the network and memory on the device. You also learned that the bulk of

the code that needs to be written when extracting system information is in

terms of reading and parsing the information. You also looked at an open

source library that can provide functionality in reading the /proc directory

that performs all the heavy lifting, leaving you to focus on writing simpler

code to read all the system information that you need.

Chapter 3 aCCessing proC File system

51

CHAPTER 4

Simple Containers
In this chapter, you will look at using Go to explore the container world.

You will look at different container-related projects to get a better

understanding about containers and some of the technologies they

use. There are many different aspects of containers such as security,

troubleshooting, and scaling container registries. This chapter will give you

an understanding of the following topics:

• The Linux namespace

• Understanding cgroups and rootfs

• How containers use rootfs

You will explore different open source projects to understand how

containers work and how tools such as Docker actually work.

 Linux Namespace
In this section, you will look at namespaces, which are key components in

running containers on your local or cloud environment. Namespaces are

features that are only available in the Linux kernel, so everything that you

will read here is relevant to the Linux operating system.

A namespace is a feature provided by the Linux kernel for applications

to use, so what actually is it? It is used to create an isolated environment for

processes that you want to run with their own resources.

© Nanik Tolaram 2023
N. Tolaram, Software Development with Go,
https://doi.org/10.1007/978-1-4842-8731-6_4

https://doi.org/10.1007/978-1-4842-8731-6_4#DOI

52

Figure 4-1 shows a representation of each isolated namespace that

is running applications with its own network. Each application that is

running inside a namespace cannot access anything outside its own

namespace. For example, App1 cannot access App2 resources. If for some

reason App1 crashes, it will not bring down the other applications, nor it

will bring down the Linux host. Think of a namespace as an island to run

applications; it can provide anything you need for the applications to run

on without disturbing the other surrounding islands.

Figure 4-1. Linux namespace

You can create namespaces using tools that are already available in

the Linux system. One of the tools you are going to experiment with is

called unshare. It is a tool that allows users to create namespaces and run

applications inside that namespace.

Before you run unshare, let’s take a look my local host machine

compared to when I run the app using unshare. We will compare the

following:

• The applications that are running in the host machine

compared to when we run them inside a namespace

Chapter 4 Simple ContainerS

53

• The available network interface in a host machine

compared to when inside the namespace

To list running applications on my local Linux machine, I use the

command ps.

ps au

The following is a snippet of the list of applications that are currently

running on my local machine:

USER PID %CPU %MEM VSZ RSS TTY STAT

START TIME COMMAND

...

nanik 2551 0.0 0.0 231288 4 tty2 SNl+ May09

0:00 /usr/libexec/gnome-session-binary --systemd --session=pop

nanik 6418 0.0 0.0 21644 712 pts/0 S<s May09

0:00 bash

nanik 8594 0.0 0.0 22820 8 pts/2 S<s May09

0:00 bash

nanik 9828 0.0 0.0 22516 4300 pts/3 S<s+ May09

0:03 bash

...

nanik 295802 0.0 0.0 1716900 6408 pts/7 S<l+ May11

2:18 docker run -p 6379:6379 redis

nanik 511876 0.0 0.0 21288 24 pts/6 S<s May13

0:00 bash

nanik 642244 0.0 0.0 21420 8 pts/8 S<s+ May14

0:00 bash

...

root 1368986 0.0 0.0 25220 108 pts/3 T< May19

0:00 sudo gedit /etc/hosts

Chapter 4 Simple ContainerS

54

To look at the available network interface on local machine, use the

command ip.

ip link

It shows the following interfaces:

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state

UNKNOWN mode DEFAULT group default qlen 1000

 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

2: enp4s0: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc

fq_codel state DOWN mode DEFAULT group default qlen 1000

 link/ether 88:a4:c2:a4:85:ac brd ff:ff:ff:ff:ff:ff

3: wlp0s20f3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc

noqueue state UP mode DORMANT group default qlen 1000 link/

ether xx:xx:xa:xx:xx:xx brd xx:xx:xx:xx:xx:xx

...

5: docker0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc

noqueue state UP mode DEFAULT group default

 link/ether xx:xx:xa:xx:xx:xx brd ff:ff:ff:ff:ff:ff

...

447: thebridge: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state

DOWN mode DEFAULT group default

 link/ether xx:xx:xa:xx:xx:xx brd ff:ff:ff:ff:ff:ff

As you can see, there are many processes running in the local host

machine and there are many network interfaces.

Run the following command to create a namespace and run bash

inside the namespace as the application:

unshare --user --pid --map-root-user --cgroup --mount-proc --

net --uts --fork bash

It will look like Figure 4-2.

Chapter 4 Simple ContainerS

55

Figure 4-2. Running unshare

Inside the new namespace, as seen in Figure 4-2, it will only display

two processes and one network interface (local interface). This shows that

the namespace is isolating access to the host machine.

You have looked at using unshare to create namespaces and run bash

as an application isolated in its own namespace. Now that you have a basic

understanding of namespaces, you will explore another piece of the puzzle

called cgroups in the next section.

 cgroups
cgroups stands for control groups, which is a feature provided by the

Linux kernel. Namespaces, which we discussed in the previous section,

go hand in hand with cgroups. Let’s take a look at what cgroups contains.

cgroups gives users the ability to limit certain resources such as the CPU

and memory network allocated for a particular process or processes. Host

machines resources are finite, and if you want to run multiple processes

in separate namespaces, you want to allocate resources across different

namespaces.

Chapter 4 Simple ContainerS

56

cgroups resides inside the /sys/fs/cgroup directory. Let’s create a

subdirectory inside the main cgroup directory and take a peek inside it.

Run the following command to create a directory using root:

sudo mkdir /sys/fs/cgroup/example

List the directories inside the newly created directory using the

following command:

sudo ls /sys/fs/cgroup/example -la

You will see output that looks like the following:

-r--r--r-- 1 root root 0 May 24 23:06 cgroup.controllers

-r--r--r-- 1 root root 0 May 24 23:06 cgroup.events

-rw-r--r-- 1 root root 0 May 24 23:06 cgroup.freeze

...

-rw-r--r-- 1 root root 0 May 24 23:06 cgroup.type

-rw-r--r-- 1 root root 0 May 24 23:06 cpu.idle

-rw-r--r-- 1 root root 0 May 24 23:06 cpu.max

-rw-r--r-- 1 root root 0 May 24 23:06 cpu.max.burst

-rw-r--r-- 1 root root 0 May 24 23:06 cpu.pressure

-rw-r--r-- 1 root root 0 May 24 23:06 cpuset.cpus

-r--r--r-- 1 root root 0 May 24 23:06 cpuset.cpus.effective

-rw-r--r-- 1 root root 0 May 24 23:06 cpuset.cpus.partition

-rw-r--r-- 1 root root 0 May 24 23:06 cpuset.mems

-r--r--r-- 1 root root 0 May 24 23:06 cpuset.mems.effective

...

-rw-r--r-- 1 root root 0 May 24 23:06 io.max

...

-rw-r--r-- 1 root root 0 May 24 23:06 memory.low

-rw-r--r-- 1 root root 0 May 24 23:06 memory.max

-rw-r--r-- 1 root root 0 May 24 23:06 memory.min

-r--r--r-- 1 root root 0 May 24 23:06 memory.numa_stat

Chapter 4 Simple ContainerS

57

-rw-r--r-- 1 root root 0 May 24 23:06 memory.oom.group

-rw-r--r-- 1 root root 0 May 24 23:06 memory.pressure

...

The directories that you see are actually the configurations that you

can set values relevant to the resources that you want to allocate for a

particular process. Let’s take a look at an example.

You will run a tool called stress (https://linux.die.net/man/1/

stress), which you need to install to your local machine. If you are using

Ubuntu, you can use the command

sudo apt install stress

Open a terminal and run the stress tool as follows. The application will

run for 60 seconds using one core and consuming 100% of CPU usage.

stress --cpu 1 --timeout 60

Open another terminal and run the following command to obtain the

process id of the stress application:

top

On my local machine, the process id is 2185657, as shown in

Figure 4-3.

Figure 4-3. Output of top

Chapter 4 Simple ContainerS

https://linux.die.net/man/1/stress
https://linux.die.net/man/1/stress

58

Now insert the value of the process id into the cgroups directory as

follows:

sudo echo "200000 1000000" > /sys/fs/cgroup/example/cpu.max

sudo echo "2185657" > /sys/fs/cgroup/example/cgroup.procs

The command allocates 20% of the CPU usage for all processes inside

the example cgroups, and for this example, the stress application process

id is marked as part of the example cgroups. If you have your terminal

running top open, you will see that the stress application will now only

consume 20% instead of 100%.

This example shows that by applying cgroups to processes, you can

restrict the amount of resource it is consuming based on how you want to

allocate it.

You looked at cgroups (control groups) in this section and learned how

to allocate resources to processes. In the next section, you will learn about

rootfs, which you must understand because it is a crucial component in

understanding containers.

 rootfs
In this section, you will explore rootfs and how it is applied in containers.

First, let’s understand what rootfs actually is. rootfs stands for root

filesystem, which simply means it is the filesystem containing all the basic

necessary files required to boot the operating system. Without the correct

rootfs, the operating system will not boot up and no application can run.

rootfs is required so that the operating system can allow other file

systems to be mounted, which includes configuration, essential startup

processes and data, and other filesystems that are located in other disk

partitions. The following shows the minimal directories found in a rootfs:

/bin

Chapter 4 Simple ContainerS

59

/sbin

/etc

/root

/lib

/lib/modules

/dev

/tmp

/boot

/mnt

/proc

/usr

/var,

/home

To run an application inside a container requires rootfs, which allows

the application to run like how it runs in a normal system. Let’s take

a look at what a minimal rootfs actually looks like. Head over to www.

alpinelinux.org/downloads/ to download the Alpine rootfs. Alpine is

a very well-known Linux distribution that is used widely when creating

containers because of its small image size.

Download the rootfs file from the “Mini Root Filesystem” section

as shown in Figure 4-4. If you are using an x86 processor, download the

x86_64 file.

Chapter 4 Simple ContainerS

http://www.alpinelinux.org/downloads/
http://www.alpinelinux.org/downloads/

60

Figure 4-4. Mini root filesystem

Once downloaded, copy the file into a separate directory. In my case,

the file is called alpine-minirootfs-3.15.4-x86_64.tar.gz and it is

copied into the /home/nanik/play/rootfs directory. Use the following

command to extract it:

gunzip ./alpine-minirootfs-3.15.4-x86_64.tar.gz

tar -xvf ./alpine-minirootfs-3.15.4-x86_64.tar

The following is the output of the extracted file:

drwxr-xr-x 19 nanik nanik 4096 Apr 5 02:06 ./

drwxrwxr-x 3 nanik nanik 4096 May 28 18:46 ../

drwxr-xr-x 2 nanik nanik 4096 Apr 5 02:06 bin/

drwxr-xr-x 2 nanik nanik 4096 Apr 5 02:06 dev/

drwxr-xr-x 16 nanik nanik 4096 Apr 5 02:06 etc/

Chapter 4 Simple ContainerS

61

drwxr-xr-x 2 nanik nanik 4096 Apr 5 02:06 home/

drwxr-xr-x 7 nanik nanik 4096 Apr 5 02:06 lib/

drwxr-xr-x 5 nanik nanik 4096 Apr 5 02:06 media/

drwxr-xr-x 2 nanik nanik 4096 Apr 5 02:06 mnt/

drwxr-xr-x 2 nanik nanik 4096 Apr 5 02:06 opt/

dr-xr-xr-x 2 nanik nanik 4096 Apr 5 02:06 proc/

drwx------ 2 nanik nanik 4096 Apr 5 02:06 root/

drwxr-xr-x 2 nanik nanik 4096 Apr 5 02:06 run/

drwxr-xr-x 2 nanik nanik 4096 Apr 5 02:06 sbin/

drwxr-xr-x 2 nanik nanik 4096 Apr 5 02:06 srv/

drwxr-xr-x 2 nanik nanik 4096 Apr 5 02:06 sys/

drwxrwxr-x 2 nanik nanik 4096 Apr 5 02:06 tmp/

drwxr-xr-x 7 nanik nanik 4096 Apr 5 02:06 usr/

drwxr-xr-x 12 nanik nanik 4096 Apr 5 02:06 var/

The following output shows what the different directories contain:

.

├── bin
│ ├── arch -> /bin/busybox
...

├── dev
├── etc
...

│ ├── modprobe.d
...

├── home
...

├── sbin
│ ├── acpid -> /bin/busybox
│ ├── adjtimex -> /bin/busybox
...

Chapter 4 Simple ContainerS

62

├── srv
├── sys
├── tmp
├── usr
│ ├── bin
│ │ ├── [-> /bin/busybox
│ │ ├── [[-> /bin/busybox
...

│ │ └── yes -> /bin/busybox
│ ├── lib
│ │ ├── engines-1.1
...

│ │ └── modules-load.d
│ ├── local
│ │ ├── bin
...

│ ├── man
│ ├── misc
│ └── udhcpc
│ └── default.script
├── var
│ ├── cache
│ ├── empty
│ ├── lib

Now that you have a good idea of what rootfs is all about and what it

contains, you will explore further in the next section how to put everything

together into rootfs and run an application like how it normally runs as a

container.

Chapter 4 Simple ContainerS

63

 Gontainer Project
So far you have looked at how to create the different things that are

required to run an application in isolation: namespaces, cgroups and

configuring rootfs. In this section, you will look at a sample app that will

put everything together and run an application inside its own namespace.

In other words, you are going to run the application as a container.

The code can be checked out from https://github.com/nanikjava/

gontainer.

Make sure you download and extract the rootfs as explained in section

“rootFS.” Once the rootfs has been extracted to your local machine, change

the directory to the gotainer directory and compile the project using the

following command:

go build

Once compiled, you will get an executable called gotainer. Run the

application using the following command:

sudo ./gontainer --chrt "[rootfs directory]]" run sh

The command will run the sh command, which is the native

bash command for the Alpine distro in a container. Replace [rootfs

directory] with the directory containing the uncompressed Alpine roofs.

For example, in my machine, it is /home/nanik/play/rootfs. The full

command for my local machine is

sudo ./gontainer --chrt "/home/nanik/play/rootfs" run sh

You will get the prompt /usr # and you’ll able to execute any normal

Linux commands. Figure 4-5 shows some of the commands executed

inside gotainer.

Chapter 4 Simple ContainerS

https://github.com/nanikjava/gontainer
https://github.com/nanikjava/gontainer

64

Figure 4-5. Gotainer in action

Let’s take a look at the code to understand how the whole thing works.

There is only one file called gontainer.go. As you saw earlier, the way you

run the app is by supplying the argument run sh, which is processed by

the main() function shown here:

func main() {

 // outline cleanup tasks

 wg.Add(1)

 ...

 // actual program

 switch args[0] {

 case "run":

 go run()

Chapter 4 Simple ContainerS

65

 ...

}

The function run() that takes care of running the application specified

with the parameter run is shown here:

func run() {

 defer cleanup()

 infof("run as [%d] : running %v", os.Getpid(), args[1:])

 lst := append(append(flagInputs, "child"), args[1:]...)

 infof("running proc/self/exe %v", lst)

 if timeout > 0 {

 ctx, cancel := context.WithTimeout(context.Background(),

timeout)

 defer cancel()

 runcmd = exec.CommandContext(ctx, "/proc/self/

exe", lst...)

 } else {

 runcmd = exec.Command("/proc/self/exe", lst...)

 }

 runcmd.Stdin = os.Stdin

 runcmd.Stdout = os.Stdout

 runcmd.Stderr = os.Stderr

 runcmd.SysProcAttr = &syscall.SysProcAttr{

 Cloneflags: syscall.CLONE_NEWUTS | syscall.CLONE_NEWPID

| syscall.CLONE_NEWNS,

 Unshareflags: syscall.CLONE_NEWNS,

 }

 runcmd.Run()

}

Chapter 4 Simple ContainerS

66

You can see that the code is using /proc/self/exe, so what is this?

The Linux manual at https://man7.org/linux/man-pages/man5/

proc.5.html says

/proc/self

 When a process accesses this magic symbolic link, it

resolves to the process's own /proc/[pid] directory.

/proc/[pid]/exe

 Under Linux 2.2 and later, this file is a symbolic link

containing the actual pathname of the executed command.

This symbolic link can be dereferenced normally;

attempting to open it will open the executable.

The explanation clearly states that using /proc/self/exe means

you are spawning the currently running app, so this means that the

run() function is running itself as a separate process, passing in the

parameter in lst.

The function uses exec.Command to run /proc/self/exe, passing the

variable as lst, which contains the following command:

--chdr /usr --chrt /home/nanik/play/roofs/ --timeout 0s

child sh

Let’s explore what the arguments passed to the application are telling

the application to do. The init() function declares the following flags that

it can receive as arguments:

func init() {

 pflag.StringVar(&chroot, "chrt", "", "Where to chroot to.

Should contain a linux filesystem. Alpine is recommended.

GONTAINER_FS environment is default if not set")

 pflag.StringVar(&chdir, "chdr", "/usr", "Initial chdir

executed when running container")

Chapter 4 Simple ContainerS

https://man7.org/linux/man-pages/man5/proc.5.html
https://man7.org/linux/man-pages/man5/proc.5.html

67

 pflag.DurationVar(&timeout, "timeout", 0, "Timeout before

ending program. If 0 then never ends")

 ...

 infof("flaginputs: %v", flagInputs)

}

Table 4-1 explains the mapping of the argument passed via lst.

Table 4-1. Mapping Arguments

Format Explanation

--chdr /usr initial chdir executed when running container

--chrt /home/nanik/

play/roofs/

Where to chroot to

--timeout 0s timeout before ending program. if 0, then it never ends.

sh the app to run once the rootfs is up and running

The only parameter not shown in the table is the child parameter,

which is not processed. The child parameter will be processed by the

main() function by executing the function child() in goroutine, as shown

in the following code snippet:

func main() {

 // outline cleanup tasks

 ...

 // actual program

 switch args[0] {

 ...

 case "child":

 go child()

 ...

}

Chapter 4 Simple ContainerS

68

The child() function does all the heavy lifting of running the new

process in a container-like environment. The following shows the code of

the child() function:

func child() {

 defer cleanup()

 infof("child as [%d]: chrt: %s, chdir:%s", os.Getpid(),

chroot, chdir)

 infof("running %v", args[1:])

 must(syscall.Sethostname([]byte("container")))

 must(syscall.Chroot(chroot), "error in 'chroot ", chroot+"'")

 syscall.Mkdir(chdir, 0600)

 // initial chdir is necessary so dir pointer is in chroot dir

when proc mount is called

 must(syscall.Chdir("/"), "error in 'chdir /'")

 must(syscall.Mount("proc", "proc", "proc", 0, ""), "error in

proc mount")

 must(syscall.Chdir(chdir), "error in 'chdir ", chdir+"'")

 if timeout > 0 {

 ctx, cancel := context.WithTimeout(context.Background(),

timeout+time.Millisecond*50)

 defer cancel()

 cntcmd = exec.CommandContext(ctx, args[1], args[2:]...)

 } else {

 cntcmd = exec.Command(args[1], args[2:]...)

 }

 cntcmd.Stdin = os.Stdin

 ...

Chapter 4 Simple ContainerS

69

 must(cntcmd.Run(), fmt.Sprintf("run %v return error",

args[1:]))

 syscall.Unmount("/proc", 0)

}

Table 4-2 explains what each section of code is doing. Ignore the must

function call as this is an internal function call that checks the return value

of each system call.

Table 4-2. Code Explanations

Code Description

must(syscall.Sethostname([]

byte("container")))

Specifies the hostname of the container

must(syscall.Chdir("/"),

"error in 'chdir /'")

performs chroot using the specific rootfs

(in this example, it’s /home/nanik/play/

rootfs)

must(syscall.Chdir(chdir),

"error in 'chdir ",

chdir+"'")

Changes directory to the specified location

must(cntcmd.Run(), fmt.

Sprintf("run %v return

error", args[1:]))

runs the specified argument (in this

example, it’s sh)

The following code snippet specifies to the operating system to use the

standard in/out and error for the application that is executed:

...

cntcmd.Stdin = os.Stdin

cntcmd.Stdout = os.Stdout

cntcmd.Stderr = os.Stderr

...

Chapter 4 Simple ContainerS

70

Once cntcmd.Run() is completed and the prompt shows up, it

means that you are running inside the container, isolated from the host

operating system.

 Summary
In this chapter, you explored the different parts required to run an

application inside a container: namespaces, cgroups, and rootfs. You

experimented with the different available Linux tools to create namespaces

and configured resources for particular namespaces.

You also explored rootfs, which is a key component to run the

operating system, thus allowing applications to run. Finally, you looked at

a sample project that shows how to use the different components together

inside Go by using the Alpine rootfs.

Chapter 4 Simple ContainerS

71

CHAPTER 5

Containers
with Networking
In Chapter 4, you learned about the different features of the Linux kernel

used for containers. You also explored namespaces and how they help

applications isolate from other processes. In this chapter, you will focus

solely on the network namespace and understand how it works and how to

configure it.

The network namespace allows applications that run on their own

namespaces to have a network interface that allows running processes to

send and receive data to the host or to the Internet. In this chapter, you will

learn how to do the following:

• Create your own network namespace

• Communicate with the host

• Use network space in Go

 Source Code
The source code for this chapter is available from the https://github.

com/Apress/Software-Development-Go repository.

© Nanik Tolaram 2023
N. Tolaram, Software Development with Go,
https://doi.org/10.1007/978-1-4842-8731-6_5

https://doi.org/10.1007/978-1-4842-8731-6_4
https://github.com/Apress/Software-Development-Go
https://github.com/Apress/Software-Development-Go
https://doi.org/10.1007/978-1-4842-8731-6_5#DOI

72

 Network Namespace
In Chapter 4, you looked at namespaces, which are used to create a

virtual isolation for an application, which is one of the key ingredients

in running applications inside a container. The network namespace is

another isolation feature that applications need because it allows them to

communicate with the host or the Internet.

Why is the network namespace important?

Looking at Figure 5-1, you can see that there are two different

applications running on a single host in different namespaces and each of

the namespaces has their own network namespace.

Figure 5-1. Network namespaces

The applications are allowed to talk to each other, but they are

not allowed to talk to the host and vice versa. This not only makes the

applications more secure, but also it makes the application easier to

maintain because it does not need to worry about services outside

the host.

Using a network namespace requires a few things to be configured

properly in order for the application to use it. Figure 5-2 shows the

different things that are needed.

Chapter 5 Containers with networking

https://doi.org/10.1007/978-1-4842-8731-6_4

73

Figure 5-2. Virtual networks

Let’s take a look at them individually:

network

(lo)

in your computer, you normally access servers that are running locally

using localhost. this inside the network namespace is also configured

the same; it is known as lo.

network

(peer0)

this is known as a peer name, and it is configured for the namespace

that will communicate with traffic outside the namespace. as shown in

Figure 5-2, it communicates with veth0.

veth0 this is called a virtual ethernet and it is configured in the host computer.

the virtual ethernet, or in this case veth0, communicates between the

host and the namespace.

br0 this is a virtual switch. it’s also known as a bridge. any network

attached to the bridge can communicate with the others. in this case,

there is only one virtual ethernet (veth0) but if there was another virtual

ethernet, they could communicate with each other.

Now that you have a good understanding of the different things that

need to be configured in a network namespace, in the next section you will

explore using a Linux tool to play around with network namespaces.

Chapter 5 Containers with networking

74

 Setting Up with the ip Tool
In this section, you will look at setting up two different network

namespaces and each will be assigned its own IP address. The script will

use the standard Linux tool called ip. If you don’t have the tool installed on

your machine, use the following command to install it:

sudo apt-get install -y iproute OR

sudo apt-get install -y iproute2

The script will set up the network namespaces to allow them to access

each other but they cannot communicate with any external services. The

script can be found inside the chapter5/ns directory. Change to this

directory and execute it as follows (make sure you run it as root):

sudo ./script.sh

You will get output that looks like the following:

...

64: virt0: <NO-CARRIER,BROADCAST,MULTICAST,UP,LOWER_UP> mtu

1500 qdisc pfifo_fast state DOWN mode DEFAULT group default

qlen 1000

...

66: virt1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc

pfifo_fast state UNKNOWN mode DEFAULT group default qlen 1000

...

PING 10.0.0.1 (10.0.0.1) 56(84) bytes of data.

64 bytes from 10.0.0.1: icmp_seq=1 ttl=64 time=0.069 ms

64 bytes from 10.0.0.1: icmp_seq=2 ttl=64 time=0.052 ms

...

--- 10.0.0.1 ping statistics ---

5 packets transmitted, 5 received, 0% packet loss, time 3999ms

rtt min/avg/max/mdev = 0.044/0.053/0.069/0.009 ms

Chapter 5 Containers with networking

75

PING 10.0.0.1 (10.0.0.1) 56(84) bytes of data.

64 bytes from 10.0.0.1: icmp_seq=1 ttl=64 time=0.060 ms

64 bytes from 10.0.0.1: icmp_seq=2 ttl=64 time=0.044 ms

...

--- 10.0.0.1 ping statistics ---

5 packets transmitted, 5 received, 0% packet loss, time 3999ms

rtt min/avg/max/mdev = 0.044/0.053/0.060/0.006 ms

PING 10.0.0.10 (10.0.0.10) 56(84) bytes of data.

64 bytes from 10.0.0.10: icmp_seq=1 ttl=64 time=0.031 ms

64 bytes from 10.0.0.10: icmp_seq=2 ttl=64 time=0.035 ms

...

--- 10.0.0.10 ping statistics ---

5 packets transmitted, 5 received, 0% packet loss, time 3999ms

rtt min/avg/max/mdev = 0.031/0.037/0.047/0.005 ms

PING 10.0.0.10 (10.0.0.10) 56(84) bytes of data.

64 bytes from 10.0.0.10: icmp_seq=1 ttl=64 time=0.070 ms

64 bytes from 10.0.0.10: icmp_seq=2 ttl=64 time=0.070 ms

...

--- 10.0.0.10 ping statistics ---

5 packets transmitted, 5 received, 0% packet loss, time 3999ms

rtt min/avg/max/mdev = 0.043/0.058/0.070/0.013 ms

PING 10.0.0.11 (10.0.0.11) 56(84) bytes of data.

64 bytes from 10.0.0.11: icmp_seq=1 ttl=64 time=0.070 ms

64 bytes from 10.0.0.11: icmp_seq=2 ttl=64 time=0.042 ms

...

--- 10.0.0.11 ping statistics ---

5 packets transmitted, 5 received, 0% packet loss, time 3999ms

rtt min/avg/max/mdev = 0.042/0.057/0.070/0.010 ms

Chapter 5 Containers with networking

76

PING 10.0.0.11 (10.0.0.11) 56(84) bytes of data.

64 bytes from 10.0.0.11: icmp_seq=1 ttl=64 time=0.032 ms

...

The script creates two different namespaces called ns1 and ns2,

assigning virtual networks to both of them, as explained in the previous

section. The virtual networks are assigned IP addresses 10.0.0.10 and

10.0.0.11, and both networks are connected to each other via a bridge that

is assigned IP address 10.0.0.1.

Let’s go through the script to understand what it is doing. The

following snippet creates two network namespaces labeled ns1 and ns2:

ip netns add ns1

ip netns add ns2

Once the namespace has been set up, it will set up a local network

interface inside the namespace.

ip netns exec ns1 ip link set lo up

ip netns exec ns1 ip link

ip netns exec ns2 ip link set lo up

ip netns exec ns2 ip link

Now, you need to create a network bridge and assign 10.0.0.1 as its IP

address.

ip link add br0 type bridge

ip link set br0 up

setup bridge IP

ip addr add 10.0.0.1/8 dev br0

Once the bridge has been set up, the script will link the virtual

networks to the network namespaces and also link them to the bridge. This

will link all the different virtual networks together through the bridge. The

script will assign the different IP address to the virtual networks.

Chapter 5 Containers with networking

77

setup virtual ethernet and link it to namespace

ip link add v0 type veth peer name virt0

ip link set v0 master br0

ip link set v0 up

ip link set virt0 netns ns1

bring up the virtual ethernet

ip netns exec ns1 ip link set virt0 up

print out info about the network link

ip netns exec ns1 ip link

setup virtual ethernet and link it to namespace

ip link add v1 type veth peer name virt1

ip link set v1 master br0

ip link set v1 up

ip link set virt1 netns ns2

bring up the virtual ethernet

ip netns exec ns2 ip link set virt1 up

print out info about the network link

ip netns exec ns2 ip link

Set IP address to the different virtual interfaces

ip netns exec ns1 ip addr add 10.0.0.10/8 dev virt0

ip netns exec ns2 ip addr add 10.0.0.11/8 dev virt1

The last step that the script will do is route traffic between the bridge.

This will allow traffic to flow through the ns1 and ns2 namespaces.

register the bridge in iptables to allow forwarding

iptables -I FORWARD -i br0 -o br0 -j ACCEPT

Once the script has run successfully, you will see the routing

information using the following command:

iptables -v --list FORWARD --line-number

Chapter 5 Containers with networking

78

You will see the output shown below. The output shows that bridge br0

has been registered into the routing table to allow traffic through.

Chain FORWARD (policy DROP 53 packets, 4452 bytes)

num pkts bytes target prot opt in

out source destination

1 4 336 ACCEPT all -- br0

br0 anywhere anywhere

2 53 4452 DOCKER-USER all -- any

any anywhere anywhere

3 53 4452 DOCKER-ISOLATION-STAGE-1 all -- any

any anywhere anywhere

4 0 0 ACCEPT all -- any docker0

anywhere anywhere ctstate RELATED, ESTABLISHED

5 0 0 DOCKER all -- any

docker0 anywhere anywhere

6 0 0 ACCEPT all -- docker0

!docker0 anywhere anywhere

7 0 0 ACCEPT all -- docker0

docker0 anywhere anywhere

After executing the script, you can remove the br0 routing information

by using the following command. Replace the value 1 with the chain

number you obtained when running the above command to print out the

routing information.

iptables -v --delete FORWARD 1

You just learned how to set up two network namespaces and

allow traffic flow between the two of them using a Linux tool. In the next

section, you will see how to set up network namespaces in a Go program,

similar to what tools like Docker do.

Chapter 5 Containers with networking

79

 Containers with Networks
In this section, you will look at a small project that provides Docker-

like functionality. The project will be similar to the tool we discussed in

Chapter 4, but this tool creates network namespaces to allow the container

to have network capability. The project can be checked out from https://

github.com/nanikjava/container-networking.

Check out the project and compile it as follows:

go build -o cnetwork

Once compiled, execute the following command to run it as an Alpine

container:

sudo ./cnetwork run alpine /bin/sh

You will see output that looks like the following:

2022/06/05 12:59:11 Cmd args: [./cnetwork run alpine /bin/sh]

2022/06/05 12:59:11 New container ID: 20747aa00a4d

2022/06/05 12:59:11 Downloading metadata for alpine:latest,

please wait...

2022/06/05 12:59:13 imageHash: e66264b98777

2022/06/05 12:59:13 Checking if image exists under

another name...

2022/06/05 12:59:13 Image doesn't exist. Downloading...

2022/06/05 12:59:16 Successfully downloaded alpine

2022/06/05 12:59:16 Uncompressing layer to: /var/lib/gocker/

images/e66264b98777/4a973e6cf97f/fs

2022/06/05 12:59:16 Image to overlay mount: e66264b98777

2022/06/05 12:59:16 Cmd args: [/proc/self/exe setup-netns

20747aa00a4d]

2022/06/05 12:59:16 Cmd args: [/proc/self/exe setup-veth

20747aa00a4d]

Chapter 5 Containers with networking

https://doi.org/10.1007/978-1-4842-8731-6_4
https://github.com/nanikjava/container-networking
https://github.com/nanikjava/container-networking

80

2022/06/05 12:59:16 Cmd args: [/proc/self/exe child-mode --img=

e66264b98777 20747aa00a4d /bin/sh]

/ #

You will see a prompt (/#) to enter a command inside the container.

Try using the ifconfig command that will print out the configured

network interface.

/ # ifconfig

On my local machine, the output looks like the following:

lo Link encap:Local Loopback

 inet addr:127.0.0.1 Mask:255.0.0.0

 inet6 addr: ::1/128 Scope:Host

 UP LOOPBACK RUNNING MTU:65536 Metric:1

 RX packets:0 errors:0 dropped:0 overruns:0 frame:0

 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:1000

 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

veth1_7ea0e6 Link encap:Ethernet HWaddr 02:42:4C:66:FD:FE

 inet addr:172.29.69.160 Bcast:172.29.255.255

Mask:255.255.0.0

 inet6 addr: fe11::11:4c11:fe11:fdfe/64 Scope:Link

 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

 RX packets:19 errors:0 dropped:0 overruns:0 frame:0

 TX packets:6 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:1000

 RX bytes:2872 (2.8 KiB) TX bytes:516 (516.0 B)

As you can see, the virtual ethernet network has been configured with

IP address 172.29.69.160. The bridge configured on the host looks like the

following when you run ifconfig on the host:

Chapter 5 Containers with networking

81

...

gocker0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500

 inet 172.29.0.1 netmask 255.255.0.0 broadcast

172.29.255.255

 inet6 fe80::5851:6bff:fe0e:1768 prefixlen 64 scopeid

0x20<link>

 ether ce:cc:2c:e2:9e:97 txqueuelen 1000 (Ethernet)

 RX packets 61 bytes 4156 (4.1 KB)

 RX errors 0 dropped 0 overruns 0 frame 0

 TX packets 110 bytes 15864 (15.8 KB)

 TX errors 0 dropped 0 overruns 0 carrier

0 collisions 0

...

veth0_7ea0e6: flags=4163<UP,BROADCAST,RUNNING,MULTICA

ST> mtu 1500

 inet6 fe80::e8a3:faff:fed2:2ee9 prefixlen 64 scopeid

0x20<link>

 ether ea:a3:fa:d2:2e:e9 txqueuelen 1000 (Ethernet)

 RX packets 11 bytes 866 (866.0 B)

 RX errors 0 dropped 0 overruns 0 frame 0

 TX packets 46 bytes 7050 (7.0 KB)

 TX errors 0 dropped 0 overruns 0 carrier

0 collisions 0

...

The gocker0 bridge is configured with IP 172.29.0.1 and you can ping it

from the container.

Let’s test the network communication between the container and the

host. Open terminal and run the following command:

sudo ./cnetwork run alpine /bin/sh

Chapter 5 Containers with networking

82

Once the container is up and running, get the IP address of the

container by using the following command:

ip addr show

Once you get the IP address of your container, run the following

command in the container:

nc -l -p 4000

The container is now ready to accept a connection on port 4000. Open

another terminal window from your host machine and run the following

command:

nc <container_ip_address> 4000

Type in anything on your terminal window and the container will

output your type. You will see something like Figure 5-3.

Figure 5-3. Communication between container and host

Let’s take a look at the code to understand how the application is able

to do all this inside Go. The application performs a two-step execution

process. The first step is setting up the bridge and virtual networks, and the

second step is setting up the network namespaces, setting up the different

configurations of the virtual networks, and executing the container inside

the namespace.

Chapter 5 Containers with networking

83

Let’s take a look at the first step of creating the bridge and virtual

networks, as shown here:

func setupGockerBridge() error {

 linkAttrs := netlink.NewLinkAttrs()

 linkAttrs.Name = "gocker0"

 gockerBridge := &netlink.Bridge{LinkAttrs: linkAttrs}

 if err := netlink.LinkAdd(gockerBridge); err != nil {

 return err

 }

 addr, _ := netlink.ParseAddr("172.29.0.1/16")

 netlink.AddrAdd(gockerBridge, addr)

 netlink.LinkSetUp(gockerBridge)

 return nil

}

The function sets up a new bridge by creating a new netlink.Bridge,

which contain network bridge information that is populated with the name

gocker0 and is assign the IP address 172.29.0.1.

Once it successfully sets up the bridge, it will set up the virtual ethernet

that is called inside the initContainer(..) function, as shown here:

func initContainer(mem int, swap int, pids int, cpus float64,

src string, args []string) {

 ...

 if err := setupVirtualEthOnHost(containerID); err != nil {

 log.Fatalf("Unable to setup Veth0 on host: %v", err)

 }

 ...

}

The setupVirtualEthOnHost(..) function is shown here:

Chapter 5 Containers with networking

84

unc setupVirtualEthOnHost(containerID string) error {

 veth0 := "veth0_" + containerID[:6]

 veth1 := "veth1_" + containerID[:6]

 linkAttrs := netlink.NewLinkAttrs()

 linkAttrs.Name = veth0

 veth0Struct := &netlink.Veth{

 LinkAttrs: linkAttrs,

 PeerName: veth1,

 PeerHardwareAddr: createMACAddress(),

 }

 if err := netlink.LinkAdd(veth0Struct); err != nil {

 return err

 }

 netlink.LinkSetUp(veth0Struct)

 gockerBridge, _ := netlink.LinkByName("gocker0")

 netlink.LinkSetMaster(veth0Struct, gockerBridge)

 return nil

}

The function creates two virtual networks labeled veth0_xxx and

veth1_xxx. The xxx represents the generated container id, so in my

case it looks like veth0_7ea0e6. The new virtual network will be given a

generated MAC address by calling createMACAddress() and will be linked

to the newly created gocker0 bridge.

Now that the bridge and virtual networks have been set up, the

application will set up the network namespace, configure the container’s

virtual network, and run the container, which is performed by

initContainer(..).

func initContainer(mem int, swap int, pids int, cpus float64,

src string, args []string) {

Chapter 5 Containers with networking

85

 ...

 prepareAndExecuteContainer(mem, swap, pids, cpus,

containerID, imageShaHex, args)

 ...

}

The prepareAndExecuteContainer(..) function takes care of few

things, as shown in the following snippet:

func prepareAndExecuteContainer(mem int, swap int, pids int,

cpus float64,

 containerID string, imageShaHex string, cmdArgs []string) {

 cmd := &exec.Cmd{

 Path: "/proc/self/exe",

 Args: []string{"/proc/self/exe", "setup-netns",

containerID},

 ...

 }

 cmd.Run()

 cmd = &exec.Cmd{

 Path: "/proc/self/exe",

 Args: []string{"/proc/self/exe", "setup-veth",

containerID},

 ...

