

x64 Assembly Language
Step- by- Step

4TH Edition

x64 Assembly Language
Step- by- Step

Programming with Linux®

4TH Edition

Jeff Duntemann

Copyright © 2024 by Jeff Duntemann. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada and the United Kingdom.

ISBNs: 9781394155248 (Hardback), 9781394155545 (epdf), 9781394155255 (epub)

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted
under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission
of the Publisher, or authorization through payment of the appropriate per- copy fee to the Copyright Clear-
ance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750- 8400, fax (978) 750- 4470, or on the web
at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions
Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748- 6011, fax (201) 748- 6008,
or online at www.wiley.com/go/permission.

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc.
and/or its affiliates in the United States and other countries and may not be used without written permission.
Linux is a registered trademark of Linus Torvalds. All other trademarks are the property of their respective
owners. John Wiley & Sons, Inc. is not associated with any product or vendor mentioned in this book.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in
preparing this book, they make no representations or warranties with respect to the accuracy or completeness
of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a
particular purpose. No warranty may be created or extended by sales representatives or written sales materi-
als. The advice and strategies contained herein may not be suitable for your situation. You should consult with
a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any
other commercial damages, including but not limited to special, incidental, consequential, or other damages.
Further, readers should be aware that websites listed in this work may have changed or disappeared between
when this work was written and when it is read.

For general information on our other products and services or for technical support, please contact our Cus-
tomer Care Department within the United States at (800) 762- 2974, outside the United States at (317) 572- 3993
or fax (317) 572- 4002.

If you believe you’ve found a mistake in this book, please bring it to our attention by emailing our reader sup-
port team at wileysupport@wiley.com with the subject line “Possible Book Errata Submission.”

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic formats. For more information about Wiley products, visit our web site at www
.wiley.com.

Library of Congress Control Number: 2023944290

Cover image: © CSA-Printstocks/Getty Images
Cover design: Wiley

http://www.copyright.com
http://www.wiley.com/go/permission
mailto:wileysupport@wiley.com
http://www.wiley.com
http://www.wiley.com

To the eternal memory of my father,

Frank W. Duntemann, Engineer

1922–1978

Who said, “When you build ’em right, they fly.”

You did. And I do.

vii

Jeff Duntemann has had his technical nonfiction and science- fiction work
professionally published since 1974. He worked as a programmer for Xerox
Corporation and as a technical editor for Ziff- Davis Publishing and Borland
International. He launched and edited two print magazines for programmers
and has 20 technical books to his credit, including the bestselling Assembly
Language Step- by- Step. He wrote the “Structured Programming” column in Dr.
Dobb’s Journal for four years and has published dozens of technical articles in
many magazines. He has a longstanding interest in “strong” artificial intelli-
gence, and most of his fiction explores the possibilities and consequences of
strong AI. His other interests include electronics and amateur radio (callsign
K7JPD), telescopes, and kites. Jeff lives in Phoenix, Arizona, with his wife Carol.

About the Technical Editor

David Stafford is an enthusiast of low-level programming in assembly lan-
guage, from 8-bit processors to modern 64-bit multicore architectures. He lives
in the Seattle area and works in the field of artificial intelligence for robotics.

About the Author

ix

Thanks are due to a number of people who helped me out as this edition took
shape, in various ways. First, thanks to Jim Minatel and Pete Gaughan of Wiley,
who got the project underway and made sure it went to completion. Also thanks
to David Stafford, who acted as technical editor and provided a constant stream
of invaluable advice.

The event shocked me to the core, but antony- jr of GitHub managed to cre-
ate a working Linux appimage of the quirky and ancient but very accessible
Insight debugger, which was pulled from Linux repositories soon after the third
edition of this book hit print in 2009. A very big thanks to him for what was
likely a very peculiar project. You can find his Insight appimage here: https://
appimage.github.io/Insight.

Abundant thanks also to Dmitriy Manushin, who created SASM, a free assem-
bly language IDE targeted at beginners: https://dman95.github.io/SASM/
english.html.

When I ran into a weirdness in glibc, my wizard crew on Contrapositive
Diary helped me figure it out:

 ■ Jim Strickland

 ■ Bill Buhler

 ■ Jason Bucata

 ■ Jonathan O’Neal

 ■ Bruce and Keith (last names not given, and that’s OK— the advice
was golden)

Finally, and as always, a toast to Carol for her support and sacramental friend-
ship that have enlivened me now for 54 years and enabled me to take on dif-
ficult projects like this and see them through to the end, no matter how nuts
they made me along the way!

Acknowledgments

https://appimage.github.io/Insight
https://appimage.github.io/Insight
https://dman95.github.io/SASM/english.html
https://dman95.github.io/SASM/english.html

xi

Contents at a Glance

Introduction xxix

Chapter 1 It’s All in the Plan 1

Chapter 2 Alien Bases 11

Chapter 3 Lifting the Hood 41

Chapter 4 Location, Location, Location 73

Chapter 5 The Right to Assemble 103

Chapter 6 A Place to Stand, with Access to Tools 143

Chapter 7 Following Your Instructions 175

Chapter 8 Our Object All Sublime 213

Chapter 9 Bits, Flags, Branches, and Tables 251

Chapter 10 Dividing and Conquering 299

Chapter 11 Strings and Things 377

Chapter 12 Heading Out to C 423

Conclusion: Not the End, But Only the Beginning 489

Appendix A The Return of the Insight Debugger 493

Appendix B Partial x64 Instruction Reference 501

Appendix C Character Set Charts 575

Index 579

xiii

Contents

Introduction xxix

Chapter 1 It’s All in the Plan 1
Another Pleasant Valley Saturday 1

Steps and Tests 3
More Than Two Ways? 3
Computers Think Like Us 4

Had This Been the Real Thing . . . 5
Assembly Language Programming As a Square Dance 5
Assembly Language Programming As a Board Game 6

Code and Data 8
Addresses 8
Metaphor Check! 9

Chapter 2 Alien Bases 11
The Return of the New Math Monster 11

Counting in Martian 12
Dissecting a Martian Number 14
The Essence of a Number Base 16

Octal: How the Grinch Stole Eight and Nine 16
Who Stole Eight and Nine? 17

Hexadecimal: Solving the Digit Shortage 20
From Hex to Decimal and from Decimal to Hex 24

From Hex to Decimal 24
From Decimal to Hex 25

Practice. Practice! PRACTICE! 27
Arithmetic in Hex 28

xiv Contents

Columns and Carries 30
Subtraction and Borrows 31
Borrows Across Multiple Columns 33
What’s the Point? 33

Binary 34
Values in Binary 36
Why Binary? 38

Hexadecimal as Shorthand for Binary 38
Prepare to Compute 40

Chapter 3 Lifting the Hood 41
RAXie, We Hardly Knew Ye 41

Gus to the Rescue 42
Switches, Transistors, and Memory 43

One If by Land... 43
Transistor Switches 44
The Incredible Shrinking Bit 46
Random Access 47
Memory Access Time 49
Bytes, Words, Double Words, and Quad Words 50
Pretty Chips All in a Row 51

The Shop Supervisor and the Assembly Line 54
Talking to Memory 55
Riding the Data Bus 56
The Shop Supervisor’s Pockets 57
The Assembly Line 58

The Box That Follows a Plan 58
Fetch and Execute 60
The Supervisor’s Innards 61
Changing Course 62

What vs. How: Architecture and Microarchitecture 63
Evolving Architectures 64
The Secret Machinery in the Basement 65

Enter the Plant Manager 67
Operating Systems: The Corner Office 67
BIOS: Software, Just Not as Soft 68
Multitasking Magic 68
Promotion to Kernel 70
The Core Explosion 70
The Plan 72

Chapter 4 Location, Location, Location 73
The Joy of Memory Models 73

16 Bits’ll Buy You 64 KB 75

 Contents xv

The Nature of a Megabyte 78
Backward Compatibility and Virtual 86 Mode 79
16- Bit Blinders 79

The Nature of Segments 80
A Horizon, Not a Place 84
Making 20- Bit Addresses Out of 16- Bit Registers 84

Segment Registers 87
Segment Registers and x64 88
General- Purpose Registers 88
Register Halves 91
The Instruction Pointer 92
The Flags Register 94
Math Coprocessors and Their Registers 94

The Four Major Assembly Programming Models 95
Real- Mode Flat Model 95
Real- Mode Segmented Model 97
32- Bit Protected Mode Flat Model 99

64- Bit Long Mode 101

Chapter 5 The Right to Assemble 103
The Nine and Sixty Ways to Code 103
Files and What’s Inside Them 104

Binary vs. Text Files 105
Looking at Binary File Internals with the GHex Hex Editor 106
Interpreting Raw Data 110
“Endianness” 111

Text In, Code Out 115
Assembly Language 116
Comments 118
Beware “Write- Only” Source Code! 119
Object Code, Linkers, and Libraries 120
Relocatability 123

The Assembly Language Development Process 123
The Discipline of Working Directories 125
Editing the Source Code File 126
Assembling the Source Code File 126
Assembler Errors 127
Back to the Editor 128
Assembler Warnings 129

Linking the Object Code File 130
Linker Errors 131
Testing the EXE File 131
Errors vs. Bugs 132

xvi Contents

Are We There Yet? 133
Debuggers and Debugging 133

Taking a Trip Down Assembly Lane 134
Installing the Software 134
Step 1: Edit the Program in an Editor 137
Step 2: Assemble the Program with NASM 138
Step 3: Link the Program with ld 140
Step 4: Test the Executable File 141
Step 5: Watch It Run in the Debugger 141

Chapter 6 A Place to Stand, with Access to Tools 143
Integrated Development Environments 143
Introducing SASM 146

Configuring SASM 146
SASM’s Fonts 147
Using a Compiler to Link 148
A Quick Tour of SASM 149
SASM’s Editor 152
What SASM Demands of Your Code 152

Linux and Terminals 153
The Linux Console 153
Character Encoding in Konsole 154
The Three Standard Unix Files 156
I/O Redirection 158
Simple Text Filters 159
Using Standard Input and Standard Output from Inside SASM 161
Terminal Control with Escape Sequences 161
So Why Not GUI Apps? 163

Using Linux Make 164
Dependencies 165
When a File Is Up- to- Date 167
Chains of Dependencies 167
Invoking Make 169
Creating a Custom Key Binding for Make 170
Using Touch to Force a Build 172

Debugging with SASM 172
Pick up Your Tools. . . 174

Chapter 7 Following Your Instructions 175
Build Yourself a Sandbox 176

A Minimal NASM Program for SASM 176
Instructions and Their Operands 178
Source and Destination Operands 178

 Contents xvii

Immediate Data 179
Register Data 181
Memory Data and Effective Addresses 184
Confusing Data and Its Address 185
The Size of Memory Data 185
The Bad Old Days 186

Rally Round the Flags, Boys! 186
Flag Etiquette 190
Watching Flags from SASM 190
Adding and Subtracting One with INC and DEC 191
How Flags Change Program Execution 192
How to Inspect Variables in SASM 194

Signed and Unsigned Values 195
Two’s Complement and NEG 196
Sign Extension and MOVSX 198

Implicit Operands and MUL 200
MUL and the Carry Flag 202
Unsigned Division with DIV 203
MUL and DIV Are Slowpokes 204

Reading and Using an Assembly Language Reference 205
Memory Joggers for Complex Memories 205
An Assembly Language Reference for Beginners 206
Flags 207

NEG Negate (Two’s Complement; i.e., Multiply by −1) 208
Flags Affected 208
Legal Forms 208
Examples 208
Notes 208
Legal Forms 209
Operand Symbols 209
Examples 210
Notes 210
What’s Not Here. . . 210

Chapter 8 Our Object All Sublime 213
The Bones of an Assembly Language Program 213

The Initial Comment Block 215
The .data Section 216
The .bss Section 216
The .text Section 217
Labels 217
Variables for Initialized Data 218
String Variables 219

xviii Contents

Deriving String Length with EQU and $ 221
Last In, First Out via the Stack 223

Five Hundred Plates an Hour 223
Stacking Things Upside Down 225
Push- y Instructions 226
POP Goes the Opcode 227
PUSHA and POPA Are Gone 228
Pushing and Popping in Detail 229
Storage for the Short Term 231

Using Linux Kernel Services Through Syscall 231
X64 Kernel Services via the SYSCALL Instruction 232
ABI vs. API? 232
The ABI’s Register Parameter Scheme 233
Exiting a Program via SYSCALL 234
Which Registers Are Trashed by SysCall? 235

Designing a Nontrivial Program 235
Defining the Problem 235
Starting with Pseudocode 236
Successive Refinement 237
Those Inevitable “Whoops!” Moments 241
Scanning a Buffer 242
“Off by One” Errors 244
From Pseudocode to Assembly Code 246
The SASM Output Window Gotcha 248

Going Further 248

Chapter 9 Bits, Flags, Branches, and Tables 251
Bits Is Bits (and Bytes Is Bits) 251

Bit Numbering 252
“It’s the Logical Thing to Do, Jim. . .” 252
The AND Instruction 253
Masking Out Bits 254
The OR Instruction 255
The XOR Instruction 256
The NOT Instruction 257
Segment Registers Don’t Respond to Logic! 258

Shifting Bits 258
Shift by What? 258
How Bit Shifting Works 259
Bumping Bits into the Carry Flag 260
The Rotate Instructions 260
Rotating Bits Through the Carry Flag 261
Setting a Known Value into the Carry Flag 262

 Contents xix

Bit- Bashing in Action 262
Splitting a Byte into Two Nybbles 264
Shifting the High Nybble into the Low Nybble 265
Using a Lookup Table 266
Multiplying by Shifting and Adding 267

Flags, Tests, and Branches 270
Unconditional Jumps 271
Conditional Jumps 271
Jumping on the Absence of a Condition 272
Flags 273
Comparisons with CMP 274
A Jungle of Jump Instructions 275
“Greater Than” Versus “Above” 275
Looking for 1- Bits with TEST 277
Looking for 0- Bits with BT 279

X64 Long Mode Memory Addressing in Detail 279
Effective Address Calculations 281
Displacements 282
The x64 Displacement Size Problem 283
Base Addressing 283
Base + Displacement Addressing 283
Base + Index Addressing 284
Index X Scale + Displacement Addressing 285
Other Addressing Schemes 287
LEA: The Top- Secret Math Machine 289

Character Table Translation 290
Translation Tables 291
Translating with MOV or with XLAT 293

Tables Instead of Calculations 298

Chapter 10 Dividing and Conquering 299
Boxes within Boxes 300

Procedures as Boxes for Code 301
Calling and Returning 309

Calls Within Calls 311
The Dangers of Accidental Recursion 313
A Flag Etiquette Bug to Beware Of 314
Procedures and the Data They Need 315
Saving the Caller’s Registers 316
Preserving Registers Across Linux System Calls 317
PUSHAD and POPAD Are Gone 319
Local Data 321
Placing Constant Data in Procedure Definitions 322

xx Contents

More Table Tricks 323
Local Labels and the Lengths of Jumps 325

“Forcing” Local Label Access 328
Short, Near, and Far Jumps 329

Building External Procedure Libraries 330
When Tools Reach Their Limits 330
Using Include Files in SASM 331
Where SASM’s Include Files Must Be Stored 337
The Best Way to Create an Include File Library 338
Separate Assembly and Modules 339
Global and External Declarations 339
The Mechanics of Globals and Externals 342
Linking Libraries into Your Programs 351
The Dangers of Too Many Procedures and Too

Many Libraries 352
The Art of Crafting Procedures 352

Maintainability and Reuse 353
Deciding What Should Be a Procedure 354
Use Comment Headers! 355

Simple Cursor Control in the Linux Console 356
Console Control Cautions 363

Creating and Using Macros 364
The Mechanics of Macro Definition 366
Defining Macros with Parameters 371
The Mechanics of Invoking Macros 372
Local labels Within Macros 373
Macro Libraries as Include Files 374
Macros vs. Procedures: Pros and Cons 375

Chapter 11 Strings and Things 377
The Notion of an Assembly Language String 378

Turning Your “String Sense” Inside- Out 378
Source Strings and Destination Strings 379
A Text Display Virtual Screen 379

REP STOSB, the Software Machine Gun 387
Machine- Gunning the Virtual Display 388
Executing the STOSB Instruction 389
STOSB and the Direction Flag DF 390
Defining Lines in the Display Buffer 391
Sending the Buffer to the Linux Console 391

The Semiautomatic Weapon: STOSB Without REP 392
Who Decrements RCX? 392
The LOOP Instructions 393
Displaying a Ruler on the Screen 394
MUL Is Not IMUL 395

 Contents xxi

Ruler’s Lessons 396
The Four Sizes of STOS 396
Goodbye, BCD Math 397

MOVSB: Fast Block Copies 397
DF and Overlapping Block Moves 398
Single- Stepping REP String Instructions 401

Storing Data to Discontinuous Strings 402
Displaying an ASCII Table 402
Nested Instruction Loops 404
Jumping When RCX Goes to 0 405
Closing the Inner Loop 406
Closing the Outer Loop 407
Showchar Recap 408

Command- Line Arguments, String Searches, and
the Linux Stack 408

Displaying Command- Line Arguments from SASM 408
String Searches with SCASB 411
REPNE vs. REPE 413
You Can’t Pass Command- Line Arguments to

Programs Within SASM 413
The Stack, Its Structure, and How to Use It 414

Accessing the Stack Directly 417
Program Prologs and Epilogs 419
Addressing Data on the Stack 420
Don’t Pop! 422

Chapter 12 Heading Out to C 423
What’s GNU? 424

The Swiss Army Compiler 425
Building Code the GNU Way 425
SASM Uses GCC 427
How to Use gcc in Assembly Work 427
Why Not gas? 428

Linking to the Standard C Library 429
C Calling Conventions 431
Callers, Callees, and Clobbers 431
Setting Up a Stack Frame 433
Destroying a Stack Frame in the Epilog 434
Stack Alignment 435
Characters Out Via puts() 437

Formatted Text Output with printf() 438
Passing Parameters to printf() 440
Printf() Needs a Preceding 0 in RAX 442
You Shall Have –No- Pie 442

Data In with fgets() and scanf() 442

xxii Contents

Using scanf() for Entry of Numeric Values 445
Be a Linux Time Lord 448

The C Library’s Time Machine 449
Fetching time_t Values from the System Clock 451
Converting a time_t Value to a Formatted String 451
Generating Separate Local Time Values 452
Making a Copy of glibc’s tm Struct with MOVSD 453

Understanding AT&T Instruction Mnemonics 456
AT&T Mnemonic Conventions 457
AT&T Memory Reference Syntax 459

Generating Random Numbers 460
Seeding the Generator with srand() 461
Generating Pseudorandom Numbers 461
Some Bits Are More Random Than Others 467
Calls to Addresses in Registers 469
Using puts() to Send a Naked Linefeed to the Console 470
How to Pass a libc Function More Than Six Parameters 470

How C Sees Command- Line Arguments 472
Simple File I/O 474

Converting Strings into Numbers with sscanf() 475
Creating and Opening Files 477
Reading Text from Files with fgets() 478
Writing Text to Files with fprintf() 481
Notes on Gathering Your Procedures into Libraries 482

Conclusion: Not the End, But Only the Beginning 489

Appendix A The Return of the Insight Debugger 493
Insight’s Shortcomings 494
Opening a Program Under Insight 495
Setting Command- Line Arguments with Insight 496
Running and Stepping a Program 496
The Memory Window 497
Showing the Stack in Insight’s Memory View 498
Examining the Stack with Insight’s Memory View 498
Learn gdb! 500

Appendix B Partial x64 Instruction Reference 501
What’s Been Removed from x64 502
Flag Results 502
Size Specifiers 503
Instruction Index 505
ADC: Arithmetic Addition with Carry 507

Flags Affected 507

 Contents xxiii

Legal Forms 507
Examples 507
Notes 507

ADD: Arithmetic Addition 509
Flags Affected 509
Legal Forms 509
Examples 509
Notes 509

AND: Logical AND 511
Flags Affected 511
Legal Forms 511
Examples 511
Notes 511

BT: Bit Test 513
Flags Affected 513
Legal Forms 513
Examples 513
Notes 513

CALL: Call Procedure 515
Flags Affected 515
Legal Forms 515
Examples 515
Notes 515

CLC: Clear Carry Flag (CF) 517
Flags Affected 517
Legal Forms 517
Examples 517
Notes 517

CLD: Clear Direction Flag (DF) 518
Flags Affected 518
Legal Forms 518
Examples 518
Notes 518

CMP: Arithmetic Comparison 519
Flags Affected 519
Legal Forms 519
Examples 519
Notes 519

DEC: Decrement Operand 521
Flags Affected 521
Legal Forms 521
Examples 521
Notes 521

xxiv Contents

DIV: Unsigned Integer Division 522
Flags Affected 522
Legal Forms 522
Examples 522
Notes 522

INC: Increment Operand 524
Flags Affected 524
Legal Forms 524
Examples 524
Notes 524

J??: Jump If Condition Is Met 525
Flags Affected 525
Examples 525
Notes 525

JECXZ: Jump if ECX=0 527
Flags Affected 527
Legal Forms 527
Examples 527
Notes 527

JRCXZ: Jump If RCX=0 528
Flags Affected 528
Legal Forms 528
Examples 528
Notes 528

JMP: Unconditional Jump 529
Flags Affected 529
Legal Forms 529
Examples 529
Notes 529

LEA: Load Effective Address 531
Flags Affected 531
Legal Forms 531
Examples 531
Notes 531

LOOP: Loop Until CX/ECX/RCX=0 532
Flags Affected 532
Legal Forms 532
Examples 532
Notes 532

LOOPNZ/LOOPNE: Loop Until CX/ECX/RCX=0 and ZF=0 534
Flags Affected 534
Legal Forms 534

 Contents xxv

Examples 534
Notes 534

LOOPZ/LOOPE: Loop Until CX/ECX/RCX=0 and ZF=1 535
Flags Affected 535
Legal Forms 535
Examples 535
Notes 535

MOV: Copy Right Operand into Left Operand 536
Flags Affected 536
Legal Forms 536
Examples 536
Notes 536

MOVS: Move String 538
Flags Affected 538
Legal Forms 538
Examples 538
Notes 538

MOVSX: Copy with Sign Extension 540
Flags Affected 540
Legal Forms 540
Examples 540
Notes 540

MUL: Unsigned Integer Multiplication 542
Flags Affected 542
Legal Forms 542
Examples 542
Notes 542

NEG: Negate (Two’s Complement; i.e., Multiply by − 1) 544
Flags Affected 544
Legal Forms 544
Examples 544
Notes 544

NOP: No Operation 546
Flags Affected 546
Legal Forms 546
Examples 546
Notes 546

NOT: Logical NOT (One’s Complement) 547
Flags Affected 547
Legal Forms 547
Examples 547
Notes 547

xxvi Contents

OR: Logical OR 548
Flags Affected 548
Legal Forms 548
Examples 548
Notes 548

POP: Copy Top of Stack into Operand 550
Flags Affected 550
Legal Forms 550
Examples 550
Notes 550

POPF/D/Q: Copy Top of Stack into Flags Register 552
Flags Affected 552
Legal Forms 552
Examples 552
Notes 552

PUSH: Push Operand onto Top of Stack 553
Flags Affected 553
Legal Forms 553
Examples 553
Notes 553

PUSHF/D/Q: Push Flags Onto the Stack 555
Flags Affected 555
Legal Forms 555
Examples 555
Notes 555

RET: Return from Procedure 556
Flags Affected 556
Legal Forms 556
Examples 556
Notes 556

ROL/ROR: Rotate Left/Rotate Right 558
Flags Affected 558
Legal Forms 558
Examples 558
Notes 558

SBB: Arithmetic Subtraction with Borrow 560
Flags Affected 560
Legal Forms 560
Examples 560
Notes 560

SHL/SHR: Shift Left/Shift Right 562
Flags Affected 562
Legal Forms 562
Examples 562

Contents xxvii

Notes 562
STC: Set Carry Flag (CF) 564

Flags Affected 564
Legal Forms 564
Examples 564
Notes 564

STD: Set Direction Flag (DF) 565
Flags Affected 565
Legal Forms 565
Examples 565
Notes 565

STOS/B/W/D/Q: Store String 566
Flags Affected 566
Legal Forms 566
Examples 566
Notes 566

SUB: Arithmetic Subtraction 568
Flags Affected 568
Legal Forms 568
Examples 568
Notes 569

SYSCALL: Fast System Call into Linux 570
Flags Affected 570
Legal Forms 570
Examples 570
Notes 570

XCHG: Exchange Operands 571
Flags Affected 571
Legal Forms 571
Examples 571
Notes 571

XLAT: Translate Byte Via Table 572
Flags Affected 572
Legal Forms 572
Examples 572
Notes 572

XOR: Exclusive OR 573
Flags Affected 573
Legal Forms 573
Examples 573
Notes 573

Appendix C Character Set Charts 575

Index 579

xxix

Introduction

“Why Would You Want to Do That?”

It was 1985, and I was in a chartered bus in New York City, heading for a
press reception with a bunch of other restless media egomaniacs. I was only
beginning my tech journalist career (as technical editor for PC Tech Journal), and
my first book was still months in the future. I happened to be sitting next to
an established programming writer/guru, with whom I was impressed and to
whom I was babbling about one thing or another. I would like to eliminate this
statement; it adds little to the book, and as annoying as he is, even though we
don’t name him, I now understand why he’s so annoying: He lives and works
in a completely different culture than I do.

During our chat, I happened to let slip that I was a Turbo Pascal fanatic, and
what I really wanted to do was learn how to write Turbo Pascal programs that
made use of the brand new Microsoft Windows user interface. He wrinkled his
nose and grimaced wryly, before speaking the Infamous Question:

“Why would you want to do that?”
I had never heard the question before (though I would hear it many times

thereafter), and it took me aback. Why? Because, well, because. . .I wanted to
know how it worked.

“Heh. That’s what C is for.”
Further discussion got me nowhere in a Pascal direction. But some probing

led me to understand that you couldn’t write Windows apps in Turbo Pascal. It
was impossible. Or. . .the programming writer/guru didn’t know how. Maybe
both. I never learned the truth as it stood in 1985. (Delphi answered the question
once and for all in 1995.) But I did learn the meaning of the Infamous Question.

Note well: When somebody asks you, “Why would you want to do that?”
what it really means is this: “You’ve asked me how to do something that is either

xxx Introduction

impossible using tools that I favor or completely outside my experience, but
I don’t want to lose face by admitting it. So. . .how ’bout those Blackhawks?”

I heard it again and again over the years:

Q: How can I set up a C string so that I can read its length without scanning it?

A: Why would you want to do that?

Q: How can I write an assembly language subroutine callable from Turbo Pascal?

A: Why would you want to do that?

Q: How can I write Windows apps in assembly language?

A: Why would you want to do that?

You get the idea. The answer to the Infamous Question is always the same,
and if the weasels ever ask it of you, snap back as quickly as possible: because
I want to know how it works.

That is a completely sufficient answer. It’s the answer I’ve used every single
time, except for one occasion a considerable number of years ago, when I put
forth that I wanted to write a book that taught people how to program in assem-
bly language as their first experience in programming.

Q: Good grief, why would you want to do that?

A: Because it’s the best way there is to build the skills required to understand
how all the rest of the programming universe works.

Being a programmer is one thing above all else: It is understanding how things
work. Learning to be a programmer, furthermore, is almost entirely a process of
learning how things work. This can be done at various levels, depending on the
tools you’re using. If you’re programming in Visual Basic, you have to under-
stand how certain things work, but those things are by and large confined to
Visual Basic itself. A great deal of machinery is hidden by the layer that Visual
Basic places between the programmer and the computer. (The same is true of
Delphi, Lazarus, Java, Python, and many other very high- level programming
environments.) If you’re using a C compiler, you’re a lot closer to the machine,
so you see a lot more of that machinery— and must, therefore, understand how
it works to be able to use it. However, quite a bit remains hidden, even from
the hardened C programmer.

If, on the other hand, you’re working in assembly language, you’re as close
to the machine as you can get. Assembly language hides nothing, and withholds
no power. The flipside, of course, is that no magical layer between you and the
machine will absolve any ignorance and “take care of” things for you. If you
don’t understand how something works, you’re dead in the water— unless you
know enough to be able to figure it out on your own.

 Introduction xxxi

That’s a key point: My goal in creating this book is not entirely to teach you
assembly language per se. If this book has a prime directive at all, it is to impart
a certain disciplined curiosity about the underlying machine, along with some
basic context from which you can begin to explore the machine at its very lowest
levels— that, and the confidence to give it your best shot. This is difficult stuff,
but it’s nothing you can’t master given some concentration, patience, and the
time it requires— which, I caution, may be considerable.

In truth, what I’m really teaching you here is how to learn.

What You’ll Need

To program as I intend to teach, you’re going to need a 64- bit Intel computer
running a 64- bit distribution of Linux. The one I used in preparing this book is
Linux Mint Cinnamon V20. 3 Una. “Una” here is a code name for this version
of Linux Mint. It’s nothing more than a short way of saying “Linux Mint 20.3.”
I recommend Mint; it’s thrown me fewer curves than any other distro I’ve ever
used— and I’ve used Linux here and there ever since it first appeared. I don’t
think which graphical shell you use matters a great deal. I like Cinnamon, but
you can use whatever you like or are familiar with.

You need to be reasonably proficient with Linux at the user level. I can’t
teach you how to install, configure, and run Linux in this book. If you’re not
already familiar with Linux, get a tutorial text and work through it. There are
many such online.

You’ll need a piece of free software called SASM, which is a simple interac-
tive development environment (IDE) for programming in assembly. Basically,
it consists of an editor, a build system, and a front end to the standard Linux
debugger gdb. You’ll also need a free assembler called NASM.

You don’t have to know how to download, install, and configure these tools
in advance because, at the appropriate times, I’ll cover all necessary tool instal-
lation and configuration.

Do note that other Unix implementations not based on the Linux kernel may
not function precisely the same way under the hood. BSD Unix uses different
conventions for making system calls, for example, and other Unix versions like
Solaris are outside my experience.

Remember that this book is about the x64 architecture. To the extent that x64
contains x86, I will also be teaching elements of the x86 architecture. The gulf
between 32- bit x86 and 64- bit x64 is a lot narrower than the gulf between 16- bit
x86 and 32- bit x86. If you already have a firm grounding in 32- bit x86, you’ll
breeze through most of this book at a gallop. If you can do that, cool— just please
remember that the book is for those who are just starting out in programming
on Intel CPUs.

xxxii Introduction

Also remember that this book is limited in size by its publisher: Paper, ink,
and cover stock aren’t free. That means I have to narrow the scope of what I
teach and explain within those limits. I wish I had the space to cover the AVX
math subsystem. I don’t. But I’ll bet that once you go through this book, you
can figure much of it out by yourself.

The Master Plan

This book starts at the beginning, and I mean the beginning. Maybe you’re already
there, or well past it. I respect that. I still think that it wouldn’t hurt to start at
the first chapter and read through all the chapters in order. Review is useful,
and hey— you may realize that you didn’t know quite as much as you thought
you did. (Happens to me all the time!)

But if time is at a premium, here’s the cheat sheet:

 ■ If you already understand the fundamental ideas of computer program-
ming, skip Chapter 1.

 ■ If you already understand the ideas behind number bases other than dec-
imal (especially hexadecimal and binary), skip Chapter 2.

 ■ If you already have a grip on the nature of computer internals (memory,
CPU architectures, and so on) skip Chapter 3.

 ■ If you already understand x64 memory addressing, skip Chapter 4.

 ■ No. Stop. Scratch that. Even if you already understand x64 memory address-
ing, read Chapter 4.

The last bullet is there, and emphatic, for a reason: Assembly language program-
ming is about memory addressing. If you don’t understand memory addressing,
nothing else you learn in assembly will help you one. . .bit. So, don’t skip
Chapter 4 no matter what else you know or think you know. Start from there, and
see it through to the end. Memory addressing comes up regularly throughout
the rest of the book. It’s really the heart of the topic.

Load every example program, assemble each one, and run them all. Strive
to understand every single line in every program. Take nothing on faith. Fur-
thermore, don’t stop there. Change the example programs as things begin to
make sense to you. Try different approaches. Try things that I don’t mention. Be
audacious. Nay, go nuts— bits don’t have feelings, and the worst thing that can
happen is that Linux throws a segmentation fault, which may hurt your program
but does not hurt Linux. The only catch is that when you do try something,
strive to understand why it doesn’t work as clearly as you understand all the
other things that do. Single- step your way through a program in the SASM
debugger, even when the program works. Take notes.

 Introduction xxxiii

That is, ultimately, what I’m after: to show you the way to understand what
every however distant corner of your machine is doing and how all its many
pieces work together. This doesn’t mean I’ll explain every corner of it myself— no
one will live long enough to do that because computing isn’t simple anymore—
but if you develop the discipline of patient research and experimentation, you
can probably work it out for yourself. Ultimately, that’s the only way to learn
it: by yourself. The guidance you find— in friends, on the Net, in books like
this— is only guidance and grease on the axles. You have to decide who’s to be
the master, you or the machine, and make it so. Assembly programmers are the
only programmers who can truly claim to be masters, which is a truth worth
meditating on.

A Note on Capitalization Conventions

Assembly language is peculiar among programming languages in that there is
no universal standard for case- sensitivity. In the C language, all identifiers are
case- sensitive, and I have seen assemblers that do not recognize differences in
case at all. NASM, the assembler I’m presenting in this book, is case- sensitive
only for programmer- defined identifiers. The instruction mnemonics and the
names of registers, however, are not case sensitive.

There are customs in the literature on assembly language, and one of those
customs is to treat CPU instruction mnemonics as uppercase in the chapter text
and in lowercase in source code files and code snippets interspersed within the
text. I’ll be following that custom here. Within discussion text, I’ll speak of MOV
and CALL and CMP. In example code, it will be mov and call and cmp. Code snip-
pets and listings will be in a monospace Courier- style font. When mentioned in
the text, registers will be in uppercase but not in the Courier font and lowercase
in snippets and listings.

There are two reasons for this:

 ■ In text discussions, the mnemonics need to stand out. It’s too easy to lose
track of them amid a torrent of ordinary mixed- case words.

 ■ To read and learn from existing documents and source code outside of
this one book, you need to be able to easily read assembly language whether
it’s in uppercase, lowercase, or mixed case. Getting comfortable with dif-
ferent ways of expressing the same things is important.

Remember Why You’re Here

Anyway. Wherever you choose to start the book, it’s time to get underway. Just
remember that whatever gets in your face, be it the weasels, the machine, or

xxxiv Introduction

your own inexperience, the thing to keep in the forefront of your mind is this:
You’re in it to figure out how it works.

Let’s go.

Jeff Duntemann
Scottsdale, Arizona
May 24, 2023

x64 Assembly Language
Step- by- Step

4TH Edition

C H A P T E R

1

1

Another Pleasant Valley Saturday

“Quick, Mike, get your sister and brother up; it’s past 7. Nicky’s got
Little League at 9, and Dione’s got ballet at 10. Give Max his heartworm
pill! (We’re out of them, Mom, remember?) Your father picked a great
weekend to go fishing Here, let me give you 10 bucks and go get
more pills at the vet’s My God, that’s right, Hank needed gas
money and left me broke. There’s a teller machine over by Kmart, and if
I go there, I can take that stupid toilet seat back and get the right one.
“I guess I’d better make a list”

It’s another Pleasant Valley Saturday, and 30- odd million suburban home-
makers sit down with a pencil and pad at the kitchen table to try to make
sense of a morning that would kill and pickle any lesser being. In her mind
she thinks of the dependencies and traces the route:

“Drop Nicky at Rand Park, go back to Dempster, and it’s about 10 minutes
to Golf Mill Mall. Do I have gas? I’d better check first— if not, stop at Del’s
Shell or I won’t make it to Milwaukee Avenue. Milk the teller machine at Golf
Mill; then cross the parking lot to Kmart to return the toilet seat that Hank

It’s All in the Plan
Understanding What Computers Really Do

2 Chapter 1 ■ It’s All in the Plan

bought last weekend without checking what shape it was. Gotta remember
to throw the toilet seat in back of the van— write that at the top of the list.

“By then it’ll be half past, maybe later. Ballet is all the way down Green-
wood in Park Ridge. No left turn from Milwaukee— but there’s the sneak
path around behind the mall. I have to remember not to turn right onto
Milwaukee like I always do— jot that down. While I’m in Park Ridge, I can
check and see if Hank’s new glasses are in— should call, but they won’t even
be open until 9:30. Oh, and groceries— can do that while Dione dances. On
the way back I can cut over to Oakton and get the dog’s pills.”

In about 90 seconds flat the list is complete:

 ■ Throw toilet seat in van.

 ■ Check gas––if empty, stop at Del’s Shell.

 ■ Drop Nicky at Rand Park.

 ■ Stop at Golf Mill teller machine.

 ■ Return toilet seat at Kmart.

 ■ Drop Dione at ballet (remember the sneak path to Greenwood).

 ■ See if Hank’s glasses are at Pearle Vision— if they are, make double sure
they remembered the extra scratch coating.

 ■ Get groceries at Jewel.

 ■ Pick up Dione.

 ■ Stop at vet for heartworm pills.

 ■ Drop off groceries at home.

 ■ If it’s time, pick up Nicky. If not, collapse for a few minutes; then pick
up Nicky.

 ■ Collapse!

What we often call a “laundry list” (whether it involves laundry or not) is
the perfect metaphor for a computer program. Without realizing it, our intrepid
homemaker has written herself a computer program and then set out (with her-
self acting as the computer) to execute it and be done before noon.

Computer programming is nothing more than this: you the programmer
write a list of steps and tests. The computer then performs each step and test in
sequence. When the list of steps has been executed, the computer stops.

A computer program is a list of steps and tests, nothing more.

 Chapter 1 ■ It’s All in the Plan 3

Steps and Tests
Think for a moment about what I call a test in the preceding laundry list. A test
is the sort of either/or decision we make dozens or hundreds of times on even
the most placid of days, sometimes nearly without thinking about it.

Our homemaker performed a test when she jumped into the van to get started
on her adventure. She looked at the gas gauge. The gas gauge would tell her
one of two things: (1) she has enough gas, or (2) she doesn’t. If she has enough
gas, she takes a right and heads for Rand Park. If she doesn’t have enough gas,
she takes a left down to the corner and fills the tank at Del’s Shell. (Del takes
credit cards.) Then, with a full tank, she continues the program by making a
U- turn and heading for Rand Park.

In the abstract, a test consists of these two parts:

 ■ First, you take a look at something that can go one of two ways.

 ■ Then you do one of two things, depending on what you saw when you
took a look.

Toward the end of the program, our homemaker got home, took the groceries
out of the van, and looked at the clock. If it isn’t time to get Nicky back from
Little League, she has a moment to collapse on the couch in a nearly empty
house. If it is time to get Nicky, there’s no rest for the ragged: she sprints for
the van and heads back to Rand Park.

(Any guesses as to whether she really gets to rest when the program finishes
running?)

More Than Two Ways?
You might object, saying that many or most tests involve more than two alter-
natives. Sorry, you’re wrong––in every case. Read this twice: except for totally
impulsive or psychotic behavior, every human decision comes down to the
choice between two alternatives.

What you have to do is look a little more closely at what goes through your
mind when you make decisions. The next time you buzz down to Chow Now
for fast Chinese, observe yourself while you’re poring over the menu. The choice
might seem, at first, to be of one item out of 26 Cantonese main courses. Not
so— the choice, in fact, is between choosing one item and not choosing that one
item. Your eyes rest on chicken with cashews. Naw, too bland. That was a test.
You slide down to the next item. Chicken with black mushrooms. Hmmm, no,
had that last week. That was another test. Next item: kung pao chicken. Yeah,
that’s it! That was a third test.

4 Chapter 1 ■ It’s All in the Plan

The choice was not among chicken with cashews, chicken with black mush-
rooms, and chicken with kung pao. Each dish had its moment, poised before
the critical eye of your mind, and you turned thumbs up or thumbs down on
it, individually. Eventually, one dish won, but it won in that same game of “to
eat or not to eat.”

Let me give you another example. Many of life’s most complicated decisions
come about because 99.99867 percent of us are not nudists. You’ve been there:
you’re standing in the clothes closet in your underwear, flipping through your
rack of pants. The tests come thick and fast. This one? No. This one? No. This
one? No. This one? Yeah. You pick a pair of blue pants, say. (It’s a Monday,
after all, and blue would seem an appropriate color.) Then you stumble over
to your sock drawer and take a look. Whoops, no blue socks. That was a test.
So you stumble back to the clothes closet, hang your blue pants back on the
pants rack, and start over. This one? No. This one? No. This one? Yeah. This
time it’s brown pants, and you toss them over your arm and head back to the
sock drawer to take another look. Nertz, out of brown socks, too. So it’s back
to the clothes closet

What you might consider a single decision, or perhaps two decisions inex-
tricably tangled (like picking pants and socks of the same color, given stock
on hand), is actually a series of small decisions, always binary in nature: pick
’em or don’t pick ’em. Find ’em or don’t find ’em. The Monday morning epi-
sode in the clothes closet is a good analogy of a programming structure called
a loop: you keep doing a series of things until you get it right, and then you
stop (assuming you’re not the kind of geek who wears blue socks with brown
pants). But whether you get everything right always comes down to a sequence
of simple either/or decisions.

Computers Think Like Us
I can almost hear what you’re thinking: “Sure, it’s a computer book, and he’s
trying to get me to think like a computer.” Not at all. Computers think like
us. We designed them; how else could they think? No, what I’m trying to do
is get you to take a long, hard look at how you think. We run on automatic for
so much of our lives that we literally do most of our thinking without really
thinking about it.

The best model for the logic of a computer program is the same logic we use
to plan and manage our daily affairs. No matter what we do, it comes down to a
matter of confronting two alternatives and picking one. What we might think of
as a single large and complicated decision is nothing more than a messy tangle
of many smaller decisions. The skill of looking at a complex decision and see-
ing all the little decisions in its tummy will serve you well in learning how to

 Chapter 1 ■ It’s All in the Plan 5

program. Observe yourself the next time you have to decide something. Count
up the little decisions that make up the big one. You’ll be surprised.

And, surprise! You’ll be a programmer.

Had This Been the Real Thing . . .

Do not be alarmed. What you have just experienced was a metaphor. It was not
the real thing. (The real thing comes later.)

I use metaphors a lot in this book. A metaphor is a loose comparison drawn
between something familiar (such as a Saturday morning laundry list) and
something unfamiliar (such as a computer program). The idea is to anchor the
unfamiliar in terms of the familiar so that when I begin tossing facts at you,
you’ll have someplace comfortable to lay them down.

The most important thing for you to do right now is keep an open mind. If
you know a little bit about computers or programming, don’t pick nits. Yes,
there are important differences between a homemaker following a scribbled
laundry list and a computer executing a program. I’ll mention those differences
all in good time.

For now, it’s still Chapter 1. Take these initial metaphors on their own terms.
Later, they’ll help a lot.

Assembly Language Programming As a Square Dance

Carol and I have a certain fondness for “called” dances, the most prevalent type
being square dances. There are others, like New England contra dances, which
are a lot like square dances but with better music. In a called dance, the caller
person at the front of the hall calls out movements, and the dancers perform those
movements. The music provides a beat, like the ticking of a clock. The sequence
of movements taken together is the dance, and the dance usually has a name.

The first time Carol and I attended a contra dance, I was poleaxed: this was
like assembly language programming! The caller called out “allemande left,” and
we performed the movement known as “allemande left.” The caller called out
“forward and back,” and we executed the “forward and back” movement. The
caller called out “box the gnat,” and, well, we boxed the gnat. (I am not mak-
ing this up!) There are a reasonable number of movements, and to be good at
that sort of dancing, you have to memorize them all by name. Otherwise, if the
caller calls a movement that you don’t know, the dance might stumble or grind
to a halt. (Bluescreen!)

6 Chapter 1 ■ It’s All in the Plan

At its deepest level, a computer understands a collection of individual oper-
ations called instructions. These perform arithmetic, execute logic like AND and
OR, move data around, and do many other things. Each instruction is performed
inside the CPU chip. Just as a set of dance movements are the individual atoms
of motion making up a square dance, instructions are the atoms of a computer
program. The program is like the dance as a whole: a sequence of instructions
executed in order. The couples taking part in the dance execute the dance/
program as the caller moves down the list of movements, calling out each one
in turn. The couples, then, are the computer on which the dance runs.

That’s about as far as the square dance metaphor goes. Once you get the
knack of assembly language, hey, go take square dance or contra dance lessons
somewhere and see if you don’t come to the same conclusion that I did.

Assembly Language Programming As a Board Game

Board games were a really big deal when I was a kid, when board games were
actually printed on a species of board. (OK, cardboard.) Monopoly was one
that almost everybody had. There was a sort of pathway around the edge of the
board divided into squares. You had a game piece that advanced from square to
square according to dice throws, and when your piece landed on a square, you
could do one of several things: buy property that hadn’t been bought yet, pay
rent on property owned by other players, pull a card from the Chance stack,
or— eek!— go to jail. You had a pile of Monopoly money to spend, and when
another player had to pay rent, you got more.

The specifics of the Monopoly game aren’t important here. What matters is
that you progress through a series of steps, and at each step, something happens.
Your pile of money grows or shrinks. Assembly language is a little like that:
a program is like the game board. Each step in the program does something.
There are places where you can store numbers. The numbers change as you
move through the program.

Now that you’re thinking in terms of board games, take a look at Figure 1.1.
What I’ve drawn is actually a fair approximation of assembly language as it
was used on some of our simpler computers 50 or 60 years ago. The column
marked “Program Instructions” is the main path around the edge of the board,
of which only a portion can be shown here. This is the assembly language com-
puter program, the actual series of steps and tests that, when executed, causes
the computer to do something useful. Setting up this series of program instruc-
tions is what programming in assembly language actually is.

 Chapter 1 ■ It’s All in the Plan 7

Everything else is odds and ends in the middle of the board that serve the game
in progress. Most of these are storage locations that contain your data. You’re
probably noticing (perhaps with sagging spirits) that there are a lot of numbers
involved. (They’re weird numbers, too. What, for example, does “004B” mean?
I deal with that issue in Chapter 2, “Alien Bases.”) I’m sorry, but that’s simply
the way the game is played. Assembly language, at its deepest level, is nothing
but numbers, and if you hate numbers the way most people hate anchovies,
you’re going to have a rough time of it. (I like anchovies, which is part of my
legend. Learn to like numbers. They’re not as salty.) Higher- level programming
languages such as Pascal or Python disguise the numbers by treating them sym-
bolically. But assembly language, well, it’s just you and the numbers.

I should caution you that the Game of Assembly Language in Figure 1.1 repre-
sents no real computer processor, like the Intel Core i5. Also, I’ve made the names
of instructions more clearly understandable than the names of the instructions
in Intel assembly language actually are. In the real world, instruction names

Figure 1.1: The Game of Assembly Language

8 Chapter 1 ■ It’s All in the Plan

are typically short things like LAHF, STC, INC, SHRX, and other crypticisms
that cannot be understood without considerable explanation. We’re easing into
this stuff sidewise, and in this chapter I have to sugarcoat certain things a little
to draw the metaphors clearly.

Code and Data
Like most board games, the assembly language board game consists of two
broad categories of elements: game steps and places to store things. The “game
steps” are the steps and tests I’ve been speaking of all along. The places to store
things are just that: cubbyholes into which you can place numbers, with the
confidence that those numbers will remain where you put them until you take
them out or change them somehow.

In programming terms, the game steps are called code, and the numbers in
their cubbyholes (as distinct from the cubbyholes themselves) are called data.
The cubbyholes themselves are usually called storage. (The difference between
the places you store information and the information you store in them is cru-
cial. Don’t confuse them.) Consider an instruction in the Game of Assembly
Language that says ADD 32 to A. An ADD instruction in the code alters a data
value stored in a cubbyhole named Register A.

Code and data are two very different kinds of critters, but they interact in
ways that make the game interesting. The code includes steps that place data
into storage (MOVE instructions) and steps that alter data that is already in
storage (INCREMENT and DECREMENT instructions, and ADD instructions,
among others). Most of the time you’ll think of code as being the master of data,
in that the code writes data values into storage. Data does influence code as
well, however. Among the tests that the code makes are tests that examine data
in storage, the COMPARE instructions. If a given data value exists in storage,
the code may do one thing; if that value does not exist in storage, the code will
do something else, as in the JUMP BACK and JUMP AHEAD instructions.

The short block of instructions marked PROCEDURE is a detour off the main
stream of instructions. At any point in the program you can duck out into the
procedure, perform its steps and tests, and then return to the very place from
which you left. This allows a sequence of steps and tests that is generally use-
ful and used frequently to exist in only one place rather than exist as separate
copies everywhere it’s needed.

Addresses
Another critical concept lies in the funny numbers at the left side of the program
step locations and data locations. Each number is unique, in that a location tagged
with that number appears only once inside the computer. This location is called

 Chapter 1 ■ It’s All in the Plan 9

an address. Data is stored and retrieved by specifying the data’s address in the
machine. Procedures are called by specifying the address at which they begin.

The little box (which is also a storage location) marked “Program Counter”
keeps the address of the next instruction to be performed. The number inside
the program counter is increased by one (incremented) each time an instruction
is performed unless the instruction tells the program counter to do something else.
For example, notice the JUMP BACK 9 instruction at address 004B. When this
instruction is performed, the program counter will “back up” by nine locations.
This is analogous to the “go back three spaces” concept in most board games.

Metaphor Check!
That’s about as much explanation of the Game of Assembly Language as I’m
going to offer for now. This is still Chapter 1, and we’re still in metaphor territory.
People who have had some exposure to computers will recognize and under-
stand some of what Figure 1.1 is doing. People with no exposure to computer
innards at all shouldn’t feel left behind for being utterly lost. I created the Game
of Assembly Language solely to put across the following points:

 ■ The individual steps are very simple. One single instruction rarely does more
than move a single value from one storage cubbyhole to another, perform
very elementary arithmetic like addition or subtraction, or compare the
value contained in one storage cubbyhole to a value contained in another.
This is good news, because it allows you to concentrate on the simple task
accomplished by a single instruction without being overwhelmed by
complexity. The bad news, however, is the next point.

 ■ It takes a lot of steps to do anything useful. You can often write a useful
program in such languages as Pascal or BASIC in five or six lines. You
can actually create useful programs in visual programming systems like
Visual Basic, Delphi, or Lazarus without writing any code at all. (The code
is still there . . . but the code is “canned” and all you’re really doing is
choosing which chunks of canned code in a collection of many such chunks
will run.) A useful assembly language program cannot be implemented
in fewer than about 50 lines, and anything challenging takes hundreds or
thousands— or tens of thousands— of lines. The skill of assembly language
programming lies in structuring these hundreds or thousands of instruc-
tions so that the program both operates correctly and can still be read and
understood by other programmers— and yourself— six months later.

 ■ The key to assembly language is understanding memory addresses. In such lan-
guages as Pascal and BASIC, the compiler takes care of where something
is located— you simply have to give that something a symbolic name and
call it by that name whenever you want to look at it or change it.

10 Chapter 1 ■ It’s All in the Plan

In assembly language, you must always be cognizant of where things are
in your computer’s memory or register set. So, in working through this
book, pay special attention to the concept of memory addressing, which
is nothing more than the art of specifying where something is. The Game
of Assembly Language is peppered with addresses and instructions that
work with addresses (such as MOVE data at B to C, which means move
the data stored at the address specified by register B to register C).
Addressing is by far the trickiest part of assembly language, but master
it and you’ve got most of the whole thing in your hip pocket.

Everything I’ve said so far has been orientation. I’ve tried to give you a taste
of the big picture of assembly language and how its fundamental principles
relate to the life you’ve been living all along. Life is a sequence of steps and
tests, as are square dances and board games— and so is assembly language.
Keep those metaphors in mind as we proceed to get real by confronting the
nature of computer numbers.

C H A P T E R

11

2

The Return of the New Math Monster

The year was 1966. Perhaps you were there. (I was 13 and in eighth grade.)
New Math burst upon the grade- school curricula of the nation, and homework
became a turmoil of number lines, sets, and alternate bases. Middle- class parents
scratched their heads with their children over questions like, “What is 17 in Base
5?” and “Which sets does the Null Set belong to?” In very short order (I recall a
period of about two months), the whole thing was tossed in the trash as quickly
as it had been concocted by bored educrats with too little to do.

This was a pity actually. What nobody seemed to realize at the time was that,
granted, we were learning New Math— except that Old Math had never been
taught at the grade- school level either. We kept wondering of what possible
use it was to know what the intersection of the set of squirrels and the set of
mammals was. The truth, of course, was that it was no use at all. Mathematics in
America has always been taught as applied mathematics— arithmetic— heavy on
the word problems. If it won’t help you balance your checkbook or proportion a
recipe, it ain’t real math, man. Little or nothing of the logic of mathematics has
ever made it into the elementary classroom, in part because elementary school
in America has historically been a sort of trade school for everyday life. Getting
the little beasts fundamentally literate is difficult enough. Trying to get them to

Alien Bases
Getting Your Arms Around Binary

and Hexadecimal

12 Chapter 2 ■ Alien Bases

appreciate the beauty of alternate number systems simply went over the line
for practical middle- class America.

Nerdball that I was, I actually enjoyed fussing with math in the New- Age
style back in 1966, but I gladly laid it aside when the whole thing blew over.
I didn’t have to pick it up again until 1976, when, after working like a maniac
with a wire- wrap gun for several weeks, I fed power to my COSMAC ELF micro-
computer and was greeted by an LED display of a pair of numbers in base 16!

Mon dieu, New Math redux.
This chapter exists because at the assembly language level, your computer

does not understand numbers in our familiar base 10. Computers, in a slightly
schizoid fashion, work in base 2 and base 16— all at the same time. If you’re wil-
ling to confine yourself to higher- level languages such as Basic or Pascal, you
can ignore these alien bases altogether, or perhaps treat them as an advanced
topic once you get the rest of the language down pat. Not here. Everything in
assembly language depends on your thorough understanding of these two
number bases. So before we do anything else, we’re going to learn how to count
all over again— in Martian.

Counting in Martian
There is intelligent life on Mars.

That is, the Martians are intelligent enough to know from watching our TV
programs these past 90 years or so that a thriving tourist industry would not
be to their advantage. So they’ve remained in hiding, emerging only briefly to
carve big rocks into the shape of Elvis’s face to help the National Enquirer ensure
that no one will ever take Mars seriously again. The Martians do occasionally
communicate with science fiction writers like me, knowing full well that nobody
has ever taken us seriously. That’s the reason for the information in this section,
which involves the way Martians count.

Martians have three fingers on one hand, and only one finger on the other.
Male Martians have their three fingers on the left hand, while females have
their three fingers on the right hand. This makes waltzing and certain other
things easier.

Like human beings and any other intelligent race, Martians started counting
by using their fingers. Just as we used our 10 fingers to set things off in groups
and powers of 10, the Martians used their four fingers to set things off in groups
and powers of four. Over time, our civilization standardized on a set of 10 digits
to serve our number system. The Martians, similarly, standardized on a set of
four digits for their number system. The four digits follow, along with the names
of the digits as the Martians pronounce them: Θ (xip), (foo), ∩ (bar), ≡ (bas).

Like our zero, xip is a placeholder representing no items, and while Martians
sometimes count from xip, they usually start with foo, representing a single
item. So they start counting: foo, bar, bas

 Chapter 2 ■ Alien Bases 13

Now what? What comes after bas? Table 2.1 demonstrates how the Martians
count to what we here on Earth would call 25.

Table 2.1: Counting in Martian, Base Fooby

MARTIAN NUMERALS
MARTIAN
PRONUNCIATION EARTH EQUIVALENT

Θ Xip 0

Foo 1

∩ Bar 2

≡ Bas 3

 Θ Fooby 4

 Fooby- foo 5

 ∩ Fooby- bar 6

 ≡ Fooby- bas 7

∩ Θ Barby 8

∩ Barby- foo 9

∩∩ Barby- bar 10

∩≡ Barby- bas 11

≡ Θ Basby 12

≡ Basby- foo 13

≡ ∩ Basby- bar 14

≡ ≡ Basby- bas 15

 ΘΘ Foobity 16

 Θ Foobity- foo 17

 Θ ∩ Foobity- bar 18

 Θ ≡ Foobity- bas 19

 Θ Foobity- fooby 20

 Foobity- fooby- foo 21

 ∩ Foobity- fooby- bar 22

 ≡ Foobity- fooby- bas 23

 ∩ Θ Foobity- barby 24

 ∩ Foobity- barby- foo 25

14 Chapter 2 ■ Alien Bases

With only four digits (including the one representing zero) the Martians can
count only to bas without running out of digits. The number after bas has a
new name, fooby. Fooby is the base of the Martian number system and probably
the most important number on Mars. Fooby is the number of fingers a Martian
has. We would call it four.

The most significant thing about fooby is the way the Martians write it out in
numerals: Θ. Instead of a single column, fooby is expressed in two columns.
Just as with our decimal system, each column has a value that is a power of
fooby. This only means that as you move from the rightmost column toward
the left, each column represents a value fooby times the column to its right.

The rightmost column represents units, in counts of foo. The next column
over represents fooby times foo, or (given that arithmetic works the same way
on Mars as here, New Math notwithstanding) simply fooby. The next column
to the left of fooby represents fooby times fooby, or foobity, and so on. This
relationship should become clearer through Table 2.2.

Dissecting a Martian Number
Any given column may contain a digit from xip to bas, indicating how many
instances of that column’s value are contained in the number as a whole. Let’s
work through an example. Look at Figure 2.1, which is a dissection of the Martian
number ∩ ≡ Θ ≡, pronounced “Barbididity- basbidity- foobity- bas.” (A visiting
and heavily disguised Martian precipitated the doo- wop craze while standing
at a Philadelphia bus stop in 1954, counting his change.)

The rightmost column tells how many units are contained in the number. The
digit there is bas, indicating that the number contains bas units. The second column
from the right carries a value of fooby times foo (fooby times 1) or fooby. A xip
in the fooby column indicates that there are no foobies in the number. The xip
digit in Θ is a placeholder, just as zero is in our numbering system. Notice also
that in the columnar sum shown to the right of the digit matrix, the foobies line
is represented by a double xip. Not only is there a xip to tell us that there are no

Table 2.2: Powers of Fooby

Foo x Fooby = Θ (Fooby)

 Θ Fooby x Fooby = ΘΘ (Foobity)

 ΘΘ Foobity x Fooby = ΘΘΘ (Foobidity)

ΘΘΘ Foobidity x Fooby = ΘΘΘΘ (Foobididity)

 ΘΘΘΘ Foobididity x Fooby = ΘΘΘΘΘ (Foobidididity)

 ΘΘΘΘΘ Foobidididity x Fooby = ΘΘΘΘΘΘ and so on . . .

 Chapter 2 ■ Alien Bases 15

foobies, but also a xip holding the foos place as well. This pattern continues in
the columnar sum as we move toward the more significant columns to the left.

Fooby times fooby is foobity, and the digit tells us that there is foo foobity
(a single foobity) in the number. The next column, in keeping with the pattern, is
foobity times fooby, or foobidity. In the columnar notation, foobidity is written
as ΘΘΘ. The ≡ digit tells us that there are bas foobidities in the number. Bas
foobidities is a number with its own name, basbidity, which may be written as
≡ ΘΘΘ. Note the presence of basbidity in the columnar sum.

The next column to the left has a value of fooby times foobidity, or foobididity.
The ∩ digit tells us that there are bar foobididities in the number. Bar foobididi-
ties (written ∩ ΘΘΘΘ) is also a number with its own name, barbididity. Note
also the presence of barbididity in the columnar sum, as well as the four xip
digits that hold places for the empty columns.

The columnar sum expresses the sense of the way a number is assembled: the
number contains barbididity, basbidity, foobity, and bas. Roll all that together
by simple addition, and you get ∩ ≡ Θ ≡. The name is pronounced simply by
hyphenating the component values: barbididity- basbidity- foobity- bas. Note
that there is no part in the name representing the empty fooby column. In our
own familiar base 10 we don’t, for example, pronounce the number 401 as

Figure 2.1: The anatomy of ∩≡ Θ ≡

16 Chapter 2 ■ Alien Bases

“four hundred, zero tens, one.” We simply say, “four hundred one.” In the same
manner, rather than say “xip foobies,” the Martians just leave it out.

As an exercise, given what I’ve told you so far about Martian numbers, figure
out the Earthly value equivalent to ∩ ≡ Θ ≡.

The Essence of a Number Base
Since tourist trips to Mars are unlikely to begin any time soon, of what Earthly
use is knowing the Martian numbering system? Just this: it’s an excellent way
to see the sense in a number base without getting distracted by familiar digits
and our universal base 10.

In a columnar system of numeric notation like both ours and the Martians’,
the base of the number system is the magnitude by which each column of a
number exceeds the magnitude of the column to its right. In our base 10 system,
each column represents a value 10 times the column to its right. In a base fooby
system like the one used on Mars, each column represents a value fooby times
that of the column to its right. (In case you haven’t already caught on, the
Martians are actually using base 4— but I wanted you to see it from the
Martians’ perspective first.) Each has a set of digit symbols, the number of which
is equal to the base. In our base 10, we have 10 symbols, from 0 to 9. In base 4,
there are four digits, from 0 to 3. In any given number base, the base itself can never
be expressed in a single digit!

Octal: How the Grinch Stole Eight and Nine

Farewell to Mars. Aside from lots of iron oxide and some terrific a capella groups,
they haven’t much to offer us 10- fingered folk. There are some similarly odd
number bases in use here, and I’d like to take a quick detour through one that
occupies a separate world right here on Earth: the world of Digital Equipment
Corporation, better known as DEC.

Back in the '60s, DEC invented the minicomputer as a challenger to the massive
and expensive mainframes pioneered by IBM. (The age of minicomputers is long
past, and DEC itself is now history.) To ensure that no software could possibly
be moved from an IBM mainframe to a DEC minicomputer, DEC designed its
machines to understand only numbers expressed in base 8.

Let’s think about that for a moment, given our experience with the Martians.
In base 8, there must be eight digits. DEC was considerate enough not to invent
its own digit symbols, so what it used were the traditional Earthly digits from
0 to 7. There is no digit 8 in base 8! That always takes a little getting used to, but
it’s part of the definition of a number base. DEC gave an appropriate name to
its base 8 system: octal.

 Chapter 2 ■ Alien Bases 17

A columnar number in octal follows the rule we encountered in thinking about
the Martian system: each column has a value base times that of the column to its
right. (The rightmost column is always units.) In the case of octal, each column
has a value eight times that of the next column to the right.

Who Stole Eight and Nine?
This shows better than it tells. Counting in octal starts out in a very familiar
fashion: one, two, three, four, five, six, seven . . . 10.

This is where the trouble starts. In octal, 10 comes after seven. What hap-
pened to eight and nine? Did the Grinch steal them? (Or the Martians?) Hardly.
They’re still there— but they have different names. In octal, when you say “10,”
you mean “eight.” Worse, when you say “11,” you mean “nine.”

Unfortunately, what DEC did not do was invent clever names for the column
values. The first column is, of course, the units column. The next column to
the left of the units column is the tens column, just as it is in our own decimal
system. But there’s the rub and the reason I dragged Mars into this: octal’s “tens”
column actually has a value of 8.

You may be getting a headache about now. Pop an aspirin. I’ll wait.
A counting table will help. Table 2.3 counts up to 30 octal, which has a value

of 24 decimal. I dislike the use of the terms eleven, twelve, and so on, in bases
other than 10, but the convention in octal has always been to pronounce the
numbers as we would in decimal, only with the word octal after them. Don’t
forget to say octal— otherwise, people get really confused!

Table 2.3: Counting in Octal, Base 8

OCTAL NUMERALS OCTAL PRONUNCIATION DECIMAL EQUIVALENT

0 Zero 0

1 One 1

2 Two 2

3 Three 3

4 Four 4

5 Five 5

6 Six 6

7 Seven 7

10 Ten 8

11 Eleven 9

12 Twelve 10

Continues

18 Chapter 2 ■ Alien Bases

Table 2.4: Octal Columns as Powers of Eight

OCTAL POWER OF 8 DECIMAL OCTAL

1 = 80 = 1 × 8 = 10

10 = 81 = 8 × 8 = 100

100 = 82 = 64 × 8 = 1000

1000 = 83 = 512 × 8 = 10000

10000 = 84 = 4096 × 8 = 100000

100000 = 85 = 32768 × 8 = 1000000

1000000 = 86 = 262144 × 8 = 10000000

Remember, each column in a given number base has a value base times the
column to its right, so the “tens” column in octal is actually the eights column.
(They call it the tens column because it is written 10 and pronounced “ten.”) Sim-
ilarly, the column to the left of the tens column is the hundreds column (because
it is written 100 and pronounced “hundreds”), but the hundreds column actu-
ally has a value of 8 times 8, or 64. The next column to the left has a value of 64
times 8, or 512, and the column left of that has a value of 512 times 8, or 4,096.

This is why if someone talks about a value of “ten octal,” they mean 8; “one
hundred octal,” they mean 64; and so on. Table 2.4 summarizes the octal column
values and their decimal equivalents.

OCTAL NUMERALS OCTAL PRONUNCIATION DECIMAL EQUIVALENT

13 Thirteen 11

14 Fourteen 12

15 Fifteen 13

16 Sixteen 14

17 Seventeen 15

20 Twenty 16

21 Twenty- one 17

22 Twenty- two 18

23 Twenty- three 19

24 Twenty- four 20

25 Twenty- five 21

26 Twenty- six 22

27 Twenty- seven 23

30 Thirty 24

Table 2.3 (continued)

 Chapter 2 ■ Alien Bases 19

A digit in the first column (the units, or ones column) tells how many units
are contained in the octal number. A digit in the next column to the left, the tens
column, tells how many eights are contained in the octal number. A digit in the
third column, the hundreds column, tells how many 64s are in the number, and
so on. For example, 400 octal means that the number contains four 64s, which
is 256 in decimal.

Yes, it’s confusing, in spades. The best way to make it all gel is to dissect a
middling octal number, just as we did with a middling Martian number. This
is what’s happening in Figure 2.2: the octal number 76225 is pulled apart into
columns and added up again.

It works here the same way it does in Martian or in decimal or in any other
number base you could devise. In general (and somewhat formal) terms, each
column has a value consisting of the number base raised to the power repre-
sented by the ordinal position of the column minus 1. For example, the value
of the first column is the number base raised to the 1 minus 1, or zero, power.
Since any number raised to the zero power is 1, the first column in any number
base always has the value of one and is called the units column. The second
column has the value of the number base raised to the 2 minus 1, or first power,

Figure 2.2: The anatomy of 76225 octal

20 Chapter 2 ■ Alien Bases

which is the value of the number base itself. In octal this is 8; in decimal, 10; in
Martian base fooby numbers, fooby. The third column has a value consisting of
the number base raised to the 3 minus 1, or second power, and so on.

Within each column, the digit holding that column tells how many instances
of that column’s value is contained in the number as a whole. Here, the 6 in
76225 octal tells us that there are six instances of its column’s value in the total
value 76225 octal. The six occupies the fourth column, which has a value of 84- 1,
which is 83, or 512. This tells us that there are six 512s in the number as a whole.

You can convert the value of a number in any base to decimal (our base 10)
by determining the value of each column in the alien (nondecimal) base, then
multiplying the value of each column by the digit contained in that column (to
create the decimal equivalent of each digit), and finally taking the sum of the
decimal equivalent of each column. This is done in Figure 2.2, and the octal
number and its decimal equivalent are shown side by side. Something to notice
in Figure 2.2 is the small subscript numerals on the right side of the columnar
sums. These subscripts are used in many technical publications to indicate a
number base. The subscript in the value 762258, for example, indicates that
the value 76225 is here denoting a quantity in octal, which is base 8. Unlike
the obvious difference between Martian digits and our traditional decimal
digits, there’s really nothing about an octal number itself that sets it off as octal.
(We encounter something of this same problem a little later on when we con-
front hexadecimal.) The value 3189310, by contrast, is shown by its subscript to
be a base 10, or decimal, quantity. This is mostly done in scientific and research
writing. In most computer publications (including this one), other indications
are used; more on that later.

Now that we’ve looked at columnar notation from both a Martian and an
octal perspective, make sure you understand how columnar notation works in
any arbitrary base before we go on.

Hexadecimal: Solving the Digit Shortage

Octal is unlikely to be of use to you unless you do what a friend of mine did
and restore an ancient DEC PDP8 computer that he had purchased as surplus
from his university, by the pound. (He said it was considerably cheaper than
potatoes, if not quite as easy to fry. Not quite.) As I mentioned earlier, the real
numbering system to reckon with in the microcomputer world is base 16, which
we call hexadecimal, or (more affectionately) simply hex.

Hexadecimal shares the essential characteristics of any number base, including
both Martian and octal. It is a columnar notation, in which each column has
a value 16 times the value of the column to its right. It has 16 digits, running
from 0 to . . . what?

 Chapter 2 ■ Alien Bases 21

We have a shortage of digits here. From zero through nine we’re in fine shape.
However, 10, 11, 12, 13, 14, and 15 need to be expressed with single symbols of
some kind. Without any additional numeric digits, the people who developed
hexadecimal notation in the early 1950s borrowed the first six letters of the
alphabet to act as the needed digits.

Counting in hexadecimal, then, goes like this: 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D,
E, F, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 1A, 1B, 1C, and so on. Table 2.5 restates
this in a more organized fashion, with the decimal equivalents up to 32.

Table 2.5: Counting in Hexadecimal, Base 16

HEXADECIMAL
NUMERALS

PRONUNCIATION
(FOLLOW WITH “HEX”) DECIMAL EQUIVALENT

0 Zero 0

1 One 1

2 Two 2

3 Three 3

4 Four 4

5 Five 5

6 Six 6

7 Seven 7

8 Eight 8

9 Nine 9

A A 10

B B 11

C C 12

D D 13

E E 14

F F 15

10 Ten (or, One- oh) 16

11 One- one 17

12 One- two 18

13 One- three 19

14 One- four 20

15 One- five 21

16 One- six 22

Continues

22 Chapter 2 ■ Alien Bases

One of the conventions in hexadecimal that I much favor is the dropping of
words such as eleven and twelve that are a little too tightly bound to our decimal
system and only promote gross confusion. Confronted by the number 11 in
hexadecimal (usually written 11H to let us know what base we’re speaking),
we would say, “one- one hex.” Don’t forget to say “hex” after a hexadecimal
number, again to avoid gross confusion. This is unnecessary with the single
digits 0 through 9, which represent the exact same values in both decimal and
hexadecimal.

Some people still say things like “twelve hex,” which is valid and means 18
decimal. But I don’t care for it and advise against it. This business of alien bases
is confusing enough without giving the aliens Charlie Chaplin masks.

Each column in the hexadecimal system has a value 16 times that of the
column to its right. (The rightmost column, as in any number base, is the units
column and has a value of 1.) As you might guess, the values of the individual
columns go up frighteningly fast as you move from right to left. Table 2.6 shows
the values of the first seven columns in hexadecimal. For comparison’s sake,
note that the seventh column in decimal notation has a value of 1 million, while
the seventh column in hexadecimal has a value of 16,777,216.

HEXADECIMAL
NUMERALS

PRONUNCIATION
(FOLLOW WITH “HEX”) DECIMAL EQUIVALENT

17 One- seven 23

18 One- eight 24

19 One- nine 25

1A One- A 26

1B One- B 27

1C One- C 28

1D One- D 29

1E One- E 30

1F One- F 31

20 Twenty (or, Two- oh) 32

Table 2.6: Hexadecimal Columns as Powers of 16

HEXADECIMAL POWER OF 16 DECIMAL

1H = 160 = 1 x 16 = 10H

10H = 161 = 16 x 16 = 100H

100H = 162 = 256 x 16 = 1000H

Table 2.5 (continued)

Continues

 Chapter 2 ■ Alien Bases 23

To help you understand how hexadecimal numbers are constructed, I’ve
dissected a middling hex number in Figure 2.3, in the same fashion that I dis-
sected numbers earlier in both Martian base fooby, and in octal, base 8. Just as
in octal, zero holds a place in a column without adding any value to the number
as a whole. Note in Figure 2.3 that there are 0, that is, no, 256s present in the
number 3C0A9H.

As in Figure 2.2, the decimal values of each column are shown beneath the
column, and the sum of all columns is shown in both decimal and hex. (Note
the subscripts!)

HEXADECIMAL POWER OF 16 DECIMAL

1000H = 163 = 4096 x 16 = 10000H

10000H = 164 = 65536 x 16 = 100000H

100000H = 165 = 1048576 x 16 = 1000000H

1000000H = 166 = 16777216 etc. . . .

Figure 2.3: The anatomy of 3C0A9H

Table 2.6 (continued)

24 Chapter 2 ■ Alien Bases

From Hex to Decimal and from Decimal to Hex

Most of the manipulation of hex numbers you’ll be performing will be simple
conversions between hex and decimal, in both directions. The easiest way to
perform such conversions is by way of a hex calculator, either a “real” calcu-
lator like the venerable 1980s TI Programmer (which I still have, wretched
battery- eater that it is) or a software calculator with hexadecimal capabilities.
The Galculator (Gnome Calculator) app that you can install from most Linux
repositories will do math in decimal, hex, octal, and binary if you select View
➪ Scientific. The Windows calculator works the same way: the default view is
basic, and you have to select the Programmer view to get into any alien bases.
Speedcrunch is another calculator that works decimal, hex, octal, and binary
from the get- go. Some may already be installed in your Linux distro. Check
your software manager app to see if they are.

Using a calculator demands nothing of your gray matter, of course, and won’t
help you understand the hexadecimal number system any better. So while you’re
a relatively green student of alien bases, lay off anything that understands hex,
be it hardware, software, or human associates.

In fact, the best tool while you’re learning is a simple four- function memory
calculator. The conversion methods I describe here all make use of such a calcu-
lator, since what I’m trying to teach you is number base conversion, not decimal
addition or long division.

From Hex to Decimal
As you’ll come to understand, converting hex numbers to decimal is a good
deal easier than going the other way. The general method is to do what we’ve
been doing all along in the number- dissection Figures 2.1, 2.2, and 2.3: derive
the value represented by each individual column in the hex number, and then
add up the total of all the column values in decimal.

Let’s try an easy one. The hex number is 7A2. Start at the right column. This
is the units column in any number system. You have 2 units, so enter 2 into
your calculator. Now store that 2 into memory. (Or press the SUM button, if
you have a SUM button.)

So much for units. Keep in mind that what you’re really doing is keeping a
running tally of the values of the columns in the hex number. Move to the next
column to the left. Remember that in hex, each column represents a value 16
times the value of the column to its right. So, the second column from the right
is the 16s column. (Refer to Table 2.6 if you lose track of the column values.) The
16s column has an A in it. A in hex is decimal 10. The total value of that column,
therefore, is 16 × 10, or 160. Perform that multiplication on your calculator, and

 Chapter 2 ■ Alien Bases 25

add the product to the 2 that you stored in memory. (Again, the SUM button is
a handy way to do this if your calculator has one.)

Remember what you’re doing: evaluating each column in decimal and keep-
ing a running total. Now, move to the third column from the right. This one
contains a 7. The value of the third column is 16 × 16, or 256. Perform 256 × 7
on your calculator, and add the product to your running total.

You’re done. Retrieve the running total from your calculator memory. The
total should be 1,954, which is the decimal equivalent of 7A2H.

Let’s try it again, more quickly, with a little less natter and a much larger
number: C6F0DBH.

1. First, evaluate the units column. B × 1 = 11 × 1 = 11. Start your running
total with 11.

2. Evaluate the 16s column. D × 16 = 13 × 16 = 208. Add 208 to your run-
ning total.

3. Evaluate the 256s column. 0 × 256 = 0. Move on.

4. Evaluate the 4,096s column. F × 4,096 = 15 × 4,096 = 61,440. Add it to your
running total.

5. Evaluate the 65,536s column. 6 × 65,536 = 393,216. Add it to the run-
ning total.

6. Evaluate the 1,048,576s column. C × 1,048,576 = 12 × 1,048,576 = 12,582,912.
Add it to your total.

The running total should be 13,037,787.
Finally, do it yourself without any help for the following number: 1A55BEH.

From Decimal to Hex
The lights should be coming on about now. This is good, because going in the
other direction, from our familiar decimal base 10 to hex, is much harder and
involves more math. What we have to do is find the hex column values “within”
a decimal number— and that involves some considerable use of that fifth- grade
bogeyman, long division.

But let’s get to it, again, starting with a fairly easy decimal number: 449. The
calculator will be handy with a vengeance. Tap in the number 449 and store it
in the calculator’s memory.

What we need to do first is find the largest hex column value that is contained
in 449 at least once. Remember grade- school “gazintas”? (12 gazinta 855 how many
times?) Division is often introduced to students as a way of finding out how
many times some number is present in— “goes into”— another. It’s something
like that. Looking back at Table 2.6, we can see that 256 is the largest power of

26 Chapter 2 ■ Alien Bases

16, and hence the largest hex column value, that is present in 449 at least once.
(The next largest power of 16— 512— is obviously too large to be present in 449.)

So, we start with 256 and determine how many times 256 “gazinta” 449: 449
/ 256 = 1.7539. At least once, but not quite twice. So, 449 contains only one 256.
Write down a 1 on paper. Don’t enter it into your calculator. We’re not keeping a
running total here; if anything, we could say we’re keeping a running remainder.
The 1 is the leftmost hex digit of the hex value that is equivalent to decimal 449.

We know that there is only one 256 contained in 449. What we must do now
is remove that 256 from the original number, now that we’ve “counted” it by
writing a 1 down on paper. Subtract 256 from 449. Store the difference, 193,
into memory.

The 256 column has been removed from the number we’re converting. Now
we move to the next column to the right, the 16s. How many 16s are contained
in 193? 193 / 16 = 12.0625. This means the 16s column in the hex equivalent of
449 contains a . . . 12? Hmmmm . . . remember the digit shortage, and the fact
that in hex, the value we call 12 is represented by the letter C. From a hex per-
spective, we have found that the original number contains C in the 16s column.
Write a C down to the right of your 1: 1C. So far, so good.

We’ve got the 16s column, so just as with the 256s, we have to remove the
16s from what’s left of the original number. The total value of the 16s column
is C × 16 = 12 × 16 = 192. Bring the 193 value out of your calculator’s memory
and subtract 192 from it. A lonely little 1 is all that’s left.

So we’re down to the units column. There is one unit in one, obviously. Write
that 1 down to the right of the C in our hexadecimal number: 1C1. Decimal 449
is equivalent to hex 1C1.

Now perhaps you’ll begin to understand why programmers like hexadecimal
calculators so much.

Let’s glance back at the big picture of the decimal- to- hex conversion. We’re
looking for the hexadecimal columns hidden in the decimal value. We find the
largest column contained in the decimal number, find that column’s value, and
subtract that value from the decimal number. Then we look for the next smallest
hex column, the next smallest, and so on, removing the value of each column
from the decimal number as we go. In a sense, we’re dividing the number
by consecutively smaller powers of 16 and keeping a running remainder by
removing each column as we tally it.

Let’s try it again. The secret number is 988,664.

1. Find the largest column contained in 988,664 from Table 2.6: 65,536. 988,664
/ 65,536 = 15 and change. Ignore the change. 15 = F in hex. Write down the F.

2. Remove F × 65,536 from 988,664. Store the remainder: 5,624.

3. Move to the next smallest column. 5,624 / 4,096 = 1 and change. Write
down the 1.

 Chapter 2 ■ Alien Bases 27

4. Remove 1 × 4,096 from the remainder: 5,624 – 4096 = 1528. Store the new
remainder: 1,528.

5. Move to the next smallest column. 1,528 / 256 = 5 and change. Write
down the 5.

6. Remove 5 × 256 from the stored remainder, 1,528. Store 248 as the new
remainder.

7. Move to the next smallest column. 248 / 16 = 15 and change. 15 = F in hex.
Write down the F.

8. Remove F × 16 from stored remainder, 248. The remainder, 8, is the number
of units in the final column. Write down the 8.

There you have it: 988,664 decimal = F15F8H.
Note the presence of the H at the end of the hex number. From now on, every

hex number in the text of this book will have that H affixed to its hindparts.
It’s important, because not every hex number contains letter digits to scream
out the fact that the number is in base 16. There is a 157H as surely as a 157
decimal, and the two are not the same number. (Quick, now: by how much are
they different?) Don’t forget that H in writing your assembly programs, as I’ll
be reminding you later.

Practice. Practice! PRACTICE!

The best (actually, the only) way to get a gut feel for hex notation is to use it
lots. Convert each of the following hex numbers to decimal. Lay each number
out on the dissection table and identify how many 1s, how many 16s, how
many 256s, how many 4,096s, and so on, are present in the number, and then
add them up in decimal.

CCH
157H
D8H
BB29H
7AH
8177H
A011H
99H
2B36H
FACEH
8DB3H
9H

That done, now turn it inside out, and convert each of the following decimal
numbers to hex. Remember the general method: From Table 2.6, choose the

28 Chapter 2 ■ Alien Bases

largest power of 16 that is less than the decimal number to be converted. Find
out how many times that power of 16 is present in the decimal number, and
write it down as the leftmost hex digit of the converted number. Then subtract
the total value represented by that hex digit from the decimal number. Then
repeat the process, using the next smallest power of 16 until you’ve subtracted
the decimal number down to nothing.

39
413
22
67,349
6,992
41
1,117
44,919
12,331
124,217
91,198
307
112,374,777

(Extra credit for that last one) If you need more practice, choose some
decimal numbers and convert them to hex and then convert them back. When
you’re done, check your work with a calculator.

Arithmetic in Hex

As you become more and more skilled in assembly language, you’ll be doing
more and more arithmetic in base 16. You may even (good grief) come to do it
in your head. Still, it takes some practice.

Addition and subtraction are basically the same as what we know in dec-
imal, with a few extra digits tossed in for flavor. The trick is nothing more than
knowing your addition tables up to 0FH. This is best done not by thinking to
yourself, “Now, if C is 12 and F is 15, then C + F is 12 + 15, which is 27 decimal
but 1BH.” Instead, you should simply say inside your head, “C + F is 1BH.”

Yes, that’s asking a lot. But I ask you now, as I will ask you again on this
journey, do you wanna hack assembly . . . or do you just wanna fool around? It
takes practice to learn the piano, and it takes practice to drive the core skills of
assembly language programming down into your synapses where they belong.

So let me sound like an old schoolmarm and tell you to memorize the fol-
lowing. Make flash cards if you must:

9

0

8

0

7

0

6

0

5

0
1 2 3 4 5

AH AH AH AH AH

 Chapter 2 ■ Alien Bases 29

A

BH BH BH BH BH
1 2 3 4 5

0

9

0

8

0

7

0

6

0
B

CH

A

CH CH CH CH CH
1 2 3 4 5 6

0 0

9

0

8

0

7

0

6

0

C

DH

B

DH

A

DH DH DH DH
1 2 3 4 5 6

0 0 0

9

0

8

0

7

0

D

EH

C

EH

B

EH

A

EH EH EH EH
1 2 3 4 5 6 7

0 0 0 0

9

0

8

0

7

0

E

FH

D

FH

C

FH

B

FH

A

FH FH EH
1 2 3 4 5 6 7

0 0 0 0 0

9

0

8

0

F

H

E

H

D

H

C

H

B

H

A

H H H
1 2 3 4 5 6 7 8

10 10 10 10 10 10

9

10

8

10

F

H

E

H

D

H

C

H

B

H

A

H H
2 3 4 5 6 7 8

11 11 11 11 11 11

9

11

F

H

E

H

D

H

C

H

B

H

A

H H
3 4 5 6 7 8 9

12 12 12 12 12 12

9

12

F

H

E

H

D

H

C

H

B

H

A

H
4 5 6 7 8 9

13 13 13 13 13 13

F

H

E

H

D

H

C

H

B

H

A

H
5 6 7 8 9 A

14 14 14 14 14 14

F

H

E

H

D

H

C

H

B

H
6 7 8 9

15 15 15 15 15
A

F

H

E

H

D

H

C

H

B

H
7 8 9

16 16 16 16 16
A B

30 Chapter 2 ■ Alien Bases

F

H

E

H

A

H

C

H
8 9

17 17 17 17
A B

F

H

E

H

D

H

C

H
9

18 18 18 18
A B C

F

H

E

H

D

H
A B C

19 19 19

F

AH

E

AH

D

AH
B C D

1 1 1

F

BH

E

BH
C D

1 1

F

CH

E

CH
D E

1 1

F

DH
E

1

F

EH
F

1

If nothing else, this exercise should make you glad that computers don’t
work in base 64.

Columns and Carries
With all of these single- column additions committed (more or less) to memory,
you can tackle multicolumn addition. It works pretty much the same way it
does with decimal. Add each column starting from the right, and carry into the
next column anytime a single column’s sum exceeds 0FH.

For example:

 1 1
 2 F 3 1 A DH
+ 9 6 B A 0 7H
 C 5 E B B 4H

 Chapter 2 ■ Alien Bases 31

Carefully work this one through, column by column. The sum of the first
column (that is, the rightmost) is 14H, which cannot fit in a single column, so
we must carry the one into the next column to the left. Even with the additional
1, however, the sum of the second column is 0BH, which fits in a single column
and no carry is required.

Keep on adding toward the left. The second- to- last column will again over-
flow, and you will need to carry the one into the last column. As long as you
have your single- digit sums memorized, it’s a snap.

Well, more or less.
Now, here’s something you should take note of:
The most you can ever carry out of a single- column addition of two numbers is 1.
It doesn’t matter what base you’re in: 16, 10, fooby, or 2. You will either carry

a 1 (in Martian, a foo) out of a column or carry nothing at all. This fact surprises
people for some reason, so ask yourself: what two single digits in old familiar
base 10 can you add that will force you to carry a 2? The largest digit is 9, and
9 + 9 = 18. Put down the 8 and carry the 1. Even if you have to add in a carry
from a previous column, that will bring you up (at most) to 19. Again, you carry
a 1 and no more. This is important when you add numbers on paper, or within
the silicon of your CPU, as we’ll learn a few chapters further on.

Subtraction and Borrows
If you have your single- column sums memorized, you can usually grind your
way through subtraction with a shift into a sort of mental reverse: “If E + 6 equals
14H, then 14H – E must equal 6.” The alternative is memorizing an even larger
number of tables, and since I haven’t memorized them, I won’t ask you to.

But over time, that’s what tends to happen. In hex subtraction, you should
be able to dope out any given single- column subtraction by turning a familiar
hexadecimal sum inside- out. And just as with base 10, multicolumn subtrac-
tions are done column by column, one column at a time:

 F76CH
- A05BH
 5711H

During your inspection of each column, you should be asking yourself: “What
number added to the bottom number yields the top number?” Here, you should
know from your tables that B + 1 = C, so the difference between B and C is
1. The leftmost column is actually more challenging: what number added to
A gives you F? Chin up; even I have to think about it on an off day.

The problems show up, of course, when the top number in a column is smaller
than its corresponding bottom number. Then (like the federal government on a
bomber binge) you have no recourse but to borrow.

Borrowing is one of those grade- school rote- learned processes that few people
really understand. (To understand it is tacit admittance that something of New

32 Chapter 2 ■ Alien Bases

Math actually stuck, horrors.) From a height, what happens in a borrow is that
one count is taken from a column and applied to the column on its right. I say
applied rather than added to because in moving from one column to the column on
its right, that single count is multiplied by 10, where 10 represents the number
base. (Remember that 10 in octal has a value of 8, while 10 in hexadecimal has
a value of 16.)

It sounds worse than it is. Let’s look at a borrow in action, and you’ll get
the idea:

 9 2H
- 4 FH

Here, the subtraction in the rightmost column can’t happen as is, because
F is larger than 2. So, we borrow from the next column to the left.

Nearly 60 years out of the past, I can still hear old Sister Marie Bernard tough-
ing it out on the blackboard, albeit in base 10: “Cross out the 9; make it an 8.
Make the 2 a 12. And 12 minus F is what, class?” It’s 3, Sister. And that’s how
a borrow works. (I hope the poor dear will forgive me for putting hex bytes in
her mouth)

Think about what happened there, functionally. We subtracted 1 from the 9
and added 10H to the 2. One obvious mistake is to subtract 1 from the 9 and add
1 to the 2, which (need I say it?) won’t work. Think of it this way: we’re moving
part of one column’s surplus value over to its right, where some extra value is
needed. The overall value of the upper number doesn’t change (which is why
we call it a borrow and not a steal), but the recipient of the loan is increased by
10, not 1.

After the borrow, what we have looks something like this:

 812H
- 4 FH

(On Sister Marie Bernard’s blackboard, we crossed out the 9 and made it an
8. I just made it an 8. Silicon has advantages over chalk— except that the 8’s
earlier life as a 9 is not so obvious.)

And of course, once we’re here, the columnar subtractions all work out, and
we discover that the difference is 43H.

People sometimes ask if you ever have to borrow more than 1. The answer,
plainly, is no. If you borrow 2, for example, you would add 20 to the recipient
column, and 20 minus any single digit remains a two- digit number. That is, the
difference won’t fit into a single column. Subtraction contains an important
symmetry with addition:

The most you ever need to borrow in any single- column subtraction of two numbers is 1.

 Chapter 2 ■ Alien Bases 33

Borrows Across Multiple Columns
Understanding that much about borrows gets you most of the way there. But,
as life is wont, you will frequently come across a subtraction similar to this:

 F 0 0 0H
- 3 B 6 CH

Column 1 needs to borrow, but neither column 2 nor column 3 have anything
at all to lend. Back in grade school, Sister Marie Bernard would have rattled
out with machine- gun efficiency: “Cross out the F, make it an E. Make the 0 a
10. Then cross it out, make it an F. Make the next 0 a 10; cross it out, make it
an F. Then make the last 0 a 10.” Got that? (I got it. In Catholic school back in
the early 60s, the consequences of not getting it were too terrible to consider.)

What happens is that the middle two 0s act as loan brokers between the
F and the rightmost 0, keeping their commission in the form of enough value to
allow their own columns’ subtractions to take place. Each column to the right
of the last column borrows 10 from its neighbor to the left and loans 1 to the
neighbor on its right. After all the borrows trickle through the upper number,
what we have looks like this (minus all of Sister’s cross- outs):

 E F F10H
- 3 B 6 CH

At this point, each columnar subtraction can take place, and the difference
is B494H.

In remembering your grade- school machinations, don’t fall into the old dec-
imal rut of thinking, “Cross out the 10, and make it a 9.” In the world of hexa-
decimal, 10H – 1 = F. Cross out the 10, and make it an F.

What’s the Point?
What is the point of all this if you have a hex calculator or a hex- capable screen
calculator? The point is practice. Hexadecimal is the lingua franca of assemblers,
to seriously mangle a metaphor. The more you burn a gut- level understanding
of hex into your reflexes, the easier assembly language will be. Furthermore,
understanding the internal structure of the machine itself will be much easier if
you have that intuitive grasp of hex values. We’re laying important groundwork
here. Take it seriously now and you’ll lose less hair later.

34 Chapter 2 ■ Alien Bases

Binary

Hexadecimal is excellent practice for taking on the strangest number base of
all: binary. Binary is base 2. Given what we’ve learned about number bases so
far, what can we surmise about base 2?

 ■ Each column has a value two times the column to its right.

 ■ There are only two digits (0 and 1) in the base.

Counting is a little strange in binary, as you might imagine. It goes like this:
0, 1, 10, 11, 100, 101, 110, 111, 1,000 Because it sounds absurd to say, “Zero,
one, 10, 11, 100, . . .,” it makes more sense to simply enunciate the individual
digits, followed by the word binary. For example, most people say “one zero
one one one zero one binary” instead of “one million, eleven thousand, one
hundred one binary” when pronouncing the number 1011101— which sounds
enormous until you consider that its value in decimal is only 93.

Odd as it may seem, binary follows all of the same rules we’ve discussed in
this chapter regarding number bases. Converting between binary and decimal
is done using the same methods described for hexadecimal in an earlier section
of this chapter.

Because counting in binary is as much a matter of counting columns as counting
digits (since there are only two digits), it makes sense to take a long, close look
at Table 2.7, which shows the values of the binary number columns out to 32
places. (Taking it out to 64 places would be problematic because of the size of
the decimal equivalent, as I’ll show you shortly.)

Table 2.7: Binary Columns as Powers of 2

BINARY POWER OF 2 DECIMAL

1 =20= 1

10 =21= 2

100 =22= 4

1000 =23= 8

10000 =24= 16

100000 =25= 32

1000000 =26= 64

10000000 =27= 128

100000000 =28= 256

1000000000 =29= 512

Continues

 Chapter 2 ■ Alien Bases 35

One look at that imposing pyramid of zeros implies that it’s hopeless to think
of pronouncing the larger columns as strings of digits: “one zero zero zero zero
zero zero zero . . .” and so on. There’s a crying need for a shorthand notation here,
so I’ll provide you with one in a little while— and its identity will surprise you.

You might object that such large numbers as the bottommost in the table aren’t
likely to be encountered in ordinary programming. Sorry, but even antiquated
32- bit microprocessors such as the 386/486/Pentium can swallow numbers
like that in one electrical gulp and eat billions of them for lunch. Now that
mainstream PCs just about all use 64- bit CPUs, you must become accustomed

BINARY POWER OF 2 DECIMAL

10000000000 =210= 1024

100000000000 =211= 2048

1000000000000 =212= 4096

10000000000000 =213= 8192

100000000000000 =214= 16384

1000000000000000 =215= 32768

10000000000000000 =216= 65536

100000000000000000 =217= 131072

1000000000000000000 =218= 262144

10000000000000000000 =219= 524288

100000000000000000000 =220= 1048576

1000000000000000000000 =221= 2097152

10000000000000000000000 =222= 4194304

100000000000000000000000 =223= 8388608

1000000000000000000000000 =224= 16777216

10000000000000000000000000 =225= 33554432

100000000000000000000000000 =226= 67108864

1000000000000000000000000000 =227= 134217728

10000000000000000000000000000 =228= 268435456

100000000000000000000000000000 =229= 536870912

1000000000000000000000000000000 =230= 1073741824

10000000000000000000000000000000 =231= 2147483648

100000000000000000000000000000000 =232= 4294967296

Table 2.7 (continued)

36 Chapter 2 ■ Alien Bases

to thinking in terms of such numbers as 264, even though the numbers them-
selves are immense:

 2 1 8 10 18 446 744 073 709 551 61664 19. , , , , , ,

This figure can be imagined (by sheer coincidence) as (roughly) the number
of stars in our observable universe. How astronomers calculated that is fas-
cinating; see https://bigthink.com/starts- with- a- bang/how- many- stars.

Don’t even ask what 2128 comes out to in decimal. The answer is more than
I can imagine, and like Han Solo, I can imagine a lot.

Now, just as with octal and hexadecimal, there can be identity problems when
using binary. The number 101 in binary is not the same as 101 in hex, or 101 in
decimal. For this reason, always append the suffix “B” to your binary values to
make sure people reading your programs (including you, six weeks after the
fact) know what number base you’re working from.

Values in Binary
Converting a value in binary to a value in decimal is done the same way it’s
done in hex— more simply, in fact, for the simple reason that you no longer have
to count how many times a column’s value is present in any given column. In
hex, you have to see how many 16s are present in the 16s column, and so on.
In binary, a column’s value is either present (1 time) or not present (0 times).

Running through a simple example should make this clear. The binary number
11011010B is a relatively typical binary value in small- time computer work. (On
the small side, actually— many common binary numbers are twice its size or
more.) Converting 11011010B to decimal comes down to scanning it from right
to left with the help of Table 2.7 and tallying any column’s value where that
column contains a 1, while ignoring any column containing a 0.

Clear your calculator and let’s get started:

1. Column 0 contains a 0; skip it.

2. Column 1 contains a 1. That means its value, 2, is present in the value of
the number. So we punch 2 into the calculator.

3. Column 2 is 0. Skip it.

4. Column 3 contains a 1. The column’s value is 23, or 8; add 8 to our tally.

5. Column 4 also contains a 1; 24 is 16, which we add to our tally.

6. Column 5 is 0. Skip it.

7. Column 6 contains a 1; 26 is 64, so add 64 to the tally.

https://bigthink.com/starts-with-a-bang/how-many-stars

 Chapter 2 ■ Alien Bases 37

8. Column 7 also contains a 1. Column 7’s value is 27, or 128. Add 128 to the
tally, and what do we have? 218. That’s the decimal value of 11011010B. It’s
as easy as that.

Converting from decimal to binary, while more difficult, is done exactly the
same way as converting from decimal to hex. Go back and read that section again,
searching for the general method used. In other words, see what was done and
separate the essential principles from any references to a specific base like hex.

I’ll bet by now you can figure it out without much trouble.
As a brief aside, perhaps you noticed that I started counting columns from 0

rather than 1. A peculiarity of the computer field is that we always begin counting
things from 0. Actually, to call it a peculiarity is unfair; the computer’s method
is the reasonable one, because 0 is a perfectly good number and should not be
discriminated against. The rift occurred because in our real, physical world,
counting things tells us how many things are there, while in the computer world
counting things is more generally done to name them. That is, we need to deal
with bit number 0, and then bit number 1, and so on, far more than we need to
know how many bits there are.

This is not a quibble, by the way. The issue will come up again and again in
connection with memory addresses, which as I have said and will say again are
the key to understanding assembly language.

In programming circles, always begin counting from 0!
A practical example of the conflicts this principle can cause grows out of the

following question: What year began our new millennium? Most people would
intuitively say the year 2000— and back during the runup to 2000 many people
did— but technically, the twentieth century continued its plodding pace until
January 1, 2001. Why? Because there was no year 0. When historians count the years
moving from B.C. to A.D., they go right from 1 B.C. to 1 A.D. Therefore, the first
century began with year 1 and ended with year 100. The second century began
with year 101 and ended with year 200. By extending the sequence you can see
that the 20th century began in 1901 and ended in 2000. On the other hand, if
we had had the sense to begin counting years in the current era computer style,
from year 0, the 20th century would indeed have ended at the end of 1999.

Now is a good point to get some practice in converting numbers from binary
to decimal and back. Sharpen your teeth on these:

110
10001
11111
11
101
1100010111010010
11000
1011

38 Chapter 2 ■ Alien Bases

When that’s done, convert these decimal values to binary:

77
42
106
255
18
6309
121
58
18,446

Why Binary?
If it takes eight whole digits (11011010) to represent an ordinary three- digit
number such as 218, binary as a number base would seem to be a bad intellectual
investment. Certainly for us it would be a waste of mental bandwidth, and even
aliens with only two fingers would probably have come up with a better system.

The problem is, either lights are on or they’re off.
This is just another way of saying (as I will discuss in detail in Chapter 3) that

at the bottom of it, computers are electrical devices. In an electrical device, either
voltage is present or it isn’t; either current flows or it doesn’t. Very early in the
game, computer scientists decided that the presence of a voltage in a computer
circuit would indicate a 1 digit, while lack of a voltage at that same point in the
circuit would indicate a 0 digit. This isn’t many digits, but it’s enough for the
binary number system. This is the only reason we use binary, but it’s a pretty
compelling one, and we’re stuck with it. However, you will not necessarily
drown in ones and zeros, because I’ve already taught you a form of shorthand.

Hexadecimal as Shorthand for Binary

The number 218 expressed in binary is 11011010B. Expressed in hex, however, the
same value is quite compact: DAH. The two hex digits comprising DAH merit
a closer look. AH (or 0AH as your assembler will require it for reasons I will
explain later) represents 10 decimal. Converting any number to binary simply
involves detecting the powers of 2 within it. The largest power of 2 within 10
decimal is 8. Jot down a 1 digit and subtract 8 from 10. What’s left is 2. Now, 4 is
a power of 2, but there is no 4 hiding within 2, so we put a 0 to the right of the 1.
The next smallest power of 2 is 2, and there is a 2 in 2. Jot down another 1 to the

 Chapter 2 ■ Alien Bases 39

right of the 0. Two from 2 is 0, so there are no 1s left in the number. Jot down a
final 0 to the right of the rest to represent the 1s column. What you have is this:

1 0 1 0

Look back at the binary equivalent of 218: 11011010. The last four digits are
1010— the binary equivalent of 0AH.

The same will work for the upper half of DAH. If you work out the binary
equivalence for 0DH as we just did (and it would be good mental exercise), it
is 1101. Look at the binary equivalent of 218 this way:

 218 decimal
1101 1010 binary
 D A hex

It should be dawning on you that you can convert long strings of binary
1s and 0s into more compact hex format by converting every four binary digits
(starting from the right, not from the left!) into a single hex digit.

As an example, here is a 32- bit binary number that is not the least bit remarkable:

11110000000000001111101001101110

It is, however, a pretty obnoxious collection of bits to remember or manipu-
late, so let’s split it up into groups of four from the right:

1111 0000 0000 0000 1111 1010 0110 1110

Each of these groups of four binary digits can be represented by a single hexa-
decimal digit. Do the conversion now. What you should get is the following:

1111 0000 0000 0000 1111 1010 0110 1110
 F 0 0 0 F A 6 E

In other words, the hex equivalent of that mouthful is

F000FA6E

In use, of course, you would append the H on the end and also put a 0 at
the beginning, so in any kind of assembly language work the number would
actually be written 0F000FA6EH.

Suddenly, this business starts looking a little more graspable.
Hexadecimal is the programmer’s shorthand for the computer’s binary numbers.
This is why I said earlier that computers use base 2 (binary) and base 16 (hexa-

decimal) both at the same time in a rather schizoid fashion. What I didn’t say
is that the computer isn’t really the schizoid one; you are. At their very hearts
(as I will explain in Chapter 3) computers use only binary. Hex is a means by
which you and I make dealing with the computer easier. Fortunately, every four
binary digits may be represented by a hex digit, so the correspondence is clean
and comprehensible, even when it’s 64 bits— or 16 hexadecimal digits— long.

40 Chapter 2 ■ Alien Bases

Prepare to Compute

Everything up to this point has been necessary groundwork. I’ve explained
conceptually what computers do and have given you the tools to understand
the slightly alien numbers that they use. But I’ve said nothing so far about what
computers actually are, and it’s well past time. We will return to hexadecimal
numbers again and again in this book; I’ve said nothing thus far about hex
multiplication or bit- banging. The reason is plain: before you can bang on a
bit, you must know where the bits live. So, let’s lift the hood and see if we can
catch a few of them in action.

C H A P T E R

41

3

RAXie, We Hardly Knew Ye

In January 1970, I was on the downwind leg of my senior year in high school,
and the Chicago Public Schools had installed a computer somewhere. A truckful
of these fancy IBM typewriter gadgets was delivered to Lane Tech, and a bewil-
dered math teacher was drafted into teaching computer science (as they had
the nerve to call it) to a high school full of rowdy (and mostly nerdy) males.

I figured it out fairly quickly. You pounded out a deck of these goofy com-
puter cards on the card- punch machine, dropped them into the card hopper of
one of the typewriter gadgets, and watched in awe as the typewriter danced
its little golfball over the greenbar paper, printing out your inevitable list of
error messages. It was fun. I got straight As. I even kept the first program I
ever wrote that did something useful, astronomy being my passion at the time:
a little deck of cards that generated a table of parabolic correction factors for
hand- figuring telescope mirrors. (I still have the card deck, though the gummy
mess left behind by disintegrating rubber bands would not be healthy for a card
reader, assuming that one still exists.)

The question that kept gnawing at me was exactly what sort of beast RAX
(the computer’s wonderfully appropriate name) actually was. What we had
were RAM- charged typewriters that RAX controlled over phone lines— that
much I understood. But what was RAX itself?

Lifting the Hood
Discovering What Computers Actually Are

42 Chapter 3 ■ Lifting the Hood

I asked the instructor. In brief, the conversation went something like this:
ME: “Umm, sir, what exactly is RAX?”
HE: “Eh? Um, a computer. An electronic computer.”
ME: “That’s what it says on the course notes. But I want to know what RAX

is made of and how it works.”
HE: “Well, I’m sure RAX is all solid- state.”
ME: “You mean, there’s no levers and gears inside.”
HE: “Oh, there may be a few. But no vacuum tubes.”
ME: “I wasn’t worried about tubes. I suppose it has a calculator in it some-

where. But what makes it remember that A comes before B? How does it know
what FORMAT means? How does it tell time? What does it have to do to answer
the phone?”

HE: “Now, come on, that’s why computers are so great! They put it all together
so that we don’t have to worry about that sort of thing! Who cares what RAX
is? RAX knows FORTRAN and will execute any correct FORTRAN program.
That’s what matters, isn’t it?”

He was starting to sweat. So was I. End of conversation.
That June I graduated with 3 inches of debugged and working FORTRAN

punch cards in my bookbag and still had absolutely no clue as to what RAX
actually was.

It has bothered me to this day.

Gus to the Rescue
I was thinking about RAX 6 years later, while on Chicago’s Devon Avenue bus
heading for work, with the latest copy of Popular Electronics in my lap. The lead
story described a do- it- yourself project called the COSMAC ELF, which consisted
of a piece of perfboard full of integrated circuit chips, all wired together, plus
some toggle switches and a pair of LED numeric displays.

It was a computer. (Said so right on the label, heh.) The article told us how
to put it together, and that was about all. What did those chips do? What did
the whole thing do? There was no fancy robotic typewriter anywhere in sight.
It was driving me nuts.

As usual, my friend Gus Flassig got on the bus at Ashland Avenue and sat
down beside me. I asked him what the COSMAC ELF did. He was the first
human being to make the concept of a physical computer hang together for me:

“These are memory chips. You load numbers into the memory chips by flip-
ping these toggle switches in different binary code patterns, where “up”
means a 1- bit, and “down” means a 0- bit. Each number in memory means
something to the CPU chip. One number makes it add; another number
makes it subtract; another makes it write different numbers into memory,
and lots of other things. A program consists of a bunch of these instruction
numbers in a row in memory. The computer reads the first number, does

 Chapter 3 ■ Lifting the Hood 43

what the number tells it to do, and then reads the second one, does what
that number says to do, and so on, until it runs out of numbers.”

If you don’t find that utterly clear; don’t worry. I had the advantage of being
an electronics hobbyist (so I knew what some of the chips did) and had already
written some programs in RAX’s FORTRAN. But for me, my God, everything
suddenly hit critical mass and exploded in my head until the steam started
pouring out of my ears. I got it!

No matter what RAX was, I knew that it had to be something like the COS-
MAC ELF, only on a larger scale. I built an ELF. It was quite an education and
allowed me to understand the nature of computers at a very deep level. I don’t
recommend that anybody but total crazies wirewrap their own computers out
of loose chips anymore, although it was a common enough thing to do in the
mid- to- late 1970s.

In this chapter I will provide you with some of the insights that I obtained
while assembling my own computer the hard way. (You wonder where the
“hard” in “hardware” comes from? Not from the sound it makes when you
bang it on the table, I promise.)

Switches, Transistors, and Memory

Switches remember.
Think about it: you flip the wall switch by the door, and the light in the middle

of the ceiling comes on. It stays on. When you leave the room, you flip the switch
down again, and the light goes out. It stays out. Poltergeists notwithstanding,
the switch will remain in the position you last left it until you or someone else
comes back and flips it to its other position. Even if the bulb burns out, you can
look at the position of the switch handle and know if the light circuit is on or off.

In a sense, the switch remembers what its last command was until you change
it and “overwrite” that earlier command with a new one. In this sense, a light
switch represents a sort of rudimentary memory element.

Light switches are more mechanical than electrical. This does not prevent them
from acting as memory. In fact, the very first computer (Babbage’s 19th- century
Difference Engine) was entirely mechanical. In fact, the far larger version he
designed but never finished was to have been steam- powered. Babbage’s machine
had lots of little cams that could be flipped by other cams from one position to
another. Numbers were encoded and remembered as patterns of cam positions.

One If by Land...
Whether a switch is mechanical, electrical, hydraulic, or something else is irrel-
evant. What counts is that a switch contains a two- way pattern: on or off; up or

44 Chapter 3 ■ Lifting the Hood

down; flow or no flow. To that pattern can be assigned a meaning. Paul Revere
told his buddy to set up a code in the Old North Church: “One if by land, two
if by sea.” Once lit, the lamps in the steeple remained lit (and thus remembered
that very important code) long enough for Paul to call out the militia and whup
the British.

In general then, what we call memory is an aggregate of switches that will
retain a pattern long enough for that pattern to be read and understood by a
person or a mechanism. For our purposes, those switches will be electrical, but
keep in mind that both mechanical and hydraulic computers have been pro-
posed and built with varying degrees of success.

Memory consists of containers for alterable patterns that retain an entered pattern
until someone or something alters the pattern.

Transistor Switches
One problem with building a computer memory system of light switches is
that light switches are pretty specialized: they require fingers to set them, and
their output is a current path for electricity. Ideally, a computer memory switch
should be operated by the same force it controls. This allows the patterns stored
in memory to be passed on to other memory storage locations. In the gross elec-
tromechanical world, such a switch is called a relay.

A relay is a mechanical switch that is operated by electricity for the purpose
of controlling electricity. You “flip” a relay by feeding it a pulse of electricity,
which powers a little hammer that whaps a lever to one side or another. This
lever then opens or closes a set of electrical contacts, just as your garden- variety
light switch does. Computers have been made out of relays, although as you
might imagine, it was a long time ago, and (with a typical relay being about the
size of an ice cube) they weren’t especially powerful computers.

Fully electronic computers are made out of transistor switches. Transistors are
tiny crystals of silicon that use the peculiar electrical properties of silicon to act
as switches. I won’t try to explain what those peculiar properties are, since that
would take an entire book unto itself. Let’s consider a transistor switch a sort
of electrical black box and describe it in terms of inputs and outputs.

Figure 3.1 shows a transistor switch. (It is a field- effect transistor, which in truth
is only one type of transistor, but it is the type that our current computers are
made of.) When an electrical voltage is applied to pin 1, current flows between
pins 2 and 3. When the voltage is removed from pin 1, current ceases to flow
between pins 2 and 3.

In real life, a tiny handful of other components (typically diodes and capacitors)
are necessary to make things work smoothly in a computer memory context.
These are not necessarily little gizmos connected by wires to the outside of the
transistor (although in early transistorized computers they were) but are now cut

 Chapter 3 ■ Lifting the Hood 45

from the same silicon crystal the transistor itself is cut from and occupy almost
no space at all. Taken together, the transistor switch and its support components
are called a memory cell. I’ve hidden the electrical complexity of the memory cell
within an appropriate black- box symbol in Figure 3.1.

A memory cell keeps current flow through it to a minimum because electrical
current flow produces heat, and heat is the enemy of electrical components. The
memory cell’s circuit is arranged so that if you put a tiny voltage on its input
pin and a similar voltage on its select pin, a voltage will appear and remain on
its output pin. That output voltage will remain in its set state until you remove
the voltage from the cell as a whole or else remove the voltage from the input
pin while putting a voltage on the select pin.

The “on” voltage being applied to all of these pins is kept at a consistent
level (except, of course, when it is removed entirely). In other words, you don’t
put 12 volts on the input pin and then change that to 6 volts or 17 volts. The
computer designers pick a voltage and stick with it. The pattern is binary in
nature: either you put a voltage on the input pin, or you take the voltage away

Figure 3.1: Transistor switches and memory cells

46 Chapter 3 ■ Lifting the Hood

entirely. The output pin echoes that: either it holds a fixed voltage or it holds
no voltage at all.

We apply a code to that state of affairs: the presence of voltage indicates a binary
1, and the lack of voltage indicates a binary 0. This code is arbitrary. We could as
well have said that the lack of voltage indicates a binary 1 and vice versa (and
computers have been built this way for obscure reasons), but the choice is up
to us. Having the presence of something indicate a binary 1 is more natural, and
that is the way things have evolved in the computing mainstream.

A single computer memory cell, such as the transistor- based one we’re speaking
of here, holds one binary digit, either a 1 or a 0. This is called a bit. A bit is the
indivisible atom of information. There is no half- a- bit, and no bit- and- a- half.

A bit is a single binary digit, either 1 or 0.

The Incredible Shrinking Bit
One bit doesn’t tell us much. To be useful, we need to bring lots of memory
cells together. Transistors started out fairly small (the originals from the 1950s
looked a lot like stovepipe hats for tin soldiers) and went down from there. The
first transistors were created from little chips of germanium or silicon crystal
about an eighth of an inch square. The size of the crystal chip hasn’t changed
outrageously since then, but the transistors themselves have shrunk incredibly.

Where, in the beginning, one chip held one transistor, in time semiconductor
designers crisscrossed the chip into four equal areas and made each area an
independent transistor. From there it was an easy jump to adding the other
minuscule components needed to turn a transistor into a computer memory cell.

The chip of silicon was a tiny and fragile thing and was encased in an oblong
molded- plastic housing, like a small stick of gum with metal legs for the electrical
connections.

What we had now was a sort of electrical egg carton: four little cubbyholes,
each of which could contain a single binary bit. Then the shrinking process began.
First 8 bits, then 16, then multiples of 8 and 16, all on the same tiny silicon chip.
By the late 1960s, 256 memory cells could be made on one chip of silicon, usually
in an array of 8 cells by 32. In 1976, my COSMAC ELF computer contained two
memory chips. On each chip was an array of memory cells 4 wide and 256 long.
(Picture a really long egg carton.) Each chip could thus hold 1,024 bits.

This was a pretty typical memory chip capacity at that time. We called them
“1K RAM chips” because they held roughly 1,000 bits of random- access memory
(RAM). The K comes from kilobit, that is, 1,000 bits. We’ll get back to the notion
of what random access means shortly.

Toward the mid- 1970s, the great memory- shrinking act was kicking into high
gear. One kilobyte chips were crisscross divided into 4K chips containing 4,096
bits of memory. The 4K chips were almost immediately divided into 16K chips

Chapter 3 ■ Lifting the Hood 47

(16,384 bits of memory). These 16K chips were the standard when the IBM PC
first appeared in 1981. By 1982, the chips had been divided once again, and 16K
became 64K, with 65,536 bits inside that same little gumstick. Keep in mind that
we’re talking more than 65,000 transistors (plus other odd components) formed
on a square of silicon about a quarter- inch on a side.

Come 1985 and the 64K chip had been pushed aside by its drawn- and- quartered
child, the 256K chip (262,144 bits). Memory chips generally increase in capacity
by a factor of 4 simply because the current- generation chip is divided into 4 equal
areas, onto each of which is then placed the same number of transistors that the
previous generation of chip had held over the whole silicon chip.

By 1990, the 256K chip was history, and the 1 megabit chip was state of the
art. (Mega is Greek for million.) By 1992, the 4 megabit chip had taken over. The
critter had a grand total of 4,194,304 bits inside it, still no larger than that little
stick of cinnamon gum. About that time, the chips themselves grew small and
fragile enough so that four or eight of them were soldered to tiny printed circuit
boards so that they would survive handling by clumsy human beings. These
“memory sticks” are what modern computers use. They have the advantage
that you can in many cases remove and replace them with even bigger memory
sticks as those become available.

The memory chip game has continued apace, and in 2022, 16 gigabit chips
are mainstream. That’s 16 billion bits per chip.

Will it stop here? Unlikely. More is better in this world of real- time animated
video games and 4K video, and we’re bringing some staggeringly powerful
technology to bear on the creation of ever- denser memory systems. Some phys-
icists warn that the laws of physics may soon call a time- out in the game, since
the transistors are now so small that it gets hard pushing more than one elec-
tron at a time through them. At that point some truly ugly limitations of life
called quantum mechanics begin to get in the way. We’ll find a way around these
limitations (we always do), but in the process the whole nature of computer
memory may change.

If trying to keep track of what’s “current” in the computer world makes your
head hurt, well, you’re not alone.

Random Access
Newcomers sometimes find random a perplexing and disturbing word with
respect to memory, since it often connotes chaos or unpredictability. What the
word really means here is “at random,” indicating that you can reach into a
random- access memory chip and pick out any of the bits it contains without
disturbing any of the others, just as you might select one book at random from
your public library’s many shelves of thousands of books without sifting through
them in order or disturbing the places of other books on the shelves.

48 Chapter 3 ■ Lifting the Hood

Memory didn’t always work this way. Before memory was placed on silicon
chips, it was stored on electromagnetic machines of some kind, usually rotating
drums or disks distantly related to the hard drives we use today. Rotating magnetic
memory sends a circular collection of bits beneath a magnetic sensor. The bits
pass beneath the sensor one at a time, and if you miss the one you want, like a
Chicago bus in January, you simply have to wait for it to come by again. These
are serial- access devices. They present their bits to you serially, in a fixed order,
one at a time, and you have to wait for the one you want to come up in its order.

There’s no need to remember that; we’ve long since abandoned serial- access
devices for main computer memory. We still use such systems for mass storage,
as I will describe a few pages down the road. (Your hard drive is at its heart a
serial- access device.)

Random access works like this: inside the chip, each bit is stored in its own
memory cell, identical to the memory cell diagrammed in Figure 3.1. Each of the
however- many memory cells has a unique number. This number is a cell’s (and
hence a bit’s) address. It’s like the addresses on a street: the bit on the corner is
number 0 Silicon Alley, and the bit next door is 1, and so on. You don’t have to
knock on the door of bit 0 and ask which bit it is and then go to the next door and
ask there too, until you find the bit you want. If you have the address, you can
zip right down the street and park square in front of the bit you intend to visit.

Each chip has a number of pins coming out of it. The bulk of these pins are
called address pins. One pin is called a data pin. (See Figure 3.2.) The address pins
are electrical leads that carry a binary address code. This address is a binary
number, expressed in 1s and 0s only. You apply this address to the address
pins by encoding a binary 1 as (say) 5 volts, and a binary 0 as 0 volts. Many
other voltages have been used and are still used in computer hardware. What
matters is that we all agree that a certain voltage on a pin represents a binary
1. Special circuits inside the RAM chip decode this address to one of the select
inputs of the numerous memory cells inside the chip. For any given address
applied to the address pins, only one select input will be raised to five volts,
thereby selecting that memory cell.

Depending on whether you intend to read a bit or write a bit, the data pin is
switched between the memory cells’ inputs or outputs, as shown in Figure 3.2.

But that’s all done internally to the chip. As far as you on the outside are
concerned, once you’ve applied the address to the address pins, voilà! The data
pin will contain a voltage representing the value of the bit you requested. If that
bit contained a binary 1, the data pin will contain a 5- volt signal; otherwise, the
binary 0 bit will be represented by 0 volts.

 Chapter 3 ■ Lifting the Hood 49

Memory Access Time
Chips are graded by how long it takes for the data to appear on the data pin
after you’ve applied the address to the address pins. Obviously, the faster the
better, but some chips (for electrical reasons that again are difficult to explain)
are faster than others.

Years ago, when computers used individual chips plugged into their moth-
erboards, memory access time was (mostly) the time it took for data to appear
after an address was applied to the chips. Even then, there were other issues
that involved the speed of the CPU chip and how the memory system overall
was designed.

Figure 3.2: A RAM chip

50 Chapter 3 ■ Lifting the Hood

Today, PC memory systems are focused on memory sticks (more on that later),
which gang up several memory chips with a great deal of support circuitry. The
sticks are sensitive to the CPU speed of the computer in which they work and
to the sorts of sockets into which they fit. Memory timing has become hugely
more complex in the last 20 years. Several factors govern how quickly memory
chips can accept an address and deliver the goods. Here’s a good explanation,
given with fair warning that it’s a highly technical presentation:

https://appuals.com/ram- timings- cas- ras- trcd- trp- tras- explained

I can reassure you that you do not need to completely understand the intri-
cacies of PC memory hardware to learn assembly language. As you learn more
about PC internals generally, little by little it will all fall into place.

Bytes, Words, Double Words, and Quad Words
The days are long gone (decades gone, in fact) when a serious computer could
be made with only one memory chip. My poor 1976 COSMAC ELF needed at
least two. Today’s computers need many, irrespective of the fact that today’s
memory chips can hold billions of bits rather than the ELF’s meager 2,048 bits.

Our memory system must store our information. How we organize a memory
system out of a hatful of memory chips will be dictated largely by how we
organize our information.

The answer begins with this thing called a byte. The fact that the granddaddy
of all computer magazines took this word for its title indicates its importance
in the computer scheme of things. (Alas, Byte Magazine ceased publishing late
in 1998.) From a functional perspective, memory is measured in bytes. A byte
is eight bits. Two bytes side by side are called a word, and two words side by
side are called a double word. A quad word, as you might imagine, consists of two
double words, for four words or eight bytes in all. Going the other direction,
in the past some people referred to a group of four bits as a nybble— a nybble
being half of a byte. (This term is now largely extinct.)

Here’s the quick tour:

 ■ A bit is a single binary digit, 0 or 1.

 ■ A byte is 8 bits side by side.

 ■ A word is 2 bytes side by side: 16 bits.

 ■ A double word is 2 words side by side: 32 bits.

 ■ A quad word is 2 double words side by side: 64 bits.

Computers were designed to store and manipulate human information. The
basic elements of human discourse are built from a set of symbols consisting of

https://appuals.com/ram-timings-cas-ras-trcd-trp-tras-explained

 Chapter 3 ■ Lifting the Hood 51

letters of the alphabet (two of each for upper and lower case), digits, and sym-
bols including commas, colons, periods, exclamation marks, and so on. Add
to these the various international variations on letters such as ä and ò plus the
more arcane mathematical symbols, and you’ll find that human information
requires a symbol set of well over 200 symbols. (The symbol set used in nearly
all PC- style computers is given in Appendix C.)

Bytes are central to the scheme because one symbol out of that symbol set
can be neatly expressed in one byte. A byte is 8 bits, and 28 is 256. This means
that a binary number 8 bits in size can be one of 256 different values, numbered
from 0 to 255. Because we use these symbols so much, most of what we do in
computer programs is expressed in byte- sized chunks representing numbers
or text. This doesn’t mean computers act on only single bytes. Most computers
today, in fact, can process information a quad word (eight bytes, or 64 bits) at a
time. The 32- bit machines that seemed so unbeatable 20 years ago are rapidly
fading into the mists of history.

To make internationalization and localization of software practical, there is a
standard for character sets called Unicode, which itself is a collection of standards.
Unicode character sets may be expressed in one to four bytes, the first byte of
which is almost identical to the long- established ASCII standard character set.
Explaining how Unicode encoding works is outside the mission of this book,
but for programmers outside the United States it is well worth studying.

Pretty Chips All in a Row
One of the more perplexing things for beginners to understand is that a single
RAM chip does not even contain 1 byte...though it might contain several billion
bits. Most of the individual RAM chips that we use today have no more than
eight data pins, and some only one data pin. Whole memory systems are created
by combining individual memory chips electrically in clever ways.

A simple example will help. Consider Figure 3.3. I’ve drawn a memory system
that distributes a single stored byte across eight separate RAM chips. Each of
the black rectangles represents a RAM chip like the one shown in Figure 3.2.
There is one bit from the byte stored within each of the eight chips, at the same
address across all eight chips. The 20 address pins for all eight chips are connected
together, “in parallel” as an electrician might say. When the computer applies a
memory address to the 20 address lines, the address appears simultaneously on
the address pins of all eight memory chips in the memory system. This way, a
single address is applied simultaneously to the address pins of all eight chips,
which deliver all eight bits simultaneously on the eight data lines, with one bit
from each chip.

52 Chapter 3 ■ Lifting the Hood

In the real world, such simple memory systems no longer exist, and there
are many different ways of distributing chips (and their stored bits) across a
memory system. All memory chips today do in fact store more than one bit at
each address. Chips storing one, two, three, four, or eight bits per address are
relatively common. How to design a fast and efficient computer memory system
is an entire subdiscipline within electrical engineering, and as our memory chips
are improved to contain more and more memory cells, the “best” way to design
a physical memory system will change, perhaps radically.

Figure 3.3: A simple 1- megabyte memory system

 Chapter 3 ■ Lifting the Hood 53

It’s been a long time, after all, since we’ve had to plug individual memory
chips into our computers. Today, memory chips are nearly always gathered
together into plug- in dual inline memory modules (DIMMs) of various capac-
ities. These modules are little green- colored circuit boards about 5″ long and 1″
high. Since 1990 or so, all desktop PC- compatible computers use such modules,
generally in pairs. Each module currently in use typically stores 64 bits at each
memory address.

Today in 2022, there is a bewildering array of different DIMM memory mod-
ules, with different numbers of pins and different combinations of chips to
cater to different types of computers. The important thing to remember is that
the way memory chips are combined into a memory system does not affect the
way your programs operate. When a program that you’ve written accesses a
byte of memory at a particular address, the computer takes care of fetching it
from the appropriate place in that jungle of chips and DIMM circuit boards.
One memory system arranged a certain way might bring the data back from
memory faster than another memory system arranged a different way, but the
addresses are the same, and the data is the same. From the point of view of
your program, there is no functional difference unless the speed at which your
programs run is important.

To summarize, electrically, your computer’s memory consists of one or more
rows of memory chips on small (and generally removable) circuit boards, each
chip containing a large number of memory cells made out of transistors and
other minuscule electrical components. Most of the time, to avoid confusion,
it’s just as useful to forget about the transistors and even the rows of physical
chips. (My high school FORTRAN teacher was not entirely wrong...but he was
right for the wrong reasons.)

Over the years, memory systems have been accessed in different ways. Eight-
bit computers (now ancient and almost extinct) accessed memory eight bits
(one byte) at a time. Sixteen- bit computers access memory 16 bits (one word)
at a time, and 32- bit computers access memory 32 bits (one double word) at a
time. Modern computers based on x64 64- bit processors access memory 64 bits
(one quad word) at a time. This can be confusing, so it’s better in most cases
to envision a very long row of byte- sized containers, each with its own unique
address. Don’t assume that in computers that process information a word at a
time that only words have addresses. It’s a convention within the PC architecture
that every byte has its own unique numeric address, irrespective of how many
bytes are pulled from memory in one operation.

Every byte of memory in the computer has its own unique address, even in computers
that process 2, 4, or 8 bytes of information at a time.

If this seems counterintuitive, yet another metaphor will help. When you go
to the library to take out the three volumes of Tolkien’s massive fantasy The Lord
of the Rings, you’ll find that each of the three volumes has its own card catalog

54 Chapter 3 ■ Lifting the Hood

number (essentially that volume’s address in the library) but that you take all
three down at once and process them as a single entity. If you really want to,
you can check only one of the books out of the library at a time, but doing so
will require two more trips to the library later to get the other two volumes,
which is wasteful of your time and effort.

So it is with 64- bit computers. Every byte has its own address, but when a
64- bit computer accesses a byte in main memory, it actually reads 64 bytes, with
the requested byte somewhere within the block that was read. This block of 64
bytes is called a cache line. Cache is basically a block of memory locations inside
the CPU chip itself, and not outside in DIMMs on the motherboard. Reading
data or instructions from cache is hugely faster than reading them from external
memory. As your program toodles along, reading, writing, and executing, most of
what the program is using already exists in cache. The CPU has some extremely
sophisticated machinery to manage cache. This machinery is constantly swap-
ping in memory from outside the CPU, doing its best to predict what memory
your program will be using next.

Describing how this cache- management machinery works involves other
complicated things such as virtual memory, paging, and branch prediction,
which are outside the scope of an introductory book like this. The good news
is that all this machinery is controlled by a partnership between the CPU and
the operating system. Your program will run the same way irrespective of
what is in cache and what isn’t. (Again, it may run faster or slower depending
on how much the CPU has to bring in from external memory.) As a beginning
programmer, you don’t need to concern yourself with cache lines and all the
rest. However, when you are enough of an assembly expert to understand how
caching and other memory management mechanisms affect the speed of the
program, you’ll need to learn those mechanisms from top to bottom.

The Shop Supervisor and the Assembly Line

All of this talk about reading things from memory and writing things to memory
has so far carefully skirted the question of who is doing the reading and writing.
The who is almost always a single chip, and a remarkable chip it is, too: the
central processing unit, or CPU. If you are the president and CEO of your personal
computer, the CPU is your shop supervisor, who sees that your orders are car-
ried out down among the chips where the work gets done.

Some would say that the CPU is what actually does the work, but while
largely true, it’s an oversimplification. Plenty of real work is done in the memory
system and also in what are called peripherals, such as video display boards, USB
and network ports, and so on. So, while the CPU does do a good deal of the
work, it also parcels out quite a bit of the work to other components within the
computer, largely to allow the CPU to do what it does best a lot more quickly.

 Chapter 3 ■ Lifting the Hood 55

Like any good manager, the shop supervisor delegates to other computer sub-
systems whatever it can.

Most of the CPU chips used in the machines we lump together as a group and
call PCs were designed by a company called Intel, which pretty much invented
the single- chip CPU way back in the early 1970s. Intel CPUs have evolved briskly
since then, as I’ll describe a little later in this chapter. There have been many
changes in the details over the years, but from a high level, what any Intel or
Intel- compatible CPU does is largely the same.

Talking to Memory
The CPU chip’s most important job is to communicate with the computer’s
memory system. Like a memory chip, a CPU chip is a small square of silicon
onto which a great many transistors— today, many billions of them!— have been
placed. The fragile silicon chip is encased in a metal/ceramic housing with a
large number of electrical connection pins protruding from its bottom surface
or its edges. Like the pins of memory chips, the CPU’s pins transfer information
encoded as voltage levels, typically 3 to 5 volts. Five volts on a pin indicate a
binary 1, and zero volts on a pin indicate a binary 0.

Like memory chips, the CPU chip has a number of pins devoted to memory
addresses, and these pins are connected to the computer’s system of memory
chips. I’ve drawn this in Figure 3.4, and the memory system to the left of the
CPU chip is the same one I drew in Figure 3.3, just tipped on its side. When
the CPU desires to read a byte (or a word, double word, or quad word) from
memory, it places the memory address of the byte to be read on its address pins,
encoded as a binary number. Some vanishingly small fragment of a second
later, the requested byte appears (also as a binary number) on the data pins of
the memory chips. The CPU chip also has data pins, and it slurps up the byte
presented by the memory chips through its own data pins.

The process, of course, also works in reverse. To write a byte into memory, the
CPU first places the memory address where it wants to write onto its address
pins. Some number of nanoseconds later (which varies from system to system
depending on general system speed and how memory is arranged) the CPU
places the byte it wants to write into memory on its data pins. The memory
system obediently stores the byte inside itself at the requested address.

Figure 3.4 is, of course, purely conceptual. Modern memory systems are
hugely more complex than what is shown in the figure, but from a height they
all work the same way: the CPU passes an address to the memory system,
and the memory system either accepts data from the CPU for storage at that
address or places the data found at that address on the computer’s data bus
for the CPU to process.

56 Chapter 3 ■ Lifting the Hood

Riding the Data Bus
This give- and- take between the CPU and the memory system represents the
bulk of what happens inside your computer. Information flows from memory
into the CPU and back again. Information flows in other paths as well. Your
computer contains additional devices called peripherals that are either sources
or destinations (or both) for information.

Video display boards, disk drives, USB ports, and network ports are the most
common peripherals in PC- type computers. Like the CPU and memory, they
are all ultimately electrical devices. Most modern peripherals consist of one or
two large chips and perhaps a couple of smaller chips that support the larger
chips. Like both the CPU chip and memory chips, these peripheral devices have
both address pins and data pins. Some peripherals, video boards in particular,
have their own memory chips and, these days, their own dedicated CPUs. (Your
modern high- performance video board is a high- powered computer in its own
right, albeit one with a specific and limited job.)

Peripherals “talk” to the CPU (that is, they pass the CPU data or take data
from the CPU) and sometimes to one another. These conversations take place
across the electrical connections linking the address pins and data pins that
all devices in the computer have in common. These electrical lines are called a
data bus and form a sort of party line linking the CPU with all the other parts of
the computer. There is an elaborate system of electrical arbitration that deter-
mines when and in what order the different devices can use this party line to
talk with one another. But it happens in generally the same way: an address
is placed on the bus, followed by some data. (How much data moves at once

Figure 3.4: The CPU and memory

 Chapter 3 ■ Lifting the Hood 57

depends on the peripherals involved.) Special signals go out on the bus with
the address to indicate whether the address is of a location in memory, or of
one of the peripherals attached to the data bus. The address of a peripheral is
called an I/O address to differentiate between it and a memory address such as
those we’ve been discussing all along.

The data bus is the major element in the expansion slots present in a lot of
PC- type computers, though fewer now than in decades past. Many peripherals
(especially video display adapters) are printed circuit boards that plug into
these slots. The peripherals talk to the CPU and to memory through the data
bus connections brought out as electrical pins in the expansion slots.

As convenient as expansion slots are, they introduce delays into a computer
system. More and more as time goes on, peripherals are simply a couple of
chips on one corner of the main circuit board (the motherboard) inside the com-
puter. Such peripherals are called integrated peripherals, the commonest being
integral graphics, which consists of one or more special- purpose chips on the
motherboard. There are modern PCs today in 2022 that are designed specifi-
cally for high- resolution real- time animated graphics (largely for games), and
such machines generally have special expansion slots specifically designed to
hold graphics boards.

The Shop Supervisor’s Pockets
Every CPU contains a few data storage cubbyholes called registers. These regis-
ters are at once the shop supervisor’s pockets and workbench. When the CPU
needs a place to tuck something away for a short while, an empty register is just
the place. The CPU could always store the data out in memory, but that takes
considerably more time than tucking the data in a register. Because the registers
are actually inside the CPU, placing data in a register or reading it back again
from a register is fast.

But more important, registers are the supervisor’s workbench. When the CPU
needs to add two numbers, the easiest and fastest way is to place the numbers in
two registers and add the two registers together. The sum (in usual CPU prac-
tice) replaces one of the two original numbers that were added, but after that
the sum could then be placed in yet another register, be added to still another
number in another register, be stored out in memory, or take part in any of a
multitude of other operations.

The CPU’s immediate work in progress is held in temporary storage containers
called registers.

Work involving registers is always fast because the registers are within the
CPU and are specially connected to one another and to the CPU’s internal
machinery. Very little movement of data is necessary— and what data does
move doesn’t have to move very far.

58 Chapter 3 ■ Lifting the Hood

Like memory cells and, indeed, like the entire CPU, registers are made out of
transistors. But rather than having numeric addresses, registers have individual
names such as RAX or RDI. To make matters even more complicated, while all
CPU registers have certain common properties, some registers have unique
special powers not shared by other registers. Understanding the ways and
the limitations of CPU registers is something like following a world peace
conference: there are partnerships, alliances, and always a bewildering array of
secret agendas that each register follows. There’s no general system describing
such things; like irregular verbs, you simply have to memorize them.

Most peripherals also have registers, and peripheral registers are even more
limited in scope than CPU registers. Their agendas are quite explicit and in no
way secret. This does not prevent them from being confusing, as anyone who
has tried programming a video board at the register level will attest. Fortunately,
these days nearly all communication with peripheral devices is handled by the
operating system, as I’ll explain later in this book.

The Assembly Line
If the CPU is the shop supervisor, then the peripherals are the assembly- line
workers, and the data bus is the assembly line itself. (Unlike most assembly lines,
however, the supervisor works the line much harder than the rest of the crew!)

As an example, information enters the computer through a network port
peripheral, which assembles bits received from a computer network cable into
bytes of data representing characters and digits. The network port then places
the assembled byte onto the data bus, from which the CPU picks it up, tallies
it, or processes it in other ways, and then places it back on the data bus. The
display board then retrieves the byte from the data bus and writes it into video
memory so that you can see it on your screen.

This is a severely simplified description, but obviously, a lot is going on inside
the box. Continuous furious communication along the data bus between CPU,
memory, and peripherals is what accomplishes the work that the computer does.
The question then arises: who tells the supervisor and crew what to do? You
do. How do you do that? You write a program. Where is the program? It’s in
memory, along with all the rest of the data stored in memory. In fact, the program
is data, and that is the heart of the whole idea of programming as we know it.

The Box That Follows a Plan

Finally, we come to the essence of computing: the nature of programs and how
they direct the CPU to control the computer and get your work done.

We’ve seen how memory can be used to store bytes of information. These
bytes are all binary codes, patterns of 1 bits and 0 bits stored as minute electrical

 Chapter 3 ■ Lifting the Hood 59

voltage levels and collectively making up binary numbers. We’ve also spoken of
symbols and how certain binary codes may be interpreted as meaning something
to us human beings, things like letters, digits, punctuation, and so on.

Just as the alphabet and the numeric digits represent a set of codes and symbols
that mean something to us humans, there is a set of codes that mean something to
the CPU. These codes are called machine instructions, and their name is evocative
of what they actually are: instructions to the CPU. When the CPU is executing
a program, it picks a sequence of numbers off the data bus, one at a time. Each
number tells the CPU to do something. The CPU knows how. When it com-
pletes executing one instruction, it picks the next one up and executes that. It
continues doing so until something (a command in the program, or electrical
signal like a reset button) tells it to stop.

Let’s take an example or two drawn from older 32- bit CPU chips from Intel.
(I’m using those as examples here because the point is that a machine instruction
is a number acting as a command to the CPU. The specific machine instructions
are not important in this particular discussion.)

The 8- bit binary code 01000000 (40H) means something to the CPU. It is an
order: Add 1 to register AX and put the sum back in AX. That’s about as simple as
they get. Most machine instructions occupy more than a single byte. Many are
two bytes in length, and no small number are four bytes in length. The longest
among them, in fact, are 15 bytes in length. The binary codes 11010110 01110011
(0D6H 073H) comprise another order: Load the value 73H into register DH. On the
other end of the spectrum, the binary codes 11110011 10100100 (0F3H 0A4H)
direct the CPU to do the following (take a deep breath): Begin moving the number
of bytes specified in register CX from the 32- bit address stored in registers DS and SI
to the 32- bit address stored in registers ES and DI, updating the address in both SI
and DI after moving each byte, and also decreasing CX by one each time, and finally
stopping when CX becomes zero.

I’ll come back to machine instruction specifics in later chapters when we get
down to writing actual x64 assembly code. The point here is that machine instruc-
tions are numbers (or short sequences of numbers) that the CPU understands
as commands to do something. There are instructions that perform arithmetic
operations (addition, subtraction, multiplication, and division) and logical oper-
ations (AND, OR, XOR, etc.), and instructions that move information around
memory. Some instructions serve to “steer” the path that program execution
takes within the logic of the program being executed. Some instructions have
highly arcane functions and don’t turn up very often outside of operating system
internals. The important thing to remember right now is that each instruction
tells the CPU to perform one generally small and limited task. Many instructions
handed to the CPU in sequence direct the CPU to perform far more compli-
cated tasks. Writing that sequence of instructions is what assembly language
programming actually is.

Let’s talk more about that.

60 Chapter 3 ■ Lifting the Hood

Fetch and Execute
A computer program is nothing more than a sequence of these machine instruc-
tions stored in memory. There’s nothing special about the sequence, nor about
where it is positioned in memory. It could be almost anywhere, and the bytes
in the sequence are nothing more than binary numbers.

The binary numbers comprising a computer program are special only in the
way that the CPU treats them. When a modern 64- bit CPU begins running a
program, it starts by fetching bytes (not words, double words, or quad words)
from an agreed- upon address in memory. (How this starting address is agreed
upon is an operating system issue and doesn’t matter right now.) These initial
bytes are the start of a stream of instructions that come in from memory to be
executed. The stream is loaded into a special memory system inside the CPU
called the instruction cache, which the CPU can access very quickly. As the CPU
works through the instructions in the cache, more instructions are automatically
loaded from memory to keep the cache full (or close to it) at all times.

The crucial point to remember here is that not all machine instructions are the
same length. In x64, an instruction can be anywhere from 1 to 15 bytes in length.
The CPU examines the incoming stream of machine instruction bytes in cache
to determine where each instruction begins and ends. When the CPU identifies
an instruction in the stream, it executes that instruction and then continues
examining the stream to identify the next instruction.

Inside the CPU is a special register called the instruction pointer that quite lit-
erally contains the address of the next instruction to be executed. In x64 CPUs
the instruction pointer is named RIP. Each time an instruction is executed, the
instruction pointer is updated to point to the next instruction in memory. There
is some silicon magic afoot inside modern CPUs that “guesses” what’s to be
fetched next and keeps it on a side shelf so it’ll be there when fetched, only much
more quickly— but the process as I’ve described it is true in terms of the outcome.

All of this is done literally like clockwork. The computer has an electrical
subsystem called a system clock, which is actually an oscillator that emits square-
wave pulses at very precise intervals. The immense number of microscopic
transistor switches inside the CPU coordinate their actions according to the
pulses generated by the system clock. In years past, it often took several clock
cycles (basically, pulses from the clock) to execute a single instruction. As com-
puters became faster and their internal design more sophisticated, the majority
of machine instructions executed in a single clock cycle. Modern CPUs can
execute instructions in parallel, so multiple instructions can often execute in a
single clock cycle.

