

Linux Driver
Development for

Embedded Processors
ALBERTO LIBERAL DE LOS RÍOS

Copyright © 2018, Alberto Liberal de los Ríos. All rights reserved.

No part of this publication may be reproduced, photocopied, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher.

Linux is a registered trademark of Linus Torvalds. Other trademarks within this book
are the property of their respective owners.

The kernel modules examples provided with this book are released under the GPL
license. This license gives you the right to use, study, modify and share the software
freely. However, when the software is redistributed, modified or unmodified, the GPL
requires that you redistribute the software under the same license, with the source
code.

Published by:

Alberto Liberal de los Ríos
aliberal@arroweurope.com

Graphic Design: Signo Comunicación Consultores SLU

Imprint: Independently published

[1]

About the Author
Alberto Liberal is a Field Application Engineer at Arrow Electronics withover 15 years of
experience in embedded systems. For the last few years at Arrow he has been supporting high-end
processors and FPGAs. Alberto is a Linux fan and has presented numerous technical seminars
and practical workshops about Embedded Linux and Linux device drivers during the past few
years. Alberto´s other fields of expertise include multimedia SoCs and real-time operating systems
(RTOS). He currently lives in Madrid, Spain, and his great passion is taking long walks with his
daughter through the center of Madrid. He also enjoys reading about cinema and watching sci-fi
movies.

[3]

Table of Contents
Preface..13
Chapter 1: Building the System ...19

Bootloader ...20
Linux Kernel ...22
System Call Interface and C Runtime Library ..25
System Shared Libraries ...26
Root Filesystem ...27
Linux Boot Process ..28
Building a Linux Embedded System ..30
Setting up Ethernet Communication ..31
Building a Linux Embedded System for the NXP i.MX7D Processor32

Introduction ..32
Host Packages ..33
Setting up the Repo Utility ...33
Yocto Project Setup and Image Building ...33
Working Outside of Yocto ..36
Building the Linux Kernel ...38
Installing a TFTP Server ..41
Installing a NFS Server ..42
Setting the U-Boot Environment Variables ..42

Building a Linux Embedded System for the Microchip
SAMA5D2 Processor ...43

Introduction ..43
Host Packages ..44
Yocto Project Setup and Image Building ...44
Working Outside of Yocto ..46
Building the Linux Kernel ...47
Installing a TFTP Server ..49
Installing a NFS Server ..49
Setting the U-Boot Environment Variables ..50

Table of Contents

[4]

Building a Linux Embedded System for the Broadcom
BCM2837 Processor ..50

Raspbian ...50
Building the Linux Kernel ...51
Copying Files to your Raspberry Pi ...54

Working with Eclipse ..55
Eclipse Configuration for Working with Kernel Sources ..56
Eclipse Configuration for Developing Linux Drivers ..67

Chapter 2: The Linux Device and Driver Model ..73
Bus Core Drivers ...74
Bus Controller Drivers ..76
Device Drivers ...77
Introduction to the Device Tree ..78

Chapter 3: The Simplest Drivers ..83
Licensing ..84
LAB 3.1: "helloworld" Module ..84
Listing 3-1: helloworld_imx.c ..85
Listing 3-2: Makefile ...86
helloworld_imx.ko Demonstration ..86
LAB 3.2: "helloworld with parameters" Module ..87
Listing 3-3: helloworld_imx_with_parameters.c ..88
helloworld_imx_with_parameters.ko Demonstration ..88
LAB 3.3: "helloworld timing" Module ..88
Listing 3-4: helloworld_imx_with_timing.c ..89
helloworld_imx_with_timing.ko Demonstration ..90

Chapter 4: Character Drivers..91
LAB 4.1: "helloworld character" Module ..93

Registration and Unregistration of Character Devices ..94
Listing 4-1: helloworld_imx_char_driver.c ..98
Listing 4-2: Makefile ...102
Listing 4-3: ioctl_test.c ...102
helloworld_imx_char_driver.ko Demonstration ..102
Add the Module to the Kernel Build ...103

[5]

 Table of Contents

[5]

Creating Device Files with devtmpfs ..104
LAB 4.2: "class character" Module ..105
Listing 4-4: helloworld_imx_class_driver.c ...107
helloworld_imx_class_driver.ko Demonstration ...109
Miscellaneous Character Driver ...109

Registering a Minor Number ..110
LAB 4.3: "miscellaneous character" Module ..111
Listing 4-5: misc_imx_driver.c ..111
misc_imx_driver.ko Demonstration ..113

Chapter 5: Platform Drivers ..115
LAB 5.1: "platform device" Module ..117
Listing 5-1: hellokeys_imx.c ...120
hellokeys_imx.ko Demonstration ...122
Documentation to Interact with the Hardware..123
Hardware Naming Convention ...123
Pin Controller ...124
Pin Control Subsystem ..127
Device Tree Pin Controller Bindings ..134
GPIO Controller Driver ...138
GPIO Descriptor Consumer Interface ..140

Obtaining and Disposing GPIOs ..141
Using GPIOs ..141
GPIOs Mapped to IRQs ...143
GPIOs in Device Tree ..143

Exchanging Data between Kernel and User Space...144
MMIO (Memory-Mapped I/O) Device Access ..145
LAB 5.2: "RGB LED platform device" Module ...147