 }

 cmd.Run()

 ...

 opts = append(opts, "--img="+imageShaHex)

 args := append([]string{containerID}, cmdArgs...)

 args = append(opts, args...)

 args = append([]string{"child-mode"}, args...)

Chapter 5 Containers with networking

86

 cmd = exec.Command("/proc/self/exe", args...)

 ...

 cmd.SysProcAttr = &unix.SysProcAttr{

 Cloneflags: unix.CLONE_NEWPID |

 unix.CLONE_NEWNS |

 unix.CLONE_NEWUTS |

 unix.CLONE_NEWIPC,

 }

 doOrDie(cmd.Run())

}

The function runs itself again (via the /proc/self/exe way),

passing the parameters setup-ns and setup-veth. These two functions

perform the network namespace (setupNetNetworkNamespace) and

virtual ethernet setup, (setupContainerNetworkInterfaceStep1 and

setupContainerNetworkInterfaceStep2).

func setupNewNetworkNamespace(containerID string) {

 _ = createDirsIfDontExist([]string{getGockerNetNsPath()})

 ...

 if err := unix.Setns(fd, unix.CLONE_NEWNET); err != nil {

 log.Fatalf("Setns system call failed: %v\n", err)

 }

}

func setupContainerNetworkInterfaceStep1(containerID string) {

 ...

 veth1 := "veth1_" + containerID[:6]

 veth1Link, err := netlink.LinkByName(veth1)

 ...

 if err := netlink.LinkSetNsFd(veth1Link, fd); err != nil {

Chapter 5 Containers with networking

87

 log.Fatalf("Unable to set network namespace for veth1:

%v\n", err)

 }

}

func setupContainerNetworkInterfaceStep2(containerID string) {

 ...

 if err := unix.Setns(fd, unix.CLONE_NEWNET); err != nil {

 log.Fatalf("Setns system call failed: %v\n", err)

 }

 veth1 := "veth1_" + containerID[:6]

 veth1Link, err := netlink.LinkByName(veth1)

 if err != nil {

 log.Fatalf("Unable to fetch veth1: %v\n", err)

 }

 ...

 route := netlink.Route{

 Scope: netlink.SCOPE_UNIVERSE,

 LinkIndex: veth1Link.Attrs().Index,

 Gw: net.ParseIP("172.29.0.1"),

 Dst: nil,

 }

 ...

}

Once all the network setup is done, it calls itself again, passing in

child-mode as the parameter, which is performed by the following code

snippet:

 ...

case "child-mode":

 fs := flag.FlagSet{}

Chapter 5 Containers with networking

88

 fs.ParseErrorsWhitelist.UnknownFlags = true

 ...

 execContainerCommand(*mem, *swap, *pids, *cpus, fs.Args()[0],

*image, fs.Args()[1:])

 ...

Once all setup is done, the final step is to set up the container by calling

execContainerCommand(..) to allow the user to execute the command

inside the container.

In this section, you learned the different steps involved in setting

up virtual networks for a container. The sample application used in this

section performs operations such as downloading images, setting up

rootfs, setting up network namespaces, and configuring all the different

virtual networks required for a container.

 Summary
In this chapter, you learned about virtual networks that are used

inside containers. You went through the steps of configuring network

namespaces along with virtual networks manually using a Linux tool

called ip. You looked at configuring iptables to allow communication to

happen between the different network namespaces.

After understanding how to configure a network namespace with

virtual networks, you looked at a Go example of how to configure virtual

networks in a container. You went through the different functions that

perform different tasks that are required to configure the virtual networks

for a container.

Chapter 5 Containers with networking

89

CHAPTER 6

Docker Security
This chapter, you will look at seccomp profiles, one of the security features

provided by Docker, which use the seccomp feature built into the Linux

kernel. Standalone Go applications can also implement seccomp security

without using Docker, and you will look at how to do this using the

seccomp library.

You will also look at how Docker communicates using sockets by

writing a proxy that listens to Docker communication. This is super useful

to know because it gives you a better idea of how to secure Docker in your

infrastructure.

 Source Code
The source code for this chapter is available from the https://github.

com/Apress/Software-Development-Go repository.

 seccomp Profiles
seccomp is short for secure computing mode. It is a feature that is available

inside the Linux operating system. Linux as an operating system provides

this feature out of the box, which means that it is ready to be used. What

is it actually? It is a security feature that allows applications to make only

certain system calls, and this can be configured per application. As a

developer, you can specify what kind of restriction you want to put in place

© Nanik Tolaram 2023
N. Tolaram, Software Development with Go,
https://doi.org/10.1007/978-1-4842-8731-6_6

https://github.com/Apress/Software-Development-Go
https://github.com/Apress/Software-Development-Go
https://doi.org/10.1007/978-1-4842-8731-6_6#DOI

90

so, for example, application A can only make system calls to read and write

text files but it cannot make any other system calls, while application B can

only make network system calls but can’t read or write files. You will look

at how to do this in the application and how to make restrictions when

running the application as a Docker container.

This kind of restriction provides more security for your infrastructure

because you don't want an application to run on your infrastructure

without any restrictions. seccomp, when used with Docker containers,

provides more layers of security for the host operating system because it

can be configured to allow certain system call access to applications that

are currently running inside the container.

In order to use seccomp, first you must check whether your operating

system supports it. Open your terminal and run the following command:

grep CONFIG_SECCOMP= /boot/config-$(uname -r)

If your operating supports seccomp, you will get the following output:

CONFIG_SECCOMP=y

If your Linux operating system does not support seccomp, you

can install it using the package manager of your operating system. For

example, in Ubuntu, you can install it using the following command:

sudo apt install seccomp

In the next section, you’ll see examples of how to use seccomp in a

sample application.

Chapter 6 DoCker SeCurity

91

 libseccomp
In order to use the seccomp security feature inside the application, you

must install the library. In this case, the library is called libseccomp

(https://github.com/seccomp/libseccomp). Not all distros install the

libseccomp by default, so you need to install it using your operating system

package manager. In Ubuntu, you can install it by using the following

command:

sudo apt install libseccomp-dev

Now that the default seccomp library has been installed, you can start

using it in your application. Run the sample application that is inside the

chapter6/seccomp/libseccomp directory as follows:

go run main.go

You will get output as follows:

2022/07/05 22:11:34 Starting app

2022/07/05 22:11:34 Directory /tmp/NjAZmQrt created

successfully

2022/07/05 22:11:34 Trying to get current working directory

2022/07/05 22:11:34 Current working directory is: <your_

current_directory>

The code run by creating a temporary directory and reading the

current directory using a system call is shown here:

package main

...

func main() {

 ...

 dirPath := "/tmp/" + randomString(8)

 if err := syscall.Mkdir(dirPath, 0600); err != nil {

Chapter 6 DoCker SeCurity

https://github.com/seccomp/libseccomp

92

 ...

 }

 ...

 wd, err := syscall.Getwd()

 if err != nil {

 ...

 }

 ...

}

What’s so special about the code? There is nothing special in what the

code is doing. What’s special is the way you configured seccomp inside the

sample code. The code uses a Go library called libseccomp-golang, which

can be found at github.com/seccomp/libseccomp-golang.

The libseccomp-golang library is a Go binding library for the native

seccomp library, which you installed in the previous section. You can think

of the library as a wrapper to the C seccomp library that can be used inside

the Go program. The library is used inside an application to configure

itself, specifying what system calls it is allowed to make.

So why do you want to do this? Well, say you are working in a multiple-

team environment and you want to make sure that the code written can

only perform system calls that are configured internally. This will remove

the possibility of introducing code that makes system calls that are not

allowed in the configuration. Doing so will introduce an error and crash

the application.

Looking at the snippet sample code, you can see the following

allowable system calls, declared as string of an array in the whitelist

variable:

var (

 whitelist = []string{"getcwd", "exit_group",

"rt_sigreturn", "mkdirat", "write"})

Chapter 6 DoCker SeCurity

http://github.com/seccomp/libseccomp-golang

93

The listed system calls are the system calls that are required by the

application. You will see later what happens if the code makes a system call

that is not configured. The function configureSeccomp() is responsible for

registering the defined system calls with the library.

func configureSeccomp() error {

 ...

 filter, err = seccomp.NewFilter(seccomp.ActErrno)

 ...

 for _, name := range whitelist {

 syscallID, err := seccomp.GetSyscallFromName(name)

 if err != nil {

 return err

 }

 err = filter.AddRule(syscallID, seccomp.ActAllow)

 if err != nil {

 return err

 }

 }

 ...

}

The first thing the function does is create a new filter by calling

seccomp.NewFilter(..), passing in the action (seccomp.ActErrno)

as parameter. The parameter specifies the action to be taken when the

application calls system calls that are not allowed. In this case, you want it

to return an error number.

Once it creates a new filter, it will loop through the whitelist system

calls by first obtaining the correct system call id calling seccomp.

GetSyscallFromName(..) and registering the id to the library using the

filter.AddRule(..) function. The parameter seccomp.ActAllow

Chapter 6 DoCker SeCurity

94

specifies that the id is the system calls the application is allowed to make.

On completion of the configureSeccomp() function, the application is

configured to allow only the calls that have been white-listed.

The system calls that the application makes are simple. Create a file

using the following snippet:

func main() {

 ...

 if err := syscall.Mkdir(dirPath, 0600); err != nil {

 return

 }

 ...

}

Get the current working directory using the following system call:

func main() {

 ...

 wd, err := syscall.Getwd()

 if err != nil {

 ...

 }

 ...

}

The question that pops up now is, what will happen if the application

makes a system call that it is not configured for? Let’s modify the code a bit.

Change the whitelist variable as follows:

var (

 whitelist = []string{

 "exit_group", "rt_sigreturn", "mkdirat", "write",

 }

 ...

)

Chapter 6 DoCker SeCurity

95

This removed getcwd from the list. Now run the application. You will

get an error as follows:

...

2022/07/05 22:53:06 Failed getting current working directory:

invalid argument -

The code fails to make the system call to get the current working

directory and returns an error. You can see that removing the registered

system call from the list stops the application from functioning properly. In

the next section, you will look at using seccomp for applications that run as

containers using Docker.

 Docker seccomp
Docker provides seccomp security for applications running in a container

without having to add security inside the code. This is done by specifying

the seccomp file when running the container. Open the file chapter6/

dockerseccomp/seccomp.json to see what it looks like:

{

 "defaultAction": "SCMP_ACT_ERRNO",

 "architectures": [

 "SCMP_ARCH_X86_64"

],

 "syscalls": [

 {

 "names": [

 "arch_prctl",

 ...

 "getcwd"

],

 "action": "SCMP_ACT_ALLOW"

Chapter 6 DoCker SeCurity

96

 }

]

}

The syscalls section outlines the different system calls that are

permitted inside the container. Let’s build a docker container using the

Dockerfile inside the chapter6/dockerseccomp directory. Open your

terminal and change the directory to chapter6/dockerseccomp and run

the following command:

docker build -t docker-seccomp:latest -f Dockerfile .

This will build the sample main.go inside that directory and package it

into a container. Executing docker images shows the following image from

your local repository:

REPOSITORY TAG IMAGE ID

CREATED SIZE

...

docker-seccomp latest 4cebeb0b7fce

47 hours ago 21.3MB

...

gcr.io/distroless/base-debian10 latest a5880de4abab

52 years ago 19.2MB

You now have container called docker-seccomp. Test the container by

running it as follows:

docker run docker-seccomp:latest

You will get the same output as when you run the sample in a terminal:

2022/07/07 12:04:12 Starting app

Chapter 6 DoCker SeCurity

97

2022/07/07 12:04:12 Directory /tmp/QPRNrGAA created

successfully

2022/07/07 12:04:12 Trying to get current working directory

2022/07/07 12:04:12 Current working directory is: /

The container works as expected, which is great. Now let’s add

some restrictions into the container for the app using seccomp. To run a

container with a seccomp restriction, use the following command. In this

example, the seccomp file is chapter6/dockerseccomp/seccomp.json.

Open terminal and run the following command:

docker run --security-opt="no-new-privileges" --security-opt

seccomp=<directory_of_chapter6>/dockerseccomp/seccomp.json

docker-seccomp:latest

This will execute the container and you will get the same output as

previously. The reason why you are able to run the container without any

problem even after adding seccomp is because the seccomp.json contains

all the necessary permitted syscalls for the container.

Let’s remove some syscalls from seccomp.json. You have another file

called problem_seccomp.json that has removed mkdirat and getcwd from

the allowable syscall list. Run the following from your terminal:

docker run --security-opt="no-new-privileges" --security-opt

seccomp=<directory_of_chapter6>/dockerseccomp/problem_seccomp.

json docker-seccomp:latest

The container will not run successfully, and you will get the

following output:

2022/07/07 12:12:18 Starting app

2022/07/07 12:12:18 Failed creating directory: operation not

permitted

Chapter 6 DoCker SeCurity

98

You have successfully run the container, applying restricted syscalls for

the application.

In the next section, you will look at building a Docker proxy to listen to

the Docker communication to understand how Docker actually works in

terms of receiving a command and responding to it.

 Docker Proxy
Docker comprises two main components: the client tool, which is

normally called docker when you run from your terminal, and the server

where it runs as a server/daemon and listens for incoming commands.

The Docker client communicates with the server using what is known as

socket, which is an endpoint that passes data between different processes.

Docker uses what is known as a non-networked socket, which is mostly

used for local machine communication and is called a Unix domain socket

(or IPC socket).

Docker by default uses Unix socket /var/run/docker.sock to

communicate between client and server, as shown in Figure 6-1.

Figure 6-1. Docker communication /var/run/docker.sock

Chapter 6 DoCker SeCurity

99

In this section, you will look at sample code of how to intercept the

communication between Docker client and server. You will step through

the code to understand what it is actually doing and how it is performed.

The code is inside the chapter6/docker-proxy directory. Run it on your

terminal as follows:

go run main.go

You will get the following output when it runs successfully:

2022/07/09 11:59:04 Listening on /tmp/docker.sock for Docker

commands

The proxy is now ready and listening on /tmp/docker.sock for

messages to use Docker so that it goes through the proxy and sets the

DOCKER_HOST environment variable. The DOCKER_HOST variable is used by

the Docker command line tool to know which Unix socket to use to send

the commands.

For example, to use the proxy to print out the list of running containers,

use the following command on your terminal:

DOCKER_HOST=unix:///tmp/docker.sock docker ps

On the terminal that is running the proxy, you will see the Docker

output in JSON format. On my local machine, the output look as follows:

2022/07/09 16:33:02 [Request] : HEAD /_ping HTTP/1.1

Host: docker

User-Agent: Docker-Client/20.10.9 (linux)

2022/07/09 16:33:02 [Request] : GET /v1.41/containers/json

HTTP/1.1

Host: docker

User-Agent: Docker-Client/20.10.9 (linux)

2022/07/09 16:33:02 [Response] : [

Chapter 6 DoCker SeCurity

100

 {

 "Id": "56f68f7cafb7e5f8b1b1f6263ac6b26f4d47b7a0653684221

2d577ddf1910a11",

 "Names": [

 "/redis"

],

 "Image": "redis",

 "ImageID": "sha256:bba24acba395b778d9522a1adf5f0d6bba3

e6094b2d298e71ab08828b880a01b",

 "Command": "docker-entrypoint.sh redis-server",

 "Created": 1657331859,

 ...

 },

 {

 "Id": "2ab2942c2591dcd8eba883a1d57f1183a1d99bafb60be8f

17edf8794e9295e53",

 "Names": [

 "/postgres"

],

 "Image": "postgres",

 "ImageID": "sha256:1ee973e26c6564a04b427993f47091cd3ae

4d5156fbd46d331b17a8e7ab45d39",

 "Command": "docker-entrypoint.sh postgres",

 "Created": 1657331853,

 ...

 }

]

The proxy prints out the request from the Docker client and the

response from the Docker server into the console. The Docker command

line still prints out as normal and the output look as follows:

Chapter 6 DoCker SeCurity

101

CONTAINER ID IMAGE COMMAND CREATED

STATUS PORTS NAMES

56f68f7cafb7 redis "docker-entrypoint.s..." 4 hours ago

Up 4 hours 0.0.0.0:6379->6379/tcp, :::6379->6379/tcp redis

2ab2942c2591 postgres "docker-entrypoint.s..." 4 hours ago

Up 4 hours 0.0.0.0:5432->5432/tcp, :::5432->5432/tcp postgres

As you can see, the response that the Docker client receives is in the

JSON format and it contains a lot of information. Now let’s dig into the

code to understand how things work internally.

Figure 6-2 shows the command flow from client to proxy to Docker

server. The communication from the Docker client passes through the

proxy before reaching the Docker daemon.

Figure 6-2. Docker communication using a proxy

The following snippet shows the code that listens to the socket /tmp/

docker.sock:

func main() {

 in := flag.String("in", proxySocket, "Proxy docker socket")

 ...

 sock, err := net.Listen("unix", *in)

Chapter 6 DoCker SeCurity

102

 if err != nil {

 log.Fatalf("Error : %v", err)

 }

 ...

}

The code uses the net.Listen(..) function passing in the parameter

unix. The unix parameter indicates to the function that the requested

socket is a non-networked Unix socket, which is handled differently

internally in the net library.

Once the socket has been initialized successfully, the code will create

a socket handler that will take care of processing the incoming request and

outgoing response. This is performed by the function ServeHTTP, which

is the function of the handler struct. The following snippet shows the

declaration of the handler and calling http.Serve to inform the library

of the handler that the socket sock will be using. The handler is created,

passing in dsocket to be populated into the socket variable.

func main() {

 ...

 dhandler := &handler{dsocket}

 ...

 err = http.Serve(sock, dhandler)

 ...

}

With the socket ready to accept connections, the function ServeHTTP

takes care of processing the request and response for all traffic. The

first thing the function does is create a separate connection to the

Docker socket.

func (h *handler) ServeHTTP(response http.ResponseWriter,

request *http.Request) {

Chapter 6 DoCker SeCurity

103

 conn, err := net.DialUnix(unix, nil, &net.UnixAddr{h.

socket, unix})

 if err != nil {

 writeError(response, errCode, err)

 return

 }

 ...

}

The net.DialUnix(..) function creates a Unix socket using the

h.socket value as the socket name; in this sample code, the value is var/

run/docker.sock. The connection object returned by this function will

be used as a bridge by the code to pass back and forth the request and

response.

The code will forward the incoming request to the Docker socket, as

shown in the following snippet:

func (h *handler) ServeHTTP(response http.ResponseWriter,

request *http.Request) {

 ...

 err = request.Write(conn)

 ...

}

The request.Write(..) function forwards the incoming request to

the original Docker socket that is pointed by the conn variable. Once the

request is sent, the code needs to get a http/Response struct in order

to read the response reply from the Docker socket. This is done in the

following code snippet:

func (h *handler) ServeHTTP(response http.ResponseWriter,

request *http.Request) {

 ...

Chapter 6 DoCker SeCurity

104

 resp, err := http.ReadResponse(bufio.NewReader(conn),

request)

 if err != nil {

 writeError(response, errCode, err)

 return

 }

 ...

}

The resp variable now contains the response from the original Docker

socket and it will extract the relevant information and forward it back to

the caller response stored inside the response object, as shown in the

following code snippet:

func (h *handler) ServeHTTP(response http.ResponseWriter,

request *http.Request) {

 ...

 response.WriteHeader(resp.StatusCode)

 reader := bufio.NewReader(resp.Body)

 for {

 line, _, err := reader.ReadLine()

 ...

 // write the response back to the caller

 response.Write(line)

 ...

 }

}

In the next section, you will look at how to configure your Dockerfile to

minimize the container attack surface.

Chapter 6 DoCker SeCurity

105

 Container Attack Surface
Building applications for cloud environments requires building the

application as a container image, which requires creating Dockerfiles. This

section will show how to minimize risk when creating Docker images for

Go applications.

The main thing to remember when building a Docker image is the final

image that the application will be running on. The rule of thumb is to use the

bare minimum base image to host your application. In the Docker world,

the bare minimum base image is scratch. More detailed information about

the scratch image can be found at https://hub.docker.com/_/scratch.

The sample Dockerfile that uses the scratch image can be found inside

the chapter6/dockersecurity directory. Open terminal and change to the

chapter6/dockersecurity directory and build the image as follows:

docker build -t sample:latest .

Once it’s successfully built, you will get output in your terminal

as shown:

Step 1/14 : FROM golang:1.18 as build

 ---> 65b2f1fa535f

Step 2/14 : COPY ./main.go .

 ---> 5164c620eaff

...

Step 10/14 : FROM scratch

 --->

...

Successfully built 1a977f4b1cec

Successfully tagged sample:latest

Run the newly created Docker image using the following command:

docker run sample:latest

Chapter 6 DoCker SeCurity

https://hub.docker.com/_/scratch

106

You will get output that looks like the following:

2022/07/09 10:06:42 Hello, from inside Docker image

2022/07/09 10:06:42 Build using Go version go1.18.2

The sample Dockerfile uses the scratch image, as shown in the

following snippet:

FROM golang:1.18 as build

...

RUN go build -trimpath -v -a -o sample -ldflags="-w -s"

RUN useradd -u 12345 normaluser

FROM scratch

...

ENTRYPOINT ["/sample"]

In using the scratch image, you have minimized the attack surface

of your container because this image does not have a lot of applications

installed like other Docker images (example: Ubuntu, Debian, etc.).

 Summary
In this chapter, you learned about Docker security. The first thing you

looked at is seccomp and why it is useful. You looked at the sample code

and how to restrict a Go application using sec. You looked at setting up

libseccomp, which allows you to apply restrictions to your application as to

what system calls it can make.

The next thing you looked at using the libseecomp-golang library in

your application and how to apply system call restrictions inside your

code. Applying restriction inside code is good, but it will be hard to keep

changing this code once it is running in production, so you looked at using

seccomp profiles when running Docker containers.

Chapter 6 DoCker SeCurity

107

Lastly, you looked at a Docker proxy to intercept and understand the

communication between a Docker client and server. You also dove into the

proxy code to understand how the proxy works in forwarding requests and

responses. Finally, you looked briefly at the best way to reduce container

attack surface by writing a Dockerfile to use the scratch base image.

Chapter 6 DoCker SeCurity

111

CHAPTER 7

Gosec and AST
In this chapter, you will look at AST (abstract syntax tree) and learn what it

is about and why it is useful. You will learn AST by looking at the different

examples in this chapter to understand the conversion of Go source code

to AST. You will also learn about an open source security code analysis tool

called gosec. This tool uses AST to perform code static analysis and you

will see how this is performed by the tool.

 Source Code
The source code for this chapter is available from the https://github.

com/Apress/Software-Development-Go repository.

 Abstract Syntax Tree
Abstract syntax tree (also known as syntax tree) is a tree representation of

the structure of the source code written in a programming language. When

you write code in Go and you compiled the code, the compiler will first

convert the source code internally into a data structure representing the

code. This data structure will be used by the compiler as an intermediate

representation and it will go through several stages before it produces

machine code. Figure 7-1 shows at a high level the different steps that

compiler does when compiling code.

© Nanik Tolaram 2023
N. Tolaram, Software Development with Go,
https://doi.org/10.1007/978-1-4842-8731-6_7

https://github.com/Apress/Software-Development-Go
https://github.com/Apress/Software-Development-Go
https://doi.org/10.1007/978-1-4842-8731-6_7#DOI

112

Figure 7-1. Stages of compiling source code

Let’s take a quick peek at what AST looks like in comparison to the

original code. Figure 7-2 shows the comparison between the original Go

code and when it is converted into AST during the compilation process.

Chapter 7 GoseC and ast

113

Figure 7-2. Original code vs. AST

To the normal eye, the AST looks like a bunch of text, but for the

compiler it is very helpful because the data structure allows it to go

through different parts of the code to check for errors, warnings, and many

other things.

Go provides a built-in module that makes it easy for applications to

convert source code into AST, and this module is used by tools like golanci-

lint (github.com/golangci/golangci-lint) for reading and linting Go

source code.

What does the AST data structure look like? Figure 7-3 shows a brief

view of the AST structure.

Chapter 7 GoseC and ast

http://github.com/golangci/golangci-lint

114

Figure 7-3. AST structure

Table 7-1 briefly explains the different structures.

Table 7-1. Different Structures

Ast.Node this is the main interface that others must implement

ast.FuncDecl the structure representing the declaration-like function, such as

func myfunc(){

}

ast.GenDecl the structure representing a generic declaration, such as

var x = "a string"

ast.

ImportSpec

the structure representing an import declaration, such as

import "go/token"

Chapter 7 GoseC and ast

115

There are many real world use cases that benefit from using AST:

• Code generators: This kind of application requires the

use of AST to generate source code.

• Static code analyzer: Tools such as gosec, which will

be discussed in this chapter, use AST extensively to

read source code and identify security issues.

• Code coverage: This kind of tool requires AST to

measure an application’s test coverage and uses AST to

perform its operation.

 Modules
The modules that you will be using in this chapter are go/parser and go/

ast. The godocs can be found respectively at https://pkg.go.dev/go/

parser and https://pkg.go.dev/go/ast. Each module provide different

functions, as explained here:

• go/parser: This module provides parsing capability to

Go source files. The provided input can be from a string

or from a filename. The result of the parsing is an AST

structure of the source file.

• go/ast: The returned value after parsing a source file

is of type go/ast, and this module allows applications

to traverse through the different AST structures of

the source files. This module provides the AST data

structure that the application will work with.

In the next section, it will be clearer how the AST works when you look

at different examples.

Chapter 7 GoseC and ast

https://pkg.go.dev/go/parser
https://pkg.go.dev/go/parser
https://pkg.go.dev/go/ast

116

 Sample Code
You will explore different samples in this section using the different Go

AST modules. The examples will give you a good idea of how to use the

different AST modules and what can be done with the AST results.

 Inspecting

Run the code inside the chapter7/samplecode/inspecting folder as

follows:

go run main.go

You will get the following output:

2:9: id: p

3:7: id: c

3:11: bl: 1.0

4:5: id: X

4:9: id: f

4:11: bl: 3.14

4:17: bl: 2

4:21: id: c

The code creates an AST data structure for the code that is provided

when calling the AST function and filters out the declared constant and

variables. Let’s go through the sample code to understand what each part

of the code does.

The code declares a variable named src that contains the source code.

It’s simple Go code containing const and var declarations. Successfully

parsing the source code will return a type of ast.File. The ast.File

contains the AST data structure of the code that the code will use to

traverse through.

package main

Chapter 7 GoseC and ast

117

import (

 ...

)

func main() {

 src := `

package p

const c = 1.0

var X = f(3.14)*2 + c

`

 fset := token.NewFileSet()

 f, err := parser.ParseFile(fset, "", src, 0)

 ...

}

The ast.File is declared inside go/ast module that is declared as

follows:

type File struct {

 Doc *CommentGroup

 Package token.Pos

 Name *Ident

 Decls []Decl

 Scope *Scope

 Imports []*ImportSpec

 Unresolved []*Ident

 Comments []*CommentGroup

}

The code then uses the ast.Inspect(..) function that traverses

through the AST data structure and calls the function that is declared. The

simple function passed as a parameter to ast.Inspect(..) checks what

Chapter 7 GoseC and ast

118

kind of ast.Node it receives, filtering out only ast.BasicLint and ast.

Ident. The ast.Node refers here is the same as we discussed in Figure 7-2.

package main

import (

 ...

)

func main() {

 ...

 ast.Inspect(f, func(n ast.Node) bool {

 var s string

 switch x := n.(type) {

 case *ast.BasicLit:

 s = "bl: " + x.Value

 case *ast.Ident:

 s = "id: " + x.Name

 }

 if s != "" {

 fmt.Printf("%s:\t%s\n", fset.Position(n.Pos()), s)

 }

 return true

 })

}

The ast.Inspect(..) is the main function provided by the go/ast

module that is used in traversing through the AST tree in Go. Table 7-2

explains the ast.BasicLint and ast.Ident.

Chapter 7 GoseC and ast

119

Table 7-2. ast.BasicLint and ast.Ident

ast.

BasicLint

represents nodes of the basic type, which is the value of the variable or

constant declared

ast.Ident represents an identifier. this is defined clearly in the Go language

specification (https://go.dev/ref/spec#Identifiers)

 Parsing a File

The sample code in this section creates an AST data structure of the

main.go that prints out the different module names that are imported, the

function names declared in the code, and the line number for the return

statement. The code can be found inside chapter7/samplecode/parsing

directory. Run the sample in terminal as follows:

go run main.go

You will see the following output:

2022/07/02 16:28:05 Imports:

2022/07/02 16:28:05 "fmt"

2022/07/02 16:28:05 "go/ast"

2022/07/02 16:28:05 "go/parser"

2022/07/02 16:28:05 "go/token"

2022/07/02 16:28:05 "log"

2022/07/02 16:28:05 Functions:

2022/07/02 16:28:05 main

2022/07/02 16:28:05 return statement found in line 36:

2022/07/02 16:28:05 return statement found in line 39:

The sample uses the same parser.ParseFile(..) and ast.

Inspect(..) functions as shown here:

package main

Chapter 7 GoseC and ast

https://go.dev/ref/spec#Identifiers

120

import (

 ...

)

func main() {

 ...

 f, err := parser.ParseFile(fset, "./main.go", nil, 0)

 ...

 ast.Inspect(f, func(n ast.Node) bool {

 ret, ok := n.(*ast.ReturnStmt)

 if ok {

 ...

 }

 return true

 })

}

The function inside ast.Inspect(..) only prints nodes that are of

type ast.ReturnStmt that represent return statements; anything else is

ignored. The other functions that it uses to print out import information

are shown here:

package main

import (

 ...

)

func main() {

 ...

 f, err := parser.ParseFile(fset, "./main.go", nil, 0)

 ...

 log.Println("Imports:")

Chapter 7 GoseC and ast

121

 for _, i := range f.Imports {

 log.Println(" ", i.Path.Value)

 }

 ...

}

The returned value from ParseFile is ast.File and one of the fields

in that structure is Imports, which contains all the imports declared in the

source code. The code range loops through the Imports field and prints

out the import name to the console. The code also prints out the declared

function name, which is done by the following code:

func main() {

 ...

 for _, f := range f.Decls {

 fn, ok := f.(*ast.FuncDecl)

 ...

 log.Println(" ", fn.Name.Name)

 }

}

The Decls field contains all the declarations found in the source code

and it filters out only the ast.FuncDecl type containing the function

declaration.

You have looked at different AST example code and should now have

a better understanding how to use it and what information you can get out

of it. In the next section, you will look at how AST is used in an open source

security project.

Chapter 7 GoseC and ast

122

 gosec
The gosec project is an open source tool (https://github.com/securego/

gosec) that provides security static code analysis. The tool provides a set

of secure code best practices for the Go language, and it scans your source

code to check if there is any code that breaks those rules.

Use the following command to install it if you are using Go 1.16

and above:

go install github.com/securego/gosec/v2/cmd/gosec@latest

Once installed, open your terminal and change the directory to

chapter7/samplecode and execute the following command:

gosec ./...

The tool will scan your sample code recursively and print out the

message on the console.

[gosec] 2022/07/02 17:00:11 Including rules: default

...

Results:

...

 - G104 (CWE-703): Errors unhandled. (Confidence: HIGH,

Severity: LOW)

 22:

 > 23: ast.Print(fset, f)

 24: }

Summary:

 Gosec : dev

 Files : 3

 Lines : 105

 Nosec : 0

 Issues : 1

Chapter 7 GoseC and ast

https://github.com/securego/gosec
https://github.com/securego/gosec

123

The tool scans through all the .go files inside the directory recursively

and, after completing the parsing and scanning process, prints out the

final result. In my directory, it found one issue, which is labeled as G104.

The tool is able to perform the code analysis by using the go/ast module

similar to these examples.

 Inside gosec
Figure 7-4 shows at a high level how gosec works.

Chapter 7 GoseC and ast

124

Figure 7-4. Gosec high-level process

The tool loads up rules (step 1) that have been defined internally.

These rules define functions that are called to check the code being

processed. This is discussed in detail in the next section.

Chapter 7 GoseC and ast

125

Once the rules have been loaded, it proceeds to process the directory

given as parameter and recursively gets all the .go files that are found (step 4).

This is performed by the following code (helpers.go):

func PackagePaths(root string, excludes []*regexp.Regexp)

([]string, error) {

 ...

 err := filepath.Walk(root, func(path string, f os.FileInfo,

err error) error {

 if filepath.Ext(path) == ".go" {

 path = filepath.Dir(path)

 if isExcluded(filepath.ToSlash(path), excludes) {

 return nil

 }

 paths[path] = true

 }

 return nil

 })

 ...

 result := []string{}

 for path := range paths {

 result = append(result, path)

 }

 return result, nil

}

The PackagePaths(..) function uses the path/filepath Go internal

module to traverse through the directory to collect all the different

directories that contain .go source. After successfully collecting all

the directory names, it calls the Process(..) function (analyzer.go)

shown here:

Chapter 7 GoseC and ast

126

func (gosec *Analyzer) Process(buildTags []string, packagePaths

...string) error {

 ...

 for _, pkgPath := range packagePaths {

 pkgs, err := gosec.load(pkgPath, config)

 if err != nil {

 gosec.AppendError(pkgPath, err)

 }

 for _, pkg := range pkgs {

 if pkg.Name != "" {

 err := gosec.ParseErrors(pkg)

 if err != nil {

 return fmt.Errorf("parsing errors in pkg %q: %w",

pkg.Name, err)

 }

 gosec.Check(pkg)

 }

 }

 }

 sortErrors(gosec.errors)

 return nil

}

This function calls the gosec.load(..) function to collect all the

different .go source code found inside the directory using another Go

module called golang.org/x/tools.

func (gosec *Analyzer) load(pkgPath string, conf *packages.

Config) ([]*packages.Package, error) {

 abspath, err := GetPkgAbsPath(pkgPath)

 ... conf.BuildFlags = nil

 pkgs, err := packages.Load(conf, packageFiles...)

Chapter 7 GoseC and ast

http://golang.org/x/tools

127

 if err != nil {

 return []*packages.Package{}, fmt.Errorf("loading files

from package %q: %w", pkgPath, err)

 }

 return pkgs, nil

}

The last step, once all the filenames are collected, is to loop through

the files and call ast.Walk.

func (gosec *Analyzer) Check(pkg *packages.Package) {

 ...

 for _, file := range pkg.Syntax {

 fp := pkg.Fset.File(file.Pos())

 ...

 checkedFile := fp.Name()

 ...

 gosec.context.PassedValues = make(map[string]interface{})

 ast.Walk(gosec, file)

 ...

 }

}

The ast.Walk is called with two parameters: gosec and file. The

gosec is the receiver that will be called by the AST module, while the file

parameter passes the file information to AST.

The gosec receiver implements the Visit(..) function that will be

called by AST module when nodes are obtained. The Visit(..) function

of the tool can be seen here:

func (gosec *Analyzer) Visit(n ast.Node) ast.Visitor {

 ...

 for _, rule := range gosec.ruleset.RegisteredFor(n) {

Chapter 7 GoseC and ast

128

 ...

 issue, err := rule.Match(n, gosec.context)

 if err != nil {

 ...

 }

 if issue != nil {

 ...

 }

 }

 return gosec

}

The Visit(..) function calls the rules that were loaded in step 2 by

calling the Match(..) function, passing in the ast.Node. The rule source

checks whether the ast.Node fulfills certain conditions for that particular

rule or not.

The last step, 7, is to print out the report it obtains from the different

rules executed.

 Rules
The tool defines rules that are basically Go code that validates the ast.

Node to check if it fulfills certain conditions. The function that generates

the rules is seen here (inside rulelist.go):

func Generate(trackSuppressions bool, filters ...RuleFilter)

RuleList {

 rules := []RuleDefinition{

 {"G101", "Look for hardcoded credentials",

NewHardcodedCredentials},

 ...

Chapter 7 GoseC and ast

129

 { "G601", "Implicit memory aliasing in RangeStmt",

NewImplicitAliasing},

 }

 ...

 return RuleList{ruleMap, ruleSuppressedMap}

}

The rule is defined by specific code, description and the function

name. Looking at G101, you can see that the function name is

NewHardCodedCredentials, which is defined as follows:

package rules

import (

 ...

)

 ...

func (r *credentials) Match(n ast.Node, ctx *gosec.Context)

(*gosec.Issue, error) {

 switch node := n.(type) {

 case *ast.AssignStmt:

 return r.matchAssign(node, ctx)

 ...

 }

 ...

}

func NewHardcodedCredentials(id string, conf gosec.Config)

(gosec.Rule, []ast.Node) {

 ...

 return &credentials{

Chapter 7 GoseC and ast

130

 pattern: regexp.MustCompile(pattern),

 entropyThreshold: entropyThreshold,

 ...

 MetaData: gosec.MetaData{

 ID: id,

 What: "Potential hardcoded credentials",

 Confidence: gosec.Low,

 Severity: gosec.High,

 },

 }, []ast.Node{(*ast.AssignStmt)(nil), (*ast.ValueSpec)(nil),

(*ast.BinaryExpr)(nil)}

}

The NewHardcodedCredentials function initializes all the different

parameters that it needs to process the node. The rule has a Match(..)

function that is called by gosec when it processes the AST data structure

for each file that it processes.

 Summary
In this chapter, you looked at what an abstract syntax tree is and what it

looks like. Go provides modules that make it easy for applications to work

with the AST data structure. This opens up the possibility of writing tools

like static code analysers like the open source project gosec.

The sample code provided for this chapter shows how to use AST for

simple things like calculating the number of global variables and printing

out the package name from the import declaration. You also looked in

depth at the gosec tool to understand how it uses AST to provide secure

code analysis by going through the different parts of the source code.

Chapter 7 GoseC and ast

131

CHAPTER 8

Scorecard
In this chapter, you will look at an open source security tool called

Scorecard. Scorecard provides security metrics for projects you are

interested in. The metrics will give you visibility on the security concerns

that you need to be aware of regarding the projects.

You will learn how to create GitHub tokens using your GitHub account.

The tokens are needed by the tool to extract public GitHub repository

information. You will walk through the steps of installing and using the

tool. To understand the tool better, you will look at the high-level flow of

how the tool works and also at how it uses the GitHub API.

One of the key takeaways of this chapter is how to use the GitHub API

and the information that can be extracted from repositories hosted on

GitHub. You will learn how to use GraphQL to query repository data from

GitHub using an open source library.