So the process goes: fetch and execute; fetch and execute. The CPU works
its way through memory, with the instruction pointer register leading the way.
As it goes, it works: moving data around in memory, moving values around in

 Chapter 3 ■ Lifting the Hood 61

registers, passing data to peripherals, crunching data in arithmetic or logical
operations.

Computer programs are lists of binary machine instructions stored in memory. They
are no different from any other list of data bytes stored in memory except in how they
are interpreted when fetched by the CPU.

The Supervisor’s Innards
I made the point earlier that machine instructions are binary codes. This is
something we often gloss over, yet to understand the true nature of the CPU,
we have to step away from the persistent image of machine instructions as num-
bers. They are not numbers. They are binary patterns designed to throw electrical
switches. We refer to them as numbers so we don’t have to learn to deal with
(large) sequences of ones and zeros. 01010001 or 51H? You tell me.

Inside the CPU are a very large number of transistors. The Intel Core i5 Quad
that I have on my desk contains 582 million transistors, and CPU chips with
more than a billion transistors are now commonplace. The 10- core i7 Broadwell E
introduced in 2016 has 3.3 billion transistors. It’s only been going up from there.

A quick aside: why do I still use a 10- year- old machine with a piddling 582 mil-
lion transistors? It does everything I need it to do, and it runs cool. Cool is impor-
tant. All I need when it’s Phoenix summer and 118 degrees outside is a box
full of fans pumping heat into my office so that I can pay the electric company
to pump it out again. If I were a video game developer or a scientist running
significant computer models, well, I’d buy a CPU with all the transistors that I
could afford and consider the power bills a cost of doing business. What you need
depends on what you do. Computer power comes at a cost in both dollars and heat.

Some number of all those transistors goes into making up the supervisor’s
pockets: machine registers for holding information. In the x64 architecture, these
registers are all 64 bits (8 bytes) in size. A significant number of transistors go
into making up short- term storage called cache that I’ll describe later. (For now,
think of cache as a small set of storage shelves always right there at the supervi-
sor’s elbow, making it unnecessary for the supervisor to cross the room to get
more materials.) The vast majority of CPU transistors, however, are switches
connected to other switches, which are connected to still more switches in a
mind- numbingly complex network.

This is one case where a “view from a height” example is essential. The
extremely simple one- byte machine instruction 01010001 (51H) directs the CPU to
push the value stored in the 64- bit register RCX onto the stack. The CPU breaks
this down into two separate steps. First, the CPU subtracts 8 from the value
in the stack pointer register (RSP) to make room for the 64- bit register on the
stack. Next, the value in RCX is copied to the memory location now referenced

62 Chapter 3 ■ Lifting the Hood

by the stack pointer register. Then the job is done, and the CPU is ready to
move on to the next instruction. You’ll soon see how individual instructions
are interpreted by the CPU as sequences of one or more fine- grained steps. It’s
very instructive of the true nature of computers to think about the execution of
machine instruction 01010001 in this way.

Precisely how all this happens electrically is extremely difficult to explain, but
you must remember that any number stored inside the CPU can also be looked
upon as a binary code, including values stored in registers. Also, most switches
within the CPU contain more than one handle. These switches are called gates
and work according to the rules of logic. Perhaps two, or three, or even more
“up” switch throws have to arrive at a particular gate at the same time in order
for one “down” switch throw to pass through that gate.

These gates are used to build complex internal machinery within the CPU. Col-
lections of gates can add two numbers in a device called an adder, which again
is nothing more than a crew of hundreds of little switches working together
first as gates and then as gates working together to form an adder. Other mech-
anisms exist within the CPU, all of them made of transistor switches and gates.

The supervisor of your computer, then, is made of switches— just like all
the other parts of the computer. It contains a mind- boggling number of such
switches, interconnected in even more mind- boggling ways. But the important
thing is that whether you are boggled or (like me, on off- days) merely jaded by
it all, the CPU, and ultimately the computer, does exactly what we tell it to do. We
set up a list of machine instructions as a table in memory, and then, by gully,
that mute silicon brick comes alive and starts earning its keep.

Changing Course
The first piece of genuine magic in the nature of computers is that a string of
binary codes in memory tells the computer what to do, step by step. The second
piece of that magic is really the jewel in the crown: there are machine instructions
that change the order in which machine instructions are fetched and executed.

In other words, once the CPU has executed a machine instruction that does
something useful, the next machine instruction may tell the CPU to go back and
play it again— and again, and again, as many times as necessary. The CPU can
keep count of the number of times that it has executed that particular instruction
or list of instructions and keep repeating them until a prearranged count has
been met.

Or it can arrange to skip certain sequences of machine instructions entirely
if they don’t need to be executed at all.

This means the list of machine instructions in memory does not necessarily
begin at the top and run without deviation to the bottom. The CPU can exe-
cute the first 50 or 100 or 1,000 instructions and then jump to the end of the

 Chapter 3 ■ Lifting the Hood 63

program— or jump back to the start and begin again. It can skip and bounce
up and down the list like a stone tossed over a calm pond. It can execute a few
instructions up here, then zip down somewhere else and execute a few more
instructions, and then zip back and pick up where it left off, all without missing
a beat or even wasting too much time.

How is this done? Recall that the CPU includes a special register that always
contains the address of the next instruction to be executed. This register, the
instruction pointer, is not essentially different from any of the other registers
in the CPU. Just as a machine instruction can add one to register RCX, another
machine instruction can add— or subtract— some number to or from the address
stored in the instruction pointer. Add 100 (decimal) to the instruction pointer,
and the CPU will instantly skip 100 bytes down the list of machine instructions
before it continues. Subtract 100 from the address stored in the instruction pointer,
and the CPU will instantly jump back 100 bytes up the machine instruction list.

Finally, the third whammy: the CPU can change its course of execution based
on the work it has been doing. The CPU can decide whether to execute a given
instruction or group of instructions, based on values stored in memory, or based
on the individual state of several special one- bit CPU registers called flags. The
CPU can count up how many times it needs to do something and then do that
something that number of times. Or it can do something and then do it again,
and again, and again, checking each time (by looking at some data somewhere)
to see if it’s finished yet or whether it has to take another run through the task.

So, not only can you tell the CPU what to do, you can tell it where to go.
Better, you can sometimes let the CPU, like a faithful bloodhound, sniff out
the best course forward in the interest of getting the work done in the quickest
possible way.

In Chapter 1, I spoke of a computer program being a sequence of steps and
tests. Most of the machine instructions understood by the CPU are steps, but
others are tests. The tests are always two- way tests, and in fact the choice of
what to do is always the same: jump or don’t jump. That’s all. You can test for
any of numerous different conditions within the CPU, but the choice is always
one of jumping to another place in the program or to just keep truckin’ along.

What vs. How: Architecture and Microarchitecture

This book is really about programming in assembly language for Intel’s 64- bit
CPUs, as well as those CPUs made by other companies to be compatible with
Intel’s. There are lots of different Intel and Intel- compatible x86- family CPU
chips. A full list would include the 8086, 8088, 80186, 80286, 80386, 80486, the
Celeron, Pentium, Pentium Pro, Pentium MMX, Pentium II, Pentium D, Pentium
III, Pentium 4, Pentium Xeon, Xeon, Core, Athlon, and literally dozens of others
now in families with names such as Haswell and Coffee Lake. Furthermore,

64 Chapter 3 ■ Lifting the Hood

those are only the CPU chips designed and sold by Intel. Other companies (pri-
marily AMD) have designed their own Intel- compatible CPU chips, which adds
dozens more to the full list. And within a single CPU type are often another
three or four variants, with exotic names such as Coppermine, Katmai, Conroe,
Haswell, Coffee Lake, and so on.

How does anybody keep track of all this?
Quick answer: nobody really does. Why? For nearly all purposes, the great

mass of details don’t matter. The soul of a CPU is pretty cleanly divided into
two parts: what the CPU does, and how the CPU does it. We as programmers see it
from the outside: what the CPU does. Electrical engineers and system designers
who create computer motherboards and other hardware systems incorporating
Intel processors need to know some of the rest, but they are a small and hardy
crew, and they know who they are.

Evolving Architectures
Our programmers’ view from the outside includes the CPU registers, the set
of machine instructions that the CPU understands, and special- purpose sub-
systems like fast math processors that generally include machine instructions
and registers of their own. All of these things are defined at length by Intel, and
published online and in largish books so that programmers can study and under-
stand them. Taken together, these definitions are called the CPU’s architecture.

A CPU architecture evolves over time, as vendors add new instructions, reg-
isters, and other features to the product line. Ideally, this is done with an eye
toward backward compatibility, which means the new features do not generally
replace, disable, or change the outward effects of older features. Intel has been
very good about backward compatibility within its primary x86 product line,
which began in 1978 with the 8086 CPU. Within certain limitations, even pro-
grams written for the ancient 8086 will run on the modern 64- bit Core i5 Quad
CPU on my desk. Whatever incompatibilities arise are more often related to
different operating systems than the details of the CPUs themselves.

The reverse, of course, is not true. New machine instructions creep slowly into
Intel’s product line over the years. A new machine instruction first introduced
in 1996 will not be recognized by a CPU designed, say, in 1993. But a machine
instruction first introduced in 1993 will almost always be present and operate
identically in newer CPUs.

In addition to periodic additions to the instruction set, architectures occasion-
ally make quantum leaps. Such quantum leaps typically involve a change in
the “width” of the CPU. In 1986, Intel’s 16- bit architecture expanded to 32 bits
with the introduction of the 80386 CPU, which added numerous instructions
and operational modes, and doubled the width of the CPU registers. In 2003,
Intel’s mainstream architecture expanded yet again, this time to 64 bits, with

 Chapter 3 ■ Lifting the Hood 65

new instructions, modes of operation, and expanded registers. However, CPUs
that adhere to the expanded 64- bit architecture will still run software written
for the older 32- bit architecture.

Intel’s 32- bit architecture is called IA- 32 (Intel Architecture 32- bit). The newer
64- bit architecture is called x64 for peculiar reasons, chief of which is that Intel
did not originate it. Intel’s major competitor AMD created a backward- compatible
64- bit x86 architecture in the early 2000s, and it was so well done that Intel
had to swallow its pride and adopt it. There was much pride to be swallowed:
Intel’s own 64- bit architecture, called IA- 64 Itanium, was roundly rejected by the
market for technical reasons that go well beyond what I can explain in this book.

With only minor glitches, the newer 64- bit Intel architecture includes the IA- 32
architecture, which in turn includes the still older 16- bit x86 architecture. It’s
useful to know what CPUs have added what instructions to the architecture,
keeping in mind that when you use a “new” instruction, your code will not run
on CPU chips made before that new instruction appeared.

The Secret Machinery in the Basement
Because of the backward- compatibility issue, CPU designers do not add new
instructions or registers to an architecture without very good reason. There are
other, better ways to improve a family of CPUs. The most important of these is
increased processor throughput, which is not a mere increase in CPU clock rates.
The other is reduced power consumption. This is not even mostly a “green”
issue. As I mentioned earlier, a certain amount of the power used by a CPU
is wasted as heat, and waste heat, if not minimized, can cook a CPU chip and
damage surrounding components. It also makes for noisy fan- filled boxes and
higher utility bills. Designers are thus always looking for ways to reduce the
power required to perform the same tasks.

Increasing processor throughput means increasing the number of instructions
that the CPU executes over time. There are a lot of arcane tricks associated with
increasing throughput, with names like prefetching, L1, L2, and L3 cache, branch
prediction, hyper- pipelining, macro- ops fusion, along with plenty of others.
Some of these techniques were created to reduce or eliminate bottlenecks within
the CPU so that the CPU and the memory system can remain busy nearly all
the time. Other techniques stretch the ability of the CPU to process multiple
instructions at once.

Taken together, all of the mysterious electrical mechanisms by which the CPU
does what its instructions tell it to do is called the CPU’s microarchitecture. It’s
the machinery in the basement that you can’t see. The metaphor of the shop
supervisor breaks down a little here. Let me offer you another one.

Suppose that you own a company that manufactures automatic transmission
parts for Ford. You have two separate plants. One is 40 years old, and one has

66 Chapter 3 ■ Lifting the Hood

just been built. Both plants make precisely the same parts— they have to because
Ford puts them into its transmissions without knowing or caring which of your
two plants manufactured them. A cam or a housing are thus identical within
a 10/1000th of an inch, whether they were made in your old plant or in your
new plant.

Your old plant has been around for awhile. Your new plant was designed
and built based on everything you’ve learned while operating the old plant
these past 40 years. It’s got a more logical layout, better lighting, and modern
automated tooling that requires fewer people to operate and goes longer without
adjustment.

The upshot is that your new plant can manufacture those cams and housings
much more quickly and efficiently, wasting less power and raw materials and
requiring fewer people to do it. The day will come when you’ll build an even
more efficient third plant based on what you’ve learned running the second
plant, and you’ll shut the first plant down.

Nonetheless, the cams and housings are the same, no matter where they were
made. Precisely how they were made is no concern of Ford’s nor anyone else’s.
As long as the cams are built of the same materials and to the same specs and
dimensional tolerance, the “how” doesn’t matter.

All of the tooling, the assembly line layouts, and general structure of each
plant may be considered that plant’s microarchitecture. Each time you build
a new plant, the new plant’s microarchitecture is more efficient at doing what
the older plants have been doing all along.

So it is with CPUs. Intel and AMD are constantly redesigning their CPU micro-
architectures to make them more efficient. Driving these efforts are improved
silicon fabrication techniques that allow more and more transistors to be placed
on a single CPU die. More transistors mean more switches and more potential
solutions to the same old problems of throughput and power efficiency.

The prime directive in improving microarchitectures, of course, is to avoid
“breaking” existing programs by changing the way machine instructions or
registers operate. That’s why it’s the secret machinery in the basement. CPU
designers go to great lengths to maintain a very bright line between what the
CPU does and how those tasks are actually accomplished down in the forest
of those billions of transistors.

All the exotic code names like Conroe, Katmai, Haswell, or Coffee Lake actually
indicate tweaks in the microarchitecture. Major changes in the microarchitecture
also have names: P6, Netburst, Core, and so on. These are described in great
detail online, but don’t feel bad if you don’t quite follow it all. Most of the time
I’m hanging on by my fingernails too.

I say all this so that you as a newly minted programmer don’t make more of
Intel microarchitecture differences than you should. It is an extremely rare case
(like, almost never) when a difference in microarchitecture details gives you an

 Chapter 3 ■ Lifting the Hood 67

exploitable advantage in how you code your programs. Okay, microarchitecture
is not kept secret (a boggling amount of information about it is available online),
but for the sake of your sanity, you should probably treat it as a mystery for the
time being. We have many more important things to learn right now.

Enter the Plant Manager

What I’ve described so far is less “a computer” than “computation.” A CPU
executing a program does not a computer make. The 8- bit COSMAC ELF device
that I built in 1976 was an experiment, and at best a sort of educational toy.

The ELF was a CPU with some memory and just enough electrical support
(through switches and LED digits) that I could enter binary machine instructions
and see what was happening inside the registers and memory chips. I learned
a great deal from it, but it was in no sense of the word useful.

My first useful computer came along a couple of years later. It had a key-
board, a CRT display (though not one capable of graphics), a pair of 8″ floppy
disk drives, and a daisy- wheel printer. Retro- techies will appreciate that its
beating heart was a 1 MHz 8080 CPU! The machine was tremendously useful,
and I wrote numerous magazine articles and my first three books with it. I had a
number of simple application programs for it, like the primordial WordStar word
processor. But what made it useful was something else: an operating system.

Operating Systems: The Corner Office
An operating system is a program that manages the operation of a computer
system. It’s like any other program in that it consists of a sequence of machine
instructions executed by the CPU. Operating systems are different in that they
have special powers not generally given to word processors and spreadsheet
programs. If we continue the metaphor of the CPU as the shop supervisor, then
the operating system is the plant manager. The entire physical plant is under its
control. It oversees the bringing in of raw materials to the plant. It supervises
the work that goes on inside the plant (including the work done by the shop
supervisor) and packages up the finished products for shipment to customers.

In truth, our early microcomputer operating systems weren’t very powerful
and didn’t do much. They “spun the disks” and handled the storage of data to
the disk drives and brought data back from disks when requested. They picked
up keystrokes from the keyboard and sent characters to the video display. With
some fiddling, they could send characters to a printer. That was about it.

The CP/M operating system was “state of the art” for desktop microcom-
puters in 1979. If you entered the name of a program at the keyboard, CP/M
would go out to disk, load the program from a disk file into memory, and then
literally hand over all power over the machine to the loaded program. When

68 Chapter 3 ■ Lifting the Hood

WordStar ran, it overwrote the operating system’s command processor in memory
because memory in that era was extremely expensive and there wasn’t very
much of it. When WordStar exited, the CP/M command processor would be
reloaded from the floppy disk and would simply wait for another command
from the keyboard.

BIOS: Software, Just Not as Soft
As our computer systems grew faster and memory cheaper, our operating sys-
tems improved right along with our word processors and spreadsheets. When
the IBM PC appeared in 1981, PC DOS replaced CP/M almost overnight. The
PC’s much larger memory space (16 times that of CP/M) made many more things
possible and most things faster. DOS could do a lot more than CP/M. This was
possible because DOS had help.

IBM had taken the program code that handled the keyboard, the display,
serial ports, and disk drives and burned it into a special kind of memory chip
called read- only memory (ROM). Ordinary random- access memory goes blank
when power to it is turned off. ROM retains its data whether it has power or
not. The software on the ROM was called the Basic Input/Output System (BIOS)
because it handled computer inputs (like the keyboard) and computer outputs
(like the display and printer).

To be completely fair to CP/M, it also had a BIOS, but it was far more limited in
scope than the DOS BIOS and had to be loaded into memory with the operating
system. In a very real sense, the CP/M BIOS was part of the operating system,
whereas the DOS BIOS was part of the computer itself.

Somewhere along the way, software like the BIOS, which existed on “nonvol-
atile” ROM chips, was nicknamed firmware because while it was still software,
it was not quite as, well, soft as software stored in memory. All modern com-
puters have a firmware BIOS, though the BIOS software does different things
now than it did in 1981.

Multitasking Magic
PC DOS had a long reign. The first versions of Windows were not really whole
new operating systems but were simply file managers and program launchers
drawn on the screen in graphics mode. Down in the basement under the icons,
DOS was still there, doing what it had always done.

It wasn’t until 1995 that things changed radically. In that year Microsoft
released Windows 95, which not only had a new graphical user interface but
had something far more radical down in the basement. Windows 95 operated
in 32- bit protected mode and required at least an 80386- class CPU to run. (I’ll
explain in detail what “protected mode” means in Chapter 4.) For the moment,

 Chapter 3 ■ Lifting the Hood 69

think of protected mode as allowing the operating system to definitely be The
Boss and no longer merely a peer of word processors and spreadsheets. Windows
95 did not make full use of protected mode because it still had DOS and DOS
applications to deal with, and such “legacy” software was written long before
protected mode was an option. Windows 95 did, however, have something not
seen previously in the low- cost personal computer world: pre- emptive multitasking.

Memory had gotten cheap enough by 1995 so that it was possible to have
not just one or two but several programs resident in memory at the same time.
In an elaborate partnership with the CPU, Windows 95 created the convincing
illusion that all of the programs in memory were running at once. This was
done by giving each program loaded into memory a short “slice” of the CPU’s
time. A program would begin running on the CPU, and some number of its
machine instructions would execute. However, after a set period of time (usually
a small fraction of a second) Windows 95 would “pre- empt” that first program
and give control of the CPU to the second program on the list. That program
would execute instructions for a few milliseconds until it too was pre- empted.
Windows 95 would go down the list, letting each program run for a little while.
When it reached the bottom of the list, it would start again at the top and con-
tinue running through the list, round- robin fashion, letting each program run
for a little while. The 32- bit CPUs of the era were fast enough so that a user
sitting in front of the display would think that all the programs were running
simultaneously.

The metaphor in Figure 3.5 may make this clearer. Imagine a rotary switch,
in which a rotor turns continuously and touches each of several contacts in
sequence, once per revolution. Each time it touches the contact for one of the
programs, that program is allowed to run. When the rotor moves to the next
contact, the previous program stops in its tracks, and the next program gets a
little time to run.

Figure 3.5: The idea of multitasking

70 Chapter 3 ■ Lifting the Hood

The operating system can define a priority for each program on the list so
that some get more time to run than others. High- priority tasks get more clock
cycles to execute, whereas low- priority get fewer.

Promotion to Kernel
Much was made of Windows 95’s ability to multitask, but in 1995 few people
had heard of a Unix- like operating system called Linux, which a young Finn
named Linux Torvalds had written almost as a lark and released in 1991.

That first release of Linux ran in text mode and did not have the elaborate
graphical user interface that Windows 95 did, but it could handle multitasking
and had a much more powerful structure internally. The core of Linux was a
block of code called the kernel, which took full advantage of IA- 32 protected
mode. The Linux kernel was entirely separate from the user interface, and it
was protected from damage due to malfunctioning programs elsewhere in the
system. System memory was tagged as either kernel space or user space, and
nothing running in user space could write to (nor generally read from) anything
stored in kernel space. Communication between kernel space and user space was
handled through strictly controlled system calls. (More on this later in the book.)

Direct access to physical hardware, including memory, video, and peripherals,
was limited to software running in kernel space. Programs wanting to make use
of system peripherals could get access only through kernel- mode device drivers.

Microsoft released its own Unix- inspired operating system in 1993. Windows
NT had an internal structure a great deal like Linux, with kernel and device
drivers running in kernel space and everything else running in user space. This
basic design is still in use, for both Linux and Windows NT’s successors from
Windows 2000 to today’s Windows 11. The general design for true protected-
mode operating systems is shown schematically in Figure 3.6.

The Core Explosion
In the early 2000s, desktop PCs began to be sold with two CPU sockets. Windows
2000/XP/Vista and Linux both support the use of multiple CPU chips in a
single system, through a mechanism called symmetric multiprocessing (SMP).
Multiprocessing is “symmetric” when all processors are the same. In most cases,
when two CPUs are available, the operating system runs its own code in one
CPU, and user- mode applications are run in the other.

As technology improved, Intel and AMD were able to place two identical
but entirely independent code execution units on a single chip. The result was
the first dual- core CPUs, the AMD Athlon 64 X2 (2005) and the Intel Core 2
Duo (2006). Four- core CPUs became commonly available in 2007. Eight- core

 Chapter 3 ■ Lifting the Hood 71

CPUs arrived in 2014, with the Haswell microarchitecture. In 2016, the i7- 6950X
entered the industry with 10 cores and the new Broadwell microarchitecture.

It’s important to remember that performance is not all about cores but about
processor throughput and to some extent cache. (More on cache later.) At this
writing (2023) most business desktops have either four or eight cores. That’s
more than enough compute power for conventional word processors, spread-
sheets, and web browsers.

What large numbers of cores mostly enable is the processing of many relatively
simple things in parallel. In an Internet server farm, many server machines each
having many many cores are doggedly handing out web pages to hordes of
Internet users. Handing out a web page is not compute- intensive. The server
receives the request, finds the HTML document and its components, and shoves
them out through the port where the request came in. This is a computational

Figure 3.6: A mature protected- mode operating system

72 Chapter 3 ■ Lifting the Hood

specialty, and Intel and AMD are now designing specialty multicore CPUs to
serve that market.

And oh, the cores. Intel shipped a 56- core CPU in 2022. Each core can run two
threads, for a total of 112. AMD’s Epyc Milan 7763 chip shipped a year earlier
and has 64 cores capable of running a total of 128 threads.

Want one on your desk? It’ll only cost you. . .$7,900. For the chip. But unless
you need to run 128 things in parallel at top speed, it won’t do you much good.
These are data- center chips.

That microarchitecture machinery in the basement changes and evolves over
time. There have been quad- core systems since 2007, but a quad- core system in
2022 is a whole lot faster and more efficient than the first quad- core systems were.

The Plan
I can sum all of this up by borrowing one of the most potent metaphors for
computing ever uttered: the computer is a box that follows a plan. These are the
words of Ted Nelson, author of the uncanny book Computer Lib/Dream Machines
(1974) and one of those very rare people who have the infuriating habit of being
right nearly all of the time.

You write the plan. The computer follows it by passing the instructions, byte
by byte, to the CPU. At the bottom of it, the process is a hellishly complicated
electrical chain reaction involving hundreds of thousands of switches composed
of many hundreds of thousands, millions, or even billions of transistors. That
part of it, however, is hidden from you so that you don’t have to worry about it.
Once you tell that mountain of transistors what to do, they’ll know how to do it.

This plan, this list of machine instructions in memory, is your assembly lan-
guage program. The secondary point of this book is to teach you to correctly
arrange machine instructions in memory for the use of the CPU. The primary
point of this book is to teach you to understand how the machine follows your
programs to do the work you need it to do.

With any luck at all, by now you’ll have a reasonable conceptual under-
standing of both what computers are and what they do. It’s time to start looking
more closely at the nature of the operations that machine instructions direct the
CPU to perform. For the most part, as with everything in computing, this is
about memory, both the pedestrian memory out on the motherboard and those
emperors of remembrance, the CPU registers.

C H A P T E R

73

4

I wrote this book in large part because I could not find a beginning text on
assembly language that I respected in the least. Nearly all books on assembly
start by introducing the concept of an instruction set and then begin describing
machine instructions, one by one. This is moronic, and the authors of such
books should be spanked. Hard. Even if you’ve learned every single instruction in
an instruction set, you haven’t learned assembly language.

You haven’t even come close.
The naïve objection that a CPU exists to execute machine instructions can be

disposed of pretty easily: it executes machine instructions once it has them in
its electronic hands. The real job of a CPU, and the real challenge of assembly
language, lies in locating the required instructions and data in memory. Any
idiot can learn machine instructions. The skill of assembly language consists of a
deep comprehension of memory addressing. Everything else is details— and easy
details, at that.

The Joy of Memory Models
Memory addressing is a difficult business, made much more difficult by the
fact that there are a fair number of different ways to address memory in the

Location, Location, Location
Registers, Memory Addressing, and Knowing Where

Things Are

74 Chapter 4 ■ Location, Location, Location

Intel/AMD CPU family. Each of these ways is called a memory model. There are
three major memory models that you can use with the more recent members
of the Intel family, and a number of minor variations on those three, especially
the one in the middle.

In programming for modern, 64- bit Linux, you’re pretty much limited to one
memory model, and once you understand memory addressing a little better,
you’ll be very glad of it. However, I’m going to describe all three in some detail
here, even though the older two of the trio have become museum pieces. Don’t
skip over the discussion of those museum pieces. In the same way that study-
ing fossils to learn how various living things evolved over time will give you a
better understanding of living things as they exist today, knowing a little about
older Intel memory models will give you a more intuitive understanding of the
one memory model that you’re likely to use.

The oldest and now ancient memory model is called real mode flat model. It’s
thoroughly fossilized but relatively straightforward. The elderly (and now retired)
memory model is called a real- mode segmented model. It may be the most hateful
thing you ever learn in any kind of programming, assembly or otherwise. (If
you’re just starting out in 2023, you will almost certainly be spared from having
to learn it.) DOS programming at its peak used the real- mode segmented model,
and much Pepto Bismol was sold as a result. The newest memory model is called
a protected- mode flat model, which comes in two flavors: 32- bit and 64- bit. It’s the
memory model behind modern operating systems such as Windows 2000/XP/
Vista/7/8/10/11 and Linux. Note that protected mode flat model is available
only on the 386 and newer CPUs that support the IA- 32 or x64 architecture. The
8086, 8088, and 80286 do not support it. Windows 9x falls somewhere between
models, and I doubt anybody except the people at Microsoft really ever under-
stood all the kinks in the ways it addressed memory— and maybe not even them.
Mercifully, if not yet a fossil, it is certainly dead and in its grave.

I have a strategy in this book, and before we dive in, I’ll lay it out: I will begin
by explaining how memory addressing works under the real mode flat model,
which was available under DOS. It’s amazingly easy to learn. I will discuss
the real- mode segmented model to some extent because you will keep stub-
bing your toe on it here and there and need to understand it, even if you never
write a single line of code for it. Real work done today and going forward lies
in 64- bit “long mode,” for Windows, Linux, or any true 64- bit protected- mode
operating system. The model itself is also amazingly easy to learn— the hard
part is trying to think like a C compiler while your code calls into the libraries
that support it, which has little or nothing to do with the memory model itself.
Key to the whole business is this: real mode flat model is very much like protected-
mode flat model in miniature.

There is a big flat model and a little flat model. If you grasp the real mode flat
model, you will have no trouble with protected- mode flat model. That monkey

 Chapter 4 ■ Location, Location, Location 75

in the middle is just the dues you have to pay to consider yourself a real master
of memory addressing.

So let’s go see how this crazy stuff works.

16 Bits’ll Buy You 64 KB

In 1974, the year I graduated from college, Intel introduced the 8080 CPU and
basically invented microcomputing. (Yes, I’m an old guy, but I’ve been blessed
with a sense of history— by virtue of having lived through quite a bit of it.) The
8080 was a white- hot little item at the time. I had one that ran at 1 MHz, and it
was a pretty effective word processor, which is mostly what I did with it.

The 8080 was an 8- bit CPU, meaning that it processed 8 bits of information
at a time. However, it had 16 address lines coming out of it. The “bitness” of
a CPU— how many bits wide its general- purpose registers are— is important,
but to my view the far more important measure of a CPU’s effectiveness is how
many address lines it can muster in one operation. In 1974, 16 address lines was
aggressive, because memory was extremely expensive, and most machines had
4K or 8 KB bytes (remember, that means 4,000 or 8,000 bytes) at very most— and
some had a lot less.

Sixteen address lines will address 64 KB bytes. If you count in binary (which
computers always do) and limit yourself to 16 binary columns, you can count
from 0 to 65,535. (The colloquial “64 KB64 KB” is shorthand for the number
66,536.) This means that every one of 65,536 separate memory locations can
have its own unique address, from 0 up to 65,535.

The 8080 memory- addressing scheme was very simple: you put a 16- bit address
out on the address lines, and you got back the 8- bit value that was stored at that
address. Note that there is no necessary relation between the number of address
lines in a memory system and the size of the data stored at each memory loca-
tion! The 8080 stored 8 bits at each location, but it could have stored 16 or even
32 bits at each location and still had 16 memory address lines.

By far and away, the operating system most used with the 8080 was CP/M- 80.
CP/M- 80 was a little unusual in that it existed at the top of installed memory—
sometimes so that it could be contained in ROM, but mostly just to get it out of
the way and allow a consistent memory starting point for transient programs—
those that (unlike the operating system) were loaded into memory and run only
when needed. When CP/M- 80 read a program in from disk to run it, it would
load the program into low memory, at address 0100H— that is, 256 bytes from the
very bottom of memory. The first 256 bytes of memory were called the program
segment prefix (PSP) and contained various odd bits of information as well as
a general- purpose memory buffer for the program’s disk input/output (I/O).
But the executable code itself did not begin until address 0100H.

I’ve drawn the 8080 and CP/M- 80 memory model in Figure 4.1.

76 Chapter 4 ■ Location, Location, Location

The 8080’s memory model as used with CP/M- 80 was simple, and people
used it a lot. So, when Intel created its first 16- bit CPU, the 8086, it wanted to
make it easy for people to translate older CP/M- 80 software from the 8080 to
the 8086— what we call porting. One way to do this was to make sure that a
16- bit addressing system such as that of the 8080 still worked. So, even though
the 8086 could address 16 times as much memory as the 8080 (16 × 64 KB64 KB
= 1 MB), Intel set up the 8086 so that a program could take some 64 KB byte
segment within that megabyte of memory and run entirely inside it, just as
though it were the smaller 8080 memory system.

Figure 4.1: The 8080 memory model

 Chapter 4 ■ Location, Location, Location 77

This was done by the use of segment registers— which are basically memory
pointers located in CPU registers that point to a place in memory where things
begin, whether this be data storage, code execution, or anything else. I’ll have
more to say about segment registers very shortly. For now, it’s enough to think
of them as pointers indicating where, within the 8086’s megabyte of memory,
a program ported from the 8080 world would begin. See Figure 4.2.

When speaking of the 8086 and 8088, there are four segment registers to
consider— and again, we’ll be dealing with them in detail soon. But for the
purposes of Figure 4.2, consider the register called CS— which stands for code

Figure 4.2: The 8080 memory model inside an 8086 memory system

78 Chapter 4 ■ Location, Location, Location

segment. Again, it’s a pointer pointing to a location within the 8086’s megabyte
of memory. This location acts as the starting point for a 64 KB region of memory,
within which a quickly converted CP/M- 80 program could run very happily.

This was very wise short- term thinking— and catastrophically bad long- term
thinking. Any number of CP/M- 80 programs were converted to the 8086 within
a couple of years. The problems began in earnest when programmers attempted
to create new programs from scratch that had never seen the 8080 and had no
need for the segmented memory model. Too bad— the segmented model dom-
inated the architecture of the 8086. Programs that needed more than 64 KB of
memory at a time had to use memory in 64 KB chunks, switching between
chunks by switching values into and out of segment registers.

This was a nightmare. The good news is that no one except retrotech hob-
byists ever has to use it again. There is one good reason to learn it, however:
Understanding the way real- mode segmented memory addressing works will
help you understand how today’s flat models work, and in the process you will
come to understand the nature of today’s CPUs a lot better.

The Nature of a Megabyte

When running in segmented real mode, the x86 CPUs can use up to one mega-
byte of directly addressable memory. This memory is also called real mode
memory. As I discussed briefly in Chapter 3, a megabyte of memory is actually
not 1 million bytes of memory, but 1,048,576 bytes. Again, as with the short-
hand term “64 KB,” a megabyte doesn’t come out even in our base 10 because
computers operate on base 2. Those 1,048,576 bytes expressed in base 2 are
100000000000000000000B bytes. That’s 220, a fact that we’ll return to shortly. The
printed number 100000000000000000000B is so bulky that it’s better to express
it in the compatible (and much more compact) base 16, the hexadecimal system
we went through in Chapter 2. The quantity 220 is equivalent to 165 and may
be written in hexadecimal as 100000H. (If the notion of number bases still con-
founds you, I recommend another trip through Chapter 2, if you haven’t been
through it already, or, perhaps, even if you have.)

Now, here’s a tricky and absolutely critical question: in a bank of memory
containing 100000H bytes, what’s the address of the very last byte in the memory
bank? The answer is not 100000H. The clue is the flip side to that question:
what’s the address of the first byte in memory? That answer, you might recall,
is 0. Computers always begin counting from 0. It’s a dichotomy that will occur
again and again in computer programming. The last in a row of four items is
item 3, because the first item in a row of four is item number 0. Count: 0, 1, 2, 3.

The address of a byte in a memory bank is just the number of that byte starting
from zero. This means the last, or highest, address in a memory bank containing
1 megabyte is 100000H minus one, or 0FFFFFH. (The initial zero, while not math-
ematically necessary, is there for the convenience of your assembler and helps

 Chapter 4 ■ Location, Location, Location 79

keep the assembler program from getting confused. Get in the habit of using
an initial zero on any hex number beginning with the hex digits A through F.)

The addresses in a megabyte of memory, then, run from 00000H to 0FFFFFH. In
binary notation, that is equivalent to the range of 00000000000000000000B to
11111111111111111111B. That’s a lot of bits— 20, to be exact. If you look back to
Figure 3- 3 in Chapter 3, you’ll see that a megabyte memory bank has 20 address
lines. One of those 20 address bits is routed to each of those 20 address lines
so that any address expressed as 20 bits will identify one and only one of the
1,048,576 bytes contained in the memory bank.

That’s what a megabyte of memory is: some arrangement of memory chips
within the computer, connected by an address bus of 20 lines. A 20- bit address
is fed to those 20 address lines to identify 1 byte out of the megabyte.

Backward Compatibility and Virtual 86 Mode

Modern CPUs can address hugely more memory than this, and I’ll explain
how shortly. With the original 8086 and 8088 CPUs, the 20 address lines and
1 megabyte of memory was literally all they had. The 386 and later Intel 32- bit
CPUs could address 4 gigabytes of memory without carving it up into smaller
segments. When a 32- bit CPU is operating in protected mode flat model, a seg-
ment is 4 gigabytes— so one segment is, for the most part, plenty, and more can
be had if 8, 16, or 64 GB of memory is installed in your system. With x64 long
mode, well, your one segment can be as long as you want it to be. How long
that is may surprise you. We’ll come back to that when the history lesson is over.

However, a huge pile of DOS software written to make use of segments was
everywhere around and had to be dealt with. So, to maintain backward compat-
ibility with the ancient 8086 and 8088, newer CPUs were given the power to
limit themselves to what the older chips could address and execute. When a
Pentium- class or better CPU needs to run software written for the real- mode
segmented model, it pulls a neat trick that, temporarily, makes it become an 8086.
This was called virtual- 86 mode, and it provided excellent backward compati-
bility for DOS software.

When you launch an MS- DOS window or “DOS box” under Windows NT and
later Windows versions, you’re using virtual- 86 mode to create what amounts
to a little real- mode island inside the Windows protected mode memory system.
It was the only good way to keep that backward compatibility, for reasons you
will understand fairly soon.

16- Bit Blinders

In the real- mode segmented model, an x86 CPU can “see” a full megabyte of
memory. That is, the CPU chips set themselves up so that they can use 20 of their
32 address pins and can pass a 20- bit address to the memory system. From that

80 Chapter 4 ■ Location, Location, Location

perspective, it seems pretty simple and straightforward. However, the bulk of
the trouble you may have in understanding the real- mode segmented model
stems from this fact: Whereas those CPUs can see a full megabyte of memory,
they are constrained to look at that megabyte through 16- bit blinders.

The blinders metaphor is closer to literal than you might think. Look at
Figure 4.3. The long rectangle represents the megabyte of memory that the CPU
can address in the real- mode segmented model. The CPU is off to the right. In
the middle is a piece of metaphorical cardboard with a slot cut in it. The slot is
1 byte wide and 65,536 bytes long. The CPU can slide that piece of cardboard
up and down the full length of its memory system. However, at any one time, it
can access only 65,536 bytes.

The CPU’s view of memory in the real- mode segmented model is peculiar. It
is constrained to look at memory in chunks, where no chunk is larger than 65,536
bytes in length— again, what we call “64 KB.” Making use of those chunks—
that is, knowing which one is currently in use and how to move from one to
another— is the real challenge of real- mode segmented model programming.
It’s time to take a closer look at what they are and how they work.

The Nature of Segments
We’ve spoken informally of segments so far as chunks of memory within the
larger memory space that the CPU can see and use. In the context of the real- mode
segmented model, a segment is a region of memory that begins on a paragraph
boundary and extends for some number of bytes. In the real- mode segmented
model, this number is less than or equal to 64 KB (65,536). We’ve spoken of the
number 64 KB before. But paragraphs?

Time out for a lesson in old- time 86- family trivia. A paragraph is a measure of
memory equal to 16 bytes. It is one of numerous technical terms used to describe
various quantities of memory. We’ve spoken of some of them before, and all of
them are even multiples of 1 byte (except for the now- archaic “nybble,” which
is 4 bits, or half of a byte). Bytes are data atoms, remember; loose memory bits
are more like subatomic particles and never exist in the absence of a byte (or
more) of memory to contain them. Some of these terms are used more than
others, but you should be aware of all of them, which are given in Table 4.1.

Some of these terms, such as 10 byte, occur rarely, and others, such as page,
hardly ever occur. The term paragraph was never common and for the most
part was used only in connection with the places in memory where segments
may begin.

 Chapter 4 ■ Location, Location, Location 81

Figure 4.3: Seeing a megabyte through 64 KB blinders

82 Chapter 4 ■ Location, Location, Location

Any memory address evenly divisible by 16 is called a paragraph boundary.
The first paragraph boundary is address 0. The second is address 10H, the third
address 20H, and so on. (Remember that 10H is equal to decimal 16.) Any par-
agraph boundary may be considered the start of a segment.

This doesn’t mean that a segment actually starts every 16 bytes up and down
throughout that megabyte of memory. A segment is like a shelf in one of those
modern adjustable bookcases. On the back face of the bookcase are a great
many little slots spaced one- half inch apart. Shelf brackets can be inserted into
any of the little slots. However, there aren’t hundreds of shelves, but only four
or five. Nearly all of the slots are empty and unused. They exist so that a much
smaller number of shelves may be adjusted up and down the height of the
bookcase as needed.

In a similar manner, paragraph boundaries are little slots at which a seg-
ment may begin. In real- mode segmented model, a program may make use of
only four or five segments, but each of those segments may begin at any of the
65,536 paragraph boundaries existing in the megabyte of memory available in
the real- mode segmented model.

There’s that number again: 65,536— our beloved 64 KB. There are 64 KB
different paragraph boundaries where a segment may begin. Each paragraph
boundary has a number. As always, the numbers begin from 0 and go to 64 KB
minus one; in decimal 65,535, or in hex 0FFFFH. Because a segment may begin
at any paragraph boundary, the number of the paragraph boundary at which a
segment begins is called the segment address of that particular segment. We rarely,
in fact, speak of paragraphs or paragraph boundaries at all. When you see the
term segment address in connection with the real- mode segmented model, keep
in mind that each segment address is 16 bytes (one paragraph) further along
in memory than the segment address before it. See Figure 4.4. In the figure,
each shaded bar is a segment address, and segments begin every 16 bytes. The
highest segment address is 0FFFFH, which is 16 bytes from the very top of real
mode’s one megabyte of memory.

Table 4.1: Collective Terms for Memory

NAME # OF BYTES IN DECIMAL # OF BYTES IN HEX

Byte 1 01H

Word 2 02H

Double word 4 04H

Quad word 8 08H

Ten byte 10 0AH

Paragraph 16 10H

Page 256 100H

Segment 65,536 10000H

 Chapter 4 ■ Location, Location, Location 83

Figure 4.4: Memory addresses versus segment addresses

84 Chapter 4 ■ Location, Location, Location

In summary, segments may begin at any segment address. There are 65,536
segment addresses evenly distributed across real mode’s full megabyte of
memory, 16 bytes apart. A segment address is more a permission than a com-
pulsion; for all the 64 KB possible segment addresses, only five or six are ever
actually used to begin segments at any one time. Think of segment addresses
as slots where segments may be placed.

So much for segment addresses; now, what of segments themselves? The most
important thing to understand is that a segment may be up to 64 KB bytes in
size, but it doesn’t have to be. A segment may be only 1 byte long, or 256 bytes
long, or 21,378 bytes long, or any length at all short of 64 KB bytes.

A Horizon, Not a Place

You define a segment primarily by stating where it begins. What, then, defines
how long a segment is? Nothing, really— and we get into some very tricky
semantics here. A segment is more a horizon than a place. Once you define where
a segment begins, that segment can encompass any location in memory be-
tween that starting place and the horizon— which is 65,536 bytes down the line.

Nothing says, of course, that a segment must use all of that memory. In most
cases, when a segment is defined at some segment address, a program considers
only the next few hundred or perhaps few thousand bytes as part of that segment,
unless it’s a really world- class program. Most beginners read about segments
and think of them as some kind of memory allocation, a protected region of
memory with walls on both sides, reserved for some specific use.

This is about as far from true as you can get. In real mode, nothing is pro-
tected within a segment, and segments are not reserved for any specific register
or access method. Segments can overlap. (People often don’t think about or
realize this.) In a very real sense, segments don’t really exist, except as horizons
beyond which a certain type of memory reference cannot go. It comes back to
that set of 64 KB blinders that the CPU wears, as I drew in Figure 4.3. Think of
it this way: a segment is the location in memory at which the CPU’s 64 KB blinders
are positioned. In looking at memory through the blinders, you can see bytes
starting at the segment address and going on until the blinders cut you off,
64 KB bytes down the way.

The key to understanding this admittedly metaphysical definition of a seg-
ment is knowing how segments are used, and coming to understand that finally
requires a detailed discussion of registers.

Making 20- Bit Addresses Out of 16- Bit Registers

A register, as I’ve mentioned informally in earlier chapters, is a memory location
inside the CPU chip rather than outside the CPU in a memory bank somewhere.

 Chapter 4 ■ Location, Location, Location 85

The 8086, 8088 and 80286 are often called 16- bit CPUs because their internal
registers are almost all 16 bits in size. The 80386 and its 25 years’ worth of suc-
cessors are called 32- bit CPUs because most of their internal registers are 32 bits
in size. Intel’s last 32- bit CPU was the Lincroft Atom series, introduced in 2010
and targeted at portable devices. Their last 32- bit desktop CPU was a member
of the Pentium 4 family introduced in 2002. The 32- bit era may be worth a close
look, but now in 2023 it is well and truly over.

The x64 CPUs are 64 bits in design, with registers that are 64 bits wide. The Intel
CPUs have a fair number of registers, and they are an interesting crew indeed.

Registers do many jobs, but perhaps their most important single job is holding
addresses of important locations in memory. If you’ll recall, the 8086 and 8088 have
20 address pins, and their megabyte of memory (which is the real- mode seg-
mented memory we’re talking about) requires addresses 20 bits in size.

How do you put a 20- bit memory address in a 16- bit register?
Easy. You don’t.
You put a 20- bit address in two 16- bit registers.
What happens is this: All memory locations in real mode’s megabyte of

memory have not one address but two. Every byte in memory is assumed to
reside in a segment. A byte’s complete address, then, consists of the address of
its segment, along with the distance of the byte from the start of that segment.
The address of the segment is (as we said before) the byte’s segment address. The
byte’s distance from the start of the segment is the byte’s offset address. Both
addresses must be specified to completely describe any single byte’s location
within the full megabyte of real- mode memory. When written out, the segment
address comes first, followed by the offset address. The two are separated with
a colon. Segment:offset addresses are always written in hexadecimal.

I’ve drawn Figure 4.5 to help make this a little clearer. A byte of data we’ll
call MyByte exists in memory at the location marked. Its address is given as
0001:0019. This means that MyByte falls within segment 0001H and is located
0019H bytes from the start of that segment. Note that it is a convention that
when two numbers are used to specify an address with a colon between them,
you do not end each of the two numbers with an H for hexadecimal.

The universe is perverse, however, and clever eyes will notice that MyByte can
have two other perfectly legal addresses: 0:0029 and 0002:0009. How so? Keep
in mind that a segment may start every 16 bytes throughout the full megabyte
of real memory. A segment, once begun, embraces all bytes from its origin to
65,535 bytes further up in memory. There’s nothing wrong with segments over-
lapping, and in Figure 4.5 we have three overlapping segments. MyByte is 29H
bytes into the first segment, which begins at segment address 0000H. MyByte is
19H bytes into the second segment, which begins at segment address 0001H. It’s
not that MyByte is in two or three places at once. It’s in only one place, but that
one place may be described in any of three ways.

86 Chapter 4 ■ Location, Location, Location

It’s a little like Chicago’s street- numbering system. Howard Street is 76 blocks
north of Chicago’s “origin,” Madison Street. Howard Street is, however, only 4
blocks north of Touhy Avenue. You can describe Howard Street’s location relative
to either Madison Street or Touhy Avenue, depending on what you want to do.

An arbitrary byte somewhere in the middle of segmented real mode’s mega-
byte of memory may fall within literally thousands of different segments. Which
segment the byte is actually in is strictly a matter of convention.

Figure 4.5: Segments and offsets

 Chapter 4 ■ Location, Location, Location 87

In summary, to express a 20- bit address in two 16- bit registers is to put the
segment address into one 16- bit register and the offset address into another
16- bit register. The two registers taken together identify 1 byte among all 1,048,576
bytes in real mode’s megabyte of memory.

Is this awkward? You have no idea. But it was the best we could do for a
good many years.

Segment Registers
Think of the segment address as the starting position of real mode’s 64 KB
blinders. Typically, you would move the blinders to encompass the location
where you want to work and then leave the blinders in one place while moving
around within their 64 KB limits.

This is exactly how registers tend to be used in real mode segmented model
assembly language. The 8086, 8088 and 80286 have exactly four segment registers
specifically designated as holders of segment addresses. The 386 and later CPUs
have two more that can also be used in real mode. (You need to be aware of the
CPU model you’re running on if you intend to use the two additional segment
registers, because the older CPUs don’t have them.) Each segment register is a
16- bit memory location existing within the CPU chip itself. No matter what the
CPU is doing, if it’s addressing some location in memory, the segment address
of that location is present in one of the six segment registers.

The segment registers have names that reflect their general functions: CS,
DS, SS, ES, FS, and GS. FS and GS exist only in the 386 and later Intel x86 32- bit
CPUs— but are still 16 bits in size. All segment registers are 16 bits in size, irrespec-
tive of the CPU. This is true even of the modern 64- bit Intel CPUs, though there’s
a catch— more on that shortly.

 ■ CS stands for code segment. Machine instructions exist at some offset into
a code segment. The segment address of the code segment of the currently
executing instruction is contained in CS.

 ■ DS stands for data segment. Variables and other data exist at some offset
into a data segment. There may be many data segments, but the CPU may
use only one at a time, by placing the segment address of that segment in
register DS.

 ■ SS stands for stack segment. The stack is a very important component of the
CPU used for temporary storage of data and addresses. I explain how the
stack works a little later; for now simply understand that, like everything
else within real mode’s megabyte of memory, the stack has a segment
address, which is contained in SS.

88 Chapter 4 ■ Location, Location, Location

 ■ ES stands for extra segment. The extra segment is exactly that: a spare seg-
ment that may be used for specifying a location in memory.

 ■ FS and GS are clones of ES. They are both additional “extra” segments with
no specific job or specialty. Their names come from the fact that they were
created after ES. (Think, E, F, G.) Don’t forget that they exist only in the
386 and later Intel CPUs.

Segment Registers and x64

Now, there’s something odd about segment registers in the x64 architecture:
They’re not used in application programs. At all. Think about it: 64 bits can identify
264 bytes of memory. In decimal scientific notation, that’s 1.8 x 1019. Out loud
we’d say “18 exabytes.” If that word is new to you, you’re not alone. An exabyte
is a billion gigabytes, i.e., a billion billion bytes. My none- too- new everyday
work machine contains 16 gigabytes of RAM. Most new- build desktops today
can take 64 GB, and that’s about all. Even gamers understand that more than
64 GB of RAM won’t improve their game play.

The whole point of segment registers was to allow 20 bits of address space to
be addressed by two 16- bit registers. When one single 64- bit register can address
almost as many bytes of memory as there are stars in the observable universe
(I’m not exaggerating about that!), segment registers become useless, at least
in application programming. Operating systems use two of them for purposes
that are way beyond the scope of this book to explain. The others are there but
may cause trouble if you try to use them. In short, when you move to x64 long
mode, the familiar 16- bit segment registers simply go away.

So. . .do Intel’s x64 CPUs have 64 address lines? No. There isn’t even machinery
inside the chips to support more than 48 bits of address on older x64 CPUs. (Intel
raised this value to 52 bits for certain high- end CPUs a few years ago.) Why
even that many? Looking ahead to memory technologies we can’t yet imagine
is part of it. The issue is not that simple, and there’s not enough room for me to
take it up in more detail in this book. But this is the money quote:

From a 64- bit perspective, segment registers are now history.

General- Purpose Registers

All Intel CPUs have a crew of generalist registers to do the bulk of the work
of assembly language computing. These general- purpose registers hold values
for arithmetic and logic manipulation, for bit- shifting (more on this later), and
many other things, including holding memory addresses. They are truly the
craftsperson’s pockets inside the CPU.

 Chapter 4 ■ Location, Location, Location 89

But now we come to one of the biggest and most obvious differences between
the different eons of Intel microcomputing: the width of the general- purpose
registers. The primordial 8080 had 8- bit registers. The 16- bit x86 CPUs (the
8086, 8088, 80186, and 80286) had 16- bit registers. The 32- bit x86 CPUs starting
with the 386 have 32- bit registers. And in the x64 world, CPUs have 14 general-
purpose 64- bit registers. Two more registers, the stack pointer and base pointer
registers, are specialists and exist in 16- bit, 32- bit, and 64- bit architectures. The
stack pointer always points to the top of the stack. (I’ll have much more to say
about the stack in later chapters.) The base pointer is a bit like a bookmark and
used to access data “further down” on the stack; again, we’ll get to the stack
eventually, and I’ll explain this in more depth.

Like the segment registers, the x64 general- purpose registers are memory
locations existing inside the CPU chip itself. The general- purpose registers really
are generalists in that all of them share a large suite of capabilities. However,
some of the general- purpose registers also have what I call a “hidden agenda:”
a task or set of tasks that only they can perform. I’ll explain all these hidden
agendas as I go— keeping in mind that some of the hidden agendas are actually
limitations of the older 16- bit CPUs. The newer 32- bit and 64- bit general- purpose
registers are much more, well, general.

In our current 64- bit world, the general- purpose registers fall into four general
classes: the 16- bit general- purpose registers, the 32- bit extended general- purpose
registers, the 64- bit general- purpose registers, and the 8- bit register halves. These
four classes do not represent four entirely distinct sets of registers at all. The
8- bit, 16- bit, and 32- bit registers are actually names of regions inside the 64- bit
registers. Register growth in the vintage x86 CPU family came about by extending
registers existing in older CPUs. Adding a room to your house doesn’t make it
two houses— just one bigger house. And so it has been with the x86 registers.

There are eight 16- bit general- purpose registers: AX, BX, CX, DX, BP, SI, DI,
and SP. (SP and BP are a little less general than the others, but we’ll get to that.)
These all existed in the 8086, 8088, 80186, and 80286 CPUs. They are all 16 bits
in size, and you can place any value in them that may be expressed in 16 bits or
fewer. When Intel expanded the x86 architecture to 32 bits in 1985, it doubled the
size of all eight registers and gave them new names by prefixing an E in front of
each register name, resulting in EAX, EBX, ECX, EDX, EBP, ESI, EDI, and ESP.

Things changed once more in 2003, when Intel began adopting AMD’s 64- bit
backward- compatible x64 architecture. Again, Intel had its own 64- bit architecture
by then, IA- 64 Itanium, but Itanium had some subtle but important technical
difficulties in its microarchitecture that I can’t describe in an introductory book
like this. Intel then swallowed its pride and did the smart thing by adopting
AMD’s successful 64- bit architecture. Alas, the 8080 stands alone. Backward
compatibility can extend only so far back before it becomes more of a bug than
a feature.

90 Chapter 4 ■ Location, Location, Location

The x64 architecture expanded the general- purpose register lineup from 32
to 64 bits. This time the prefix became R. So now instead of the 32- bit EAX, we
have RAX, and so on down the list of 32- bit registers. Intel also added eight
new 64- bit registers that had never been part of their architecture before. Their
names are mostly numbers: R8 through R15.

64- bit x64 registers are in truth registers inside registers. Like a lot of things,
this shows better than it tells. Take a look at Figure 4.6, which lays out how this
works with x64 registers RAX and R8.

RAX contains EAX, AX, AH, and AL. EAX contains AX, AH, and AL. AX
contains AH and AL. The names “RAX,” “EAX,” “AX,” “AH,” and “AL” are
all valid in x64. You can use all of these names in your assembly language pro-
grams to access the 64 bits contained in RAX or certain smaller parts of it. Want
to access the lower 32 bits of RAX? Use the name EAX. Want to access the lowest
16 bits of RAX? Use AX.

Figure 4.6: Registers inside registers

 Chapter 4 ■ Location, Location, Location 91

Register Halves

The same is true for the four general- purpose registers RAX, RBX, RCX, and
RDX, but there’s an additional twist: the low 16 bits are themselves divided into
two named 8- bit halves. So, what we have are register names on four levels. The
16- bit registers AX, BX, CX, and DX are present as the lower 16- bit portions of
EAX, EBX, ECX, and EDX, which in turn are the lower 32- bit portions of RAX,
RBX, RCX, and RDX.

But AX, BX, CX, and DX are themselves divided into 8- bit halves, and assem-
blers recognize special names for the two halves. The A, B, C, and D are retained,
but instead of the X, a half is specified with an H (for high half) or an L (for low
half). Each register half is 1 byte (8 bits) in size. Thus, making up 16- bit register
AX, you have byte- sized register halves AH and AL; within BX there is BH and
BL, and so on.

The new x64 registers R8- R15 can be addressed as 64 bits, 32 bits, 16 bits, and
8 bits. However, the AH/AL scheme for the low 16 bits is a trick reserved for
only RAX- RDX. The naming scheme for the R registers provides a mnemonic:
D for double word, W for word, and B for byte. For example, if you want to
deal with the lowest 8 bits of R8, you use the name R8B.

Don’t make the beginner’s mistake of assuming that R8, R8D, R8W, and R8B
are four separate and independent registers! A better metaphor is to think of
the register names as country/state/county/city. A city is a small portion of a
county, which is a small portion of a state, and so on. If you write a value into
R8B, you change the value stored in R8, R8D, and R8W.

Again, this can best be shown in a diagram. See Figure 4.7, which is an expan-
sion of Figure 4.6 to include all of x64’s general- purpose registers. These regis-
ters are a low- half kind of thing. Apart from AH, BH, CH, and DH, there is no
name for the high half of any general- purpose register.

Of course, it’s possible to access the high half of any register by using more
than one machine instruction. You just can’t do it by name in one swoop, unless
you’re dealing with the four 8- bit exceptions mentioned above.

Being able to treat the AX, BX, CX, and DX registers as 8- bit halves can be
extremely handy in situations where you’re manipulating a lot of 8- bit quantities.
Each register half can be considered a separate register, leaving you twice the
number of places to put things while your program works. As you’ll see later,
finding a place to stick a value in a pinch is one of the great challenges facing
assembly- language programmers.

92 Chapter 4 ■ Location, Location, Location

The Instruction Pointer

Yet another type of register lives inside all Intel CPUs, including x64. The
instruction pointer IP is in a class by itself. In 16- bit modes, the instruction
pointer is called simply IP. In 32- bit modes, it’s EIP. In x64, it’s RIP. In all cases,

Figure 4.7: 8- bit, 16- bit, 32- bit, and 64- bit registers

 Chapter 4 ■ Location, Location, Location 93

however, this register is not directly accessible by the assembly programmer.
Instead, it is indirectly accessed when performing a jump, conditional branch,
procedure call, or interrupt. In general discussion not limited to a particular
mode, I’ll follow convention and call it IP.

In radical contrast to the gang of true general- purpose registers, IP is a spe-
cialist par excellence— more of a specialist than even the segment registers. It can
do only one thing: it contains the offset address of the next machine instruction
to be executed in the current code segment.

A code segment is an area of memory where machine instructions are stored.
Depending on the memory model you’re using, there may be many code seg-
ments in a program, or (most of the time) only one. The current code segment is
that code segment whose segment address is currently stored in code segment
register CS. At any given time, the machine instruction currently being executed
exists within the current code segment. In the real- mode segmented model, the
value in CS can change frequently. In the flat models (which includes x64 long
mode), the value in CS (almost) never changes— and certainly never changes
at the behest of an application program. Managing code segments and the
instruction pointer is now the job of the operating system. This is especially
true in x64 long mode, where there’s only one segment that contains everything,
and segment registers have so little to do in user space that they’re basically
invisible to user- space programs like those you write.

While executing a program, the CPU uses IP to keep track of where it is in
the current code segment. Each time an instruction is executed, IP is incremented
by some number of bytes. The number of bytes is the size of the instruction just
executed. The net result is to bump IP further into memory so that it points to
the start of the next instruction to be executed. Instructions come in different
sizes, ranging typically from 1 to 15 bytes. The CPU knows the size of each
instruction it executes. It’s careful to increment IP by just the right number of
bytes so that it does in fact end up pointing to the start of the next instruction
and not merely into the middle of the last instruction or the middle of some
other instruction entirely.

If IP contains the offset address of the next machine instruction, where is the
segment address? The segment address is kept in the code segment register
CS. Together, CS and IP contain the full address of the next machine instruction
to be executed.

The nature of this address depends on what CPU you’re using and what
memory model you’re using it for. In the 8086, 8088 and (usually) 80286, IP is
16 bits in size. In the 386 and later CPUs, IP (like all the other registers except
the segment registers) graduates to 32 bits in size and becomes EIP.

In the real- mode segmented model, CS and IP working together give you a
20- bit address pointing to one of the 1,048,576 bytes in real- mode memory. In
flat models (more on this shortly), CS is set by the operating system and held

94 Chapter 4 ■ Location, Location, Location

constant. IP does all the instruction pointing that you the programmer have
to deal with. In the 16- bit flat model (real- mode flat model), this means IP can
follow instruction execution all across a full 64 KB segment of memory. The 32-
bit flat model does far more than double that; 32 bits can represent 4,294,967,290
different memory addresses. In 64- bit long mode, well, RIP can address as much
memory as you could put into the machine in your lifetime and certainly mine.
Opinion is divided on whether there will ever be 128- bit CPUs. I don’t think so,
for reasons I’ll mention a little later in this chapter.

IP is notable in being the only register that can neither be read nor written
to directly. There are tricks that may be used to obtain the current value in IP,
but having IP’s value is not as useful as you might think, and you won’t have
to do it very often.

The Flags Register

There is yet another type of register inside the CPU: what we generically call
the flags register. It is 16 bits in size in the 8086, 8088, and 80286, and its formal
name is FLAGS. It is 32 bits in size in the 32- bit CPUs, and its formal name in
the 32- bit CPUs is EFLAGS. The RFLAGS register in x64 is 64 bits in size. Just
under half of the bits in the RFLAGS register are used as single- bit registers
called flags. (The rest are undefined.) Each of these individual flags has a name
with a two- character abbreviation, such as CF, DF, OF, and so on, and each flag
has a very specific meaning within the CPU.

Since a single bit may contain one of only two values, 1 or 0, testing a flag in
assembly language is truly a two- way affair: either a flag’s value is 1 or it isn’t.
When the flag’s value is 1, we say that the flag is set. When the flag’s value is 0,
we say that the flag is cleared.

When your program performs a test, what it tests is one or occasionally two
of the single- bit flags in the RFLAGS register. It then takes a separate path of
execution depending on the state of the flag or flags. There are separate jump
instructions for all the common flags, and a few more for testing specific pairs
of flags.

The RFLAGS register is almost never dealt with as a unit unless the flags are
being saved onto the stack. We’re concentrating on memory addressing at the
moment, so for now I’ll simply promise to go into flag lore in more detail at more
appropriate moments later in the book, when we discuss machine instructions
that test the various flags in the RFLAGS register.

Math Coprocessors and Their Registers

Ever since the 32- bit 80486DX CPU, there has been a math coprocessor on the
same silicon chip with the general- purpose CPU. In ancient times, the math
chip was an entirely separate IC that plugged into its own socket on the moth-
erboard. The x64 CPUs all have integrated math coprocessors, with their own

 Chapter 4 ■ Location, Location, Location 95

registers and machine instructions. The x64 architecture uses the third gener-
ation of math coprocessor, AVX. (The MMX and SSE architectures are the first
two generations and came before AVX.)

The question often comes up, when will we have 128- bit CPUs? The truth is, we
already have them— for the things that count. The one place where 128- bit reg-
isters are essential is in advanced math applications, like 3D modeling, video
processing, cryptography, data compression, and AI. All modern CPUs incor-
porating the SSE coprocessor have 128- bit registers for the math coprocessor’s
use. (The general- purpose CPU cannot use them directly.) And it doesn’t stop
there. The AVX coprocessor ups the ante to 256 bits. And AVX- 512, introduced
in 2021, largely for server CPUs, can do its math in 512- bit registers. With 128- ,
256- , and 512- bit math registers available for crunching numbers, there’s very
little point in expanding the GP registers to 128 bits. 64 bits is widely seen as a
sort of “sweet spot” for general- purpose computing and should remain so for
a very long time.

It’s way outside the scope of this book to explain how to use SSE, much less
AVX. A good beginner’s treatment can be found in Beginning x64 Assembly
Programming by Jo Van Hoey (Apress, 2019). Math coprocessor programming
is subtle and complex. I would recommend becoming reasonably fluent in ordi-
nary x64 assembly before diving in on the math side.

The Four Major Assembly Programming Models
I mentioned earlier in this chapter that there are four major programming models
available for use on the x64- bit Intel CPUs, though two of them are now consid-
ered archaic. The differences between them lie (mostly) in the use of registers
to address memory. (And the other differences, especially on the high end, are
for the most part hidden from you by the operating system.) In this section, I’m
going to summarize the four models for historical reference. Only one of them,
x64 long mode, will be treated in detail in the rest of the book.

Real- Mode Flat Model

In real mode, if you recall, the CPU can see only 1 megabyte (1,048,576) of
memory. You can access every last one of those million- odd bytes by using the
segment:offset register trick shown earlier to form a 20- bit address out of two
16- bit addresses contained in the segment and offset registers. Or...you can be
content with 64 KB of memory and not fool with segments at all.

In real- mode flat model, your program and all the data it works on must
exist within a single 64 KB block of memory. Sixty- four kilobytes! Pfeh! What
could you possibly accomplish in only 64 KB bytes? Well, the first version
of WordStar for the IBM PC fit in 64 KB. So did the first three major releases
of Turbo Pascal— in fact, the Turbo Pascal program itself occupied a lot less
than 64 KB because it compiled its programs into memory. The whole Turbo

96 Chapter 4 ■ Location, Location, Location

Pascal package— compiler, text editor, and some odd tools— came to just over
39K. Thirty- nine kilobytes! You can’t even write a letter to your mother with
Microsoft Word in that little space these days!

Real- mode flat model is shown diagrammatically in Figure 4.8. There’s not
much to it. The segment registers are all set to point to the beginning of the
64 KB block of memory you can work with. (The operating system sets them
when it loads and runs your program.) They all point to that same place and
never change as long as your program is running. That being the case, you can
simply forget about them. Poof! No segment registers, no fooling with segments,
and none of the ugly complication that comes with them.

Figure 4.8: Real- mode flat model

 Chapter 4 ■ Location, Location, Location 97

Most of the general- purpose registers may contain addresses of locations in
memory. You use them in conjunction with machine instructions to bring data
in from memory and write it back out again.

At the top of the single segment that your program exists within, you’ll see a
small region called the stack. The stack is a last in, first out (LIFO) storage loca-
tion with some very special properties and uses. I will explain what the stack
is and how it works in considerable detail in a later chapter.

Real- Mode Segmented Model

The first two editions of this book focused entirely on real- mode segmented
model, which was the mainstream programming model throughout the MS-
DOS era. It’s a complicated, ugly system that requires you to remember a lot of
little rules and gotchas. I explained segments earlier in this chapter and won’t
go into a lot of detail here, especially considering how little the real- mode seg-
mented model is used today.

In real- mode segmented model, your program can see the full 1 MB of memory
available to the CPU in real mode. It does this by combining a 16- bit segment
address with a 16- bit offset address. It doesn’t just glom them together into a
32- bit address, however. You need to think back to my discussion of segments
earlier in this chapter. A segment address is not really a memory address. A
segment address specifies one of the 65,535 slots at which a segment may begin.
One of these slots exists every 16 bytes from the bottom of memory to the top.
Segment address 0000H specifies the first such slot, at the very first location
in memory. Segment address 0001H specifies the next slot, which lies 16 bytes
higher in memory. Jumping up- memory another 16 bytes gets you to segment
address 0002H, and so on. You can translate a segment address to an actual
20- bit memory address by multiplying it by 16. Segment address 0002H is thus
equivalent to memory address 0020H, which is the 32nd byte in memory.

The CPU handles the combination of segments and offsets into a full 20- bit
address internally. Your job is to tell the CPU where the two different compo-
nents of that 20- bit address are stored. The customary notation is to separate the
segment register and the offset register by a colon. Here’s an example:

SS : SP
SS : BP
ES : DI
DS : SI
CS : BX

Each of these five register combinations specifies a full 20- bit address. ES:DI,
for example, specifies the address as the distance in DI from the start of the
segment called out in extra segment register ES.

98 Chapter 4 ■ Location, Location, Location

To visually sum up real- mode segmented model, I’ve drawn a diagram outlin-
ing the model in Figure 4.9. In contrast to the real- mode flat model (shown in
Figure 4.8), the diagram here shows all of memory, not just the one little 64 KB
chunk that your real- mode flat model program is allocated when it runs. A
program written for real- mode segmented model can see all of real- mode memory.

The diagram shows two code segments and two data segments. In practice,
you can have any reasonable number of code and data segments, not just two
of each. You can access two data segments at the same time, because you have
two segment registers available to do the job: DS and ES. (In the 386 and later

Figure 4.9: The real- mode segmented model

 Chapter 4 ■ Location, Location, Location 99

processors, you have two additional segment registers, FS and GS.) Each can
specify a data segment, and you can move data from one segment to another
using any of several machine instructions. However, you have only one code
segment register, CS. CS always points to the current code segment, and the next
instruction to be executed is pointed to by the IP register. You don’t load values
directly into CS to change from one code segment to another. Your program can
span several code segments, and when a jump instruction (of which there are
several kinds) needs to take execution into a different code segment, it changes
the value in CS for you.

There is only one stack segment for any single program, specified by the
stack segment register SS. The stack pointer register SP points to the memory
address (relative to SS, albeit in an upside- down direction) where the next stack
operation will take place. The stack will require some considerable explaining,
which I’ll take up later.

You need to keep in mind that in real mode, there will be pieces of the operating
system in memory with your program, along with important system data
tables. You can destroy portions of the operating system by careless use of seg-
ment registers, which will cause the operating system to crash and take your
program with it. This is the danger that prompted Intel to build new features
into its 80386 and later CPUs to support a “protected” mode. In protected mode,
application programs (that is, the programs that you write, as opposed to the
operating system or device drivers) cannot destroy the operating system nor
other application programs that happen to be running elsewhere in memory
via multitasking. That’s what the word protected means.

32- Bit Protected Mode Flat Model

Intel’s CPUs have implemented a very good protected mode architecture since
the 386 first appeared in 1985. However, application programs cannot make use
of protected mode all by themselves. The operating system must set up and
manage a protected mode before application programs can run within it. MS-
DOS couldn’t do this, and Microsoft Windows couldn’t really do it either until
Windows NT first appeared in 1994. Linux, having no real- mode “legacy” issues
to deal with, has operated in protected mode since its first appearance in 1992.

Protected- mode assembly language programs may be written for both Linux
and Windows releases from NT forward. I exclude Windows 9x for technical
reasons. Its memory model is an odd proprietary hybrid of real mode and
protected mode and very difficult to completely understand— and now almost
entirely irrelevant. Note also that programs written for Windows need not be
graphical in nature. The easiest way to program in protected mode under Win-
dows is to create console applications, which are text- mode programs that run

100 Chapter 4 ■ Location, Location, Location

in a text- mode window called a console. The console is controlled through a
command line similarly to the one in MS- DOS— with lots more available com-
mands. Console applications use protected mode flat models and are fairly
straightforward compared to writing Windows or Linux GUI applications,
which I will not address in this book.

I’ve drawn the 32- bit protected mode flat model in Figure 4.10. Your program
sees a single block of memory addresses running from zero to a little over 4
gigabytes. Each address is a 32- bit quantity. All of the general- purpose registers
are 32 bits in size, so one GP register can point to any location in the full 4 GB
address space. The instruction pointer is 32 bits in size as well, so EIP can indi-
cate any machine instruction anywhere in the 4 GB of memory.

Figure 4.10: 32- bit protected mode flat model

 Chapter 4 ■ Location, Location, Location 101

The segment registers still exist, but they work in a radically different way.
Not only don’t you have to fool with them, you can’t. The segment registers are
now considered part of the operating system, and in almost all cases you can
neither read nor change them directly. Their new job is to define where your
4 GB memory space exists in physical or virtual memory. Physical memory
may be much larger than 4 GB, and at this writing, 4 GB of memory is not
especially expensive. However, a 32- bit register can express only 4,294,967,296
different locations. If you have more than 4 GB of memory in your computer,
the operating system must arrange a 4 GB region within memory, and your
32- bit programs are limited to operating in this region. Defining where in your
larger memory system this 4 GB region falls is the job of the segment registers,
and the operating system keeps them very close to its vest.

I won’t say a great deal about virtual memory in this book. It’s a system
whereby a much larger memory space can be “mapped” onto disk storage, so
that even with only 4 GB of physical memory in your machine, the CPU can
address a “virtual” memory space billions of bytes larger. Again, this is han-
dled by the operating system, and handled in a way that is almost completely
transparent to the software that you write.

It’s enough to understand that when your x86 program runs, it receives a 4 GB
address space in which to play, and any 32- bit register can potentially address
any of those 4 billion memory locations, all by itself. Yes, this is an oversimpli-
fication, especially for ordinary Intel- based desktop PCs. Not all of the 4 GB is
at your program’s disposal, and there are certain parts of the memory space
that you can’t use or even look at. Unfortunately, the rules are specific to the
operating system you’re running under, and I can’t generalize too far without
specifying Linux or Windows NT or some other protected mode OS.

But it’s worth taking a look back at Figure 4.8 and comparing the real- mode
flat model to the 32- bit protected- mode flat model. The main difference is that
in the real- mode flat model, your program owns the full 64 KB of memory that
the operating system hands it. In 32- bit protected- mode flat model, you are
given a portion of 4 GB of memory as your own, while other portions will still
belong to the operating system. Apart from that, the similarities are striking:
A general- purpose (GP) register can by itself specify any memory location in
the full memory address space, and the segment registers are the tools of the
operating system and not you the application programmer.

64- Bit Long Mode
The previous summaries are historical context. The fourth programming mode
is the one we’ll be using for actual code examples in this book.

The x64 architecture defines three general modes: real mode, protected mode,
and long mode. Real mode is a compatibility mode allowing the CPU to run
older real- mode operating systems and software like DOS and Windows 3.1.

102 Chapter 4 ■ Location, Location, Location

In real mode, the CPU works just like an 8086 or other 16- bit x86 CPU does in
real mode and supports both real mode flat model and real mode segmented
model. Protected mode is also a compatibility mode and makes the CPU “look
like” a 32- bit CPU to software so that x64 CPUs can run Windows 2000/XP/
Vista/7/8 and other 32- bit operating systems like older versions of Linux, plus
their 32- bit drivers and applications. (Windows 10 and 11 are strictly 64- bit now
in new- build 64- bit machines.)

But those are 16- bit and 32- bit compatibility modes included strictly for the
sake of legacy software. Long mode is a true 64- bit mode. When the CPU is in
long mode, all registers but the segment registers are 64 bits wide, and all machine
instructions that act on 64- bit operands are available. There’s only one segment,
which is as large (for the time being) as you can afford. Everything that’s a part
of your program, or data on which your program acts, is fully contained within
that one truly gigantic segment. X64 long mode is so conceptually simple that I
haven’t drawn a diagram. It’s almost exactly like Figure 4.10, except that there
is no 4 GB “ceiling.”

Long mode is also a protected mode, and ordinary computing requires an
operating system that understands protected mode and does its way- down- deep
housework. In long mode, segment registers belong to the operating system,
and you don’t need to manipulate them nor even be aware of them, especially
as a beginner.

There is a great deal more to x64 long- mode memory addressing that I can’t
explain without first explaining a little bit about the programming process
itself— and the tools you use to do it.

C H A P T E R

103

5

The Nine and Sixty Ways to Code

Rudyard Kipling’s poem “In the Neolithic Age” (1895) gives us a tidy little scold
on tribal certainty. Having laid about himself successfully with his trusty diorite
tomahawk, the poem’s Neolithic narrator eats his former enemies while congrat-
ulating himself for following the One True Tribal Path. Alas, his totem pole has
other thoughts and in a midnight vision puts our cocky narrator in his place.

“There are nine and sixty ways of constructing tribal lays,
And every single one of them is right!”

The moral of the poem is to trust your totem pole (and read more Kipling!).
What’s true of tribal lays is also true of programming methodologies. There are
at least nine and sixty ways of making programs, and I’ve tried most of them
over the years since I wrote my first line of FORTRAN in 1970. They’re all dif-
ferent, but they all work in that they all produce programs that can be loaded
and run— once the programmer figures out how to follow a particular method
and use the tools that go with it.

The Right to Assemble
The Process of Creating Assembly Language

Programs

104 Chapter 5 ■ The Right to Assemble

Still, although all these programming techniques work, they are not inter-
changeable, and what works for one programming language or tool set will
not apply to another programming language or tool set. In 1977, I learned to
program in a language called APL (A Programming Language; how profound!)
by typing in lines of code and watching what each one did. That was the way
APL worked: Each line was mostly an independent entity, which performed
a calculation or some sort of array manipulation, and once you pressed Enter,
the line would crunch up a result and print it for you. (I learned it on an IBM
Selectric printer/terminal.) You could string lines together to produce more
complex programs, of course, and I did, but it was an intoxicating way to pro-
duce a program from an initial state of total ignorance, testing everything one
single microstep at a time.

Later I learned BASIC almost the same way that I had learned APL, but there
were other languages that demanded other, better techniques. Pascal and C both
required significant study beforehand because you couldn’t just hammer in one
line and execute it independently. Much later still, when Microsoft Windows
went mainstream, Visual Basic and especially Dephi changed the rules radi-
cally. Programming became a sort of stimulus- response mechanism, in which
the operating system sent up stimuli called events (keystrokes, mouse clicks,
and so on) and simple programs consisted mostly of responses to those events.

Assembly language is not constructed the same way that C, Java, or Pascal
are. Very pointedly, you cannot write assembly language programs purely by
trial and error, nor can you do it by letting other people do your thinking for
you. It is a complicated and tricky process compared to BASIC or Perl or such
visual environments as Delphi, Lazarus, or Gambas. You have to pay attention.
You have to read the sheet music. Most of all, you have to practice.

In this chapter, I’ll teach you assembly language’s tribal lays as I’ve learned them.

Files and What’s Inside Them

All programming is about processing files. Some programming methods hide
some of those files, and all methods to some extent, strive to make it easier for
human beings to understand what’s inside those files. But at the bottom of it,
you’ll be creating files, processing files, reading files, and executing files.

Most people understand that a file is a collection of data stored on a medium,
for example, a hard disk drive, a thumb drive or flash memory card, an optical
disk, or the occasional exotic device of some kind. The collection of data is
given a name and manipulated as a unit. Your operating system governs the
management of files on storage media. Ultimately, it allows you to see data
within a file and can write changes that you make back to the file or to a new
file that you create with the assistance of the operating system.

Assembly language is notable in that it hides almost nothing from you, and to
be good at it, you have to be willing to go inside any file that you deal with and

 Chapter 5 ■ The Right to Assemble 105

understand it down to the byte and sometimes the bit level. This takes longer,
but it pays a huge dividend in knowledge: you will know how everything works.
APL and BASIC, by contrast, were and remain mysteries. I typed in a line, and
the computer spat back a response. What happened in between was hidden
very well. In assembly language, you see it all. The trick is to understand what
you’re looking at.

Binary vs. Text Files
The looking isn’t always easy. If you’ve worked with Windows or Linux (and
before that, DOS) for any length of time, you may have a sense for the differ-
ences between files in terms of how you “look at” them. A simple text file is
opened and examined in a simple text editor. A word processor file is opened
in the species of word processor that created it. A PowerPoint slideshow file is
opened from inside the PowerPoint application. If you try to load it into Word
or Excel, the application will display garbage or (more likely) politely refuse to
obey the open command. Trying to open an executable program file in a word
processor or other text editor will generally get you either nowhere or screen-
fuls of garbage.

Text files are files that can be opened and examined meaningfully in a text
editor, like Notepad or Wordpad in Windows, or any of the many text editors
available for Linux. Binary files are files containing values that do not display
meaningfully as text. Most higher- end word processors confuse the issue by
manipulating text and then mixing the text with formatting information that
does not translate into text but instead dictates things such as paragraph spac-
ing, line height, and so on. Open a Word or OpenOffice document in a simple
text editor like Notepad, and you’ll see what I mean.

Text files contain upper and lowercase letters and numeric digits, plus odd
symbols such as punctuation. There are 94 such visible characters. Text files
also contain a group of characters called whitespace. Whitespace characters give
text files their structure by dividing them into lines and providing space within
lines. These include the familiar space character, the tab character, the newline
character that indicates a line end, and sometimes a couple of others. There are
fossil characters like the BEL character, which was used many decades ago to
ring the little mechanical brass bell in teletype machines, and while BEL is tech-
nically considered whitespace, most text editors simply ignore it.

Text files in the PC world are a little more complicated, because there are
another 127 characters containing glyphs for mathematical symbols, characters
with accent marks and other modifiers, Greek letters, and “box draw” characters
that were widely used for drawing screen forms on text screens in ancient times
before graphical user interfaces like Windows and Cinnamon. How these addi-
tional characters display in a text editor or terminal window depends entirely
on the text editor or terminal window and how it is configured.

106 Chapter 5 ■ The Right to Assemble

Text files become even more complex when you introduce non- Western alpha-
bets through the Unicode standard. Explaining Unicode in detail is beyond the
scope of this book, but a good introduction is available on Wikipedia.

Text files are easy to display, edit, and understand. Alas, there’s a lot more
to the programming world than text files. In previous chapters, I defined what
a computer program is, from the computer’s perspective. A program is, met-
aphorically, a long journey in very small steps. These steps are a list of binary
values representing machine instructions that direct the CPU to do what it must
to accomplish the job at hand. These machine instructions, even in their hexa-
decimal shorthand form, are gobbledygook to human beings. Here’s a short
sequence of binary values expressed in hexadecimal:

FE FF A2 37 4C 0A 29 00 91 CB 60 61 E8 E3 20 00 A8 00 B8 29 1F FF 69 55

Is this part of a real program or isn’t it? You’d probably have to ask the CPU
to find out, unless you were a binary machine- code maniac of the kind that
hasn’t been seen since 1978. (Spoiler: it isn’t.)

But the CPU has no trouble with programs presented in this form. In fact,
the CPU can’t handle programs in any other way. The CPU itself simply isn’t
equipped to understand and obey a string of characters such as

LET X = 42

or even something that we humans would call assembly language:

mov rax,42

To the CPU, it’s binary- only. The CPU just might interpret a sequence of text
characters as binary machine instructions, but if this happened, it would be
pure coincidence, and the coincidence would not go on longer than three or
four characters’ worth. Nor would the sequence of instructions be likely to do
anything useful.

From a high level, the process of assembly language programming (or program-
ming in many other languages) consists of taking human- readable text files and
translating them somehow into files containing sequences of binary machine
instructions that the CPU can understand. You, as an assembly language pro-
grammer, need to understand which files are which (lots more on this later) and
how each is processed. Also, you will need to be able to “open” an executable
binary file and examine the binary values that it contains.

Looking at Binary File Internals with the GHex Hex Editor
Fortunately, there are utilities that can open, display, and allow you to change
characters or binary bytes inside any kind of file. These are called binary edi-
tors or hexadecimal editors, and the best of them, in my experience (at least for

 Chapter 5 ■ The Right to Assemble 107

the 64- bit Linux world), is the GHex hex editor. It was designed to operate
under graphical user interfaces such as Cinnamon and is easy to figure out by
exploring the menus.

GHex is not automatically installed by default under Linux Mint. How appli-
cations are installed under Linux differs across major distros. I’ve been a Linux
Mint user since the Maya release. What installation instructions I include here
will be for Linux Mint 20.3 Una Cinnamon, which is a Long Term Support (LTS)
release as I write this in 2023.

To install GHex under Linux Mint, bring up the Software Manager and search
for GHex. There will be both a Debian package and a Flatpack. I recommend
the Debian package. (I don’t have space here to explain the differences.) Choose
the Debian package and click Install. When the dust settles, close the Software
Manager. Click the Mint menu button and select the Programming category.
The GHex icon will be there. If you want it as an icon on your desktop as well,
right- click GHex and select Add To Desktop.

A good way to demonstrate GHex will also demonstrate why it’s necessary
for programmers to understand even text files at the byte level. In the listings
archive for this book (see the introduction for the URL) are two files, samwindows
.txt and samlinux.txt. Extract them both. Launch GHex, and using the File
➪ Open command open samlinux.txt.

Figure 5.1 shows the GHex window in its smallest size to save space here on
the printed page; after all, the file itself is only 15 bytes long. For larger files,
you can enlarge GHex both horizontally and vertically.

Figure 5.1: Displaying a Linux text file with the GHex editor

108 Chapter 5 ■ The Right to Assemble

The display pane is divided into three parts. The left column is the offset
column. It contains the offset from the beginning of the file for the first byte
displayed on that line in the center column. The offset is given in hexadecimal.
If you’re at the beginning of the file, the offset column will be 00000000H. The
center column is the hex display column. It displays a line of data bytes from
the file in hexadecimal format. How many bytes will be shown depends on
how you size the GHex window. In the center column the display is always in
hexadecimal, with each byte separated from adjacent bytes by a space. The right
column is the same line of data with any “visible” text characters displayed as
text. Nondisplayable binary values are represented by period characters.

If you open the samwindows.txt tab, GHex will create a new window, and
you’ll see the same display for the other file, which was created using the Win-
dows Notepad text editor. The samwindows.txt file is a little longer, and you
have a second line of data bytes in the center column. The offset for the second
line is 00000010. This is the offset in hex of the first byte in the second line.

Now, why are the two files different? Bring up a terminal window and nav-
igate to whatever folder you’re using for your assembly learning files. Use the
cat command to display both files. The display in either case will be identical.

Sam
was
a
man.

Figure 5.2 shows the GHex editor displaying samwindows.txt. Look care-
fully at the two files as GHex displays them (or at Figures 5.1 and 5.2) and try
to figure out the difference on your own before continuing.

At the end of each line of text in both files is a 0AH byte. The Windows version
of the file has a little something extra: a 0DH byte preceding each 0AH byte. The
Linux file lacks the 0DH bytes. As standardized as “plain” text files are, there
can be minor differences depending on the operating system under which the
files were created. As a convention, Windows text files (and DOS text files in
older times) mark the end of each line with two characters: 0DH followed by
0AH. Linux (and nearly all Unix- descendent operating systems) marks the end
of each line with a 0AH byte only.

As you’ve seen in using cat on the two files, Linux displays both versions
identically and accurately. However, if you were to take the Linux version of
the file and load it into the Windows Notepad text editor, you’d see something
a little different, as shown in Figure 5.3.

 Chapter 5 ■ The Right to Assemble 109

Notepad expects to see both the 0DH and the 0AH at the end of each text line
and doesn’t understand a lonely 0AH value as an end- of- line (EOL) marker.
So, it ignores the 0AH characters, and the words all run together on the same
line. (Remember from the GHex display that there are no space characters in
samlinux.txt.) Not all Windows software is that fussy. Many or most other
Windows utilities understand that 0AH is a perfectly good EOL marker.

Figure 5.2: Displaying a Windows text file with the GHex editor

Figure 5.3: A Linux text file displayed under Windows

110 Chapter 5 ■ The Right to Assemble

The 0DH and 0AH bytes at the end of each line highlight another example of
a “fossil” character. Long, long ago, in the teletype era, there were two separate
electrical commands built into teletype machines to handle the end of a text line
when printing a document: one command indexed the paper upward to the next
line, and the other returned the print head to the left margin. These were called
line feed and carriage return. Carriage return was encoded as 0DH and line feed
as 0AH. Many computer systems and software now ignore the carriage return
code, though a few (like Notepad) still require it for proper display of text files.

This small difference in text file standards won’t be a big issue for you as a
beginner. What’s important now is that you understand how to load a file into
the GHex editor (or whatever hex editor you prefer; there are many) and inspect
the file at the individual byte level.

You can do more with GHex than just look. Editing of a loaded file can be done
in either the center (binary) column or the right (text) column. You can bounce
the edit cursor between the two columns by pressing the Tab key. Within either
column, the cursor can be moved from byte to byte by using the stand- alone
arrow keys. GHex ignores the state of the Insert key. Whatever you type will
overwrite the characters at the cursor.

I shouldn’t have to say that once you’ve made useful changes to a file, save
it back to disk by clicking the Save button.

Interpreting Raw Data
Seeing a text file as a line of hexadecimal values is a good lesson in a fundamental
principle of computing: everything is made of bits, and bit patterns mean what we
agree they mean. The capital letter S that begins both of the two text files dis-
played in GHex is the hexadecimal number 53H. It is also the decimal number
83. At the bottom, it is a pattern of eight bits: 01010011. Within this file, we agree
among ourselves that the bit pattern 01010011 represents a capital letter S. In an
executable binary file, the bit pattern 01010011 might mean something entirely
different, depending on where in the file it happened to be and what other bit
patterns existed nearby in the file.

This is why the lower pane of the GHex editor exists. It takes the sequence of
bytes that begins at the cursor and shows you all the various ways that those
bytes may be interpreted. Remember that you won’t always be looking at text
files in a hex editor like GHex. You may be examining a data file generated by
a program you’re writing and that data file may represent a sequence of 32- bit
signed integers. Or that data file may represent a sequence of unsigned 16- bit
integers. Or that data file may represent a sequence of 64- bit floating- point num-
bers. Or it may be a mixture of any or all of the above. All you’ll see in the center
pane is a series of hexadecimal values. What those values represent depends
on what program wrote those values to the file and what those values stand for

 Chapter 5 ■ The Right to Assemble 111

by convention in the “real” world. Are they dollar amounts? Measurements?
Data points generated by some sort of instrument? That’s up to you— and to the
software that you use. The file, as with all files, is simply a sequence of binary
patterns stored somewhere that we display (using GHex) as hexadecimal values
to make them easier to understand and manipulate.

Bounce the cursor around the list of hex values in the center column, and
watch how the interpretations in the bottom pane change. Note that some of
the interpretations look at only one byte (8 bits); others two bytes (16 bits), four
bytes (32 bits), or eight bytes (64 bits). In every case the sequence of bytes being
interpreted begins at the cursor and goes toward the right. For example, with
the cursor at the first position in the file:

 ■ 53H may be interpreted as decimal value 83.

 ■ 53 61H may be interpreted as decimal 21345.

 ■ 53 61 6D 0AH may be interpreted as decimal 1398893834.

 ■ 53 61 6D 0A 77 61 73 0AH may be interpreted as the floating- point number
4.5436503864097793.

(The differences between a signed value and an unsigned value will have to
wait until later in this book.) The important thing to understand is that in all
cases it’s the same sequence of bytes at the same location within the file. All
that changes is how many bytes we look at and what kind of value we choose
to agree that sequence of bytes represent.

This may become clearer later when we begin writing programs that work
on numbers. And, speaking of numbers. . .

“Endianness”
In the lower- left corner of the bottom pane of the GHex editor is a check box
marked “Show little endian decoding.” By default the box is not checked, but in
almost all cases, it should be. The box tells GHex whether to interpret sequences
of bytes as numeric values in “big endian” order or in “little endian” order. If
you click and unclick the check box, the values displayed in the lower pane will
change radically, even if you don’t move the cursor at all. When you change the
state of that check box, you are changing the way that the GHex editor interprets
a sequence of bytes in a file as some sort of number.

If you recall from Chapter 4, a single byte can represent numbers from 0 to
255. If you want to represent a number larger than 255, you must use more than
one byte to do it. A sequence of two bytes in a row can represent any number
from 0 to 65,535. However, once you have more than one byte representing a
numeric value, the order of the bytes becomes crucial.

Let’s go back to the first two bytes in either of the two files we loaded earlier
into GHex. They’re nominally the letters S and a, but that is simply another

112 Chapter 5 ■ The Right to Assemble

interpretation. The hexadecimal sequence 53 61H may also be interpreted
as a number. The 53H appears first in the file. The 61H appears after it. (See
Figures 5- 1 and 5- 2.) So, taken together as a single 16- bit value, the two bytes
become the hex number 53 61H.

Or do they? Perhaps a little weirdly, it’s not that simple. See Figure 5.4. The
left part of the figure is a little excerpt of the information shown in the GHex
hex display pane for our example text file. It shows only the first two bytes and
their offsets from the beginning of the file. The right portion of the figure is the
same information but reversed left for right, as though seen in a mirror. It’s the
same bytes in the same order, but we see them differently. What we assumed at
first was that the 16- bit hex number 53 61H now appears to be 61 53H.

Did the number change? Not from the computer’s perspective. All that changed
was the way we printed it on the page of this book. By custom, people reading
English start at the left and read toward the right. The layout of the GHex hex
editor display reflects that. But certain other languages in the world, including
Hebrew and Arabic, start at the right margin and read toward the left. An Arabic
programmer’s first impulse might be to see the two bytes as 61 53H, especially
if they are using software designed for the Arabic language conventions, dis-
playing file contents from right to left.

It’s actually even more confusing than that. Western languages (including
English) are a little schizoid, in that they read text from left to right, but evaluate
numeric columns from right to left. The number 426 consists of four hundreds,
two tens, and six ones, not four ones, two tens, and six hundreds. By convention
here in the West, the least significant column is at the right, and the values of the
columns increase from right to left. The most significant column is the leftmost.
(I covered columnar numbers in depth in Chapter 2.)

Figure 5.4: Differences in display order versus differences in evaluation order

 Chapter 5 ■ The Right to Assemble 113

Confusion is a bad idea in computing. So whether a sequence of bytes is
displayed from left to right or from right to left, we all have to agree on which
of those bytes represents the least and which is the most significant figure in a
multibyte number. In a computer, we have two choices.

 ■ We can agree that the least significant byte of a multibyte value is at the
lowest offset and that the most significant byte is at the highest offset.

 ■ We can agree that the most significant byte of a multibyte is at the lowest
offset and the least significant byte is at the highest offset.

These two choices are mutually exclusive. A computer must operate using one
choice or the other; they cannot both be used at the same time at the whim of
a program. Furthermore, this choice is not limited to the operating system or
to a particular program. The choice is baked right into the silicon of the CPU
and its instruction set. A computer architecture that stores the least significant
byte of a multibyte value at the lowest offset in memory or registers is called
little endian. A computer architecture that stores the most significant byte of a
multibyte value at the lowest offset is called big endian.

Figure 5.5 should make this clearer. In big- endian systems, a multibyte value
begins with its most significant byte. In little- endian systems, a multibyte value
begins with its least significant byte. Think: big endian, big end first. Little
endian, little end first.

There are big differences at stake here! The two bytes that begin our example
text file represent the decimal number 21,345 in a big endian system but 24,915 in
a little endian system.

It’s possible to do quite a bit of programming without being aware of a sys-
tem’s “endianness.” If you program in higher- level languages like Visual Basic,
Pascal, or C, most of the consequences of endianness are hidden by the language
and the language compiler— at least until something goes wrong at a low level.
Once you start reading files at a byte level, you have to know how to read them.
And if you’re programming in assembly language, you had better be comfort-
able with endianness going in.

Reading hex displays of numeric data in big- endian systems is easy because the
digits appear in the order that Western people expect, with the most significant
digits on the left. In little- endian systems, everything is reversed, and the more
bytes used to represent a number, the more confusing it can become. Figure 5.6
shows the endian differences between evaluations of a 32- bit value. Little- endian
programmers have to read hex displays of multibyte values as though they were
reading Hebrew or Arabic, from right to left.

I won’t present a figure for a 64- bit quantity here because its complexity might
obscure its meaning. If you can “see” a 32- bit quantity in little- endian terms,
64 bits will be a short jump if it’s any jump at all.

114 Chapter 5 ■ The Right to Assemble

Remember that endianness differences apply not only to bytes stored in
files but also to bytes stored in memory. When (as I’ll explain later) you inspect
numeric values stored in memory with a debugger, all the same rules apply.

So, which “endianness” do Linux systems use? Both! (Though not at
the same time.) Again, it’s not about operating systems. The entire Intel
x86/x64 hardware architecture, from the lowly 8086 up to the latest Core i9,
is little endian. Other hardware architectures, like Motorola’s 68000 and the
original PowerPC, and most IBM mainframe architectures like System/370,
are big endian. More recent hardware architectures have been designed as
“ bi- endian,” meaning that they can be configured (with some difficulty) to
interpret numeric values one way or the other at the hardware level. Alpha,
MIPS, and Intel’s Itanium IA- 64 architecture are bi- endian.

If (as required for this book) you’re running Linux on an ordinary Intel or
AMD x64 CPU, you’ll be little endian, and you should check the box on the
GHex editor labeled “Show little- endian decoding.” Other programming tools
may offer you the option of selecting big- endian display or little- endian display.
Make sure that whatever tools you use, you have the correct option selected.

Figure 5.5: Big endian versus little endian for a 16- bit value

 Chapter 5 ■ The Right to Assemble 115

Linux, of course, can be made to run on any hardware architecture. So, using
Linux doesn’t guarantee that you will be facing a big- endian or little- endian
system, and that’s one reason I’ve gone on at some length about endianness
here. You have to know from studying the system what endianness is currently
in force, though you can learn it by inspection: store a 32- bit integer to memory
and then look at it with a debugger. If you know your hex (and you had better!),
the system’s endianness will jump right out at you.

Text In, Code Out

From a high level, all programming is a matter of processing files. The goal is
to take one or more human- readable text files and process them to create an
executable program file that you can load and run under whatever operating
system and hardware architecture that you’re using. For this book, that would be
Linux on an Intel x64 CPU, but the general process that I’ll describe in this section
applies to almost any kind of programming under almost any operating system.

Programming as a process varies wildly by language and by the set of tools
that support the language. In modern graphical interactive development envi-
ronments such as Visual Basic, Delphi, and Lazarus, much of file processing

Figure 5.6: Big endian versus little endian for a 32- bit value

116 Chapter 5 ■ The Right to Assemble

is done “behind the scenes,” while you, the programmer, are staring at one or
more files on display and pondering your next move. In assembly language
that’s not the case. Most assembly language programmers use a much simpler
tool set and explicitly process the files as sequences of discrete steps entered
from a command line or from a script file.

However it’s done, the general process of converting text files to binary files
is one of translation, and the programs that do it are as a class called translators.
A translator is a program that accepts human- readable source files and generates
some kind of binary file. The output binary file could be an executable program
file that the CPU can understand, or it could be a font file, a compressed binary
data file, or any of a hundred other types of binary file.

Program translators are translators that generate machine instructions that
the CPU can understand. A program translator reads a source code file line
by line and writes a binary file of machine instructions that accomplishes the
computer actions that the source code file describes. This binary file is called
an object code file.

A compiler is a program translator that reads in source code files written in
higher- level languages such as C or Pascal and writes out object code files.

An assembler is a special type of compiler. It, too, is a program translator
that reads source code files and outputs object code files for execution by the
CPU. However, an assembler is a translator designed specifically to translate
what we call assembly language into object code. In the same sense that a lan-
guage compiler for Pascal or C compiles a source code file to an object code
file, we say that an assembler assembles an assembly language source code file
to an object code file. The process, one of translation, is similar in both cases.
Assembly language, however, has an overwhelmingly important characteristic
that sets it apart from compilers: total control over the object code.

Assembly Language
Some people define assembly language as a language in which one line of
source code generates one machine instruction. This has never been literally
true since some lines in an assembly language source code file are instructions
to the translator program (rather than to the CPU) and do not generate machine
instructions at all.

Here’s a better definition:

Assembly language is a translator language that allows total control over
every individual machine instruction generated by the translator program.
Such a translator program is called an assembler.

Pascal or C compilers, on the other hand, make a multitude of invisible and
inalterable decisions about how a given language statement will be translated

 Chapter 5 ■ The Right to Assemble 117

into a sequence of machine instructions. For example, the following single Pascal
statement assigns a value of 42 to a numeric variable called I:

I := 42;

When a Pascal compiler reads this line, it outputs a series of four or five machine
instructions that take the literal numeric value 42 and store it in memory at a
location encoded by the name I. Normally, you the Pascal programmer have no
idea what these four or five instructions actually are, and you have utterly no
way of changing them, even if you know a sequence of machine instructions
that is faster and more efficient than the sequence that the compiler uses. The
Pascal compiler has its own way of generating machine instructions, and you
have no choice but to accept what it writes to its object code file to accomplish
the work of the Pascal statements you wrote in the source code file.

To be fair, modern high- level language compilers generally implement
something called in- line assembly, which allows a programmer to “take back”
control from the compiler and “drop in” a sequence of machine instructions of
their own design. A fair amount of modern assembly language work is done
this way, but it’s actually considered an advanced technique because you first
have to understand how the compiler generates its own code before you can
“do better” using in- line assembly. (And don’t assume, as many do, that you
can do better than the compiler without a great deal of study and practice!
Twenty- first century compilers are mighty good at generating efficient code!)

An assembler sees at least one line in the source code file for every machine
instruction that it generates. It sees more lines than that, and the additional lines
handle various other things, but every machine instruction in the final object
code file is controlled by a corresponding line in the source code file.

Each of the CPU’s many machine instructions has a corresponding mnemonic
in assembly language. As the word suggests, these mnemonics began as devices
to help programmers remember a particular binary machine instruction. For
example, the mnemonic for binary machine instruction FCH, which clears the
direction flag, is CLD— which is a country mile easier to remember than FCH. And
that’s for a 1- byte machine instruction. Many machine instructions with simple
mnemonics assemble to four or more bytes.

When you write your source code file in assembly language, you will arrange
a series of mnemonics, typically one mnemonic per line in the source code text
file. A portion of an x64 source code file might look like this:

mov rax,1 ; 01H specifies the sys_write kernel call
mov rdi,1 ; 01H specifies file descriptor stdout
mov rsi,Message ; Load starting address of display string into RSI
mov rdx,MessageLength ; Load the number of chars to display into RDX
syscall ; Make the kernel call

118 Chapter 5 ■ The Right to Assemble

Here, the words mov and syscall at the left margin are the mnemonics. The
numbers and textual items to the immediate right of each mnemonic are that
mnemonic’s operands. There are various kinds of operands for various machine
instructions, and a few instructions (such as CLD or SYSCALL) use no operands at all.

Taken together, a mnemonic and its operands are called an instruction. (Words
to the right of the semicolons are comments and are not parts of the instruc-
tions.) Instruction is the word I’ll be using most of the time in this book to
indicate the human- readable proxy of one of the CPU’s pure binary machine
code instructions. To talk about the binary code specifically, we’ll always refer
to a machine instruction.

The assembler’s most important job is to read lines from the source code file
and write machine instructions to an object code file. See Figure 5.7.

Comments
To the right of each instruction (see Figure 5.7) is text starting with a semicolon.
This text is called a comment, and its purpose should be obvious: to cast some
light on what the associated assembly language instruction is for. The instruction
MOV RAX,RBX places the current value of register RBX into register RAX— but
why? What is the instruction accomplishing in the context of the assembly lan-
guage program that you’re writing? Comments provides the why— and you
provide the comments.

Structurally, a comment begins with the first semicolon on a line and continues
toward the right to the EOL marker at the end of that line. A comment does not
need to be on the same line with an instruction. A lot of useful description in
assembly language programs exists in comment blocks, which are sequences of

Figure 5.7: What the assembler does

 Chapter 5 ■ The Right to Assemble 119

lines consisting solely of comment text. Each line in a comment block begins
with a semicolon at the left margin.

Far more than in any other programming language, comments are critical to
the success of your assembly language programs. My own recommendation
is that every instruction in your source code files should have a comment to its
right. Furthermore, every group of instructions that act together in some way
should be preceded by a comment block that explains that group of instructions
“from a high level” and how they work together.

Comments are one area where understanding how a text file is structured is
important— because in assembly language, comments end at the ends of lines. In
most other languages such as Pascal and C, comments are placed between pairs
of comment delimiters like (* and *), and EOL markers at line ends are ignored.

In short, comments begin at semicolons and end at EOL.
Slightly weird note: As I wrote this edition in 2022, I encountered a bug in the

SASM IDE that violated the “rules” of comments. The word section in a com-
ment would sometimes cause SASM to crash. That’s a bug, I reported it, and
eventually it will be fixed. If you’re using SASM and it crashes, check to see if
you use the word section in a comment somewhere.

Beware “Write- Only” Source Code!
This is as good a time as any to point out a serious problem with assembly
language. The instructions themselves are almost vanishingly terse, and doing
anything useful takes a lot of them. And whereas each instruction states (tersely)
what it does, there is very little in the source code itself to indicate a context
within which that instruction operates. Name things with an eye toward hint-
ing at what those named items do. This includes procedure names, code labels,
variables, and equates. TheBuffer tells us nothing about what that buffer is
up to. CharInputBuffer at least suggests that it’s involved in character input.

Indicative naming (as I call it) helps a little, but comments do most of the heavy
lifting when it comes to creating context. Without context, assembly language
starts to turn into what we call “write- only” code. It can happen like this: On
November 1, in the heat of creation, you crank out about 300 instructions in a
short utility program that does something important. You go back on January 1
to add a feature to the program— and discover that you no longer remember how
it works. The individual instructions are all correct, and the program assembles
and runs as it should, but knowledge of how it all came together and how it
works from a high level have vanished under the weight of Christmas mem-
ories and eight weeks of doing other things. In other words, you wrote it, but
you can no longer read it nor change it. Voilà! Write- only code.

Although it’s true that comments do take up room in your source code disk
files, they are not copied into your executable code files, and a program with

120 Chapter 5 ■ The Right to Assemble

loads of comments in its source code runs exactly as fast as the same program
with no comments at all.

You will be making a considerable investment in time and energy when you
write assembly language programs— far more than in “halfway to heaven” lan-
guages like C and Pascal and unthinkably more than in “we do it all for you”
IDEs like Delphi and Lazarus. It’s more difficult than just about any other way of
writing programs, and if you don’t comment, you may end up having to simply
toss out hundreds of lines of inexplicable code and write it again, from scratch.

Work smart. Comment till you drop.

Object Code, Linkers, and Libraries
Assemblers read your source code files and generate an object code file contain-
ing the machine instructions that the CPU understands, plus any data you’ve
defined in the source code.

There’s no reason at all why an assembler could not read a source code file
and write out a finished, executable program as its object code file, but this is
almost never done. The assembler I’m teaching in this book, NASM, can do that
for DOS programs and can write out COM executable files for the real mode
flat model. More modern operating systems like Linux and Windows are too
complex for that, and in truth, there’s no real payoff in such one- step assembly
except when you’re first learning to write assembly language.

So, the object code files produced by modern assemblers are a sort of
intermediate step between source code and executable program. This intermediate
step is a type of binary file called an object module or simply an object code file.

Object code files cannot themselves be run as programs. An additional step,
called linking, is necessary to turn object code files into executable program files.

The reason for object code files as intermediate steps is that a single large
source code file may be cut up into numerous smaller source code files to keep
the files manageable in size and complexity. The assembler assembles the var-
ious fragments separately, and the several resulting object code files are then
woven together by the linker into a single executable program file. This process
is shown in Figure 5.8.

When you’re first learning assembly programming, it’s unlikely that you’ll
be writing programs spread out across several source code files. This may make
the linker seem extraneous, since there’s only one piece to your program and
thus nothing to link together. As with much else in programming (especially
assembly programming) it’s not that simple. The linker handles a critical step
on the path from source code to executable program: It converts object code
generated by the assembler into an executable program. For simple programs
there may be only one object code file to convert. For larger and more sophis-
ticated programs, there are likely to be several; nay, many.

 Chapter 5 ■ The Right to Assemble 121

Remember that the linker does more than link. It doesn’t just stitch lumps of
object code together into a single executable file. It makes sure that function
calls out of one object module will arrive at the target object module and that
all the many memory references actually reference what they’re supposed to
reference. The assembler’s job is obvious; the linker’s job is subtle. Both are
necessary to produce a finished, working executable file.

Besides, you’ll quickly get to the point where you begin extracting frequently
used portions of your programs into your own personal code libraries. There
are two reasons for doing this.

 ■ You can move tested, proven routines into separate libraries and link them
into any program you write that might need them. This way, you can
reuse code over and over again and not build the same old wheels every
time you begin a new programming project in assembly language.

 ■ Once portions of a program are tested and found to be correct, there’s no
need to waste time assembling them over and over again along with

Figure 5.8: The assembler and linker

122 Chapter 5 ■ The Right to Assemble

newer, untested portions of a program. Once a major program gets into
the thousands of lines of code (and you’ll get there sooner than you might
think!), you can save a significant amount of time by assembling only the
portion of a program that you are currently working on and linking the
finished portions into the final program without re- assembling every single
part of the whole thing every time you assemble any part of it.

The linker’s job is complex and not easily described. Each object module may
contain the following:

 ■ Program code including named procedures

 ■ References to named procedures lying outside the module

 ■ Named data objects like numbers and strings with predefined values

 ■ Named data objects that are just empty space “set aside” for the program’s
use later

 ■ References to data objects lying outside the module

 ■ Debugging information

 ■ Other, less common odds and ends that help the linker create the execut-
able file

To process several object modules into a single executable module, the linker
must first build an index called a symbol table, with an entry for every named
item in every object module it links, with information on what name (called
a symbol) refers to what location within the module. Once the symbol table is
complete, the linker builds an image of how the executable program will be
arranged in memory when the operating system loads it. This image is then
written to disk as the executable file.

The most important thing about the image that the linker builds relates
to addresses. Object modules are allowed to refer to symbols in other object
modules. During assembly, these external references are left as holes to be filled
later— naturally enough, because the module in which these external symbols
exist may not have been assembled or even written yet. As the linker builds an
image of the eventual executable program file, it learns where all of the sym-
bols are located within the image and thus can drop real addresses into all of
the external reference holes.

Debugging information is, in a sense, a step backward. Portions of the source
code, which was all stripped out early in the assembly process, are put back
into the object module by the assembler. These portions of the source code
are mostly the names of data items and procedures, and they’re embedded in
the object file to make it easier for the programmer (you!) to see the names of
data items when you debug the program. (I’ll go into the debugging concept
more deeply later.) Debugging information is optional; that is, the linker does

 Chapter 5 ■ The Right to Assemble 123

not need it to build a proper executable file. You choose to embed debugging
information in the object file while you’re still working on the program. Once
the program is finished and debugged to the best of your ability, you run the
linker one more time, without requesting debugging information. Linking a
thoroughly debugged program without debugging information is more like
“tidying up” by making the finished executable file smaller and thus easier to
distribute to others.

Relocatability
Primordial microcomputers like 8080 systems running CP/M- 80 had a simple
memory architecture. Programs were written to be loaded and run at a specific
physical memory address. For CP/M, this was 0100H. The programmer could
assume that any program would start at 0100H and go up from there. Memory
addresses of data items and procedures were actual physical addresses, and
every time the program ran, its data items were loaded and referenced at pre-
cisely the same place in memory.

This all changed with the arrival of the 8086, and 8086- specific operating
systems such as CP/M- 86 and PC DOS. Improvements in the Intel architecture
introduced with the 8086 made it unnecessary for the program to be assembled
for running at any specific physical memory address. This feature is called
relocatability and is a necessary part of any modern operating system, especially
when multiple programs may be running at once. Handling relocatability is
complex, and I don’t have room to explain it in depth here. Once you’re more
comfortable with the assembly language process, it will become a worthy topic
for further research.

The Assembly Language Development Process

As you can see, there are a lot of different file types and a fair number of pro-
grams involved in the process of writing, assembling, and testing an assembly
language program. The process itself sounds more complex than it is. I’ve drawn
you a map to help you keep your bearings during the discussions in the rest of
this chapter. Figure 5.9 shows the most common form that the assembly lan-
guage development process takes, in a “view from a height.” At first glance it
may look like a map of the LA freeway system, but in reality the flow is fairly
straightforward, and you’ll do it enough so that it will become second nature
in just a couple of evenings spent hammering at a program or two.

In a nutshell, the process cooks down to this:

1. Create your assembly language source code file in a text editor.

2. Use your assembler to create an object module from your source code file.

124 Chapter 5 ■ The Right to Assemble

3. Use your linker to convert the object module (and any previously assem-
bled object modules that are part of the project) into a single executable
program file.

4. Test the program file by running it, using a debugger if necessary.

5. Go back to the text editor in step 1, fix any mistakes you may have made
earlier, and write new code as necessary.

6. Repeat steps 1–5 until done.

Figure 5.9: The assembly language development process

 Chapter 5 ■ The Right to Assemble 125

The Discipline of Working Directories
Programmers generally count from 0, and if we’re counting steps in the assembly
language development process, step 0 consists of setting up a system of direc-
tories on your Linux PC to manage the files you’ll be creating and processing
as you go.

There’s a rule here that you need to understand and adopt right up front: store
only one project in a directory. That is, when you want to write a Linux program
called TextCaser, create a directory called TextCaser (or something else that won’t
confuse you) and keep nothing in that directory but files directly related to the
TextCaser project. If you have another project in the works called TabExploder,
give that project its own separate directory. This is good management practice,
first of all, and prevents your makefiles from getting confused (more on this
later when I take up make and makefiles).

I recommend that you establish a directory scheme for your assembly
development projects, and my experience suggests something like this: Create
a directory under your Linux Home directory called Assembly (or make up some
other suitably descriptive name), and create your individual project directories
as subdirectories under that overall assembly language directory.

By the way, it’s okay to make the name of a directory the same as the name
of the main ASM file for the project; that is, textcaser.asm is perfectly happy
living in a directory called textcaser.

At this point, if you haven’t already downloaded and unpacked the listings
archive for this book, I suggest you do that— we’re going to need one of the files
in the archive for the demonstration in this section. The file is called asmsbs4e
.zip, and it can be found here:

www.copperwood.com/pub

or, alternatively, here:

www.junkbox.com/pub

(I have these two domains on two different Internet hosting services so that
at least one of them will always be up and available. The file is identical, which-
ever site you download it from.)

When unpacked, the listings archive will create individual project directories
under whatever parent directory you choose. I recommend unpacking it under
your Assembly directory, or whatever you end up naming it.

A short warning to Windows users coming to Linux for the first time: Linux
identifiers are case- sensitive. That means textcaser and Textcaser are two dif-
ferent directories and could be used to hold two entirely separate projects.

As you might imagine, that’s a bad idea. Choose folder names and filenames
so that they follow some sort of schema, like CamelCase. Or just leave every-
thing in lowercase, which is how it’s generally done throughout the Unix world.

http://www.copperwood.com/pub
http://www.junkbox.com/pub

126 Chapter 5 ■ The Right to Assemble

Editing the Source Code File
You begin the actual development process by typing your program code into
a text editor. Which text editor doesn’t matter very much, and there are dozens
of them to choose from. In this book I’m going to recommend an interactive
development environment (IDE) that contains a text editor, a make facility, and a
front end to gdb, the Linux debugger. The only important thing to keep in mind
is that word processors like Microsoft Word and Open Office Writer embed a
lot of extra binary data in their document files, above and beyond the text that
you type. This binary data controls things such as line spacing, fonts and font
size, page headers and footers, and many other things that your assembler has
no need for and no clue about. Assemblers are not always good at ignoring such
data, which may cause errors at assembly time.

As for how you come up with what you type in, well, that’s a separate question
and one that I give most of a short chapter to later. You will certainly have a
pile of notes, probably some pseudocode, some diagrams, and perhaps a formal
flowchart. These can all be done on your screen with software utilities or with
a pencil on a paper quadrille pad.

Assembly language source code files are almost always saved to disk with an
.asm file extension. In other words, for a program named MyProg, the assembly
language source code file would be named MyProg.asm.

Assembling the Source Code File
As you can see from the flow in Figure 5.9, the text editor produces a source
code text file with an .asm extension. This file is then passed to the assembler
program itself for translation to an object module file. Under Linux and with
the NASM assembler that I’m focusing on in this book, the file extension for
the object code file will be .o.

When you invoke the assembler from the command line, you provide it with
the name of the source code file that you want it to process. Linux will load the
assembler from disk and run it, and the assembler will open the source code file
that you named on the command line. Almost immediately afterward (espe-
cially for the small learning programs that you’ll be poking at in this book),
it will create an object file with the same name as the source file, but with an
.o file extension.

As the assembler reads lines from the source code file, it will examine them,
build a symbol table summarizing any named items in the source code file,
construct the binary machine instructions that the source code lines represent,
and then write those machine instructions and symbol information to the object
module file. When the assembler finishes and closes the object module file, its
job is done, and it terminates. On modern PCs and with programs representing
fewer than 500 lines of code, this happens in a second or (sometimes much) less.

 Chapter 5 ■ The Right to Assemble 127

Assembler Errors
Note that the previous paragraphs describe what happens if the .asm file is correct.
By correct, I mean that the file is completely comprehensible to the assembler
and can be translated into machine instructions without the assembler getting
confused. If the assembler encounters something it doesn’t understand when
it reads a line from the source code file, we call the misunderstood text an error,
and the assembler displays an error message.

For example, the following line of assembly language will confuse the assem-
bler and prompt an error message:

mov rax,rvx

The reason is simple: there’s no such thing as rvx. What came out as rvx was
actually intended to be rbx, which is the name of a CPU register. (The V key is
right next to the B key and can be struck by mistake without your fingers nec-
essarily knowing that they erred. Done that!)

Typos like this are by far the easiest kind of error to spot. Others that take
some study to find involve transgressions of the assembler’s many rules— which
in most cases are the CPU’s rules. For example:

mov eax,rbx

At first glance this looks like it should be correct, since EAX and RBX are
both real registers. However, on second thought, you may notice that EAX is a
32- bit register, and RBX is a 64- bit register. You are not allowed to copy a 64- bit
register into a 32- bit register.

You don’t have to remember the instruction operand details here; we’ll go into
the rules later when we discuss the individual instructions themselves in more
detail. For now, simply understand that some things that may look reasonable
to you (especially as a beginner) are simply against the rules for technical rea-
sons and are considered errors.

And these are easy ones. There are much, much more difficult errors that
involve inconsistencies between two otherwise legitimate lines of source code.
I won’t offer any examples here, but I wanted to point out that errors can be
truly ugly, hidden things that can take a lot of study and torn hair to find. Toto,
we are definitely not in BASIC anymore....

The error messages vary from assembler to assembler, and they may not always
be as helpful as you might hope. The error NASM displays upon encountering
the evx typo follows:

testerr.asm:20: symbol 'evx' undefined

This is pretty plain, assuming that you know what a “symbol” is. And it
tells you where to look: the “20” is the line number where it noticed the error.

128 Chapter 5 ■ The Right to Assemble

The error message NASM offers when you try to load a 64- bit register into a
32- bit register is far less helpful.

testerr.asm:22: invalid combination of opcode and operands

This lets you know you’re guilty of performing illegal acts with an opcode
and its operands, but that’s it. You have to know what’s legal and what’s illegal
to really understand what you did wrong. As in running a stop sign, ignorance
of the law is no excuse, and unlike the local police department, the assembler
will catch you every time.

Assembler error messages do not absolve you from understanding the CPU’s or the
assembler’s rules.

This will become clear the first time you sit down to write your own assem-
bly code. I hope I don’t frighten you too terribly by warning you that for more
abstruse errors, the error messages may be almost no help at all.

You may make (or will make— let’s get real) more than one error in writing
your source code files. The assembler will display more than one error message
in such cases, but it may not necessarily display an error for every error present
in the source code file. At some point, multiple errors confuse the assembler so
thoroughly that it cannot necessarily tell right from wrong anymore. While it’s
true that the assembler reads and translates source code files line by line, there
is a cumulative picture of the final assembly language program that is built up
over the course of the whole assembly process. If this picture is shot too full of
errors, in time the whole picture collapses.

The assembler will terminate, having printed numerous error messages. Start
at the first one, make sure you understand it (take notes!), and keep going. If
the errors following the first one don’t make sense, fix the first one or two and
assemble again.

Back to the Editor
The way to fix errors is to load the offending source code file back into your
text editor and start hunting up errors. This loopback is shown in Figure 5.9.
It may well be the highway you see the most of on this particular road map.

The assembler error message will almost always contain a line number. Move
the cursor to that line number and start looking for the false and the fanciful. If
you find the error immediately, fix it and start looking for the next. Assuming
that you’re using a Linux graphical desktop like Cinnamon, it’s useful to keep
the terminal window open at the same time as your editor window so that
you don’t have to scribble down a list of line numbers on paper or redirect the
compiler’s output to a text file. With a 20- inch monitor or better, there’s plenty
of room for multiple windows at once.

 Chapter 5 ■ The Right to Assemble 129

There is a way to make the NASM assembler write its error messages to a
text file during the assembly process, and we’ll talk about that in Chapter 6.

Assembler Warnings
As taciturn a creature as an assembler may appear to be, it will sometimes
display warning messages during the assembly process. These warning messages
are a monumental puzzle to beginning assembly language programmers: are
they errors, or aren’t they? Can I ignore them, or should I fool with the source
code until they go away?

Alas, there’s no crisp answer. Sorry about that.
Assembly- time warnings are the assembler acting as experienced consultant

and hinting that something in your source code is a little dicey. This something
may not be serious enough to cause the assembler to stop assembling the file,
but it may be serious enough for you to take note and investigate. For example,
NASM will sometimes flag a warning if you define a named label but put no
instruction after it. That may not be an error, but it’s probably an omission on
your part, and you should take a close look at that line and try to remember
what you were thinking when you wrote it. (This may not always be easy, when
it’s 3 a.m. or three weeks after you originally wrote the line in question.)

If you’re a beginner doing ordinary, 100- percent- by- the- book sorts of things,
you should crack your assembler reference manual and figure out why the
assembler is tut- tutting you. Ignoring a warning may cause peculiar bugs to
occur later during program testing. Or, ignoring a warning message may have
no undesirable consequences at all. I feel, however, that it’s always better to
know what’s going on. Follow this rule:

Ignore an assembler warning message only if you know exactly what it means.

In other words, until you understand why you’re getting a warning message,
treat it as though it were an error message. Only once you fully understand
why it’s there and what it means should you try to make the decision whether
to ignore it.

In summary, the first part of the assembly language development process (as
shown in Figure 5.9) is a loop. You must edit your source code file, assemble it,
and return to the editor to fix errors until the assembler spots no further errors.
You cannot continue until the assembler gives your source code file a clean bill of health,
that is, without errors. I also recommend studying any warnings offered by the
assembler until you understand them clearly. Fixing the condition that triggered
the warning is always a good idea, especially when you’re first starting out.

When no further errors are found, the assembler will write an .o file to disk,
and you will be ready to go on to the next step.

130 Chapter 5 ■ The Right to Assemble

Linking the Object Code File

As I explained a little earlier in this chapter, the linking step is nonobvious and a
little mysterious to newcomers, especially when you have only one object code
module in play, like the simple examples in this book. It is nonetheless crucial,
and whereas it was possible in ancient times to assemble a simple DOS assembly
language program direct to an executable file without a linking step, the nature
of modern operating systems like Linux and Windows makes this impossible.

The linking step is shown on the right half of Figure 5.9. In the upper- right
corner is a row of .o files. These .o files were assembled earlier from correct
.asm files, yielding object module files containing machine instructions and data
objects. When the linker links the .o file produced from your in- progress .asm
file, it adds in the previously assembled .o files. The single executable file that
the linker writes to disk contains the machine instructions and data items from
all of the .o files that were handed to the linker when the linker was invoked.

Once the in- progress .asm file is completed and made correct, its .o file can
be put up on the rack with the others and added to the next in- progress .asm
source code file that you work on. Little by little you construct your application
program out of the modules you build and test one at a time.

An important bonus is that some of the procedures in an .o module may be
used in a future assembly language program that hasn’t even been started yet.
Creating such libraries of “toolkit” procedures can be an extraordinarily effec-
tive way to save time by reusing code over and over, without even passing it
through the assembler again!

There are numerous assemblers in the world (though only a few really good
ones) and plenty of linkers as well. Linux comes with its own linker, called ld.
(The name is actually short for “load,” and “loader” was what linkers were orig-
inally called, in the First Age of Unix, back in the 1970s.) We’ll use ld for some
of the simplest programs in this book, but in later chapters, we’re going to take
up a Linux peculiarity and use a C compiler for a linker. . .sort of.

Like I said, we’re not doing BASIC anymore.
As with the assembler, invoking the linker is generally done from the Linux

terminal command line. Linking multiple files involves naming each file on
the command line, along with the desired name of the output executable file.
You may also need to enter one or more command- line switches, which give
the linker additional instructions and guidance. Few of these will be of interest
while you’re a beginner, and I’ll discuss the ones you need along the way.

You need to know how invoking the ld linker works, but once we get to the
IDE called SASM, the IDE will invoke the linker behind the scenes and make
it unnecessary to do so much typing into the terminal window command line.

 Chapter 5 ■ The Right to Assemble 131

Linker Errors
As with the assembler, the linker may discover problems as it weaves multiple
.o files together into a single executable program file. Linker errors are subtler
than assembler errors and are usually harder to find. Fortunately, they are less
common and not as easy to make.

As with assembler errors, linker errors are “fatal;” that is, they make it impos-
sible to generate the executable file, and when the linker encounters one, it will
terminate immediately. When you’re presented with a linker error, you have to
return to the editor and figure out what the problem is. Once you’ve identified
the problem (or think you have) and changed something in the source code file
to fix the problem, you must re- assemble and then re- link the program to see
if the linker error went away. Until it does, you have to loop back to the editor,
try something else, and assemble/link once more.

If possible, avoid doing this by trial and error. Read your assembler and linker
documentation. Understand what you’re doing. The more you understand
about what’s going on within the assembler and the linker, the easier it will be
to determine what’s giving the linker fits.

(Hint: It’s almost always you!)

Testing the EXE File
If you receive no linker errors, the linker will create a single executable file that
contains all the machine instructions and data items present in all of the .o files
named on the linker command line. The executable file is your program. You can
run it to see what it does by simply typing its path on the terminal command
line and pressing Enter.

Again, if you’re familiar with Linux, you already know this, but executable
programs in Linux do not have an .exe suffix nor any other suffix at all. It’s just
the name of the program.

The Linux path comes into play here, though if you have any significant
experience with Linux at all, you already know this. The terminal window is a
purely textual way of looking at your working directory, and all of the familiar
command- line utilities will operate on whatever is in your working directory.
However, remember that your working directory is not in your path unless you
explicitly put it there, and although people argue about this and always have,
there are good reasons for not putting your working directory into your path.

When you execute a program from the terminal window command line, you
must tell Linux where the program is by prefixing the name of the program
with the ./ specifier, which simply means “in the working directory.” This is

132 Chapter 5 ■ The Right to Assemble

unlike DOS, in which whatever directory is current is also on the search path
for executable programs. A command- line invocation of your program under
Linux might look like this:

./myprogram

This is when the fun really starts.

Errors vs. Bugs
When you launch your program in this way, one of two things will happen: the
program will work as you intended it to, or you’ll be confronted with the effects
of one or more program bugs. A bug is anything in a program that doesn’t work
the way you intended. This makes a bug somewhat more subjective than an
error. One person might think red characters displayed on a blue background
is a bug, while another might consider it a clever New Age feature and be quite
pleased. Settling bug- versus- feature conflicts like this is up to you. You should
have a clear idea of what the program is supposed to do and how it works,
backed up by a written spec or other documentation of some kind, and this is
the standard by which you judge a bug.

Characters in odd colors are the least of it. When working in assembly lan-
guage, it is extremely common for a bug to abort the execution of a program
with little or no clue on the display as to what happened. If you’re lucky, the
operating system will spank your executable and display an error message. Just
as an example, this is one you will see sooner or later, probably much sooner
than later:

Segmentation Fault

Such an error is called a runtime error to differentiate it from assembler errors
and linker errors. Most often, your program will not annoy the operating system.
It just won’t do what you expect it to do, and it may not say much in the course
of its failure.

Fortunately, Linux is a rugged operating system designed to take buggy pro-
grams into account, and it is extremely unlikely that one of your programs will
“blow the machine away,” as happened so often in the DOS era decades ago.

All that being said, and in the interest of keeping the Babel effect at bay, I think
it’s important here to carefully draw the distinction between errors and bugs.
An error is something wrong with your source code file that either the assem-
bler or the linker kicks out as unacceptable. An error prevents the assembly or
link process from going to completion and will thus prevent a final executable
file from being produced.

A bug, by contrast, is a problem discovered during the execution of a program.
Bugs are not detected by either the assembler or the linker. Bugs can be benign,
such as a misspelled word in a screen message or a line positioned on the wrong

 Chapter 5 ■ The Right to Assemble 133

screen row; or a bug can force your program to abort prematurely. If your
program attempts to do certain forbidden things, Linux will terminate it and
present you with a message. We call these runtime errors, but they are actually
caused by bugs.

Both errors and bugs require that you go back to the text editor and change
something in your source code file. The difference here is that most errors from
the assembler are reported with a line number telling you precisely where to
go in your source code file to fix the problem. Bugs, on the other hand, are left
as an exercise for the student. You have to hunt them down, and neither the
assembler nor the linker will give you many clues.

Are We There Yet?
Figure 5.9 announces the exit of the assembly language development process
as happening when your program works perfectly. A serious question is this:
how do you know when it works perfectly? Simple programs assembled while
learning the language may be easy enough to test in a minute or two. But any
program that accomplishes anything useful at all will take hours of testing at
minimum. A serious and ambitious application could take weeks— or months— to
test thoroughly. A program that takes various kinds of input values and pro-
duces various kinds of output should be tested with as many different com-
binations of input values as possible, and you should examine every possible
output every time.

Even so, finding every last bug in a nontrivial program is considered by some
to be an impossible ideal. Perhaps— but you should strive to come as close as you
can, in as efficient a fashion as you can manage. I’ll have more to say about bugs
and debugging in the following section and throughout the rest of this book.

Debuggers and Debugging
The final— and almost certainly the most painful— part of the assembly lan-
guage development process is debugging. Debugging is simply the systematic
process by which bugs are located and corrected. A debugger is a utility program
designed specifically to help you locate and identify bugs.

Debuggers are among the most mysterious and difficult- to- understand of all
classes of software. Debuggers are part X- ray machine and part magnifying glass.
A debugger loads into memory with your program and remains in memory, side
by side with your program. The debugger then puts tendrils down into your
program and enables some truly peculiar things to be done.

One of the problems with debugging computer programs is that they operate
so quickly. Millions— and sometimes billions— of machine instructions can be
executed in a single second, and if one of those instructions isn’t quite right, it’s

134 Chapter 5 ■ The Right to Assemble

past and gone long before you can identify which one it was by staring at the
screen. A debugger allows you to execute the machine instructions in a program
one at a time, allowing you to pause indefinitely between each instruction to
examine the effects of the last instruction that executed. The debugger also lets
you look at the contents of named data items, as well as the values stored in
any CPU registers, during that pause between instructions. Some debuggers
will give you a “hexdump- style” window showing the memory in which your
program is running.

Debuggers can do all of this mysterious stuff because they are necessary, and
the CPU has special features baked into its silicon to make debuggers possible.
How they work internally is outside the scope of this book, but it’s a fascinating
business, and once you’re comfortable with x64 CPU internals, I encourage you
to research it further. The more you know, the better you’ll do.

Most debuggers have the ability to display the source code with the machine
instructions so that you can see which lines of source code text correspond to
which binary opcodes. Others allow you to locate a program variable by name
rather than simply by memory address.

Many operating systems are shipped with a debugger. DOS and early ver-
sions of Windows were shipped with DEBUG, and in earlier editions of this
book I explained DEBUG in detail. Linux has a powerful debugger called gdb,
and I’ll introduce it in Chapter 6.

Taking a Trip Down Assembly Lane

You can stop asking, “Are we there yet?” where “there” means “ready to build
an actual working program.” We are indeed there, and for the rest of this chapter
we’re going to take a simple program and run it through the process that I drew
out graphically in Figure 5.9.

You don’t have to write the program yourself. I’ve explained the process,
but I haven’t gone into any of the machine instructions or the CPU registers in
detail. So I’ll provide you with a simple example program and give you enough
explanation of its workings so that it’s not a total mystery. In the chapters that
follow, we’ll look at machine instructions and their operation in great detail.
In the meantime, you must understand the assembly language development
process, or knowing how the instructions work won’t help you in the slightest.

Installing the Software
One of the fantastic things about Linux is the boggling array of software that can
be had for it, nearly all of it completely free of charge. If you’ve used Linux for
any length of time, you’ve probably encountered products such as LibreOffice,

 Chapter 5 ■ The Right to Assemble 135

Gimp, Scribus, and Calibre. A few of these are preinstalled when you install the
operating system. The rest are obtained through the use of a package manager.
A package manager is a catalog program that lives on your PC and maintains
a list of all the free software packages that are available for Linux. You choose
the ones you want, and the package manager will then go online, download
them from their online homes (called repositories in the Linux universe), and
then install them for you.

On recent versions of Linux Mint, the package manager is called Software
Manager. You open it by clicking its icon when you click the Mint icon in the
lower- left corner of the display. The Software Manager icon is a rounded white
square with a circle at its center and nine dots inside the circle. Figure 5.10 shows
Software Manager’s initial window. As you can see, most of it could be consid-
ered “advertising,” though in this case for completely free products.

Needless to say, you need an active Internet connection to use Linux Mint
Software Manager. If you’re coming from the Windows world, it’s good to
understand that under Linux you don’t have to worry about where software is

Figure 5.10: The Linux Mint Software Manager

136 Chapter 5 ■ The Right to Assemble

being installed. Almost all software is installed in the /usr directory hierarchy,
in a place that’s on your file search path. Once installed on your search path, you
can run a program simply by naming it on a terminal window command line.

Running a program that isn’t on your search path requires a little extra typ-
ing. Open a terminal window and navigate to any directory as your working
directory, and then launch a program located in that directory by naming it on
the command line preceded by the current directory specifier, like this:

./eatsyscall

The ./ prefix specifies the current directory.
In this chapter, we’re going to need a number of things to take a quick tour

through the assembly language development process: an editor, an assembler,
and a linker.

 ■ The Xed editor is preinstalled with Linux Mint 20.

 ■ The NASM assembler will have to be installed.

 ■ The Linux linker ld is preinstalled with Linux Mint 20.

We’ll also need a debugger for later exploration. The debugger situation is
a little more complex. The canonical Linux debugger, gdb, is preinstalled in
nearly all versions of Linux. However, gdb is more of a debugger “engine” than
a complete debugger. It’s extraordinarily powerful but command- line driven,
with an immense learning curve. To make it truly useful (especially to beginners),
we have to download something to make its controls easier to handle and its
output easier to understand. This function is built into an IDE called SASM,
which (among other things) contains a “front end” to gdb. I’ll explain how
to install SASM and how to use it (including its front end to gdb) in the next
chapter. For now, just take it on faith that debuggers are useful and necessary
in assembly language work. (I have some suggestions relating to the debugger
question in Appendix A.)

Note that Xed is referred to as “Text Editor” on Linux Mint 20. It can be found
in the Accessories category, on the menu that jumps up when you click the Mint
button in the lower- left corner of the display. If you select Help ➪ About, you’ll
see its true name in the About dialog box.

Installing NASM is dirt simple. In the search field at the top of the Software
Manager window, type NASM. Software Manager will begin searching its
repositories immediately. It will display a list of any package that is or mentions
NASM. NASM itself will be the first search hit, and its entry will be highlighted
in green. Click the NASM entry. This will take you to a dialog that allows you
to read more about the assembler. The dialog will have a green Install button.
Click it. Software Manager will download NASM from its repository and ask
for your Linux password before installing it. After you enter your password, it
will complete the install.

 Chapter 5 ■ The Right to Assemble 137

Note that Software Manager will not place an icon for NASM in the Program-
ming category. NASM does not have its own user interface window and thus
does not qualify for a desktop icon to run it. You have to run it from a terminal
window as I’ll explain next, or via SASM, as I’ll explain in the next chapter.

Step 1: Edit the Program in an Editor
A great many text editors are available for Linux Mint, and the easiest of them
to understand is probably Xed. You can launch Xed from the Accessories menu,
in which it’s called “Text Editor.” (You can place its icon on the desktop by
right- clicking the Text Editor icon in Accessories and selecting Add to Desktop.)
Later we’ll be using SASM as our text editor, but for the moment bring up Xed.

With Xed’s File ➪ Open dialog, navigate to the directory where you placed
the eatsyscall.asm file from the book listings archive. I use a directory called
Assembly under the Home directory and create project directories under the
Assembly directory. Double- click the eatsyscall.asm file in that directory. Xed
will display the file, which I show here in Listing 5.1. Read it over. You don’t
have to understand it completely, but it’s simple enough so that you should be
able to understand what it does in general terms.

Listing 5.1: eatsyscall.asm

; Executable name : EATSYSCALL
; Version : 1.0
; Created date : 4/25/2022
; Last update : 4/25/2022
; Author : Jeff Duntemann
; Architecture : x64
; From : Assembly Language Step By Step, 4th Edition
; Description : A simple program in assembly for x64 Linux, using
 ; NASM 2.14,
; demonstrating the use of the syscall instruction to
display text.
;
; Build using these commands:
; nasm - f elf64 - g - F stabs eatsyscall.asm
; ld - o eatsyscall eatsyscall.o
;
SECTION .data ; Section containing initialized data
 EatMsg: db "Eat at Joe's!",10
 EatLen: equ $- EatMsg
SECTION .bss ; Section containing uninitialized data
SECTION .text ; Section containing code
global .start ; Linker needs this to find the entry point!
start:
 mov rbp, rsp ; for correct debugging
 nop ; This no- op keeps gdb happy...

138 Chapter 5 ■ The Right to Assemble

 mov rax,1 ; 1 = sys_write for syscall
 mov rdi,1 ; 1 = fd for stdout; i.e., write to the
 ; terminal window
 mov rsi,EatMsg ; Put address of the message string in rsi
 mov rdx,EatLen ; Length of string to be written in rdx
 syscall ; Make the system call
 mov rax,60 ; 60 = exit the program
 mov rdi,0 ; Return value in rdi 0 = nothing to return
 syscall ; Call syscall to exit

Step 2: Assemble the Program with NASM
The NASM assembler does not have a user interface as nontechnical people
understand “user interface” today. It doesn’t put up a window, and there’s no
place for you to enter filenames or select options in check boxes. NASM works
via text only, and you communicate with it through a terminal and a Linux
console session. It’s like those old DOS days when everything had to be entered
on the command line. (How soon we forget!)

So, open up a terminal window. Many different terminal utilities are available
for Ubuntu Linux. The one I use most of the time is called Konsole, but they will
all work here. Terminal windows generally open with your home directory as
the working directory. Once you have the command prompt, navigate to the
eatsyscall project directory using the cd command.

myname@mymachine:~$ cd assembly/eatsyscall

If you’re new to Linux, make sure you’re in the right directory by checking
the directory contents with the ls command. The file eatsyscall.asm should at
least be there, either extracted from the listings archive for this book or entered
by you in a text editor.

Assuming that the file eatsyscall.asm is present, assemble it by (carefully)
entering the following command and pressing Enter:

nasm - f elf64 - g - F dwarf eatsyscall.asm

When NASM finds nothing wrong, it will say nothing, and you will simply
get the command prompt back. That means the assembly worked! If you entered
the eatsyscall.asm file yourself and typed something incorrectly, you may get
an error. Make sure the file matches Listing 5.1.

Now, what did all that stuff that you typed into the terminal mean? I’ve
dissected the command line you just entered in Figure 5.11. A NASM invo-
cation begins with the name of the program itself. Everything after that are
parameters that govern the assembly process. The ones shown here are nearly
all of the ones you’re likely to need while first learning the assembly language
development process. There are others with more arcane purposes, and all of
them are summarized in the NASM documentation. Let’s go through the ones
used here, in order.

 Chapter 5 ■ The Right to Assemble 139

 ■ - f elf64: There are a fair number of useful object file formats, and each
one is generated differently. The NASM assembler is capable of generating
most of them, including other formats like bin, aout, and coff, that you
probably won’t need, at least for awhile. The - f command tells NASM
which format to use for the object code file it’s about to generate. The elf64
format is what you want for x64 executables.

 ■ - g: While you’re still working on a program, you want to have debugging
information embedded in the object code file so that you can use a debugger
to spot problems. (You’ll learn more about how this is done in Chapter 6.)
The - g command tells NASM to include debugging information in the
output file. This will increase the size of the output file a little, but for
small practice projects not enough to be a problem.

 ■ - F dwarf: As with the output file, there are different formats in which
NASM can generate debug information. Again, as with the output file
format, if you’re working in x64 Linux, you’ll probably be using the DWARF
format for debug information, at least while you’re starting out. Remember
that Linux commands are case- sensitive. The - f command and the
- F command are two different commands, so watch that shift key!

 ■ eatsyscall.asm: The last item on the NASM command line shown is the
name of the file to be assembled. Again, as with everything in Linux, the
filename is case- sensitive. EATSYSCALL.ASM and EatSysCall.asm (as well
as all other case variations) are considered entirely different files.