LAB 5.2 Hardware Description for the i.MX7D Processor147
LAB 5.2 Hardware Description for the SAMA5D2 Processor149
LAB 5.2 Hardware Description for the BCM2837 Processor151
LAB 5.2 Device Tree for the i.MX7D Processor ..153
LAB 5.2 Device Tree for the SAMA5D2 Processor ...156
LAB 5.2 Device Tree for the BCM2837 Processor ..159
LAB 5.2 Code Description of the "RGB LED platform device" Module161

Table of Contents

[6]

Listing 5-2: ledRGB_sam_platform.c ...166
ledRGB_sam_platform.ko Demonstration ..171
Platform Driver Resources ...172
Linux LED Class ..174
LAB 5.3: "RGB LED class" Module ..176

LAB 5.3 DT for the i.MX7D, SAMA5D2 and BCM2837 Processors176
LAB 5.3 Code Description of the "RGB LED class" Module180

Listing 5-3: ledRGB_sam_class_platform.c ...184
ledRGB_sam_class_platform.ko Demonstration ..188
Platform Device Drivers in the User Space ...188
User Defined I/O: UIO ..190

How UIO Works ...192
Kernel UIO API ..193

LAB 5.4: "LED UIO platform" Module ..195
LAB 5.4 DT for the i.MX7D, SAMA5D2 and BCM2837 Processors195
LAB 5.4 Code Description of the "LED UIO platform" Module197

Listing 5-4: led_sam_UIO_platform.c ...199
Listing 5-5: UIO_app.c ...201
led_sam_UIO_platform.ko with UIO_app Demonstration203

Chapter 6: I2C Client Drivers ..205
The Linux I2C Subsystem ..206
Writing I2C Client Drivers ..210

I2C Client Driver Registration ..210
Declaration of I2C Devices in Device Tree ..212

LAB 6.1: "I2C I/O expander device" Module ..214
LAB 6.1 Hardware Description for the i.MX7D Processor214
LAB 6.1 Hardware Description for the SAMA5D2 Processor214
LAB 6.1 Hardware Description for the BCM2837 Processor216
LAB 6.1 Device Tree for the i.MX7D Processor ..216
LAB 6.1 Device Tree for the SAMA5D2 Processor ...218
LAB 6.1 Device Tree for the BCM2837 Processor ..220
LAB 6.1 Code Description of the "I2C I/O expander device" Module221

Listing 6-1: io_imx_expander.c ..224
io_imx_expander.ko Demonstration ...228

[7]

 Table of Contents

[7]

The Sysfs Filesystem ...229
The Kobject Infrastructure ...230

LAB 6.2: "I2C multidisplay LED" Module ...233
LAB 6.2 Hardware Description for the i.MX7D Processor235
LAB 6.2 Hardware Description for the SAMA5D2 Processor235
LAB 6.2 Hardware Description for the BCM2837 Processor235
LAB 6.2 Device Tree for the i.MX7D Processor ..235
LAB 6.2 Device Tree for the SAMA5D2 Processor ...237
LAB 6.2 Device Tree for the BCM2837 Processor ..239
Unified Device Properties Interface for ACPI and Device Tree240
LAB 6.2 Code Description of the "I2C multidisplay LED" Module242

Listing 6-2: ltc3206_imx_led_class.c ..246
ltc3206_imx_led_class.ko Demonstration ..254

Chapter 7: Handling Interrupts in Device Drivers ..257
Linux Kernel IRQ Domain for GPIO Controllers ..260
Device Tree Interrupt Handling ..268
Requesting Interrupts in Linux Device Drivers ...272
LAB 7.1: "button interrupt device" Module ...274

LAB 7.1 Hardware Description for the i.MX7D Processor274
LAB 7.1 Hardware Description for the SAMA5D2 Processor274
LAB 7.1 Hardware Description for the BCM2837 Processor274
LAB 7.1 Device Tree for the i.MX7D Processor ..274
LAB 7.1 Device Tree for the SAMA5D2 Processor ...276
LAB 7.1 Device Tree for the BCM2837 Processor ..277
LAB 7.1 Code Description of the "button interrupt device" Module278

Listing 7-1: int_imx_key.c ...280
int_imx_key.ko Demonstration ...282
Deferred Work ...283

Softirqs ..284
Tasklets ...286
Timers ..286
Threaded Interrupts ...290
Workqueues ..292

Table of Contents

[8]

Locking in the Kernel ...296
Locks and Uniprocessor Kernels ...297
Sharing Spinlocks between Interrupt and Process Context297
Locking in User Context ..298

Sleeping in the Kernel ..298
LAB 7.2: "sleeping device" Module ..300

LAB 7.2 Device Tree for the i.MX7D Processor ..301
LAB 7.2 Device Tree for the SAMA5D2 Processor ...302
LAB 7.2 Device Tree for the BCM2837 Processor ..303
LAB 7.2 Code Description of the "sleeping device" Module305

Listing 7-2: int_imx_key_wait.c ...308
int_imx_key_wait.ko Demonstration ...312
Kernel Threads ..312
LAB 7.3: "keyled class" Module ...313