 Source Code
The source code for this chapter is available from the https://github.

com/Apress/Software-Development-Go repository.

 What Is Scorecard?
Scorecard is an open source project that analyzes your project’s

dependencies and gives ratings about them. The tool performs several

© Nanik Tolaram 2023
N. Tolaram, Software Development with Go,
https://doi.org/10.1007/978-1-4842-8731-6_8

https://github.com/Apress/Software-Development-Go
https://github.com/Apress/Software-Development-Go
https://doi.org/10.1007/978-1-4842-8731-6_8#DOI

132

checks that can be configured depending on your needs. The checks

are associated with software security and are assigned a score of 0 to 10.

The tool shows whether dependencies in your project are safe and also

provides other security checks such as your GitHub configuration, license

checking, and many other useful checks.

The project maintainer runs the tool every day, scanning through

thousands of GitHub repositories and scoring them. The score results are

publicly available in BigQuery, as shown in Figure 8-1.

Figure 8-1. Scorecard public dataset in BigQuery

To access the public dataset, you need to have a Google (Gmail)

account. Open your browser and type in the following address: http://

console.cloud.google.com/bigquery. Once the Google Cloud page

loads, click Add Data ➤ Pin a Project ➤ Enter project name, as shown in

Figure 8-2, for the project name openssf and you will see dataset displayed

on the left side of your screen.

Chapter 8 SCoreCard

http://console.cloud.google.com/bigquery
http://console.cloud.google.com/bigquery

133

Figure 8-2. Add the openssf project

In the next section, you will look at setting up the GitHub token key so

that you can use it to scan the GitHub repository of your choice.

 Setting Up Scorecard
Scorecard requires a GitHub token key to scan the repository. The reason

behind this is the rate limit imposed by GitHub for unauthenticated

requests. Let’s walk through the following steps to create a token key

in GitHub.

 1. Go to your GitHub repository (in my case, https://

github.com/nanikjava) and click the top right icon,

as shown in Figure 8-3, to access the profile page by

clicking the Settings menu.

Chapter 8 SCoreCard

https://github.com/nanikjava
https://github.com/nanikjava

134

Figure 8-3. Accessing the Settings menu

 2. Once you are on the Profile page, shown in

Figure 8-4, click Developer settings.

Figure 8-4. Menu on Profile page

 3. You will be brought into the apps page, as shown in

Figure 8-5. Click the Personal access tokens link.

Chapter 8 SCoreCard

135

Figure 8-5. Apps page

 4. Once you are inside the tokens page, shown in

Figure 8-6, click Generate new token.

Figure 8-6. Tokens page

 5. You will see the new personal token page,

shown in Figure 8-7. Fill in the Note textbox with

information about what the token is used for and

set the expiration to whatever you want. Finally, in

the Select scopes section, select the repo tickbox;

this will automatically select the reset of the repo

permissions that fall under it. Once done, scroll

down and click the Generate token button.

Chapter 8 SCoreCard

136

Figure 8-7. Generate a new token page

 6. Once the token has been generated, you will see a

screen like Figure 8-8 showing the new token. Copy

the token and paste it somewhere on your editor so

you can use it for the next section.

Figure 8-8. Token successfully generated

Chapter 8 SCoreCard

137

In the next section, you will use the token you generated to build and

run Scorecard.

 Running Scorecard
Download the tool from the project GitHub repository. For this chapter,

you’ll use v4.4.0; the binary can be downloaded from https://github.

com/ossf/scorecard/releases/tag/v4.4.0. Once you download the

archive file, unzip it to a directory on your local machine.

Execute Scorecard to check it’s working.

/directory/scorecard help

You will see the following output in your console:

A program that shows security scorecard for an open source

software.

Usage:

 ./scorecard --repo=<repo_url> [--checks=check1,...]

[--show-details]

or ./scorecard --{npm,pypi,rubgems}=<package_name>

[--checks=check1,...] [--show-details] [flags]

 ./scorecard [command]

...

Flags:

 ...

Use "./scorecard [command] --help" for more information about a

command.

Now that Scorecard is working on your machine, let's use the token you

generated in the previous section to scan a repository. For this example,

Chapter 8 SCoreCard

https://github.com/ossf/scorecard/releases/tag/v4.4.0
https://github.com/ossf/scorecard/releases/tag/v4.4.0

138

you will scan the github.com/ossf/scorecard repository. Open terminal

and executed the following command:

GITHUB_AUTH_TOKEN=<github_token> /directory_of_scorecard/

scorecard --repo=github.com/ossf/scorecard

Replace <github_token> with your GitHub token. The tool will take a

bit of time to run because it is scanning and doing checks on the GitHub

repository. Once complete, you will see output something like Figure 8-9.

Figure 8-9. Scorecard output

You have successfully run the tool to scan a GitHub repository and

received an output with a high score of 8.0. A higher score indicates that

the repository is doing all the right things as per the predefined checks in

the tool.

In the next section, you will further explore the tool to understand how

it works and go through code for different parts of the tool.

Chapter 8 SCoreCard

https://github.com/ossf/scorecard

139

 High-Level Flow
In this section, you will go in depth to understand what the tool is doing

and look at code from the different parts of the tool. In digging through the

code, you will uncover new things that can be used when designing your

own application. First, let’s take a high-level look at the process of the tool,

as shown in Figure 8-10.

Figure 8-10. High-level flow

Use this diagram as a reference when you read the different parts

of the application along with the code. The first thing that the tool does

when it starts up is check whether it is able to use the provided token to

access GitHub. It is hard-coded to test GitHub connectivity by accessing

the github.com/google/oss-fuzz repository (step 2). This is shown in the

following code snippet (checker/client.go):

func GetClients(...) (

Chapter 8 SCoreCard

http://github.com/google/oss-fuzz

140

 ...

) {

 ...

 ossFuzzRepoClient, errOssFuzz := ghrepo.

CreateOssFuzzRepoClient(ctx, logger)

 ...

}

func CreateOssFuzzRepoClient(ctx context.Context, logger *log.

Logger) (clients.RepoClient, error) {

 ossFuzzRepo, err := MakeGithubRepo("google/oss-fuzz")

 ...

 return ossFuzzRepoClient, nil

}

The code continues after successfully connecting to the GitHub

repository by assigning the connection to different GitHub handlers.

These handlers use the connection to get different information from

the repository (step 3) that will be used to perform security checks. The

code for the handler assignment is as follows (clients/githubrepo/

client.go):

func (client *Client) InitRepo(inputRepo clients.Repo,

commitSHA string) error {

 ...

 // Sanity check.

 repo, _, err := client.repoClient.Repositories.Get(client.

ctx, ghRepo.owner, ghRepo.repo)

 if err != nil {

 return sce.WithMessage(sce.ErrRepoUnreachable, err.

Error())

 }

Chapter 8 SCoreCard

141

 client.repo = repo

 client.repourl = &repoURL{

 owner: repo.Owner.GetLogin(),

 ...

 commitSHA: commitSHA,

 }

 client.tarball.init(client.ctx, client.repo, commitSHA)

 // Setup GraphQL.

 client.graphClient.init(client.ctx, client.repourl)

 client.contributors.init(client.ctx, client.repourl)

 ...

 client.webhook.init(client.ctx, client.repourl)

 client.languages.init(client.ctx, client.repourl)

 return nil

}

Figure 8-11 outlines the subset of GitHub handlers that use the

different GitHub connections.

Figure 8-11. GitHub handlers using GitHub connections

Chapter 8 SCoreCard

142

Once the handlers are initialized successfully with the GitHub

connections, the main part of the tool kicks in (step 4). The tool spawns

a goroutine that executes the security checks one by one using the

information that is downloaded using the GitHub connection. The code

that executes the goroutine is as follows (pkg/scorecard.go):

func RunScorecards(ctx context.Context,

 ...

) (ScorecardResult, error) {

 ...

 resultsCh := make(chan checker.CheckResult)

 go runEnabledChecks(ctx, repo, &ret.RawResults, checksToRun,

repoClient, ossFuzzRepoClient,

 ciiClient, vulnsClient, resultsCh)

 ...

 return ret, nil

}

Figure 8-12 shows a subset of different security checks that are

performed on the GitHub repository.

Figure 8-12. Security checks

The runEnabledChecks(...) code snippet is shown next. The function

executes each check that has been configured (step 6). On completion, the

results are passed back via the resultsCh channel (step 7).

Chapter 8 SCoreCard

143

func runEnabledChecks(...

 resultsCh chan checker.CheckResult,

) {

 ...

 wg := sync.WaitGroup{}

 for checkName, checkFn := range checksToRun {

 checkName := checkName

 checkFn := checkFn

 wg.Add(1)

 go func() {

 defer wg.Done()

 runner := checker.NewRunner(

 checkName,

 repo.URI(),

 &request,

)

 resultsCh <- runner.Run(ctx, checkFn)

 }()

 }

 wg.Wait()

 close(resultsCh)

}

The final step of the tool is collecting, formatting, and scoring the

results (step 8). The output depends on the configuration as it can be

configured to be displayed on the console (default) or to a file. The code

snippet is shown here (scorecard/cmd/root.go):

func rootCmd(o *options.Options) {

 ...

 repoResult, err := pkg.RunScorecards(

 ctx,

Chapter 8 SCoreCard

144

 ...

)

 if err != nil {

 log.Panic(err)

 }

 repoResult.Metadata = append(repoResult.Metadata,

o.Metadata...)

 sort.Slice(repoResult.Checks, func(i, j int) bool {

 return repoResult.Checks[i].Name < repoResult.

Checks[j].Name

 })

 ...

 resultsErr := pkg.FormatResults(

 o,

 &repoResult,

 checkDocs,

 pol,

)

 ...

}

One thing that you learn from the tool is the usage of the GitHub

API. The tool is used extensively by the GitHub API to perform checks

by downloading information about the repository and checking that

information using the predefined security checks. You are now going to

take a look at how to use the GitHub API to do some GitHub exploration.

Chapter 8 SCoreCard

145

 GitHub
Anyone who works with software knows about GitHub and has used it one

way or another. You can find most kinds of open source software in GitHub

and it is hosted freely. It has become the go-to destination for anyone who

dabbles in software.

GitHub provides an API that allows external tools to interact with the

services. The API opens up unlimited potential for developers to access the

GitHub service to build tools that can provide value for their organization.

This allows the proliferation of third-party solutions (free and paid) to be

made available to the general public. The Scorecard project in this chapter

is one of the tools made possible because of the GitHub API.

 GitHub API
There are two kinds of GitHub APIs: REST and GraphQL (https://docs.

github.com/en/graphql). There are different projects that implement

both APIs, which you will look at a bit later.

The REST-based API offers access like a normal HTTP call. For

example, using your own browser you can type in the following address:

https://api.github.com/users/test

You will see the following JSON response in your browser:

{

 "login": "test",

 "id": 383316,

 "node_id": "MDQ6VXNlcjM4MzMxNg==",

 "avatar_url": "https://avatars.githubusercontent.com/

u/383316?v=4",

 "gravatar_id": "",

 "url": "https://api.github.com/users/test",

Chapter 8 SCoreCard

https://docs.github.com/en/graphql
https://docs.github.com/en/graphql

146

 "html_url": "https://github.com/test",

 ...

 "created_at": "2010-09-01T10:39:12Z",

 "updated_at": "2020-04-24T20:58:44Z"

}

You are seeing information about a username called test that is

registered in GitHub. You can try to use your own GitHub username and

you will see details about yourself. Let’s get the list of repositories for a

particular organization. Type in the following in your browser address:

https://api.github.com/orgs/golang/repos

The address will send the list of repositories that are listed under a

particular organization hosted publicly on GitHub. In the example, you

want to get the list of repositories hosted under the Golang organization.

You will get the following response:

[

 {

 "id": 1914329,

 "node_id": "MDEwOlJlcG9zaXRvcnkxOTE0MzI5",

 "name": "gddo",

 "full_name": "golang/gddo",

 "private": false,

 "owner": {

 "login": "golang",

 "id": 4314092,

 ...

 },

 "html_url": "https://github.com/golang/gddo",

 "description": "Go Doc Dot Org",

 "fork": false,

Chapter 8 SCoreCard

147

 ...

 "license": {

 ...

 },

 ...

 "permissions": {

 ...

 }

 },

 { ... }

]

The response is in JSON format. The information you are seeing is the

same when you visit the Golang project page at https://github.com/

golang. The GitHub documentation at https://docs.github.com/en/

rest provides a complete list of REST endpoints that are accessible.

Using the API in a Go application requires you to convert the different

endpoints to a function that you can use in your application, which is time

consuming, so for this you can use a Go open source library from https://

github.com/google/go-github. Let’s run the example of using this

library, which can be found inside the chapter8/simple folder. Open your

terminal and run it as follows:

go run main.go

You will get the following output:

2022/07/16 18:43:43 {

 "id": 23096959,

 "node_id": "MDEwOlJlcG9zaXRvcnkyMzA5Njk1OQ==",

 "owner": {

 "login": "golang",

 "id": 4314092,

Chapter 8 SCoreCard

https://github.com/golang
https://github.com/golang
https://docs.github.com/en/rest
https://docs.github.com/en/rest
https://github.com/google/go-github
https://github.com/google/go-github

148

 ...

 },

 "name": "go",

 "full_name": "golang/go",

 "description": "The Go programming language",

 "homepage": "https://go.dev",

 ...

 "organization": {

 "login": "golang",

 "id": 4314092,

 ...

 },

 "topics": [

 "go",

 ...

],

 ...

 "license": {

 ...

 },

 ...

}

The sample uses the library to get information about a particular

repository, http://github.com/golang/go, which is shown in the

following code snippet:

package main

import (

 ...

 "github.com/google/go-github/v38/github"

)

Chapter 8 SCoreCard

http://github.com/golang/go

149

func main() {

 client := github.NewClient(&http.Client{})

 ctx := context.Background()

 repo, _, err := client.Repositories.Get(ctx, "golang", "go")

 ...

 log.Println(string(r))

}

The application starts off by initializing the library by calling github.

NewClient(..) and passing in http.Client, which is used to make an

HTTP call to GitHub. The library package github.com/google/go-github/

v38/github provides all the different functions required. In the example,

you use Repositories.Get(..) to obtain information about a particular

repository (golang) project (go).

Looking at the library source code (github.com/google/go-github/

v38/github/repos.go), you can see that it is performing a similar call to

what is defined in the documentation at https://docs.github.com/en/

rest/repos/repos#get-a-repository.

func (s *RepositoriesService) Get(ctx context.Context, owner,

repo string) (*Repository, *Response, error) {

 u := fmt.Sprintf("repos/%v/%v", owner, repo)

 req, err := s.client.NewRequest("GET", u, nil)

 if err != nil {

 return nil, nil, err

 }

 ...

 return repository, resp, nil

}

Chapter 8 SCoreCard

http://github.com/google/go-github/v38/github
http://github.com/google/go-github/v38/github
http://github.com/google/go-github/v38/github/repos.go
http://github.com/google/go-github/v38/github/repos.go
https://docs.github.com/en/rest/repos/repos#get-a-repository
https://docs.github.com/en/rest/repos/repos#get-a-repository

150

You get the same response using https://api.github.com/repos/

golang/go in your browser.

The other API that is provided by GitHub is called the GraphQL API

(https://docs.github.com/en/graphql) and it is very different from the

REST API. It is based on GraphQL (https://graphql.org/), which the

website describes as follows:

GraphQL is a query language for apIs and a runtime for fulfilling those
queries with your existing data. GraphQL provides a complete and
understandable description of the data in your apI, gives clients the
power to ask for exactly what they need and nothing more, makes it
easier to evolve apIs over time, and enables powerful developer tools.

Normally, when using REST API in order to get different kinds of data,

you need to get it from different endpoints. Once all of the data is collected,

you need to construct them into one structure. GraphQL makes it simple:

you just have to define what repository data you want, and it will return the

collection of data you requested as one single collection.

This will become clearer when you look at the sample application

provided. Open your terminal and run the sample inside chapter8/

graphql. Run it as follows:

GITHUB_TOKEN=<your_github_token> go run main.go

You need to use the GitHub token you created previously in the section

“Setting Up Scorecard.” On a successful run, you will get the following (the

output will differ because the data is obtained from GitHub in real time,

which will have changed by the time you run this sample):

2022/07/16 19:39:00 Total number of fork : 15116

2022/07/16 19:39:00 Total number of labels : 10

Chapter 8 SCoreCard

https://api.github.com/repos/golang/go
https://api.github.com/repos/golang/go
https://docs.github.com/en/graphql
https://graphql.org/

151

2022/07/16 19:39:00 ----------------------------------

2022/07/16 19:39:00 Issue title - cmd/cgo: fails with gcc 4.4.1

2022/07/16 19:39:00 Issue title - net: LookupHost is returning

odd values and crashing net tests

2022/07/16 19:39:00 Issue title - Problem with quietgcc

2022/07/16 19:39:00 Issue title - Segmentation fault on OS X

10.5 386 for "net" test

2022/07/16 19:39:00 Issue title - HTTP client&server tests

fail. DNS_ServerName and URL_Target strings conjoined into

nonsense.

2022/07/16 19:39:00 Issue title - all.bash segfault

2022/07/16 19:39:00 Issue title - Crash when running tests, no

tests matching.

2022/07/16 19:39:00 Issue title - go-mode.el breaks when

editing empty file

2022/07/16 19:39:00 Issue title - I have already used the name

for *MY* programming language

2022/07/16 19:39:00 Issue title - throw: index out of range

during all.bash

2022/07/16 19:39:00 ----------------------------------

2022/07/16 19:39:00 Commit author (dmitshur), url (https://

github.com/dmitshur)

2022/07/16 19:39:00 Commit author (eaigner), url (https://

github.com/eaigner)

2022/07/16 19:39:00 Commit author (nordicdyno), url (https://

github.com/nordicdyno)

2022/07/16 19:39:00 Commit author (minux), url (https://github.

com/minux)

2022/07/16 19:39:00 Commit author (needkane), url (https://

github.com/needkane)

Chapter 8 SCoreCard

152

2022/07/16 19:39:00 Commit author (nigeltao), url (https://

github.com/nigeltao)

2022/07/16 19:39:00 Commit author (nigeltao), url (https://

github.com/nigeltao)

2022/07/16 19:39:00 Commit author (h4ck3rm1k3), url (https://

github.com/h4ck3rm1k3)

2022/07/16 19:39:00 Commit author (trombonehero), url (https://

github.com/trombonehero)

2022/07/16 19:39:00 Commit author (adg), url (https://github.

com/adg)

The output shows the information that is obtained from GitHub from

the http://github.com/golang/go repository as the first 10 issues, first 10

comments, and 10 first labels. This kind of information is very useful and

you will see as you walk through the code, which is performed easily by

using the GraphQL API.

The main part of the GraphQL API is the query that the sample passes

to the GitHub endpoint, which looks like the following:

query ($name: String!, $owner: String!) {

 repository(owner: $owner, name: $name) {

 createdAt

 forkCount

 labels(first: 5) {

 edges {

 node {

 name

 }

 }

 }

 issues(first: 5) {

 edges {

Chapter 8 SCoreCard

http://github.com/golang/go

153

 node {

 title

 }

 }

 }

 commitComments(first: 10) {

 totalCount

 edges {

 node {

 author {

 url

 login

 }

 }

 }

 }

 }

}

The query basically describes to GitHub the repository information

that you are interested in. It starts off by defining that the query will pass in

two parameters ($name and $owner) and the top level of the information

that you want is a repository. Inside the repository, you specified that you

want the following:

• createdAt

• forkCount

• labels (the first 10 labels)

• issues (the first 10 issues)

• commitComments (the first 10 comments)

Chapter 8 SCoreCard

154

GitHub provides a GraphQL tool for creating and testing GraphQL,

which you will look at in the next section. The GraphQL cannot be used as

is inside your code so you need to convert it into a Go struct, as shown in

the following snippet:

type graphqlData struct {

 Repository struct {

 CreatedAt githubv4.DateTime

 ForkCount githubv4.Int

 Labels struct {

 Edges []struct {

 Node struct {

 Name githubv4.String

 }

 }

 } `graphql:"labels(first: $labelcount)"`

 Issues struct {

 Edges []struct {

 Node struct {

 Title githubv4.String

 }

 }

 } `graphql:"issues(first: $issuescount)"`

 CommitComments struct {

 TotalCount githubv4.Int

 Edges []struct {

 Node struct {

 Author struct {

 URL githubv4.String

 Login githubv4.String

 }

 }

Chapter 8 SCoreCard

155

 }

 } `graphql:"commitComments(first: $commitcount)"`

 } `graphql:"repository(owner: $owner, name: $name) "`

 RateLimit struct {

 Cost *int

 }

}

The strict definition uses data types that are defined in the library (e.g.,

githubv4.String, githubv4.Int, etc.).

Once you have defined the GraphQL definition, you use the GraphQL

library. In this case, you use the open source library hosted in https://

github.com/shurcooL/githubv4, as shown here:

func main() {

 ...

 data := new(graphqlData)

 vars := map[string]interface{}{

 "owner": githubv4.String("golang"),

 "name": githubv4.String("go"),

 "labelcount": githubv4.Int(10),

 "issuescount": githubv4.Int(10),

 "commitcount": githubv4.Int(10),

 }

 if err := graphClient.Query(context.Background(), data,

vars); err != nil {

 log.Fatalf(err.Error())

 }

 log.Println("Total number of fork : ", data.Repository.

ForkCount)

 ...

}

Chapter 8 SCoreCard

https://github.com/shurcooL/githubv4
https://github.com/shurcooL/githubv4

156

The code initializes the graphqlData struct that will be populated with

the information received from GitHub by the library and then it makes the

call to GitHub using the graphClient.Query(..) function, passing in the

newly created struct and variables defined. The variables defined in vars

contain the value that will be passed to GitHub as the parameter of the

GraphQL.

Once the .Query(..) function returns successfully, you can use the

returned data populated inside the data variable and print it out to the

console.

In the next section, you will look at how to use GitHub Explorer to work

with GraphQL.

 GitHub Explorer
GitHub Explorer is a web-based tool provided by GitHub to allow

developers to query GitHub repositories for information. The tool is

available from https://docs.github.com/en/graphql/overview/

explorer. You must sign in with your GitHub account before using the

tool. Once access has been granted, you will see Explorer, as shown in

Figure 8-13.

Chapter 8 SCoreCard

https://docs.github.com/en/graphql/overview/explorer
https://docs.github.com/en/graphql/overview/explorer

157

Figure 8-13. GitHub Explorer

Once you are logged in, try the following GraphQL and click the run

 button.

{

 repository(owner: "golang", name: "go") {

 createdAt

 diskUsage

 name

 }

}

It queries GitHub for repository http://github.com/golang/go to

extract creation date, total disk usage, and the name of the project. You will

get response as follows:

{

Chapter 8 SCoreCard

http://github.com/golang/go

158

 "data": {

 "repository": {

 "createdAt": "2014-08-19T04:33:40Z",

 "diskUsage": 310019,

 "name": "go"

 }

 }

}

Explorer provides quick tips of what data you can add to the query.

This can be shown when you create a new line inside the query and hit Alt

+ Enter. It will display a scrollable tooltip like in Figure 8-14.

Figure 8-14. Smart tool tip

For more reading on the different data that can be extracted using

GraphQL, refer to the queries documentation at https://docs.github.

com/en/graphql/reference/queries.

Chapter 8 SCoreCard

https://docs.github.com/en/graphql/reference/queries
https://docs.github.com/en/graphql/reference/queries

159

 Summary
In this chapter, you looked at an open source project called Scorecard

that provides security metrics for projects hosted on GitHub. The project

measures the security of a project on a scale of 0-10 and this can also

be used for projects stored locally. The major benefit of the tool is the

public availability of data for projects that have been scanned by the tool.

This data is useful for developers because it gives them information and

insights on the security metrics of projects they are planning to use.

You also looked at how the tool works and learned how to use the

GitHub API to extract repository information to perform predefined

security checks.

You learned in detail about the different availability of the GitHub

APIs, which are REST and GraphQL. You looked at the sample code to

understand how to use each of these APIs to extract information from a

GitHub repository. Finally, you explore the GitHub Explorer to understand

how to construct GraphQL queries for performing query operations

on GitHub.

Chapter 8 SCoreCard

163

CHAPTER 9

Simple Networking
In this chapter, you will learn how to write networking code using Go. You

will understand how to write client and server code for the TCP and UDP

protocols. You will also look at writing a network server that can process

requests concurrently using goroutines. By the end of the chapter, you will

know how to do the following:

• Write a network client for TCP and UDP

• Write a network server for TCP and UDP

• Use goroutines to process requests

• Load test a network server

 Source Code
The source code for this chapter is available from the https://github.

com/Apress/Software-Development-Go repository.

 TCP Networking
In this section, you will explore creating TCP applications using the

standard Go network library. The code that you will write is both TCP

client and server.

© Nanik Tolaram 2023
N. Tolaram, Software Development with Go,
https://doi.org/10.1007/978-1-4842-8731-6_9

https://github.com/Apress/Software-Development-Go
https://github.com/Apress/Software-Development-Go
https://doi.org/10.1007/978-1-4842-8731-6_9#DOI

164

 TCP Client
Let’s start by writing a TCP client that connects to a particular HTTP

server, in this case google.com, and prints out the response from the

server. The code can be found inside the chapter9/tcp/simple directory.

Run it as follows:

go run main.go

When the code runs, it will try to connect to the google.com server

and print out the web page returned to the console, as shown in the

output here:

HTTP/1.0 200 OK

Date: Sun, 05 Dec 2021 10:27:46 GMT

Expires: -1

Cache-Control: private, max-age=0

Content-Type: text/html; charset=ISO-8859-1

P3P: CP="This is not a P3P policy! See g.co/p3phelp for

more info."

Server: gws

X-XSS-Protection: 0

X-Frame-Options: SAMEORIGIN

Set-Cookie: 1P_JAR=2021-12-05-10; expires=Tue, 04-Jan-2022

10:27:46 GMT; path=/; domain=.google.com; Secure

Set-Cookie:

...

Accept-Ranges: none

Vary: Accept-Encoding

<!doctype html>

...

Chapter 9 Simple NetworkiNg

http://google.com
http://google.com

165

The app uses the net package from the standard library and it uses a

TCP connection specified in the following code:

conn, err := net.Dial("tcp", t)

if err != nil {

 panic(err)

}

Here is the code that connects to the server:

package main

...

const (

 host = "google.com"

 port = "80"

)

func main() {

 t := net.JoinHostPort(host, port)

 conn, err := net.Dial("tcp", t)

 if err != nil {

 panic(err)

 }

 ...

}

The code uses the net.Dial(..) function to connect to google.com on

port 80 using a TCP connection. Once it successfully connects, it sends the

HTTP protocol to the server to tell the server that it is requesting the index

page, as shown here:

func main() {

 ...

Chapter 9 Simple NetworkiNg

http://google.com

166

 req := "GET / \r\nHost: google.com\r\nConnection:

close\r\n\r\n"

 conn.Write([]byte(req))

 ...

}

Once it receives the response, it prints the output on the console, as

shown in this code snippet:

...

func main() {

 ...

 connReader := bufio.NewReader(conn)

 scanner := bufio.NewScanner(connReader)

 for scanner.Scan() {

 fmt.Printf("%s\n", scanner.Text())

 }

 if err := scanner.Err(); err != nil {

 fmt.Println("Scanner error", err)

 }

}

Now that you understand how to write a TCP client, in the next section

you will learn how to write a TCP server.

 TCP Server
In this section, you will write a TCP server that listens to port 3333 on

your local machine. The server will print out what it received and send a

response back. The code is inside the tcp/server directory, and it can be

run as follows:

Chapter 9 Simple NetworkiNg

167

go run main.go

You will get output as follows:

2022/03/05 22:51:19 Listening on port 3333

Use the nc (network connect) tool to connect to the server, as

shown here:

nc localhost 3333

Once connected, enter any text and press Enter. You will get a response

back. The following is an example. I typed in This is a test and it came back

with a response of Message received of length : 15.

This is a test

Message received of length : 15

Let’s take a look at the code. The first thing you will look at how

the code waits and listens on port 3333, as shown in the following code

snippet:

func main() {

 t := net.JoinHostPort("localhost", "3333")

 l, err := net.Listen("tcp", t)

 ...

 for {

 conn, err := l.Accept()

 if err != nil {

 log.Println("Error accepting: ", err.Error())

 os.Exit(1)

 }

 go handleRequest(conn)

 }

}

Chapter 9 Simple NetworkiNg

168

The code uses the Accept function of the Listener object, which is

returned when calling the net.Listen(..) function. The Accept function

waits until it receives a connection.

When the client is connected successfully, the code proceeds by calling

the handleRequest function in a separate goroutine. Having requests

processed in a separate goroutine allows the application to process

requests concurrently.

The handling of the request and the sending of the response is taken

care of inside the handleRequest function, as shown in the following

snippet:

func handleRequest(conn net.Conn) {

 ...

 len, err := conn.Read(buf)

 ...

 conn.Write([]byte(fmt.Sprintf("Message received of length :

%d", len)))

 conn.Close()

}

The code reads the data sent by the client using the Read(..) function

of the connection and writes the response back using the Write(..)

function of the same connection.

Because the code uses a goroutine, the TCP server is able to process

multiple client requests without any blocking issues.

 UDP Networking
In this section, you will look at writing network applications using the UDP

protocol.

Chapter 9 Simple NetworkiNg

169

 UDP Client
In this section, you will write a simple UDP application that communicates

with a quote-of-the-day(qotd) server that returns a string quote and prints

it out to the console. The following link provides more information about

the qotd protocol and the available public servers: www.gkbrk.com/wiki/

qotd_protocol/. The sample code connects to the server djxms.net that

listens on port 17.

The code can be found inside the chapter9/udp/simple directory, and

it can be run as follows:

go run main.go

Every time you run the application you will get different quotes. In my

case, one was the following:

“Man can climb to the highest summits, but he cannot dwell
there long.”

George Bernard Shaw (1856-1950)

Let’s take a look at the different parts of the application and

understand what it is doing. The qotd function contains the following

snippet. It uses net.ResolveUDPAddr(..) from the standard library to

connect to the server and return a UDPAddr struct.

udpAddr, err := net.ResolveUDPAddr("udp", s)

if err != nil {

 println("Error Resolving UDP Address:", err.Error())

 os.Exit(1)

}

The library does a lookup to ensure that the provided domain is valid,

and this is done by doing a DNS lookup. On encountering error, it will

return a non-nil for the err variable.

Chapter 9 Simple NetworkiNg

http://www.gkbrk.com/wiki/qotd_protocol/
http://www.gkbrk.com/wiki/qotd_protocol/
http://djxms.net

170

Stepping through the net.ResolveUDPAddr function inside the

standard library shown in Figure 9-1, you can see that the DNS lookup for

the domain returns more than one IP address, but only the first IP address

is populated in the returned UDPAddr struct.

Chapter 9 Simple NetworkiNg

171

Figure 9-1. Multiple IPs from ResolveUDPAddr

Chapter 9 Simple NetworkiNg

172

Once udpAddr is successfully populated, it is used when calling net.

DialUDP. The function call opens a socket connection to the server using

the IP address that is provided inside udpAddr

conn, err := net.DialUDP("udp", nil, udpAddr)

In this section, you learned how to connect a UDP server using the

standard library. In the next section, you will learn more on how to write a

UDP server.

 UDP Server
In this section, you will explore further and write a UDP server using the

standard library. The server listens on port 3000 and prints out what is

sent by the client. The code can be found inside the chapter9/udp/server

directory, and it can be run as follows:

go run main.go

The sample prints out the following on the console:

2022/03/05 23:51:32 Listening [::]:3000

On a terminal window, use the nc command to connect to port 3000.

nc -u localhost 3000

Once the nc tool runs, enter any text and you will see it printed in the

server’s terminal. Here is an example of how it looked on my machine:

2022/03/05 23:51:32 Listening [::]:3000

2022/03/05 23:51:36 Received: nanik from [::1]:41518

2022/03/05 23:51:44 Received: this is a long letter from

[::1]:41518

Chapter 9 Simple NetworkiNg

173

Let’s explore how the code works. The following snippet sets up the

UDP server using the net.ListenUDP function:

...

func main() {

 conn, err := net.ListenUDP("udp", &net.UDPAddr{

 Port: 3000,

 IP: net.ParseIP("0.0.0.0"),

 })

 ...

}

The function call returns a UDPConn struct that is used to read and write

to the client. After the code successfully creates a UDP server connection,

it starts listening to read data from it, as shown here:

...

func main() {

 ...

 for {

 message := make([]byte, 512)

 l, u, err := conn.ReadFromUDP(message[:])

 ...

 log.Printf("Received: %s from %s\n", data, u)

 }

}

The code uses the ReadFromUDP(..) function of the UDP connection to

read the data that is sent by the client to print it out to the console.

Chapter 9 Simple NetworkiNg

174

 Concurrent Servers
In the previous section, you wrote a UDP server but one of the things that

is lacking is its ability to process multiple UDP client requests. Writing a

UDP server that can process multiple requests is different from normal

TCP. The way to structure the application is to spin off multiple goroutines

to listen on the same connection and let each goroutine take care of

processing the request. The code can be found inside the udp/concurrent

directory. Let’s take a look at what it is doing differently compared to the

previous UDP server implementation.

The following snippet shows the code spinning off multiple goroutines

to listen to the UDP connection:

...

func main() {

 addr := net.UDPAddr{

 Port: 3333,

 }

 connection, err := net.ListenUDP("udp", &addr)

 ...

 for i := 0; i < runtime.NumCPU(); i++ {

 ...

 go listen(id, connection, quit)

 }

 ...

}

The number of goroutine runs depends on the result returned from

runtime.NumCPU(). The goroutine use the listen function, which is

shown in the following snippet:

func listen(i int, connection *net.UDPConn, quit chan

struct{}) {

Chapter 9 Simple NetworkiNg

175

 buffer := make([]byte, 1024)

 for {

 _, remote, err := connection.ReadFromUDP(buffer)

 if err != nil {

 break

 }

 ...

 }

 ...

}

Now that the listen function is run as several goroutines, it waits on

an incoming UDP request by calling the ReadFromUDP function. When

an incoming UDP request is detected, one of the running goroutines

processes it.

 Load Testing
In this section, you will look at using load testing to test the network server

that you wrote in the previous sections. You will be using an open source

load testing tool called fortio. which can be downloaded from https://

github.com/fortio/fortio; for this book, use version v1.21.1.

Using the load testing tool, you will see the timing difference between

code that is designed to handle requests without using goroutines vs. code

that is designed to handle requests using goroutines. For this exercise,

you will use the UDP server that is inside the chapter9/udp/loadtesting

directory. You will compare between the UDP server that uses goroutines

inside the chapter9/udp/loadtesting/concurrent directory and

the UDP server that does not use goroutines inside chapter9/udp/

loadtesting/server.

Chapter 9 Simple NetworkiNg

https://github.com/fortio/fortio
https://github.com/fortio/fortio

176

The only difference between the code that you use for load testing with

the code discussed in the previous section is the addition of the time.

Sleep(..) function. This is added to simulate or mock a process that is

doing something to the request before sending a response back. Here is

the code:

func listen(i int, connection *net.UDPConn, quit chan

struct{}) {

 ...

 for {

 ...

 //pretend the code is doing some request processing for

10milliseconds

 time.Sleep(10 * time.Millisecond)

 ...

 }

 ...

}

func main() {

 ...

 for {

 ...

 //pretend the code is doing some request processing for

10milliseconds

 time.Sleep(10 * time.Millisecond)

 ...

 }

}

Let’s run the code inside the chapter9/udp/loadtesting/concurrent

directory first. Once the UDP server starts up, run the fortio tool as

follows:

Chapter 9 Simple NetworkiNg

177

./fortio load -n 200 udp://0.0.0.0:3333/

The tool makes 200 calls to a server running locally on port 3000. You

will see results something like the following:

...

00:00:44 I udprunner.go:223> Starting udp test for

udp://0.0.0.0:3333/ with 4 threads at 8.0 qps

Starting at 8 qps with 4 thread(s) [gomax 12] : exactly 200, 50

calls each (total 200 + 0)

...

Aggregated Function Time : count 200 avg 0.011425742 +/-

0.005649 min 0.010250676 max 0.054895756 sum 2.2851485

range, mid point, percentile, count

>= 0.0102507 <= 0.011 , 0.0106253 , 94.50, 189

> 0.011 <= 0.012 , 0.0115 , 98.00, 7

> 0.045 <= 0.05 , 0.0475 , 99.00, 2

> 0.05 <= 0.0548958 , 0.0524479 , 100.00, 2

target 50% 0.0106453

target 75% 0.0108446

target 90% 0.0109641

target 99% 0.05

target 99.9% 0.0544062

Sockets used: 200 (for perfect no error run, would be 4)

Total Bytes sent: 4800, received: 200

udp short read : 200 (100.0 %)

All done 200 calls (plus 0 warmup) 11.426 ms avg, 8.0 qps

The final result is that the average time it takes to process is 11.426 ms.

Now let’s compare this with the server code that does not use goroutines,

which is inside the chapter9/udp/loadtesting/server directory. Once

you run the UDP server, use the same command to run forti. You will see

results that looks like the following:

Chapter 9 Simple NetworkiNg

178

...

00:00:07 I udprunner.go:223> Starting udp test for

udp://0.0.0.0:3000/ with 4 threads at 8.0 qps

Starting at 8 qps with 4 thread(s) [gomax 12] : exactly 200, 50

calls each (total 200 + 0)

...

Aggregated Function Time : count 200 avg 0.026354093 +/-

0.01187 min 0.010296825 max 0.054235708 sum 5.27081864

range, mid point, percentile, count

>= 0.0102968 <= 0.011 , 0.0106484 , 24.50, 49

> 0.011 <= 0.012 , 0.0115 , 25.00, 1

> 0.02 <= 0.025 , 0.0225 , 50.00, 50

> 0.03 <= 0.035 , 0.0325 , 73.50, 47

> 0.035 <= 0.04 , 0.0375 , 74.00, 1

> 0.04 <= 0.045 , 0.0425 , 98.50, 49

> 0.045 <= 0.05 , 0.0475 , 99.00, 1

> 0.05 <= 0.0542357 , 0.0521179 , 100.00, 2

target 50% 0.025

target 75% 0.0402041

target 90% 0.0432653

target 99% 0.05

target 99.9% 0.0538121

Sockets used: 200 (for perfect no error run, would be 4)

Total Bytes sent: 4800, received: 200

udp short read : 200 (100.0 %)

All done 200 calls (plus 0 warmup) 26.354 ms avg, 8.0 qps

The average time recorded this time is 26.354ms, which is more

than the previous result of 11.426. With this, you can conclude that it is

important to remember to use goroutines when writing a network server

application to ensure concurrent request processing.