Figure 5.11: The anatomy of a NASM command line

140 Chapter 5 ■ The Right to Assemble

Unless you give NASM other orders, it will generate an object code file and
name it using the name of the source code file and the file extension .o. The
“other orders” are given through the - o option. If you include an - o command
in a NASM command line, it must be followed by a filename, which is the name
you want NASM to give to the generated object code file. For example:

nasm - f elf64 - g - F dwarf eatsyscall.asm - o eatsyscall.o

Here, NASM will assemble the source file eatsyscall.asm to the object code
file eatdemo.o.

Now, before moving on to the link step, verify that the object code file has
been created by using the ls command to list your working directory contents.
The file eatsyscall.o should be there.

Step 3: Link the Program with ld
So far so good. Now we have to create an executable program file by using the
Linux linker utility, ld. After making sure that the object code file eatsyscall.o
is present in your working directory, type the following linker command into
the terminal:

ld - o eatsyscall eatsyscall.o

If the original program assembled without errors or warnings, the object file
should link without any errors as well. As with NASM, when ld encounters
nothing worth mentioning, it says nothing at all. No news is good news in the
assembly language world— and, in truth, throughout the programming world
as a whole.

The command line for linking is simpler than the one for assembling. I’ve
drawn it out in Figure 5.12. The ld command runs the linker program itself.
The - o command specifies an output filename, which here is eatsyscall. In
the DOS and Windows world, executable files almost always use the .exe file
extension. In the Linux world, executables generally have no file extension at all.

Figure 5.12: The anatomy of an ld command line

 Chapter 5 ■ The Right to Assemble 141

Note that if you do not specify an executable filename with the - o command,
ld will create a file with the default name a.out. If you ever see a mysterious
file named a.out in one of your project directories, it probably means you ran
the linker without the - o command.

The last things you enter on the ld command line are the names of the object
files to be linked. In this case there is only one, but once you begin using assembly
language code libraries (whether your own or those written by others), you’ll
have to enter the names of any libraries you’re using on the command line.
The order you enter them doesn’t matter. Just make sure that they’re all there.

Step 4: Test the Executable File
Once the linker completes an error- free pass, your finished executable file will
be waiting for you in your working directory. It’s error- free if the assembler and
linker digested it without displaying any error messages. However, error- free
does not imply bug- free. To make sure it works, just name it on the terminal
command line:

./eatsyscall

Linux newcomers need to remember that your working directory is not auto-
matically on your search path, and if you simply type the name of the executable
on the command line (without the “working directory” prefix ./), Linux will
not find it. But when named with the prefix, your executable will load and run
and print out its 13- character advertisement:

Eat at Joe's!

Victory!

Step 5: Watch It Run in the Debugger
Assuming that you entered Listing 5.1 correctly (or unpacked it from the listings
archive), there are no bugs in eatsyscall.asm. That’s an uncommon circumstance
for programmers, especially those just starting out. Most of the time you’ll need
to start bug hunting almost immediately. The easiest way to do this is to load
your executable file into a debugger so that you can single- step it, pausing after
the execution of each machine instruction so that you can see what effect each
instruction has on the registers and any variables defined in memory.

The canonical debugger under Linux is gdb, the Gnu Debugger. We’re going
to use gdb in this book, but to keep the tutorial simple we’re going to use it from
within an IDE, a subject I’ll take up in Chapter 6.

I can teach barely a smidgen of gdb in an absolute beginner’s book like this.
There is a reference guide for gdb that has 800 pages of fine print and weighs

142 Chapter 5 ■ The Right to Assemble

5 pounds. I encourage you to explore gdb as your skills improve. You need to
be aware that it’s a long, steep slope to a very high mountaintop. All commands
to gdb (and there are lots) must be entered on a terminal command line. There
are no menus and (as with NASM and ld) no graphical user interface at all.

This doesn’t mean that no graphical user interface for gdb exists. Several
do. The trick is that they’re not part of gdb. It’s possible to create a windowed
interface to GDB by setting up menus and dialogs specifying what you want
gdb to do and then allowing the windowed interface to pass the commands as
pure text to gdb. This is done “behind the scenes” and out of sight. It looks like
you’re debugging with gdb and you are— just through a sort of GUI middleman.

The 2009 edition of this book discussed two such interfaces: one called Kdbg
and the other called Insight. Kdbg exists but does not work under Linux Mint
Cinnamon, and Insight, alas, was removed from Linux distributions and all
repositories that I’m aware of, way back in 2009. Insight can be downloaded
from websites and installed under Linux, but it’s a fair bit of fussy work. (I’ve
written some advice about installing and using Insight in Appendix A.)

Mostly, it doesn’t matter. Today in 2023, we have something better. Turn the
page, and let’s meet an assembly language IDE called SASM.

C H A P T E R

143

6

Integrated Development Environments

Archimedes, the primordial engineer, had a favorite saying: “Give me a lever
long enough, and a place to stand, and I will move the Earth.” The old guy was
not much given to metaphor and was speaking literally about the mechanical
advantage of really long levers, but behind his words there is a larger truth about
work in general: To get something done, you need a place to stand, with access
to tools. My radio bench out in the small garage is set up that way: a large, flat
space to lay ailing transmitters down on and a shelf above where my oscillo-
scope, VTVM, frequency counter, signal generator, signal tracer, and dip meter
are within easy reach. On the opposite wall, just two steps away, is a long line
of shelves where I keep parts, raw materials like sheet metal, circuit board stock,
and scrap plastic, plus test equipment I don’t need very often.

In some respects, an operating system is your place to stand while getting your
computational work done. All the tools you need should be right there within
easy reach, and there should be a standard, comprehensible way to access them.
Storage for your data should be “close by” and easy to browse and search. The
Linux operating system meets this need like almost nothing else in the desktop
computing world today.

Ancient operating systems like DOS gave us our “place to stand” in a limited
way. DOS provided access to disk storage and a standard way to load and run

A Place to Stand, with Access
to Tools

Linux and the Tools That Shape the Way You Work

144 Chapter 6 ■ A Place to Stand, with Access to Tools

software, and not much more. The tool set was small, but it was a good start,
and about all that we could manage on 6 MHz 8088 machines that were main-
stream in the mid- to- late 1980s.

In some ways, the most interesting thing about DOS 2.0 was that it was created
as a “dumbed- down” version of a much more powerful operating system, Unix,
which had been developed by AT&T’s research labs in the 1960s and 1970s. At
the time that the IBM PC appeared, Unix ran only on large, expensive main-
frames and minicomputers. The PC didn’t have the raw compute power to run
Unix itself, but DOS 2.0 was created with a hierarchical filesystem very much
like the Unix filesystem, and its command line provided access to a subset of
tools that worked very much like Unix tools.

The x86 PC grew up over the years, and by 1990 or so Intel’s CPUs were pow-
erful enough to run an operating system modeled on Unix. Meanwhile, Unix
“grew down” until the two met somewhere in the middle. In 1991 the young
Finnish programmer Linus Torvalds wrote a Unix “lookalike” that would run
on an inexpensive 386- based PC. It was modeled on an implementation of
Unix called Minix, which had been written in the Netherlands in the late 1980s
as a Unix lookalike capable of running on small computers. Torvalds’ Linux
operating system eventually came to dominate the Unix world.

Linux is our place to stand, and it’s a good one. But in terms of access to tools,
it also helps to have a sort of software workbench designed specifically for the
type of work we’re doing at the moment. Word processors are workbenches
for writing and printing (mostly) textual content. PowerPoint and its clones are
workbenches for creating presentations, and so on.

The NASM assembler is powerful but taciturn, and inescapably tied to the
command line, as are ld, gdb, and most of the venerable Unix tools that you’ll
find in the Linux tool chest. In Chapter 5, we ran through a simple development
project the old hard way, by typing commands at the terminal command line.
Beginners need to know how that works, but it’s by no means the best we can
do. Also, you may eventually outgrow the interactive development environ-
ment you’re using. Special circumstances could also force you back to the Linux
command line to get the job done.

The legendary success of Turbo Pascal for DOS in the 1980s was largely
because it integrated an editor and a compiler together. It presented a menu
allowing easy and fast movement among the editor, to write code; the compiler,
to compile code into executable files; and DOS, where those files could be run
and tested. Programming in Turbo Pascal was easier to grasp and much faster
than traditional methods that involved constantly issuing commands from the
command line.

Turbo Pascal was the first really successful commercial product to provide
an interactive development environment (IDE) for small- system programmers.

 Chapter 6 ■ A Place to Stand, with Access to Tools 145

Others had appeared earlier (particularly the primordial UCSD P- system, which
was used mostly in colleges), but Turbo Pascal put the idea on the map for all- time.

In the previous edition of this book (the third edition, 2009), I presented a
toolset including the Kate editor, the Konsole terminal, and the powerful if
unconventional Insight front end for the gdb debugger. In our 2009 run- through
in Chapter 5, I presented a simpler debugger front end called Kdbg.

Times change. Insight was removed from Linux distros and repositories in
late 2009, not long after the third edition was published. It’s been abandonware
since 2009, and the product is extremely tricky to install on modern Linux distros.
Somewhere along the road to 2022, Kdbg also vanished from the Linux scene
and cannot be installed on most recent distributions. I liked both products, but
I think I understand why they fell out of use. Kate and Konsole are still very
much with us. I will describe Konsole at some length later in this chapter, in the
section The Linux Console.. You can use Kate if you want, but for simple text
editing I prefer the Xed editor. As for a debugger, see Appendix A. Insight is back.

Mostly.
In preparing this edition, however, I found something remarkable: an IDE

designed specifically for assembly- language work, with an emphasis on beginning
programmers. Simple ASM (SASM) was written by Dmitriy Manushin. It’s still
maintained and still being actively developed. It’s powerful enough to handle
most of the simple programs I present in this book. It’s also a good way to
introduce debugging.

Now, as good as it is in some respects, SASM was designed for beginners
and lacks some advanced features. It is an excellent place to start, and it will
give you an idea of what an IDE is. Certainly, once you start writing large- scale
assembly programs or start mixing assembly with C, SASM will not be enough.
I’m also going to cover the Make utility that comes with Linux so that when
you outgrow SASM, you’ll know how to create your own makefiles. And while
SASM contains its own terminal window, I’m going to explain the more pow-
erful Konsole terminal, as I did in 2009.

The old Insight debugger has been given another run. See Appendix A. It’s
not perfect, but it’s still more beginner- friendly than any other stand- alone free
debugger for Linux.

There are other, more powerful IDEs in the Linux universe, such as KDevelop,
Geany, and Eclipse. Trying to usefully explain any one of those here would take
more room than I have in this book. Once you understand the basic principles
of IDEs, you can install and learn them as your needs and skills require. In the
meantime, we’ll begin with SASM and move on to Make and Konsole.

I’ve tested SASM on Linux Mint Cinnamon and Kubuntu Plasma. It works
on both distros and can be installed using each platform’s package manager.
My guess is that it will run on any modern distro.

146 Chapter 6 ■ A Place to Stand, with Access to Tools

Introducing SASM

SASM is a simple IDE designed specifically for assembly language program-
ming. These are its major features:

 ■ Support for the NASM, FASM, MASM, and gas assemblers. (MASM works
only under Windows.)

 ■ Support for sessions, so you can have multiple projects open at one time.

 ■ A source- code editor with full- color syntax highlighting.

 ■ Separate terminal windows for standard input and standard output.

 ■ A source- code debugger allowing you to use breakpoints and single-
stepping in your assembly language projects.

 ■ Register display during debugging, and a useful if limited display
of memory.

Installing it is done from the package manager on whatever Linux distro you’re
using. Mint’s package manager is called Software Manager. Under Kubuntu
it’s called Discover. (Kubuntu has a more advanced version of Discover called
Muon Discover, but plain- vanilla Discover will do just fine.)

Both package managers give you a search field. Just type in SASM and hit
Enter. You’ll probably get a lot of search hits that have nothing to do with
assembly language (or programming, for that matter), but right at the top you
should see a line for SASM. Click that line. The package manager will show
you a description of SASM.

As with all installs, you’ll be asked for your Linux password. But once you
enter that, SASM will be installed on your hard drive. In the software menu it
will reside in the Programming category. I recommend that you create an icon
on your desktop. Just right- click SASM’s entry in the Programming category
and select Add To Desktop.

Configuring SASM
There’s not much to configure. All configuration is done from the Settings
dialog. Here’s the list:

 ■ On the Settings ➪ Common tab, pull down On Start and select “Restore
Previous Session.” You don’t want to see the Get Started” dialog every
time you run SASM.

 ■ Click the radio button No, Show Only General- Purpose for register display.
We won’t be discussing the x64 AVX math features, so displaying the math
registers just clutters up SASM’s window.

 Chapter 6 ■ A Place to Stand, with Access to Tools 147

 ■ On the Settings ➪ Build tab (see Figure 6.1), click the x64 radio button for
64- bit coding. SASM also supports x86 32- bit code, and the x86 option is
the default. This is important. You’re going to be writing x64 code, and
SASM will not correctly deal with x64 source code if you have x86 selected.

 ■ Also on the Settings ➪ Build tab, check the Build In Current Directory box.

 ■ Everything else you can leave alone for the time being.

Take note of the version number, as shown in Help ➪ About. As I write this
in early 2023, the current version is 3.12.2. It will almost certainly be higher by
the time you read this. The version number is important for this reason: A search
for SASM packages may show up with more than one SASM package. Choose
the one with the most recent release number. Then click the Install button.

SASM’s Fonts
At this writing (2023), there is a rough edge to SASM’s use of fonts. Most people
who program do so in a purely monospace font like Courier. With Courier and

Figure 6.1: The SASM Build dialog

148 Chapter 6 ■ A Place to Stand, with Access to Tools

other monospace fonts, all your columns will line up vertically because every
character is the same width.

SASM’s default font is Liberation Mono, which is not true monospace like
Courier. You can change the editor window font in Settings ➪ Common. Change
the font to Courier 10 Pitch. It’s a true monospace font and a little bolder (and
thus easier to read) than any of the several other monospace fonts that SASM
presents.

Another font shortcoming is that you can specify a font only for the editor
window. The font for both the Input and Output windows cannot be changed.
It’s nothing even close to monospace, so if you’re attempting to output text or
digits in neat columns, the Output window won’t hack it. For testing that sort of
output, save the EXE file to disk from SASM, exit SASM, and run the program
from inside Konsole.

Using a Compiler to Link
SASM has a twist that you need to be aware of: By default, it uses the Gnu C
compiler gcc rather than ld to link assembly object code into executable files.
The gcc compiler doesn’t do the linking itself. Rather, it acts as a middleman and
calls ld after gcc determines what all ld needs to link to create the executable.
This adds to the size of your executable, though not enough to be a problem.
What it complicates are the instructions for assembling and linking in the Build
tab of Settings, which I’ve shown in Figure 6.1.

The downside to using SASM’s default build parameters is that you can’t
assemble and link the eatsyscall.asm program we’ve been looking at thus far.
It takes a few minor changes to eatsyscall.asm to make it compatible with
SASM’s default build process.

Like the original Turbo Pascal, SASM assembles your project into memory to
save time. To have an executable file on your disk, you have to explicitly save
the executable as a disk file using the File ➪ Save .exe menu option.

In keeping with my advice to store only one project per directory, create a
new directory under your assembly directory called eatsyscallgcc. Extract
Listing 6.1 (the file eatsyscallgcc.asm) from the listings archive and place it
in the new directory.

One last note about SASM before we get started: It includes a 64- bit I/O
function include library called io64.inc. Although the library is useful, I won’t
be discussing it in this book. I encourage you to explore it as time permits.

Listing 6.1: eatsyscallgcc.asm

; Executable name : eatsyscallgcc (For linking with gcc)
; Version : 1.0
; Created date : 4/25/2022
; Last update : 4/10/2023
; Author : Jeff Duntemann
; Architecture : x64

 Chapter 6 ■ A Place to Stand, with Access to Tools 149

; From : x64 Assembly Language Step By Step, 4th Edition
; Description:
; A simple program in assembly for x64 Linux, using NASM 2.14,
; demonstrating the use of the syscall instruction to display text.
; This eatsyscall links via gcc, the default linker
; for use with SASM. The entry point MUST be "main" to link with gcc.
;
; Build using the default build configuration in SASM
;

SECTION .data ; Section containing initialized data

 EatMsg: db "Eat at Joe's!",10
 EatLen: equ $- EatMsg

SECTION .bss ; Section containing uninitialized data

SECTION .text ; Section containing code

global main ; Linker needs this to find the entry point!
main:
 mov rbp,rsp ; SASM may add another copy of this in debug
mode!

 mov rax,1 ; 1 = sys_write for syscall
 mov rdi,1 ; 1 = fd for stdout; write to the terminal window
 mov rsi,EatMsg ; Put address of the message string in rsi
 mov rdx,EatLen ; Length of string to be written in rdx
 syscall ; Make the system call

 mov rax,60 ; 60 = exit the program
 mov rdi,0 ; Return value in rdi 0 = nothing to return
 syscall ; Call syscall to exit

A Quick Tour of SASM
So let’s take a look at what SASM can do, and then I’ll explain it in more detail.
With the Listing 6.1 source code file in its directory, use File ➪ Open to navigate
to the directory, and click Select when the source file is highlighted. SASM will
load the source file into its source window.

A brief aside: SASM’s window can get mighty busy when you’re in debug
mode, so I powerfully recommend you always maximize SASM when you use it.

The first step is to build the executable. “Build” here includes both the assemble
and the link process, which SASM does in one step. The hammer icon in the
toolbar starts the build process. Click it.

The build will take less than a second on a fast PC. In the log pane at the
bottom of the SASM window, you’ll see “Built successfully” in green. Green
means all is well. Any build errors will appear in red.

150 Chapter 6 ■ A Place to Stand, with Access to Tools

To run the program, click the Run icon, which is the green triangle to the
right of the Build icon. The log window will report that the program began
running and finished normally. In the Output window, the message “Eat at
Joe’s!” will appear.

Yes, it’s that simple— if your program works correctly. If it doesn’t, you’ll
need to start debugging. The Debug icon is a green triangle with a little gray
bug in front of it. (You may have to look closely to tell that it’s a bug.) Click the
Debug icon. Again, if you haven’t maximized SASM’s window already, do so
now, because once you’re in debug mode, there’s a whole lot more going on
in the window’s several panes, and you’ll need all the screen real estate that
you can get.

Two Debug menu options will become available once you’re in Debug mode.
Click Show Registers and Show Memory. On the right side of the window a
new pane will be open. That’s the registers pane, and it will show the contents
of all of the general- purpose x64 registers. (The math coprocessor registers will
not be there if you configured SASM correctly for this book’s demos.) Note: You
can see the registers pane only while in debug mode. Furthermore, until you begin
single- stepping, the register window won’t always “fill.”

The Memory pane will appear across the top of SASM’s window. Using it
can be tricky, as I’ll explain a little later.

The SASM window at this point will look like Figure 6.2.

Figure 6.2: The full SASM window in debug mode

 Chapter 6 ■ A Place to Stand, with Access to Tools 151

There will be a yellow highlight bar on the first line of executable code (not
comments or labels) in the source pane. Execution is paused at that line. We call
such a pause a breakpoint. With SASM, the first line of code will always be a de
facto breakpoint when you enter debug mode. I say “de facto” because you can
set your own breakpoint on any line of code by clicking that line’s number, at
the left margin of the source pane. For now, click the line number for this line:

mov rax,1

A red dot will appear to the right of the line number. That tells you there’s a
breakpoint at that line.

Now click the Debug icon. Once you’re in debug mode, the Debug icon tells
SASM to continue execution. The highlight will move down to your breakpoint.
This is important: Execution stops at a breakpoint before the breakpoint’s line is
executed. The highlighted MOV instruction has not executed yet.

This is a good time to see the registers pane at work. The RAX register is the
first on the list. It will contain a value of some sort. This value isn’t important.
It’s what I call “leftovers” from whatever SASM was doing with RAX before
your program began execution.

With execution awaiting your command, click the Step Over icon, which is
immediately to the right of the Debug icon. The highlight will move down to
the next code line. If you look at the contents of RAX in the registers pane, you’ll
see that it now contains the value 1.

If you click the Step Over icon again, the highlight will move down another
line, and the instruction MOV RDI,1 will execute. You can check the value of RDI
in the registers pane to see that it, too, now contains the value 1.

You can step through the execution of your program one instruction at a time
by clicking the Step Over icon. Once you execute the final SYSCALL instruction,
your program will exit, and debug mode will be over. The registers and memory
panes will both go away.

You’ve probably noticed that there are two Step icons, one Step Over and the
other Step Into. What’s the difference? For very simple programs like this one,
none. The two diverge once you create procedures and procedure libraries for
your assembly programs. You call a procedure with the CALL instruction. But
suppose your procedure already works well. You don’t have to step through it.
So by clicking the Step Over button, you skip the procedure call and continue.
If you click Step Into instead, SASM allows you to step through the procedure’s
machine instructions, before returning to the place in the program where the
procedure call is.

I’ll take this up again in more detail when we get to procedures later in the book.
To sum up, the debugger allows you to “see inside” assembly code in two

ways: by allowing you to set breakpoints and run the code at full speed until
execution hits a breakpoint; or by stepping one instruction at a time, pausing

152 Chapter 6 ■ A Place to Stand, with Access to Tools

after each step to watch registers or memory. Of course, you can use both, using
a breakpoint to get to the point of interest quickly and then stepping through
the area of interest to see what it’s up to.

SASM’s Editor
SASM’s editor is pretty basic. It offers most of the common text editor commands
used in source code editors: Open, Save, Save As, Close, Select All, Cut, Copy,
Paste, and Find/Replace. The only one I miss is Delete Line, via the venerable
Ctrl+Y shortcut. To delete a line, you must select it with the mouse and then
press the Delete key. I admit that this may count as a safety feature, at least
while you’re first starting out.

What SASM Demands of Your Code
If you look closely at the eatsyscallgcc.asm demo program, you may spot a
couple of differences between it and the eatsyscall.asm program we looked
at earlier. SASM has two requirements due to its use of gcc as a link manager.

 ■ The program’s entry point must be main rather than _start, and main
must be in lowercase; see below.

 ■ The first line in a program’s body must be MOV RBP,RSP. NASM is not
case- sensitive by default, and the lowercase form mov rbp,rsp is what
you’ll see in the editor window. This is deliberate: You need to be com-
fortable with both all- lowercase source code and all- caps source code. In
the book text, code will be in uppercase; in the listings, it will be lowercase.

Why these requirements? SASM automatically links your programs to the
standard C library, libc. In a way, what you’re writing with SASM is a C program
without writing C code. There are conventions necessary in a C program that
apply even if the program isn’t written in C. One of those conventions is that
the body of a C program is always called main. Another is to save the stack
pointer register RSP in register RBP before anything else happens. This allows
the program to access data on the stack without destroying the original value
of the stack pointer RSP.

One odd feature of SASM that I don’t care for is that whether or not you
place MOV RBP,RSP as the first instruction in a program, SASM will add it when
you enter debug mode. So if you place the MOV instruction at the beginning of the
program, you’ll have two instances of MOV RBP,RSP as soon as you enter debug
mode. That won’t hurt anything, but it is peculiar. (Note that this may be a bug,
and by the time you read this book, it may have been eliminated in a newer
release.) It also goes against something called the standard prolog that I’ll discuss
in Chapters 11 and 12.

 Chapter 6 ■ A Place to Stand, with Access to Tools 153

SASM is a good way to learn simple assembly techniques. It’s especially good
at visual debugging, because you see your source code— and your comments—
while you’re stepping through a program. You’ll probably upgrade to a more
powerful IDE as your skills improve. While you’re just breaking into assembly
language, the SASM IDE will be more than good enough.

That’s the quick demo of what SASM can do. It’s time to talk about a couple
of other tools that are useful in assembly language work.

Linux and Terminals

Unix people hated to admit it at the time, but when it was created, Unix really
was a mainframe operating system like IBM’s, and it supported multiple simul-
taneous users via timesharing. Each user communicated with the central com-
puter through separate, stand- alone terminals, especially those from the Digital
Equipment Corporation’s VT series.

These terminals did not display the graphical desktops we’ve come to see
as essential since 1995 or so. They were text- only devices, typically presenting
25 lines of 80 characters without icons or windows. Some applications used the
full screen, presenting numbered menus and fill- in fields for data entry. The bulk
of the Unix software tools, especially those used by programmers, were con-
trolled from the command line and sent back scroll- up- from- the- bottom output.

Linux works the same way. Put most simply, Linux is Unix. Linux does not
use external “dumb terminals” like the 1970s DEC VT100, but the DEC- style
terminal- oriented software machinery is still there inside Linux and still func-
tioning, in the form of terminal emulation.

The Linux Console
There are any number of terminal emulator programs for Linux and other
Unix implementations like BSD. Ubuntu and Kubuntu come with one called
GNOME Terminal, and you can download and install many others from your
distro’s package manager. The one that I use for the discussions in this book
and recommend generally is called Konsole. Do install it if you haven’t already.

When you open a terminal emulator program under Linux, you get a text
command line with a flashing cursor, much like the old DOS command line or
the Command Prompt utility in Windows. The terminal program does its best
to act like one of those old DEC CRT serial terminals from the First Age of Unix.
By default, a terminal emulator program uses the PC keyboard and display for
its input and output. And what it connects to is a special Linux device called
dev/console, which is a predefined device that provides communication with
the Linux system itself.

154 Chapter 6 ■ A Place to Stand, with Access to Tools

It’s useful to remember that a terminal program is just a program, and you
can have several different varieties of terminal program installed on your Linux
machine, with multiple instances of each running, all at the same time. How-
ever, there is only one Linux console, by which I mean the device named dev/
console that channels commands to the Linux system and returns the system’s
responses. By default, a terminal emulator program connects to dev/console
when it launches. If you want, you can use a Linux terminal emulator to con-
nect to other things through a network, though how that works and how to do
it are outside the scope of this book.

The simplest way of communicating with a Linux program is through a
terminal emulator like the Konsole program, which is the one I’ll refer to in
this book. The alternative to a terminal emulator is to write your programs for
a windowing system of some kind. Describing Linux desktop managers and
the X Window system that operates beneath them would alone take a whole
book (or several) and involves layers of complexity that really have nothing to
do with assembly language. So in this book the example programs will operate
strictly from the terminal emulator command line.

Character Encoding in Konsole
There’s not much to configure in a terminal emulator program, at least while
taking your first steps in assembly language. One thing that does matter for the
example programs in this book is character encoding. A terminal emulator has to
put characters into its window, and one of the configurable options in a terminal
emulator has to do with what glyphs correspond to which 8- bit character code.
Note well that this has nothing directly to do with fonts. A glyph is a specific
recognizable symbol, like the letter A or the @ sign. How that symbol is ren-
dered graphically depends on what font you use. Rendered in different fonts,
a particular glyph might be fatter or thinner or have little feet or flourishes of
various kinds. You can display an A in any number of fonts, but assuming that
the font is not excessively decorative (and such fonts exist), you can still tell
that a particular glyph is an A.

Character encoding maps a numeric value to a particular glyph. In our familiar
Western ASCII standard, the decimal number 65 is associated with the glyph
we recognize as an uppercase A. In a different character encoding, one created
to render an entirely different, non- Roman alphabet (like Hebrew, Arabic, or
Thai), the number 65 might be associated with an entirely different glyph.

This book is being written in a Roman alphabet for a Western and mostly
English- speaking audience, so our terminal emulator’s default glyphs for the

 Chapter 6 ■ A Place to Stand, with Access to Tools 155

alphabet will do just fine. However, the ASCII character set really goes only
from character 0 up to character 127. Eight bits can express values up to 256, so
there are another 128 “high” characters beyond the top end of the ASCII stan-
dard. There’s no standard nearly as strong as ASCII on which glyphs to encode
for those 128 characters. Different character encoding schemes include many
different glyphs, most of them Roman characters with modifiers (umlaut, cir-
cumflex, tilde, accents, and so on), the major Greek letters, and symbols from
mathematics and logic.

When IBM released its original PC in 1981, it included glyphs that it had
created for its mainframe terminals years earlier to allow boxes to be rendered
on terminal screens that were text- only and could not display pixel graphics.
These glyphs turned out to be useful for delimiting fill- in forms and other things.
The PC’s ROM- based character set eventually came to be called Code Page 437,
which includes a lot of other symbols like the four card suits.

A similar character encoding scheme was later used in IBM’s Unix imple-
mentation, AIX, and came to be called IBM- 850. IBM- 850 includes a subset of
the box- draw characters in CP437, plus a lot of Roman alphabet characters with
modifiers, to allow correct rendering of text in languages other than English.

Linux terminal emulators do not encode either the CP437 encoding scheme
or the IBM- 850 scheme (and thus its box- border characters) by default. The
IBM- 850 encoding scheme is available, but you have to select it from the menus.
By the way, at this writing I have never seen a Linux terminal emulator capable
of displaying IBM’s original CP437 character set. Such may exist, but CP437
is considered obsolete, and requiring it to run a program you’ve written will
annoy users.

Launch Konsole and pull down the Settings ➪ Manage Profiles item. Kon-
sole comes with one profile, named Default. In the Manage Profiles dialog that
appears, select New Profile, and give the new profile a name like Shell Box.
Save it. In the Edit Profile dialog, select the Advanced tab, and look for the
Default Character Encoding drop- down in the pane. Click Select, and from the
list presented, hover over Western European until the list of encodings appears.
Select IBM850, and click OK (see Figure 6.3).

To use the IBM- 850 character encoding, you need to make the new Shell Box
profile Konsole’s default profile. This is done by selecting Settings ➪ Manage
Profiles and clicking the check box immediately to the left of the profile’s name.
When the Shell Box profile is in force, the IBM box- border characters will be
available for the use of your programs. We’ll use them a few chapters down
the road.

156 Chapter 6 ■ A Place to Stand, with Access to Tools

The Three Standard Unix Files
Computers have been described as machines that move data around, and that’s
not a bad way to see it. That said, the best way to get a grip on program input
and output via terminal emulators is to understand one of Unix’s fundamental
design principles: Everything is a file. A file can be a collection of data on disk,
as I explained in some detail in Chapter 5. But in more general terms, a file is an
endpoint on a path taken by data. When you write to a file, you’re sending data
along a path to an endpoint. When you read from a file, you are accepting data
from an endpoint. The path that the data takes between files may be entirely
within a single computer, or it may be between computers along a network
of some kind. Data may be processed and changed along the path, or it may
simply move from one endpoint to another without modification. No matter.
Everything is a file, and all files are treated more or less identically by Unix’s
internal file machinery.

Figure 6.3: Changing Konsole’s character encoding to IBM- 850

 Chapter 6 ■ A Place to Stand, with Access to Tools 157

The “everything is a file” dictum applies to more than collections of data on
disk. Your keyboard is a file: It’s an endpoint that generates data and sends it
somewhere. Your display is a file: It’s an endpoint that receives data from some-
where and puts it up where you can see it. Unix files do not have to be text files.
Binary files (like the executables created by SASM) are handled the same way.

Three standard files are defined by Unix and are always open to your pro-
grams while the programs are running. I’ve listed them in Table 6.1.

At the bottom of it, a file is known to the operating system by its file descriptor,
which is just a number. The first three such numbers belong to the three stan-
dard files. When you open an existing file or create a new file from within a
program, Linux will return a file descriptor value specific to the file you’ve
opened or created. To manipulate the file, you call into the operating system
and pass it the file descriptor of the file you want to work with. Table 6.1 also
provides the conventional identifiers by which the standard files are known
in the C world. When people talk about “stdout,” for example, they’re talking
about file descriptor 1.

If you look back to Listing 5- 1, the short example program I presented in
Chapter 5 during our walk- through of the assembly language development
process, you’ll see this line:

mov rdi,1 ; 1 = fd for stdout; write to the terminal window

When we sent the little slogan “Eat at Joe’s!” to the display, we were in fact
writing it to file descriptor 1, standard output. By changing the value to 2, we
could have sent the slogan to standard error instead. It wouldn’t have been
displayed any differently on the screen. Standard error is identical in all ways
to standard output in terms of how data is handled. By custom, programs like
NASM send their error messages to standard error, but the text written to stan-
dard error isn’t marked as an “error message” or displayed in a different color
or character set. Standard error and standard output exist so that we can keep
our program’s output separate from our program’s errors and other messages
relating to how and what the program is doing.

This will make a lot more sense once you understand one of the most useful
basic mechanisms of all Unix- descended operating systems: I/O redirection.

Table 6.1: The Three Standard Unix Files

FILE C IDENTIFIER FILE DESCRIPTOR DEFAULTS TO

Standard Input stdin 0 Keyboard

Standard Output stdout 1 Display

Standard Error stderr 2 Display

158 Chapter 6 ■ A Place to Stand, with Access to Tools

I/O Redirection
By default, standard output goes to the display. (This is generally a terminal
emulator window.) But that’s just the default. You can change the endpoint for
a data stream coming from standard output. The data from standard output
can be sent to a file on disk instead. A file is a file; data traffic between files is
handled the same way by Linux, so switching endpoints is no big trick. Data
from standard output can be sent to an existing file, or it can be sent to a new
file created when your program is run.

Input to your programs by default comes from the keyboard, but all the key-
board sends is text. This text could as well come from another text file. Switching
the source of data sent to your programs is no more difficult than switching
the destination of its output. The mechanism is called I/O redirection, and we’re
going to use it for a lot of the example programs later in this book.

You’ve probably already used I/O redirection in your Linux work, even if
you didn’t know it by name. All of Linux’s basic shell commands send their
output to standard output. The ls command, for example, sends a listing of
the contents of the working directory to standard output. You can capture that
listing by redirecting the text emitted by ls into a Linux disk file, by entering
this command at the command line:

ls > dircontents.txt

The file dircontents.txt is created if it doesn’t already exist, and the text
emitted by ls is stored in dircontents.txt. You can then print the file or load
it into a text editor.

The > symbol is one of two redirection operators. The < symbol works the
other way and redirects standard input away from the keyboard and to another
file, typically a text file stored on disk. This is less useful for handing keyboard
commands to a program than it is for providing the raw material on which the
program is going to work.

Let’s say you want to write a program to force all the lowercase text in a file
to uppercase characters. (This is a wonderfully contrarian thing to do, as upper-
case characters make some Unix people half- nuts.) You can write the program
to obtain its text from standard input and send its text to standard output. This
is easy to do from a programming standpoint— and in fact, we’ll be doing it a
little further along in the book.

You can test your program by typing this line of text at the keyboard:

i want live things in their pride to remain.

Your program will process this line of text and send the processed text to
standard output, where it will be posted to the terminal emulator display:

I WANT LIVE THINGS IN THEIR PRIDE TO REMAIN.

 Chapter 6 ■ A Place to Stand, with Access to Tools 159

Well, the test was a success: It looks like things work inside the program. So,
the next step is to test uppercaser on some real files. You don’t have to change
the uppercaser program at all. Just enter this at the shell prompt:

uppercaser < santafetrail.txt > vachelshouting.txt

By the magic of I/O redirection, your program will read all the text from a
disk file called santafetrail.txt, force any lowercase characters to uppercase,
and then write the uppercased text to the disk file vachelshouting.txt.

The redirection operators can be thought of as arrows pointing in the direction
that data is moving. Data is being taken from the file santafetrail.txt and
sent to the uppercaser program; hence, the symbol < points from the input file
to the program where it’s going. The uppercaser program is sending data to
the output file vachelshouting.txt, and thus the redirection operator points
away from the name of the program and toward the name of the output file.

From a height, what’s going on looks like what I’ve drawn in Figure 6.4. I/O
redirection acts as a sort of data switch, steering streams of data away from
the standard files to named source and destination files of your own choosing.

Simple Text Filters
We’re actually going to create a little program called uppercaser later, and that’s
exactly what it’s going to do: read text from a text file, process the text, and
write the processed text to an output file. Inside the program, we’ll be reading

Figure 6.4: I/O redirection

160 Chapter 6 ■ A Place to Stand, with Access to Tools

from standard input and writing to standard output. This makes it unneces-
sary for the program to prompt the user for input and output filenames, create
the output file, and so on. Linux will do all that for us, which makes for a much
easier programming task.

Programs that work this way represent a standard mechanism in the greater
Unix world, called a filter. You’ve already met a couple of them. The NASM
assembler itself is a filter: It takes text files full of assembly language source
code, processes them, and writes out a binary file full of object code and symbol
information. The Linux linker reads in one or more files full of object code and
symbol information and writes out an executable program file. NASM and the
linker operate on more than simple text, but that’s OK. A file is a file is a file,
and the machinery that Linux uses to operate on files doesn’t distinguish be -
tween text and binary files.

Filter programs don’t always use I/O redirection to locate their inputs and
outputs. NASM and most linkers pick their source and destination filenames off
the command line, which is a useful trick that we’ll discuss later in this book.
Still, I/O redirection makes programming simple text filter programs much easier.

Once you grasp how filter programs work, you’ll begin to understand why
the standard error file exists and what it does. A filter program processes input
data into output data. Along the way, it may need to post an error message
or simply confirm to us that it’s still plugging along and hasn’t fallen into an
endless loop. For that, we need a communication channel independent of the
program’s inputs and outputs. Standard error provides such a communica-
tion channel. Your program can post textual status and error messages to the
terminal emulator display by writing those messages to the standard error file,
all during the time that it’s working and the standard output file is busy writing
program output to disk.

Standard error can be redirected just as standard output is, and if you wanted
to capture your programs status and/or error messages to a disk file named
joblog.txt, you would launch the program from the terminal command line
this way:

uppercaser < santafetrail.txt > vachelshouting.txt 2> joblog.txt

Here, the 2> operator specifies that file descriptor 2 (which, if you recall, is
standard error) is what’s being redirected to joblog.txt.

If you redirect output (from whatever source) to an existing disk file, redi-
rection will replace whatever may already be in the file with new data, and the
old data will be overwritten and lost. If you want to append redirected data
to the end of an existing file that already contains data, you must use the >>
append operator instead.

 Chapter 6 ■ A Place to Stand, with Access to Tools 161

Using Standard Input and Standard Output from Inside SASM
Most of the simple demo programs in this book use Linux standard input (stdin)
and standard output (stdout). SASM has a dedicated window for both. When
your program sends characters to stdout (as the eatsyscall program and most
of the others do), the characters will appear in the Output window.

How to use the Input window is less obvious. Typically, stdin reads charac-
ters from a text file on disk. When you invoke a program that uses stdin on a
terminal command line, you would use stdin like this:

hexdump2 < texttestfile.txt

Here, the program hexdump2 (which we’ll look at later in this book) takes
data from a file called texttestfile.txt and sends a formatted hex dump of
the file to stdout.

That’s using the terminal command line. So, how do you use stdin from
inside SASM?

It’s simple: Copy the text you want your program to process from some file or
other text source and paste it into SASM’s Input window. The paste command
is on the right- click context menu when the mouse is in the Input window. The
text will appear in the Input window. When your program needs text from stdin,
it will use system call 0 to read the text in one character at a time, until all the
text has been read. You can also simply type text from the keyboard into the
Input window before your program begins running. Typed text will be treated
the same as text pasted into the window.

To clear the Input window, put the mouse in the window, right- click, and
select Select All (shortcut Ctrl+A) followed by the Delete key.

Note that reading text from the Input window will not remove that text from
the window. It all stays there until you clear it manually.

Terminal Control with Escape Sequences
By default, output to a terminal emulator window enters at the left end of the
bottom line, and previously displayed lines scroll up with the addition of each
new line at the bottom. This is perfectly useful, but it’s not pretty and certainly
doesn’t qualify as a “user interface” in any honest sense. There were plenty
of “full- screen” applications written for the Unix operating system in ancient
times, and they wrote their data entry fields and prompts all over the screen.
When color display terminals became available, text could be displayed in dif-
ferent colors, on fields with backgrounds set to white or to some other color to
contrast with the text.

162 Chapter 6 ■ A Place to Stand, with Access to Tools

How was this done? The old DEC VT terminals like the VT100 could be con-
trolled by way of special sequences of characters embedded in the stream of data
sent to the terminal from standard output or standard error. These sequences of
characters were called escape sequences, because they were an “escape” (albeit a
temporary one) from the ordinary stream of data being sent up to be displayed.

The VT terminals watched the data streams that they were displaying and
picked out the characters in the escape sequences for separate interpretation.
One escape sequence would be interpreted as a command to clear the display.
Another escape sequence would be interpreted as a command to display the
next characters on the screen starting five lines from the top of the screen and
thirty characters from the left margin. There were dozens of such recognized
escape sequences, and they allowed the relatively crude text terminals of the
day to present neatly formatted text to the user a full screen at a time.

A Linux terminal emulator like Konsole is a program written to “look like”
one of those old DEC terminals, at least in terms of how it displays data on
our 21st century LCD computer monitors. Send the character sequence “Eat at
Joe’s!” to Konsole, and Konsole puts it up obediently in its window, just like
the old VT100s did. We’ve already seen that with Listing 5- 1. Konsole, however,
watches the stream of characters that we send to it, and it knows those escape
sequences as well. The key to Konsole’s vigilance lies in a special character that
is normally invisible: Esc, the numeric equivalent of which is 27 decimal, or
01Bh. When Konsole sees an Esc character come in on the stream of text that it is
displaying, it looks very carefully at the next several characters. If the first three
characters after the Esc character are “[2J,” Konsole recognizes that as the escape
sequence that commands it to clear its display. If, however, the four characters
after the Esc are “[11H,” then Konsole sees an escape sequence commanding it
to move the cursor to the home position in the upper- left corner of the display.

There are literally dozens of different escape sequences, all of them repre-
senting commands to move the cursor around; to change the foreground and
background colors of characters; to switch fonts or character encodings; to erase
lines, portions of lines, or portions of the entire screen; and so on. Programs
running in a terminal window can take complete control over the display by
sending carefully crafted escape sequences to standard output. (We’ll do some of
this a little later, so keep in mind that there are caveats, and the whole business
is not as simple as it sounds.) Prior to the era of graphical user interface (GUI)
applications, sending escape sequences to terminals (or terminal emulators)
was precisely how display programming under Unix was done.

Note that SASM’s Output window does not understand character escape
sequences! If your program emits text formatted via escape sequences, save the
EXE file to disk, exit SASM, and test it under Konsole, which does understand
simple escape sequences.

 Chapter 6 ■ A Place to Stand, with Access to Tools 163

So Why Not GUI Apps?
That brings us to an interesting question. This book has been in print now for
more than 35 years (since the spring of 1990), and I get a lot of mail about it.
The number- one question is this: How can I write GUI apps? Most of my cor-
respondents mean Windows apps, but here and there people ask about writing
assembly apps for GNOME or KDE as well. I learned my lesson years ago and
never respond by saying “Why would you want to do that?” but instead respond
with the honest truth: It’s a project that represents a huge amount of research
and effort, for relatively little payoff.

On the other hand, if you do learn to write GUI apps for Windows or Linux,
you will understand how those operating systems’ UI mechanisms work. And
that can certainly be valuable, if you have the time and energy to devote to it.

The problem is that there is an enormous barrier to entry. Before you can
write your first GUI app in assembly, you have to know how it all works, for
very large values of “all.” GUI apps require managing “signals” (in Windows,
“events”) sent up by the operating system, indicating that keys have been pressed
or mouse buttons clicked, etc. GUI apps have to manage a large and complex
“widget set” of buttons and menus and fill- out fields and a mind- boggling
number of application programming interface (API) calls. There is memory to
manage and redrawing to do when a part of an app’s screen display area gets
“dirty” (that is, overwritten by something else or updated by the app) or when
the user resizes the app’s window or windows.

The internals of Windows GUI programming is one of the ugliest things
I’ve ever seen. (Linux is just as complex, though not as ugly.) Fortunately, it’s a
standardized sort of ugliness and easily encapsulated within code libraries that
don’t change much from one application to another. This is why graphical IDEs
and very high- level programming language products are so popular: They hide
most of the ugliness of interfacing to the operating system’s GUI machinery
behind a set of standard class libraries working within an application frame-
work. You can write very good apps in Delphi or Visual Basic (for Windows)
or Lazarus or Gambas for Linux, with only a sketchy understanding of what’s
going on way down deep. If you want to work in assembly, you basically have
to know it all before you even start.

This means you have to start somewhere else. If you genuinely want to write
assembly language GUI apps for one of the Linux desktop managers, approach
it this way:

1. Study Linux programming in a capable native- code high- level language
like Pascal, C, or C++. Intermediate language systems like Python, Basic,
or Perl won’t help you much here.

164 Chapter 6 ■ A Place to Stand, with Access to Tools

2. Get good at that language. Study the code that it generates by loading it
into a debugger, or compile to assembly language source and study the
generated assembly source code files.

3. Learn how to write and link assembly language functions to programs
written in your chosen high- level language.

4. Study the underlying windowing mechanism. For Linux, this would be
the X Window technology, on which several good books have been writ-
ten. (My favorite is The Joy of X by Niall Mansfield; Addison- Wesley, 1994.)

5. Study the details of a particular desktop environment and widget set, be
it GNOME, KDE, xfce, or some other. The best way to do this is to write
apps for it in your chosen high- level language and study the assembly
language code that the compiler emits.

6. Finally, try creating your own assembly code by imitating what the com-
piler generates.

Don’t expect to find a lot of help online. Unix (and thus Linux) is heavily
invested in the culture of portability, which requires that the bulk of the operating
system and all apps written for it be movable to a new hardware platform by
a simple recompile. Assembly language is the hated orphan child in the Unix
world (almost as hated as my own favorite high- level language, Pascal) and
many cultural tribalists will try to talk you out of doing anything ambitious
in assembly. Resist— but remember that you will be very much on your own.

If you’re simply looking for a more advanced challenge in assembly lan-
guage, look into writing network apps using Unix sockets. This involves way
less research, and the apps you produce may well be useful for administering
servers or other “in the background” software packages that do not require
graphical user interfaces. Several books exist on sockets programming, most of
them by W. Richard Stevens. Read up; it’s a fascinating business.

Using Linux Make

If you’ve done any programming in C at all, you’re almost certainly familiar with
the concept of the Make utility. The Make mechanism grew up in the C world,
and although it’s been adopted by many other programming languages and
environments, it’s never been adopted quite as thoroughly as in the C world.

What the Make mechanism does is build executable program files from their
component parts. The Make utility is a puppet master that executes other pro-
grams according to a master plan, which is a simple text file called a makefile.
The makefile is a little like a computer program in that it specifies how something
is to be done. But unlike a computer program, it doesn’t specify the precise

 Chapter 6 ■ A Place to Stand, with Access to Tools 165

sequence of operations to be taken. What it does is specify what pieces of a
program are required to build other pieces of the program and in doing so
ultimately defines what it takes to build the final executable file. It does this by
specifying certain rules called dependencies.

Dependencies
Throughout the rest of this book we’ll be looking at teeny, little programs,
generally with 100 lines of code or less. In the real world, useful programs can
take thousands, tens of thousands, or even millions of lines of source code.
Managing such an immense quantity of source code is the central problem in
software engineering. Writing programs in a modular fashion is the oldest and
most- used method of dealing with program complexity. Cutting up a large
program into smaller chunks and working on the chunks separately helps a
great deal. In ambitious programs, some of the chunks are further cut into even
smaller chunks, and sometimes the various chunks are written in more than
one programming language. Of course, that creates the additional challenge
of knowing how the chunks are created and how they all fit together. For that
you really need a blueprint.

A makefile is such a blueprint.
In a modular program, each chunk of code is created somehow, generally by

using a compiler or an assembler. Compilers, assemblers, and linkers take one
or more files and create new files from them. An assembler, as you’ve learned,
takes an ASM file full of assembly language source code and uses it to create
a linkable object code file. You can’t create the object code file without having
and working with the source code file. The object code file depends on the source
code file for its very existence.

Similarly, a linker connects multiple object code files together into a single
executable file. The executable file depends on the existence of the object code
files for its existence. The contents of a makefile specify which files are necessary
to create which other files and what steps are necessary to accomplish that
creation. The Make utility looks at the rules (called dependencies) in the make-
file and invokes whatever compilers, assemblers, and other utilities it sees are
necessary to build the final executable or library file.

There are numerous flavors of Make utilities, and not all makefiles are com-
prehensible to all Make utilities everywhere. The Unix Make utility is pretty
standard, however, and the one that comes with Linux is the one we’ll be dis-
cussing here.

Let’s take an example that actually makes a simple Linux assembly program.
Typically, in creating a makefile, you begin by determining which file or files
are necessary to create the executable program file. The executable file is cre-
ated in the link step, so the first dependency you have to define is which files

166 Chapter 6 ■ A Place to Stand, with Access to Tools

the linker requires to create the executable file. The dependency itself can be
pretty simply stated.

eatsyscall: eatsyscall.o

All this line says is that to generate the executable file eatsyscall (which is
presented in Chapter 5 as Listing 5.1) we first need to have the file eatsyscall.o.
The previous line is actually a dependency line written as it should be for
inclusion in a makefile. In any but the smallest programs (such as this one) the
linker will have to link more than one .o file. So this is probably the simplest
possible sort of dependency: One executable file depends on one object code
file. If there are additional files that must be linked to generate the executable
file, they are placed in a list, separated by spaces:

linkbase: linkbase.o linkparse.o linkfile.o

This line tells us that the executable file linkbase depends on three object
code files, and all three of these files must exist before we can generate the exe-
cutable file that we want.

Lines like these tell us what files are required, but not what must be done
with them. That’s an essential part of the blueprint, and it’s handled in a line
that follows the dependency line. The two lines work together. Here are both
lines for our simple example:

eatsyscall: eatsyscall.o
 ld - o eatsyscall.o eatsyscall

At least for the Linux version of Make, the second line must be indented by a
single tab character at the beginning of the line. I emphasize this because Make will
hand you an error if there is no tab character at the beginning of the second
line. Using space characters to indent will not work. A typical “missing tab” error
message (which beginners see a lot) looks like this:

Makefile:2: *** missing separator. Stop.

Here, a tab was missing at the beginning of line 2.
The two lines of the makefile taken together should be pretty easy to under-

stand: The first line tells us what file or files are required to do the job. The
second line tells us how the job is to be done: in this case, by using the ld linker
to link eatsyscall.o into the executable file eatsyscall.

Nice and neat: We specify which files are necessary and what has to be done
with them. The Make mechanism, however, has one more very important aspect:
knowing whether the job as a whole actually has to be done at all.

 Chapter 6 ■ A Place to Stand, with Access to Tools 167

When a File Is Up- to- Date
It may seem idiotic to have to come out and say so, but once a file has been
compiled or linked, it’s been done, and it doesn’t have to be done again. . .until
we modify one of the required source or object code files. The Make utility knows this.
It can tell when a compile or a link task needs to be done at all, and if the job
doesn’t have to be done, Make will refuse to do it.

How does Make know if the job needs doing? Consider this dependency:

eatsyscall: eatsyscall.o

Make looks at this and understands that the executable file eatsyscall depends
on the object code file eatsyscall.o and that you can’t generate eatsyscall
without having eatsyscall.o. It also knows when both files were last changed,
and if the executable file eatsyscall is newer than eatsyscall.o, it deduces
that any changes made to eatsyscall.o are already reflected in eatsyscall.
(It can be absolutely sure of this because the only way to generate eatsyscall
is by processing eatsyscall.o.)

The Make utility pays close attention to Linux timestamps. Whenever you
edit a source code file or generate an object code file or an executable file, Linux
updates that file’s timestamp to the moment that the changes were finally com-
pleted. And even though you may have created the original file six months ago,
by convention we say that a file is newer than another if the time value in its
timestamp is more recent than that of another file, even one that was created
only 10 minutes ago.

(In case you’re unfamiliar with the notion of a timestamp, it’s simply a value
that an operating system keeps in a filesystem directory for every file in the
directory. A file’s timestamp is updated to the current clock time whenever the
file is changed.)

When a file is newer than all of the files that it depends upon (according to
the dependencies called out in the makefile), that file is said to be up- to- date.
Nothing will be accomplished by generating it again, because all information
contained in the component files is reflected in the dependent file.

Chains of Dependencies
So far, this may seem like a lot of fuss to no great purpose. But the real value in
the Make mechanism begins to appear when a single makefile contains chains
of dependencies. Even in the simplest makefiles, there will be dependencies
that depend on other dependencies. Our completely trivial example program
requires two dependency statements in its makefile.

168 Chapter 6 ■ A Place to Stand, with Access to Tools

Consider that the following dependency statement specifies how to generate
an executable file from an object code (.o) file:

eatsyscall: eatsyscall.o
 ld - o eatsyscall.o eatsyscall

The gist here is that to build the eatsyscall file, you start with eatsyscall.o and
process it according to the recipe in the second line. So where does eatsyscall.o
come from? That requires a second dependency statement.

eatsyscall.o: eatsyscall.asm
 nasm - f elf64 - g - F dwarf eatsyscall.asm

Here we explain that to generate eatsyscall.o, we need eatsyscall.asm,
and to generate it, we follow the recipe in the second line. The full makefile
would contain nothing more than these two dependencies:

eatsyscall: eatsyscall.o
 ld - o eatsyscall.o eatsyscall
eatsyscall.o: eatsyscall.asm
 nasm - f elf64 - g - F dwarf eatsyscall.asm

These two dependency statements define the two steps that we must take
to generate an executable program file from our very simple assembly lan-
guage source code file eatlinux.asm. However, it’s not obvious from the two
dependencies I show here that all the fuss is worthwhile. Assembling eatlinux
.asm pretty much requires that we link eatlinux.o to create eatlinux. The two
steps go together in virtually all cases.

But consider a real- world programming project, in which there are hundreds
of separate source code files. Only some of those files might be “on the rack”
in an editor and undergoing changes on any given day. However, to build and
test the final program, all of the files are required. But. . .are all the compilation
steps and assembly steps required? Not at all.

An executable program is knit together by the linker from one or more— often
many more— object code files. If all but (let’s say) two of the object code files are
up- to- date, there’s no reason to assemble the other 147 source code files. You
just assemble the two source- code files that have been changed and then link
all 149 object code files into the executable.

The challenge, of course, is correctly remembering which two files have
changed— and being sure that all changes that have been recently made to any
of the 149 source code files are reflected in the final executable file. That’s a lot
of remembering, or referring to notes. And it gets worse when more than one
person is working on the project, as will be the case in nearly all commercial
software development shops. The Make utility makes remembering any of this
unnecessary. Make figures it out and does only what must be done— no more,
no less.

 Chapter 6 ■ A Place to Stand, with Access to Tools 169

The Make utility looks at the makefile, and it looks at the timestamps of all
the source code and object code files called out in the makefile. If the executable
file is newer than all of the object code files, nothing needs to be done. However,
if any of the object code files are newer than the executable file, the executable
file must be relinked. And if one or more of the source code files are newer than
either the executable file or their respective object code files, some assembling
or compiling must be done before any linking is done.

What Make does is start with the executable file and looks for chains of depen-
dency moving away from that. The executable file depends on one or more
object files, which in turn depend on one or more source code files. Make walks
the path up the various chains, taking note of what’s newer than an executable
file and what must be done to put it all right. Make then executes the compiler,
assembler, and linker selectively to be sure that the executable file is ultimately
newer than all of the files that it depends on. Make ensures that all work that
needs to be done gets done. Furthermore, Make avoids spending unnecessary
time compiling and assembling files that are already up- to- date and do not
need to be compiled or assembled. Given that a full build (by which I mean the
recompilation/reassembly and relinking of every single file in the project) can take
hours on an ambitious program, Make saves an enormous amount of idle time
when all you need to do is test changes made to one small part of the program.

There is actually a lot more to the Unix Make facility than this, but what
I’ve described are the fundamental principles. You have the power to make
assembling and compilation conditional, inclusion of files conditional, and
much more. You won’t need to fuss with such things on your first forays into
assembly language (or C programming, for that matter), but it’s good to know
that the power is there as your programming skills improve and you take on
more ambitious projects.

Invoking Make
Running Make is about as easy as anything you’ll ever do in programming:
You type make on the terminal command line and hit Enter. Make will handle
the rest. There is only one command- line option of interest to beginners, and
that is - k. The - k option instructs Make to stop building any file in which an
error occurs and leave the previous copy of the target file undisturbed. (It con-
tinues building any other files that need building.) Absent the - k option, Make
may overwrite your existing object code and executable files with incomplete
copies, which isn’t the end of the world but is sometimes a nuisance, as well as
confusing. If this doesn’t make total sense to you right now, don’t worry— it’s
a good idea to use - k until you’re really sure you don’t need to.

170 Chapter 6 ■ A Place to Stand, with Access to Tools

That said, for simple projects where there is one project per directory and an
appropriate makefile named makefile in each directory, navigate to the project
directory you want to work on, and type this command:

make - k

Any time you make any change to one of your source code files, no matter
how minor, you will have to run Make to test the consequences of that change.
As a beginner you will probably be learning by the “tweak and try” method,
which means you might change only one machine instruction on one line of
your source code file and then “see what that does.”

If you do tend to learn this way (I do, and there’s nothing wrong with it!),
you’re going to be running Make a lot. All Linux IDEs and a lot of Linux text
editors allow you to run Make without leaving the program. Unfortunately,
SASM does not have that feature. It has its own build system, which is not as
powerful as Make. But when you graduate from SASM to a full- blown IDE
like KDevelop or Eclipse, you’ll find ways to launch Make from a menu item
or a key binding.

And if you use a customizable terminal emulator like Konsole, you don’t need
an IDE. You can launch Make from a single keystroke. Konsole allows you to
create custom key bindings. A key binding is an association between a keystroke
or combination keystroke and a text string entered at the terminal console.

Creating a Custom Key Binding for Make
To give yourself a Make key, you have to add a key binding to Konsole.
Interestingly, Konsole is embedded in some text editors like the Kate editor.
Adding the key binding to Konsole automatically adds it to Kate. In fact, any
program that uses Konsole for its terminal emulator will inherit your Make
key binding.

Here’s how to create a key binding in Konsole. The option is buried deep in
Konsole’s menu tree, so read carefully.

1. Launch Konsole from the desktop, not from within some other program.

2. Select Settings ➪ Manage profiles from Konsole’s main menu.

3. Create a new profile if you haven’t already. Earlier in this chapter I described
how to create a new profile for Konsole to provide the IBM- 850 character
encoding (for the sake of the old box- border character set), and if you
created a new profile back then, select the new profile and open it.

4. When the Edit Profile dialog appears, click the Keyboard tab.

5. When the Key Bindings dialog appears, make sure that xFree 4 is selected.
This is the default set of key bindings used by Konsole. Click the Edit button.

 Chapter 6 ■ A Place to Stand, with Access to Tools 171

6. When the Edit Key Binding List dialog appears, scroll down the list of
bindings to see if there is already a key binding for the ScrollLock key in
the Key Combination column. We’re going to hijack the ScrollLock key,
which I consider the most expendable key in the standard PC keyboard.
If ScrollLock already has a key binding for something, you may have to
choose a different key— or change whatever output the current binding
specifies.

7. If there’s no existing key binding for Scroll Lock, create one: Click the Add
button. A blank line will appear at the bottom of the bindings table. Type
ScrollLock (no space!) in the Key Combination column.

8. Click in the Output column to the right of ScrollLock. This allows us to
enter a string that will be emitted to standard output by Konsole any time
the ScrollLock key is pressed when Konsole has the focus. Type the fol-
lowing string, minus quotes: make - k\r (see Figure 6.5).

9. Click OK in the Edit Key Bindings List dialog, and click OK in the Key
Bindings dialog. Then click Close in the Manage Profiles dialog. You’re done!

Figure 6.5: Adding a key binding to Konsole

172 Chapter 6 ■ A Place to Stand, with Access to Tools

Test the new key binding by bringing up Konsole and pressing the ScrollLock
key. Konsole should type make - k on the command line, followed by Enter.
(That’s what the \r means in the key binding string.) Make will be invoked, and
depending on whether Konsole was open to a project directory with a makefile
in it, Make will then build your project.

Note that if you invoke Make successfully on a given project, Make will not
repeat the action if you immediately press ScrollLock (or whatever key you
chose for the key binding) again, without editing the source code or deleting
the object code file. Make will instead say, “‘eatsyscall’ is up to date.’”

Using Touch to Force a Build
As I said earlier, if your executable file is newer than all of the files that it depends
on, Make will refuse to perform a build— after all, in its own understanding of
the process, when your executable file is newer than everything it depends on,
there’s no work to do.

However, there is the occasional circumstance when you want Make to per-
form a build even when the executable is up- to- date. The one you’ll most likely
encounter as a beginner is when you’re tinkering with the makefile itself. If you’ve
changed your makefile and want to test it but your executable is up- to- date, you
need to engage in a little persuasion. Linux has a command called Touch that
has one job only: to update the timestamp in a file to the current clock time. If
you invoke Touch on your source code file, it will magically become “newer”
than the executable file, and Make will obediently do the build.

Invoke touch in a terminal window, followed by the name of the file to be
“touched.”

touch eatsyscall.asm

Then invoke Make again, and the build will happen— assuming that your
makefile exists and is correct!

Debugging with SASM

SASM’s debugging features aren’t enabled until you explicitly enter debug
mode by selecting Debug ➪ Debug from the menu, press F5 on the keyboard,
or click the Debug icon in the toolbar. SASM will highlight the first line of code
in the program, which for SASM’s build features must be as follows:

mov rbp,rsp

The program pauses at the highlighted line. At this point you can do one of
three things.

 Chapter 6 ■ A Place to Stand, with Access to Tools 173

 ■ Execute to a breakpoint.

 ■ Single- step.

 ■ End debugging and go back to editing the source code.

Setting a breakpoint is done by clicking the line number in the code where
you want execution to pause. A red circle will appear to the right of the line
number. The circle tells you that a breakpoint is in force at that line. To execute
code up to the breakpoint, you can select Debug ➢ Continue from the menu,
click the Debug icon in the toolbar, or press F5. All three of those actions are
toggles: When in edit mode, they put SASM in debug mode, and when in debug
mode, they continue execution up to the next breakpoint. If there are no further
breakpoints, execution continues until the program exits. When the program
exits, the log window will say “Debugging finished,” and SASM will return
to edit mode.

It’s important to remember that you can’t edit the source code when in debug mode,
as handy as that might seem at times. The two modes are mutually exclusive.
Get back into edit mode first— and it’s as simple as clicking the red Stop button.

Single- stepping is straightforward. You can select the two step options from
the Debug menu or click the step buttons on the toolbar. The two step buttons are
Step Over and Step Into. While you’re working with very simple programs, Step
Over is the command you’ll use. Each time you click Step Over, the highlighted
instruction will be executed, and the highlight will move to the next machine
instruction. Remember, an instruction under the highlight has not yet executed.
You have to step to the next instruction to execute the highlighted instruction.

The Step Into option does the same thing as Step Over until the instruction to
be executed next is a CALL instruction. When a CALL instruction is highlighted,
you have three choices.

 ■ Click Step Over and skip past the CALL instruction.

 ■ Click Step Into and follow the CALL instruction into the subroutine named
by CALL. Execution will move into the subroutine until a RET (return)
instruction is executed. Then the instruction immediately after the CALL
instruction will be highlighted. (More on subroutines later in this book.)

 ■ As always, you can get out of debug mode by clicking the red Stop icon
in the toolbar.

While single- stepping, watch the registers in the Registers window. When
something in your code changes a register, that change will appear immediately
in the window. Register names are displayed in the left column of the Registers
window in hexadecimal. The right column is the Info column. Most of the time,
the Info column displays registers in decimal.

174 Chapter 6 ■ A Place to Stand, with Access to Tools

The biggest exception is the EFlags register. We’ll talk about flags in detail in
Chapter 7. For now, think of EFlags as a collection of 1- bit registers that indi-
cate a binary (one of two ways) state. You can test the state of each of the flags
and branch to another part of the program depending on which way a given
flag bit goes.

One aside: In x64, EFlags has expanded to 64 bits and become RFlags, as you
might expect. However, at this writing, the high 32 bits of RFlags have not been
given any responsibilities and are reserved for Intel’s future use. For this reason,
SASM’s Registers window displays EFlags rather than RFlags. That doesn’t
mean you’re missing any flags. All the flags that exist are in EFlags.

The Registers window displays the names of flags that are set (equal to 1)
by name, within square brackets. In the Info pane, EFlags will look something
like this:

[PF ZF IF]

(This is just an example; you may see more or fewer flags.) There are many
branch instructions that test individual flags, and it’s handy to see which flags
are set (or not set) before you execute a branch instruction.

Now, compared to most debuggers, SASM’s memory display option is extremely
limited. In Chapter 7 I describe how to display data items. Displaying runs of
memory is sufficiently complex that I’ll point you to a more powerful (though
much less accessible) debugger that does a better job of showing you what’s in
a region of memory (see Appendix A).

Pick up Your Tools. . .
At this point, you have the background you need and the tools that you need.
It’s time (finally!) to sit down and begin looking at the x64 instruction set in
detail and then begin writing programs in earnest.

C H A P T E R

175

7

After a long monolog, a famous comedian once said, I told you that story so
I could tell you this one....” We’re a third of the way through this book, and
I haven’t even begun describing in detail the principal element in PC assembly
language: the 64- bit x64 instruction set. Most books on assembly language, even
those targeted at beginners, assume that the instruction set is as good a place as
any to start their story, without considering the mass of groundwork without
which most beginning programmers get totally lost and give up.

Orientation is crucial. That’s why I began at the real beginning and took 200
pages to get to where the other guys start.

Keep in mind that this book was created to supply that essential groundwork
and orientation for your first steps in assembly language itself. It is not a complete
course in x64 assembly language. Once you run off the end of this book, you’ll
have one leg up on any of the multitude of other books on assembly language
from other authors and publishers.

And it’s high time that we got to the heart of things, way down where soft-
ware meets the silicon.

Following Your Instructions
Meeting Machine Instructions Up Close and Personal

176 Chapter 7 ■ Following Your Instructions

Build Yourself a Sandbox

The best way to get acquainted with the x64 instruction set is to build yourself
a sandbox and just have fun. An assembly language program doesn’t need to
run correctly from Linux. It doesn’t even need to be complete, as programs go.
All it has to be is comprehensible to NASM and the linker, and that in itself
doesn’t take a lot of doing.

In my personal techie jargon, a sandbox is a program intended to be run only
in a debugger. If you want to see what effects an instruction has on memory
or one of the registers, single- stepping it in SASM’s debugger will show you
vividly. The program doesn’t need to return visible results on the command
line. It simply has to contain correctly formed instructions.

In practice, my sandbox idea works this way: You assemble and link a program
called newsandbox.asm. You create a minimal NASM program in source code
and save it to disk as sandbox.asm. Any time you want to play around with
machine instructions, you open newsandbox.asm in SASM and save it again as
SANDBOX.ASM, overwriting any earlier version of sandbox.asm that may exist. (If
for some reason you want to keep a particular sandbox program, save it under
a different name.) You can add instructions for observation.

It’s possible that your experiments will yield a useful combination of machine
instructions that’s worth saving. In that case, save the sandbox file as EXPERIMENT1
.ASM (or whatever descriptive name you want to give it), and you can build that
sequence into a “real” program whenever you’re ready.

A Minimal NASM Program for SASM
So what does a program require to be assembled by NASM within the SASM
IDE? In truth, not much. Listing 7.1 is the source code for what I use as a starter
sandbox in SASM. Listing 7.1 presents more, in fact, than NASM technically
requires but nothing more than it needs to be useful as a sandbox.

Listing 7.1: newsandbox.asm

section .data
section .text

global main

main:
 mov rbp, rsp ;Save stack pointer for debugger
 nop
; Put your experiments between the two nops...

.

 Chapter 7 ■ Following Your Instructions 177

; Put your experiments between the two nops...
 nop

section .bss

NASM will in fact assemble a source code file that contains no instruction
mnemonics at all— though in fairness, the instructionless executable will not
be run by Linux. What we do need is a starting point that is marked as global—
here, the label main. (Using main is a requirement of SASM, not NASM.) We
also need to define a data section and text section as shown. The data section
holds named data items that are to be given initial values when the program
runs. The old “Eat at Joe’s” ad message from Listing 5.1 was a named data item
in the data section. The text section holds program code. Both of these sections
are needed to create an executable, even if one or both are empty.

The section marked .bss isn’t strictly essential, but it’s good to have if you’re
going to be experimenting. The .bss section holds uninitialized data, that is,
space saved for data items that are given no initial values when the program
begins running. These are empty buffers, basically, for data that will be gen-
erated or read from somewhere while the program is running. By custom, the
.bss section is located after the .text section. (I’ll have a lot more to say about
the .bss section and uninitialized data in upcoming chapters.)

There are two NOP instructions in sandbox.asm. Remember that NOP instructions
do nothing but take up a little time. They are there to make it easier to watch
the program in the SASM debugger. To play around with machine instructions,
place the instructions of your choice between the two comments. Build the
program, click the Debug button, and have fun!

Set a breakpoint at the first instruction you place between the comments, and
click Debug. Execution will begin and stop at your breakpoint. To observe the
effects of that instruction, click the Step Over button. Here’s why the second
NOP instruction is there: When you single- step an instruction, there has to be an
instruction after that instruction for execution to pause on. If the first instruction
in your sandbox is the last instruction, execution will “run off the edge” on your
first single step, and your program will terminate. When that happens, SASM’s
Registers and Memory panes will go blank, and you won’t be able to see the
effects of that one instruction!

The notion of running off the edge of the program is an interesting one. If
you click the Debug button or press its shortcut key F5, you’ll see what happens
when you don’t properly end the program: Linux will hand up a segmentation
fault, which can have a number of causes. However, what happened in this case
is that your program attempted to execute a location past the end of the .text
section. Linux knows how long your program is, and it won’t allow you to exe-
cute any instructions that were not present in your program when it was loaded.

178 Chapter 7 ■ Following Your Instructions

There’s no lasting harm in that, of course. Linux is very good at dealing with
misbehaving and malformed programs (especially simple ones), and nothing
you’re likely to do by accident will have any effect on the integrity of Linux
itself. You can avoid generating the segmentation fault by clicking the red Stop
button before you send execution off the end of your little experimental program.
SASM will move from Debug mode to Edit mode. Keep in mind that if you exit
Debug mode, you will no longer be able to see the registers or memory items.

Of course, if you want to just let a program run, you can add a few lines mak-
ing a SYSCALL to the x64 Exit routine at the end of your sandbox. That way, if
execution runs off the bottom of your experiments, the SYSCALL will gracefully
cease execution. The following is the code for the Exit SYSCALL:

mov rax,60 ; Code for Exit Syscall
mov rdi,0 ; Return a code of zero
syscall ; Make kernel call

Place this code after the second NOP, and you’re covered. Note that I have not
done this to the newsandbox.asm file in the listings archive.

Instructions and Their Operands

The single most common activity in assembly language work is getting data from
here to there. There are several specialized ways to do this, but only one truly
general way: the MOV instruction. MOV can move a byte, word (16 bits), double
word (32 bits), or quad word (64 bits) of data from one register to another, from
a register into memory, or from memory into a register. What MOV cannot do is
move data directly from one address in memory to a different address in memory.
(To do that, you need two separate MOV instructions: first from memory to a
register and second from that register back out to a different place in memory.)

The name MOV is a bit of a misnomer, since what actually happens is that data
is copied from a source to a destination. Once copied to the destination, however,
the data does not vanish from the source but continues to exist in both places.
This conflicts a little with our intuitive notion of moving something, which
usually means that something disappears from a source location and reappears
at a destination location.

Source and Destination Operands

Most machine instructions, MOV included, have one or more operands. (Some
instructions have no operands or operate on registers or memory implicitly.

 Chapter 7 ■ Following Your Instructions 179

When this is the case, I’ll make a point of mentioning it in the text.) Consider
this machine instruction:

mov rax,1

There are two operands in the previous instruction. The first is RAX, and the
second is the digit 1. By convention in assembly language, the first (leftmost)
operand belonging to a machine instruction is the destination operand. The second
operand from the left is the source operand.

With the MOV instruction, the sense of the two operands is pretty literal: The
source operand is copied to the destination operand. In the previous instruction,
the source operand (the literal value 1) is copied into the destination operand
RAX. The sense of source and destination is not nearly so literal in other instruc-
tions, but a rule of thumb is this: Whenever a machine instruction causes a new
value to be generated, that new value is placed in the destination operand.

There are three different flavors of data that may be used as operands. These
are memory data, register data, and immediate data. I’ve laid out some example MOV
instructions on the dissection pad in Table 7.1 to give you a flavor for how the
different types of data are specified as operands to the MOV instruction.

Immediate Data
The MOV RAX,42h instruction in Table 7.1 is a good example of using what we call
immediate data, accessed through an addressing mode called immediate addressing.
Immediate addressing gets its name from the fact that the item being addressed

Table 7.1: MOV and Its Operands

MACHINE
INSTRUCTION

DESTINATION
OPERAND

SOURCE
OPERAND OPERAND NOTES

MOV RAX, 42h Source is immediate data.

MOV RBX, RDI Both are 64- bit register
data.

MOV BX, CX Both are 16- bit register
data.

MOV DL, BH Both are 8- bit register data.

MOV [RBP], RDI Destination is 64- bit
memory data at the
address stored in RBP.

MOV RDX, [RSI] Source is 64- bit memory
data at the address stored
in RSI.

180 Chapter 7 ■ Following Your Instructions

is data built right into the machine instruction itself. The CPU does not have
to go anywhere to find immediate data. It’s not in a register, nor is it stored in
a data item somewhere out there in memory. Immediate data is always right
inside the instruction being fetched and executed.

Immediate data must be of an appropriate size for the operand. For example,
you can’t move a 16- bit immediate value into an 8- bit register section such as
AH or DL. NASM will not allow you to assemble an instruction like this:

mov cl,067EFh

CL is an 8- bit register, and 067EFh is a 16- bit quantity. Won’t go!
Because it’s built right into a machine instruction, you might think that

immediate data would be quick to access. This is true only up to a point: Fetching
anything from memory takes more time than fetching anything from a register,
and instructions are, after all, stored in memory. So, while addressing immediate
data is somewhat quicker than addressing ordinary data stored in memory,
neither is anywhere near as quick as simply pulling a value from a CPU register.

Also keep in mind that only the source operand may be immediate data. The
destination operand is the place where data goes, not where it comes from. Since
immediate data consists of literal constants (numbers such as 1, 0, 42, or 07F2Bh),
trying to copy something into immediate data rather than from immediate data
simply has no meaning and is always an error.

NASM allows some interesting forms of immediate data. For example, the
following is perfectly legal, if not necessarily as useful as it looks at first glance:

mov eax,'WXYZ'

This is a good instruction to load into your sandbox and execute in the debugger.
Look at the contents of register EAX in the registers view:

0x5a595857

This may seem weird, but look close: The numeric equivalents of the upper-
case ASCII characters W, X, Y, and Z have been loaded nose- to- tail into EAX. If
you’re not up on your ASCII, take a look at the chart in Appendix C. W is 57h,
X is 58h, Y is 59h, and Z is 5Ah. Each character equivalent is 8 bits in size, so
four of them fit snugly into 32- bit register EAX. However, they’re backward!

Well, no. Recall the concept of “endianness” that I introduced early in Chapter 5,
and if you don’t recall, do go back and read that section again. The x86/x64
architecture is “little endian,” meaning that the least significant byte in a mul-
tibyte sequence is stored at the lowest address. This applies to registers as well
and makes sense once you understand how we refer to units of storage within
a register.

The confusion comes about because of our schizoid habit of reading text from
left to right, while reading numbers from right to left. Take a look at Figure 7.1.

 Chapter 7 ■ Following Your Instructions 181

(This example uses 32- bit register EAX to make the figure less complex and
easier to understand.) Treated as a sequence of text characters, the W in WXYZ is
considered the least significant element. EAX, however, is a container for num-
bers, where the least significant column is always (for Western languages) on
the right. The least significant byte in EAX we call AL, and that’s where the W
goes. The second- to- least significant byte in EAX we call AH, and that’s where
the X goes. The two most significant bytes in EAX do not have separate names
and may not be addressed individually, but they are still 8- bit bytes and may
contain 8- bit values like ASCII characters. The most significant character in the
sequence WXYZ is the Z, and it’s stored in the most significant byte of EAX.

Register Data
Data stored inside a CPU register is known as register data, and accessing register
data directly is an addressing mode called register addressing. Register addressing
is done by simply naming the register we want to work with. Here are some
entirely legal examples of register data and register addressing:

mov rbp,rsi ; 64- bit
add ecx,edx ; 32- bit
add di,ax ; 16- bit
mov bl,ch ; 8- bit

We’re not speaking only of the MOV instruction here. The ADD instruction does
just what you might expect and adds the source and destination operands.

Figure 7.1: Character strings as immediate data

182 Chapter 7 ■ Following Your Instructions

The sum replaces whatever was in the destination operand. Irrespective of the
instruction, register addressing happens any time data in a register is acted on
directly.

The assembler keeps track of certain things that don’t make sense, and one
such situation is naming a 16- bit register half and a full 64- bit register within
the same instruction. Such operations are not legal— after all, what would it
mean to move an 8- byte source into a 2- byte destination? And while moving
a 2- byte source into an 8- byte destination might seem possible and sometimes
even reasonable, the CPU does not support it, and it cannot be done directly. If
you try, NASM will hand you this error:

error: invalid combination of opcode and operands

In other words, if you’re moving data from register to register, the source and
destination registers must be the same size.

Watching register data in the debugger is a good way to get a gut sense for
how this works, especially when you’re just starting out. Let’s practice a little.
Enter these instructions into your sandbox, build the executable, and load the
sandbox executable into the debugger:

xor rbx,rbx
xor rcx,rcx

mov rax,067FEh
mov rbx,rax
mov cl,bh
mov ch,bl

Set a breakpoint on the first of the instructions, and then click Run. Single-
step through the instructions, watching carefully what happens to RAX, RBX,
and RCX. Keep in mind that SASM’s Registers window does not show the 8- bit,
16- bit, or 32- bit register sections separately and individually. EAX is part of
RAX, AX is part of EAX, and CL is part of ECX, etc. Anything you place in RAX
is already in EAX, AX, and AL.

Once you’re done single- stepping, click the red Stop icon to terminate the
program. Remember that if you select Debug ➪ Continue or try to step past the
end of the program, Linux will hand you a segmentation fault for not terminating
the program properly. Nothing will be harmed by the fault; remember that the
sandbox is not expected to be a complete and proper Linux program. It’s good
practice to “kill” the program via Stop rather than generate the fault, however.

Note the first two instructions. When you want to put the value 0 into a reg-
ister, the fastest way is to use the XOR instruction, which performs a bitwise XOR
operation on the source and destination operands. As we’ll see a little later,
XORing a value against itself yields 0. Yes, you could use

mov rbx,0

 Chapter 7 ■ Following Your Instructions 183

instead, but that has to go out to memory to load the immediate value 0. XORing
a register against itself does not go out to memory for either the source or the
destination operand and is thus a little faster.

Once you’ve zeroed out RBX and RCX, this is what happens: The first MOV
instruction is an example of immediate addressing using 64- bit registers. The
16- bit hexadecimal value 067FEH is moved into the RAX register. (Note here
that you can MOV a 16- bit or any other size immediate value that will fit in the
destination register.) The second instruction uses register addressing to copy
register data from EAX into EBX.

The third and fourth MOV instructions both move data between 8- bit register
segments rather than 16- , 32- , or 64- bit registers. These two instructions accom-
plish something interesting. Look at the last register display, and compare the
value of RBX and RCX. By moving the value from BX into CX a byte at a time,
it’s possible to reverse the order of the two bytes making up BX. The high half of
BX (what we sometimes call the most significant byte, or MSB, of BX) was moved
into the low half of CX. Then the low half of BX (what we sometimes call the least
significant byte, or LSB, of BX) was moved into the high half of CX. This is just
a sample of the sorts of tricks you can play with the general- purpose registers.

Just to disabuse you of the notion that the MOV instruction should be used to
exchange the two halves of a 16- bit register, let me suggest that you do the fol-
lowing: Go back to SASM and add this instruction to the end of your sandbox:

xchg cl,ch

Rebuild the sandbox and head back into the debugger to see what happens.
The XCHG instruction exchanges the values contained in its two operands. What
was interchanged before is interchanged again, and the value in RCX will
match the values already in RAX and RBX. A good idea while writing your
first assembly language programs is to double- check the instruction set period-
ically to see that what you have cobbled together with four or five instructions
is not possible using a single instruction. The Intel instruction set is very good
at fooling you in that regard.

There is one caution here: Sometimes a “special case” is faster in terms of
machine execution time than a more general case. Dividing by a power of 2 can
be done using the DIV instruction, but it can also be done by using the SHR (Shift
Right) instruction. DIV is more general (you can use it to divide by any unsigned
integer, not simply powers of 2), but it is a great deal slower. (I’ll have more to
say about DIV later in this chapter.) The speed of individual instructions mat-
ters far less now than it did 30 years ago. That said, for programs with complex
repetitive functions that are executed thousands or hundreds of thousands of
times in a loop, instruction speed may well make a difference.

184 Chapter 7 ■ Following Your Instructions

Memory Data and Effective Addresses
Immediate data is built right into its own machine instruction. Register data is
stored in one of the CPU’s collection of internal registers. In contrast, memory
data is stored somewhere in the sliver of system memory “owned” by a program,
at a 64- bit memory address.

With one or two important exceptions (the string instructions, which I cover
to a degree— but not exhaustively— later), only one of an instruction’s two
operands may specify a memory location. In other words, you can move an
immediate value to memory, a memory value to a register, or some other similar
combination, but you can’t move a memory value directly to another memory
value. This is an inherent limitation of the Intel CPUs of all generations (not just
x64), and we have to live with it, inconvenient as it might be at times.

To specify that we want the data at the memory location contained in a reg-
ister rather than the data in the register itself, we use square brackets around
the name of the register. In other words, to move the quadword in memory at
the address contained in RBX into register RAX, we would use the following
instruction:

mov rax,[rbx]

The square brackets may contain more than the name of a single 64- bit reg-
ister, as we’ll learn in detail later. For example, you can add a literal constant to
a register within the brackets, and NASM will do the math.

mov rax,[rbx+16]

Ditto adding two general- purpose registers, like so:

mov rax,[rbx+rcx]

And as if that weren’t enough, you can add two registers plus a literal constant.

mov rax,[rbx+rcx+11]

Not everything goes, of course. Whatever is inside the brackets is called the
effective address of a data item in memory, and there are rules dictating what can
be a valid effective address and what cannot. At the current evolution of the Intel
hardware, two registers may be added together to form the effective address,
but not three or more. In other words, these are not legal effective address forms:

mov rax,[rbx+rcx+rdx]
mov rax,[rbx+rcx+rsi+rdi]

The more complicated forms of effective addresses are easier to demonstrate
than explain, but we have to learn a few other things first. They’re especially

 Chapter 7 ■ Following Your Instructions 185

useful when you’re dealing with lookup tables, and I’ll go into that at some
length later. For the time being, the most important thing to do is not confuse a
data item with where it exists!

Confusing Data and Its Address
This sounds banal, but trust me, it’s an easy enough thing to do. Back in Listing
5.1, we had this data definition and this instruction:

EatMsg: db "Eat at Joe’s!"
. . . .
mov rsi,EatMsg

If you’ve had any exposure to high- level languages like Pascal, your first
instinct might be to assume that whatever data is stored in EatMsg will be copied
into RSI. Assembly doesn’t work that way. That MOV instruction actually copies
the address of EatMsg, not what’s stored in (actually, at) EatMsg.

In assembly language, variable names represent addresses, not data!

So, how do you actually “get at” the data represented by a variable like
EatMsg? Again, it’s done with square brackets.

mov rdx,[EatMsg]

What this instruction does is go out to the location in memory specified by
the address represented by EatMsg, pulls in the first 64 bits’ worth of data from
that address, and loads that data into RDX starting with the least significant
byte in RDX. Given the contents we’ve defined for EatMsg, that would be the
eight characters E, a, t, a space, a, t, a space, and J.

The Size of Memory Data
But what if you want to work with only a single character and not the first eight?
What if you don’t want all 64 bits? Basically, if you want to use one byte of data,
you need to load it into a byte- sized container. The register RAX is 64 bits in
size. However, we can address the least- significant byte of RAX as AL. AL is
one byte in size, and by making AL the destination operand, we can bring back
the first byte of EatMsg this way:

mov al,[EatMsg]

AL, of course, is contained within RAX— it’s not a separate register. (Look
back to Figure 7.1 if this isn’t immediately clear to you.) But the name “AL”
allows us to fetch only one byte at a time from memory.

186 Chapter 7 ■ Following Your Instructions

We can perform a similar trick using the name EAX to refer to the lower 4
bytes (32 bits) of RAX:

mov eax,[EatMsg]

This time, the characters E, a, t, and a space are read from memory and placed
in the four least significant bytes of RAX.

Where the size issue gets tricky is when you write data in a register out to
memory. NASM does not “remember” the sizes of variables, like higher- level
languages do. It knows where EatMsg starts in memory, and that’s it. You have
to tell NASM how many bytes of data to move. This is done by a size specifier.
Here’s an example:

mov byte [EatMsg],'G'

Here, we tell NASM that we want to move only a single byte out to memory
by using the BYTE size specifier. Other size specifiers include WORD (16 bits),
DWORD (32 bits), and QWORD (64 bits).

The Bad Old Days
Be glad you’re learning Intel assembly in the current day. It was a lot more
complicated in years past. In real mode under DOS, there were several restric-
tions on the components of an effective address that just don’t exist today, in
either 32- bit protected mode or 64- bit long mode. In real mode, only certain x86
general- purpose registers could hold a memory address: BX, BP, SI, and DI. The
others, AX, CX, and DX, could not.

Worse, every address had two parts, as we learned in Chapter 4. You had
to be mindful of which segment an address was in, and you had to make sure
you specified the segment where the segment was not obvious. You had to use
constructs like [DS:BX] or [ES:BP]. You had to fool with diabolical things called
ASSUMEs, about which the less said, the better. (If you are for some reason forced
to program in real mode for the x86, try to find a copy of the second edition of
this book, from 2000, in which I take on the whole mess in gruesome detail.)

In so many ways, life is just better now.

Rally Round the Flags, Boys!

Although I mentioned it in the overview of the x64 architecture, we haven’t yet
studied the RFlags register in any detail. RFlags is a veritable junk drawer of
disjointed little bits of information, and it’s tough (and perhaps misleading) to
just sit down and describe all of them in detail at once. What I will do is describe
the CPU flags briefly here and then in more detail as we encounter them while

 Chapter 7 ■ Following Your Instructions 187

discussing the various instructions that change the values of flags or use them
while branching.

A flag is a single bit of information whose meaning is independent from any
other bit. A bit can be set to 1 or cleared to 0 by the CPU as its needs require.
The idea is to tell you, the programmer, the state of certain conditions inside
the CPU so that your program can test for and act on the states of those condi-
tions. Much more rarely, you the programmer set a flag as a way of signaling
something to the CPU.

I often imagine a row of country mailboxes, each with its own little red flag
on the side. Each flag can be up or down, and if the Smiths’ flag is up, it tells
the mail carrier that the Smiths have placed mail in their box to be picked up.
The mail carrier looks to see if the Smiths’ flag is raised (a test) and, if so, opens
the Smiths’ mailbox and picks up the waiting outbound mail.

RFlags as a whole is a single 64- bit register buried inside the CPU. It’s the 64-
bit extension of the 32- bit EFlags register, which in turn is the 32- bit extension
of the 16- bit Flags register present in the ancient 8086/8088 CPUs. Only 18 bits
of the RFlags register are actually flags. The rest are reserved for later use in
future generations of Intel CPUs. Even among the defined flags, only a few are
commonplace, and fewer still are useful when you’re just learning your way
around. Some are used only inside system software like operating systems and
are not available at all in userspace programs.

It’s a bit of a mess, but take a look at Figure 7.2, which summarize all flags
currently defined in the x64 architecture. The flags I’ve put against a gray
background are the arcane ones that you can safely ignore for the moment.
Spaces and lines colored black are considered reserved and do not contain
defined flags.

Each of the RFlags register’s flags has a two- , three- , or four- letter symbol by
which most programmers know them. I use those symbols in this book, and
you should become familiar with them. The most common flags, their symbols,
and brief descriptions of what they stand for follows:

 ■ OF— The Overflow flag is set when the result of an arithmetic operation
on a signed integer quantity becomes too large to fit in the operand it
originally occupied. OF is generally used as the “carry flag” in signed
arithmetic.

 ■ DF— The Direction flag is an oddball among the flags in that it tells the
CPU something that you want it to know, rather than the other way around.
It dictates the direction that activity moves (up- memory or down- memory)
during the execution of string instructions. When DF is set, string instruc-
tions proceed from high memory toward low memory. When DF is cleared,
string instructions proceed from low memory toward high memory.

188 Chapter 7 ■ Following Your Instructions

Figure 7.2: The x64 RFlags register

 Chapter 7 ■ Following Your Instructions 189

 ■ IF— The Interrupt Enable flag is a two- way flag. The CPU sets it under
certain conditions, and you can set it yourself using the STI and CLI
instructions— though you probably won’t; see below. When IF is set,
interrupts are enabled and may occur when requested. When IF is cleared,
interrupts are ignored by the CPU. Ordinary programs could set and clear
this flag with impunity in Real Mode, back in the DOS era. Under Linux
(whether 32- bit or 64- bit) IF is reserved for the use of the operating system
and sometimes its drivers. If you try to use the STI and CLI instructions
within one of your programs, Linux will hand you a general protection
fault, and your program will be terminated. Consider IF off- limits for
userspace programming like we’re discussing in this book.

 ■ TF— When set, the Trap flag allows debuggers to manage single- stepping,
by forcing the CPU to execute only a single instruction before calling an
interrupt routine. This is not an especially useful flag for ordinary program-
ming, and I won’t have anything more to say about it in this book.

 ■ SF— The Sign flag becomes set when the result of an operation forces the
operand to become negative. By negative, we mean only that the highest-
order bit in the operand (the sign bit) becomes 1 during a signed arithmetic
operation. Any operation that leaves the sign of the result positive will
clear SF.

 ■ ZF— The Zero flag becomes set when the results of an operation become
zero. If the destination operand instead becomes some nonzero value, ZF
is cleared. You’ll be using this one a lot for conditional jumps.

 ■ AF— The Auxiliary Carry flag is used only for BCD arithmetic. BCD
arithmetic treats each operand byte as a pair of 4- bit “nybbles” and allows
something approximating decimal (base 10) arithmetic to be done directly
in the CPU hardware by using one of the BCD arithmetic instructions.
These instructions are considered obsolete and are not present in x64. I
do not cover them in this book.

 ■ PF— The Parity flag will seem instantly familiar to anyone who under-
stands serial data communications and utterly bizarre to anyone who
doesn’t. PF indicates whether the number of set (1) bits in the low- order
byte of a result is even or odd. For example, if the result is 0F2H, PF will
be cleared because 0F2H (11110010) contains an odd number of 1 bits.
Similarly, if the result is 3AH (00111100), PF will be set because there is
an even number (four) of 1 bits in the result. This flag is a carryover from
the days when all computer communications were done through a serial
port, for which a system of error detection called parity checking depends

190 Chapter 7 ■ Following Your Instructions

on knowing whether a count of set bits in a character byte is even or odd.
PF is used very rarely, and I won’t be describing it further.

 ■ CF— The Carry flag is used in unsigned arithmetic operations. If the result
of an arithmetic or shift operation “carries out” a bit from the operand,
CF becomes set. Otherwise, if nothing is carried out, CF is cleared.

Flag Etiquette
What I call “flag etiquette” is the way a given instruction affects the flags in
the RFlags register. You must remember that the descriptions of the flags on
the previous pages are generalizations only and are subject to specific restric-
tions and special cases imposed by individual instructions. Flag etiquette for
individual flags varies widely from instruction to instruction, even though the
sense of the flag’s use may be the same in every case.

For example, some instructions that cause a zero to appear in an operand set
ZF, while others do not. Sadly, there’s no system to it and no easy way to keep
it straight in your head. When you intend to use the flags in testing by way of
conditional jump instructions, you have to check each individual instruction
to see how the various flags are affected.

Flag etiquette is a highly individual matter. Check an instruction reference for each
instruction to see if it affects the flags. Assume nothing!

Watching Flags from SASM
The RFlags register is a register, just as RAX is, and when you’re in debug
mode, its value is displayed in SASM’s Registers view. The values of the flags
are shown between square brackets. When you start to debug userspace code,
SASM will typically show the names of the PF, ZF, and IF flags.

[PF ZF IF]

This means that for whatever reason, when Linux allows you to begin debug-
ging, the Parity flag, Zero flag, and Interrupt Enable flag are set. These initial
values are “leftovers” from code executed earlier and are not in any way caused
by your code in the debugger. Their values, furthermore, don’t carry any meaning
into your debug session and thus don’t need interpretation.

When you execute an instruction that affects the flags in a debug session,
SASM will show a flag’s name if that flag is set or will erase the flag’s name if
that flag is cleared.

 Chapter 7 ■ Following Your Instructions 191

Adding and Subtracting One with INC and DEC
A simple lesson in flag etiquette involves the two instructions INC and DEC. Several
x86 machine instructions come in pairs, INC and DEC among them. They increment
and decrement an operand by one, respectively.

Adding one to something or subtracting one from something are actions that
happen a lot in computer programming. If you’re counting the number of times
that a program is executing a loop, counting bytes in a table, or doing something
that advances or retreats one count at a time, INC or DEC can be very quick ways
to make the actual addition or subtraction happen.

Both INC and DEC take only one operand. An error will be flagged by the
assembler if you try to use either INC or DEC with two operands or without any
operands. Neither will work on immediate data.

Try both by adding the following instructions to your sandbox. Build the
sandbox as usual, go into debug mode, and step through it:

mov eax,0FFFFFFFFh
mov ebx,02Dh
dec ebx
inc eax

Watch what happens to the EAX and EBX registers. Decrementing EBX pre-
dictably turns the value 2DH into value 2CH. Incrementing 0FFFFFFFFH, on
the other hand, rolls over the EAX register over to 0, because 0FFFFFFFFH is the
largest unsigned value that can be expressed in a 32- bit register. (I used EAX in
the example here because filling 64- bit register RAX with bits takes a lot of Fs!)
Adding 1 to it rolls it over to zero, just as adding 1 to 99 rolls the rightmost two
digits of the sum to zero in creating the number 100. The difference with INC is
that there is no carry. The Carry flag is not affected by INC, so don’t try to use it
to perform multidigit arithmetic.

 ■ The Overflow flag (OF) was cleared because the operand, interpreted as
a signed integer, did not become too large to fit in EBX. This may not help
you if you don’t know what makes a number “signed,” so let’s leave it at
that for the moment.

 ■ The Sign flag (SF) was cleared because the high bit of EBX did not become
1 as a result of the operation. Had the high bit of EBX become 1, the value
in EBX, interpreted as a signed integer value, would have become nega-
tive, and SF is set when a value becomes negative. As with OF, SF is not
very useful unless you’re doing signed arithmetic.

 ■ The Zero flag (ZF) was cleared because the destination operand did not
become zero. Had it become zero, ZF would have been set to 1.

192 Chapter 7 ■ Following Your Instructions

 ■ The Auxiliary Carry flag (AF) was cleared because there was no BCD
carry out of the lower four bits of EBX into the next higher four bits. (BCD
instructions were removed from the x64 instruction set, so AF is of no use
today and can be ignored.)

 ■ The Parity flag (PF) was cleared because the number of 1- bits in the operand
after the decrement happened was three, and PF is cleared when the
number of bits in the destination operand is odd. Check it yourself: The
value in EBX after the DEC instruction is 02Ch. In binary, this is 00101100.
There are three 1- bits in the value, and thus PF is cleared.

The DEC instruction does not affect the IF flag, which remained set. In fact,
almost nothing changes the IF flag, and userspace applications like the sandbox
(and everything else you’re likely to write while learning assembly) are forbidden
to change IF.

Now, execute the INC EAX instruction, and re- display the registers in the
Console view. Boom! Lots of action this time:

 ■ The Parity flag PF was set because the number of 1- bits in EAX is now
zero, and PF is set when the number of 1- bits in the operand becomes
even. Zero is considered an even number.

 ■ The Auxiliary Carry flag AF was set because the lower four bits in EAX
went from FFFF to 0000. This implies a carry out of the lower four bits to
the upper four bits, and AF is set when a carry out of the lower four bits
of the operand happens. (Again, you can’t use AF in x64 programming.)

 ■ The Zero flag ZF was set because EAX became zero.

 ■ As before, the IF flag doesn’t change and remains set at all times. Remember
that IF belongs exclusively to Linux and is not affected by userspace code.

How Flags Change Program Execution
Watching the flags change value after instructions execute is a good way to learn
flag etiquette. However, the purpose and real value of the flags doesn’t lie in
their values, per se, but in how they affect the flow of machine instructions in
your programs.

There is a whole category of machine instructions that “jump” to a different
location in your program based on the current value in one or more of the flags.
These instructions are called conditional jump instructions, and most of the flags
in RFLAGS have one or more associated conditional jump instructions. They’re
listed in Appendix B.

Think back to the notion of “steps and tests” that I introduced in Chapter 1.
Most machine instructions are steps taken in a list that runs generally from

 Chapter 7 ■ Following Your Instructions 193

top to bottom. The conditional jump instructions are the tests. They test the
condition of one of the flags and either keep on going or jump to a different
location in your program.

The simplest example of a conditional jump instruction, and the one you’re
likely to use the most, is JNZ, Jump If Not Zero. The JNZ instruction tests the
value of the Zero flag. If ZF is set (that is, equal to 1), nothing happens, and
the CPU goes on to execute the next instruction in sequence. However, if ZF
is not set (that is, if it’s cleared and equal to 0), then execution travels to a new
destination in your program.

This sounds worse than it is. You don’t have to worry about adding or sub-
tracting anything. In nearly all cases, the destination is given as a label. Labels
are descriptive names given to locations in your programs. In NASM, a label
is a character string followed by a colon, generally placed on a line containing
an instruction.

Like so many things in assembly language, this will become clearer with a
simple example. Load up a fresh sandbox, and type in the following instructions:

 mov rax,5
DoMore: dec rax
 jnz DoMore

Build the sandbox and go into debug mode. Watch the value of RAX in the
Registers view as you step through these instructions. In particular, watch what
happens in the source code window when you execute the JNZ instruction. JNZ
jumps to the label named as its operand if ZF is 0. If ZF = 1, it “falls through”
to the next instruction.

The DEC instruction decrements the value in its operand; here, RAX. As long
as the value in RAX does not change to 0, the Zero flag remains cleared. And
as long as the Zero flag is cleared, JNZ jumps back to the label DoMore. So for
five passes, DEC takes the value in RAX down a notch, and JNZ jumps back to
DoMore. But as soon as DEC takes RAX down to 0, the Zero flag becomes set, and
JNZ “falls through” to the NOP instruction at the end of the sandbox.

Constructs like this are called loops and are common in all programming, not
just assembly language. The loop shown earlier isn’t useful, but it demonstrates
how you can repeat an instruction as many times as you need to, by loading an
initial count value in a register and decrementing that value once for each pass
through the loop. The JNZ instruction tests ZF each time through and knows to
exit the loop when the count register goes to 0.

We can make the loop a little more useful without adding a lot of complication.
What we do need to add is a data item for the loop to work on. Load Listing 7.2
into a SASM sandbox, build it, and then enter debug mode.

194 Chapter 7 ■ Following Your Instructions

Listing 7.2: kangaroo.asm

section .data
 Snippet db "KANGAROO"

section .text
 global main
main:
 mov rbp,rsp ;Save stack pointer for debugger
 nop

; Put your experiments between the two nops...

 mov rbx,Snippet
 mov rax,8
DoMore: add byte [rbx],32
 inc rbx
 dec rax
 jnz DoMore

; Put your experiments between the two nops...
 nop

How to Inspect Variables in SASM
The program KANGAROO.ASM defines a variable and then changes it. So how do
we see what changes are being made? SASM has the ability to display named
variables in debug mode. I should note here that at this writing, SASM 3.11.2
does not have the ability to display arbitrary regions of memory, hexdump-
style. More advanced debuggers will do that, and I discuss such a debugger
in Appendix A.

What SASM does is display named variables. To use this feature, you have to
select the Show Memory check box when you’re in debug mode. (The check box is
grayed out in edit mode.) By default, the Show Memory window is at the top
of SASM’s display. To show the contents of a named variable in a program or
sandbox you’ve built, you must do this:

1. Enter debug mode.

2. In the Variable Or Expression field, enter Snippet.

3. In the Type field, select Smart in the leftmost pull- down menu.

4. In the next field, select b from the pull- down menu.

5. In the next field, type the length of the variable you want to see, in bytes.
For this example, since the contents of Snippet are eight characters long,
enter 8.

Once you do that, you’ll see “KANGAROO” in the Value field. That’s what’s
in Snippet. With that done, step through the program with Snippet on display.

 Chapter 7 ■ Following Your Instructions 195

After eight passes through the loop, “KANGAROO” has become “kangaroo”—
how? Look at the ADD instruction located at the label DoMore. Earlier in the
program, we had copied the memory address of Snippet into register RBX. The
ADD instruction adds the literal value 32 to whatever number is at the address
stored in RBX. If you look at the ASCII charts in Appendix C, you’ll notice that
the difference between the value of ASCII uppercase letters and ASCII lowercase
letters is 32. A capital K has the value 4Bh, and a lowercase k has the value 6Bh.
6Bh–4Bh is 20h, which in decimal is 32. So if we treat ASCII letters as numbers,
we can add 32 to an uppercase letter and transform it into a lowercase letter.

What the loop does is make eight passes, one for each letter in “KANGAROO.”
After each ADD, the program increments the address in RBX, which puts the next
character of “KANGAROO” in the crosshairs. It also decrements RAX, which
had been loaded with the number of characters in the variable Snippet before
the loop began. So within the same loop, the program is counting up along the
length of Snippet in RBX, while counting down the length of the remaining
letters in RAX. When RAX goes to zero, it means that we’ve gone through all
of the characters in Snippet, and we’re done.

The operands of the ADD instruction are worth a closer look. Putting RBX inside
square brackets references the contents of Snippet, rather than its address. But
more important, the BYTE size specifier tells NASM that we’re writing only a
single byte to the memory address in RBX. NASM has no way to know otherwise.
It’s possible to write one byte, two bytes, four bytes, or eight bytes to memory
at once, depending on what we need to accomplish. However, we have to tell
NASM how many bytes we want it to use, with a size specifier.

Don’t forget that KANGAROO.ASM is still a sandbox program, suitable only for
single- stepping in the SASM debugger. If you just “let it run,” it will generate a
segmentation fault when execution moves past the final NOP instruction. Once
you single- step to that final NOP, kill the program and either begin execution
again or exit debug mode.

Signed and Unsigned Values

In assembly language we can work with both signed and unsigned numeric
values. Signed values, of course, are values that can become negative. An unsigned
value is always positive. There are instructions for the four basic arithmetic
operations in the basic x64 instruction set, and these instructions can operate on
both signed and unsigned values. (With multiplication and division, there are
separate instructions for signed and unsigned calculations, as I’ll explain later.)

The key to understanding the difference between signed and unsigned numeric
values is knowing where the CPU puts the sign. It’s not a dash character but

196 Chapter 7 ■ Following Your Instructions

actually a bit in the binary pattern that represents the number. The highest bit
in the most significant byte of a signed value is the sign bit. If the sign bit is a
1- bit, the number is negative. If the sign bit is a 0- bit, the number is positive.

Keep in mind through all of this that whether a given binary pattern represents
a signed or an unsigned value depends on how we choose to use it. If we intend
to perform signed arithmetic, the high bit of a register value or memory location
is considered the sign bit. If we do not intend to perform signed arithmetic, the
high bits of the very same values in the very same places will simply be the most
significant bits of unsigned values. The signed nature of a value lies in how we
treat the value, not in the nature of the underlying bit pattern that represents
the value. For example, does the binary number 10101111 represent a signed or
an unsigned value? The question is meaningless without context: If we need to
treat the value as a signed value, we treat the high- order bit as the sign bit, and
the value is - 81. If we need to treat the value as an unsigned value, we treat the
high bit as just another digit in a binary number, and the value is 175.

Two’s Complement and NEG
One mistake beginners sometimes commit is assuming that you can make a
value negative by setting the sign bit to 1. Not so! You can’t simply take the
value 42 and make it - 42 by setting the sign bit. The value you get will certainly
be negative, but it will not be - 42.

One way to get a sense for the way negative numbers are expressed in assem-
bly language is to decrement a positive number down into negative territory.
Bring up a clean sandbox and enter these instructions:

 mov eax,5
DoMore: dec eax
 jmp DoMore

(I’m using 32- bit register EAX here because a “full” 64- bit register is a handful
to display on the printed page. The takeaway is the same.) Build the sandbox
as usual and enter debug mode. Note that we’ve added a new instruction here,
and a hazard: The JMP instruction does not look at the flags. When executed, it
always jumps to its operand; so, execution will bounce back to the label DoMore
each and every time that JMP executes. If you’re sharp, you’ll notice that there’s
no way out of this particular sequence of instructions, and, yes, this is the leg-
endary “endless loop” that you’ll fall into now and then.

So, make sure that you set a breakpoint on the initial MOV instruction, and don’t
just let the program rip. Or. . .go ahead! (Nothing will be harmed.) If you click
the red square, SASM will stop the program. Under DOS, you would have been
stuck and had to reboot the PC. Linux makes for a much more robust program-
ming platform, one that doesn’t go down in flames on your tiniest mistake.

 Chapter 7 ■ Following Your Instructions 197

Start single- stepping the sandbox, and watch EAX in the Registers view.
The starting value of 5 will count down to 4, then 3, then 2, then 1, then 0, and
then. . .0FFFFFFFFh! That’s the 32- bit expression of the simple value - 1. If you
keep on decrementing EAX, you’ll get a sense for what happens:

0FFFFFFFFh (- 1)
0FFFFFFFEh (- 2)
0FFFFFFFDh (- 3)
0FFFFFFFCh (- 4)
0FFFFFFFBh (- 5)
0FFFFFFFAh (- 6)
0FFFFFFF9h (- 7)

. . .and so on. When negative numbers are handled in this fashion, we call it
two’s complement. In Intel assembly language, negative numbers are stored as the
two’s complement form of their absolute value, which if you remember from
eighth- grade math is the distance of a number from 0, in either the positive or
negative direction.

The mathematics behind two’s complement is surprisingly subtle, and I
refer you to Wikipedia for a fuller treatment than I can afford in this (already
long) book.

en.wikipedia.org/wiki/Two’s_complement/

The magic of expressing negative numbers in two’s complement form is
that the CPU doesn’t really need to subtract at the level of its transistor logic.
It simply generates the two’s complement of the subtrahend and adds it to the
minuend. This is relatively easy for the CPU, and it all happens transparently
to your programs, where subtraction is done about the way you’d expect.

The good news is that you almost never have to calculate a two’s complement
value manually. There is a machine instruction that will do it for you: NEG. The
NEG instruction will take a positive value as its operand and negate that value,
that is, make it negative. It does so by generating the two’s complement form
of the positive value. Load the following instructions into a clean sandbox and
single- step though them. Watch EAX in the Registers view:

mov eax,42
neg eax
add eax,42

In one swoop, 42 becomes 0FFFFFFD6h, the two’s complement hexadecimal
expression of - 42. Add 42 to this value, and watch EAX go to 0.

At this point, the question may arise: What are the largest positive and nega-
tive numbers that can be expressed in one, two, four, or eight bytes? Those two
values, plus all the values in between, constitute the range of a value expressed
in a given number of bits. I’ve laid this out in Table 7.2.

http://en.wikipedia.org/wiki/Two’s_complement/

198 Chapter 7 ■ Following Your Instructions

If you’re sharp and know how to count in hex, you may notice something here
from the table: The greatest positive value and the greatest negative value for a
given value size are one count apart. That is, if you’re working in 8 bits and add
one to the greatest positive value, 7Fh, you get 80h, the greatest negative value.

You can watch this happen in SASM by executing the following two instruc-
tions in a sandbox and watching RAX in the Registers display:

mov rax,07FFFFFFFFFFFFFFFh
inc rax

(Make sure you get the number of Fs correct! It’s one 7 and 15 F’s.) After the
MOV instruction executes, RAX will show the decimal value 9223372036854775807.
That’s the highest signed value expressible in 64 bits. Increment the value by 1 with
the INC instruction, and instantly the value in RAX becomes - 9223372036854775808.

Sign Extension and MOVSX
There’s a subtle gotcha to be avoided when you’re working with signed values
in different sizes. The sign bit is the high bit in a signed byte, word, or double
word. But what happens when you have to move a signed value into a larger
register or memory location? What happens, for example, if you need to move a
signed 16- bit value into a 32- bit register? If you use the MOV instruction, nothing
good. Try this:

mov ax,- 42
mov ebx,eax

Table 7.2: The Ranges of Signed Values

VALUE SIZE GREATEST NEGATIVE VALUE GREATEST POSITIVE VALUE

DECIMAL HEX DECIMAL HEX

8 Bits - 128 80h 127 7Fh

16 Bits - 32768 8000h 32767 7FFFh

32 Bits - 2147483648 80000000h 2147483647 7FFFFFFFh

64 Bits:

Greatest Negative Value, Decimal: - 9223372036854775808

Greatest Negative Value, Hex: 8000000000000000h

Greatest Positive Value, Decimal: 9223372036854775807

Greatest Positive Value, Hex: 7FFFFFFFFFFFFFFFh

 Chapter 7 ■ Following Your Instructions 199

The hexadecimal form of - 42 is 0FFD6h. If you have that value in a 16- bit
register like AX and use MOV to move the value into a larger register like EBX or
RBX, the sign bit will no longer be the sign bit. In other words, once - 42 travels from
a 16- bit container into a 32- bit container, it changes from - 42 to 65494. The sign
bit is still there. It hasn’t been cleared to zero. However, in a larger register, the
old sign bit is now just another bit in a binary value, with no special meaning.

This example is a little misleading. First, we can’t literally move a value from
AX into EBX. The MOV instruction will handle only register operands of the same
size. However, remember that AX is simply the lower two bytes of EAX. We
can move AX into EBX by moving EAX into EBX, and that’s what we did in
the previous example.

Alas, SASM is not capable of showing us signed 8- bit, 16- bit, or 32- bit values.
Its debugger can display only RAX, and we can see AL, AH, AX, or EAX only
by seeing them inside RAX. That’s why, in the previous example, SASM shows
the value we thought was - 42 as 65494. SASM’s Registers view has no concept
of a sign bit except in the highest bit of a 64- bit value.

Modern Intel CPUs provides us with a way out of this trap, in the form of the
MOVSX instruction. MOVSX means “Move with Sign Extension,” and it is one of
many instructions that were not present in the original 8086/8088 CPUs. MOVSX
was introduced with the 386 family of CPUs, and because Linux will not run
on anything older than a 386, you can assume that any Linux PC supports the
MOVSX instruction.

Load this into a sandbox and try it:

xor rax,rax
mov ax,- 42
movsx rbx,ax

The first line is simply to zero out RAX to make sure there are no “leftovers”
stored in it from code executed earlier. Remember that SASM cannot display
AX individually, and so will show RAX as containing 65494. However, when
you move AX into RBX with MOVSX, the value of RBX will then be shown as
- 42. What happened is that the MOVSX instruction performed sign extension on
its operands, taking the sign bit from the 16- bit quantity in AX and making it
the sign bit of the 64- bit quantity in RBX.

MOVSX is significantly different from MOV in that its operands may be of different
sizes. MOVSX has several possible variations, which I’ve summarized in Table 7.3.

200 Chapter 7 ■ Following Your Instructions

Note that the destination operand can only be a register. The notation here is
one you’ll see in many assembly language references in describing instruction
operands. The notation “r16” is an abbreviation for “any 16- bit register.” Sim-
ilarly, “r/m” means “register or memory” and is followed by the bit size. For
example, “r/m16” means “any 16- bit register or 16- bit memory location.”

With all that said, you may find after solving some problems in assembly
language that signed arithmetic is used less often than you think. It’s good
to know how it works, but don’t be surprised if you go months or even years
without ever needing it.

Implicit Operands and MUL

Most of the time, you hand values to machine instructions through one or two
operands placed right there on the line beside the mnemonic. This is good, because
when you say MOV RAX,RBX, you know precisely what’s moving, where it comes
from, and where it’s going. Alas, that isn’t always the case. Some instructions act
on registers or even memory locations that are not stated in a list of operands.
These instructions do in fact have operands, but they represent assumptions
made by the instruction. Such operands are called implicit operands, and they do
not change and cannot be changed. To add to the confusion, most instructions
that have implicit operands have explicit operands as well.

The best examples of implicit operands in the x64 instruction set are the
multiplication and division instructions. The x64 instruction set has two sets
of multiply and divide instructions. One set, MUL and DIV, handle unsigned
calculations. The other, IMUL and IDIV, handle signed calculations. MUL and DIV
are used much more frequently than their signed- math alternates, and they’re
what I’ll discuss in this section.

The MUL instruction does what you’d expect: It multiplies two values and
returns a product. Among the basic math operations, however, multiplication
has a special problem: It generates output values that are often hugely larger than

Table 7.3: The MOVSX Instruction

INSTRUCTION DESTINATION SOURCE OPERAND NOTES

MOVSX r16 r/m8 8- bit signed to 16- bit signed

MOVSX r32 r/m8 8- bit signed to 32- bit signed

MOVSX r64 r/m8 8- bit signed to 64- bit signed

MOVSX r32 r/m16 16- bit signed to 32- bit signed

MOVSX r64 r/m16 16- bit signed to 64- bit signed

MOVSX r64 r/m32 32- bit signed to 64- bit signed

 Chapter 7 ■ Following Your Instructions 201

the input values. This makes it impossible to follow the conventional pattern
in Intel instruction operands, where the value generated by an instruction goes
into the destination operand.

Consider a 32- bit multiply operation. The largest unsigned value that will fit
in a 32- bit register is 4,294,967,295. Multiply that even by two and you’ve got a
33- bit product, which will no longer fit in any 32- bit register. This problem has
plagued the Intel architectures (all architectures, in fact) since the beginning.
When the x86 was a 16- bit architecture, the problem was where to put the product
of two 16- bit values, which can easily overflow a 16- bit register.

Intel’s designers solved the problem the only way they could: by using two
registers to hold the product. It’s not immediately obvious to non- mathematicians,
but it’s true (try it on a calculator!) that the largest product of two binary num-
bers can be expressed in no more than twice the number of bits required by the
larger factor. Simply put, any product of two 16- bit values will fit in 32 bits, and
any product of two 32- bit values will fit in 64 bits. So while two registers may
be needed to hold the product, no more than two registers will ever be needed.

That brings us to the MUL instruction. MUL is an odd bird from an operand
standpoint: It takes only one operand, which contains one of the factors to be
multiplied. The other factor is implicit, as is the pair of registers that receives
the product of the calculation. MUL thus looks deceptively simple.

mul rbx

Obviously, if multiplication is going on, more is involved here than just
RBX. The implicit operands depend on the size of the explicit one. This gives
us four variations, which I’ve summarized in Table 7.4.

The first factor is given in the single explicit operand, which can be a value
either in a register or in a memory location. The second factor is implicit and
always in the “A” general- purpose register appropriate to the size of the first
factor. If the first factor is an 8- bit value, the second factor is always in 8- bit
register AL. If the first factor is a 16- bit value, the second factor is always in the
16- bit register AX, and so on. Once the product requires more than 16 bits, the

Table 7.4: The MUL Instruction

INSTRUCTION

EXPLICIT
OPERAND
(FACTOR 1)

IMPLICIT
OPERAND
(FACTOR 2)

IMPLICIT
OPERAND
(PRODUCT)

MUL r/m8 r/m8 AL AX

MUL r/m16 r/m16 AX DX : AX

MUL r/m32 r/m32 EAX EDX : EAX

MUL r/m64 r/m64 RAX RDX : RAX

202 Chapter 7 ■ Following Your Instructions

DX registers are drafted to hold the high- order portion of the product. By “high-
order” here I mean the portion of the product that won’t fit in the “A” register.
For example, if you multiply two 16- bit values and the product is 02A456Fh,
register AX will contain 0456Fh, and the DX register will contain 02Ah.

Note that when a product is small enough to fit entirely in the first of the two
registers holding the product, the high- order register (whether AH, DX, EDX,
or RDX) is zeroed out. Registers often get scarce in assembly work, but even if
you’re sure that your multiplications always involve small products, you can’t
use the high- order register for anything else while a MUL instruction is executed.

Also, note that immediate values cannot be used as operands for MUL; that
is, you can’t do this, as useful as it would often be to state the first factor as an
immediate value:

mul 42

MUL and the Carry Flag
Not all multiplications generate large enough products to require two regis-
ters. Most of the time you’ll find that 64 bits is more than enough. So how can
you tell whether there are significant figures in the high- order register? MUL
very helpfully sets the Carry flag CF when the value of the product overflows
the low- order register. If, after a MUL, you find CF set to 0, you can ignore the
high- order register, secure in the knowledge that the entire product is in the
lower- order of the two registers.

This is worth a quick sandbox demonstration. First, try a “small” multiplica-
tion where the product will easily fit in a single 32- bit register.

mov eax,447
mov ebx,1739
mul ebx

Remember that we’re multiplying EAX by EBX here. Step through the three
instructions, and after the MUL instruction has executed, look at the Registers view
to see the product in EDX and EAX. EAX contains 777333, and EDX contains 0.
Look next at the current state of the various flags. No sign of CF, meaning that
CF has been cleared to 0.

Next, add the following instructions to your sandbox, after the three shown
earlier:

mov eax,0FFFFFFFFh
mov ebx,03B72h
mul ebx

 Chapter 7 ■ Following Your Instructions 203

Step through them as usual, watching the contents of EAX, EDX, and EBX in
the Registers view. After the MUL instruction, look at the flags in the Registers
view. The Carry flag CF will be set to 1 (so have the Overflow flag OF, Sign flag
SF, Interrupt enable flag IF, and Parity flag PF, but those are not generally use-
ful in unsigned arithmetic). What CF basically tells you here is that there are
significant figures in the high- order portion of the product, and these are stored
in EDX for 32- bit multiplies, RDX for 64- bit multiplies, and so on.

Unsigned Division with DIV
As a third grader, I recall stating flatly in class that division is multiplication
done backward, and I was closer to the truth than poor Sister Agnes Eileen
was willing to admit at the time. It’s certainly true enough for there to be a
strong resemblance between the unsigned multiply instruction MUL and the
unsigned division instruction DIV. DIV does what you’d expect from your third-
grade training: It divides one value by another and gives you a quotient and
a remainder. Remember, we’re doing integer and not decimal arithmetic here,
so there is no way to express a decimal quotient like 17.76 or 3.14159. These
require the “floating- point” machinery of the CPU architecture, which is a vast
and subtle subject that I won’t be covering in this book.

In division, you don’t have the problem that multiplication has, of generating
large output values for some input values. If you divide a 16- bit value by another
16- bit value, you will never get a quotient that will not fit in a 16- bit register.
On the other hand, it would be useful to be able to divide very large numbers,
and so Intel’s engineers created something very like a mirror image of MUL: For
64- bit division, you place a dividend value in RDX and RAX, which means
that it may be up to 128 bits in size. The divisor is stored in DIV’s only explicit
operand, which may be a register or in memory. (As with MUL, you cannot use
an immediate value as the operand.) The quotient is returned in RAX, and the
remainder in RDX.

That’s the situation for a full, 64- bit division. As with MUL, DIV’s implicit
operands depend on the size of the single explicit operand, here acting as the
divisor. There are four “sizes” of DIV operations, depending on the size of the
explicit operand, the divisor. This is summarized in Table 7.5.

Table 7.5: The DIV Instruction

INSTRUCTION

EXPLICIT
OPERAND
(DIVISOR)

IMPLICIT
OPERAND
(DIVIDEND)

RESULT
(QUOTIENT)

RESULT
(REMAINDER)

DIV r/m8 r/m8 AX AL AH

DIV r/m16 r/m16 DX : AX AX DX

DIV r/m32 r/m32 EDX : EAX EAX EDX

DIV r/m64 r/m64 RDX : RAX RAX RDX

204 Chapter 7 ■ Following Your Instructions

I won’t even try to print out what integer number you can store in 128 bits
using two 64- bit registers. In scientific notation, it’s 3.4 × 1038. Given that 64 bits
can hold 1.8 × 1019 and that’s just short of the estimated number of stars in the
observable universe, I suggest treating the number as an undisplayed abstraction.

Let’s give DIV a spin. Put the following code in a fresh sandbox:

mov rax,250 ; Dividend
mov rbx,5 ; Divisor
div rbx ; Do the DIV

The explicit operand is the divisor, stored in RBX. The dividend is in RAX. Step
through it. After DIV executes, the quotient will be placed in RAX, replacing the
dividend. There is no remainder, so RDX is zero. Plug in a new dividend and
divisor that don’t divide evenly; 247 and 17 will work. Once you execute DIV
with the new operands, look at RDX. It should contain 9. That’s your remainder.

The DIV instruction does not place useful data in any of the flags. In fact, DIV
will leave OF, SF, ZF, AF, PF, and CF in undefined states. Don’t try to test any
of those flags in a jump instruction following DIV.

As you might expect, dividing by zero will trigger an error that will termi-
nate your program: an arithmetic exception. It’s a good idea to test your divisor
values to make sure no zeros end up in the divisor. Now, dividing zero by a
nonzero number does not trigger an error; it will simply place 0 values in the
quotient and remainder registers. Just for fun, try both cases in your sandbox
to see what happens.

MUL and DIV Are Slowpokes
A common beginner’s question about MUL and DIV concerns the two “smaller”
versions of both instructions. (See Tables 7.4 and 7.5.) If a 64- bit multiply or
divide can handle anything the x64 architecture can stuff in registers, why are
the smaller versions even necessary? Is it all a matter of backward compatibility
with older 16- bit CPUs?

Not entirely. In many cases, it’s a matter of speed. The DIV and MUL instructions
are close to the slowest instructions in the entire x64 instruction set. They’re
certainly not as slow as they used to be, but compared to other instructions like
MOV or ADD, they’re goop. Furthermore, both the 32- bit and 64- bit versions of
both instructions are slower than the 16- bit version, and the 8- bit version is the
fastest of all. DIV is slower than MUL, but both are slowpokes.

Now, speed optimization is a very slippery business in the x86/x64 world—
and not something beginners should be concerned with. Having instructions in
the CPU cache versus having to pull them from memory is a speed difference
that swamps most speed differences among the instructions themselves. Other

 Chapter 7 ■ Following Your Instructions 205

factors come into play in the most recent CPUs that make generalizations about
instruction speed almost impossible, and certainly impossible to state with any
precision.

If you’re doing only a few isolated multiplies or divides, don’t let any of this
bother you. Where instruction speed may become important is inside loops where
you’re doing a lot of calculations constantly, as in data encryption or physics
simulations. My own personal heuristic is to use the smallest version of MUL and
DIV that the input values allow— tempered by the even stronger heuristic that
most of the time, instruction speed doesn’t matter. When you become experienced
enough at assembly to make performance decisions at the instruction level, you
will know it. Until then, concentrate on making your programs bug- free and
leave speed up to the CPU.

Reading and Using an Assembly Language Reference

Assembly language programming is about details. Good grief, is it about details.
There are broad similarities among instructions, but it’s the differences that get
you when you start feeding programs to the unforgiving eye of the assembler.

Remembering a host of tiny, tangled details involving several dozen different
instructions is brutal and unnecessary. Even the Big Guys don’t try to keep it all
between their ears at all times. Most keep some other sort of reference document
handy to jog their memories about machine instruction details.

Memory Joggers for Complex Memories
This problem has existed for a long time. Back in 1975, when I first encoun-
tered microcomputers, a complete and useful instruction set memory jogger
document could be printed on two sides of a trifold card that could fit in your
shirt pocket. Such cards were common, and you could get them for almost any
microprocessor. For reasons unclear, they were called “blue cards,” though most
were printed on ordinary white cardboard.

By the early to mid-1980s, what had once been a single card was now an
89- page booklet, sized to fit in your pocket. The Intel Programmer’s Reference
Pocket Guide for the 8086 family of CPUs was shipped with Microsoft’s Macro
Assembler, and everybody I knew had one. (I still have mine.) It really did fit
in your shirt pocket, as long as nothing else fatter than a grocery list tried to
share the space.

The power and complexity of the x86 architecture exploded in the mid- 1980s,
and a full summary of all instructions in all their forms, plus all the necessary
explanations, became book- sized material and, as the years passed, required

206 Chapter 7 ■ Following Your Instructions

not one but several books to cover completely. Intel provides PDF versions of
its processor documentation as free downloads, and you can get them here:

www.intel.com/content/www/us/en/developer/articles/technical/

intel- sdm.html

They’re worth having— but forget cramming them in your pocket. The
instruction set reference alone represents more than 2,300 pages in a single PDF,
and there are several other related books to round out the set. The one you want
is Volume 2. The good news is that you can download the PDF files for free
and browse them on your PC or print out only the sections that you might find
handy for a particular project. (Printed books are available through lulu.com,
but they are expensive.) I definitely suggest that you become at least reasonably
familiar with the common x64 instructions before tackling Intel’s exhaustive
(and exhausting!) reference.

Thirty- odd years ago there were excellent book- sized reference guides for
the x86 family of CPUs, the best of them being Robert L. Hummel’s PC Mag-
azine Technical Reference: The Processor and Coprocessor (Ziff- Davis Press, 1992).
Although I see it regularly on used book sites, it will take you only as far as the
486. I still consider it a good thing to have on your shelf if you spot it some-
where and can get it cheap.

An Assembly Language Reference for Beginners
As I described, the problem with assembly language references is that to be
complete, they cannot be small. However, a great deal of the complexity of the
x86/x64 instruction sets in the modern day rests with instructions and memory
addressing machinery that are of use only to operating systems and drivers. For
smallish applications running in user mode, they simply do not apply.

So in deference to people just starting out in assembly language, I have put
together a beginner’s reference to the most common x86/x64 instructions, in
Appendix B. It contains at least a page on every instruction I cover in this book,
plus a few additional instructions that everyone ought to know. It does not
include descriptions on every instruction, but only the most common and most
useful. Once you’ve gotten skillful enough to use the more arcane instructions,
you should be able to read Intel’s x64 documentation and run with it.

http://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
http://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
http://lulu.com

 Chapter 7 ■ Following Your Instructions 207

Some of the instructions from 32- bit x86 were removed from the x64 instruction
set, and I have not included those in Appendix B.

Below is a sample entry from Appendix B. Refer to it during the following
discussion.

The instruction’s mnemonic is at the top of the page at the left margin. To the
mnemonic’s right is the name of the instruction, which is a little more descrip-
tive than the naked mnemonic.

Flags
Immediately beneath the mnemonic is a minichart of CPU flags in the RFlags
register. As I described earlier, the RFlags register is a collection of 1- bit values
that retain certain essential information about the state of the machine for short
periods of time. Many (but by no means all) x64 instructions change the values of
one or more flags. The flags may then be individually tested by one of the Jump
On Condition instructions, which change the course of the program depending
on the states of the flags.

Each of the flags has a name, and each flag has a symbol in the flags mini-
chart. You’ll come to know the flags by their two- character symbols in time, but
until then, the full names of the flags are shown to the right of the minichart.
The majority of the flags are not used often (if at all) in beginning assembly
language work. Most of what you’ll be paying attention to, flags- wise, are the
Zero flag (ZF) and the Carry flag (CF).

There will be an asterisk (*) beneath the symbol of any flag affected by the
instruction. How the flag is affected depends on what the instruction does. You’ll
have to divine that from the Notes section. When an instruction affects no flags
at all, the word <none> will appear in the flags minichart.

In the example page here, the minichart indicates that the NEG instruction
affects the Overflow flag, the Sign flag, the Zero flag, the Auxiliary Carry flag,
the Parity flag, and the Carry flag. The ways that the flags are affected depend
on the results of the negation operation on the operand specified. These ways
are summarized in the second paragraph of the Notes section.

208 Chapter 7 ■ Following Your Instructions

NEG Negate (Two’s Complement; i.e., Multiply by − 1)
Flags Affected

O D I T S Z A P C OF: Overflow flag TF: Trap flag AF: Aux carry
F F F F F F F F F DF: Direction flag SF: Sign flag PF: Parity flag
* * * * * * IF: Interrupt flag ZF: Zero flag CF: Carry flag

Legal Forms
NEG r8
NEG m8
NEG r16
NEG m16
NEG r32 386+
NEG m32 386+
NEG r64 x64
NEG m64 x64

Examples
NEG AL
NEG DX
NEG ECX
NEG RCX
NEG BYTE [BX] ; Negates BYTE quantity at [BX]
NEG WORD [DI] ; Negates WORD quantity at [BX]
NEG DWORD [EAX] ; Negates DWORD quantity at [EAX]
NEG QWORD [RCX] ; Negates QWORD quantity at [RCX]

Notes
This is the assembly language equivalent of multiplying a value by − 1. Keep in
mind that negation is not the same as simply inverting each bit in the operand.
(Another instruction, NOT, does that.) The process is also known as generating
the two’s complement of a value. The two’s complement of a value added to that
value yields zero: 1 = $FF; 2 = $FE; 3 = $FD; and so on.

If the operand is 0, CF is cleared, and ZF is set; otherwise, CF is set, and ZF is
cleared. If the operand contains the maximum negative value for the operand
size, the operand does not change, but OF and CF are set. SF is set if the result
is negative, or else SF is cleared. PF is set if the low- order 8 bits of the result
contain an even number of set (1) bits; otherwise, PF is cleared.

Note: You must use a size specifier (BYTE, WORD, DWORD, QWORD) with memory data!

r8 = AL AH BL BH CL CH DL DH r16 = AX BX CX DX BP SP SI DI
sr = CS DS SS ES FS GS r32 = EAX EBX ECX EDX EBP
 ESP ESI EDI
m8 = 8- bit memory data m16 = 16- bit memory data
m32 = 32- bit memory data i8 = 8- bit immediate data
i16 = 16- bit immediate data i32 = 32- bit immediate data
d8 = 8- bit signed displacement d16 = 16- bit signed displacement
d32 = 32- bit unsigned displacement

 Chapter 7 ■ Following Your Instructions 209

Legal Forms
A given mnemonic represents a single machine instruction, but each instruction
may include more than one legal form. The form of an instruction varies by the
type and order of the operands passed to it.

What the individual forms actually represent are different binary number
opcodes. For example, beneath the surface, the POP RAX instruction is the number
058h, whereas the POP RSI instruction is the number 05Eh. Most x64 opcodes
are not single 8- bit values, and most are at least two bytes long, and often four
or more.

When you want to use an instruction with a certain set of operands, make sure
you check the Legal Forms section of the reference guide for that instruction to
make sure that the combination is legal. More forms are legal now than they
were in the bad old DOS days, and many of the remaining restrictions involve
segment registers, which you will not be able to use anyway when writing
ordinary 64- bit long- mode user applications.

In the example reference page on the NEG instruction, you see that a segment
register cannot be an operand to NEG. (If it could, there would be a NEG sr item
in the Legal forms list.)

Operand Symbols
The symbols used to indicate the nature of the operands in the Legal Forms
section are summarized at the bottom of every instruction’s page in Appendix
A. They’re close to self- explanatory, but I’ll take a moment to expand upon
them slightly here:

 ■ r8— An 8- bit register half, one of AH, AL, BH, BL, CH, CL, DH, or DL.

 ■ r16— A 16- bit general- purpose register, one of AX, BX, CX, DX, BP, SP,
SI, or DI.

 ■ r32— A 32- bit general- purpose register, one of EAX, EBX, ECX, EDX, EBP,
ESP, ESI, or EDI.

 ■ r64— A 64- bit general- purpose register, one of RAX, RBX, RCX, RDX, RBP,
RSP, RSI, RDI, or one of R8- R15.

 ■ sr— One of the segment registers, CS, DS, SS, ES, FS, or GS.

 ■ m8— An 8- bit byte of memory data.

 ■ m16— A 16- bit word of memory data.

 ■ m32— A 32- bit word of memory data.

 ■ m64— A 64- bit word of memory data.

 ■ i8— An 8- bit byte of immediate data.

210 Chapter 7 ■ Following Your Instructions

 ■ i16— A 16- bit word of immediate data.

 ■ i32— A 32- bit word of immediate data.

 ■ i64— A 64- bit word of immediate data.

 ■ d8— An 8- bit signed displacement. We haven’t covered these yet, but a
displacement is a distance between the current location in the code and
another place in the code to which we want to jump. It’s signed (that is,
either negative or positive) because a positive displacement jumps you
higher (forward) in memory, whereas a negative displacement jumps you
lower (back) in memory. We’ll examine this notion in detail later.

 ■ d16— A 16- bit signed displacement. Again, for use with jump and call
instructions.

 ■ d32— A 32- bit signed displacement.

 ■ d64— A 64- bit signed displacement.

Examples
Whereas the Legal Forms section shows what combinations of operands are legal
for a given instruction, the Examples section shows examples of the instruction
in actual use, just as it would be coded in an assembly language program. I’ve
tried to put a good sampling of examples for each instruction, demonstrating
the range of different possibilities with the instruction. Not every single legal
form will be present in the examples.

Notes
The Notes section of the reference page describes the instruction’s action briefly
and provides information on how it affects the flags, how it may be limited in
use, and any other detail that needs to be remembered, especially things that
beginners would overlook or misconstrue.

What’s Not Here. . .
I have omitted any instruction from Appendix B that no longer exists in the
x64 instruction set.

Appendix B differs from most detailed assembly language references in that
it does not include the binary opcode encoding information, nor indications of
how many machine cycles are used by each form of the instruction.

The binary encoding of an instruction is the actual sequence of binary bytes
that the CPU digests and recognizes as the machine instruction. What we would
call POP RAX, the machine sees as the binary number 58h. What we call ADD
RSI,07733h, the machine sees as the 7- byte sequence 48h 81h 0C6h 33h 77h 00h
00h. Machine instructions are encoded into anywhere from one to as many as

 Chapter 7 ■ Following Your Instructions 211

15 bytes depending on what instruction they are and what their operands are.
Laying out the system for determining what the encoding will be for any given
instruction is extremely complicated, in that its component bytes must be set
up bit- by- bit from several large tables. I’ve decided that this book is not the
place for that particular discussion and have left encoding information out of
Appendix B. (This issue is one thing that makes the Intel instruction reference
books as big as they are.)

Finally, I’ve included nothing anywhere in this book that indicates how many
machine cycles are expended by any given machine instruction. A machine cycle
is one pulse of the master clock that makes the PC perform its magic. Each
instruction uses some number of those cycles to do its work, and the number
varies all over the map depending on criteria that I won’t be explaining in this
book. Worse, the number of machine cycles used by a given instruction differs
from one model of Intel processor to another. An instruction may use fewer cycles
on the Pentium than on the 486, or perhaps more. (In general, Intel machine
instructions have come to use fewer clock cycles over the years, but this is not
true of every single instruction.)

Furthermore, as Michael Abrash explains in his immense book Michael Abrash’s
Graphics Programming Black Book (Coriolis Group Books, 1997), knowing the
cycle requirements for individual instructions is rarely sufficient to allow even
an expert assembly language programmer to calculate how much time a given
series of instructions will take to execute. The CPU cache, prefetching, branch
prediction, hyperthreading, and any number of other factors combine and
interact to make such calculations almost impossible except in broad terms. He
and I both agree that it is no fit subject for beginners, but if you’d like to know
more at some point, I suggest hunting down his book and seeing for yourself.

C H A P T E R

213

8

The Bones of an Assembly Language Program

They don’t call it “assembly” for nothing. Facing the task of writing an assembly
language program brings to mind images of Christmas morning: You’ve spilled
1,567 small metal parts out of a large box marked “Land Shark HyperBike (Some
Assembly Required)” and now you have to somehow put them all together with
nothing left over. (In the meantime, the kids seem more than happy playing in
the box....)

I’ve actually explained just about all you absolutely must understand to cre-
ate your first assembly language program. Still, there is a nontrivial leap from
here to there; you are faced with many small parts with sharp edges that can
fit together in an infinity of different ways, most wrong, some workable, but
only a few that are ideal.

So here’s the plan: In this chapter, I’ll present you with the completed and
operable Land Shark HyperBike— which I will then tear apart before your eyes.
This is the best way to learn to assemble: by pulling apart programs written by
those who know what they’re doing. Over the rest of this chapter, we’ll pull a
few more programs apart, in the hope that by the time it’s over you’ll be able
to move in the other direction all by yourself.

Our Object All Sublime
Creating Programs That Work

214 Chapter 8 ■ Our Object All Sublime

In Listing 5.1 in Chapter 5, I presented perhaps the simplest correct program
for Linux that will do anything visible and still be comprehensible and expand-
able. Since then we’ve been looking at instructions in a sandbox through SASM’s
debugger. That’s a good way to become familiar with individual instructions,
but in very little time a sandbox just isn’t enough. Now that you have a grip
on the most common x64 instructions (and know how to set up a sandbox to
experiment with and get to know the others), we need to move on to complete
programs.

As you saw when you ran it, the program EASTSYSCALL.ASM displays one
(short) line of text on your display screen.

Eat at Joe's!

For that, you had to feed 35 lines of text to the assembler! Many of those
35 lines are comments and unnecessary in the strictest sense, but they serve as
internal documentation to allow you to understand what the program is doing
(or, more important, how it’s doing it) six months or a year from now.

Listing 8.1 is the same program you saw in Listing 5.1, but it’s short, and I’m
going to reprint it here so that you don’t have to flip back and forth during the
discussion on the following pages.

Listing 8.1: eatsyscall.asm

; Executable name : eatsyscall
; Version : 1.0
; Created date : 4/25/2022
; Last update : 5/10/2023
; Author : Jeff Duntemann
; Architecture : x64
; From : x64 Assembly Language Step By Step, 4th Edition
; Description : A simple program in assembly for x64 Linux
 using NASM
; 2.14, demonstrating the use of the syscall
 instruction
; to display text. Not for use within SASM.
;
; Build using these commands:
; nasm - f elf64 - g - F dwarf eatsyscall.asm
; ld - o eatsyscall eatsyscall.o
;

SECTION .data ; Section containing initialized data

 EatMsg: db Eat at Joe's!",10
 EatLen: equ $- EatMsg

SECTION .bss ; Section containing uninitialized data

SECTION .text ; Section containing code

 Chapter 8 ■ Our Object All Sublime 215

global _start ; Linker needs this to find the entry point!

_start:
 push rbp
 mov rbp,rsp

 mov rax,1 ; 1 = sys_write for syscall
 mov rdi,1 ; 1 = fd for stdout; i.e., write to the
 terminal window
 mov rsi,EatMsg ; Put address of the message string in rsi
 mov rdx,EatLen ; Length of string to be written in rdx
 syscall ; Make the system call

 mov rax,60 ; 60 = exit the program
 mov rdi,0 ; Return value in rdi 0 = nothing to return
 syscall ; Call syscall to exit

The Initial Comment Block
One of the aims of assembly language coding is to use as few instructions as
possible to get the job done. This does not mean creating as short a source code
file as possible. The size of the source file has nothing to do with the size of the
executable file assembled from it! The more comments you put in your file, the
better you’ll remember how things work inside the program the next time you
pick it up. I think you’ll find it amazing how quickly the logic of a complicated
assembly language program goes cold in your head. After no more than 48
hours of working on other projects, I’ve come back to assembly projects and
had to struggle to get back to flank speed on development.

Comments are neither time nor space wasted. IBM used to say, “One line of
comments per line of code.” That’s good— and should be considered a minimum
for assembly language work. A better course (that I will in fact follow in the
more complicated examples later in the chapter) is to use one short line of
commentary to the right of each line of code, along with a comment block at
the start of each sequence of instructions that work together in accomplishing
some discrete task.

At the top of every program should be a sort of standardized comment block,
containing some important information.

 ■ The name of the source code file.

 ■ The name of the executable file.

 ■ The date you created the file.

 ■ The date you last modified the file.

 ■ The name of the person who wrote it.

 ■ The name and version of the assembler used to create it.

216 Chapter 8 ■ Our Object All Sublime

 ■ An “overview” description of what the program or library does. Take as
much room as you need. It doesn’t matter to the size or speed of the exe-
cutable program.

 ■ A copy of the commands used to build the file, taken from the make file
if you use a make file or from SASM’s Build dialog if you use SASM.

The challenge with an initial comment block is updating it to reflect the
current state of your project. None of your tools is going to do that automati-
cally. It’s up to you.

The .data Section
Ordinary user- space programs written in NASM for Linux are divided into
three sections. The order in which these sections fall in your program really
isn’t important, but by convention the .data section comes first, followed by
the .bss section and then the .text section.