LAB 7.3 Hardware Description for the i.MX7D Processor314
LAB 7.3 Hardware Description for the SAMA5D2 Processor314
LAB 7.3 Hardware Description for the BCM2837 Processor315
LAB 7.3 Device Tree for the i.MX7D Processor ..316
LAB 7.3 Device Tree for the SAMA5D2 Processor ...319
LAB 7.3 Device Tree for the BCM2837 Processor ..322
LAB 7.3 Code Description of the "keyled class" Module324

Listing 7-3: keyled_imx_class.c ..331
keyled_imx_class.ko Demonstration ..343

Chapter 8: Allocating Memory with Linux Drivers ...345
Walking ARM MMU Translation Tables ...346
Linux Address Types ...353
User Process Virtual to Physical Memory Mapping ...354
Kernel Virtual to Physical Memory Mapping ..355
Kernel Memory Allocators ..357

PAGE Allocator ..357
Page Allocator API ..358
SLAB Allocator ..358
SLAB Allocator API ..361
Kmalloc Allocator ...362

[9]

 Table of Contents

[9]

LAB 8.1: "linked list memory allocation" Module ...363
Listing 8-1: linkedlist_imx_platform.c ..366
linkedlist_imx_platform.ko Demonstration ..371

Chapter 9: Linux DMA in Device Drivers ...373
Cache Coherency ..373
Linux DMA Engine API ..375

Types of DMA Mappings ...378
LAB 9.1: "streaming DMA" Module ..382
Listing 9-1: sdma_imx_m2m.c ...390
sdma_imx_m2m.ko Demonstration ..395
DMA Scather/Gather Mappings ...396
LAB 9.2: "scatter/gather DMA device" Module ..397
Listing 9-2: sdma_imx_sg_m2m.c ..400
sdma_imx_sg_m2m.ko Demonstration ..407
DMA from User Space ...407
LAB 9.3: "DMA from user space" Module ..409
Listing 9-3: sdma_imx_mmap.c ...411
Listing 9-4: sdma.c ...416
sdma_imx_mmap.ko Demonstration ..417

Chapter 10: Input Subsystem Framework for Device Drivers419
Input Subsystem Drivers ..420
LAB 10.1: "input subsystem accelerometer" Module ...423

Device Tree ...425
Input Framework as an I2C Interaction ...426
Input Framework as an Input Device ...428

Listing 10-1: i2c_imx_accel.c ...431
i2c_imx_accel.ko Demonstration ...433
Using SPI with Linux ..435
The Linux SPI Subsystem ...437
Writing SPI Client Drivers ..440

SPI Client Driver Registration ..440
Declaration of SPI Devices in Device Tree ..442

Table of Contents

[10]

LAB 10.2: "SPI accel input device" Module ...446
LAB 10.2 Hardware Description for the i.MX7D Processor446
LAB 10.2 Hardware Description for the SAMA5D2 Processor447
LAB 10.2 Hardware Description for the BCM2837 Processor447
LAB 10.2 Device Tree for the i.MX7D Processor ..447
LAB 10.2 Device Tree for the SAMA5D2 Processor ...449
LAB 10.2 Device Tree for the BCM2837 Processor ..451
LAB 10.2 Code Description of the "SPI accel input device" Module451

Listing 10-2: adxl345_imx.c ...462
adxl345_imx.ko Demonstration ..476

Chapter 11: Industrial I/O Subsystem for Device Drivers479
IIO Device Sysfs Interface ...481
IIO Device Channels ..481
The iio_info Structure ...484
Buffers ...485

IIO Buffer Sysfs Interface ..485
IIO Buffer Setup ...485
Triggers ...487
Triggered Buffers ...487

Industrial I/O Events ..489
Delivering IIO Events to User Space ...492

IIO Utils ..494
LAB 11.1: "IIO subsystem DAC" Module ...494

Device Tree ...495
Industrial Framework as an I2C Interaction ...497
Industrial Framework as an IIO Device ...498

Listing 11-1: ltc2607_imx_dual_device.c ..504
LAB 11.2: "IIO subsystem DAC" Module with "SPIDEV dual ADC user"
Application ...508

LAB 11.2 Hardware Description for the i.MX7D Processor510
LAB 11.2 Hardware Description for the SAMA5D2 Processor510
LAB 11.2 Hardware Description for the BCM2837 Processor510
LAB 11.2 Device Tree for the i.MX7D Processor ..511
LAB 11.2 Device Tree for the SAMA5D2 Processor ...511
LAB 11.2 Device Tree for the BCM2837 Processor ..512

[11]

 Table of Contents

[11]

Listing 11-2: LTC2422_spidev.c ..512
ltc2607_imx_dual_device.ko with LTC2422_spidev Demonstration516
LAB 11.3: "IIO subsystem ADC" Module ...518

Device Tree ...518
Industrial Framework as a SPI Interaction ...520
Industrial Framework as an IIO Device ...521

Listing 11-3: ltc2422_imx_dual.c ..524
LTC2422_app User Space Application ..526

Listing 11-4: ltc2422_app.c ..526
ltc2422_imx_dual.ko with ltc2422_app Demonstration ..529
LAB 11.4: "IIO subsystem ADC with hardware triggering" Module529

LAB 11.4 DT for the i.MX7D, SAMA5D2 and BCM2837 Processors530
Sleep and Wake up in the Driver ...534
Interrupt Management ...535