Chapter 9 Simple NetworkiNg

179

 Summary
In this chapter, you learned how to create network applications using TCP

and UDP. You learned how to write client and server for both protocols.

You learned how to write an application that can process multiple requests

concurrently using goroutines.

This is an important step to understand because it is the foundation

of how to write network applications that can process huge amounts of

traffic. This chapter is a stepping-stone for the upcoming chapter where

you will look at different styles of writing network applications in Linux.

Chapter 9 Simple NetworkiNg

181

CHAPTER 10

System Networking
In the previous chapter, you wrote TCP and UDP applications using the

standard library. In this chapter, you will use this knowledge to build

system network tools. The objective of writing these tools is to gain a

better understanding of how easy it is to so using the capability of the Go

standard library. This surfaces the fact that the standard library provides a

lot of capabilities, enabling developers to build all kinds of network-related

applications.

In this chapter, you will get a good understanding of the following:

• Using the standard library to write network tools

• The net/dns package

• How DNS packs and unpacks messages

 Source Code
The source code for this chapter is available from the https://github.

com/Apress/Software-Development-Go repository.

 Ping Utility
In this section, you will write an application that provides ping-like

functionality. The code can be found inside the chapter10/ping folder.

© Nanik Tolaram 2023
N. Tolaram, Software Development with Go,
https://doi.org/10.1007/978-1-4842-8731-6_10

https://github.com/Apress/Software-Development-Go
https://github.com/Apress/Software-Development-Go
https://doi.org/10.1007/978-1-4842-8731-6_10#DOI

182

The application uses the icmp package provided by the Go standard

library, and the documentation can be found at https://pkg.go.dev/

golang.org/x/net/icmp. As outlined in the documentation, this package

provides functions to manipulate the ICMPv4/6, which is based on RFC

792 and RFC 4443.

Compile the app as follows:

go build -o pinggoogle .

Run the app with root, as shown:

sudo ./pinggoogle

You will see the following output:

2022/01/21 00:07:09 Ping golang.org (142.250.66.241):

21.30063ms

To provide ping-like functionality, the code uses the Internet Control

Message Protocol (IMCP), which is part of the IP stack that all networking

stacks use, which means that any computer that uses an IP stack can

respond to ICMP requests unless it is disabled. The IP network stack has

the capability to respond to an ICMP request regardless of where it is

running. The ICMP is part of the IP stack, which is normally used for error

reporting and network diagnostics.

 Code Walkthrough
You are going to dive into the sample code to understand how the whole

thing works. The application starts off by calling the Ping() function to ping

a single domain. In this example, it will ping for the golang.org domain.

func main() {

 addr := "golang.org"

 dst, dur, err := Ping(addr)

Chapter 10 SyStem NetworkiNg

https://pkg.go.dev/golang.org/x/net/icmp
https://pkg.go.dev/golang.org/x/net/icmp
http://golang.org

183

 if err != nil {

 panic(err)

 }

 log.Printf("Ping %s (%s): %s\n", addr, dst, dur)

}

The function performs a number of operations. Let's take a look

at the code section by section. The following code snippet calls icmp.

ListenPacket(), which is part of the golang.org/x/net standard

library package. This opens a local socket that will be used for ICMP

communication with the remote host.

func Ping(addr string) (*net.IPAddr, time.Duration, error) {

 // Listen for ICMP reply

 c, err := icmp.ListenPacket("ip4:icmp", ListenAddr)

 if err != nil {

 return nil, 0, err

 }

 defer c.Close()

 ...

}

The opened socket is used only for ICMP communication, which

means the socket can only understand ICMP network packets. When the

local socket has been successfully opened, the code must resolve the IP

address of the domain that the application wants to ping. The following

code uses the net.ResolveIPAddr() function call to resolve the domain to

its respective IP address:

 dst, err := net.ResolveIPAddr("ip4", addr)

 if err != nil {

 panic(err)

 return nil, 0, err

 }

Chapter 10 SyStem NetworkiNg

http://golang.org/x/net

184

Now that you have opened a local socket connection for ICMP and

resolved the IP address of the destination domain, the next step is to

initialize the ICMP packet and send it off to the destination, as shown in

the following code snippets:

 // Prepare new ICMP message

 m := icmp.Message{

 Type: ipv4.ICMPTypeEcho,

 Code: 0,

 Body: &icmp.Echo{

 ID: os.Getpid() & 0xffff,

 Seq: 1,

 Data: []byte(""),

 },

 }

The icmp.Message struct defines the information that will be sent as an

ICMP packet to the destination, which is defined inside the golang.org/x/

net package and looks like the following:

// A Message represents an ICMP message.

type Message struct {

 Type Type // type, either ipv4.ICMPType or ipv6.

ICMPType

 Code int // code

 Checksum int // checksum

 Body MessageBody // body

}

Chapter 10 SyStem NetworkiNg

http://golang.org/x/net
http://golang.org/x/net

185

The ICMP packet can contain different kinds of ICMP parameters,

and this can be specified using the Type field. Here, you use the ipv4.

ICMPTypeEcho type. The following are the available types provided in Go:

const (

 ICMPTypeEchoReply ICMPType = 0 // Echo Reply

 ICMPTypeDestinationUnreachable ICMPType = 3 // Destination

Unreachable

 ICMPTypeRedirect ICMPType = 5 // Redirect

 ICMPTypeEcho ICMPType = 8 // Echo

 ICMPTypeRouterAdvertisement ICMPType = 9 // Router

Advertisement

 ICMPTypeRouterSolicitation ICMPType = 10 // Router

Solicitation

 ICMPTypeTimeExceeded ICMPType = 11 // Time Exceeded

 ICMPTypeParameterProblem ICMPType = 12 // Parameter

Problem

 ICMPTypeTimestamp ICMPType = 13 // Timestamp

 ICMPTypeTimestampReply ICMPType = 14 // Timestamp

Reply

 ICMPTypePhoturis ICMPType = 40 // Photuris

 ICMPTypeExtendedEchoRequest ICMPType = 42 // Extended

Echo Request

 ICMPTypeExtendedEchoReply ICMPType = 43 // Extended

Echo Reply

)

Once the type has been defined, the next field that needs to contain

information is the Body field. Here you use icmp.Echo, which will contain

echo requests:

type Echo struct {

Chapter 10 SyStem NetworkiNg

186

 ID int // identifier

 Seq int // sequence number

 Data []byte // data

}

Data is converted to the byte format using the Marshal(..) function

and is then sent out to a destination by using the WriteTo(b,dst) function.

 ...

 // Marshal the data

 b, err := m.Marshal(nil)

 if err != nil {

 return dst, 0, err

 }

 ...

 // Send ICMP packet now

 n, err := c.WriteTo(b, dst)

The last step is to read and parse the response message obtained from

the server, as shown here:

 // Allocate 1500 byte for reading response

 reply := make([]byte, 1500)

 // Set deadline of 1 minute

 err = c.SetReadDeadline(time.Now().Add(1 * time.Minute))

 ...

 // Read from the connection

 n, peer, err := c.ReadFrom(reply)

 ...

 // Use ParseMessage to parsed the bytes received

Chapter 10 SyStem NetworkiNg

187

 rm, err := icmp.ParseMessage(ICMPv4, reply[:n])

 if err != nil {

 return dst, 0, err

 }

 // Check for the type of ICMP result

 switch rm.Type {

 case ipv4.ICMPTypeEchoReply:

 return dst, duration, nil

 ...

 }

Reading the packet is performed when calling the ReadFrom(..)

function with the result stored inside the reply variable. The reply

variable contains a sequence of bytes, which is the ICMP response.

To make it easy to read and manipulate the data, you use the

ParseMessage(..) function specifying the ICMP format type of ICMPv4.

The return value will be of type Message struct.

Once you have parsed the code, you check the response type that is

received, as shown in the following snippet:

switch rm.Type {

case ipv4.ICMPTypeEchoReply:

 return dst, duration, nil

default:

 return dst, 0, fmt.Errorf("got %+v from %v; want echo reply",

rm, peer)

}

In this section, you learned to open and use local socket connections

to send and receive data when using ICMP provided in the standard

library. You also learned how to parse and print the response like how a

ping utility normally does.

Chapter 10 SyStem NetworkiNg

188

 DNS Server
Using the knowledge from the previous chapter on writing a UDP server,

you will write a DNS server. The aim of this section is not to write a full-

blown DNS server, but rather to show how to use UDP to write it. The DNS

server is a DNS forwarder that uses other publicly available DNS servers

to perform the DNS lookup functionality, or you can think of it as a DNS

server proxy.

 Running a DNS Server
The code is located inside the chapter10/dnsserver folder. Compile the

code as follows:

go build -o dns cmd/main.go

Run it by executing the dns executable:

./dns

You get the following message when the app starts up successfully:

2022/03/14 22:17:15 Starting up DNS server on port 8090

The DNS server is now ready to serve DNS requests on port 8090.

To test the DNS server, use dig as follows:

dig @localhost -p 8090 golang.org

You get DNS output from dig, something like the following:

; <<>> DiG 9.11.5-P4-5.1ubuntu2.1-Ubuntu <<>> @localhost -p

8090 golang.org

; (2 servers found)

;; global options: +cmd

;; Got answer:

Chapter 10 SyStem NetworkiNg

189

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 26897

;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0,

ADDITIONAL: 1

;; OPT PSEUDOSECTION:

; EDNS: version: 0, flags:; udp: 512

;; QUESTION SECTION:

;golang.org. IN A

;; ANSWER SECTION:

golang.org. 294 IN A 142.250.71.81

;; Query time: 6 msec

;; SERVER: ::1#8090(::1)

;; WHEN: Mon Mar 14 22:20:31 AEDT 2022

;; MSG SIZE rcvd: 55

You can also use nslookup, as follows:

nslookup -port=8090 golang.org localhost

Now that you have successfully run and used the DNS server, in the

next section you will look at how to write the code.

 DNS Forwarder
In this section, you will use a DNS forwarder that is based on UDP to

forward the query to an external DNS server and use the response to report

back to the client. In your code, you’ll use Google’s public DNS server

8.8.8.8 to perform the query.

The first thing the code will do is to create a local UDP server that

listens on port 8090, as shown here:

func main() {

 dnsConfig := DNSConfig{

Chapter 10 SyStem NetworkiNg

190

 ...

 port: 8090,

 }

 conn, err := net.ListenUDP("udp", &net.UDPAddr{Port:

dnsConfig.port})

 ...

}

Once it successfully opens port 8090, the next thing it will do is to open

a connection to the external DNS server and start the server.

func main() {

 dnsConfig := DNSConfig{

 dnsForwarder: "8.8.8.8:53",

 ...

 }

 ...

 dnsFwdConn, err := net.Dial("udp", dnsConfig.dnsForwarder)

 ...

 dnsServer := dns.NewServer(conn, dns.

NewUDPResolver(dnsFwdConn))

 ...

 dnsServer.Start()

}

The local UDP server waits for incoming DNS requests. Once it

receives an incoming UDP request, it is processed by handleRequest().

You saw in the previous section that the way to read a UDP request is to

call the ReadFromUDP(..) function, as shown here:

func (s *Server) handleRequest() error {

 msg, clientAddr, err := s.readRequest()

Chapter 10 SyStem NetworkiNg

191

 ...

}

func (s *Server) readRequest() (dnsmessage.Message, *net.

UDPAddr, error) {

 buf := make([]byte, 1024)

 _, addr, err := s.conn.ReadFromUDP(buf)

 ...

}

The readRequest() function, on receiving the incoming request,

proceeds to unpack the data using the built-in golang.org/x/n/dns

package, as shown here:

func (s *Server) readRequest() (dnsmessage.Message, *net.

UDPAddr, error) {

 ...

 var msg dnsmessage.Message

 err = msg.Unpack(buf)

 ...

}

The unpacked data is now stored in a dnsmessage.Message struct that

has the following declaration:

type Message struct {

 Header

 Questions []Question

 Answers []Resource

 Authorities []Resource

 Additionals []Resource

}

Chapter 10 SyStem NetworkiNg

http://golang.org/x/n/dns

192

The code successfully unpacks the data from the incoming request.

The next step is to send the same request to the DNS forwarder

and process the response to be forwarded back to the client. The

ResolveDNS(..) function sends the newly created dnsmessage.Message

struct to the DNS forwarder and processes the received response.

func (r *DNSResolver) ResolveDNS(msg dnsmessage.Message)

(dnsmessage.Message, error) {

 packedMsg, err := msg.Pack()

 ...

 _, err = r.fwdConn.Write(packedMsg)

 ...

 resBuf := make([]byte, 1024)

 _, err = r.fwdConn.Read(resBuf)

 ...

 var resMsg dnsmessage.Message

 err = resMsg.Unpack(resBuf)

 ...

}

On receiving a response from the DNS forwarder, the

handleRequest(..) function sends either a DNS normal response or an

error message, depending on the returned value from ResolveDNS(..).

func (s *Server) handleRequest() error {

 ...

 rMsg, err := s.resolver.ResolveDNS(msg)

 if err != nil {

 s.sendResponseWithError(clientAddr, msg, err)

 ...

 }

 ...

Chapter 10 SyStem NetworkiNg

193

 return s.sendResponse(clientAddr, rMsg)

}

The sendResponse(..) function just packs the received message from

the DNS forwarder and sends it back to the client.

func (s *Server) sendResponseWithError(clientAddr *net.UDPAddr,

msg dnsmessage.Message, err error) {

 ...

 err = s.sendResponse(clientAddr, msg)

 ...

}

func (s *Server) sendResponse(addr *net.UDPAddr, message

dnsmessage.Message) error {

 packed, err := message.Pack()

 ...

 _, err = s.conn.WriteToUDP(packed, addr)

}

 Pack and Unpack
In the previous section, you looked at how requests are processed by

unpacking the response and then packing and sending it back as a DNS

response to a client. In this section, you will look at the structure of the

DNS data.

An incoming request comes in a byte, which is unpacked or converted

to a Message struct.

type Message struct {

 Header

 Questions []Question

Chapter 10 SyStem NetworkiNg

194

 Answers []Resource

 Authorities []Resource

 Additionals []Resource

}

The Header field contains the following structure, which corresponds

to the header to the DNS protocol:

type Header struct {

 ID uint16

 Response bool

 OpCode OpCode

 Authoritative bool

 Truncated bool

 RecursionDesired bool

 RecursionAvailable bool

 RCode RCode

}

The Resource struct is used in the Answers, Authorities, and

Additionals fields as follows:

type Resource struct {

 Header ResourceHeader

 Body ResourceBody

}

The Questions field contains information about the DNS information

that the client is requesting, while the Answers field contains the response

to the questions. Figure 10-1 shows what the dnsmessage.Message struct

contains when it unpacks data from an incoming request to query google.

com using dig with the following command:

dig @localhost -p 8090 google.com

Chapter 10 SyStem NetworkiNg

http://google.com
http://google.com

195

Figure 10-1. dnsmessage.Message with DNS query data

Figure 10-2 shows the response received from the DNS forwarder when

the bytes are unpacked. As you can see, the Answers field is populated with

the answer to the query.

Chapter 10 SyStem NetworkiNg

196

Figure 10-2. dnsmessage.Message with DNS response data

 Summary
In this chapter, you learn more details about using UDP. One of the

features of the IP stack is to check the availability of a server using

the ICMP protocol. You also learned about using UDP to write a DNS

forwarder server that uses the net/dns package standard library to process

DNS requests and responses. You now have a better understanding of the

Chapter 10 SyStem NetworkiNg

197

features of the standard library than the capability that is provided; at the

same time, it shows how versatile the libraries are in allowing us to develop

useful network tools.

Chapter 10 SyStem NetworkiNg

199

CHAPTER 11

Google gopacket
In the previous chapter, you learned about building networking tools using

the Go standard library. In this chapter, you will go further and investigate

an open source library network library from Google called gopacket.

The library source code can be found at https://github.com/google/

gopacket and the library documentation can be found at https://pkg.

go.dev/github.com/google/gopacket. The source branch that you will be

looking at in this chapter is the master branch.

gopacket provides low-level network packet manipulation that cannot

be found inside the standard library. It provides developers with a simple

API to manipulate different network layers’ information obtained from the

network interface. In this chapter, you will learn

• How gopacket works

• How to use gopacket to write a network traffic sniffer

• About network capture files

 Source Code
The source code for this chapter is available from the https://github.

com/Apress/Software-Development-Go repository.

© Nanik Tolaram 2023
N. Tolaram, Software Development with Go,
https://doi.org/10.1007/978-1-4842-8731-6_11

https://github.com/google/gopacket
https://github.com/google/gopacket
https://pkg.go.dev/github.com/google/gopacket
https://pkg.go.dev/github.com/google/gopacket
https://github.com/Apress/Software-Development-Go
https://github.com/Apress/Software-Development-Go
https://doi.org/10.1007/978-1-4842-8731-6_11#DOI

200

 gopacket
In this section, you will explore gopacket and learn about the main part of

the library to understand how it works. This library provides the capability

to write applications that need to capture and analyze network traffic. The

library does the heavy lifting of communicating with the kernel to obtain

all the network data and parse it and make it available to applications.

gopacket uses a packet capture Linux library that has been part of the

Linux toolbox for a long time called libpcap. More information can be

found at www.tcpdump.org/index.html.

The libpcap library provides functionality to grab network packets

from the network cards, which in turn are parsed and converted to the

relevant protocols that are easily used by applications. gopacket provides

two major types of data structures that applications can work with, namely

Packet and Layer, which will be explored more in detail next.

 Layer
In this section, you will look at the Layer interface. This interface is the

main interface in the library that holds data in regard to the raw network

data. The interface looks like the following:

type Layer interface {

 // LayerType is the gopacket type for this layer.

 LayerType() LayerType

 // LayerContents returns the set of bytes that make up

this layer.

 LayerContents() []byte

 // LayerPayload returns the set of bytes contained within

this layer, not

 // including the layer itself.

 LayerPayload() []byte

}

Chapter 11 GooGle GopaCket

http://www.tcpdump.org/index.html

201

LayerContents contains the bytes representing a particular layer. For

example, if this is an Ethernet layer, then it will contain bytes that make up

the Ethernet frame, while LayerPayload will contain the bytes representing

the Ethernet protocol.

The LayerType is defined as follows, which contains the type of layer it

represents (for example: Ethernet, ARP, TCP, etc.):

type LayerType int64

The layertypes.go source contains the different network layers that

are supported in the library, as shown in the code snippet here:

import (

 ...

)

var (

 LayerTypeARP = gopacket.

RegisterLayerType(10, gopacket.LayerTypeMetadata{Name: "ARP",

Decoder: gopacket.DecodeFunc(decodeARP)})

 LayerTypeCiscoDiscovery = gopacket.

RegisterLayerType(11, gopacket.LayerTypeMetadata{Name:

"CiscoDiscovery", Decoder: gopacket.DecodeFunc(decodeCiscoDi

scovery)})

 LayerTypeEthernetCTP = gopacket.

RegisterLayerType(12, gopacket.LayerTypeMetadata{Name:

"EthernetCTP", Decoder: gopacket.DecodeFunc(decodeEthe

rnetCTP)})

...

 LayerTypeIPv4 = gopacket.

RegisterLayerType(20, gopacket.LayerTypeMetadata{Name: "IPv4",

Decoder:

...

)

Chapter 11 GooGle GopaCket

202

Different protocols using the Layer interface can be found inside the

layers directory, shown in Figure 11-1.

Figure 11-1. Layer struct implementation

The source code inside the layers directory contains implementations

of each protocol and how to read them from the raw bytes obtained from

the kernel.

Chapter 11 GooGle GopaCket

203

 TCP Layer

Let’s take a look at an example of a TCP protocol implementation that can

be found inside the layers/tcp.go file. The TCP struct declaration that

contains the TCP protocol information is shown here:

type TCP struct {

 BaseLayer

 SrcPort, DstPort TCPPort

 Seq uint32

 Ack uint32

 DataOffset uint8

 FIN, SYN, RST, PSH, ACK, URG, ECE, CWR, NS bool

 Window uint16

 Checksum uint16

 Urgent uint16

 sPort, dPort []byte

 Options []TCPOption

 Padding []byte

 opts [4]TCPOption

 tcpipchecksum

}

The following code shows the function DecodeFromBytes that reads the

raw bytes and converts them into a TCP struct:

func (tcp *TCP) DecodeFromBytes(data []byte, df gopacket.

DecodeFeedback) error {

 ...

 tcp.SrcPort = TCPPort(binary.BigEndian.Uint16(data[0:2]))

 tcp.sPort = data[0:2]

 tcp.DstPort = TCPPort(binary.BigEndian.Uint16(data[2:4]))

 tcp.dPort = data[2:4]

Chapter 11 GooGle GopaCket

204

 tcp.Seq = binary.BigEndian.Uint32(data[4:8])

 tcp.Ack = binary.BigEndian.Uint32(data[8:12])

 ...

 ...

}

Going through each of the protocol source files, you will see the

implementation of the different protocols that are supported by the library.

 Packet
Packet is the primary type that your application will be working with. The

data that has been read from the low-level libpcap library will end up here

in a form that is easier to understand by the developer. Let’s take a look at

the Packet struct, which is defined inside the packet.go file:

type Packet interface {

 String() string

 Dump() string

 Layers() []Layer

 Layer(LayerType) Layer

 LayerClass(LayerClass) Layer

 LinkLayer() LinkLayer

 NetworkLayer() NetworkLayer

 TransportLayer() TransportLayer

 ApplicationLayer() ApplicationLayer

 ErrorLayer() ErrorLayer

 Data() []byte

 Metadata() *PacketMetadata

}

Chapter 11 GooGle GopaCket

205

The struct holds different functions that return the different types

of Layer that you looked at in the previous section. To understand a bit

better, let’s take a peek at the ApplicationLayer type that is returned by

the ApplicationLayer() function, which is defined inside the same file,

packet.go.

type ApplicationLayer interface {

 Layer

 Payload() []byte

}

The ApplicationLayer is an interface that holds the Layer type and

the Payload() function that will return the original bytes relevant from the

network capture for this particular layer. You will look at an example in the

next section on how to use the different functions inside the Packet.

 Using gopacket
In this section, you will look at examples of how to use gopacket. They

will give you ideas of how to use the library and also show the library

capabilities in reading network protocols.

 pcap
Let’s take a moment to understand pcap. It stands for packet capture.

Linux has tools that allow a developer or sysadmin to perform network

troubleshooting, and one of those tools is a packet capture tool. The

packet capture tools allow Linux root users to capture network traffic in the

machine.

The traffic data can be saved into a file and later read to be analyzed.

This kind of capability is super useful for performing auditing plus security

and network troubleshooting in a cloud or local environment. In this

chapter, you will capture and analyze the pcap file.

Chapter 11 GooGle GopaCket

206

 Installing libpcap

The code relies on a Linux library called libpcap (www.tcpdump.org/

manpages/pcap.3pcap.html). This library is the main library that helps

in performing network captures. Make sure you have the library installed

on your local Linux machine. Use the following command to install the

library:

sudo apt-get install libpcap-dev

You will need to reboot your machine once it is successfully installed.

 Networking Sniffer
For this section example, you will look at an example of a network sniffer

application using the library. The sample application can be found inside

the chapter11/gopacket/sniffer folder. The sample code will sniff out

your local network and print out the following:

• IPv4 information

• DNS information

• TCP information

• UDP information

• Application layer protocol information

Before running the application, make sure you change the following

line of code to use the correct network interface that exists in your

machine:

const (

 iface = "enp7s0"

 ...

)

Chapter 11 GooGle GopaCket

http://www.tcpdump.org/manpages/pcap.3pcap.html
http://www.tcpdump.org/manpages/pcap.3pcap.html

207

In my case, it’s called enp7s0, which can be found by running the

ifconfig tool. The following is the output of running ifconfig on my

machine:

enp7s0: flags=4099<UP,BROADCAST,MULTICAST> mtu 1500

 ether txqueuelen 1000 (Ethernet)

 RX packets 0 bytes 0 (0.0 B)

 RX errors 0 dropped 0 overruns 0 frame 0

 TX packets 0 bytes 0 (0.0 B)

 TX errors 0 dropped 0 overruns 0 carrier

0 collisions 0

lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536

 inet 127.0.0.1 netmask 255.0.0.0

 TX errors 0 dropped 0 overruns 0 carrier

0 collisions 0

wlp6s0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500

 inet 192.168.1.17 netmask 255.255.255.0 broadcast

192.168.1.255

 TX errors 239484 dropped 0 overruns 0 carrier

0 collisions 0

 device interrupt 18

Change your directory to the chapter11/gopacket/sniffer folder and

compile the app.

go build -o sniffer

Run the app with the root account.

Chapter 11 GooGle GopaCket

208

sudo ./sniffer

Once the app runs, you will see output like the following:

2022/03/12 21:11:19 (TCP) Source address : 100.24.164.135,

Destination address : 192.168.1.6

2022/03/12 21:11:19 (TCP) From port 443 to 35232

2022/03/12 21:11:19 (TCP) Source address : 192.168.1.6,

Destination address : x.x.x.x

2022/03/12 21:11:19 (TCP) From port 35232 to 443

2022/03/12 21:11:20 (TCP) Source address : 192.168.1.6,

Destination address : x.x.x.x

2022/03/12 21:11:20 (TCP) From port 45988 to 443

2022/03/12 21:11:20 (TCP) Source address : x.x.x.x, Destination

address : x.x.x.x

...

2022/03/12 21:24:03 ----------------------

2022/03/12 21:24:03 (TCP) Source address : x.x.x.x, Destination

address : 192.168.1.6

2022/03/12 21:24:03 (TCP) From port 80 to 36910

2022/03/12 21:24:03 HTTP Application layer

2022/03/12 21:24:03 ----------------------

2022/03/12 21:24:03 HTTP/1.1 404 Not Found

Date: Sat, 12 Mar 2022 10:24:03 GMT

Server: Apache/2.4.29 (Ubuntu)

Content-Length: 283

Content-Type: text/html; charset=iso-8859-1

...

2022/03/12 21:24:03 ----------------------

2022/03/12 21:24:03 (TCP) Source address : 192.168.1.6,

Destination address : x.x.x.x

Chapter 11 GooGle GopaCket

209

2022/03/12 21:24:03 (TCP) From port 36364 to 443

...

 Code Walkthrough

Let’s take a look step by step at the different parts of the app to understand

how it uses gopacket . The following code shows the process of initializing

the library to sniff the network traffic using the network interface specified:

func main() {

 f, _ := os.Create(fName)

 ...

 handle, err := pcap.OpenLive(iface, sLen, true, -1)

 if err != nil {

 log.Fatal(err)

 }

 ...

}

The pcap.OpenLive function calls gopacket to open the network

device and the true parameter sent indicates to the library that you want

to open it in promiscuous mode.

Once the function returns without an error, it starts listening for

incoming packets and processes them as follows:

func main() {

 f, _ := os.Create(fName)

 ...

 pSource := gopacket.NewPacketSource(handle, handle.

LinkType())

 for packet := range pSource.Packets() {

 printPacketInfo(packet)

 ...

Chapter 11 GooGle GopaCket

210

 }

}

As mentioned in the “Packet” section, the application interacts with

the network data via the Packet type. In the sample code case, you create

a new PacketSource that the app can use in a for .. range to extract all

the incoming packets and process them inside the printPacketInfo(..)

function. So far, you have successfully initialized and received the packet;

now let’s dig further into how to use the information made available inside

the Packet struct.

The following is the snippet of the printPacketInfo(..) function that

shows how to use the Packet struct to check whether the network capture

contains an HTTP protocol:

func printPacketInfo(packet gopacket.Packet) {

 ...

 applicationLayer := packet.ApplicationLayer()

 if applicationLayer != nil {

 // Search for a string inside the payload

 if strings.Contains(string(applicationLayer.Payload()),

"HTTP") {

 //log.Println("HTTP found!")

 log.Println("HTTP Application layer")

 log.Println("----------------------")

 log.Println(fmt.Sprintf("%s", string(applicationLayer.

Payload())))

 log.Println("----------------------")

 }

 }

Chapter 11 GooGle GopaCket

211

 ...

}

The code uses the ApplicationLayer() function that instructs

gopacket to return a layer that corresponds to the application layer,

which corresponds to Layer 7 of the OSI network model. Once obtained,

it will check whether the layer data is an HTTP request by checking for an

HTTP string.

This shows the powerful functionality the library can provide when

accessing the different network layers that are made available via the

Packet struct.

 Analyzing pcap Manually

The sample code not only prints out the capture network layers; it also

stores them inside a file called test.pcap. The file is generated in the

directory where you run the sample code; in this example, it is stored

inside the gopacket/sniffer directory.

This file contains the raw network capture that can be viewed by other

tools. In this section, you will look at one of the ways to view the captured

file using another open source project, which can be found at https://

github.com/mynameiscfed/go-cp-analyzer. Download and compile the

file and run it as follows:

./go-cp-analyzer -r <directory_to_test.pcap>/filename.pcap

After a successful run, it will output something like the following:

+--------------------------------+----------------------+

| Packet Distribution | |

+--------------------------------+----------------------+

| <= 66 | 6474 |

| <= 128 | 5831 |

| <= 256 | 858 |

Chapter 11 GooGle GopaCket

https://github.com/mynameiscfed/go-cp-analyzer
https://github.com/mynameiscfed/go-cp-analyzer

212

| <= 384 | 698 |

| <= 512 | 739 |

| <= 768 | 538 |

| <= 1024 | 77 |

| <= 1518 | 3830 |

| <= 9000 | 489 |

+--------------------------------+----------------------+

+--------------------------------+----------------------+

| Packet Metrics | |

+--------------------------------+----------------------+

| Total pkts | 19534 |

| Avg pkt size | 446 |

| Avg pkts/second | 99 |

| Avg thoughput (Mbps) | 0.36 |

+--------------------------------+----------------------+

+--------------------------------+----------------------+

| Protocol Metrics | |

+--------------------------------+----------------------+

| Ethernet | 19534 |

| TCP | 13019 |

| UDP | 6390 |

| !Ethernet | 0 |

| ARP | 11 |

| IPv4 | 19419 |

| IPv6 | 6 |

| LLC | 98 |

+--------------------------------+----------------------+

+--------------------------------+----------------------+

| Connections Metrics | |

+--------------------------------+----------------------+

| TCP connections | 359 |

Chapter 11 GooGle GopaCket

213

| TCP conns/sec (avg) | 1 |

| TCP peak conns/sec | 12 |

| UDP connections | 138 |

| UDP conns/sec (avg) | 0 |

| UDP peak conns/sec | 6 |

+--------------------------------+----------------------+

This shows that the raw captured files are compatible with other raw

network analyzers that are available.

 Analyzing pcap Using WireShark

In this section, you will use Wireshark to see if you can read the file you

created using the sample app to prove that it is compatible. You will

use Docker to run Wireshark and use browsers to load the UI. Use the

following command to run Wireshark using Docker:

docker run --name=wireshark --cap-add=NET_ADMIN --security-opt

seccomp=unconfined -e PUID=1000 -e PGID=1000 -p 3000:3000 -e

TZ=Europe/London -v <your_directory_that_contains_pcap_file>:

/config --restart unless-stopped lscr.io/linuxserver/

wireshark:latest

Replace <your_directory_that_contains_pcap_file> with your

local directory that contains the test.pcap file. Once Wireshark is up and

running, you will see output that looks like the following:

WARNING: Published ports are discarded when using host

network mode

...

 _ ()

 | | ___ _ __

 | | / __| | | / \

Chapter 11 GooGle GopaCket

214

 | | __ \ | | | () |

 |_| |___/ |_| __/

Brought to you by linuxserver.io

To support LSIO projects visit:

https://www.linuxserver.io/donate/

GID/UID

User uid: 1000

User gid: 1000

....

[cont-init.d] done.

[services.d] starting services

[services.d] done.

[guac-init] Auto start not set, application start on login

guacd[429]: INFO: Guacamole proxy daemon (guacd) version

1.1.0 started

guacd[429]: INFO: Listening on host 0.0.0.0, port 4822

Starting guacamole-lite websocket server

listening on *:3000

...

Wireshark is ready and is listening on port 3000. Open your browser

and type in http://localhost:3000 and you will see a screen like Figure 11-2.

Chapter 11 GooGle GopaCket

215

Figure 11-2. Wireshark UI

Open the test.pcap file by selecting File ➤ Open and you will see

a screen like Figure 11-3. Select the test.pcap file from the selection of

available files.

Chapter 11 GooGle GopaCket

216

Figure 11-3. Wireshark open file selection

Wireshark will successfully read the test.pcap file and will open it, as

shown in Figure 11-4.

Chapter 11 GooGle GopaCket

217

Figure 11-4. test.pcap inside Wireshark

In this section, you proved that the network capture performed by

gopacket can be successfully read using two different tools. In the next

section, you will look at how to use BPF (Berkeley Packet Filter) to filter the

network traffic that you are interested in.

 Capturing With BPF
gopacket provides the ability to filter network traffic that applications are

interested in, and this is possible by using BPF. BPF stands for Berkeley

Packet Filter and it allows an application to attach a filter to allow or

disallow certain types of data through a socket. More detail information

can be found at www.kernel.org/doc/html/latest/networking/

filter.html.

Chapter 11 GooGle GopaCket

http://www.kernel.org/doc/html/latest/networking/filter.html
http://www.kernel.org/doc/html/latest/networking/filter.html

218

The sample code can be found inside the chapter11/gopacket/http

folder. It captures and prints only TCP traffic with a port destination of 80.

Compile the code as follows:

go build -o httponly .

Run the code with root. Replace <network_device> with your local

network device.

sudo ./httponly -i <network_device>

After a successful run, you will see output that looks like the following.

You can see that it only prints TCP traffic connecting to an external server

on port 80.

2022/03/14 17:10:39 Starting capture on interface "enp0s31f6"

2022/03/14 17:10:39 reading in packets

2022/03/14 17:10:39 -- Extracted Http Data --

2022/03/14 17:10:39 Accept text/*

2022/03/14 17:10:39 If-Modified-Since Thu, 20 May 2021

01:37:53 GMT

2022/03/14 17:10:39 User-Agent Debian APT-HTTP/1.3 (1.9.4)

2022/03/14 17:10:39 Cache-Control max-age=0

2022/03/14 17:10:39 Proto : HTTP/1.1, Host : ppa.launchpad.net,

Method : GET, URI : ...

2022/03/14 17:10:39 -------------------------

2022/03/14 17:10:39 Received request from stream

192.168.1.6->x.x.x.x 59494->80 : &{GET ...} with 0 bytes in

request body

2022/03/14 17:10:40 -- Extracted Http Data --

2022/03/14 17:10:40 Cache-Control max-age=0

2022/03/14 17:10:40 Accept text/*

2022/03/14 17:10:40 If-Modified-Since Tue, 24 Mar 2020

13:38:15 GMT

Chapter 11 GooGle GopaCket

219

2022/03/14 17:10:40 User-Agent Debian APT-HTTP/1.3 (1.9.4)

2022/03/14 17:10:40 Proto : HTTP/1.1, Host : ppa.launchpad.net,

Method : GET, URI : ...

2022/03/14 17:10:40 -------------------------

...

Let’s take a look at how the code uses BPF to filter the network capture.

The following snippet shows what you learned in the previous section:

how to perform packet capture using the gopacket OpenLive function:

if *fname != "" {

 ...

} else {

 log.Printf("Starting capture on interface %q", *iface)

 handle, err = pcap.OpenLive(*iface, int32(*snaplen), true,

pcap.BlockForever)

}

...

Next, the code calls the SetBPFFilter function to specify the network

filter that you want to apply.

var filter = flag.String("f", "tcp and dst port 80", "BPF

filter for pcap")

...

func main() {

 ...

 if err := handle.SetBPFFilter(*filter); err != nil {

 log.Fatal(err)

 }

 ...

}

Chapter 11 GooGle GopaCket

220

The filter variable contains a simple English-like filter rule, tcp

and dst port 80, which means it is only interested in TCP traffic that is

accessing port 80. Here is a link to more information about the different

filters you can write: www.ibm.com/docs/en/qsip/7.4?topic=queries-

berkeley-packet-filters.

The code specifies the filter that it wants. The next thing it needs to

do is specify the parser that gopacket will use to parse the TCP raw data,

and this is done by the httpStreamFactory struct type, which defines the

New(..) and run() function. These two functions are called internally by

gopacket every time there is data available for the application to consume.

type httpStreamFactory struct{}

func (h *httpStreamFactory) New(net, transport gopacket.Flow)

tcpassembly.Stream {

 hstream := &httpStream{

 net: net,

 transport: transport,

 r: tcpreader.NewReaderStream(),

 }

 ...

}

func (h *httpStream) run() {

 buf := bufio.NewReader(&h.r)

 for {

 ...

 }

Chapter 11 GooGle GopaCket

http://www.ibm.com/docs/en/qsip/7.4?topic=queries-berkeley-packet-filters
http://www.ibm.com/docs/en/qsip/7.4?topic=queries-berkeley-packet-filters

221

}

The main job of the run() function is to assemble and parsed the raw

bytes into a more readable format to print out, as shown:

func (h *httpStream) run() {

 buf := bufio.NewReader(&h.r)

 for {

 req, err := http.ReadRequest(buf)

 if err == io.EOF {

 ...

 }

 ...

 else {

 log.Println("-- Extracted Http Data --")

 for k, v := range req.Header {

 log.Println(k, v[0])

 }

 log.Println(fmt.Sprintf("Proto : %s, Host : %s, Method

: %s, URI : %s ", req.Proto, req.Host, req.Method, req.

RequestURI))

 log.Println("-------------------------")

 ...

 }

 }

}

Chapter 11 GooGle GopaCket

222

 Summary
In this chapter, you learned about capturing raw networks using the

open source gopacket project. The library provides a lot of functionality

made available through its simple public API. You learned how to write

applications using the library and use the information provided in the

different structures.