The .data section contains data definitions of initialized data items. Initialized
data is data that has a value before the program begins running. These values
are part of the executable file. They are loaded into memory when the execut-
able file is loaded into memory for execution. You don’t have to load them with
their values, and no machine cycles are used in their creation beyond what it
takes to load the program as a whole into memory.

The important thing to remember about the .data section is that the more
initialized data items that you define, the larger the executable file will be, and
the longer it will take to load it from disk into memory when you run it.

We’ll talk in detail about how initialized data items are defined shortly.

The .bss Section
Not all data items need to have values before the program begins running. When
you’re reading data from a disk file, for example, you need to have a place for
the data to go after it comes in from disk. Data buffers like that are defined in
the Block Start Symbol (.bss) section of your program. I’ve heard it called a
few other things down the years, like Buffer Start Symbol. The acronym doesn’t
matter in the slightest. In the .bss section, you allocate blocks of memory to be
used later and give those blocks names.

All assemblers have a way to set aside some number of bytes for a buffer and
give that buffer a name, but you don’t specify what values are to be stored in
the buffer. (More on this later.) Those values will appear due to program action
while the program is running.

There’s a crucial difference between data items defined in the .data section
and data items defined in the .bss section: Data items in the .data section add

 Chapter 8 ■ Our Object All Sublime 217

to the size of your executable file. Data items in the .bss section do not. A buffer
that takes up 16,000 bytes (or more, sometimes much more) can be defined in
.bss and add almost nothing (about 50 bytes for the description) to the exe-
cutable file size.

This is possible because of the way the Linux loader brings the program into
memory. When you build your executable file, the Linux linker adds information
to the file describing all the symbols you’ve defined, including symbols naming
data items. The loader knows which data items do not have initial values, and it
allocates space in memory for them when it brings the executable in from disk.
Data items with initial values are read in along with their values.

The very simple program eatsyscall.asm does not need any buffers or other
uninitialized data items and technically does not require that a .bss section
be defined at all. I put one in simply to show you how one is defined. Having
an empty .bss section does not increase the size of your executable file, and
deleting an empty .bss section does not make your executable file any smaller.

The .text Section
The actual machine instructions that make up your program go into the .text
section. Ordinarily, there are no data items defined in .text. The .text section
contains symbols called labels that identify locations in the program code for
jumps and calls, but beyond your instruction mnemonics, that’s about it.

All global labels must be declared in the .text section, or the labels cannot be
“seen” outside your program, either by the Linux linker or by the Linux loader.
Let’s look at the labels issue a little more closely.

Labels
A label is a sort of bookmark, describing a place in the program code and giving
it a name that’s easier to remember than a naked memory address. Labels are
used to indicate the places where jump instructions should jump to and give
names to callable assembly language procedures. I’ll explain how that’s all
done in later chapters.

In the meantime, here are the most important things to know about labels:

 ■ Labels must begin with a letter or else with an underscore, period, or question
mark. These last three have special meanings to the assembler, so don’t
use them until you know how NASM interprets them.

 ■ Labels must be followed by a colon when they are defined. This is basically what
tells NASM that the identifier being defined is a label. NASM will punt
if no colon is there and will not flag an error, but the colon nails it and

218 Chapter 8 ■ Our Object All Sublime

prevents a mistyped instruction mnemonic from being mistaken for a
label. So use the colon!

 ■ Labels are case sensitive. For example, yikes:, Yikes:, and YIKES: are three
completely different labels. This is a convention in the C language but
differs from practice in a lot of other languages (Pascal particularly) where
labels and other identifiers are not case- sensitive. Keep it in mind if you
have experience in other high- level languages beyond C.

Later, we’ll see such labels used as the targets of jump and call instructions.
For example, the following machine instruction transfers the flow of instruction
execution to the location marked by the label GoHome:

jmp GoHome

Notice that the colon is not used here. The colon is placed only where the label
is defined, not where it is referenced. Think of it this way: Use the colon when
you’re marking a location, not when you’re going there.

There is only one label in eatsyscall.asm, and it’s a little bit special. The
_start label indicates where the program begins. (It’s case- sensitive, so don’t
try using _START or _Start.) This label must be marked as global at the top of
the .text section, as shown.

SASM changes things a little. When you’re compiling an assembly language
program in SASM, the _start label becomes main. SASM uses the Gnu C com-
piler gcc to act as a middleman between NASM and the Linux linker, ld. What
SASM does, in a sense, is create a C program without any C code in it. All C
programs have to have a starting point, and in a C program that starting point
is always main. There are reasons for doing this that involve linking functions
written in C to your assembly program, as I’ll explain how to do later.

Remember this: When assembling from a make file, use _start. When assem-
bling from within SASM, use main.

Variables for Initialized Data
The identifier EatMsg in the .data section defines a variable. Specifically, EatMsg
is a string variable (more on which shortly), but still, as with all variables, it’s
one of a class of items we call initialized data: something that comes with a value
and not just an empty box into which we can place a value at some future time.
A variable is defined by associating an identifier with a data definition directive.
Data definition directives look like this:

MyByte db 07h ; 8 bits in size
MyWord dw 0FFFFh ; 16 bits in size
MyDouble dd 0B8000000h ; 32 bits in size
MyQuad dq 07FFFFFFFFFFFFFFFh ; 64 bits in size

 Chapter 8 ■ Our Object All Sublime 219

Think of the DB directive as “Define Byte.” DB sets aside one byte of memory
for data storage. Think of the DW directive as “Define Word.” DW sets aside one
word (16 bits, or two bytes) of memory for data storage. Think of the DD direc-
tive as “Define Double.” DD sets aside a double word in memory for storage.
DQ means “Define Quad,” that is, a quad word, which is 64 bits in size.

String Variables
String variables are an interesting special case. A string is just that: a sequence
or string of characters, all in a row in memory. One string variable is defined
in eatsyscall.asm:

EatMsg: db "Eat at Joe's!",10

Strings are an exception to the general rule that a data definition directive
sets aside a particular quantity of memory. The DB directive ordinarily sets aside
one byte only. However, a string may be any length you like. Because there is
no data directive that sets aside 17 bytes, or 42, strings are defined simply by
associating a label with the place where the string starts. The EatMsg label and
its DB directive specify one byte in memory as the string’s starting point. The
number of characters in the string is what tells the assembler how many bytes
of storage to set aside for that string.

Either single quote (‘) or double quote (”) characters may be used to delineate
a string, and the choice is up to you, unless you’re defining a string value that
itself contains one or more quote characters. Notice in eatsyscall.asm that the
string variable EatMsg contains a single- quote character used as an apostrophe.
Because the string contains a single- quote character, you must delineate it with
double quotes. The reverse is also true: If you define a string that contains one
or more double- quote characters, you must delineate it using single- quote
characters:

Yukkh: db 'He said, "How disgusting!" and threw up.',10

You may combine several separate substrings into a single string variable by
separating the substrings with commas. This is a perfectly legal (and sometimes
useful) way to define a string variable:

TwoLineMsg: db "Eat at Joe's...",10,
"...Ten million flies can't ALL be wrong!",10

So, what’s with the numeric literal 10 tucked into the previous example strings?
In Linux text work, the end of line (EOL) character has the numeric value of
10 decimal, or 0Ah. It tells the operating system where a line submitted for
display to the console ends. Any subsequent text displayed to the console will
be shown on the next line down, at the left margin. In the variable TwoLineMsg,

220 Chapter 8 ■ Our Object All Sublime

the EOL character in between the two substrings will direct Linux to display
the first substring on one line of the console, and the second substring on the
next line of the console below it:

Eat at Joe's!
Ten million flies can't ALL be wrong!

You can concatenate such individual numbers within a string, but you must
remember that, as with EOL, they will not appear as numbers. A string is a string of
characters. A number appended to a string will be interpreted by most operating
system routines as an ASCII character. The correspondence between numbers
and ASCII characters is shown in Appendix C. To show numbers in a string,
you must represent them as ASCII characters, either as character literals, like
the digit character 7, or as the numeric equivalents to ASCII characters, like 37h.

In ordinary assembly work, nearly all string variables are defined using the
DB directive and may be considered strings of bytes. (An ASCII character is one
byte in size.) You can define string variables using DW, DD, or DQ, but they’re han-
dled a little differently than those defined using DB. Consider these variables:

WordString: dw 'CQ'
DoubleString: dd 'Stop'
QuadString: dq 'KANGAROO'

The DW directive defines a word- length variable, and a word (16 bits) may
hold two 8- bit characters. Similarly, the DD directive defines a double word (32-
bit) variable, which may hold four 8- bit characters. The DQ directive defines a
quad word variable, which may contain eight 8- bit characters. The different
handling comes in when you load these named strings into registers. Consider
these three instructions:

mov ax,[WordString]
mov edx,[DoubleString]
mov rax,[QuadString]

Remember here that to move the data in a variable into a register, you must
place the name of the variable (which is its address) between square brackets.
Without the brackets, what you move into the register is the variable’s address
in memory, not what data exists at that address.

In the first MOV instruction, the characters CQ are placed into register AX, with
the C in AL and the Q in AH. In the second MOV instruction, the characters Stop
are loaded into EDX in little- endian order, with the S in the lowest order byte
of EDX, the t in the second lowest byte, and so on. If you look at the string
QuadString loaded into RAX from SASM, you’ll see that it contains “KANGAROO”
spelled backward.

 Chapter 8 ■ Our Object All Sublime 221

Loading strings into a single register this way (assuming that they fit!) is a
lot less common (and less useful) than using DB to define character strings, and
you won’t find yourself doing it very often.

Because eatsyscall.asm does not define any uninitialized data in its .bss
section, I’ll hold off discussing such definitions until we look at the next example
program.

Deriving String Length with EQU and $
Beneath the definition of EatMsg in the eatsyscall.asm file is an interesting
construct.

EatLen: equ $- EatMsg

This is an example of a larger class of things called assembly- time calculations.
What we’re doing here is calculating the length of the string variable EatMsg
and making that length value accessible to program code through the label
EatLen. At any point in your program, if you need to use the length of EatMsg,
you can use the label EatLen.

A statement containing the directive EQU is called an equate. An equate is a way
of associating a value with a label. Such a label is then treated very much like a
named constant in Pascal. Any time the assembler encounters an equate during
assembly, it will swap in the equate’s value for its name. Here’s an example:

FieldWidth: equ 10

Here, we’re telling the assembler that the label FieldWidth stands for the
numeric value 10. Once that equate is defined, the following two machine
instructions are exactly the same:

mov eax,10
mov eax,FieldWidth

There are two advantages to this.

 ■ An equate makes the instruction easier to understand by using a descrip-
tive name for a value. We know what the value 10 is for; it’s the width of
a field.

 ■ An equate makes programs easier to change down the road. If the field
width changes from 10 to 12 at some point, we need only change the
source code file at one line rather than everywhere we access the field width.

Don’t underestimate the value of this second advantage. Once your pro-
grams become larger and more sophisticated, you may find yourself using a

222 Chapter 8 ■ Our Object All Sublime

particular value dozens or hundreds of times within a single program. Either
you can make that value an equate and change one line to alter a value used
267 times, or you can go through your code and change all 267 uses of the value
individually— except for the five or six that you miss, causing havoc when you
next assemble and run your program.

Combining assembly language calculation with equates allows some won-
derful things to be done very simply. As I’ll explain shortly, to display a string
in Linux, you need to pass both the address of the string and its length to the
operating system. You can make the length of the string an equate this way:

EatMsg: db "Eat at Joe's!",10
EatLen: equ 14

This works, because the EatMsg string is in fact 14 characters long, including
the EOL character. But suppose Joe sells his diner to Ralph, and you swap in
“Ralph” for “Joe.” You have to change not only the ad message but also its length.

EatMsg: db "Eat at Ralph's!",10
EatLen: equ 16

What are the chances that you’re going to forget to update the EatLen equate
with the new message length? Do that sort of thing often enough, and you will.
With an assembly- time calculation, you simply change the definition of the string
variable, and its length is automatically calculated by NASM at assembly time.

How? This way:

EatLen: equ $- EatMsg

It all depends on the magical “here” token, expressed by the humble dollar sign.
As I explained earlier, at assembly time NASM chews through your source code
files and builds an intermediate file with a .o extension. The $ token marks the
spot where NASM is in building the intermediate file (not the source code file!).
The label EatMsg marks the beginning of the advertising slogan string. Immedi-
ately after the last character of EatMsg is the label EatLen. Labels, remember, are
not data, but locations— and in the case of assembly language, addresses. When
NASM reaches the label EatLen, the value of $ is the location immediately after
the last character in EatMsg. The assembly- time calculation is to take the location
represented by the $ token (which when the calculation is done contains the
location just past the end of the EatMsg string) and subtract from it the location
of the beginning of the EatMsg string. End – Beginning = Length.

This calculation is performed every time you assemble the file, so any time
you change the contents of EatMsg, the value EatLen will be recalculated auto-
matically. You can change the text within the string any way you like and never
have to worry about changing a length value anywhere in the program.

 Chapter 8 ■ Our Object All Sublime 223

Assembly- time calculation has other uses, but this is the most common one
and the only one you’re likely to use as a beginner.

Last In, First Out via the Stack

The little program eatsyscall.asm doesn’t do much: It displays a short text
string in the Linux console. Explaining how it does that one simple thing, how-
ever, will take some doing, and before I can even begin, I have to explain one of
the key concepts of not only the x86/x64 architecture but in fact all computing:
the stack.

The stack is a storage mechanism built right into the CPU hardware. Intel
didn’t invent it; the stack has been an integral part of computer hardware since
the 1950s. The name is appropriate, and for a usable metaphor I can go back to
my high school days, when I was a dishwasher for Resurrection Hospital on
Chicago’s Northwest Side.

Five Hundred Plates an Hour
There were a lot of different jobs in the hospital kitchen back then, but what
I did most of the time was pull clean plates off a moving conveyor belt that
emerged endlessly from the steaming dragon’s mouth of a 180° dishwashing
machine. This was hot work, but it was a lot less slimy than stuffing the dirty
plates into the other end of the machine.

When you pull 500 plates an hour out of a dishwashing machine, you had
better have some place efficient to stash them. Obviously, you could simply
stack them on a table, but stacked ceramic plates in any place habituated by
rowdy teenage boys is asking for tableware mayhem. What the hospital had
instead was an army of little wheeled stainless steel cabinets equipped with one
or more spring- loaded circular plungers accessed from the top. When you had
a handful of plates, you pushed them down into the plunger. The plunger’s
spring was adjusted such that the weight of the added plates pushed the whole
stack of plates down just enough to make the new top plate flush with the top
of the cabinet.

Each plunger held about 50 plates. We rolled one up next to the dragon’s
mouth, filled it with plates, and then rolled it back into the kitchen where the
clean plates were used at the next meal shift to set patient trays.

It’s instructive to follow the path of the first plate out of the dishwashing
machine on a given shift. That plate got into the plunger first and was subse-
quently shoved down into the bottom of the plunger by the remaining 49 plates
that the cabinet could hold. After the cabinet was rolled into the kitchen, the
kitchen ladies pulled plates out of the cabinet one by one as they set trays for

224 Chapter 8 ■ Our Object All Sublime

patients. The first plate out of the cabinet was the last plate to go in. The last
plate out of the cabinet had been the first plate to go in.

The Intel stack (and most other stacks in other computer architectures) is
like that. We call it a last in, first out (LIFO) stack. Instead of plates, we push
chunks of data onto the top of the stack, and they remain on the stack until we
pull them off in reverse order.

The stack doesn’t exist in some separate alcove of the CPU. It exists in ordi-
nary memory, and in fact what we call “the stack” is really a way of managing
data in memory. The stack is a place where we can tuck away one or two (or
however many) values for the time being and come back to them a little later.
The stack’s primary virtue is that it does not require that we give the stored data
a name. We put that data on the stack, and we retrieve it later by its position, or
in some cases by accessing the stack using ordinary memory addressing relative
to a fixed point in the stack’s memory. (More on the second method a little later,
after we get all the basics down.)

The jargon involving use of the stack reflects my dishwasher’s metaphor:
When we place something on the stack, we say that we push it; when we retrieve
something from the stack, we say that we pop it. The stack grows or shrinks as
data is pushed onto it or popped off of it. The most recently pushed item on the
stack is said to be at the top of the stack. When we pop an item from the stack,
what we get is the item at the top of the stack. I’ve drawn this out conceptually
in Figure 8.1.

In the x64 architecture, the top of the stack is marked by a register called the
stack pointer, with the formal name RSP. It’s a 64- bit register, and it holds the
memory address of the last item pushed onto the stack.

Figure 8.1: The stack

 Chapter 8 ■ Our Object All Sublime 225

Stacking Things Upside Down
Making things a little trickier to visualize is the fact that the Intel stack is basi-
cally upside- down. If you picture a region of memory with the lowest address
at the bottom and the highest address at the top, the stack begins up at the
ceiling, and as items are pushed onto the stack, the stack grows downward,
toward low memory.

Figure 8.2 shows in broad terms how Linux organizes the memory that it gives
to your program when it runs. At the bottom of memory are the three sections
that you define in your program: .text at the lowest addresses, followed by
.data, followed by .bss. The stack is located all the way at the opposite end
of your program’s memory block. In between the end of the .bss section and
the top of the stack is basically empty memory. C programs routinely use this
free memory space to allocate variables “on the fly” in a region called the heap.
Assembly programs can do that as well, though it’s not as easy as it sounds, and
I don’t have space to cover it in this book. I drew the heap in Figure 8.2 because
it’s important to know where it lies in the user- space memory map. Like the
stack, the heap grows or shrinks as data structures are created (by allocating
memory) or destroyed (by releasing memory).

The important thing to remember (especially if you’ve had previous experi-
ence writing assembly for DOS) is that we’re not in real mode anymore. When
your app begins running, Linux reserves a contiguous range of virtual memory
for the stack that defaults to something like 8 gigabytes. (The exact amount of
virtual memory depends on how Linux is configured and may vary.) Of this,
only a few pages are actually committed at the top of the virtual address space.
When the stack grows downward and runs out of physical memory, a page fault
occurs, and more physical memory is mapped into the virtual address space
by the OS and then becomes available for the stack’s use. This continues until
the entire virtual space is exhausted— which basically never happens unless
the program is ravenously eating stack space due to a bug.

Virtual memory is a wonderful but complicated thing, and I can’t go into it in
detail in this book. The takeaway here is that your app’s stack can pretty much
have all the memory it needs thanks to virtual memory, and you no longer have
to worry about running out.

The only caution I should offer on Figure 8.2 is that the relative sizes of the
program sections versus the stack shouldn’t be seen as literal. You may have
thousands of bytes of program code and tens of thousands of bytes of data in a
middling assembly program, but compared to that, the stack is still quite small:
a few hundred bytes at most and generally less than that.

226 Chapter 8 ■ Our Object All Sublime

Push- y Instructions
You can place data onto the stack in several ways, but the most straightforward
way involves two related machine instructions, PUSH and PUSHFQ. The two are
similar in how they work, and they differ mostly as to what they push onto
the stack:

 ■ PUSH pushes a 16- bit or 64- bit register or memory value that is specified
by you in your source code. Note that you can’t push an 8- bit nor a 32- bit
value onto the stack! You’ll get an error if you try.

 ■ PUSHFQ pushes the full 64- bit RFlags register onto the stack. (The Q means
“quadword” here.) This even though more than half of the flags in RFlags
are reserved and have no use. You won’t use PUSHFQ often, but it’s there
if you need it.

Figure 8.2: The stack in program memory

 Chapter 8 ■ Our Object All Sublime 227

Here are some examples of the PUSH family of instructions in use:

pushfq ; Push the RFlags register
push rax ; Push the RAX register
push bx ; Push the 16- bit register BX
push [rdx] ; Push the quadword in memory at RDX

Note that PUSHFQ takes no operands. You’ll generate an assembler error if you
try to hand PUSHFQ operands; the instruction pushes the 64- bit RFlags register
onto the stack, and that’s all it’s capable of doing.

PUSH works this way, for 64- bit operands: First RSP is decremented by 64 bits
(eight bytes) so that it points to an empty area of stack memory that is eight
bytes long. Then whatever is to be pushed onto the stack is written to memory
at the address in RSP. Voilà! The data is safe on the stack, and RSP has crawled
eight bytes closer to the bottom of memory. PUSH can also push 16- bit values
onto the stack, and when it does, the only difference is that RSP moves by two
bytes instead of eight.

All memory between RSP’s initial position and its current position (the top
of the stack) contains real data that was explicitly pushed on the stack and will
presumably be popped from the stack later. Some of that data was pushed onto
the stack by the operating system before running your program, and we’ll talk
about that a little later in the book.

What can and cannot be pushed onto the stack in x64 long mode is reason-
ably simple: Any of the 16- bit and 64- bit general- purpose registers may be
pushed individually onto the stack. You can’t push AL or BH or any other of the
8- bit registers. 16- bit and 64- bit immediate data can be pushed onto the stack.
User- space Linux programs cannot push the segment registers onto the stack
under any circumstances. With x64, segment registers belong to the OS and are
unavailable to user- space programs.

As odd as it might seem, 32- bit values (including all 32- bit registers) may not
be pushed onto the stack.

POP Goes the Opcode
In general, what gets pushed must get popped, or you can end up in any of sev-
eral different kinds of trouble. Getting an item of data off the stack is most easily
done with another duet of instructions, POP and POPFQ. As you might expect,
POP is the general- purpose one- at- a- time popper, while POPFQ is dedicated to
popping the flags off of the stack and into RFlags.

popfq ; Pop the top 8 bytes from the stack into RFlags
pop rcx ; Pop the top 8 bytes from the stack into RCX
pop bx ; Pop the top 2 bytes from the stack into BX
pop [rbx] ; Pop the top 8 bytes from the stack into memory at EBX

228 Chapter 8 ■ Our Object All Sublime

As with PUSH, POP operates only on 16- bit or 64- bit operands. Don’t try to pop
data from the stack into an 8- bit or 32- bit register such as AH or ECX.

POP works pretty much the way PUSH does, but in reverse. As with PUSH, how
much comes off the stack depends on the size of the operand. Popping the stack
into a 16- bit register takes the top two bytes off the stack. Popping the stack into
a 64- bit register takes the top eight bytes off the stack.

Note that nothing in the CPU nor in Linux remembers the sizes of the data
items that you place on the stack. It’s up to you to know the size of the last item
pushed onto the stack. If the last item you pushed onto the stack was a 16- bit
register, popping the stack into a 64- bit register will take six more bytes off the
stack than you pushed. This is called misaligning the stack, and it’s nothing but
trouble— which is one reason why you should work with 64- bit registers and
memory values whenever you can and avoid using the stack with 16- bit values.

When a POP instruction is executed, things work in this order: First, the data
at the address currently stored in RSP is copied from the stack and placed
in POP’s operand, whatever you specified that to be. After that, RSP is incre-
mented (rather than decremented) by the size of the operand— either 16 bits
or 64 bits— so that in effect RSP moves either two or eight bytes up the stack,
away from low memory.

It’s significant that RSP is decremented before placing a word on the stack at
push time but incremented after removing a word from the stack at pop time.
Certain other CPUs outside the x86 universe work in the opposite manner, which
is fine— just don’t get them confused. For x86/x64, this is always true: Unless
the stack is completely empty, RSP points to real data, not empty space. Ordinarily,
you don’t have to remember that fact, as PUSH and POP handle it all for you, and
you don’t have to manually keep track of what RSP is pointing to.

PUSHA and POPA Are Gone
Just about everything you had in 32- bit assembly is still there in x64 assembly.
Some things have changed, but very little was removed when x86 became x64.

Some sacrifices were in fact made. Four instructions are gone completely:
PUSHA, PUSHAD, POPA, and POPAD. In earlier architectures, these instructions were
used to push or pop all of the general- purpose registers at once.

So, why did they go away? I’ve never found an authoritative explanation,
but I have a theory: There are a lot more general- purpose registers in x64. Push-
ing 15 64- bit registers onto the stack rather than 7 32- bit registers takes a big
chunk of stack space. (Stack pointer ESP was not acted on by PUSHA/POPA for
the obvious reason that ESP defines the stack!)

If you want to preserve general- purpose registers on the stack for some reason,
you’ll have to push and pop them individually.

 Chapter 8 ■ Our Object All Sublime 229

Pushing and Popping in Detail
If you’re still a little iffy on how the stack works, allow me to present an example
that shows how the stack operates in detail, with real values. For clarity’s sake
in the associated diagram, I’m going to use 16- bit registers rather than 64- bit
registers. This will allow me to show individual bytes on the stack. It works
the same way with 64- bit values. The difference, again, is that eight bytes are
pushed or popped rather than two.

Figure 8.3 shows how the stack looks after each of four instructions is exe-
cuted. (I’m using 16- bit values in the figure for clarity. The mechanism is the
same for 64- bit values.) The values of the four 16- bit X general- purpose registers
at some hypothetical point in a program’s execution are shown at the top of the
figure. AX is pushed first on the stack. Its least significant byte is at RSP, and its
most significant byte is at RSP+1. (Remember that both bytes are pushed onto
the stack at once, as a unit!)

Figure 8.3: How the stack works

230 Chapter 8 ■ Our Object All Sublime

Each time one of the 16- bit registers is pushed onto the stack, RSP is decre-
mented two bytes, moving down toward low memory. The first three columns
show AX, BX, and CX being pushed onto the stack, respectively. But note what
happens in the fourth column, when the instruction POP DX is executed. The
stack pointer is incremented by two bytes and moves away from low memory.
DX now contains a copy of the contents of CX. In effect, CX was pushed onto
the stack and then immediately popped off into DX.

If you want to try Figure 8.3 in a SASM sandbox, bring up a new sandbox
and add these machine instructions:

xor rax,rax ;We first zero out all 4 64- bit "x" registers
xor rbx,rbx ;so there are no "leftovers" in the high bits
xor rcx,rcx
xor rdx,rdx

mov ax,01234h ;Place values in AX, BX, and CX
mov bx,04ba7h
mov cx,0ff17h

push ax ;Push AX,BX,& CX onto the stack
push bx
push cx

pop dx ;Pop the top of the stack into DX.

Go into debug mode and single- step through these instructions, watching
both the stack pointer RSP and the four 16- bit registers after each step. You can
follow the action in Figure 8.3 as well.

Yes, that’s a mighty roundabout way to copy the value of CX into DX. MOV
DX,CX is a lot faster and more straightforward. However, moving register values
via the stack must sometimes be done. Remember that the MOV instruction will
not operate on the RFlags register. If you want to load a copy of RFlags into a
64- bit register, you must first push RFlags onto the stack with PUSHFQ and then
pop the flags value off the stack into the register of your choice with POP. Get-
ting RFlags into RBX is thus done with the following code. You can watch it
work by putting these lines into a sandbox and single- stepping through them:

xor rbx,rbx ; Clear rbx
pushfq ; Push the RFlags register onto the stack
pop qword rbx ; ...and pop it immediately into RBX

Although you can restore the flag values into RFlags using POPFQ, not all
bits of RFlags may be changed by popping them off the stack into RFlags. Bits
VM and RF are not affected by POPFQ. Little gotchas like this suggest that you
should not try saving and restoring the flags until you know precisely what
you’re doing.

 Chapter 8 ■ Our Object All Sublime 231

Storage for the Short Term
The stack should be considered a place to stash things for the short term. Items
stored on the stack have no names and in general must be taken off the stack
in the reverse order that they were put on. Last in, first out, remember. LIFO!

One excellent use of the stack allows the all- too- few registers to do multiple
duty. If you need a register to temporarily hold some value to be operated on
by the CPU and all the registers are in use, push one of the busy registers onto
the stack. Its value will remain safe on the stack while you use the register for
other things. When you’re finished using the register, pop its old value off the
stack— and you’ve gained the advantages of an additional register without really
having one. (The cost, of course, is the time you spend moving that register’s
value onto and off of the stack. It’s not something you want to do in the middle
of an often- repeated loop!)

Short- term storage during your program’s execution is the simplest and
most obvious use of the stack, but its most important use is probably in calling
procedures and Linux kernel services. And now that you understand the stack,
we can take on the mysterious matter of Linux system calls.

Using Linux Kernel Services Through Syscall

Everything else in eatsyscall.asm is preparation for the single instruction that
performs the program’s only real work: displaying a line of text in the Linux
console. At the heart of the program is a call into the Linux operating system.
A second call into Linux is at the end, when the program finishes up and needs
to tell Linux that it’s all done.

As I explained in Chapter 6, an operating system is something like a god
and something like a troll, and Linux is no different. It controls all the most
important elements of the machine in godlike fashion: memory, the disk drives,
the printer, the keyboard, various ports (Ethernet, USB, serial, Bluetooth, etc.),
and the display. At the same time, Linux is like a troll living under a bridge to
all those parts of your machine: You tell the troll what you want done, and the
troll will go off and do it for you. There are several hundred Linux kernel ser-
vices available. Here’s where you can find a good list of x64 Linux system calls:

soliduscode.com/linux- system- calls

One of the services that Linux provides is simple text- mode access to your
PC’s display. For the purposes of eatsyscall.asm— which is just a lesson in
getting your first assembly language program written and operating— simple
services are enough.

So— how do we use Linux’s services? If you looked closely at eatsyscall
.asm, you should recall two instances of the machine instruction SYSCALL.

http://soliduscode.com/linux-system-calls

232 Chapter 8 ■ Our Object All Sublime

In x64 instances of Linux, the SYSCALL instruction is how you access Linux
kernel services.

X64 Kernel Services via the SYSCALL Instruction
In 32- bit versions of Linux, software interrupt INT 80h was the way to reach
the kernel services dispatcher. INT 80h is no longer used. The x64 architecture
gives us something a whole lot better: the SYSCALL instruction.

The challenge in accessing kernel services is this: passing execution to a code
library without having any idea where that library is. The SYSCALL instruction
looks in a CPU register that user- space programs can’t access. When the Linux
kernel starts up, it places the address of its services dispatcher in this register.
One of the first things that the SYSCALL instruction does is escalate its privi-
lege level from level 3 (user) to level 0 (kernel). It then reads the address in the
services dispatch register and jumps to that address to invoke the dispatcher.

Most x64 system calls using SYSCALL have parameters, which are passed in
CPU registers. Which registers? It’s not random. In fact, there’s something called
the System V Application Binary Interface (ABI) for Linux, which lays out a
whole system for passing parameters to Linux via SYSCALL. It does more than
that, but what’s of interest to us here is the machinery that allows you to call
kernel services using SYSCALL. The best online presentation of those calls is here:

soliduscode.com/category/technology/assembly

ABI vs. API?
This is a good spot for a short digression. If you have any programming experi-
ence at all, you’ve probably heard of “API calls” or “the Windows API.” What,
then, is the difference between an ABI and an API? API stands for application
programming interface. An API is a collection of callable functions to be used
primarily by high- level programming languages like Pascal or C. It’s possible
for an assembly language program to call an API function, and I’ll show you
how a little later.

An application binary interface, by contrast, is a detailed description of what
happens down at the machine- code level when one piece of binary machine
code talks to another or to CPU hardware like registers. It’s a layer “below” the
API. The ABI defines a collection of fundamental callable functions, generally
supplied by the operating system, as is done in Linux. This definition describes
how to pass parameters to the many kernel service functions. An ABI also defines
how linkers link compiled or assembled modules into a single executable binary
program and much else that’s beyond what I can discuss in this book.

http://soliduscode.com/category/technology/assembly

 Chapter 8 ■ Our Object All Sublime 233

The ABI’s Register Parameter Scheme
Let’s take a closer look at the eatsyscall.asm program I included in the first
few pages of this chapter. The following code writes a textual message to the
Linux console:

mov rax,1 ; 1 = sys_write for syscall
mov rdi,1 ; 1 = fd for stdout; i.e., write to the
 terminal window
mov rsi,EatMsg ; Put address of the message string in rsi
mov rdx,EatLen ; Length of string to be written in rdx
syscall ; Make the system call

In a nutshell, this code places certain values in certain registers and then exe-
cutes the SYSCALL instruction. The Linux services dispatcher grabs the values
placed in those registers and then calls the function specified in RAX.

There’s a system for specifying which registers are used for which service
and which parameters (if any) for that service. The best way to explain is to
show you the first two lines of the System V ABI system call table, in Table 8.1.

All of the columns except for System Call are registers. System Call is the
human- readable name of the system call, which is the name used by high- level
languages like Pascal and C to make system calls via the SYSCALL instruction.
Because Linux is written mostly in C, the verbiage you’ll see in system call
tables will be C verbiage. I’ve massaged that verbiage a little to make the table
easier to understand for beginners.

Register RAX is dedicated to the numeric code specifying the system call
to be made. The name of system call 1 is sys_write. The registers after the
system call name contain parameters. The ABI specifies six registers to be used
for parameters. Not all system calls require six parameters. The sys_write call
used in eatsyscall.asm has only three. The list of parameters always begins
with RDI and uses registers in the order given in the table.

RDI, RSI, RDX, R10, R8, R9
After a system call’s parameters have all been assigned to registers, any reg-

isters remaining unused for the system call do not apply to the system call and
are left blank.

Table 8.1: System Call Conventions for the System V ABI

RAX SYSTEM
CALL RDI RSI RDX R10 R8 R9

0 sys_
read

File
descriptor

Address of
buf.

Length of buf. n/a n/a n/a

1 sys_
write

File
descriptor

Address of
text

Length of text n/a n/a n/a

234 Chapter 8 ■ Our Object All Sublime

The parameters for sys_write are these:

 ■ RDI: The file descriptor to which text will be written. In Linux (and all
flavors of Unix) the file descriptor for sys_write is 1.

 ■ RSI: The address of the text to be written to the console.

 ■ RDX: The length (number of characters) in the text to be written to the
console.

If any system call needs to return a numeric value, that value is returned by
the system in RAX.

Exiting a Program via SYSCALL
There is a second SYSCALL instruction in eatsyscall.asm, and it has a humble
but crucial job: to shut down the program and return control to Linux. This
sounds simpler than it is, and once you understand Linux internals a little more,
you’ll come to appreciate the work that must be done both to launch a process
and to shut one down.

From your own program’s standpoint, however, it’s dirt- simple: You place
the number of the sys_exit service in RAX, place a return code in RDI, and
then execute SYSCALL:

mov rax,60 ; 60 = sys_exit to exit the program gracefully
mov rdi,0 ; Return value in rdi 0 = nothing to return
syscall ; Call syscall to exit this program

The return code is a numeric value that you can define however you want.
Technically there are no restrictions on what it is (aside from having to fit in a
64- bit register), but by convention, a return value of 0 means “everything worked
OK; shutting down normally.” Return values other than 0 typically indicate an
error of some sort. Keep in mind that in larger programs, you have to watch out
for things that don’t work as expected: A disk file cannot be found, a disk drive
is full, and so on. If a program can’t do its job and must terminate prematurely,
it should have some way of telling you (or in some cases, another program)
what went wrong. The return code is a good way to do this.

Exiting this way is not just a nicety. Every x64 program you write must exit by
making a call to sys_exit through the kernel services dispatcher. If a program just
“runs off the edge,” it will in fact end, but Linux will hand up a segmentation fault,
and you’ll be none the wiser as to what happened. This is why your “sandbox”
programs are used only for debugging within SASM. They’re program snippets
and will generate a segmentation fault if you just let them run.

Programs written in SASM use elements of the Standard C Library, which
gives programs a “shutdown code” section that actually makes the exit system
call. Such programs end by executing a RET instruction, as I’ll explain later.

 Chapter 8 ■ Our Object All Sublime 235

Which Registers Are Trashed by SysCall?
Although x64 gives you twice the number of general- purpose registers as x86,
not all of those “general- purpose” registers are free for you to use anywhere, at
any time. From one to six of those registers are required to make a Linux system
call with SYSCALL. Those six are called out in Table 8.1, and in the text a little later.
The number of registers used varies by system call, and you’ll have to look them
up in a table of system calls to see how many. If a system call doesn’t need all of
the six SYSCALL parameter registers (sys_read and sys_write use only three),
you can use any of those not required for that system call in your own code.

The SYSCALL instruction itself makes use of RAX, RCX, and R11 internally.
After the SYSCALL returns, you can’t assume that RAX, RCX, or R11 will have
the same values they did before the SYSCALL.

Designing a Nontrivial Program

At this point, you know most of what you need to know to design and write
small utilities that perform significant work— work that may even be useful.
In this section, we’ll approach the challenge of writing a utility program from
the engineering standpoint of solving a problem. This involves more than just
writing code. It involves stating the problem, breaking it down into the prob-
lem’s component parts, and then devising a solution to the problem as a series
of steps and tests that may be implemented as an assembly language program.

There’s a certain “chicken- and- egg” issue with this section: It’s difficult to
write a nontrivial assembly program without conditional jumps and difficult to
explain conditional jumps without demonstrating them in a nontrivial program.
I’ve touched on jumps a little in previous chapters and will take them up in
detail in Chapter 9. The jumps I’m using in the demo program in this section are
pretty straightforward, and if you’re a little fuzzy on the details, read Chapter 9
and then come back and go through this section and its examples again.

Defining the Problem
Years ago, I was on a team that was writing a system that gathered and validated
data from field offices around the world and sent that data to a large central
computing facility, where it would be tabulated, analyzed, and used to generate
status reports. This sounds easy enough, and in fact gathering the data itself out
at the field offices was not difficult. What made the project difficult was that it
involved several separate and very different types of computers that saw data
in entirely different and often incompatible ways. The problem was related to
the issue of data encoding that I touched on briefly in Chapter 6. We had to deal
with three different encoding systems for data characters. A character that was

236 Chapter 8 ■ Our Object All Sublime

interpreted one way on one system would not be considered the same character
on one of the other systems.

To move data from one system to one of the others, we had to create software
that translated data encoding from one scheme to another. One of the schemes
used a database manager that did not digest lowercase characters well, for rea-
sons that seemed peculiar back then and are probably inconceivable today. We
had to translate any lowercase characters into uppercase before we could feed
data files into that system. There were other encoding issues but that was an
important one, and because it’s a simple problem to describe and then solve,
it’s a good first exercise in genuine assembly language program design.

At the very highest level, the problem to be solved here can be stated this
way: Convert any lowercase characters in a data file to uppercase.

With that in mind, it’s a good idea to take notes on the problem. In particular,
take notes on the limitations of any proposed solution. We used to call these
notes the “bounds” of the solution, and they need to be kept in mind while
thinking about the program that will solve the problem.

 ■ We’ll be working under Linux.

 ■ The data exists in disk files.

 ■ We do not know ahead of time how large any of the files will be.

 ■ There is no maximum nor minimum size for the files.

 ■ We will use I/O redirection to pass filenames to the program.

 ■ All the input files are in the same encoding scheme. The program can
assume that an a character in one file is encoded the same way as an a in
another file. (In our case, this is ASCII.)

 ■ We must preserve the original file in its original form, rather than reading
data from the original file and then writing it back to the original file.
(Why? If the process crashes, we’ve destroyed the original file without
completely generating an output file.)

In a real- world project there might be pages and pages of these notes, but just
a few facts here will serve to shape our simple solution to the character- case
problem. Note that these notes expand on what must be done, and to some
extent put limits on the nature of the eventual solution, but do not attempt to
say how it must be done. That’s what we do in the next step.

Starting with Pseudocode
Once we understand the nature of the problem as thoroughly as possible, we
can begin crafting a solution. At the outset, this much resembles the process
I describe in Chapter 1, where someone makes a “do it” list of tasks for running
the day’s errands. You state a solution in a broad form and in as few statements

 Chapter 8 ■ Our Object All Sublime 237

as possible. Then, little by little, you refine the stated solution by breaking down
the larger steps into the smaller steps that the larger steps contain.

In our case, the solution is fairly easy to state in broad terms. To get started,
here’s one form that the statement might take:

Read a character from the input file.
Convert the character to uppercase (if necessary)
Write the character to the output file.
Repeat until done.

This really is a solution, if perhaps an extreme “view from a height.” It’s short
on details, but not short on function. If we execute the steps listed, we’ll have a
program that does what we need it to do. Note also that the statements given
are not statements written in any programming language. They’re certainly
not assembly language instructions. They’re descriptions of several actions,
independent of any particular system for accomplishing those actions. Lists
of statements like this, because they are deliberately not written as code for a
particular programming environment, are called pseudocode.

Successive Refinement
From our first complete but detail- challenged statement of the solution, we
move toward a more detailed statement of the solution. We do this by refining
the pseudocode statements so that each is more specific about how the action
being described is to be done. We repeat this process, adding more details every
time, until what we have can be readily translated into actual assembly language
instructions. This process, called successive refinement, is not specific to assembly
language. It’s used with all programming languages to one degree or another,
but it works peculiarly well with assembly.

Let’s stare at the pseudocode given earlier and create a new version with
additional details. We know we’re going to be using Linux for the program— it’s
part of the spec and one of the bounds of any solution— so we can begin add-
ing details specific to the Linux way of doing such things. The next refinement
might look like this:

Read a character from standard input (stdin)
Test the character to see if it's lowercase.
If the character is lowercase, convert it to uppercase by
subtracting 20h.
Write the character to standard output (stdout).
Repeat until done.
Exit the program by calling sys_exit.

At each pass, look long and hard at each action statement to see what details
it may hide, and expand those details in the next refinement. Sometimes this

238 Chapter 8 ■ Our Object All Sublime

will be easy; sometimes, well, not so easy. In the previous version, the statement
“Repeat until done” sounds pretty plain and obvious at first, until you think
about what “done” means here: running out of data in the input file. How do we
know when the input file is out of characters? This may require some research,
but in most operating systems (including Linux) the routine that you call to
read data from a file returns a value. This value can indicate a successful read,
a read error, or special- case results like “end of file” (EOF). The precise details
can come later; what matters here is that we have to test for EOF when we read
characters from the file. An expanded (and slightly rearranged) version of the
solution pseudocode might look like this:

Read a character from standard input (stdin)
Test if we have reached End Of File (EOF)
If we have reached EOF, we're done, so jump to exit
Test the character to see if it's lowercase.
If the character is lowercase, convert it to uppercase by subtracting 20h.
Write the character to standard output (stdout).
Go back and read another character.
Exit the program by calling sys_exit.

And so we go, adding detail each time. Notice that this is starting to look
a little more like program code now. So be it: As the number of statements
increases, it helps to add labels to those statements that represent jump targets
so that we don’t get the jump targets mixed up, even in pseudocode. It also
helps to break the pseudocode up into blocks, with related statements grouped
together. Sooner or later we’ll get to something like the following:

Read: Set up registers for the sys_read kernel call.
Call sys_read to read from stdin.
Test for EOF.
If we're at EOF, jump to Exit.

Test the character to see if it's lowercase.
If it's not a lowercase character, jump to Write.
Convert the character to uppercase by subtracting 20h.

Write: Set up registers for the Write kernel call.
Call sys_write to write to stdout.
Jump back to Read and get another character.

Exit: Set up registers for terminating the program via sys_exit.
Call sys_exit.

This is a good example of “bending” the pseudocode statement in the direction
of the operating system and programming language that you’re going to use.
All programming languages have their quirks, their limitations, and a general

 Chapter 8 ■ Our Object All Sublime 239

“shape” to them. If you keep this shape in mind while you craft your pseudo-
code, making the final transition to real code will be easier.

At some point, your pseudocode will have all the details it can contain and
still remain pseudocode. To go further, you will have to begin turning your
pseudocode into real assembly code. This means you have to take each state-
ment and ask yourself: Do I know how to convert this pseudocode statement
into one or more assembly language statements? It’s especially true while you’re
a beginner, but even after you’ve earned your chops as an assembly language
programmer, you may not know everything that there is to be known. In most
programming languages (including assembly), there are often several or some-
times many different ways to implement a particular action. Some may be faster
than others; some may be slower but easier to read and modify. Some solutions
may be limited to a subset of the full line of Intel CPUs. Does your program
need to run on older x86 CPUs? Or can you assume that everyone will have a
system with a 64- bit CPU? (Your original sheets of notes should include such
bounding conditions for any usable solution to the original problem.)

The jump from pseudocode to instructions may seem like a big one, but the
good news is that once you’ve converted your pseudocode to instructions, you
can make the text an assembly language source code file and turn SASM loose
on it to spot your syntactic booboos. Expect to spend some time fixing assembly
errors and then program bugs, but if you’ve gone through the refinement pro-
cess with a clear head and reasonable patience, you may be surprised at how
good a program you have on your first attempt.

A competent translation of the previous pseudocode to real assembly is shown
in Listing 8.2. (This is the version that links via gcc rather than ld. Open it and
build it in SASM.) Read through it and see if you can follow the translation from
the pseudocode, knowing what you already know about assembly language.
The code shown will work but is not “finished” in any real sense. It’s a “first cut”
for real code in the successive refinement process. It needs some hard thinking
about how good and how complete a solution it is to the original problem.
A working program is not necessarily a finished program.

Listing 8.2: uppercaser1gcc.asm

section .bss
 Buff resb 1

section .data

section .text
global main

main:
 mov rbp, rsp ; for correct debugging

240 Chapter 8 ■ Our Object All Sublime

Read:
 mov rax,0 ; Specify sys_read call
 mov rdi,0 ; Specify File Descriptor 0: Standard Input
 mov rsi,Buff ; Pass address of the buffer to read to
 mov rdx,1 ; Tell sys_read to read one char from stdin
 syscall ; Call sys_read

 cmp rax,0 ; Look at sys_read's return value in RAX
 je Exit ; Jump If Equal to 0 (0 means EOF) to Exit:
 ; or fall through to test for lowercase

 cmp byte [Buff],61h ; Test input char against lowercase 'a'
 jb Write ; If below 'a' in ASCII chart, not lowercase
 cmp byte [Buff],7Ah ; Test input char against lowercase 'z'
 ja Write ; If above 'z' in ASCII chart, not lowercase

 ; At this point, we have a lowercase character
 sub byte [Buff],20h ; Subtract 20h from lowercase to give uppercase
 ; and then write out the char to stdout:
Write:
 mov rax,1 ; Specify sys_write call
 mov rdi,1 ; Specify File Descriptor 1: Standard output
 mov rsi,Buff ; Pass address of the character to write
 mov rdx,1 ; Pass number of chars to write
 syscall ; Call sys_write
 jmp Read ; The go to the beginning to get another char

Exit: ret ; End program

This looks scary, but it consists almost entirely of instructions and concepts
that we’ve already discussed. Here are a few notes on things you might not
completely understand at this point:

 ■ Buff is an uninitialized variable and therefore located in the .bss section
of the program. It’s reserved space with an address. Buff has no initial
value and contains nothing until we read a character from stdin and store
it there.

 ■ When a call to sys_read returns a 0, sys_read has reached the end of the
file it’s reading from. If it returns a positive value, this value is the number
of characters it has read from the file. In this case, since we requested only
one character, sys_read will return either a count of 1 or a 0 indicting that
we’re out of characters.

 ■ The CMP instruction compares its two operands and sets the flags accord-
ingly. The conditional jump instruction that follows each CMP instruction
takes action based on the state of the flags. (More on this in Chapter 9.)

 Chapter 8 ■ Our Object All Sublime 241

 ■ The JB (Jump If Below) instruction jumps if the preceding CMP’s left operand
is lower in value than its right operand.

 ■ The JA (Jump If Above) instruction jumps if the preceding CMP’s left operand
is higher in value than its right operand.

 ■ Because a memory address (like Buff) simply points to a location in memory
of no particular size, you must place the qualifier BYTE between CMP and
its memory operand to tell the assembler that you want to compare two
8- bit values. In this case, the two 8- bit values are an ASCII character like
w and a hex value like 7Ah.

 ■ Because programs written in SASM use the Standard C Library, they gen-
erally end with a RET instruction rather than the SYSCALL Exit function.

Running the executable program is done by using I/O redirection. The
command line for uppercaser1 looks like this:

./uppercaser1 > outputfile < inputfile

Both inputfile and outputfile can be any text file. Here’s one thing to try:

./uppercaser1 > allupper.txt < uppercaser1.asm

The file allupper.txt will be created when you run the program, and it
will be filled with the source code for the program, with all characters forced
to uppercase.

Note that if you’re working within SASM, you can place text to be converted
in the Input window. (Load up a pure text file into a text editor and lift out some
text via the Copy command and then drop it into the Input window via Paste.)
When you run the program, it will read text from the Input window, force it to
uppercase, and then write the converted text into the Output window. SASM
maps the Input window to stdin, and the Output window to stdout.

Those Inevitable “Whoops!” Moments
Especially while you’re a beginner, you may discover as you attempt this last
step going from pseudocode to machine instructions that you’ve misunderstood
something or forgotten something and that your pseudocode isn’t complete or
correct. (Or both!) You may also realize that there are better ways to do something
in assembly statements than what a literal translation of the pseudocode might
give you. Learning is a messy business, and no matter how good you think you
are, you will always be learning.

A good example, and one that may actually have occurred to you while
reading the previous assembly code, is this: The program has no error detection.
It just assumes that whatever input file name the user enters for I/O redirection
is an existing and not corrupt file with data in it, that there will be room on the

242 Chapter 8 ■ Our Object All Sublime

current drive for the output file, and so on. That’s a dangerous way to operate,
though heaven knows it’s been done. File- related Linux system calls return error
values, and any program that uses them should examine those error values and
take action accordingly.

So there will be times when you have to seriously rearrange your pseudocode
partway through the process, or even scrap it entirely and begin again. These
insights have an annoying habit of occurring when you’re in that final stage of
converting pseudocode to machine instructions. Be ready.

And there’s another issue that may have occurred to you, if you know anything
at all about low- level file I/O: The Linux sys_read kernel call isn’t limited to
returning a single character at one go. You pass the address of a buffer to sys_
read, and sys_read will attempt to fill that buffer with as many characters from
the input file as you tell it to. If you set up a buffer 500 bytes in size, you can
ask sys_read to bring in 500 characters from stdin and put them in that buffer.
A single call to sys_read can thus give you 500 characters (or 1,000, or 16,000) to
work on, all at once. This reduces the amount of time that Linux spends chasing
back and forth between its filesystem and your program, but it also changes
the shape of the program in significant ways. You fill the buffer, and then you
have to step through the buffer one character at a time, converting whatever is
there in lowercase to uppercase.

Yes, you should have known that up front, while refining a pseudocode solu-
tion to your problem— and after you’ve been at it for a while, you will. There
is a daunting number of such details that you have to have at your mental fin-
gertips, and you won’t commit them all to indelible memory in an afternoon.
Now and then, such a revelation may force you to “back up” an iteration or
two and recast some of your pseudocode.

Scanning a Buffer
That’s the case with the current example. The program needs error handling,
which in this case mostly involves testing the return values from sys_read and
sys_write and displaying meaningful messages on the Linux console. There’s
no technical difference between displaying error messages and displaying slo-
gans for greasy- spoon diners, so I may let you add error handling yourself as
an exercise. (Don’t forget about stderr.)

The more interesting challenge, however, involves buffered file I/O. The
Unix read and write kernel calls are buffer- oriented and not character- oriented,
so we have to recast our pseudocode to fill buffers with characters and then
process the buffers.

Let’s go back to pseudocode and give it a try:

Read: Set up registers for the sys_read kernel call.
 Call sys_read to read a buffer full of characters from stdin.

 Chapter 8 ■ Our Object All Sublime 243

 Test for EOF.
 If we're at EOF, jump to Exit.

 Set up registers as a pointer to scan the buffer.
Scan: Test the character at buffer pointer to see if it's lowercase.
 If it's not a lowercase character, skip conversion.
 Convert the character to uppercase by subtracting 20h.
 Decrement buffer pointer.
 If we still have characters in the buffer, jump to Scan.

Write: Set up registers for the Write kernel call.
 Call sys_write to write the processed buffer to stdout.
 Jump back to Read and get another buffer full of characters.

Exit: Set up registers for terminating the program via sys_exit.
 Call sys_exit.

This adds everything you need to read a buffer from disk, scan and convert
the characters in the buffer, and then write the buffer back out to disk. (Of
course, the buffer has to be enlarged from one character to some useful size,
like 1024 characters.) The gist of the buffer trick is to set up a pointer into the
buffer and then examine and (if necessary) convert the character at the address
expressed by the pointer. Then we move the pointer to the next character in the
buffer and do the same thing, repeating the process until we’ve dealt with all
the characters in the buffer.

Scanning a buffer is a very good example of an assembly language loop. At
each pass through the loop we have to test something to see if we’re finished
and should exit the loop. The “something” in this case is the pointer. We can
set the pointer to the beginning of the buffer and test to see when it reaches
the end, or we could set the pointer to the end of the buffer and work our way
forward, testing to see when we reach the beginning of the buffer.

Both approaches will work. However, starting at the end and working our way
forward toward the beginning of the buffer can be done a little more quickly and
with fewer instructions. (I’ll explain why shortly.) Our next refinement should
start talking specifics: which registers do what, and so on.

Read: Set up registers for the sys_read kernel call.
 Call sys_read to read a buffer full of characters from stdin.
 Store the number of characters read in RSI
 Test for EOF (rax = 0).
 If we're at EOF, jump to Exit.

 Put the address of the buffer in rsi.
 Put the number of characters read into the buffer in rdx.

244 Chapter 8 ■ Our Object All Sublime

Scan: Compare the byte at [r13+rbx] against 'a'.
 If the byte is below 'a' in the ASCII sequence, jump to Next.
 Compare the byte at [r13+rbx] against 'z'.
 If the byte is above 'z' in the ASCII sequence, jump to Next.
 Subtract 20h from the byte at [r13+rbx].
Next: Decrement rbx by one.
 Jump if not zero to Scan.

Write: Set up registers for the Write kernel call.
 Call sys_write to write the processed buffer to stdout.
 Jump back to Read and get another buffer full of characters.
Exit: Set up registers for terminating the program via sys_exit.
 Call sys_exit.

This refinement recognizes that there is not one test to be made, but two.
Lowercase characters represent a range in the ASCII sequence, and ranges
have beginnings and ends. We have to determine if the character under exam-
ination falls within the range. Doing that requires testing the character to see
if it’s either below the lowest character in the lowercase range (a) or above the
highest character in the lowercase range (z). If the character in question is not
lowercase, no processing is required, and we jump to the code that bumps the
pointer to the next character.

Navigating within the buffer involves two registers. The address of the
beginning of the buffer is placed in R13. The number of characters in the buffer
is placed in the RBX register. If you add the two registers, you’ll get the address
of the last character in the buffer. If you decrement the character counter in
RBX, the sum of R13 and RBX will point to the second- to- last character in the
buffer. Each time you decrement RBX, you’ll have the address to a character
one closer to the start of the buffer. When RBX is decremented to zero, you’ll be
at the beginning of the buffer, and all the characters will have been processed.

“Off by One” Errors
But wait. . .that’s not entirely true. There’s a bug in the pseudocode, and it’s one
of the most common beginner bugs in all assembly language: the legendary “off
by one” error. The sum of R13 and RBX will point one address past the end of
the buffer. And when the count in RBX goes to zero, one character— the one at
the very beginning of the buffer— will remain unexamined and (if it’s lowercase)
untouched. The easiest way to explain where this bug comes from is to draw it
out, as I’ve done in Figure 8.4.

There’s a very short text file in the listings archive for this book called gazabo
.txt. It contains only the single nonsense word gazabo and the EOL marker,
for a total of seven characters. Figure 8.4 shows the gazabo.txt file as it would
look after Linux loads it into a buffer in memory. The address of the buffer has

 Chapter 8 ■ Our Object All Sublime 245

been loaded into register R13, and the number of characters (here, 7) has been
loaded into RBX. If you add R13 and RBX, the resulting address goes past the
end of the buffer into unused (you hope!) memory.

This kind of problem can occur any time you begin mixing address offsets
and counts of things. Counts begin at 1, and offsets begin at 0. Character #1 is
actually at offset 0 from the beginning of the buffer, character #2 is at offset 1,
and so on. We’re trying to use a value in RBX as both a count and an offset, and
if the offsets into the buffer are assumed to begin with 0, an off- by- one error is
inevitable.

The solution is simple: Decrement the address of the buffer (which is stored
in R13) by 1 before beginning the scan. R13 now points to the memory location
immediately before the first character in the buffer. With R13 set up this way,
we can use the count value in R13 as both a count and an offset. By the time
the value in R13 is decremented to 0, we’ve processed the g character, and we
exit the loop.

An interesting experiment is to “comment out” the DEC R13 machine instruction
and then run the program. This is done by simply putting a semicolon at the
beginning of the line containing DEC R13 and rebuilding. Type gazabo or anything
else in all lowercase in the Input window and then run the program.

Figure 8.4: The “off by one” error

246 Chapter 8 ■ Our Object All Sublime

From Pseudocode to Assembly Code
At this point I’m going to take that scary jump to actual machine instructions,
but for the sake of brevity, will show only the loop itself:

; Set up the registers for the process buffer step:
 mov rbx,rax ; Place the number of bytes read into rbx
 mov r13,Buff ; Place address of buffer into r13
 dec r13 ; Adjust r13 to offset by one

; Go through the buffer and convert lowercase to uppercase characters:

Scan:
 cmp byte [r13+rbx],61h ; Test input char against lowercase 'a'
 jb Next ; If below 'a' in ASCII, not lowercase
 cmp byte [r13+rbx],7Ah ; Test input char against lowercase 'z'
 ja Next ; If above 'z' in ASCII, not lowercase

 ; At this point, we have a lowercase char
 sub byte [r13+rbx],20h ; Subtract 20h to give uppercase...

Next:
 dec rbx ; Decrement counter
 jnz Scan ; If characters remain, loop back

The state of the buffer and the pointer registers before beginning the scan is
shown in the second part of Figure 8.4. The first time through, the value in RBX
is the count of characters in the buffer. The sum R13 + RBX points at the EOL
character at the buffer’s end. The next time through, RBX is decremented to 6,
and R13 + RBX points at the o in gazabo. Each time we decrement RBX, we look
at the Zero flag by using the JNZ instruction, which jumps back to the Scan label
when the Zero flag is not set. On the last pass through the loop, RBX contains
1, and R13 + RBX points to the g in the very first location in the buffer. Only
when RBX is decremented to zero does JNZ “fall through” and the loop end.

Purists may think that decrementing the address in R13 before the loop begins
is a dicey hack. They’re half- right: After being decremented, R13 points to a
location in memory outside the bounds of the buffer. If the program tried to
write to that location, another variable might be corrupted, or a segmentation
fault might result. The logic of the loop doesn’t require writing to that particular
address, but it could easily be done by mistake.

Listing 8.3 shows the completed program, fully commented with all pseudo-
code converted to assembly code.

Listing 8.3: uppercaser2gcc.asm

; Executable name : uppercaser2gcc
; Version : 2.0

 Chapter 8 ■ Our Object All Sublime 247

; Created date : 6/17/2022
; Last update : 5/8/2023
; Author : Jeff Duntemann
; Description : A simple program in assembly for Linux, using NASM
; 2.15.05, demonstrating simple text file I/O
; (through redirection) for reading an input file to
; a buffer in blocks, forcing lowercase characters to
; uppercase, and writing the modified buffer to
; an output file.
;
; Run it this way in a terminal window:
;
; uppercaser2 > (output file) < (input file)
;
; Build in SASM using the default make lines and x64 checked
;

SECTION .bss ; Section containing uninitialized data

 BUFFLEN equ 128 ; Length of buffer
 Buff: resb BUFFLEN ; Text buffer itself

SECTION .data ; Section containing initialised data

SECTION .text ; Section containing code

global main ; Linker needs this to find the entry point

main:
 mov rbp,rsp ; for correct debugging

; Read a buffer full of text from stdin:
Read:
 mov rax,0 ; Specify sys_read call
 mov rdi,0 ; Specify File Descriptor 0: Standard Input
 mov rsi,Buff ; Pass offset of the buffer to read to
 mov rdx,BUFFLEN ; Pass number of bytes to read at one pass
 syscall ; Call sys_read to fill the buffer
 mov r12,rax ; Copy sys_read return value to r12 for later
 cmp rax,0 ; If rax=0, sys_read reached EOF on stdin
 je Done ; Jump If Equal (to 0, from compare)

; Set up the registers for the process buffer step:
 mov rbx,rax ; Place the number of bytes read into rbx
 mov r13,Buff ; Place address of buffer into r13
 dec r13 ; Adjust count to offset

; Go through the buffer and convert lowercase to uppercase characters:
Scan:
 cmp byte [r13+rbx],61h ; Test input char against lowercase 'a'
 jb .Next ; If below 'a' in ASCII, not lowercase

248 Chapter 8 ■ Our Object All Sublime

 cmp byte [r13+rbx],7Ah ; Test input char against lowercase 'z'
 ja .Next ; If above 'z' in ASCII, not lowercase
 ; At this point, we have a lowercase char
 sub byte [r13+rbx],20h ; Subtract 20h to give uppercase...
.Next:
 dec rbx ; Decrement counter
 cmp rbx,0
 jnz Scan ; If characters remain, loop back

; Write the buffer full of processed text to stdout:
Write:
 mov rax,1 ; Specify sys_write call
 mov rdi,1 ; Specify File Descriptor 1: Standard output
 mov rsi,Buff ; Pass offset of the buffer
 mov rdx,r12 ; Pass # of bytes of data in the buffer
 syscall ; Make kernel call
 jmp Read ; Loop back and load another buffer full

; All done! Let's end this party:
Done:
 ret

The SASM Output Window Gotcha
There is a shortcoming in SASM that you may stumble upon, if you’re test-
ing programs like uppercaser2gcc within SASM, using the Input and Output
windows. The problem is that the Output window will hold only so much
text. If you fill the Output window’s buffer, further output will not cause any
errors, but the last bit of text will push the first bit of text off the top edge of
the Output window.

Once you have a reasonably functional program in SASM, save the EXE file
to disk. Then exit SASM, bring up a terminal window, navigate to the project
directory, and execute your program there. I don’t know if Linux places a limit
on how much text it will pass through stdout, but I’ve passed some pretty big
files to stdout without any of the text getting lost.

Going Further

This general process will serve you well no matter what language you program
in. Here are some notes as you proceed, on this project and on all your future
projects:

 Chapter 8 ■ Our Object All Sublime 249

 ■ Keep in mind that there’s nothing that says you have to convert every-
thing from pseudocode to machine instructions in one pass. Successive
refinement is, well, successive. A perfectly reasonable statement for the
problem could include a mixture of instructions and pseudocode. Over
time you’ll evolve a technique that works for you, and as you become
more confident as a programmer, you’ll make fewer refinement passes,
and better ones.

 ■ Don’t be afraid to draw pictures. Pencil sketches of pointers, buffers, and
so on, scribbled on a quadrille pad, can be enormously helpful when try-
ing to get a handle on a complicated loop or any process with a lot of
moving parts.

 ■ Save your notes, no matter how ugly. Memories of the programming pro-
cess get stale. If you write a utility and use it for six months, you may
need a refresher on how its innards operate before attempting to enhance
it. Toss everything in a (real- world) file folder, including paper printouts
of pseudocode written to disk files.

The program we developed in this chapter is a simple example of a Unix text
filter. Filters are common in Unix work, and I’ll be returning to the concept in later
chapters. In the meantime, go back and add error checking to the uppercaser
program, on both read and write. Yes, you’ll need a system call reference, one of
which I cited earlier in the book. Others are online. Research may be the single
toughest part of programming, and that’s not going to get any easier; trust me.

C H A P T E R

251

9

As you’ve seen by now, my general method for explaining things starts with
the “view from a height” and then moves down toward the details. That’s how
I do things because that’s how people learn: by plugging individual facts into
a larger framework that makes it clear how those facts relate to one another.
It’s possible (barely) to move from details to the big picture, but across 60- odd
years of banging my head against various subjects in the pursuit of knowledge,
it’s become very clear that having the overall framework in place first makes
it a lot easier to establish all those connections between facts. It’s like carefully
placing stones into a neat pile before shoveling them into a box. If the goal is to
get the stones into a box, it’s much better to have the box in place before starting
to pick up the stones.

And so it is here. The big picture is mostly in place. From now on in this
book, we’ll be looking at the details of assembly code and seeing how they fit
into that larger view.

Bits Is Bits (and Bytes Is Bits)

Assembly language is big on bits. Bits, after all, are what bytes are made of, and
one essential assembly language skill is building bytes and taking them apart
again. A technique called bit mapping is widely used in assembly language.
Bit mapping assigns special meanings to individual bits within a byte to save
space and squeeze the last little bit of utility out of a given amount of memory.

Bits, Flags, Branches, and Tables
Easing Into Mainstream Assembly Coding

252 Chapter 9 ■ Bits, Flags, Branches, and Tables

There is a family of instructions in the x64 instruction set that allows you to
manipulate the bits within the bytes by applying Boolean logical operations
between bytes on a bit- by- bit basis. These are the bitwise logical instructions: AND,
OR, XOR, and NOT. Another family of instructions allows you to slide bits back
and forth within a single byte or word. These are the most- used shift/rotate
instructions: ROL, ROR, RCL, RCR, SHL, and SHR. (There are a few others that I will
not be discussing in this book.)

Bit Numbering
Dealing with bits requires that we have a way of specifying which bits we’re
dealing with. By convention, bits in assembly language are numbered, starting
from 0, at the least- significant bit in the byte, word, double word, or other item
we’re using as a bit map. The least- significant bit is the one with the least value
in the binary number system. It’s also the bit on the far right, if you write the
value down as a binary number in the conventional manner.

I’ve shown this in Figure 9.1, for a 16- bit word. Bit numbering works exactly
the same way no matter how many bits you’re dealing with: bytes, words,
double words, or quadwords. Bit 0 is always on the right- hand end, and the bit
numbers increase toward the left.

When you count bits, start with the bit on the right- hand end, and number them
leftward from 0.

“It’s the Logical Thing to Do, Jim. . .”
The term Boolean logic sounds arcane and forbidding, but remarkably, it reflects
the realities of ordinary thought and action. The Boolean operator AND, for in-
stance, pops up in many of the decisions you make every day of your life. For
example, to write a check that doesn’t bounce, you must have money in your
checking account AND checks in your checkbook. Neither alone will do the
job. You can’t write a check that you don’t have, and a check without money
behind it will bounce. People who live out of their checkbooks use the AND
operator frequently.

When mathematicians speak of Boolean logic, they manipulate abstract
values called True and False. The AND operator works like this: Condition1

Figure 9.1: Bit numbering

 Chapter 9 ■ Bits, Flags, Branches, and Tables 253

AND Condition2 will be considered True if both Condition1 and Condition2
are True. If either condition is False, the result will be False.

There are in fact four different combinations of the two input values, so logical
operations between two values are usually summarized in a form called a truth
table. The truth table for the logical operator AND (not the AND instruction yet;
we’ll get to that shortly) is shown in Table 9.1.

There’s nothing mysterious about the truth table. It’s just a summary of
all possibilities of the AND operator as applied to two input conditions. The
important thing to remember about AND is that only when both input values
are True will the result also be True.

That’s the way mathematicians see AND. In assembly language terms, the
AND instruction looks at two bits and yields a third bit based on the values of
the first two bits. By convention, we consider a 1 bit to be True and a 0 bit to
be False. The logic is identical; we’re just using different symbols to represent
True and False. Keeping that in mind, we can rewrite AND’s truth table to make
it more meaningful for assembly language work. See Table 9.2.

The AND Instruction
The AND instruction embodies this concept in the x64 instruction set. The AND
instruction performs the AND logical operation on two like- sized operands and
replaces the destination operand with the result of the operation as a whole.

Table 9.1: The AND Truth Table for Formal Logic

CONDITION1 OPERATOR CONDITION2 RESULT

False AND False = False

False AND True = False

True AND False = False

True AND True = True

Table 9.2: The AND Truth Table for Assembly Language

BIT 1 OPERATOR BIT 2 RESULT BIT

0 AND 0 = 0

0 AND 1 = 0

1 AND 0 = 0

1 AND 1 = 1

254 Chapter 9 ■ Bits, Flags, Branches, and Tables

(Remember that the destination operand is the operand closest to the mnemonic.)
In other words, consider this instruction:

and al,bl

What will happen here is that the CPU will perform a gang of eight bitwise
AND operations on the eight bits in AL and BL. Bit 0 of AL is ANDed with bit 0
of BL, bit 1 of AL is ANDed with bit 1 of BL, and so on. Each AND operation
generates a result bit, and that bit is placed in the destination operand (here, AL)
after all eight AND operations occur. This is a common thread among machine
instructions that perform some operation on two operands and produce a result:
The result replaces the first operand (the destination operand) and not the second!

Masking Out Bits
A major use of the AND instruction is to isolate one or more bits out of a byte,
word, dword, or qword value. Isolate here simply means to set all unwanted
bits to a reliable 0 value. As an example, suppose we are interested in testing
bits 4 and 5 of a value to see what those bits are. To do that, we have to be able
to ignore the other bits (bits 0 through 3 and 6 through 7), and the only way to
safely ignore bits is to set them to 0.

AND is the way to go. We set up a bit mask in which the bit numbers that we
want to inspect and test are set to 1, and the bits we wish to ignore are set to
0. To mask out all bits but bits 4 and 5, we must set up a mask in which bits 4
and 5 are set to 1, with all other bits at 0. This mask in binary is 00110000B, or
30H. (To verify it, count the bits from the right- hand end of the binary number,
starting with 0.) This bit mask is then ANDed against the value in question.
Figure 9.2 shows this operation in action, with the 30H bit mask just described
and an initial value of 9DH.

The three binary values involved are shown laid out vertically, with the least-
significant bit (that is, the right- hand end) of each value at the top. You should
be able to trace each AND operation and verify it by looking at Table 9.2.

The end result is that all bits except bits 4 and 5 are guaranteed to be 0 and can
thus be safely ignored. Bits 4 and 5 could be either 0 or 1. (That’s why we need
to test them; we don’t know what they are.) With the initial value of 9DH, bit 4
turns out to be a 1, and bit 5 turns out to be a 0. If the initial value were something
else, bits 4 and 5 could both be 0, both be 1, or some combination of the two.

Don’t forget: The result of the AND instruction replaces the destination operand
after the operation is complete.

 Chapter 9 ■ Bits, Flags, Branches, and Tables 255

The OR Instruction
Closely related to the AND logical operation is OR, which, like the AND logical
operation, has an embodiment with the same name in the x86/x64 instruction
set. Structurally, the OR instruction works identically to AND. Only its truth table
is different: While AND requires that both its operands be 1 for the result to be
1, OR is satisfied that at least one operand has a 1 value. The truth table for OR
is shown in Table 9.3.

Figure 9.2: The anatomy of an AND instruction

Table 9.3: The OR Truth Table for Assembly Language

BIT 1 OPERATOR BIT 2 RESULT BIT

0 OR 0 = 0

0 OR 1 = 1

1 OR 0 = 1

1 OR 1 = 1

256 Chapter 9 ■ Bits, Flags, Branches, and Tables

Because it’s unsuitable for isolating bits, the OR instruction is used much more
rarely than AND.

The XOR Instruction
In a class by itself is the exclusive OR operation, embodied in the XOR instruction.
XOR, again, does in broad terms what AND and OR do: It performs a bit- by- bit
logical operation on its two operands, and the result replaces the destination
operand. The logical operation, however, is exclusive or, meaning that the result is
1 only if the two operands are different (that is, 1 and 0 or 0 and 1). The truth table
for XOR (see Table 9.4) should make this slightly slippery notion a little clearer.

Look Table 9.4 over carefully! In the first and last cases, where the two oper-
ands are the same, the result is 0. In the middle two cases, where the two oper-
ands are different, the result is 1.

Some interesting things can be done with the XOR instruction, but most of
them are a little arcane for a beginners’ book like this. One nonobvious but
handy use of XOR is this: XORing any value against itself yields 0. In other words,
if you execute the XOR instruction with both operands as the same register, that
register will be cleared to 0:

xor rax,rax ; Zero out the rax register

In the old days, this was faster than loading a 0 into a register from immediate
data using MOV. Although that’s no longer the case, it’s an interesting trick to
know. How it works should be obvious from reading the truth table, but to
drive it home I’ve laid it out in Figure 9.3.

Follow each of the individual exclusive OR operations across the figure to its
result value. Because each bit in AL is XORed against itself, in every case the
XOR operations happen between two operands that are identical. Sometimes
both are 1, sometimes both are 0, but in every case the two are the same. With
the XOR operation, when the two operands are the same, the result is always
0. Voilà! Zero in a register.

Table 9.4: The XOR Truth Table for Assembly Language

BIT 1 OPERATOR BIT 2 RESULT BIT

0 XOR 0 = 0

0 XOR 1 = 1

1 XOR 0 = 1

1 XOR 1 = 0

 Chapter 9 ■ Bits, Flags, Branches, and Tables 257

The NOT Instruction
Easiest to understand of all the bitwise logical instructions is NOT. The truth table
for NOT is simpler than the others we’ve looked at because NOT takes only one
operand. And what it does is simple as well: NOT takes the state of each bit in its
single operand and changes that bit to its opposite state. What was 1 becomes
0, and what was 0 becomes 1. I show this in Table 9.5.

Figure 9.3: Using XOR to zero a register

Table 9.5: The NOT Truth Table for Assembly Language

BIT OPERATOR RESULT BIT

0 NOT 1

1 NOT 0

258 Chapter 9 ■ Bits, Flags, Branches, and Tables

Segment Registers Don’t Respond to Logic!
You won’t be directly accessing the segment registers until you get into the depths
of operating- system programming. The segment registers now belong to the
OS for its own use, and user- space programs cannot change them in any way.

But even when you begin working at the operating- system level, the seg-
ment registers come with significant limitations. One such limitation is that
they cannot be used with any of the bitwise logic instructions. If you try, the
assembler will hand you an “Illegal use of segment register” error. If you need
to perform a logical operation on a segment register, you must first copy the
segment register’s value into one of the general- purpose registers, perform the
logical operation on the GP register, and then copy the result in the GP register
back into the segment register.

The general- purpose registers are called “general purpose” for a reason, and
the segment registers are not in any way general- purpose. They are specialists
in memory addressing, and if you ever have to work on segment values, the
general approach is to do the work in a general- purpose register and then copy
the modified value back into the segment register in question.

Shifting Bits

The other way of manipulating bits within a byte is a little more straightfor-
ward: You shift them toward one side or the other. There are a few wrinkles to
the process, but the simplest shift instructions are pretty obvious: SHL SHifts its
operand Left, whereas SHR SHifts its operand Right.

All of the shift instructions (including the slightly more complex ones I’ll
describe a little later) have the same general form, illustrated here by the SHL
instruction:

shl <register/memory>,<count>

The first operand is the target of the shift operation, that is, the value that you’re
going to be shifting. It can be register data or memory data, but not immediate
data. The second operand specifies the number of bits by which to shift.

Shift by What?
This <count> operand has a peculiar history. On the ancient 8086 and 8088, it
could be one of two things: the immediate digit 1, or else the register CL. (Not
CX!) If you specified the count as 1, then the shift would be by one bit. If you
wanted to shift by more than one bit at a time, you had to first load the shift
count into register CL. In the days before the x86 general- purpose registers
became truly general- purpose, counting things used to be CX’s (and hence CL’s)

 Chapter 9 ■ Bits, Flags, Branches, and Tables 259

“hidden agenda.” It would count shifts, passes through loops, string elements,
and a few other things. That’s why it’s sometimes called the count register and
can be remembered by the C in count. Starting with the 286 and for all more
recent x86/x64 CPUs, the <count> operand may be any immediate value from
0 to 255. The shift count may also be passed in CL if you prefer. Note that you
cannot specify RCX for the count, even though it “contains” CL. Even in x64,
the shift instructions really do require either an immediate value from 0–255 or
CL. Any other register specified for the count value will trigger an assembler error.

Obviously, shifting by 0 bits is pointless, but it’s possible and not considered
an error. Watch your typing.

Now, there’s an important asterisk to the previous paragraph: You can’t shift
more positions than the destination register has. In 64- bit long mode, you can’t shift
(or rotate; see the next section) more than 63 counts. Attempting to do so won’t
trigger an error. It just won’t work. It won’t work because before the instruction
is executed, the CPU masks the count value to the six lowest bits. Those low six
bits can count only to 63. It takes seven bits to express 64.

A literal value of 146 won’t cause an error, but you’ll only shift the destina-
tion operand by 18 positions.

In 32- bit protected mode, the CPU masks the count value to the five lowest
bits, because five bits can count to 31.

How Bit Shifting Works
Understanding the shift instructions requires that you think of the numbers
being shifted as binary numbers, and not hexadecimal or decimal numbers.
(If you’re fuzzy on binary notation, again, take another focused pass through
Chapter 2.) A simple example would start with register AX containing a value
of 0B76FH. (I’m using AX for the example here to keep the binary numbers
short and graspable, but the shift instructions may be used on any size register.)
Expressed as a binary number (and hence as a bit pattern), 0B76FH is as follows:

1011011101101111

Keep in mind that each digit in a binary number is one bit. If you execute
an SHL AX,1 instruction, what you’d find in AX after the shift is the following:

0110111011011110

A 0 has been inserted at the right- hand end of the number, and the whole
shebang has been bumped toward the left by one digit. Notice that a 1 bit has
been bumped off the left end of the number into cosmic nothingness.

You can even use the shift instructions on CL, with CL containing the count.
This is legal, even if it looks peculiar, and may not be the best idea:

mov cl,1
shl cl,cl

260 Chapter 9 ■ Bits, Flags, Branches, and Tables

What happens in this example is that the count value in CL is shifted left by
the value CL contains. Here the 1 bit in CL is shifted to become a 2 bit. If this
still seems strange, put it in a sandbox and watch the registers.

Bumping Bits into the Carry Flag
Shifting a bit off the left end of a binary value doesn’t exactly send that bit into
cosmic nothingness. A bit shifted out of the left end of a binary value is bumped
into a temporary bucket for bits called the Carry flag (CF). The Carry flag is
one of those informational bits gathered together as the RFlags register, which I
described in Chapter 7. You can test the state of the Carry flag with a branching
instruction, as I’ll explain a little later in this chapter.

However, keep in mind when using shift instructions that a lot of different
instructions use the Carry flag— not only the shift instructions. If you bump a
bit into the Carry flag with the intent of testing that bit later to see what it is,
test it before you execute another instruction that affects the Carry flag. That list
includes all the arithmetic instructions, all the bitwise logical instructions, a few
other miscellaneous instructions— and, of course, all the other shift instructions.

If you shift a bit into the Carry flag and then immediately execute another
shift instruction, the bit bumped into the Carry flag earlier will be bumped off
the end of the world into cosmic nothingness.

The Rotate Instructions
That said, if a bit’s destiny is not to be lost in cosmic nothingness, you need to
use the rotate instructions RCL, RCR, ROL, and ROR instead. The rotate instructions
are almost identical to the shift instructions, but with a crucial difference: A bit
bumped off one end of the operand reappears at the opposite end of the operand.
As you rotate an operand by more than one bit, the bits march steadily in one
direction, falling off the end and immediately reappearing at the opposite end.
The bits thus “rotate” through the operand as the rotate instruction is executed.

Like so many things, this shows better than it tells. Take a look at Figure 9.4. The
example shown here is the ROL (Rotate Left) instruction, but the ROR instruction
works the same way, with the bits moving in the opposite direction. An initial
binary value of 10110010 (0B2h) is placed in AL. When an ROL AL,1 instruction
is executed, all the bits in AL march toward the left by one position. The 1- bit
in bit 7 exits AL stage left but runs around and reappears immediately from
stage right.

Again, ROR works exactly the same way, but the movement of bits is from left
to right instead of (as with ROL) right to left. The number of bits by which an
operand is rotated can be either an immediate value or a value in CL.

 Chapter 9 ■ Bits, Flags, Branches, and Tables 261

Rotating Bits Through the Carry Flag
There is a second pair of rotate instructions in the x86/x64 instruction set: RCR
(Rotate Carry Right) and RCL (Rotate Carry Left). These operate as ROL and ROR
do, but with a twist: The bits that are shifted out the end of an operand and
re- enter the operand at the beginning travel by way of the Carry flag. The path
that any single bit takes in a rotate through CF is thus one bit longer than it
would be in ROL and ROR. I’ve shown this graphically in Figure 9.5.

Figure 9.4: How the rotate instructions work

Figure 9.5: How the rotate through carry instructions work

262 Chapter 9 ■ Bits, Flags, Branches, and Tables

Setting a Known Value into the Carry Flag
It’s also useful to remember that previous instructions can leave values in CF, and
those values will be rotated into an operand during an RCL or RCR instruction.
Some people have the mistaken understanding that CF is forced to 0 before a
shift or rotate instruction, and that’s just not true. If another instruction leaves
a 1- bit in CF immediately before an RCR or RCL instruction, that 1- bit will obe-
diently enter the destination operand, whether you want it to or not.

If starting out a rotate with a known value in CF is important, there is a pair
of x86 instructions that will do the job for you: CLC and STC. CLC clears the Carry
flag to 0. STC sets the Carry flag to 1. Neither instruction takes an operand and
neither has any other effects.

Bit- Bashing in Action

As we saw in earlier chapters, Linux has a fairly convenient method for display-
ing text to your screen. The problem is that it displays only text— if you want
to display a numeric value from a register as a pair of hex digits, Linux won’t
help. You first have to convert the numeric value into its string representation
and then display the string representation by calling the sys_write kernel ser-
vice via syscall.

Converting hexadecimal numbers to hexadecimal digits isn’t difficult, and the
code that does the job demonstrates several of the new concepts we’re exploring
in this chapter. The code in Listing 9.1 is the bare- bones core of a hex- dump
utility. When you redirect its input from a file of any kind, it will read that file
16 bytes at a time and display those 16 bytes in a line, as 16 hexadecimal values
separated by spaces. The code contains a number of new techniques that are
worth discussing. Then, in Chapter 10, we’ll expand it to include the ASCII
equivalent column to the right of the hexdump column.

Listing 9.1: hexdump1gcc.asm

; Executable name : hexdump1gcc
; Version : 2.0
; Created date : 5/9/2022
; Last update : 5/8/2023
; Author : Jeff Duntemann
; Description : A simple program in assembly for Linux, using
; NASM 2.15 under the SASM IDE, demonstrating the
; conversion of binary values to hexadecimal
; strings. It acts as a very simple hex dump utility
; for files, without the ASCII equivalent column.
;
; Run it this way:
; hexdump1gcc < (input file)

 Chapter 9 ■ Bits, Flags, Branches, and Tables 263

;
; Build using SASM's default build setup for x64
;
SECTION .bss ; Section containing uninitialized data

 BUFFLEN equ 16 ; We read the file 16 bytes at a time
 Buff: resb BUFFLEN ; Text buffer itself, reserve 16 bytes

SECTION .data ; Section containing initialised data

 HexStr: db " 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00",10
 HEXLEN equ $- HexStr

 Digits: db "0123456789ABCDEF"

SECTION .text ; Section containing code

global main ; Linker needs this to find the entry point!

main:
 mov rbp,rsp ; SASM Needs this for debugging

; Read a buffer full of text from stdin:
Read:
 mov rax,0 ; Specify sys_read call 0
 mov rdi,0 ; Specify File Descriptor 0: Standard Input
 mov rsi,Buff ; Pass offset of the buffer to read to
 mov rdx,BUFFLEN ; Pass number of bytes to read at one pass
 syscall ; Call sys_read to fill the buffer
 mov r15,rax ; Save # of bytes read from file for later
 cmp rax,0 ; If rax=0, sys_read reached EOF on stdin
 je Done ; Jump If Equal (to 0, from compare)

; Set up the registers for the process buffer step:parm
 mov rsi,Buff ; Place address of file buffer into esi
 mov rdi,HexStr ; Place address of line string into edi
 xor rcx,rcx ; Clear line string pointer to 0

; Go through the buffer and convert binary values to hex digits:
Scan:
 xor rax,rax ; Clear rax to 0

; Here we calculate the offset into the line string, which is rcx X 3
 mov rdx,rcx ; Copy the pointer into line string into rdx
; shl rdx,1 ; Multiply pointer by 2 using left shift
; add rdx,rcx ; Complete the multiplication X3
 lea rdx,[rdx*2+rdx] ; This does what the above 2 lines do!
 ; See discussion of LEA later in Ch. 9

264 Chapter 9 ■ Bits, Flags, Branches, and Tables

; Get a character from the buffer and put it in both rax and rbx:
 mov al,byte [rsi+rcx] ; Put a byte from the input buffer into al
 mov rbx,rax ; Duplicate byte in bl for second nybble

; Look up low nybble character and insert it into the string:
 and al,0Fh ; Mask out all but the low nybble
 mov al,byte [Digits+rax] ; Look up the char equivalent of nybble
 mov byte [HexStr+rdx+2],al ; Write the char equivalent to
 ; the line string

; Look up high nybble character and insert it into the string:
 shr bl,4 ; Shift high 4 bits of char into low 4 bits
 mov bl,byte [Digits+rbx] ; Look up char equivalent of nybble
 mov byte [HexStr+rdx+1],bl ; Write the char equivalent to
 ; the line string

; Bump the buffer pointer to the next character and see if we're done:
 inc rcx ; Increment line string pointer
 cmp rcx,r15 ; Compare to the number of characters in the buffer
 jna Scan ; Loop back if rcx is <= number of chars in buffer

; Write the line of hexadecimal values to stdout:
 mov rax,1 ; Specify syscall call 1: sys_write
 mov rdi,1 ; Specify File Descriptor 1: Standard output
 mov rsi,HexStr ; Pass address of line string in rsi
 mov rdx,HEXLEN ; Pass size of the line string in rdx
 syscall ; Make kernel call to display line string
 jmp Read ; Loop back and load file buffer again

; All done! Let's end this party:
Done:
 ret ; Return to the glibc shutdown code

The hexdump1 program is at its heart a filter program and has the same general
filter machinery I used in the uppercaser2 program from Chapter 8. The impor-
tant parts of the program for this discussion are the parts that read 16 bytes from
the input buffer and convert them to a string of characters for display to the
Linux console. This is the code between the Scan label and the RET instruction.
I’ll be referring to that block of code in the discussion that follows.

If you read Listing 9.1, you’ll see that two of the lines of code are commented
out. This was not a mistake, and I’ll come back to it.

Splitting a Byte into Two Nybbles
Remember that the values read by Linux from a file are read into memory as
binary values. Hexadecimal is a way of displaying binary values, and for you
to display binary values as displayable ASCII hexadecimal digits, you have to
do some converting.

 Chapter 9 ■ Bits, Flags, Branches, and Tables 265

Displaying a single 8- bit binary value requires two hexadecimal digits. The
bottom four bits in a byte are represented by one digit (the least- significant, or
rightmost, digit), and the top four bits in the byte are represented by another
digit (the most significant, or leftmost, digit). The binary value 11100110, for
example, is the equivalent of E6 in hex. (I went over all this in detail in Chapter 2.)
Converting an 8- bit value into two 4- bit digits must be done one digit at a time,
which means that we have to separate the single byte into two 4- bit quantities,
which are often called nybbles, especially in assembly work.

In the hexdump1 program, a byte is read from Buff and is placed in two
registers, RAX and RBX. This is done because separating the high from the low
nybble in a byte is destructive, in that we basically zero out the nybble that we
don’t want.

To isolate the low nybble in a byte, we need to mask out the unwanted high
nybble. This is done with an AND instruction:

and al,0Fh

The immediate constant 0Fh expressed in binary is 00001111. If you follow the
operation through the AND truth table (Table 9.2) you’ll see that any bit ANDed
against 0 is 0. We AND the high nybble of register AL with 0000, which zeros
out anything that might be there. ANDing the low nybble against 1111 leaves
the bits of the low nybble precisely as they were.

When we’re done, we have the low nybble of the byte read from Buff in AL.

Shifting the High Nybble into the Low Nybble
Masking out the high nybble from the input byte in AL destroys it. We need
that high nybble, but we have a second copy in RBX, and that’s the copy from
which we’ll extract the high nybble. As with the low nybble, we’ll actually work
with the least significant eight bits of RBX, as BL. Remember that BL is just a
different way of referring to the lowest eight bits of RBX. It’s not a different
register. If a value is loaded into RBX, its least- significant eight bits are in BL.

We could mask out the low nybble in BL with an AND instruction, leaving
behind the high nybble, but there’s a catch: Masking out the low four bits of a
byte does not make the high four bits a nybble. We have to somehow move the
high four bits of the input byte into the low four bits.

The fastest way to do this is simply to shift BL to the right by four bits. This
is what the SHR BL,4 instruction does. The low nybble is simply shifted off the
edge of BL, into the Carry flag, and then out into cosmic nothingness. After the
shift, what was the high nybble in BL is now the low nybble.

At this point, we have the low nybble of the input byte in AL, and the high
nybble of the input byte in BL. The next challenge is converting the four- bit
binary number in a nybble (for example, 1110) into its displayable ASCII hex
digit; in this example, that’s the “E” character.

266 Chapter 9 ■ Bits, Flags, Branches, and Tables

Using a Lookup Table
In the .data section of the program is the definition of a very simple lookup table.
The Digits table has this definition:

Digits db '0123456789ABCDEF'

The important thing to note about the Digits table is that each digit occupies
a position in the string whose offset from the start of the string is the value it
represents. In other words, the ASCII character 0 is at the very start of the string,
offset zero bytes from the string’s beginning. The character 7 lies seven bytes
from the start of the string, and so on.

We “look up” a character in the Digits table using a memory reference:

mov al,byte [Digits+rax]

As with most of assembly language, everything here depends on memory
addressing. The first hex digit character in the lookup table is at the address in
Digits. To get at the desired digit, we must index into the lookup table. We do
this by adding an offset into the table to the address inside the brackets. This
offset is the nybble in AL.

Adding the offset in AL to the address of Digits (using RAX) takes us right
to the character that is the ASCII equivalent of the value in AL. I’ve drawn this
out graphically in Figure 9.6.

There are two possibly confusing things about the MOV instruction that fetches
a digit from Digits and places it in AL:

 ■ We must use RAX in the memory reference rather than AL, because AL
cannot take part in effective address calculations. Don’t forget that AL is “inside”
RAX! (More on effective address calculations a little later in this chapter.)

 ■ We are replacing the nybble in AL with its character equivalent. The
instruction first fetches the character equivalent of the nybble from the
table and then stores the character equivalent back into AL. The nybble
that had been in AL is overwritten and thus gone.

So far, we’ve read a character from the lookup table into AL. The conversion
of that nybble is done. The next task sounds simple but is actually surprisingly
tricky: Writing the ASCII hex digit character now stored in AL into the display
string at HexStr.

 Chapter 9 ■ Bits, Flags, Branches, and Tables 267

Multiplying by Shifting and Adding
The hexdump1 program reads bytes from a file and displays them in lines, with
16 bytes represented in hex in each line. A sample of the output from hexdump1
is shown here:

 3B 20 20 45 78 65 63 75 74 61 62 6C 65 20 6E 61
 6D 65 20 3A 20 45 40 54 53 59 53 43 40 4C 4C 0D
 0A 3B 20 20 56 65 72 73 69 6F 6E 20 20 20 20 20

Figure 9.6: Using a lookup table

268 Chapter 9 ■ Bits, Flags, Branches, and Tables

 20 20 20 20 3A 20 30 2E 30 0D 0A 3B 20 20 43 72
 65 60 74 65 64 20 64 60 74 65 20 20 20 20 3A 20
 30 2F 37 2F 32 30 30 39 0D 0A 3B 20 20 4C 60 73
 74 20 75 70 64 60 74 65 20 20 20 20 20 3A 20 32
 2F 30 38 2F 32 30 30 39 0D 0A 3B 20 20 40 75 74
 68 6F 72 20 20 20 20 20 20 20 20 20 20 3A 20 4A

Each of these lines is a display of the same data item: HexStr, a string of 48
characters with an EOL value (0ah) on the end. Each time hexdump1 reads a
block of 16 bytes from the input file, it formats them as ASCII hex digits and
inserts them into HexStr. In a sense, this is another type of table manipulation,
except that instead of looking up something in a table, we’re writing values into
a table based on an index.

One way to think about HexStr is as a table of 16 entries, each entry three
characters long. (See Figure 9.7.) In each entry, the first character is a space, and
the second and third characters are the hex digits themselves. The space char-
acters are already there, as part of the original definition of HexStr in the .data
section. The original “empty” HexStr has 0 characters in all hex digit positions.
To “fill” HexStr with “real” data for each line’s display, we have to scan through
HexStr in an assembly language loop, writing the low nybble character and the
high nybble character into HexStr separately.

The tricky business here is that for each pass through the loop, we have to
“bump” the index into HexStr by three instead of just by one. The offset of one
of those 3- byte entries in HexStr is the index of the entry multiplied by three. I’ve
already described the MUL instructions, which handle arbitrary unsigned multi-
plication in the x86/x64 instruction set. MUL, however, is slow as instructions go.

Figure 9.7: A table of 16 three- byte entries

 Chapter 9 ■ Bits, Flags, Branches, and Tables 269

It has other limitations as well, especially the ways it requires specific registers
for its implicit operands.

Fortunately, with a little cleverness, there are other, faster ways to multiply
in assembly. These ways are based on the fact that it’s very easy and very fast
to multiply by powers of two, using the SHL (Shift Left) instruction. It may not
be immediately obvious to you, but each time you shift a quantity one bit to
the left, you’re multiplying that quantity by two. Shift a quantity two bits to the
left, and you’re multiplying it by four. Shift it three bits to the left, and you’re
multiplying by eight, and so on.

You can take my word for it, or you can actually watch it happen in a sandbox.
Set up a fresh sandbox in SASM and enter the following instructions:

mov al,3
shl al,1
shl al,1
shl al,2

Build the sandbox and go into debug mode. Then step through the instruc-
tions, watching the value of RAX change in the Registers view for each step.

The first instruction loads the value 3 into AL. The next instruction shifts AL to
the left by one bit. The value in AL becomes 6. The second SHL instruction shifts
AL left by one bit again, and the 6 becomes 12. The third SHL instruction shifts
AL by two bits, and the 12 becomes 48. I’ve shown this graphically in Figure 9.8.

Figure 9.8: Multiplying by shifting

270 Chapter 9 ■ Bits, Flags, Branches, and Tables

But what if you want to multiply by three? Easy: You multiply by 2 and then
add one more copy of the multiplicand to the product. In the hexdump1 program,
it’s done this way:

mov rdx,rcx ; Copy the character counter into edx
shl rdx,1 ; Multiply pointer by 2 using left shift
add rdx,rcx ; Complete the multiplication X3

Here, the multiplicand is loaded from the loop counter RCX into RDX. RDX
is then shifted left by one bit to multiply it by 2. Finally, RCX is added once to
the product RDX to make it multiplication by 3.

Multiplication by other numbers that are not powers of two may be done by
combining an SHL and one or more ADDs. To multiply a value in RCX by seven,
you would do this:

mov rdx,rcx ; Keep a copy of the multiplicand in rcx
shl rdx,2 ; Multiply rdx by 4
add rdx,rcx ; Makes it X 5
add rdx,rcx ; Makes it X 6
add rdx,rcx ; Makes it X 7

This may look clumsy, but remarkably enough, it’s still faster than using MUL!
(And there’s an even faster way to multiply by three that I’ll show you a little
later in this chapter.)

Once you understand how the string table HexStr is set up, writing the hex
digits into it is straightforward. The least significant hex digit is in AL, and the
most significant hex digit is in BL. Writing both hex digits into HexString is
done with a three- part effective memory address:

mov byte [HexStr+rdx+2],al ; Write LSB char digit to line string
mov byte [HexStr+rdx+1],bl ; Write MSB char digit to line string

Refer back to Figure 9.7 to work this out for yourself: You begin with the
address of HexStr as a whole. RDX contains the offset of the first character in
a given entry. To obtain the address of the entry in question, you add HexStr
and RDX. However, that address is of the first character in the entry, which in
HexStr is always a space character. The position of the LSB digit in an entry is
the entry’s offset +2, and the position of the MSB digit in an entry is the entry’s
offset +1. The address of the LSB digit is therefore HexStr + the offset of the entry
+ 2. The address of the MSB digit is therefore HexStr + the offset of the entry + 1.

Flags, Tests, and Branches

From a height, the idea of conditional jump instructions is simple, and without
it, you won’t get much done in assembly. I’ve been using conditional jumps
informally in the last few example programs without saying much about them,

 Chapter 9 ■ Bits, Flags, Branches, and Tables 271

because the sense of the jumps was pretty obvious from context, and they were
necessary to demonstrate other things. But underneath the simplicity of the
idea of assembly language jumps lies a great deal of complexity. It’s time to get
down and cover that in detail.

Unconditional Jumps
A jump is just that: an abrupt change in the flow of instruction execution.
Ordinarily, instructions are executed one after the other, in order, moving from
low memory toward high memory. Jump instructions alter the address of the
next instruction to be executed. Execute a jump instruction, and zap! All of a
sudden you’re somewhere else. A jump instruction can move execution forward
in memory or backward. It can bend execution back into a loop (and it can tie
your program logic in knots).

There are two kinds of jumps: conditional and unconditional. An unconditional
jump is a jump that always happens. It takes this form:

jmp <label>

When this instruction executes, the sequence of execution moves to the
instruction located at the label specified by <label>. It’s just that simple.

Conditional Jumps
A conditional jump instruction is one of those fabled tests I introduced in Chapter 1.
When executed, a conditional jump tests something, usually one, occasionally
two, or far more rarely three of the flags in the RFlags register. If the flag or
flags being tested happen to be in a particular state, execution will jump to a
label somewhere else; otherwise, it simply falls through to the next instruction
in sequence.

This two- way nature is important. Either a conditional jump instruction
jumps or it falls through. Jump or no jump. It can’t jump to one of two places,
or three. Whether it jumps or not depends on the current value of a very small
set of bits within the CPU.

As I mentioned earlier in this book while discussing the RFlags register as a
whole, there is a flag that is set to 1 by certain instructions when the result of that
instruction is zero: the Zero flag ZF. The DEC (DECrement) instruction is a good
example. DEC subtracts 1 from its operand. If by that subtraction the operand
becomes zero, ZF is set to 1. One of the conditional jump instructions, JZ (Jump
if Zero) tests ZF. If ZF is found set to 1, a jump occurs, and execution transfers to
the label after the JZ mnemonic. If ZF is found to be 0, execution falls through
to the next instruction in sequence. This may be the most common conditional
jump in the entire x86/x64 instruction set. It’s often used when you’re counting
a register down to zero while executing a loop, and when the register counting

272 Chapter 9 ■ Bits, Flags, Branches, and Tables

passes through the loop goes to zero by virtue of the DEC instruction, the loop
ends, and execution picks up again at the instruction right after the loop.

Here’s a simple (if nonoptimal) example, using instructions you should
already understand:

 mov [RunningSum],0 ; Clear the running total
 mov rcx,17 ; We're going to do this 17 times

WorkLoop:
 add [RunningSum],3 ; Add three to the running total
 dec rcx ; Subtract 1 from the loop counter
 jz SomewhereElse ; If the counter is 0, we're done!
 jmp WorkLoop

The variable RunningSum was defined earlier with the DQ specifier, making it 64
bits in size. Before the loop begins, we set up a value in RCX, which acts as the
count register and contains the number of times we’re going to run through the
loop. The body of the loop is where something gets done on each pass through
the loop. In this example it’s a single ADD instruction, but the body could be
dozens or hundreds of instructions long.

After the work of the loop is accomplished, the count register is decremented
by 1 with a DEC instruction. Immediately afterward, the JZ instruction tests the
Zero flag. Decrementing RCX from 17 to 16, or from 4 to 3, does not set ZF, and
the JZ instruction simply falls through. The instruction after JZ is an uncondi-
tional jump instruction, which obediently and consistently takes execution back
to the WorkLoop label every time.

Now, decrementing RCX from 1 to 0 does set ZF. . .and that’s when the loop
ends. JZ finally takes us out of the loop by jumping to SomewhereElse (a label
in the larger program that is not shown here), and execution leaves the loop.

You may be sharp enough (or experienced enough) to think that this is a lousy
way to set up a loop, and you’re right. (That doesn’t mean it’s never been done,
nor that you yourself may not do it in a late- night moment of impatience.) What
we’re really looking for each time through the loop is when a condition— the
Zero flag— isn’t set, and there’s an instruction for that too.

Jumping on the Absence of a Condition
There are quite a few conditional jump instructions, of which I’ll discuss sev-
eral but not all in this book. Their number is increased by the fact that almost
every conditional jump instruction has an alter ego: a jump when the specified
condition is not set to 1.

The JZ instruction provides a good example of jumping on a condition. JZ
jumps to a new location in the code segment if the Zero flag (ZF) is set to 1.

 Chapter 9 ■ Bits, Flags, Branches, and Tables 273

JZ’s alter ego is JNZ (Jump if Not Zero). JNZ jumps to a label if ZF is 0 and falls
through if ZF is 1.

This may be confusing at first, because JNZ jumps when ZF is equal to 0.
Keep in mind that the name of the instruction applies to the condition being
tested and not necessarily the binary bit value of the flag. In the previous code
example, JZ jumped when the DEC instruction decremented a counter to zero.
The condition being tested is something connected with an earlier instruction,
not simply the state of ZF.

Think of it this way: A condition raises a flag. “Raising a flag” means setting
the flag to 1. When one of numerous instructions forces an operand to a value of
zero (which is the condition), the Zero flag is raised. The logic of the instruction
refers to the condition, not to the flag.

As an example, let’s improve the little loop shown earlier by changing the
loop logic to use JNZ:

mov word [RunningSum],0 ; Clear the running total
mov ecx,17 ; We're going to do this 17 times

WorkLoop:
add word [RunningSum],3 ; Add 3 to the running total
dec ecx ; Subtract 1 from the loop counter
jnz WorkLoop ; If the counter is 0, we're done!

The JZ instruction has been replaced with a JNZ instruction. That makes much
more sense, since to close the loop we have to jump, and we close the loop only
while the counter is greater than 0. The jump back to label WorkLoop will happen
only while the counter is greater than 0.

Once the counter decrements to 0, the loop is considered finished. JNZ “falls
through,” and the code that follows the loop (which I don’t show here) executes.
The point is that if you can position the program’s next task immediately after
the JNZ instruction, you don’t need to use the unconditional JMP instruction at
all. Instruction execution will just flow naturally into the next task that needs
performing. The program will have a more natural and less- tangled top- to-
bottom flow and will be easier to read and understand.

Flags
In Chapter 7, I explained the RFlags register and briefly described the purposes
of all the flags it contains. RFlags is sparse; more than half of it is reserved for
future use and thus undefined. Most of the flags that are defined are not terribly
useful, especially when you’re first starting out as an assembly programmer.
The Carry flag (CF) and the Zero flag (ZF) will be 90 percent of your involve-
ment in flags as a beginner, with the Direction flag (DF), Sign flag (SF), and

274 Chapter 9 ■ Bits, Flags, Branches, and Tables

Overflow flag (OF) together making up an additional 9.998 percent. It might
be a good idea to reread that part of Chapter 7 now, just in case your grasp of
flag etiquette has gotten a little rusty.

As I explained earlier, JZ jumps when ZF is 1, whereas JNZ jumps when ZF is
0. Most instructions that perform some operation on an operand (such as AND,
OR, XOR, INC, DEC, and all arithmetic instructions) set ZF according to the results
of the operation. On the other hand, instructions that simply move data around
(such as MOV, XCHG, PUSH, and POP) do not affect ZF nor any of the other flags
at all. (Obviously, POPF affects the flags by popping the top- of- stack value into
them.) One irritating exception is the NOT instruction, which performs a logical
operation on its operand but does not set any flags— even when it causes its
operand to become 0. Before you write code that depends on flags, check your
instruction reference to make sure that you have the flag etiquette down correctly
for that particular instruction. The x86/x64 instruction set is nothing if not quirky.

Comparisons with CMP
One major use of flags is in controlling loops. Another is in comparisons between
two values. Your programs will often need to know whether a value in a register
or memory is equal to some other value. Further, you may want to know if a
value is greater than a value or less than a value if it is not equal to that value.
There is a jump instruction to satisfy every need, but something has to set the
flags for the benefit of the jump instruction. The CMP (CoMPare) instruction is
what sets the flags for comparison tasks.

CMP’s use is straightforward and intuitive. The second operand is compared
with the first, and several flags are set accordingly:

cmp <op1>,<op2> ; Sets OF, SF, ZF, AF, PF, and CF

The sense of the comparison can be remembered if you simply recast the
comparison in arithmetic terms:

Result = <op1> - <op2>

CMP is very much a subtraction operation where the result of the subtraction is
thrown away, and only the flags are affected. The second operand is subtracted
from the first. Based on the results of the subtraction, the flags it affects are set
to appropriate values.

After a CMP instruction, you can jump based on several arithmetic conditions.
People who have a reasonable grounding in math, and FORTRAN or Pascal
programmers, will recognize the conditions: Equal, Not equal, Greater than, Less
than, Greater than or equal to, and Less than or equal to. The sense of these oper-
ators follows from their names and is exactly like the sense of the equivalent
operators in most high- level languages.

 Chapter 9 ■ Bits, Flags, Branches, and Tables 275

A Jungle of Jump Instructions
There is a bewildering array of jump instructions, but those dealing with arithmetic
relationships sort out well into just six categories, one category for each of the
six conditions I just listed. Complication arises out of the fact that there are two
mnemonics for each machine instruction, for example, JLE (Jump if Less than or
Equal) and JNG (Jump if Not Greater than). These two mnemonics are synonyms
in that the assembler generates the identical binary opcode when it encounters
either mnemonic. The synonyms are a convenience to you the programmer in
that they provide two alternate ways to think about a given jump instruction.
In the preceding example, Jump if Less than or Equal to is logically identical to
Jump if Not Greater than. (Think about it!) If the importance of the preceding
compare was to see if one value is less than or equal to another, you’d use the
JLE mnemonic. On the other hand, if you were testing to be sure one quantity
was not greater than another, you’d use JNG. The choice is yours.

Another complication is that there is a separate set of instructions for signed
and unsigned arithmetic comparisons. I haven’t spoken much about assembly
language math in this book and thus haven’t said much about the difference
between signed and unsigned quantities. A signed quantity is one in which
the high bit of the quantity is considered a built- in flag indicating whether the
quantity is negative. If that bit is 1, the quantity is considered negative. If that
bit is 0, the quantity is considered positive.

Signed arithmetic in assembly language is complex and subtle and not as
useful as you might immediately think. I won’t be covering it in detail in this
book, though most assembly language books treat it to some extent. All you
need to know to get a high- level understanding of signed arithmetic is that in
signed arithmetic, negative quantities are legal and the most significant bit of a
value is treated as the sign bit. (If the sign bit is set to 1, the value is considered
negative.) Unsigned arithmetic, on the other hand, does not recognize negative
numbers, and the most significant bit is just one more bit in the binary number
expressing the value being tested.

“Greater Than” Versus “Above”
To tell the signed jumps apart from the unsigned jumps, the mnemonics use
two different expressions for the relationship between two values:

 ■ Signed values are thought of as being greater than or less than. For example,
to test whether one signed operand is greater than another, you would
use the JG (Jump if Greater) mnemonic after a CMP instruction.

 ■ Unsigned values are thought of as being above or below. For example, to tell
whether one unsigned operand is greater than (above) another, you would
use the JA (Jump if Above) mnemonic after a CMP instruction.

276 Chapter 9 ■ Bits, Flags, Branches, and Tables

Table 9.6 summarizes the arithmetic jump mnemonics and their synonyms.
Any mnemonics containing the words above or below are for unsigned values,
whereas any mnemonics containing the words greater or less are for signed values.
Compare the mnemonics with their synonyms and see how the two represent
opposite viewpoints from which to look at identical instructions.

Table 9.6 simply serves to expand the mnemonics into a more comprehensible
form and associate a mnemonic with its synonym. Table 9.7, on the other hand,
sorts the mnemonics out by logical condition and according to their use with
signed and unsigned values. Also listed in Table 9.7 are the flags whose values
are tested by each jump instruction. Notice that some of the jump instructions
require one of two possible flag values to take the jump while others require
both of two flag values.

Several of the signed jumps compare two of the flags against one another. JG,
for example, will jump when either ZF is 0 or when the Sign flag (SF) is equal to
the Overflow flag (OF). (See Table 9.7.) I won’t spend any further time explain-
ing the nature of the Sign flag or Overflow flag. As long as you have the sense
of each instruction under your belt, understanding exactly how the instructions
test the flags can wait until you’ve gained some programming experience.

Table 9.6: Jump Instruction Mnemonics and Their Synonyms

MNEMONICS SYNONYMS

JA Jump if Above JNBE Jump if Not Below or Equal

JAE Jump if Above or
Equal

JNB Jump if Not Below

JB Jump if Below JNAE Jump if Not Above or Equal

JBE Jump if Below or
Equal

JNA Jump if Not Above

JE Jump if Equal JZ Jump if result is Zero

JNE Jump if Not Equal JNZ Jump if result is Not Zero

JG Jump if Greater JNLE Jump if Not Less than or
Equal

JGE Jump if Greater or
Equal

JNL Jump if Not Less

JL Jump if Less JNGE Jump if Not Greater or Equal

JLE Jump if Less or
Equal

JNG Jump if Not Greater

 Chapter 9 ■ Bits, Flags, Branches, and Tables 277

Some people have trouble understanding how it is that the JE and JZ mne-
monics are synonyms, as are JNE and JNZ. Think again of the way a comparison
is done within the CPU: The second operand is subtracted from the first, and
if the result is 0 (indicating that the two operands were in fact equal), the Zero
flag ZF is set to 1. That’s why JE and JZ are synonyms: Both are simply testing
the state of the Zero flag.

Looking for 1- Bits with TEST
The x86/x64 instruction set recognizes that bit testing is done a lot in assembly
language, and it provides what amounts to a CMP instruction for bits: TEST. TEST
performs an AND logical operation between two operands and then sets the flags
as the AND instruction would, without altering the destination operand, as AND
would. Here’s the TEST instruction syntax:

test <operand>,<bit mask>

The bit mask operand should contain a 1 bit in each position where a 1 bit is
to be sought in the operand, and 0 bits in all the other bits.

Table 9.7: Arithmetic Tests Useful After a CMP Instruction

CONDITION
PASCAL
OPERATOR

UNSIGNED
VALUES

JUMPS
WHEN

SIGNED
VALUES

JUMPS
WHEN

Equal = JE ZF=1 JE ZF=1

Not Equal <> JNE ZF=0 JNE ZF=0

Greater Than > JA CF=0 and
ZF=0

JG ZF=0 or
SF=OF

Not Less than
or Equal to

JNBE CF=0 and
ZF=0

JNLE ZF=0 or
SF=OF

Less than < JB CF=1 JL SF<>OF

Not Greater
than or equal
to

JNAE CF=1 JNGE SF<>OF

Greater than
or equal to

>= JAE CF=0 JGE SF=OF

Not Less than JNB CD=0 JNL SF=OF

Less than or
Equal to

<= JBE CF=1 or
ZF=1

JLE ZF=1 or
SF<>OF

Not Greater

Than

JNA CF=1 or
ZF=1

JNG ZF=1 or
SF<>OF

278 Chapter 9 ■ Bits, Flags, Branches, and Tables

What TEST does is perform the AND logical operation between the instruc-
tion’s destination operand and the bit mask and then set the flags as the AND
instruction would do. The result of the AND operation is discarded, and the
destination operand doesn’t change. For example, if you want to determine if
bit 3 of RAX is set to 1, you could use this instruction:

test rax,08h ; Bit 3 in binary is 00001000B, or 08h

Bit 3, of course, does not have the numeric value 3— you have to look at the
bit pattern of the mask and express it as a binary or hexadecimal value. (Bit 3
represents the value 8 in binary.) Using binary for literal constants is perfectly
legal in NASM and is often the clearest expression of what you’re doing when
you’re working with bit masks:

test rax,00001000B ; Bit 3 in binary is 00001000B, or 08h

Destination operand RAX doesn’t change as a result of the operation, but
the AND truth table is asserted between RAX and the binary pattern 00001000.
If bit 3 in RAX is a 1 bit, then the Zero flag is cleared to 0. If bit 3 in RAX is a
0 bit, then the Zero flag is set to 1. Why? If you AND 1 (in the bit mask) with
0 (in RAX), you get 0. (Look it up in the AND truth table, which I showed in
Table 9.2.) And if all eight bitwise AND operations come up 0, the result is 0,
and the Zero flag is raised to 1, indicating that the result is 0.

Key to understanding TEST is thinking of TEST as a sort of Phantom of the
Opcode, where the Opcode is AND. TEST puts on a mask (as it were) and pretends
to be AND but then doesn’t follow through with the results of the operation. It
simply sets the flags as though an AND operation had occurred.

The CMP instruction we spoke of earlier is another Phantom of the Opcode
and bears the same relation to SUB as TEST bears to AND. CMP subtracts its second
operand from its first but doesn’t follow through and store the result in the des-
tination operand. It just sets the flags as though a subtraction had occurred. As
we’ve already seen, this can be mighty useful when combined with conditional
jump instructions.

Here’s something important to keep in mind: TEST is only useful for finding
1 bits. If you need to identify 0 bits, you must first flip each bit to its opposite
state with the NOT instruction. NOT changes all 1 bits to 0 bits and changes all 0
bits to 1 bits. Once all 0 bits are flipped to 1 bits, you can test for a 1 bit where
you need to find a 0 bit. (Sometimes it helps to draw it out on paper to keep it
all straight in your head.)

Finally, TEST will not reliably test for two or more 1 bits in the operand at the
same time. TEST doesn’t check for the presence of a bit pattern; it checks for the
presence of a single 1 bit. In other words, if you need to check to make sure that
both bits 4 and 5 are set to 1, TEST won’t hack it.

 Chapter 9 ■ Bits, Flags, Branches, and Tables 279

Looking for 0- Bits with BT
As I explained, TEST has its limits: It’s not cut out for determining when a bit
is set to 0. TEST has been with us since the very earliest X86 CPUs, but the 386
and newer processors have an instruction that allows you to test for either 0
bits or 1 bits. BT (Bit Test) performs a very simple task: It copies the specified bit
from the first operand into the Carry flag CF. In other words, if the selected bit
was a 1 bit, the Carry flag becomes set. If the selected bit was a 0 bit, the Carry
flag is cleared. You can then use any of the conditional jump instructions that
examine and act on the state of CF.

BT is easy to use. It takes two operands: The destination operand is the value
containing the bit in question. The source operand is the ordinal number of the
bit that you want to test, counting from 0:

bt <value containing bit>,<bit number>

Once you execute a BT instruction, you should immediately test the value in
the Carry flag and branch based on its value. Here’s an example:

bt rax,4 ; Test bit 4 of RAX
jnc quit ; We're all done if bit 4 = 0

Something to be careful of, especially if you’re used to using TEST, is that
you are not creating a bit mask. With BT’s source operand you are specifying the
ordinal number of a bit. The literal constant 4 shown in the previous code is the
bit’s number, not the bit’s value, and that’s a crucial difference.

Also note in the previous code that we’re branching if CF is not set; that’s
what JNC (Jump if Not Carry) does.

X64 Long Mode Memory Addressing in Detail

In so many ways, life is better now. And I’m not just talking about modern den-
tistry, plug- and- play networking, and eight- core CPUs. I used to program in
assembly for the real- mode 8088 CPUs in the original IBM PC. And I remember
real- mode memory addressing.

Like dentistry in the 1950s, 8088- based real- mode memory addressing was
just. . .painful. It was a hideous ratbag of restrictions and gotchas and limits and
Band- Aids, all of which veritably screamed out that the CPU was desperately
hungry for more transistors on the die. Addressing memory, for example, was
limited to BX and BP in most instructions, which meant a lot of fancy footwork
when several separate items had to be addressed in memory all at the same
time. And thinking about segment management still makes me shudder.

280 Chapter 9 ■ Bits, Flags, Branches, and Tables

Well, over the past 40 years our Intel- family CPUs got pretty much all the
transistors they wanted, and the bulk of those infuriating 16- bit memory address-
ing limitations have simply gone away. You can address memory with any of
the general- purpose registers. You can even address memory directly with
the stack pointer RSP, something that its 16- bit ancestor SP could not do. (You
shouldn’t change the value in RSP without considerable care, but RSP can now
take part in addressing modes from which the stack pointer was excluded in
16- bit real- mode land.)

32- bit protected mode on the 386 CPU family introduced a general- purpose
memory- addressing scheme in which all the GP registers could participate
equally. Memory addressing in x64 long mode implements the same scheme
with very few changes. I’ve sketched it out in Figure 9.9, which may well be
the single most important figure in this entire book. Memory addressing is the key
skill in assembly language work. If you don’t understand how the CPU addresses
memory, nothing else matters.

When I first studied and understood this scheme, wounds still bleeding from
16- bit 8088 segmented memory addressing, it looked too good to be true. But
true it is! Here are the rules:

 ■ The base and index registers may be any of the 64- bit general- purpose
registers, including RSP.

 ■ The displacement may be any 32- bit constant, either a literal value or a
named value. Obviously, 0, while legal, isn’t useful.

 ■ The scale must be one of the values 1, 2, 4, or 8. That’s it! The value 1 is
legal, but given that the scale is used to multiply another value, 1 doesn’t
do anything useful.

Figure 9.9: x64 long mode memory addressing

 Chapter 9 ■ Bits, Flags, Branches, and Tables 281

 ■ The index register is multiplied by the scale before the additions are done.
In other words, it’s not (base + index) × scale. Only the index register may
be multiplied by the scale.

 ■ All of the elements are optional and may be used in almost any combination.

 ■ Both 32- bit and 64- bit registers may be used, but you may not mix register
sizes in a single address. That is, the registers in a single memory addressing
operation must be all 32- bit or all 64- bit.

 ■ 16- bit and 8- bit registers may not be used in memory addressing.

Within those rules, there are several different ways you can address memory,
by gathering the address components shown in Figure 9.9 in different combi-
nations. Examples are shown in Table 9.8.

Effective Address Calculations
Each of the lines in Table 9.8 summarizes a method of expressing a memory
address in 64- bit long mode. All but the first two involve a little arithmetic among
two or more terms within the brackets that signify an address. This arithmetic
is called effective address calculation, and the result of the calculation is the effec-
tive address. This term means the address that will ultimately be used to read or
write memory, irrespective of how it is expressed. Effective address calculation
is done by the instruction, when the instruction is executed.

The effective address in the Base scheme is simply the 64- bit value stored
in the GP register between the brackets. No calculation is involved, but what
we see in the source code is not a literal or symbolic address. So although the

Table 9.8: 64- Bit Long Mode Memory- Addressing Schemes

SCHEME EXAMPLE DESCRIPTION

[BASE] [rdx] Base only

[DISPLACEMENT] [0F3h] or

[<variable>]

Displacement, either literal
or named constant

[BASE + DISPLACEMENT] [rcx + 033h] Base plus displacement

[BASE + INDEX] [rax + ecx] Base plus index

[INDEX x SCALE] [rbx * 4] Index times scale

[INDEX x SCALE +
DISPLACEMENT]

[rax * 8 + 65] Index times scale plus
displacement

[BASE + INDEX x SCALE] [rsp + rdi * 2] Base plus index times scale

[BASE + INDEX x SCALE +
DISP.]

[rsi + rbp * 4 + 9] Base plus index times scale
plus displacement

282 Chapter 9 ■ Bits, Flags, Branches, and Tables

instruction is coded with a register name between the brackets, the address
that will be sent out to the memory system when the code executes is stored
inside the register.

In most cases when you’re dealing with an effective address, there’s some
arithmetic going on. In the Base + Index scheme, for example, the contents of
the two GP registers between the brackets are added when the instruction is
executed to form the effective address.

Displacements
Among the several components of a legal x64 long mode address, the dis-
placement term is actually the slipperiest to understand. As I indicated in the
previous paragraph, the displacement term can be a literal address, but in all
my years of protected- mode assembly programming I’ve never done it nor
seen anyone else do it. The reason? You almost never know the literal address of
something at assembly time. There’s another reason not to use literal addresses,
which I’ll come to shortly.

When the displacement term stands alone, it is virtually always a symbolic
address. By that I mean a named data item that you’ve defined in your .data or
.bss sections, like the HexStr variable from the hexdump1 program in Listing 9.1:

mov rax,HexStr

What is placed in RAX here is the address given to the variable HexStr when
the program is loaded into memory by the OS. Like all addresses, it’s just a
number, but it’s determined when the program is loaded rather than at assembly
time, as a literal constant numeric address would be. Also note that the previous
bit of source code loads an address into RAX, not the value in memory at that
address. For that you need brackets:

mov rax,[HexStr]

A lot of beginners get confused when they see what looks like two displace-
ment terms in a single address. The confusion stems from the fact that if NASM
sees two (or more) constant values in a memory reference, it will combine them
at assembly time into a single displacement value, which is placed in RAX by
the MOV instruction. That’s what’s done here:

mov rax,HexStr+3

Note the lack of brackets. The address referred to symbolically by the var-
iable named HexStr is simply added to the literal constant 3 to form a single
displacement value.

The key characteristic of a displacement term is that it is not stored in a register.

 Chapter 9 ■ Bits, Flags, Branches, and Tables 283

The x64 Displacement Size Problem
Now, there’s an x64- specific gotcha with respect to displacements: A displace-
ment value must not be more than 32 bits in size. Why? As I sometimes have to
say. . .it’s complicated. And it’s got nothing to do with the number of address
bits supported in the silicon of a given x64 CPU. Put as simply as I can manage,
limiting displacements to 32 bits was a design decision at AMD at the dawn of
x64 time that “stuck.” It may be fixed someday— or it may not. But, hey, never
say “never.”

In the meantime, we just have to live with it.

Base Addressing
When you exclude Displacement addressing, all x64 memory addressing is
based on registers. The Base addressing scheme simply uses a single register
into which an address has been loaded. It’s called Base because all the more
complex addressing schemes start with Base and extend it. Here’s an example
of Base addressing:

mov qword rax,[rcx]

This instruction takes whatever 64- bit value is stored in memory at the address
contained in register RCX and loads it into register RAX.

Base + Displacement Addressing
A simple and common addressing scheme is Base + Displacement, and I dem-
onstrated it in the hexdump1 program in Listing 9.1. The instruction that inserts
an ASCII character into the output line looks like this:

mov byte [HexStr+rdx+2],al

What happens here is that an 8- bit character value stored in register AL is
written to the byte in memory addressed as HexStr+RDX+2. This is a perfect
example of a case where there are two displacement terms that NASM com-
bines into one. The variable name HexStr resolves to a number (the address of
HexStr), and it is easily added to the literal constant 2. So, there is in truth only
one base term (RDX) and one displacement term.

It’s also a good example of how even 8- bit registers still have their uses, espe-
cially when you’re dealing with 8- bit values like ASCII characters. Note too
that the order of the terms in an address does not matter. The effective address
could as well have been RDX+HexStr+2.

284 Chapter 9 ■ Bits, Flags, Branches, and Tables

Base + Index Addressing
Perhaps the most common single addressing scheme is Base + Index, in which
the effective address is calculated by adding the contents of two GP registers
within the brackets. I demonstrated this addressing scheme in Chapter 8, in the
uppercaser2 program in Listing 8.2. Converting a character in the input buffer
from lowercase to uppercase is done by subtracting 20h from it:

sub byte [r13+rbx],20h

The address of the buffer was earlier placed in RBP, and the number in RCX
is the offset from the buffer start of the character being processed during any
given pass through the loop. Adding the address of the buffer with an offset
into the buffer yields the effective address of the character acted upon by the
SUB instruction.

But wait. . .why not use Base + Displacement addressing? This instruction
would be legal:

sub byte [Buff+rbx],20h

However, if you remember from the program (and it would be worth looking
back and reading the associated text), we had to decrement the address of Buff
by 1 before beginning the loop. But wait some more. . .could we have NASM
do that little tweak by adding a second displacement term of - 1? Indeed we
could, and it would work. The central loop of the uppercaser2 program would
then look like this:

; Set up the registers for the process buffer step:

 mov rbx,rax ; Place the number of bytes read into rbx
 mov r13,Buff ; Place address of buffer into r13
; dec r13 We don't need this instruction anymore!

; Go through the buffer and convert lowercase to uppercase characters:

Scan:
 cmp byte [r13- 1+rbx],61h ; Test input char against lowercase 'a'
 jb Next ; If below 'a' in ASCII, not lowercase
 cmp byte [r13- 1+rbx],7Ah ; Test input char against lowercase 'z'
 ja Next ; If above 'z' in ASCII, not lowercase

 ; Now we have a lowercase char
 sub byte [r13- 1+rbx],20h ; Subtract 20h to give uppercase...

Next:
 dec rbx ; Decrement counter
 jnz Scan ; If characters remain, loop back

 Chapter 9 ■ Bits, Flags, Branches, and Tables 285

The DEC R13 instruction in the first block is no longer necessary, and in the
previous code that line is commented out. NASM does the math, and the address
of Buff is decremented by 1 within the effective address expression when the
program loads. This is actually the correct way to code this particular loop, and
I thought long and hard about whether to show it back in Chapter 8 or wait
until I could explain memory addressing schemes in detail.

Some people find the name “Base + Displacement” confusing, because in
most cases, the Displacement term contains an address, and the Base term is
a register containing an offset into a data item at that address. The word dis-
placement resembles the word offset in most people’s experience, which can
lead to confusion. This is one reason I don’t emphasize the names of the var-
ious memory addressing schemes in this book and certainly don’t recommend
memorizing the names. Understand how effective address calculation works, and
ignore the names of the schemes.

Index X Scale + Displacement Addressing
Base + Index addressing is what you’ll typically use to scan through a buffer
in memory byte by byte. But what if you need to access a data item in a buffer
or table where each data item is not a single byte, but a word or double word?
This requires slightly more powerful memory addressing machinery.

As a side note here, the word array is the general term for what I’ve been
calling a buffer or a table. Other writers may call a table an array, especially
when the context of the discussion is a high- level language. But all three terms
cook down to the same definition: a sequence of data items in memory, all of the
same size and same internal definition. In the programs I’ve shown you so far,
we’ve spoken only of very simple tables and buffers consisting of a sequence
of 1- byte values all in a row. The Digits table in the hexdump1 program in List-
ing 9.1 is such a table:

Digits: db "0123456789ABCDEF"

It consists of 16 single- byte ASCII characters in a row in memory, starting
at the address represented by Digits. You can access the “C” character within
Digits this way, using Base + Displacement addressing:

mov rcx,12
mov rdx,[Digits+rcx]

But what if you have a table containing 64- bit numeric values? Such a table
is easy enough to define:

Sums: dq "15,12,6,0,21,14,4,0,0,19"

286 Chapter 9 ■ Bits, Flags, Branches, and Tables

The DQ qualifier tells NASM that each item in the table Sums is a 64- bit quad
word quantity. The literal constants plug a numeric value into each element of
the table. The address of the first element (here, 15) in Sums is just the address
of the table as a whole. So what is the address of the second element, 12? And
how do you access it from assembly code?

Keep in mind that memory is addressed byte- by- byte, and not double word-
by- double word or quad word- by- quad word. The second entry in the table is
at an offset of 8 bytes into the table. If you tried to reference the second entry in
the table using an address [Sums+1], you would get one of the bytes inside the
first table element’s quad word, and that would not be useful.

This is where the concept of scaling comes in. An address may include a Scale
term, which is a multiplier and may be any of the literal constants 2, 4, or 8.
(The literal constant 1 is technically legal, but since the scale is a multiplier, 1 is
not a useful scale value.) The product of the index and the scale terms is added
to the displacement to give the effective address. This is known as the Index ×
Scale + Displacement addressing scheme. Keep in mind that the Scale term can
only be used with the Index term.

Typically, the scale term is the size of the individual elements in the table. If
your table consists of 2- byte word values, the scale would be 2. If your table
consists of 4- byte double word values, the scale would be 4. If your table con-
sists of 8- byte quad word values, the scale would be 8.

The best way to explain this is with a diagram. In Figure 9.10, we’re con-
fronted with the address [DQTable+ECX*8]. DQTable is a table of quad word
(64- bit) values. DQTable’s address is the displacement. The RCX register is
the index, and for this example it contains 2, which is the number of the table
element that you want to access. Because it’s a table of 8- byte quad words, the
scale value is 8. Note also that the multiplication symbol is not an “x” but an
asterisk. The multiplication symbol “×” is not part of the ASCII character set,
so like most high- level languages, assembly uses the asterisk as the multipli-
cation operator symbol.

Because each table element is 8 bytes in size, the offset of element #2 from the
start of the table is 16. The effective address of the element is calculated by first
multiplying the index by the scale and then adding the product to the address
of DQTable. There it is!

 Chapter 9 ■ Bits, Flags, Branches, and Tables 287

Other Addressing Schemes
Any addressing scheme that includes scaling works just this way. The differ-
ences lie in what other terms are figured into the effective address. The Base
+ Index × Scale scheme adds a scaled index to a base value in register rather
than a displacement:

mov rcx,2 ; Index is in rcx
mov rbp,DDTable ; Table address is in rbp
mov rdx,[rbp+rcx*8] ; Put the selected element into rdx

You won’t always be working with the address of a predefined variable like
DDTable. Sometimes the address of the table will come from somewhere else, most
often a two- dimensional table consisting of a number of subtables in memory,

Figure 9.10: How address scaling works

288 Chapter 9 ■ Bits, Flags, Branches, and Tables

each subtable containing some number of elements. Such tables are accessed
in two steps: First you derive the address of the inner table in the outer table,
and then you derive the address of the desired element within the inner table.

The most familiar example of this sort of two- dimensional table is something
I presented in earlier editions of this book, written for DOS. The 25- line ×
80- character text video memory buffer under DOS was a two- dimensional
table. Each of the 25 lines was a table of 80 characters, and each character was
represented by a 2- byte word. (One byte was the ASCII value, and the other
byte specified attributes such as color, underlining, and so on.) So, the buffer
as a whole was an overall table of 24 smaller tables, each containing 80 2- byte
word values.

That sort of video access system died with DOS; Linux does not allow you
direct access to PC video memory. It was done a lot in the DOS era, however,
and is a good example of a two- dimensional table.

Scaling will serve you well for tables with 2- byte, 4- byte, or 8- byte elements.
So what if your table consists of 3- byte elements? Or 5- byte elements? Or 17- byte
elements? Alas, in such cases you will have to do some additional calculations
to zero in on one particular element. Effective address calculation won’t do the
whole job itself. I’ve already given you an example of such a table in Listing 9.1.
The line display string is a table of 3- byte elements. Each element contains a
space character followed by the two hex digit characters. Because the elements
are each three characters long, scaling cannot be done within the instruction
and must be handled separately.

It’s not difficult. Scaling for the 3- byte elements in the HexStr table in the
hexdump1 program is done like this:

mov rdx,rcx ; Copy the character counter into rdx
shl rdx,1 ; Multiply counter by 2 using left shift
add rdx,rcx ; Complete the multiplication X3

The calculation to multiply a value in RDX by 3 is done with a combination of
an SHL instruction to multiply by 2, followed by an ADD instruction that adds a
third copy of the index value to the shifted index value, effectively multiplying
the original count value by 3.

Scaling for other index values can be done the same way. Scaling by 5 would
be done by shifting the index value left by 2 bits, thus multiplying it by 4, fol-
lowed by adding another copy of the index value to complete the multiplication
by 5. In general terms, to scale an index value by X:

1. Find the largest power of 2 less than X.

2. Shift the index value left by that power of 2.

3. Add a copy of the original index value to the shifted copy as many times
as it takes to complete the multiplication by X.

 Chapter 9 ■ Bits, Flags, Branches, and Tables 289

For example, if X is 11, the scale calculation would be done this way:

mov rdx,rcx ; Copy the index into rdx
shl rdx,3 ; Multiply index X 8 by shifting index left 3X
add rdx,rcx ; Add first of 3 additional copies of index
add rdx,rcx ; Add second of 3 additional copies of index
add rdx,rcx ; Add third of 3 additional copies of index

This works best for relatively small- scale values; once you get past 20, there
will be a lot of ADD instructions. At that point, the answer is not to calculate the
scale but look up the scale in a table specially defined for a given scale value.
For example, suppose your table elements are each 25 bytes long. You could
define a table with multiples of 25:

ScaleValues: dd 0,25,50,75,100,125,150,175,200,225,250,275

To scale an index value of 6 for an entry size of 25, you would look up the
product of 6 × 25 in the table this way:

mov rcx,6
mov rax,[ScaleValues+rcx*4]

The value in RAX now contains the effective address of the first byte of element
6, counting elements (as usual) from 0.

LEA: The Top- Secret Math Machine
But wait, there’s more. One of the oddest and in some respects the most won-
derful instructions in the Intel architecture is LEA, Load Effective Address. On
the surface, what it does is simple: It calculates an effective address using the
terms between the brackets of its source operand and loads that address into
any 64- bit general- purpose register given as its destination operand.

Look back to the code shown just before this section begins. The MOV instruction
looks up the element with index 6 in the table ScaleValues. To look up the item
at index 6, it has to first calculate the effective address of the item at index 6.
This address is then used to access memory.

But what if you’d like to save that address in a register to use it later without
having to calculate it all over again? That’s what LEA does. Here’s LEA in action:

lea rbx,[ScaleValues+rcx*4]

What happens here is that the CPU calculates the effective address given inside
the brackets and loads that address into the RBX register. Keep in mind that the
individual entries in a table do not have labels and thus cannot be referenced
directly. LEA gives you the ability to calculate the effective address of any element
in a table (or any calculable address at all!) and drop that address in a register.

290 Chapter 9 ■ Bits, Flags, Branches, and Tables

In itself this is very useful. However, LEA has an “off- label” purpose: doing
fast math without shifts, adds, or MUL. If you remember, there is a calculation in
the hexdump1gcc program that multiplies by 3 using a shift and an add:

mov rdx,rcx ; Copy the character counter into rdx
shl rdx,1 ; Multiply pointer by 2 using left shift
add rdx,rcx ; Complete the multiplication X3

This works. But look at what we can use that does exactly the same thing:

mov rdx,rcx ; Copy the character counter into rdx
lea rdx,[rdx*2+rdx] ; Multiply rdx X 3

Not only is this virtually always faster than shifts combined with adds, it’s
also clearer from your source code what sort of calculation is actually being
done. The fact that what ends up in RDX may not in fact be the legal address
of anything is unimportant. LEA does not try to reference the address it calculates. It
does the math on the stuff inside the brackets and drops the result in the desti-
nation operand. Job over. Memory is not touched, and the flags are not affected.

Of course, you’re limited to what calculations can be done that yield effective
addresses. But right off the top, you can multiply any GP register by 2, 3, 4, 5,
8, and 9. It’s not arbitrary math, but multiplying by 2, 3, 4, 5, 8, and 9 comes up
regularly in assembly work, and you can combine LEA with shifts and adds to
do more complex math and “fill in the holes.” You can also use multiple LEA
instructions in a row. Two consecutive LEA instructions can multiply a value by
10, which is useful indeed:

lea rbx,[rbx*2] ; Multiply rbx X 2, put product in RBX
lea rbx,[rbx*4+rbx] ; Multiply rbx X 5 for a total of X 10

Some people consider this use of LEA a scurvy trick, but in all the years I’ve
worked in x86/x64 assembly I’ve never seen a downside. Before throwing five
or six instructions into the pot to cook up a particular multiplication, see if two
or three LEAs can do it instead. LEA does its work in one machine cycle, and CPU
math doesn’t get any faster than that!

Character Table Translation

There is a type of table lookup that is (or perhaps was) so common that Intel’s
engineers baked a whole instruction into the x86 architecture to do nothing but.
The type of table lookup is what I was alluding to toward the end of Chapter 8:
character conversion. In the early 1980s I needed to convert character sets in
various ways, the simplest of which was forcing all lowercase characters to
uppercase. And so in Chapter 8 we built a simple program that went through a

 Chapter 9 ■ Bits, Flags, Branches, and Tables 291

file a buffer at a time, bringing in characters, converting all lowercase characters
to uppercase, and then writing them all back out again to a new file.

The conversion itself was simple: By relying on the ASCII chart for the rela-
tionship between all uppercase characters and their associated lowercase, we
could convert a lowercase character to uppercase by simply subtracting 20h
(32) from the character. That’s reliable, but is very much a special case. It just
so happens that ASCII lowercase characters are always 32 higher on the chart
than their equivalent uppercase characters. What do you do if you need to
convert all “vertical bar” (ASCII 124) characters to exclamation points? (I had
to do this once, because one of the doddering old mainframes couldn’t digest
vertical bars.) You can write special code for each individual case that you have
to deal with. . .

. . .or you can use a translation table.

Translation Tables
A translation table is a special type of table, and it works the following way:
You set up a table of values, with one entry for every possible value that must
be translated. A number (or a character, treated as a numeric value) is used as
an index into the table. At the index position in the table is a value that is used
to replace the original value that was used as the index. In short, the original
value indexes into the table and finds a new value that replaces the original
value, thus translating the old value to a new one.

We’ve done this once before, in the hexdump1gcc program in Listing 9.1.
Recall the Digits table:

Digits: db "0123456789ABCDEF"

This is a translation table, though I didn’t call it that at the time. The idea,
if you recall, was to separate the two 4- bit halves of an 8- bit byte and convert
those 4- bit values into ASCII characters representing hexadecimal digits. The
focus at the time was separating the bytes into two nybbles via bitwise logical
operations, but there was translation going on there as well.

The translation was accomplished by these three instructions:

mov al,byte [rsi+rcx] ; Put a byte from the input buffer
 ; into al
and al,0Fh ; Mask out all but the low nybble
mov al,byte [Digits+rax] ; Look up the char equivalent of nybble

The first instruction loads a byte from the input buffer into the 8- bit AL reg-
ister. The second instruction masks out all but the low nybble of AL. The third
instruction does a memory fetch: It uses the value in AL to index into the Digits
table and brings back whatever value was in the ALth entry in the table. (This
has to be done using RAX between the brackets, because AL cannot take part

292 Chapter 9 ■ Bits, Flags, Branches, and Tables

in effective address calculations. Just remember that AL is the lowest- order
byte in the RAX register.) If AL held 0, the effective address calculation added
0 to the address of Digits, bringing back the 0th table entry, which is the ASCII
character for 0. If AL held 5, effective address calculation added 5 to the address
of Digits, bringing back the 5th table entry, which is the ASCII character for 5.
And so it would go for all 16 possible values that may be expressed in a 4- bit
nybble. Basically, the code is used to translate a number to the ASCII character
equivalent of that number.

There are only 16 possible hexadecimal digits, so the conversion table in
hexdump1gcc only needs to be 16 bytes long. A byte contains enough bits to
represent 256 different values, so if we’re going to translate byte- sized values,
we’re going to need a table with 256 entries. Technically, the ASCII character set
uses only the first 128 values, but as I described earlier in this book, the “high”
128 values have often been assigned to special characters like non- English letters,
“box- draw” characters, mathematical symbols, and so on. One common use of
character translation is to convert any characters with values higher than 128
to something lower than 128 to avoid havoc in older systems that can’t deal
with extended ASCII values.

Such a table is easy enough to define in an assembly language program:

UpCase:
 db 20h,20h,20h,20h,20h,20h,20h,20h,20h,09h,0Ah,20h,20h,20h,20h,20h
 db 20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h
 db 20h,21h,22h,23h,24h,25h,26h,27h,28h,29h,2Ah,2Bh,2Ch,2Dh,2Eh,2Fh
 db 30h,31h,32h,33h,34h,35h,36h,37h,38h,39h,3Ah,3Bh,3Ch,3Dh,3Eh,3Fh
 db 40h,41h,42h,43h,44h,45h,46h,47h,48h,49h,4Ah,4Bh,4Ch,4Dh,4Eh,4Fh
 db 50h,51h,52h,53h,54h,55h,56h,57h,58h,59h,5Ah,5Bh,5Ch,5Dh,5Eh,5Fh
 db 60h,41h,42h,43h,44h,45h,46h,47h,48h,49h,4Ah,4Bh,4Ch,4Dh,4Eh,4Fh
 db 50h,51h,52h,53h,54h,55h,56h,57h,58h,59h,5Ah,7Bh,7Ch,7Dh,7Eh,20h
 db 20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h
 db 20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h
 db 20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h
 db 20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h
 db 20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h
 db 20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h
 db 20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h
 db 20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h

The UpCase table is defined in 16 lines of 16 separate hexadecimal values.
The fact that it’s split across 16 lines in the code listing is purely for readability
on the screen or printed page and does not affect the binary table that NASM
generates in the output .o file. Once it’s in binary, it’s 256 8- bit values in a row.

A quick syntactic note here: When defining tables (or any data structure
containing multiple predefined values), commas are used to separate values

 Chapter 9 ■ Bits, Flags, Branches, and Tables 293

within a single definition. There is no need for commas at the ends of the lines
of the DB definitions in the previous table. Each DB definition is separate and
independent, but because they are adjacent in memory, we can treat the 16 DB
definitions as a single 256- byte table.