Listing 11-5: ltc2422_imx_trigger.c ..536
ltc2422_imx_trigger.ko with LTC2422_app Demonstration..................................540

Chapter 12: Using the Regmap API in Linux Device Drivers541
Implementing Regmap ...543
LAB 12.1: "SPI regmap IIO device" Module ..546
Listing 12-1: adxl345_imx_iio.c ..557
adxl345_imx_iio.ko Demonstration ..569

References ...573
Index ...575

[13]

Preface
Embedded systems have become an integral part of our daily life. They are deployed in mobile
devices, networking infrastructure, home and consumer devices, digital signage, medical imaging,
automotive infotainment and many other industrial applications. The use of embedded systems is
growing exponentially. Today´s proccesors are made from silicon, which itself is fashioned from
one of the most abundant materials on earth: sand. Processor technology has moved from 90nm
fabrication in the year 2000 to 14nm today, and it is expected to shrink to 7nm or 5nm by 2021.

Today´s embedded processors range from multicore 64-bit CPUs, manufactured in advanced
14nm processes, with extensive heterogeneous computing capabilities including powerful GPUs
and DSPs that are engineered to allow the running of trained neural networks and enable next
generation of virtual reality applications, to single or dual core embedded processors for power
efficient, cost optimized applications designed for the growing IoT (Internet of Things) and
industrial markets. Nowdays, it is possible to have an embedded linux system running in a few
dollars processor and new processors are coming, shrinking this cost.

The flexibility of Linux embedded, the availability of powerful, energy efficient processors
designed for embedded computing and the low cost of new processors are encouraging many
industrial companies to come up with new developments based on embedded processors. Current
engineers have in their hands powerful tools for developing applications previously unimagined,
but they need to understand the countless features that Linux offers today.

Linux embedded firmware developers need to understand the lower level hardware function
controls, to be able to write interfaces to multiple peripherals - meaning peripherals: GPIOs, serial
buses, timers, DMA, CAN, USB, and LCD.

The following could be a real example of low level hardware control: A Linux embedded firmware
developer is designing a Linux application that needs to talk with three different UARTs. A Linux
SBC (Single board computer) with three available UARTs is being used, but when the application
is being tested, it looks like there are only two functional UARTs. The reason is that processors
have pins multiplexed to different functions, and the same pin can be an UART pin, an I2C pin,
a SPI pin, a GPIO, etc. To activate the third UART, the firmware developer first must look for
Device Tree (DT) source files within the kernel that describe the hardware of the SBC being used.
Second, it must be checked if the missing UART device is created and enabled in these DT files.
If the UART device node is not included, it can be created using other created UART nodes as a
reference. After that, the new UART pads must be multiplexed for UART functionality, making
sure they are not conflicting with other devices in the DT that use the same pads for an alternate
function.

Preface

[14]

In Device Tree Linux systems the device drivers are loaded by the kernel when the device is
declared in the Device Tree. The driver retrieves the configuration data from the DT node (e.g, the
physical addresses allocated to the device, which interrupt(s) the device triggers, and also device
specific information). Throughout this book, you will see the important role of the Device Tree for
the development of your Linux device drivers and it will be consequently explained in detail.

This book will teach you how to develop device drivers for Device Tree Linux embedded systems.
You will learn how to write different types of Linux drivers as well as the appropriate APIs
(Application Program Interfaces) and methods to interface with kernel and user spaces. This is a
book is meant to be practical, but also provides an important theoretical base. More than twenty
drivers are written and ported to three different processors. You can choose between NXP i.MX7D,
Microchip SAMA5D2 and Broadcom BCM2837 processors to develop your drivers. You can use
any of these processor boards while it has available some GPIOs, a SPI controller and an I2C
controller. I encourage you to acquire one of these boards before you start with the reading, as the
content of this book is eminently practical and reproducing the labs with the board will help you
to fix the theoretical content exposed throughout the book.

You will learn how to develop drivers, from the simplest ones that do not interact with any
external hardware, to drivers that manage different kind of devices: accelerometers, DACs, ADCs,
RGB LEDs, Multidisplay LED controllers, I/O expanders, and Buttons. You will also develop DMA
drivers, drivers that manage interrupts, and drivers that write/read on the internal registers of
the processor to control external devices. To easy the development of some of these drivers, you
will use different types of Frameworks: Misc framework, LED framework, UIO framework, Input
framework and the IIO industrial one.

This book is a learning tool to start developing drivers without any previous knowledge about
this field, so the intention during its writing has been to develop drivers without a high level of
complexity that both serve to reinforce the main driver development concepts and can be a starting
point to help you to develop your own drivers. And, remember that the best way to develop a
driver is not to write it from scratch. You can reuse free code from similar Linux kernel mainline
drivers. All the drivers written throughout this book are GPL licensed, so you can modify and
redistribute them under the same license.

[15]

 Preface

[15]

Who is this Book for?
This book is ideal for Linux embedded application developers that want to know how to develop
drivers from scratch. It is also indicated for embedded software developers that have developed
drivers for non-Device Tree kernels and want to learn how to create new Device Tree-based ones.
And finally, it is for students and hobbyists that want to learn how to deal with the low level
hardware of embedded platforms using Linux. Before reading this book, having prior, basic
knowledge of C language, Linux embedded and Yocto Project tools would be helpful, though not
mandatory.