You looked at BPF (Berkeley Packet Filter) and learned to use it inside

your code to filter network captures using gopacket. Using BPF allows

an application to process only the network capture that it is interested in

rather than spending time processing all incoming traffic. This makes it

easier to develop apps targeted for specific traffic.

Chapter 11 GooGle GopaCket

223

CHAPTER 12

Epoll Library
Building an application that processes a huge amount of network

processing requires a special way of handling connections in a

distributed or cloud environment. Applications running on Linux are

able to do this thanks to the scalable I/O event notification mechanism

that was introduced in version 2.5.44. In this chapter, you will look at

epoll. According to the documentation at https://linux.die.net/

man/7/epoll,

The epoll API performs a similar task to poll: monitoring multiple file
descriptors to see if I/O is possible on any of them.

You will start by looking at what epoll is and then move on to writing a

simple application and finish off looking at the Go epoll library and how it

works and also how to use it in an application.

On completion of this chapter, you will understand the following:

• How epoll works in Linux

• How to write a Go application to use the epoll API

• How the epoll library works

• How to write a Go application using the epoll library

© Nanik Tolaram 2023
N. Tolaram, Software Development with Go,
https://doi.org/10.1007/978-1-4842-8731-6_12

https://linux.die.net/man/7/epoll
https://linux.die.net/man/7/epoll
https://man7.org/linux/man-pages/man2/poll.2.html
https://doi.org/10.1007/978-1-4842-8731-6_12#DOI

224

 Source Code
The source code for this chapter is available from the https://github.

com/Apress/Software-Development-Go repository.

 Understanding epoll
In this section, you will start by looking at what epoll is all about from

a system perspective. When you open a socket in Linux, you are given a

file descriptor (or FD for short), which is a non-negative value. When the

user application wants to perform an I/O operation to the socket, it passes

the FD to the kernel. The epoll mechanism is event-driven, so the user

application is notified when an I/O operation happens.

As shown in Figure 12-1, epoll is actually a data structure inside Linux

that is provided to multiplex I/O operations on multiple file descriptors.

Linux provides system calls for user applications to register, modify, or

delete FDs from the data structure. Another thing to note is that epoll

has Linux-specific features, which means applications can only be run on

Linux kernel-based operating systems.

ChAPTer 12 ePOll lIbrAry

https://github.com/Apress/Software-Development-Go
https://github.com/Apress/Software-Development-Go

225

Figure 12-1. epoll data structure

The data structure contains two sets of lists:

• Interest List: This list/set contains FDs that

applications are interested in. The kernel will only send

events related to a particular FD that applications are

interested in.

• Ready List: This list/set contains a subset of reference

FDs from the Interest List FDs. The FDs in this list are

in the *ready* state that the user application will be

notified of.

The following are the system calls used by applications to work with

the data structure. In the later sections, you will look closely at how you are

going to use them in application and also inside an epoll library.

• epoll_create: A system call to create a new epoll

instance and return a file descriptor.

ChAPTer 12 ePOll lIbrAry

226

• epoll_ctl: A system call to register, modify, and delete

a FD from the Interest List.

• epoll_wait: A system call to wait for I/O events or

another way the system call is called to fetch items that

are ready from the Ready List.

To use epoll effectively in application, you need to understand how

event distribution is performed. Simply put, there are two different ways

events are distributed to applications:

• Edge triggered: A monitored FD configured with

edge will be guaranteed to get one notification if the

readiness state changed since the last time it called

epoll_wait. The application will receive one event and,

if it requires more events, it must perform an operation

via a system call to inform epoll that it is waiting for

more events.

• Level triggered: A monitored FD configured with level

will be batch together as a single notification and an

application can process them all at once.

From the above, it is obvious that edge triggered requires an application

to do more work compared to level triggered. By default, epoll operates

using a level triggered mechanism.

 epoll in Golang
In this section, you will write a simple application that uses epoll. The

app is an echo server that receives connections and sends responses to the

value that is sent to it.

Run the code inside the chapter12/epolling/epollecho folder. Open

your terminal to run the following command:

ChAPTer 12 ePOll lIbrAry

227

go run main.go

Once the app runs, open another terminal and use the nc (network

connect) tool to connect to the application. Type in something in the

console and press Enter. This will be sent to the server.

nc 127.0.0.1 9999

The sample app will respond by sending the string that was sent by the

client. Before diving into the code, let’s take a look at how epoll is used in

an application.

 Epoll Registration
As you can see in Figure 12-2, the application creates a listener on port

9999 to listen for incoming connections. When a client connects to this

port, the application spins off a goroutine to handle the client connection.

Figure 12-2. Listener epoll registration

ChAPTer 12 ePOll lIbrAry

228

Now, let’s take a more detailed look at how the whole thing works

inside the app. The following snippet shows the application creating a

socket listener using the syscall.Socket system call and binding it to port

9999 using syscall.Bind:

 ...

 fd, err := syscall.Socket(syscall.AF_INET, syscall.O_

NONBLOCK|syscall.SOCK_STREAM, 0)

 if err != nil {

 fmt.Println("Socket err : ", err)

 os.Exit(1)

 }

 defer syscall.Close(fd)

 if err = syscall.SetNonblock(fd, true); err != nil {

 ...

 }

 // prepare listener

 addr := syscall.SockaddrInet4{Port: 9999}

 copy(addr.Addr[:], net.ParseIP("127.0.0.1").To4())

 err = syscall.Bind(fd, &addr)

 ...

 // listener

 err = syscall.Listen(fd, 10)

 ...

 ...

On successfully listening on the port, the app creates a new epoll

by calling syscall.EpollCreate1. This instructs the kernel to prepare a

data structure that the application will use to listen for I/O events for file

descriptors that it is interested in.

ChAPTer 12 ePOll lIbrAry

229

 ...

 epfd, e := syscall.EpollCreate1(0)

 if e != nil {

 ...

 }

 ...

Once the data structure successfully creates the application, it

proceeds by registering the socket listener file descriptor, as seen in the

following code snippet. The code uses syscall.EPOLL_CTL_ADD to specify

to the system call that it is interested in doing a new registration.

The registration is done based on the information provided in the

event struct, which contains the file descriptor and the event that it is

interested in monitoring.

The application uses the EPOLLIN flag to indicate that it is only

interested in reading the event. The epoll documentation at https://

man7.org/linux/man-pages/man2/epoll_ctl.2.html provides details on

the different flags that can be set for the event.Events field.

 // register listener fd to Interest List

 event.Events = syscall.EPOLLIN

 event.Fd = int32(fd)

 if e = syscall.EpollCtl(epfd, syscall.EPOLL_CTL_ADD, fd,

&event); e != nil {

 ...

 }

 Epoll Wait
The last step after registering is to call syscall.EpollWait to wait for an

incoming event from the kernel, which is wrapped inside a for {} loop as

shown in the following snippet. The -1 parameter passed as the timeout

ChAPTer 12 ePOll lIbrAry

https://man7.org/linux/man-pages/man2/epoll_ctl.2.html
https://man7.org/linux/man-pages/man2/epoll_ctl.2.html

230

parameter to the system indicates the application will wait indefinitely

until an event is ready to be delivered by the kernel.

 for {

 n, err := syscall.EpollWait(epfd, events[:], -1)

 ...

 }

When the application receives events, it start processing by looping

through the number of events it receives, as shown here:

 for {

 n, err := syscall.EpollWait(epfd, events[:], -1)

 ...

 // go through the events

 for ev := 0; ev < n; ev++ {

 ...

 }

 }

The event received contains the event type generated by the system

and the file descriptor that it is for. This information is used by the code

to check for a new client connection. This is done by checking whether

the file descriptor it received is the same as the listener; if it is, then it will

accept the connection by calling syscall.Accept using the listener FD.

Once it gets a new FD for the client connection, it will also be

registered by the code into epoll using EpollCtl with EPOLL_CTL_ADD flag.

Once completed, both listener FD and client connection FD are registered

inside epoll and the application can multiplex I/O operations for both.

 for {

 n, err := syscall.EpollWait(epfd, events[:], -1)

 ...

 // go through the events

ChAPTer 12 ePOll lIbrAry

231

 for ev := 0; ev < n; ev++ {

 // if it is the same as the listener then accept

connection

 if int(events[ev].Fd) == fd {

 connFd, _, err := syscall.Accept(fd)

 ...

 // new connection should be non blocking

 syscall.SetNonblock(fd, true)

 event.Events = syscall.EPOLLIN

 event.Fd = int32(connFd)

 // register new client connection fd to

Interest List

 if err := syscall.EpollCtl(epfd, syscall.EPOLL_

CTL_ADD, connFd, &event); err != nil {

 log.Print("EpollCtl err : ", connFd, err)

 os.Exit(1)

 }

 } else {

 ...

 }

 }

 }

As a final step, when the code detects that the FD received from the

event is not the same as the listener FD, it will spin off a goroutine to

handle the connection, which will echo back data received from the client.

ChAPTer 12 ePOll lIbrAry

232

 Epoll Library
You looked at what epoll is all about and created an app that uses it.

Writing an app that uses epoll requires writing a lot of repetitive code

that takes care of accepting connections, reading requests, registering file

descriptors, and more.

Using an open source library can help in writing better applications

because the library takes care of the heavy lifting required for epoll. In

this section, you will look at netpoll (http://github.com/cloudwego/

netpoll). You will create an application using the library and see how the

library takes care of epoll internally.

The code can be found inside the chapter12/epolling/netpoll

folder. It is an echo server that sends requests received as a response to

the user.

import (

 ...

 "github.com/cloudwego/netpoll"

)

func main() {

 listener, err := netpoll.CreateListener("tcp",

"127.0.0.1:8000")

 if err != nil {

 panic("Failure to create listener")

 }

 var opts = []netpoll.Option{

 netpoll.WithIdleTimeout(1 * time.Second),

 netpoll.WithIdleTimeout(10 * time.Minute),

 }

 eventLoop, err := netpoll.NewEventLoop(echoHandler, opts...)

 if err != nil {

ChAPTer 12 ePOll lIbrAry

http://github.com/cloudwego/netpoll
http://github.com/cloudwego/netpoll

233

 panic("Failure to create netpoll")

 }

 err = eventLoop.Serve(listener)

 if err != nil {

 panic("Failure to run netpoll")

 }

}

 ...

This code snippet shows the creation of a socket listener using

CreateListener from the library to listen on port 8000. After successfully

opening the listener, the code proceeds to configure the netpoll by

specifying the timeout and specifying the echoHandler function to handle

the incoming request. The code starts listening to incoming requests by

calling the Serve function of netpoll.

The echoHandler function handles reading and writing from the client

socket connection using the passed-in parameter netpoll.Connection.

The function reads using the connection.Reader() and writes using

connection.Write().

func echoHandler(ctx context.Context, connection netpoll.

Connection) error {

 reader := connection.Reader()

 bts, err := reader.Next(reader.Len())

 if err != nil {

 log.Println("error reading data")

 return err

 }

 log.Println(fmt.Sprintf("Data: %s", string(bts)))

 connection.Write([]byte("-> " + string(bts)))

 return connection.Writer().Flush()

}

ChAPTer 12 ePOll lIbrAry

234

You can see that the code written using the netpoll library is easier to

read than the code that you looked at in the previous section. A lot of the

heavy lifting is performed by the library; it also provides more features and

stability when writing high-performance networking code. Let’s take a

look at how netpoll works behind the scenes. Figure 12-3 shows at a high

level the different components of netpoll.

Figure 12-3. netpoll high-level architecture

The library creates more than one epoll and it uses the number of

CPUs as the total number of epolls it will create. Internally, it uses a

load balancing strategy to decide which epoll a file descriptor will be

registered to.

The library will register to the epoll when it receives a new connection

or when the netpoll server runs for the first time, and it decides which

epoll to use by using either a random or round-robin load balance

mechanism, as shown in Figure 12-4. The load balancer type can be

modified in an app using the following function call:

netpoll.SetLoadBalance(netpoll.Random)

netpoll.SetLoadBalance(netpoll.RoundRobin)

ChAPTer 12 ePOll lIbrAry

235

Figure 12-4. netpoll load balancer

The library takes care of a high volume of traffic by using goroutines.

This is performed internally by utilizing a pool of goroutine pooling

mechanisms. Developers just need to focus to ensure that their application

and infrastructure can scale properly.

 Summary
In this chapter, you looked at different ways of writing applications using

epoll. Using your previous learning from Chapter 2 about system calls,

you build an epoll-based application using the standard library. You

learned that designing and writing epoll network applications is different

from normal networking applications. You dove into an epoll library and

learned how to use it to write a network application. Also, you looked at

how the library works internally.

ChAPTer 12 ePOll lIbrAry

https://doi.org/10.1007/978-1-4842-8731-6_2

239

CHAPTER 13

Vulnerability Scanner
The proliferation of cloud providers enables organizations to deploy

applications that are affordable at scale. Deploying applications at scale

is one thing, but securing applications and resources is another thing and

this has become a headache for organizations everywhere. Security is a

big topic, and it covers a lot of different aspects. In this chapter, you will

look at one of the tools that helped in identifying vulnerabilities in the

infrastructure.

You are going to look at a tool for detecting vulnerabilities inside Linux.

The primary focus of the chapter is to understand how and where to use

this tool and also to take a closer look at the source code to understand

better how the tool works. In this chapter, you will learn

• How a vulnerability scanner works

• How the tool uses a different technology to achieve its

objectives

• About port scans, command line executions, and

databases using SQLite in Go

 Source Code
The source code for this chapter is available from the https://github.

com/Apress/Software-Development-Go repository.

© Nanik Tolaram 2023
N. Tolaram, Software Development with Go,
https://doi.org/10.1007/978-1-4842-8731-6_13

https://github.com/Apress/Software-Development-Go
https://github.com/Apress/Software-Development-Go
https://doi.org/10.1007/978-1-4842-8731-6_13#DOI

240

 Vulnerability Scanners
Vulnerability scanners are tools that are used to search and report for

known vulnerabilities that exist in your IT infrastructure. Every organization

has an IT infrastructure that it manages in-house or in the cloud. In this

infrastructure is a variety of applications, networks, and other things running,

which requires constant supervision when it comes to security. Every day

we read news of new vulnerabilities uncovered or exploited that can cause

damage to organizations and sometimes to an extended community.

Tools like vulnerability scanners use a lot of interesting technology stacks

that are useful to learn from, and this is the intention of this chapter. You will

look at an open source project named Vuls (https://github.com/future-

architect/vuls), which is written in Go, and look at how it implements

some of the functionality it provides in Go. The objective is to apply this

knowledge in your own project or use it as a knowledge base to understand

how this kind of tool works. Please remember that this chapter is by no means

a go-to chapter for installing or using Vuls or for vulnerability scanners.

The reason for choosing Vuls for this chapter is the fact that the project

is heavily maintained and updated by the community and it has a high star

rating. The project uses a database of information from different sources

rather than relying on its own source, making it up to date in terms of

detecting vulnerabilities.

Some of the key features that Vuls provides are

• Support for scanning vulnerabilities for major Linux/

FreeBSD operating systems

• Can be used to scan cloud infrastructures like Amazon,

Google, and more

• Uses multiple vulnerability databases. One of the

databases it uses is the National Vulnerability Database

from NIST (U.S. National Institute of Standards and

Technology).

Chapter 13 Vulnerability SCanner

https://github.com/future-architect/vuls
https://github.com/future-architect/vuls

241

• Ability to do quick, deep, or other kinds of scanning

depending on the need

• Notifications via email or slack channel

In the next section, you will download the source code, compile it, and

use it to understand how it works.

 Using Vuls
In this section, you will explore Vuls and do the following:

• Check out the code

• Run a scan on a local machine

 Checking Out the Code
Vuls requires Go 1.8, so make sure you have it installed before proceeding

further. The easiest way to check out code is to use the go get command

as in the following:

GO111MODULE=off go get github.com/future-architect/vuls

Make sure you have your GOPATH directory set up to the correct

folder where you want to store your Go modules (in my case, my GOPATH

points to /home/nanik/Gopath). Once the command has successfully

run, it downloads the source code inside the src/github.com/future-

architect/vuls directory inside GOPATH, like so:

...

drwxrwxr-x 2 nanik nanik 4096 Jun 26 15:48 detector

-rw-rw-r-- 1 nanik nanik 596 Jun 26 15:48 Dockerfile

-rw-rw-r-- 1 nanik nanik 55 Jun 26 15:48 .dockerignore

...

Chapter 13 Vulnerability SCanner

242

drwxrwxr-x 2 nanik nanik 4096 Jun 26 15:48 saas

drwxrwxr-x 2 nanik nanik 4096 Jun 26 15:48 scanner

-rw-rw-r-- 1 nanik nanik 137 Jun 26 15:48 SECURITY.md

drwxrwxr-x 2 nanik nanik 4096 Jun 26 15:48 server

drwxrwxr-x 3 nanik nanik 4096 Jun 26 15:48 setup

drwxrwxr-x 2 nanik nanik 4096 Jun 26 15:48 subcmds

drwxrwxr-x 2 nanik nanik 4096 Jun 26 15:48 tui

drwxrwxr-x 2 nanik nanik 4096 Jun 26 15:48 util

The discussion in this chapter focuses on the v0.19.7 version, so you

need to switch to a different branch. Change to the GOPATH directory to

the src/github.com/future-architect/vuls directory and change the

branch as follows:

git checkout v0.19.7

The code is all set and ready to be built. Use the make command to

build it.

make build

The compilation process starts and all the related modules are

downloaded. Once compilation completes, you get an executable file

called Vuls. Run the application as follows:

./vuls

You will get output like the following:

Usage: vuls <flags> <subcommand> <subcommand args>

Subcommands:

 commands list all command names

 flags describe all known top-level flags

 help describe subcommands and their syntax

Chapter 13 Vulnerability SCanner

243

Subcommands for configtest:

 configtest Test configuration

Subcommands for discover:

 discover Host discovery in the CIDR

Subcommands for history:

 history List history of scanning.

Subcommands for report:

 report Reporting

Subcommands for scan:

 scan Scan vulnerabilities

Subcommands for server:

 server Server

Subcommands for tui:

 tui Run Tui view to analyze vulnerabilities

Use "vuls flags" for a list of top-level flags

 Running Scan
Vuls require a configuration file in the .toml format. For this section, you

can use the configuration file found inside the chapter13 directory called

config.toml, which is as follows:

[servers.localhost]

host = "localhost"

port = "local"

The configuration specifies the machine to be scanned. In your

example, it’s the localhost on your local machine. It performs the standard

local mode scanning operation, which does not include port scanning as

the one excluded service.

Chapter 13 Vulnerability SCanner

244

Run Vuls as follows:

./vuls scan --config <directory>/config.toml --debug --results-

dir <report_directory>

Vuls runs with the configuration specified with the –config parameter

and stores the report inside the directory specified by the –results-dir

parameter. You get verbose output that looks like the following:

[Jun 26 18:33:45] INFO [localhost] vuls-v0.19.7-

build-20220626_181254_91ed318

[Jun 26 18:33:45] INFO [localhost] Start scanning

[Jun 26 18:33:45] INFO [localhost] config: /home/nanik/

Downloads/config.toml

[Jun 26 18:33:45] DEBUG [localhost] map[string]config.

ServerInfo{

 "localhost": config.ServerInfo{

 ServerName: "localhost",

 User: "",

...

 SSHConfigPath: "",

 KeyPath: "",

...

}

[Jun 26 18:33:45] INFO [localhost] Validating config...

...

[Jun 26 18:33:45] DEBUG [localhost] execResult: servername:

 cmd: ls /etc/debian_version

 exitstatus: 0

 stdout: /etc/debian_version

...

[Jun 26 18:33:45] DEBUG [localhost] Executing... cat /etc/issue

[Jun 26 18:33:45] DEBUG [localhost] execResult: servername:

Chapter 13 Vulnerability SCanner

245

 cmd: cat /etc/issue

...

[Jun 26 18:33:45] DEBUG [localhost] Executing... lsb_

release -ir

...

 cmd: lsb_release -ir

 exitstatus: 0

...

[Jun 26 18:33:45] DEBUG [localhost] Executing... type curl

[Jun 26 18:33:45] DEBUG [localhost] execResult: servername:

 cmd: type curl

 exitstatus: 0

 stdout: curl is /usr/bin/curl

...

Scan Summary

================

localhost pop22.04 2378 installed, 0 updatable

The scan reports generated by Vuls contain comprehensive

information about the things that have been scanned or found. The report

looks like the following:

{

 "jsonVersion": 4,

 "lang": "",

 "serverUUID": "",

 "serverName": "192-168-1-3",

 "family": "pop",

 "release": "22.04",

 ...

 "ipv4Addrs": [

 "192.168.1.3"

],

Chapter 13 Vulnerability SCanner

246

 "ipv6Addrs": [

 ...

],

 "scannedAt": "2022-06-26T18:40:16.045650086+10:00",

 "scanMode": "fast mode",

 "...

 "scannedVia": "remote",

 "scannedIpv4Addrs": [

 ...

],

 "scannedIpv6Addrs": [

 ...

],

 "reportedAt": "0001-01-01T00:00:00Z",

 "reportedVersion": "",

 "reportedRevision": "",

 "reportedBy": "",

 "errors": [],

 ...

 "release": "5.17.5-76051705-generic",

 "version": "",

 "rebootRequired": false

 },

 "packages": {

 ...

 }

 },

 "config": {

 "scan": {

 "debug": true,

 "logDir": "/var/log/vuls",

Chapter 13 Vulnerability SCanner

247

 "logJSON": false,

 "resultsDir": "/home/nanik/go/src/github.com/

future-architect/vuls/result",

 "default": {},

 "servers": {

 "192-168-1-3": {

 ...

 }

 },

 "cveDict": {

 ...

 },

 "ovalDict": {

 ...

 },

 ...

 },

 "report": {

 "logJSON": false,

 ...

 }

 }

}

In the next section, you will explore some of the features provided

by Vuls.

Chapter 13 Vulnerability SCanner

248

 Learning From Vuls
There are many features in Vuls that are useful to learn and can be applied

when developing systems or security applications. You will look at three

main features that Vuls uses: port scanning, using a SQLite database, and

executing on the command line from the Go application. These features

will be discussed in depth in the following sections

 Port Scan
A port scan is a way to perform an operation to determine which ports are

open in a network. A ports is like a number that is picked by an application

to listen to. For example, HTTP servers listen to port 80 while FTP servers

listen to port 21. A list of standard port numbers that are followed in

different operating system can be seen at www.iana.org/assignments/

service-names-port-numbers/service-names-port-numbers.xhtml.

Looking at Vuls source code (scanner/base.go), you can see the

following function that performs a network scan:

package scanner

import (

 ...

 nmap "github.com/Ullaakut/nmap/v2"

)

func (l *base) execExternalPortScan(scanDestIPPorts map[string]

[]string) ([]string, error) {

 ...

 baseCmd := formatNmapOptionsToString(portScanConf)

 listenIPPorts := []string{}

 for ip, ports := range scanDestIPPorts {

Chapter 13 Vulnerability SCanner

http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml

249

 ...

 scanner, err := nmap.NewScanner(nmap.

WithBinaryPath(portScanConf.ScannerBinPath))

 ...

 return listenIPPorts, nil

}

The code uses the open source nmap library from github.com/

Ullaakut/nmap to perform the scanning operation. Before getting into the

details on how nmap is performed in the library, let’s get an understanding

of what nmap is first. The tool nmap is a command-line tool that is used

for network exploration and security auditing. It is used for gathering real-

time information about the network, detecting which ports are open in a

network environment, checking which IP addresses are activated in the

network, and more.

Make sure you have the nmap tool install on your local machine. If

you are using a Debian-based Linux distro, use the following command to

install it:

sudo apt install nmap

Run nmap to check if you can run it successfully.

nmap

You get output that looks like the following:

Nmap 7.80 (https://nmap.org)

Usage: nmap [Scan Type(s)] [Options] {target specification}

TARGET SPECIFICATION:

 ...

HOST DISCOVERY:

 ...

SCAN TECHNIQUES:

Chapter 13 Vulnerability SCanner

250

 ...

EXAMPLES:

 nmap -v -A scanme.nmap.org

 nmap -v -sn 192.168.0.0/16 10.0.0.0/8

 nmap -v -iR 10000 -Pn -p 80

Let’s take a look at the sample code that is provided inside the

chapter13/nmap directory and run it as follows:

go run main.go

The application runs and scans your local machine for an open port. In

my machine, the output looks like the following:

Host "127.0.0.1":

 Port 22/tcp open ssh

 Port 631/tcp open ipp

 Port 5432/tcp open postgresql

Nmap done: 1 hosts up scanned in 0.020000 seconds

The code detects three open ports, which are related to the ssh, ipp,

and postgresql applications. You will get different results depending on

what ports are open on your local machine.

The code snippet that uses the nmap library is as follows:

package main

import (

 ...

 "github.com/Ullaakut/nmap/v2"

)

func main() {

 ...

Chapter 13 Vulnerability SCanner

251

 scanner, err := nmap.NewScanner(

 nmap.WithTargets("localhost"),

 nmap.WithContext(ctx),

)

 ...

}

The sample code initializes the library by calling nmap.NewScanner(..).

Inside the function, the initialization code checks to ensure that the nmap

tool is installed, as shown in the following code snippet:

func NewScanner(options ...Option) (*Scanner, error) {

 ...

 if scanner.binaryPath == "" {

 var err error

 scanner.binaryPath, err = exec.LookPath("nmap")

 if err != nil {

 return nil, ErrNmapNotInstalled

 }

 }

 ...

 return scanner, nil

}

The function uses the Go os/exec package to check for the existence

of the nmap tool. Once the library has been initialized successfully, it calls

the Run() function to perform the scan operation.

package main

import (

 ...

 "github.com/Ullaakut/nmap/v2"

Chapter 13 Vulnerability SCanner

252

)

func main() {

 ...

 result, warnings, err := scanner.Run()

 ...

 }

 ...

}

The library Run() function performs the following tasks:

• Executes the nmap tool with the provided parameters

• Executes the go routine to wait for the result from the

nmap tool that will be parsed and converted into a

struct that will be returned to the caller

The variable result is of type Run struct and is declared as follows in

the library:

type Run struct {

 XMLName xml.Name `xml:"nmaprun"`

 Args string `xml:"args,attr" json:"args"`

 ProfileName string ̀xml:"profile_name,attr"

json:"profile_name"`

 Scanner string ̀xml:"scanner,attr"

json:"scanner"`

 StartStr string ̀xml:"startstr,attr"

json:"start_str"`

 Version string ̀xml:"version,attr"

json:"version"`

Chapter 13 Vulnerability SCanner

253

 XMLOutputVersion string ̀xml:"xmloutputversion,attr"

json:"xml_output_version"`

 Debugging Debugging `xml:"debugging" json:"debugging"`

 Stats Stats `xml:"runstats" json:"run_stats"`

 ScanInfo ScanInfo `xml:"scaninfo" json:"scan_info"`

 Start Timestamp `xml:"start,attr" json:"start"`

 Verbose Verbose `xml:"verbose" json:"verbose"`

 Hosts []Host `xml:"host" json:"hosts"`

 PostScripts []Script ̀xml:"postscript>script"

json:"post_scripts"`

 PreScripts []Script ̀xml:"prescript>script"

json:"pre_scripts"`

 Targets []Target `xml:"target" json:"targets"`

 TaskBegin []Task ̀xml:"taskbegin"

json:"task_begin"`

 TaskProgress []TaskProgress ̀xml:"taskprogress"

json:"task_progress"`

 TaskEnd []Task ̀xml:"taskend"

json:"task_end"`

 NmapErrors []string

 rawXML []byte

}

The raw output from nmap, the library in the XML format, looks like

the following:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE nmaprun>

<?xml-stylesheet href="file:///usr/bin/../share/nmap/nmap.xsl"

type="text/xsl"?>

<!-- Nmap 7.80 scan initiated Sun Jun 26 20:39:01 2022 as: /

usr/bin/nmap -oX - localhost -->

Chapter 13 Vulnerability SCanner

254

<nmaprun scanner="nmap" args="/usr/bin/nmap -oX - localhost"

start="1656239941" startstr="Sun Jun 26 20:39:01 2022"

version="7.80" xmloutputversion="1.04">

 <scaninfo type="syn" protocol="tcp" numservices="1000"

services="...,61532,61900,62078,63331,64623,64680,

65000,65129,65389"/>

 <verbose level="0"/>

 <debugging level="0"/>

 <host starttime="1656239941" endtime="1656239941">

 <status state="up" reason="localhost-response" reason_

ttl="0"/>

 <address addr="127.0.0.1" addrtype="ipv4"/>

 <hostnames>

 <hostname name="localhost" type="user"/>

 <hostname name="localhost" type="PTR"/>

 </hostnames>

 <ports>

 ...

 </ports>

 <times srtt="3" rttvar="0" to="100000"/>

 </host>

 <runstats>

 <finished time="1656239941" timestr="Sun Jun 26 20:39:01

2022" elapsed="0.12"

summary="Nmap done at Sun Jun 26 20:39:01 2022;

1 IP address (1 host up) scanned in 0.12 seconds"

exit="success"/>

 <hosts up="1" down="0" total="1"/>

 </runstats>

</nmaprun>

Chapter 13 Vulnerability SCanner

255

 Exec
The next feature that is used quite often inside Vuls is executing an external

tool to perform some operation as part of the scanning process. The

following are some of the commands that Vuls uses for getting network

IP information, getting kernel information, updating the index of package

manager, and many others.

apk update Downloads the updated package index from repositories

/sbin/ip -o addr lists network devices, routing, and other network-related

information

uname -r prints out system information

stat /proc/1/exe Gets information about piD 1

systemctl status lists information that is registered with system

The commands used are different for different operating systems, but

the way it is run is the same using the os/exec package.

Take a look at the sample app that is inside the chapter13/exec folder

and run the sample in your terminal as follows:

go run main.go

You get output that looks like the following:

2022/06/26 21:18:28 --------------

2022/06/26 21:18:28 Running ip link

2022/06/26 21:18:28 --------------

2022/06/26 21:18:28 1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536

qdisc noqueue state UNKNOWN mode DEFAULT group default

qlen 1000

 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

...

2022/06/26 21:18:28

Chapter 13 Vulnerability SCanner

256

2022/06/26 21:18:28 ---------------

2022/06/26 21:18:28 Running noexist

2022/06/26 21:18:28 ---------------

2022/06/26 21:18:28 %v exit status 127

2022/06/26 21:18:28 Running uname -r

2022/06/26 21:18:28 ----------------

2022/06/26 21:18:28 5.17.5-76051705-generic

The sample app uses the os/exec package to execute commands and

print the output to the console. The following code snippet shows the

function that uses the os/exec package:

package main

import (

 ..

 ex "os/exec"

)

func main() {

 ...

 Run("ip link")

 ...

 Run("noexist")

 ...

 Run("uname -r")

}

func Run(arg string) {

 var cmd *ex.Cmd

 cmd = ex.Command("/bin/sh", "-c", arg)

 ...

}

Chapter 13 Vulnerability SCanner

257

The Run(..) function is called with a string parameter, which is added to

the parameter when calling the Command(..) function. The sample runs the

argument passed into the Run(..) function as part of the /bin/sh command

tool. For example, when the Run("ip link") is called, it runs it as follows:

/bin/sh -c ip link

The app specifies that the output is stored into the variable because it

will be printed out into the console:

func Run(arg string) {

 ...

 cmd.Stdout = &stdoutBuf

 cmd.Stderr = &stderrBuf

 log.Println(stdoutBuf.String())

 log.Println(stderrBuf.String())

}

 SQLite
In this section, you will learn how to use SQLite databases. In particular,

you will learn how to use the sqlite3 library to read and write databases.

SQLite is a lightweight and self-contained SQL database that allows

applications to read and store information. Applications use normal SQL

syntax to perform different kinds of data manipulation such as inserting,

updating, and deleting data. The lightweight and portable nature of

SQLite makes it an attractive proposition to use in a project that doesn't

require a centralized database. Mobile phones such as Android use SQLite

databases that applications can use for their mobile apps.

Internally, Vuls uses SQLite extensively for storing data that it

downloads from different sources. You will look at sample applications

using SQLite. Sample code for this section can be found inside the

chapter13/sqlite directory. Let’s run the sample application as follows

from your terminal:

Chapter 13 Vulnerability SCanner

258

go run main.go

You get output that looks like the following:

2022/06/27 19:40:04 Initialize database - local.db

2022/06/27 19:40:04 Creating table in - local.db

2022/06/27 19:40:04 Inserting data into - local.db

Reading Table:

2022/06/27 19:40:04 Total rows read - [{0 CAD} {1 AUD} {2

AUD} {3 GBP} {4 CAD} {5 EUR} {6 USD} {7 USD} {8 CAD} {9 USD}

{10 GBP} {11 CAD} {12 AUD} {13 GBP} {14 EUR} {15 GBP} {16 CAD}

{17 USD} {18 AUD} {19 CAD} {20 USD} {21 CAD} {22 EUR} {23 EUR}

{24 AUD}]

The sample code creates a new database called local.db and creates

a new table called currencies. It also inserts a little data into it and prints

out the newly inserted data into the console.

The following snippet shows the code that initialize the database:

package main

import (

 ...

 _ "github.com/mattn/go-sqlite3"

 ...

)

...

func main() {

 ...

 dbHandle = InitDB(dbname)

 ...

}

Chapter 13 Vulnerability SCanner

259

// InitDB initialize database

func InitDB(filepath string) *sql.DB {

 db, err := sql.Open("sqlite3", filepath)

 if err != nil {

 panic(err)

 }

 return db

}

The InitDB function creates the new database using sql.Open, passing

in sqlite3 as the parameter. The sqlite3 parameter is used as a reference

by the database/sql module to look up the appropriate driver for this. If

successful, it will return the sql.DB struct stored inside the db variable

The sql.DB struct is declared in the database/sql module as follows:

type DB struct {

 ...

 connector driver.Connector

 ...

 closed bool

 ...

 stop func()

}

Once the database has been created successfully, the code creates

a table called currencies, which is performed by the following

InitTable(..) function:

 ...

func InitTable(db *sql.DB) {

 q := `

Chapter 13 Vulnerability SCanner

260

 CREATE TABLE IF NOT EXISTS currencies(

 Id TEXT NOT NULL PRIMARY KEY,

 Name TEXT,

 InsertedDatetime DATETIME

);`

 _, err := db.Exec(q)

 if err != nil {

 log.Fatal(err)

 }

}

The function executes the CREATE TABLE.. SQL command using the

db.Exec(..) function. The function db.Exec(..) is used to execute the

query against a database without returning any rows. The returned value

is of type Result, which is not used in the InitTable(..) function. The

Result struct is declared as follows in the database/sql module:

type Result interface {

 LastInsertId() (int64, error)

 RowsAffected() (int64, error)

}

After successfully creating the table, the code then proceeds to

inserting data. There are two parts to this operation. The first part is to

prepare the data to be inserted, which is shown in the following code

snippet:

func main() {

 ...

 records := []Record{}

 for i := 0; i < 25; i++ {

 r := (rand.Intn(len(curNames)-0) + 0)

Chapter 13 Vulnerability SCanner

261

 d := strconv.Itoa(i)

 rec := Record{Id: d, Name: curNames[r]}

 records = append(records, rec)

 }

 ...

}

The code creates an array of the Record struct and populates it, where

the populated array is passed in as a parameter to the InsertData(..)

function as follows:

func InsertData(db *sql.DB, records []Record) {

 q := `

 INSERT OR REPLACE INTO currencies(

 Id,

 Name,

 InsertedDatetime

) values(?, ?, CURRENT_TIMESTAMP)`

 stmt, err := db.Prepare(q)

 ...

 defer stmt.Close()

 for _, r := range records {

 _, err := stmt.Exec(r.Id, r.Name)

 ...

 }

}

Chapter 13 Vulnerability SCanner

262

The function uses the INSERT INTO statement, which is used inside

the Prepare(..) function. This function is used to create prepared

statements that can be executed in isolation later. The SQL statement uses

a parameter placeholder for the values (the placeholder is marked by the

? symbol), which are included as part of the parameter when executing

using the Exec(..) function. The value is obtained from the Id and Name of

the Record struct.

Now that the data has been inserted into the table, the code completes

the execution by reading the data from the table and printing it out to the

console as follows:

func ReadData(db *sql.DB) []Record {

 q := `

 SELECT Id, Name FROM currencies

 ORDER BY datetime(InsertedDatetime) DESC`

 rows, err := db.Query(q)

 ...

 var records []Record

 for rows.Next() {

 item := Record{}

 err := rows.Scan(&item.Id, &item.Name)

 ...

 records = append(records, item)

 }

 return records

}

The function ReadData(..) uses the SELECT SQL statement to read

the fields from the table with the result sorted by the InsertedDateTime

field in ascending order. The code uses the Query(..) function, returning

the Rows struct and looping through it. Inside the loop, the code uses the

Chapter 13 Vulnerability SCanner

263

Scan(..) function to copy fields from each row and read into the values

passed in the parameter. In the code example, the fields are read into

item.Id and item.Name.

The number of parameters passed to Scan(..) must match with the

number of fields read from the table. The Rows struct that is returned when

using the Query(..) function is defined inside the database/sql module.

type Rows struct {

 dc *driverConn

 releaseConn func(error)

 ...

 closemu sync.RWMutex

 closed bool

 lasterr error

 ...

}

 Summary
In this chapter, you looked at an open source security project called Vuls,

which provides vulnerability scanning capability. You learned about Vuls

by checking out the code and performing a scan operation on your local

machine.

Vuls provides a lot of functionality. In learning how Vuls works,

you learned about port scanning, executing external command-line

applications from Go, and writing code that performs database operations

using SQLite.

Chapter 13 Vulnerability SCanner

265

CHAPTER 14

CrowdSec
In this chapter, you will look at an open source security tool called

CrowdSec (https://github.com/crowdsecurity/crowdsec). There are

few reasons why this tool is interesting to study:

• It uses crowd-sourced data to collect IP information

across the globe, which is shared with the community.

• It offers code designs that are useful to look at and

learn from

• The GeoIP database is interesting on its own.

The chapter is broken down into the installation part and the learning

part. In the installation part, you will look at installing CrowdSec to

understand how it works. In the learning section, you will look deeply into

how CrowdSec implements something that you can learn from by looking

at sample code.