Any translation table can be thought of as expressing one or more “rules”
governing what happens during the translation process. The UpCase table shown
earlier expresses these translation rules:

 ■ All lowercase ASCII characters are translated to uppercase.

 ■ All printable ASCII characters less than 127 that are not lowercase are
translated to themselves. (They’re not precisely “left alone” but are still
translated, just to the same characters.)

 ■ All “high” character values from 127 through 255 are translated to the
ASCII space character (32, or 20h).

 ■ All nonprintable ASCII characters (basically, values 0–31, plus 127) are
translated to spaces except for values 9 and 10.

 ■ Character values 9 and 10 (tab and EOL) are translated as themselves.

Not bad for a single data item, eh? (Just imagine how much work it would
be to do all that fussing purely with machine instructions!)

Translating with MOV or with XLAT
So, how do we use the UpCase table? The obvious way would be this:

 ■ Load the character to be translated into AL.

 ■ Create a memory reference using AL as the base term and UpCase as the
displacement term, and MOV the byte at the memory reference into AL,
replacing the original value used as the base term.

The hypothetical MOV instruction would look like this:

mov al, byte [UpCase+al]

There’s only one problem: NASM won’t let you do this. In 32- bit protected
mode and x64 long mode, the AL register can’t take part in effective address
calculations, nor can any other of the 8- bit registers. Enter XLAT.

The XLAT instruction is hard- coded to use certain registers in certain ways.
Its two operands are both implicit:

 ■ The address of the translation table must be in RBX.

 ■ The character to be translated must be in AL.

 ■ The translated character will be returned in AL, replacing the character
originally placed in AL.

294 Chapter 9 ■ Bits, Flags, Branches, and Tables

With the registers set up, the XLAT instruction has no operands and is used
all by its lonesome:

xlat

I’ll be honest here: XLAT is less of a win than it used to be. In x64 long mode,
the same thing can be done with the following instruction:

mov al, byte [UpCase+rax]

The 64- bit register RAX can stand in for little 8- bit AL when calculating an
effective address of the character used to translate the character in AL. There’s
only one catch: You must clear out any “leftover” values in the high 56 bits of
RAX, or you could accidentally index far beyond the bounds of the translation
table. The problem doesn’t arise with XLAT since the XLAT instruction uses only
AL for the index, ignoring whatever else might be in the higher bits of RAX.

Clearing RAX before loading the value to be translated into AL is done in
either of these two common ways:

xor rax,rax
mov rax,0

In truth, given XLAT’s requirement that it use AL and RBX, it’s a wash, but the
larger topic of character translation via tables is really what I’m trying to pre-
sent here. Listing 9.2 puts it all into action. The program as shown does exactly
what the uppercaser2 program in Listing 8.2 does: It forces all lowercase char-
acters in an input file to uppercase and writes them to an output file. I didn’t
call it “uppercaser3” because it is a general- purpose character translator. In
this particular example, with the UpCase table, it translates lowercase charac-
ters to uppercase; however, that’s simply one of the rules that the UpCase table
expresses. Change the table, and you change the rules. You can translate any or
all of the 256 different values in a byte to any 8- bit value or values.

I’ve added a second table to the program for you to experiment with. The
Custom table expresses these rules:

 ■ All printable ASCII characters less than 127 are translated to themselves.
(They’re not precisely “left alone” but are still translated, just to the same
characters.)

 ■ All “high” character values from 127 through 255 are translated to the
ASCII space character (32, or 20h.)

 ■ All non- printable ASCII characters (basically, values 0–31, plus 127) are
translated to spaces except for values 9 and 10.

 ■ Character values 9 and 10 (tab and EOL) are translated as themselves.

Basically, it leaves all printable characters (plus tab and EOL) alone and con-
verts all other character values to 20h, the space character. You can substitute

 Chapter 9 ■ Bits, Flags, Branches, and Tables 295

the label Custom for UpCase in the program, make changes to the Custom table,
and try it out. Convert that pesky vertical bar to an exclamation point. Change
all “Z” characters to “Q.” Changing the rules is done by changing the table. The
code does not change at all!

As with earlier programs, xlat1gcc reads from standard input and writes to
standard output. Copy some text to the clipboard and drop it into SASM’s Input
window. Then run the program, and see what it writes to the Output window.

Listing 9.2: xlat1gcc.asm

; Executable name : xlat1gcc
; Version : 2.0
; Created date : 8/21/2022
; Last update : 7/17/2023
; Author : Jeff Duntemann
; Description : A simple program in assembly for Linux,
; : using NASM 2.15, demonstrating the XLAT
; : instruction to translate characters using
; : translation tables.
;
; Run it either in SASM or using this command in the Linux terminal:
;
; xlat1gcc < input file > output file
;
; If an output file is not specified, output goes to stdout
;
; Build using SASM's default build setup for x64
; To test from a terminal, save out the executable to disk.

SECTION .data ; Section containing initialised data

 StatMsg: db "Processing...",10
 StatLen: equ $- StatMsg
 DoneMsg: db "...done!",10
 DoneLen: equ $- DoneMsg

; The following translation table translates all lowercase characters
; to uppercase. It also translates all non- printable characters to
; spaces, except for LF and HT. This is the table used by default in
; this program.
 UpCase:
 db 20h,20h,20h,20h,20h,20h,20h,20h,20h,09h,0Ah,20h,20h,20h,20h,20h
 db 20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h
 db 20h,21h,22h,23h,24h,25h,26h,27h,28h,29h,2Ah,2Bh,2Ch,2Dh,2Eh,2Fh
 db 30h,31h,32h,33h,34h,35h,36h,37h,38h,39h,3Ah,3Bh,3Ch,3Dh,3Eh,3Fh
 db 40h,41h,42h,43h,44h,45h,46h,47h,48h,49h,4Ah,4Bh,4Ch,4Dh,4Eh,4Fh
 db 50h,51h,52h,53h,54h,55h,56h,57h,58h,59h,5Ah,5Bh,5Ch,5Dh,5Eh,5Fh
 db 60h,41h,42h,43h,44h,45h,46h,47h,48h,49h,4Ah,4Bh,4Ch,4Dh,4Eh,4Fh
 db 50h,51h,52h,53h,54h,55h,56h,57h,58h,59h,5Ah,7Bh,7Ch,7Dh,7Eh,20h

296 Chapter 9 ■ Bits, Flags, Branches, and Tables

 db 20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h
 db 20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h
 db 20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h
 db 20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h
 db 20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h
 db 20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h
 db 20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h
 db 20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h

; The following translation table is "stock" in that it translates all
; printable characters as themselves, and converts all non- printable
; characters to spaces except for LF and HT. You can modify this to
; translate anything you want to any character you want. To use it,
; replace the default table name (UpCase) with Custom in the code below.
 Custom:
 db 20h,20h,20h,20h,20h,20h,20h,20h,20h,09h,0Ah,20h,20h,20h,20h,20h
 db 20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h
 db 20h,21h,22h,23h,24h,25h,26h,27h,28h,29h,2Ah,2Bh,2Ch,2Dh,2Eh,2Fh
 db 30h,31h,32h,33h,34h,35h,36h,37h,38h,39h,3Ah,3Bh,3Ch,3Dh,3Eh,3Fh
 db 40h,41h,42h,43h,44h,45h,46h,47h,48h,49h,4Ah,4Bh,4Ch,4Dh,4Eh,4Fh
 db 50h,51h,52h,53h,54h,55h,56h,57h,58h,59h,5Ah,5Bh,5Ch,5Dh,5Eh,5Fh
 db 60h,61h,62h,63h,64h,65h,66h,67h,68h,69h,6Ah,6Bh,6Ch,6Dh,6Eh,6Fh
 db 70h,71h,72h,73h,74h,75h,76h,77h,78h,79h,7Ah,7Bh,7Ch,7Dh,7Eh,20h
 db 20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h
 db 20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h
 db 20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h
 db 20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h
 db 20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h
 db 20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h
 db 20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h
 db 20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h

SECTION .bss ; Section containing uninitialized data

 READLEN equ 1024 ; Length of buffer
 ReadBuffer: resb READLEN ; Text buffer itself

SECTION .text ; Section containing code

global main

main:
 mov rbp,rsp ; This keeps gdb happy...

; Display the "I'm working..." message via stderr:
 mov rax,1 ; Specify sys_write call
 mov rdi,2 ; Specify File Descriptor 2: Standard error
 mov rsi,StatMsg ; Pass address of the message

 Chapter 9 ■ Bits, Flags, Branches, and Tables 297

 mov rdx,StatLen ; Pass the length of the message
 syscall ; Make kernel call

; Read a buffer full of text from stdin:
read:
 mov rax,0 ; Specify sys_read call
 mov rdi,0 ; Specify File Descriptor 0: Standard Input
 mov rsi,ReadBuffer ; Pass address of the buffer to read to
 mov rdx,READLEN ; Pass number of bytes to read at one pass
 syscall
 mov rbp,rax ; Copy sys_read return value for safekeeping
 cmp rax,0 ; If rax=0, sys_read reached EOF
 je done ; Jump If Equal (to 0, from compare)

; Set up the registers for the translate step:
 mov rbx,UpCase ; Place the address of the table into rbx
 mov rdx,ReadBuffer ; Place the address of the buffer into rdx
 mov rcx,rbp ; Place number of bytes in the buffer into rcx

; Use the xlat instruction to translate the data in the buffer:
translate:
 xor rax,rax ; Clear rax
 mov al,byte [rdx- 1+rcx] ; Load character into AL for translation
 xlat ; Translate character in AL via table
 mov byte [rdx- 1+rcx],al ; Put the xlated character back in buffer
 dec rcx ; Decrement character count
 jnz translate ; If there are more chars in the buffer, repeat

; Write the buffer full of translated text to stdout:
write:
 mov rax,1 ; Specify sys_write call
 mov rdi,1 ; Specify File Descriptor 1: Standard output
 mov rsi,ReadBuffer ; Pass address of the buffer
 mov rdx,rbp ; Pass the # of bytes of data in the buffer
 syscall ; Make kernel call
 jmp read ; Loop back and load another buffer full

; Display the "I'm done" message via stderr:
done:
 mov rax,1 ; Specify sys_write call
 mov rdi,2 ; Specify File Descriptor 2: Standard error
 mov rsi,DoneMsg ; Pass address of the message
 mov rdx,DoneLen ; Pass the length of the message
 syscall ; Make kernel call

; All done! Let's end this party:
 ret ; Return to the glibc shutdown code

298 Chapter 9 ■ Bits, Flags, Branches, and Tables

Tables Instead of Calculations

Standardization among computer systems has made character translation a lot
less common than it used to be, but translation tables can be extremely useful in
other areas. One of them is to perform faster math. Consider the following table:

Squares: db 0,1,4,9,16,25,36,49,64,81,100,121,144,169,196,225

No mystery here: Squares is a table of the squares of the numbers from
0–15. If you needed the square of 14 in a calculation, you could use MUL, which
is slower than most instructions and requires two GP registers. Or you could
simply fetch down the result from the Squares table:

mov rcx,14
mov al,byte [Squares+rcx]

Voilà! RAX now contains the square of 14. You can do the same trick with
XLAT, though it requires that you use certain registers. Also remember that XLAT
is limited to 8- bit quantities. The Squares table shown here is as large a squares
value table as XLAT can use, because the next square value (of 16) is 256, which
cannot be expressed in 8 bits, and thus a lookup table containing it cannot be
used by XLAT.

Making the entries of a squares value lookup table 16 bits in size will allow
you to include the squares of all integers up to 255. And if you give each entry
in the table 32 bits, you can include the squares of integers up to 65,535, but
that would be a very substantial table!

I don’t have the space in this book to go into floating- point math, but using
tables to look up values for things such as square roots was once done very
frequently. Modern CPUs with math systems like AVX make such techniques
a lot less compelling. Still, when confronted with a math calculation challenge,
you should always keep the possibility of using table lookups somewhere in
the corner of your mind.

C H A P T E R

299

10

Complexity kills— programs, at least. This was one of the first lessons I ever
learned as a programmer, and it has stuck with me all these intervening
40‐ odd years.

So listen well: There is a programming language called APL (an acronym for
A Programming Language, how clever) that has more than a little Martian in it.
APL was the second computer language I ever learned (on a major IBM main-
frame), and when I learned it, I learned a little more than just APL.

APL uses a compact notation, including its very own character set (many of
which are Greek letters), which bears little resemblance to our familiar ASCII. The
character set has dozens of odd little symbols, each of which is capable of some
astonishing power such as matrix inversion. You can do more in one line of
APL than you can in one line of anything else I have ever learned since. The
combination of the strange symbol set and the vanishingly compact notation
makes it very hard to read and remember what a line of code in APL actually does.

So it was in 1977. Having mastered (or so I thought) the whole library of
symbols, I set out to write a text formatter program. The program would take
a plain‐ text file and generate a printout that was justified right and left, with
centered headers, plus a few other things of a sort that we take for granted today
but that were still very exotic in the ’70s.

Dividing and Conquering
Using Procedures and Macros to Battle

Program Complexity

300 Chapter 10 ■ Dividing and Conquering

The program grew over a period of a week to about 600 lines of squirmy
little APL symbols. I got it to work, and it worked fine— as long as I didn’t try
to format a column that was more than 64 characters wide. Then everything
came out scrambled.

Whoops. I printed the whole thing out and sat down to do some serious
debugging. Then I realized with a feeling of sinking horror that, having fin-
ished the last part of the program, I had no idea how the first part worked anymore.

The special APL symbol set was only part of the problem. I soon came to realize
that the most important mistake I had made was writing the whole thing as one
600‐ line monolithic block of code. There were no functional divisions, nothing
to indicate what any 10‐ line portion of the code was trying to accomplish.

The Martians had won. I did the only thing possible: I scrapped it. And I set-
tled for ragged margins in my text. Like I said, complexity kills. This is as true
of assembly language as it is of APL, Java, C, Pascal, or any other programming
language that has ever existed. Now that you can write reasonably complex
programs in assembly, you had better learn how to manage that complexity, or
you will find yourself abandoning a great deal of code simply because you can
no longer remember (or figure out) how it works.

Boxes within Boxes

Managing complexity is the great challenge in programming. Key to the skill
is something that sounds like Eastern mysticism but that is really just an obser-
vation from life: Within any action is a host of smaller actions. Look inside your
common activities. When you brush your teeth, you do the following:

1. Pick up your toothpaste tube.

2. Unscrew the cap.

3. Place the cap on the sink counter.

4. Pick up your toothbrush.

5. Squeeze toothpaste onto the brush from the middle of the tube.

6. Put your toothbrush into your mouth.

7. Work it back and forth vigorously for 2 minutes.

8. Rinse out your mouth.

And so on. When you brush your teeth, you perform every one of those
actions. However, when you think about the sequence, you don’t run through
the whole list. You bring to mind the simple concept called “brushing my teeth.”

Furthermore, when you think about what’s behind the action we call “getting
up in the morning,” you might assemble a list of activities like this:

1. Shut off the clock radio.

2. Climb out of bed.

 Chapter 10 ■ Dividing and Conquering 301

3. Put on your robe.

4. Let the dogs out.

5. Make breakfast.

6. Eat breakfast.

7. Brush your teeth.

8. Shave.

9. Shower.

10. Get dressed.

Brushing your teeth is certainly on the list, but within the activity you call
“brushing your teeth” is a whole list of smaller actions, as I demonstrated ear-
lier. The same can be said for most of the activities shown in the preceding list.
How many individual actions, for example, does it take to put a reasonable
breakfast together? And yet in one small, if sweeping, phrase, “getting up in
the morning,” you embrace that whole host of small and still smaller actions
without having to laboriously trace through each one.

What I’m describing is the “Chinese boxes” method of fighting complexity.
Getting up in the morning involves hundreds of little actions, so we divide the
mass into coherent chunks and set the chunks into little conceptual boxes. “Mak-
ing breakfast” is in one box, “brushing teeth” is in another, “getting dressed”
in still another, and so on. Closer inspection of any single box shows that its
contents can be divided further into numerous boxes, and those smaller boxes
into even smaller boxes.

This process doesn’t (and can’t) go on forever, but it should go on as long
as it needs in order to satisfy this criterion: The contents of any one box should be
understandable with only a little scrutiny. No single box should contain anything
so subtle or large and involved that it takes hours of staring and hair‐ pulling
to figure it out.

Procedures as Boxes for Code
The mistake I made in writing my APL text formatter is that I threw the whole
collection of 600 lines of APL code into one huge box marked “text formatter.”

While I was writing it, I should have been keeping my eyes open for sequences
of code statements that worked together on some identifiable task. When I
spotted such sequences, I should have set them off as procedures and given each
a descriptive name. Each sequence would then have a memory tag (its name)
for the sequence’s function. If it took 10 statements to justify a line of text, those
10 statements should have been gathered together and named JustifyLine,
and so on.

Xerox’s legendary APL programmer Jim Dunn later told me that I shouldn’t
ever write an APL procedure that wouldn’t fit on a single 25‐ line terminal screen.

302 Chapter 10 ■ Dividing and Conquering

“More than 25 lines and you’re doing too much in one procedure. Split it up,”
he said. Whenever I worked in APL after that, I adhered to that sage rule of
thumb. The Martians still struck from time to time, but when they did, it was
no longer a total loss.

All computer languages in common use today implement procedures in one
form or another, and assembly language is no exception. Your assembly lan-
guage program may have numerous procedures. In fact, there’s no limit to the
number of procedures you can include in a program, as long as the total number
of bytes of code contained by all the procedures together, plus whatever data
they use, will fit in the memory that Linux allocates to it. These days, with
cheap memory available in multi‐ gigabyte chunks, writing code that won’t fit
in Linux’s allocation is vanishing unlikely.

Whatever complexity you can generate in assembly language can be managed
with procedures.

Let’s start early with an example of procedures in action. Read Listing 10.1
closely and let’s look at what makes it work and (more to the point) what helps
it remain comprehensible.

Listing 10.1: hexdump2gcc.asm

; Executable name : hexdump2gcc
; Version : 2.0
; Created date : 5/9/2022
; Last update : 5/8/2023
; Author : Jeff Duntemann
; Description : A simple hexdump utility demonstrating the use of
; : assembly language procedures
;
; Build with SASM's x64 build setup, which uses gcc & requires "main"
; To run, type or paste some text into SASM's Input window and click
; Run. The hex dump of the input text will appear in SASM's Output
; window.

SECTION .bss ; Section containing uninitialized data

 BUFFLEN EQU 10h
 Buff: resb BUFFLEN

SECTION .data ; Section containing initialised data

; Here we have two parts of a single useful data structure, implementing
; the text line of a hex dump utility. The first part displays 16 bytes
; in hex separated by spaces. Immediately following is a 16‐ character
; line delimited by vertical bar characters. Because they are adjacent,
; the two parts can be referenced separately or as a single contiguous
; unit. Remember that if DumpLine is to be used separately, you must
; append an EOL before sending it to the Linux console.

 Chapter 10 ■ Dividing and Conquering 303

DumpLine: db " 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 "
DUMPLEN EQU $‐ DumpLine
ASCLine: db "|................|",10
ASCLEN EQU $‐ ASCLine
FULLLEN EQU $‐ DumpLine

; The HexDigits table is used to convert numeric values to their hex
; equivalents. Index by nybble without a scale: [HexDigits+eax]
HexDigits: db "0123456789ABCDEF"

; This table is used for ASCII character translation, into the ASCII
; portion of the hex dump line, via XLAT or ordinary memory lookup.
; All printable characters "play through" as themselves. The high 128
; characters are translated to ASCII period (2Eh). The non‐ printable
; characters in the low 128 are also translated to ASCII period, as is
; char 127.
DotXlat:
 db 2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh
 db 2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh
 db 20h,21h,22h,23h,24h,25h,26h,27h,28h,29h,2Ah,2Bh,2Ch,2Dh,2Eh,2Fh
 db 30h,31h,32h,33h,34h,35h,36h,37h,38h,39h,3Ah,3Bh,3Ch,3Dh,3Eh,3Fh
 db 40h,41h,42h,43h,44h,45h,46h,47h,48h,49h,4Ah,4Bh,4Ch,4Dh,4Eh,4Fh
 db 50h,51h,52h,53h,54h,55h,56h,57h,58h,59h,5Ah,5Bh,5Ch,5Dh,5Eh,5Fh
 db 60h,61h,62h,63h,64h,65h,66h,67h,68h,69h,6Ah,6Bh,6Ch,6Dh,6Eh,6Fh
 db 70h,71h,72h,73h,74h,75h,76h,77h,78h,79h,7Ah,7Bh,7Ch,7Dh,7Eh,2Eh
 db 2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh
 db 2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh
 db 2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh
 db 2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh
 db 2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh
 db 2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh
 db 2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh
 db 2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh

SECTION .text ; Section containing code

;‐
; ClearLine: Clear a hex dump line string to 16 0 values
; UPDATED: 5/9/2022
; IN: Nothing
; RETURNS: Nothing
; MODIFIES: Nothing
; CALLS: DumpChar
; DESCRIPTION: The hex dump line string is cleared to binary 0 by
; calling DumpChar 16 times, passing it 0 each time.

ClearLine:
 push rax ; Save all caller's r*x GP registers
 push rbx
 push rcx
 push rdx

304 Chapter 10 ■ Dividing and Conquering

 mov rdx,15 ; We're going to go 16 pokes, counting from 0
.poke:
 mov rax,0 ; Tell DumpChar to poke a '0'
 call DumpChar ; Insert the '0' into the hex dump string
 sub rdx,1 ; DEC doesn't affect CF!
 jae .poke ; Loop back if RDX >= 0

 pop rdx ; Restore caller's r*x GP registers
 pop rcx
 pop rbx
 pop rax
 ret ; Go home

;‐
; DumpChar: "Poke" a value into the hex dump line string.
; UPDATED: 5/9/2022
; IN: Pass the 8‐ bit value to be poked in RAX.
; Pass the value's position in the line (0‐ 15) in RDX
; RETURNS: Nothing
; MODIFIES: RAX, ASCLine, DumpLine
; CALLS: Nothing
; DESCRIPTION: The value passed in RAX will be put in both the hex dump
; portion and in the ASCII portion, at the position passed
; in RDX, represented by a space where it is not a
; printable character.

DumpChar:
 push rbx ; Save caller's RBX
 push rdi ; Save caller's RDI

; First we insert the input char into the ASCII part of the dump line
 mov bl,[DotXlat+rax] ; Translate nonprintables to '.'
 mov [ASCLine+rdx+1],bl ; Write to ASCII portion

; Next we insert the hex equivalent of the input char in the hex
; part of the hex dump line:
 mov rbx,rax ; Save a second copy of the input char
 lea rdi,[rdx*2+rdx] ; Calc offset into line string (RDX X 3)

; Look up low nybble character and insert it into the string:
 and rax,000000000000000Fh ; Mask out all but the low nybble
 mov al,[HexDigits+rax] ; Look up the char equiv. of nybble
 mov [DumpLine+rdi+2],al ; Write the char equiv. to line string

; Look up high nybble character and insert it into the string:
 and rbx,00000000000000F0h ; Mask out all the but 2nd‐ lowest nybble
 shr rbx,4 ; Shift high 4 bits of byte into low 4 bits
 mov bl,[HexDigits+rbx] ; Look up char equiv. of nybble
 mov [DumpLine+rdi+1],bl ; Write the char equiv. to line string

 Chapter 10 ■ Dividing and Conquering 305

; Done! Let's return:
 pop rdi ; Restore caller's RDI
 pop rbx ; Restore caller's RBX
 ret ; Return to caller

;‐
; PrintLine: Displays DumpLine to stdout
; UPDATED: 5/8/2023
; IN: DumpLine, FULLEN
; RETURNS: Nothing
; MODIFIES: Nothing
; CALLS: Kernel sys_write
; DESCRIPTION: The hex dump line string DumpLine is displayed to
; stdout using syscall function sys_write. Registers
; used are preserved.

PrintLine:

 push rax ; Alas, we don't have pushad anymore.
 push rbx
 push rcx
 push rdx
 push rsi
 push rdi

 mov rax,1 ; Specify sys_write call
 mov rdi,1 ; Specify File Descriptor 1: Standard output
 mov rsi,DumpLine ; Pass address of line string
 mov rdx,FULLLEN ; Pass size of the line string
 syscall ; Make kernel call to display line string

 pop rdi ; Nor popad.
 pop rsi
 pop rdx
 pop rcx
 pop rbx
 pop rax
 ret ; Return to caller

;‐
; LoadBuff: Fills a buffer with data from stdin via syscall sys_read
; UPDATED: 5/8/2023
; IN: Nothing
; RETURNS: # of bytes read in R15
; MODIFIES: RCX, R15, Buff
; CALLS: syscall sys_read
; DESCRIPTION: Loads a buffer full of data (BUFFLEN bytes) from stdin
; using syscall sys_read and places it in Buff. Buffer
; offset counter RCX is zeroed, because we're starting in

306 Chapter 10 ■ Dividing and Conquering

; on a new buffer full of data. Caller must test value in
; R15: If R15 contains 0 on return, we've hit EOF on stdin.
; < 0 in R15 on return indicates some kind of error.

LoadBuff:
 push rax ; Save caller's RAX
 push rdx ; Save caller's RDX
 push rsi ; Save caller's RSI
 push rdi ; Save caller's RDI

 mov rax,0 ; Specify sys_read call
 mov rdi,0 ; Specify File Descriptor 0: Standard Input
 mov rsi,Buff ; Pass offset of the buffer to read to
 mov rdx,BUFFLEN ; Pass number of bytes to read at one pass
 syscall ; Call syscall's sys_read to fill the buffer
 mov r15,rax ; Save # of bytes read from file for later
 xor rcx,rcx ; Clear buffer pointer RCX to 0

 pop rdi ; Restore caller's RDI
 pop rsi ; Restore caller's RSI
 pop rdx ; Restore caller's RDX
 pop rax ; Restore caller's RAX
 ret ; And return to caller

GLOBAL main ; You need to declare "main" here because SASM uses gcc
 ; to do builds.

; ‐
; MAIN PROGRAM BEGINS HERE
;‐

main:
 mov rbp, rsp; for correct debugging

; Whatever initialization needs doing before loop scan starts is here:
 xor r15,r15 ; Zero out r15,rsi, and rcx
 xor rsi,rsi
 xor rcx,rcx
 call LoadBuff ; Read first buffer of data from stdin
 cmp r15,0 ; If r15=0, sys_read reached EOF on stdin
 jbe Exit

; Go through the buffer and convert binary byte values to hex digits:
Scan:
 xor rax,rax ; Clear RAX to 0
 mov al,[Buff+rcx] ; Get a byte from the buffer into AL
 mov rdx,rsi ; Copy total counter into RDX
 and rdx,000000000000000Fh ; Mask out lowest 4 bits of char counter
 call DumpChar ; Call the char poke procedure

 Chapter 10 ■ Dividing and Conquering 307

; Bump the buffer pointer to the next char and see if buffer's done:
 inc rsi ; Increment total chars processed counter
 inc rcx ; Increment buffer pointer
 cmp rcx,r15 ; Compare with # of chars in buffer
 jb .modTest ; If we've processed all chars in buffer...
 call LoadBuff ; ...go fill the buffer again
 cmp r15,0 ; If r15=0, sys_read reached EOF on stdin
 jbe Done ; If we get EOF, we're done

; See if we're at the end of a block of 16 and need to display a line:
.modTest:
 test rsi,000000000000000Fh ; Test 4 lowest bits in counter for 0
 jnz Scan ; If counter is *not* modulo 16, loop back
 call PrintLine ; ...otherwise print the line
 call ClearLine ; Clear hex dump line to 0's
 jmp Scan ; Continue scanning the buffer

; All done! Let's end this party:
Done:
 call PrintLine ; Print the final "leftovers" line
Exit:
 mov rsp,rbp
 pop rbp
 ret

I admit, that looks a little scary. It’s more than 200 lines of code and by a
significant fraction the largest program in this book so far. What it does, however,
is fairly simple. It’s a straightforward extension of the hexdump1gcc program
from Listing 9.1. If you recall, a hex dump program takes a file of any kind
(text, executable, binary data, whatever) and displays it on the screen (here, on
the Linux console) such that each byte in the program is given in hexadecimal.
Listing 9.1 did that much. What hexdump2gcc adds is a second display column
in which any printable ASCII characters (letters, numbers, symbols) are shown
in their “true” form, with nonprintable characters represented by a space‐ holder
character. This space‐ holder character is typically an ASCII period character,
but that’s merely a convention, and it could be anything at all.

If you save the executable file to disk from SASM, you can display a hex dump
of any Linux file using hexdump2gcc, invoking it this way:

$./hexdump2gcc < filename

The I/O redirection operator < takes whatever data exists in the file you name
to its right and pipes that data into standard input. The hexdump2gcc program
takes data from standard input and prints it out in hex dump format, 16 bytes
to a line, for as many lines as it takes to show the entire file.

For example, a hex dump of a typical makefile is shown here:

68 65 78 64 75 6D 70 32 3A 20 68 65 78 64 75 6D |hexdump2: hexdum|
70 32 2E 6F 0A 09 6C 64 20 2D 6F 20 68 65 78 64 |p2.o..ld ‐ o hexd|

308 Chapter 10 ■ Dividing and Conquering

75 6D 70 32 20 68 65 78 64 75 6D 70 32 2E 6F 0A |ump2 hexdump2.o.|
68 65 78 64 75 6D 70 32 2E 6F 3A 20 68 65 78 64 |hexdump2.o: hexd|
75 6D 70 32 2E 61 73 6D 0A 09 6E 61 73 6D 20 2D |ump2.asm..nasm ‐ |
66 20 65 6C 66 20 2D 67 20 2D 46 20 73 74 61 62 |f elf ‐ g ‐ F stab|
73 20 68 65 78 64 75 6D 70 32 2E 61 73 6D 0A 00 |s hexdump2.asm..|

Makefiles are pure text, so there aren’t a lot of nonprintable characters in the
dump. Notice, however, that tab and EOL, the two nonprintable characters
generally present in Linux text files, are clearly visible, both in hex form in the
left column and as periods in the right column. This is useful, because when the
file is shown as pure text on the console, tab characters and EOL characters are
invisible. (They have visible effects, but you can’t see the characters themselves.)
Having a hex dump of a file shows you precisely where any tab and EOL char-
acters fall in the file and how many of them there are in any particular place.

Given the complexity of hexdump2gcc, it may be useful to show you how the
program works through pseudocode before we get too deeply into the mechanics
of how a procedure mechanism operates internally. Here is how the program
works, from a (high) height:

As long as there is data available from stdin, do the following:
 Read data from stdin
 Convert data bytes to a suitable hexadecimal/ASCII display form
 Insert formatted data bytes into a 16‐ byte hex dump line
 Every 16 bytes, display the hex dump line

This is a good example of an early pseudocode iteration, when you know
roughly what you want the program to do but are still a little fuzzy on exactly
how to do it. It should give you a head‐ start understanding of the much more
detailed (and how‐ oriented) pseudocode shown here:

Zero out the byte count total (RSI) and offset counter (RCX)
Call LoadBuff to fill a buffer with first batch of data from stdin
 Test number of bytes fetched into the buffer from stdin
 If the number of bytes was 0, the file was empty; jump to Exit
Scan:
 Get a byte from the buffer and put it in AL
 Derive the byte's position in the hex dump line string
 Call DumpChar to poke the byte into the line string
 Increment the total counter and the buffer offset counter
 Test and see if we've processed the last byte in the buffer:
 If so, call LoadBuff to fill the buffer with data from stdin
 Test number of bytes fetched into the buffer from stdin
 If the number of bytes was 0, we hit EOF; jump to Exit
 Test and see if we've poked 16 bytes into the hex dump line
 If so, call PrintLine to display the hex dump line
 Loop back to Scan
Exit:
 Shut down the program gracefully per Linux requirements

 Chapter 10 ■ Dividing and Conquering 309

Unlike the examples of pseudocode I presented in Chapter 8, there are
explicit references to procedures here. I think that they may be almost self‐
explanatory from context, which is the sign of a good procedure. For example, CALL
LoadBuff means “execute a procedure that loads the buffer.” That’s what
LoadBuff does, and that’s all LoadBuff does. You don’t have to confront all the
details of how LoadBuff does its work. This makes it easier to grasp the larger
flow of logic expressed by the program as a whole.

Look through the Listing 10.1 code proper and see if you can understand
how the previous pseudocode relates to the actual machine instructions. Once
you have a grip on that, we can begin talking about procedures in more depth.

Calling and Returning

Right near the beginning of the main program block in hexdump2gcc is a machine
instruction I haven’t used before in this book:

call LoadBuff

The label LoadBuff refers to a procedure. As you might have gathered (espe-
cially if you’ve programmed in an older language such as BASIC or FORTRAN),
CALL LoadBuff simply tells the CPU to go off and execute a procedure named
LoadBuff and then come back when LoadBuff finishes running. LoadBuff is
defined earlier in Listing 10.1, but for clarity’s sake in the following discussion
I’ll reproduce it here.

LoadBuff is a good first example of a procedure, because it’s fairly straight‐
line in terms of its logic, and it uses instructions and concepts that we’ve
already discussed. Like assembly language programs generally, a procedure like
LoadBuff starts executing at the top, runs sequentially through the instructions
in its body, and at some point ends. The end does not necessarily have to be at
the very bottom of the sequence of instructions, but the “end” of a procedure
is always the place where the procedure goes back to the part of the program
that called it. This place is wherever you see CALL’s alter ego, RET (for RETurn).

LoadBuff:
 push rax ; Save caller's RAX
 push rdx ; Save caller's RDX
 push rsi ; Save caller's RSI
 push rdi ; Save caller's RDI
 mov rax,0 ; Specify sys_read call
 mov rdi,0 ; Specify File Descriptor 0: Standard Input
 mov rsi,Buff ; Pass offset of the buffer to read to
 mov rdx,BUFFLEN ; Pass number of bytes to read at one pass
 syscall ; Call syscall's sys_read function fill the buffer
 mov r15,rax ; Save # of bytes read from file for later
 xor rcx,rcx ; Clear buffer pointer RCX to 0

310 Chapter 10 ■ Dividing and Conquering

 pop rdi ; Restore caller's RDI
 pop rsi ; Restore caller's RSI
 pop rdx ; Restore caller's RDX
 pop rax ; Restore caller's RAX
 ret ; And return to caller

In a very simple example like LoadBuff, RET is at the very end of the sequence
of instructions in the procedure. However, RET may be anywhere in the procedure,
and there are situations where you may find it simplest to have more than one
RET instruction in a procedure. Which of the several RET instructions actually
takes execution back to the caller depends on what the procedure does and
what circumstances it encounters, but that’s immaterial. Each RET is an “exit
point” back to the code that called the procedure, and (more importantly) all RET
instructions within a procedure take execution back to the very same location: the
instruction immediately after the CALL instruction that invoked the procedure.

The important points of procedure structure are these:

 ■ A procedure must begin with a label, which is (as you should recall) an
identifier followed by a colon.

 ■ Somewhere within the procedure, there must be at least one RET instruction.

 ■ There may be more than one RET instruction. Execution has to come back
from a procedure by way of a RET instruction, but there can be more than
one exit door from a procedure. Which exit is taken depends on the pro-
cedure’s flow of execution, but with conditional jump instructions you
can have exits anywhere it satisfies the requirements of the procedure’s
logic. All those exits lead to the same place: the instruction after the CALL
instruction that called the procedure.

 ■ A procedure may use CALL to call another procedure. (More on this shortly.)

The means by which CALL and RET operate may sound familiar: CALL first pushes
the address of the next instruction after itself onto the stack. Then CALL transfers
execution to the address represented by the label that names the procedure, in
this case LoadBuff. The instructions contained in the procedure execute. Finally,
the procedure is terminated by the instruction RET. The RET instruction pops the
return address off the top of the stack and transfers execution to that address.
Since the address pushed was the address of the first instruction after the CALL
instruction, execution continues as though CALL had not changed the flow of
instruction execution at all. See Figure 10.1.

 Chapter 10 ■ Dividing and Conquering 311

Calls Within Calls
Within a procedure you can do anything that you can do within the main program
itself. This includes calling other procedures from within a procedure and mak-
ing SYSCALL calls to Linux kernel services.

There’s a simple example in hexdump2gcc: The ClearLine procedure calls the
DumpChar procedure to “clear” the hex dump line variable DumpLine:

ClearLine:
 push rax ; Save all caller's r*x GP registers

Figure 10.1: Calling a procedure and returning

312 Chapter 10 ■ Dividing and Conquering

 push rbx
 push rcx
 push rdx
 mov rdx,15 ; We're going to go 16 pokes, counting from 0
.poke:
 mov rax,0 ; Tell DumpChar to poke a '0'
 call DumpChar ; Insert the '0' into the hex dump string
 sub rdx,1 ; DEC doesn't affect CF!
 jae .poke ; Loop back if RDX >= 0
 pop rdx ; Restore all caller's r*x registers
 pop rcx
 pop rbx
 pop rax
 ret ; Go home

Basically, what ClearLine does is make a special‐ case use of the DumpChar
procedure, which I’ll explain in detail shortly. When filled with data and dis-
played to the console, the DumpLine variable looks like this:

75 6D 70 32 2E 61 73 6D 0A 09 6E 61 73 6D 20 2D |ump2.asm..nasm ‐ |

Each two‐ character hex value, and each ASCII character in the ASCII column
on the right, was inserted by a single call to DumpChar. It takes 16 calls to DumpChar
to “fill” the DumpLine variable. At that point it can be displayed. After DumpLine
is displayed to the console, hexdump2gcc continues its loop and begins filling
DumpLine again. Every 16 calls to DumpChar, hexdump2gcc displays DumpLine to
the console. . .except for the last time. A file being dumped to the console might
not be (and usually isn’t) a precise multiple of 16 bytes long. So the final display
of DumpLine may be of a partial line of two, three, nine, eleven, or however many
characters less than sixteen, which I call the “leftovers.” When a partial line is
displayed, the last several bytes in the line dump may be “old” data sent to the
console on the previous display of DumpLine. To avoid this, DumpLine is cleared
to zero values immediately after each time it is displayed in the terminal. This
is what ClearLine does. After a call to ClearLine, DumpLine looks like this:

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|

ClearLine does the simple and obvious thing: It calls DumpChar 16 times,
each time passing DumpChar the value 0 in RAX. DumpChar “pokes” an ASCII
equivalent of both the hex value 00 and an ASCII period to represent the 0 value
in all positions in the ASCII column. 00 is not a displayable ASCII character
and, as with all non‐ displayable characters, is represented by a period in the
hexdump output.

 Chapter 10 ■ Dividing and Conquering 313

The Dangers of Accidental Recursion
Calling procedures from within procedures requires you to pay at least a little
attention to one thing: stack space. Remember that each procedure call pushes
a 64‐ bit return address onto the stack. This return address is not removed from
the stack until the RET instruction for that procedure executes. If you execute
another CALL instruction before returning from a procedure, the second CALL
instruction pushes another return address onto the stack. If you keep calling
procedures from within procedures, one return address will pile up on the stack
for each CALL until you start returning from all those nested procedures.

This used to be a real issue under DOS, when memory was scarce and pro-
grams might allocate only a few hundred bytes of memory to the stack, some-
times less. Each address pushed onto the stack makes the stack grow down
toward the .data and .text sections of the program. Calling too “deep” could
make the stack collide with data or code, causing a program crash that as often
as not took DOS down with it. Under x64 Linux you have a great deal more
memory, plus a virtual memory manager in the OS, and you would have to
nest procedures literally millions deep to get into trouble, and that would be
an ambitious program indeed.

However. . .you can still get in a similar sort of trouble by misusing an advanced
programming technique called recursion. In recursion, a procedure calls itself to
get its work done. This often seems peculiar to beginners, but it’s a respected
and legitimate way of expressing a certain kind of program logic. The trick with
recursion, of course, is knowing when to stop. For every CALL to itself, a recur-
sive procedure must eventually execute a RET. Even if the recursive procedure
calls itself dozens or hundreds of times, as long as the CALL instructions balance
the RET instructions, nothing bad will happen.

Problems begin when you write a recursive procedure badly and the logic
that determines when to use that all‐ important RET instruction is miscoded.
When to return is generally governed by a conditional jump instruction. Get the
sense or the flag etiquette of that instruction wrong, and the procedure never
returns but continues calling itself again and again and again. On a modern
PC, an assembly language procedure can call itself a million times in a second
or less. At some point, the stack reaches the extreme limit of its growth (set by
the operating system) where it runs out of memory space. When that happens,
Linux hands you a segmentation fault.

As I said, recursion is an advanced topic, and I’m not going to be explaining
how to use it correctly in this book. I mention it here only because it’s possible
to use recursion accidentally. In keeping with our current example, suppose you
were coding up ClearLine late at night, and at the point where ClearLine calls

314 Chapter 10 ■ Dividing and Conquering

DumpChar, you muddleheadedly write CALL ClearLine where you intended to
write CALL DumpChar. Don’t shake your head; I’ve been programming since 1970
and I’ve done it more than once. Sooner or later you’ll do it too. Clearline was
not designed to be recursive, so it will go into a not‐ quite‐ endless loop, calling
itself until it runs out of stack memory and triggers a segmentation fault.

Add “accidental recursion” to the list of bugs you look for when Linux hands
you a segmentation fault. It belongs to the category of bugs I call “uncommon
but inevitable.”

A Flag Etiquette Bug to Beware Of
And while we’re talking bugs, the ClearLine procedure is pretty simple and
does a simple job. It also provides a useful teaching moment about a flags‐ related
bug that trips up beginners regularly. Take a look at the following alternate way
of coding ClearLine:

ClearLine:
 push rax ; Save all caller's r*x GP registers
 push rbx
 push rcx
 push rdx

 mov rdx,15 ; We're going to go 16 pokes, counting from 0

.poke:
 mov rax,0 ; Tell DumpChar to poke a '0'
 call DumpChar ; Insert the '0' into the hex dump string
 sub rdx,1 ; DEC doesn't affect CF!
 jae .poke ; Loop back if RDX >= 0

 pop rdx ; Restore caller's r*x GP registers
 pop rcx
 pop rbx
 pop rax
 ret ; Go home

Would this work? If you think so, think again. Yes, we’re counting down from
15 to 0, making 16 passes through a simple loop. Yes, the DEC instruction is used
a lot in loops, when we’re counting down to zero. But this loop is a little differ-
ent, as we need to do some work when the counter value in RDX is 0 and then
decrement one more time. The conditional jump shown is JAE, Jump Above or
Equal. It must jump back to Poke when the value in EDX goes below zero. DEC
will count a counter down to zero and then below zero just fine. . .so why won’t
JAE jump after DEC? The sense is right.

 Chapter 10 ■ Dividing and Conquering 315

The flag etiquette, however, is wrong. If you check the instruction reference
in Appendix B for JAE, you’ll see that it jumps when CF=0. The CPU doesn’t
understand the “sense” in JAE. It’s not a mind; it’s just a very small pile of very
clean sand. All it understands is that the JAE instruction jumps when CF=0. Now,
if you look up the DEC instruction in Appendix B and scrutinize the flags list,
you’ll see that DEC doesn’t affect CF at all, and CF is what JAE examines before it
decides whether to jump or not jump.

This is why we use the SUB instruction to decrement the counter register in
this case, because SUB does affect CF and allows the JAE instruction to work cor-
rectly. There are no speed issues; SUB is precisely as fast as DEC. The lesson here
is that you need to understand the ways that the conditional jump instructions
interpret the various flags. The sense of a jump can be deceptive. It’s the flag
etiquette that matters.

Procedures and the Data They Need
Programs get their work done by acting on data: data in buffers, data in named
variables, and data in registers. Procedures are often created to do a single type
of manipulation on a particular type of data. Programs that call such procedures
treat them as data meat‐ grinders: Data of one sort goes in, and transformed data
of another sort comes out.

In addition, data is often handed to a procedure to control or direct the work
that it does. A procedure may need a count value to know how many times to
execute an operation, for example, or it may need a bit mask to apply to some
data values for some reason, and it may not be precisely the same bit mask
every time.

When you write procedures, you need to decide what data the procedure
needs to do its work and how that data will be made available to the procedure.
There are two general classes of data in assembly work (and in most program-
ming in non‐ exotic languages) by method of access: global and local.

Global data is very common in pure assembly work, especially for smallish
programs like the ones I’m presenting in this book. Global data is accessible to
any code anywhere in the program. A global data item is defined in the .data
or .bss sections of the program. CPU registers are also containers for global
data, because the registers are part of the CPU and may be accessed from any-
where in a program.

The notion of global data gets more complex when you separate a program
into a main program and multiple groups of procedures called libraries, as I’ll
explain a little later in this chapter.

But for simple programs, the obvious way to pass data to a procedure is often
the best: Place the data in one or more registers and then call the procedure.

316 Chapter 10 ■ Dividing and Conquering

We’ve seen this mechanism at work already, in making calls to Linux kernel ser-
vices through the SYSCALL instruction. For console input, you place the service
number in RAX, the file descriptor in RDI, the address of a string in RSI, and
the length of the string in RDX. Then you make the call with SYSCALL.

It’s no different for ordinary procedures. You write a procedure under the
assumption that when the procedure begins running, the values that it needs
will be in particular registers. You have to make sure that the code calling
the procedure places the right values in the right registers before calling the
procedure, but it’s really no more complex than that.

Tables, buffers, and other named data items are accessed from procedures
just as they are from any other part of the program, via memory addressing
expressions “between the brackets.”

Saving the Caller’s Registers
Once you start writing significant programs in assembly, you’ll realize that you
can never have enough registers, and (unlike higher‐ level languages like C and
Pascal) you can’t just create more when you need them. Registers have to be
used carefully, and you’ll find that within any program of significant complexity,
all registers are generally in use all of the time.

Ducking out into a procedure from inside your main program (or from inside
another procedure) carries a specific and subtle problem. You can call a procedure
from anywhere— which means that you won’t always know what registers are already
in use when the procedure is called.

Or will you?
There is a convention for which registers must be preserved within a procedure

and which do not. This convention is part of the x86‐ x64 System V ABI appli-
cation binary interface) and I will explain it in detail in Chapters 11 and 12.
Some registers are considered “volatile,” meaning that they can be changed by a
procedure, and others are “nonvolatile,” which means they must be preserved.
Hang on; it’s coming.

If a procedure only examines a register value (but doesn’t change it), pre-
serving it doesn’t need to be done. For example, a procedure may assume that
a certain register contains a counter value that it needs to index into a table, and
it can use that register freely as long as no changes to its value are made. How-
ever, whenever a register is changed by a procedure (unless the caller explicitly
expects a return value in a register), it should be saved and restored before the
procedure executes RET to go back to the caller.

Saving the register values is done with PUSH:

push rbx
push rsi
push rdi

 Chapter 10 ■ Dividing and Conquering 317

Each PUSH instruction pushes a 64‐ bit register value onto the stack. Those
values will remain safely on the stack until they are popped back into the same
registers just prior to returning to the caller:

pop rdi
pop rsi
pop rbx
ret

There’s an absolutely crucial detail here, one that causes a multitude of very
peculiar program bugs: The caller’s values must be popped from the stack in the reverse
order from how they were pushed. In other words, if you push RBX, followed by
RSI, followed by RDI, you must pop them from the stack as RDI followed by
RSI followed by RBX. The CPU will obediently pop values stored on the stack
into any registers in any order that you write. But if you get the order wrong,
you will essentially be changing the caller’s registers instead of saving them.
What had been in RBX may now be in RDI, and the caller’s program logic may
simply go berserk.

I showed how this happens when I originally explained the stack in Chapter 8,
but it may not have sunk in at the time. Take a quick flip back to Figure 8.3 and
see what happens in the rightmost column. The value of CX had been pushed
onto the stack, but the next instruction was POP DX. What had been in CX was
now in DX. If that’s what you want, fine— and sometimes it may be the best way
to solve a particular problem. But if you’re pushing register values to preserve
them, the order of the pushes and pops is absolutely critical.

The best way to approach preserving registers is to push/pop any register
changed by the procedure within the procedure. This excludes registers that
pass values to the procedure: they were changed deliberately by the caller just
before the procedure call. Consider that a procedure is defined once but called
many times from many other places in your code. If you try to save registers
and the procedure changes before calling the procedure, you’re going to have a
whole lot more pushing and popping going on than if you preserve registers
that a procedure uses inside the procedure.

Also, if a procedure passes a value back to the caller in a register, the caller
assumes that the register’s value will change and will make use of the new
value in that register.

Oh, there’s yet another wrinkle: Your procedures aren’t the only ones that
use— and change— registers. Linux has a hand in it too.

Preserving Registers Across Linux System Calls
Linux uses registers too. It does this pretty transparently to your own code. The
only serious issue is knowing what registers are changed during system calls

318 Chapter 10 ■ Dividing and Conquering

via the SYSCALL instruction and which registers are left alone. Alas, there’s no
simple answer. It depends completely on which system call you make.

But first and above all, the SYSCALL instruction itself makes use of two registers:

 ■ SYSCALL stores the return address in the RCX register.

 ■ SYSCALL stores RFlags in the R11 register.

This is the functional equivalent of SYSCALL pushing RCX and R11 on the
stack. However, saving values in registers is much faster than pushing values on
the stack. Popping values off the stack is also slow, so SYSCALL doesn’t restore
anything. Every time you execute SYSCALL, RCX and R11 will be clobbered.

And that’s not all the clobbering involved in making a system call. Register
usage during a system call falls into three categories:

 ■ You need to pass parameters to the system call code in registers.

 ■ The system call code itself makes use of some additional registers.

 ■ The system call may return values in registers that your code might need.

The definition of SYSCALL system calls includes the specifics. This definition
is part of the x86‐ 64 System V ABI. If the larger body of your code makes use
of a register that gets clobbered during a system call, you must either choose
another register for use in the program body or save it to the stack with a PUSH
instruction before setting up parameters and executing SYSCALL. After the
system call, you must restore it via a POP instruction. Using the stack in this
way may cause problems with stack alignment unless you understand what
makes the stack aligned and how to keep it that way. I’ll take that up in detail
in Chapters 11 and 12.

There is also the issue of volatile versus nonvolatile registers, which I also
cover in Chapters 11 and 12.

The process of making a system call via SYSCALL is not complex. However,
the last time I looked, there were 335 of them. Each system call requires that
certain things be passed to it in specific registers. That’s a lot to remember. Mostly
you’ll need to look up the details of making system calls in a printed reference
or online. One reference I recommend is here:

https://hackeradam.com/x86‐ 64‐ linux‐ syscalls

Another is here:

https://blog.rchapman.org/posts/Linux_System_Call_Table_for_x86_64

Both are very large tables resembling spreadsheets, with columns for register
usage and values required for each system call number.

Now, web pages do come and go and if you’re using this book some years
after it was published in 2023, the web pages cited may simply be gone. Do a
web search on “system call table x64” and you’ll find several. Make sure the

https://hackeradam.com/x86-64-linux-syscalls/
https://blog.rchapman.org/posts/Linux_System_Call_Table_for_x86_64/

 Chapter 10 ■ Dividing and Conquering 319

table you use is for system calls and not userspace calls. Userspace calls are calls
into the glibc code library used in C programming, which is a whole different
story. Calling glibc from assembly is possible and often very useful. I’ll have
more to say about that in Chapter 12.

One serious caution if you’ve already done some Linux assembly work in
32‐ bit protected mode: The x64 system call parameters are not the same as those in
32‐ bit x86. In most cases, they’re not even close.

In x64 Linux, there is a system for register usage: The system call number (in
other words, which system call you’re calling) is always in RAX. A system call
will accept up to six parameters. The registers used to pass parameters are in
this order: RDI, RSI, RDX, R10, R8, and R9. In other words, the first parameter
is passed in RDI. The second parameter is passed in RSI, and so on.

No system call requires any parameters be passed to it on the stack.
Note: Whether or not a register (like R9, say) is used to pass a parameter to

a system call, that register is not preserved. Only seven registers are preserved by
Linux across a system call: R12, R13, R14, R15, RBX, RSP, and RBP.

After a SYSCALL, RAX will contain a return value. If RAX is negative, it indi-
cates an error occurred during the call. For most system calls, a 0 value indicates
success.

PUSHAD and POPAD Are Gone
I mentioned this in Chapter 8, but it’s worth repeating: There are cases where a
procedure uses most or all of the general‐ purpose registers. Prior to x64, there
was a pair of instructions that could push and pop all 32‐ bit GP registers at
one go. These are PUSHAD and POPAD. (Another instruction pair, PUSHA and POPA,
would push and pop all 16‐ bit GP registers. They’re gone too.)

Now that x64 has 15 GP registers, with each register requiring eight bytes on
the stack, isn’t this wasteful of stack space? Not necessarily. Yes, it takes time
to push a register on the stack, but remember: In every case where you weigh
whether one instruction takes more time to execute than another, you must con-
sider how many times that instruction is executed. If an instruction lies within
a tight loop that executes sequentially tens of thousands or millions of times,
instruction speed is important. On the other hand, if an instruction is executed
only a few times over the course of a program’s run, its speed is at best a minor
consideration and can usually be ignored.

Yes, PUSHAD and POPAD were convenient shortcuts. They’re gone. You must
now think carefully about what registers a procedure modifies and then indi-
vidually push those registers onto the stack and individually pop them off the
stack when the procedure returns.

For a good example, let’s look at the LoadBuff procedure shown earlier in
this chapter in hexdump2gcc. LoadBuff preserves four of the caller’s registers:

320 Chapter 10 ■ Dividing and Conquering

RAX, RDX, RSI, and RDI. However, it makes changes to two other registers,
RCX and R15, without preserving them.

Why? The RCX register contains a “global” value: the position of the next
character to be processed in the file buffer variable Buff. LoadBuff is called
when one buffer full of data has been completely processed, and a new load
of data must be brought in from stdin. When the buffer is refilled, the buffer
counter has to be reset to 0 so that the processing can begin again and work
through the new data from its beginning. LoadBuff does this, and the cleared
RCX is passed back to the caller.

R15 has a mission, too: It carries back the number of bytes loaded into Buff by
the SYSCALL call to sys_read. The call to sys_read requests the number of bytes
specified by the BUFFLEN equate near the beginning of the program. However,
because few files will be exact multiples of BUFFLEN long, the number of bytes in
the last batch of data brought from stdin will be less than BUFFLEN. This value
is also considered global and is used by the main program to determine when
the current buffer has been completely processed.

LoadBuff preserves registers on the stack and restores them before it returns
to the code that called it. Now, there’s no reason that the pushing and popping
to preserve registers must always be done inside the procedure.

The calling code can preserve its own registers, and this is occasionally done.
For example, consider this (fictional) sequence of instructions:

push rbx
push rdx
call CalcSpace
pop rdx
pop rbx

There is only one difference between preserving registers outside the procedure
rather than inside: The code calling the procedure can choose which of its reg-
isters are in use and thus in need of preserving. Saving all registers would be a
waste if not all registers are in use by the caller’s code.

Now, there may be more than one call to CalcSpace within the program.
Each such call requires this sequence of five instructions instead of only one.
If preserving registers is done inside the procedure, the preservation requires
only four instructions, period, irrespective of how many places in the code call
the procedure. With modern x64 PCs, the difference in code size and speed will
not be significant. The advantage to putting register preservation inside the
procedure is that your main program code will be less cluttered.

There are no hard and fast rules for which registers to preserve, though there
are strong recommendations in the x86‐ 64 System V ABI. I’ll discuss those rec-
ommendations in detail in Chapters 11 and 12. Some registers are volatile and do

 Chapter 10 ■ Dividing and Conquering 321

not need to be preserved. Some are nonvolatile, and should be preserved. Again,
I’ll come back to this in the next two chapters, which also take up important
issues like stack alignment.

You need to know how the registers are being used at any given point in the
program and code accordingly. (Taking good notes on register use as you design
the program is important.) The only advice I would offer is conservative and
errs on the side of avoiding bugs: Preserve any registers that you know are not
being used globally nor being used to pass values back to the caller. The time
taken by register preservation is minor compared to the aggravation of bugs
caused by register conflicts.

Local Data
Local data, in contrast to global data, is data that is accessible (we say “visible”)
only to a particular procedure or in some cases a library. (Again, let’s postpone
the library discussion for the time being.) When procedures have local data, it’s
almost always data that is data placed on the stack when a procedure is called.

The PUSH instructions place data on the stack. When part of your code calls
a procedure with the CALL instruction, it can pass data down to that procedure
by using PUSH one or more times before the CALL instruction. The procedure can
then access these PUSHed data items on the stack. However, a word of warning:
The procedure can’t just pop those data items off the stack into registers, because
the return address is in the way.

Remember that the first thing CALL does is push the address of the next
machine instruction onto the stack. When your procedure gets control, that
return address is at the top of the stack (TOS, as we say) ready for the inevitable
RET instruction to use to go home. Anything pushed onto the stack by the caller
before the CALL instruction is above the return address. These items can still be
accessed using ordinary memory addressing and the stack pointer RSP. You
cannot, however, use POP to get at them without popping and re‐ pushing the
return address. This works, and I’ve done it a time or two, but it’s slow and
also unnecessary, once you understand the nature of a “stack frame” and how
to address memory within one. Again, I’ll take up the notion of stack frames
later in this book, as it is absolutely crucial once you begin calling library pro-
cedures written in C or other higher‐ level languages. For now, simply under-
stand that global data is almost always defined in the .data and .bss sections
of your program, whereas local data is placed on the stack for the “local” use
of a particular call to a particular procedure. Local data takes some care and
discipline to use safely, for reasons I’ll explain later.

322 Chapter 10 ■ Dividing and Conquering

Placing Constant Data in Procedure Definitions
By now you’re used to thinking of code as living in the .text section, and data
as living in the .data or .bss sections. In almost all cases this is a good way to
organize things, but there’s no absolute demand that you separate code and
data in this way. It’s possible to define data within a procedure using NASM’s
pseudoinstructions, which include DB, DW, DD, and DQ. I’ve created a useful
procedure that shows how this is done, and it’s a good example of when to do it.

The newlines procedure allows you to issue some number of newline char-
acters to stdout, specified by a value passed to the subroutine in RDX:

;‐
; Newlines: Sends between 1‐ 15 newlines to the Linux console
; VERSION: 2.0
; UPDATED: 8/27/2022
; IN: EDX: # of newlines to send, from 1 to 15
; RETURNS: Nothing
; MODIFIES: RAX, RDI
; CALLS: Kernel sys_write
; DESCRIPTION: The number of newline chareacters (0Ah) specified
; in RDX is sent to stdout using using SYSCALL sys_write. This
; procedure demonstrates placing constant data in the
; procedure definition itself, rather than in the .data or
; .bss sections.

newlines:

 cmp rdx,15 ; Make sure caller didn't ask for more than 15
 ja .exit ; If so, exit without doing anything
 mov rsi,EOLs ; Put address of EOLs table into ECX
 mov rax,1 ; Specify sys_write
 mov rdi,1 ; Specify stdout
 syscall ; Make the kernel call
.exit:
 Ret ; Go home!

EOLs db 10,10,10,10,10,10,10,10,10,10,10,10,10,10,10

The table EOLs contains 15 EOL characters. If you recall, when the EOL character
is sent to stdout, the console interprets it as a newline, in which the cursor posi-
tion of the console is bumped downward one line. The caller passes the desired
number of newlines in RDX. The newlines procedure first checks to make sure
that the caller hasn’t requested more newlines than there are EOL characters in
the table and then plugs the address of the EOLs table and the requested number
into a conventional call to sys_write using SYSCALL. Basically, sys_write dis-
plays the first RDX characters of the EOLs table to the console, which interprets
the data as RDX newlines.

 Chapter 10 ■ Dividing and Conquering 323

Having the data right in the procedure means that it’s easy to cut and paste
the procedure definition from one program into another without leaving the
essential table of EOL characters behind. Because the only code that ever uses
the EOLs table is the newlines procedure itself, there’s no benefit to placing the
EOLs table in the more centrally visible .data section. And although the EOLs
table is not local in the technical computer‐ science sense (it is not placed on the
stack by a caller to newlines), it “looks” local and keeps your .data and .bss
sections from becoming a little more cluttered with data that is referenced from
within a single procedure only.

There is a complete program source file called newlinestest.asm ready to
assemble in the listings archive for this book. (Build it with SASM.) It contains
the newlines procedure, which will allow you to play around with it.

More Table Tricks
The hexdump2gcc program works very much like the hexdump1gcc program
from Listing 9.1, but it has a few more tricks in its black bag. One worth noting
lies in the definition of the hex dump line variable DumpLine:

DumpLine: db " 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 "
DUMPLEN EQU $‐ DumpLine
ASCLine: db "|................|",10
ASCLEN EQU $‐ ASCLine
FULLLEN EQU $‐ DumpLine

What we have here is a variable declared in two parts. Each part may be used
separately, or (as is usually done) the two parts may be used together. The first
section of DumpLine is the string containing 16 hex digits. Its length is defined by
the DUMPLEN equate. (Note that my personal convention is to place the names of
equates in uppercase. Equates are not the same species of animal as variables,
and I find it makes programs more readable to set equates off so that they can
be told from variables at a glance. This is not a NASM requirement; you can
name equates in lower or mixed case as you choose.)

The second section of DumpLine is the ASCII column, and it has its own
label, ASCLine. A program that needed only the ASCII column could use the
ASCLine variable all by itself, along with its associated length equate, ASCLEN.
Now, because the two sections of DumpLine are adjacent in memory, referencing
DumpLine allows you to reference both sections as a unit, say, when you want
to send a line to stdout via SYSCALL. In this case, the equate that calculates the
length of the whole line is FULLLEN.

It’s useful to have a separate name for the two‐ line sections, because data is
not written to nor read from the two sections in anything like the same ways.
Take a look at the DumpChar procedure from hexdump2gcc:

324 Chapter 10 ■ Dividing and Conquering

DumpChar:
 push rbx ; Save caller's RBX
 push rdi ; Save caller's RDI

; First we insert the input char into the ASCII portion of the dump line
 mov bl,[DotXlat+rax] ; Translate nonprintables to '.'
 mov [ASCLine+rdx+1],bl ; Write to ASCII portion

; Next we insert the hex equivalent of the input char in the hex portion
; of the hex dump line:
 mov rbx,rax ; Save a second copy of the input char
 lea rdi,[rdx*2+rdx] ; Calc offset into line string (RDX X 3)

; Look up low nybble character and insert it into the string:
 and rax,000000000000000Fh ; Mask out all but the low nybble
 mov al,[HexDigits+rax] ; Look up the char equiv. of nybble
 mov [DumpLine+rdi+2],al ; Write the char equiv. to line string

; Look up high nybble character and insert it into the string:
 and rbx,00000000000000F0h ; Mask out all the but 2nd‐ lowest nybble
 shr rbx,4 ; Shift high 4 bits of byte into low 4 bits
 mov bl,[HexDigits+rbx] ; Look up char equiv. of nybble
 mov [DumpLine+rdi+1],bl ; Write the char equiv. to line string

; Done! Let's return:
 pop rdi ; Restore caller's RDI
 pop rbx ; Restore caller's RBX
 ret ; Return to caller

Writing to the ASCII column is very simple, because each character in the
ASCII column is a single byte in memory, and the effective address of any one
position in ASCLine is easy to calculate:

mov [ASCLin+rdx+1],bl ; Write to ASCII portion

Each position in the hex dump portion of the line, however, consists of three
characters: a space followed by two hex digits. Considered as a table, address-
ing a specific entry in DumpLine requires a scale of 3 in the effective address
calculation:

lea rdi,[rdx*2+rdx] ; Calc offset into line string (RDX × 3)

Note here that RDX*2+RDX is equivalent to RDX × 3 as cited in the line’s com-
ment. The two parts of the hex dump line are dealt with very differently from a
data manipulation standpoint, and they act together only when they are sent to
stdout. It’s useful, then, to give each of the two sections its own label. Structs in
C and records in Pascal are handled very much the same way “under the skin.”

 Chapter 10 ■ Dividing and Conquering 325

The DotXlat table from hexdump2gcc is another example of character trans-
lation and, as with all such translation tables, expresses the rules needed to
display all 256 different ASCII values consistently in a text line:

 ■ All printable characters translate as themselves.

 ■ All nonprintable characters (which include all control characters, and all
characters from 127 and up) translate as ASCII periods.

Local Labels and the Lengths of Jumps

Sooner or later, as your programs get longer and more complex, you’re going to
accidentally reuse a label. I won’t be presenting any particularly long or complex
programs in this book, so having problems with code labels conflicting with one
another won’t be a practical issue here. But as you begin to write more serious
programs, you’ll eventually be writing hundreds or even (with some practice
and persistence) thousands of lines of assembly code in a single source code
file. You will soon find that duplicate code labels will be a problem. How will
you always remember that you’ve already used the label Scan on line 187 of a
2,732‐ line program?

You won’t. And sooner or later (especially if you’re crunching buffers and
tables a lot), you’ll try and use the label Scan again. NASM will call you on it
with an error.

This is a common enough problem (especially with obviously useful labels
such as Scan) that NASM’s authors created a feature to deal with it: local labels.
Local labels are based on the fact that nearly all labels in assembly work (outside
of names of subroutines and major sections) are “local” in nature, by which I
mean that they are only referenced by jump instructions that are very close to
them— perhaps only two or three instructions away. Such labels are usually
parts of tight loops and are not referenced from far away in the code and are
often referenced from only one place.

Here’s an example, from the main body of hexdump2gcc:

; Go through the buffer and convert binary byte values to hex digits:
Scan:
 xor rax,rax ; Clear RAX to 0
 mov al,[Buff+rcx] ; Get a byte from the buffer into AL
 mov rdx,rsi ; Copy total counter into RDX
 and rdx,000000000000000Fh ; Mask out lowest 4 bits of char counter
 call DumpChar ; Call the char poke procedure

; Bump the buffer pointer to the next char and see if buffer's done:
 inc rsi ; Increment total chars processed counter

326 Chapter 10 ■ Dividing and Conquering

 inc rcx ; Increment buffer pointer
 cmp rcx,r15 ; Compare with # of chars in buffer
 jb .modTest ; If we've processed all chars in buffer...
 call LoadBuff ; ...go fill the buffer again
 cmp r15,0 ; If r15=0, sys_read reached EOF on stdin
 jbe Done ; If we get EOF, we're done

; See if we're at the end of a block of 16 and need to display a line:
.modTest:
 test rsi,000000000000000Fh ; Test 4 lowest bits in counter for 0
 jnz Scan ; If counter is *not* modulo 16, loop back
 call PrintLine ; ...otherwise print the line
 call ClearLine ; Clear hex dump line to 0's
 jmp Scan ; Continue scanning the buffer

Note that the label .modTest has a period in front of it. This period marks
it as a local label. A local label is local to the first nonlocal label (that is, the first
label not prefixed by a period; we call these global) that precedes it in the code.
In this particular case, the global label to which .modTest belongs is Scan. The
previous block is the portion of the main body of the program that scans the
input file buffer, formats the input data into lines of 16 bytes, and displays those
lines to the console.

In what way does a global label “own” a local label? It’s a question of visi-
bility within the source code: A local label cannot be referenced from higher in
the source code file than the global label that owns it, which, again, is the first
global label above it in the file.

In this case, the local label .modTest cannot be referenced above the global
label Scan. This means there could conceivably be a second label .modTest in the
program, on the “other side” of Scan. As long as a global label exists between
two local labels with the same name, NASM has no trouble distinguishing them.

Local labels may also exist within procedures. In another example from
hexdump2gcc, there is a local label .poke in the ClearLine procedure. It belongs
to the ClearLine label and thus cannot be referenced from any other procedure
elsewhere in the program or library. (Don’t forget that procedure names are
global labels.) This isolation within a single procedure isn’t immediately obvious,
but it’s true and stems from the fact that “below” a procedure in a program or
library there is always either another procedure or the _start or main label that
marks the beginning of the main program. It’s obvious once you see it drawn
out, as I’ve done in Figure 10.2.

 Chapter 10 ■ Dividing and Conquering 327

Here are some notes on local labels:

 ■ Local labels within procedures are at least local to the procedures in which
they are defined. (This is the whole point of Figure 10.2.) You may, of
course, have global labels within procedures. Keep in mind that this will
limit the visibility of local labels even further.

 ■ It may seem peculiar, but it’s perfectly legal and often helpful to define
global labels that are never referenced, simply to provide ownership of
local labels. If you’re writing a simple‐ ish utility program that executes
in straight‐ through fashion without a lot of jumping or long‐ distance
looping back, you may go a long way without needing to insert a global
label. I like to use global labels to set off major functional parts of a program,

Figure 10.2: Local labels and the globals that own them

328 Chapter 10 ■ Dividing and Conquering

whether those labels are ever called or not. This allows me to use local
labels freely within those major functional modules.

 ■ If you’re writing dense code with a lot of intermixed global and local
labels, be careful that you don’t try to JMP to a local label on the other side
of a global label. This is one reason not to have 15 local labels called .scan
or .loopback within one part of a program— you can easily get them
confused, and in trying to jump to one five instructions up, you may
unknowingly be jumping to one seven instructions down. NASM won’t
warn you if there is a local label with the same name on your side of a
global label and you try to jump to a local label on the other side of the
global label. Bugs like this can be insanely difficult to find sometimes.
Like any tool, local labels have to be used mindfully to be of greatest
benefit.

 ■ Here’s a rule of thumb that I use: Local labels and all jumps to them should
occur within a single screen’s worth of code. In other words, you should
be able to see both a local label and everything that refers to it without
scrolling your program editor. This is just a rough guide to help you keep
sense in your programs, but I’ve found it very useful in my own work.

“Forcing” Local Label Access
Every so (not very) often, you may find the need to access a local label from the
“other side” of its global label owner. NASM offers a way to do this, though I’ll
admit that I’ve never had the need to do it. The key to forcing access to a local
label outside of its scope (the area of your program from which it is normally
visible) is understanding how NASM treats local labels “under the skin.”

A local label has an implicit definition that includes the global label to which it
belongs. The local label .modTest that I discussed earlier in this section belongs
to the global label Scan. Internally, NASM knows .modtest as Scan.modTest. If
there were another .modtest local label elsewhere in the program (belonging,
let’s say, to a global label Calc), you could force a jump to it by including the
name of its owner in the jump instruction:

jne Calc.modTest

In a sense, under the covers, a local label is just the “tail” of a global label. If
you need to, you can access a local label by prepending the label of its global
owner and thereby treating it as a global label.

Again, I’ve never had to do this and I don’t consider it good practice, but it’s
good to know the ability is there if the need ever arises.

 Chapter 10 ■ Dividing and Conquering 329

Short, Near, and Far Jumps
One of the oddest assembler errors you may ever encounter can appear in a
completely correct program, and if you work with NASM long enough and
create programs large enough, you will encounter it. Here it is:

error: short jump is out of range

This error occurs when a conditional jump instruction is too far from the label
that it references, where “too far” means too many locations away in memory.
This applies only to conditional jumps; the unconditional jump instruction JMP
is not subject to this error.

The problem arises because of the different ways that NASM can generate a
binary opcode for a particular conditional jump instruction. There are two dif-
ferent kinds of conditional jumps, based on how far away the jump target label
is. A jump target that lies within 127 bytes of the conditional jump instruction
is called a short jump. A jump target that is further away than 127 bytes but still
within the current code segment is called a near jump.

There is a third kind of jump called a far jump, which involves leaving the
current code segment entirely for whatever reason. In the old DOS real‐ mode
world, this meant specifying both a segment address and an offset address for
the jump target. Far jumps were not used very often, though I used them a
time or two back in the DOS era. Don’t forget that segments now belong to the
operating system for its own use. In the 32‐ bit protected mode and 64‐ bit long
mode, far jumps are extremely rare and involve all sorts of operating system
complexity that I can’t go into in this book. For userspace programming they’re
completely unnecessary.

The problem really lies with the difference between short and near jumps.
A short conditional jump instruction generates a short— and hence compact—
binary opcode. Short jump opcodes are always two bytes in size, no more. Near
jump opcodes are either four or six bytes in size, depending on various factors.
Compact code means fast code, and taking a short jump is (slightly) faster in
most cases than taking a near jump. Furthermore, if you use short jumps most
of the time, your executable files will be a little smaller.

Given that 90 percent or more of the conditional jump instructions you’ll
write target program locations only a few instructions away, it makes sense for
NASM to generate opcodes for short jumps by default. In fact, NASM generates
opcodes for short jumps unless you explicitly tell it to use near jumps. A near jump is
specified using the NEAR qualifier:

jne Scan ; Jump within 127 bytes in either direction
jne near Scan ; Jump anywhere in the current code segment

330 Chapter 10 ■ Dividing and Conquering

Beginners tend to run into the “short jump out of range” error this way: You
begin a program and put a label like Exit: at the end, expecting to jump to the
Exit: label from several different parts of the program. When the program is
new and still fairly small, it may work fine. However, eventually code added
to the middle of the program forces conditional jumps near the beginning of
the program more than 127 bytes away from the Exit: label at the end. Bang!
NASM hands you the “short jump out of range” error.

The fix is easy: For any jump that NASM calls “out of range,” insert the NEAR
qualifier between the conditional jump instruction mnemonic and the target
label. Leave the others alone.

Building External Procedure Libraries

You’ll notice that the hexdump2gcc program given in Listing 10.1 has most of its
code separated out into procedures. This is as it should be, for the sake of keep-
ing the program comprehensible and maintainable. However, the procedures
declared within the file hexdump2gcc.asm are usable only by the hexdump2gcc
program itself. If you were to write a more powerful program that for whatever
reason needed to display a hex/ASCII dump of some data, those procedures
could be used again— just not while they’re still inside the file hexdump2gcc.asm.

The answer is to move hexdump2gcc’s procedures out of hexdump2gcc.asm
entirely and place them in a separate source code file called a library. It may be
full of procedures, but it has no main program portion and thus no _start: or
main: label to indicate where execution begins. All it contains are procedures
(and maybe some data definitions) so it cannot be translated by the linker into
its own executable program.

Once you create library files containing procedures, there are two ways to
use them:

 ■ A library file can be assembled separately to a .o file, which in turn can
be linked by the Linux linker into other programs that you may write in
the future.

 ■ A library file can be included in the source code file of the main program,
using a directive called %INCLUDE. (I’ll tell you how to use %INCLUDE very
shortly.) This is what you must do to use libraries from programs written
within SASM.

When Tools Reach Their Limits
As easy as it is for assembly language beginners to learn and use SASM (which
is what SASM was created for), the SASM IDE has its shortcomings, and we’re
about to run into a significant one: SASM cannot link multiple assembly object code

 Chapter 10 ■ Dividing and Conquering 331

files together into a single executable file. Basically, except in very limited cases, it
can’t perform separate assembly.

I described the separate assembly process briefly back in Chapter 5 and show
it pictorially in Figures 5.8 and 5.9. A single program might consist of three or
four separate .asm source code files, each of which is assembled separately to a
separate .o file. To produce the final executable file, the Linux linker ld weaves
all of the .o files together, resolving all of the references from one to the other,
finally creating the executable file.

Separate assembly is not fully supported by SASM.
I’m going to describe separate assembly of library files in detail later in this

chapter. The examples will have to be built without SASM, using makefiles.
Absent SASM, debugging will also be a challenge, and we’ll talk about that as
well. In the meantime, there is one trick that SASM has that will allow you to
create separate libraries of procedures.

Using Include Files in SASM
NASM includes a directive that allows you to “include” a file into another file
during an assembly operation. The %INCLUDE directive is followed by the name
of a text file, in double quotes:

%INCLUDE "%textlibgcc.asm"

(Don’t forget the double quotes!) Only source code text files can be used here.
You can’t include a binary file of any kind. What happens is that when NASM
is assembling a source code file and encounters an %INCLUDE directive, it opens
the file named by the %INCLUDE directive and begins pulling in text from the
include file, line‐ by‐ line.

Note that the include file is not inserted into your main assembly language
source file. Basically, when NASM encounters %INCLUDE, it stops assembling your
main source file and begins assembling the include file. Once it has processed all
the lines in the include file, it picks up right where it left off after the %INCLUDE
directive and continues assembling your main source file.

Multiple include files are no problem; you can have as many %INCLUDE direc-
tives in a program source file as you want. You can also have %INCLUDE directives
in a library file that is itself an include file, though done enough, your source
code will get very messy, and I don’t recommend it unless you have a very
good reason to do so.

No special declarations are necessary in an include file, since in a utilitarian
sense it’s part of the source file that contains the %INCLUDE directive. For an
example of an include file, see Listing 10.2, which is an include file library of
procedures that are used in Listing 10.3 (hexdump3gcc.asm) to write text to the
Linux console.

332 Chapter 10 ■ Dividing and Conquering

Listing 10.2: textlibgcc.asm

; Library name : textlibgcc
; Version : 2.0
; Created date : 5/9/2022
; Last update : 5/9/2023
; Author : Jeff Duntemann
; Description : A simple include library demonstrating the use of
; : the %INCLUDE directive within SASM
;
; Note that this file cannot be assembled by itself, as SASM does not
; support separate assembly. It can only be used as the target of an
; %INCLUDE directive.
;

SECTION .bss ; Section containing uninitialized data

 BUFFLEN EQU 10h
 Buff resb BUFFLEN

SECTION .data ; Section containing initialised data

; Here we have 2 parts of a single useful data structure, implementing
; the text line of a hex dump utility. The first part displays 16 bytes
; in hex separated by spaces. Immediately following is a 16‐ character
; line delimited by vertical bar characters. Because they are adjacent,
; the 2 parts can be referenced separately or as a single contiguous
; unit. Remember that if DumpLine is to be used separately, you must
; append an EOL before sending it to the Linux console.

DumpLine: db " 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 "
DUMPLEN EQU $‐ DumpLine
ASCLine: db "|................|",10
ASCLEN EQU $‐ ASCLine
FULLLEN EQU $‐ DumpLine

; The HexDigits table is used to convert numeric values to their hex
; equivalents. Index by nybble without a scale: [HexDigits+eax]
HexDigits: db "0123456789ABCDEF"

; This table is used for ASCII character translation, into the ASCII
; portion of the hex dump line, via XLAT or ordinary memory lookup.
; All printable characters "play through" as themselves. The high 128
; characters are translated to ASCII period (2Eh). The non‐ printable
; characters in the low 128 are also translated to ASCII period, as is
; char 127.
DotXlat:
 db 2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh
 db 2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh
 db 20h,21h,22h,23h,24h,25h,26h,27h,28h,29h,2Ah,2Bh,2Ch,2Dh,2Eh,2Fh
 db 30h,31h,32h,33h,34h,35h,36h,37h,38h,39h,3Ah,3Bh,3Ch,3Dh,3Eh,3Fh

 Chapter 10 ■ Dividing and Conquering 333

 db 40h,41h,42h,43h,44h,45h,46h,47h,48h,49h,4Ah,4Bh,4Ch,4Dh,4Eh,4Fh
 db 50h,51h,52h,53h,54h,55h,56h,57h,58h,59h,5Ah,5Bh,5Ch,5Dh,5Eh,5Fh
 db 60h,61h,62h,63h,64h,65h,66h,67h,68h,69h,6Ah,6Bh,6Ch,6Dh,6Eh,6Fh
 db 70h,71h,72h,73h,74h,75h,76h,77h,78h,79h,7Ah,7Bh,7Ch,7Dh,7Eh,2Eh
 db 2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh
 db 2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh
 db 2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh
 db 2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh
 db 2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh
 db 2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh
 db 2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh
 db 2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh

SECTION .text ; Section containing code

;‐
; ClearLine: Clear a hex dump line string to 16 0 values
; UPDATED: 5/9/2023
; IN: Nothing
; RETURNS: Nothing
; MODIFIES: Nothing
; CALLS: DumpChar
; DESCRIPTION: The hex dump line string is cleared to binary 0 by
; calling DumpChar 16 times, passing it 0 each time.

ClearLine:
 push rax ; Save all caller's r*x GP registers
 push rbx
 push rcx
 push rdx

 mov rdx,15 ; We're going to go 16 pokes, counting from 0
.poke:
 mov rax,0 ; Tell DumpChar to poke a '0'
 call DumpChar ; Insert the '0' into the hex dump string
 sub rdx,1 ; DEC doesn't affect CF!
 jae .poke ; Loop back if RDX >= 0

 pop rdx ; Restore all caller's GP registers
 pop rcx
 pop rbx
 pop rax
 ret ; Go home

;‐
; DumpChar: "Poke" a value into the hex dump line string.
; UPDATED: 5/9/2023
; IN: Pass the 8‐ bit value to be poked in RAX.
; Pass the value's position in the line (0‐ 15) in RDX

334 Chapter 10 ■ Dividing and Conquering

; RETURNS: Nothing
; MODIFIES: RAX, ASCLine, DumpLine
; CALLS: Nothing
; DESCRIPTION: The value passed in RAX will be put in both the hex dump
; portion and in the ASCII portion, at the position passed
; in RDX, represented by a space where it is not a
; printable character.

DumpChar:
 push rbx ; Save caller's RBX
 push rdi ; Save caller's RDI

; First we insert the input char into the ASCII portion of the dump line
 mov bl,[DotXlat+rax] ; Translate nonprintables to '.'
 mov [ASCLine+rdx+1],bl ; Write to ASCII portion

; Next we insert the hex equivalent of the input char in the hex portion
; of the hex dump line:
 mov rbx,rax ; Save a second copy of the input char
 lea rdi,[rdx*2+rdx] ; Calc offset into line string (RDX X 3)

; Look up low nybble character and insert it into the string:
 and rax,000000000000000Fh ; Mask out all but the low nybble
 mov al,[HexDigits+rax] ; Look up the char equiv. of nybble
 mov [DumpLine+rdi+2],al ; Write the char equiv. to line string

; Look up high nybble character and insert it into the string:
 and rbx,00000000000000F0h ; Mask out all the but 2nd‐ lowest nybble
 shr rbx,4 ; Shift high 4 bits of rbx into low 4 bits
 mov bl,[HexDigits+rbx] ; Look up char equiv. of nybble
 mov [DumpLine+rdi+1],bl ; Write the char equiv. to line string

;Done! Let's go home:
 pop rdi ; Restore caller's RDI
 pop rbx ; Restore caller's RBX
 ret ; Return to caller

;‐
; PrintLine: Displays DumpLine to stdout
; UPDATED: 5/9/2022
; IN: DumpLine, FULLEN
; RETURNS: Nothing
; MODIFIES: Nothing
; CALLS: Kernel sys_write
; DESCRIPTION: The hex dump line string DumpLine is displayed to stdout
; using syscall function sys_write. Registers used
; are preserved, along with RCX & R11.

 Chapter 10 ■ Dividing and Conquering 335

PrintLine:
 ; Alas, we don't have pushad anymore.
 push rax
 push rbx
 push rcx ; syscall clobbers
 push rdx
 push rsi
 push rdi
 push r11 ; syscall clobbers

 mov rax,1 ; Specify sys_write call
 mov rdi,1 ; Specify File Descriptor 1: Standard output
 mov rsi,DumpLine ; Pass address of line string
 mov rdx,FULLLEN ; Pass size of the line string
 syscall ; Make kernel call to display line string

 pop r11 ; syscall clobbers
 pop rdi
 pop rsi
 pop rdx
 pop rcx ; syscall clobbers
 pop rbx
 pop rax
 ret ; Return to caller

;‐
; LoadBuff: Fills a buffer with data from stdin via syscall sys_read
; UPDATED: 5/9/2023
; IN: Nothing
; RETURNS: # of bytes read in R15
; MODIFIES: RCX, R15, Buff
; CALLS: syscall sys_read
; DESCRIPTION: Loads a buffer full of data (BUFFLEN bytes) from stdin
; using syscall sys_read and places it in Buff. Buffer
; offset counter RCX is zeroed, because we're starting in
; on a new buffer full of data. Caller must test value in
; R15: If R15 contains 0 on return, we've hit EOF on stdin.
; < 0 in R15 on return indicates some kind of error.

LoadBuff:
 push rax ; Save caller's RAX
 push rdx ; Save caller's RDX
 push rsi ; Save caller's RSI
 push rdi ; Save caller's RDI

 mov rax,0 ; Specify sys_read call
 mov rdi,0 ; Specify File Descriptor 0: Standard Input
 mov rsi,Buff ; Pass offset of the buffer to read to

336 Chapter 10 ■ Dividing and Conquering

 mov rdx,BUFFLEN ; Pass number of bytes to read at one pass
 syscall ; Call syscall's sys_read to fill the buffer
 mov r15,rax ; Save # of bytes read from file for later
 xor rcx,rcx ; Clear buffer pointer RCX to 0

 pop rdi ; Restore caller's RDI
 pop rsi ; Restore caller's RSI
 pop rdx ; Restore caller's RDX
 pop rax ; Restore caller's RAX
 ret ; And return to caller

A program that uses a procedure library will be a lot smaller than one con-
taining all the machinery in its single source code file. Listing 10.3 is basically
hexdump2gcc.asm with its procedures taken out and gathered into the include
file I presented as Listing 10.2.

Listing 10.3: hexdump3gcc.asm

; Executable name : hexdump3gcc
; Version : 2.0
; Created date : 9/5/2022
; Last update : 5/9/2023
; Author : Jeff Duntemann
; Description : A simple hex dump utility demonstrating the use
; : of code libraries by inclusion via %INCLUDE
;
; Build using SASM's standard x64 build setup
;
; Type or paste some text into Input window and click Build & Run.
;

SECTION .bss ; Section containing uninitialized data

SECTION .data ; Section containing initialised data

SECTION .text ; Containing code

%INCLUDE "textlibgcc.asm"

GLOBAL main ; You need to declare "main" here because SASM uses gcc
 ; to do builds.

;‐
; MAIN PROGRAM BEGINS HERE
;‐

main:
 mov rbp, rsp; for correct debugging

 Chapter 10 ■ Dividing and Conquering 337

; Whatever initialization needs doing before loop scan starts is here:
 xor r15,r15 ; Zero out r15,rsi, and rcx
 xor rsi,rsi
 xor rcx,rcx
 call LoadBuff ; Read first buffer of data from stdin
 cmp r15,0 ; If r15=0, sys_read reached EOF on stdin
 jbe Exit

; Go through the buffer and convert binary byte values to hex digits:
Scan:
 xor rax,rax ; Clear RAX to 0
 mov al,[Buff+rcx] ; Get a byte from the buffer into AL
 mov rdx,rsi ; Copy total counter into RDX
 and rdx,000000000000000Fh ; Mask out lowest 4 bits of char counter
 call DumpChar ; Call the char poke procedure

; Bump the buffer pointer to the next char and see if buffer's done:
 inc rsi ; Increment total chars processed counter
 inc rcx ; Increment buffer pointer
 cmp rcx,r15 ; Compare with # of chars in buffer
 jb .modTest ; If we've processed all chars in buffer...
 call LoadBuff ; ...go fill the buffer again
 cmp r15,0 ; If r15=0, sys_read reached EOF on stdin
 jbe Done ; If we get EOF, we're done

; See if we're at the end of a block of 16 and need to display a line:
.modTest:
 test rsi,000000000000000Fh ; Test 4 lowest bits in counter for 0
 jnz Scan ; If counter is *not* modulo 16, loop back
 call PrintLine ; ...otherwise print the line
 call ClearLine ; Clear hex dump line to 0's
 jmp Scan ; Continue scanning the buffer

; All done! Let's end this party:
Done:
 call PrintLine ; Print the final "leftovers" line

Exit:
 ret

Where SASM’s Include Files Must Be Stored
One of the issues in any programming language that supports include files is
where the assembler or compiler will look for those include files. With SASM
you have two choices:

1. You can create and use include file libraries in the current working direc-
tory, that is, the directory where your primary source file lives. This is

338 Chapter 10 ■ Dividing and Conquering

what you should do when you’re developing the library that will later be
used as an include file.

2. You can use include file libraries that live in a directory created by SASM
for that purpose when SASM is installed. Here’s the directory:

/usr/share/sasm/include

No big deal, right? Well, there’s a catch: You need to be logged in as root to
drop an include file into SASM’s include directory. It’s outside the scope of this
book to explain Linux commands in detail, so if you’re fuzzy on getting root
permissions, do a web search. The root account is automatically created when
you install Linux; you have to “claim” it by giving it a password. Again, there
are too many details for these pages, but there are tutorials online, and it’s a skill
you will need if you’re going to do any kind of serious Linux programming.

So why bother with that hard‐ to‐ reach include directory? Simply this: if you
keep your libraries in the working directories of several projects, a change made
to one project’s copy of a library will not happen to all the other copies of the
same library elsewhere among your various projects. If you’re careless about
this, the copies of a given library will gradually “evolve” away from one another,
and the procedures in that library will start to behave differently or cause bugs.

The temptation to apply “quick ’n’ dirty” fixes to small problems in a source
code file is strong. Don’t do it— especially for include file libraries. Create and
perfect an include file library as a project or part of a project, and then, with root
permissions, drop it into SASM’s include directory. That way, all your projects
will use the very same copy of the include library.

The Best Way to Create an Include File Library
If you’re going to develop an include‐ style procedure library from scratch with
SASM, here’s a tried‐ and‐ true process to use:

1. Design your procedures. I simply create a text document and type up
descriptions of what the library’s procedures must do, gradually refining
the descriptions until the descriptions are actually code.

2. Open the sandbox program I described earlier, and enter your procedures’
source code. If you’ve already written them as parts of other programs,
copy/paste their source code into the new file.

3. Create simple “exercise” code in the body of the sandbox program that
calls your procedures and puts them through their paces. Debug as you
always do with the SASM debugger. This will reveal relatively simple
booboos like pushing and popping registers in the wrong order, trashing
the caller’s registers, and so on.

 Chapter 10 ■ Dividing and Conquering 339

4. Once the easy debugging is done, include the library source code into a
“real” program and test the library procedures more thoroughly.

5. When you’re satisfied that all the procedures work as designed, gather
them together into a file without the sandbox framework, and drop them
into SASM’s include files directory.

6. Keep a copy of the new library somewhere else, somewhere you back up
regularly.

7. If at any point you make any changes to the library source code, test the
changes thoroughly and then drop the modified file into SASM’s include
directory, replacing the earlier version that’s already there.

At this point we’re going to set SASM aside for a while and talk about using
separate assembly to link preassembled .o object code files into a single execut-
able file. It’s easy to become “spoiled” using SASM, because it places so many
useful tools within one IDE— an IDE created specifically for a student’s first
steps in assembly language programming.

I will continue to present example code for use within SASM in this book,
which is an introduction to computing and assembly language concepts. But
you will need to know how separate assembly works, once you “graduate”
from SASM to more complex IDEs and sophisticated programming techniques.

Separate Assembly and Modules
From the standpoint of the assembly process, each separate .asm file is considered
a module, whether it contains a _start: or main: label and is thus a program or
simply contains procedures. Each module contains code and possibly some data
definitions. When all the declarations are done correctly, all of the modules may
freely “talk” to one another via procedure calls, and any procedure may refer to
any data definition anywhere among the files that the linker combines. (Local
labels are still visible only to the global labels that own them.) Each executable
file may contain only one _start: or main: label, so among the several modules
linked into an executable file, only one may contain a _start: or main: label
and thus be the program proper.

This sounds harder than it is. The trick is simply to get all the declarations right.

Global and External Declarations
And it’s much less of a trick than it used to be. Back in the bad old DOS days,
you had to define code segments and data segments for the use of your sepa-
rately assembled libraries and make sure that those segments were marked as
PUBLIC, and on and on and on. For 32‐ bit protected‐ mode and x64 long mode
user‐ space programs under Linux, there is only one segment, containing code,

340 Chapter 10 ■ Dividing and Conquering

data, and stack— literally everything that a program has. Most of the manual
“connecting” that we used to have to do is now done automatically by NASM,
the linker, and the Linux loader. Creating libraries is now a snap, no more com-
plex than creating programs and in some ways even easier.

The very heart of programming in modules is “putting off” resolution of
addresses until link time. You may already have experienced the problem of
address resolution if you’ve begun writing your own programs in assembly. It
can happen by accident: If you intend to write a procedure in a program but in
your manic enthusiasm write the code that references that (as yet unwritten)
procedure’s label first, NASM will gleefully give you an error message:

error: symbol 'MyProc' undefined

In modular programming, you’re frequently going to be calling procedures
that don’t exist anywhere in the source code file that you’re actually working
on. How to get past the assembler’s watchdogs?

The answer is to declare a procedure external. This works very much like it
sounds: The assembler is told that a given label will have to be found outside the
program somewhere, in another module, later. Once told that, NASM is happy
to give you a pass on an undefined label, for now. You’ve promised NASM
that you’ll provide it later, and NASM accepts your promise. (The linker will
hold you to that promise during the link step.) NASM will flag the reference as
external and keep going without calling foul on the undefined label.

The promise that you make to NASM looks like this:

EXTERN MyProc

Here, you’ve told the assembler that the label MyProc represents a procedure
and that it will be found somewhere external to the current module. That’s all
the assembler needs to know to withhold its error message.

And having done that, the assembler’s part in the bargain is finished. It leaves
in place an empty socket in your program where the address of the external
procedure may be plugged in later. I sometimes think of it as an eyelet where
the external procedure will later hook in.

Over in the other module where procedure MyProc is actually defined, it isn’t
enough just to define the procedure. An eyelet needs a hook. You have to warn
the assembler that MyProc will be referenced from outside the module. The
assembler needs to forge the hook that will hook into the eyelet. You forge the
hook by declaring the procedure global, meaning that other modules anywhere
else in the program may freely reference the procedure. Declaring a procedure
global is no more complex than declaring it external:

GLOBAL MyProc

A procedure that is declared as GLOBAL where it is defined may be referenced
from anywhere its label is declared as EXTERN.

 Chapter 10 ■ Dividing and Conquering 341

With both the hook and the eyelet in place, who actually connects them? The
linker does that during the link operation. At link time, the linker takes the two
.o files generated by the assembler, one from your program and the other from
the module containing MyProc, and combines them into a single executable
binary file. The number of .o files isn’t limited to two; you can have almost any
number of separately assembled external modules in a single program. (Again,
only one of them— the program proper— can have a _start: or main: label.)
When the executable file created by the linker is loaded and run, the program
can call MyProc as cleanly and quickly as though both had been declared in the
same source code file.

This process is summarized graphically in Figure 10.3.

Figure 10.3: Connecting globals and externals

342 Chapter 10 ■ Dividing and Conquering

What works for procedures works for data as well, and it can work in either
direction. Your program can declare any named variable as GLOBAL, and that
variable may then be used by any module in which the same variable name is
declared as external with the EXTERN directive. Finally, procedure libraries them-
selves may share data and procedures among one another in any combination,
as long as all of the global and external declarations are handled correctly.

A program or module containing procedures or variables declared as global
exports those items. Also, we say that a program or module that uses procedures
or variables that are external to it imports those items.

The Mechanics of Globals and Externals
The hexdump2gcc program in Listing 10.1 contains several procedures. Let’s
pull those procedures out of the main program module and create a separately
assembled library module from them so that we can see how it all works.

I’ve described the source code requirements of assembly language programs
in detail in the last few chapters. Separately assembled library modules are sim-
ilar to programs and may have all three of the sections (.text, .data, and .bss)
that program modules may have. There are two major differences, however,
concerning things that library modules lack:

 ■ External modules do not contain a main program and hence have no start address.
That is, no label _start: or main: exists in a library to indicate to the linker
that this is the point at which code execution is to begin. Library modules
are not intended to be run by themselves, so a _start: or main: label in
a library module is both unnecessary and grounds for a fatal linker error
if _start: already exists in the main program module.

 ■ External modules do not return to Linux. If only the main program module
contains a _start: or main: label, then only the main program module
should contain the required sys_exit SYSCALL shutting down the program
and giving control back to Linux. As a general rule of thumb, never make
a call to sys_exit from within a procedure, whether it’s a procedure located
in the same module as the main program or a procedure located in an
external library module. The main program gets permission to run from
the OS, and the main program should give it back.

First, take a look at Listing 10.4. It’s basically the same program as hexdump2gcc,
but with its procedures gathered into a separately assembled library file called
textlib.asm. It does precisely the same things as hexdump2gcc. It’s smaller than
hexdump2gcc from a source code standpoint, because most of its machinery has
been outsourced. Outsourced where? You don’t know yet— and you don’t have
to. NASM will put off resolving the addresses of the missing procedures as long
as you list all the missing procedures using the EXTERN directive.

 Chapter 10 ■ Dividing and Conquering 343

Listing 10.4: hexdump3.asm

; Executable name : hexdump3
; Version : 2.0
; Created date : 9/14/2022
; Last update : 5/17/2023
; Author : Jeff Duntemann
; Description : A simple hex dump utility demonstrating the
; : use of eparately assembled code libraries via
; : EXTERN & GLOBAL
;
; Build using these commands:
; nasm ‐ f elf64 ‐ g ‐ F dwarf hexdump3.asm
; ld ‐ o hexdump3 hexdump3.o <path>/textlib.o
;
SECTION .bss ; Section containing uninitialized data

SECTION .data ; Section containing initialised data

SECTION .text ; Section containing code

EXTERN ClearLine, DumpChar, LoadBuff, PrintLine
EXTERN Buff, BuffLength

GLOBAL _start:

_start:
 push rbp ;Alignment prolog
 mov rbp,rsp
 and rsp,‐ 16

; Whatever initialization needs doing before the loop scan starts
; is here:
 xor r15,r15 ; Clear registers to initial 0
 xor rsi,rsi
 xor rcx,rcx
 call LoadBuff ; Read first buffer of data from stdin
 cmp r15,0 ; If r15=0, sys_read reached EOF on stdin
 jbe Exit

; Go through the buffer and convert binary values to hex digits:
Scan:
 xor rax,rax ; Clear RAX to 0
 mov al,[Buff+rcx] ; Get a char from the buffer into AL
 mov rdx,rsi ; Copy total counter into RDX
 and rdx,000000000000000Fh ; Mask out lowest 4 bits of char counter
 call DumpChar ; Call the char poke procedure

; Bump the buffer pointer to the next character and see if the buffer
; is done:
 inc rsi ; Increment buffer pointer

344 Chapter 10 ■ Dividing and Conquering

 inc rcx ; Increment total chars processed counter
 cmp rcx,r15 ; Compare with # of chars in buffer
 jb modTest ; If we've processed all chars in buffer
 call LoadBuff ; go fill the buffer again
 cmp r15,0 ; If r15=0, sys_read reached EOF on stdin
 jbe Done ; If we get EOF, we're done

; See if we're at the end of a block of 16 and need to display a line:
modTest:
 test rsi,000000000000000Fh ; Test 4 lowest bits in counter for 0
 jnz Scan ; If counter is *not* modulo 16, loop back
 call PrintLine ; ...otherwise print the line
 call ClearLine ; Clear hex dump line to 0's
 jmp Scan ; Continue scanning the buffer

; All done! Let's end this party:
Done:
 call PrintLine ; Print the "leftovers" line

Exit:
 mov rsp,rbp ; Epilog
 pop rbp

 mov rax,60 ; Code for Exit system call
 mov rdi,0 ; Return a code of zero
 syscall ; Make system call

External declarations of multiple items may be put on a single line, separated
by commas, as in hexdump3:

EXTERN ClearLine, DumpChar, PrintLine

There does not have to be a single EXTERN directive. Several may exist in a
module; each external identifier, in fact, may have its own EXTERN directive. It’s
up to you. When you have a longish list of external identifiers, however, don’t
make this mistake, which is an error:

EXTERN InitBlock, ReadBlock, ValidateBlock, WriteBlock, CleanUp,
ShowStats, PrintSummary ; ERROR!

EXTERN declarations cannot span line boundaries. (In fact, almost nothing in
assembly language can span line boundaries, especially with NASM. Pascal
and C programmers run up against this peculiarity fairly often when they’re
assembly language first‐ timers.) If you have too many external declarations to
fit on a single line with a single EXTERN, place additional EXTERN directives on
following lines.

To link hexdump3 into a functioning executable program, we have to create
an external library module for each of its procedures. All that’s needed are the

 Chapter 10 ■ Dividing and Conquering 345

procedures and their data in the proper sections and the necessary GLOBAL dec-
larations. That’s what’s in Listing 10.5.

Listing 10.5: textlib.asm

; Module name : textlib.asm
; Version : 2.0
; Created date : 9/14/2022
; Last update : 5/9/2023
; Author : Jeff Duntemann
; Description : A simple procedure library demonstrating the use
; : of separately assembled code libraries via EXTERN
;
; Build using this command:
; nasm ‐ f elf64 ‐ g ‐ F dwarf textlib.asm
;
;

SECTION .bss ; For containing uninitialized data

 BUFFLEN EQU 10h ; We read the input file 16 bytes at a time
 Buff: resb BUFFLEN ; Reserve memory for the input file read
 ; buffer

SECTION .data ; For containing initialised data

; Here we have two parts of a single useful data structure, implementing
; the text line of a hex dump utility. The first part displays 16 bytes
; in hex separated by spaces. Immediately following is a 16‐ character
; line delimited by vertical bar characters. Because they are adjacent,
; they can be referenced separately or as a single contiguous unit.
; Remember that if DumpLine is to be used separately, you must append an
; EOL before sending it to the Linux console.

DumpLine: db " 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 "
DUMPLEN EQU $‐ DumpLine
ASCLine: db "|................|",10
ASCLEN EQU $‐ ASCLine
FULLLEN EQU $‐ DumpLine

; The equates shown above must be applied to variables to be exported:
DumpLength: dq DUMPLEN
ASCLength: dq ASCLEN
FullLength: dq FULLLEN
BuffLength: dq BUFFLEN

; The HexDigits table is used to convert numeric values to their hex
; equivalents. Index by nybble without a scale, e.g.: [HexDigits+rax]
HexDigits: db "0123456789ABCDEF"

346 Chapter 10 ■ Dividing and Conquering

; This table allows us to generate text equivalents for binary numbers.
; Index into the table by the nybble using a scale of 4:
; [BinDigits + rcx*4]
BinDigits: db "0000","0001","0010","0011"
 db "0100","0101","0110","0111"
 db "1000","1001","1010","1011"
 db "1100","1101","1110","1111"

; Exported data items and procedures:
GLOBAL Buff, DumpLine, ASCLine, HexDigits, BinDigits
GLOBAL ClearLine, DumpChar, NewLines, PrintLine, LoadBuff

; This table is used for ASCII character translation, into the ASCII
; portion of the hex dump line, via XLAT or ordinary memory lookup.
; All printable characters "play through" as themselves. The high 128
; characters are translated to ASCII period (2Eh). The non‐ printable
; characters in the low 128 are also translated to ASCII period, as is
; char 127.
 DotXlat:
 db 2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh
 db 2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh
 db 20h,21h,22h,23h,24h,25h,26h,27h,28h,29h,2Ah,2Bh,2Ch,2Dh,2Eh,2Fh
 db 30h,31h,32h,33h,34h,35h,36h,37h,38h,39h,3Ah,3Bh,3Ch,3Dh,3Eh,3Fh
 db 40h,41h,42h,43h,44h,45h,46h,47h,48h,49h,4Ah,4Bh,4Ch,4Dh,4Eh,4Fh
 db 50h,51h,52h,53h,54h,55h,56h,57h,58h,59h,5Ah,5Bh,5Ch,5Dh,5Eh,5Fh
 db 60h,61h,62h,63h,64h,65h,66h,67h,68h,69h,6Ah,6Bh,6Ch,6Dh,6Eh,6Fh
 db 70h,71h,72h,73h,74h,75h,76h,77h,78h,79h,7Ah,7Bh,7Ch,7Dh,7Eh,2Eh
 db 2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh
 db 2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh
 db 2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh
 db 2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh
 db 2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh
 db 2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh
 db 2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh
 db 2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh,2Eh

SECTION .text ; For code

;‐
; ClearLine: Clear a Full‐ Length hex dump line to 16 0 values
; UPDATED: 5/8/2023
; IN: Nothing
; RETURNS: Nothing
; MODIFIES: Nothing
; CALLS: DumpChar
; DESCRIPTION: The hex dump line string is cleared to binary 0.

ClearLine:
 push rax ; Save all caller's r*x GP registers
 push rbx

 Chapter 10 ■ Dividing and Conquering 347

 push rcx
 push rdx

 mov rdx,15 ; We're going to go 16 pokes, counting from 0
.poke:
 mov rax,0 ; Tell DumpChar to poke a '0'
 call DumpChar ; Insert the '0' into the hex dump string
 sub rdx,1 ; DEC doesn't affect CF!
 jae .poke ; Loop back if RDX >= 0

 pop rdx ; Restore caller's r*x GP registers
 pop rcx
 pop rbx
 pop rax
 ret ; Go home

;‐
; DumpChar: "Poke" a value into the hex dump line string DumpLine.
; UPDATED: 5/1/2023
; IN: Pass the 8‐ bit value to be poked in RAX.
; Pass the value's position in the line (0‐ 15) in RDX
; RETURNS: Nothing
; MODIFIES: RAX
; CALLS: Nothing
; DESCRIPTION: The value passed in RAX will be placed in both the hex
; dump portion and in the ASCII portion, at the position
; passed in RCX, represented by a space where it is not a
; printable character.

DumpChar:
 push rbx ; Save caller's RBX
 push rdi ; Save caller's RDI

; First we insert the input char into the ASCII portion of the dump line
 mov bl,[DotXlat+rax] ; Translate nonprintables to '.'
 mov [ASCLine+rdx+1],bl ; Write to ASCII portion

; Next we insert the hex equivalent of the input char in the hex portion
; of the hex dump line:
 mov rbx,rax ; Save a second copy of the input char
 lea rdi,[rdx*2+rdx] ; Calc offset into line string (RDX X 3)

; Look up low nybble character and insert it into the string:
 and rax,000000000000000Fh ; Mask out all but the low nybble
 mov al,[HexDigits+rax] ; Look up the char equivalent of nybble
 mov [DumpLine+rdi+2],al ; Write the char equivalent to line string

; Look up high nybble character and insert it into the string:
 and rbx,00000000000000F0h ; Mask out all the but second‐ lowest nybble
 shr rbx,4 ; Shift high 4 bits of char into low 4 bits

348 Chapter 10 ■ Dividing and Conquering

 mov bl,[HexDigits+rbx] ; Look up char equivalent of nybble
 mov [DumpLine+rdi+1],bl ; Write the char equiv. to line string

;Done! Let's go home:
 pop rdi ; Restore caller's EDI register value
 pop rbx ; Restore caller's EBX register value
 ret ; Return to caller

;‐
; Newlines: Sends between 1‐ 15 newlines to the Linux console
; UPDATED: 5/9/2023
; IN: # of newlines to send, from 1 to 15
; RETURNS: Nothing
; MODIFIES: Nothing
; CALLS: Kernel sys_write
; DESCRIPTION: The number of newline chareacters (0Ah) specified in
; RDX is sent to stdout using using SYSCALL sys_write.
; This procedure demonstrates placing constant data in
; the procedure definition itself, rather than in .data
; or .bss

Newlines:
 push rax ; Push caller's registers
 push rsi
 push rdi
 push rcx ; Used by syscall
 push rdx
 push r11 ; Used by syscall

 cmp rdx,15 ; Make sure caller didn't ask for more than 15
 ja .exit ; If so, exit without doing anything
 mov rcx,EOLs ; Put address of EOLs table into ECX
 mov rax,1 ; Specify sys_write call
 mov rdi,1 ; Specify File Descriptor 1: Standard output
 syscall ; Make the system call

.exit:
 pop r11 ; Restore all caller's registers
 pop rdx
 pop rcx
 pop rdi
 pop rsi
 pop rax
 ret ; Go home!

EOLs db 10,10,10,10,10,10,10,10,10,10,10,10,10,10,10

 Chapter 10 ■ Dividing and Conquering 349

;‐
; PrintLine: Displays the hex dump line string via SYSCALL sys_write
; UPDATED: 5/9/2023
; IN: Nothing
; RETURNS: Nothing
; MODIFIES: RAX RCX RDX RDI RSI
; CALLS: SYSCALL sys_write
; DESCRIPTION: The hex dump line string DumpLine is displayed to stdout
; using SYSCALL sys_write.

PrintLine:
 ; Alas, we don't have pushad anymore.
 push rax ; Push caller's registers
 push rbx
 push rcx ; Used by syscall
 push rdx
 push rsi
 push rdi
 push r11 ; Used by syscall

 mov rax,1 ; Specify sys_write call
 mov rdi,1 ; Specify File Descriptor 1: Standard output
 mov rsi,DumpLine ; Pass offset of line string
 mov rdx,FULLLEN ; Pass size of the line string
 syscall ; Make system call to display line string

 pop r11 ; Restore callers registers
 pop rdi
 pop rsi
 pop rdx
 pop rcx
 pop rbx
 pop rax
 ret ; Go home!

;‐
; LoadBuff: Fills a buffer w. data from stdin via syscall sys_read
; UPDATED: 5/9/2023
; IN: Nothing
; RETURNS: # of bytes read in R15
; MODIFIES: RAX, RDX, RSI, RDI, RCX, R15, Buff
; CALLS: syscall sys_read
; DESCRIPTION: Loads a buffer full of data (BUFFLEN bytes) from stdin
; using syscall sys_read and places it in Buff. Buffer
; oin on a new buffer full of data. Caller must test value
; in R15: If R15 contains 0 on return, we've hit EOF on
; stdin. Less than 0 in R15 on return indicates some kind
; of error.

350 Chapter 10 ■ Dividing and Conquering

LoadBuff:
 push rax ; Save caller's RAX
 push rdx ; Save caller's RDX
 push rsi ; Save caller's RSI
 push rdi ; Save caller's RDI

 mov rax,0 ; Specify sys_read call
 mov rdi,0 ; Specify File Descriptor 0: Standard Input
 mov rsi,Buff ; Pass offset of the buffer to read to
 mov rdx,BUFFLEN ; Pass number of bytes to read at one pass
 syscall ; Call syscall's sys_read to fill the buffer
 mov r15,rax ; Save # of bytes read from file for later
 xor rcx,rcx ; Clear buffer pointer RCX to 0

 pop rdi ; Restore caller's RDI
 pop rsi ; Restore caller's RSI
 pop rdx ; Restore caller's RDX
 pop rax ; Restore caller's RAX
 ret ; And return to caller

There are two lines of global identifier declarations, each line with its own
GLOBAL directive. As a convention in my own work, I separate declarations of
procedures and named data items and give each their own line. (Of course,
since GLOBAL declarations can’t cross a text line, you may need more than just
two lines if you have lots of globals to export.)

GLOBAL Buff, DumpLine, ASCLine, HexDigits, BinDigits
GLOBAL ClearLine, DumpChar, NewLines, PrintLine, LoadBuff

Any procedure or data item that is to be exported (that is, made available
outside the module) must be declared on a line after a GLOBAL directive. You
don’t have to declare everything in a module global. In fact, one way to manage
complexity and prevent certain kinds of bugs is to think hard about and strictly
limit what other modules can “see” inside their fellow modules. A module can
have “private” procedures and named data items that can be referenced only
inside the module. Making these items private is in fact the default: Just don’t
declare them global.

Note well that all items declared global must be declared global before they
are defined in the source code. In practice, this means that you need to declare
global procedures at the top of the .text section, before any of the procedures
are actually defined. Similarly, all global named data items must be declared
in the .data section before the data items are defined.

Equates can be exported from modules, though this is an innovation of the
NASM assembler and not necessarily true of all assemblers. I think it’s risky,

 Chapter 10 ■ Dividing and Conquering 351

and instead of exporting equates, I define named variables to contain values
defined by equates:

DumpLength: dq DUMPLEN
ASCLength: dq ASCLEN
FullLength: dq FULLLEN
BuffLength: dq BUFFLEN

If you want them to be exported, declare the variables GLOBAL. Note that the
examples shown are not exported from textlib.asm and are just intended to
illustrate the technique.

Linking Libraries into Your Programs
For all the previous example programs presented in this book, the makefiles
are fairly simple. Here, for example, is the makefile for the hexdump2 program:

hexdump2: hexdump2.o
 ld ‐ o hexdump2 hexdump2.o
hexdump2.o: hexdump2.asm
 nasm ‐ f elf64 ‐ g ‐ F dwarf hexdump2.asm

The linker invocation converts HEXDUMP2.O into the executable file hexdump2,
and that’s all it has to do. Adding a library file complicates the picture slightly.
The linker must now do some actual linking of multiple files. Additional library
files in the .o format are added to the linker invocation after the name of the
main program’s linkable file. There can be any (reasonable) number of .o files
in a link step. To build hexdump3, we need only two. Here is the makefile for
hexdump3:

hexdump3: hexdump3.o
 ld ‐ o hexdump3 hexdump3.o ../textlib/textlib.o
hexdump3.o: hexdump3.asm
 nasm ‐ f elf64 ‐ g ‐ F dwarf hexdump3.asm

The textlib.o file is simply placed on the linker invocation line after the .o
file for the program itself. There is one wrinkle in the previous makefile: The
library file is on a path relative to the directory containing the hexdump3 project.
Placing ../textlib/ in front of the textlib.o filename allows the linker to
reach “up, across, and down” through the Linux file system into the project
directory for the library. Otherwise, you’d have to place textlib.o in the same
directory as hexdump3.o, or else copy it to a directory under usr/lib, which is
on the default search path.

352 Chapter 10 ■ Dividing and Conquering

A directory under usr/lib would actually be a very good place for it, once
it’s finished and thoroughly tested— for large values of “thoroughly.” While you’re
still actively working on a library, it’s best to keep it in a project directory of its
own within the same directory tree as all your other project directories so you
can fix bugs and add features that don’t occur to you until you’ve used it for a
while building other programs.

The Dangers of Too Many Procedures and Too Many Libraries
In assembly programming as in life, there can be too much of a good thing.
I’ve seen code libraries that consist of hundreds of files, each file containing a
single procedure. These are not procedures that stand alone, either. They call
one another right and left, in a thick web of execution that is very difficult to
trace at the source code level, especially if you’ve inherited such a library from
someone else and must get a grip (often very quickly) on how the mechanisms
implemented by the library actually work. Absent very detailed text documen-
tation, there’s no “view from a height” to help you grasp what calls what from
where. If the library came from somewhere else and is used like a “black box,”
that may not be a catastrophe, though I still like to know how any libraries that
I use work.

There is, alas, a valid reason for creating single‐ procedure libraries like this:
When you link a library to a program, the whole library is added to the executable
file, even those procedures and data definitions that are never referenced from
the main program. If every procedure is assembled separately into its own cozy
little .o file, the linker will add only those procedures to your program that will
actually be called by (and thus executed by) the program.

Much depends on where your code ends up. If your goal is the smallest
possible executable file, this is significant, and there are some continents in
the assembly language world (especially those relating to embedded systems)
where every byte counts and “dead code” that never runs adds needless cost
to the low‐ end hardware on which the code must run.

Assembly language code size won’t be an issue on ordinary Linux PCs with 16
gigabytes of memory and a terabyte of disk. If that’s where your code will run,
you may be better off having fewer libraries and more comprehensible source
code, even if you end up with a few thousand bytes of code in your executable
files that never actually meet the CPU face‐ to‐ face.

The Art of Crafting Procedures

There’s a little more to creating procedures than simply slicing out a section of
code from one of your programs and making a CALL and RET sandwich out of it.
The primary purpose of the whole idea of procedures is to make your code more

 Chapter 10 ■ Dividing and Conquering 353

maintainable, by gathering together instructions that serve a common purpose
into named entities. Don’t forget about the Martians and how they abducted
my hapless APL text formatter in 1977. Maintainability is probably the single
toughest nut to crack in software design, and maintainability depends utterly
on comprehensibility. The whole idea in crafting libraries of procedures is to
make your code comprehensible— primarily to you but very possibly to other
people who may inherit or will attempt to use your code.

So in this section, I’m going to talk a little bit about how to think about pro-
cedures and the process of their creation, with code maintainability in mind.

Maintainability and Reuse
The single most important purpose of procedures is to manage complexity in
your programs by replacing a sequence of machine instructions with a descrip-
tive name. The close runner‐ up is code reuse. There’s no point in writing the
same common mechanisms from scratch every time you begin a new project.
Write ’em once, write ’em well, and use ’em forever.

The two purposes interact. Code reuse aids code maintainability in several ways:

 ■ Reuse means that there is less code in total to maintain across the breadth
of all your projects.

 ■ Reuse maintains your time and effort invested in debugging.

 ■ Reuse forces you to maintain certain coding conventions across your pro-
jects over time (because your libraries require it), which gives your projects
a “family resemblance” to one another that makes them easier to grasp
after you’ve been away from them for a while.

 ■ Reuse means that you will have fewer code sequences that do pretty much
the same thing but in slightly different ways.

This last point is subtle but important. When you’re debugging, what you’re
constantly referring to in the back of your head is an understanding of how each
section of your program works. You’d like this understanding to be unique to
every program that you write, but it doesn’t work that way. Memory is imprecise,
and memories of separate but very similar things tend to blur together after a
period of time. (Quick: Is that a 2001 Toyota 4Runner or a 2003 Toyota 4Runner?)
In programming, details matter crucially, and in assembly language program-
ming, there are lots of details. If you scratch‐ wrote a RefreshText procedure three
times for three different programs that differ in only minor ways, you may be
relying on an understanding of one RefreshText implementation while staring
at another. The further back in time these similar‐ but‐ not‐ identical procedures
go, the more likely you are to confuse them and waste time sorting out the little
quirks of how each one operates.

354 Chapter 10 ■ Dividing and Conquering

If there’s only one RefreshText procedure, however, there’s only one under-
standing of RefreshText to be had. All of the reuse advantage points mentioned
cook down to this: managing complexity by simply reducing the amount of
complexity that must be managed.

Deciding What Should Be a Procedure
So when should a block of instructions be pulled out and made a procedure?
There are no hard‐ and‐ fast rules, but here are some useful heuristics that are
worth discussing:

 ■ Look for actions that happen a lot within a program.

 ■ Look for actions that may not happen a lot within any single program but
that tend to happen in the same ways in many or most programs.

 ■ When programs get large (and by “large” I mean beyond the tutorial book
demo class; let’s say 1,000 lines or so), look for functional blocks that can
be made into procedures so that the overall flow of execution in the main
program becomes shorter, simpler, and thus easier to understand. (More
on this in a moment.)

 ■ Look for actions within a program that may change over time in response
to forces outside your control (data specifications, third‐ party libraries,
things like that) and isolate those actions in procedures.

In short: Think big, and think long‐ term. You aren’t going to be a beginner
forever. Try to anticipate your programming efforts “down the road” and create
procedures of general usefulness. “General” here means not only useful within
the single program you happen to be working on right now, but also useful in
programs that you will be writing in the future.

There’s no “minimum size” for procedures if they’re called frequently enough.
Extremely simple procedures— even ones with as few as four or five instructions—
don’t themselves hide a great deal of complexity. They do give certain frequently
used actions descriptive names, which is valuable in itself. They can also provide
standard basic building blocks for the creation of larger and more powerful pro-
cedures. That said, a short code sequence (5 to 10 instructions) that is called only
once or perhaps twice within a middling program of several hundred machine
instructions is a poor candidate for being a procedure, unless it is a candidate
for reuse in future programs. Then it belongs in a code library, and code can’t
be in a library unless it’s in a procedure.

There isn’t any “maximum size” for procedures either, and there are circum-
stances where very large procedures make sense, if they serve some well‐ defined
purpose. Remember that procedures don’t always need to be in libraries. You
may find it useful to define large procedures that are called only once when your
program becomes big enough to require breaking it down into functional chunks

 Chapter 10 ■ Dividing and Conquering 355

for comprehensibility’s sake. A thousand‐ line assembly language program might
split well into a sequence of seven or eight largish procedures. Each procedure
is meant to be called only once from the main program, but this allows your
main program to be short, easily graspable, and very indicative of what the
program is doing:

Start: call Initialize ; Open spec files, create buffers
 call OpenFile ; Open the target data file
Input: call GetRec ; Fetch a record from the open file
 cmp rax,0 ; Test for EOF on file read
 je Done ; If we've hit EOF, time to shut 'er down
 call ProcessRec ; Crunch the rec
 call VerifyRec ; Validate the modified data against the spec
 call WriteRec ; Write the modified record out to the file
 jmp Input ; Go back and do it all again
Done: call CloseFile ; Close the opened file
 call CleanUp ; Delete the temp files
 mov rax,60 ; Code for Exit system call
 mov rdi,0 ; Return a code of zero
 syscall ; Make system call

This (imaginary) program body is clean and readable and provides a necessary
view from a height when you begin to approach a thousand‐ line assembly lan-
guage program. Remember that the Martians are always hiding somewhere
close by, anxious to turn your programs into unreadable hieroglyphics.

There’s no weapon against them with half the power of procedures.

Use Comment Headers!
As time goes on, you’ll find yourself creating dozens or even hundreds of pro-
cedures in the cause of managing complexity. The libraries of “canned” proce-
dures that most high‐ level language vendors supply with their compilers just
don’t exist with NASM. By and large, when you need some function or another,
you’ll have to write it yourself.

Keeping such a list of routines straight is no easy task when you’ve written
them all yourself. You must document the essential facts about each individual
procedure or you’ll forget them, or you’ll remember them incorrectly and act on
bad information. (The resultant bugs are often devilishly hard to find because
you’re sure you remember everything there is to know about that procedure!
After all, you wrote it!)

I powerfully recommend adding a comment header to every procedure you
write, no matter how simple. Such a header should at the very least contain the
following information:

 ■ The name of the procedure

 ■ The date it was last modified

356 Chapter 10 ■ Dividing and Conquering

 ■ The name of each entry point, if the procedure has multiple entry points

 ■ What the procedure does

 ■ What data items the caller must pass to it to make it work correctly

 ■ What data (if any) is returned by the procedure, and where that data is
returned (for example, in register RCX)

 ■ What registers or data items the procedure modifies

 ■ What other procedures, if any, are called by the procedure

 ■ Any “gotchas” that need to be kept in mind while writing code that uses
the procedure

 ■ In addition to that, other information is sometimes helpful in comment
headers:

 ■ The version of the procedure, if you use versioning

 ■ The date it was created

 ■ The name of the person who wrote the procedure, if you’re dealing
with code shared within a team

A typical workable procedure header might look something like this:

;‐
; LoadBuff: Fills a buffer with data from stdin via syscall sys_read
; UPDATED: 10/9/2022
; IN: Nothing
; RETURNS: # of bytes read in RAX
; MODIFIES: RCX, R15, Buff
; CALLS: syscall sys_read
; DESCRIPTION: Loads a buffer full of data (BUFFLEN bytes) from stdin
; using syscall sys_read and places it in Buff. Buffer
; offset counter RCX is zeroed, because we're starting in
; on a new buffer full of data. Caller must test value in
; RAX: If RAX contains 0 on return, we hit EOF on stdin.
; < 0 in RAX on return indicates some kind of error.

A comment header does not relieve you of the responsibility of commenting
the individual lines of code within the procedure! As I’ve said many times,
it’s a good idea to put a short comment to the right of every line that contains
a machine instruction mnemonic, and also (in longer procedures) a comment
block describing every major functional block within the procedure.

Simple Cursor Control in the Linux Console

As a segue from assembly language procedures into assembly language macros,
I’d like to spend a little time on the details of controlling the Linux console display
from within your programs. Let’s return to our little greasy‐ spoon advertising

 Chapter 10 ■ Dividing and Conquering 357

display for Joe’s diner. Let’s goose it up a little, first clearing the Linux console
and then centering the ad text on the cleared display. I’m going to present the
same program twice, first with several portions expressed as procedures and
later with the same portions expressed as macros.

Procedures first, as shown in Listing 10.6.

Listing 10.6: eattermgcc.asm

; Executable name : eattermgcc
; Version : 2.0
; Created date : 6/18/2022
; Last update : 5/10/2023
; Author : Jeff Duntemann
; Description : A simple program in assembly for Linux, using
; : NASM 2.15, demonstrating the use of escape
; : sequences to do simple "full‐ screen" text output
; : to a terminal like Konsole.
;
; Build using SASM's x64 build configuration.
;
; Run by executing the executable binary file.
;

section .data ; Section containing initialised data

 SCRWIDTH equ 80 ; Default is 80 chars wide
 PosTerm: db 27,"[01;01H" ; <ESC>[<Y>;<X>H
 POSLEN equ $‐ PosTerm ; Length of term position string
 ClearTerm: db 27,"[2J" ; <ESC>[2J
 CLEARLEN equ $‐ ClearTerm ; Length of term clear string
 AdMsg: db "Eat At Joe's!" ; Ad message
 ADLEN equ $‐ AdMsg ; Length of ad message
 Prompt: db "Press Enter: " ; User prompt
 PROMPTLEN equ $‐ Prompt ; Length of user prompt

; This table gives us pairs of ASCII digits from 0‐ 80. Rather than
; calculate ASCII digits to insert in the terminal control string,
; we look them up in the table and read back two digits at once to
; a 16‐ bit register like DX, which we then poke into the terminal
; control string PosTerm at the appropriate place. See GotoXY.
; If you intend to work on a larger console than 80 X 80, you must
; add additional ASCII digit encoding to the end of Digits. Keep in
; mind that the code shown here will only work up to 99 X 99.
 Digits: db "0001020304050607080910111213141516171819"
 db "2021222324252627282930313233343536373839"
 db "4041424344454647484950515253545556575859"
 db "606162636465666768697071727374757677787980"

SECTION .bss ; Section containing uninitialized data

358 Chapter 10 ■ Dividing and Conquering

SECTION .text ; Section containing code

;‐
; ClrScr: Clear the Linux console
; UPDATED: 9/13/2022
; IN: Nothing
; RETURNS: Nothing
; MODIFIES: Nothing
; CALLS: SYSCALL sys_write
; DESCRIPTION: Sends the predefined control Estring <ESC>[2J to the
; console, which clears the full display

ClrScr:
 push rax ; Save pertinent registers
 push rbx
 push rcx
 push rdx
 push rsi
 push rdi

 mov rsi,ClearTerm ; Pass offset of terminal control string
 mov rdx,CLEARLEN ; Pass the length of terminal control string
 call WriteStr ; Send control string to console

 pop rdi ; Restore pertinent registers
 pop rsi
 pop rdx
 pop rcx
 pop rbx
 pop rax
 ret ; Go home

;‐
; GotoXY: Position the Linux Console cursor to an X,Y position
; UPDATED: 9/13/2022
; IN: X in AH, Y in AL
; RETURNS: Nothing
; MODIFIES: PosTerm terminal control sequence string
; CALLS: Kernel sys_write
; DESCRIPTION: Prepares a terminal control string for the X,Y
; coordinates passed in AL and AH and calls sys_write
; to position the console cursor to that X,Y position.
; Writing text to the console after calling GotoXY will
; begin display of text at that X,Y position.

GotoXY:
 push rax ; Save caller's registers
 push rbx
 push rcx

 Chapter 10 ■ Dividing and Conquering 359

 push rdx
 push rsi

 xor rbx,rbx ; Zero RBX
 xor rcx,rcx ; Ditto RCX

; Poke the Y digits:
 mov bl,al ; Put Y value into scale term RBX
 mov cx,[Digits+rbx*2] ; Fetch decimal digits to CX
 mov [PosTerm+2],cx ; Poke digits into control string

; Poke the X digits:
 mov bl,ah ; Put X value into scale term EBX
 mov cx,[Digits+rbx*2] ; Fetch decimal digits to CX
 mov [PosTerm+5],cx ; Poke digits into control string

; Send control sequence to stdout:
 mov rsi,PosTerm ; Pass address of the control string
 mov rdx,POSLEN ; Pass the length of the control string
 call WriteStr ; Send control string to the console

; Wrap up and go home:
 pop rsi ; Restore caller's registers
 pop rdx
 pop rcx
 pop rbx
 pop rax
 ret ; Go home

;‐
; WriteCtr: Send a string centered to an 80‐ char wide Linux console
; UPDATED: 5/10/2023
; IN: Y value in AL, String addr. in RSI, string length in RDX
; RETURNS: Nothing
; MODIFIES: PosTerm terminal control sequence string
; CALLS: GotoXY, WriteStr
; DESCRIPTION: Displays a string to the Linux console centered in an
; 80‐ column display. Calculates the X for the passed‐ in
; string length, then calls GotoXY and WriteStr to send
; the string to the console

WriteCtr:
 push rbx ; Save caller's RBX
 xor rbx,rbx ; Zero RBX
 mov bl,SCRWIDTH ; Load the screen width value to BL
 sub bl,dl ; Take diff. of screen width and string length
 shr bl,1 ; Divide difference by two for X value
 mov ah,bl ; GotoXY requires X value in AH
 call GotoXY ; Position the cursor for display
 call WriteStr ; Write the string to the console

360 Chapter 10 ■ Dividing and Conquering

 pop rbx ; Restore caller's RBX
 ret ; Go home

;‐
; WriteStr: Send a string to the Linux console
; UPDATED: 5/10/2023
; IN: String address in RSI, string length in RDX
; RETURNS: Nothing
; MODIFIES: Nothing
; CALLS: Kernel sys_write
; DESCRIPTION: Displays a string to the Linux console through a
; sys_write kernel call

WriteStr:
 push rax ; Save pertinent registers
 push rdi
 mov rax,1 ; Specify sys_write call
 mov rdi,1 ; Specify File Descriptor 1: Stdout
 syscall ; Make the kernel call
 pop rdi ; Restore pertinent registers
 pop rax
 ret ; Go home

global main

main:
 push rbp ; Prolog
 mov rbp, rsp ; for correct debugging

; First we clear the terminal display...
 call ClrScr

; Then we post the ad message centered on the 80‐ wide console:
 xor rax,rax ; Zero out RAX.
 mov al,12
 mov rsi,AdMsg
 mov rdx,ADLEN
 call WriteCtr

; Position the cursor for the "Press Enter" prompt:
 mov rax,0117h ; X,Y = 1,23 as a single hex value in AX
 call GotoXY ; Position the cursor

; Display the "Press Enter" prompt:
 mov rsi,Prompt ; Pass offset of the prompt
 mov rdx,PROMPTLEN ; Pass the length of the prompt
 call WriteStr ; Send the prompt to the console

 Chapter 10 ■ Dividing and Conquering 361

; Wait for the user to press Enter:
 mov rax,0 ; Code for sys_read
 mov rdi,0 ; Specify File Descriptor 0: Stdin
 syscall ; Make kernel call

; And we're done!
Exit:
 pop rbp
 ret

There’s some new machinery here. All the programs I’ve presented so far
in this book simply send lines of text sequentially to standard output, and the
console displays them sequentially, each line on the next line down, scrolling
up from the bottom.

This can be very useful, but it isn’t the best we can do. Back in Chapter 6,
I briefly describe the way that the Linux console can be controlled by send-
ing it “escape sequences” embedded in the stream of text traveling from your
program to stdout. It would be useful to reread that “Terminal Control with
Escape Sequences” section if it’s been a while, as I won’t recap deeply here.

The simplest example of an escape sequence for controlling the console clears
the entire console display to blanks. (Basically, space characters.) In the eatter-
mgcc program, this sequence is a string variable called ClearTerm:

ClearTerm: db 27,"[2J" ; <ESC>[2J

The escape sequence is four characters long. It begins with ESC, a nonprintable
character that we usually describe by its decimal value in the ASCII table, 27.
(Or hex, which is 1Bh.) Immediately following the ESC character are the three
printable characters: [2J. They’re printable, but they’re not printed because they
follow ESC. The console watches for ESC characters and interprets any charac-
ters following ESC in a special way, according to a large and very complicated
scheme. Particular sequences represent particular commands to the console,
like this one, which clears the display.

There is no marker at the end of an escape sequence to indicate that the
sequence is finished. The console knows each and every escape sequence to the
letter, including how long each is, and there are no ambiguities. In the case of
the ClearTerm sequence, the console knows that when it sees the “J” character,
the sequence is complete. It then clears its display and resumes displaying
characters that your program sends to stdout.

Nothing special has to be done in terms of sending an escape sequence to
the console. The escape sequence goes to stdout by way of SYSCALL, just as all
other text does. You can embed escape sequences in the middle of printable text
by careful arrangement of DB directives in the .text sections of your programs.
This is important: Even though escape sequences are not shown on the console
display, they must still be counted when you pass the length of a text sequence
to sys_write via SYSCALL.

362 Chapter 10 ■ Dividing and Conquering

The escape sequence to clear the display is easy to understand, because it’s
always the same and always does the same thing. The sequence that positions
the cursor is a lot trickier, because it takes parameters that specify the X,Y posi-
tion to which the cursor is to be moved. Each of these parameters is a two‐ digit
textual decimal number in ASCII that must be embedded in the sequence by
your program before the sequence is sent to stdout. All of the trickiness in
moving the cursor around the Linux console involves embedding those X and
Y parameters in the escape sequence.

The default sequence as defined in eattermgcc is called PosTerm:

PosTerm: db 27,"[01;01H" ; <ESC>[<Y>;<X>H

As with ClearTerm, it begins with an ESC character. Sandwiched between the
[character and the H character are the two parameters. The Y value comes first
and is separated from the X value by a semicolon. Note well that these are not
binary numbers, but two ASCII characters representing decimal numeric digits,
in this case, ASCII 48 (0) and ASCII 49 (1). You can’t just poke the binary value
1 into the escape sequence. The console doesn’t understand the binary value 1
as ASCII 49. Binary values for the X and Y positions must be converted to their
ASCII equivalents and then inserted into the escape sequence.

This is what the GotoXY procedure does. Binary values are converted to their
ASCII equivalents by looking up the ASCII characters in a table. The Digits table
presents two‐ digit ASCII representations of numeric values from 0 through 80.
Values less than 10 have leading zeros, as in 01, 02, 03, and so on. Here’s where
the magic happens inside GotoXY:

; Poke the Y digits:
 mov bl,al ; Put Y value into scale term RBX
 mov cx,[Digits+rbx*2] ; Fetch decimal digits to CX
 mov [PosTerm+2],cx ; Poke digits into control string

; Poke the X digits:
 mov bl,ah ; Put X value into scale term EBX
 mov cx,[Digits+rbx*2] ; Fetch decimal digits to CX
 mov [PosTerm+5],cx ; Poke digits into control string

The X,Y values are passed in the two 8‐ bit registers AL and AH. Each is placed
in a cleared RBX that becomes a term in an effective address starting at Digits.
Because each element of the Digits table is two characters in size, we have to
scale the offset by two.

The trick (if there is one) is bringing down both ASCII digits with one memory
reference and placing them in 16‐ bit register CX. With the two ASCII digits in
CX, we then poke them both simultaneously into their proper position in the
escape sequence string. The Y value begins at offset 2 into the string, and the X
value begins at offset 5.

 Chapter 10 ■ Dividing and Conquering 363

Once the PosTerm string has been modified for a particular X,Y coordinate
pair, the string is sent to stdout and interpreted by the console as an escape
sequence that controls the cursor position. The next character sent to the console
will appear at the new cursor position, and subsequent characters will follow
at subsequent positions until and unless another cursor control sequence is
sent to the console.

Make sure when you run programs that issue cursor control codes that your
console window is larger than the maximum X and Y values that your cursor
will take on, or else the lines will fold, and nothing will show up quite where
you intend it to. The eattermgcc program has a Digits table good up to 80 × 80.
If you want to work across a larger display, you’ll have to expand the Digits
table with ASCII equivalents of two‐ digit values up to 99. Because of the way
the table is set up and referenced, you can only fetch two‐ digit values, and thus
with the code shown here you’re limited to a 99 × 99 character console.

This isn’t a serious problem, since text‐ mode screens in Linux generally respect
the ancient text‐ terminal standard of 80 × 24.

Console Control Cautions
This all sounds great— but it isn’t quite as great as it sounds. The very fundamental
control sequences like clearing the display and moving the cursor are probably
universal and will likely work identically on any Linux console you might find.
Certainly they work on GNOME Terminal and Konsole, the two most popular
console terminal utilities for Debian‐ based Linux distros.

Unfortunately, the history of Unix terminals and terminal control is a very
spotted story, and for the more advanced console control functions, the sequences
may not be supported or may be different from one console implementation to
another. To ensure that everything works, your programs would have to probe
the console to find out what terminal spec it supports, and then issue escape
sequences accordingly.

This is a shame. In Konsole, the following escape sequence turns the console
background green:

GreenBack: db 27,"[42m"

At least it does in Konsole. How universal this sequence and others like it
are, I just don’t know. Ditto the multitude of other console control commands,
through which you can turn the PC keyboard LEDs on and off, alter foreground
colors, display with underlining, and so on. More on this (in the terse Unix style)
can be found in the Linux man pages under the keyword “console_codes.”
I encourage you to experiment, keeping in mind that different consoles (espe-
cially those on non‐ Linux Unix implementations) may react in different ways
to different sequences.

364 Chapter 10 ■ Dividing and Conquering

Still, controlling console output isn’t the worst of it. The holy grail of console
programming is to create full‐ screen text applications that “paint” a form on the
console, complete with data entry fields, and then allow the user to tab from one
field to another, entering data in each field. This is made diabolically difficult
in Linux by the need to access individual keystrokes at the console keyboard,
through something called raw mode. Even explaining how raw mode works
would take most of a chapter and involve a lot of fairly advanced Linux topics,
for which I don’t have space in this book.

The standard Unix way to deal with the console is a C library called ncurses,
and while ncurses may be called from assembly, it’s a fat and ugly thing indeed.
A better choice for assembly programmers is a much newer library written spe-
cifically for NASM assembly, called LinuxAsmTools. It was originally written
by Jeff Owens and does nearly all of what ncurses does without C’s brute‐ force
calling conventions and other boatloads of C cruft. LinuxAsmTools is free and
open‐ source. Alas, you may have to hunt for it. Do a Google search for “Linux
ASM Tools” and you should find a link, most likely to GitHub. The library has
moved several times since I first discovered it in the mid‐ oughts, and I suspect
it will move again.

Creating and Using Macros

There is more than one way to split an assembly language program into more
manageable chunks. Procedures are the most obvious way and certainly the
easiest to understand. The mechanism for calling and returning from procedures
is built right into the CPU and is independent of any given assembler product.

Today’s major assemblers provide another complexity‐ management tool:
macros. Macros are a different breed of cat entirely. Whereas procedures are
implemented by the use of the CALL and RET instructions built right into the
instruction set, macros are a trick of the assembler and do not depend on any
particular instruction or group of instructions.

Most simply put, a macro is a label that stands for some sequence of text lines.
This sequence of text lines can be (but is not necessarily) a sequence of instruc-
tions. When the assembler encounters the macro label in a source code file, it
replaces the macro label with the text lines that the macro label represents. This
is called expanding the macro, because the name of the macro (occupying one
text line) is replaced by several lines of text, which are then assembled just as
though they had appeared in the source code file all along. (Of course, a macro
doesn’t have to be several lines of text. It can be only one— but then there’s a
lot less advantage to using them!)

Macros bear some resemblance to include files, like those I explained earlier
in this chapter. You might think of a macro as an include file that’s built into

 Chapter 10 ■ Dividing and Conquering 365

the source code file. It’s a sequence of text lines that is defined once, given a
descriptive name, and then dropped into the source code again and again as
needed by simply using the macro’s name.

This process is shown in Figure 10.4. The source code as stored on disk has
a definition of the macro, bracketed between the %MACRO and %ENDMACRO direc-
tives. Later in the file, the name of the macro appears several times. When the
assembler processes this file, it copies the macro definition into a buffer some-
where in memory. As it assembles the text read from disk, the assembler drops
the statements contained in the macro into the text wherever the macro name
appears. The disk file is not affected; the expansion of the macros occurs only
in memory.

Figure 10.4: How macros work

366 Chapter 10 ■ Dividing and Conquering

The Mechanics of Macro Definition
A macro definition looks a little like a procedure definition, framed between a
pair of special NASM directives: %MACRO and %ENDMACRO. Note that the %ENDMACRO
directive is on the line after the last line of the macro. Don’t make the mistake
of treating %ENDMACRO like a label that marks the macro’s last line.

One minor shortcoming of macros vis‐ à‐ vis procedures is that macros can
have only one entry point. A macro, after all, is a sequence of code lines that are
inserted into your program in the midst of the flow of execution. You don’t call
a macro, and you don’t return from it. The CPU runs through it just as the CPU
runs through any sequence of instructions.

Many or most procedures may be expressed as macros with a little care. In
Listing 10.7, I’ve taken the program from Listing 10.6 and converted all the proce-
dures to macros so that you can see the differences between the two approaches.