How this Book is Structured
Chapter 1, Building the System, starts by describing the main parts of an Embedded Linux system
and the different ways to build it, explaining why the Yocto Project and Debian were chosen as
your build options. Next, it describes in detail how to build a Linux embedded image using Yocto
and Debian and how to compile Linux kernel outside Yocto. The generated Linux image will be
used for the development of drivers and applications throughout the book. Finally, this chapter
describes how to configure the free Eclipse IDE to develop the drivers.

Chapter 2, The Linux Device and Drivel Model, explains the relationship between "Bus" drivers,
"Bus controller" drivers and "Device" drivers. It also provides an introduction to the Device Tree.

Chapter 3, The Simplest Drivers, covers several simple drivers that are not yet interacting
with user applications through "system calls". You will use the Eclipse IDE to create, compile
and deploy the drivers in your target board. This chapter will let you check that your driver
development ecosystem is working properly.

Chapter 4, Character Drivers, describes the architecture of the character drivers. It explains
how driver´s operations are called from user space using system calls and how to exchange
data between the kernel and user spaces. It also explains how to identify and create each Linux
device. Several drivers will be written that exchange information with the user space using
different methods for the creation of the device nodes. The first driver developed will use the
traditionally static device creation method using the "mknod" command, the second one will show
how to create device files with "devtmpfs" and the last one will create the device files using the
"miscellaneous framework". This chapter also explains how to create a device class, and a device
driver entry under the sysfs.

Chapter 5, Platform Drivers, describes what a platform driver is, how a platform device is
statically described in the Device Tree, and the process of associating the device with the device
driver, called "binding". In this chapter, you will develop your first driver interacting with the
hardware. Before developing the driver, a detailed explanation will be provided on the way the

Preface

[16]

pads of your target processor can be multiplexed to different functions and how to select the
required muxing option within the Device Tree. This chapter also describes the Pinctrl Subsystem
and the new GPIO Descriptor Consumer Interface. You will develop drivers that control external
devices mapping of peripheral addresses from physical to virtual and writing/reading to/from
these virtual addresses within kernel space. You will also learn to write drivers that control LEDs
using the Linux LED subsystem. Finally, this chapter explains how to develop an user space driver
using the UIO framework.

Chapter 6, I2C Client Drivers, describes the Linux I2C subsystem, which is based in the Linux
device model. You will learn to declare Device Tree I2C devices and will develop several I2C client
drivers throughout this chapter. You will also see how to add "sysfs" support to a platform driver
to control the hardware via sysfs entries.

Chapter 7, Handling Interrupts in Platform Drivers, introduces interrupt hardware and software
operation in Linux embedded processors, explaining how the interrupt controllers and the
interrupt-capable peripheral nodes are linked in the Device Tree. You will develop drivers that
manage interrupts from external hardware. You will learn about deferred work kernel facilities
that allows one to schedule code to be executed at a later time. This scheduled code can run either
in process context using "workqueues" or "threaded interrupts", or in interrupt context using
"softirqs", "tasklets" and "timers". Finally, this chapter shows how an user application is put to
sleep using a "wait queue" and woken up later via an interrupt.

Chapter 8, Memory Management Drivers, explains the MMU (Memory Management Unit), and
the different types of addresses used in Linux. Finally, this chapter describes the different kernel
memory allocators.

Chapter 8, DMA Drivers, describes the "Linux DMA Engine Subsystem", and the different types
of DMA mappings. Several drivers are developed that manage memory to memory transactions
without CPU intervention, using DMA scather/gather mappings and DMA from user space using
the mmap() system call.

Chapter 10, Input Subsystem Framework for Device Drivers, introduces the use of frameworks
to provide a coherent user space interface for every type of device, regardless of the drivers. The
chapter explains in the relationship between the physical and logical parts of a driver that uses a
kernel framework. It focus on the Input subsystem framework, that takes care of the input events
coming from the human user. This chapter also describes the Linux SPI subsystem, which is based
in the Linux device model. You will learn how to declare Device Tree SPI devices and will develop
a SPI client driver using the Input framework. Finally, this chapter explains how to interact from
user space with the I2C bus using the "i2c-tools" applications.

Chapter 11, Industrial I/O Subsystem for Device Drivers, describes the IIO (Linux Industrial I/O
Subsystem). The IIO subsystem provides support for ADCs, DACs, gyroscopes, accelerometers,

[17]

 Preface

[17]

magnetometers, pressure and proximity sensors, etc. It will be explained in detail how to set up
IIO triggered buffers and Industrial I/O events. Several IIO subsystem drivers are developed that
manage I2C DACs and SPI ADCs with hardware triggering interrupts. This chapter also explains
how to interact from user space with the SPI bus using the "spidev " driver.

Chapter 12, Using the Regmap API in Linux Device Drivers, provides an overview of the
regmap API, and explains how it will take care of calling the relevant calls of the SPI or I2C
subsystem replacing these buses specific core APIs. You will transform the SPI Input subsystem
driver of the Chapter 10, which uses specific SPI core APIs, into an IIO SPI subsystem driver,
which uses the Regmap API, keeping the same functionality between both drivers. Finally, you
will dive into the "IIO tools" applications to test the SPI IIO driver.