 Source Code
The source code for this chapter is available from the https://github.

com/Apress/Software-Development-Go repository.

© Nanik Tolaram 2023
N. Tolaram, Software Development with Go,
https://doi.org/10.1007/978-1-4842-8731-6_14

https://github.com/crowdsecurity/crowdsec
https://github.com/Apress/Software-Development-Go
https://github.com/Apress/Software-Development-Go
https://doi.org/10.1007/978-1-4842-8731-6_14#DOI

266

 CrowdSec Project
The documentation at https://doc.crowdsec.net/docs/intro explain

it nicely:

CrowdSec is an open-source and lightweight software that allows
you to detect peers with malevolent behaviors and block them from
accessing your systems at various levels (infrastructural, system,
applicative).

CrowdSec, as an open source security tool, provides quite a number of

features that sit nicely in a cloud environment. The thing that is intriguing

about the tool is the data that is collected by the community. This crowd-

sourced data allows CrowdSec to determine whether a certain IP address

has to be banned or should be allowed into your infrastructure.

There are many architectures and code designs that you are going to

learn from the project, which you will explore more in the “Learning From

CrowdSec” section.

 Using CrowdSec
I will not go through the complete installation process of CrowdSec.

Rather, I will cover the steps of a bare minimum installation that will

allow you to understand what you need for the section “Learning From

CrowdSec.” The objective of this installation is to get to a point to see the

community data that is collected by a central server replicated to a local

database.

Create an empty directory to do the following steps. In my local

installation, I created a new directory under /home/nanik/GolandPojects/

crowdsec. Follow these steps:

Chapter 14 CrowdSeC

https://doc.crowdsec.net/docs/intro

267

• Download the release from GitHub. For this section,

use v1.4.1 for Linux, downloading it using the following

command:

wget https://github.com/crowdsecurity/crowdsec/

releases/download/v1.4.1/crowdsec-release.tgz

• Once downloaded, use gunzip and tar to unzip as

follows:

gunzip ./crowdsec-release.tgz && tar -xvf crowdsec-

release.tar

• A new directory named crowdsec-v1.4.1 will be

created, as shown:

└── crowdsec-v1.4.1
 ├── cmd
 ├── config
 ├── plugins
 ├── test_env.ps1
 ├── test_env.sh
 └── wizard.sh

• Change your directory to crowdsec-v1.4.1 and run the

test_env.sh command.

./test_env.sh

Let the script run. It will take a bit of time because it’s downloading a

few things. You will see output that looks like the following:

[07/27/2022:03:50:14 PM][INFO] Creating test arboresence in

/home/nanik/GolandProjects/crowdsec/crowdsec-v1.4.1/tests

[07/27/2022:03:50:14 PM][INFO] Arboresence created

Chapter 14 CrowdSeC

268

[07/27/2022:03:50:14 PM][INFO] Copying needed files for tests

environment

[07/27/2022:03:50:15 PM][INFO] Files copied

...

INFO[27-07-2022 03:50:15 PM] Machine 'test' successfully added

to the local API

INFO[27-07-2022 03:50:15 PM] API credentials dumped to '/home/

nanik/GolandProjects/crowdsec/crowdsec-v1.4.1/tests/config/

local_api_credentials.yaml'

INFO[27-07-2022 03:50:15 PM] Wrote new 438269 bytes index to

/home/nanik/GolandProjects/crowdsec/crowdsec-v1.4.1/tests/

config/hub/.index.json

INFO[27-07-2022 03:50:16 PM] crowdsecurity/syslog-logs : OK

INFO[27-07-2022 03:50:16 PM] Enabled parsers : crowdsecurity/

syslog-logs

INFO[27-07-2022 03:50:16 PM] crowdsecurity/geoip-enrich : OK

INFO[27-07-2022 03:50:16 PM] downloading data 'https://

crowdsec-statics-assets.s3-eu-west-1.amazonaws.com/

GeoLite2-City.mmdb' in '/home/nanik/GolandProjects/crowdsec/

crowdsec-v1.4.1/tests/data/GeoLite2-City.mmdb'

INFO[27-07-2022 03:51:25 PM] downloading data 'https://

crowdsec-statics-assets.s3-eu-west-1.amazonaws.com/

GeoLite2-ASN.mmdb' in '/home/nanik/GolandProjects/crowdsec/

crowdsec-v1.4.1/tests/data/GeoLite2-ASN.mmdb'

INFO[27-07-2022 03:51:41 PM] Enabled parsers : crowdsecurity/

geoip-enrich

INFO[27-07-2022 03:51:41 PM] crowdsecurity/dateparse-

enrich : OK

INFO[27-07-2022 03:51:41 PM] Enabled parsers : crowdsecurity/

dateparse-enrich

...

Chapter 14 CrowdSeC

269

The script creates a new directory called tests containing a complete

test environment for CrowdSec. The directory will look like the following:

nanik@nanik:~/GolandProjects/crowdsec/crowdsec-v1.4.1$ tree -L

2 ./tests/

./tests/

├── config
│ ├── acquis.yaml
│ ├── collections
│ ├── crowdsec-cli
│ ├── hub
...

│ ├── scenarios
│ └── simulation.yaml
├── crowdsec
├── cscli
├── data
│ ├── crowdsec.db
│ ├── GeoLite2-ASN.mmdb
│ └── GeoLite2-City.mmdb
├── dev.yaml
├── logs
└── plugins
 ├── notification-email
...

 └── notification-splunk

The directory contains a variety of files including the CrowdSec

command line tools crowdsec and cscli along with a folder called data

that you will look at in the next section in more detail. The database with

extension .mmdb is the database that you will look at in detail in the “GeoIP

Database” section.

Chapter 14 CrowdSeC

270

 crowdsec.db
CrowdSec stores data inside a SQLite database called crowdsec.db. The

database contains a number of tables, shown in Figure 14-1.

Figure 14-1. CrowdSec database

The test environment does not populate any data when the database

is created, so you need to set up your environment so that it will sync from

a central server. To do this, you need to register first with the CrowdSec

server using the cscli tool, as outlined in the doc at https://docs.

crowdsec.net/docs/cscli/cscli_capi_register/. Open terminal and

change to the tests directory, and execute the following command:

./cscli capi register -c ./dev.yaml

You will get output like the following:

WARN[27-07-2022 04:10:11 PM] can't load CAPI credentials from

'./config/online_api_credentials.yaml' (missing field)

Chapter 14 CrowdSeC

https://docs.crowdsec.net/docs/cscli/cscli_capi_register/
https://docs.crowdsec.net/docs/cscli/cscli_capi_register/

271

INFO[27-07-2022 04:10:11 PM] push and pull to Central API

disabled

INFO[27-07-2022 04:10:13 PM] Successfully registered to Central

API (CAPI)

INFO[27-07-2022 04:10:13 PM] Central API credentials dumped to

'./config/online_api_credentials.yaml'

...

Using the cscli command tool, you must register to a central server.

online_api_credentials.yaml is populated with the registration details,

which look like the following:

url: https://api.crowdsec.net/

login: <login_details>

password: <password>

You are now ready to populate your database with the central server.

Use the following command:

./crowdsec -c ./dev.yaml

You will see output that looks like the following:

...

INFO[27-07-2022 16:16:45] Crowdsec v1.4.1-linux- e1954adc325ba

a9e3420c324caabd50b7074dd77

WARN[27-07-2022 16:16:45] prometheus is enabled, but the listen

address is empty, using '127.0.0.1'

WARN[27-07-2022 16:16:45] prometheus is enabled, but the listen

port is empty, using '6060'

INFO[27-07-2022 16:16:45] Loading prometheus collectors

INFO[27-07-2022 16:16:45] Loading CAPI pusher

INFO[27-07-2022 16:16:45] CrowdSec Local API listening on

127.0.0.1:8081

Chapter 14 CrowdSeC

272

INFO[27-07-2022 16:16:45] Start push to CrowdSec Central API

(interval: 30s)

INFO[27-07-2022 16:16:45] Start pull from CrowdSec Central API

(interval: 2h0m0s)

INFO[27-07-2022 16:16:45] Loading grok library /home/nanik/

GolandProjects/crowdsec/crowdsec-v1.4.1/tests/config/patterns

INFO[27-07-2022 16:16:46] Loading enrich plugins

INFO[27-07-2022 16:16:46] Successfully registered enricher

'GeoIpCity'

...

INFO[27-07-2022 16:16:46] Loading parsers from 4 files

...

INFO[27-07-2022 16:16:47] capi metrics: metrics sent

successfully

INFO[27-07-2022 16:16:47] Start send metrics to CrowdSec

Central API (interval: 30m0s)

INFO[27-07-2022 16:16:54] capi/community-blocklist : 0 explicit

deletions

INFO[27-07-2022 16:17:15] crowdsecurity/community-blocklist :

added 8761 entries, deleted 0 entries (alert:1)

Notice the last log message that says added 8761 entries, which means

that it has added 8761 entries into your database. If you are not getting this

message, rerun the crowdsec command.

Looking into the decisions table, you will the populated data, as

shown in Figure 14-2

Chapter 14 CrowdSeC

273

Figure 14-2. Data inside the decisions table

The table contains interesting information:

• IP addresses that are banned

• Date until when a particular IP is banned

• Scenarios when an IP address is detected

You have learned briefly how to set up CrowdSec and you have seen

the data it uses. In the next section, you will look at parts of CrowdSec that

are interesting. You will look at how certain things are implemented inside

CrowdSec and then look at a simpler code sample of how to do it.

 Learning From CrowdSec
CrowdSec as a project is quite complex and it contains a lot of different

things that are very interesting to learn from. In this section, you will pick

up a few topics that are used inside CrowdSec that are useful to learn.

These topics can also be applied when designing your own software

with Go.

Chapter 14 CrowdSeC

274

 System Signal Handling
As a system, CrowdSec provides an extensive list of features that are

broken down into several different modules. The reason for features

to be broken down into modules is to make it easy for development,

maintenance, and testing. When building a system, one of the key things

to remember is to make sure all the different modules can be gracefully

terminated and all resources such as memory, network connections, and

disk space are released. To make sure that different parts of the system

shut down properly, you need some sort of coordinated communication to

understand when modules need to prepare for the shutdown process.

Imagine a scenario where you are designing an application and it is

terminated by the operating system because of some resource constraint.

The application must be aware of this and have the capability to shut

down all the different modules independently before shutting itself down

permanently. You will look at an example on how this is done using the

code sample in the chapter14/signalhandler folder.

Open your terminal and run the sample as follows:

go run main.go

The application will keep on running, printing out loop messages on

the terminal until you stop it by hitting Ctrl+C to stop. Then it will print out

the following:

2022/07/24 22:31:32 loop1000Times - 0

2022/07/24 22:31:32 loop100Times - 0

2022/07/24 22:31:32 loop100Times - 1

...

2022/07/24 22:31:32 loop1000Times - 14

2022/07/24 22:31:33 loop1000Times - 15

2022/07/24 22:31:33 loop100Times - 15

^C2022/07/24 22:31:33 SIGTERM received

Chapter 14 CrowdSeC

275

2022/07/24 22:31:33 loop1000Times - quit

2022/07/24 22:31:33 loop100Times - quit

2022/07/24 22:31:33 Complete!

The application successfully shuts down gracefully because the Ctrl+C

key combo is detected. Before going through the code, Figure 14-3 shows

the app design. Use Figure 14-3 as guidance when you walk through the

sample code.

Figure 14-3. CrowdSec system signal handling

The following code snippet shows the registration of system

interruption events using Go’s built-in os/signal package (step 1). The

function signal.Notify(..) is called, passing in the signals that will be

registered to listen to. In the sample code, you register SIGHUP, SIGTERM,

and SIGINT.

func main() {

 signalChan := make(chan os.Signal, 1)

 signal.Notify(signalChan,

 syscall.SIGHUP,

Chapter 14 CrowdSeC

276

 syscall.SIGTERM,

 syscall.SIGINT)

 ...

 go func() {

 for {

 s := <-signalChan

 switch s {

 case syscall.SIGHUP, syscall.SIGINT, syscall.SIGTERM:

...

 }

 }

 }()

 ...

}

The following explains the meaning of the signals:

• SIGHUP: The operating system sends this signal

when the terminal used to execute the application is

disconnected, closed, or broken.

• SIGTERM: This is a generic signal that is used by the

operating system to signal terminating a process or

application.

• SIGINT: This is also referred to as a program interrupt and

this signal occurs when the Ctrl+C combination is detected.

The code listens to all these signals to ensure that if any of them are

detected, it will do its job to shut itself down properly.

The signalChan variable is a channel that accepts os.Signal and it is

passed as parameter when calling signal.Notify(). The goroutine takes

care of handling the signal received from the library in a for{} loop (step

2). Receiving a signal (step 6) means that there is an interruption, so the

code must take the necessary steps to start the shutdown process (step 7).

Chapter 14 CrowdSeC

277

Now that the code is ready to receive the system event and it knows

what it is supposed to when it receives it, let’s take a look at how other

modules/goroutines are informed about this. The sample code spawns two

goroutines, as shown here:

func main() {

 ...

 wg.Add(2)

 go loop100Times(stop, &wg)

 go loop1000Times(stop, &wg)

 wg.Wait()

 log.Println("Complete!")

}

loop100Times and loop1000Times are called as goroutines (step 3) and

are passed two parameters, stop and wg. The stop variable is a channel

variable that is used by the goroutine function to know when it needs to

stop processing. The following code snippet shows the code that closes the

stop channel:

func main() {

 ...

 go func() {

 for {

 ...

 switch s {

 case syscall.SIGHUP, syscall.SIGINT, syscall.SIGTERM:

 ...

 close(stop)

 ...

Chapter 14 CrowdSeC

278

 }

 }

 }()

 ...

}

The close(stop) function closes the channel, and any part of the

application that is checking for this channel will detect there is activity

happening on the channel and will act on it. The checking of the stop

channel can be seen in the following code snippet:

func loop100Times(stop <-chan string, wg *sync.WaitGroup) {

 ...

 for {

 select {

 case <-stop:

 log.Println("loop100Times - quit")

 return

 default:

 ...

 }

 }

}

The loop100Times function runs inside a for{} loop where it checks

the channel condition inside the select{} statement. To make it easy to

understand, basically the for{ select {} } block of code translate to the

following:

Chapter 14 CrowdSeC

279

Keep on doing the for loop, and on every loop check do the following:

• Is there any value to read from the stop channel? if there is
something, processes must stop.

• otherwise, just print to the console and increment the
counter.

The same logic is used inside the loop1000Times function, so it

works exactly the same. Both functions will stop processing and will print

the counter value to the terminal once the stop channel is closed. The

application has achieved the state of shutting down itself gracefully by

informing the different parts of the code that it is shutting down.

The last thing you are going to look at is the wait state (step 4). Now

the different goroutines know when to shut down, but the application

can only completely shut itself down after all the goroutines complete

their processes. This is made possible by the use of sync.WaitGroup. The

following code snippet shows the usage of WaitGroup:

package main

import (

 ...

)

func main() {

 ...

 var wg sync.WaitGroup

 ...

 wg.Add(2)

 go loop100Times(stop, &wg)

 go loop1000Times(stop, &wg)

 wg.Wait()

Chapter 14 CrowdSeC

280

 log.Println("Complete!")

}

func loop100Times(stop <-chan string, wg *sync.WaitGroup) {

 ...

 defer wg.Done()

 for {

 ...

 }

}

func loop1000Times(stop <-chan string, wg *sync.WaitGroup) {

 ...

 defer wg.Done()

 for {

 ...

 }

}

 Handling Service Dependencies
Complex applications like CrowdSec have multiple services that run at

the same time or at scheduled times. In order for services to run properly,

there needs to be service coordination that takes care of the dependencies

between services.

Figure 14-4 shows how the service coordination is done inside

CrowdSec using the channel.

Chapter 14 CrowdSeC

281

Figure 14-4. Service coordination

In Figure 14-4, the apiReady channel is the central part of the service

coordination when CrowdSec starts up. The diagram shows that the

apiServer.Run function sends a signal to the apiReady channel, which

allows the other service, servePrometheus, to run the server listening on

port 6060.

The following code snippet shows the StartRunSvc function running

servePrometheus as a goroutine and passing in the apiReady channel, and

it also pass the same channel when the Serve function is called:

package main

import (

 "os"

 ...

)

Chapter 14 CrowdSeC

282

func StartRunSvc() error {

 ...

 apiReady := make(chan bool, 1)

 agentReady := make(chan bool, 1)

 // Enable profiling early

 if cConfig.Prometheus != nil {

 ...

 go servePrometheus(cConfig.Prometheus, dbClient, apiReady,

agentReady)

 }

 return Serve(cConfig, apiReady, agentReady)

}

The servePrometheus function starts running the server to listen on

port 6060 only when it is able to read the value from the apiReady channel

(<- apiReady), as shown in the following snippet:

func servePrometheus(config *csconfig.PrometheusCfg, dbClient

*database.Client, apiReady chan bool, agentReady chan bool) {

 ...

 <-apiReady

 ...

 if err := http.ListenAndServe(fmt.Sprintf("%s:%d", config.

ListenAddr, config.ListenPort), nil); err != nil {

 log.Warningf("prometheus: %s", err)

 }

}

The apiReady channel is set only when the CrowdSec API server

has been run successfully, as shown in the following code snippet. The

serveAPIServer function spawns off another goroutine when calling

Chapter 14 CrowdSeC

283

the apiServer.Run(..) function, where it sends a value to the apiReady

channel where the API server starts up.

func serveAPIServer(apiServer *apiserver.APIServer, apiReady

chan bool) {

 apiTomb.Go(func() error {

 ...

 go func() {

 ...

 if err := apiServer.Run(apiReady); err != nil {

 log.Fatalf(err.Error())

 }

 }()

 ...

 })

}

func (s *APIServer) Run(apiReady chan bool) error {

 ...

 s.httpServerTomb.Go(func() error {

 go func() {

 apiReady <- true

 ...

 }()

 ...

 })

 return nil

}

Let’s take a look at a simpler version of the service coordination, which

is in the chapter14/services folder. The sample code demonstrates

how to use service coordination between two different services, serviceA

Chapter 14 CrowdSeC

284

and serviceB. Open up terminal and make sure you are in the correct

chapter14/services directory and run the code as follows:

go run main.go

You will get output like the following:

2022/07/26 20:40:20Starting serviceB

2022/07/26 20:40:21Done with serviceB

2022/07/26 20:40:21 ..Starting serviceA

2022/07/26 20:40:23 ..Done with serviceA

Since the code is running inside a goroutine, the output sequence

printed on your console will vary; however, the service will be run

correctly. The following code shows the code that runs the service as a

goroutine:

func main() {

 serviceBDone := make(chan bool, 1)

 alldone := make(chan bool, 1)

 go serviceB(serviceBDone)

 go serviceA(serviceBDone, alldone)

 <-alldone

}

There are two channels created by the sample app. Let’s take a look the

function of each channel:

• serviceBDone: This channel is used to inform that

serviceB has done its job.

• alldone: This channel is used to inform that serviceA

has done its job so the application can exit.

Chapter 14 CrowdSeC

285

The following code snippet shows the serviceA and serviceB

functions:

func serviceB(serviceBDone chan bool) {

 ...

 serviceBDone <- true

 log.Println("....Done with serviceB")

}

//2nd service

func serviceA(serviceBDone chan bool, finish chan bool) {

 <-serviceBDone

 ...

 log.Println("..Done with serviceA")

 finish <- true

}

 GeoIP Database
CrowdSec uses a GeoIP database that contains geographical information

of an IP address. This database is downloaded as part of setting up the test

environment discussed in the “Using CrowdSec” section.

In this section, you will look into this database and learn how to

read the data from the database. One of the use cases for this database

is the ability to build a security tool for your infrastructure to label each

incoming IP, which is useful to monitor and understand the incoming

traffic to your infrastructure. The GeoIP database comes from the following

website: https://dev.maxmind.com/geoip/geolite2-free-geolocation-

data?lang=en#databases. Have a read through the website to get an

understanding of the licensing

The sample code is inside the chapter14/geoip/city folder, but

before running it, you need to specify the location of the GeoIP database

that the code will use. If you followed the “Using CrowdSec” section, you

Chapter 14 CrowdSeC

https://dev.maxmind.com/geoip/geolite2-free-geolocation-data?lang=en#databases
https://dev.maxmind.com/geoip/geolite2-free-geolocation-data?lang=en#databases

286

will have a database file called GeoLite2-City.mmdb database inside the

data folder. Copy the location of the file to use it inside the snippet, as

shown below. My file location is shown in the code snippet.

package main

...

func main() {

 db, err := maxminddb.Open("/home/nanik/GolandProjects/

cloudprogramminggo/chapter14/geoip/city/GeoLite2-City.mmdb")

 ...

}

Once the file location has been specified, open terminal and run the

sample as follows:

go run main.go

You will see output like the following:

IP : 2.0.0.0/17, Long : 2.338700, Lat : 48.858200, Country :

FR, Continent: EU

IP : 2.0.128.0/19, Long : -0.947200, Lat : 47.171600, Country :

FR, Continent: EU

...

IP : 2.0.192.0/18, Long : 2.338700, Lat : 48.858200, Country :

FR, Continent: EU

IP : 2.1.0.0/19, Long : 2.338700, Lat : 48.858200, Country :

FR, Continent: EU

IP : 2.1.32.0/19, Long : 2.302200, Lat : 44.858601, Country :

FR, Continent: EU

...

Chapter 14 CrowdSeC

287

The code reads the database to get all IP addresses in the 2.0.0.0 IP

range and prints all the IP addresses found in that range along with other

country- and continent-related information. Let’s go through the code and

understand how it uses the database.

The data is stored in a single file, which is efficiently packed together,

so in order to read the database, you must to use another library. Use the

github.com/oschwald/maxminddb-golang library. The documentation of

the library can be found at https://pkg.go.dev/github.com/oschwald/

maxminddb-golang.

The library provides a function to convert the data into a struct. In the

sample code, you create your own struct to represent the data that will

be read.

package main

...

type GeoCityRecord struct {

 Continent struct {

 Code string `json:"code"`

 GeonameId int `json:"geoname_id"`

 Names map[string]interface{} `json:"names"`

 } `json:"continent"`

 Country struct {

 GeonameId int `json:"geoname_id"`

 IsoCode string `json:"iso_code"`

 Names map[string]interface{} `json:"names"`

 } `json:"country"`

 Location struct {

 AccuracyRadius int `json:"accuracy_radius"`

 Latitude float32 `json:"latitude"`

 Longitude float32 `json:"longitude"`

Chapter 14 CrowdSeC

http://github.com/oschwald/maxminddb-golang
https://pkg.go.dev/github.com/oschwald/maxminddb-golang
https://pkg.go.dev/github.com/oschwald/maxminddb-golang

288

 TimeZone string `json:"time_zone"`

 } `json:"location"`

 RegisteredCountry struct {

 GeoNameID int `json:"geoname_id"`

 IsoCode string `json:"iso_code"`

 Names map[string]interface{} `json:"names"`

 } `json:"registered_country"`

}

func main() {

 ...

}

The GeoCityRecord struct will be populated when calling the library to

read the data, as shown here:

package main

import (

 ...

)

...

func main() {

 ...

 _, network, err := net.ParseCIDR("2.0.0.0/8")

 ...

 for networks.Next() {

 var rec interface{}

 r := GeoCityRecord{}

 ip, err := networks.Network(&rec)

 ...

}

Chapter 14 CrowdSeC

289

networks.Next() loops through the records found and reads all

geographical information from the database by calling the networks.

Network(..) function, which populates the rec variable.

The rec variable is an interface, so the code uses json.Marshal(..)

to marshal the content into a proper struct, defined by the r variable, as

shown here:

package main

...

func main() {

 ...

 for networks.Next() {

 var rec interface{}

 r := GeoCityRecord{}

 ip, err := networks.Network(&rec)

 ...

 j, _ := json.Marshal(rec)

 err = json.Unmarshal([]byte(j), &r)

 ...

 fmt.Printf("IP : %s, Long : %f, Lat : %f, Country : %s,

Continent: %s\n", ip.String(), r.Location.Longitude,

r.Location.Latitude,

 r.Country.IsoCode, r.Continent.Code)

 }

}

Once the JSON has been unmarshalled back to the r variable, the code

prints out the information into the console.

Chapter 14 CrowdSeC

290

 Summary
In this chapter, you not only looked at the crowd source nature of data

collection used by CrowdSec and how the community benefits from it, you

also learned how to use it in your application.

You learned how to use channels to inform applications when system

signals are sent by the operating system. You also looked at using channels

to handle service dependencies during startup. Lastly, you looked at how

to read a GeoIP database, which is useful to know when you want to use

the information in your infrastructure for logging or monitoring IP traffic

purposes.

Chapter 14 CrowdSeC

293

CHAPTER 15

ANSI and UI
In this chapter, you will learn about writing command-line applications

that have a user interface (UI). You will look at adding text styling, such

as italic or bold text, text of a different color, a UI that uses a spinner, and

more. This kind of user interface is possible by using ANSI escape codes,

which contain code to do certain things in the terminal.

You will also look at an open source library that makes it easy to write a

user interface that takes care of all the heavy lifting of writing the different

ANSI escape codes to do fancy UI tricks. In this chapter, you will learn

about the following:

• ANSI escape codes for UI

• An open source library to write different kinds of UIs

• Styling text, such as italic and bold

 Source Code
The source code for this chapter is available from the https://github.

com/Apress/Software-Development-Go repository.

© Nanik Tolaram 2023
N. Tolaram, Software Development with Go,
https://doi.org/10.1007/978-1-4842-8731-6_15

https://github.com/Apress/Software-Development-Go
https://github.com/Apress/Software-Development-Go
https://doi.org/10.1007/978-1-4842-8731-6_15#DOI

294

 ANSI Escape Code
Terminal-based applications that provide a user interface are normally

built using ANSI escape codes. The Wikipedia page at https://

en.wikipedia.org/wiki/ANSI_escape_code provides a comprehensive

explanation of the ANSI code:

ANSI escape sequences are a standard for in-band signaling to
control cursor location, color, font styling, and other options on video
text terminals and terminal emulators.

With the help of ANSI code, there are a proliferation of terminal-based

applications that provide a rich terminal-based user interface.

Let’s experiment with a simple Bash script to print different

background and foreground colors with text using ANSI code, as shown in

the following example script:

for x in {0..8}; do for i in {30..37}; do

 for a in {40..47}; do echo -ne "\e[$i;$a""m\\\e[$i;$a""m\

e[37;40m "; done

 echo

done; done

echo ""

Figure 15-1 shows the output that you will see on your screen.

ChApter 15 ANSI ANd UI

https://en.wikipedia.org/wiki/ANSI_escape_code
https://en.wikipedia.org/wiki/ANSI_escape_code

295

Figure 15-1. Bash output

The following script prints out numbers in 256 different foreground

colors using ANSI code. Figure 15-2 shows the output.

for i in {0..255}; do printf '\e[38;5;%dm%3d ' $i $i; (((i+3)

% 18)) || printf '\e[0m\n'; done

Figure 15-2. 256 color output

Both Bash scripts use ANSI code to select color. For Figure 15-2, the

ANSI code is the following:

\e[38;5;228m

ChApter 15 ANSI ANd UI

296

Table 15-1 explains what the code means.

Table 15-1. Code Description

Code Description

\e escape character

38;5 ANSI code specifying foreground color

228 Color code for bright yellow

In this section, you learned about ANSI codes and how to use them

to print text with different colors by writing Bash scripts. This lays the

foundation for the next section where you are going to use ANSI code to

write different kinds of terminal-based user interfaces inside Go.

 ANSI-Based UI
In the previous section, you looked at ANSI codes and how to use them

in Bash. In this section, you are going to use the ANSI codes inside a Go

application. You will use ANSI code to set text color, style the text such as

italic, and more.

 Color Table
Open your terminal and run the code inside the chapter15/ansi folder.

go run main.go

Figure 15-3 shows the output.

ChApter 15 ANSI ANd UI

297

Figure 15-3. Different color text output

The code prints the text Aa combined with the foreground and

background color. The color values are set using escape code, which is

obtained from the fg and bg variables, as shown in the following snippet:

 ...

 for _, fg := range fgColors {

 fmt.Printf("%2s ", fg)

 ...

 if len(fg) > 0 {

 ...

 fmt.Printf("\x1b[%sm Aa \x1b[0m", bg)

 }

 }

 }

ChApter 15 ANSI ANd UI

298

Then different foreground and background numbers are specified in

the fgColors and bgColors arrays, as follows:

var fgColors = []string{

 "", "30", "31", "32", "33", "34", "35", "36", "37",

 "90", "91", "92", "93", "94", "95", "96", "97",

}

var bgColors = []string{

 "", "40", "41", "42", "43", "44", "45", "46", "47",

 "100", "101", "102", "103", "104", "105", "106", "107",

}

The string printed to the screen looks like the following:

[31;40m Aa [0m

Here is the breakdown of what the code means:

• [31;40m: ANSI escape code for black background with

red color text

• Aa: The Aa text

• [0m: Reset

Figure 15-4 shows a table extracted from https://en.wikipedia.

org/wiki/ANSI_escape_code showing the different foreground and

background value combinations and the color each represents.

ChApter 15 ANSI ANd UI

https://en.wikipedia.org/wiki/ANSI_escape_code
https://en.wikipedia.org/wiki/ANSI_escape_code

299

Figure 15-4. Foreground and background mapping

In the next section, you will look at examples of how to use ANSI code

to format text on a screen.

 Styling Text
ANSI code is also available to style text such as italic, superscript, and

more. Let’s take a look at the sample code inside the chapter15/textstyle

folder, which will print output like Figure 15-5.

Figure 15-5. Text styling using ANSI

The following code declares different constants containing ANSI code

to format text with different styles:

package main

import "fmt"

const (

ChApter 15 ANSI ANd UI

300

 Underline = "\x1b[4m"

 UnderlineOff = "\x1b[24m"

 Italics = "\x1b[3m"

 ItalicsOff = "\x1b[23m"

)

...

In this section, you used different ANSI codes to format text in the

console with different colors and formats. Going through the sample code,

it is obvious that writing a command-line application that uses ANSI codes

is quite laborious because you need to specify the different ANSI codes

that are required in the application.

In the next section, you will look at some open source projects that take

care of the different aspects of command-line user interface development

to make writing code easier.

 Open Source Library
In this section, you will look at two different open source libraries that

are useful when writing command-line user interfaces. You will look at

examples of how to use the libraries and look at how the internals of the

libraries work.

 Gookit
This library provides a simple API for applications to print text in different

foreground and background colors. It also provides text styling such as

italics, superscript, etc. The following is the link to the library project:

https://github.com/gookit/color.

Run the sample code inside the chapter15/gookit folder as shown:

go run main.go

ChApter 15 ANSI ANd UI

https://github.com/gookit/color

301

Figure 15-6 shows the output.

Figure 15-6. Gookit sample output

The following code snippet shows the simple API call:

...

func main() {

 color.Warn = &color.Theme{"warning", color.Style{color.

BgDefault, color.FgWhite}}

 ...

 color.Style{color.FgDefault, color.BgDefault, color.

OpStrikethrough}.Println("Strikethrough style")

 color.Style{color.FgDefault, color.BgDefault, color.OpBold}.

Println("Bold style")

 ...

}

Calling color.Style.Println prints the text that you want using the

foreground and background colors specified. For example,

color.Style{color.FgDefault, color.BgDefault, color.

OpStrikethrough}.Println("Strikethrough style")

prints the words Strikethrough style in the default foreground and

background colors with the strikethrough text format.

The library uses a constant value to define the different colors it

provides, as shown in the following code snippets, which can be found in

the library under the file color_16.go:

ChApter 15 ANSI ANd UI

302

const (

 FgBlack Color = iota + 30

 FgRed

 FgGreen

 FgYellow

 ...

)

const (

 FgDarkGray Color = iota + 90

 FgLightRed

 FgLightGreen

 ...

)

const (

 BgBlack Color = iota + 40

 BgRed

 ...

)

const (

 BgDarkGray Color = iota + 100

 BgLightRed

 ...

)

const (

 OpReset Color = iota

 OpBold

 OpFuzzy

 OpItalic

 ...

)

ChApter 15 ANSI ANd UI

303

The library uses the same ANSI codes to format the color and text

styling as you saw in the previous section. The following code snippet is

from the file color.go:

const (

 SettingTpl = "\x1b[%sm"

 FullColorTpl = "\x1b[%sm%s\x1b[0m"

)

 Spinner
This library provides progress indicators for command-line applications.

Progress indicators are mostly found in mobile applications or in graphical

user interfaces like browsers. Progress indicators are used to indicate to

the user that the application is processing the user's request. The library

project’s home is https://github.com/briandowns/spinner. Open your

terminal and run the code inside the chapter15/spinner folder as follows:

go run main.go

Figure 15-7 shows the output you will see when running the sample

code. It prints the words Processing request with a red bar moving back and

forth as the spinner.

Figure 15-7. Spinner sample output

The library is straightforward to use, as shown in the following code

snippet:

func main() {

 s := spinner.New(spinner.CharSets[35], 100*time.Millisecond)

 s.Color("red")

ChApter 15 ANSI ANd UI

https://github.com/briandowns/spinner

304

 s.Prefix = "Processing request : "

 s.Start()

 ...

 s.Stop()

}

Calling spinner.New initializes a new spinner with the type specified,

in this case spinner.CharSets[35], and the time delay rendering the

spinner, which is 100 milliseconds.

You can specify the different spinners, which can be found inside the

library in the file character_sets.go.

The library renders the spinner to the screen by printing through each

character byte in the array specified after a certain amount of delay. By doing

this, it gives the illusion of animation when seeing it printed on the screen.

In Figure 15-8, you can see in the debugging window how the different

characters that will form the spinner are stored inside the Spinner struct,

allowing the library to render them individually. This way, when the library

renders the different characters, it looks like an animation.

Figure 15-8. Spinner struct containing spinner characters

ChApter 15 ANSI ANd UI

305

The spinner.Start() function is the central piece of the logic inside

the library that renders the spinner’s animation.

func (s *Spinner) Start() {

 ...

 go func() {

 for {

 for i := 0; i < len(s.chars); i++ {

 select {

 ...

 default:

 ...

 if runtime.GOOS == "windows" {

 ...

 } else {

 outColor = fmt.Sprintf("\r%s%s%s", s.Prefix,

s.color(s.chars[i]), s.Suffix)

 }

 ...

 fmt.Fprint(s.Writer, outColor)

 ...

 time.Sleep(delay)

 }

 }

 }

 }()

}

The function fires off a goroutine and endlessly loops the animation on

the screen until the stop() function is called by the application.

ChApter 15 ANSI ANd UI

306

The outColor variable contains the text to be printed. In this example,

it’s Processing request, along with the ANSI code of the color specified in

the sample code, so the content of the variable looks like Figure 15-9.

Figure 15-9. outColor final output

 Summary
In this chapter, you learn about ANSI codes and how they are useful for

creating user interfaces in terminals. The available ANSI codes allow you to

write text in color and apply different formatting to the text printed on the

screen. You learned that the ANSI codes can be used inside a Bash script

and inside Go code.

You explored deeper into the usage of ANSI codes by looking

at different open source libraries that provide richer user interface

functionality for terminal-based applications. The libraries you looked

at provide text-based formatting such as color and styles and progress

indicators.

ChApter 15 ANSI ANd UI

307

CHAPTER 16

TUI Framework
You saw in Chapter 15 that ANSI codes contain a different variety of

code that can be used to develop text-based user interfaces. You also saw

examples of using ANSI codes and learned what the different codes mean.

There are a number of user interface libraries for Go that take care of user

interface operations, thereby making development easier and faster. In this

chapter, you will look at these libraries and explore in detail how they work

internally.

In this chapter, you will look at two libraries. The first library is a simple

library called uiprogress that allows an application to create a text-based

progress bar. The other is called bubbletea and it is a more comprehensive

library that allows an application to create different kinds of text-based UIs

such as text input, boxes, spinners, and more.

By the end of this chapter, you will learn the following:

• How to use the libraries

• How the libraries work internally

 uiprogress
In this section, you will look at the uiprogress library, which is hosted at

https://github.com/gosuri/uiprogress. The library provides a progress

bar user interface, as shown in Figure 16-1. The application uses the

library to create a progress bar as a feedback mechanism to show that an

operation is currently in progress.

© Nanik Tolaram 2023
N. Tolaram, Software Development with Go,
https://doi.org/10.1007/978-1-4842-8731-6_16

https://doi.org/10.1007/978-1-4842-8731-6_15
https://github.com/gosuri/uiprogress
https://doi.org/10.1007/978-1-4842-8731-6_16#DOI

308

Figure 16-1. uiprogress progress bar

Check the project out from GitHub to your local environment and

run the sample application that is provided inside the example/simple

directory.

go run main.go

The output is shown in Figure 16-2.

Figure 16-2. Progress bar output from simple.go

The sample code is quite simple.

func main() {

 uiprogress.Start() // start rendering

 bar := uiprogress.AddBar(100) // Add a new bar

 // optionally, append and prepend completion and elapsed time

 bar.AppendCompleted()

 bar.PrependElapsed()

 for bar.Incr() {

 time.Sleep(time.Millisecond * 20)

 }

}

Chapter 16 tUI Framework

309

 Code Flow
You will use this sample application as the basis to do a walk-through of

the library. Figure 16-3 shows how the application interacts with the library

and shows what is actually happening behind the scenes inside the library.

Figure 16-3. Code flow from simple.go to the library

Let’s walk through the diagram to understand what’s happening. The

first thing the app does is call the Start() function. This is to initialize the

internals of the library. The function spins off a goroutine and calls the

Listen() function, which reside inside the progress.go file shown here:

func (p *Progress) Listen() {

 for {

 p.mtx.Lock()

 interval := p.RefreshInterval

 p.mtx.Unlock()

 select {

Chapter 16 tUI Framework

310

 case <-time.After(interval):

 p.print()

 case <-p.tdone:

 p.print()

 close(p.tdone)

 return

 }

 }

}

The function is in a for{} loop and calls the print() function at an

interval that has been set at the default of 10 milliseconds.