Listing 10.7: eatmacro.asm

; Executable name : eatmacro
; Version : 2.0
; Created date : 10/11/2022
; Last update : 5/10/2023
; Author : Jeff Duntemann
; Description : A simple program in assembly for Linux, using
; : NASM 2.14.2, demonstrating the use of escape
; : escape sequences to do simple "full‐ screen" text
; ; output through macros rather than procedures
;
; Build using these commands:
; nasm ‐ f elf ‐ g ‐ F dwarf eatmacro.asm
; ld ‐ o eatmacro eatmacro.o
;
;
section .data ; Section containing initialised data

 SCRWIDTH: equ 80 ; By default 80 chars wide
 PosTerm: db 27,"[01;01H" ; <ESC>[<Y>;<X>H
 POSLEN: equ $‐ PosTerm ; Length of term position string
 ClearTerm: db 27,"[2J" ; <ESC>[2J
 CLEARLEN equ $‐ ClearTerm ; Length of term clear string
 AdMsg: db "Eat At Joe's!" ; Ad message
 ADLEN: equ $‐ AdMsg ; Length of ad message
 Prompt: db "Press Enter: " ; User prompt
 PROMPTLEN: equ $‐ Prompt ; Length of user prompt

; This table gives us pairs of ASCII digits from 0‐ 80. Rather than
; calculate ASCII digits to insert in the terminal control string,
; we look them up in the table and read back two digits at once to
; a 16‐ bit register like DX, which we then poke into the terminal
; control string PosTerm at the appropriate place. See GotoXY.

 Chapter 10 ■ Dividing and Conquering 367

; If you intend to work on a larger console than 80 X 80, you must
; add additional ASCII digit encoding to the end of Digits. Keep in
; mind that the code shown here will only work up to 99 X 99.
 Digits: db "0001020304050607080910111213141516171819"
 db "2021222324252627282930313233343536373839"
 db "4041424344454647484950515253545556575859"
 db "606162636465666768697071727374757677787980"

SECTION .bss ; Section containing uninitialized data

SECTION .text ; Section containing code

;‐
; ExitProg: Terminate program and return to Linux
; UPDATED: 10/11/2022
; IN: Nothing
; RETURNS: Nothing
; MODIFIES: Nothing
; CALLS: Kernel sys_exit
; DESCRIPTION: Calls syscall sys_edit to terminate the program and
; return control to Linux

%macro ExitProg 0
 mov rsp,rbp ; Stack alignment epilog
 pop rbp

 mov rax,60 ; 60 = exit the program
 mov rdi,0 ; Return value in rdi 0 = nothing to return
 syscall ; Call syscall sys_exit to return to Linux
%endmacro

;‐
; WaitEnter: Wait for the user to press Enter at the console
; UPDATED: 10/11/2022
; IN: Nothing
; RETURNS: Nothing
; MODIFIES: Nothing
; CALLS: Kernel sys_read
; DESCRIPTION: Calls sys_read to wait for the user to type a newline
; at the console

%macro WaitEnter 0
 mov rax,0 ; Code for sys_read
 mov rdi,0 ; Specify File Descriptor 0: Stdin
 syscall ; Make kernel call
%endmacro

368 Chapter 10 ■ Dividing and Conquering

;‐
; WriteStr: Send a string to the Linux console
; UPDATED: 5/10/2023
; IN: String address in %1, string length in %2
; RETURNS: Nothing
; MODIFIES: Nothing
; CALLS: Kernel sys_write
; DESCRIPTION: Displays a string to the Linux console through a
; sys_write kernel call

%macro WriteStr 2 ; %1 = String address; %2 = string length
 push r11 ; Save pertinent registers
 push rax
 push rcx
 mov rax,1 ; 1 = sys_write for syscall
 mov rdi,1 ; 1 = fd for stdout; i.e., write to the terminal window
 mov rsi,%1 ; Put address of the message string in rsi
 mov rdx,%2 ; Length of string to be written in rdx
 syscall ; Make the system call
 pop rcx
 pop rax
 pop r11
%endmacro

;‐
; ClrScr: Clear the Linux console
; UPDATED: 5/10/2023
; IN: Nothing
; RETURNS: Nothing
; MODIFIES: Nothing
; CALLS: Kernel sys_write
; DESCRIPTION: Sends the predefined control string <ESC>[2J to the
; console, which clears the full display

%macro ClrScr 0
 push rax ; Save pertinent registers
 push rbx
 push rcx
 push rdx
 push rsi
 push rdi
; Use WriteStr macro to write control string to console:
 WriteStr ClearTerm,CLEARLEN
 pop rdi ; Restore pertinent registers
 pop rsi
 pop rdx
 pop rcx
 pop rbx
 pop rax
%endmacro

 Chapter 10 ■ Dividing and Conquering 369

;‐
; GotoXY: Position the Linux Console cursor to an X,Y position
; UPDATED: 10/11/2022
; IN: X in %1, Y in %2
; RETURNS: Nothing
; MODIFIES: PosTerm terminal control sequence string
; CALLS: Kernel sys_write
; DESCRIPTION: Prepares a terminal control string for the X,Y
; coordinates passed in AL and AH and calls sys_write to
; position the console cursor to that X,Y position.
; Writing text to the console after calling GotoXY will
; begin display of text at that X,Y position.

%macro GotoXY 2 ; %1 is X value; %2 id Y value
 push rdx ; Save caller's registers
 push rcx
 push rbx
 push rax
 push rsi
 push rdi
 xor rdx,rdx ; Zero EDX
 xor rcx,rcx ; Ditto ECX
; Poke the Y digits:
 mov dl,%2 ; Put Y value into offset term EDX
 mov cx,[Digits+rdx*2] ; Fetch decimal digits to CX
 mov [PosTerm+2],cx ; Poke digits into control string
; Poke the X digits:
 mov dl,%1 ; Put X value into offset term EDX
 mov cx,[Digits+rdx*2] ; Fetch decimal digits to CX
 mov [PosTerm+5],cx ; Poke digits into control string
; Send control sequence to stdout:
 WriteStr PosTerm,POSLEN
; Wrap up and go home:
 pop rdi ; Restore caller's registers
 pop rsi
 pop rbx
 pop rcx
 pop rdx
%endmacro

;‐
; WriteCtr: Send a string centered to an 80‐ char wide Linux console
; UPDATED: 5/10/2023
; IN: Y value in %1, String addr. in %2, string length in %3
; RETURNS: Nothing
; MODIFIES: PosTerm terminal control sequence string
; CALLS: GotoXY, WriteStr
; DESCRIPTION: Displays a string to the Linux console centered in an
; 80‐ column display. Calculates the X for the passed‐ in
; string length, then calls GotoXY and WriteStr to send
; the string to the console

370 Chapter 10 ■ Dividing and Conquering

%macro WriteCtr 3 ; %1 = row; %2 = String addr; %3 = String length
 push rbx ; Save caller's RBX
 push rdx ; Save caller's RDX
 mov rdx,%3 ; Load string length into RDX
 xor rbx,rbx ; Zero RBX
 mov bl,SCRWIDTH ; Load the screen width value to BL
 sub bl,dl ; Calc diff. of screen width and string length
 shr bl,1 ; Divide difference by two for X value
 GotoXY bl,%1 ; Position the cursor for display
 WriteStr %2,%3 ; Write the string to the console
 pop rdx ; Restore caller's RDX
 pop rbx ; Restore caller's RBX
%endmacro

global _start ; Linker needs this to find the entry point!

_start:
 push rbp ; Alignment prolog
 mov rbp,rsp
 and rasp,‐ 16

; First we clear the terminal display...
 ClrScr
; Then we post the ad message centered on the 80‐ wide console:
 WriteCtr 12,AdMsg,ADLEN
; Position the cursor for the "Press Enter" prompt:
 GotoXY 1,23
; Display the "Press Enter" prompt:
 WriteStr Prompt,PROMPTLEN
; Wait for the user to press Enter:
 WaitEnter
; Aand we're done!
 ExitProg

Compare the macros in eatmacro with their procedure equivalents in
eattermgcc. They’ve shed their RET instructions (and for those macros that
invoke other macros, their CALL instructions) but for the most part consist of
almost precisely the same code.

Macros are invoked simply by naming them. Again, don’t use the CALL
instruction. Just place the macro’s name on a line:

ClrScr

The assembler will handle the rest.

 Chapter 10 ■ Dividing and Conquering 371

Defining Macros with Parameters
Macros are for the most part a straight text‐ substitution trick, but text substitution
has some interesting and sometimes useful wrinkles. One of these is the ability
to pass parameters to a macro when the macro is invoked.

For example, in eatmacro there’s an invocation of the macro WriteCtr with
three parameters:

WriteCtr 12,AdMsg,ADDLEN

The literal constant 12 is passed “into” the macro and used to specify the
screen row on which the centered text is to be displayed; in this case, line 12
from the top. You could replace the 12 with 3 or 16 or any other number less than
the number of lines currently displayed in the Linux console. (If you attempt
to position the cursor to a line that doesn’t exist in the console, the results are
hard to predict. Typically the text shows up on the bottom line of the display.)
The other two parameters are passed the address and length of the string to
be displayed.

Macro parameters are, again, artifacts of the assembler. They are not pushed
on the stack or set into a shared memory area or anything like that. The param-
eters are simply placeholders for the actual values (called arguments) that you
pass to the macro through its parameters.

Let’s take a closer look at the WriteCtr macro to see how this works:

%macro WriteCtr 3 ; %1 = row; %2 = String addr; %3 = String length
 push rbx ; Save caller's RBX
 push rdx ; Save caller's RDX
 mov rdx,%3 ; Load string length into RDX
 xor rbx,rbx ; Zero RBX
 mov bl,SCRWIDTH ; Load the screen width value to BL
 sub bl,dl ; Calc diff. of screen width and string length
 shr bl,1 ; Divide difference by two for X value
 GotoXY bl,%1 ; Position the cursor for display
 WriteStr %2,%3 ; Write the string to the console
 pop rdx ; Restore caller's RDX
 pop rbx ; Restore caller's RBX
%endmacro

So, where are the parameters? This is another area where NASM differs radi-
cally from Microsoft’s MASM. MASM allows you to use symbolic names— such
as the word Row or StringLength— to stand for parameters. NASM relies on a
simpler system that declares the number of parameters in the definition of the
macro and then refers to each parameter by number within the macro, rather
than by some symbolic name.

372 Chapter 10 ■ Dividing and Conquering

In the definition of macro WriteCtr, the number 3 after the name of the macro
indicates that the assembler is to look for three parameters. This number must
be present— as 0— even when you have a macro like ClrScr with no parame-
ters at all. Every macro must have a parameter count. Down in the definition of the
macro, the parameters are referenced by number. %1 indicates the first parameter
used after the invocation of the macro name WriteCtr. %2 indicates the second
parameter, counting from left to right. %3 indicates the third parameter, and so on.

The actual values passed into the parameters are referred to as arguments. Don’t
confuse the actual values with the parameters. If you understand Pascal, it’s
exactly like the difference between formal parameters and actual parameters. A
macro’s parameters correspond to Pascal’s formal parameters, whereas a macro’s
arguments correspond to Pascal’s actual parameters. The macro’s parameters
are the labels following the name of the macro in the line in which it is defined.
The arguments are the values specified on the line where the macro is invoked.

Macro parameters are a kind of label, and they may be referenced anywhere
within the macro— but only within the macro. In WriteCtr, the %3 parameter
is referenced as an operand to a MOV instruction. The argument passed to the
macro in %3 is thus loaded into register RDX.

Macro arguments may be passed as parameters to other macros. This is
what happens within WriteCtr when WriteCtr invokes the macro WriteStr.
WriteStr takes two parameters, and WriteCtr passes its parameters %2 and %3
to WriteStr as its arguments.

The Mechanics of Invoking Macros
You can pass a literal constant value as an argument to a macro, as the row
value is passed to the macro WriteCtr in the eatmacro program. You can also
pass a register name as an argument. This is legal and a perfectly reasonable
invocation of WriteCtr:

mov al,4
WriteCtr al,AdMsg,ADLEN

Inside the WriteCtr macro, NASM substitutes the name of the AL register
for the %1 parameter:

GotoXY bl,%1 ; Position the cursor for display

becomes

GotoXY bl,al

Note well that all the usual rules governing instruction operands apply.
Parameter %1 can hold only an 8‐ bit argument, because ultimately %1 is loaded
into an 8‐ bit register inside GotoXY. You cannot legally pass register RBP or CX

 Chapter 10 ■ Dividing and Conquering 373

to WriteCtr in parameter %1, because you cannot directly move a 64‐ bit, 32‐ bit,
or 16‐ bit register into an 8‐ bit register.

Similarly, you can pass a bracketed address as an argument:

WriteCtr [RowValue],AdMsg,ADLEN

This assumes, of course, that RowValue is a named variable defined as an
8‐ bit data item. If a macro parameter is used in an instruction requiring a 64‐ bit
argument (as are WriteCtr’s parameters %2 and %3), you can also pass labels
representing 64‐ bit addresses or 64‐ bit numeric values.

When a macro is invoked, its arguments are separated by commas. NASM
drops the arguments into the macro’s parameters in order, from left to right. If
you pass only two arguments to a macro with three parameters, you’re likely to
get an error message from the assembler, depending on how you’ve referenced
the unfilled parameter. If you pass more arguments to a macro than there are
parameters to receive the arguments, the extraneous arguments will be ignored.

Local labels Within Macros
The macros I included in eatmacro.asm were designed to be simple and fairly
obvious. None of them contains any jump instructions at all, but code in macros
can use conditional and unconditional jumps just as code in procedures or
program bodies can. There is, however, an important problem with labels used
inside macros: Labels in assembly language programs must be unique, and yet a
macro is essentially duplicated in the source code as many times as it is invoked.
This means there will be error messages flagging duplicate labels . . . unless
a macro’s labels are treated as local. Local items have no meaning outside the
immediate framework within which they are defined. Labels local to a macro are
not visible outside the macro definition, meaning that they cannot be referenced
except from code within the %MACRO. . .%ENDMACRO bounds.

All labels defined within a macro are considered local to the macro and are
handled specially by the assembler. Here’s an example; it’s a macro adaptation
of a piece of code I presented earlier, for forcing characters in a buffer from
lowercase to uppercase:

%macro UpCase 2 ; %1 = Address of buffer; %2 = Chars in buffer
 mov rdx,%1 ; Place the offset of the buffer into rdx
 mov rcx,%2 ; Place the number of bytes in the buffer into rcx
%%IsLC:cmp byte [rdx+rcx‐ 1],'a' ; Below 'a'?
 jb %%Bump ; Not lowercase. Skip
 cmp byte [rdx+rcx‐ 1],'z' ; Above 'z'?
 ja %%Bump ; Not lowercase. Skip
 sub byte [rdx+rcx‐ 1],20h ; Force byte in buffer to uppercase
%%Bump:dec rcx ; Decrement character count
 jnz %%IsLC ; If more chars in the buffer, repeat
%endmacro

374 Chapter 10 ■ Dividing and Conquering

A label in a macro is made local by beginning it with two percent symbols: %%.
When marking a location in the macro, the local label should be followed by a
colon. When used as an operand to a jump or call instruction (such as JA, JB, and
JNZ in the preceding), the local label is not followed by a colon. The important
thing is to understand that unless the labels IsLC and Bump were made local to
the macro by adding the prefix %% to each, there would be multiple instances of
a label in the program (assuming that the macro was invoked more than once),
and the assembler would generate a duplicate label error on the second and
every subsequent invocation.

Because labels must in fact be unique within your program, NASM takes a
local label such as %%Bump and generates a label from it that will be unique in
your program. It does this by using the prefix ..@ plus a four‐ digit number and
the name of the label. Each time your macro is invoked, NASM will change
the number and thus generate unique synonyms for each local label within the
macro. The label %%Bump, for example, might become ..@1771.Bump for a given
invocation, and the number would be different each time the macro is invoked.
This happens behind the scenes, and you’ll rarely be aware that it’s going on
unless you read the code dump listing files generated by NASM.

Macro Libraries as Include Files
Just as procedures may be gathered into library modules external to your program,
so may macros be gathered into macro libraries. A macro library is really nothing
but a text file that contains the source code for the macros in the library. Unlike
procedures gathered into a module, macro libraries are not separately assembled
and must be passed through the assembler each time the program is assembled.
This is a problem with macros in general, not only with macros that are gath-
ered into libraries. Programs that manage complexity by dividing code up into
macros will assemble more slowly than programs that have been divided up
into separately assembled modules. Given the speed of 2020‐ era PCs, this is far
less of a problem today than it was back in 1989 when I wrote the first edition
of this book, but for very large projects it can affect the speed of the build.

Macro libraries are used by “including” them into your program’s source
code file. The means to do this is the %INCLUDE directive. The %INCLUDE directive
precedes the name of the macro library:

%include "mylib.mac"

Technically this statement may be anywhere in your source code file, but
you must keep in mind that all macros must be fully defined before they are
invoked. For this reason, it’s a good idea to use the %INCLUDE directive up near
the top of your source code file’s .text section, before any possible invocation
of one of the library macros could occur.

 Chapter 10 ■ Dividing and Conquering 375

If the macro file you want to include in a program is not in the same directory
as your program, you may need to provide a fully qualified pathname as part
of the %INCLUDE directive:

%include "../macrolibs/mylib.mac"

Otherwise, NASM may not be able to locate the macro file and will hand you
an error message. (Do some research if you don’t know how to create a fully
qualified pathname in Linux, as it’s not really a programming topic.)

Macros vs. Procedures: Pros and Cons
There are advantages to macros over procedures. One of them is speed. It takes
time to execute the CALL and RET instructions that control entry to and exit
from a procedure. In a macro, neither instruction is used. Only the instructions
that perform the actual work of the macro are executed, so the macro’s work is
performed as quickly as possible.

There is a cost to this speed, and the cost is in extra memory used, espe-
cially if the macro is invoked a great many times. Notice in Figure 10.4 that
three invocations of the macro WriteStr generate a total of 18 instructions in
memory. If the macro had been set up as a procedure, it would have required
the six instructions in the body of the procedure, plus one RET instruction and
three CALL instructions to do the same work. This would require a total of eight
instructions for the procedure implementation, and eighteen for the macro
implementation. And if the macro were called five or seven times or more, the
difference would grow. Each time that a macro is called, all of its instructions are
duplicated in the program yet another time.

In short programs, this may not be a problem, and in situations where the
code must be as fast as possible— as in graphics drivers— macros have a lot
going for them, by eliminating the procedure overhead of calls and returns.
It’s a simple trade‐ off to understand: Think macros for speed and procedures
for compactness.

On the other hand, unless you really are writing something absolutely
performance‐ dependent— such as graphics drivers— this trade‐ off is minor to
the point of insignificance. For ordinary software, the difference in size between
a procedure‐ oriented implementation and a macro‐ oriented implementation
might be only 2,000 or 3,000 bytes, and the speed difference would probably
not be detectable. On modern CPUs, the performance of any given piece of
software is very difficult to predict, and massive storage devices and memory
systems make program size far less important than it was a generation ago. If
you’re trying to decide whether to go procedure or macro in any given instance,
other factors than size or speed will predominate.

376 Chapter 10 ■ Dividing and Conquering

For example, I’ve always found macro‐ intensive software much more difficult
to debug. Software tools don’t necessarily deal well with macros. As an example,
the Insight component of the Gdb debugger doesn’t show expanded macro text
in its source‐ code window. Insight wasn’t designed with pure assembly debug-
ging in mind (Gdb, like most Unix tools, has a powerful C bias), and when you
step into a macro, the source code highlighting simply stops, until execution emerges
from the macro. You thus can’t step through a macro’s code as you can step
through procedure or program code. Gdb will still debug as always from the
console window, but console debugging is a very painful process compared to
the visual perspective available from SASM or Insight.

Finally, there’s another issue connected with macros that’s much harder to
explain, but it’s the reason I am famously uncomfortable with them: Use macros
too much, and your code will no longer look like assembly language. Let’s look again at
the main program portion of the eatmacro.asm program, without its comments:

ClrScr
WriteCtr 12,AdMsg,ADLEN
GotoXY 1,23
WriteStr Prompt,PROMPTLEN
WaitEnter
ExitProg

That’s the whole main program. The entire thing has been subsumed by macro
invocations. Is this assembly language, or is it— good grief!— a dialect of BASIC?

I admit, I replaced the entire main program with macro invocations here to
make the point, but it’s certainly possible to create so many macros that your
assembly programs begin to look like some odd high‐ level language. I actually
used something similar to this back in the late 1970s when I was a programmer
for Xerox. They had an in‐ house language that was basically an 8080 assembler
with loads of macros for use on early (very slow; would you believe 1 mega-
hertz?) 8080‐ based microcomputers. It worked. It had to, with that little com-
putational power to do its processing.

The difficult truth is that macros can clarify what a program is doing, or,
used to excess, they can totally obscure how things actually work “under the
skin.” In my projects, I use macros solely to reduce the clutter of very repetitive
instruction sequences, especially things like setting up registers before making
Linux system calls. The whole point of assembly programming, after all, is to
foster a complete understanding of what’s happening down where the software
meets the CPU. Anything that impedes that understanding should be used
carefully, expertly, and (most of all) sparingly— or you might just as well learn C.

C H A P T E R

377

11

Most people, having learned a little assembly language, grumble about the
seemingly huge number of instructions it takes to do anything useful. By and
large, this is a legitimate gripe— and the major reason people write programs in
higher- level languages such as Pascal and BASIC. The x64 instruction set, on the
other hand, is full of surprises, and the surprise most likely to make apprentice
assembly programmers gasp is the instruction group we call string instructions.

They alone, of all the instructions in the x64 instruction set, have the power to
deal with long sequences of bytes, words, double words, or quad words at one
time. Keep in mind that in assembly language, any contiguous sequence of bytes
or larger units in memory may be considered a string— not simply sequences of
human- readable characters. More amazingly, the string instructions deal with
these large sequences of bytes or larger units in an extraordinarily compact way:
by executing an instruction loop entirely inside the CPU! A string instruction is,
in effect, a complete instruction loop baked into a single machine instruction.

The string instructions are subtle and complicated, and I won’t be able to treat
them exhaustively in this book. Much of what they do qualifies as an advanced
topic. Still, you can get a good start on understanding the string instructions by
using them to build some simple tools to add to your video toolkit.

Besides, for my money, the string instructions are easily the single most
fascinating aspect of assembly language work.

Strings and Things
Those Amazing String Instructions

378 Chapter 11 ■ Strings and Things

The Notion of an Assembly Language String

Words fail us sometimes by picking up meanings as readily as a magnet picks
up iron filings. The word string is a major offender here. It means roughly the
same thing in all computer programming, but there are a multitude of small
variations on that single theme. If you learned about strings in Pascal (as I did),
you’ll find that what you know isn’t totally applicable when you program in
C/C++, Python, BASIC, or (especially) assembly.

So here’s the Big View: A string is any contiguous group of bytes in memory,
containing any kind of data, of any arbitrary size that your operating system
allows. (For modern Linux, that can be a lot.) The primary defining concept of
an assembly language string is that its component bytes are right there in a row,
with no interruptions.

That’s pretty fundamental. Most high- level languages build on the string
concept in several ways. Pascal implementations that descend from UCSD (and
later Turbo) Pascal treat strings as a separate data type, with a length counter
at the start of the string to indicate how many bytes are in the string. In C, a
string has no length byte in front of it. Instead, a C string is said to end when a
byte with a binary value of 0 is encountered. This will be important in assembly
work, much of which relates intimately to C and the standard C library, where
C’s string- handling machinery lives. In BASIC, strings are stored in something
called string space, which has a lot of built- in code machinery associated with
it, to manage string space and handle the way- down- deep manipulation of
string data.

When you begin working in assembly, you have to give up all that high- level
language stuff. Assembly strings are just contiguous regions of memory. They
start at some specified address, go for some number of bytes, and stop. There is
no length counter to tell you how many bytes are in the string, with no standard
boundary characters such as binary 0 to indicate where a string starts or ends.
You can certainly write assembly language routines that allocate Pascal–style
strings or C- style strings and manipulate them. To avoid confusion, however,
you must then think of the data operated on by your routines to be Pascal or C
strings rather than assembly language strings.

Turning Your “String Sense” Inside- Out
Assembly strings have no boundary values or length indicators. They can con-
tain any values at all, including binary 0. In fact, you really have to stop thinking
of strings in terms of specific regions in memory. You should instead think of
strings in terms of the register values that define them.

It’s slightly inside- out compared to how you think of strings in such languages
as Pascal, but it works: You’ve got a string when you set up a register to point

 Chapter 11 ■ Strings and Things 379

to one. And once you point to a string, the length of that string is defined by
the value that you place in register RCX.

This is key, and at the risk of repeating myself I’ll say it again: Assembly strings
are wholly defined by values you place in registers. There is a set of assumptions
about strings and registers baked into the silicon of the CPU. When you execute
one of the string instructions (as I will describe shortly), the CPU uses those
assumptions to determine which area of memory it reads from or writes to.

Source Strings and Destination Strings
There are two kinds of strings in x64 assembly work. Source strings are strings
that you read from. Destination strings are strings that you write to. The difference
between the two is only a matter of registers; source strings and destination
strings can overlap. In fact, the very same region of memory can be both a source
string and a destination string, all at the same time.

Here are the assumptions that the CPU makes about strings when it executes
a string instruction in 64- bit long mode:

 ■ A source string is pointed to by RSI.

 ■ A destination string is pointed to by RDI.

 ■ The length of both kinds of strings is the value you place in RCX. How
this length is acted upon by the CPU depends on the specific instruction
and how it’s being used.

 ■ Data coming from a source string or going to a destination string must
begin the trip from, end the trip at, or pass through register RAX.

The CPU can recognize both a source string and a destination string simul-
taneously, because RSI and RDI can hold values independent of one another.
However, because there is only one RCX register, the length of source and
destination strings must be identical when they are used simultaneously, as in
copying a source string to a destination string.

One way to remember the difference between source strings and destination
strings is by their offset registers. The “SI” in RSI means “source index,” and the
“DI” in RDI means “destination index.” The “R,” as you know by now, is the
convention by which the general- purpose registers are marked as 64 bits in size.

A Text Display Virtual Screen
The best way to cement all that string background information in your mind
is to see some string instructions at work. In Listing 11.1 I’ve implemented an
interesting mechanism using string instructions: a simple virtual text display
for the Linux console.

380 Chapter 11 ■ Strings and Things

Back in the days of real- mode programming under DOS on PC- compatible
machines, we had unhampered access to the actual video display refresh buffer
memory on the PC’s graphics adapter. If we wrote an ASCII character or string
of characters to the region of memory comprising the card’s display buffer,
Wham! The associated text glyphs appeared on the screen instantaneously. In
earlier editions of this book that covered DOS, I took advantage of that direct-
access display machinery and presented a suite of useful display routines that
demonstrated the Intel architecture’s string instructions.

Under Linux, that’s no longer possible. The graphics display buffer is still
there, but it’s now the property of the Linux operating system, and user- space
applications can’t write to it or even read from it directly.

Writing text- mode applications in assembly for the Linux console is nowhere
near as easy as it was under DOS. In Chapter 10, I explained how (very) simple
console terminal control could be done by writing escape sequences to the console
via the sys_write SYSCALL. However, except for the two or three simplest com-
mands, variations in terminal implementation makes using “naked” escape
sequences a little dicey. A given sequence might mean one thing to one terminal
and something entirely different to another. Code libraries like ncurses go to
great lengths to detect and adapt to the multitude of terminal specs that are out
there. Code to do that is not something you can cobble up in an afternoon, and
in fact, it’s too large a topic to treat in detail in an introductory book like this.

However. . .we can pull a few scurvy tricks and learn a few things by pulling
them. One is to allocate our own text video refresh buffer in memory as a named
variable and periodically write the entire buffer out to the Linux console via a
single SYSCALL instruction. Our PCs have gotten extremely fast since the DOS
era, and text video buffers are not large. A 25 × 80 text display buffer is only
2,000 characters long, and the whole thing can be sent to the Linux console with
a single SYSCALL sys_write call. The buffer appears on the console instanta-
neously, at least as far as any human observer can discern.

Placing text in the buffer is a simple matter of calculating the address of a
given row and column position in the buffer and writing ASCII character values
into the buffer variable starting at that address. After each modification of the
buffer variable, you can update the console display by writing the entire buffer
to the console via SYSCALL. Jaded experts might call this “brute force” (and yes,
it’s nowhere near as versatile as the ncurses library), but it’s easy to under-
stand. It doesn’t give you control over character color or attributes (underlining,
blinking, and so on), but it’ll give you a good basic understanding of the x86
string instructions.

Look over the code in Listing 11.1. In the following sections, I’ll go through
it piece by piece. Note that a separate file is available for building via SASM,
called vidbuff1gcc.asm. The two files are almost identical and differ almost
entirely in the global start addresses _start versus main , which SASM requires.

 Chapter 11 ■ Strings and Things 381

Listing 11.1: vidbuff1.asm

; Executable name : vidbuff1
; Version : 2.0
; Created date : 10/12/2022
; Last update : 5/13/2023
; Author : Jeff Duntemann
; Description : A simple program in assembly for Linux, using NASM
; : 2.14.02, demonstrating string instruction operation
; : by "faking" : full- screen memory- mapped text I/O.
;
; Build with this makefile, adding the required tabs where needed:
;
; vidbuff1: vidbuff1.o
; ld - o vidbuff1 vidbuff1.o
; vidbuff1.o: vidbuff1.asm
; nasm - f elf64 - g - F dwarf vidbuff1.asm
;
; Note that output to the console from this program will NOT display
; correctly unless you have enabled the IBM850 character encoding in
; the terminal program being used to display the console!
;

SECTION .data ; Section containing initialized data
 EOL equ 10 ; Linux end- of- line character
 FILLCHR equ 32 ; ASCII space character
 HBARCHR equ 196 ; Use dash char if this won't display
 STRTROW equ 2 ; Row where the graph begins

; We use this to display a ruler across the screen.
 TenDigits db 31,32,33,34,35,36,37,38,39,30
 DigitCount db 10
 RulerString db
"1234567890123456789012345678901234567890123456789012345678901234
5678901234567890"
 RULERLEN equ $- RulerString

; The dataset is just a table of byte- length numbers:
 Dataset db 9,17,71,52,55,18,29,36,18,68,77,63,58,44,0
 Message db "Data current as of 5/13/2023"
 MSGLEN equ $- Message

; This escape sequence will clear the console terminal and place the
; text cursor to the origin (1,1) on virtually all Linux consoles:
 ClrHome db 27,"[2J",27,"[01;01H"
 CLRLEN equ $- ClrHome ; Length of term clear string

SECTION .bss ; Section containing uninitialized data

 COLS equ 81 ; Line length + 1 char for EOL
 ROWS equ 25 ; Number of lines in display
 VidBuff resb COLS*ROWS ; Buffer size adapts to ROWS & COLS

382 Chapter 11 ■ Strings and Things

SECTION .text ; Section containing code

global _start ; Linker needs this to find the entry point!

ClearTerminal:
 push r11 ; Save all modified registers
 push rax
 push rcx
 push rdx
 push rsi
 push rdi

 mov rax,1 ; Specify sys_write call
 mov rdi,1 ; Specify File Descriptor 1: Standard Output
 mov rsi,ClrHome ; Pass address of the escape sequence
 mov rdx,CLRLEN ; Pass the length of the escape sequence
 syscall ; Make system call

 pop rdi ; Restore all modified registers
 pop rsi
 pop rdx
 pop rcx
 pop rax
 pop r11
 ret

;-
; Show: Display a text buffer to the Linux console
; UPDATED: 5/10/2023
; IN: Nothing
; RETURNS: Nothing
; MODIFIES: Nothing
; CALLS: Linux sys_write
; DESCRIPTION: Sends the buffer VidBuff to the Linux console via
; sys_write. The number of bytes sent to the console
; calculated by multiplying the COLS equate by the
; ROWS equate.

Show:
 push r11 ; Save all registers we're going to change
 push rax
 push rcx
 push rdx
 push rsi
 push rdi
 mov rax,1 ; Specify sys_write call
 mov rdi,1 ; Specify File Descriptor 1: Standard Output
 mov rsi,VidBuff ; Pass address of the buffer

 Chapter 11 ■ Strings and Things 383

 mov rdx,COLS*ROWS ; Pass the length of the buffer
 syscall ; Make system call
 pop rdi ; Restore all modified registers
 pop rsi
 pop rdx
 pop rcx
 pop rax
 pop r11
 ret

;-
; ClrVid: Clears buffer to spaces and replaces EOLs
; UPDATED: 5/10/2023
; IN: Nothing
; RETURNS: Nothing
; MODIFIES: VidBuff, DF
; CALLS: Nothing
; DESCRIPTION: Fills the buffer VidBuff with a predefined character
; (FILLCHR) and then places an EOL character at the end
; of every line, where a line ends every COLS bytes in
; VidBuff.

ClrVid:
 push rax ; Save registers that we change
 push rcx
 push rdi
 cld ; Clear DF; we're counting up- memory
 mov al,FILLCHR ; Put the buffer filler char in AL
 mov rdi,VidBuff ; Point destination index at buffer
 mov rcx,COLS*ROWS ; Put count of chars stored into RCX
 rep stosb ; Blast byte- length chars at the buffer

; Buffer is cleared, now re- insert the EOL char after each line:
 mov rdi,VidBuff ; Point destination at buffer again
 dec rdi ; Start EOL position count at VidBuff char 0
 mov rcx,ROWS ; Put number of rows in count register
.PtEOL:
 add rdi,COLS ; Add column count to RDI
 mov byte [rdi],EOL ; Store EOL char at end of row
 loop .PtEOL ; Loop back if still more lines
 pop rdi ; Restore caller's registers
 pop rcx
 pop rax
 ret ; and go home!

;-
; WrtLn: Writes a string to a text buffer at a 1- based X,Y
; UPDATED: 5/10/2023

384 Chapter 11 ■ Strings and Things

; IN: The address of the string is passed in RSI
; The 1- based X position (row #) is passed in RBX
; The 1- based Y position (column #) is passed in RAX
; The length of the string in chars is passed in RCX
; RETURNS: Nothing
; MODIFIES: VidBuff, RDI, DF
; CALLS: Nothing
; DESCRIPTION: Uses REP MOVSB to copy a string from the
; address in RSI to an X,Y location in the
; text buffer VidBuff.

WrtLn:
 push rax ; Save registers we will change
 push rbx
 push rcx
 push rdi
 cld ; Clear DF for up- memory write
 mov rdi,VidBuff ; Load destination index with buffer address
 dec rax ; Adjust Y value down by 1 for address
 ; calculation
 dec rbx ; Adjust X value down by 1 for address
 ; calculation
 mov ah,COLS ; Move screen width to AH
 mul ah ; Do 8- bit multiply AL*AH to AX
 add rdi,rax ; Add Y offset into vidbuff to RDI
 add rdi,rbx ; Add X offset into vidbuf to RDI
 rep movsb ; Blast the string into the buffer
 pop rdi ; Restore registers we changed
 pop rcx
 pop rbx
 pop rax
 ret ; and go home!

;-
; WrtHB: Generates a horizontal line bar at X,Y
; UPDATED: 5/10/2023
; IN: The 1- based X position (row #) is passed in RBX
; The 1- based Y position (column #) is passed in RAX
; The length of the bar in chars is passed in RCX
; RETURNS: Nothing
; MODIFIES: VidBuff, DF
; CALLS: Nothing
; DESCRIPTION: Writes a horizontal bar to the video buffer VidBuff,
; at th1e 1- based X,Y values passed in RBX,RAX. The bar
; is "made of" the character in the equate HBARCHR. The
; default is character 196; if your terminal won't
; display that (you need the IBM 850 character set)
; change the value in HBARCHR to ASCII dash or something
; else supported in your terminal.

 Chapter 11 ■ Strings and Things 385

WrtHB:
 push rax ; Save registers we change
 push rbx
 push rcx
 push rdi
 cld ; Clear DF for up- memory write
 mov rdi,VidBuff ; Put buffer address in destination register
 dec rax ; Adjust Y value down by 1 for address calculation
 dec rbx ; Adjust X value down by 1 for address calculation
 mov ah,COLS ; Move screen width to AH
 mul ah ; Do 8- bit multiply AL*AH to AX
 add rdi,rax ; Add Y offset into vidbuff to EDI
 add rdi,rbx ; Add X offset into vidbuf to EDI
 mov al,HBARCHR ; Put the char to use for the bar in AL
 rep stosb ; Blast the bar char into the buffer
 pop rdi ; Restore registers we changed
 pop rcx
 pop rbx
 pop rax
 ret ; And go home!

;-
; Ruler: Generates a "1234567890"- style ruler at X,Y
; UPDATED: 5/10/2023
; IN: The 1- based X pos (row #) is passed in RBX
; The 1- based Y pos (column #) is passed in RAX
; The length of the ruler in chars is passed in RCX
; RETURNS: Nothing
; MODIFIES: VidBuff
; CALLS: Nothing
; DESCRIPTION: Writes a ruler to the video buffer VidBuff, at
; the 1- based X,Y position passed in RBX,RAX.
; The ruler consists of a repeating sequence of
; the digits 1 through 0. The ruler will wrap
; to subsequent lines and overwrite whatever EOL
; characters fall within its length, if it will not fit
; entirely on the line where it begins. Note that the
; Show procedure must be called after Ruler to display
; the ruler on the console.

Ruler:
 push rax ; Save the registers we change
 push rbx
 push rcx
 push rdx
 push rdi
 mov rdi,VidBuff ; Load video buffer address to RDI
 dec rax ; Adjust Y value down by 1 for address calculation
 dec rbx ; Adjust X value down by 1 for address calculation

386 Chapter 11 ■ Strings and Things

 mov ah,COLS ; Move screen width to AH
 mul ah ; Do 8- bit multiply AL*AH to AX
 add rdi,rax ; Add Y offset into vidbuff to RDI
 add rdi,rbx ; Add X offset into vidbuf to RDI

; RDI now contains the memory address in the buffer where the ruler
; is to begin. Now we display the ruler, starting at that position:
 mov rdx,RulerString ; Load address of ruler string into RDX
DoRule:
 mov al,[rdx] ; Load first digit in the ruler to AL
 stosb ; Store 1 char; note that there's no REP prefix!
 inc rdx ; Increment RDX to point to next char in ruler string
 loop DoRule ; Decrement RCX & Go back for another char until RCX=0
 pop rdi ; Restore the registers we changed
 pop rdx
 pop rcx
 pop rbx
 pop rax
 ret ; And go home!

;-
; MAIN PROGRAM:

_start:
 push rbp
 mov rbp,rsp
 and rsp,- 16

; Get the console and text display text buffer ready to go:
 call ClearTerminal ; Send terminal clear string to console
 call ClrVid ; Init/clear the video buffer

; Next we display the top ruler:
 mov rax,1 ; Load Y position to AL
 mov rbx,1 ; Load X position to BL
 mov rcx,COLS- 1 ; Load ruler length to RCX
 call Ruler ; Write the ruler to the buffer

; Thow up an informative message centered on the last line
 mov rsi,Message ; Load the address of the message to RSI
 mov rcx,MSGLEN ; and its length to RCX
 mov rbx,COLS ; and the screen width to RBX
 sub rbx,rcx ; Calc diff of message length and screen width
 shr rbx,1 ; Divide difference by 2 for X value
 mov rax,20 ; Set message row to Line 24
 call WrtLn ; Display the centered message

 Chapter 11 ■ Strings and Things 387

; Here we loop through the dataset and graph the data:
 mov rsi,Dataset ; Put the address of the dataset in RSI
 mov rbx,1 ; Start all bars at left margin (X=1)
 mov r15,0 ; Dataset element index starts at 0
.blast:
 mov rax,r15 ; Add dataset number to element index
 add rax,STRTROW ; Bias row value by row # of first bar
 mov cl,byte [rsi+r15] ; Put dataset value in lowest byte of RCX
 cmp rcx,0 ; See if we pulled a 0 from the dataset
 je .rule2 ; If we pulled a 0 from the dataset, we're done
 call WrtHB ; Graph the data as a horizontal bar
 inc r15 ; Increment the dataset element index
 jmp .blast ; Go back and do another bar

; Display the bottom ruler:
.rule2:
 mov rax,r15 ; Use the dataset counter to set the ruler row
 add rax,STRTROW ; Bias down by the row # of the first bar
 mov rbx,1 ; Load X position to BL
 mov rcx,COLS- 1 ; Load ruler length to RCX
 call Ruler ; Write the ruler to the buffer

; Having written all that to the buffer, send buffer to the console:
 call Show ; Refresh the buffer to the console

; And return control to Linux:
Exit:
 mov rsp,rbp
 pop rbp

 mov rax,60 ; End program via Exit Syscall
 mov rdi,0 ; Return a code of zero
 syscall ; Return to Linux

REP STOSB, the Software Machine Gun

Our virtual text display buffer is nothing more than a region of raw memory set
aside in the .bss section, using the RESB directive. The size of the buffer is defined
by two equates, which specify the number of rows and columns that you want.
By default I’ve set it to 25 rows and 80 columns, but 2023- era console displays
can display a great deal larger text screen than that. You can change the COLS
and ROWS equates to define buffers as large as 255 × 255, though if your terminal
window isn’t that large, your results will be (to put it charitably) unpredictable.

Changing the dimensions of your text display is done by changing one or
both of those equates. Whatever other changes must be made to the code are

388 Chapter 11 ■ Strings and Things

handled automatically. Note that this has to be done at assembly time since
many of the calculations are assembly- time calculations done by NASM when
you build the program.

You do not have to match the size of the terminal window precisely to the
ROWS and COLS values you choose, as long as the terminal window is larger than
ROWS × COLS. If you maximize the terminal window (like Konsole), your text
display will appear starting in the upper- left corner of the screen.

Machine- Gunning the Virtual Display
When Linux loads your programs into memory, it typically clears uninitialized
variables (like VidBuff from Listing 11.1) to binary zeros. This is good, but
binary zeros do not display correctly on the Linux console. To look “blank”
on the console, the display buffer memory must be cleared to the ASCII space
character. This means writing the value 20h into memory from the beginning
of the buffer to its end.

Such things should always be done in tight loops. The obvious way is to put
the display buffer address into RDI, the number of bytes in your refresh buffer
into RCX, the ASCII value to clear the buffer to into AL, and then code up a
tight loop this way:

Clear: mov [rdi],al ; Write the value in AL to memory
 inc rdi ; Bump RDI to next byte in the buffer
 dec rcx ; Decrement RCX by one position
 jnz Clear ; And loop again until RCX is 0

This will work. It’s even tolerably fast, especially on newer CPUs. But all of
the preceding code is equivalent to this one single instruction:

rep stosb

Really. No, really.
The STOSB instruction is the simplest of the Intel string instructions and is

a good place to begin. There are two parts to the instruction as I showed it, a
situation we haven’t seen before. REP is a new type of critter, called a prefix, and
it changes how the CPU treats the instruction mnemonic that follows it. We’ll get
back to REP shortly. Right now, let’s look at STOSB. The mnemonic means STOre
String by Byte. Like all the string instructions, STOSB makes certain assumptions
about some CPU registers. It works only on the destination string, so RSI is
not involved. However, these assumptions must be respected and dealt with:

 ■ RDI must be loaded with the address of the destination string. (Think:
RDI, for destination index.)

 ■ RCX must be loaded with the number of times the value in AL is to be
stored into the string.

 Chapter 11 ■ Strings and Things 389

 ■ AL must be loaded with the 8- bit value to be stored into the string.

 ■ The Direction flag DF must be set or cleared, depending on whether you
want the search to be up- memory (cleared; use CLD) or down- memory
(set; use STD). I’ll have more to say about DF as used with STOSB a little later.

Executing the STOSB Instruction
Once you set up these three registers, you can safely execute a STOSB instruction.
When you do, this is what happens:

1. The byte value in AL is copied to the memory address stored in RDI.

2. RDI is incremented by 1, such that it now points to the next byte in memory
following the one just written to.

Note that we’re not machine- gunning here— not yet, at least. One copy of AL
gets copied to one location in memory. The RDI register is adjusted so that it’ll
be ready for the next time STOSB is executed.

One very important point to remember is that RCX is not decremented by
STOSB. RCX is decremented automatically only if you put the REP prefix in front
of STOSB. Lacking the REP prefix, you have to do the decrementing yourself,
either explicitly through DEC or through the LOOP instruction, as I’ll explain a
little later in this chapter.

So, you can’t make STOSB run automatically without REP. However, if you
like, you can execute other instructions before executing another STOSB. As
long as you don’t disturb RDI or RCX, you can do whatever you want. Then
when you execute STOSB again, another copy of AL will go out to the location
pointed to by RDI, and RDI will be adjusted yet again. (You have to remember
to decrement RCX somehow.) Note that you can change the value in AL if you
like, but the changed value will be copied into memory. You may want to do
that— there’s no law saying you have to fill a string with only one single value.

However, this is like the difference between a semiautomatic weapon (which
fires one round every time you press and release the trigger) and a fully automatic
weapon, which fires rounds continually as long as you hold the trigger back.
To make STOSB fully automatic, just hang the REP prefix ahead of it. What REP
does is beautifully simple: It sets up the tightest of all tight loops completely
inside the CPU and fires copies of AL into memory repeatedly (the reason for
its name), incrementing RDI by 1 each time and decrementing RCX by 1, until
RCX is decremented down to 0. Then it stops, and when the smoke clears,
you’ll see that your whole destination string, however large, has been filled
with copies of AL.

Man, now that’s programming!

390 Chapter 11 ■ Strings and Things

In the vidbuff1 program presented in Listing 11.1, the code to clear the display
buffer is in the ClrVid procedure. The pertinent lines are those shown here:

cld ; Clear DF so we're counting up- memory
mov al,FILLCHR ; Put the buffer filler char in AL
mov rdi,VidBuff ; Point destination index at buffer
mov rcx,COLS*ROWS ; Put count of chars stored into RCX
rep stosb ; Blast chars at the buffer

The FILLCHR equate is by default set to 32, which is the ASCII space character.
You can set this to fill the buffer with some other character, though how useful
this might be is unclear. Note also that the number of characters to be written
into memory is calculated by NASM at assembly time as COLS times ROWS. This
allows you to change the size of your virtual display without changing the code
that clears the display buffer.

STOSB and the Direction Flag DF
Leading off the short code sequence shown earlier is an instruction I haven’t
discussed before: CLD. It controls something critical in string instruction work:
the direction in memory that the string operation takes.

Most of the time that you’ll be using STOSB, you’ll want to run it “uphill” in
memory, that is, from a lower memory address to a higher memory address. In
ClrVid, you put the address of the start of the video refresh buffer into RDI and
then blast characters into memory at successively higher memory addresses.
Each time STOSB fires a byte into memory, RDI is incremented to point to the
next higher byte in memory.

This is the logical way to work it, but it doesn’t have to be done that way at
all times. STOSB can just as easily begin at a high address and move downward
in memory. On each store into memory, RDI can be decremented by 1 instead.

Which way that STOSB fires— uphill toward successively higher memory
addresses or downhill toward successively lower addresses— is governed by
one of the flags in the RFlags register. This is the Direction flag DF. DF’s sole job
in life is to control the direction of action taken by certain instructions that, like
STOSB, can move in one of two directions in memory. Most of these (like STOSB
and its siblings) are string instructions.

The sense of DF is this: When DF is set (that is, when DF has the value 1), STOSB
and its fellow string instructions work downhill, from higher to lower addresses.
When DF is cleared (that is, when it has the value 0), STOSB and its siblings work
uphill, from lower to higher addresses. This in turn is simply the direction in
which the RDI register is adjusted: When DF is set, RDI is decremented during
string instruction execution. When DF is cleared, RDI is incremented.

 Chapter 11 ■ Strings and Things 391

The Direction flag defaults to 0 (uphill) when the CPU is reset. It is gen-
erally changed in one of two ways: with the CLD instruction, or with the STD
instruction. CLD clears DF to 0, and STD sets DF to 1. (You should keep in mind
when debugging that the POPF instruction can also change DF by popping an
entire new set of flags from the stack into the RFlags register.) Because DF’s
default state is cleared to 0 and all of the string instructions in the vidbuff1
demo program work uphill in memory, it’s not technically necessary to include
a CLD instruction in the ClrVid procedure. However, other parts of a program
can change DF. It’s always a good idea to place the appropriate one of CLD or
STD right before a string instruction to make sure that your machine gun fires
in the right direction!

People sometimes get confused and think that DF also governs whether RCX
is incremented or decremented by the string instructions. Not so! Nothing in a
string instruction ever increments RCX. RCX holds a count value, not a memory
address. You place a count in RCX, and it counts down each time that a string
instruction fires until it reaches 0. DF has nothing to say about it. Basically, RDI
is where the target is, and RCX is the number of bullets in your clip.

Defining Lines in the Display Buffer
Clearing VidBuff to space characters isn’t quite the end of the story, however.
To render correctly on the terminal programs that display the Linux console,
display data must be divided into lines. Lines are delimited by the EOL character,
ASCII 10. A line begins at the start of the buffer and ends with the first EOL
character. The next line begins immediately after the EOL character and runs
until the next EOL character, and so on.

When text is written piecemeal to the console, each line may be a different
length. In our virtual display system, however, the entire buffer is written to
the console in one SYSCALL swoop, as a sequence of lines that are all the same
length. This means that when we clear the buffer, we also have to insert EOL
characters where we want each displayed line to end.

This is done in the remainder of the ClrVid procedure. What we have to do
is write an EOL character into the buffer every COLS bytes. This is done with a
very tight loop. If you look at the second portion of ClrVid, you may notice that
the loop in question isn’t quite ordinary. Hold that thought— I’ll come back to
the LOOP instruction in just a little bit.

Sending the Buffer to the Linux Console
I need to reiterate: We’re talking a virtual display here. VidBuff is just a region
of memory into which you can write characters and character strings with

392 Chapter 11 ■ Strings and Things

ordinary assembly language instructions. However, nothing will appear on
your monitor until you send the buffer to the Linux console.

This is easy enough. The procedure Show in Listing 11.1 makes a single call
to the sys_write kernel service via SYSCALL and sends the entire buffer to the
console at once. The EOL characters embedded in the buffer every COLS bytes
are treated as EOL characters are always treated by the console and force a new
line to begin immediately after each EOL. Because all the lines are the same
length, sending VidBuff to the console creates a rectangular region of text that
will display correctly on any terminal window that is at least COLS by ROWS in
size. (Smaller windows will scramble VidBuff’s text. Try running the vidbuff1
program in various-sized terminal windows, and you’ll quickly see what I mean.)

What’s important is that your programs call Show whenever you want a
screen update. This can be done as often as you want, whenever you want. On
modern Linux PCs, the update happens so quickly as to appear instantaneous.
With that kind of speed, there’s no reason you shouldn’t call Show after each
and every write to VidBuff, but that’s up to you.

The Semiautomatic Weapon: STOSB Without REP

Among all the string instructions, I chose to show you REP STOSB first because
it’s dramatic in the extreme. But more to the point, it’s simple— in fact, it’s sim-
pler to use REP than not to use REP. REP simplifies string processing from the
programmer’s perspective, because it brings the entire instruction loop inside
the CPU. You can use the STOSB instruction without REP, but it’s a little more
work. The work involves setting up the instruction loop outside the CPU and
making sure it’s correct.

Why bother? Simply this: With REP STOSB, you can only repeatedly store the
same value into the destination string. Whatever you put into AL before exe-
cuting REP STOSB is the value that gets fired into memory RCX times. STOSB can
be used to store different values into the destination string by firing it semiau-
tomatically and changing the value in AL between each squeeze of the trigger.

You lose a little time in handling the loop yourself outside the CPU. This is
because there is a certain amount of time spent in fetching the loop’s instruction
bytes from memory. However, if you keep your loop as tight as you can, you
don’t lose an objectionable amount of speed, especially on modern Intel/AMD
processors, which make very effective use of cache and don’t fetch instructions
from outboard memory every time they’re executed.

Who Decrements RCX?
Early in my experience with x86 assembly language, I recall being massively
confused about where and when the RCX register (actually, way back then, it

 Chapter 11 ■ Strings and Things 393

was simply the CX register) was decremented when using string instructions.
It’s a key issue, especially when you don’t use the REP prefix.

When you use REP STOSB (or REP with any of the string instructions), RCX is
decremented automatically, by 1, for each memory access the instruction makes.
And once RCX gets itself decremented to 0, REP STOSB detects that RCX is now
0 and stops firing into memory. Control then passes on to the next instruction
in line. But take away REP, and the automatic decrementing of RCX stops. So,
also, does the automatic detection when RCX has been counted down to 0.

Obviously, something has to decrement RCX since RCX governs how many
times the string instruction accesses memory. If STOSB doesn’t do it— you guessed
it— you have to do it somewhere else, with another instruction.

The obvious way to decrement RCX is to use DEC RCX. And the obvious way to
determine if RCX has been decremented to 0 is to follow the DEC RCX instruction
with a JNZ (Jump if Not Zero) instruction. JNZ tests the Zero flag ZF and jumps
back to the STOSB instruction until ZF becomes true. And ZF becomes true when
a DEC instruction causes its operand (here, RCX) to become 0.

The LOOP Instructions
With all that in mind, consider the following assembly language instruction
loop. This is not taken from Listing 11.1, but a cobbled- up example of the “hard”
way to do things:

 mov al,30h ; Put the value of character "0" in AL
DoChar:
 stosb ; Note that there's no REP prefix!
 inc al ; Bump the character value in AL up by 1
 dec rcx ; Decrement the count by 1..
 jnz DoChar ; ..and loop again if RCX > 0

Look to see how the loop runs. STOSB fires, AL is modified, and then RCX is
decremented. The JNZ instruction tests to see if the DEC instruction has forced
RCX to zero. If so, the Zero flag ZF is set, and the loop will terminate. But until
ZF is set, the jump is made back to the label DoChar, where STOSB fires yet again.

There is a simpler way, using an instruction I haven’t discussed until now:
LOOP. The LOOP instruction combines the decrementing of RCX with a test and
jump based on ZF. It looks like this:

 mov al,30h ; Put the value of character "0" in AL
DoChar:
 stosb ; Note that there's no REP prefix!
 inc al ; Bump the character value in AL up by 1
 loop DoChar ; Go back & do another char until RCX goes to 0

When executed, the LOOP instruction first decrements RCX by 1. It then checks
the Zero flag to see if the decrement operation forced RCX to zero. If so, it falls

394 Chapter 11 ■ Strings and Things

through to the next instruction. If not (that is, if ZF remains 0, indicating that
RCX is still greater than 0), LOOP branches to the label specified as its operand.

So, the loop keeps looping the LOOP until RCX counts down to 0. At that point,
the loop is finished, and execution falls through and continues with the next
instruction following LOOP.

Displaying a Ruler on the Screen
As a useful demonstration of when it makes sense to use STOSB without REP
(but with LOOP) let me offer you another item for your video toolkit.

The Ruler procedure from Listing 11.1 displays a repeating sequence of
ascending digits starting from 1, of any length, at some selectable location on
your screen. In other words, you can display a string of digits like this any-
where you’d like:

123456789012345678901234567890123456789012345678901234567890

This might allow you to determine where in the horizontal dimension of
the console window a line begins or some character falls. The Ruler procedure
allows you to specify how long the ruler is, in digits, and where on the screen
it will be displayed.

A typical call to Ruler would look something like this:

mov rax,1 ; Load Y position to AL
mov rbx,1 ; Load X position to BL
mov rcx,COLS- 1 ; Load ruler length to RCX
call Ruler ; Write the ruler to the buffer

This invocation places a ruler at the upper- left corner of the display, beginning
at position 1,1. The length of the ruler is passed in RCX. Here, you’re specifying
a ruler one character shorter than the display is wide. This provides a ruler that
spans the full visible width of your virtual text display.

Why one character shorter? Remember that there is an EOL character at the
end of every line. This EOL character isn’t visible directly, but it’s still a character
and requires a byte in the buffer to hold it. The COLS equate must always take
this into account: If you want an 80- character wide display, COLS must be set to
81. If you want a 96- character wide display, COLS must be set to 97. If you code
a call to Ruler as shown earlier, NASM will do some assembly- time math and
always generate a ruler that spans the full (visible) width of the text display.

Over and above the LOOP instruction, there’s a fair amount of new assembly
technology at work here that could stand explaining. Let’s detour from the
string instructions for a bit and take a closer look.

 Chapter 11 ■ Strings and Things 395

MUL Is Not IMUL
I described the MUL instruction and its implicit operands way back in Chapter 7.
The Ruler procedure uses MUL as well to calculate an X,Y position in the display
memory buffer where STOSB can begin placing the ruler characters. The algorithm
for determining the offset in bytes into the buffer for any given X and Y values
looks like this:

Offset = ((Y * width in characters of a screen line) + X)

Pretty obviously, you have to move Y lines down in the screen buffer and then
move X bytes over from the left margin of the screen to reach your X,Y position.
The calculation is done this way inside the Ruler procedure:

mov rdi,VidBuff ; Load video buffer address to RDI
 dec rax ; Adjust Y value down by 1 for address calculation
 dec rbx ; Adjust X value down by 1 for address calculation
 mov ah,COLS ; Move screen width to AH
 mul ah ; Do 8- bit multiply AL*AH to AX
 add rdi,rax ; Add Y offset into vidbuff to RDI
 add rdi,rbx ; Add X offset into vidbuf to RDI

The two DEC instructions take care of the fact that X,Y positions in this system
are 1- based; that is, the upper- left corner of the screen is position 1,1 rather than
0,0, as they are in some X,Y coordinate systems. Think of it this way: If you want
to display a ruler beginning in the very upper- left corner of the screen, you have
to write the ruler characters starting at the very beginning of the buffer, at no
offset at all. For calculation’s sake, then, the X,Y values thus have to be 0- based.

For an 8- bit multiply using MUL, one of the factors is implicit: AL contains the Y
value, and the caller passes Ruler the Y value in RAX. We place the screen width
in AH and then multiply AH times AL with MUL. (See Chapter 7’s discussion of
MUL if it’s gotten fuzzy in the interim.) The product replaces the values in both
AH and AL and are accessed as the value in AX. Adding that product and the
X value (passed to Ruler in BL) to RDI gives you the precise memory address
where the ruler characters must be written.

Now, there’s a fairly common bug to warn you about here: MUL is not
IMUL. . .most of the time. MUL and IMUL are sister instructions that both perform
multiplication. MUL treats its operand values as unsigned, whereas IMUL treats
them as signed. This difference does not matter as long as both factors remain
positive in a signed context. In practical terms, for an 8- bit multiply, MUL and
IMUL work identically on values of 127 or less. At 128 everything changes. Values
above 127 are considered negative in an 8- bit signed context. MUL considers 128
to be. . .128. IMUL considers 128 to be - 1. Whoops.

396 Chapter 11 ■ Strings and Things

You could replace the MUL instruction with IMUL in Ruler, and the proc would
work identically until you passed it a screen dimension greater than 127. Then,
suddenly, IMUL would calculate a product that is nominally negative. . .but only
if you’re treating the value as a signed value. A negative number treated as
unsigned is a very large positive number, and a memory reference to the address
represented by RDI plus that anomalous value will generate a segmentation fault.
Try it! No harm done, and it’s an interesting lesson. IMUL is for signed values.
For memory address calculations, leave it alone and be sure to use MUL instead.

Ruler’s Lessons
The Ruler procedure is a good example of using STOSB without the REP prefix.
We have to change the value in AL every time we store AL to memory and thus
can’t use REP STOSB. Note that nothing is done to RDI or RCX while changing
the digit to be displayed, and thus the values stored in those registers are held
over for the next execution of STOSB. Ruler is a good example of how LOOP works
with STOSB to adjust RCX downward and return control to the top of the loop.
LOOP, in a sense, does outside the CPU what REP does inside the CPU: adjust
RCX and close the loop. Try to keep that straight in your head when using any
of the string instructions!

The Four Sizes of STOS
Before moving on to other string instructions, it’s worth pointing out that there
are four different “sizes” of the STOS string instruction:

 ■ STOSB stores the 8- bit value in AL into memory.

 ■ STOSW stores the 16- bit value in AX into memory.

 ■ STOSD stores the 32- bit value in EAX into memory.

 ■ STOSQ stores the 64- bit value in RAX into memory.

STOSW, STOSD, and STOSQ work almost the same way as STOSB. The major
difference lies in the way the destination address RDI is changed after each
memory transfer operation. RDI is changed according to the sizes of the quantity
acted upon by the instruction. For STOSW, RDI changes by two bytes, either up
or down depending on the state of DF. For STOSD, RDI changes by four bytes,
again either up or down depending on the state of DF. STOSQ changes RDI by
eight bytes, up or down depending on the state of DF.

However, in all cases, with the REP prefix in front of the instruction, the
counter register (in x64, RCX) is decremented by one after each memory transfer
operation. It is always decremented, and always by one. RCX counts operations.
It has nothing to say about memory addresses nor the size of the value being
stored in memory.

 Chapter 11 ■ Strings and Things 397

Goodbye, BCD Math
This might seem an odd place to talk about machine instructions that are no
longer available, but I have a reason. Readers who have seen earlier editions of
this book, particularly the 2009 edition, might recall that the vidbuff1 example
program (Listing 11.1) used BCD arithmetic to generate the characters that
make up the ruler.

To put it bluntly, the architects of x64 removed all BCD math instructions
found in the x86 definition. This amounts to six instructions:

AAA, DAA, DAS, AAS, AAM, AAD

It’s outside the scope of this book to explain BCD math (the 2009 edition has
some coverage if you’re genuinely interested), and I only bring it up because
in the 2009 edition, the vidbuff1 program used BCD math. There are use cases
for BCD math, mostly in financial calculations, but Intel’s BCD instructions go
back a long way, and we have better financial calculations techniques these days.

Basically, BCD math allowed you to add an ASCII character to another ASCII
character. It’s complicated and slow and no longer possible— because the instruc-
tions that accomplish it are no longer available.

MOVSB: Fast Block Copies

The STOSB instruction is a fascinating item, but for sheer action packed into a
single line of assembly code there’s nothing that can touch the MOVS instruction.
Like STOS, MOVS comes in four “sizes,” for handling bytes (MOVSB), 16- bit words
(MOVSW), 32- bit double words (MOVSD), and 64- bit quad words (MOVSQ). For working
with ASCII characters as we are in this chapter, MOVSB is the one to use.

The gist of the MOVSB instruction is this: A block of memory data at the address
stored in RSI is copied to the address stored in RDI. The number of bytes to be
moved is placed in the RCX register. RCX counts down by one after each byte
is copied, and the addresses in RSI and RDI are adjusted by one. For MOVSW, the
source and destination registers are adjusted by two after each word is copied;
for MOVSD, they are adjusted by four after each double word is copied, and for
MOVSQ, they are adjusted by eight bytes after each quad word is copied. These
adjustments are either increments or decrements, depending on the state of
DF. In all cases, RCX is decremented by one each time a data item goes from
the source address to the destination address. Remember that RCX is counting
memory transfer operations, not address bytes!

The DF register affects MOVSB the same way it affects STOSB. By default, DF is
cleared, and string operations operate “uphill” from low memory toward high
memory. If DF is set, the direction that string operations work goes the other
way, from high memory toward low.

398 Chapter 11 ■ Strings and Things

MOVSB can operate either semiautomatically or automatically, just as with
STOSB. Add the REP prefix to MOVSB, and (assuming you have the registers set
up correctly) a block of memory will be copied from here to there in just one
instruction, in a tight loop inside the CPU.

To demonstrate MOVSB, I added a short procedure called WrtLn to Listing 11.1.
WrtLn copies a string to a given X,Y location in the display buffer VidBuff. It
does a job much like Write in Pascal or print in C. Before calling WrtLn, you
place the source address of the string in RSI, the 1- based X,Y coordinates in RBX
and RAX, and the length of the string in bytes in RCX.

The code that does the work in WrtLn is pretty simple:

cld ; Clear DF for up- memory write
mov rdi,VidBuff ; Load destination index with buffer address
dec rax ; Adjust Y value down by 1 for address calculation
dec rbx ; Adjust X value down by 1 for address calculation
mov ah,COLS ; Move screen width to AH
mul ah ; Do 8- bit multiply AL*AH to AX
add rdi,rax ; Add Y offset into vidbuff to RDI
add rdi,rbx ; Add X offset into vidbuf to RDI
rep movsb ; Blast the string into the buffer

The code for calculating the offset into VidBuff from the X,Y values using
MUL is the same as that used in Ruler. In the main program section of vidbuff1,
some additional calculation is done to display a string centered in the visible
buffer, rather than at some specific X,Y location:

mov rsi,Message ; Load the address of the message to RSI
mov rcx,MSGLEN ; and its length to RCX
mov rbx,COLS ; and the screen width to RBX
sub rbx,rcx ; Calc diff of message length and screen width
shr rbx,1 ; Divide difference by 2 for X value
mov rax,20 ; Set message row to Line 20
call WrtLn ; Display the centered message

DF and Overlapping Block Moves
The simple demo program vidbuff1 uses MOVSB to copy a message from the
.data section of the program into the display buffer. Although WrtLn uses MOVSB
to copy the message “uphill” from low memory to high, you could argue that
you could just as easily copy it from high memory “downhill” to low, and you
would be right. The direction flag DF doesn’t seem to be more than a matter
of preference. . .unless and until your source and destination memory blocks
overlap.

 Chapter 11 ■ Strings and Things 399

Nothing requires that RSI and RDI point to entirely separate areas of memory.
The source and destination memory blocks may overlap, and that can often be
extremely useful.

Here’s an example: Consider the challenge of editing text stored in a memory
buffer. Suppose you have a string in a buffer and want to insert a character
somewhere in the middle of the string. All the characters in the string past
the insertion point must be “moved aside” to make room for the new inserted
character. (This assumes there is empty space at the end of the buffer.) This is
a natural application for REP MOVSB— but setting it up may be trickier than it
seems at first glance.

I vividly remember the first time I tried it— which, not coincidentally, was
the first time I ever attempted to use MOVSB. What I did is shown schematically
in the left portion of Figure 11.1. The goal was to move a string to the right by
one position so that I could insert a space character in front of it.

I pointed RSI to the first byte in the string and pointed RDI to the position I
wanted to move the string. I then executed an “uphill” REP MOVSB instruction,

Figure 11.1: Using MOVSB on overlapping memory blocks

400 Chapter 11 ■ Strings and Things

and when the smoke cleared, I discovered that I had replaced the entire string
with its initial character. Yes, it’s an obvious mistake. . .once you see it actually
happen. (Yes, when I made this mistake, the registers were 16 bits in size and I
was a lot younger, but things work the same in x64 long mode, and the bug is
still very easy to commit.)

On the right side of the figure is the way such an insert should in fact be
done. You must begin at the high end of the string and work “downhill” toward
the insertion point. The first character move must take the last character of the
string into empty buffer space and out of the way of the next character move,
and so on. In this way, two areas of memory that overlap by all but one byte
can be copied one to the other without losing any data.

This shows easier than it tells. If you can watch the move happen, it becomes
a lot clearer. I’ve created a sandbox demo of an overlapping block move in List-
ing 11.2. It’s designed for SASM, which is why it has the gcc suffix.

Listing 11.2: movsbdemogcc.asm

 section .data
 ;0000000000111
 ;0123456789012
 EditBuff: db 'abcdefghijklm '
 BUFFLEN equ $- EditBuff
 ENDPOS equ 12 ; 0- based number of last visible character
 INSRTPOS equ 1

section .text

global main

main:
; This a "sandbox" program for single- stepping in the SASM debugger,
; and is not a complete program. Just letting it fly will segfault.

 mov rbp, rsp; for correct debugging

; Put your experiments between the two nops...
 nop

 std ; We're doing a "downhill" transfer
 mov rbx,EditBuff
 mov rsi,EditBuff+ENDPOS ; Start at end of visible text
 mov rdi,EditBuff+ENDPOS+1 ; Bump text right by 1
 mov rcx,ENDPOS- INSRTPOS+2 ; # of chars to bump; not a 0- based
 ; address but a count
 rep movsb ; Move 'em!
 mov byte [rbx],' ' ; Write a space at insert point

; Put your experiments between the two nops...
 nop

 Chapter 11 ■ Strings and Things 401

To watch the move in SASM, you have to load the code in Listing 11.2, build
it, and then start the debugger. Once you’re in debug mode, select Debug ➪
Show Memory. In the Variable Or Expression field, enter EditBuff. In the Type
field, select Char from the first drop- down, and b from the second drop- down.
EditBuff is 14 characters long (including the trailing space), so enter 14 in the
third field. Do not click the Address check box.

Here’s how it works: ENDPOS is the 0- based offset of the last nonspace character
in the string. Note that this is not a count, but an offset from the beginning of
EditBuff. The offset of the final character “m” from the beginning of the buffer
is 12 bytes. If you start with the address of EditBuff in RSI and add 12 to it,
RSI will be pointing at the “m.” RDI, in turn, is pointed at the offset of the first
buffer position after the final character in the string, which is the reason for the
ENDPOS+1 assembly- time calculation, which points at the space character at the
end of EditBuff.

Deriving the count to be placed into RCX has to take the 0- based nature of
the address offsets into account. You have to add 2 to the difference between the
string’s end position (ENDPOS) and the insert position (INSRTPOS) because both
are 0- based, and to get a correct count, you have to add back in the additional
two 1s that you would have if ENDPOS and INSRTPOS were both 1- based num-
bers. (Remember that counts of things are not 0- based!)

Note the STD instruction that begins the code block. STD sets the Direction
Flag DF to 1, which forces string instructions to work “downhill” from high
memory toward low memory. DF defaults to 0, so for this code to work the STD
instruction must be present!

Single- Stepping REP String Instructions
I should mention here that even though a REP MOVSB instruction appears to
be a single instruction, it is actually an extremely tight loop implemented as a
single instruction. Single- stepping REP MOVSB in a debugger does not execute
the whole loop at one blow! Each time you click SASM’s Step Into icon, only
one memory transfer operation will take place.

If RCX is loaded with a count value of 13, for example, you will have to click
Step Into icon 13 times to step your way through the entire instruction. This
allows you to watch memory and registers change while the instruction oper-
ates. However, for large count values in RCX, that can become a lot of clicking.
If you’re confident of the correctness of your string instruction setup, you may
want to place a breakpoint on the next instruction after the REP string instruction
and click Continue (or press F5) to execute the string instruction at full speed
without pausing after each memory transfer operation. SASM will pause at
the breakpoint, and you can inspect the final state of the memory buffer and
continue single- stepping from there.

402 Chapter 11 ■ Strings and Things

The other issue with watching memory moves with SASM’s debugger is the
odd way that SASM displays string buffers. If you select Smart from the first
drop- down, SASM will display EditBuff as a string of characters in the form
“abcdefghijklm” but without the trailing space. You can watch the move happen
with that display, but it’s not the whole picture and might confuse you.

The Char display of EditBuff is how it is in part because it allows you to
include nondisplayable characters like EOL. A character is shown as its decimal
equivalent and then the actual character in single quotes, like this:

{97'a',98'b',99'c',100'd',101'e',102'f'103'g', … 32''}

This format will show you the space character at the end of EditBuff, but
you’ll have to watch closely to see the move as it happens.

My sincere hope is that SASM will one day include a hexdump- style memory
display, like the one in Insight.

Storing Data to Discontinuous Strings

Sometimes you have to break the rules. Until now I’ve been explaining the
string instructions under the assumption that the destination string is always
one continuous sequence of bytes in memory. This isn’t necessarily the case. In
addition to changing the value in RAX between executions of STOSB, you can
change the destination address as well. The end result is that you can store data
to several different areas of memory within a single very tight loop.

Displaying an ASCII Table
I’ve created a small demo program for SASM to show you what I mean. It’s
not as useful as the Ruler procedure in Listing 11.1, but it makes its point and
is easy to understand if you’ve followed me so far. The showchargcc program
uses a lot of the same basic machinery as vidbuff1, including the virtual display
mechanism and Ruler. So to save page space in the book, I’m not going to show
the whole program here. The complete source code file (as with all the code
presented in this book) can be downloaded from my assembly language web
page in the listings archive zip file.

The showchargcc program clears the screen, displays a ruler on line 1, and
below that shows a table containing 224 of the 256 ASCII characters, neatly
displayed in 7 lines of 32 characters each. The table includes the “high” 127
ASCII characters, including foreign- language characters, line- draw characters,
and miscellaneous symbols. What it does not display are the very first 32 ASCII
characters. Linux treats these as control characters, and even those characters
for which glyphs are available are not displayed to the console.

 Chapter 11 ■ Strings and Things 403

The showchargcc program introduces a couple of new concepts and instruc-
tions, all related to program loops. (String instructions such as STOSB and
program loops are intimately related.) To save page space, Listing 11.3 presents
showchargcc without its procedures. All procedures and macros it invokes are
present in Listing 11.1.

Listing 11.3: showchargcc.asm (Minus Procedures)

; Executable name : showchargcc
; Version : 2.0
; Created date : 10/19/2022
; Last update : 5/17/2023
; Author : Jeff Duntemann
; Description : A simple program in assembly for Linux,
; demonstrating discontinuous string writes to memory using STOSB
; without REP. The program loops through characters 32 through 255
; and writes a simple "ASCII chart" in a display buffer. The chart
; consists of 8 lines of 32 characters, with the lines not
; continuous in memory.
;
; Build using the standard SASM x64 build lines
;

SECTION .data ; Section containing initialized data
 EOL equ 10 ; Linux end- of- line character
 FILLCHR equ 32 ; Default to ASCII space character
 CHRTROW equ 2 ; Chart begins 2 lines from top
 CHRTLEN equ 32 ; Each chart line shows 32 chars

; This escape sequence will clear the console terminal and place the
; text cursor to the origin (1,1) on virtually all Linux consoles:
 ClrHome db 27,"[2J",27,"[01;01H"
 CLRLEN equ $- ClrHome ; Length of term clear string
 EOL equ 10 ; Linux end- of- line character

; We use this to display a ruler across the screen.
 RulerString db
"1234567890123456789012345678901234567890123456789012345678901234567
8901234567890"
 RULERLEN equ $- RulerString

SECTION .bss ; Section containing uninitialized data

 COLS equ 81 ; Line length + 1 char for EOL
 ROWS equ 25 ; Number of lines in display
 VidBuff resb COLS*ROWS ; Buffer size adapts to ROWS & COLS

SECTION .text ; Section containing code

global main ; Linker needs this to find the entry point!

404 Chapter 11 ■ Strings and Things

;-
; MAIN PROGRAM:
;-
main:
 mov rbp, rsp ; for correct debugging

; Get the console and text display text buffer ready to go:
 call ClearTerminal ; Send terminal clear string to console
 call ClrVid ; Init/clear the video buffer

; Show a 64- character ruler above the table display:
 mov rax,1 ; Start ruler at display position 1,1
 mov rbx,1
 mov rcx,32 ; Make ruler 32 characters wide
 call Ruler ; Generate the ruler

; Now let's generate the chart itself:
 mov rdi,VidBuff ; Start with buffer address in RDI
 add rdi,COLS*CHRTROW ; Begin table display down CHRTROW lines
 mov rcx,224 ; Show 256 chars minus first 32
 mov al,32 ; Start with char 32; others won't show
.DoLn:
 mov bl,CHRTLEN ; Each line will consist of 32 chars
.DoChr:
 stosb ; Note that there's no REP prefix!
 jrcxz AllDone ; When the full set is printed, quit
 inc al ; Bump the character value in AL up by 1
 dec bl ; Decrement the line counter by one
 loopnz .DoChr ; Go back & do another char until BL goes to 0
 add rdi,COLS- CHRTLEN ; Move RDI to start of next line
 jmp .DoLn ; Start display of the next line

; Having written all that to the buffer, send buffer to the console:
AllDone:
 call Show ; Refresh the buffer to the console

Exit:
 ret

Nested Instruction Loops
Once all the registers are set up correctly according to the assumptions made
by STOSB, the real work of showchargcc is performed by two instruction loops,
one inside the other. The inner loop displays a line consisting of 32 characters.
The outer loop breaks up the display into seven such lines. The inner loop is
by far the more interesting of the two. Here it is:

.DoChr:
 stosb ; Note that there's no REP prefix!

 Chapter 11 ■ Strings and Things 405

 jrcxz AllDone ; When the full set is printed, quit
 inc al ; Bump the character value in AL up by 1
 dec bl ; Decrement the line counter by one
 loopnz .DoChr ; Go back & do another char until BL goes to 0

The work here (putting a character into the display buffer) is again done by
STOSB. Once again, STOSB is working solo, without REP. Without REP to pull the
loop inside the CPU, you have to set the loop up yourself.

Keep in mind what happens each time STOSB fires: The character in AL is
written to the memory location pointed to by RDI, and RDI is incremented by
1. At the other end of the loop, the LOOPNZ instruction decrements RCX by 1
and closes the loop.

During register setup, we loaded RCX with the number of characters we
wanted to display— in this case, 224. (It’s 224 characters because the first 32
characters in the full roster of 256 are mostly control characters and can’t be
displayed.) Each time STOSB fires, it places another character in the display buffer
VidBuff, and there is one fewer character left to display. RCX acts as the master
counter, keeping track of when we finally display the last remaining character.
When RCX goes to zero, we’ve displayed the appropriate subset of the ASCII
character set and the job is done.

Jumping When RCX Goes to 0
JRCXZ is a special branching instruction created specifically to help with loops
like this. In Chapter 10, I explained how it’s possible to branch using one of
the many variations of the JMP instruction, based on the state of one or more of
the CPU flags. Earlier in this chapter, I explained the LOOP instruction, which
is a special- purpose sort of a JMP instruction, one combined with an implied
DEC RCX instruction. JRCXZ is yet another variety of JMP instruction, but one
that doesn’t watch any of the flags or decrement any registers. Instead, JRCXZ
watches the RCX register. When it sees that RCX has just gone to zero, it jumps
to the specified label. If RCX is still nonzero, execution falls through to the next
instruction in line.

In the case of the inner loop shown previously, JRCXZ branches to the “close
up shop” code when it sees that RCX has finally gone to 0. This is how the
showchar program terminates.

Most of the other JMP instructions have partners that branch when the govern-
ing flag is not true. That is, JC (Jump on Carry) branches when the Carry flag
equals 1. Its partner, JNC (Jump on Not Carry), jumps if the Carry flag is not 1.
However, JRCXZ is a loner. There is no JRCXNZ instruction, so don’t go looking
for one in the instruction reference!

406 Chapter 11 ■ Strings and Things

Closing the Inner Loop
Assuming that RCX has not yet been decremented to 0 by the STOSB instruction
(a condition watched for by JRCXZ), the loop continues. AL is incremented. This
is how the next ASCII character in line is selected. The value in AL is sent to the
location stored in RDI by STOSB. If you increment the value in AL, you change
the displayed character to the next one in line. For example, if AL contains the
value for the character A (65), incrementing AL changes the A character to a B
(66). On the next pass through the loop, STOSW will fire a B at the screen instead
of an A.

After the character code in AL is incremented, BL is decremented. Now, BL
is not directly related to the string instructions. Nothing in any of the assump-
tions made by the string instructions involves BL. We’re using BL for something
else entirely here. BL is acting as a counter that governs the length of the lines
of characters shown on the screen. BL was loaded earlier with the value repre-
sented by the equate CHRTLEN, which has the value 32. On each pass through the
loop, the DEC BL instruction decrements the value of BL by 1. Then the LOOPNZ
instruction gets its moment in the sun.

LOOPNZ is a little bit different from our friend LOOP that we examined earlier.
It’s just different enough to get you into trouble if you don’t truly understand
how it works. Both LOOP and LOOPNZ decrement the RCX register by 1. LOOP
watches the state of the RCX register and closes the loop until RCX goes to 0.
LOOPNZ watches both the state of the RCX register and the state of the Zero flag
ZF. (LOOP ignores ZF.) LOOPNZ will close the loop only if RCX <> 0 and ZF = 0.
In other words, LOOPNZ closes the loop only if RCX still has something left in it
and if the Zero flag ZF is not set.

So, what exactly is LOOPNZ watching for here? Remember that immediately
prior to the LOOPNZ instruction, we’re decrementing BL by 1 through a DEC BL
instruction. The DEC instruction always affects ZF. If DEC’s operand goes to zero
as a result of the DEC instruction, ZF goes to 1 (is set). Otherwise, ZF stays at 0
(remains cleared). So, in effect, LOOPNZ is watching the state of the BL register.
Until BL is decremented to 0 (setting ZF), LOOPNZ closes the loop. After BL goes
to zero, the inner loop is finished, and execution falls through LOOPNZ to the
next instruction.

What about RCX? Well, LOOPNZ is in fact watching RCX— but so is JRCXZ. JRCXZ
is actually the switch that governs when the whole loop— both inner and outer
portions— has done its work and must stop. So, while LOOPNZ does watch RCX,
somebody else is doing that task, and that somebody else will take action on
RCX before LOOPNZ can. LOOPNZ’s job is thus to decrement RCX but to watch
BL. It governs the inner of the two loops.

 Chapter 11 ■ Strings and Things 407

Closing the Outer Loop
But does that mean that JRCXZ closes the outer loop? No. JRCXZ tells us when
both loops are finished. Closing the outer loop is done a little differently from
closing the inner loop. Take another look at the two nested loops:

.DoLn:
 mov bl,CHRTLEN ; Each line will consist of 32 chars
.DoChr:
 stosb ; Note that there's no REP prefix!
 jrcxz AllDone ; When the full set is printed, quit
 inc al ; Bump the character value in AL up by 1
 dec bl ; Decrement the line counter by one
 loopnz .DoChr ; Go back & do another char until BL = 0
 add rdi,COLS- CHRTLEN ; Move RDI to start of next line
 jmp .DoLn ; Start display of the next line

The inner loop is considered complete when we’ve displayed one full line
of the ASCII table to the screen. BL governs the length of a line, and when BL
goes to zero (which the LOOPNZ instruction detects), a line is finished. LOOPNZ
then falls through to the ADD instruction that modifies RDI.

We modify RDI to jump from the address of the end of a completed line in
the display buffer to the start of the next line at the left margin. This means we
have to “wrap” by some number of characters from the end of the ASCII table
line to the end of the visible screen. The number of bytes this requires is given
by the assembly- time expression COLS- CHRTLEN. This is basically the difference
between the length of one ASCII table line and width of the virtual screen. (Not
the width of the terminal window to which the virtual screen is displayed!) The
result of the expression is the number of bytes that we must move further into
the display buffer to come to the start of the next line at the left screen margin.

But after that wrap is accomplished by modifying RDI, the outer loop’s work
is done, and we close the loop. This time, we do it unconditionally by way of a
simple JMP instruction. The target of the JMP instruction is the .DoLn local label.
No ifs, no arguments. At the top of the outer loop (represented by the .DoLn
label), we load the length of a table line back into the now- empty BL register
and then drop back into the inner loop. The inner loop starts firing characters
at the buffer again and will continue to do so until JRCXZ detects that RCX has
gone to 0.

At that point, both the inner and outer loops are finished, and the full ASCII
table has been written into VidBuff. With this accomplished, the buffer can be
sent to the Linux console by calling the Show procedure.

408 Chapter 11 ■ Strings and Things

Showchar Recap
Let’s look back at what we’ve just been through, as it’s admittedly pretty com-
plex. The showchar program contains two nested loops: The inner loop shoots
characters at the screen via STOSB. The outer loop shoots lines of characters at
the screen, by repeating the inner loop some number of times. (Here, 7.)

The inner loop is governed by the value in the BL register, which is initially
set up to take the length of a line of characters. (Here, 32.) The outer loop is not
explicitly governed by the number of lines to be displayed. That is, you don’t
load the number 7 into a register and decrement it. Instead, the outer loop con-
tinues until the value in RCX goes to 0, indicating that the whole job— displaying
all of the 224 characters that we want shown— is done.

The inner and outer loops both modify the registers that STOSB works with.
The inner loop modifies AL after each character is fired at the screen. This makes
it possible to display a different character each time STOSB fires. The outer loop
modifies RDI (the destination index register) each time a line of characters is
complete. This allows us to break the destination string up into seven separate,
noncontiguous, nonidentical lines.

Command- Line Arguments, String Searches, and
the Linux Stack

When you launch a program at the Linux console command prompt, you have
the option of including any reasonable number of arguments after the pathname
of the executable program. In other words, you can execute a program named
showargs1 like this:

$./showargs1 time for tacos

The three arguments follow the program name and are separated by space
characters. Note that these are not the same as I/O redirection parameters,
which require the use of the redirection operators “>” or “<” and are handled
separately by Linux.

When one of your programs begins running, any command- line arguments
that were entered when the program was launched are passed to the program on
the Linux stack. In this chapter, we’ll see how to access a program’s command-
line arguments from an assembly language program. In the process, we’ll get
to see yet another x86 string instruction in action: SCASB.

Displaying Command- Line Arguments from SASM
The fact that Linux places command- line arguments on the stack doesn’t mean
you have to directly access the stack to get at them. From programs written

 Chapter 11 ■ Strings and Things 409

inside the SASM IDE, your access to the arguments comes to you in registers
RSI and RDI. It works like this:

 ■ At program startup, register RDI contains a value, 1 or greater, indicating
the number of command- line arguments. The value is always at least 1
because Linux always places the program’s command- line invocation text
as the first item in its list of command- line arguments.

 ■ At startup, register RSI contains the address of the first item in the list of
command- line arguments. Remember that that first item is always the
command- line invocation of the program. If there are no command- line
arguments, the invocation text is the only thing you can access from RSI. If
there are command- line arguments, there will be a list of addresses in
memory, with each address pointing to one of the arguments.

Remember that this is true of programs you build with SASM using the default
build parameters, or non- SASM programs that you link with gcc. Why? SASM
uses the Gnu C compiler gcc as a linker and requires the label main: as the start
of the program. All C programs have what’s called the main function, main(),
which is the part of the program that you write. In essence, what SASM builds is
a C program for which you write the main() function. The tricky part is that gcc
links in a block of code that runs before your main() function begins executing.

This “startup” code does a number of things. For this discussion, what matters
is that it copies the argument count and the pointer to the argument table from
the stack and into registers RSI and RDI. See Figure 11.2. Note that programs
linked with glibc but built outside of SASM have the same useful information
in RSI and RDI, courtesy of the glibc startup code.

Later I’ll explain how assembly programs built without linking with gcc can
read the same information off the stack. For now take a look at Listing 11.4, a
program that displays command- line parameters for you, written for SASM.

Listing 11.4: showargs1gcc.asm

; Executable name : showargs1gcc
; Version : 2.0
; Created date : 10/17/2022
; Last update : 5/11/2023
; Author : Jeff Duntemann
; Description : A simple program for Linux, using NASM 2.14.02,
; : demonstrating how to access command line
; : arguments from programs written/built in SASM.
;
; Build using SASM standard x64 build setup
;
SECTION .data ; Section containing initialized data

410 Chapter 11 ■ Strings and Things

 ErrMsg db "Terminated with error.",10
 ERRLEN equ $- ErrMsg

 MAXARGS equ 5 ; More than 5 arguments triggers an error

SECTION .bss ; Section containing uninitialized data

SECTION .text ; Section containing code

global main ; Linker needs this to find the entry point!

main:
 mov rbp, rsp ; for correct SASM debugging

 mov r14,rsi ; Put offset of arg table in r14
 mov r15,rdi ; Put argument count in r15

 cmp qword r15,MAXARGS ; Test for too many arguments
 ja Error ; Show error message if too many args
 ; and quit

; Use SCASB to find the 0 at the end of the single argument
 xor rbx,rbx ; RBX contains the 0- based # (not address)
 ; of current arg
Scan1:
 xor rax,rax ; Searching for string- termination 0, so
 ; clear AL to 0
 mov rcx,0000ffffh ; Limit search to 65535 bytes max
 mov rdi,qword [r14+rbx*8] ; Put address of string to search in
 ; RDI, for SCASB
 mov rdx,rdi ; Copy string address into RDX for subtraction

 cld ; Set search direction to up- memory
 repne scasb ; Search for null (0) in string at RDI
 jnz Error ; Jump to error message display
 ; if null not found.

 mov byte [rdi- 1],10 ; Store an EOL where the null used to be
 sub rdi,rdx ; Subtract position of 0 in RDI from start
 ; address in RDX
 mov r13,rdi ; Put calculated arg length into R13

; Display the argument to stdout:
 mov rax,1 ; Specify sys_write call
 mov rdi,1 ; Specify File Descriptor 1: Standard Output
 mov rsi,rdx ; Pass offset of the arg in RSI
 mov rdx,r13 ; Pass length of arg in RDX
 syscall ; Make kernel call

 Chapter 11 ■ Strings and Things 411

 inc rbx ; Increment the argument counter
 cmp rbx,r15 ; See if we've displayed all the arguments
 jb Scan1 ; If not, loop back and do another
 jmp Exit ; We're done! Let's pack it in!

Error:
 mov rax,1 ; Specify sys_write call
 mov rdi,1 ; Specify File Descriptor 2: Standard Error
 mov rsi,ErrMsg ; Pass offset of the error message
 mov rdx,ERRLEN ; Pass the length of the message
 syscall ; Make kernel call

Exit:
 ret

String Searches with SCASB
Because the glibc startup code copies the argument count and table pointer
into registers for you, getting at the command- line arguments is easy. You have
what amounts to a table of addresses on the stack, and each address points to
an argument. The only tricky part is determining how many bytes belong to
each argument so that you can copy the argument data somewhere else if you

Figure 11.2: How to access parameters from within SASM

412 Chapter 11 ■ Strings and Things

need to or pass it to a Linux system call like sys_write. Because each argument
ends with a single 0- byte, the challenge is plain: We have to search for that 0.

This can be done in the obvious way, in a loop that reads a byte from an
address in memory, and then compares that byte against 0 before increment-
ing a counter and reading the next byte in memory. However, the good news is
that the x64 instruction set implements such a loop in a string instruction that
doesn’t store data (like STOSB) or copy data (like MOVSB) but instead searches
memory for a particular data value. This instruction is SCASB (Scan String by
Byte), and if you’ve followed my presentation on the other string instructions
so far, understanding it should be a piece of cake.

Listing 11.4 demonstrates SCASB by looking at the command- line arguments
on the stack and building a table of argument lengths. It then echoes back the
arguments (along with the invocation text of the executable file) to stdout via
a call to sys_write.

The first thing to do is copy the argument count and table pointer into differ-
ent registers, in this case, R14 and R15. Why? The RSI and RDI registers both
have secret agendas: RDI is part of using SCASB (more on that shortly) and RSI
is used to make sys_write calls. You’ll want the argument count and address
table pointer kept safe in registers that will not be used for other things.

We’re using a prefix here for the first time in this book: REPNE. This can be read
as “Repeat while not equal.” I’ll explain it in more detail shortly. When REPNE is
used together with SCASB, the REPNE SCASB instruction can find the 0 byte at the
end of each argument. Setting up SCASB is roughly the same as setting up STOSB:

 ■ For up- memory searches (like this one) the CLD instruction is used to
ensure that the Direction flag DF is cleared.

 ■ The address of the first byte of the string to be searched is placed in
RDI. Here, it’s the address of a command- line argument stored somewhere
on the stack.

 ■ The value to be searched for is placed in 8- bit register AL. (Here, the binary
digit 0.)

 ■ A maximum count is placed in RCX. This is done to avoid searching too
far in memory in case the byte you’re searching for isn’t actually there.

With all that in place, REPNE SCASB can be executed. As with STOSB, this creates
a tight loop inside the CPU. On each pass through the loop, the byte at [RDI] is
compared to the value in AL. If the values are equal, the loop is satisfied, and
REPNE SCASB ceases executing. If the values are not equal, RDI is incremented
by 1, RCX is decremented by 1, and the loop continues with another test of the
byte at [RDI].

When REPNE SCASB finds the character in AL and ends, RDI will point to
the byte after the found character’s position in the search string. If you want to

 Chapter 11 ■ Strings and Things 413

access the found character, you must subtract 1 from RDI, as the program does
when it replaces the terminating 0 character with an EOL character:

mov byte [rdi- 1],10 ; Store an EOL where the 0 used to be

REPNE vs. REPE
It’s worth taking a closer look at the REPNE prefix here, along with its partner
with the opposite sense, REPE. The SCASB instruction is a little different from
STOSB and MOVSB in that it is a conditional string instruction. STOSB and MOVSB
both repeat their action unconditionally when preceded by the REP prefix. There
are no tests going on except testing RCX to see if the loop has gone on for the
predetermined number of iterations. By contrast, SCASB performs a separate
test every time it fires, and every test can go two ways. That’s why we don’t
use the unconditional REP prefix with SCASB, but either the REPNE prefix or the
REPE prefix.

When we’re looking for a byte in the search string that matches the byte in
AL, we use the REPNE prefix, as is done in the showargs1gcc program. When
we’re looking for a byte in the search string that does not match the byte in AL,
we use REPE. You might think that this sounds backwards somehow, and it does.
However, the sense of the REPNE prefix is this: Repeat SCASB as long as [RDI]
does not equal AL. Similarly, the sense of the REPE prefix is this: Repeat SCASB
as long as [RDI] equals AL. The prefix indicates how long the SCASB instruction
should continue firing, not when it should stop.

It’s important to remember that REPNE SCASB can end for either of two reasons:
It finds a match to the byte in AL, or it counts RCX down to 0. In nearly all cases,
if RCX is zero when REPNE SCASB ends, it means that the byte in AL was not
found in the search string. However, there is the fluky possibility that RCX just
happened to count down to zero when [RDI] contained a match to AL. That’s
not very likely, but there are some mixes of data where it might just occur.

Each time SCASB fires, it makes a comparison, and that comparison either sets
or clears the Zero flag ZF. REPNE will end the instruction when its comparison
sets ZF to 1. REPE will end the instruction when its comparison clears ZF to 0.
However, to be absolutely sure that you catch the “searched failed” outcome,
you must test ZF immediately after the SCASB instruction ends.

For REPNE SCASB: Use JNZ.
For REPE SCASB: Use JZ.

You Can’t Pass Command- Line Arguments to Programs
Within SASM
If you build and then run Listing 11.4 inside SASM, what will be shown is the
first item in the list, which is the invocation text for the program. However, this

414 Chapter 11 ■ Strings and Things

invocation text won’t include the name showargs1gcc. What you’ll see is this
or something very like this:

/tmp/SASM/SASMprog.exe

Why? When you run a program within SASM, what you’re running is a
temporary binary file called SASMprog.exe. SASM generates this file when it
builds a program for you. It’s the same filename for any program you write
in SASM. The executable file showargs1gcc doesn’t exist until you create it by
saving the executable to disk. And you can’t run it until you open a terminal
window, navigate to the folder where the executable program exists, and then
run it from the command line.

That leads us to one of SASM’s major shortcomings: As best I know, there’s no
mechanism in SASM for storing command- line arguments that will be passed
to a program running within SASM. To get showargs1gcc to actually show
arguments, you have to save it as an executable file and run it from the terminal
command line.

If you run showargs1gcc from the command line this way:

$./showargs1gcc time for tacos

you will see the following in the terminal window:

./showargs1gcc
time
for
tacos

Each command- line argument is on a separate line because the program
replaces the 0- byte at the end of each argument with an EOL character.

Just a quick reminder: You save an executable file by selecting the File ➪
Save .exe menu item in SASM and then entering the name you want to give the
executable program file. The name doesn’t have to be the name of the source
code file minus the .asm. You don’t have to use the .exe suffix. Most Linux
executables are just a name without any suffix at all. You can name it whatever
you want. However, I strongly suggest you save the executable file in the same
folder where its source code file and makefile live.

The Stack, Its Structure, and How to Use It

The stack is much bigger and more complex than you might think. When Linux
loads your program, it places a great deal of information on the stack before
letting the program’s code begin execution. This includes the invocation text of
the executable that’s running, any command- line arguments that were entered
by the user when executing the program, and the current state of the Linux
environment, which is a big to very big collection of textual configuration strings
that defines how Linux is set up.

 Chapter 11 ■ Strings and Things 415

This is all laid out according to a plan, and I’ve summarized the plan in
Figure 11.3. First, some jargon refreshers: The top of the stack is (counterintu-
itively) at the bottom of the diagram. It’s the memory location pointed to by
RSP when your program begins running. The bottom of the stack is at the top
of the diagram. It’s the highest address in the virtual address space that Linux
gives to your program when it loads your program and runs it. This “top”
and “bottom” business is an ancient convention that confuses a lot of people.
Memory diagrams generally begin with low memory at the bottom of the page
and depict higher memory above it, even though this means the bottom of the
stack is at the top of the diagram. Get used to it; if you’re going to understand
the literature, you have no choice.

Linux builds the stack from high memory toward low memory, beginning at
the bottom of the stack and going down- memory from there. When your program
code actually begins running, RSP points to the top of the stack. Here’s a more
detailed description of what you’ll find on the stack at startup:

 ■ At RSP (i.e., the top of the stack) is a 64- bit number, giving you the count
of the command- line arguments present on the stack. This value is always
at least 1, even if no arguments were entered. The text typed by the user
when executing the program is counted in with any command- line param-
eters, and this “invocation text” is always present, which is why the count
is always at least 1.

 ■ The next 64- bit item up- memory from RSP is the address of the invocation
text by which the executable file was run. The text may be fully qualified,
which means that the pathname includes the directory path to the file
from your /home directory; for example, /home/asmstuff/asm4ecode/
showargs2/showargs2. This is how the invocation text looks when you
run your program from the Insight debugger. (More on Insight in Appendix
A.) If you use the “dot slash” method of invoking an executable from
within the current directory, you’ll see the executable name prefixed by ./.

 ■ If any command- line arguments were entered, their 64- bit addresses lie
up- memory from RSP, with the address of the first (leftmost) argument
followed by the address of the second, and so on. The number of argu-
ments is obviously variable, though you’ll rarely need more than four
or five.

 ■ The list of command- line argument addresses is terminated by a null
pointer, which is jargon for 64 bits of binary 0.

 ■ Up- memory from the null pointer begins a longish list of 64- bit addresses.
How many depends on your particular Linux system, but it can be close
to 200. Each of these addresses points to a null- terminated string (more
on those shortly) containing one of the definitions belonging to the Linux
environment.

416 Chapter 11 ■ Strings and Things

 ■ At the end of the list of addresses of Linux environment variables is another
64- bit null pointer, and that marks the end of the stack’s “directory.”
Beyond this point, you use the addresses found earlier on the stack to
access items still further up- memory.

Figure 11.3: The Linux stack at program execution

 Chapter 11 ■ Strings and Things 417

Accessing the Stack Directly
Listing 11.4 runs in SASM, and the C startup code helpfully copies the argument
count and argument table address into registers. If you’re not using SASM, that
helpful step won’t happen. You have to access the stack directly. Listing 11.5
shows how this can be done.

Listing 11.5: showargs2.asm

; Executable : showargs2
; Version : 2.0
; Created date : 11/3/2022
; Last update : 5/15/2023
; Author : Jeff Duntemann
; Description : A simple program in assembly for Linux, using
; NASM 2.15.05, demonstrating the way to access
; command line arguments on the stack. This version
; accesses the stack "nondestructively" by using
; memory references calculated from RBP rather than
; POP instructions.
;
; Use this makefile to build, with the required tab characters:
;
; showargs2: showargs2.o
; ld - o showargs2 - g showargs2.o
; showargs2.o: showargs2.asm
; nasm - f elf64 - g - F dwarf showargs2.asm - l showargs2.lst
;

SECTION .data ; Section containing initialized data

 ErrMsg db "Terminated with error.",10
 ERRLEN equ $- ErrMsg

SECTION .bss ; Section containing uninitialized data

; This program handles up to MAXARGS command- line arguments. Change
; the value of MAXARGS if you need to handle more arguments than the
; default 10. Argument lengths are stored in a table. Access arg
; lengths this way:
; [ArgLens + <index reg>*8]
; Note that when the argument lengths are calculated, an EOL char
; (10h) is stored into each string where the terminating null was
; originally. This makes it easy to print out an argument
; using sys_write.

 MAXARGS equ 10 ; Maximum # of args we support
 ArgLens: resq MAXARGS ; Table of argument lengths

418 Chapter 11 ■ Strings and Things

SECTION .text ; Section containing code

global _start ; Linker needs this to find the entry point!

_start:
 push rbp ; Alignment prolog
 mov rbp, rsp
 and rsp,- 16

; Copy the command line argument count from the stack and validate it:
 mov r13,[rbp+8] ; Copy argument count from the stack
 cmp qword r13,MAXARGS ; See if the arg count exceeds MAXARGS
 ja Error ; If so, exit with an error message

; Here we calculate argument lengths and store lengths in
; table ArgLens:
 mov rbx,1 ; Stack address offset starts at RBX*8

ScanOne:
 xor rax,rax ; Searching for 0, so clear AL to 0
 mov rcx,0000ffh ; Limit search to 65535 bytes max
 mov rdi,[rbp+8+rbx*8] ; Put address of string to search in RDI
 mov rdx,rdi ; Copy starting address into RDX

 cld ; Set search direction to up- memory
 repne scasb ; Search for null (binary 0) in string at RDI
 jnz Error ; REPNE SCASB ended without finding AL

 mov byte [rdi- 1],10 ; Store an EOL where the null used to be
 sub rdi,rdx ; Subtract position of 0 from start address
 mov [ArgLens+rbx*8],rdi ; Put length of arg into table
 inc rbx ; Add 1 to argument counter
 cmp rbx,r13 ; See if arg counter exceeds argument count
 jbe ScanOne ; If not, loop back and scan another one

; Display all arguments to stdout:
 mov rbx,1 ; Start (for stack addressing reasons) at 1
Showem:
 mov rax,1 ; Specify sys_write call
 mov rdi,1 ; Specify File Descriptor 1: Standard Output
 mov rsi,[rbp+8+rbx*8] ; Pass offset of the argument
 mov rdx,[ArgLens+rbx*8] ; Pass the length of the argument
 syscall ; Make kernel call
 inc rbx ; Increment the argument counter
 cmp rbx,r13 ; See if we've displayed all the arguments
 jbe Showem ; If not, loop back and do another
 jmp Exit ; We're done! Let's pack it in!

 Chapter 11 ■ Strings and Things 419

Error:
 mov rax,1 ; Specify sys_write call
 mov rdi,1 ; Specify File Descriptor 2: Standard Error
 mov rsi,ErrMsg ; Pass offset of the error message
 mov rdx,ERRLEN ; Pass the length of the message
 syscall ; Make kernel call

Exit:
 mov rsp,rbp
 pop rbp

 mov rax,60 ; Code for Exit Syscall
 mov rdi,0 ; Return a code of zero
 syscall ; Make kernel call

Program Prologs and Epilogs
Here’s a quick note on a tricky subject: stack alignment. I’m going to cover stack
alignment in more detail in Chapter 12, but Listing 11.5 contains something
interesting: the alignment prolog.

push rbp ; Alignment prolog
mov rbp, rsp
and rsp,- 16

It goes at the beginning of programs that do not link with the glibc library.
(These are programs that begin at the _start: label. Programs you create with
make typically use the alignment prolog.) The x64 ABI standard requires that
the stack be aligned on a 16- byte (not bit!) boundary. The AND RSP,- 16 is what
guarantees that the stack will be aligned. I’ve discussed AND before; you should
catch on quickly that this instruction forces the lower four bits of the stack
pointer to 0. It’s now aligned to a 16- byte boundary, even if it wasn’t before.

Pushing RBP on the stack gives you an anchor from which to address data
items such as command- line parameters existing “lower down” (which really
means “in higher memory”) on the stack. It also helps keep the stack aligned,
though how that works will have to wait for the next chapter. The practical
consequence of having RBP at the top of the stack is that it contains the original
value of the stack pointer. The downside is that you have to skip over it to get
to the command- line arguments.

There is also something called an epilog, which comes at the end of the program,
right before it returns control to Linux. The epilog (again, just for non- SASM
programs) comes just before the program exits using SYSCALL:

mov rsp,rbp
pop rbp

420 Chapter 11 ■ Strings and Things

The epilog’s purpose is to restore the stack to the state it was on entry to the
function. How that happens will have to wait for Chapter 12. Now, you may ask
here why we used the alignment prolog in this example and none of the earlier
ones. For programs linked with the gcc compiler and glibc library, the stack
will be already aligned. So, SASM programs don’t need the alignment prolog.
SASM does require the MOV RBP,RSP instruction at the beginning of the MAIN:
function, or its debugger interface may not work correctly.

Again, I’ll take up stack alignment in more detail in Chapter 12. For simple
programs that don’t use the stack a lot (like most of the examples in this book),
stack misalignment may not cause much or any trouble. Still, it’s a good idea
to get in the habit of placing the alignment prolog at the beginning of your
non- SASM programs.

Addressing Data on the Stack
Accessing the stack requires that you know what’s on it and where. The “where”
begins at what we call the top of the stack, which is the address present in the
stack pointer RSP when the program begins running. Note that right after push-
ing RBP onto the stack, the prolog copies RSP into RBP. This gives you a solid
pointer to the stack as it existed when Linux began executing your program.
With the original top of the stack safely present in RBP, stack pointer RSP can
move up or down as procedures are called and returned from. (The showargs2
program does none of that, for simplicity’s sake.) Also, you can push temporary
values onto the stack for later use, though with twice as many general- purpose
registers in the x64 architecture, this is done less and less often as new code is
written. RBP was once BP in the 16- bit era, and the name meant “base pointer.”
It was created to hold the initial value of the stack pointer, providing a “base”
from which to reference other items on the stack.

So what’s on the stack as you inherit it from Linux? I’ve drawn it out in
Figure 11.3. This is its state before the prolog pushes RBP onto it. At the top of
the stack is an 8- byte value representing the number of command- line argu-
ments. There is always at least 1 item on the stack: the program invocation text.
In other words, if the value in [RBP] is 5, there are four actual command- line
arguments. The fifth item is the invocation text, which appears first on the stack.
The program will display an error message if more than MAXARGS arguments
(here, 10) are entered.

Immediately after the argument count is a table of 64- bit addresses pointing
to the actual arguments. How many addresses are there depends on how many
arguments were entered on the command line. There is always at least one. The
first address in the table is the address of the text entered by the user to invoke

 Chapter 11 ■ Strings and Things 421

the program. After that the addresses point to the command- line arguments in
the order that they were entered by the user.

Everything read from the stack in showargs2 is read based on the address in
RBP. Testing the number of arguments against a maximum value is done this way:

mov r13,[rbp+8] ; Copy argument count from the stack into R13
cmp r13,MAXARGS ; See if the arg count exceeds MAXARGS
ja Error ; If so, exit with an error message

Here, the argument count is at the address contained in RBP plus eight bytes,
because RBP was pushed on the stack by the prolog and must be “gotten past”
to reach the argument count. The fact that RBP holds the address tells the assem-
bler that the value represented by MAXARGS is to be treated as a 64- bit quad
word, even if its value is only 10. Remember that equates are values, not loca-
tions in memory. If the argument count is over 10, the program aborts with a
short error message.

Scanning each of the arguments to locate its terminating zero character is
done using the most complex effective address calculation possible in x64: Base
+ (Index x Scale) + Displacement. (See the discussion of effective addresses,
especially the figures, in Chapter 9.)

mov rsi,qword [rbp+8+rbx*8]

The effective address terms here are shown in a different order in the code
to make it a little easier to understand how this particular memory reference
works. Read it this way:

1. You begin with the “base” address for stack referencing, in RBP.

2. You add 8 to the base to “get past” RBP at the top of the stack. This is the
“displacement” term of the effective address.

3. You multiply the 1- based ordinal number of the address being accessed
by 8, which is the size (in bytes) of all addresses in x64. In other words,
for the second item in the argument list, you would multiply the ordinal
number stored in RBX by 8, the size of addresses in x64. The smallest value
added is at least 8, which gets you past the argument count.

4. Add the product of RBX and 8 to the base plus displacement, and you
have the address of the first argument in the table. This address is copied
into RDI, for use with the REPNE SCASB instruction.

If this isn’t completely clear to you, go back and read it again. Memory address-
ing is the single most important concept in assembly language work. If you
don’t understand memory addressing, knowing the machine instructions and
registers will help you little if at all.

422 Chapter 11 ■ Strings and Things

Don’t Pop!
In the 2009 edition of this book, I presented a version of showargs that accesses
items on the stack by popping them into registers. It certainly works, but now
in 2023 I recommend that you avoid popping things off the stack unless your
own code pushed them there. As you might imagine, popping the argument
count into a register like RAX changes the original stack contents by moving
RSP. If you can reference stack contents via a single memory address based on
RBP, you won’t have to worry as much about the bugs that can happen once RSP
no longer points to the top of the stack as you originally received it from Linux.

C H A P T E R

423

12

There’s a lot of value in learning assembly language, most of it stemming from
the requirement that you must know in detail how everything works or you won’t
get very far. From the very dawn of digital electronic computing, this has always
been true, but from it follows a fair question: Do I really have to know all that?

The fair answer is no. It’s possible to write extremely effective programs without
having an assembly- level grip on the underlying machine and the operating
system. This is what higher- level languages were created to allow: easier, faster
programming at a higher level of abstraction. It’s unclear how much of today’s
software would exist at all if it all had to be written in assembly language.

That includes Linux. There are some small portions of Linux written in assem-
bly, but overall, the bulk of the operating system is written in C. (These days,
post- 2022, parts of Linux are starting to be written in a much newer and more
memory- secure programming language called Rust.) The Linux universe revolves
around the C language, and if you expect to make significant use of assembly
language under Linux, you had better be prepared to learn some C and use it
when you must.

There is almost immediate payoff: being able to access libraries of procedures
written in C. There are thousands of such libraries, and those associated with
the Linux operating system are mostly free and come with C source code. There

Heading Out to C
Calling External Functions Written in the

C Language

424 Chapter 12 ■ Heading Out to C

are pros and cons to using libraries of C functions (as procedures are called in
the C culture), but the real reason for learning the skills involved in calling
C functions is that it’s part of knowing how everything works, especially under
Linux, where the C language has left its fingerprints everywhere you look.

Virtually all the programming examples you’ll see for Linux that don’t involve
interpreted languages such as Perl or Python will be in C or C++. (I won’t be
touching on C++ in this book— nor up- and- comer Rust.) Most significantly, the
C runtime library contains a lot of extremely useful functions but requires that
you use the C protocols when making calls to those functions. So if you don’t
already know the C language, buy a book and get down and bash out some
C. You don’t need to do a lot of it, but make sure that you understand all the
basic C concepts, especially as they apply to function calls. I’ll try to fill in
the lower- level gaps in this book, but I can’t teach the language itself nor all the
baggage that comes with it. You may find C a little distasteful (as I did and still
do) or you may love it, but what you must understand is that you can’t escape
it, even if your main interest in Linux lies in assembly language.

What’s GNU?

Way back in the late 1970s, a brilliant Unix hacker named Richard Stallman
wanted his own copy of Unix. He didn’t want to pay for it, however, so he did
the obvious thing— obvious to him, at least: He began writing his own version.
(If it’s not obvious to you, well, you don’t understand Unix culture.) However,
he was unsatisfied with all the programming tools available at the time and
objected to their priciness as well. So, as a prerequisite to writing his own version
of Unix, Stallman set out to write his own compiler, assembler, and debugger.
(He had already written his own editor, the legendary EMACS.)

Stallman named his version of Unix GNU, a recursive acronym meaning
“GNU’s Not Unix.” This was a good chuckle and one way of getting past AT&T’s
trademark lawyers, who were fussy in those days about who used the word Unix
and how. As time went on, the GNU tools took on a life of their own, and as it
happened, Stallman never actually finished the GNU operating system itself.
Other free versions of Unix appeared, and there was some soap opera for a few
years regarding who actually owned what parts of which. This so disgusted
Stallman that he created the Free Software Foundation as the home base for
GNU tools development and created a radical sort of software license called the
GNU Public License (GPL), which is sometimes informally called “copyleft.”
Stallman released the GNU tools under the GPL, which not only required that
the software be free (including all source code) but prevented people from
making minor mods to the software and claiming the derivative work as their
own. Changes and improvements had to be given back to the GNU community.

 Chapter 12 ■ Heading Out to C 425

This seemed like major nuttiness at the time, but over the years since then it
has taken on a peculiar logic and life of its own. The GPL has allowed software
released under the GPL to evolve tremendously quickly because large num-
bers of people were using and improving it and giving back the improvements
without charge or restriction. Out of this bubbling open- source pot eventually
arose Linux, the premier GPL operating system. Linux was built with and is
maintained with the GNU tool set. If you’re going to program under Linux,
regardless of what language you’re using, you will eventually use one or more
of the GNU tools.

The Swiss Army Compiler
The copy of EMACS that you will find on modern distributions of Linux doesn’t
have a whole lot of Richard Stallman left in it— it’s been rewritten umpteen times
by many other people over the past 30- odd years. Where the Stallman legacy
persists most strongly is in the GNU language compilers. There are a number
of them, but the one that you must understand as thoroughly as possible is the
GNU C Compiler, gcc. (Lowercase letters are something of an obsession in the
Unix world, a fetish not well understood by a lot of people, myself included.)

Why use a C compiler for working in assembly? Mostly this: gcc does much
more than simply compile C code. It’s a sort of Swiss army knife development
tool. In fact, I might better characterize what it does as building software rather
than simply compiling it. In addition to compiling C code to object code, gcc
governs both the assembly step and the link step.

Assembly step? Yes, indeedy. There is a GNU assembler called gas, though
it’s an odd thing that isn’t really intended to be used by human programmers.
What gcc does is control gas and the GNU linker ld (which you’re already using
in makefiles) like puppets on strings. If you use gcc, especially at the beginner
level, you don’t have to do much direct messing around with gas or ld.

Let’s talk more about this.

Building Code the GNU Way
Assembly language work is a departure from C work, and gcc is first and fore-
most a C compiler. Therefore, we need to look first at the process of building
C code. On the surface, building a C program for Linux using the GNU tools
is pretty simple. Behind the scenes, however, it’s a seriously hairy business.
While it looks like gcc does all the work, what gcc really does is act as master
controller for several GNU tools, supervising a code assembly line that you
don’t need to see unless you specifically want to.

Theoretically, this is all you need to do to generate an executable binary file
from C source code:

gcc eatc.c –o eatc

426 Chapter 12 ■ Heading Out to C

Here, gcc takes the file eatc.c (which is a C source code file) and crunches it
to produce the executable file eatc. (The –o option tells gcc what to name the
executable output file.) However, there’s more going on here than meets the
eye. Take a look at Figure 12.1 as we go through it. In the figure, shaded arrows
indicate movement of information. Blank arrows indicate program control.

The programmer invokes gcc from the shell command line, typically in a
terminal window. Then gcc takes control of the system and immediately invokes
a utility called the C preprocessor, cpp. The preprocessor takes the original C

Figure 12.1: How gcc builds Linux executables

 Chapter 12 ■ Heading Out to C 427

source code file and handles certain items like #includes and #defines. It can
be thought of as a sort of macro expansion pass on the C source code file.

When cpp is finished with its work, gcc takes over in earnest. From the pre-
processed C source code file, gcc generates an assembly language source code
file with an .s file extension. This is literally the assembly code equivalent of
the C statements in the original .c file, in human- readable form. If you develop
any skill in reading AT&T assembly syntax and mnemonics (more on which
a little later), you can learn a lot from inspecting the .s files produced by gcc.

When gcc has completed generating the assembly language equivalent of the
C source code file, it invokes the GNU assembler, gas, to assemble the .s file
into object code. This object code is written out in a file with an .o extension.

The final step involves the linker, ld. The .o file contains binary code, but it’s
only the binary code generated from statements in the original .c file. The .o file
does not contain the code from the standard C libraries that are so important in
C programming. Those libraries have already been compiled and simply need to
be linked into your application. The linker ld does this work at gcc’s direction.
The good part is that gcc knows precisely which of the standard C libraries
need to be linked to your application to make it work, and it always includes
the right libraries in their right versions. So, although gcc doesn’t actually do
the linking, it knows what needs to be linked— and that is valuable knowledge
indeed, as your programs grow more and more complex.

Finally, ld spits out the fully linked and executable program file. At that point,
the build is done, and gcc returns control to the Linux shell. Note that all of this
is typically done with one simple command to gcc!

SASM Uses GCC
Some of this may start to sound familiar. We’ve been using SASM for several
chapters now, and SASM has a fundamentally different way of working than
we learned with makefiles and the Linux make utility. I alluded early on to the
fact that what SASM produces is actually a C program written in assembly lan-
guage. If you look at the Build tab of SASM’s Settings menu, note that gcc (and
not ld) is shown in the linker path. This doesn’t mean that ld isn’t used, as it
is when we use makefiles. It means that gcc has full control of the link process,
calling ld when necessary to link in precompiled libraries of binary C code.

How to Use gcc in Assembly Work
The process I just described, and drew out for you in Figure 12.1, is how a C
program is built under Linux using the GNU tools. I went into some detail here
because we’re going to use part— though only part— of this process to make

428 Chapter 12 ■ Heading Out to C

our assembly programming easier. It’s true that we don’t need to convert C
source code to assembly code— and in fact, we don’t need gas to convert gas
assembly source code to object code. However, we do need gcc’s expertise at
linking. We’re going to tap into the GNU code- building process at the link stage
so that gcc can coordinate the link step for us.

When we assemble an .asm Linux program using NASM, NASM generates
an .o file containing binary object code. As we’ve seen, invoking NASM under
64- bit Linux is typically done this way:

nasm –f elf64 - g - F dwarf eatclib.asm

This command will direct NASM to assemble the file eatclib.asm and gen-
erate a file called eatclib.o. The –f elf64 part tells NASM to generate object
code in the 64- bit ELF format rather than one of the numerous other object code
formats that NASM is capable of producing. The - g - F dwarf part enables the
generation of debug information in the output file, in the DWARF format. The
eatclib.o file is not by itself executable. It needs to be linked. So, we call gcc
and instruct it to link the program for us:

gcc eatclib.o –o eatclib –no- pie

What of this tells gcc to link and not compile? The only input file called out
in the command is a .o file containing object code. This fact alone tells gcc that
all that needs to be done is to link the .o file with the C runtime library to pro-
duce the final executable. The –o eatclib part tells gcc that the name of the
final executable file is to be eatclib.

Including the –o specifier is important. If you don’t tell gcc precisely what to
name the final executable file, it will punt and give the file the default filename
for an executable, a.out.

The command line argument - no- pie tells gcc not to link the executable for
the position- independent executable (PIE) technology. I’ll explain this in detail
later in this chapter. It’s about reducing the vulnerability of an executable to
certain exploits. It’s OK to use the –no- pie option in simple, educational pro-
grams like those in this book. For production code, you need PIE.

Why Not gas?
You might be wondering why, if there’s a perfectly good assembler installed
automatically with every copy of Linux, I’ve bothered showing you how to
install and use another one. Two reasons:

 ■ The GNU assembler gas uses a peculiar syntax that is utterly unlike that
of all the other familiar assemblers used in the x86/x64 world, including
NASM. It has a whole set of instruction mnemonics unique to itself. I find

 Chapter 12 ■ Heading Out to C 429

them ugly, nonintuitive, and hard to read. This is the AT&T syntax, so
named because it was created by AT&T as a portable assembly notation
to make Unix easier to port from one underlying CPU to another. It’s ugly
in part because it was designed to be generic, and it can be reconfigured
for any reasonable CPU architecture that might appear.

 ■ More to the point, the notion of a “portable assembly language” is in my
view a contradiction in terms. An assembly language should be a direct,
complete, one- for- one reflection of the underlying machine architecture.
Any attempt to make an assembly language generic moves the language
away from the machine and limits the ability of an assembly programmer
to direct the CPU as it was designed to be directed. The organization that
created and evolves a CPU architecture is in the best position to define a
CPU’s instruction mnemonics and assembly language syntax without
compromise. That’s why I will always use and teach the Intel mnemonics.

If it were just this simple, I wouldn’t mention gas at all, since you don’t need
gas to write Linux assembly language in NASM. However, one of the major
ways you’ll end up learning many of the standard C library calls is by using
them in short C programs and then inspecting the .s assembly output files that
gcc generates. So having some ability to read AT&T mnemonics can be useful
while you’re getting comfortable with C calling conventions used under Linux.
I’ll provide an overview of the AT&T syntax a little later in this chapter.

Linking to the Standard C Library

When you write an all- assembly program using a makefile and the make utility,
you write all of it. Apart from an occasional dive into Linux kernel services, all
the code that runs is only the code that you write. Linking in libraries of external
assembly language procedures complicates this picture a little, especially if you
weren’t the one who wrote those libraries. Linking to functions in the standard
C library (which for Linux is called glibc) complicates the picture even more.
It may be some comfort to know that linking to glibc routines is easier in x64
assembly language than it was in 32- bit x86 assembly language.

As I’ve mentioned earlier, writing an assembly program in SASM is much like
writing a C program in which you write the program’s main body in assembly.
SASM’s generated programs are a sort of hybrid of C and assembly language.
If you create a Linux assembly language program that links in glibc functions,
you’re doing pretty much the same thing. The structure of this hybrid is shown
in Figure 12.2.

430 Chapter 12 ■ Heading Out to C

Your program is no longer the simple, start- at- the- top- and- go- down affair that
your earlier assembly programs were. glibc is not just a collection of disjoint
functions. It’s the standard C runtime library, and as part of its standardness, it
dictates a certain structure to any programs that link to it. This structure includes
a block of code that runs before your program begins, and another block of code
that runs after your program ends. Your program is called by the startup code
as though your program were a procedure (with the CALL instruction), and it
returns control to the C library code using a RET instruction.

Technically, your program is a procedure (again, called a function in C- land),
and it helps to think of it as one. That’s how I’ve drawn it in Figure 12.2. When
Linux begins executing your program, it actually starts, not at the top of the
code you wrote but at the beginning of the startup code block. When the startup
code has done what it must, it executes a CALL instruction that takes execu-
tion down into your assembly code. When your assembly language program
returns control to its caller via RET, the shutdown code begins executing, and
it’s the shutdown code that actually returns control to Linux via the necessary
syscall kernel call.

Once you’re linking C code into your assembly programs, it’s not a good idea
to use SYSCALL service 60 to exit a program and return to Linux. There’s some
housekeeping to be done, which might include flushing buffers and closing
files or closing network connections. The C shutdown code does all this, and if
you skip it, bad things may happen. Those bad things probably won’t happen
when you’re working through simple code examples like those presented in this
book, but once you start getting ambitious and write thousand- line programs,
all that becomes possible and will cause you no end of grief.

Basically, when you’re working with C, do things the C way.

Figure 12.2: The structure of a hybrid C- assembly program

 Chapter 12 ■ Heading Out to C 431

In between the startup code and the shutdown code, you can make as many
calls into glibc as you like. When you link your program using gcc, the code
containing the C library routines that you call is linked into your program. Note
well that the startup and shutdown code, as well as all the code for the library
functions your program calls, is all physically present in the executable file that
you generate with gcc.

C Calling Conventions
The glibc library isn’t singling out assembly language programs for special
treatment. Pure C programs work almost exactly the same way, and this is
the reason that the main program portion of a C program is called the main
function. It really is a function, the standard C library code for startup calls it
with a CALL instruction, and it returns control to the shutdown code by exe-
cuting a RET instruction.

The way the main program obtains control is therefore the first example you’ll
see of a set of rules we call the C calling conventions. The standard C library is
nothing if not consistent, and that is its greatest virtue. All C library functions
implemented on x64 processors follow these rules. Bake them into your syn-
apses early, and you’ll lose a lot less scalp than I did trying to figure them out
by beating your head against them.

First and foremost, your program must begin with the global label main:.
Using _start: won’t work. The main function is labeled main:, period. SASM
programs always begin with main: because SASM uses gcc to link in code
from glibc.

That’s where you start. The rest gets pretty complicated pretty quickly.

Callers, Callees, and Clobbers
If you’ve ever studied assembly programming for 32- bit Linux (as I taught in
the 2009 edition of this book), you learned that passing parameters to C- style
functions was done by pushing the parameters onto the stack before making
the call. All gone. (OK, almost all gone. I’ll come back to this.)

The biggest single difference between 32- bit calling conventions and 64- bit
calling conventions lies in how you pass parameters to functions. Passing the
first six parameters to an x64 function is done in registers rather than on the
stack. If a function has more than six parameters (which is uncommon, and
oftentimes bad design) the remaining parameters are passed on the stack.

This was done because we have a lot more registers now than we did in the
32- bit era. Pushing and popping the stack touches memory and is therefore
slow. Writing to and reading from registers stays inside the CPU and is therefore
much faster. Modern CPU cache technology makes stack usage faster than in
ancient times, true, but even memory cache access is slower than register access.

432 Chapter 12 ■ Heading Out to C

You may remember that in earlier chapters programs passed parameters to
Linux function calls using the x64 SYSCALL instruction. All such parameters
(at least in the simple programs we worked with) are passed in registers. Fur-
thermore, there is a system to it: The first six parameters are passed in specific
registers in a very specific order. This order is as follows:

RDI

RSI

RDX

RCX

R8

R9

The first parameter passed to a function is always passed in RDI. If there are
two parameters to be passed to a function, the first is passed in RDI and the
second in RSI, and so on. This is true for calls via SYSCALL, and it’s also true for
calling C library functions.

Parameter order in registers is straightforward. The next part is subtle: Which
registers can a function use internally and thus change, and which registers
must remain unchanged after the function’s execution? To put it in programmer
jargon: Which registers can we clobber?

Once again, there’s a system to it. These seven registers cannot be clobbered
by a function: RSP, RBP, RBX, R12, R13, R14, and R15. This group of registers
is called the nonvolatile registers, which basically means registers that must be
preserved (or left unused) by the callee.

Wait— the what?
More jargon. Functions can call other functions. A function that calls another

function is the caller. The function that is called is the callee. There’s a sort of
trust relationship between the caller and the callee: The callee promises the
caller that the values of RSP, RBP, RBX, R12, R13, R14, and R15 will be the same
when the callee finishes execution as they were when the callee began execu-
tion. The callee can use the nonvolatile registers, but those it uses must first be
saved (pushed onto the stack) and restored (popped off the stack) before the
callee returns to the caller.

The other registers are called volatile, meaning that the callee can use and
change them with impunity. These are RAX, RCX, RDX, RSI, RDI, R8, R9, R10,
and R11. If you’re sharp, you’ll notice that all six of the registers used in the
C calling convention are volatile registers. This makes sense since the caller is
already using them to pass values down to the callee.

But what if the caller is already using some of the volatile registers? If the
caller wants any of the volatile registers to survive a trip through the callee,

 Chapter 12 ■ Heading Out to C 433

the caller must save them before calling the callee function. After the callee
returns to the caller, the caller then restores whatever volatile registers it had
saved on the stack by popping the saved values back into the registers.

This implies a lot more pushing and popping than usually happens. One of
the challenges facing a good assembly language programmer is simply to stay
out of memory, which includes pushing and popping the stack. We have more
registers to use now, and cleverness in using those registers pays off, by making
access to the stack less frequent.

Save only the registers you must save, after you’ve exhausted all other options.
There were reasons the x64 instruction set eliminated PUSHA and POPA.

Setting Up a Stack Frame
More registers notwithstanding, the stack is still extremely important in assem-
bly language work, and this is doubly true in programs that interface with C,
because in C (and in truth most other native- code high- level languages, including
Pascal) the stack has a central role.

One low- level mechanism that does bear on Linux assembly work is that of
the stack frame. Compilers depend on stack frames to create local variables in
functions, and while stack frames are less useful in pure assembly work, you
must understand them if you’re going to call functions written by a high- level
language compiler.

A stack frame is a location on the stack marked as belonging to a particular
function, including the main() function. It is basically the region between the
addresses contained in two registers: base pointer RBP and stack pointer RSP. This
draws better than it explains; see Figure 12.3.

A stack frame is created by pushing a copy of RBP on the stack and then
copying the stack pointer RSP into register RBP. The first two instructions in
any assembly program that honors the C calling conventions must be these:

push rbp
mov rbp,rsp

A lot of people call this the program’s prolog, since it must be included as the
start of any program respecting the C calling conventions. Unless the prolog
is present, the gdb debugger and its debugger front ends like Insight will not
operate correctly.

Once RBP is anchored as one end of your stack frame, the stack pointer RSP
is free to move up and down the stack as your code requires for temporary
storage. Calling functions in glibc under x64 requires less pushing and pop-
ping than it did in the old 32- bit world, now that most parameters are passed
to functions in registers.

434 Chapter 12 ■ Heading Out to C

Destroying a Stack Frame in the Epilog
Before your program ends its execution by returning control to the startup/
shutdown code (refer to Figure 12.2 if this relationship isn’t clear), its stack frame
must be destroyed. This sounds to many people like something wrong is hap-
pening, but not so: The stack frame must be destroyed, or your program will
crash. (“Put away” might be a better term than “destroyed” . . . but program-
mers prefer colorful language, as you’ll learn once you spend any significant
time among them.)

Your stack must be clean before you destroy the stack frame and return con-
trol to the shutdown code. This simply means that any callee- saved registers

Figure 12.3: A stack frame

 Chapter 12 ■ Heading Out to C 435

and temporary values that you may have pushed onto the stack during the
program’s run must be gone. Pop what you push! With that done, we undo the
logic we followed in creating the stack frame: We pop the caller’s RBP value off
the stack and exit, via two instructions that together are often called the epilog:

pop rbp
ret

That’s it! The stack frame is gone, and the stack is now in the same state
it was in when the startup code handed control to your program. The RET
instruction sends control to the C library’s shutdown code, so it can do what-
ever housekeeping must be done before returning control to Linux.

Stack Alignment
The purpose of the prolog and epilog are not immediately obvious, especially if
you’re coming to x64 for the first time after working in the 32- bit Linux world. It
comes down to a new requirement: The x64 stack must be aligned on a 16- byte
boundary. What this means is that when you return from a function (including
main:), the stack pointer must be pointing at an address evenly divisible by 16.
Why is this an issue? Remember that when a procedure (a function in C jargon)
is called, the caller pushes the return address onto the stack. A return address is
8 bytes in size. But if you access the stack after adding 8 bytes to it (rather than
16) bad things may happen. It’s not a guarantee, but it can happen, especially
when your code becomes more ambitious than the simple examples in this book.

The prolog pushes RBP onto the stack. This adds another 8 bytes to the stack,
for a total of 16. The stack is thus still aligned. In the epilog, you pop RBP’s value
off the stack. The RET instruction that ends the epilog pops the return address of
the stack into the instruction pointer, so you’ve removed a total of 16 bytes from
the stack. The stack was aligned when your main: function took control, courtesy
of the glibc startup code, and it had better still be aligned when your program
executes the RET instruction that returns control to the glibc shutdown code.

Stack alignment is also required when glibc is not involved, as in programs
using a _start: label instead of main: . This time glibc won’t help you because
it isn’t there. A prolog and epilog must still be present, though there is a little
more to do than when you link glibc into your program. The required prolog
is called the stack alignment prolog:

push rbp
mov rbp,rsp
and rsp,- 16

The difference lies in the AND RSP,- 16 instruction. This instruction zeros the
lowest four bits of the stack pointer RSP. The last hex digit of the address then

436 Chapter 12 ■ Heading Out to C

becomes 0, and the stack is aligned on a 16- byte boundary. If you’re careful in
your use of the stack, it will remain aligned, as we’ll see shortly.

Here’s the stack alignment epilog:

mov rsp,rbp
pop rbp

Another difference when using _start is that the epilog cannot return to Linux
by executing a RET instruction. You have to use the Exit service via SYSCALL, as
I explained in earlier chapters. After you POP RBP, you can use SYSCALL service
60 to return control to Linux.

So what about the procedures that you write yourself? Ideally, all procedures
should begin with the prolog and end with the epilog. You can often get away
without using the prolog/epilog in your own functions, especially if they’re
simple and don’t do much with the stack. I’ve left out the prolog/epilog in some
of the example programs in this book for simplicity’s sake. Also, I don’t take up
stack frames in detail until this final chapter, and it’s impossible to make sense
of stack alignment without knowing how the stack works.

Later in this chapter, in Listing 12.6, randtest, the program passes a seventh
parameter to printf() by pushing the parameter on the stack. Keeping the stack
aligned on a 16- byte boundary is done a different way: by pushing a “dummy”
item onto the stack (here, RAX; its contents are unimportant) and then, after
calling printf(), adding 16 to RSP instead of 8. Here’s where it’s done; don’t
worry if you don’t understand everything in the following snippet:

shownums:
 mov r12,qword [Pulls] ; Put pull count into r12
 xor r13,r13
.dorow:
 mov rdi,ShowArray ; Pass address of base string
 mov rsi,[Stash+r13*8+0] ; Pass first element
 mov rdx,[Stash+r13*8+8] ; Pass second element
 mov rcx,[Stash+r13*8+16] ; Pass third element
 mov r8,[Stash+r13*8+24] ; Pass fourth element
 mov r9,[Stash+r13*8+32] ; Pass fifth element
 push rax ; To keep the stack 16 bytes aligned
 push qword [Stash+r13*8+40] ; Pass sixth element on the stack.
 xor rax,rax ; Tell printf() no vector values coming
 call printf ; Display the random numbers
 add rsp,16 ; Stack cleanup: 2 item X 8 bytes = 16

In this part of the code, pushing RAX decrements the stack by 8. Pushing
the seventh parameter onto the stack decrements the stack by another 8, for a
total of 16, keeping the stack aligned. So far so good. But that’s only half the
job. So after the call to printf() is made, we “clean up” the stack with some
quick arithmetic: add back the size of both the parameter and the dummy copy

 Chapter 12 ■ Heading Out to C 437

of RAX to the stack pointer. In the snippet, pushing two QWORD values onto the
stack moved the address in RSP down- memory by 16 bytes. To clean up, we
add those 16 bytes back in with an ADD RSP,16 instruction. The stack will then
be both in alignment and “clean” again.

Earlier I told you to “pop what you push.” Sometimes popping isn’t practical.
As long as you restore the stack pointer to the value it had before your push,
everything will work out. If you push values onto the stack as local storage,
make sure you add back the total size of all those values to RSP to make the
stack “clean” again. And if you’re not pushing a multiple of 16 bytes onto the
stack, pad it by pushing dummy values until the total is a multiple of 16.

Now, why did the x86- 64 System V ABI authors mandate a 16- byte aligned
stack? Keeping the stack aligned on 16- byte boundaries at all times makes code
simpler for a number of things, including the use of SSE vectors when they
are stored on the stack. I won’t be covering SSE or the other math subsystems
in Intel CPUs in this book, so don’t worry if that doesn’t make sense just yet.
Once you get your chops in assembly language, I encourage you to explore the
x64 math instructions and vector registers.

One final note on stack alignment: SASM has issues with the prolog and
epilog I show here. It needs the mov rbp,rsp instruction at the beginning, but
nothing beyond that. The SASM epilog is simply the final RET.

Characters Out Via puts()
About the simplest useful function in glibc is puts(), which sends characters to
standard output. Making a call to puts() from assembly language is so simple
it can be done in three lines of code. The program in Listing 12.1 demonstrates
puts(). The eatlibc program includes the prolog and the epilog. If you knock
out the three instructions that set up and make the call to puts(), you can treat
the rest as boilerplate for creating new programs that call functions in glibc.

Calling puts() this way is a good example, in miniature, of the general pro-
cess you’ll use to call most any C library routine. Again, in accordance with the
general x64 calling conventions, we place the address of the string to be displayed
in RDI. We don’t need to pass a string length value. The puts() function starts
at the beginning of the string at the address passed in RDI and sends characters
to stdout until it encounters a 0 (null) character. However many characters lie
between the first byte of the string and the first null is the number of characters
that the console receives.

Listing 12.1: eatlibc.asm

; Executable name : eatlibc
; Version : 3.0
; Created date : 11/12/2022
; Last update : 5/24/2023

438 Chapter 12 ■ Heading Out to C

; Author : Jeff Duntemann
; Description : Demonstrates calls made into libc, using NASM
; 2.14.02 to send a short text string to stdout
; with puts().
;
; Build using these commands:
; nasm - f elf64 - g - F dwarf eatlibc.asm
; gcc eatlibc.o - o eatlibc –no- pie

SECTION .data ; Section containing initialized data

EatMsg: db "Eat at Joe's!",0

SECTION .bss ; Section containing uninitialized data

SECTION .text ; Section containing code

extern puts ; The simple "put string" routine from libc
global main ; Required for the linker to find the entry point

main:
 push rbp ; Prolog sets up stack frame
 mov rbp,rsp

;; Everything before this is boilerplate; use it for all ordinary apps!

 mov rdi,EatMsg ; Put address of string into rdi
 call puts ; Call libc function for displaying strings
 xor rax,rax ; Pass a 0 as the program's return value.

;; Everything after this is boilerplate; use it for all ordinary apps!
 pop rbp ; Destroy stack frame before returning
 ret ; Return control to Linux

Formatted Text Output with printf()

The puts() library routine may seem pretty useful, but compared to a few of its
more sophisticated siblings, it’s kid stuff. With puts() you can only send a simple
text string to a file (by default, stdout), without any sort of formatting. Worse,
puts() always includes an EOL character at the end of its display, whether you
include one in your string data or not. This prevents you from using multiple
calls to puts() to output several text strings all on the same line on the terminal.

 Chapter 12 ■ Heading Out to C 439

About the best you can say for puts() is that it has the virtue of simplicity. For
nearly all of your character output needs, you’re way better off using a much
more powerful library function called printf(). The printf() function allows
you to do a number of truly useful things, all with one function call:

 ■ Output text either with or without a terminating EOL

 ■ Convert numeric data to text in numerous formats, by outputting format-
ting codes along with the data

 ■ Output text to a file that includes multiple strings stored separately

If you’ve worked with C for more than half an hour, printf() will be per-
fectly obvious to you, but for people coming from other languages, it may take
a little explaining.

The printf() routine will gladly display a simple string like “Eat at Joe’s!”—
but you can merge other text strings and converted numeric data with that base
string as it travels toward standard output, and show it all seamlessly together.
This is done by dropping formatting codes into the base string and then passing
a data item to printf() for each of those formatting codes, along with the base
string. A formatting code begins with a percent sign and includes information
relating to the type and size of the data item being merged with the base string,
as well as how that information should be presented.

Let’s look at a very simple example to start out. Here’s a base string contain-
ing one formatting code:

"The answer is %d, and don't you forget it!"

The %d formatting code simply tells printf() to convert a signed integer
value to text and substitute that text for the formatting code in the base string.
Of course, you must now pass an integer value to printf() (and I’ll show you
how that’s done shortly), but when you do, printf() will convert the integer
to text and merge it with the base string as it sends text to the stream. If the
decimal value passed is 42, on the console you’ll see this:

The answer is 42, and don't you forget it!

A formatting code actually has a fair amount of structure, and the printf()
mechanism as a whole has more wrinkles than I have room to describe in detail
in this book. Any good C reference will explain the whole thing in detail. The
Wikipedia treatment is excellent:

https://en.wikipedia.org/wiki/Printf

Table 12.1 lists the most common and useful formatting codes.

https://en.wikipedia.org/wiki/Printf

440 Chapter 12 ■ Heading Out to C

The most significant enhancement you can make to the formatting codes is
to place an integer value between the % symbol and the code letter:

%5d

This code tells printf() to display the value right- justified within a field
five characters wide. If you don’t put a field width value there, printf() will
simply give the value as much room as its digits require.

Remember that if you need to display a percent symbol, you must include
two consecutive percent symbols in the string: The first is a formatting code
that tells printf() to display the second as itself, and not as the lead- in to a
formatting code.

Passing Parameters to printf()
Passing values to printf() follows the x64 calling conventions. If you’re dis-
playing a string with format codes embedded in it, the base string should be
the first parameter, with its address passed in RDI. After that, the first value to
be merged with the string is passed in RSI, the second in RDX, and so on, in
the standard parameter register order. Values are plugged into the codes in the
string in order, from left to right.

Listing 12.2 presents a very simple demonstration of printf() formatting. One
interesting thing to notice is that you can pass numbers either by reference or
by value. The first integer is passed by placing its address into RSI. The second
integer is passed by copying a literal value into RDX. The third integer is also
passed as a literal in RCX. The third value is shown in hexadecimal notation,
even though the literal was a simple base- 10 integer value loaded into RCX. The
printf() function can do a lot of conversions like that.

Table 12.1: Printf() Formatting Codes

%d Prints a signed, base- 10 integer.

%u Prints an unsigned, base- 10 integer.

%x, %X Prints an unsigned integer in hex; %x for
lowercase, %X for upper.

%s Prints a null- terminated string.

%c Prints a single character.

%f Prints a floating- point number.

%% Prints a literal “%” character.