Terminology
New terms, important words and input terminal commands are set in bold.

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold.

Downloading the Kernel Modules Labs
The kernel modules developed in this book can be accessed through the GitHub repository at
https://github.com/ALIBERA/linux_book_2nd_edition.

What You Need to Develop the Drivers
The drivers have been tested with an Ubuntu Desktop 14.04 LTS 64-bit system. You can download
Ubuntu Desktop at https://www.ubuntu.com/download.

Eclipse Neon IDE for C/C++ developers has been used to write, compile and deploy the drivers.
You can download the Eclipse environment at https://www.eclipse.org/downloads/packages/eclipse-
ide-cc-developers/neonr.

Go to the Neon Packages Release and download the Eclipse IDE for C/C++ developers (Linux 32-bit or
64-bit depending on your Linux host system).

The drivers and the applications have been ported to three different processors: NXP i.MX7D,
Microchip SAMA5D2 and Broadcom BCM2837, and these are the hardware platforms that were
used to develop them:

ATSAMA5D2B-XULT: The SAMA5D2 Xplained Ultra is a fast prototyping and evaluation
platform for the SAMA5D2 series of microprocessors (MPUs):

Preface

[18]

•	 http://www.microchip.com/developmenttools/ProductDetails/PartNO/ATSAMA5D2B-XULT

MCIMX7SABRE: SABRE Board for Smart Devices based on the i.MX 7Dual Applications
Processors:

•	 https://www.nxp.com/support/developer-resources/hardware-development-tools/sabre-development-
system/sabre-board-for-smart-devices-based-on-the-i.mx-7dual-applications-processors:MCIMX7SABRE

Raspberry Pi 3 Model B: Broadcom BCM2837 single-board computer with wireless LAN and
Bluetooth connectivity:

•	 https://www.raspberrypi.org/products/raspberry-pi-3-model-b/

Questions
If you have a problem with any aspect of this book, you can contact us at
aliberal@arroweurope.com, and we will do our best to address the problem.

Acknowledgments
I would like to thank to Daniel Amor from RBZ EMBEDDED LOGICS for the ideas, suggestions
and great reviewing work for some of the chapters.

Thanks to my parents that supported me during this project and through my life.

Finally, special thanks to my wife for encouraging me to finish this book, for her love, patience and
good humor during this project and always.

[19]

1
Building the System

The Linux kernel is one of the largest and most successful open source projects that has ever
come about. The huge rate of change and number of individual contributors show that it has a
vibrant and active community, constantly stimulating evolution of the kernel. This rate of change
continues to increase, as does the number of developers and companies involved in the process.
The development process has proved that it is able to scale up to higher speeds without trouble.
The Linux kernel together with GNU software and many other open-source components provides
a completely free operating system, GNU/Linux. Embedded Linux is the usage of the Linux kernel
and various open-source components in embedded systems.

Embedded Linux is used in embedded systems such as consumer electronics (e.g., set-top boxes,
smart TVs, PVRs (personal video recorders), IVI (in-vehicle infotainment), networking equipment
(such as routers, switches, WAPs (wireless access points) or wireless routers), machine control,
industrial automation, navigation equipment, spacecraft flight software, and medical instruments
in general).

There are many advantages of using Linux in embedded systems. The following list shows some
of these benefits:

•	 The main advantage of Linux is the ability to reuse components. Linux provides scalability
due to its modularity and configurability.

•	 Open source. No royalties or licensing fees.
•	 Ported to a broad range of hardware architectures, platforms and devices.
•	 Broad support of applications and communication protocols (e.g., TCP/IP stack, USB stack,

graphical toolkit libraries).
•	 Large support from an active community of developers.

These are the main components of a Linux embedded system: Bootloader, Kernel, System
call interface, C-Runtime library, System shared libraries and Root filesystem. Each of these
components will be described more in detail in the next sections. In the next figure, you can see a
high-level Linux embedded architecture:

Building the System Chapter 1

[20]

Bootloader
Linux cannot be started in an embedded device without a small amount of machine specific code
to initialize the system. Linux requires the bootloader code to do very little, although several
bootloaders do provide extensive additional functionality. The minimal requirements are:

• Configuration of the memory system.
• Loading of the kernel image and the device tree at the correct addresses.
• Optional loading of an initial RAM disk at the correct memory address.
• Setting of the kernel command-line and other parameters (e.g, device tree, machine type).

It is also usually expected that the bootloader initializes a serial console for the kernel in addition
to these basic tasks.

There are different bootloader options that come in all shapes and sizes. U-Boot is the standard
bootloader for ARM Linux. The U-Boot Mainline is located at http://git.denx.de/u-boot.git and there
is a dedicated page on U-Boot wiki at http://www.denx.de/wiki/U-Boot/SourceCode.

These are some of the main U-Boot features:

[21]

Chapter 1 Building the System

[21]

1. Small: U-Boot is a bootloader, i.e. its primary purpose in the system is to load an operating
system. That means that U-Boot is necessary to perform a certain task, but it is not worth
spending significant resources on. Typically U-Boot is stored in the relatively small NOR
flash memory, which is expensive compared to the much larger NAND devices normally
used to store the operating system and the application. An usable and useful configuration
of U-Boot, including a basic interactive command interpreter, support for download over
Ethernet and the capability to program the flash should fit in no more than 128 KB.