Upon completing the Start() function, the sample app calls the

AddBar() function to create a new progress bar that will be shown to the

user. The library can process multiple progress bar at the same time, so any

new bar created will be stored in the Bars slice, as shown:

func (p *Progress) AddBar(total int) *Bar {

 ...

 bar := NewBar(total)

 bar.Width = p.Width

 p.Bars = append(p.Bars, bar)

 ...

}

 Updating Progress
Upon expiry of the 10 milliseconds interval, the library updates each of

the registered progress bars using the print() function running in the

background. The code snippet of running the print() function is as

follows:

Chapter 16 tUI Framework

311

func (p *Progress) print() {

 ...

 for _, bar := range p.Bars {

 fmt.Fprintln(p.lw, bar.String())

 }

 ...

}

The print() function loops through the Bars slice and calls the

String() function, which in turn calls the Bytes() function. The Bytes()

function performs calculations to get the correct value for the progress bar

and prints this with a suffix and prefix.

func (b *Bar) Bytes() []byte {

 completedWidth := int(float64(b.Width) *

(b.CompletedPercent() / 100.00))

 for i := 0; i < completedWidth; i++ {

 ...

 }

 ...

 pb := buf.Bytes()

 if completedWidth > 0 && completedWidth < b.Width {

 pb[completedWidth-1] = b.Head

 }

 ...

 return pb

}

The function calls AppendCompleted() and PrependElapsed() are

used to define the following:

AppendCompleted() adds a function that will print out the percentage

completed when the progress bar has completed its operation.

Chapter 16 tUI Framework

312

func (b *Bar) AppendCompleted() *Bar {

 b.AppendFunc(func(b *Bar) string {

 return b.CompletedPercentString()

 })

 return b

}

PrependElapsed() prefixes the progress bar with the time it has taken

to complete so far.

func (b *Bar) PrependElapsed() *Bar {

 b.PrependFunc(func(b *Bar) string {

 return strutil.PadLeft(b.TimeElapsedString(), 5, ' ')

 })

 return b

}

Lastly, the application needs to specify the increment or decrement of

the progress bar value. In the sample code case, it increments as follows:

func main() {

 ...

 for bar.Incr() {

 time.Sleep(time.Millisecond * 20)

 }

}

The code will look as long as the bar.Incr() returns true and will

sleep for 20 milliseconds before incrementing again.

From your code perspective, the library takes care of updating and

managing the progress bar, allowing your application to focus on its main

task. All the application needs to do is just inform the library about the new

value of the bar by calling the Incr() or Decr() function.

Chapter 16 tUI Framework

313

In the next section, you will look at a more comprehensive library that

provides a better user interface for an application.

 Bubbletea
In the previous section, you saw the uiprogress progress bar library and

looked at how it works internally. In this section, you will take a look at

another user interface framework called bubbletea. The code can be

checked out from https://github.com/charmbracelet/bubbletea.

Run the sample application inside the examples/tui-daemon-combo

folder as follows:

go run main.go

You will get output that looks like Figure 16-4.

Figure 16-4. tui-daemon-combo sample output

The interesting thing about this TUI framework is it provides a variety

of user interfaces: progress bars, spinners, lists, and more. Figure 16-5

shows the different functions the application must provide in order to use

the library.

Chapter 16 tUI Framework

https://github.com/charmbracelet/bubbletea

314

Figure 16-5. Application functions for bubbletea interaction

In the next few sections, you will use the tui-daemon-combo sample

code to work out how the code flows inside the library.

Using bubbletea is quite straightforward, as shown here:

func main() {

 ...

 p := tea.NewProgram(newModel(), opts...)

 if err := p.Start(); err != nil {

 fmt.Println("Error starting Bubble Tea program:", err)

 os.Exit(1)

 }

}

The code calls tea.NewProgram(), passing in the Model interface and

options that need to be set. The Model interface defined by the library is as

follows:

Chapter 16 tUI Framework

315

type Model interface {

 Init() Cmd

 Update(Msg) (Model, Cmd)

 View() string

}

The newModel() function returns the implementation of the Model

interface, which is defined as follows:

func (m model) Init() tea.Cmd {

 ...

}

func (m model) Update(msg tea.Msg) (tea.Model, tea.Cmd) {

 ...

}

func (m model) View() string {

 ...

}

Now you have defined the different functions that will be called by the

library when constructing and updating the UI. Next, you will look at how

each of these functions are used by the library.

 Init
The Init() function is the first function called by bubbletea after calling

the Start() function. You saw that Init() must return a Cmd type, which is

declared as the function type shown here:

type Cmd func() Msg

Chapter 16 tUI Framework

316

The Init() functions use batches to return different kinds of function

types: spinner.Tick and runPretendProcess. This is done by using the

tea.Batch() function, as shown here:

func (m model) Init() tea.Cmd {

 ...

 return tea.Batch(

 spinner.Tick,

 runPretendProcess,

)

}

Internally, tea.Batch() returns an anonymous function that wraps the

different Cmd function types into an array of Cmd, as shown in this snippet:

type batchMsg []Cmd

func Batch(cmds ...Cmd) Cmd {

 ...

 return func() Msg {

 return batchMsg(validCmds)

 }

}

After bubbletea completes calling the application Init() function,

it kickstarts the process. Internally, it uses channels to read different

incoming messages to perform different user interface operations, so in

your sample code case, it processes the batchMsg array and starts calling

the Cmd function types.

The Cmd function type implementation returns Msg, which is an

interface as defined in the library.

type Msg interface{}

Chapter 16 tUI Framework

317

In the sample code, you uses spinner.Tick and runPretendProcess,

which are defined as follows:

type processFinishedMsg time.Duration

func Tick() tea.Msg {

 return TickMsg{Time: time.Now()}

}

func runPretendProcess() tea.Msg {

 ...

 return processFinishedMsg(pause)

}

Figure 16-6 shows that the library uses a number of goroutines to do

several things in the background including processing the Msg that are

returned by the function types that will be used in the Update() function,

which you will look at in the next section.

Chapter 16 tUI Framework

318

Figure 16-6. Initialization of the internal execution flow

 Update
The Update function is called to update the state of the user interface. In

the sample app, it is defined as follows:

func (m model) Update(msg tea.Msg) (tea.Model, tea.Cmd) {

 switch msg := msg.(type) {

 case tea.KeyMsg:

 ...

 return m, tea.Quit

 case spinner.TickMsg:

Chapter 16 tUI Framework

319

 ...

 m.spinner, cmd = m.spinner.Update(msg)

 ...

 case processFinishedMsg:

 ...

 m.results = append(m.results[1:], res)

 ...

 default:

 return m, nil

 }

}

The Update function receives different kinds of tea.Msg because it is

defined as an interface, so the code needs to do type checking and handle

the type it wants to handle. For example, when the function receives

spinner.TickMsg, it updates the spinner by calling the spinner.Update()

function, and when it receives tea.KeyMsg, it quits the application.

The function only needs to process messages that it is interested in

and process any user interface state management that it needs to do. Other

heavy operations must be avoided in the function.

 View
The last function, View(), is called by the library to update the user

interface. The application is given the freedom to update the user interface

as it sees fit. This flexibility allows the application to render a user interface

that suits its needs.

This does not mean that the application needs to know how to draw

the user interface. This is taken care of by the functions available for each

user interface. Here is the View() function:

Chapter 16 tUI Framework

320

func (m model) View() string {

 s := "\n" +

 m.spinner.View() + " Doing some work...\n\n"

 for _, res := range m.results {

 ...

 }

 ...

 if m.quitting {

 s += "\n"

 }

 return indent.String(s, 1)

}

The app combines all the user interfaces that it needs to display to

the user by extracting the different values from the different variables.

For example, it extract the results array values to show it to the user. The

results array is populated in the Update function when it receives the

processFinishedMsg message type.

The function returns a string containing the user interface that will be

rendered by the library to the terminal.

Figure 16-7 shows at a high level the different goroutines that are

spun off by the library and that take care of the different parts of the user

interfaces such as user input using the keyboard, mouse, terminal resizing,

and more.

The architecture is like a pub/sub model where the central goroutine

process all the different messages and calls the relevant functions

internally to perform the operations.

Chapter 16 tUI Framework

321

Figure 16-7. Centralized processing of messages

 Summary
In this chapter, you look at two different terminal-based user interface

frameworks that provide APIs for developers to build command-line user

interfaces. You looked at sample applications of how to use the frameworks

to build simple command-line user interfaces.

You looked at the internals of the frameworks to understand how they

work. Knowing this gives you better insight into how to troubleshoot issues

when using these kinds of frameworks. And understanding the complexity

of these frameworks helps you build your own asynchronous applications.

Chapter 16 tUI Framework

325

CHAPTER 17

systemd
In this chapter, you will look at systemd, what it is, and how to write Go

applications to interact with it. systemd is an important piece of software

inside the Linux system, and it is too big to be covered entirely in this

chapter.

You will look at an open source systemd Go library that is available and

how to use it to access systemd. In this chapter, you will do the following:

• Learn what systemd provides

• Interact with systemd using systemctl and journalctl

• Use the go-systemd library to write code

• Write log messages to a systemd journal

• Query systemd to get a list of registered services

 Source Code
The source code for this chapter is available from the https://github.

com/Apress/Software-Development-Go repository.

 systemd
systemd is a suite of applications that are used in Linux systems to get them

up and running. It provides more than just starting the core Linux systems

run; it also starts a number of programs such as network stack, user logins,

© Nanik Tolaram 2023
N. Tolaram, Software Development with Go,
https://doi.org/10.1007/978-1-4842-8731-6_17

https://github.com/Apress/Software-Development-Go
https://github.com/Apress/Software-Development-Go
https://doi.org/10.1007/978-1-4842-8731-6_17#DOI

326

the logging server, and more. It uses socket and D-Bus activation to start

up services, on-demand starting of background applications, and more.

D-Bus stands for Desktop Bus. It is a specification that is used for an

inter-process communication mechanism, allowing different processes to

communicate with one another on the same machine. Implementation of

D-Bus consists of server components and a client library. For systemd, the

implementation is known as sd-bus, and in a later section, you will look at

using the D-Bus client library to communicate with the server component.

Socket activation is a mechanism in systemd to listen to a network port

or Unix socket. When connected from an external source, it will trigger

the running of a server application. This is useful in situations when a

resource-hungry application needs to run only when it is needed and not

during the time when the Linux system is started up.

 systemd Units

Files that are used for systemd are called units. It is a standard way to

represent resources managed by systemd. System-related systemd unit

files can be found inside /lib/systemd/system, which looks this:

...

-rw-r--r-- 1 root root 389 Nov 18 2021 apt-daily-

upgrade.service

-rw-r--r-- 1 root root 184 Nov 18 2021 apt-daily-

upgrade.timer

lrwxrwxrwx 1 root root 14 Apr 25 23:23 autovt@.service ->

getty@.service

-rw-r--r-- 1 root root 1044 Jul 7 2021 avahi-

daemon.service

-rw-r--r-- 1 root root 870 Jul 7 2021 avahi-daemon.socket

-rw-r--r-- 1 root root 927 Apr 25 23:23 basic.target

-rw-r--r-- 1 root root 1159 Apr 18 2020 binfmt-

support.service

Chapter 17 systemd

327

-rw-r--r-- 1 root root 380 Oct 6 2021 blk-

availability.service

-rw-r--r-- 1 root root 449 Apr 25 23:23 blockdev@.target

-rw-r--r-- 1 root root 419 Feb 1 11:49 bluetooth.service

...

-rw-r--r-- 1 root root 758 Apr 25 23:23 dev-hugepages.mount

-rw-r--r-- 1 root root 701 Apr 25 23:23 dev-mqueue.mount

...

-rw-r--r-- 1 root root 251 Aug 31 2021 e2scrub_all.timer

-rw-r--r-- 1 root root 245 Aug 31 2021 e2scrub_

fail@.service

-rw-r--r-- 1 root root 550 Aug 31 2021 e2scrub_

reap.service

...

-rw-r--r-- 1 root root 444 Apr 25 23:23 remote-fs-

pre.target

-rw-r--r-- 1 root root 530 Apr 25 23:23 remote-fs.target

The other location for unit files is inside the /etc/systemd/system

directory. Unit files in this directory take precedence over any other unit

files found on the filesystem, The following shows a snippet of the unit files

in a local machine inside the /etc/system/system directory:

...

lrwxrwxrwx 1 root root 40 Mar 4 04:53 dbus-org.

freedesktop.ModemManager1.service -> /lib/systemd/system/

ModemManager.service

lrwxrwxrwx 1 root root 53 Mar 4 04:51 dbus-org.freedesktop.

nm-dispatcher.service -> /lib/systemd/system/NetworkManager-

dispatcher.service

Chapter 17 systemd

328

lrwxrwxrwx 1 root root 44 Aug 7 2021 dbus-org.

freedesktop.resolve1.service -> /lib/systemd/system/systemd-

resolved.service

lrwxrwxrwx 1 root root 36 Mar 4 04:53 dbus-org.freedesktop.

thermald.service -> /lib/systemd/system/thermald.service

lrwxrwxrwx 1 root root 45 Aug 7 2021 dbus-org.

freedesktop.timesync1.service -> /lib/systemd/system/systemd-

timesyncd.service

...

drwxr-xr-x 2 root root 4096 Mar 4 04:53 graphical.

target.wants/

drwxr-xr-x 2 root root 4096 Mar 4 04:51 mdmonitor.

service.wants/

drwxr-xr-x 2 root root 4096 May 27 10:10 multi-user.

target.wants/

...

lrwxrwxrwx 1 root root 31 Apr 6 17:55 sshd.service -> /lib/

systemd/system/ssh.service

...

The following is a non-exhaustive list of the different unit files:

• .service: Describe a service or application and how to

start or stop the service

• .socket: Describes a network or Unix socket used for

socket-based activation

• .device: Describes a device exposed in the sysfs/udev

device tree

• .timer: Defines a timer that will be managed

by systemd

Chapter 17 systemd

329

You looked at systemd and what it is used for. In the next section, you

will look at using the provided tools to look at the services provided by

systemd using systemctl.

 systemctl
systemctl is the main tool used to communicate with systemd that is

running in your local machine. Type in the following command in your

terminal:

systemctl

Without any parameter, it will list all the services that are currently

registered with the system, as shown in Figure 17-1.

Figure 17-1. Registered service in systemd

Let’s take a peek at the services that are currently running on local

machines. You will look at the systemd-journal.service, which is

running a systemd logging service. Open your terminal and use the

following command:

systemctl status systemd-journald.service

You will see output that looks like the following:

• systemd-journald.service - Journal Service

 Loaded: loaded (/lib/systemd/system/systemd-journald.

service; static)

 Active: active (running) since Thu 2022-06-16 23:21:09

AEST; 1 week 0 days ago

Chapter 17 systemd

330

TriggeredBy: • systemd-journald-dev-log.socket

 • systemd-journald-audit.socket

 • systemd-journald.socket

 Docs: man:systemd-journald.service(8)

 man:journald.conf(5)

 Main PID: 370 (systemd-journal)

 Status: "Processing requests..."

 Tasks: 1 (limit: 9294)

 Memory: 54.2M

 CPU: 3.263s

 CGroup: /system.slice/systemd-journald.service

 └─370 /lib/systemd/systemd-journald

Jun 16 23:21:09 nanik systemd-journald[370]: Journal started

...

Jun 16 23:21:09 nanik systemd-journald[370]: System Journal

The output shows information about the service such as the amount of

memory the service is using, the process ID (PID), location of the .service

file, and whether the service is active or not.

To stop a service, use the command systemctl stop. As an example,

let’s try to stop cups.service (a service used to provide printing services in

Linux). Use the following command in your terminal to check the status:

systemctl status cups.service

You will see output like the following:

• cups.service - CUPS Scheduler

 Loaded: loaded (/lib/systemd/system/cups.service; enabled;

vendor preset: enabled)

 Active: active (running) since Fri 2022-06-24 00:00:35

AEST; 22h ago

Chapter 17 systemd

331

TriggeredBy: • cups.socket

 • cups.path

 Docs: man:cupsd(8)

 Main PID: 39757 (cupsd)

 Status: "Scheduler is running..."

 Tasks: 1 (limit: 9294)

 Memory: 2.8M

 CPU: 51ms

 CGroup: /system.slice/cups.service

 └─39757 /usr/sbin/cupsd -l

Jun 24 00:00:35 nanik systemd[1]: Starting CUPS Scheduler...

Jun 24 00:00:35 nanik systemd[1]: Started CUPS Scheduler.

To stop the service, use the following command in your terminal:

sudo systemctl stop cups.service

If you check the status again using the same systemctl status cups.

service command, you will see output that looks like the following:

○ cups.service - CUPS Scheduler

 Loaded: loaded (/lib/systemd/system/cups.service; enabled;

vendor preset: enabled)

 Active: inactive (dead) since Fri 2022-06-24 22:47:52

AEST; 1s ago

TriggeredBy: ○ cups.socket

 ○ cups.path

 Docs: man:cupsd(8)

 Process: 39757 ExecStart=/usr/sbin/cupsd -l (code=exited,

status=0/SUCCESS)

 Main PID: 39757 (code=exited, status=0/SUCCESS)

 Status: "Scheduler is running..."

 CPU: 54ms

Chapter 17 systemd

332

Jun 24 00:00:35 nanik systemd[1]: Starting CUPS Scheduler...

...

Jun 24 22:47:52 nanik systemd[1]: Stopped CUPS Scheduler.

Using systemctl allows you to take a look at the status of the registered

service in systemd. In the next section, you will write a simple server

application and control it using systemctl.

 Hello Server systemd
In this section, you will look at the sample code that can be found inside

the chapter17/httpservice directory. The application is a simple HTTP

server listening on port 8111. Let’s run the application normally first using

the following command in your terminal:

go run main.go

You will see output like following:

2022/06/24 22:55:40 Server running - port 8111

Open your browser and access it using http://localhost:8111. You

will see output that looks like the following:

The application is working now. Let's create the executable file that

you will use to run it as a systemd service. Compile the application using

the following command. Make sure you are in the chapter17/httpservice

directory.

go build -o httpservice

Figure 17-2. HTTP server output

Chapter 17 systemd

http://localhost:8111

333

Your application is now ready to be installed as a systemd service.

Follow the steps below to do the installation.

 1. Copy the httpservice executable file into the /usr/

local/bin directory in your terminal, as shown:

sudo cp ./httpservice /usr/local/bin

 2. Copy the httpservice.service file into the /

etc/systemd/system directory in your terminal,

as shown:

sudo cp ./httpservice.service /etc/systemd/system

 3. Take a look at the status of your newly created

service using the following command:

sudo systemctl status httpservice.service

You will see output as follows:

○ httpservice.service - HTTP Server Application

 Loaded: loaded (/etc/systemd/system/httpservice.

service; disabled; vendor preset: enabled)

 Active: inactive (dead)

The service is recognized by systemd but it is not enabled or dead.

 4. Start/enable the service using the following

command:

sudo systemctl start httpservice.service

 5. If you run the same status command (step 3), you

will get the following output:

● httpservice.service - HTTP Server Application

Chapter 17 systemd

334

 Loaded: loaded (/etc/systemd/system/httpservice.

service; disabled; vendor preset: enabled)

 Active: active (running) since Fri 2022-06-24

23:09:34 AEST; 39s ago

 Main PID: 44068 (httpservice)

 Tasks: 5 (limit: 9294)

 Memory: 1.0M

 CPU: 3ms

 CGroup: /system.slice/httpservice.service

 └─44068 /usr/local/bin/httpservice

Jun 24 23:09:34 nanik systemd[1]: Started HTTP Server

Application.

Jun 24 23:09:34 nanik httpservice[44068]: 2022/06/24 23:09:34

Server running - port 8111

 6. To ensure that the service starts up when you reboot

your machine, use the following command:

sudo systemctl enable httpservice.service

Now you can access the application by pointing your browser to http://

localhost:8111.

You have successfully deployed your sample app. It is configured to

start up when you boot up your machine. In next section, you will look at

using a Go library to write a system application.

 go-systemd Library
You learned early in this chapter that the D-Bus specification contains a

client library. The client library allows applications to interact with system.

The client library that you are going to take a look at is for a Go application

called go-systemd. The library can be found at http:/github.com/

coreos/go-systemd.

Chapter 17 systemd

http://github.com/coreos/go-systemd
http://github.com/coreos/go-systemd

335

The library provides the following features:

• Using socket activation

• Notifying systemd of service status changes

• Starting, stopping, and inspecting services and units

• Registering machines or containers

• …and many more

For this chapter, you will look at code samples using the library to

write to journal logs, list services available on local machines, and query

machines.

 Querying Services

The sample code for this section can be found inside the chapter17/

listservices directory. The sample code queryies from systemd all the

services that are registered, similar to how systemctl list-units works.

Open your terminal and make sure you are inside the chapter17/

listservices directory. Build the application as follows:

go build -o listservices

Once compiled, run the executable as root.

sudo ./listservices

You will see output of the services registered in systemd.

...

Name : sys-module-fuse.device, LoadState : loaded, ActiveState

: active, Substate : plugged

Chapter 17 systemd

336

Name : gdm.service, LoadState : loaded, ActiveState : active,

Substate : running

Name : sysinit.target, LoadState : loaded, ActiveState :

active, Substate : active

Name : graphical.target, LoadState : loaded, ActiveState :

active, Substate : active

Name : veritysetup.target, LoadState : loaded, ActiveState :

active, Substate : active

...

Name : remote-fs-pre.target, LoadState : loaded, ActiveState :

inactive, Substate : dead

Name : apt-daily-upgrade.timer, LoadState : loaded, ActiveState

: active, Substate : waiting

Name : ssh.service, LoadState : loaded, ActiveState : active,

Substate : running

Name : system.slice, LoadState : loaded, ActiveState : active,

Substate : active

Name : systemd-ask-password-plymouth.path, LoadState : loaded,

ActiveState : active, Substate : waiting

Name : dev-ttyS15.device, LoadState : loaded, ActiveState :

active, Substate : plugged

...

Let’s walk through the code to understand how the app

uses the library. The following snippet shows that it is using the

NewSystemdConnectionContext function to connect to the systemd server:

import (

...

)

func main() {

 ...

Chapter 17 systemd

337

 c, err := d.NewSystemdConnectionContext(ctx)

 ...

}

Once it successfully connects to systemd, it sends a request to get the

list of units and print it out to the console.

import (

...

)

func main() {

 ...

 js, err := c.ListUnitsContext(ctx)

 ...

 for _, j := range js {

 fmt.Println(fmt.Sprintf("Name : %s, LoadState : %s,

ActiveState : %s, Substate : %s", j.Name, j.LoadState,

j.ActiveState, j.SubState))

 }

 c.Close()

}

The library takes care of all the heavy lifting of connecting to systemd,

sending requests, and converting requests to a format that it passes to the

application.

Chapter 17 systemd

338

 Journal

Another example you will look at is using the library to write log messages

to the journal that provides a logging service. To access the logging service,

you can use the journalctl command line.

journalctl -r

The output looks like following on my local machine (it will look

different in your machine):

...

Jun 25 00:06:43 nanik sshd[2567]: pam_unix(sshd:session):

session opened for user nanik(uid=1000) by (uid=0)

...

Jun 25 00:00:32 nanik kernel: audit: type=1400

audit(1656079232.440:30): apparmor="DENIED" operation="capable"

profile="/usr/sbin/cups-browsed" pid=2527 comm="cups-browsed"

capability=23 c>

Jun 25 00:00:32 nanik audit[2527]: AVC apparmor="DENIED"

operation="capable" profile="/usr/sbin/cups-browsed" pid=2527

comm="cups-browsed" capability=23 capname="sys_nice"

Jun 25 00:00:32 nanik systemd[1]: Finished Rotate log files.

...

The parameter -r shows the latest log message on the top. Now you

know how to look at the journal logging service. Let's run your sample

application to write log messages into it.

Open terminal and make sure you are inside the chapter17/journal

directory. Run the sample using the following command:

go run main.go

Chapter 17 systemd

339

Open another terminal and run the same journalctl -r command.

You will see the log message from the sample application in the output,

as shown:

Jun 25 00:06:48 nanik journal[2591]: This log message is from

Go application

Jun 25 00:06:44 nanik systemd[908]: Started Tracker metadata

extractor.

Jun 25 00:06:44 nanik systemd[908]: Starting Tracker metadata

extractor...

Jun 25 00:06:44 nanik systemd-logind[778]: Removed session 6.

Jun 25 00:06:44 nanik systemd[1]: session-6.scope: Deactivated

successfully.

...

The code to write to the journal is very simple.

package main

import (

 j "github.com/coreos/go-systemd/v22/journal"

)

func main() {

 j.Print(j.PriErr, "This log message is from Go application")

}

The Print(..) function prints the message This log message is from

Go application with the error priority. This is normally printed in red

when you view it using journalctl. The following is a list of the different

priorities available from the library:

const (

 PriEmerg Priority = iota

 PriAlert

Chapter 17 systemd

340

 PriCrit

 PriErr

 PriWarning

 PriNotice

 PriInfo

 PriDebug

)

The following priorities are assigned the red color: PriErr, PriCrit,

PriAlert, and PriEmerg. PriNotice and PriWarning are highlighted, and

PriDebug is in lighter grey. One of the interesting priorities is PriEmerg,

which broadcasts the log message to all open terminals in the local

machine.

In the next section, you will look at an advanced feature of systemd,

which is registering and running a machine or container.

 Machines

One advanced feature that systemd provides is the ability to run virtual

machines or containers in local machines. This feature does not come by

default; there is extra installation of services and steps performed in order

to use this feature. This feature is made available by installing a package

called systemd-container. Let’s understand what this package is all about.

The systemd-container package contains a number of tools,

particularly the tool called systemd-nspawn. This tool is similar to chroot

(which I discussed in Chapter 4) but provides more advanced features

such as virtualizing the file system hierarchy, process tree, and various IPC

subsystems. Basically, it allows you to run a lightweight container with its

own rootfs.

The following steps will walk you through in installing the package and

configuring it.

Chapter 17 systemd

https://doi.org/10.1007/978-1-4842-8731-6_4

341

 1. Copy the file systemd-machined.service from

the chapter17/machine directory to /usr/lib/

systemd/user.

sudo cp systemd-machined.service /usr/lib/systemd/user

 2. Install the systemd-container package using the

following command:

sudo apt install systemd-container

 3. Start the service using the following command:

sudo systemctl start systemd-machined.service

 4. Check the status using the command:

sudo systemctl status systemd-machined.service

You will see output like the following:

• systemd-machined.service - Virtual Machine and

Container Registration Service

 Loaded: loaded (/lib/systemd/system/systemd-

machined.service; static)

 Active: active (running) since Sat 2022-06-25

00:51:10 AEST; 21h ago

 Docs: man:systemd-machined.service(8)

 man:org.freedesktop.machine1(5)

 Main PID: 2744 (systemd-machine)

 Status: "Processing requests..."

 Tasks: 1 (limit: 9294)

 Memory: 1.2M

 CPU: 220ms

 CGroup: /system.slice/systemd-machined.service

Chapter 17 systemd

342

 └─2744 /lib/systemd/systemd-machined

Jun 25 00:51:10 nanik systemd[1]: Starting Virtual Machine and

Container Registration Service...

Jun 25 00:51:10 nanik systemd[1]: Started Virtual Machine and

Container Registration Service.

Use the machinectl command-line tool to interact with the new

machine service that you just installed. Use the tool to download and run

Ubuntu operating system images locally as a container.

Use the following command to download the Ubuntu image:

machinectl pull-tar https://cloud-images.ubuntu.com/trusty/

current/trusty-server-cloudimg-amd64-root.tar.gz trusty-server

If this way does not work for your Linux system, use the following

command:

wget https://cloud-images.ubuntu.com/trusty/current/trusty-

server- cloudimg-amd64-root.tar.gz

machinectl import-tar trusty-server-cloudimg-amd64-root.tar.gz

Let’s check to make sure that the image has been downloaded

successfully by using the following command:

machinectl list-images

You will get output like following:

NAME TYPE RO USAGE CREATED

MODIFIED

trusty-server-cloudimg-amd64-root directory no n/a Sat

2022-06-25 23:16:16 AEST n/a

1 images listed.

Chapter 17 systemd

343

The image download is stored inside the /var/lib/machines folder,

as shown:

nanik@nanik:~/Downloads/alpine-container$ sudo ls -la /var/

lib/machines

total 24

drwx------ 6 root root 4096 Jun 25 23:16 .

drwxr-xr-x 69 root root 4096 May 25 16:19 ..

drwxr-xr-x 22 root root 4096 Jun 25 23:16 trusty-server-

cloudimg-amd64-root

Looking inside the trusty-server-cloudimg-amd64-root directory,

you will see the rootfs directory structure.

drwx------ 6 root root 4096 Jun 25 23:16 ..

drwxr-xr-x 2 root root 4096 Nov 8 2019 bin

drwxr-xr-x 3 root root 4096 Nov 8 2019 boot

drwxr-xr-x 4 root root 4096 Nov 8 2019 dev

...

drwxr-xr-x 2 root root 4096 Nov 8 2019 sbin

drwxr-xr-x 2 root root 4096 Nov 8 2019 srv

drwxr-xr-x 2 root root 4096 Mar 13 2014 sys

...

drwxr-xr-x 10 root root 4096 Nov 8 2019 usr

drwxr-xr-x 12 root root 4096 Nov 8 2019 var

Finally, now that you have the image downloaded and stored locally,

you can run it using the following command:

sudo systemd-nspawn -M trusty-server-cloudimg-amd64-root

You will see output like the following:

nanik@nanik:~/Downloads/alpine-container$ sudo systemd-nspawn-M

trusty-server-cloudimg-amd64-root

Chapter 17 systemd

344

Spawning container trusty-server-cloudimg-amd64-root on /var/

lib/machines/trusty-server-cloudimg-amd64-root.

Press ^] three times within 1s to kill container.

root@trusty-server-cloudimg-amd64-root:~#

Let’s take a look at the sample application inside the chapter17/

machine folder. The sample uses a go-systemd library to query for the

images that are stored locally. Change the directory to chapter17/machine

and run the sample as follows:

go run main.go

You will get output that look like the following:

2022/06/25 23:22:19 image - .host directory

2022/06/25 23:22:19 image - trusty-server-cloudimg-amd64-root

directory

The sample uses the machine1 package of the go-systemd library

and it calls the New() function to establish a connection to the systemd

system. Once connected, it uses the ListImages() function to retrieve the

available images and print them out in the console.

package main

import (

 m "github.com/coreos/go-systemd/v22/machine1"

 ...

)

func main() {

 conn, err := m.New()

 ...

 s, err := conn.ListImages()

 ...

Chapter 17 systemd

345

 for _, img := range s {

 log.Println("image - "+img.Name, img.ImageType)

 }

}

 Summary
In this chapter, you learned about systemd and its functions in the Linux

operating system. You explored the different tools that are available to

allow you to interact with systemd. You looked at Go code samples that

show how to interact with systemd using the go-systemd library.

go-systemd provides a different capability to interact with system.

One of the advanced features you looked at was interacting with the

systemd-machine service that provides virtual machine and container

registration capability.

Chapter 17 systemd

347

CHAPTER 18

cadvisor
In this chapter, you will look at an open source project called cAdvisor,

which stands for Container Advisor. The complete source code can be

found at https://github.com/google/cadvisor. This chapter uses

version v0.39.3 of the project. The project is used to collect resource usage

and performance data on running containers. cAdvisor supports Docker

containers, and this is specifically what you are going to look at in this

chapter.

The reason for choosing this project is to explore further the topics we

discussed in previous chapters, such as

• Using system calls to monitor filesystem

• Using cgroups

• Collecting machine information using /proc and /sys

 Source Code
The source code for this chapter is available from the https://github.

com/Apress/Software-Development-Go repository.

 Running cAdvisor
This section walks through how to check out cAdvisor source code to run it

locally. Let’s start by checking out the code using the following command:

© Nanik Tolaram 2023
N. Tolaram, Software Development with Go,
https://doi.org/10.1007/978-1-4842-8731-6_18

https://github.com/google/cadvisor
https://github.com/Apress/Software-Development-Go
https://github.com/Apress/Software-Development-Go
https://doi.org/10.1007/978-1-4842-8731-6_18#DOI

348

GO111MODULE=off go get github.com/google/cadvisor

The command uses the go get command to download the source

code from the given URL. The environment GO111MODULE=off tells the

go tool to get the module (google/cadvisor) and store it in the GOPATH

directory. Once the module has been downloaded, you can go to your

GOPATH/src directory and you will see something like the following:

drwxrwxr-x 32 nanik nanik 4096 Jun 17 22:31 ./

drwxrwxr-x 9 nanik nanik 4096 Jun 15 22:19 ../

drwxrwxr-x 2 nanik nanik 4096 Jun 17 22:31 accelerators/

-rw-rw-r-- 1 nanik nanik 256 Jun 15 22:19 AUTHORS

drwxrwxr-x 4 nanik nanik 4096 Jun 17 22:31 build/

drwxrwxr-x 3 nanik nanik 4096 Jun 15 22:19 cache/

-rw-rw-r-- 1 nanik nanik 22048 Jun 15 22:19 CHANGELOG.md

drwxrwxr-x 4 nanik nanik 4096 Jun 17 22:31 client/

drwxrwxr-x 3 nanik nanik 4096 Jun 17 22:32 cmd/

drwxrwxr-x 3 nanik nanik 4096 Jun 17 22:31 collector/

...

Build the project by changing into the cmd directory and running the

following command:

go build -o cadvisor

You will get an executable file called cadvisor. Let’s run the project

using the following command to print out the different parameters it

can accept:

./cadvisor –help

You will get a printout that looks like the following:

 -add_dir_header

Chapter 18 Cadvisor

349

 If true, adds the file directory to the header of the

log messages

 ...

 -boot_id_file string

 Comma-separated list of files to check for boot-id. Use

the first one that exists. (default "/proc/sys/kernel/

random/boot_id")

 ...

 -v value

 number for the log level verbosity

 ...

I will not go through all the different parameters that cAdvisor has. You

are just going to use whatever default value it assigns. cAdvisor requires

root access to run it, so do so as follows:

sudo ./cadvisor -v 9

By default, it uses port 8080 to run the application, so if you have

another application running that uses port 8080, it will fail to run. Use the -p

flag to specify a different port number for cAdvisor.

sudo ./cadvisor -port <port_number>

When cAdvisor runs, it collects different information related to the

machine and containers, which can only be done if it has root access.

Once cAdvisor is up and running, you will see a lot of log information

printed out in the terminal.

I0617 23:06:13.122455 2311171 storagedriver.go:55] Caching

stats in memory for 2m0s

W0617 23:06:13.122498 2311171 manager.go:159] Cannot detect

current cgroup on cgroup v2

Chapter 18 Cadvisor

350

I0617 23:06:13.122591 2311171 plugin.go:40] CRI-O not

connected: Get "http://%2Fvar%2Frun%2Fcrio%2Fcrio.sock/info":

dial unix /var/run/crio/crio.sock: connect: no such file or

directory

...

I0617 23:06:13.139451 2311171 nvidia.go:61] NVIDIA setup

failed: no NVIDIA devices found

...

I0617 23:06:13.192306 2311171 manager.go:991] Added container:

"/" (aliases: [], namespace: "")

I0617 23:06:13.192340 2311171 handler.go:325] Added event &{/

2022-06-14 09:44:58.365378218 +1000 AEST containerCreation

{<nil>}}

I0617 23:06:13.192356 2311171 manager.go:301] Starting recovery

of all containers

I0617 23:06:13.192424 2311171 container.go:527] Start

housekeeping for container "/"

...

I0617 23:06:13.197502 2311171 handler.go:325] Added event

&{/user.slice/user-1000.slice/user@1000.service/app.slice/

dbus.socket 2022-06-14 09:43:53.204034932 +1000 AEST

containerCreation {<nil>}}

I0617 23:06:13.197513 2311171 factory.go:220] Factory "docker"

was unable to handle container "/user.slice/user-1000.slice/

user@1000.service/app.slice/app-org.gnome.Terminal.slice/vte- sp

awn- 642db2f1-1648-487e-8c09-58ec92a50865.scope"

Open up your browser and type in http://localhost:8080 to access

the user interface. You will something like Figure 18-1.

Chapter 18 Cadvisor

351

Figure 18-1. cAdvisor UI

To see the containers that are running locally, click the Docker

Containers link on the main page. You will see a different container UI, like

the one shown in Figure 18-2. My local machine has a Postgres container

running, so you are seeing a Postgres container. You will see all the

different containers that are running on your local machine.

Figure 18-2. cAdvisor container UI

In the next section, you will explore further the cAdvisor UI and

concepts that are related to the project.

Chapter 18 Cadvisor

352

 Web User Interface
Make sure you have your cAdvisor running locally and open your browser

to access it via URL http://localhost:8080. Let’s understand some of the

data that is presented on the webpage.

Note the information you see on your local machine might be
different from what you read in this book. it depends on the operating
system or Linux distribution you are using.

Figure 18-3 shows the subdirectory called subcontainers in cAdvisor.

This directory provide important statistics and performance information

that cAdvisor uses for reporting purposes.

Figure 18-3. Subcontainers view

Chapter 18 Cadvisor

353

Click the system.slice link and you will see something like

Figure 18-4, which shows the different services running on the local

machine.

Figure 18-4. /system.slice view

Figure 18-5 shows gauges of the percentage of memory and disk usage.

Figure 18-5. Memory and disk usage

cAdvisor also shows the different processes that are currently running

in your system. Figure 18-6 shows information about the process name,

CPU usage, memory usage, running time, and other information.

Figure 18-6. Running process information

Chapter 18 Cadvisor

354

Besides the processes that are running on your local machine,

cAdvisor also reports information about the different Docker containers

that are currently running on your machine. Click the Docker Containers

link shown in Figure 18-7.

Figure 18-7. Docker Containers link

After clicking the Docker Containers link, you will be shown the list

of containers that you can look into. In my case, as shown in Figure 18-8,

there is a Postgres container currently running on my local machine.

Figure 18-8. Docker subcontainers view

Clicking the Postgres container will show the different metrics related

to the container, as shown in Figure 18-9.

Chapter 18 Cadvisor

355

Figure 18-9. Postgres metrics

Chapter 18 Cadvisor

356

In the next section, you will dive into the internals of cAdvisor and

learn how it is able to do all these things in the code.