 Chapter 12 ■ Heading Out to C 441

You can merge text strings into the base string in a similar fashion by load-
ing the addresses of the strings to be merged in registers and using the %s code
instructing printf() where to plug in the secondary strings.

I’ve eliminated the comment header to save page space. The makefile for
answer.asm is this:

answer: answer.o
 gcc answer.o –o answer –no- pie
answer.o: answer.asm
 nasm –f elf64 –g –F dwarf answer.asm

Don’t forget to insert the required tabs if you type in and save the makefile!

Listing 12.2: answer.asm

section .data
 answermsg db "The answer is %d ... or is it %d? No! It's 0x%x!",10,0
 answernum dd 42

section .bss

section .text

extern printf

global main

main:
 push rbp ; Prolog
 mov rbp,rsp

 mov rax,0 ; Count of vector regs..here, 0

 mov rdi,answermsg ; Message/format string goes in RDI
 mov rsi,[answernum] ; 2nd arg in RSI
 mov rdx,43 ; 3rd arg in RDX. You can use a numeric literal
 mov rcx,42 ; 4th arg in RCX. Show this one in hex
 mov rax,0 ; This tells printf no vector params are coming
 call printf ; Call printf()

 pop rbp ; Epilog

 ret ; Return from main() to shutdown code

When you run answer, this is what you’ll see:

The answer is 42 … or is it 43? No! It's 0x2a!

442 Chapter 12 ■ Heading Out to C

Printf() Needs a Preceding 0 in RAX
There’s another small wrinkle to using printf(). In almost all cases (and certainly
while you’re just starting out in assembly), you should place the instruction MOV
RAX,0 before the printf() call. The 0 in RAX tells the printf() function that
there are no floating- point parameters in vector registers being passed to it. Once
you do start using vector values, you need to place the count of those parameters
in RAX before calling printf(). Explaining floating- point and vector registers
is beyond the scope of this book, so if you’re interested, do research it online.

This same requirement also applies to scanf().

You Shall Have –No- Pie
In the makefiles for programs in this chapter that use gcc for a linker, you’ll
see the gcc option –no- pie. The purpose of this option is to prevent gcc from
linking your program as a PIE. Explaining PIE in detail would be an advanced
topic well beyond the scope of this book. Short form: PIE is a way to prevent
certain kinds of code exploits, by placing portions of the executable file in
random locations when the executable is loaded. This makes it impossible to
predict where a given piece of code will be executing.

Return- oriented programming (ROP) attacks depend on knowing where
certain portions of a program are in Linux’s virtual memory system. PIE pro-
grams are less vulnerable to ROP attacks. The –no- pie option directs that the
linker will not generate a PIE. This theoretically makes the –no- pie example
programs from this book vulnerable to attacks. Theoretically. Once you’re a sea-
soned programmer producing software for general use (and not simply learning
programming), you should know enough to understand the issues and should
research it online. PIE complicates debugging some, which is why I don’t use
PIE in my examples here. But once a program you’re writing is debugged and
working well, rebuild it as a PIE, which is the default when gcc acts as the linker.

Data In with fgets() and scanf()

Reading characters from the Linux keyboard using the SYSCALL instruction and
the sys_read kernel call is simple but not very versatile. The standard C library
has a better way. In fact, the C library functions for reading data from the key-
board (which is the default data source assigned to standard input) are almost
the inverse of those that display data to standard output.

If you poke around in a C library reference (and you should— there are a
multitude of interesting routines there that you can call from assembly
programs), you may discover the gets() routine. You may have wondered (if
I didn’t choose to tell you here) why I didn’t cover it. The gets() routine is

 Chapter 12 ■ Heading Out to C 443

simplicity itself: You pass it the name of a string array in which to place char-
acters, and then the user types characters at the keyboard, which are placed in
the array. When the user presses Enter, gets() appends a null at the end of the
entered text and returns. What’s not to love?

Well, how big is the array? And how dumb is your user?
Here’s the catch: There’s no way to tell gets() when to stop accepting characters.

If the user types in more characters than you’ve allocated room to accept them
in an array, gets() will gleefully keep accepting characters and overwrite what-
ever data is sitting next to your array in memory. If that something is something
important, your program will almost certainly malfunction and may simply crash.

That’s why, if you try to use gets(), gcc will warn you that gets() is dan-
gerous. It’s ancient, and much better machinery has been created in the (many)
decades since Unix and the standard C library were first designed. The designated
successor to gets() is fgets(), which has some safety equipment built- in— and
some complications, too.

The complications stem from the fact that you must pass a file handle to
fgets(). In general, standard C library routines whose names begin with f act
on files. (I’ll explain how to work with disk files a little later in this chapter.) You
can use fgets() to read text from a disk file— but remember, in Unix terms, your
keyboard is already connected to a file, the file called standard input, stdin. If
we can connect fgets() to standard input, we can read text from the keyboard,
which is what the old and hazardous gets() function does automatically.

The bonus in using fgets() is that it allows us to specify a maximum number
of characters for the routine to accept from the keyboard. Anything else that the
user types will be truncated and discarded. If this maximum value is no larger
than the string buffer you define to hold characters entered by the user, there’s
no chance that using fgets() will crash your program.

Connecting fgets() to standard input is easy. As I explained earlier in this
book, Linux predefines three standard file handles, and these handles are linked
into your program automatically. The three are stdin (standard input), stdout
(standard output), and stderr (standard error). For accepting input from the
keyboard through fgets(), we want to use the identifier stdin. It’s already
there; you simply have to declare it as EXTERN to reference it from inside your
assembly language programs.

So, here’s how to use the fgets() function:

1. Make sure you have declared EXTERN fgets and EXTERN stdin along with
your other external declarations at the top of the .text section of your
program.

2. Declare a buffer variable large enough to hold the string data you want
the user to enter. Use the RESB directive in the .bss section of your program.

3. Load the buffer’s address into RDI.

444 Chapter 12 ■ Heading Out to C

4. Next, load the value indicating the maximum number of characters that
you want fgets() to accept into RSI. Make sure it is no larger than the
buffer variable you declare in .bss!

5. Load the value of stdin into RDX. Note well: Don’t pass the address of
the external value stdin. Pass the actual value that the external item stdin
contains, by using brackets: [stdin]

6. Call fgets.

As always, the parameters you pass to fgets() are entered into registers in
the order specified in the x64 calling convention. This is a lot more convenient
than pushing them onto the stack, as was done in the 32- bit world.

Listing 12.3 is a simple program demonstrating how to obtain text from standard
input via fgets(). Again, for brevity’s sake I’ve omitted the comment header.

Listing 12.3: fgetstest.asm

; Use this makefile, after adding the required tabs:
;
; fgetstest: fgetstest.o
; gcc fgetstest.o - o fgetstest - no- pie
; fgetstest.o: fgetstest.asm
; nasm - f elf64 - g - F dwarf fgetstest.asm

SECTION .data ; Section containing initialized data

message: db "You just entered: %s."

SECTION .bss ; Section containing uninitialized data

testbuf: resb 20
BUFLEN equ $- testbuf

SECTION .text ; Section containing code

extern printf
extern stdin
extern fgets

global main ; Required so the linker can find the entry point

main:
 push rbp ; Set up stack frame for debugger
 mov rbp,rsp

;;; Everything before this is boilerplate; use for all ordinary apps!

; Get a number of characters from the user:
 mov rdi,testbuf ; Put address of buffer into RDI

 Chapter 12 ■ Heading Out to C 445

 mov rsi,BUFLEN ; Put # of chars to enter into RSI
 mov rdx,[stdin] ; Put value of stdin into RDX
 call fgets ; Call libc function for entering data

;Display the entered characters:
 mov rdi,message ; Base string's address goes in RDI
 mov rsi,testbuf ; Data entry buffer's address goes in RSI
 mov rax,0 ; Count of vector regs..here, 0
 call printf ; Call libc function to display entered chars

;;; Everything after this is boilerplate; use for all ordinary apps!
 pop rbp ; Epilog: Destroy stack frame before returning

 ret ; Return to glibc shutdown code

The fgetstest program demonstrates embedding a string code %s in the base
string. It takes nothing more than placing %s in the base string and then copy-
ing the address of the string to be inserted into the next available x64 calling
convention register. Here, that’s RSI.

From the user side of the screen, fgets() simply accepts characters until
the user presses Enter. It doesn’t automatically return after the user types the
maximum permitted number of characters. (That would prevent the user from
backing over input and correcting it.) However, anything the user types beyond
the number of permitted characters is discarded.

Using scanf() for Entry of Numeric Values
In a peculiar sort of way, the C library function scanf() is printf() running
backwards: Instead of outputting formatted data in a character stream, scanf()
takes a stream of character data from the keyboard and converts it to numeric
data stored in a numeric variable. The scanf() function works very well, and
it understands a great many formats that I won’t be able to explain here, espe-
cially for the entry of floating- point numbers. (Floating- point values are a special
problem in assembly work, and I won’t be taking them up in this book.) The
Wikipedia entry is very good:

https://en.wikipedia.org/wiki/Scanf_format_string

For most simple programs you may write while you’re getting your bear-
ings in assembly, you’ll be entering simple integers, and scanf() is very good
at that. You pass scanf() the name of a numeric variable in which to store the
entered value, and a formatting code indicating what form that value will take
on data entry. The scanf() function will take the characters typed by the user
and convert them to the integer value that the characters represent. That is,
scanf() will take the two ASCII characters “4” and “2” entered successively
and convert them to the base 10 numeric value 42 after the user presses Enter.

https://en.wikipedia.org/wiki/Scanf_format_string

446 Chapter 12 ■ Heading Out to C

What about a prompt string, instructing the user what to type? Well, many
newcomers get the idea that you can combine the prompt with the format
code in a single string handed to scanf(), but alas, that won’t work. It seems
as though it should— hey, after all, you can combine formatting codes with the
base string to be displayed using printf(). And in scanf(), you can theoreti-
cally use a base string containing formatting codes . . . but the user would then
have to type the prompt as well as the numeric data!

So, in practical terms, the only string used by scanf() is a string contain-
ing the formatting codes. If you want a prompt, you must display the prompt
using printf() before calling scanf(). To keep the prompt and the data entry
on the same line, make sure you don’t have an EOL character at the end of your
prompt string!

The scanf() function automatically takes character input from standard input.
You don’t have to pass it the file handle stdin, as you do with fgets(). There
is a separate glibc function called fscanf() to which you do have to pass a file
handle, but for integer data entry there’s no hazard in using scanf().

Here’s how to use the scanf() routine:

1. Make sure that you have declared EXTERN scanf along with your other
external declarations at the top of the .TEXT section.

2. Declare a memory variable of the proper type to hold the numeric data
read and converted by scanf(). My examples here will be for integer data,
so you would create such a variable with either the DQ directive or the
RESQ directive. Obviously, if you’re going to keep several separate values,
you’ll need to declare one variable per value entered.

3. To call scanf() for entry of a single value, first copy the address of the
format string that specifies what format that data will arrive in into RDI. For
integer values, this is typically the string %d.

4. Copy the address of the memory variable that will hold the value into
RSI. (See the following discussion about entry of multiple values in one call.)

5. Clear RAX to zero, telling scanf() that no vector register parameters are
being passed in the function call.

6. Call scanf().

It’s possible to present scanf() with a string containing multiple formatting
codes so that the user could enter multiple numeric values with only one call
to scanf(). I’ve tried this, and it makes for a very peculiar user interface. That
feature is better used if you’re writing a program to read a text file containing
rows of integer values expressed as text and convert them to actual integer var-
iables in memory. For simply obtaining numeric values from the user through
the keyboard, it’s best to accept only one value per call to scanf().

 Chapter 12 ■ Heading Out to C 447

The charsin.asm program in Listing 12.4 shows how you would set up
prompts alongside a data entry field for accepting both string data and numeric
data from the user through the keyboard. After accepting the data, the program
displays what was entered, using printf().

Listing 12.4: charsin.asm

; Executable name : charsin
; Version : 3.0
; Created date : 11/19/2022
; Last update : 11/20/2022
; Author : Jeff Duntemann
; Description : A character input demo for Linux, using
; NASM 2.14.02, incorporating calls to both
; fgets() and scanf().
;
; Build using these commands:
; nasm - f elf64 - g - F dwarf charsin.asm
; gcc charsin.o - o charsin - no- pie
;

[SECTION .data] ; Section containing initialized data

SPrompt db 'Enter string data, followed by Enter: ',0
IPrompt db 'Enter an integer value, followed by Enter: ',0
IFormat db '%d',0
SShow db 'The string you entered was: %s',10,0
IShow db 'The integer value you entered was: %5d',10,0

[SECTION .bss] ; Section containing uninitialized data

IntVal resq 1 ; Reserve an uninitialized double word
InString resb 128 ; Reserve 128 bytes for string entry buffer

[SECTION .text] ; Section containing code

extern stdin ; Standard file variable for input
extern fgets
extern printf
extern scan

global main ; Required so linker can find entry point

main:
 push rbp ; Prolog: Set up stack frame
 mov rbp,rsp

;;; Everything before this is boilerplate; use for all ordinary apps!

448 Chapter 12 ■ Heading Out to C

; First, an example of safely limited string input using fgets:
 mov rdi,SPrompt ; Load address of the prompt string into RDI
 mov rax,0 ; Count of vector regs..here, 0
 call printf ; Display it

 mov rdi,InString ; Copy address of buffer for entered chars
 mov rsi,72 ; Accept no more than 72 chars from keybd
 mov rdx,[stdin] ; Load file handle for standard input into RDX
 call fgets ; Call fgets to allow user to enter chars

 mov rdi,SShow ; Copy address of the string prompt into RSI
 mov rsi,InString ; Copy address of entered string data into RDI
 mov rax,0 ; Count of vector regs..here, 0
 call printf ; Display it

; Next, use scanf() to enter numeric data:
 mov rdi,IPrompt ; Copy address of integer input prompt into RDI
 mov rax,0 ; Count of vector regs..here, 0
 call printf ; Display it

 mov rdi,IFormat ; Copy addr of the integer format string into RDI
 mov rsi,IntVal ; Copy address of the integer buffer into RSI
 mov rax,0 ; Count of vector regs..here, 0
 call scanf ; Call scanf to enter numeric data

 mov rdi,IShow ; Copy address of base string into RDI
 mov rsi,[IntVal] ; Copy the integer value to display into RSI
 mov rax,0 ; Count of vector regs..here, 0
 call printf ; Call printf to convert & display the integer

;;; Everything after this is boilerplate; use for all ordinary apps!

 pop rbp ; Epilog: Destroy stack frame before returning
 ret ; Return to glibc shutdown code

Be a Linux Time Lord

The standard C libraries contain a pretty substantial group of functions that
manipulate dates and times. Although these functions were originally designed
to handle date values generated by the real- time clock in ancient AT&T mini-
computer hardware that was current in the 1970s, they have by now become
a standard interface to any operating system’s real- time clock support. People
who program in C for Windows use the very same group of functions, and
they work more or less the same way irrespective of which operating system
you’re working under.

 Chapter 12 ■ Heading Out to C 449

By understanding how to call these functions as assembly language procedures,
you’ll be able to read the current date, express time and date values in numerous
formats, apply timestamps to files, and do many other very useful things.

Let’s take a look at how it works.

The C Library’s Time Machine
Somewhere deep inside the standard C library, there is a block of code that,
when invoked, looks at the real- time clock in the computer, reads the current
date and time, and translates that into a standard signed integer value. This
value is (theoretically) the number of seconds that have passed in the “Unix
epoch,” (or in programmer circles, just “the epoch”), which began on January
1, 1970, 00:00:00 universal time. Every second that passes adds 1 to this value.
When you read the current time or date via the C library, what you’ll retrieve
is the current value of this number.

The number is called time_t. For nearly all of its history, time_t was a 32- bit
signed integer. As years went on, people began to wonder about what would
happen when a signed 32- bit integer wouldn’t be large enough to contain the
number of seconds since 1970. On 3:14:07 UTC on January 19, 2038, computers
that treat time_t as a 32- bit signed integer will see it roll over to 0, because a
32- bit signed integer can express quantities only up to 2,147,483,647. That’s a
lot of seconds (and a reasonably long time to prepare), but I’ll only be 86, and I
expect to be around when it happens. (I remember the whole Y2K panic, heh.)

In truth, it won’t happen, just as the infamous Y2K phenomenon didn’t bring
civilization crashing down, as certain people who should have known better
were claiming at the time. A properly implemented C library doesn’t assume
that time_t is a 32- bit quantity at all. So, when the signed 32- bit time_t flips in
the year 2038, we’ll have been using 64- bit values for everything, and the whole
problem will be put off for another 292 billion years or so. If we haven’t fixed it
once and for all by then, we’ll deserve to go down with the whole universe in
the Big Crunch that cosmologists are predicting shortly thereafter.

Certainly the problem no longer exists in Linux. All 64- bit Linux systems use
a 64- bit time_t, and since the release of Linux v5.6 in 2020, 32- bit versions of
the OS also use a 64- bit time_t.

A time_t value is just an arbitrary seconds count and doesn’t tell you much
on its own, though it can be useful for calculating elapsed times in seconds.
Another standard data type implemented by the standard C library is much more
useful. A tm structure (which is often called a struct, and among Pascal people
a record) is a grouping of nine 32- bit numeric values that express the current
time and date in separately useful chunks, as summarized in Table 12.2. Note
that although a struct (or record) is nominally a grouping of unlike values, in
the current x64 Linux implementation, a tm value is more like an array or a data

450 Chapter 12 ■ Heading Out to C

table, because all nine elements are the same size, which is 32 bits, or 4 bytes.
I’ve described it that way in Table 12.2, by including a value that is the offset
from the beginning of the structure for each element in the structure. This allows
you to use a pointer to the beginning of the structure and an offset from the
beginning to create the effective address of any given element of the structure.

Note that even in a 64- bit Linux instance, the tm fields are 32 bits in size.
Why still 32 bits? Easy: None of the elements in tm needs anything near 8 bytes
to express. The largest possible value is tm_yday, which contains the ordinal
number of the current day, that is, a number from 1 to 366, with 1 being the first
day of January. Of course, in a few centuries the number of years since 1900 will
exceed 366— but again, don’t wait up for it.

The one element that needs a little more explanation is tm_isdst. The value
in tm_isdst is positive if daylight saving time (DST) is in effect, and zero if DST
is not in effect. If the system cannot tell whether DST is in effect, the value in
tm_isdst is negative.

There are C library functions that convert time_t values to tm values and back.
I cover a few of them in this chapter, but they’re all pretty straightforward, and
once you’ve thoroughly internalized the C calling conventions, you should be
able to work out an assembly calling protocol for any of them.

Another cautionary sidenote: The time_t value is not the exact, precise number
of seconds since the beginning of the Unix epoch. There are glitches in the way
Unix counts seconds, and time_t is not adjusted for accumulated astronomical
errors as real- world NIST time is, via “leap seconds.” So across short intervals
(ideally, less than a year) time_t may be considered accurate. Beyond that,

Table 12.2: The Values Contained in the tm Structure

OFFSET IN BYTES C LIBRARY NAME DEFINITION

0 tm_sec Seconds after the minute,
from 0

4 tm_min Minutes after the hour,
from 0

8 tm_hour Hour of the day, from 0

12 tm_mday Day of the month, from 1

16 tm_mon Month of the year, from 0

20 tm_year Year since 1900, from 0

24 tm_wday Days since Sunday, from 0

28 tm_yday Day of the year, from 0

32 tm_isdst Daylight Saving Time flag

 Chapter 12 ■ Heading Out to C 451

assume that it will be off by a few seconds or more, with no easy way to figure
out how to compensate for the errors.

Fetching time_t Values from the System Clock
Any single second of time (at least those seconds after January 1, 1970) can be
represented as a 64- bit signed integer in a Unix- compatible system. Fetching
the value for the current time is done by calling the time() function. Like all
functions designed in accordance with the x64 calling conventions, time()
returns its time_t value in RAX.

However, there is a gotcha that sometimes trips up beginners: time() can
take a parameter. Like all first parameters, it’s passed to time() in RDI. The
gotcha: It’s optional.

Sort of.
When you call time(), if RDI contains 0, the time_t value will be returned in

RAX. If RDI contains anything other than 0, time() will assume that the value
in RDI is an address, and it will attempt to write the time_t value to memory
at that address. If RDI contains “leftovers” that aren’t valid addresses, calling
time() will usually cause a segmentation fault. I say “usually” because I’ve
heard that on some systems, the implementation of time() contains some extra
machinery to detect garbage addresses, and if an address in RDI is garbage, it
will revert to returning the value in RAX. Still, you can’t count on that.

No other parameters need to be passed to time(). On return, you’ll have the
current time_t value in RAX. That’s all there is to it. Given the possibility of
implementation differences, I don’t recommend handing time() an address.
What I do recommend is having the time_t value returned in RAX. This requires
that you clear RDI to 0 before you call time().

Converting a time_t Value to a Formatted String
Again, by itself, a time_t value doesn’t tell you a great deal. The C library con-
tains a function that will return a pointer to a formatted string representation of
a given time_t value. This is the ctime() function. It returns a pointer to a string
buried somewhere in the runtime library. This string has the following format:

Wed Nov 28 12:13:21 2022

The first field is a three- character code for the day of the week, followed by
a three- character code for the month and a two- space field for the day of the
month. The time follows, in 24- hour format, and the year brings up the rear.
For good measure (though it can sometimes be a nuisance), the string returned
by ctime is terminated by a newline.

452 Chapter 12 ■ Heading Out to C

Here’s how you call ctime and display the time/date string it generates:

mov rdi,TimeValue ; Copy *address* of time_t value into rdi
call ctime ; Returns pointer to ASCII time string in rax
mov rdi,rax ; Copy the address in rax into rdi
call puts ; Call puts to display the ASCII time string

This looks pretty conventional, but there is something here that you must be
aware of, as it departs from our recent experience with glibc: You pass ctime()
the address of a time_t value, not the value itself! You’re used to passing integer
values to functions by copying those values into RDI, RSI, and so on. Not so
here. A time_t value is currently, under Linux, represented as an 8- byte integer,
but there is no promise that it will always be thus. Older versions of Linux may
use a 32- bit time_t. Other Unix implementations could be all over the map. So,
to keep its options open (and to ensure that Unix can be used for thousands or
even billions of years to come, heh), the C library function ctime() requires a
pointer to the current time_t value rather than a time_t value itself.

Pass the address of the time_t value that you want to represent as a string
in RDI, and then call ctime(). What ctime() returns in RAX is a pointer to the
string, which it keeps somewhere inside the runtime library. You can use that
pointer to display the string on the screen via puts or printf or write it to a
text file.

Generating Separate Local Time Values
The glibc library also gives you a function to break out the various components
of the date and time into separate values so that you can use them separately
or in various combinations. This function is localtime(), and given a time_t
value, it will break out the date and time into the fields of a tm structure, as
described in Table 12.2. Here’s the code to call it:

mov rdi,TimeValue ; Pass address of calendar time value in rdi
call localtime ; Returns pointer to static time structure in rax

Here, TimeValue is a time_t value. Given this value, localtime() returns in
RAX— much in the fashion of ctime()— a pointer to a tm structure within the
C library somewhere. By using this pointer as a base address, you can access
the individual fields in the structure. The trick lies in knowing the offset into
tm for the individual time/date field that you want, and using that offset as a
constant displacement from the address base.

mov rdi, yrmsg ; Pass address of the base string in rdi
mov rsi, dword [rax+20] ; Year value tm_year is 20 bytes offset into tm
mov rax,0 ; Count of vector regs..here, 0
call printf ; Display string and year value with printf

 Chapter 12 ■ Heading Out to C 453

By using the displacements shown in Table 12.2, you can access all the other
components of the time and the date in the tm structure, each stored as a 32- bit
integer value.

Making a Copy of glibc’s tm Struct with MOVSD
It’s sometimes handy to keep a separate copy of a tm structure, especially if you’re
working with several date/time values at once. So, after you use localtime() to
fill the C library’s hidden tm structure with date/time values, you can copy that
structure to a structure allocated in the .bss or .data section of your program.

Doing such a copy is a straightforward use of the REP MOVSD (Repeat Move
String Double) instruction, one of a group that I introduced in Chapter 11. MOVSD
is an almost magical thing: Once you set up pointers to the data area you want
to copy and the place you want to copy it to, you store the size of the area in
RCX and let REP MOVSD do the rest. In one operation it will copy an entire buffer
from one place in memory to another.

To use REP MOVSD, you place the address of the source data— that is, the data
to be copied— into RSI. You move the address of the destination location— where
the data is to be placed— in RDI. The number of items to be moved is placed in
RCX. You make sure that the Direction flag DF is cleared (for more on this, see
Chapter 11) and then execute REP MOVSD:

mov rsi,rax ; Copy address of static tm from rax to rsi
mov rdi,tmcopy ; Put the address of the local tm vartiable in rdi
mov rcx,9 ; A tm struct is 9 dwords in size under Linux
cld ; Clear df to 0 so we move up- memory
rep movsd ; Copy static tm struct to local tm copy

Why use MOVSD instead of its 64- bit big brother MOVSQ? The tm struct is basi-
cally an array of nine 4- byte elements, not 8- byte elements.

Here, we’re moving the C library’s tm structure to a buffer allocated in the
.bss section of the program. The tm structure is nine double words— 36 bytes— in
size. So, we have to reserve that much space and give it a name:

TmCopy resd 9 ; Reserve 9 32- bit fields for time struct tm

The preceding code assumes that the address of the C library’s already- filled
tm structure is in RAX and that a tm structure TmCopy has been allocated. Once
executed, it will copy all of the tm data from its hidey- hole inside the C runtime
library to your freshly allocated buffer TmCopy.

The REP prefix puts MOVSD in automatic- rifle mode, as I explained in Chapter 11.
That is, MOVSD will keep moving data from the address in RSI to the address
in RDI, counting RCX down by one with each move, until RCX goes to zero.
Then it stops.

454 Chapter 12 ■ Heading Out to C

One easy mistake you should avoid is forgetting that the count in RCX is
the count of data items to be moved, not the number of bytes to be moved! By
virtue of the D on the end of its mnemonic, MOVSD moves double words, and the
value you place in RCX must be the number of 4- byte items to be moved. So, in
moving nine double words, MOVSD actually transports 36 bytes from one location
to another— but you’re counting double words here, not bytes.

The program in Listing 12.5 knits all of these code snippets together into a
demo of the major Unix time features. There are many more time functions to
be studied in the C library, and with what you now know about C function calls,
you should be able to work out calling protocols for any of them.

Listing 12.5: timetest.asm

; Executable name : timetest
; Version : 3.0
; Created date : 11/28/2022
; Last update : 11/28/2022
; Author : Jeff Duntemann
; Description : A demo of time- related functions for Linux, using
; NASM 2.14.02. Will NOT work in SASM.
;
; Built using this makefile, after adding required tabs:
;
; timetest: timetest.0
; gcc timetest.o - o timetest - no- pie
; timetest.o: timetest.asm
; nasm - f elf64 - g - F stabs timetest.asm

[SECTION .data] ; Section containing initialized data

TimeMsg db "Hey, what time is it? It's %s",10,0
YrMsg db "The year is %d.",10,10,0
PressEnt db "Press enter after a few seconds: ",0
Elapsed
db
"A total of %d seconds has elapsed since program began running.",10,0

[SECTION .bss] ; Section containing uninitialized data

OldTime resq 1 ; Reserve 3 quadwords for time_t values
NewTime resq 1
TimeDiff resq 1
TimeStr resb 40 ; Reserve 40 bytes for time string
TmCopy resd 9 ; Reserve 9 integer fields for time struct tm

[SECTION .text] ; Section containing code

extern ctime
extern difftime

 Chapter 12 ■ Heading Out to C 455

extern getchar
extern printf
extern localtime
extern strftime
extern time

global main ; Required so linker can find entry point

main:
 push rbp ; Set up stack frame
 mov rbp,rsp

;;; Everything before this is boilerplate; use for all ordinary apps!

; Generate a time_t calendar time value with clib's time function
 xor rdi,rdi ; Clear rdi to 0
 call time ; Returns calendar time in rax
 mov [OldTime],rax ; Save time value in memory variable

; Generate a string summary of local time with clib's ctime function
 mov rdi,OldTime ; Push address of calendar time value
 call ctime ; Returns pointer to ASCII time string in rax

 mov rdi,TimeMsg ; Pass address of base string in rdi
 mov rsi,rax ; Pass pointer to ASCII time string in rsi
 mov rax,0 ; Count of vector regs..here, 0
 call printf ; Merge and display the two strings

; Generate local time values into libc's static tm struct
 mov rdi,OldTime ; Push address of calendar time value
 call localtime ; Returns pointer to static time structure in rax

; Make a local copy of libc's static tm struct
 mov rsi,rax ; Copy address of static tm from rax to rsi
 mov rdi,TmCopy ; Put the address of the local tm copy in rdi
 mov rcx,9 ; A tm struct is 9 dwords in size under Linux
 cld ; Clear DF so we move up- memory
 rep movsd ; Copy static tm struct to local copy

; Display one of the fields in the tm structure
 mov rdx,[TmCopy+20] ; Year field is 20 bytes offset into tm
 add rdx,1900 ; Year field is # of years since 1900
 mov rdi,YrMsg ; Put address of the base string into rdi
 mov rsi,rdx
 mov rax,0 ; Count of vector regs..here, 0
 call printf ; Display string and year value with printf

; Display the 'Press Enter: ' prompt
 mov rdi,PressEnt ; Put the address of the base string into rdi
 mov rax,0 ; Count of vector regs..here, 0
 call printf

456 Chapter 12 ■ Heading Out to C

; Wait a few seconds for the user to press Enter
; so that we have a time difference:
 call getchar ; Wait for user to press Enter

; Calculating seconds passed since program began running:
 xor rdi,rdi ; Clear rdi to 0
 call time ; Get current time value; return in EAX
 mov [NewTime],rax ; Save new time value

 sub rax,[OldTime] ; Calculate time difference value
 mov [TimeDiff],rax ; Save time difference value

 mov rsi,[TimeDiff] ; Put difference in seconds rdi
 mov rdi,Elapsed ; Push addr. of elapsed time message string
 mov rax,0 ; Count of vector regs..here, 0
 call printf ; Display elapsed time

;;; Everything after this is boilerplate; use for all ordinary apps!

 pop rbp ; Epilog: Destroy stack frame before returning
 ret ; Return to glibc shutdown code

If you ever move to other Unix implementations outside the GNU sphere,
keep in mind that the time_t value may already have a definition other than a
32-bit integer. At this time, glibc defines time_t as a 64- bit integer, and you can
calculate time differences between two time_t values simply by subtracting them.
For other, non- GNU implementations of Unix, it’s best to use the difftime()
function in the libc library to return a difference between two time_t values.

Understanding AT&T Instruction Mnemonics

There is more than one set of instruction mnemonics for the x86 CPUs, and that’s
been a source of much confusion. An instruction mnemonic is simply a way for
human beings to remember what the binary bit pattern 1000100111000011 means
to the CPU. Instead of writing 16 ones and zeros in a row (or even the slightly
more graspable hexadecimal equivalent 89C3h), we say MOV BX,AX.

Keep in mind that mnemonics are just that— memory joggers for humans— and
are creatures unknown to the CPU itself. Assemblers translate mnemonics to
machine instructions. Although we can agree among ourselves that MOV BX,AX
will translate to 1000100111000011, there’s nothing magical about the string MOV
BX,AX. We could as well have agreed on COPY AX TO BX or STICK GPREGA INTO

 Chapter 12 ■ Heading Out to C 457

GPREGB. We use MOV BX,AX because that was what Intel suggested we do, and
since Intel designed and manufactures the CPU chips, it may know best how
to describe the internal details of its own products.

The alternate set of x86 instruction mnemonics that we call the AT&T mne-
monics came out of the desire to make Unix as easy to port to different computer
architectures as possible. However, the goals of instruction set implementers
are not the same as those of assembly language programmers, and if your goal
is to have a complete and optimally efficient command of the x86/x64 CPUs,
you’re better off writing code with the Intel set, as I’ve been teaching throughout
this book.

In truth, the AT&T mnemonics look strange and a little opaque, even to me.
The reason for that is that they were never intended to be used by humans to
write assembly language programs. They were designed to be an easily por-
table intermediate language, that is, a language written by one piece of software
to be acted upon by an entirely different piece of software. In Linux, that would
generally be the C language compiler gcc, and the Gnu assembler, gas. In fact,
the C language was originally considered a “high- level assembler,” and com-
pared to other programming languages like COBOL, FORTRAN, or Pascal, it is.

Although there are good reasons for being able to read AT&T mnemonics
and syntax, it has grown complex enough that I can’t justify teaching it to any
depth in a beginner book like this.

AT&T Mnemonic Conventions
So here’s the overview: When gcc compiles a C source code file to machine code,
what it really does is translate the C source code to assembly language source
code, using the AT&T mnemonics. Look back to Figure 12.1. The gcc compiler
takes as input a .c source code file and generates a .s assembly language source
file, which is then handed to the GNU assembler gas for assembly. This is the
way the GNU tools work on all platforms, with all GNU languages, of which
there are several beyond C and C++. The assembly step is generally invisible
to the programmer, with the .s file discarded after gas converts it to machine
code and ld links it. You can have gcc save the AT&T assembly source code file
to disk by using the –S option:

gcc eatc.c –S –o eatc

Note that –S switch uses an uppercase S. Nearly everything in Linux and other
Unix descendants is case- sensitive.

Now, if you’re going to deal with the standard C library and the multitudes
of other function libraries written in C and for C, it makes sense to become at
least passingly familiar with the AT&T mnemonics. There are some general rules
that, once digested, make it much easier. Here’s the list in short form:

458 Chapter 12 ■ Heading Out to C

 ■ AT&T mnemonics and register names are invariably in lowercase. This
is in keeping with the Unix convention of case sensitivity. I’ve mixed
uppercase and lowercase in the text and examples to get you used to see-
ing assembly source both ways, but you have to remember that while
Intel’s syntax (and hence NASM) suggests uppercase but will accept
lowercase, the AT&T syntax requires lowercase.

 ■ Register names are always preceded by the percent symbol, %. That is,
what Intel would write as AX or RBX, AT&T would write as %ax and
%rbx. This helps the assembler recognize register names.

 ■ Every AT&T machine instruction mnemonic that has operands has a
single- character suffix indicating how large its operands are. The suffix
letters are b, w, l, and q indicating byte (8 bits), word (16 bits), long (32
bits), and quad (64 bits). What Intel would write as MOV RBX,RAX, AT&T
would write as movq %rax,%rbx.

 ■ When an instruction does not take operands (call, leave, ret), it does
not have an operand- size suffix. Calls and returns look pretty much alike
in both Intel and AT&T syntax.

 ■ In the AT&T syntax, source and destination operands are placed in the
opposite order from Intel syntax. That is, what Intel would write as MOV
RBX,RAX, AT&T would write as movq %rax,%rbx. In other words, in AT&T
syntax, the source operand comes first, followed by the destination.

 ■ In the AT&T syntax, immediate operands are always preceded by the
dollar sign, $. What Intel would write as PUSH 42, AT&T would write as
pushq $42. This helps the assembler recognize immediate operands.

 ■ Not all AT&T instruction mnemonics are generated by gcc. Equivalents
to Intel’s JCXZ, JECXZ, LOOP, LOOPZ, LOOPE, LOOPNZ, and LOOPNE were added
to the AT&T mnemonic set not that long ago, and in some versions, gcc
does not generate code that uses them.

 ■ In the AT&T syntax, displacements in memory references are signed
quantities placed outside parentheses containing the base, index, and
scale values. I’ll treat this one separately a little later, as you’ll see it a lot
in .s files, and you should be able to read and understand ATT memory
address syntax.

 ■ When referenced, the name of a message string is prefixed by a dollar
sign ($) the same way that numeric literals are. In NASM, a named string
variable is considered a variable and not a literal. This is just another
AT&T peccadillo to be aware of.

 ■ Note that the comment delimiter in the AT&T scheme is the pound sign
(#) rather than the semicolon used in nearly all Intel- style assemblers,
including NASM.

 Chapter 12 ■ Heading Out to C 459

AT&T Memory Reference Syntax
As you’ll remember from earlier chapters, referencing a memory location (as
distinct from referencing its address) is done by enclosing the location of the
address in square brackets, like so:

mov rax,[rbp]

Here, we’re taking whatever 64- bit quantity is located at the address contained
in RBP and loading it into register RAX. More complex memory addressing
can look like this:

mov rax,[rbx- 8] ; Base minus displacement
mov ax, word [bx+di+28] ; Base plus index plus displacement
mov al, byte [bx+di*4] ; Base plus index times scale

All of the examples shown above use the Intel syntax. The AT&T syntax for
memory addressing is considerably different. In place of square brackets, AT&T
mnemonics use parentheses to enclose the components of a memory address:

movb (%rbx),%al # mov byte al,[rbx] in Intel syntax

Here, we’re moving the byte quantity at [rbx] to AL. (Don’t forget that the
order of operands is reversed from what Intel syntax does!) Inside the paren-
theses you place the base, the index, and the scale, when present. (The base
must always be there.) The displacement, when one exists, must go in front of
and outside the parentheses:

movl –8(%rbx),%rax # mov dword rax,[rbx- 8] (Intel)
movb 28(%rbx,%rdi),%eax # mov byte rax,[rbx+edi+28] (Intel)

Note that in AT&T syntax, you don’t do the math inside the parentheses. The
base, index, and scale are separated by commas, and plus signs and asterisks
are not allowed. The schema for interpreting an AT&T memory reference is as
follows:

±disp(base,index,scale)

The ± symbol I use in the previous schematic example indicates that the
displacement is signed; that is, it may be either positive or negative to indicate
whether the displacement value is added to or subtracted from the rest of the
address. Typically, you see the sign only as explicitly negative; without the minus
symbol, the default is that the displacement is positive. The displacement and
scale values are optional.

What you will see most of the time, however, is a very simple type of memory
reference:

- 16(%rbp)

460 Chapter 12 ■ Heading Out to C

The displacements will vary, of course, but what this almost always means
is that an instruction is referencing a data item somewhere on the stack. C code
allocates its variables on the stack, in a stack frame, and then references those
variables by literal offsets from the value in RBP. RBP acts as an address starting
point, and items on the stack may be referenced in terms of offsets (either positive
or negative) away from RBP. The preceding reference would tell a machine
instruction to work with an item at the address in RBP minus 16 bytes.

Generating Random Numbers

As our next jump on this quick tour of standard C library calls from assembly,
let’s get seriously random. (Or modestly pseudorandom, at least.) The standard
C library has a pair of functions that allow programs to generate pseudorandom
numbers. The pseudo is significant here. Research indicates that there is no prov-
able way to generate a truly random random number strictly from software. In
fact, the whole notion of what random really means is a spooky one and keeps a
lot of mathematicians off the streets. Theoretically you’d need to obtain triggers
from some sort of quantum phenomenon (radioactivity is the one most often
mentioned) to achieve true randomness. Such creatures do exist. But lacking
a radiation- triggered random- number generator, we’ll have to fall back on
pseudo- ness and learn to live with it.

A simplified definition of pseudorandom would run something like this:
A pseudorandom- number generator yields a sequence of numbers of no recogniz-
able pattern, but the sequence can be repeated by passing the same seed value to
the generator. A seed value is simply a whole number that acts as an input value
to an arcane algorithm that creates the sequence of pseudorandom numbers.
Pass the same seed to the generator, and you get the same sequence. However,
within the sequence, the distribution of numbers within the generator’s range
is reasonably scattered and random.

The standard C library contains two functions relating to pseudorandom
numbers:

 ■ The srand() function passes a new seed value to the random- number
generator. This value must be a 32- bit integer. If no seed value is passed,
the seed value defaults to 1.

 ■ The rand() function returns a 31- bit pseudorandom number. The high
bit is always 0 and thus the value is always positive if treated as a 32- bit
signed integer.

Once you understand how they work, using them is close to trivial.

 Chapter 12 ■ Heading Out to C 461

Seeding the Generator with srand()
Getting the seed value into the generator is actually more involved than making
the call that pulls the next pseudorandom number in the current sequence. And
it’s not that the call to srand() is that difficult: You load the seed value into RDI
and then call srand(). That’s all you have to do! The srand() function does not
return a value. But . . . what do you use as a seed value?

Aye, now there’s the rub.
If it’s important that your programs not work with the same exact sequence

of pseudorandom numbers every time they run, you clearly don’t want to use
an ordinary integer hard- coded into the program. You’d ideally want to get a
different seed value each time you run the program. The simplest way to do
that (though there are others) is to seed calls to srand() with the seconds count
since January 1, 1970, as returned by the time() function, which I explained in
the previous section. This value, called time_t, is a signed integer that changes
every second, so with every passing second you have a new seed value at your
disposal, one that by definition will never repeat. (I’m assuming here that the
time_t rollover problem that I mentioned in the previous section will be solved
by the year 2038.)

Almost everyone does this, and the only caution is that you must make certain
that you don’t call srand() to reseed the sequence more often than once per
second. In most cases, for programs that are run, do their work, and terminate in
a few minutes or hours, you only need to call srand() once, when the program
begins executing. If you are writing a program that will remain running for days
or weeks or longer without terminating (such as a server), it might be a good
idea to reseed your random- number generator once per day.

Here’s a short code snippet that calls time() to retrieve the current time_t
value and then hands the time value to srand()in RDI:

xor rdi,rdi ; Make sure rdi is set to 0 before calling time()
call time ; Returns time_t value (32- bit integer) in rax
mov rdi,rax ; Pass the seed value to srand in rdi
call srand ; Time_t is the seed value for random # generator

Setting RDI to 0 before calling time() tells the time() function that you’re
not passing in a variable to accept the time value. The time_t value you want
to keep is returned in RAX.

Generating Pseudorandom Numbers
Once you’ve seeded the generator, getting numbers in the pseudorandom
sequence is easy: You pull the next number in the sequence with each call to
rand(). And the rand() function is as easy to use as anything in the C library:

462 Chapter 12 ■ Heading Out to C

It takes no parameters (so you don’t need to pass anything to the function), and
the pseudorandom number is returned in RAX.

The randtest.asm program in Listing 12.6 demonstrates how srand() and
rand() work. It also shows off a couple of other interesting assembly tricks, and
I’ll spend the rest of this section discussing them.

Listing 12.6: randtest.asm

; Executable name : randtest
; Version : 3.0
; Created date : 11/29/2022
; Updated date : 5/24/2023
; Author : Jeff Duntemann
; Description : A demo of Unix rand & srand using NASM 2.14.02
;
; Build using these commands:
; nasm - f elf64 - g - F dwarf randtest.asm
; gcc randtest.o - o randtest –no- pie
;

section .data

Pulls dq 36 ; How many nums do we pull? (Must be a multiple of 6!)
Display db 10,'Here is an array of %d %d- bit random numners:',10,0
ShowArray db '%10d %10d %10d %10d %10d %10d',10,0
NewLine db 0
CharTbl
 db '0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz- @'

section .bss

[SECTION .bss] ; Section containing uninitialized data

BUFSIZE equ 70 ; # of randomly chosen chars
RandVal resq 1 ; Reserve an integer variable
Stash resq 72 ; Reserve an array of 72 integers for randoms
RandChar resb BUFSIZE+5 ; Buffer for storing randomly chosen characters

section .text

extern printf
extern puts
extern rand
extern srand
extern time

;-
; Random number generator procedures - - Last update 5/13/2023
;

 Chapter 12 ■ Heading Out to C 463

; This routine provides 6 entry points, and returns 6 different "sizes"
; of pseudorandom numbers based on the value returned by rand. Note
; first of all that rand pulls a 31- bit value. The high 16 bits are
; the most "random" so to return numbers in a smaller range, you fetch
; a 31- bit value and then right- shift it to zero- fill all but the
; number of bits you want. An 8- bit random value will range from
; 0- 255, a 7- bit value from 0- 127, and so on. Respects RBP, RSI, RDI,
; RBX, and RSP. Returns random value in RAX.
;-
pull31: mov rcx,0 ; For 31 bit random, we don't shift
 jmp pull
pull20: mov rcx,11 ; For 20 bit random, shift by 11 bits
 jmp pull
pull16: mov rcx,15 ; For 16 bit random, shift by 15 bits
 jmp pull
pull8: mov rcx,23 ; For 8 bit random, shift by 23 bits
 jmp pull
pull7: mov rcx,24 ; For 7 bit random, shift by 24 bits
 jmp pull
pull6: mov rcx,25 ; For 6 bit random, shift by 25 bits
 jmp pull
pull4: mov rcx,27 ; For 4 bit random, shift by 27 bits

pull:
 push rbp ; Prolog: Create stack frame
 mov rbp,rsp

 mov r15,rcx ; rand trashes rcx; save shift value in R15
 call rand ; Call rand for random value; returned in RAX
 mov rcx,r15 ; Restore shift value back into RCX
 shr rax,cl ; Shift the random value in RAX by the chosen
 ; factor, keeping in mind that part we want
 ; is in CL
 pop rbp ; Epilog: Destroy stack frame
 ret ; Go home with random number in RAX

;; This subroutine pulls random values and stuffs them into an
;; integer array. Not intended to be general purpose. Note that
;; the address of the random number generator entry point must
;; be loaded into r13 before this is called, or you'll seg fault!

puller:
 push rbp ; Prolog: Create stack frame
 mov rbp,rsp

 mov r12,[Pulls] ; Put pull count into R12
.grab:
 dec r12 ; Decrement counter in RSI
 call r13 ; Pull the value; it's returned in RAX

464 Chapter 12 ■ Heading Out to C

 mov [Stash+r12*8],rax ; Store random value in the array
 cmp r12,0 ; See if we've pulled all STASH- ed
 ; numbers yet
 jne .grab ; Do another if R12 <> 0

 pop rbp ; Epilog: Destroy stack frame
 ret ; Otherwise, go home!

 ;; This subroutine displays numbers six at a time
 ;; Not intended to be general- purpose...
shownums:
 push rbp ; Prolog: Create stack frame
 mov rbp,rsp

 mov r12,qword [Pulls] ; Put pull count into r12
 xor r13,r13
.dorow:
 mov rdi,ShowArray ; Pass address of base string
 mov rsi,[Stash+r13*8+0] ; Pass first element
 mov rdx,[Stash+r13*8+8] ; Pass second element
 mov rcx,[Stash+r13*8+16] ; Pass third element
 mov r8,[Stash+r13*8+24] ; Pass fourth element
 mov r9,[Stash+r13*8+32] ; Pass fifth element
 push rax ; To keep stack 16- bytes aligned
 push qword [Stash+r13*8+40] ; Pass 6th element on the stack
 xor rax,rax ; Passs 0 to show there will be no fp regs
 call printf ; Display the random numbers
 add rsp,16 ; Stack cleanup: 2 items X 8 bytes = 16

 add r13,6 ; Point to the next group of six randoms in Stash
 sub r12,6 ; Decrement pull counter
 cmp r12,0 ; See if pull count has gone to 0
 ja .dorow ; If not, we go back and do another row!

 pop rbp ; Epilog: Destroy stack frame
 ret ; Done, so go home!

; MAIN PROGRAM:

global main ; Required so linker can find entry point

main:
 push rbp ; Prolog: Set up stack frame
 mov rbp,rsp

;;; Everything before this is boilerplate;

; Begin by seeding the random number generator with a time_t value:

 Chapter 12 ■ Heading Out to C 465

Seedit:
 xor rdi,rdi ; Mske sure rdi starts out with a 0
 call time ; Returns time_t value (64- bit integer) in rax
 mov rdi,rax ; Pass srand a time_t seed in rdi
 call srand ; Seed the random number generator

; All of the following code blocks are identical except for the size
; of the random value being generated:

; Create and display an array of 31- bit random values
 mov r13,pull31 ; Copy address of random # subroutine into RDI
 call puller ; Pull as many numbers as called for in [Pulls]

 mov rdi,Display ; Display the base string
 mov rsi,[Pulls] ; Display the number of randoms displayed
 mov rdx,32 ; Display the size of the randoms displayed
 xor rax,rax ; Passs 0 to show there will be no fp registers
 call printf ; Display the label
 call shownums ; Display the rows of random numbers

; Create and display an array of 20- bit random values
 mov r13,pull20 ; Copy address of random # subroutine into RDI
 call puller ; Pull as many numbers as called for in [Pulls]

 mov rdi,Display ; Display the base string
 mov rsi,[Pulls] ; Display the number of randoms displayed
 mov rdx,20 ; Display the size of the randoms displayed
 xor rax,rax ; Passs 0 to show there will be no fp registers
 call printf ; Display the label
 call shownums ; Display the rows of random numbers

; Create and display an array of 16- bit random values
 mov r13,pull16 ; Copy address of random # subroutine into RDI
 call puller ; Pull as many numbers as called for in [Pulls]

 mov rdi,Display ; Display the base string
 mov rsi,[Pulls] ; Display the number of randoms displayed
 mov rdx,16 ; Display the size of the randoms displayed
 xor rax,rax ; Passs 0 to show there will be no fp registers
 call printf ; Display the label
 call shownums ; Display the rows of random numbers

; Create and display an array of 8- bit random values
 mov r13,pull8 ; Copy address of random # subroutine into RDI
 call puller ; Pull as many numbers as called for in [Pulls]

 mov rdi,Display ; Display the base string
 mov rsi,[Pulls] ; Display the number of randoms displayed
 mov rdx,8 ; Display the size of the randoms displayed

466 Chapter 12 ■ Heading Out to C

 xor rax,rax ; Passs 0 to show there will be no fp registers
 call printf ; Display the label
 call shownums ; Display the rows of random numbers

; Create and display an array of 7- bit random values
 mov r13,pull7 ; Copy address of random # subroutine into RDI
 call puller ; Pull as many numbers as called for in [Pulls]

 mov rdi,Display ; Display the base string
 mov rsi,[Pulls] ; Display the number of randoms displayed
 mov rdx,7 ; Display the size of the randoms displayed
 xor rax,rax ; Passs 0 to show there will be no fp registers
 call printf ; Display the label
 call shownums ; Display the rows of random numbers

; Create and display an array of 6- bit random values
 mov r13,pull6 ; Copy address of random # subroutine into RDI
 call puller ; Pull as many numbers as called for in [Pulls]

 mov rdi,Display ; Display the base string
 mov rsi,[Pulls] ; Display the number of randoms displayed
 mov rdx,6 ; Display the size of the randoms displayed
 xor rax,rax ; Passs 0 to show there will be no fp registers
 call printf ; Display the label
 call shownums ; Display the rows of random numbers

; Create and display an array of 4- bit random values
 mov r13,pull4 ; Copy address of random # subroutine into RDI
 call puller ; Pull as many numbers as called for in [Pulls]

 mov rdi,Display ; Display the base string
 mov rsi,[Pulls] ; Display the number of randoms displayed
 mov rdx,4 ; Display the size of the randoms displayed
 xor rax,rax ; Passs 0 to show there will be no fp registers
 call printf ; Display the label
 call shownums ; Display the rows of random numbers

; Create a string of random alphanumeric characters:
Pulchr:
 mov rbx, BUFSIZE ; BUFSIZE tells us how many chars to pull
.loop:
 dec rbx ; BUFSIZE is 1- based, so decrement first!
 mov r13,pull6 ; For random in the range 0- 63
 call r13
 mov cl,[CharTbl+rax] ; Use random # in rax as offset into table
 ; and copy character from table into CL
 mov [RandChar+rbx],cl ; Copy char from CL to character buffer
 cmp rbx,0 ; Are we done having fun yet?
 jne .loop ; If not, go back and pull another

 Chapter 12 ■ Heading Out to C 467

; Display the string of random characters:
 mov rdi,NewLine ; Output a newline
 call puts ; using the newline procedure
 mov rdi,RandChar ; Push the address of the char buffer
 call puts ; Call puts to display it
 mov rdi,NewLine ; Output a newline
 call puts

;;; Everything after this is boilerplate; use for all ordinary apps!

 Mov rsp,rbp ; Epilog: Destroy stack frame
 pop rbp
 mov rp
 ret ; Return to glibc shutdown code

Some Bits Are More Random Than Others
Under x64 Linux, the rand() function returns a 31- bit unsigned value in RAX
as a 64- bit integer. (The sign bit of the integer— the highest of all 64 bits— is
always cleared to 0.) The Unix documentation for rand() and srand() indicates
that the low- order bits of a value generated by rand() are less random than the
high- order bits. This means that if you’re going to use only some of the bits of
the value generated by rand(), you should use the highest- order bits you can.

I honestly don’t know why this should be so, nor how bad the problem is.
I’m not a deep math guy, and I will take the word of the people who wrote the
rand() documentation. But it bears on the issue of how to limit the range of the
random numbers that you generate.

The issue is pretty obvious: Suppose you want to pull a number of random
alphanumeric ASCII characters. You don’t need numbers that range from 0 to
2 billion. There are only 127 ASCII characters, and in fact only 62 are letters and
numbers. (The rest are punctuation marks, whitespace, control characters, or
nonprinting characters such as the smiley faces.) What you want to do is pull
random numbers between 0 and 61.

Pulling numbers that range from 0 to 2 billion until you find one less than
62 will take a long time. Clearly, you need a different approach. The one I took
treats the 31- bit value returned by rand() as a collection of random bits. I extract
a subset of those bits just large enough to meet my needs. Six bits can express
values from 0 to 63, so I take the highest- order 6 bits from the original 31- bit
value and use those to specify random characters.

It’s easy: I simply shift the 31- bit value to the right until all bits but the highest-
order 6 bits have been shifted off the right end of the value into oblivion. The
same trick works with any (reasonable) number of bits. All you have to do is
select by how many bits to shift. I’ve created a procedure for randtest.asm with

468 Chapter 12 ■ Heading Out to C

multiple entry points, where each entry point selects a different number of bits
to remain from the random value:

pull31: mov rcx,0 ; For 31 bit random, we don't shift
 jmp pull
pull20: mov rcx,11 ; For 20 bit random, shift by 11 bits
 jmp pull
pull16: mov rcx,15 ; For 16 bit random, shift by 15 bits
 jmp pull
pull8: mov rcx,23 ; For 8 bit random, shift by 23 bits
 jmp pull
pull7: mov rcx,24 ; For 7 bit random, shift by 24 bits
 jmp pull
pull6: mov rcx,25 ; For 6 bit random, shift by 25 bits
 jmp pull
pull4: mov rcx,27 ; For 4 bit random, shift by 27 bits

pull:
 push rbp ; Prolog: Create stack frame
 mov rbp,rsp

 mov r15,rcx ; rand trashes rcx; save shift value in R15
 call rand ; Call rand for random value; returned in RAX
 mov rcx,r15 ; Restore shift value back into RCX
 shr rax,cl ; Shift the value in RAX by the chosen factor
 ; keeping in mind that part we want is in CL
 pop rbp ; Epilog: Destroy stack frame
 ret ; Go home with random number in RAX

To pull a 16- bit random number, call pull16. To pull an 8- bit random number,
call pull8, and so on. I did discover that the smaller numbers are not as random
as the larger numbers, and the numbers returned by pull4 are probably not
random enough to be useful. (I left the pull4 code in so you could see for your-
self by running randtest.)

The logic here should be easy to follow: You select a shift value, put it in RCX,
copy RCX into R15, call rand(), copy RCX back from R15, and then shift the
random number (which rand() returns in RAX) by the value in CL— which, of
course, is the lowest 8 bits of RCX.

Why does RCX have to be saved in R15? RCX is not one of the callee- preserved
registers in the C calling conventions, and virtually all C library routines use RCX
internally and thus trash its value. If you want to keep a value in RCX across
a call to a library function, you have to save your value somewhere before the
call and restore it after the call is complete. There used to be one place to save
a register: the stack. Now, with x64’s new general- purpose registers, you may
be able to do all your work with registers that glibc’s routines don’t trash and
thus don’t have to be saved on the stack.

 Chapter 12 ■ Heading Out to C 469

I use the pull6 routine to pull random 6- bit numbers to select characters from
a character table, thus creating a string of random alphanumeric characters. I
pad the table to 64 elements with two additional characters (- and @) so that
I don’t have to test each pulled number to see if it’s less than 62. If you need
to limit random values to some range that is not a power of 2, choose the next
largest power of 2— but try to design your program so that you don’t have to
choose random values in a range like 0 to 65. Much has been written on random
numbers in the algorithm books, so if the concept fascinates you, I direct you
there for further study.

Calls to Addresses in Registers
I use a technique in randtest that sometimes gets forgotten by assembly new-
comers: You can execute a CALL instruction to a procedure address stored in a reg-
ister. You don’t always have to use CALL with an immediate label. In other words,
the following two CALL instructions are both completely legal and equivalent:

mov r13,pull8 ; Copy the address represented by label pull8 into r13
call pull8 ; Call the address represented by pull8
call r13 ; Call the address stored in r13

Why do this? You’ll find your own reasons over time, but in general it allows
you to treat procedure calls as parameters. In randtest, I factored out a lot of
code into a procedure called puller and then called puller several times for
different sizes of random number. I passed puller the address of the correct
random- number procedure to call by loading the address of that procedure
into RDI:

; Create and display an array of 8- bit random values:
mov r13,pull8 ; Copy address of random # subroutine into r13
call puller ; Pull as many numbers as called for in [pulls]

Down in the puller procedure, the code calls the requested random- number
procedure this way:

puller:
 mov r12,[Pulls] ; Put pull count into R12
.grab:
 dec r12 ; Decrement counter in RSI
 call r13 ; Pull the value; it's returned in RAX
 mov [Stash+r12*8],rax ; Store random value in the array
 cmp r12,0 ; See if we've pulled all STASH- ed numbers yet
 jne .grab ; Do another if R12 <> 0
 ret ; Otherwise, go home!

470 Chapter 12 ■ Heading Out to C

See the CALL R13 instruction? In this situation (where R13 was previously
loaded with the address of procedure pull8), what is called is pull8— even
though the label pull8 is nowhere present in procedure puller. The same code
in puller can be used to fill a buffer with all the different sizes of random num-
bers, by calling the procedure address passed to it in R13.

Calling an address in a register gives you a lot of power to generalize code—
just make sure you document what you’re up to, since the label that you’re
calling is not contained in the CALL instruction!

Using puts() to Send a Naked Linefeed to the Console
The randtest program also demonstrates something simple but not obvious:
how to send a “naked” newline to the Linux console. I explained earlier that
libc’s puts() function always ends whatever it displays with a newline— even
if you’d rather it not have it display a newline at all. To display things to the
console without a newline, you have to use printf().

So what if you want to send a linefeed to the console but nothing else? Easy:
Define a variable (I call it NewLine) as a single byte, and put a 0 in it. Then copy
the address of the NewLine variable into RDI, and then call puts():

mov rdi,NewLine ; Output a newline
call puts

Remember that puts() displays everything from the address passed to it in
RDI to the first null (that is, a 0) it encounters. If the only thing at that address
is a null, puts() will send a newline to the console and nothing else.

How to Pass a libc Function More Than Six Parameters
If you remember, in the x64 calling convention, the first six parameters passed to
a function are passed in RDI, RSI, RDX, RCX, R8, and R9. So what if you want to
pass printf() seven parameters or more? Anything beyond six parameters has
to go on the stack. I deliberately designed randtest to hand seven parameters
to printf(). The action occurs in the procedure called shownums:

shownums:
 mov r12,qword [Pulls] ; Put pull count into r12
 xor r13,r13
.dorow:
 mov rdi,ShowArray ; Pass address of base string
 mov rsi,[Stash+r13*8+0] ; Pass first element
 mov rdx,[Stash+r13*8+8] ; Pass second element
 mov rcx,[Stash+r13*8+16] ; Pass third element
 mov r8,[Stash+r13*8+24] ; Pass fourth element

 Chapter 12 ■ Heading Out to C 471

 mov r9,[Stash+r13*8+32] ; Pass fifth element
 push rax ; To keep the stack 16 bytes aligned
 push qword [Stash+r13*8+40] ; Pass sixth element on the stack.
 xor rax,rax ; Tell printf() no vector values coming
 call printf ; Display the random numbers
 add rsp,16 ; Stack cleanup: 2 item X 8 bytes = 16

At the label dorow: is a sequence of six MOV instructions, all of which pass
parameters to be used by printf(). The address of the base string goes first (in
RDI) followed by the six random numbers making up a row. Once we get to
the sixth number we’re out of registers to pass things in. So that last parameter
value is pushed onto the stack, immediately before we call printf().

Well, almost immediately. Earlier in this chapter I covered this same code from
a different direction: stack alignment. Although the glibc startup code aligns
the stack to a 16- byte value, pushing just one item onto the stack adds only 8
bytes to the stack pointer, and thus misaligns the stack. To fix this, push RAX
onto the stack just before you push that seventh parameter onto the stack. RAX
adds another 8 bytes to the stack, returning it to 16- byte alignment. (What’s
actually in RAX doesn’t matter. It’s just 8 bytes of padding.)

If there were eight parameters, the eighth would be pushed onto the stack
right after the seventh without needing any PUSH RAX instruction at all. Here’s
why: The gist of stack alignment is to grow or shrink the stack only in 16- byte
chunks, even if half of one of those chunks is a “dummy” register.

Pushing two parameter values onto the stack grows the stack by 16 bytes, so
no dummy value is necessary. In fact, if you forget and add a PUSH RAX anyway,
you’ll be misaligning the stack!

The printf() function knows where to look, and it will find and use all the
parameters passed to it. However, printf() does not clean up after itself. If you
push values onto the stack for a printf() call, once printf() is done with them
you have to clean up the stack. This is done not by popping (at least not in this
particular case) but by adding the size of the item you pushed onto the stack to
RSP. Remember that the stack grows “down” (toward lower addresses). If we
push something, RSP gets smaller by the size of the pushed value, in this case,
a 64- bit integer. To clean the stack, we add the size of what we pushed back into
RSP. In this case, we pushed one 8- byte register plus one 8- byte integer for a
total of 16 bytes in size, so we add 16 to RSP. Voilà! The stack is now clean— at
least from the call to printf().

Keep track of your stack: Pop what you push, or add a pushed item’s size
back into RSP. Be careful: Mess up the stack, and a segmentation fault is almost
inevitable.

472 Chapter 12 ■ Heading Out to C

How C Sees Command- Line Arguments

In Chapter 11, I explained how to access command- line arguments from a
Linux program as part of a more general discussion of stack frames. One of the
odder things about linking and calling functions out of the standard C library
in glibc is that the way you access command- line arguments changes and
changes significantly.

The arguments are still on the stack, as is the table of argument addresses.
However, you no longer have to go sniffing around up and down the stack to
find them.

The key is this: main() is a function. It’s only one part of a C program. There
are also the startup code and the shutdown code. Once the startup code finishes
its work, it calls main()just as it would call any other function. When main()
is finished, it returns control to the shutdown code, which does its work, and
then returns control to Linux.

What makes the process of finding command- line arguments easier is that
the startup code follows the x64 calling conventions when it calls main(). The
first six parameters are passed to a function in registers. The first register to get
a parameter is RDI.

When the startup code calls main(), it places the argument count (argc in
C jargon) in RDI. The only other parameter ordinarily passed to main() is
the address of the table of pointers on the stack, in C jargon argv. Each of the
addresses in the argv table points to its actual argument text. The pointer to
the table of pointers is passed in the second calling convention register, RSI.

Listing 12.7 is functionally equivalent to the showargs2 program presented
in Chapter 11. It is, however, significantly simpler. Take a look, and we’ll go
through it.

Listing 12.7: showargs3.asm

; Executable name : showargs3
; Version : 3.0
; Created date : 10/1/1999
; Last update : 5/13/2023
; Author : Jeff Duntemann
; Description : A demo that shows how to access command line
; arguments stored on the stack by addressing
; them relative to rbp.
;
; Build using these commands:
; nasm - f elf64 - g - F dwarf showargs3.asm
; gcc showargs3.o - o showargs3
;

 Chapter 12 ■ Heading Out to C 473

[SECTION .data] ; Section containing initialized data

ArgMsg db "Argument %d: %s",10,0

[SECTION .bss] ; Section containing uninitialized data

[SECTION .text] ; Section containing code

global main ; Required so linker can find entry point
extern printf ; Notify linker that we're calling printf

main:
 push rbp ; Set up stack frame for debugger
 mov rbp,rsp

;;; Everything before this is boilerplate; use for all ordinary apps!

 mov r14,rdi ; Get arc count (argc) from RDI
 mov r13,rsi ; Put the pointer to the arg table argv from RSI
 xor r12,r12 ; Clear r12 to 0

.showit:
 mov rdi,ArgMsg ; Pass address of display string in rdi
 mov rsi,r12 ; Pass argument number in rsi
 mov rdx,qword [r13+r12*8] ; Pass address of an argument in RDX
 mov rax,0 ; Tells printf() no vector arguments are coming
 call printf ; Display the argument # and argument

 inc r12 ; Bump argument # to next argument
 dec r14 ; Decrement argument counter by 1
 jnz .showit ; If argument count is 0, we're done

;;; Everything after this is boilerplate; use for all ordinary apps!

 mov rsp,rbp ; Destroy stack frame before returning
 pop rbp

 ret ; Return to glibc shutdown code

After the prolog, the argc count value is copied into R14. The address of
the argv table is copied into R13. R12 is cleared to 0. At each pass through the
.showit loop, values are passed to the printf() function, all according to the
x64 calling convention. The display string’s address is passed in RDI, and the
argument number is passed in RSI, numbered from 0. The address of the text of
each argument is passed in RDX, using an effective address calculated this way:

mov rdx,qword [r13+r12*8]

474 Chapter 12 ■ Heading Out to C

Flip back to Figure 9.9 if you need a quick refresher on effective address calcu-
lations. The base term is R13, which is the address of the beginning of the table.
Each address in the table takes up 8 bytes, so you treat the ordinal position of
the table entries (that is, element 0, 1, 2, 3, etc.) as the index and multiply it by
the scale factor, 8 since addresses in x64 are all 8 bytes in size. When the math
is done, the effective address of the chosen element in the table is copied into
RDX. RDX then carries the address of the argv element to be displayed into
printf(). (Note that there is no displacement term in this particular effective
address calculation.)

During the .showit loop, R14 counts down the number of arguments, while
R12 gives each argument its ordinal number. In other words, R14 counts how
many arguments we still have to display, and for each argument R12 gives it
an ordinal number that counts up, to be displayed by printf().

All this should be clear from Figure 12.4.

Simple File I/O

The final example program I present in here is nominally about working with
disk- based text files. However, it pulls together a lot of assembly tricks and
features I’ve explained earlier and adds a few more. It’s the largest and most
complex program I’ve shown you, and if you can read it and follow the flow of
the logic, you’ve gotten everything from this book that I set out to teach you. It’s
more like a “real” program than anything else in this book in that it works with
command- line arguments, writes output to a disk file, and does other useful
things that any utility you’ll set out to build will likely require.

Figure 12.4: Accessing command- line arguments from the x64 main() function

 Chapter 12 ■ Heading Out to C 475

The program textfile.asm in Listing 12.8 creates and fills a text file with
text. You can specify the number of lines to be filled in the file, as well as text
for the lines. If you don’t specify text for the file, the program will generate a
line of randomly chosen characters and use that instead. Invoking the program
is done like this:

$./textfile 50 Time for tacos!

This invocation creates a new file (the name of which is fixed in the program
as testeroo.txt) and write the text “Time for tacos!” to the file 50 times before
closing the file. If the file testeroo.txt already exists, it will be overwritten
from the beginning. If you don’t type anything after the line count number, the
program will fill the file with random alphanumeric characters. If you don’t
type an integer as the first argument (for example, the letter Q) textfile will
display a one- line error message. If you type only the program name and press
Enter, textfile will display several lines explaining what it is and how to use it.

Converting Strings into Numbers with sscanf()
When you type a number on the command line while invoking a program, you
can access that number as one of the command- line arguments, through the
mechanisms I described a little earlier in this chapter. However, there’s a catch:
The number is present as text, and you can’t just take the textual string “751” and
load it into a register or an integer variable. To make use of numeric arguments
as numbers, you must first convert their textual expression into numeric form.

The standard C library has several functions to handle this challenge. Some of
them, such as strtod(), are pretty specific and limited and convert text to only
one numeric type. One of them, however, has the ability to convert almost any
textual expression of a legal numeric value into an appropriate numeric form.
This is sscanf(), and it’s the one we’ll use in Listing 12.8.

The sscanf() function takes three parameters, which you must load into the
standard parameter registers, in the following order:

1. The first parameter is the address of the text string to be converted to the
numeric value that it represents. In textfile.asm, we load RDI with the
address of arg(1), which is the first command- line argument you type
on the command line when you invoke the program.

2. We next load RSI with the address of a formatting code string that tells
sscanf() what numeric format you want the input text to be converted
to. Here the code string is %d, which as you may recall from our printf()
discussion is the code for integers.

3. The third parameter is the address of a numeric variable to contain the
numeric value generated by sscanf(). This goes in RDX. We’re generating

476 Chapter 12 ■ Heading Out to C

a 64- bit integer here. So, in textfile.asm, we pass the address of the vari-
able IntBuffer, which is declared as a 64- bit integer.

4. As with printf() and scanf(), clear RAX to 0 immediately before making
the call to sscanf().

Once these three items are loaded into the proper registers and RAX cleared,
call sscanf(). It returns the converted value in the numeric variable whose
address you passed as the third parameter. It also returns a code in RAX to
indicate whether the conversion was successful. If the return value in RAX is
0, then an error occurred, and you shouldn’t assume that you have anything
meaningful in your numeric variable. If the conversion went through success-
fully, you’ll see the value 1 in RAX.

This is the simplest way to use sscanf(). It can convert whole arrays of num-
bers at once, but this is a more specialized use that you’re unlikely to need when
you’re just starting out. Doing those specialized things often requires vector
registers, which I’m not covering in this book. It is important, however, to clear
RAX to 0 before calling sscanf()in the example program to tell the function
that no vector registers will be used.

The string passed to sscanf() as the second parameter may contain multiple
formatting codes, and in that case the string whose address you pass as the first
parameter should have text describing numeric values for each formatting code
present in the format string. In Listing 12.8, the format text specifies only one
value, using the %d format code.

The whole process looks like this:

xor rax,rax ; Clear rax to 0
mov rdi,qword [r13+8] ; Pass address of an argument in rdi
mov rsi,IntFormat ; Pass address of integer format code in rsi
mov rdx,IntBuffer ; Pass address of integer buffer for sscanf output
mov rax,0 ; Tell sscanf() that there are no vector arguments
call sscanf ; Convert string arg to number with sscanf()
cmp rax,1 ; Return value of 1 says we got a number
je chkdata ; If we got a number, go on; else abort

mov rdi,Err1 ; Pass address of error 1- line message in rdi
mov rax,0 ; Tell printf() that there are no vector arguments
call printf ; Show the error message
jmp gohome ; Exit the program

Assuming that the user entered at least one argument on the command line
(and the program has already verified this before the above excerpt), a pointer
to that first argument is located at an offset of 8 from the beginning of the
command- line argument pointer table. (The very first element in the table,
which we call arg(0), points to the name of the program as the user typed it on
the command line.) That’s why we load the contents of argument at [R13+8]

 Chapter 12 ■ Heading Out to C 477

onto the stack; we had already loaded R13 with the address of the argument
pointer table. What’s located at [R13+8] is the pointer to arg(1), the first actual
command- line argument. (The very first argument, arg(0), is the text by which
you invoked the program.) See Figure 12.4 if this is still fuzzy.

Creating and Opening Files
By this time you should be pretty comfortable with the general mechanism for
making C library calls from assembly. And whether you realize it or not, you’re
already pretty comfortable with some of the machinery for manipulating text
files. You’ve already used printf() to display formatted text to the screen by way
of standard output. The very same mechanism is used to write formatted text to
disk- based text files— you’re basically substituting a real disk file for standard
output. So, understanding text file I/O shouldn’t be much of a conceptual leap.

But unlike standard output, which is predefined for you by the C library and
always available, you have to create or open a disk- based text file to use it. The
fopen() function is what does the job.

There are three general ways to open a file: for reading, for writing, and for
appending. When you open a file for reading, you can read text from it via such
functions as fgets(), but you can’t write to the file. When you open a file for
writing, whatever may have been in the file before is thrown away, and new
material is written starting at the beginning of the file. When you open a file
for appending, you may write to the file, but new material is written after any
existing material, and whatever was originally in the file is retained.

Ordinarily, when you open a file for writing you can’t read from it, but there
are special modes that allow both reading from and writing to a file. For text
files especially (which are what we’re speaking of here) that introduces some
complications, so for the most part, text files are opened for either reading or
for writing, but not for both at once.

In the Unix file system, if you open a file for either writing or appending and
the file does not already exist, the file is created. If you don’t know if a file exists
and you need to find out, attempt to open it for reading and not for writing, or
you’ll get a file whether it actually existed earlier or not!

To use fopen(), you must set up the following parameters into registers
before the call:

1. Place the address of the character string containing the name of the file to
be opened in RDI.

2. Place the address of a code indicating which mode the file should be
opened for in RSI. The various available modes for Linux are listed in
Table 12.3. The ones you’ll typically use for text files are r, w, and a. These
should be defined as short character strings, followed by a null:

478 Chapter 12 ■ Heading Out to C

WriteCode db 'w',0
OpenCode db 'r',0

With those two items in registers, you make the call to fopen(). If the file was
successfully opened, fopen() will return a file handle in RAX. A file handle is
a 64- bit number assigned by Linux to a file during the call to fopen(). If the
open was not successful, RAX will contain the value 0 instead of a file handle.
Here’s how opening a file for reading looks in code:

mov rdi,Filename ; Pass filename to fopen in RDI
mov rsi,ReadCode ; Pass pointer to write/create code ('r') in rsi
call fopen ; Open file for reading
cmp rax,0 ; Test for successful file open: failed if 0
je OpenErr ; Jump to error handling code if open failed
<use opened file>

The process of creating a file and then writing to it is identical, except that
you must use the w code instead of the r code. We’ll see how this works in the
program textfile.asm.

Reading Text from Files with fgets()
When fopen() successfully creates or opens a file for you, it returns a file handle
in RAX. Keep that file handle safe somewhere— I recommend either copying it
to a memory variable allocated for that purpose or putting it in a register you
know will not be used for anything else. This is important: If you store it in
RAX, RCX, or RDX and then make a call to almost any C library function, the
file handle in the register will be trashed, and you’ll lose it.

Once a file is opened for reading, you can read text lines from it sequentially
with the fgets() function. Each time you call fgets() on an opened text file,

Table 12.3: File Access Codes for Use with fopen()

CODE DESCRIPTION

"r" Opens an existing text file for reading

"w" Creates a new text file, or opens and truncates an existing file

"a" Creates a new text file, or opens an existing file so that new text is added at
the end

"r+" Opens an existing text file for either writing or reading

"w+" Creates a new text file, or opens and truncates an existing file for both read
and write access

"a+" Creates a new text file, or opens an existing file for reading or for writing so
that new text may be added at the end

 Chapter 12 ■ Heading Out to C 479

it will read one line of the file, which is defined as all the characters up to the
next EOL (“newline”) character (ASCII 10), which in the Unix world always
indicates the end of a text line.

Now, in any given file there’s no way of knowing how many characters there
will be until the next newline, so it would be dangerous to just turn fgets()
loose to bring back characters until it encounters a newline. If you attempt to
open the wrong kind of file (a binary code file is one possibility, or a compressed
data file), you might bring in thousands of bytes before encountering the binary
10 value that the file system considers a newline. Whatever buffer you had allo-
cated to hold the incoming text would overflow and fgets() would perhaps
destroy adjacent data and/or crash your program.

For that reason, you must also pass a limit value to fgets(). When fgets()
begins reading a line, it keeps track of how many characters it has brought in
from the file, and when it gets to one less than the limit value, it stops reading
characters. It then adds an EOL character to the buffer for the final character
and returns.

Set up calls to fgets() this way:

1. First, load RDI with the address of the character buffer into which fgets()
will store the characters that it reads from the file.

2. Next, load RSI with the character count limit value. This must be the actual
integer value, and not a pointer to the value!

3. Finally, load RDX with the file handle returned by fopen()when the file
was opened.

With all that done, call fgets(). If fgets() returns a 0 in RAX, then either
you’ve reached the end of the file or else a file error happened during the read.
Either way, there’s no more data forthcoming from the file. But without a 0
returned in RAX, you can assume that valid text is present in the buffer at the
address you passed to fgets() in RDI.

I used fgets() to create a very simple disk- based help system for textfile
.asm. When the user enters no command- line arguments at all, the textfile
program reads a short text file from disk and displays it to standard output. If
the disk- based help file cannot be opened, textfile displays a short message
to that effect. This is a common and courteous thing to do with command- line
programs, and I recommend that all utilities you build for everyday use work
this way.

The code for the help system is relatively simple and demonstrates both
fopen() and fgets():

diskhelp:
 mov rdi,DiskHelpNm ; Pointer to name of help file is passed in rdi
 mov rsi,OpenCode ; Pointer to open- for- read code "r" gpes in rsi
 call fopen ; Attempt to open the file for reading

480 Chapter 12 ■ Heading Out to C

 cmp rax,0 ; fopen returns null if attempted open failed
 jne .disk ; Read help info from disk, else from memory
 call memhelp
 ret

.disk:
 mov rbx,rax ; Save handle of opened file in ebx
.rdln:
 mov rdi,HelpLine ; Pass pointer to buffer in rdi
 mov rsi,HELPLEN ; Pass buffer size in rsi
 mov rdx,rbx ; Pass file handle to fgets in rdx
 call fgets ; Read a line of text from the file
 cmp rax,0 ; A returned null indicates error or EOF
 jle .done ; If we get 0 in rax, close up & return
 mov rdi,HelpLine ; Pass address of help line in rdi
 mov rax,0 ; Tell printf() there are no vector arguments
 call printf ; Call printf to display help line
 jmp .rdln

.done:
 mov rdi,rbx ; Pass the handle of the file to be closed in rdi
 call fclose ; Close the file
 jmp gohome ; Go home

Before procedure diskhelp is called, the caller passes a pointer to the name
of the help file to be read in RBX. The code then attempts to open this file. If
the attempt to open the help file fails, a very short “fail safe” help message
is displayed from strings stored in the .data section of the program. (This is
the call to memhelp, which is another short procedure in textfile.asm.) Never
leave the user staring at a mute cursor, wondering what’s going on!

Once the disk- based help file is opened, we start looping through a sequence
that reads text lines from the opened file with fgets() and then writes those
lines to standard output with printf(). The maximum length of the lines to
be read is defined by the equate HELPLEN.

Why an equate? Instead of being specified at several places all over your
source code, the maximum length of your help file lines is defined in only one
place, eliminating the chances of accidentally placing multiple values in differ-
ent parts of your source code. If you need to change it, by using an equate, you
can change the value everywhere it’s used by changing that one equate only.
Equates fight bugs. Use them whenever you can.

Each time a line is read from the file, the address of the line is passed to
printf() in RDI and displayed. When no more lines are available to be read
in the help file, fgets() returns a 0 in RAX, and the program branches to the
function call that closes the file.

 Chapter 12 ■ Heading Out to C 481

Note the fclose() function, which in use is quite simple: You copy the file
handle of an open file into RDI, and call fclose(). That’s all it takes to close
the file!

Writing Text to Files with fprintf()
Earlier in this chapter, I explained how to write formatted text to the display by
way of standard output, using the printf() function. The standard C library
provides a function that writes the very same formatted text to any opened text
file. The fprintf() function does exactly what printf() does, but it takes one
additional parameter on the stack: the file handle of an open text file. The same
text stream that printf() would send to standard output is sent by fprintf()
to that open file.

So I won’t bother re- explaining how to format text for printf() using format-
ting codes and base strings. It’s done the same way, with the exact same codes.
Instead, I’ll simply summarize how to set up a call to fprintf():

1. First (and here’s where fprintf() differs from printf()), copy the file
handle of the file to which the text should be written into RDI.

2. Next, copy the address of the base string containing the formatting codes
into RSI. Again, just as for printf().

3. Finally, pass pointers to values controlled by the base string in registers,
according to the order specified in the C calling convention. There’s no
difference here from the way it’s done for a call to printf(). As with
printf() there can be more than one. In textfile.asm, the first is the line
number (passed in RDX), and the second is the line of text entered by the
user, passed in RCX.

4. As with printf(), clear RAX to 0 before calling fprintf().

Then call fprintf(). Your text will be written to the open file. Note that to
use fprintf(), the destination file must have been opened for either writing or
appending. If you attempt to use fprintf() on a file opened for reading, you
will generate an error and fprintf() will return without writing any data at all.

In that event, an error code will be returned in RAX. However, unlike the
other functions we’ve discussed so far, the error code is a negative number, not
0! So, although you should compare the returned value against 0, you actually
need to jump on a value less than 0— rather than 0 itself. Typically, to jump on
an fprintf() error condition, you would use the instruction JL (Jump if Less),
which will jump on a value less than 0.

Here’s the fprintf() call from textfile.asm:

writeline:
 cmp qword r15,0 ; Has the line count gone to 0?
 je closeit ; If so, close the file and exit

482 Chapter 12 ■ Heading Out to C

 mov rdi,rbx ; Pass the file handle in rdi
 mov rsi,WriteBase ; Pass the base string in rsi
 mov rdx,r14 ; Pass the line number in rdx
 mov rcx,Buff ; Pass the pointer to the text buffer in rcx
 mov rax,0 ; Tell fprintf that there are no vector arguments
 call fprintf ; Write the text line to the file
 dec r15 ; Decrement the count of lines to be written
 inc r14 ; Increment the line number
 jmp writeline ; Loop back and do it again

 ;; We're done writing text; now let's close the file: closeit:
 mov rdi,rbx ; Pass the handle of the file to be closed in rdi
 call fclose ; Closes the file

Notes on Gathering Your Procedures into Libraries
Here’s a recap of how to go about gathering procedures together into libraries:

 ■ Create a new source code file and paste the procedure source code into
the file, which must have an .ASM file extension.

 ■ Declare the callable entry points to all procedures in the library, as well
as any other identifiers that may be used by other programs and libraries,
as global. This makes those items visible (and thus usable) by other pro-
grams or libraries linked with the new library.

 ■ If the procedures call any C library functions or procedures in other libraries
you own or have created, or use variables or other identifiers defined
outside the library, declare all such external identifiers as extern.

 ■ When calling library procedures from a program, update the makefile for
that program so that the final executable has a dependency on the library.

This last point is the only one that requires additional discussion. The make
file shown next builds the textfile.asm demo program, which links in a library
called linlib.asm. Note that there is a whole new line specifying how the object
file linlib.o is assembled and also that the final binary file textfile depends on
both textfile.o and linlib.o.

Because the textfile executable depends on both textfile.o and linlib.o,
any time you make changes to either textfile.asm or linlib.asm, the make
utility will completely relink the executable file via gcc. However, unless you
change both .asm files, only the .asm file that is changed will be assembled again.
The magic of make is that it does nothing that doesn’t need doing.

 Chapter 12 ■ Heading Out to C 483

textfile: textfile.o linlib.o
 gcc textfile.o linlib.o - o textfile –no- pie
textfile.o: textfile.asm
 nasm - f elf64 - g - F dwarf textfile.asm
linlib.o: linlib.asm
 nasm - f elf64 - g - F dwarf linlib.asm

The complete file linlib.asm is present in the listings archive for this book.
The procedures it contains have been gathered from other programs shown in
this chapter, so it would be repetitive to reprint them all here.

Finally, the textfile.asm program follows, in its entirety. Make sure that
you can read all of it— there’s nothing here I haven’t covered somewhere in
this book. And if you want a challenge, here’s one for your next project: Adapt
textfile.asm to read in a text file, and write it out again with line numbers
prepended in front of each line of text. Allow the user to enter on the command
line the name of a new file to contain the modified text. Keep the help system
and write a new help text file for it.

Pull that off, and you can take a bow: You’ll be an assembly language
programmer!

Listing 12.8: textfile.asm

; Executable name : textfile
; Version : 3.0
; Created date : 11/21/1999
; Last update : 5/24/2023
; Author : Jeff Duntemann
; Description : A text file I/O demo for Linux, using NASM 2.14.02
;
; Build executable using these commands:
; nasm - f elf64 - g - F dwarf textfile.asm
; nasm - f elf64 - g - F dwarf linlib.asm
; gcc textfile.o linlib.o - o textfile - no- pie
;
; Note that the textfile program requires several procedures
; in an external library named LINLIB.ASM.

[SECTION .data] ; Section containing initialized data

IntFormat dq '%d',0
WriteBase db 'Line # %d: %s',10,0
NewFilename db 'testeroo.txt',0
DiskHelpNm db 'helptextfile.txt',0
WriteCode db 'w',0
OpenCode db 'r',0
CharTbl
 db '0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz- @'
Err1

484 Chapter 12 ■ Heading Out to C

 db 'ERROR: The first command line argument must be an integer!',10,0
HelpMsg
 db 'TEXTTEST: Generates a test file. Arg(1) should be the # of ',10,0
HELPSIZE EQU $- HelpMsg
 db 'lines to write to the file. All other args are concatenated',10,0
 db 'into a single line and written to the file. If no text args',10,0
 db 'are entered, random text is written to the file. This msg ',10,0
 db 'appears only if the file HELPTEXTFILE.TXT cannot be opened. ',10,0
HelpEnd dq 0

[SECTION .bss] ; Section containing uninitialized data

LineCount resq 1 ; Reserve integer to hold line count
IntBuffer resq 1 ; Reserve integer for sscanf's return value
HELPLEN EQU 72 ; Define length of a line of help text data
HelpLine resb HELPLEN ; Reserve space for disk- based help text line
BUFSIZE EQU 64 ; Define length of text line buffer buff
Buff resb BUFSIZE+5 ; Reserve space for a line of text

[SECTION .text] ; Section containing code

;; These externals are all from the glibc standard C library:
extern fopen
extern fclose
extern fgets
extern fprintf
extern printf
extern sscanf
extern time

;; These externals are from the associated library linlib.asm:
extern seedit ; Seeds the random number generator
extern pull6 ; Generates a 6- bit random number from 0- 63

global main ; Required so linker can find entry point

main:
 push rbp ; Prolog: Set up stack frame
 mov rbp,rsp

 mov r12,rdi ; Save the argument count in r12
 mov r13,rsi ; Save the argument pointer table to r13

 call seedit ; Seed the random number generator

 ;; First test is to see if there are command- line arguments at all.
 ;; If there are none, we show the help info as several lines. Don't
 ;; forget that the 1st arg is always the program name, so there's
 ;; always at least 1 argument, even if we don't use it!

 Chapter 12 ■ Heading Out to C 485

 cmp r12,1 ; If count in r12 is 1, there are no arguments
 ja chkarg2 ; Continue if arg count is > 1
 mov rbx,DiskHelpNm ; Put address of help file name in rbx
 call diskhelp ; If only 1 arg, show help info...
 jmp gohome ; ...and exit the program

 ;; Next we check for a numeric command line argument 1:

chkarg2:
 mov rdi,qword [r13+8] ; Pass address of an argument in rdi
 mov rsi,IntFormat ; Pass addr of integer format code in rsi
 mov rdx,IntBuffer ; Pass addr of integer buffer for sscanf output
 xor rax,rax ; 0 says there will be no vector parameters
 call sscanf ; Convert string arg to number with sscanf()
 cmp rax,1 ; Return value of 1 says we got a number
 je chkdata ; If we got a number, go on; else abort

 mov rdi,Err1 ; Pass address of error 1- line message in rdi
 xor rax,rax ; 0 says there will be no vector parameters
 call printf ; Show the error message
 jmp gohome ; Exit the program

 ;; Here we're looking to see if there are more arguments. If there
 ;; are, we concatenate them into a single string no more than
 ;; BUFSIZE chars in size. (Yes, I DO know this does what strncat
 ;; does...)

chkdata:
 mov r15,[IntBuffer] ; Store the # of lines to write in r15
 cmp r12,3 ; Is there a second argument?
 jae getlns ; If so, we have text to fill a file with
 call randline ; If not, generate a line of random text
 ; for file. Note that randline returns ptr
 ; to line in rsi
 jmp genfile ; Go on to create the file

 ;; Here we copy as much command line text as we have, up to BUFSIZE
 ;; chars, into the line buffer Buff. We skip the first two args
 ;; (which at this point we know exist) but we know we have at least
 ;; one text arg in arg(2). Going into this section, we know that
 ;; r13 contains the pointer to the arg table.

getlns:
 mov r14,2 ; We know we have at least arg(2), start there
 mov rdi,Buff ; Destination pointer is start of char buffer
 xor rax,rax ; Clear rax to 0 for the character counter
 cld ; Clear direction flag for up- memory movsb

grab:
 mov rsi,qword [r13+r14*8] ; Copy pointer to next arg into rsi
.copy:

486 Chapter 12 ■ Heading Out to C

 cmp byte [rsi],0 ; Have we found the end of the arg?
 je .next ; If so, bounce to the next arg
 movsb ; Copy char from [rsi] to [rdi]; inc rdi & rsi
 inc rax ; Increment total character count
 cmp rax,BUFSIZE ; See if we've filled the buffer to max count
 je addnul ; If so, go add a null to Buff & we're done
 jmp .copy

.next:
 mov byte [rdi],' ' ; Copy space to Buff to separate the args
 inc rdi ; Increment destination pointer for space
 inc rax ; Add one to character count too
 cmp rax,BUFSIZE ; See if we've now filled Buff
 je addnul ; If so, go down to add a nul and we're done
 inc r14 ; Otherwise, increment the arg processed count
 cmp r14,r12 ; Compare against argument count in r12
 jae addnul ; If r14 = arg count in r12, we're done
 jmp grab ; Otherwise, go back and copy it

addnul:
 mov byte [rdi],0 ; Tack a null on the end of Buff
 mov rsi,Buff ; File write code expects ptr to text in rsi

 ;; Now we create a file to fill with the text we have:
genfile:
 mov rdi,NewFilename ; Pass filename to fopen in RDI
 mov rsi,WriteCode ; Pass pointer to write/create code ('w') in rsi
 call fopen ; Create/open file
 mov rbx,rax ; rax contains the file handle; save in rbx

 ;; File is open. Now let's fill it with text:
 mov r14,1 ; R14 now holds the line # in the text file

writeline:
 cmp qword r15,0 ; Has the line count gone to 0?
 je closeit ; If so, close the file and exit
 mov rdi,rbx ; Pass the file handle in rdi
 mov rsi,WriteBase ; Pass the base string in rsi
 mov rdx,r14 ; Pass the line number in rdx
 mov rcx,Buff ; Pass the pointer to the text buffer in rcx
 xor rax,rax ; 0 says there will be no vector parameters
 call fprintf ; Write the text line to the file
 dec r15 ; Decrement the count of lines to be written
 inc r14 ; Increment the line number
 jmp writeline ; Loop back and do it again

 ;; We're done writing text; now let's close the file:
closeit:
 mov rdi,rbx ; Pass the handle of the file to be closed in rdi
 call fclose ; Closes the file

 Chapter 12 ■ Heading Out to C 487

gohome: ; End program execution
 pop rbp ; Epilog: Destroy stack frame before returning
 ret ; Return control to the C shutdown code

;;; SUBROUTINES===

;-
; Disk- based mini- help subroutine - - Last update 12/16/2022
;
; This routine reads text from a text file, the name of which is passed
; by way of a pointer to the name string in ebx. The routine opens the
; text file, reads the text from it, and displays it to standard output.
; If the file cannot be opened, a very short memory- based message is
; displayed instead.
;-
diskhelp:
 push rbp
 mov rbp,rsp

 mov rdi,DiskHelpNm ; Pointer to name of help file is passed in rdi
 mov rsi,OpenCode ; Pointer to open- for- read code "r" gpes in rsi
 call fopen ; Attempt to open the file for reading
 cmp rax,0 ; fopen returns null if attempted open failed
 jne .disk ; Read help info from disk, else from memory
 call memhelp ; Display the help message
 pop rbp ; Epilog
 ret

.disk:
 mov rbx,rax ; Save handle of opened file in ebx
.rdln:
 mov rdi,HelpLine ; Pass pointer to buffer in rdi
 mov rsi,HELPLEN ; Pass buffer size in rsi
 mov rdx,rbx ; Pass file handle to fgets in rdx
 call fgets ; Read a line of text from the file
 cmp rax,0 ; A returned null indicates error or EOF
 jle .done ; If we get 0 in rax, close up & return
 mov rdi,HelpLine ; Pass address of help line in rdi
 xor rax,rax ; Passs 0 to show there will be no fp registers
 call printf ; Call printf to display help line
 jmp .rdln

.done:
 mov rdi,rbx ; Pass handle of the file to be closed in rdi
 call fclose ; Close the file
 jmp gohome ; Go home

488 Chapter 12 ■ Heading Out to C

memhelp:
 push rbp ; Prolog
 mov rbp,rsp
 mov rax,5 ; rax contains the number of newlines we want
 mov rbx,HelpMsg ; Load address of help text into rbx
.chkln:
 cmp qword [rbx],0 ; Does help msg pointer point to a null?
 jne .show ; If not, show the help lines
 pop rbp ; Epilog
 ret ; If yes, go home
.show:
 mov rdi,rbx ; Pass address of help line in rdi
 xor rax,rax ; 0 in RAX says no vector parameters passed
 call printf ; Display the line
 add rbx,HELPSIZE ; Increment address by length of help line
 jmp .chkln ; Loop back and check to see if we're done yet

showerr:
 push rbp ; Prolog
 mov rsp,rbp

 mov rdi,rax ; On entry, rax contains address of error message
 xor rax,rax ; 0 in RAX says there will be no vector parameters
 call printf ; Show the error message

 pop rbp ; Epilog
 ret ; Pass control to shutdown code; no return value

randline:
 push rbp ; Prolog
 mov rbp,rsp

 mov rbx,BUFSIZE ; BUFSIZE tells us how many chars to pull
 mov byte [Buff+BUFSIZE+1],0 ; Put a null at the end of the buffer
 ; first
.loopback:
 dec rbx ; BUFSIZE is 1- based, so decrement
 call pull6 ; Go get a random number from 0- 63
 mov cl,[CharTbl+rax] ; Use random # in rax as offset into char
 ; table and copy character from table
 ; into cl
 mov [Buff+rbx],cl ; Copy char from cl to character buffer
 cmp rbx,0 ; Are we done having fun yet?
 jne .loopback ; If not, go back and pull another
 mov rsi,Buff ; Copy address of the buffer into rsi

 pop rbp ; Epilog: Destroy the stack frame
 ret ; and go home

489

You never really learn assembly language.
You can improve your skills over time by reading good books on the subject,

by reading good code that others have written, and, most of all, by writing and
assembling lots and lots of code yourself. But at no point will you be able to
stand up and say, I know it.

You shouldn’t feel bad about this. In fact, I take some encouragement from
occasionally hearing that Michael Abrash, author of Zen of Assembly Language,
Zen of Code Optimization, and his giant compendium Michael Abrash’s Graphics
Programming Black Book, has learned something new about assembly language.
Michael has been writing high- performance assembly code for almost 40 years
and has evolved into one of the two or three best assembly language program-
mers in the Western hemisphere.

If Michael is still learning, is there hope for the rest of us?
Wrong question. Silly question. If Michael is still learning, it means that all

of us are students and will always be students. It means that the journey is the
goal, and as long as we continue to probe and hack and fiddle and try things
that we never tried before, over time we will advance the state of the art and
create programs that would have made the pioneers in our field gasp in 1977.

For the point is not to conquer the subject but to live with it and grow with
your knowledge of it. The journey is the goal, and with this book I’ve tried hard
to help those people who have been frozen with fear at the thought of starting

Conclusion: Not the End, But Only

the Beginning

490 Conclusion: Not the End, But Only the Beginning

the journey, staring at the complexity of it all and wondering where the first
brick in that Yellow Brick Road might be.

It’s here, with nothing more than the conviction that you can do it.
You can. The problem is not limited to assembly language. Consider my

own experience: I got out of school in recession year 1974 with a BA in English,
summa cum laude, and not much in reliable prospects outside of driving a cab.
I finessed my way into a job with Xerox Corporation, repairing copy machines.
Books were fun, but paperwork makes money— so I picked up a tool bag and
had a fine old time for a few years before finessing my way into a computer
programming position. (How did I do that? I taught myself programming. . .by
reading books and trying things.)

But I’ll never forget that first awful moment when I looked over the shoulder
of an accomplished technician at a model 660 copier with its panels off, to
see what looked like a bottomless pit of little cams and gears and drums and
sprocket chains turning and flipping and knocking switch actuators back and
forth. Mesmerized by the complexity, I forgot to notice that a sheet of paper
had been fed through the machine and turned into a copy of the original doc-
ument. I was terrified of never learning what all the little cams did and missed
the comforting simplicity of the Big Picture— that a copy machine makes copies.

That’s Square One: Discover the Big Picture. Ignore the cams and gears for a
bit. You can do it. Find out what’s important in holding the Big Picture together
(ask someone if it’s not obvious) and study that before getting down to the
cams and gears. Locate the processes that happen. Divide the Big Picture into
subpictures. See how things flow. Only then should you focus on something as
small and as lost in the mess as an individual cam or switch.

That’s how you conquer complexity, and that’s how I’ve presented assembly
language in this book. Some might say I’ve shorted the instruction set, but cov-
ering the whole (huge) instruction set was never the real goal here.

The real goal was to conquer your fear of the complexity of the subject, with
some metaphors and plenty of pictures and (this really matters!) a light heart.

Did it work? You tell me. I’d really like to know.

Where to Now?

People get annoyed at me sometimes because this book (which has been around
in five editions since 1990) does not go more deeply into the subject. I stand firm:
This book is about beginnings, and I won’t short beginnings in order to add more
material at the end. (Books can only be so big!) To go further you will have to
set this book aside and continue on your own.

Your general approach should be something like this:

1. Study Linux.

2. Study assembly language.

 Conclusion: Not the End, But Only the Beginning 491

3. Write code.

4. Write more code.

There is no shortage of good books out there on Linux. There are beginner
books on most of the popular distributions, including Linux Mint. Check Amazon
and your public library. As for your next book on assembly language, here are
two I have and recommend.

The Art of 64- bit Assembly by Randall Hyde (No Starch
Press, 2022)

If you’re looking for your next book on assembly language, consider this one.
It’s one of the best books out there. (It’s also immense, at 1,001 pages!) It covers
the complete AVX math subsystem, lots of other intermediate- to- advanced
topics, and many more machine instructions. One caution: The book is targeted
at Windows and the MASM assembler, and not all of it applies to Linux. The
IDE required is Microsoft’s Visual Studio. (VS Code won’t work.) Nor does this
book cover Randy’s own High- Level Assembler (HLA) language, which is what
his 2003 edition focused on.

Modern x86 Assembly Language Programming by David
Kusswurm (Apress, 2018)

I consider this an advanced topics book, but it’s a good one. A huge chunk of
the book is about the AVX math subsystem. Core x64 programming is covered
lightly at the beginning. The title is a touch misleading: The book is focused
entirely on the x64 processors. If computational math intrigues you, this is the
most complete AVX coverage I’ve seen in one book.

Keep in mind that ebook editions of computer books have a bad habit of
scrambling up tables, code snippets, and technical diagrams. As much as I love
ebooks, for tech topics I always buy paper.

Stepping off Square One

OK, with a couple of new books in hand and a good night’s sleep behind you,
strike out on your own a little. Set yourself a goal, and try to achieve it: something
tough, say, an assembly language utility that locates all files on a specified directory
tree with a given ambiguous file name. That’s ambitious for a newcomer and

492 Conclusion: Not the End, But Only the Beginning

will take some research and study and (perhaps) a few false starts. But you
can do it, and once you do it, you’ll be a real journeyman assembly language
programmer.

Becoming a master takes work, and time. Books can take you only so far.
Eventually you will have to be your own teacher and direct your own course
of study. These days, mastering assembly means understanding the operating
system kernel and its low- level machinery, like device drivers. You’ll need to
learn C well to do that, but there’s no way around it. (Looking forward, you
may also consider learning a new language called Rust, which might be— and
should be— the language that replaces C.) More and more, mastering assembly
may also involve writing code to run on high- performance graphics coproces-
sors like those from Nvidia. The gaming industry drives performance desktop
computing these days, and although writing high- performance graphics soft-
ware is a very difficult challenge, the results can be breathtaking.

But whichever way you end up going, keep programming. No matter what sort
of code you write, you will learn things while writing it that lead to new chal-
lenges. Learning something new always involves the realization that there is a
lot more to learn. Study is necessary, but without constant and fairly aggressive
practice, study won’t help, and static knowledge without reinforcement from
real- world experience goes stale in a big hurry.

It gets scary at times. The complexity of computing seems to double every
couple of years. Still, keep telling yourself: I can do this.

Coming to believe the truth in that statement is the essence of stepping away
from Square One— and the rest of the road, like all roads, is taken one step
at a time.

A
A P P E N D I X

493

In the 2009 edition of this book, SASM didn’t exist yet, and I used a free debugger
called Insight for my debugging demos. A few months after the book was pub-
lished, all of the Linux repositories removed Insight without any explanation.

Yes, Insight is something of an odd bird. It was originally written in an inter-
preted language called Tcl, with a GUI widget set called Tk. Tcl/Tk (as it came
to be known) was first released in 1991. The Tk widgets are modeled on those
in Motif, which was one of the very first GUIs and part of the Unix Common
Desktop Environment. I’ve heard grumbles about Tk looking “old,” but the real
problem with Insight is that the Tcl interpreter was linked right into the execut-
able. This isn’t unheard of, but it’s kind of a peculiar thing to do.

Insight’s source code is open- source and available online. Here and there
since 2009, people have put together scripts for building Insight from source.
I’ve tried several, and most of them simply didn’t work on recent Linux distros.

Then in 2018, a programmer named antony- jr on GitHub did something
remarkable: He created an Insight appimage. An appimage is a binary program
for Linux created to run without installation. You download the appimage, log
into Linux as root, and drop the appimage into /usr/bin. That puts it in your
search path, and it can then be run from any folder under your Home folder.

The Return of the Insight

Debugger

494 Appendix A ■ The Return of the Insight Debugger

To avoid publishing a link here that might change, I suggest a web search for
Insight and antony- jr. In 2023 it’s hosted on GitHub.

In this appendix, I will show you how to use the Insight appimage to debug
programs that you write outside of SASM. The new Insight has some short-
comings, but for beginner work in Linux it’s on point and easy to learn— and if
you’ve already mastered SASM, learning Insight will not be a serious challenge.

Insight’s Shortcomings

I need to be honest with you upfront: Insight has some issues. It was created
long before 64- bit CPUs existed, and its Memory view window can’t show you
a quadword at a time. The Registers view, fortunately, has no trouble with 64- bit
values. Otherwise, I wouldn’t even consider describing it in this book.

Insight’s various entry fields don’t understand the PC keyboard’s naviga-
tion keys, apart from backspace. Home, End, PgUp, and PgDn, and the arrows
don’t come through to Insight. You can backspace over a value in a field and
then type a new value. You can also copy and paste address values from the
Registers view into the memory view’s address field, but for no reason I can
discern, Insight places curly brackets around the address value it places on
the clipboard. After you paste an address into a field, you have to delete those
brackets before pressing Enter, or Insight won’t understand the address. You
can position the cursor in a field with the mouse and then backspace over the
first bracket; then position the cursor at the end of the field and backspace over
the other bracket, both before pressing Enter.

Loading a new executable to debug can be fluky. You have to start Insight
from a console window showing the working directory of the executable you
want to load, or Insight will not be able to find the source code file.

If your program generates a segmentation fault, Insight will crash and vanish.
Insight may occasionally crash and vanish anyway, without a segmentation fault.
My guess is that running a 30- year- old debugger in 64- bit long mode makes
Insight fragile. I don’t recommend trying anything exotic with it.

None of this is antony- jr’s fault. Absent his work, we wouldn’t have Insight
at all, and it does fill in a few of the holes in what SASM can do.

These issues are the reason I’m describing the resurrected Insight in an appendix
rather than in the book chapters. It’s free, and it’s fun, especially if you want to
look at memory buffers or the stack, neither of which SASM displays well. I’ve
tested it with Linux Mint/Cinnamon. But I don’t guarantee that it will work
properly on any given Linux distro.

 Appendix A ■ The Return of the Insight Debugger 495

Opening a Program Under Insight

To open an executable program for debugging under Insight, take these steps:

1. Build the software if it hasn’t been built for awhile. Make sure that all
changes you’ve made to the source code are reflected in the executable.
Insight will complain if your source is newer than your executable.

2. Open a console window in Konsole, or whatever console app you prefer.

3. Navigate to the folder containing the project you want to debug.

4. Launch the Insight appimage from the console window showing the
working folder that contains the executable to be debugged. Assuming
you placed the appimage in /usr/bin, it should come up from any folder
you’re working in.

5. Select File ➪ Open. In the Load New Executable dialog, navigate to your
working folder and type the name of the binary executable file in your
local folder, not the source code file!

6. Insight will open the executable and then search the current folder for the
source file. It will then open the source code file in its main window.

7. Sometimes Insight will bring up a disassembly of the executable but will
not display the source code. Make sure the drop- down list at the right end
of the list bar is showing “SOURCE.” If it isn’t, bring down the list and
select SOURCE from the several listed options.

8. If your source code doesn’t come up, look at the drop- down list at the left
end of the list bar. It should show the name of your .asm source code file.
If it doesn’t, pull down the list and select it. If it isn’t in the drop- down
list, make sure your source code file is in the console working directory.
If it is but Insight won’t show it, exit the program and launch it again.

Insight was designed for high- level languages like C. It can display a number
of windows, only a few of which are useful in assembly work. The two windows
you want to open are Registers and Memory. Both of these may be selected from
the View menu. As with SASM, both windows will be empty until you run the
program for debugging.

The Registers view defaults to All, which includes the numerous AVX reg-
isters along with the general- purpose registers. If you’re working with exam-
ples in this book, select General to zero in on the registers you’re using in the
example programs.

496 Appendix A ■ The Return of the Insight Debugger

Setting Command- Line Arguments with Insight

Once you have a program and its source code file loaded, but before you run it
for debugging, you can load command- line arguments for the program you’re
working on. Select File ➪ Target Settings. The Target Selection dialog will appear.
In the Connection pane is an Arguments field. Type your command- line argu-
ments into the field, separated by spaces, and click OK. If you step through a
program that accepts arguments, the program will take the text you typed into
the Arguments field as its arguments.

Running and Stepping a Program

From a single- stepping standpoint, Insight is a great deal like SASM. That
shouldn’t be a surprise, since behind the scenes Insight and SASM both use
the Gnu debugger gdb. If you’ve become proficient using SASM’s debugger
interface, you won’t have much trouble with Insight.

Theoretically, when Insight loads a program for debugging, it places a break-
point at the first instruction in the program. A breakpoint is shown as a red
square in the left column, beside the line number. I’ve heard from other users
that Insight doesn’t always place that breakpoint. You’re going to need execution
to stop at the first instruction, so if there’s no red square beside the line number
of the first instruction, click to the left of the line number. Note that breakpoints
are set on instructions, not data definitions!

Insight breakpoints are toggles. Click beside a line number and a breakpoint
appears as a red square. Click the red square, and the breakpoint goes away.

Once you have a breakpoint at the first instruction in the program, click the
running man icon at the left end of the icon bar. You can also select Run ➪ Run
from the menu bar. Insight will then run the program.

Yes, it will run the program, but since you set a breakpoint on the first
instruction, it will stop there before any instructions execute, with a green high-
light showing where execution paused. The highlighted instruction has not yet
been executed. As with SASM, when you click Step, the highlighted instruction
is executed, and then the next instruction in line is highlighted.

Stepping a program within Insight is a little more involved than with
SASM. There are no fewer than six “step” icons. You can hover the mouse pointer
over the icons to see what they do. The two you’ll use most often are specific to
assembly language: Step ASM Instruction and Next ASM Instruction. There are
two other icons with similar names: Step and Next. At least for assembly code,
they do the same thing as the two ASM Instruction icons. From your experience
with SASM, Step is the same as Step Over, and Next is the same as Step Into.

 Appendix A ■ The Return of the Insight Debugger 497

A quick recap from your SASM experience: “Step Into” means “execute the
highlighted instruction” even if the highlighted instruction is a CALL instruction.
In other words, Step Into will follow the thread of execution into procedures,
including procedures linked from glibc. This can be useful. . .sometimes. But
if your library procedures are well- behaved and thoroughly tested, you don’t
need to step through them while you’re debugging a new program. Of course,
if your new program contains new procedures, you might well want to step
into them to see what they do. That’s what Step Into is for.

Step Over means just that: Execute the highlighted instruction— but if it’s a
CALL instruction, don’t step through the procedure’s instructions. Don’t misun-
derstand the meaning of “Step Over” here: You’re not skipping the procedure
call. You’re telling the debugger to execute the procedure and highlight the first
instruction after the CALL instruction.

Basically, when you step over a procedure call, the debugger runs the procedure
at full speed and meets you at the highlight on the other side.

Again, as with SASM, “Continue” means begin executing at full speed to the
next breakpoint. If there are no further breakpoints in the path of execution,
Continue will run the program until it exits.

“Finish” has no comparable function in SASM. It simply means, execute at
full speed until the program exits.

SASM’s Stop icon has no comparable icon in Insight. To stop debugging a
program in Insight, select Run ➪ Kill. That will stop the debugging session
without further execution.

The Memory Window

Insight’s view of memory is much better than SASM’s. Insight gives you a
hexdump of memory, similar to that of the hexdump programs I’ve presented
in this book. The difference is that Insight’s has a third column on the left side,
giving memory addresses for the start of each line in the window.

When you display it, Insight’s memory window shows you nothing in particular.
To show something, type either a symbolic address or a literal address in the
Address field at the left edge of the window. The name of a data item works
fine. Figure A- 1 shows the memory window displaying memory beginning
at the definition of TimeMsg in the timetest.asm program. TimeMsg is the first
data definition in the program, so by starting there, you can scroll down to see
all of them.

Note that equates do not have addresses and cannot be displayed. Named
reserved storage data items in the .bss section can be shown, but until your
program stores something in those items, what the window will show are nulls
(binary 0s.)

498 Appendix A ■ The Return of the Insight Debugger

The arrows to the right of the Address field allow you to move up- memory
or down- memory 16 bytes at a time.

Showing the Stack in Insight’s Memory View

Insight’s memory view can show you any location in your program’s memory
space. What you may find extremely useful is displaying the stack. The only trick
is getting the address of the top of the stack into the address field. Once you’ve
begun debugging a program, the address of its stack is found in either RBP or
RSP. The bad news is you can’t just type “RSP” into the address field. What you
have to do is highlight the address shown for RSP in the Registers window and
put it on the clipboard via Ctrl+C. Then highlight and delete whatever is in the
address field, and drop the address into the field with Ctrl+V.

There’s one peculiar gotcha: Insight inexplicably places curly brackets around
the address it places on the clipboard. So a copied address will look something
like this:

{0x7fffffffd718}

You have to remove those brackets or Insight won’t understand the address.
Click the mouse pointer into the beginning of the field and delete the left bracket.
Click the opposite end of the field and backspace over the right bracket. Note
that Insight doesn’t understand the arrow keys, Home, End, PgUp, or PgDn.

Once the brackets are gone, press Enter, and the Memory view will show
you the stack.

Examining the Stack with Insight’s Memory View

The trick in reading a stack display in the Memory view is to remember that
numbers and addresses are 64 bits in size and that the display is little- endian.
That means the order of the eight bytes is reversed by significance. In other

Figure A.1: Insight’s memory display of a .data section

 Appendix A ■ The Return of the Insight Debugger 499

words, the least significant byte of a 64- bit value comes first, followed by the
next most significant bytes, and so on. This is why the first eight values on the
stack are these:

0x04 0x00 0x00 0x00 0x00 0x00 0x00 0x00

This is the 64- bit value 4, which is the count of three command- line param-
eters plus the pathname of the executable file.

The same is true of addresses. The least- significant byte of an address comes
first, so the eight address bytes are presented “backwards” from how you’re
used to thinking of 64- bit addresses. The first address on the stack is that of the
invocation text by which the executable was run. It looks like this:

0xa0 0xdb 0xff 0xff 0xff 0x7f 0x00 0x00

These eight bytes represent the 64- bit address below. With enough practice,
you should be able to read an address without manually reversing the order
of the bytes.

0x7fffffffdba0.

You can use the Memory view to “follow” an address to the actual data it
points to up- memory. Type the first address on the stack into the navigation
control, and the view will move to that address. In this case, that should be the
address of the invocation text of the executable file. See Figure A- 2.

Command- line arguments and environment variables are stored nose- to- tail
in memory. Each one is terminated by a single 0 byte (a null), which is why
such strings are called null- terminated. Although there’s no technical reason for
it, command- line arguments and environment variables are stored in the same
region of the stack, with the command- line arguments first and the environ-
ment variables following.

Most of the effort in learning Insight involves the Memory view window. The
rest will seem quite familiar after you’ve put in some time debugging in SASM.

Figure A.2: Command- line arguments in Insight’s memory view

500 Appendix A ■ The Return of the Insight Debugger

Learn gdb!

Most Linux debuggers are designed to deal with high- level languages, espe-
cially C. It’s unusual for a major debugger to be adept at assembly debugging.
The debugger behind SASM’s and Insight’s curtains is gdb. It’s completely at
home with assembly. Better still, it’s almost certainly the most- used debugger
in history. If you intend to continue your study of assembly language, I pow-
erfully encourage you to spend the (considerable) time it takes to learn gdb.
There are two reasons for this:

 ■ gdb can be very useful all by its lonesome. Yes, you may be impatient with
it if you cut your teeth on SASM and Insight. The pure- text interface to
gdb can be ponderous. Do it anyway. You will eventually outgrow SASM,
and Insight is something of a living fossil. gdb isn’t going anywhere.

 ■ There is always the possibility that an assembly- friendly gdb front end
something like Insight will be written in the future, and the more you
know about gdb, the more effectively you’ll be able to use a new front end
when it happens.

Yes, there are other front ends for gdb, and I’m sure I’ve tried them all. None
of them deals easily with assembly language. This is no surprise, as nearly all
Linux work is done in C. There are online tutorials. Search them out and go
through them. A free one- sheet two- sided PDF called gdb Quick Reference is
very good. It’s on GitHub. Google will find it.

B
A P P E N D I X

501

Depending on how you count, the x64 architecture now has more than
1,000 machine instructions. Don’t panic: A lot of those machine instructions
may be used only by operating systems in protected mode. A large number of
them implement floating- point math, which for space reasons I can’t cover in
this book. A fair number are highly specialized for things such as fast encryp-
tion and decryption.

In this appendix, I’ll present short summaries of the most common machine
instructions, the ones you’re most likely to use as a beginner to write userspace
programs. If you want a more complete (and completely authoritative) instruction
reference, see the Intel instruction set documentation:

https://software.intel.com/en- us/download/intel- 64- and- ia-

 32- architectures- sdm- combined- volumes- 1- 2a- 2b- 2c- 2d- 3a- 3b- 3c- 3d- and- 4

Plan to spend a little time with it: The PDF is 5,060 pages long.
Or if that’s a triple handful (it is), a useful web distillation of the Intel docs

can be found here:

www.felixcloutier.com/x86/index.html

This site basically allows you to click around and find the instructions you’re
looking for and saves you from having to download and hunt through one
gigantic document.

Partial x64 Instruction Reference

https://software.intel.com/en-us/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4
https://software.intel.com/en-us/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4
https://www.felixcloutier.com/x86/index.html

502 Appendix B ■ Partial x64 Instruction Reference

What’s Been Removed from x64

During the evolution of the x86 CPUs, instructions have been added and removed
with each generation. Most of these are fairly arcane, but there are a few that
you may have learned as a beginner in the 32- bit era that are no longer available.
Most of these now- obsolete instructions date back to the earliest x86 implemen-
tations. The following are the most common ones:

 ■ The BCD math instructions: AAA, AAS, AAD, AAM, DAA, and DAS. These instruc-
tions haven’t been necessary for decades, and they take up valuable space
in binary instruction encoding.

 ■ The push- all and pop- all instructions: PUSHA, POPA, PUSHAD, and POPAD. There
are 16 general- purpose registers now, each 8 bytes in size. That’s a lot of
data to move at one time. Registers must be pushed and popped individ-
ually now.

 ■ The JCXZ instruction, which jumps when CX=0. This is an ancient 16- bit
instruction. Its function is now shared by JRCXZ (jump when RCX=0) and
JECXZ (jump when ECX=0.)

 ■ The PUSHFD instruction, which pushes the EFLAGS register onto the stack.
Use PUSHFQ now, which pushes the RFLAGS register onto the stack.

 ■ The POPFD instruction, which pops a double word (32 bits) from the top
of the stack into the EFLAGS register. Its job is now done with POPFQ, which
pops a quadword (64 bits) from the top of the stack into the RFLAGS register.

Flag Results

Each instruction contains a flag summary that looks like this. The asterisks pre-
sent will vary from instruction to instruction:

O D I T S Z A P C OF: Overflow flag TF: Trap flag AF: Aux carry
F F F F F F F F F DF: Direction flag SF: Sign flag PF: Parity flag
* ? ? * * * * * IF: Interrupt flag ZF: Zero flag CF: Carry flag

The nine most important flags are all represented here. An asterisk indicates
that the instruction on that page affects that flag. A blank space under the flag
header means that the instruction does not affect that flag in any way. If a flag
is affected in a defined way, it will be affected according to these rules:

 ■ OF: Set if the result is too large to fit in the destination operand.

 ■ DF: Set by STD; cleared by CLD.

 Appendix B ■ Partial x64 Instruction Reference 503

 ■ IF: Set by STI; cleared by CLI. Not used in userspace programming and
can be ignored.

 ■ TF: For debuggers; not used in userspace programming and can be ignored.

 ■ SF: Set when the sign of the result forces the destination operand to become
negative.

 ■ ZF: Set if the result of an operation is zero. If the result is nonzero, ZF is
cleared.

 ■ AF: Auxiliary carry used for 4- bit BCD math. Set when an operation causes
a carry out of a 4- bit BCD quantity. Not used in x64 work, as the BCD
instructions are no longer available in x64 CPUs.

 ■ PF: Set if the number of 1 bits in the low byte of the result is even; cleared
if the number of 1 bits in the low byte of the result is odd. Used in data
communications applications but little else.

 ■ CF: Set if the result of an add or shift operation carries out a bit beyond
the destination operand; otherwise cleared. May be manually set by STC
and manually cleared by CLC when CF must be in a known state before
an operation begins.

Some instructions force certain flags to become undefined. These are indicated
by a question mark under the flag header. “Undefined” means don’t count on
it being in any particular state. Until you know that a flag in an undefined state
has gone to a defined state by the action of another instruction, do not test or
in any other way use the state of the flag.

For a figure showing all flags in detail, see Figure 7.2 in Chapter 7.

Size Specifiers

There is a problem inherent in accessing memory data from assembly language:
How much memory data is being acted upon by the instruction in question?
Suppose you want to increment a location in memory:

inc [rdi+4]

So are you incrementing a byte, a word, a double- word, or a quadword? From
the instruction as written, there’s no way to tell, and NASM will call you on it.
But there’s an easy way out. NASM recognizes a number of size specifiers, which
when used with memory data tell NASM the size of the operation. These are
BYTE, WORD, DWORD, and QWORD. They specify a data size of 8, 16, 32, and 64 bytes,

504 Appendix B ■ Partial x64 Instruction Reference

respectively. The BYTE specifier will treat a memory access as an 8- bit quantity,
and so on for the others. The improper INC instruction can be fixed by adding
an appropriate size specifier:

inc qword [rdi+4]

Now we know that we’re incrementing a 64- bit value beginning at the effec-
tive address RDI+4. This rule applies to all of the x64 instructions taking only
a single operand: INC, DEC, NOT, NEG, SHR, SHL, ROR, and ROL. When you’re acting
on memory, you need a size specifier.

With instructions that take two operands, the issue is more subtle. In any
form of a two- operand instruction where one operand is a memory access and
the other is a register, NASM infers the size of the access from the size of the
register. For example:

mov [rdi+rbx*8],rcx

Here, NASM sees 64- bit register RCX and thus moves the 64 bits in RCX
from RCX to the 8 bytes beginning at [RDI+RBX*8]. Any legal effective address
can be used. The same holds true for instruction forms that move data from
memory to a register:

mov r15,[rbp]

Because R15 is a 64- bit register, NASM knows to move the 8 bytes starting at
[RBP] to R15. No need to drop in a size specifier, though having an unnecessary
size specifier is not always an error.

The only other case in which a size specifier is required is where one operand
is in memory and the other operand is a literal constant:

mov word [rdi],42

This form copies a value of 42 to a word (two bytes) of memory starting at the
address in RDI. Of course, a literal constant can’t be the destination operand, so
in such instruction forms the literal constant must always be the source operand.

To save space, I haven’t tried to explain this on every instruction’s page in
this reference. What you should do is stare at an instruction’s form and ask
yourself, what here tells NASM the size of the memory access? If there’s a register
as either operand, that tells NASM the access is the size of the register. If the
source operand is a literal constant, or if the sole operand is a memory refer-
ence, you need a size specifier. And if you figure wrong and don’t add a size
specifier where one needs to go, NASM will tell you.

 Appendix B ■ Partial x64 Instruction Reference 505

Instruction Index

INSTRUCTION REFERENCE PAGE TEXT PAGE CPU

ADC

ADD

AND

BT 386+

CALL

CLC Here only

CLD

CMP

DEC

INC

INT

IRET

J?

JECXZ x64+

JMP

JRCXZ x64+

LEA

LOOP

LOOPNZ/LOOPNE

LOOPZ/LOOPE

MOV

MUL

NEG

NOP Here only

NOT

OR

POP

POPF

Continues

506 Appendix B ■ Partial x64 Instruction Reference

INSTRUCTION REFERENCE PAGE TEXT PAGE CPU

POPFQ x64+

PUSH

PUSHF

PUSHFQ x64+

RET

ROL

ROR

SBB Here only

SHL

SHR

STC Here only

STD

STOS

SUB

SYSCALL x64+

XCHG

XLAT

XOR

 (continued)

 Appendix B ■ Partial x64 Instruction Reference 507

ADC: Arithmetic Addition with Carry

Flags Affected

O D I T S Z A P C OF: Overflow flag TF: Trap flag AF: Aux carry
F F F F F F F F F DF: Direction flag SF: Sign flag PF: Parity flag
* * * * * * IF: Interrupt flag ZF: Zero flag CF: Carry flag

Legal Forms

ADC r/m8,i8
ADC r/m16,i16
ADC r/m32,i32 386+
ADC r/m64,i32 x64+ NOTE: ADC r/m64X,i64 is NOT valid!
ADC r/m8,r8
ADC r/m16,r16
ADC r/m32,r32 386+
ADC r/m64,r64 x64+
ADC r/m16,i8
ADC r/m32,i8
ADC r/m64,i8 x64+
ADC r8,r/m8
ADC r16,r/m16
ADC r32,r/m32 386+
ADC r64,r/m64 x64+
ADC AL,i8
ADC AX,i16
ADC EAX,i32 386+
ADC RAX,i32 x64+ NOTE: ADC RAX,i64 is NOT valid!

Examples

ADC BX,DI
ADC EAX,5
ADC AX,0FFFFH
ADC AL,42H
ADC RBP,17H
ADC QWORD [RBX+RSI+Inset],5

Notes
ADC adds the source operand and the Carry flag to the destination operand,
and after the operation, the result replaces the destination operand. The add

508 Appendix B ■ Partial x64 Instruction Reference

operation is an arithmetic add, and the carry allows multiple- precision additions
across several registers or memory locations. (To add without taking the Carry
flag into account, use the ADD instruction.) All affected flags are set according
to the operation. Most importantly, if the result does not fit into the destination
operand, the Carry flag is set to 1.

m8 = 8- bit memory data m16 = 16- bit memory data
m32 = 32- bit memory data m64 = 64- bit memory data
i8 = 8- bit immediate data i16 = 16- bit immediate data
i32 = 32- bit immediate data i64 = 64- bit immediate data
d8 = 8- bit signed displacement d16 = 16- bit signed displacement
d32 = 32- bit unsigned displacement NOTE: There is no 64- bit displacement
r8 = AL AH BL BH CL CH DL DH r16 = AX BX CX DX BP SP SI DI
r32 = EAX EBX ECX EDX EBP ESP ESI EDI
r64 = RAX RBX RCX RDX RBP RSP RSI RDI R8 R9 R10 R11 R12 R13 R14 R15

 Appendix B ■ Partial x64 Instruction Reference 509

ADD: Arithmetic Addition

Flags Affected

O D I T S Z A P C OF: Overflow flag TF: Trap flag AF: Aux carry
F F F F F F F F F DF: Direction flag SF: Sign flag PF: Parity flag
* * * * * * IF: Interrupt flag ZF: Zero flag CF: Carry flag

Legal Forms

ADD r/m8,i8
ADD r/m16,i16
ADD r/m32,i32 386+
ADD r/m64,i32 x64+ NOTE: ADD r/m64,i64 is NOT valid!
ADD r/m16,i8
ADD r/m32,i8 386+
ADD r/m64,i8 x64+
ADD r/m8,r8
ADD r/m16,r16
ADD r/m32,r32 386+
ADD r/m64,r64 x64+
ADD r8,r/m8
ADD r16,r/m16
ADD r32,r/m32 386+
ADD r64,r/m64 x64+
ADD AL,i8
ADD AX,i16
ADD EAX,i32 386+
ADD RAX,i32 x64+ NOTE: ADD RAX,i64 is NOT valid!

Examples

ADD BX,DI
ADD AX,0FFFFH
ADD AL,42H
ADD [EDI],EAX
AND QWORD [RAX],7BH

Notes
ADD adds the source operand to the destination operand, and after the operation,
the result replaces the destination operand. The add operation is an arithmetic
add and does not take the Carry flag into account. (To add using the Carry flag,
use the ADC Add with Carry instruction.) All affected flags are set according to

510 Appendix B ■ Partial x64 Instruction Reference

the operation. Most importantly, if the result does not fit into the destination
operand, the Carry flag is set to 1.

m8 = 8- bit memory data m16 = 16- bit memory data
m32 = 32- bit memory data m64 = 64- bit memory data
i8 = 8- bit immediate data i16 = 16- bit immediate data
i32 = 32- bit immediate data i64 = 64- bit immediate data
d8 = 8- bit signed displacement d16 = 16- bit signed displacement
d32 = 32- bit unsigned displacement NOTE: There is no 64- bit displacement
r8 = AL AH BL BH CL CH DL DH r16 = AX BX CX DX BP SP SI DI
r32 = EAX EBX ECX EDX EBP ESP ESI EDI
r64 = RAX RBX RCX RDX RBP RSP RSI RDI R8 R9 R10 R11 R12 R13 R14 R15

 Appendix B ■ Partial x64 Instruction Reference 511

AND: Logical AND

Flags Affected

O D I T S Z A P C OF: Overflow flag TF: Trap flag AF: Aux carry
F F F F F F F F F DF: Direction flag SF: Sign flag PF: Parity flag
* * * ? * * IF: Interrupt flag ZF: Zero flag CF: Carry flag

Legal Forms

AND r/m8,i8
AND r/m16,i16
AND r/m32,i32 386+
AND r/m64,i32 x64+ NOTE: AND r/m64,i64 is NOT valid!
AND r/m16,i8
AND r/m32,i8 386+
AND r/m64,i8 x64+
AND r/m8,r8
AND r/m16,r16
AND r/m32,r32 386+
AND r/m64,r64 x64+
AND r8,r/m8
AND r16,r/m16
AND r32,r/m32 386+
AND r64,r/m64 x64+
AND AL,i8
AND AX,i16
AND EAX,i32 386+
AND RAX,i32 x64+ NOTE: AND RAX,i64 is NOT valid!

Examples

AND BX,DI
AND EAX,5
AND AX,0FFFFH
AND AL,42H
AND [BP+SI],DX
AND QWORD [RDI],42
AND QWORD [RBX],0B80000H

Notes
AND performs the AND logical operation on its two operands. Once the opera-
tion is complete, the result replaces the destination operand. AND is performed
on a bit- by- bit basis, such that bit 0 of the source is ANDed with bit 0 of the

512 Appendix B ■ Partial x64 Instruction Reference

destination, bit 1 of the source is ANDed with bit 1 of the destination, and so
on. The AND operation yields a 1 if both of the operands are 1; and a 0 only if
either operand is 0. Note that the operation makes the Auxiliary carry flag unde-
fined. CF and OF are cleared to 0, and the other affected flags are set according
to the operation’s results.

m8 = 8- bit memory data m16 = 16- bit memory data
m32 = 32- bit memory data m64 = 64- bit memory data
i8 = 8- bit immediate data i16 = 16- bit immediate data
i32 = 32- bit immediate data i64 = 64- bit immediate data
d8 = 8- bit signed displacement d16 = 16- bit signed displacement
d32 = 32- bit unsigned displacement NOTE: There is no 64- bit displacement
r8 = AL AH BL BH CL CH DL DH r16 = AX BX CX DX BP SP SI DI
r32 = EAX EBX ECX EDX EBP ESP ESI EDI
r64 = RAX RBX RCX RDX RBP RSP RSI RDI R8 R9 R10 R11 R12 R13 R14 R15

 Appendix B ■ Partial x64 Instruction Reference 513

BT: Bit Test

Flags Affected

O D I T S Z A P C OF: Overflow flag TF: Trap flag AF: Aux carry
F F F F F F F F F DF: Direction flag SF: Sign flag PF: Parity flag
 * IF: Interrupt flag ZF: Zero flag CF: Carry flag

Legal Forms

BT r/m16,r16 386+
BT r/m32,r32 386+
BT r/m64,r64 x64+
BT r/m16,i8 386+
BT r/m32,i8 386+
BT r/m64,i8 x64+

Examples

BT AX,CX
BT EAX,EDX
BT RAX,5
BT [RAX+RDX],RCX

Notes
BT copies a single specified bit from the left operand to the Carry flag, where it
can be tested or fed back into a quantity using one of the shift/rotate instruc-
tions. Which bit is copied is specified by the right operand. Neither operand
is altered by BT.

When the right operand is an 8- bit immediate value, the value specifies the
number of the bit to be copied. In BT AX,5, bit 5 of AX is copied into CF. When
the immediate value exceeds the size of the left operand, the value is expressed
modulo the size of the left operand. That is, because there are not 66 bits in EAX,
BT EAX,66 pulls out as many 32s from the immediate value as can be taken,
and what remains is the bit number. (Here, 2.) When the right operand is not
an immediate value, the right operand not only specifies the bit to be tested
but also an offset from the memory reference in the left operand. This is com-
plicated and not covered completely in this book. See a detailed discussion in
a full assembly language reference.

514 Appendix B ■ Partial x64 Instruction Reference

m8 = 8- bit memory data m16 = 16- bit memory data
m32 = 32- bit memory data m64 = 64- bit memory data
i8 = 8- bit immediate data i16 = 16- bit immediate data
i32 = 32- bit immediate data i64 = 64- bit immediate data
d8 = 8- bit signed displacement d16 = 16- bit signed displacement
d32 = 32- bit unsigned displacement NOTE: There is no 64- bit displacement
r8 = AL AH BL BH CL CH DL DH r16 = AX BX CX DX BP SP SI DI
r32 = EAX EBX ECX EDX EBP ESP ESI EDI
r64 = RAX RBX RCX RDX RBP RSP RSI RDI R8 R9 R10 R11 R12 R13 R14 R15

 Appendix B ■ Partial x64 Instruction Reference 515

CALL: Call Procedure

Flags Affected

O D I T S Z A P C OF: Overflow flag TF: Trap flag AF: Aux carry
F F F F F F F F F DF: Direction flag SF: Sign flag PF: Parity flag
 <none> IF: Interrupt flag ZF: Zero flag CF: Carry flag

Legal Forms

CALL d16 Not valid in x64
CALL d32 Not valid prior to x64
CALL r/m16 Not valid in x64
CALL r/m32 Not valid in x64
CALL r/m64 Not valid prior to x64

Examples

CALL DoSomething
CALL RAX
CALL QWORD [EBX+ECX+16]

Notes
CALL transfers control to a procedure address. Before transferring control, CALL
pushes the address of the instruction immediately after itself onto the stack.
This allows a RET instruction (see also) to pop the return address into RIP and
thus return control to the instruction immediately after the CALL instruction.

In addition to the obvious CALL to a defined label, CALL can transfer control
to an address in a 64- bit general- purpose register (r64) and also to an address
located in memory. This is shown in the Legal Forms column as m64. CALL m64
is useful for creating jump tables of procedure addresses. D32 is simply a 32- bit
unsigned displacement used in most calls to procedure labels. In 64- bit long
mode, a d32 displacement is sign- extended to 64 bits.

There are several more variants of the CALL instruction with provisions for
working with the protection mechanisms of operating systems. These are not
covered here, and for more information you should see an advanced text or a
full assembly language reference.

m8 = 8- bit memory data m16 = 16- bit memory data
m32 = 32- bit memory data m64 = 64- bit memory data
i8 = 8- bit immediate data i16 = 16- bit immediate data

516 Appendix B ■ Partial x64 Instruction Reference

i32 = 32- bit immediate data i64 = 64- bit immediate data
d8 = 8- bit signed displacement d16 = 16- bit signed displacement
d32 = 32- bit unsigned displacement NOTE: There is no 64- bit displacement
r8 = AL AH BL BH CL CH DL DH r16 = AX BX CX DX BP SP SI DI
r32 = EAX EBX ECX EDX EBP ESP ESI EDI
r64 = RAX RBX RCX RDX RBP RSP RSI RDI R8 R9 R10 R11 R12 R13 R14 R15

 Appendix B ■ Partial x64 Instruction Reference 517

CLC: Clear Carry Flag (CF)

Flags Affected

O D I T S Z A P C OF: Overflow flag TF: Trap flag AF: Aux carry
F F F F F F F F F DF: Direction flag SF: Sign flag PF: Parity flag
 * IF: Interrupt flag ZF: Zero flag CF: Carry flag

Legal Forms

CLC

Examples

CLC

Notes
CLC simply sets the Carry flag (CF) to the cleared (0) state. Use CLC in situations
where the Carry flag must be in a known cleared state before work begins, as
when you are rotating a series of words or bytes using the rotate instructions
RCL and RCR.

m8 = 8- bit memory data m16 = 16- bit memory data
m32 = 32- bit memory data m64 = 64- bit memory data
i8 = 8- bit immediate data i16 = 16- bit immediate data
i32 = 32- bit immediate data i64 = 64- bit immediate data
d8 = 8- bit signed displacement d16 = 16- bit signed displacement
d32 = 32- bit unsigned displacement NOTE: There is no 64- bit displacement
r8 = AL AH BL BH CL CH DL DH r16 = AX BX CX DX BP SP SI DI
r32 = EAX EBX ECX EDX EBP ESP ESI EDI
r64 = RAX RBX RCX RDX RBP RSP RSI RDI R8 R9 R10 R11 R12 R13 R14 R15

518 Appendix B ■ Partial x64 Instruction Reference

CLD: Clear Direction Flag (DF)

Flags Affected

O D I T S Z A P C OF: Overflow flag TF: Trap flag AF: Aux carry
F F F F F F F F F DF: Direction flag SF: Sign flag PF: Parity flag
 * IF: Interrupt flag ZF: Zero flag CF: Carry flag

Legal Forms

CLD

Examples

CLD

Notes
CLD simply sets the Direction flag (DF) to the cleared (0) state. This affects the
adjustment performed by repeated string instructions such as STOS, SCAS, and
MOVS. When DF = 0, the destination pointer is increased, and decreased when
DF = 1. DF is set to 1 with the STD instruction.

m8 = 8- bit memory data m16 = 16- bit memory data
m32 = 32- bit memory data m64 = 64- bit memory data
i8 = 8- bit immediate data i16 = 16- bit immediate data
i32 = 32- bit immediate data i64 = 64- bit immediate data
d8 = 8- bit signed displacement d16 = 16- bit signed displacement
d32 = 32- bit unsigned displacement NOTE: There is no 64- bit displacement
r8 = AL AH BL BH CL CH DL DH r16 = AX BX CX DX BP SP SI DI
r32 = EAX EBX ECX EDX EBP ESP ESI EDI
r64 = RAX RBX RCX RDX RBP RSP RSI RDI R8 R9 R10 R11 R12 R13 R14 R15

 Appendix B ■ Partial x64 Instruction Reference 519

CMP: Arithmetic Comparison

Flags Affected

O D I T S Z A P C OF: Overflow flag TF: Trap flag AF: Aux carry
F F F F F F F F F DF: Direction flag SF: Sign flag PF: Parity flag
* * * * * * IF: Interrupt flag ZF: Zero flag CF: Carry flag

Legal Forms

CMP r/m8,i8
CMP r/m16,i16
CMP r/m32,i32 386+
CMP r/m64,i32 x64+ NOTE: CMP RAX,i64 is NOT valid!
CMP r/m16,i8
CMP r/m32,i8 386+
CMP r/m64,i8 x64+
CMP r/m8,r8
CMP r/m16,r16
CMP r/m32,r32 386+
CMP r/m64,r64 x64+
CMP r8,r/m8
CMP r16,r/m16
CMP r32,r/m32 386+
CMP r64,r/m64 x64+
CMP AL,i8
CMP AX,i16
CMP EAX,i32 386+
CMP RAX,i32 x64+ NOTE: CMP RAX,i64 is NOT valid!

Examples

CMP RAX,5
CMP AL,19H
CMP EAX,ECX
CMP QWORD [RBX+RSI+inset],0B80000H

Notes
CMP compares its two operations and sets the flags to indicate the results of the
comparison. The destination operand is not affected. The operation itself is identical
to arithmetic subtraction of the source from the destination without borrow (SUB),
save that the result does not replace the destination. Typically, CMP is followed

520 Appendix B ■ Partial x64 Instruction Reference

by one of the conditional jump instructions; that is, JE to jump if the operands
were equal; JNE if they were unequal; and so forth.

m8 = 8- bit memory data m16 = 16- bit memory data
m32 = 32- bit memory data m64 = 64- bit memory data
i8 = 8- bit immediate data i16 = 16- bit immediate data
i32 = 32- bit immediate data i64 = 64- bit immediate data
d8 = 8- bit signed displacement d16 = 16- bit signed displacement
d32 = 32- bit unsigned displacement NOTE: There is no 64- bit displacement
r8 = AL AH BL BH CL CH DL DH r16 = AX BX CX DX BP SP SI DI
r32 = EAX EBX ECX EDX EBP ESP ESI EDI
r64 = RAX RBX RCX RDX RBP RSP RSI RDI R8 R9 R10 R11 R12 R13 R14 R15

 Appendix B ■ Partial x64 Instruction Reference 521

DEC: Decrement Operand

Flags Affected

O D I T S Z A P C OF: Overflow flag TF: Trap flag AF: Aux carry
F F F F F F F F F DF: Direction flag SF: Sign flag PF: Parity flag
* * * * * IF: Interrupt flag ZF: Zero flag CF: Carry flag

Legal Forms

DEC r/m8
DEC r/m16
DEC r/m32 386+
DEC r/m64 x64+

Examples

DEC AL
DEC AX
DEC EAX
DEC QWORD [RBX+RSI]

Notes
DEC subtracts 1 from its single operand and does not affect the Carry flag CF. Be
careful about that; it’s a common error to try to use CF after a DEC instruction
as though it were SUB instead.

DEC acting on memory data forms must be used with a data size specifier such
as BYTE, WORD, DWORD, and QWORD. See the examples given earlier.

m8 = 8- bit memory data m16 = 16- bit memory data
m32 = 32- bit memory data m64 = 64- bit memory data
i8 = 8- bit immediate data i16 = 16- bit immediate data
i32 = 32- bit immediate data i64 = 64- bit immediate data
d8 = 8- bit signed displacement d16 = 16- bit signed displacement
d32 = 32- bit unsigned displacement NOTE: There is no 64- bit displacement
r8 = AL AH BL BH CL CH DL DH r16 = AX BX CX DX BP SP SI DI
r32 = EAX EBX ECX EDX EBP ESP ESI EDI
r64 = RAX RBX RCX RDX RBP RSP RSI RDI R8 R9 R10 R11 R12 R13 R14 R15

522 Appendix B ■ Partial x64 Instruction Reference

DIV: Unsigned Integer Division

Flags Affected

O D I T S Z A P C OF: Overflow flag TF: Trap flag AF: Aux carry
F F F F F F F F F DF: Direction flag SF: Sign flag PF: Parity flag
? ? ? ? ? ? IF: Interrupt flag ZF: Zero flag CF: Carry flag

Legal Forms

DIV r/m8 Dividend in AX. Quotient in AL; remainder in AH.
DIV r/m16 Dividend in EAX. Quotient in AX; remainder in DX.
DIV r/m32 386+ Dividend in EAX:EDX. Quotient in EAX; remainder in EDX.
DIV r/m64 x64+ Dividend in RAX:RDX. Quotient in RAX; remainder in RDX.