2. Fast: The end user is not interested in running U-Boot. In most embedded systems they are
not even aware that U-Boot exists. The user wants to run some application code, and they
want to do that as soon as possible after switching on the device. Initialize devices only
when they are needed within U-Boot, i.e. don't initialize the Ethernet interface(s) unless
U-Boot performs a download over Ethernet; don't initialize any IDE or USB devices unless
U-Boot actually tries to load files from these, etc.

3. Portable: U-Boot is a bootloader, but it is also a tool used for board bring-up, for
production testing, and for other activities that are very closely related to hardware
development. So far, it has been ported to several hundreds of different boards on about
30 different processor families.

4. Configurable: U-Boot is a powerful tool with many, many extremely useful features.
The maintainer or user of each board will have to decide which features are important
and what shall be included with their specific board configuration to meet the current
requirements and restrictions.

5. Debuggable: U-Boot is not only a tool in itself, it is often also used for hardware bring-up,
so debugging U-Boot often means that you don't know if you are tracking down a problem
in the U-Boot software or in the hardware you are running on. Code that is clean and easy
to understand and debug is all the more important to everyone. One important feature of
U-Boot is to enable output to the (usually serial) console as soon as possible in the boot
process, even if this causes tradeoffs in other areas like memory footprint. All initialization
steps shall print some "begin doing this" message before they actually start, and some
"done" message when they complete. For example, RAM initialization and size detection
may print a "RAM: " before they start, and "256 MB\n" when done. The purpose of this is
that you can always see which initialization step was running if any problems occur. This
is important not only during software development, but also for the service people dealing
with broken hardware in the field. U-Boot should be debuggable with simple JTAG or
BDM equipment. It should use a simple, single-threaded execution model.

Building the System Chapter 1

[22]

Linux Kernel
Linux is a clone of the operating system Unix, written from scratch by Linus Torvalds with
assistance from a loosely-knit team of hackers across the Net. It aims towards POSIX and Single
UNIX Specification compliance.

It has all the features you would expect in a modern fully-fledged Unix implementation, including
true multitasking, virtual memory, shared libraries, demand loading, shared copy-on-write
executables, proper memory management, and multistack networking including IPv4 and IPv6.
Although originally developed for 32-bit x86-based PCs (386 or higher), today Linux also runs on a
multitude of other processor architectures, in both 32-bit and 64-bit variants.

The Linux kernel is the lowest level of software running on a Linux system. It is charged with
managing the hardware, running user programs, and maintaining the overall security and
integrity of the whole system. It is this kernel which, after its initial release by Linus Torvalds in
1991, jump-started the development of Linux as a whole. The kernel is a relatively small part of the
software on a full Linux system (many other large components come from the GNU project, the
GNOME and KDE desktop projects, the X.org project, and many other sources), but the kernel is
the core which determines how well the system will work and is the piece which is truly unique to
Linux.

The kernel which forms the core of the Linux system is the result of one of the largest cooperative
software projects ever attempted. Regular two-to-three month releases deliver stable updates
to Linux users, each with significant new features, added device support, and improved
performance. The rate of change in the kernel is high and increasing, with over 10,000 patches
going into each recent kernel release. Each of these releases contains the work of more than 1,600
developers representing over 200 corporations.

As kernels move from the mainline into the stable category, two things can happen:

1. They can reach End of Life after a few bugfix revisions, which means that kernel
maintainers will release no more bugfixes for this kernel version, or

2. They can be put into longterm maintenance, which means that maintainers will provide
bugfixes for this kernel revision for a much longer period of time.

If the kernel version you are using is marked EOL, you should consider upgrading to the next
major version, as there will be no more bugfixes provided for the kernel version you are using.

Linux kernel is released under GNU GPL version 2 and is therefore Free Software as defined by
the Free Software Foundation. You may read the entire copy of the license in the COPYING file
distributed with each release of the Linux kernel.

[23]

Chapter 1 Building the System

[23]

Some of the subsystems the kernel is comprised of are listed below:

•	 /arch/<arch>: Architecture specific code
•	 /arch/<arch>/<mach>: Machine/board specific code
•	 /Documentation: Kernel documentation. Do not miss it!
•	 /ipc: Inter process communication
•	 /mm: Memory management
•	 /fs: File systems
•	 /include: Kernel headers
•	 /include/asm-<arch>: Architecture and machine dependent headers
•	 /include/linux: Linux kernel core headers
•	 /init: Linux initialization (including main.c)
•	 /block: Kernel block layer code
•	 /net: Networking functionality
•	 /lib: Common kernel helper functions
•	 /kernel: Common Kernel structures
•	 /arch: Architecture specific code
•	 /crypto: Cryptography code
•	 /security: Security components
•	 /drivers: Built-in drivers (does not include loadable modules)
•	 Makefile: Top Linux makefile (sets arch and version)
•	 /scripts: Scripts for internal or external use

The official home for the mainline Linux kernel source code is www.kernel.org. You can download
the source code either directly from the kernel.org website as a compressed tar.xz file or you can
download it through git, the kernel´s preferred source code control system.