 Architecture
In this section and the next, you will look at the internals of cAdvisor and how

the different components work. cAdvisor supports different containers, but for

this chapter you will focus on the code that is relevant to Docker only. Let’s take

a look at the high-level component view of cAdvisor shown in Figure 18-10.

Figure 18-10. High-level architecture

Chapter 18 Cadvisor

357

Table 18-1 outlines the different components and usage inside

cAdvisor.

Table 18-1. Components

events Channel Channel used to report creation or deletion of containers

inMemoryCache Cache used to store metric information relevant to all containers

being monitored

Container

Watcher

Watcher that monitors container activities

Containers different containers monitored by cadvisor

Machine info information related to the local machine that cadvisor is running

on

plugins the different container that cadvisor supports: docker, Mesos,

Crio, systemd, and Containerd

handlers http handlers that take care of requests for metrics and other

relevant apis exposed by cadvisor

In the next few sections, you will look at different parts of cAdvisor and

how they work.

 Initialization
Like any other Go application, the entry point of cAdvisor is main.go.

func main() {

 ...

 memoryStorage, err := NewMemoryStorage()

 if err != nil {

 klog.Fatalf("Failed to initialize storage driver:

%s", err)

Chapter 18 Cadvisor

358

 }

 ...

 resourceManager, err := manager.New(memoryStorage, sysFs,

housekeepingConfig, includedMetrics, &collectorHttpClient,

strings.Split(*rawCgroupPrefixWhiteList, ","), *perfEvents)

 ...

 cadvisorhttp.RegisterPrometheusHandler(mux, resourceManager,

*prometheusEndpoint, containerLabelFunc, includedMetrics)

 ...

 rootMux := http.NewServeMux()

 ...

}

The main() function performs the following initialization

process steps:

• Setting up cache for storing a container and its metrics

• Setting up Manager, which performs all the major

processing to monitor containers

• Setting up HTTP handlers to allow the web user

interface to get metric data for different containers

• Start collecting containers and metrics by starting up

the Manager

The cache management is taken care by InMemoryCache, which can be

found inside memory.go.

type InMemoryCache struct {

 lock sync.RWMutex

 containerCacheMap map[string]*containerCache

 maxAge time.Duration

 backend []storage.StorageDriver

}

Chapter 18 Cadvisor

359

func (c *InMemoryCache) AddStats(cInfo *info.ContainerInfo,

stats *info.ContainerStats) error {

 ...

}

func (c *InMemoryCache) RecentStats(name string, start, end

time.Time, maxStats int) ([]*info.ContainerStats, error) {

 ...

}

func (c *InMemoryCache) Close() error {

 ...

}

func (c *InMemoryCache) RemoveContainer(containerName

string) error {

 ...

}

There are two different HTTP handlers that are initialized by cAdvisor:

API-based HTTP handlers that are used by the web user interface and

metric HTTP handlers that report metric information in raw format.

The following snippet shows the main handlers registration that register

the different paths that are made available (inside cmd/internal/http/

handlers.go):

func RegisterHandlers(mux httpmux.Mux, containerManager

manager.Manager, httpAuthFile, httpAuthRealm, httpDigestFile,

httpDigestRealm string, urlBasePrefix string) error {

 ...

 if err := api.RegisterHandlers(mux, containerManager); err

!= nil {

 return fmt.Errorf("failed to register API handlers:

%s", err)

Chapter 18 Cadvisor

360

 }

 mux.Handle("/", http.RedirectHandler(urlBasePrefix+pages.

ContainersPage, http.StatusTemporaryRedirect))

 ...

 return nil

}

The API-based handlers are found inside cmd/internal/api/handler.

go, as shown:

func RegisterHandlers(mux httpmux.Mux, m manager.

Manager) error {

 ...

 mux.HandleFunc(apiResource, func(w http.ResponseWriter, r

*http.Request) {

 err := handleRequest(supportedApiVersions, m, w, r)

 if err != nil {

 http.Error(w, err.Error(), 500)

 }

 })

 return nil

}

The API handlers expose the /api path. To test this handler, make sure

you have cAdvisor running and open your browser and enter the URL

http://localhost:8080/api/v1.0/containers. You will see something

like Figure 18-11.

Chapter 18 Cadvisor

361

Figure 18-11. Output of /api/v1.0/containers

 Manager
Manager is the main component of cAdvisor. It takes care of the

initialization, maintenance, and reporting of different metrics for the

containers it manages. The interfaces are declared as follows:

type Manager interface {

Chapter 18 Cadvisor

362

 Start() error

 Stop() error

 GetContainerInfo(containerName string, query *info.

ContainerInfoRequest) (*info.ContainerInfo, error)

 GetContainerInfoV2(containerName string, options

v2.RequestOptions) (map[string]v2.ContainerInfo, error)

 SubcontainersInfo(containerName string, query *info.

ContainerInfoRequest) ([]*info.ContainerInfo, error)

 AllDockerContainers(query *info.ContainerInfoRequest)

(map[string]info.ContainerInfo, error)

 DockerContainer(dockerName string, query *info.

ContainerInfoRequest) (info.ContainerInfo, error)

 GetContainerSpec(containerName string, options

v2.RequestOptions) (map[string]v2.ContainerSpec, error)

 GetDerivedStats(containerName string, options

v2.RequestOptions) (map[string]v2.DerivedStats, error)

 GetRequestedContainersInfo(containerName string,

options v2.RequestOptions) (map[string]*info.

ContainerInfo, error)

 Exists(containerName string) bool

 GetMachineInfo() (*info.MachineInfo, error)

 GetVersionInfo() (*info.VersionInfo, error)

 GetFsInfoByFsUUID(uuid string) (v2.FsInfo, error)

 GetDirFsInfo(dir string) (v2.FsInfo, error)

 GetFsInfo(label string) ([]v2.FsInfo, error)

 GetProcessList(containerName string, options

v2.RequestOptions) ([]v2.ProcessInfo, error)

 WatchForEvents(request *events.Request) (*events.

EventChannel, error)

 GetPastEvents(request *events.Request) ([]*info.

Event, error)

 CloseEventChannel(watchID int)

Chapter 18 Cadvisor

363

 DockerInfo() (info.DockerStatus, error)

 DockerImages() ([]info.DockerImage, error)

 DebugInfo() map[string][]string

}

The interfaces and implementation are found inside manager.go.

Manager uses plugins for different container technologies. For

example, the Docker plugin is responsible for communicating with the

Docker engine. The Docker plugin resides inside the container/docker/

plugin.go file. The following is the Docker plugin code:

package docker

import (

 ...

)

const dockerClientTimeout = 10 * time.Second

 ...

func (p *plugin) InitializeFSContext(context *fs.

Context) error {

 SetTimeout(dockerClientTimeout)

 // Try to connect to docker indefinitely on startup.

 dockerStatus := retryDockerStatus()

 ...

}

 ...

func retryDockerStatus() info.DockerStatus {

 startupTimeout := dockerClientTimeout

 maxTimeout := 4 * startupTimeout

 for {

 ...

 }

}

Chapter 18 Cadvisor

364

The main job of Manager is to monitor containers, but before it is able

to do that, it needs to find out what containers are available and how to

monitor them. Let’s take a look at the first step, which is finding out what

containers will be monitored.

In the previous section, it was mentioned that conceptually cAdvisor

refers to containers not only for Docker, but anything that it monitors

is considered as containers. Let’s take a look at how cAdvisor finds the

containers that it monitors. The collection of containers that it will

monitor are collected when the Start() function of Manager is called, as

shown here:

func (m *manager) Start() error {

 ...

 err := raw.Register(m, m.fsInfo, m.includedMetrics, m.rawCont

ainerCgroupPathPrefixWhiteList)

 if err != nil {

 klog.Errorf("Registration of the raw container factory

failed: %v", err)

 }

 rawWatcher, err := raw.NewRawContainerWatcher()

 if err != nil {

 return err

 }

 m.containerWatchers = append(m.containerWatchers, rawWatcher)

 ...

 // Create root and then recover all containers.

 err = m.createContainer("/", watcher.Raw)

 if err != nil {

 return err

 }

Chapter 18 Cadvisor

365

 klog.V(2).Infof("Starting recovery of all containers")

 err = m.detectSubcontainers("/")

 if err != nil {

 return err

 }

 ...

 return nil

}

The collection process is performed by the m.createContainer(..)

function and Figure 18-12 shows what is created.

Figure 18-12. The createContainer function process

Basically, what it is doing the following:

Chapter 18 Cadvisor

366

• Creating a containerData struct that is populated with

container-related information. In this case, it’s populated

with information regarding the /sys/fs/cgroup directory.

• Creating a ContainerHandler and CollectManager

that will handle everything related to this particular

container (in this case /sys/fs/cgroup) and collecting

all the necessary metric information.

• Once all structs have been initialized successfully, it

will call Start() of the containerData struct to start

monitoring.

From the steps above, it is clear that cAdvisor is monitoring activities

that are happening inside the /sys/fs/cgroup directory. As you learned

in Chapter 4, this directory refers to cgroups, which is the cornerstone of

Docker containers.

cAdvisor also monitors the subdirectories of /sys/fs/cgroup,

which are all treated as containers and will be monitored the same

as the main /sys/fs/cgroup directory. This is performed by the

detectSubcontainers(..) function, as shown here:

func (m *manager) detectSubcontainers(containerName

string) error {

 added, removed, err := m.getContainersDiff(containerName)

 ...

 for _, cont := range added {

 err = m.createContainer(cont.Name, watcher.Raw)

 ...

 }

 ...

 return nil

}

Chapter 18 Cadvisor

https://doi.org/10.1007/978-1-4842-8731-6_4

367

Once all the subdirectories of /sys/fs/cgroup have been processed, it

adds those containers to be watched by Container Watcher. This is done by

the watchForNewContainers() function shown in the following code:

func (m *manager) watchForNewContainers(quit chan

error) error {

 ...

 for _, watcher := range m.containerWatchers {

 err := watcher.Start(m.eventsChannel)

 if err != nil {

 for _, w := range watched {

 stopErr := w.Stop()

 ...

 }

 return err

 }

 watched = append(watched, watcher)

 }

 err := m.detectSubcontainers("/")

 ...

 return nil

}

After all containers have been set up to be watched, cAdvisor will be

informed about any changes to them. This job is done by the goroutine

shown in the above code snippets. In the next section, you will look at

how cAdvisor uses inotify, which is provided by the Linux operating

system to let applications to be notified if any activities are detected for the

directories that are watched.

Chapter 18 Cadvisor

368

 Monitoring Filesystem
cAdvisor uses the inotify API that is provided by the Linux kernel

(https://linux.die.net/man/7/inotify). This API allows applications

to monitor file systems events, such as if any files are deleted or created.

Figure 18-13 shows how cAdvisor uses the inotify events.

Figure 18-13. inotify flow in cAdvisor

In the previous section, you learned that cAdvisor monitors and listens

for events for /sys/fs/cgroup and its subdirectories. This is how cAdvisor

knows what Docker containers are created or deleted from memory. Let’s

take a look at how it uses inotify for this purpose.

The code uses the inotify library that listens to events

coming in from the kernel. The cAdvisor code uses a goroutine to

process the inotify events. This goroutine is created as part of

Chapter 18 Cadvisor

https://linux.die.net/man/7/inotify

369

the initialization process when watchForNewContainers is called.

watchForNewContainers calls the Start function inside container/raw/

watcher.go, as shown:

func (w *rawContainerWatcher) Start(events chan watcher.

ContainerEvent) error {

 watched := make([]string, 0)

 for _, cgroupPath := range w.cgroupPaths {

 _, err := w.watchDirectory(events, cgroupPath, "/")

 ...

 watched = append(watched, cgroupPath)

 }

 go func() {

 for {

 select {

 case event := <-w.watcher.Event():

 err := w.processEvent(event, events)

 if err != nil {

 ...

 }

 case err := <-w.watcher.Error():

 ...

 case <-w.stopWatcher:

 err := w.watcher.Close()

 ...

 }

 }

 }()

 return nil

}

Chapter 18 Cadvisor

370

The w.processEvent(..) function takes care of the received inotify

event and converts it into its own internal event, as shown:

func (w *rawContainerWatcher) processEvent(event *inotify.

Event, events chan watcher.ContainerEvent) error {

 // Convert the inotify event type to a container create

or delete.

 var eventType watcher.ContainerEventType

 switch {

 case (event.Mask & inotify.InCreate) > 0:

 eventType = watcher.ContainerAdd

 case (event.Mask & inotify.InDelete) > 0:

 eventType = watcher.ContainerDelete

 ...

 }

 ...

 switch eventType {

 case watcher.ContainerAdd:

 alreadyWatched, err := w.watchDirectory(events, event.

Name, containerName)

 ...

 case watcher.ContainerDelete:

 // Container was deleted, stop watching for it.

 lastWatched, err := w.watcher.RemoveWatch(containerName,

event.Name)

 ...

 default:

 return fmt.Errorf("unknown event type %v", eventType)

 }

 // Deliver the event.

 events <- watcher.ContainerEvent{

Chapter 18 Cadvisor

371

 EventType: eventType,

 Name: containerName,

 WatchSource: watcher.Raw,

 }

 return nil

}

The function converts the events received into internal events

that the code understands: watcher.ContainerAdd and watcher.

ContainerDelete. These events are broadcast internally for other parts of

the code to process.

 Information from /sys and /proc
In Chapters 2 and 3, you learned about the /sys and /proc filesystems and

what kind of system-related information can be found. cAdvisor uses the

same way to collect machine information that is reported as part of the

metric information.

Manager takes care of collecting and updating machine information,

as shown in the following code snippet:

func New(memoryCache *memory.InMemoryCache, sysfs sysfs.

SysFs, houskeepingConfig HouskeepingConfig, includedMetricsSet

container.MetricSet, collectorHTTPClient *http.Client,

rawContainerCgroupPathPrefixWhiteList []string, perfEventsFile

string) (Manager, error) {

 ...

 machineInfo, err := machine.Info(sysfs, fsInfo,

inHostNamespace)

 ...

}

Chapter 18 Cadvisor

https://doi.org/10.1007/978-1-4842-8731-6_2
https://doi.org/10.1007/978-1-4842-8731-6_3

372

The primary code that does the collection of machine information can

be seen in the following snippet (machine/info.go):

func Info(sysFs sysfs.SysFs, fsInfo fs.FsInfo, inHostNamespace

bool) (*info.MachineInfo, error) {

 ...

 clockSpeed, err := GetClockSpeed(cpuinfo)

 ...

 memoryCapacity, err := GetMachineMemoryCapacity()

 ...

 filesystems, err := fsInfo.GetGlobalFsInfo()

 ...

 netDevices, err := sysinfo.GetNetworkDevices(sysFs)

 ...

 topology, numCores, err := GetTopology(sysFs)

 ...

 return machineInfo, nil

}

Here’s the GetMachineMemoryCapacity() function and how it collects

memory information using the /proc directory:

func GetMachineMemoryCapacity() (uint64, error) {

 out, err := ioutil.ReadFile("/proc/meminfo")

 if err != nil {

 return 0, err

 }

 memoryCapacity, err := parseCapacity(out,

memoryCapacityRegexp)

 if err != nil {

 return 0, err

 }

 return memoryCapacity, err

}

Chapter 18 Cadvisor

373

The function reads the /proc/meminfo directory and parses the

information received by calling the parseCapacity() function. The raw

information extracted from /proc/meminfo looks like the following:

MemTotal: 16078860 kB

MemFree: 698260 kB

...

Hugepagesize: 2048 kB

Hugetlb: 0 kB

DirectMap4k: 901628 kB

DirectMap2M: 15566848 kB

DirectMap1G: 0 kB

Let’s look at another function called GetGlobalFsInfo() (fs/fs.go).

This function calls another function called GetFsInfoForPath(..) (fs/

fs.go), which is shown in the following snippet:

func (i *RealFsInfo) GetFsInfoForPath(mountSet

map[string]struct{}) ([]Fs, error) {

 ...

 diskStatsMap, err := getDiskStatsMap("/proc/diskstats")

 ...

 return filesystems, nil

}

It calls getDiskStatsMap(..), passing in /proc/diskstats as the

parameter. The function getDiskStatsMap(..) reads and parses the

information from that directory. The raw information from that directory

looks like the following:

 ...

Chapter 18 Cadvisor

374

 259 0 nvme0n1 17925716 1726716 2140111562 27153144

9657604 6144332 374398866 10096182 1 7081436 37829936 0 0 0 0

666569 580610

 ...

 253 2 dm-2 728297 0 5837468 252644 2635588 0 21084640

7281316 0 334744 7533960 0 0 0 0 0 0

Now let’s look at how cAdvisor reads information using the /sys

directory. The function GetNetworkDevices(..) (utils/sysinfo/

sysinfo.go) shown in the code snippets calls another function to get the

information from /sys/class/net.

func GetNetworkDevices(sysfs sysfs.SysFs) ([]info.NetInfo,

error) {

 devs, err := sysfs.GetNetworkDevices()

 ...

 return netDevices, nil

}

The sysfs.GetNetworkDevices() (utils/sysfs/sysfs.go) snippet

looks like the following:

const (

 ...

 netDir = "/sys/class/net"

 ...

)

func (fs *realSysFs) GetNetworkDevices() ([]os.FileInfo,

error) {

 files, err := ioutil.ReadDir(netDir)

 ...

 var dirs []os.FileInfo

 for _, f := range files {

Chapter 18 Cadvisor

375

 ...

 }

 return dirs, nil

}

The function extracts and parses the information, which looks like the

following in raw format:

lrwxrwxrwx 1 root root 0 Jun 19 14:09 docker0 -> ../../

devices/virtual/net/docker0

...

../../devices/virtual/net/veth710aac6

lrwxrwxrwx 1 root root 0 Jun 19 12:30 veth98e6a97 -> ../../

devices/virtual/net/veth98e6a97

lrwxrwxrwx 1 root root 0 Jun 19 14:09 wlp0s20f3 -> ../../

devices/pci0000:00/0000:00:14.3/net/wlp0s20f3

 Client Library
In the repository inside the chapter18 folder, there are examples of how

to use the cAdvisor client library to communicate with cAdvisor. The

examples show how to use the client library to get container information,

event streaming from cAdvisor, and so on.

 Summary
In this chapter, you learned about installing and running cAdvisor to

monitor metrics of your local machine and Docker containers. The tool

provides a lot of information that shows the performance of the different

containers that are running on a machine. This chapter discussed how

cAdvisor collects metric information for containers and local machines

using the knowledge you learned in previous chapters.

Chapter 18 Cadvisor

376

cAdvisor provides much more functionality than what was discussed

in this chapter. For example, it has built-in support for exporting metrics to

a Prometheus, it provides an API that can be used to integrated with other

third-party or in-house tools to monitor container performance, and more.

Chapter 18 Cadvisor

377

Index

A
Abstract syntax tree (AST)

built-in module, 113
code stages, 111, 112
data structure, 130
definition, 111
function and filters, 116
vs. Go code, 112, 113
modules, 115
sample code, 116

inspection, 116–118
parsing file, 119–121

structure, 113, 114
use cases, 115

Accept function, 168
ANSI-based UI

color table, 296–299
color text output, 297
foreground and background

mapping, 299
style text, 299, 300

ANSI codes, 296, 300, 306
ANSI escape code

bash output, 295
bash script, 294–296
code description, 296
color output, 295

in-band signaling, 294
terminal-based

applications, 294
API-based handlers, 360
API-based HTTP handlers, 359
apiReady channel, 281, 282
Application Armor

(AppArmor), 29, 31
ApplicationLayer() function,

205, 211
ast.BasicLint, 118, 119
ast.File, 116, 117, 121
ast.FuncDecl function, 121
ast.Ident, 118, 119
ast.Inspect(..) function, 117–120
ast.Node, 114, 118, 128

B
Berkeley Packet Filter (BPF),

217–222
BigQuery, 132
Bubbletea

application functions, 314
centralized process,

messages, 321
initialization, internal execution

flow, 318

© Nanik Tolaram 2023
N. Tolaram, Software Development with Go,
https://doi.org/10.1007/978-1-4842-8731-6

https://doi.org/10.1007/978-1-4842-8731-6#DOI

378

Init() function, 315–317
model interface, 314
newModel() function, 315
tea.NewProgram(), 314
tui-daemon-combo sample

output, 313
update function, 318, 319
user interface framework, 313
View(), 319, 320

Bytes() function, 311

C
Cache management, 358
cAdvisor

/api/v1.0/containers
output, 361

architecture, 355
client library, 375
components, 357
container UI, 351
createContainer function

process, 365
Docker containers, 347, 351, 354
Docker subcontainers view, 354
go get command, 348
high-level architecture, 356
information, /sys and /

proc, 371–375
initialization, 357–360
inotify flow, 368
manager, 361, 363–367
memory and disk usage, 353

monitoring filesystem, 368–371
parameters, 348, 349
postgres container, 355
postgres metrics, 355
run process information, 353
source code, 347
subcontainers, 352
/system.slice view, 353
UI, 350, 351
web user interface, 352–355

cgroups
commands, 58
configurations, 57
host machines resources, 55
Linux kernel, 55
listing directories, 56
process id, 58
resource restriction, 58
stress application, 57
stress tool, 57
/sys/fs/cgroup directory, 56
user ability, 55

Checking disk space, 18
child parameter, 67
Client library, 326, 334, 375
Close(stop) function, 278
Cmd function type, 316
cntcmd.Run(), 70
Code flow, 309, 310
CollectManager, 366
Color table, 296–299
Command-line applications, 303
Complete package

documentation, 8

Bubbletea (cont.)

INDEX

379

Concurrent servers, 174, 175
configureSeccomp() function, 93
ContainerHandler, 366
Containers, 70

aspects, 51
cgroups, 55–58
gotainer, 63–70
Linux kernel, 71
namespaces, 51–55
rootfs, 58–62

Containers with networking
Alpine container, 79
child-mode, 87
execContainerCommand(..), 88
gocker0 bridge, 81
ifconfig command, 80
initContainer(..) function, 83
IP address, 82
netlink.Bridge, 83
network communication, 81
parameters, 86
terminal window, 82
two-step execution

process, 82, 83
virtual ethernet network, 80
virtual networks, 84

createMACAddress(), 84
CrowdSec

data, 269
data inside the decisions

table, 273
GeoIP database, 285–287, 289
gunzip, 267
installation process, 266

open source security tool,
265, 266

script run, 267
service coordination, 281
service dependencies, 280–282,

284, 285
source code, 265
system signal handling, 274–280
tests, 269

crowdsec.db, 270–273
C system call, 5, 7, 8

D
Debug/elf package

dump sample, 24–28
high-level format, 23, 24
providing interfaces, 23

DecodeFromBytes, 203
Desktop Bus (D-Bus), 326
DNS forwarder

DNS requests, 190
Google’s public DNS server, 189
handleRequest(..) function,

190, 192
port 8090, 190
readRequest() function, 191
ResolveDNS(..) function, 192
sendResponse(..) function, 193
UDP-based, 189
unpacked data, 191

DNS server
code, 188, 189
DNS forwarder, 188–193

INDEX

380

packing and unpacking
Answers field, 194, 195
DNS response, 193
Header field, 194
Message struct, 193
Questions field, 194
Resource struct, 194

Docker client, 98, 101
Docker command line, 100
Docker containers, 347, 351, 354,

368, 375
Docker daemon, 101
Dockerfiles, 105–107
DOCKER_HOST environment

variable, 99
Docker image, 105, 106
Docker-like functionality, 79
Docker plugin, 363
Docker proxy

code, 99
Docker client, 100
JSON format, 101
listing running containers, 99
messages, 99
output, 99
socket, 101–104
unix parameter, 102

Docker seccomp
application’s security, 95
code, 95
command execution, 96
docker container, 96
sample main.go, 96

problem_seccomp.json, 97
restriction, 97
seccomp.json, 97
syscalls, 98

Docker security
components, 98
Go application, 106
Linux kernel, 89
seccomp, 89–98
Unix socket, 98

Docker socket, 103

E
echoHandler function, 233
ELF file structure, 23
elf.Open, 27
enp7s0, 207
epoll

application, 225, 226
code, 232
connection.Reader(), 233
connection.Write(), 233
CreateListener, 233
data structure, 224, 225
edge triggered, 226
event-driven, 224
echoHandler function, 233
Golang

echo server, 226
epoll registration, 227–229
Epoll Wait, 229–231
nc (network connect)

tool, 227

DNS server (cont.)

INDEX

381

goroutines, 235
level triggered, 226
Linux-specific features, 224
netpoll high-level

architecture, 234
netpoll library, 234
netpoll load balancer, 235
open source library, 232
system perspective, 224

Executable Linkable
Format (ELF), 23

F
fetch(pid) function, 47
file.DynString function, 28

G
GCC website, 7
GeoCityRecord, 288
GeoIP database, 285–287, 289, 290
Getcwd function, 10
getDiskStatsMap(..), 373
GetFsInfoForPath(..) (fs/fs.go), 373
GetGlobalFsInfo() (fs/fs.go), 373
gethostbyname function, 8
GetMachineMemoryCapacity()

function, 372
GetMemSample function, 39, 40
GetNetworkDevices(..) (utils/

sysinfo/sysinfo.go), 374
GitHub, 145
GitHub APIs

code, 152
data types, 155
github.NewClient(..), 149
Go application, 147, 148
GraphQL, 145
GraphQL API, 150, 152
JSON format, 147
JSON response, 145
library source code, 149
real time, 150
repositories, 146
repository information, 159
REST, 145, 147
username, 146

GitHub Explorer
account, 156
extraction, 157
GraphQL, 157, 158
quick tips, 158
web-based tool, 156

GitHub repositories, 132, 153
GitHub tokens, 131, 138
Go system calls, 3
golang.org/x/sys/unix package, 17
gontainer.go. file, 64
Gookit, 300, 301, 303
gopacket

BPF, 217–222
layer interface, 200
LayerContents, 201
LayerPayload, 201
layer struct

implementation, 202
LayerType, 201

INDEX

382

layertypes.go, 201
libpcap library, 200
Linux library, 200
low-level network packet

manipulation, 199
network sniffer application (see

Network sniffer
application)

packet, 204, 205
pcap

install libpcap, 206
traffic data, 205

TCP layer, 203, 204
gopacket OpenLive function, 219
GoPlay, 24, 25
Goroutines, 163, 174, 175, 177–179,

235, 277, 279, 284, 317
gosec project

ast.Walk, 127
directory changing

command, 122
directory processing, 125
gosec.load(..) function, 126
high level process, 123, 124
looping, 127
open source tool, 122
PackagePaths(..) function, 125
rules, 124, 128–130
scanning .go files, 123
secure code, 122
Visit(..) function, 127, 128

go-systemd library
D-Bus specification, 334

features, 335
journal, 338–340
machines, 340–342, 344
query services, 335–337

Gotainer
Alpine roofs, 63
child() function, 68
child parameter, 67
the code, 66, 69
command, 63
exec.Command, 66
Init() function, 66
Linux commands, 63
argument passed, lst, 67
run() function, 66
parameter run, 65
argument run sh, 64

graphClient.Query(..) function, 156
GraphQL, 150, 159

cannot, 154
definition, 155
tool, 154

graphqlData struct, 156

H
handleRequest function, 168
Hard disk information, 18
Hello Server systemd, 332–334
HTTP handlers, 359

I
icmp.ListenPacket(), 183

gopacket (cont.)

INDEX

383

Init() function, 315–317
InMemoryCache, 358
inotify API, 368
inotify events, 368
Internet Control Message

Protocol (IMCP), 182
standard library ioUtil.ReadFile, 30
IP tool

assigning virtual networks, 76
br0 routing information, 78
external services, 74
installation command, 74
local network interface, 76
network bridge, 76
network namespaces

creation, 76
routing traffic, 77, 78
virtual networks, 76

J, K
Journal, 338–340
JSON, 99, 147, 289

L
libpcap, 200, 206
libseccomp

command, 91
configureSeccomp()

function, 93, 94
libseccomp-golang library, 92
multiple-team environment, 92
sample application, 91

seccomp.
GetSyscallFromName(..)
function, 93

seccomp.NewFilter(..)
function, 93

temporary directory
creation, 91

whitelist variable, 92, 94
working directory, 95

libseccomp-golang library, 92, 106
Linux, 224
Linux machine, 10
ListImages() function, 344
Load testing tool

average time, 177, 178
code execution, 176
fortio, 175
time.Sleep(..) function, 176
timing difference, 175
UDP server, 175, 177

loop100Times function, 278
loop1000Times function, 279

M
machinectl command-line

tool, 342
Machines, 340–342, 344
main() function, 358
Manager, 361, 363–367, 371
Match(..) function, 128, 130
Memory information, 38, 39
Mini Root Filesystem, 59, 60
Monitoring filesystem, 368–371

INDEX

384

N
Namespaces

creation command, 54
definition, 51
isolated, 52
isolated environment

creation, 51
network interface, 54, 55
running applications, 53
Unshare, 52

nc (network connect) tool, 167
net package, 165
net.Dial(..) function, 165
net.DialUnix(..) function, 103
net/dns package standard

library, 196
net.Listen(..) function, 168
net.ListenUDP function, 173
netpoll library, 233, 234
netpoll load balancer, 235
net.ResolveUDPAddr function, 169,

170, 172
Networking

client and server code, 163
load testing, 175–178
TCP protocol, 163–168
UDP protocol, 169–174

Network namespace
ip tool, 74–78
isolation feature, 72
network interface, 71
requirements, 72
ifconfig, 207

Network sniffer application
app run, 208
chapter11/gopacket/sniffer

folder, 206
code, 206
code walkthrough, 209–211
enp7s0, 207
pcap analysis

manual, 211, 213
Wireshark, 213–217

test.pcap inside Wireshark, 217
New() function, 344
Non-networked socket, 98

O
Open source library

Gookit, 300, 301, 303
spinner, 303–306
spinner struct containing

spinner characters, 305
Open source security tool, 266

P
packet, 204, 205
packet struct, 204, 210, 211
packet.go, 205
parser.ParseFile(..) function, 119
Payload() function, 205
pcap, 205, 206
pcap.OpenLive function, 209
Ping utility

Body field, 185

INDEX

385

code, 181
icmp package, 182
ICMP, 182
ICMP communication, 183
icmp.Message struct, 184
ICMP packet, 184, 185
ICMPv4/6 manipulation, 182
local socket connection, 184
Marshal(..) function, 186
net.ResolveIPAddr()

function, 183
ParseMessage(..)function, 187
Ping() function, 182
ReadFrom(..) function, 187
response message parsing, 186
response type, 187

Postgres metrics, 355
prepareAndExecuteContainer(..)

function, 85
print() function, 311, 339
printPacketInfo(..) function, 210
/proc directory, 372

command, 34
corresponding process, 35
information, 33, 35, 36
numerical directories, 35
parsing, 48
reading memory

information, 38–41
reading network

information, 41–44
Processes function, 46
Process ID (PID), 330

procfs library
open source library, 44
procfs.Processes(..)

function, 46, 47
sample code, 44, 45

/proc/meminfo directory, 373
Project maintainer, 132

Q
qotd function, 169
.Query(..) function, 156
Query services, 335–337
quote-of-the-day(qotd) server, 169

R
Read(..) function, 168
ReadFromUDP function, 175
ReadFromUDP(..) function, 190
Repositories.Get(..), 149
request.Write(..) function, 103
ResolveDNS(..) function, 192
REST API, 145, 150, 159
rootfs

application execution, 59
basic necessary files, 58
download, 59
file copying directory, 60
importance, 58
local machine, 63
minimal directories, 58

runtime.NumCPU(), 174

INDEX

386

S
Sampler struct, 39
SampleSetChan, 39
Scorecard

BigQuery, 132
execution, 137, 138
high-level flow, 139–144
open source security tool, 131
openssf project, 132, 133
project analysis, 131
public dataset accessing, 132
security metrics, 131, 159
setting up, 133–137

sd-bus, 326
seccomp

command, 90
Docker containers, 90
installing, package manager, 90
libseccomp, 91–95
Linux, 89
restriction, 90

Security scorecard, 137
serveAPIServer function, 282
ServeHTTP function, 102
servePrometheus function, 282
SetBPFFilter function, 219
setup-ns, 86
setup-veth, 86
setupVirtualEthOnHost(..)

function, 83
sh command, 63
SIGHUP, 276
SIGINT, 276
SignalChan variable, 276

SIGTERM, 276
Socket activation, 326
Spinner, 303–306
spinner.Start() function, 305
SQLite database, 270
Standard library, 22
StartRunSvc function, 281
StartSampling function, 39
Statfs_t struct declaration, 19
Statx function system, 12
Stop variable, 277
sync.WaitGroup, 279
/sys directory, 374

AppArmor, 29, 30
virtual filesystem, 29

syscall package
application, 16, 17
checking disk space, 18, 19
definition, 16
functionalities, 16
webserver, 20–22

syscall.Accept, 22
syscall.Bind, 21, 228
syscall.Socket system, 21, 228
syscall.SOMAXCONN, 22
syscall.Statfs function, 19
System call

codes, 10
definition, 4
in Go, 10–13
Go library, 4
high level, 4
in Linux vs. Darwin, 9
operating systems, 4

INDEX

387

systemctl
cups.service, 330, 331
registered service, 329
registered service, systemd,

329, 332
systemctl stop, 330
systemd, 329
systemd-journal.service, 329

systemd
Desktop Bus, 326
Hello Server, 332–334
implementation, D-Bus, 326
Linux systems, 325
sd-bus, 326
socket activation, 326
units, 326–329

System-related systemd unit
files, 326

systemd-container, 340
systemd-journal.service, 329
systemd-machine, 345
systemd-nspawn, 340
System filesystem, 30
System-level information, 15, 28
System network tools, 181
sys/unix package, 8, 9, 14

T
TCP client, 164–166
TCP protocol

client, 163–166
server, 163, 166–168

TCP server, 166–168

tea.Batch() function, 316
tea.NewProgram(), 314
Terminal-based applications,

294, 306
test.pcap, 211, 213, 215, 216
Traffic data, 205

U
UDP client, 169, 170, 172
UDPConn struct, 173
UDP protocol

concurrent servers,
174, 175

UDP client, 169, 170, 172
UDP server, 172, 173

uiprogress
code flow, 309, 310
progress bar output, 308
progress bar user interface,

307, 308
update progress, 310–312

Unix socket, 103
unix.Statx function, 13
unix.Statx system call, 12
Unshare, 52, 55
update() function, 317–319
User interface (UI), 350

V
View() function, 319, 320
Virtual networks, 73, 76, 82, 88
Visit(..) function, 127, 128

INDEX

388

W, X, Y, Z
watchForNewContainers()

function, 367, 369
Web user interface, 352–355
Wireshark, 213–217

Wireshark UI, 215
w.processEvent(..) function, 370
Write(..) function, 168
WriteTo(b,dst)

function, 186

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: System Calls
	Source Code
	What Is a System Call?
	C System Call
	sys/unix Package
	System Call in Go

	Summary

	Chapter 2: System Calls Using Go
	Source Code
	Syscall Package
	syscall Application
	Checking Disk Space
	Webserver with syscall

	ELF Package
	High-Level ELF Format
	Dump Example

	/sys Filesystem
	Reading AppArmor

	Summary

	Chapter 3: Accessing proc File System
	Source Code
	Peeking Inside procfs
	Reading Memory Information
	Peeking Network Information

	Using the procfs Library
	Code Sample
	Inside the procfs Library

	Summary

	Chapter 4: Simple Containers
	Linux Namespace
	cgroups
	rootfs
	Gontainer Project
	Summary

	Chapter 5: Containers with Networking
	Source Code
	Network Namespace
	Setting Up with the ip Tool
	Containers with Networks
	Summary

	Chapter 6: Docker Security
	Source Code
	seccomp Profiles
	libseccomp
	Docker seccomp

	Docker Proxy
	Container Attack Surface
	Summary

	Chapter 7: Gosec and AST
	Source Code
	Abstract Syntax Tree
	Modules
	Sample Code
	Inspecting
	Parsing a File

	gosec
	Inside gosec
	Rules

	Summary

	Chapter 8: Scorecard
	Source Code
	What Is Scorecard?
	Setting Up Scorecard
	Running Scorecard
	High-Level Flow

	GitHub
	GitHub API
	GitHub Explorer

	Summary

	Chapter 9: Simple Networking
	Source Code
	TCP Networking
	TCP Client
	TCP Server

	UDP Networking
	UDP Client
	UDP Server
	Concurrent Servers

	Load Testing
	Summary

	Chapter 10: System Networking
	Source Code
	Ping Utility
	Code Walkthrough

	DNS Server
	Running a DNS Server
	DNS Forwarder
	Pack and Unpack

	Summary

	Chapter 11: Google gopacket
	Source Code
	gopacket
	Layer
	TCP Layer

	Packet

	Using gopacket
	pcap
	Installing libpcap

	Networking Sniffer
	Code Walkthrough
	Analyzing pcap Manually
	Analyzing pcap Using WireShark

	Capturing With BPF

	Summary

	Chapter 12: Epoll Library
	Source Code
	Understanding epoll
	epoll in Golang
	Epoll Registration
	Epoll Wait

	Epoll Library
	Summary

	Chapter 13: Vulnerability Scanner
	Source Code
	Vulnerability Scanners
	Using Vuls
	Checking Out the Code
	Running Scan

	Learning From Vuls
	Port Scan
	Exec
	SQLite

	Summary

	Chapter 14: CrowdSec
	Source Code
	CrowdSec Project
	Using CrowdSec
	crowdsec.db

	Learning From CrowdSec
	System Signal Handling
	Handling Service Dependencies
	GeoIP Database

	Summary

	Chapter 15: ANSI and UI
	Source Code
	ANSI Escape Code
	ANSI-Based UI
	Color Table
	Styling Text

	Open Source Library
	Gookit
	Spinner

	Summary

	Chapter 16: TUI Framework
	uiprogress
	Code Flow
	Updating Progress

	Bubbletea
	Init
	Update
	View

	Summary

	Chapter 17: systemd
	Source Code
	systemd
	systemd Units

	systemctl
	Hello Server systemd
	go-systemd Library
	Querying Services
	Journal
	Machines

	Summary

	Chapter 18: cadvisor
	Source Code
	Running cAdvisor
	Web User Interface
	Architecture
	Initialization
	Manager
	Monitoring Filesystem
	Information from /sys and /proc
	Client Library
	Summary

	Index