Examples

DIV AL
DIV AX
DIV EAX
DIV QWORD [RDI+RSI] Don't use A or D regs in an effective address!

Notes
DIV divides the implicit dividend by the explicit divisor specified as DIV’s single
operand. For dividing by 8- bit quantities, the dividend is assumed to be in
AX. For dividing by 16- bit, 32- bit, and 64- bit quantities, the dividend is assumed
to be in two registers, allowing a much greater range of calculation. The least
significant portion of the dividend is placed in the “A” register (AX / EAX /
RAX), and the most significant portion of the dividend is placed in the “D”
register (DX / EDX / RDX). Note that even when there is no “high” portion of
the dividend, the “D” register is cleared to 0 by DIV and cannot be used to hold
independent values while a DIV instruction is executed. For more on DIV, see
the Chapter 7 discussion on p. [203].

Remember that when the operand is a memory value, you must place one
of the type specifiers BYTE, WORD, DWORD, or QWORD before the operand. Also note
from the “Legal Forms” section, there is no legal form using an immediate
value of any size.

DIV leaves no information in the flags. Note, however, that OF, SF, ZF, AF, PF,
and CF become undefined after a DIV instruction.

m8 = 8- bit memory data m16 = 16- bit memory data
m32 = 32- bit memory data m64 = 64- bit memory data
i8 = 8- bit immediate data i16 = 16- bit immediate data

 Appendix B ■ Partial x64 Instruction Reference 523

i32 = 32- bit immediate data i64 = 64- bit immediate data
d8 = 8- bit signed displacement d16 = 16- bit signed displacement
d32 = 32- bit unsigned displacement NOTE: There is no 64- bit displacement
r8 = AL AH BL BH CL CH DL DH r16 = AX BX CX DX BP SP SI DI
r32 = EAX EBX ECX EDX EBP ESP ESI EDI
r64 = RAX RBX RCX RDX RBP RSP RSI RDI R8 R9 R10 R11 R12 R13 R14 R15

524 Appendix B ■ Partial x64 Instruction Reference

INC: Increment Operand

Flags Affected

O D I T S Z A P C OF: Overflow flag TF: Trap flag AF: Aux carry
F F F F F F F F F DF: Direction flag SF: Sign flag PF: Parity flag
* * * * * IF: Interrupt flag ZF: Zero flag CF: Carry flag

Legal Forms

INC r/m8
INC r/m16
INC r/m32 386+
INC r/m64 x64+

Examples

INC AL
INC EAX
INC QWORD [RBP]
INC QWORD [RBX+RSI]

Notes
INC adds 1 to its single operand and does not affect the Carry flag CF. Be care-
ful about that; it’s a common error to try to use CF after an INC instruction as
though it were ADD instead.

INC acting on memory data forms must be used with a data size specifier such
as BYTE, WORD, DWORD, and QWORD. See the two examples given earlier.

m8 = 8- bit memory data m16 = 16- bit memory data
m32 = 32- bit memory data m64 = 64- bit memory data
i8 = 8- bit immediate data i16 = 16- bit immediate data
i32 = 32- bit immediate data i64 = 64- bit immediate data
d8 = 8- bit signed displacement d16 = 16- bit signed displacement
d32 = 32- bit unsigned displacement NOTE: There is no 64- bit displacement
r8 = AL AH BL BH CL CH DL DH r16 = AX BX CX DX BP SP SI DI
r32 = EAX EBX ECX EDX EBP ESP ESI EDI
r64 = RAX RBX RCX RDX RBP RSP RSI RDI R8 R9 R10 R11 R12 R13 R14 R15

 Appendix B ■ Partial x64 Instruction Reference 525

J??: Jump If Condition Is Met

Flags Affected

O D I T S Z A P C OF: Overflow flag TF: Trap flag AF: Aux carry
F F F F F F F F F DF: Direction flag SF: Sign flag PF: Parity flag
 <none> IF: Interrupt flag ZF: Zero flag CF: Carry flag

Legal Forms Description Jump If Flags Are
JA/JNBE d8 d32 Jump If Above / Jump If Not Below Or Equal CF=0 AND ZF=0
JAE/JNB d8 d32 Jump If Above Or Equal / Jump If Not Below CF=0
JB/JNAE d8 d32 Jump If Below / Jump If Not Above Or Equal CF=1
JBE/JNA d8 d32 Jump If Below Or Equal / Jump If Not Above CF=1 OR ZF=1
JC d8 d32 Jump If Carry; synonym for JNAE & JB CF=1
JNC d8 d32 Jump If Not Carry CF=0
JE/JZ d8 d32 Jump If Equal / Jump If Zero ZF=1
JNE/JNZ d8 d32 Jump If Not Equal / Jump If Not Zero ZF=0
JG/JNLE d8 d32 Jump If Greater / Jump If Not Less Or Equal ZF=0 AND SF=OF
JGE/JNL d8 d32 Jump If Greater Or Equal / Jump If Not Less SF=OF
JL/JNGE d8 d32 Jump If Less / Jump If Not Greater Or Equal SF≠OF
JLE/JNG d8 d32 Jump If Less Than Or Equal/Jump If Not Greater ZF=1 OR SF≠OF
JO d8 d32 Jump If Overflow OF=1
JNO d8 d32 Jump If Not Overflow OF=0
JP/JPE d8 d32 Jump If Parity Set / Jump If Parity Even PF=1
JNP/JPO d8 d32 Jump If Parity Cleared / Jump If Parity Odd PF=0
JS d8 d32 Jump If Sign Flag Set SF=1
JNS d8 d32 Jump If Sign Flag Cleared SF=0

Examples

JB HalfSplit ;Jumps if CF=1
JLE TooLow ;Jumps if ZF=1 AND SF=OF
JG NEAR WayOut ;Jumps to a 32- bit displacement in 32- bit and
 ; 64- bit protected modes

Notes
By default all these instructions make a d8 short jump (127 bytes forward or 128
bytes back) if some condition is true, or fall through if the condition is not true.
All legal forms also support a 32- bit displacement (d32) for making a jump to
anywhere in the code segment. Most of these jump instructions can also accept

526 Appendix B ■ Partial x64 Instruction Reference

a 16- bit displacement, but not in 64- bit protected mode. I have left out the d16
tags to make the table simpler. To use a 32- bit displacement, you must follow
the conditional jump instruction with the qualifier NEAR, which tells the assem-
bler to use a 32- bit displacement when generating binary code. Remember that
there is no 64- bit displacement.

The conditions all involve flags, and the flag conditions in question are given
to the right of the mnemonic and its description, under the heading “Jump If
Flags Are.”

There are often two synonyms for a single conditional jump. For example,
JE and JZ are the same instruction, meaning Jump if ZF is set. The synonyms
are there to help you understand the code: Jump if the previous comparison
showed parameters equal, or jump if the zero flag is set.

m8 = 8- bit memory data m16 = 16- bit memory data
m32 = 32- bit memory data m64 = 64- bit memory data
i8 = 8- bit immediate data i16 = 16- bit immediate data
i32 = 32- bit immediate data i64 = 64- bit immediate data
d8 = 8- bit signed displacement d16 = 16- bit signed displacement
d32 = 32- bit unsigned displacement NOTE: There is no 64- bit displacement
r8 = AL AH BL BH CL CH DL DH r16 = AX BX CX DX BP SP SI DI
r32 = EAX EBX ECX EDX EBP ESP ESI EDI
r64 = RAX RBX RCX RDX RBP RSP RSI RDI R8 R9 R10 R11 R12 R13 R14 R15

 Appendix B ■ Partial x64 Instruction Reference 527

JECXZ: Jump if ECX=0

Flags Affected

O D I T S Z A P C OF: Overflow flag TF: Trap flag AF: Aux carry
F F F F F F F F F DF: Direction flag SF: Sign flag PF: Parity flag
 <none> IF: Interrupt flag ZF: Zero flag CF: Carry flag

Legal Forms

JECXZ d8 386+

Examples

JECXZ AllDone ; Label AllDone must be within +127 or - 128 bytes.

Notes
Several instructions use ECX as a count register, and JECXZ allows you to test
and jump to see if ECX has become 0. The jump may be only a short jump (that
is, no more than 127 bytes forward or 128 bytes back) and will be taken if ECX
= 0 at the time the instruction is executed. If ECX is any value other than 0, exe-
cution falls through to the next instruction. See also the “Jump on Condition”
instructions.

JECXZ is most often used to bypass the ECX = 0 condition when using the
LOOP instruction. Because LOOP decrements ECX before testing for ECX = 0, if
you enter a loop governed by LOOP with ECX = 0, you will end up iterating the
loop 2,147,483,648 (232) times, hence the need for JECXZ. If you use LOOP and it
seems to lock up, check this first.

m8 = 8- bit memory data m16 = 16- bit memory data
m32 = 32- bit memory data m64 = 64- bit memory data
i8 = 8- bit immediate data i16 = 16- bit immediate data
i32 = 32- bit immediate data i64 = 64- bit immediate data
d8 = 8- bit signed displacement d16 = 16- bit signed displacement
d32 = 32- bit unsigned displacement NOTE: There is no 64- bit displacement
r8 = AL AH BL BH CL CH DL DH r16 = AX BX CX DX BP SP SI DI
r32 = EAX EBX ECX EDX EBP ESP ESI EDI
r64 = RAX RBX RCX RDX RBP RSP RSI RDI R8 R9 R10 R11 R12 R13 R14 R15

528 Appendix B ■ Partial x64 Instruction Reference

JRCXZ: Jump If RCX=0

Flags Affected

O D I T S Z A P C OF: Overflow flag TF: Trap flag AF: Aux carry
F F F F F F F F F DF: Direction flag SF: Sign flag PF: Parity flag
 <none> IF: Interrupt flag ZF: Zero flag CF: Carry flag

Legal Forms

JRCXZ d8 x64+

Examples

JRCXZ AllDone ; Label AllDone must be within +127 or - 128 bytes.

Notes
This instruction operates identically to JECXZ except that the register tested is
RCX, not ECX. Because it tests RCX, JRCXZ is available only in x64 processors.

JRCXZ is most often used to bypass the RCX = 0 condition when using the
LOOP instruction. Because LOOP decrements RCX before testing for RCX = 0, if
you enter a loop governed by LOOP with RCX = 0, you will end up iterating the
loop 264 times, hence the need for JRCXZ. (If you use LOOP and it seems to lock
up the program, check this first.)

m8 = 8- bit memory data m16 = 16- bit memory data
m8 = 8- bit memory data m16 = 16- bit memory data
m32 = 32- bit memory data m64 = 64- bit memory data
i8 = 8- bit immediate data i16 = 16- bit immediate data
i32 = 32- bit immediate data i64 = 64- bit immediate data
d8 = 8- bit signed displacement d16 = 16- bit signed displacement
d32 = 32- bit unsigned displacement NOTE: There is no 64- bit displacement
r8 = AL AH BL BH CL CH DL DH r16 = AX BX CX DX BP SP SI DI
r32 = EAX EBX ECX EDX EBP ESP ESI EDI
r64 = RAX RBX RCX RDX RBP RSP RSI RDI R8 R9 R10 R11 R12 R13 R14 R15

 Appendix B ■ Partial x64 Instruction Reference 529

JMP: Unconditional Jump

Flags Affected

O D I T S Z A P C OF: Overflow flag TF: Trap flag AF: Aux carry
F F F F F F F F F DF: Direction flag SF: Sign flag PF: Parity flag
 <none> IF: Interrupt flag ZF: Zero flag CF: Carry flag

Legal Forms

JMP d8 In 64- bit mode, displacement sign- extended to 64 bits
JMP d16 Not supported in 64- bit long mode
JMP d32 In 64- bit mode, displacement sign- extended to 64 bits
JMP r/m16 Not supported in 64- bit long mode
JMP r/m32 386+; Not supported in 64- bit long mode
JMP r/m64 x64+

Examples

JMP RightCloseBy Label ; RightCloseBy must be +127 or - 128 bytes.
JMP EAX ; Not supported in 64- bit mode
JMP RDX
JMP QWORD [RBX+EDI+17]

Notes
JMP transfers control unconditionally to the destination given as the single
operand. In 64- bit mode, in addition to defined labels, JMP can transfer control
to an 8- bit signed offset from RIP, a 32- bit signed offset from RIP, or a 64- bit
absolute address (either as an immediate or indirectly through a register or
memory). The m64 form is useful for creating jump tables in memory, where
a jump table is an array of addresses. For example, JMP [RBX+RDI+17] would
transfer control to the 64- bit address found at the based- indexed- displacement
address [RBX+RDI+17].

No flags are affected and, unlike CALL, no return address is pushed onto the
stack. Note that there are additional JMP forms for other modes and exotic work
at higher privilege levels than userspace. See an Intel instruction reference for
more details.

m8 = 8- bit memory data m16 = 16- bit memory data
m32 = 32- bit memory data m64 = 64- bit memory data
i8 = 8- bit immediate data i16 = 16- bit immediate data

530 Appendix B ■ Partial x64 Instruction Reference

i32 = 32- bit immediate data i64 = 64- bit immediate data
d8 = 8- bit signed displacement d16 = 16- bit signed displacement
d32 = 32- bit unsigned displacement NOTE: There is no 64- bit displacement
r8 = AL AH BL BH CL CH DL DH r16 = AX BX CX DX BP SP SI DI
r32 = EAX EBX ECX EDX EBP ESP ESI EDI
r64 = RAX RBX RCX RDX RBP RSP RSI RDI R8 R9 R10 R11 R12 R13 R14 R15

 Appendix B ■ Partial x64 Instruction Reference 531

LEA: Load Effective Address

Flags Affected

O D I T S Z A P C OF: Overflow flag TF: Trap flag AF: Aux carry
F F F F F F F F F DF: Direction flag SF: Sign flag PF: Parity flag
 <none> IF: Interrupt flag ZF: Zero flag CF: Carry flag

Legal Forms

LEA r16,m
LEA r32,m 386+
LEA r64,m x64+

Examples

LEA RBP,MyVariable ; Loads address expressed by MyVariable to RBP
LEA R15,[RAX+RDX*4+17] ; Loads effective address from calculation to R15

Notes
LEA derives the address of the source operand and loads that offset into the
destination operand. The destination operand must be a register and cannot be
memory. The source operand must be a memory operand, but it can be any size.
The address stored in the destination operand is the address of the first byte
of the source in memory, and the size of the source in memory is unimportant.

This is a good, clean way to place the address of a variable into a register
prior to a procedure call or a system call. See SYSCALL.

LEA can also be used to perform register math, since the address specified
in the second operand is calculated but not accessed. The address can thus be an
address for which your program does not have permission to access. Any math
that can be expressed as a valid address calculation may be done with LEA.

This is one of the few places where NASM does not require a size specifier
before an operand providing a memory address, again because LEA calculates
the address but moves no data to or from that address.

m8 = 8- bit memory data m16 = 16- bit memory data
m32 = 32- bit memory data m64 = 64- bit memory data
i8 = 8- bit immediate data i16 = 16- bit immediate data
i32 = 32- bit immediate data i64 = 64- bit immediate data
d8 = 8- bit signed displacement d16 = 16- bit signed displacement
d32 = 32- bit unsigned displacement NOTE: There is no 64- bit displacement
r8 = AL AH BL BH CL CH DL DH r16 = AX BX CX DX BP SP SI DI
r32 = EAX EBX ECX EDX EBP ESP ESI EDI
r64 = RAX RBX RCX RDX RBP RSP RSI RDI R8 R9 R10 R11 R12 R13 R14 R15

532 Appendix B ■ Partial x64 Instruction Reference

LOOP: Loop Until CX/ECX/RCX=0

Flags Affected

O D I T S Z A P C OF: Overflow flag TF: Trap flag AF: Aux carry
F F F F F F F F F DF: Direction flag SF: Sign flag PF: Parity flag
 <none> IF: Interrupt flag ZF: Zero flag CF: Carry flag

Legal Forms

LOOP d8 386+ if using ECX for the counter; 64+ if using RCX

Examples

LOOP AllDone ; Label AllDone must be within +127 or - 128 bytes.

Notes
LOOP is a combination decrement counter, test, and jump instruction. It uses CX
as the counter in 16- bit modes, ECX in 32- bit modes, or RCX in 64- bit modes.
The operation of LOOP is logistically identical in all three modes, and I use 64- bit
coding as an example here.

LOOP simplifies code by acting as a DEC RCX instruction, a CMP RCX,0 instruction,
and JZ instruction in one, executed in that order. A loop repeat count must be
initially loaded into RCX. When the LOOP instruction is executed, it first decre-
ments RCX. Then it tests to see if RCX = 0. If RCX is not 0, LOOP transfers control
to the 8- bit displacement specified as its operand:

 MOV RCX,17 ; Loop 17 times
DoIt: CALL CrunchIt
 CALL StuffIt
 LOOP DoIt

Here, the two procedure CALLs will be made 17 times. The first 16 times
through, RCX will still be nonzero, and LOOP will transfer control to DoIt. On
the 17th pass, however, LOOP will decrement RCX to 0 and then fall through to
the next instruction in sequence when it tests CX.

LOOP does not alter any flags, even when RCX is decremented to 0. Warning:
Watch your initial conditions! If you’re in 16- bit mode and CX is initially 0, LOOP
will decrement it to 65,535 (0FFFFH) and then perform the loop 65,535 times.
Worse, if you’re working in 32- bit protected mode and enter a loop with ECX
= 0, the loop will be performed more than 2 billion times, which might be long

 Appendix B ■ Partial x64 Instruction Reference 533

enough to look like a system lockup. If you’re using RCX, well, the loop will
go 264 times, which will be a system lockup.

m8 = 8- bit memory data m16 = 16- bit memory data
m32 = 32- bit memory data m64 = 64- bit memory data
i8 = 8- bit immediate data i16 = 16- bit immediate data
i32 = 32- bit immediate data i64 = 64- bit immediate data
d8 = 8- bit signed displacement d16 = 16- bit signed displacement
d32 = 32- bit unsigned displacement NOTE: There is no 64- bit displacement
r8 = AL AH BL BH CL CH DL DH r16 = AX BX CX DX BP SP SI DI
r32 = EAX EBX ECX EDX EBP ESP ESI EDI
r64 = RAX RBX RCX RDX RBP RSP RSI RDI R8 R9 R10 R11 R12 R13 R14 R15

534 Appendix B ■ Partial x64 Instruction Reference

LOOPNZ/LOOPNE: Loop Until CX/ECX/RCX=0 and ZF=0

Flags Affected

O D I T S Z A P C OF: Overflow flag TF: Trap flag AF: Aux carry
F F F F F F F F F DF: Direction flag SF: Sign flag PF: Parity flag
 <none> IF: Interrupt flag ZF: Zero flag CF: Carry flag

Legal Forms

LOOPNZ d8 386+ if using ECX for the counter; 64+ if using RCX
LOOPNE d8 386+ if using ECX for the counter; 64+ if using RCX

Examples

LOOPNZ AllDone ; Label AllDone must be within +127 or - 128 bytes.

Notes
LOOPNZ and LOOPNE are synonyms and generate identical opcodes. Like LOOP,
they use CX, ECX, or RCX depending on the “bit- ness” of the CPU. In 64- bit
work, LOOPNZ/LOOPNE decrements RCX and jumps to the location specified in
the target operand if RCX is not 0 and the Zero flag ZF is 0. Otherwise, execu-
tion falls through to the next instruction.

What this means is that the loop is pretty much controlled by ZF. If ZF remains
0, the loop is looped until the counter register is decremented to 0. But as soon
as ZF is set to 1, the loop terminates. Think of it as “Loop While Not Zero Flag.”

Keep in mind that LOOPNZ and LOOPNE do not themselves affect ZF. Some
instruction within the loop (typically one of the string instructions) must do
something to affect ZF to terminate the loop before CX/ECX/RCX counts
down to 0.

m8 = 8- bit memory data m16 = 16- bit memory data
m32 = 32- bit memory data m64 = 64- bit memory data
i8 = 8- bit immediate data i16 = 16- bit immediate data
i32 = 32- bit immediate data i64 = 64- bit immediate data
d8 = 8- bit signed displacement d16 = 16- bit signed displacement
d32 = 32- bit unsigned displacement NOTE: There is no 64- bit displacement
r8 = AL AH BL BH CL CH DL DH r16 = AX BX CX DX BP SP SI DI
r32 = EAX EBX ECX EDX EBP ESP ESI EDI
r64 = RAX RBX RCX RDX RBP RSP RSI RDI R8 R9 R10 R11 R12 R13 R14 R15

 Appendix B ■ Partial x64 Instruction Reference 535

LOOPZ/LOOPE: Loop Until CX/ECX/RCX=0 and ZF=1

Flags Affected

O D I T S Z A P C OF: Overflow flag TF: Trap flag AF: Aux carry
F F F F F F F F F DF: Direction flag SF: Sign flag PF: Parity flag
 <none> IF: Interrupt flag ZF: Zero flag CF: Carry flag

Legal Forms

LOOPZ d8 386+ if using ECX for the counter; 64+ if using RCX
LOOPE d8 386+ if using ECX for the counter; 64+ if using RCX

Examples

LOOPZ AllDone ; Label AllDone must be within +127 or - 128 bytes.

Notes
LOOPZ and LOOPE are synonyms and generate identical opcodes. Like LOOP, they
use CX, ECX, or RCX depending on the current “bit- ness” of the CPU. In 64- bit
work, LOOPZ/LOOPE first decrements RCX and jumps to the location specified
in the target operand if RCX is not 0 and the Zero flag ZF is 1. Otherwise, exe-
cution falls through to the next instruction.

This means the loop is pretty much controlled by ZF. If ZF remains 1, the
loop is looped until the counter register is decremented to 0. But as soon as
ZF is cleared to 0, the loop terminates. Think of it as “Loop While Zero Flag.”

Remember that LOOPZ/LOOPE do not themselves affect ZF. Some instruction
within the loop (typically one of the string instructions) must do something to
zero ZF to terminate the loop before CX/ECX/RCX counts down to 0.

m8 = 8- bit memory data m16 = 16- bit memory data
m32 = 32- bit memory data m64 = 64- bit memory data
i8 = 8- bit immediate data i16 = 16- bit immediate data
i32 = 32- bit immediate data i64 = 64- bit immediate data
d8 = 8- bit signed displacement d16 = 16- bit signed displacement
d32 = 32- bit unsigned displacement NOTE: There is no 64- bit displacement
r8 = AL AH BL BH CL CH DL DH r16 = AX BX CX DX BP SP SI DI
r32 = EAX EBX ECX EDX EBP ESP ESI EDI
r64 = RAX RBX RCX RDX RBP RSP RSI RDI R8 R9 R10 R11 R12 R13 R14 R15

536 Appendix B ■ Partial x64 Instruction Reference

MOV: Copy Right Operand into Left Operand

Flags Affected

O D I T S Z A P C OF: Overflow flag TF: Trap flag AF: Aux carry
F F F F F F F F F DF: Direction flag SF: Sign flag PF: Parity flag
 <none> IF: Interrupt flag ZF: Zero flag CF: Carry flag

Legal Forms

MOV r/m8,r8
MOV r/m16,r16
MOV r/m32,r32 386+
MOV r/m64,r64 x64+
MOV r8,r/m8
MOV r16,r/m16
MOV r32,r/m32 386+
MOV r64,r/m64 x64+
MOV r/m8,i8
MOV r/m16,i8
MOV r/m16,i16
MOV r/m32,i8 386+
MOV r/m32,i32 386+
MOV r/m64,i8 x64+
MOV r/m64,i64 x64+
MOV r8,i8
MOV r16,i16
MOV r32,i32 386+
MOV r64,i64 x64+

Examples

MOV AX,BP
MOV R14,RDX
MOV [EBP],EAX
MOV RAX,[RDX]
MOV RBP,17H
MOV QWORD [RBX+RSI+Inset],5

Notes
MOV is perhaps the most- used of all instructions. The source (right) operand is
copied into the left (destination) operand. The source operand is not changed.
The flags are not affected.

 Appendix B ■ Partial x64 Instruction Reference 537

Note that there are additional forms of MOV that deal with segment : offset
addressing, which is not used in x64 userspace and which I am not covering in
this book. See the Intel documentation for more information.

m8 = 8- bit memory data m16 = 16- bit memory data
m32 = 32- bit memory data m64 = 64- bit memory data
i8 = 8- bit immediate data i16 = 16- bit immediate data
i32 = 32- bit immediate data i64 = 64- bit immediate data
d8 = 8- bit signed displacement d16 = 16- bit signed displacement
d32 = 32- bit unsigned displacement NOTE: There is no 64- bit displacement
r8 = AL AH BL BH CL CH DL DH r16 = AX BX CX DX BP SP SI DI
r32 = EAX EBX ECX EDX EBP ESP ESI EDI
r64 = RAX RBX RCX RDX RBP RSP RSI RDI R8 R9 R10 R11 R12 R13 R14 R15

538 Appendix B ■ Partial x64 Instruction Reference

MOVS: Move String

Flags Affected

O D I T S Z A P C OF: Overflow flag TF: Trap flag AF: Aux carry
F F F F F F F F F DF: Direction flag SF: Sign flag PF: Parity flag
 <none> IF: Interrupt flag ZF: Zero flag CF: Carry flag

Legal Forms

MOVSB
MOVSW
MOVSD
MOVSQ

Examples

MOVSB ;Copies byte at [RSI] to [RDI]
MOVSW ;Copies word at [RSI] to [RDI]
MOVSD ;Copies double word at [RSI] to [RDI]
REP MOVSB ;Copies memory region starting at [RSI] to region
 ; starting at [RDI], for RCX repeats, one byte
 ; at a time

Notes
MOVS copies memory in 8- bit (MOVSB), 16- bit (MOVSW), 32- bit (MOVSD), or 64- bit
(MOVSQ) chunks, from the address stored in RSI to the address stored in RDI. The
mnemonic that you use from these four is about the size of the chunks, not the
mode you’re using. For example, you can use MOVSB in x64 long mode if you
need to move data a byte at a time. If you need to move dwords, use MOVSD, etc.

By placing an operation repeat count (not a byte, word, dword, or qword
count!) in RCX and preceding the mnemonic with the REP prefix, MOVS can do
an automatic “machine- gun” copy of data from a memory region starting at
[RSI] to a memory region starting at [RDI].

After each copy operation, RSI and RDI are adjusted (see the next paragraph)
by 1 (for 8- bit operations), 2 (for 16- bit operations), 4 (for 32- bit operations), or
8 (for 64- bit operations) and RCX is decremented by 1. Don’t forget that RCX
counts operations (the number of times a data item is copied from source to
destination) and not bytes!

Adjusting means incrementing RSI and RDI if the Direction flag is cleared (by
CLD) or decrementing RSI and RDI if the Direction flag has been set (by STD).

 Appendix B ■ Partial x64 Instruction Reference 539

The Direction flag DF thus determines whether your copy operation moves
up- memory if DF is cleared (0) and down- memory if DF is set (1).

There are additional forms of the REP prefix (REPE, REPNE, REPZ, and REPNZ)
that add the ability to terminate a MOVS operation before the count register goes
to 0, by checking the state of the Zero flag ZF. Those additional forms are not
covered in this book. See the Intel documentation for details.

m8 = 8- bit memory data m16 = 16- bit memory data
m32 = 32- bit memory data m64 = 64- bit memory data
i8 = 8- bit immediate data i16 = 16- bit immediate data
i32 = 32- bit immediate data i64 = 64- bit immediate data
d8 = 8- bit signed displacement d16 = 16- bit signed displacement
d32 = 32- bit unsigned displacement NOTE: There is no 64- bit displacement
r8 = AL AH BL BH CL CH DL DH r16 = AX BX CX DX BP SP SI DI
r32 = EAX EBX ECX EDX EBP ESP ESI EDI
r64 = RAX RBX RCX RDX RBP RSP RSI RDI R8 R9 R10 R11 R12 R13 R14 R15

540 Appendix B ■ Partial x64 Instruction Reference

MOVSX: Copy with Sign Extension

Flags Affected

O D I T S Z A P C OF: Overflow flag TF: Trap flag AF: Aux carry
F F F F F F F F F DF: Direction flag SF: Sign flag PF: Parity flag
 <none> IF: Interrupt flag ZF: Zero flag CF: Carry flag

Legal Forms

MOVSX r16,r/m8 386+
MOVSX r32,r/m8 386+
MOVSX r64,r/m8 x64+
MOVSX r32,r/m16 386+
MOVSX r64,r/m16 x64+

Examples

MOVSX AX,AL
MOVSX CX,BYTE [EDI] ; Acts on the byte at EDI
MOVSX ECX,DL
MOVSX RSI,QWORD [RBX+RDI] ; Acts on the doubleword at EBX+EDI

Notes
MOVSX operates like MOV but copies values from source operand to the destina-
tion operand with sign extension. That is, it carries the sign bit of the smaller
source operand to the sign bit of the larger destination operand. This way, for
example, a 16- bit signed value in AX will still be a signed value when copied
into 32- bit register EDX or 64- bit register RDX. Without sign extension, the sign
bit of AX would simply become another bit in the binary value copied into RDX,
and the value in RDX would bear no resemblance to the supposedly identical
value in AX.

The destination operand must be a register. MOVSX can copy data from a memory
location, but not to a memory location. Also note that the destination operand
must be a wider value than the source operand; that is, MOVSX will copy from
an 8- bit or 16- bit value to a 32- bit value, but not a 16- bit to a 16- bit, nor 32- bit
to 32- bit.

MOVSX is present only in 386 and later CPUs. It does not affect any flags.

m8 = 8- bit memory data m16 = 16- bit memory data
m32 = 32- bit memory data m64 = 64- bit memory data

 Appendix B ■ Partial x64 Instruction Reference 541

i8 = 8- bit immediate data i16 = 16- bit immediate data
i32 = 32- bit immediate data i64 = 64- bit immediate data
d8 = 8- bit signed displacement d16 = 16- bit signed displacement
d32 = 32- bit unsigned displacement NOTE: There is no 64- bit displacement
r8 = AL AH BL BH CL CH DL DH r16 = AX BX CX DX BP SP SI DI
r32 = EAX EBX ECX EDX EBP ESP ESI EDI
r64 = RAX RBX RCX RDX RBP RSP RSI RDI R8 R9 R10 R11 R12 R13 R14 R15

542 Appendix B ■ Partial x64 Instruction Reference

MUL: Unsigned Integer Multiplication

Flags Affected

O D I T S Z A P C OF: Overflow flag TF: Trap flag AF: Aux carry
F F F F F F F F F DF: Direction flag SF: Sign flag PF: Parity flag
* ? ? ? ? * IF: Interrupt flag ZF: Zero flag CF: Carry flag

Legal Forms

MUL r/m8 Dividend in AX. Quotient in AL; remainder in AH.
MUL r/m16 Dividend in EAX. Quotient in AX; remainder in DX.
MUL r/m32 386+ Dividend in EAX:EDX. Quotient in EAX; remainder in EDX.
MUL r/m64 x64+ Dividend in RAX:RDX. Quotient in RAX; remainder in RDX.

Examples

MUL CH ; AL * CH - - > AX
MUL BX ; AX * BX - - > DX:AX
MUL ECX ; EAX * ECX - - > EDX:EAX
MUL DWORD [EBX+EDI] ; EAX * [EBX+EDI] - - > EDX:EAX
MUL QWORD [R14] ; RAX * [R14] - - > RDX:RAX

Notes
MUL multiplies its single operand by AL, AX, EAX, or RAX, and the result is
placed in AX, in DX:AX, in EDX:EAX, or in RDX:RAX. If MUL is given an 8- bit
operand (either an 8- bit register or an 8- bit memory operand), the results will
be placed in AX. This means that AH will be affected, even if the results will
fit entirely in AL.

Similarly, if MUL is given a 16- bit operand, the results will be placed in DX:AX,
even if the entire result will fit in AX! It’s easy to forget that MUL affects DX on
16- bit multiplies, EDX in 32- bit multiplies, and RDX in 64- bit multiplies. Keep
that in mind! Also, if you’re multiplying a value in memory, you must add the
size specifier BYTE, WORD, DWORD, or QWORD.

Note: It’s easy to assume that IMUL is identical to MUL save for IMUL’s ability
to operate on signed values. Not so: IMUL has more legal instruction forms
and is considerably more complex than MUL. For more details, see the Intel
documentation.

The Carry and Overflow flags are cleared to 0 if the result value is 0; other-
wise, both are set to 1. Remember that SF, ZF, AF, and PF become undefined
after MUL.

 Appendix B ■ Partial x64 Instruction Reference 543

m8 = 8- bit memory data m16 = 16- bit memory data
m32 = 32- bit memory data m64 = 64- bit memory data
i8 = 8- bit immediate data i16 = 16- bit immediate data
i32 = 32- bit immediate data i64 = 64- bit immediate data
d8 = 8- bit signed displacement d16 = 16- bit signed displacement
d32 = 32- bit unsigned displacement NOTE: There is no 64- bit displacement
r8 = AL AH BL BH CL CH DL DH r16 = AX BX CX DX BP SP SI DI
r32 = EAX EBX ECX EDX EBP ESP ESI EDI
r64 = RAX RBX RCX RDX RBP RSP RSI RDI R8 R9 R10 R11 R12 R13 R14 R15

544 Appendix B ■ Partial x64 Instruction Reference

NEG: Negate (Two’s Complement; i.e., Multiply by − 1)

Flags Affected

O D I T S Z A P C OF: Overflow flag TF: Trap flag AF: Aux carry
F F F F F F F F F DF: Direction flag SF: Sign flag PF: Parity flag
* * * * * * IF: Interrupt flag ZF: Zero flag CF: Carry flag

Legal Forms

NEG r/m8
NEG r/m16
NEG r/m32 386+
NEG r/m64 x64+

Examples

NEG CH
NEG BX
NEG ECX
NEG DWORD [EBX]
NEG QWORD [R14+RDI*4]

Notes
NEG is the assembly language equivalent of multiplying a value by 1. Keep in
mind that negation is not the same as simply inverting each bit in the operand.
(Another instruction, NOT, does that.) The process is also known as generating
the two’s complement of a value. The two’s complement of a value added to that
value yields zero.

−1 = $FF; −2 = $FE; −3 = $FD; and so forth.

If the operand is 0, CF is cleared, and ZF is set; otherwise, CF is set, and ZF is
cleared. If the operand contains the maximum negative value for the operand
size, the operand does not change, but OF and CF are set. SF is set if the result
is negative, or else SF is cleared. PF is set if the low- order 8 bits of the result
contain an even number of set (1) bits; otherwise, PF is cleared.

NEG acting on memory data forms must be used with a data size specifier such
as BYTE, WORD, DWORD, and QWORD. See the two examples given earlier.

m8 = 8- bit memory data m16 = 16- bit memory data
m32 = 32- bit memory data m64 = 64- bit memory data

 Appendix B ■ Partial x64 Instruction Reference 545

i8 = 8- bit immediate data i16 = 16- bit immediate data
i32 = 32- bit immediate data i64 = 64- bit immediate data
d8 = 8- bit signed displacement d16 = 16- bit signed displacement
d32 = 32- bit unsigned displacement NOTE: There is no 64- bit displacement
r8 = AL AH BL BH CL CH DL DH r16 = AX BX CX DX BP SP SI DI
r32 = EAX EBX ECX EDX EBP ESP ESI EDI
r64 = RAX RBX RCX RDX RBP RSP RSI RDI R8 R9 R10 R11 R12 R13 R14 R15

546 Appendix B ■ Partial x64 Instruction Reference

NOP: No Operation

Flags Affected

O D I T S Z A P C OF: Overflow flag TF: Trap flag AF: Aux carry
F F F F F F F F F DF: Direction flag SF: Sign flag PF: Parity flag
 <none> IF: Interrupt flag ZF: Zero flag CF: Carry flag

Legal Forms

NOP

Examples

NOP ;AllDone ; NOP replaces a jump instruction for debugging purposes,
 ; but the parameter is commented out, since NOP
 ; can't take a label as a parameter.

Notes
NOP, the easiest- to- understand of all x86/x64- family machine instructions, simply
does nothing. Its job is to take up space in sequences of instructions. The flags
are not affected. NOP is used for “NOPing out” machine instructions during
debugging, leaving space for future procedure or interrupt calls.

In ancient times, NOP was used for padding timing loops. This makes sense on
the surface but can no longer be done. Modern CPUs have the ability to perform
various context- sensitive optimizations on executing code inside the CPU. Precise
assembly- time prediction of instruction execution time is no longer possible!

m8 = 8- bit memory data m16 = 16- bit memory data
m32 = 32- bit memory data m64 = 64- bit memory data
i8 = 8- bit immediate data i16 = 16- bit immediate data
i32 = 32- bit immediate data i64 = 64- bit immediate data
d8 = 8- bit signed displacement d16 = 16- bit signed displacement
d32 = 32- bit unsigned displacement NOTE: There is no 64- bit displacement
r8 = AL AH BL BH CL CH DL DH r16 = AX BX CX DX BP SP SI DI
r32 = EAX EBX ECX EDX EBP ESP ESI EDI
r64 = RAX RBX RCX RDX RBP RSP RSI RDI R8 R9 R10 R11 R12 R13 R14 R15

 Appendix B ■ Partial x64 Instruction Reference 547

NOT: Logical NOT (One’s Complement)

Flags Affected

O D I T S Z A P C OF: Overflow flag TF: Trap flag AF: Aux carry
F F F F F F F F F DF: Direction flag SF: Sign flag PF: Parity flag
 <none> IF: Interrupt flag ZF: Zero flag CF: Carry flag

Legal Forms

NOT r/m8
NOT r/m16
NOT r/m32 386+
NOT r/m64 x64+

Examples

NOT CL
NOT DX
NOT ECX
NOT DWORD [EDI]
NOT QWORD [RDI+RCX*4]

Notes
NOT inverts each individual bit within the operand separately. That is, every bit
that was 1 becomes 0, and every bit that was 0 becomes 1. This is the “logical
NOT” or “one’s complement” operation. See the NEG instruction for the nega-
tion, or two’s complement, operation.

After execution of NOT, the value FFH would become 0; the value AAH would
become 55H. Note that the Zero flag is not affected, even when NOT forces its
operand to 0.

NOT acting on memory data forms must be used with a data size specifier such
as BYTE, WORD, DWORD, and QWORD. See the two examples given earlier.

m8 = 8- bit memory data m16 = 16- bit memory data
m32 = 32- bit memory data m64 = 64- bit memory data
i8 = 8- bit immediate data i16 = 16- bit immediate data
i32 = 32- bit immediate data i64 = 64- bit immediate data
d8 = 8- bit signed displacement d16 = 16- bit signed displacement
d32 = 32- bit unsigned displacement NOTE: There is no 64- bit displacement
r8 = AL AH BL BH CL CH DL DH r16 = AX BX CX DX BP SP SI DI
r32 = EAX EBX ECX EDX EBP ESP ESI EDI
r64 = RAX RBX RCX RDX RBP RSP RSI RDI R8 R9 R10 R11 R12 R13 R14 R15

548 Appendix B ■ Partial x64 Instruction Reference

OR: Logical OR

Flags Affected

O D I T S Z A P C OF: Overflow flag TF: Trap flag AF: Aux carry
F F F F F F F F F DF: Direction flag SF: Sign flag PF: Parity flag
* * * ? * * IF: Interrupt flag ZF: Zero flag CF: Carry flag

Legal Forms

OR r/m8,i8
OR r/m16,i16
OR r/m32,i32 386+
OR r/m64,i32 x64+ NOTE: OR r/m64,i64 is NOT valid!
OR r/m16,i8
OR r/m32,i8 386+
OR r/m64,i8 x64+
OR r/m8,r8
OR r/m16,r16
OR r/m32,r32 386+
OR r/m64,r64 x64+
OR r8,r/m8
OR r16,r/m16
OR r32,r/m32 386+
OR r64,r/m64 x64+
OR AL,i8
OR AX,i16
OR EAX,i32 386+
OR RAX,i32 x64+ NOTE: OR RAX,i64 is NOT valid!

Examples

OR BX,DI
OR EAX,5
OR AX,0FFFFH
OR AL,42H
OR [BP+SI],DX
OR [RDI],RAX
OR QWORD [RBX],0B80000H

Notes
OR performs the OR logical operation between its two operands. Once the oper-
ation is complete, the result replaces the destination operand. OR is performed

 Appendix B ■ Partial x64 Instruction Reference 549

on a bit- by- bit basis, such that bit 0 of the source is ORed with bit 0 of the des-
tination, bit 1 of the source is ORed with bit 1 of the destination, and so on. The
OR operation yields a 1 if one of the operands is 1; and a 0 only if both operands
are 0. Note that the OR instruction makes the Auxiliary Carry flag undefined.
CF and OF are cleared to 0, and the other affected flags are set according to the
operation’s results.

m8 = 8- bit memory data m16 = 16- bit memory data
m32 = 32- bit memory data m64 = 64- bit memory data
i8 = 8- bit immediate data i16 = 16- bit immediate data
i32 = 32- bit immediate data i64 = 64- bit immediate data
d8 = 8- bit signed displacement d16 = 16- bit signed displacement
d32 = 32- bit unsigned displacement NOTE: There is no 64- bit displacement
r8 = AL AH BL BH CL CH DL DH r16 = AX BX CX DX BP SP SI DI
r32 = EAX EBX ECX EDX EBP ESP ESI EDI
r64 = RAX RBX RCX RDX RBP RSP RSI RDI R8 R9 R10 R11 R12 R13 R14 R15

550 Appendix B ■ Partial x64 Instruction Reference

POP: Copy Top of Stack into Operand

Flags Affected

O D I T S Z A P C OF: Overflow flag TF: Trap flag AF: Aux carry
F F F F F F F F F DF: Direction flag SF: Sign flag PF: Parity flag
 <none> IF: Interrupt flag ZF: Zero flag CF: Carry flag

Legal Forms

POP m16
POP m32 32- bit CPUs only: not valid in x64 mode
POP m64 x64+
POP r16
POP r32 32- bit CPUs only: not valid in x64 mode
POP r64 x64+

Examples

POP DX
POP RCX
POP QWORD [RDI]
POP QWORD [RDI+RCX*4]

Notes
It is impossible to pop an 8- bit item from the stack. Also remember that the top
of the stack is defined (in 16- bit modes) as the word at address SS:SP, and there’s
no way to override that using prefixes. In 32- bit modes, the top of the stack is
the DWORD at [ESP]. In 64- bit mode, the top of the stack is the QWORD at [RSP]. The
32- bit forms of POP are invalid in 64- bit mode. There is a separate pair of instruc-
tions, PUSHF/D/Q and POPF/D/Q, for pushing and popping the Flags register.

POP acting on memory data forms must be used with a data size specifier such
as BYTE, WORD, DWORD, and QWORD. See the examples given earlier.

There are several forms of POP for popping segment registers, but these
forms cannot be used in userspace programming. For details, see the Intel
documentation.

m8 = 8- bit memory data m16 = 16- bit memory data
m32 = 32- bit memory data m64 = 64- bit memory data
i8 = 8- bit immediate data i16 = 16- bit immediate data
i32 = 32- bit immediate data i64 = 64- bit immediate data
d8 = 8- bit signed displacement d16 = 16- bit signed displacement

 Appendix B ■ Partial x64 Instruction Reference 551

d32 = 32- bit unsigned displacement NOTE: There is no 64- bit displacement
r8 = AL AH BL BH CL CH DL DH r16 = AX BX CX DX BP SP SI DI
r32 = EAX EBX ECX EDX EBP ESP ESI EDI
r64 = RAX RBX RCX RDX RBP RSP RSI RDI R8 R9 R10 R11 R12 R13 R14 R15

552 Appendix B ■ Partial x64 Instruction Reference

POPF/D/Q: Copy Top of Stack into Flags Register

Flags Affected

O D I T S Z A P C OF: Overflow flag TF: Trap flag AF: Aux carry
F F F F F F F F F DF: Direction flag SF: Sign flag PF: Parity flag
* * * * * * * * * IF: Interrupt flag ZF: Zero flag CF: Carry flag

Legal Forms

POPF
POPFD 32- bit CPUs only: Invalid in 64- bit mode
POPFQ x64+

Examples

POPF ;Pops 16- bit top of stack into the FLAGS register
POPFD ;Pops 32- bit top of stack into the EFLAGS register
POPFQ ;Pops 64- bit top of stack into the RFLAGS register

Notes
These instructions pop data at the top of the stack into the flags register appro-
priate to the mode. POPF pops 16 bits into the FLAGS register. POPFD pops 32 bits
into EFLAGS. POPFQ pops 64 bits into RFLAGS. The stack pointer is incremented
by 2 after POPF, 4 after POPFD, and 8 after POPFQ. POPF may be used in 64- bit mode,
if PUSHF was done earlier. Remember that RFLAGS contains EFLAGS, which
in turn contains FLAGS. When you pop the top 16 bits off the stack with POPF,
you’re popping those bits into the lowest 16 bits of both EFLAGS and RFLAGS.

POPFD is invalid in 64- bit mode.
Pushing and popping the CPU flags is a subtle business and more complex

than you might think. It’s mostly done by the operating system and isn’t often
done in userspace programming. For details, see the Intel documentation.

m8 = 8- bit memory data m16 = 16- bit memory data
m32 = 32- bit memory data m64 = 64- bit memory data
i8 = 8- bit immediate data i16 = 16- bit immediate data
i32 = 32- bit immediate data i64 = 64- bit immediate data
d8 = 8- bit signed displacement d16 = 16- bit signed displacement
d32 = 32- bit unsigned displacement NOTE: There is no 64- bit displacement
r8 = AL AH BL BH CL CH DL DH r16 = AX BX CX DX BP SP SI DI
r32 = EAX EBX ECX EDX EBP ESP ESI EDI
r64 = RAX RBX RCX RDX RBP RSP RSI RDI R8 R9 R10 R11 R12 R13 R14 R15

 Appendix B ■ Partial x64 Instruction Reference 553

PUSH: Push Operand onto Top of Stack

Flags Affected

O D I T S Z A P C OF: Overflow flag TF: Trap flag AF: Aux carry
F F F F F F F F F DF: Direction flag SF: Sign flag PF: Parity flag
 <none> IF: Interrupt flag ZF: Zero flag CF: Carry flag

Legal Forms

PUSH r/m16
PUSH r/m32 32- bit CPUs only; not valid in 64- bit mode
PUSH r/m64 x64+
PUSH i16
PUSH i32 32- bit CPUs only; not valid in 64- bit mode
PUSH i64 x64+

Examples

PUSH DX
PUSH R13
PUSH QWORD 5
PUSH QWORD 034F001h

Notes
PUSH decrements the stack pointer and then copies its operand onto the stack.
The stack pointer then points at the new data. (Before the stack is used, the stack
pointer points to empty memory.) It is impossible to push 8- bit data onto the
stack. Also remember that the top of the stack is defined (in 16- bit modes) as the
word at address SS:SP, and there’s no way to override that using prefixes. In
32- bit modes the top of the stack is the DWORD at[ESP]. In 64- bit mode the top of
the stack is the QWORD at [RSP]. The 32- bit forms are not valid in x64. There is a
separate set of instructions, PUSHF/D/Q and POPF/D/Q, for pushing and popping
the FLAGS/EFLAGS/RFLAGS registers.

PUSH acting on memory data forms must be used with a data size specifier
such as BYTE, WORD, DWORD, and QWORD. See the examples given earlier.

There are special forms of PUSH for pushing the segment registers, but those
forms are not listed here since they cannot be used in ordinary Linux userspace
programming.

554 Appendix B ■ Partial x64 Instruction Reference

m8 = 8- bit memory data m16 = 16- bit memory data
m32 = 32- bit memory data m64 = 64- bit memory data
i8 = 8- bit immediate data i16 = 16- bit immediate data
i32 = 32- bit immediate data i64 = 64- bit immediate data
d8 = 8- bit signed displacement d16 = 16- bit signed displacement
d32 = 32- bit unsigned displacement NOTE: There is no 64- bit displacement
r8 = AL AH BL BH CL CH DL DH r16 = AX BX CX DX BP SP SI DI
r32 = EAX EBX ECX EDX EBP ESP ESI EDI
r64 = RAX RBX RCX RDX RBP RSP RSI RDI R8 R9 R10 R11 R12 R13 R14 R15

 Appendix B ■ Partial x64 Instruction Reference 555

PUSHF/D/Q: Push Flags Onto the Stack

Flags Affected

O D I T S Z A P C OF: Overflow flag TF: Trap flag AF: Aux carry
F F F F F F F F F DF: Direction flag SF: Sign flag PF: Parity flag
 <none> IF: Interrupt flag ZF: Zero flag CF: Carry flag

Legal Forms

PUSHF
PUSHFD 32- bit CPUs only: Invalid in 64- bit mode
PUSHFQ x64+

Examples

PUSHF ;Pushes 16- bit FLAGS register onto the stack
PUSHFD ;Pushes 32- bit EFLAGS register onto the stack
PUSHFQ ;Pushes 64- bit RFLAGS register onto the stack

Notes
These three instructions push the FLAGS/EFLAGS/RFLAGS register onto
the stack. PUSHF pushes the 16- bit FLAGS register. PUSHFD pushes 32- bit
EFLAGS. PUSHFQ pushes 64- bit RFLAGS. The stack pointer is decremented
before the flags values are pushed onto the stack. Remember that RFLAGS con-
tains EFLAGS, which in turn contains FLAGS. When you pop the top 16 bits
off the stack with POPF, you’re popping those bits into the lowest 16 bits of both
EFLAGS and RFLAGS.

PUSHFD is invalid in 64- bit mode.
Pushing and popping the CPU flags is a subtle business, and more complex

than you might think. It’s mostly done by the operating system and isn’t often
done in userspace programming. For details, see the Intel documentation.

m8 = 8- bit memory data m16 = 16- bit memory data
m32 = 32- bit memory data m64 = 64- bit memory data
i8 = 8- bit immediate data i16 = 16- bit immediate data
i32 = 32- bit immediate data i64 = 64- bit immediate data
d8 = 8- bit signed displacement d16 = 16- bit signed displacement
d32 = 32- bit unsigned displacement NOTE: There is no 64- bit displacement
r8 = AL AH BL BH CL CH DL DH r16 = AX BX CX DX BP SP SI DI
r32 = EAX EBX ECX EDX EBP ESP ESI EDI
r64 = RAX RBX RCX RDX RBP RSP RSI RDI R8 R9 R10 R11 R12 R13 R14 R15

556 Appendix B ■ Partial x64 Instruction Reference

RET: Return from Procedure

Flags Affected

O D I T S Z A P C OF: Overflow flag TF: Trap flag AF: Aux carry
F F F F F F F F F DF: Direction flag SF: Sign flag PF: Parity flag
 <none> IF: Interrupt flag ZF: Zero flag CF: Carry flag

Legal Forms

RET
RETN
RET i16
RETN i16

Examples

RET
RET 16 ; Removes 2 64- bit (8 byte) parameters from the stack

Notes
There are two kinds of returns from procedures: Near and Far, where Near is
within the current code segment and Far is to some other code segment. This
is not an issue in 32- bit and 64- bit protected mode, for which there is only one
code segment in userspace code and all calls and returns are Near. Ordinarily,
the RET form is used, and the assembler resolves it to a Near or Far return
opcode to match the procedure definition’s use of the NEAR or FAR specifier if
one is present. Specifying RETN may be done for Near returns when necessary.

RET may take an operand indicating how many bytes of stack space are to
be released on returning from the procedure. This figure is subtracted from the
stack pointer to erase data items that had been pushed onto the stack for the
procedure’s use immediately prior to the procedure call. Make sure you calcu-
late the immediate value correctly, or the stack will be corrupted and probably
trigger a segmentation fault.

There are additional variants of the RET instruction with provisions for working
with the protection mechanisms of operating systems. These are not covered here,
and for more information, you should see an advanced text or a full assembly
language reference.

m8 = 8- bit memory data m16 = 16- bit memory data
m32 = 32- bit memory data m64 = 64- bit memory data

 Appendix B ■ Partial x64 Instruction Reference 557

i8 = 8- bit immediate data i16 = 16- bit immediate data
i32 = 32- bit immediate data i64 = 64- bit immediate data
d8 = 8- bit signed displacement d16 = 16- bit signed displacement
d32 = 32- bit unsigned displacement NOTE: There is no 64- bit displacement
r8 = AL AH BL BH CL CH DL DH r16 = AX BX CX DX BP SP SI DI
r32 = EAX EBX ECX EDX EBP ESP ESI EDI
r64 = RAX RBX RCX RDX RBP RSP RSI RDI R8 R9 R10 R11 R12 R13 R14 R15

558 Appendix B ■ Partial x64 Instruction Reference

ROL/ROR: Rotate Left/Rotate Right

Flags Affected

O D I T S Z A P C OF: Overflow flag TF: Trap flag AF: Aux carry
F F F F F F F F F DF: Direction flag SF: Sign flag PF: Parity flag
* * IF: Interrupt flag ZF: Zero flag CF: Carry flag

Legal Forms

ROL/ROR r/m8,1
ROL/ROR r/m16,1
ROL/ROR r/m32,1 386+
ROL/ROR r/m64,1 x64+
ROL/ROR r/m8,CL
ROL/ROR r/m16,CL
ROL/ROR r/m32,CL 386+
ROL/ROR r/m64,CL x64+
ROL/ROR r/m8,i8 286+
ROL/ROr r/m16,i8 286+
ROL/ROR r/m32,i8 386+
ROL/ROR m/m64,i8 x64+

Examples

ROL/ROR AX,1
ROL/ROR DWORD {EBX+ESI],9
ROL/ROR R14,17
ROL/ROR QWORD [BPI],CL

Notes
ROL and ROR rotate the bits within the destination operand to the left (ROL) and
the right (ROR), where left is toward the most significant bit (MSB) and right is
toward the least significant bit (LSB). A rotate is a shift (see SHL and SHR) that
wraps around: For ROL, the leftmost bit of the operand is shifted into the right-
most bit, and all intermediate bits are shifted one bit to the left. Going the other
way, for ROR the rightmost bit of the operand is shifted into the leftmost bit, with
all other bits moving one bit to the right. Except for the direction that the shift
operation takes, ROL is identical to ROR, which is why I treat both instructions
on the same page.

 Appendix B ■ Partial x64 Instruction Reference 559

The number of bit positions shifted may be specified either as an 8- bit immediate
value or by the value in CL— not CX/ECX/RCX. (The 8086 and 8088 may only
use the forms shifting by the immediate value 1.) Note that while CL may accept
a value up to 255, it is meaningless to shift by any value larger than the native
word size. The 286 and later limit the number of shift operations performed to
the native word size, except when running in Virtual 86 mode.

With ROL, the leftmost bit is copied into CF on each shift operation. With ROR,
the rightmost bit is copied into CF on each shift operation. For both ROL and
ROR, OF is modified only by the shift- by- one forms. After shift- by- CL forms, OF
becomes undefined. However, if the number of bits to shift by is 0, none of the
flags is affected.

ROL or ROR acting on memory data forms must be used with a data size spec-
ifier such as BYTE, WORD, DWORD, and QWORD. See the examples given earlier.

Although I’m not giving them a separate page here, RCL and RCR work the
same way, except that the Carry flag CF is part of the rotation, in essence add-
ing a bit to the rotation.

m8 = 8- bit memory data m16 = 16- bit memory data
m32 = 32- bit memory data m64 = 64- bit memory data
i8 = 8- bit immediate data i16 = 16- bit immediate data
i32 = 32- bit immediate data i64 = 64- bit immediate data
d8 = 8- bit signed displacement d16 = 16- bit signed displacement
d32 = 32- bit unsigned displacement NOTE: There is no 64- bit displacement
r8 = AL AH BL BH CL CH DL DH r16 = AX BX CX DX BP SP SI DI
r32 = EAX EBX ECX EDX EBP ESP ESI EDI
r64 = RAX RBX RCX RDX RBP RSP RSI RDI R8 R9 R10 R11 R12 R13 R14 R15

560 Appendix B ■ Partial x64 Instruction Reference

SBB: Arithmetic Subtraction with Borrow

Flags Affected

O D I T S Z A P C OF: Overflow flag TF: Trap flag AF: Aux carry
F F F F F F F F F DF: Direction flag SF: Sign flag PF: Parity flag
* * * * * * IF: Interrupt flag ZF: Zero flag CF: Carry flag

Legal Forms

SBB r/m8,i8
SBB r/m16,i16
SBB r/m32,i32 386+
SBB r/m64,i32 x64+ NOTE: SBB r/m64,i64 is NOT valid!
SBB r/m16,i8
SBB r/m32,i8 386+
SBB r/m64,i8 x64+
SBB r/m8,r8
SBB r/m16,r16
SBB r/m32,r32 386+
SBB r/m64,r64 x64+
SBB r8,r/m8
SBB r16,r/m16
SBB r32,r/m32 386+
SBB r64,r/m64 x64+
SBB AL,i8
SBB AX,i16
SBB EAX,i32 386+
SBB RAX,i32 x64+ NOTE: SBB RAX,i64 is NOT valid!

Examples

SBB DX,DI
SBB AX,04B2FH
SBB AL,CBH
SBB BP,19H
SBB DWORD [ESI],EAX
SBB QWORD [RAX],7BH

Notes
SBB performs a subtraction with borrow, where the source operand is subtracted
from the destination operand, and then the Carry flag is subtracted from the
result. The result then replaces the destination operand. If the result is negative,

 Appendix B ■ Partial x64 Instruction Reference 561

the Carry flag is set. To subtract without taking the Carry flag into account (i.e.,
without borrowing), use the SUB instruction.

m8 = 8- bit memory data m16 = 16- bit memory data
m32 = 32- bit memory data m64 = 64- bit memory data
i8 = 8- bit immediate data i16 = 16- bit immediate data
i32 = 32- bit immediate data i64 = 64- bit immediate data
d8 = 8- bit signed displacement d16 = 16- bit signed displacement
d32 = 32- bit unsigned displacement NOTE: There is no 64- bit displacement
r8 = AL AH BL BH CL CH DL DH r16 = AX BX CX DX BP SP SI DI
r32 = EAX EBX ECX EDX EBP ESP ESI EDI
r64 = RAX RBX RCX RDX RBP RSP RSI RDI R8 R9 R10 R11 R12 R13 R14 R15

562 Appendix B ■ Partial x64 Instruction Reference

SHL/SHR: Shift Left/Shift Right

Flags Affected

O D I T S Z A P C OF: Overflow flag TF: Trap flag AF: Aux carry
F F F F F F F F F DF: Direction flag SF: Sign flag PF: Parity flag
* * * ? * * IF: Interrupt flag ZF: Zero flag CF: Carry flag

Legal Forms

SHL/SHR r/m8,1
SHL/SHR r/m16,1
SHL/SHR r/m32,1 386+
SHL/SHR r/m64,1 x64+
SHL/SHR r/m8,CL
SHL/SHR r/m16,CL
SHL/SHR r/m32,CL 386+
SHL/SHR r/m64,CL x64+
SHL/SHR r/m8,i8 286+
SHL/SHR r/m16,i8 286+
SHL/SHR r/m32,i8 386+
SHL/SHR m/m64,i8 x64+

Examples

SHL/SHR AX,1
SHL/SHR DWORD {EDX+ESI],4
SHL/SHR R12,15
SHL/SHR QWORD [RDI],CL

Notes
SHL and SHR shift the bits in their destination operands by a count given in the
source operand. SHL shifts the bits within the destination operand to the left,
where left is toward the most significant bit (MSB). SHR shifts the bits within
the destination operand to the right, where right is toward the least significant
bit (LSB).The number of bit positions shifted may be specified either as an 8- bit
immediate value or by the value in CL— not CX/ECX/RCX. (The 8086 and 8088
are limited to the immediate value 1.) Note that while CL may accept a value up
to 255, it is meaningless to shift by any value larger than the native word size.
The 286 and later limit the number of shift operations performed to the native
word size except when running in Virtual 86 mode.

 Appendix B ■ Partial x64 Instruction Reference 563

With SHL, the leftmost bit of the operand is shifted into CF; the rightmost bit
is cleared to 0. With SHR, the rightmost bit is shifted into CF; the leftmost bit is
cleared to 0. The Auxiliary Carry flag AF becomes undefined after both SHL and
SHR. OF is modified only by the shift- by- one forms. After any of the shift- by- CL
forms, OF becomes undefined.

SHL or SHR acting on memory data forms must be used with a data size spec-
ifier such as BYTE, WORD, DWORD, and QWORD. See the examples given earlier.

SHL is a synonym for SAL (Shift Arithmetic Left). SHR is a synonym for SAR
(Shift Arithmetic Right.) Except for the direction the shift operation takes, SHL
is identical to SHR.

m8 = 8- bit memory data m16 = 16- bit memory data
m8 = 8- bit memory data m16 = 16- bit memory data
m32 = 32- bit memory data m64 = 64- bit memory data
i8 = 8- bit immediate data i16 = 16- bit immediate data
i32 = 32- bit immediate data i64 = 64- bit immediate data
d8 = 8- bit signed displacement d16 = 16- bit signed displacement
d32 = 32- bit unsigned displacement NOTE: There is no 64- bit displacement
r8 = AL AH BL BH CL CH DL DH r16 = AX BX CX DX BP SP SI DI
r32 = EAX EBX ECX EDX EBP ESP ESI EDI
r64 = RAX RBX RCX RDX RBP RSP RSI RDI R8 R9 R10 R11 R12 R13 R14 R15

564 Appendix B ■ Partial x64 Instruction Reference

STC: Set Carry Flag (CF)

Flags Affected

O D I T S Z A P C OF: Overflow flag TF: Trap flag AF: Aux carry
F F F F F F F F F DF: Direction flag SF: Sign flag PF: Parity flag
 * IF: Interrupt flag ZF: Zero flag CF: Carry flag

Legal Forms

STC

Examples

STC

Notes
STC changes the Carry flag CF to a known set state (1). Use it prior to some task
that needs a bit in the Carry flag. The CLC instruction is similar and will clear
CF to a known state of 0.

m8 = 8- bit memory data m16 = 16- bit memory data
m32 = 32- bit memory data m64 = 64- bit memory data
i8 = 8- bit immediate data i16 = 16- bit immediate data
i32 = 32- bit immediate data i64 = 64- bit immediate data
d8 = 8- bit signed displacement d16 = 16- bit signed displacement
d32 = 32- bit unsigned displacement NOTE: There is no 64- bit displacement
r8 = AL AH BL BH CL CH DL DH r16 = AX BX CX DX BP SP SI DI
r32 = EAX EBX ECX EDX EBP ESP ESI EDI
r64 = RAX RBX RCX RDX RBP RSP RSI RDI R8 R9 R10 R11 R12 R13 R14 R15

 Appendix B ■ Partial x64 Instruction Reference 565

STD: Set Direction Flag (DF)

Flags Affected

O D I T S Z A P C OF: Overflow flag TF: Trap flag AF: Aux carry
F F F F F F F F F DF: Direction flag SF: Sign flag PF: Parity flag
 * IF: Interrupt flag ZF: Zero flag CF: Carry flag

Legal Forms

STD

Examples

STD

Notes
STD simply changes the Direction flag DF to the set (1) state. This affects the
adjustment performed by repeated string instructions such as STOS, SCAS, and
MOVS. Typically, when DF = 0, the destination pointer is increased and decreased
when DF = 1. DF is cleared to 0 with the CLD instruction.

m8 = 8- bit memory data m16 = 16- bit memory data
m32 = 32- bit memory data m64 = 64- bit memory data
i8 = 8- bit immediate data i16 = 16- bit immediate data
i32 = 32- bit immediate data i64 = 64- bit immediate data
d8 = 8- bit signed displacement d16 = 16- bit signed displacement
d32 = 32- bit unsigned displacement NOTE: There is no 64- bit displacement
r8 = AL AH BL BH CL CH DL DH r16 = AX BX CX DX BP SP SI DI
r32 = EAX EBX ECX EDX EBP ESP ESI EDI
r64 = RAX RBX RCX RDX RBP RSP RSI RDI R8 R9 R10 R11 R12 R13 R14 R15

566 Appendix B ■ Partial x64 Instruction Reference

STOS/B/W/D/Q: Store String

Flags Affected

O D I T S Z A P C OF: Overflow flag TF: Trap flag AF: Aux carry
F F F F F F F F F DF: Direction flag SF: Sign flag PF: Parity flag
 <none> IF: Interrupt flag ZF: Zero flag CF: Carry flag

Legal Forms

STOS m8
STOS m16
STOS m32
STOS m64
STOSB ; For 8- bit operations
STOSW ; For 16- bit operations
STOSD ; For 32- bit operations
STOSQ ; For 64- bit operations

Examples

STOSB ; Stores AL to [EDI/RDI]
REP STOSB ; Stores AL to [EDI/RDI] and up, for ECX/RCX repeats
STOSW ; Stores AX to [EDI/RDI]
STOSD ; Stores EAX to [EDI/RDI]
REP STOSQ ; Stores RAX to [EDI/RDI] and up, for ECX/RCX repeats

Notes
STOS stores AL (for 8- bit store operations), AX (for 16- bit operations), and EAX
(for 32- bit operations) or RAX (for 64- bit operations) to the location at [EDI]
/ [RDI]. For 16- bit legacy modes, ES must contain the segment address of the
destination and cannot be overridden. For 32- bit and x64 protected modes, all
segments are congruent, and thus ES does not need to be specified explicitly.
Similarly, DI, EDI, or RDI must always contain the destination offset. The STOS
form must always have an operand specifying a memory location and size. The
STOSB, STOSW, STOSD, and STOSQ forms contain the size of the operation in their
mnemonics, and their operands are implicit, with the store operation going to
a memory address in EDI or RDI.

By placing an operation repeat count (not a byte count!) in CX/ECX/RCX
and preceding the mnemonic with the REP prefix, STOS can do an automatic
“machine- gun” store of AL/AX/EAX/RAX into successive memory locations

 Appendix B ■ Partial x64 Instruction Reference 567

beginning at the initial address [DI], [EDI], or [RDI]. After each store, the DI/
EDI/RDI register is adjusted (see the next paragraph) by 1 (for 8- bit store oper-
ations), 2 (for 16- bit store operations), 4 (for 32- bit store operations), or 8 (for
64- bit store operations, and CX/ECX/RCX is decremented by 1. Don’t forget
that CX/ECX/RCX counts operations (the number of times a data item is stored
to memory) and not bytes!

Adjusting means incrementing if the Direction flag is cleared (by CLD) or dec-
rementing if the Direction flag has been set (by STD).

m8 = 8- bit memory data m16 = 16- bit memory data
m32 = 32- bit memory data m64 = 64- bit memory data
i8 = 8- bit immediate data i16 = 16- bit immediate data
i32 = 32- bit immediate data i64 = 64- bit immediate data
d8 = 8- bit signed displacement d16 = 16- bit signed displacement
d32 = 32- bit unsigned displacement NOTE: There is no 64- bit displacement
r8 = AL AH BL BH CL CH DL DH r16 = AX BX CX DX BP SP SI DI
r32 = EAX EBX ECX EDX EBP ESP ESI EDI
r64 = RAX RBX RCX RDX RBP RSP RSI RDI R8 R9 R10 R11 R12 R13 R14 R15

568 Appendix B ■ Partial x64 Instruction Reference

SUB: Arithmetic Subtraction

Flags Affected

O D I T S Z A P C OF: Overflow flag TF: Trap flag AF: Aux carry
F F F F F F F F F DF: Direction flag SF: Sign flag PF: Parity flag
* * * * * * IF: Interrupt flag ZF: Zero flag CF: Carry flag

Legal Forms

SUB r/m8,i8
SUB r/m16,i16
SUB r/m32,i32 386+
SUB r/m64,i32 x64+ NOTE: SUB r/m64,i64 is NOT valid!
SUB r/m16,i8
SUB r/m32,i8 386+
SUB r/m64,i8 x64+
SUB r/m8,r8
SUB r/m16,r16
SUB r/m32,r32 386+
SUB r/m64,r64 x64+
SUB r8,r/m8
SUB r16,r/m16
SUB r32,r/m32 386+
SUB r64,r/m64 x64+
SUB AL,i8
SUB AX,i16
SUB EAX,i32 386+
SUB RAX,i32 x64+ NOTE: SUB RAX,i64 is NOT valid!

Examples

SUB AX,DX
SUB AL,DL
SUB EBP,17
SUB RAX,0FFFBH ; The i32 value is sign- extended to 64 bits
 ; before the operation
SUB DWORD [EDI],EAX
AND QWORD [RAX],7BH ; The i32 value is sign- extended to 64 bits
 ; before the operation

 Appendix B ■ Partial x64 Instruction Reference 569

Notes
SUB performs a subtraction without borrow, where the source operand is sub-
tracted from the destination operand, and the result replaces the destination
operand. If the result is negative, the Carry flag CF is set.

In 64- bit mode, 32- bit source operands are sign- extended to 64 bits before the
subtraction operation happens.

Multiple- precision subtraction can be performed by following SUB with
SBB (Subtract with Borrow), which takes the Carry flag into account as an
arithmetic borrow.

m8 = 8- bit memory data m16 = 16- bit memory data
m32 = 32- bit memory data m64 = 64- bit memory data
i8 = 8- bit immediate data i16 = 16- bit immediate data
i32 = 32- bit immediate data i64 = 64- bit immediate data
d8 = 8- bit signed displacement d16 = 16- bit signed displacement
d32 = 32- bit unsigned displacement NOTE: There is no 64- bit displacement
r8 = AL AH BL BH CL CH DL DH r16 = AX BX CX DX BP SP SI DI
r32 = EAX EBX ECX EDX EBP ESP ESI EDI
r64 = RAX RBX RCX RDX RBP RSP RSI RDI R8 R9 R10 R11 R12 R13 R14 R15

570 Appendix B ■ Partial x64 Instruction Reference

SYSCALL: Fast System Call into Linux

Flags Affected

O D I T S Z A P C OF: Overflow flag TF: Trap flag AF: Aux carry
F F F F F F F F F DF: Direction flag SF: Sign flag PF: Parity flag
 <none> IF: Interrupt flag ZF: Zero flag CF: Carry flag

Legal Forms

SYSCALL

Examples

SYSCALL

Notes
SYSCALL makes a fast call to a predefined operating system service routine. (This
does not include calls into the C library!) It is available only in 64- bit mode. There
are currently 335 such service routines. These routines do not have names but
are selected by a number. Typically, registers are loaded with the number of
the desired service routine and values appropriate to the chosen service routine
before SYSCALL is executed.

SYSCALL trashes RCX and R11. All other registers are preserved. For a list of
available x64 Linux system calls, see these sites, which were available at this
edition’s publication date in 2023:

https://blog.rchapman.org/posts/Linux_System_Call_Table_for_x86_64

https://hackeradam.com/x86- 64- linux- syscalls

SYSCALL replaces the INT 80 calling protocol in 32- bit Linux. Remember that the
numbers of the x64 system calls are not the same as those from 32- bit x86 Linux!

m8 = 8- bit memory data m16 = 16- bit memory data
m32 = 32- bit memory data m64 = 64- bit memory data
i8 = 8- bit immediate data i16 = 16- bit immediate data
i32 = 32- bit immediate data i64 = 64- bit immediate data
d8 = 8- bit signed displacement d16 = 16- bit signed displacement
d32 = 32- bit unsigned displacement NOTE: There is no 64- bit displacement
r8 = AL AH BL BH CL CH DL DH r16 = AX BX CX DX BP SP SI DI
r32 = EAX EBX ECX EDX EBP ESP ESI EDI
r64 = RAX RBX RCX RDX RBP RSP RSI RDI R8 R9 R10 R11 R12 R13 R14 R15

https://blog.rchapman.org/posts/Linux_System_Call_Table_for_x86_64/
https://hackeradam.com/x86-64-linux-syscalls/

 Appendix B ■ Partial x64 Instruction Reference 571

XCHG: Exchange Operands

Flags Affected

O D I T S Z A P C OF: Overflow flag TF: Trap flag AF: Aux carry
F F F F F F F F F DF: Direction flag SF: Sign flag PF: Parity flag
 <none> IF: Interrupt flag ZF: Zero flag CF: Carry flag

Legal Forms

XCHG r/m8,r8
XCHG r/m16,r16
XCHG r/m32,r32 386+
XCHG r/m64,r64 x64+
XCHG r8,r/m8
XCHG r16,r/m16
XCHG r32,r/m32 386+
XCHG r64,r/m64 x64+
XCHG AX,r16
XCHG EAX,r32 386+
XCHG RAX,r64 x64+
XCHG r16,AX
XCHG r32,EAX 386+
XCHG r64,RAX x64+

Examples

XCHG AL,AH
XCHG EAX,EBX
XCHG R12,[RSI+Offset]
XCHG [RDI],RDX

Notes
XCHG exchanges the contents of its two operands. The two operands must be
the same size.

m8 = 8- bit memory data m16 = 16- bit memory data
m32 = 32- bit memory data m64 = 64- bit memory data
i8 = 8- bit immediate data i16 = 16- bit immediate data
i32 = 32- bit immediate data i64 = 64- bit immediate data
d8 = 8- bit signed displacement d16 = 16- bit signed displacement
d32 = 32- bit unsigned displacement NOTE: There is no 64- bit displacement
r8 = AL AH BL BH CL CH DL DH r16 = AX BX CX DX BP SP SI DI
r32 = EAX EBX ECX EDX EBP ESP ESI EDI
r64 = RAX RBX RCX RDX RBP RSP RSI RDI R8 R9 R10 R11 R12 R13 R14 R15

572 Appendix B ■ Partial x64 Instruction Reference

XLAT: Translate Byte Via Table

Flags Affected

O D I T S Z A P C OF: Overflow flag TF: Trap flag AF: Aux carry
F F F F F F F F F DF: Direction flag SF: Sign flag PF: Parity flag
 <none> IF: Interrupt flag ZF: Zero flag CF: Carry flag

Legal Forms

XLAT
XLATB

Examples

XLAT ; 32- bit: Loads AL with byte table entry at EBX+AL
XLAT ; 64- bit: Loads AL with byte table entry at RBX+AL

Notes
XLAT and its synonym XLATB perform a table translation of the 8- bit value in
AL. All operands are implicit. The value in AL is treated as the index into a
table in memory, located at the address contained in EBX (in 32- bit mode) or
RBX (in x64 mode). When XLAT is executed, the value at [EBX+AL] / [RBX+AL]
replaces the value previously in AL. AL is hard- coded as an implicit operand;
no other register may be used.

The table located at the 32- bit or 64- bit address in EBX/RBX does not have
to be 256 bytes in length, but a value in AL larger than the length of the table
will result in an undefined value being placed in AL.

m8 = 8- bit memory data m16 = 16- bit memory data
m32 = 32- bit memory data m64 = 64- bit memory data
i8 = 8- bit immediate data i16 = 16- bit immediate data
i32 = 32- bit immediate data i64 = 64- bit immediate data
d8 = 8- bit signed displacement d16 = 16- bit signed displacement
d32 = 32- bit unsigned displacement NOTE: There is no 64- bit displacement
r8 = AL AH BL BH CL CH DL DH r16 = AX BX CX DX BP SP SI DI
r32 = EAX EBX ECX EDX EBP ESP ESI EDI
r64 = RAX RBX RCX RDX RBP RSP RSI RDI R8 R9 R10 R11 R12 R13 R14 R15

 Appendix B ■ Partial x64 Instruction Reference 573

XOR: Exclusive OR

Flags Affected

O D I T S Z A P C OF: Overflow flag TF: Trap flag AF: Aux carry
F F F F F F F F F DF: Direction flag SF: Sign flag PF: Parity flag
* * * ? * * IF: Interrupt flag ZF: Zero flag CF: Carry flag

Legal Forms

XOR r/m8,i8
XOR r/m16,i16
XOR r/m32,i32 386+
XOR r/m64,i32 x64+ NOTE: XOR r/m64,i64 is NOT valid!
XOR r/m16,i8
XOR r/m32,i8 386+
XOR r/m64,i8 x64+
XOR r/m8,r8
XOR r/m16,r16
XOR r/m32,r32 386+
XOR r/m64,r64 x64+
XOR r8,r/m8
XOR r16,r/m16
XOR r32,r/m32 386+
XOR r64,r/m64 x64+
XOR AL,i8
XOR AX,i16
XOR EAX,i32 386+
XOR RAX,i32 x64+ NOTE: XOR RAX,i64 is NOT valid!

Examples

XOR BX,DI
XOR EAX,5
XOR AX,0FFFFH
XOR AL,42H
XOR [BP+SI],DX
XOR [RDI],RAX
XOR QWORD [RBX],0B80000H

Notes
XOR performs a bitwise exclusive OR logical operation between its two operands.
Once the operation is complete, the result replaces the destination operand. The

574 Appendix B ■ Partial x64 Instruction Reference

XOR operation is performed on a bit- by- bit basis, such that bit 0 of the source
is XORed with bit 0 of the destination, bit 1 of the source is XORed with bit 1
of the destination, and so on. The XOR operation yields a 1 if the operands are
different and a 0 if the operands are the same. Note that the XOR instruction
makes the Auxiliary Carry flag AF undefined. CF and OF are cleared to 0, and
the other affected flags are set according to the operation’s results.

When XOR is used between a 64- bit value and an immediate value, the immediate
value cannot be 64- bits in size. The immediate value may be only 32 bits in size.

Performing XOR between a register and itself is a common way of clearing a
register to 0. There is no form to use XOR on a memory value against itself, as
only one of XOR’s two operands may be a memory value. Therefore, XOR cannot
be used to zero a memory location.

m8 = 8- bit memory data m16 = 16- bit memory data
m32 = 32- bit memory data m64 = 64- bit memory data
i8 = 8- bit immediate data i16 = 16- bit immediate data
i32 = 32- bit immediate data i64 = 64- bit immediate data
d8 = 8- bit signed displacement d16 = 16- bit signed displacement
d32 = 32- bit unsigned displacement NOTE: There is no 64- bit displacement
r8 = AL AH BL BH CL CH DL DH r16 = AX BX CX DX BP SP SI DI
r32 = EAX EBX ECX EDX EBP ESP ESI EDI
r64 = RAX RBX RCX RDX RBP RSP RSI RDI R8 R9 R10 R11 R12 R13 R14 R15

C
A P P E N D I X

575

The following pages contain summaries of two character sets commonly used on
PC-compatible machines. The first is for the IBM-850 character set, commonly
available on Linux terminal utilities such as Konsole and GNOME Terminal.
The second is the older “Code Page 437” set, which is basically the character
set coded into the BIOS ROM of IBM-compatible PCs.

There is one glyph block for each character in each set. Each glyph block
includes the following information:

 ■ The three-digit decimal form of the character number, from 000–255. These
are in the upper-right corner of each block.

 ■ The hexadecimal form of the character number, from 00–FF. These are in
the lower-left corner of each block.

 ■ The character glyph is in the center of the block.

 ■ For control characters from 0–31, the name of the control character (e.g.,
NAK, DLE, CR, etc.) is printed vertically in the lower-right corner of
the block.

Note that the IBM-850 character set is not loaded by default in common Linux
terminal utilities and must be specifically selected from the options or settings
menu before the character set will be displayed in the terminal window. For
more on this, see Chapter 6.

Character Set Charts

576 Appendix C ■ Character Set Charts

40

064016

10 50

080

60

096

20

032

30

048

70

112

80

128

90

144

A0

160

B0

176

C0

192

D0

208

E0

224

F0

240000

00

41

065017

11 51

081

61

097

21

033

31

049

71

113

81

129

91

145

A1

161

B1

177

C1

193

D1

209

E1

225

F1

241001

01

42

066018

12 52

082

62

098

22

034

32

050

72

114

82

130

92

146

A2

162

B2

178

C2

194

D2

210

E2

226

F2

242002

02

43

067019

13 53

083

63

099

23

035

33

051

73

115

83

131

93

147

A3

163

B3

179

C3

195

D3

211

E3

227

F3

243003

03

44

068020

14 54

084

64

100

24

036

34

052

74

116

84

132

94

148

A4

164

B4

180

C4

196

D4

212

E4

228

F4

244004

04

45

069021

15 55

085

65

101

25

037

35

053

75

117

85

133

95

149

A5

165

B5

181

C5

197

D5

213

E5

229

F5

245005

05

46

070022

16 56

086

66

102

26

038

36

054

76

118

86

134

96

150

A6

166

B6

182

C6

198

D6

214

E6

230

F6

246006

06

47

071023

17 57

087

67

103

27

039

37

055

77

119

87

135

97

151

A7

167

B7

183

C7

199

D7

215

E7

231

F7

247007

07

48

072024

18 58

088

68

104

28

040

38

056

78

120

88

136

98

152

A8

168

B8

184

C8

200

D8

216

E8

232

F8

248008

08

49

073025

19 59

089

69

105

29

041

39

057

79

121

89

137

99

153

A9

169

B9

185

C9

201

D9

217

E9

233

F9

249009

09

4A

074026

1A 5A

090

6A

106

2A

042

3A

058

7A

122

8A

138

9A

154

AA

170

BA

186

CA

202

DA

218

EA

234

FA

250010

0A

4B

075027

1B 5B

091

6B

107

2B

043

3B

059

7B

123

8B

139

9B

155

AB

171

BB

187

CB

203

DB

219

EB

235

FB

251011

0B

4C

076028

1C 5C

092

6C

108

2C

044

3C

060

7C

124

8C

140

9C

156

AC

172

BC

188

CC

204

DC

220

EC

236

FC

252012

0C

4D

077029

1D 5D

093

6D

109

2D

045

3D

061

7D

125

8D

141

9D

157

AD

173

BD

189

CD

205

DD

221

ED

237

FD

253013

0D

4E

078030

1E 5E

094

6E

110

2E

046

3E

062

7E

126

8E

142

9E

158

AE

174

BE

190

CE

206

DE

222

EE

238

FE

254014

0E

4F

079031

1F 5F

095

6F

111

2F

047

3F

063

7F

127

8F

143

9F

159

AF

175

BF

191

CF

207

DF

223

EF

239

FF

255015

0F

ASCII & PC Extended Characters - IBM-850

N
U
L

S
O
H

S
T
X

E
T
X

D
C
3

D
C
1

D
L
E

D
C
2

E
N
Q

D
C
4

E
O
T

E
T
B

B
E
L

S
Y
N

A
C
K

N
A
K

S
U
B

C
A
N

B
S

H
T

E
M

L
F

E
S
C

S
O

G
S

C
R

F
S

F
F

V
T

U
S

S
I

R
S

 Appendix C ■ Character Set Charts 577

40

064016

10 50

080

60

096

20

032

30

048

70

112

80

128

90

144

A0

160

B0

176

C0

192

D0

208

E0

224

F0

240000

00

41

065017

11 51

081

61

097

21

033

31

049

71

113

81

129

91

145

A1

161

B1

177

C1

193

D1

209

E1

225

F1

241001

01

42

066018

12 52

082

62

098

22

034

32

050

72

114

82

130

92

146

A2

162

B2

178

C2

194

D2

210

E2

226

F2

242002

02

43

067019

13 53

083

63

099

23

035

33

051

73

115

83

131

93

147

A3

163

B3

179

C3

195

D3

211

E3

227

F3

243003

03

44

068020

14 54

084

64

100

24

036

34

052

74

116

84

132

94

148

A4

164

B4

180

C4

196

D4

212

E4

228

F4

244004

04

45

069021

15 55

085

65

101

25

037

35

053

75

117

85

133

95

149

A5

165

B5

181

C5

197

D5

213

E5

229

F5

245005

05

46

070022

16 56

086

66

102

26

038

36

054

76

118

86

134

96

150

A6

166

B6

182

C6

198

D6

214

E6

230

F6

246006

06

47

071023

17 57

087

67

103

27

039

37

055

77

119

87

135

97

151

A7

167

B7

183

C7

199

D7

215

E7

231

F7

247007

07

48

072024

18 58

088

68

104

28

040

38

056

78

120

88

136

98

152

A8

168

B8

184

C8

200

D8

216

E8

232

F8

248008

08

49

073025

19 59

089

69

105

29

041

39

057

79

121

89

137

99

153

A9

169

B9

185

C9

201

D9

217

E9

233

F9

249009

09

4A

074026

1A 5A

090

6A

106

2A

042

3A

058

7A

122

8A

138

9A

154

AA

170

BA

186

CA

202

DA

218

EA

234

FA

250010

0A

4B

075027

1B 5B

091

6B

107

2B

043

3B

059

7B

123

8B

139

9B

155

AB

171

BB

187

CB

203

DB

219

EB

235

FB

251011

0B

4C

076028

1C 5C

092

6C

108

2C

044

3C

060

7C

124

8C

140

9C

156

AC

172

BC

188

CC

204

DC

220

EC

236

FC

252012

0C

4D

077029

1D 5D

093

6D

109

2D

045

3D

061

7D

125

8D

141

9D

157

AD

173

BD

189

CD

205

DD

221

ED

237

FD

253013

0D

4E

078030

1E 5E

094

6E

110

2E

046

3E

062

7E

126

8E

142

9E

158

AE

174

BE

190

CE

206

DE

222

EE

238

FE

254014

0E

4F

079031

1F 5F

095

6F

111

2F

047

3F

063

7F

127

8F

143

9F

159

AF

175

BF

191

CF

207

DF

223

EF

239

FF

255015

0F

ASCII & PC Extended Characters - Code Page 437

N
U
L

S
O
H

S
T
X

E
T
X

D
C
3

D
C
1

D
L
E

D
C
2

E
N
Q

D
C
4

E
O
T

E
T
B

B
E
L

S
Y
N

A
C
K

N
A
K

S
U
B

C
A
N

B
S

H
T

E
M

L
F

E
S
C

S
O

G
S

C
R

F
S

F
F

V
T

U
S

S
I

R
S

579

A
$, deriving string length

using, 221–222
" (double quote), 219
= (equal) operator, 277
> (greater than) operator, 277
>= (greater than or equal to)

operator, 277
< (less than) operator, 277
<= (less than or equal to)

operator, 277
<> (not equal) operator, 277
’ (single quote), 219
16-bit blinders, 79–80
64-bit long mode, 101–102
ABI, 232, 233–234
Abrash, Michael (author)

Michael Abrash’s Graphics
Programming Black Book, 211

accidental recursion, 313–314
ADC (arithmetic addition with

carry), 507–508
ADD (arithmetic addition), 509–510
adding

multiplying by shifting
and, 267–270

one with INC and DEC, 191–192
address pins, 48
addresses, 8–9
addressing

data on Linux stack, 420–421
immediate, 179–181
long mode memory, 279–290
register, 181–183

AF (Auxiliary Carry flag), 189
AND instruction, 253–254
AND logical operation, 511–512
appimage, 493
application programming interface

(API), 232
architecture, 63–65
arithmetic, in hexadecimals, 28–33
arithmetic addition (ADD), 509–510
arithmetic addition with carry

(ADC), 507–508
arithmetic comparison (CMP), 240,

274, 519–520
arithmetic subtraction (SUB),

568–569
arithmetic subtraction with borrow

(SBB), 560–561
ASCII tables, displaying, 402–404

Index

580 Index ■ A–B

assemblers
about, 116
errors with, 127–128
warnings with, 129

assembly code, turning pseudocode
to, 246–248

assembly language, 116–118, 205–207
assembly language programming

about, 5–8, 103–104
assembling program with

NASM, 138–140
development process, 123–129
editing program in editor, 137–138
files, 104–115
installing software, 134–137
linking

object code file, 130–134
program with ld, 140–141

running in Debugger, 141–142
testing executable files, 141
text and code, 115–123

assembly language programs
ABI, 232–234
application programming interface

(API), 232
assembly code, 246–248
.bss section, 216–217
components of, 213–223
.data section, 216
defining problems, 235–236
deriving string length with EQU and

$, 221–223
designing nontrivial, 235–248
error detection, 241–242
exiting via syscall, 234
initial comment block, 215–216
labels, 217–218
last in, first out (LIFO) via

stacks, 223–231
“off by one” errors, 244–245
popping, 229–230

POP/POPFQ, 227–228
pseudocode, 236–237, 246–248
PUSHA/POPA, 228
pushing, 229–230
PUSH/PUSHFQ, 226–227
register parameter scheme, 233–234
registers trashed by syscall, 235
SASM Output Windows, 248
scanning buffers, 242–244
short-term storage, 231
string variables, 219–221
successive refinement, 237–241
.text section, 217
upside-down stacks, 225–226
using Linux kernel services

through syscall, 231–235
variables for initialized

data, 218–219
x64 kernel services, 232

assembly line, 58
assembly programming models

about, 95
real-mode flat model, 95–97
real-mode segmented model, 97–99
64-bit long mode, 101–102
32-bit protected mode flat

model, 99–101
assembly-time calculations, 221
AT&T instruction

mnemonics, 456–460
Auxiliary Carry flag (AF), 189

B
backward compatibility, 64, 79
base, 16
Base addressing, 283
Base + Displacement addressing, 283
Base + Index Addressing, 284–285
Basic Input/Output System

(BIOS), 68
BCD, 397

 Index ■ B–C 581

Beginning x64 Assembly Programming
(Van Hoey), 95

big endian, 113
binary

about, 34–36
hexadecimals as shorthand

for, 38–39
reasons for, 38
values in, 36–38

binary codes, 61
binary editors, 106–107
binary files

looking at internals with GHex
Hex Editor, 106–110

text files compared with, 105–106
binary patterns, 61
BIOS (Basic Input/Output

System), 68
Bit test (BT), 279, 513–514
bits

about, 46, 251–252
Boolean logic, 252–253
bumping into Carry flag, 260
AND instruction, 253–254
manipulating, 262–270
masking out, 254–255
memory-shrinking, 46–47
multiplying, 267–270
NOT instruction, 257
numbering, 252
OR instruction, 255–256
randomness of, 467–469
rotate instructions, 260–261
rotating through Carry flag, 261
segment registers, 258
setting known values into Carry

flag, 262
shifting, 258–262
using lookup tables, 266–267
XOR instruction, 256–257

Boolean logic, 252–253

borrows, 31–33
bottom of the stack, 415
boxes, 300–309
branches

about, 270–271
comparisons with CMP, 274
conditional jumps, 271–272
finding

1-bits with TEST, 277–278
0-bits with BT, 279

greater than versus above,
275–277

jump instructions, 275
jumping on absence of

conditions, 272–273
unconditional jumps, 271

BSD, 153
.bss section, 216–217, 240
BT (Bit test), 279, 513–514
Buff, 240
buffers, scanning, 242–244
bugs, errors compared with, 132–133
bumping bits, into Carry flag, 260
bytes

about, 50–51, 251–252
defined, 50–51
splitting into nybbles, 264–265

C
C functions, 424
C language

about, 423–424
AT&T instruction

mnemonics, 456–460
C library time functions, 449–451
calling conventions, 431
command-line arguments, 472–474
data in with fgets() and

scanf(), 442–448
formatted text output with

printf(), 438–442

582 Index ■ C–C

generating random
numbers, 460–471

linking to standard C
library, 429–438

simple file I/O, 474–488
time functions, 448–456
Unix GNU, 424–429

cache line, 54
CALL procedure, 515–516
callees, 431–433
callers, 431–433
calling

about, 309–311
addresses in registers, 469–470
C language conventions, 431
calls within calls, 311–312
complexity of, 309–325
conventions for C language, 431
saving registers, 316–317

carriage return, 110
carries, 30–31
Carry flag (CF)

about, 190
bumping bits into, 260
MUL (unsigned integer

multiplication) and, 202–203
rotating bits through, 261
setting known values into, 262

case-sensitivity
of labels, 218
of Linux identifiers, 125

central processing unit (CPU)
about, 54–55
assembly lines, 58
data bus, 56–57
memory, 55–56
registers, 57–58

CF (Carry flag)
about, 190
bumping bits into, 260
MUL (unsigned integer

multiplication) and, 202–203

rotating bits through, 261
setting known values into, 262

chains of dependencies, 167–169
character encoding, in

Konsole, 154–156
character set charts, 575
character tables

about, 290–291
calculations versus, 298
translating with MOV or with

XLAT, 293–297
translation tables, 291–293

characters out, via puts(), 437–438
CLC (Clear Carry Flag), 517
CLD (Clear Direction Flag), 518
closing

inner loops, 406
outer loops, 407

CMP (arithmetic comparison), 240,
274, 519–520

code
about, 8
building, 425–427
procedures as boxes for, 301–309
Simple ASM (SASM) and, 152–153
“write-only” source, 119–120

code segment (CS), 87, 93
colons, in labels, 217–218
columns, 30–31, 33
Command Prompt utility, 153
command-line arguments

about, 408
in C language, 472–474
displaying from SASM, 408–411
passing to programs within

SASM, 413–414
setting with Insight Debugger,

496
comment blocks, 118–119
comment headers, 355–356
comments, 118–119
compilers, 116, 148–149
complexity

C language (continued)

 Index ■ C–D 583

about, 299–300
boxes, 300–309
calling and returning, 309–325
creating

external procedure
libraries, 330–352

macros, 364–376
procedures, 352–356

cursor control in Linux
Console, 356–364

jump length, 325–330
local labels, 325–330

Computer Lib/Dream Machines
(Nelson), 72

computer programming, 2
computers

logic of, 4–5
what they do, 1–10

conditional jumps, 192, 271–272
conditional string instruction, 413
configuring Simple ASM

(SASM), 146–147
confusing data, 185
console, 99–100
console applications, 99–100
converting

decimals to hexadecimals, 25–27
hexadecimals to decimals, 24–25
pseudocode to assembly

code, 246–248
strings into numbers with

sscanf(), 475–477
time_t values to formatted

strings, 451–452
copy right operand into left operand

(MOV), 178, 293–297, 536–537
copy top of stack into flags register

(POPF/D/Q), 552
copy top of stack into operand (POP),

227–228, 550–551
copy with sign extension (MOVSX),

198–200, 540–541
copying glibc tb struct with

MOVSD, 453–456

core, explosion of, 70–72
COSMAC ELF computer, 46, 50, 67
Courier font, 147–148
CPU (central processing unit)

about, 54–55
assembly lines, 58
data bus, 56–57
memory, 55–56
registers, 57–58

creating
C language random

numbers, 460–471
code, 425–427
custom key binding for Linux

Make, 170–172
external libraries, 330–352
external procedure

libraries, 330–352
files, 477–478
key binding for Linux Make,

170–172
macros, 364–376
procedures, 352–356
programs with NASM, 138–140
random numbers, 460–471
sandboxes, 176–178
source code files, 126
20-bit addresses out of

registers, 84–87
CS (code segment), 87, 93
ctime(), 452–453
cursor control, in Linux

Console, 356–364

D
data

about, 8
addressing on Linux stack,

420–421
confusing, 185
immediate, 179–181
initialized, 218–219
interpreting raw, 110–111
local, 321

584 Index ■ D–E

memory, 184–186
needed for procedures, 315–316
placing constant data in procedure

definitions, 322–323
register, 181–183
storing to discontinuous

strings, 402–408
data buffers, 216–217
data bus, 56–57
data definition directive, 218–219
data in, with fgets() and

scanf(), 442–445
data pins, 48
.data section, 216
data segment (DS), 87
debuggers and debugging

about, 133–134
running programs in

debuggers, 141–142
with SASM, 172–174

DEC (decrement operand),
191–192, 521

DEC (Digital Equipment
Corporation), 16

decimals
converting from hexadecimals

to, 24–25
converting to hexadecimals

from, 25–27
declarations, global versus

external, 339–351
defining

lines in display buffer, 391
macros with parameters, 371–372

dependencies
chains of, 167–169
Linux Make, 165–166

designing nontrivial
programs, 235–248

destination operands, 178–186
destination strings, 379
Digital Equipment Corporation

(DEC), 16

DIMMs (dual inline memory
modules), 53

Direction flag (DF)
about, 187
overlapping block moves

and, 398–401
STOSB and, 390–391

Discover, 146
displacements, 282
display buffer, 391–392
displaying

ASCII tables, 402–404
command-line arguments from

SASM, 408–411
Insight Debugger stack in Memory

view, 498
rules on screen, 394
stacks with Insight’s Memory

view, 498
DIV (unsigned integer division),

203–205, 522–523
double quote ("), 219
double words, 50–51
DS (data segment), 87
dual inline memory modules

(DIMMs), 53
Dunn, Jim (programmer), 301–302

E
Eclipse, 145
editing

programs in editors, 137–138
source code files, 126

editors
editing programs in, 137–138
Simple ASM (SASM), 152

effective addresses, 184–185,
281–282

EFlags register, 174, 187
EMACS editor, 424, 425
endianness, 111–115
%ENDMACRO, 366
end-of-file (EOF), 238
epilogs, 419–420, 434–435

data (continued)

 Index ■ E–F 585

EQU, deriving string length
using, 221–222

errors
bugs compared with, 132–133
detection of, 241–242
“off by one,” 244–245

ES (extra segment), 88
escape sequences, 161–162, 361–362
etiquette, for flags, 190, 314–315
evolving architecture, 64–65
examining stack, with Insight’s

Memory view, 498–499
exchange operands (XCHG), 571
.exe file, testing, 131–132
executable files, testing, 141
executing instructions, 389–390
exiting programs, via syscall, 234
expansion slots, 57
external declarations, 339–351
external procedure libraries,

building, 330–352
external references, 122
extra segment (ES), 88

F
far jump, 329–330
fast block copies, 397–402
fast system call into Linux (SYSCALL)

about, 570
exiting programs via, 234
preserving registers across Linux

system calls, 317–319
registers trashed by, 235
using Linux kernel services

through, 231–235
x64 kernel services via, 232

fetch and execute, 60–61
fgets()

about, 477
data in with, 442–445
reading text from files

with, 478–481
field-effect transistor, 44

file I/O
about, 474–475
converting strings into numbers

with sscanf(), 475–477
creating files, 477–478
gathering procedures into

libraries, 482–488
opening files, 477–478
reading text from files with

fgets(), 478–481
writing text to files with

fprint(), 481–482
files

about, 104–105
binary vs. text, 105–106
creating, 477–478
endianness, 111–115
interpreting raw data, 110–111
opening, 477–478
reading from, with

fgets(), 478–481
standard UNIX, 156–157
viewing binary file internals with

GHex Hex Editor, 106–110
writing text to with

fprintf(), 481–482
files-up-to-date, 167
filters, 160
finding

length of strings, 221–222
1-bits with TEST, 277–278
string length using $, 221–222
string length using EQU, 221–222
0-bits with BT, 279

firmware, 68
flags

about, 186–190, 270–271, 273–274
adding one with INC and

DEC, 191–192
comparisons with CMP, 274
conditional jumps, 271–272
etiquette for, 190, 314–315
finding

586 Index ■ F–I

1-bits with TEST, 277–278
0-bits with BT, 279

greater than versus above, 275–277
inspecting variables in

SASM, 194–195
jump instructions, 275
jumping on absence of

conditions, 272–273
program execution changed

by, 192–194
subtracting one with INC and

DEC, 191–192
unconditional jumps, 271
watching from SASM, 190

flags register, 94
fonts, Simple ASM (SASM), 147–148
fopen(), 477–478
formatted strings, converting time_t

values to, 451–452
formatted text output, with

printf(), 438–440
fprint(), writing text to files

with, 481–482
Free Software Foundation, 424

G
Galculator (Gnome

Calculator) app, 24
gas compiler, 425, 428–429
gcc compiler, 148, 425, 426–428
gdb debugger, 376, 496, 500
Geany, 145
general-purpose registers, 88–90
GHex Hex Editor, viewing binary

file internals with, 106–110
glibc library, 431, 435, 453–456
global declarations, 339–351
glyphs, 154–155
GNOME Terminal, 153, 163, 362, 575
GNU, 424–429
Gnu C compiler, 218
Gnu debugger, 496

GNU Public License (GPL), 424–425
greater than, 275–277
GUI apps, Linux and, 163–164

H
halves, register, 91–92
hexadecimal editors, 106–107
hexadecimals

about, 20–23
arithmetic in, 28–33
converting

to decimals from, 24–25
from decimals to, 25–27

practicing with, 27–28
as shorthand for binary, 38–39

horizon, segments and, 84
Hummel, Robert L. (author)

PC Magazine Technical Reference: The
Processor and Coprocessor, 206

I
IA-32 (Intel Architecture 32-bit),

65
IBM, 16
IDEs (integrated development

environments), 126, 143–145
IF (Interrupt Enable flag), 189
immediate addressing, 179–181
immediate data, 179–181
implicit operands, 200–205
IMUL, 395–396
INC (increment operand),

191–192, 524
include files

libraries for, 338–339
macro libraries as, 374–375
storing in SASM, 337–338
using in SASM, 331–337

%INCLUDE macro, 374–375
Index X Scale + Displacement

Addressing, 285–287
indicative naming, 119
initial comment block, 215–216

flags (continued)

 Index ■ I–L 587

initialized data, variables
for, 218–219

in-line assembly, 117
inner loop, closing, 406
Insight Debugger

about, 145, 493–494
examining stack with Memory

view, 498–499
limitations of, 494
memory window, 497–498
opening programs under, 495
running programs, 496–497
setting command-line arguments

with, 496
showing stack in Memory

view, 498
inspecting variables in

SASM, 194–195
installing software, 134–137
instruction cache, 60
instruction loops, nested, 404–405
instruction pointer, 60, 92–94
instructions, 6. See also machine

instructions
integrated development

environments (IDEs), 126, 143–145
integrated peripherals, 57
intermediate language, 457
interpreting raw data, 110–111
Interrupt Enable flag (IF), 189
invoking

Linux Make, 169–170
macros, 372–373

I/O address, 57
I/O redirection, 158–159

J
J?? (jump if condition is

met), 525–526
JA (Jump If Above), 241, 276
JAE (Jump If Above Or Equal), 276
JB (Jump If Below), 241, 276

JBE (Jump If Below Or Equal), 276
JE (Jump If Equal), 276
JECXZ (jump if ECX=0), 527
JG (Jump If Greater), 276
JGE (Jump If Greater Or Equal), 276
JL (Jump If Less), 276
JLE (Jump If Less Or Equal), 276
JMP (unconditional jump), 529–530
JNE (Jump If Not Equal), 276
JRCXZ (jump if RCX=0), 407, 528
jumps

on absence of conditions, 272–273
defined, 271
instructions for, 271
length of, 325–328, 329–330
when RCX goes to 0, 405

K
Kate editor, 145, 170
Kdbg, 145
KDE, 163
KDevelop, 145
kernel, promotion to, 70
kernel space, 70
key binding, creating for Linux

Make, 170–172
Konsole, 145, 154–156, 162, 170–172,

362, 575
Kubuntu, 146, 153
Kubuntu Plasma, 145

L
labels, 217–218, 325–328, 373–374
last in, first out (LIFO) storage,

97, 223–231
ld, linking programs with, 140–141
LEA (load effective address),

289–290, 531
least significant byte (LSB), 183
length

of jumps, 325–328, 329–330
of strings, 221–222

588 Index ■ L–L

libc, passing functions, 470–471
Liberation Mono font, 148
libraries

about, 120–123, 315
external procedure, 330–352
gathering procedures into, 482–488
glibc, 431, 435, 453–456
having too many, 352
for include files, 338–339
linking into programs, 351–352
macro, 374–375
standard C, 429–438

LIFO (last in, first out) storage,
97, 223–231

line feed, 110
linker errors, 131
linkers, 120–123
linking

libraries into programs, 351–352
object code file, 130–134
programs with ld, 140–141
to standard C library, 429–438
using compilers, 148–149

Linux
character encoding in

Konsole, 154–156
GUI apps and, 163–164
identifiers, 125
I/O redirection, 158–159
Linux Console, 153–154
preserving registers across system

calls, 317–319
simple text filters, 159–160
standard Unix files, 156–157
terminal control with escape

sequences, 161–162
terminals and, 153–164
time functions, 448–456
using kernel services through

syscall, 231–235
using standard input/output from

inside SASM, 161

Linux Console
about, 145, 153–154
cursor control in, 356–364
sending buffer to, 391–392

Linux Make
about, 164–165
chains of dependencies, 167–169
creating custom key binding

for, 170–172
dependencies, 165–166
invoking, 169–170
up-to-date files, 167
using touch to force a build,

172
Linux Mint, 135–136
Linux Mint Cinnamon, 145
Linux stack

about, 408, 414–416
accessing directly, 417–419
addressing data on, 420–421
alignment of, 435–437
program prologs and

epilogs, 419–420
little endian, 113
load effective address (LEA),

289–290, 531
local data, 321
local labels

about, 325–328
forcing access to, 328
within macros, 373–374

localtime(), 452–453
location

about, 73
memory models, 73–80
nature of segments, 80–101
64-bit long mode, 101–102

logic, of computers, 4–5
long mode memory

addressing, 279–290
lookup tables, using, 266–267
LOOP (loop until CX/ECX/RCX=0),

393–394, 532–533

length (continued)

 Index ■ L–M 589

LOOPNZ/LOOPNE (loop until CX/
ECX/RCX=0 and ZF=0), 406, 534

loops
closing inner, 406
closing outer, 407
nested instruction, 404–405

LOOPZ/LOOPE (loop until CX/ECX/
RCX=0 and ZF=1), 535

LSB (least significant byte), 183

M
machine instructions

about, 59, 118, 175
building a sandbox, 176–178
destination operands, 178–186
flags, 186–195
implicit operands, 200–205
MUL, 200–205
NEG negate (two’s

complement), 208–211
operands for, 178
reading assembly language

references, 205–207
signed values, 195–200
source operands, 178–186
unsigned values, 195–200

macro libraries, as include
files, 374–375

macros
creating, 364–376
defining with parameters, 371–372
local labels within, 373–374
mechanics of, 366–370
mechanics of invoking, 372–373
procedures versus, 375–376

main() function, 433, 472–474
maintainability, 353–354
makefile, 164–165
manipulating bits, 262–270
Manushin, Dmitriy, 145
Martian numbers, 12–16
masking out bits, 254–255

MASN assembler, 144
math coprocessors, 94–95
maximum size, 354
megabytes, nature of, 78–79
memory, 43–44, 205–206
memory access time, 49–50
memory address, 57
memory addressing, as a key

skill, 280
memory cell, 45
memory chips, 42–43
memory data, 184–186
memory models

about, 73–75
backward compatibility, 79
bits and, 75–78
megabytes, 78–79
16-bit blinders, 79–80
virtual 86 mode, 79

memory reference syntax,
AT&T, 459–460

Memory view (Insight
Debugger), 498–499

memory window, in Insight
Debugger, 497–498

Michael Abrash’s Graphics
Programming Black Book
(Abrash), 211

microarchitecture, 63–64, 65–67
minimum size, 354
Minix, 144
modules, 339
most significant byte (MSB), 183
motherboard, 57
MOV (copy right operand into left

operand), 178, 293–297, 536–537
MOVS (move string), 538–539
MOVSB, 397–402
MOVSD, copying glibc tb struct

with, 453–456
MOVSX (copy with sign extension),

198–200, 540–541

590 Index ■ M–P

MSB (most significant byte), 183
MUL (unsigned integer

multiplication)
about, 200–202, 395–396, 542–543
Carry flag (CF) and, 202–203
speed of, 204–205

multiplying, by shifting and
adding, 267–270

multiprocessing, 70
multitasking, 68–70

N
NASM

assembling programs
with, 138–140

program for SASM, 176–178
ncurses library, 364
near jump, 329–330
NEG (negate [two’s complement; i.e.,

multiply by -1]), 196–198,
208–211, 544–545

Nelson, Ted
Computer Lib/Dream Machines, 72

nested instruction loops, 404–405
New Math, 11
nontrivial programs,

designing, 235–248
NOP (no operation), 546
not greater than operator, 277
not greater than or equal to

operator, 277
NOT instruction, 257
not less than operator, 277
not less than or equal to operator,

277
NOT logical operand (one’s

complement), 547
null-terminated, 499
number base, 16
numbering bits, 252
numbers, converting strings into,

with sscanf(), 475–477
numeric values, using scanf() for

entry of, 445–448

nybbles
defined, 50
shifting high into low, 265
splitting bytes into, 264–265

O
object code, 120–123
object code file, 116, 130–134
octals, 16–20
OF (Overflow flag), 187
“off by one” errors, 244–245
offset address, 85
one count apart, 198
opening

files, 477–478
Linux stack directly, 417–419
programs under Insight

Debugger, 495
operand symbols, 209–210
operands

about, 118
implicit, 200–205
machine instructions and, 178

operating systems, 67–68
OR instruction, 255–256
OR logical operand, 548–549
outer loop, closing, 407
Overflow flag (OF), 187
overlapping block moves and

Direction flag (DF), 398–401

P
paragraph, 80
parameters

defining macros with, 371–372
passing to printf(), 440–441

Parity flag (PF), 189–190
passing

command-line arguments to
programs within
SASM, 413–414

libc functions, 470–471
parameters to printf()

function, 440–441

 Index ■ P–R 591

PC Magazine Technical Reference: The
Processor and Coprocessor
(Hummel), 206

periods, in labels, 217
peripherals, 56
PF (Parity flag), 189–190
POP (copy top of stack into operand),

227–228, 550–551
POPA, 228
POPAD, 319–321
POPF/D/Q (copy top of stack into

flags register), 552
POPFQ, 227–228
popping, 229–230
portable assembly language,

429
preserving Linux registers across

system calls, 317–319
printf() function

about, 436–437
command-line arguments in C

language, 472–474
formatted text output

with, 438–440
passing

libc functions, 470–471
parameters to, 440–441

preceding 0 in RAX, 442
procedures

as boxes for code, 301–309
creating

about, 352–356
external libraries, 330–352

data needed for, 315–316
gathering into libraries, 482–488
having too many, 352
macros versus, 375–376
placing constant data in

definitions, 322–323
what should be, 354–355

program segment prefix (PSP), 75
program translators, 116
A Programming Language

(APL), 104

programs. See also assembly
language programs

assembling with NASM, 138–140
changing execution using

flags, 192–194
editing in editor, 137–138
linking

with ld, 140–141
libraries into, 351–352

opening under Insight Debugger,
495

passing command-line arguments
to, within SASM, 413–414

prologs and epilogs, 419–420
running in Insight

Debugger, 496–497
prologs, 419–420, 433
promotion, to kernel, 70
protected-mode flat model, 74
pseudocode, 236–237, 246–248
pseudorandom number generator,

460, 461–467
PSP (program segment prefix),

75
PUSH (push operand onto top of

stack), 226–227, 553–554
PUSHA, 228
PUSHAD, 319–321
PUSHF/D/Q (push flags onto the

stack), 555
PUSHFQ, 226–227
pushing, 229–230
puts()

characters out via, 437–438
sending naked linefeeds to console

using, 470

Q
quad words, 50–51
question marks, in labels, 217

R
RAM chips, rows of, 51–54
rand() function, 460, 461–469

592 Index ■ R–S

random access, 46, 47–49
random number generator, seeding

with srand(), 461
random numbers,

generating, 460–471
range, of values, 197–198
raw data, interpreting, 110–111
RAX, 41–43, 442
RCX, 392–393
RDI parameter, 234
RDX parameter, 234
reading

assembly language
references, 205–207

text from files with
fgets(), 478–481

read-only memory (ROM), 68
real-mode flat model, 74, 95–97
real-mode segmented model,

74, 97–99
recursion, accidental, 313–314
refinement, successive, 237–241
register addressing, 181–183
register data, 181–183
registers

about, 57, 62
caller, 316–317
calls to addresses in, 469–470
defined, 84
flags, 94
general-purpose, 88–90
making 20-bit addresses out

of, 84–87
math coprocessors and, 94–95
preserving across Linux system

calls, 317–319
register halves, 91–92
trashed by syscall, 235

relay, 44
relocatability, 123
REP, single-stepping string

instructions, 401–402
REP STOSB

about, 387–388
defining lines in display buffer,

391
Direction flag (DF) and, 390–391
executing instruction, 389–390
sending buffer to Linux

Console, 391–392
virtual display, 388–389

REPE, 413
REPNE, 413
RET (return from procedure),

556–557
returning, 309–311
return-oriented programming

(ROP), 442
reuse, 353–354
RFlags, 187
ROL/ROR (rotate left/rotate

right), 558–559
ROM (read-only memory), 68
rotating

bits through Carry flag (CF), 261
instructions for, 260–261

RSI parameter, 234
Ruler procedure, 394, 396
rules, displaying on screen, 394
running

programs in debuggers, 141–142
programs in Insight

Debugger, 496–497
runtime errors, 132–133

S
sandbox, building a, 176–178
SASM. See Simple ASM (SASM)
SBB (arithmetic subtraction with

borrow), 560–561
scaling, 288–289
scanf()

data in with, 442–445
using for entry of numeric

values, 445–448
scanning buffers, 242–244

 Index ■ S–S 593

SCASB, string searches with, 411–413
searching strings, 408, 411–413
segment address, 82, 85
segment registers

about, 76, 87–88, 258
flags register, 94
general-purpose registers, 88–90
instruction pointer, 92–94
math coprocessors, 94–95
register halves, 91–92
x64 and, 88

segments, nature of, 80–101
sending

buffer to Linux Console, 391–392
display buffer to Linux

Console, 391–392
naked linefeeds to console using

puts(), 470
serial-access drives, 48
set carry flag (STC), 564
set direction flag (STD), 565
setting

command-line arguments with
Insight Debugger, 496

known values into Carry flag
(CF), 262

SF (Sign flag), 189
shifting

bits, 258–262
high nybble into low nybble, 265
multiplying by adding and,

267–270
SHL/SHR (shift left/shift

right), 562–563
short jump, 329–330
short-term storage, 231
showchar program, 408
sign bit, 196
sign extension, 198–200
Sign flag (SF), 189
signed values, 195–200, 275
Simple ASM (SASM)

about, 145, 146

code and, 152–153
components of, 149–152
configuring, 146–147
debugging with, 172–174
displaying command-line

arguments from, 408–411
editor, 152
fonts, 147–148
inspecting variables in, 194–195
linking using a compiler, 148–149
NASM program for, 176–178
Output Window, 248
passing command-line arguments

to programs within, 413–414
storing include files, 337–338
using gcc, 427
using include files in, 331–337
using standard input/output from

inside, 161
watching flags from, 190

simple text filters, 159–160
single quote (’), 219
16-bit blinders, 79–80
64-bit long mode, 101–102
SMP (symmetric

multiprocessing), 70
software, installing, 134–137
Software Manager, 146
source code, “write-only,” 119–120
source code files, 126
source operands, 178–186
source strings, 379
splitting bytes, into nybbles, 264–265
srand() function, 460, 461
SS (stack segment), 87
sscanf(), converting strings into

numbers with, 475–477
stack frames

destroying in epilog, 434–435
setting up, 433–434

stack segment (SS), 87
stacks

defined, 97

594 Index ■ S–T

examining with Insight’s Memory
view, 498–499

last in, first out (LIFO) storage
via, 223–231

showing with Insight’s Memory
view, 498

Stallman, Richard (hacker), 424
standard input/output, using from

inside SASM, 161
standard UNIX files, 156–157
STC (set carry flag), 564
STD (set direction flag), 565
stdin/stdout, using from inside

SASM, 161
steps, 3
storage

about, 8
data to discontinuous

strings, 402–408
include files in SASM, 337–338
short-term, 231

STOS/B/W/D/Q (store string),
396, 566–567

string instructions, 377
string space, 378
string variables, 219–221
strings

about, 377
assembly language, 378–387
command-line arguments,

408–414
converting into numbers with

sscanf(), 475–477
deriving length of, 221–222
destination, 379
MOVSB, 397–402
REP STOSB, 387–392
searching, 408, 411–413
source, 379
stack, 414–422
storing data to

discontinuous, 402–408

STOSB without REP, 392–397
SUB (arithmetic subtraction), 568–569
subtracting, 31–32, 191–192
switches, 43–46
symbol, 122
symbol table, 122
symmetric multiprocessing (SMP),

70
SYSCALL (fast system call into

Linux)
about, 570
exiting programs via, 234
preserving registers across Linux

system calls, 317–319
registers trashed by, 235
using Linux kernel services

through, 231–235
x64 kernel services via, 232

sys_read, 240, 242–244
system clock, 60, 451
sys_write, 242–244

T
tables, ASCII, 402–404
Tcl language, 493
terminal control, with escape

sequences, 161–162
terminals, Linux and, 153–164
TEST, finding 1-bits with, 277–278
tests and testing

about, 3, 270–271
comparisons with CMP, 274
conditional jumps, 271–272
.exe file, 131–132
executable files, 141
finding

1-bits with TEST, 277–278
0-bits with BT, 279

greater than versus above, 275–277
jump instructions, 275
jumping on absence of

conditions, 272–273
unconditional jumps, 271

stacks (continued)

 Index ■ T–W 595

text
reading from files with

fgets(), 478–481
writing to files with

fprintf(), 481–482
text display virtual screen, 379–387
text files, binary files compared

with, 105–106
text filters, simple, 159–160
.text section, 217
TextCaser, 125
TF (Trap flag), 189
32-bit protected mode flat

model, 99–101
time(), 451
time functions, in Linux, 448–456
time_t value, 449–451
Tk widgets, 493
tools

debugging with SASM, 172–174
integrated development

environments (IDE), 143–145
limitations of, 330–331
Linux and terminals, 153–164
SASM, 146–153
using Linux Make utility, 164–172

top of the stack, 415
Torvalds, Linux, 70, 144
transistor switches, 44–46
transistors, 43–44
translate byte via table (XLAT),

293–297, 572
translating

character tables with MOV or with
XLAT, 293–297

with MOV (copy right operand into
left operand), 293–297

with XLAT (translate byte via
table), 293–297

translation tables, 291–293
Trap flag (TF), 189
Turbo Pascal, 144–145, 148
two’s complement, 196–198

U
Ubuntu, 153
unconditional jumps, 271
underscores, in labels, 217
units column, 19
Unix GNU, 424–429
unsigned integer division (DIV),

203–205, 522–523
unsigned integer

multiplication (MUL)
about, 200–202, 395–396, 542–543
Carry flag (CF) and, 202–203
speed of, 204–205

unsigned values, 195–200, 275
up-to-date files, 167
user space, 70

V
values

in binary, 36–38
range of, 197–198
setting known into Carry flag, 262
signed and unsigned, 195–200, 275

Van Hoey, Jo
Beginning x64 Assembly

Programming, 95
variables

for initialized data, 218–219
inspecting in SASM, 194–195
string, 219–221

viewing
binary file internals with GHex

Hex Editor, 106–110
flags from SASM, 190

virtual-86 mode, 79
VT terminals, 162

W
words, 50–51
working directories,

discipline of, 125
WriteCtr macro, 372–373
“write-only” source code, 119–120

596 Index ■ W–X

WriteStr macro, 375
writing text to files with

fprintf(), 481–482

X
x64 assembly language
ADC (arithmetic addition with

carry), 507–508
ADD (arithmetic addition), 509–510
AND logical operation, 511–512
BT (Bit test), 279, 513–514
CALL procedure, 515–516
CLC (Clear Carry Flag), 517
CLD (Clear Direction Flag), 518
CMP (arithmetic comparison), 240,

274, 519–520
DEC (decrement operand),

191–192, 521
displacement size problem, 283
DIV (unsigned integer division),

203–205, 522–523
flag results, 502–503
INC (increment operand),

191–192, 524
instruction reference, 501–574
J?? (jump if condition is

met), 525–526
JA (Jump If Above), 241, 276
JAE (Jump If Above Or Equal), 276
JB (Jump If Below), 241, 276
JBE (Jump If Below Or Equal),

276
JE (Jump If Equal), 276
JECXZ (jump if ECX=0), 527
JG (Jump If Greater), 276
JGE (Jump If Greater Or Equal),

276
JL (Jump If Less), 276
JLE (Jump If Less Or Equal), 276
JMP (unconditional jump), 529–530
JNE (Jump If Not Equal), 276
JRCXZ (jump if RCX=0), 407, 528

LEA (load effective address),
289–290, 531

long mode memory
addressing, 279–290

LOOP (loop until CX/ECX/RCX=0),
393–394, 532–533

LOOPNZ/LOOPNE (loop until CX/
ECX/RCX=0 and ZF=0),
406, 534

LOOPZ/LOOPE (loop until CX/ECX/
RCX=0 and ZF=1), 535

MOV (copy right operand into left
operand), 178, 293–297,
536–537

MOVS (move string), 538–539
MOVSB, 397–402
MOVSD, copying glibc tb struct

with, 453–456
MOVSX (copy with sign extension),

198–200, 540–541
MUL (unsigned integer

multiplication), 200–205,
395–396, 542–543

NEG (negate [two’s complement;
i.e., multiply by -1]), 196–198,
208–211, 544–545

NOP (no operation), 546
NOT logical operand (one’s

complement), 547
OR logical operand, 548–549
POP (copy top of stack into

operand), 227–228,
550–551

POPA, 228
POPAD, 319–321
POPF/D/Q (copy top of stack into

flags register), 552
POPFQ, 227–228
PUSH (push operand onto top of

stack), 226–227, 553–554
PUSHA, 228
PUSHAD, 319–321

Index ■ X–Z 597

PUSHF/D/Q (push flags onto the
stack), 555

PUSHFQ, 226–227
RET (return from procedure),

556–557
ROL/ROR (rotate left/rotate

right), 558–559
SBB (arithmetic subtraction with

borrow), 560–561
segment registers and, 88
SHL/SHR (shift left/shift

right), 562–563
size specifiers, 503–506
STC (set carry flag), 564
STD (set direction flag), 565
STOS/B/W/D/Q (store string),

396, 566–567
SUB (arithmetic subtraction),

568–569

SYSCALL (fast system call into
Linux) (See SYSCALL (fast
system call into Linux))

what’s been removed, 502
XCHG (exchange operands), 571
XLAT (translate byte via table),

293–297, 572
XOR (exclusive OR), 573–574

x64 kernel services, via syscall,
232

XCHG (exchange operands),
571

XLAT (translate byte via table),
293–297, 572

XOR (exclusive OR), 573–574
XOR instruction, 256–257

Z
Zero flag (ZF), 189

WILEY END USER LICENSE
AGREEMENT

Go to www.wiley.com/go/eula to access Wiley’s ebook
EULA.

http://www.wiley.com/go/eula

	Title Page
	Copyright Page
	About the Author
	Acknowledgments
	Contents at a Glance
	Contents
	Introduction
	Chapter 1 It’s All in the Plan: Understanding What Computers Really Do
	Another Pleasant Valley Saturday
	Steps and Tests
	More Than Two Ways?
	Computers Think Like Us

	Had This Been the Real Thing . . .
	Assembly Language Programming As a Square Dance
	Assembly Language Programming As a Board Game
	Code and Data
	Addresses
	Metaphor Check!

	Chapter 2 Alien Bases: Getting Your Arms Around Binary and Hexadecimal
	The Return of the New Math Monster
	Counting in Martian
	Dissecting a Martian Number
	The Essence of a Number Base

	Octal: How the Grinch Stole Eight and Nine
	Who Stole Eight and Nine?

	Hexadecimal: Solving the Digit Shortage
	From Hex to Decimal and from Decimal to Hex
	From Hex to Decimal
	From Decimal to Hex

	Practice. Practice! PRACTICE!
	Arithmetic in Hex
	Columns and Carries
	Subtraction and Borrows
	Borrows Across Multiple Columns
	What’s the Point?

	Binary
	Values in Binary
	Why Binary?

	Hexadecimal as Shorthand for Binary
	Prepare to Compute

	Chapter 3 Lifting the Hood: Discovering What Computers Actually Are
	RAXie, We Hardly Knew Ye
	Gus to the Rescue

	Switches, Transistors, and Memory
	One If by Land...
	Transistor Switches
	The Incredible Shrinking Bit
	Random Access
	Memory Access Time
	Bytes, Words, Double Words, and Quad Words
	Pretty Chips All in a Row

	The Shop Supervisor and the Assembly Line
	Talking to Memory
	Riding the Data Bus
	The Shop Supervisor’s Pockets
	The Assembly Line

	The Box That Follows a Plan
	Fetch and Execute
	The Supervisor’s Innards
	Changing Course

	What vs. How: Architecture and Microarchitecture
	Evolving Architectures
	The Secret Machinery in the Basement

	Enter the Plant Manager
	Operating Systems: The Corner Office
	BIOS: Software, Just Not as Soft
	Multitasking Magic
	Promotion to Kernel
	The Core Explosion
	The Plan

	Chapter 4 Location, Location, Location: Registers, Memory Addressing, and Knowing Where Things Are
	The Joy of Memory Models
	16 Bits’ll Buy You 64 KB
	The Nature of a Megabyte
	Backward Compatibility and Virtual 86 Mode
	16-BitBlinders

	The Nature of Segments
	A Horizon, Not a Place
	Making 20-BitAddresses Out of 16-BitRegisters

	Segment Registers
	Segment Registers and x64
	General-PurposeRegisters
	Register Halves
	The Instruction Pointer
	The Flags Register
	Math Coprocessors and Their Registers

	The Four Major Assembly Programming Models
	Real-ModeFlat Model
	Real-ModeSegmented Model
	32-BitProtected Mode Flat Model

	64-BitLong Mode

	Chapter 5 The Right to Assemble: The Process of Creating Assembly Language Programs
	The Nine and Sixty Ways to Code
	Files and What’s Inside Them
	Binary vs. Text Files
	Looking at Binary File Internals with the GHex Hex Editor
	Interpreting Raw Data
	“Endianness”

	Text In, Code Out
	Assembly Language
	Comments
	Beware “Write-Only” Source Code!
	Object Code, Linkers, and Libraries
	Relocatability

	The Assembly Language Development Process
	The Discipline of Working Directories
	Editing the Source Code File
	Assembling the Source Code File
	Assembler Errors
	Back to the Editor
	Assembler Warnings

	Linking the Object Code File
	Linker Errors
	Testing the EXE File
	Errors vs. Bugs
	Are We There Yet?
	Debuggers and Debugging

	Taking a Trip Down Assembly Lane
	Installing the Software
	Step 1: Edit the Program in an Editor
	Step 2: Assemble the Program with NASM
	Step 3: Link the Program with ld
	Step 4: Test the Executable File
	Step 5: Watch It Run in the Debugger

	Chapter 6 A Place to Stand, with Access to Tools: Linux and the Tools That Shape the Way You Work
	Integrated Development Environments
	Introducing SASM
	Configuring SASM
	SASM’s Fonts
	Using a Compiler to Link
	A Quick Tour of SASM
	SASM’s Editor
	What SASM Demands of Your Code

	Linux and Terminals
	The Linux Console
	Character Encoding in Konsole
	The Three Standard Unix Files
	I/O Redirection
	Simple Text Filters
	Using Standard Input and Standard Output from Inside SASM
	Terminal Control with Escape Sequences
	So Why Not GUI Apps?

	Using Linux Make
	Dependencies
	When a File Is Up-to-Date
	Chains of Dependencies
	Invoking Make
	Creating a Custom Key Binding for Make
	Using Touch to Force a Build

	Debugging with SASM
	Pick up Your Tools. . .

	Chapter 7 Following Your Instructions: Meeting Machine Instructions Up Close and Personal
	Build Yourself a Sandbox
	A Minimal NASM Program for SASM

	Instructions and Their Operands
	Source and Destination Operands
	Immediate Data
	Register Data
	Memory Data and Effective Addresses
	Confusing Data and Its Address
	The Size of Memory Data
	The Bad Old Days

	Rally Round the Flags, Boys!
	Flag Etiquette
	Watching Flags from SASM
	Adding and Subtracting One with INC and DEC
	How Flags Change Program Execution
	How to Inspect Variables in SASM

	Signed and Unsigned Values
	Two’s Complement and NEG
	Sign Extension and MOVSX

	Implicit Operands and MUL
	MUL and the Carry Flag
	Unsigned Division with DIV
	MUL and DIV Are Slowpokes

	Reading and Using an Assembly Language Reference
	Memory Joggers for Complex Memories
	An Assembly Language Reference for Beginners
	Flags

	NEG Negate (Two’s Complement; i.e., Multiply by 1)
	Flags Affected
	Legal Forms
	Examples
	Notes
	Legal Forms
	Operand Symbols
	Examples
	Notes
	What’s Not Here. . .

	Chapter 8 Our Object All Sublime: Creating Programs That Work
	The Bones of an Assembly Language Program
	The Initial Comment Block
	The .data Section
	The .bss Section
	The .text Section
	Labels
	Variables for Initialized Data
	String Variables
	Deriving String Length with EQU and $

	Last In, First Out via the Stack
	Five Hundred Plates an Hour
	Stacking Things Upside Down
	Push-y Instructions
	POP Goes the Opcode
	PUSHA and POPA Are Gone
	Pushing and Popping in Detail
	Storage for the Short Term

	Using Linux Kernel Services Through Syscall
	X64 Kernel Services via the SYSCALL Instruction
	ABI vs. API?
	The ABI’s Register Parameter Scheme
	Exiting a Program via SYSCALL
	Which Registers Are Trashed by SysCall?

	Designing a Nontrivial Program
	Defining the Problem
	Starting with Pseudocode
	Successive Refinement
	Those Inevitable “Whoops!” Moments
	Scanning a Buffer
	“Off by One” Errors
	From Pseudocode to Assembly Code
	The SASM Output Window Gotcha

	Going Further

	Chapter 9 Bits, Flags, Branches, and Tables: Easing Into Mainstream Assembly Coding
	Bits Is Bits (and Bytes Is Bits)
	Bit Numbering
	“It’s the Logical Thing to Do, Jim. . .”
	The AND Instruction
	Masking Out Bits
	The OR Instruction
	The XOR Instruction
	The NOT Instruction
	Segment Registers Don’t Respond to Logic!

	Shifting Bits
	Shift by What?
	How Bit Shifting Works
	Bumping Bits into the Carry Flag
	The Rotate Instructions
	Rotating Bits Through the Carry Flag
	Setting a Known Value into the Carry Flag

	Bit-Bashing in Action
	Splitting a Byte into Two Nybbles
	Shifting the High Nybble into the Low Nybble
	Using a Lookup Table
	Multiplying by Shifting and Adding

	Flags, Tests, and Branches
	Unconditional Jumps
	Conditional Jumps
	Jumping on the Absence of a Condition
	Flags
	Comparisons with CMP
	A Jungle of Jump Instructions
	“Greater Than” Versus “Above”
	Looking for 1-Bits with TEST
	Looking for 0-Bits with BT

	X64 Long Mode Memory Addressing in Detail
	Effective Address Calculations
	Displacements
	The x64 Displacement Size Problem
	Base Addressing
	Base + Displacement Addressing
	Base + Index Addressing
	Index X Scale + Displacement Addressing
	Other Addressing Schemes
	LEA: The Top-Secret Math Machine

	Character Table Translation
	Translation Tables
	Translating with MOV or with XLAT

	Tables Instead of Calculations

	Chapter 10 Dividing and Conquering: Using Procedures and Macros to Battle Program Complexity
	Boxes within Boxes
	Procedures as Boxes for Code

	Calling and Returning
	Calls Within Calls
	The Dangers of Accidental Recursion
	A Flag Etiquette Bug to Beware Of
	Procedures and the Data They Need
	Saving the Caller’s Registers
	Preserving Registers Across Linux System Calls
	PUSHAD and POPAD Are Gone
	Local Data
	Placing Constant Data in Procedure Definitions
	More Table Tricks

	Local Labels and the Lengths of Jumps
	“Forcing” Local Label Access
	Short, Near, and Far Jumps

	Building External Procedure Libraries
	When Tools Reach Their Limits
	Using Include Files in SASM
	Where SASM’s Include Files Must Be Stored
	The Best Way to Create an Include File Library
	Separate Assembly and Modules
	Global and External Declarations
	The Mechanics of Globals and Externals
	Linking Libraries into Your Programs
	The Dangers of Too Many Procedures and Too Many Libraries

	The Art of Crafting Procedures
	Maintainability and Reuse
	Deciding What Should Be a Procedure
	Use Comment Headers!

	Simple Cursor Control in the Linux Console
	Listing 10.6eattermgcc.asm
	Console Control Cautions

	Creating and Using Macros
	The Mechanics of Macro Definition
	Defining Macros with Parameters
	The Mechanics of Invoking Macros
	Local labels Within Macros
	Macro Libraries as Include Files
	Macros vs. Procedures: Pros and Cons

	Chapter 11 Strings and Things: Those Amazing String Instructions
	The Notion of an Assembly Language String
	Turning Your “String Sense” Inside-Out
	Source Strings and Destination Strings
	A Text Display Virtual Screen

	REP STOSB, the Software Machine Gun
	Machine-Gunning the Virtual Display
	Executing the STOSB Instruction
	STOSB and the Direction Flag DF
	Defining Lines in the Display Buffer
	Sending the Buffer to the Linux Console

	The Semiautomatic Weapon: STOSB Without REP
	Who Decrements RCX?
	The LOOP Instructions
	Displaying a Ruler on the Screen
	MUL Is Not IMUL
	Ruler’s Lessons
	The Four Sizes of STOS
	Goodbye, BCD Math

	MOVSB: Fast Block Copies
	DF and Overlapping Block Moves
	Single-Stepping REP String Instructions

	Storing Data to Discontinuous Strings
	Displaying an ASCII Table
	Nested Instruction Loops
	Jumping When RCX Goes to 0
	Closing the Inner Loop
	Closing the Outer Loop
	Showchar Recap

	Command-Line Arguments, String Searches, and the Linux Stack
	Displaying Command-Line Arguments from SASM
	String Searches with SCASB
	REPNE vs. REPE
	You Can’t Pass Command-Line Arguments to Programs Within SASM

	The Stack, Its Structure, and How to Use It
	Accessing the Stack Directly
	Program Prologs and Epilogs
	Addressing Data on the Stack
	Don’t Pop!

	Chapter 12 Heading Out to C: Calling External Functions Written in the C Language
	What’s GNU?
	The Swiss Army Compiler
	Building Code the GNU Way
	SASM Uses GCC
	How to Use gcc in Assembly Work
	Why Not gas?

	Linking to the Standard C Library
	C Calling Conventions
	Callers, Callees, and Clobbers
	Setting Up a Stack Frame
	Destroying a Stack Frame in the Epilog
	Stack Alignment
	Characters Out Via puts()

	Formatted Text Output with printf()
	Passing Parameters to printf()
	Printf() Needs a Preceding 0 in RAX
	You Shall Have –No-Pie

	Data In with fgets() and scanf()
	Using scanf() for Entry of Numeric Values

	Be a Linux Time Lord
	The C Library’s Time Machine
	Fetching time_t Values from the System Clock
	Converting a time_t Value to a Formatted String
	Generating Separate Local Time Values
	Making a Copy of glibc’s tm Struct with MOVSD

	Understanding AT&T Instruction Mnemonics
	AT&T Mnemonic Conventions
	AT&T Memory Reference Syntax

	Generating Random Numbers
	Seeding the Generator with srand()
	Generating Pseudorandom Numbers
	Some Bits Are More Random Than Others
	Calls to Addresses in Registers
	Using puts() to Send a Naked Linefeed to the Console
	How to Pass a libc Function More Than Six Parameters

	How C Sees Command-Line Arguments
	Simple File I/O
	Converting Strings into Numbers with sscanf()
	Creating and Opening Files
	Reading Text from Files with fgets()
	Writing Text to Files with fprintf()
	Notes on Gathering Your Procedures into Libraries

	Conclusion: Not the End, But Only the Beginning
	Appendix A: The Return of the Insight Debugger
	Insight’s Shortcomings
	Opening a Program Under Insight
	Setting Command-Line Arguments with Insight
	Running and Stepping a Program
	The Memory Window
	Showing the Stack in Insight’s Memory View
	Examining the Stack with Insight’s Memory View
	Learn gdb!

	Appendix B: Partial x64 Instruction Reference
	What’s Been Removed from x64
	Flag Results
	Size Specifiers
	Instruction Index
	ADC: Arithmetic Addition with Carry
	Flags Affected
	Legal Forms
	Examples
	Notes

	ADD: Arithmetic Addition
	Flags Affected
	Legal Forms
	Examples
	Notes

	AND: Logical AND
	Flags Affected
	Legal Forms
	Examples
	Notes

	BT: Bit Test
	Flags Affected
	Legal Forms
	Examples
	Notes

	CALL: Call Procedure
	Flags Affected
	Legal Forms
	Examples
	Notes

	CLC: Clear Carry Flag (CF)
	Flags Affected
	Legal Forms
	Examples
	Notes

	CLD: Clear Direction Flag (DF)
	Flags Affected
	Legal Forms
	Examples
	Notes

	CMP: Arithmetic Comparison
	Flags Affected
	Legal Forms
	Examples
	Notes

	DEC: Decrement Operand
	Flags Affected
	Legal Forms
	Examples
	Notes

	DIV: Unsigned Integer Division
	Flags Affected
	Legal Forms
	Examples
	Notes

	INC: Increment Operand
	Flags Affected
	Legal Forms
	Examples
	Notes

	J??: Jump If Condition Is Met
	Flags Affected
	Examples
	Notes

	JECXZ: Jump if ECX=0
	Flags Affected
	Legal Forms
	Examples
	Notes

	JRCXZ: Jump If RCX=0
	Flags Affected
	Legal Forms
	Examples
	Notes

	JMP: Unconditional Jump
	Flags Affected
	Legal Forms
	Examples
	Notes

	LEA: Load Effective Address
	Flags Affected
	Legal Forms
	Examples
	Notes

	LOOP: Loop Until CX/ECX/RCX=0
	Flags Affected
	Legal Forms
	Examples
	Notes

	LOOPNZ/LOOPNE: Loop Until CX/ECX/RCX=0 and ZF=0
	Flags Affected
	Legal Forms
	Examples
	Notes

	LOOPZ/LOOPE: Loop Until CX/ECX/RCX=0 and ZF=1
	Flags Affected
	Legal Forms
	Examples
	Notes

	MOV: Copy Right Operand into Left Operand
	Flags Affected
	Legal Forms
	Examples
	Notes

	MOVS: Move String
	Flags Affected
	Legal Forms
	Examples
	Notes

	MOVSX: Copy with Sign Extension
	Flags Affected
	Legal Forms
	Examples
	Notes

	MUL: Unsigned Integer Multiplication
	Flags Affected
	Legal Forms
	Examples
	Notes

	NEG: Negate (Two’s Complement; i.e., Multiply by 1)
	Flags Affected
	Legal Forms
	Examples
	Notes

	NOP: No Operation
	Flags Affected
	Legal Forms
	Examples
	Notes

	NOT: Logical NOT (One’s Complement)
	Flags Affected
	Legal Forms
	Examples
	Notes

	OR: Logical OR
	Flags Affected
	Legal Forms
	Examples
	Notes

	POP: Copy Top of Stack into Operand
	Flags Affected
	Legal Forms
	Examples
	Notes

	POPF/D/Q: Copy Top of Stack into Flags Register
	Flags Affected
	Legal Forms
	Examples
	Notes

	PUSH: Push Operand onto Top of Stack
	Flags Affected
	Legal Forms
	Examples
	Notes

	PUSHF/D/Q: Push Flags Onto the Stack
	Flags Affected
	Legal Forms
	Examples
	Notes

	RET: Return from Procedure
	Flags Affected
	Legal Forms
	Examples
	Notes

	ROL/ROR: Rotate Left/Rotate Right
	Flags Affected
	Legal Forms
	Examples
	Notes

	SBB: Arithmetic Subtraction with Borrow
	Flags Affected
	Legal Forms
	Examples
	Notes

	SHL/SHR: Shift Left/Shift Right
	Flags Affected
	Legal Forms
	Examples
	Notes

	STC: Set Carry Flag (CF)
	Flags Affected
	Legal Forms
	Examples
	Notes

	STD: Set Direction Flag (DF)
	Flags Affected
	Legal Forms
	Examples
	Notes

	STOS/B/W/D/Q: Store String
	Flags Affected
	Legal Forms
	Examples
	Notes

	SUB: Arithmetic Subtraction
	Flags Affected
	Legal Forms
	Examples
	Notes

	SYSCALL: Fast System Call into Linux
	Flags Affected
	Legal Forms
	Examples
	Notes

	XCHG: Exchange Operands
	Flags Affected
	Legal Forms
	Examples
	Notes

	XLAT: Translate Byte Via Table
	Flags Affected
	Legal Forms
	Examples
	Notes

	XOR: Exclusive OR
	Flags Affected
	Legal Forms
	Examples
	Notes

	Appendix C: Character Set Charts
	Index
	EULA