There are several main categories into which kernel releases may fall:

1. Prepatch: Prepatch or "RC" kernels are mainline kernel pre-releases that are mostly aimed
at other kernel developers and Linux enthusiasts. They must be compiled from source
and usually contain new features that must be tested before they can be put into a stable
release. Prepatch kernels are maintained and released by Linus Torvalds.

2. Mainline: The mainline tree is maintained by Linus Torvalds. It's the tree where all new
features are introduced and where all the exciting new development happens. New
mainline kernels are released every 2-3 months.

3. Stable: After each mainline kernel is released, it is considered "stable." Any bug fixes for
a stable kernel are backported from the mainline tree and applied by a designated stable
kernel maintainer. There are usually only a few bugfix kernel releases until next mainline

Building the System Chapter 1

[24]

kernel becomes available -- unless it is designated a "longterm maintenance kernel", Stable
kernel updates are released on as-needed basis, usually 2-3 a month.

4. Longterm: There are usually several "longterm maintenance" kernel releases provided for
the purposes of backporting bugfixes for older kernel trees. Only important bugfixes are
applied to such kernels and they don't usually see very frequent releases, especially for
older trees.

In the following screenshot from www.kernel.org you can see the latest stable kernel, kernels under
development (mainline, next), several stable and long term kernels.

[25]

Chapter 1 Building the System

[25]

In addition to the official versions of the kernel there are many third-parties (chip-vendors,
sub-communities) that supply and maintain their own version of the kernel sources by forking
from the official kernel tree. The intent is to separately develop support for a particular piece of
hardware or subsystem and to integrate this support to the official kernel at a later point. This
process is called mainlining and describes the task to integrate the new feature or hardware
support to the upstream (official) kernel. These are called Distribution kernels.

It is easy to tell if you are running a Distribution kernel. Unless you downloaded, compiled and
installed your own version of kernel from kernel.org, you are running a Distribution kernel. To find
out the version of your kernel, run uname -r:

root@imx7dsabresd:~# uname -r
4.9.11

You will work with LTS kernel 4.9.y releases to develop all the drivers throughout this book.

System Call Interface and C Runtime Library
The system call is the fundamental interface between an application and the Linux kernel. System
calls are the only means by which an user space application can interact with the kernel. In other
words, they are the bridge between user space and kernel space. The strict separation of user
and kernel space ensures that user space programs cannot freely access kernel internal resources,
thereby ensuring the security and stability of the system. The system calls elevate the privilege of
the user process.

The system call interface is generally not invoked directly (even though it could be) but rather
through wrapper functions in the C runtime library. Some of these wrapper functions are only
very thin layers over the system call (just checking and setting the calls parameters) while others
add additional functionality. The following image shows some system calls and their descriptions:

Building the System Chapter 1

[26]

The C runtime library (C-standard library) defines macros, type definitions and functions for
string handling, mathematical functions, input/output processing, memory allocation and several
other functions that rely on OS services. The runtime library provides applications with access to
OS resources and functions by abstracting the OS System call interface.

Several C runtime libraries are available: glibc, uClibc, eglibc, dietlibc, newlib. The choice of the C
library must be made at the time of the cross-compiling toolchain generation, as the GCC compiler
is compiled against a specific C library.

The GNU C library, glibc, is the default C library used for example in the Yocto project. The GNU
C Library is primarily designed to be a portable and high performance C library. It follows all
relevant standards including ISO C11 and POSIX.1-2008. It is also internationalized and has one of
the most complete internationalization interfaces known. You can find the glibc manual at https://
www.gnu.org/software/libc/manual/.

System Shared Libraries
System shared libraries are libraries that are loaded by programs when they start. When a shared
library is installed properly, all programs that start afterwards automatically use the new shared
library. System shared libraries are typically linked with an user space application to provide it
access to a specific system functionality. This system functionality can be either self-contained
like compression or encryption algorithms or require access to underlying kernel resources or
hardware. In the latter case the library provides a simple API that abstracts the complexities of the
kernel or direct driver access.

In other words, system shared libraries encapsulate system functionality and therefore are an
essential building block when building applications that interact with the system.

Every shared library has a special name called the "soname". The soname has the prefix "lib",
the name of the library, the phrase ".so", followed by a period and a version number that is
incremented whenever the interface changes (as a special exception, the lowest-level C libraries
don't start with "lib'"). A fully-qualified soname includes as a prefix the directory it's in; in a
working system a fully-qualified soname is simply a symbolic link to the shared library's "real
name".

Every shared library also has a "real name", which is the filename containing the actual library
code. The real name adds a period to the soname, a minor number, another period, and the release
number. The last period and the release number are optional. The minor number and release
number support configuration control by letting you know exactly what version(s) of the library
are installed. Note that these numbers might not be the same as the numbers used to describe the
library in documentation, although that does make things easier.

[27]

Chapter 1 Building the System

[27]

In addition, there's the name that the compiler uses when requesting a library, (call it the "linker
name"), which is simply the soname without any version number.

The following system shared libraries are required by the LSB (Linux Standard Base) specification
and therefore must be available on all LSB compliant systems:

•	 Libc: Standard C library (C runtime library). Elementary language support and OS
platform services. Direct access to the OS System-Call-Interface.

•	 Libm: Math Library. Common elementary mathematical functions and floating point
environment routines defined by System V, ANSI C, POSIX, etc…

•	 Libpthread: POSIX thread library. Functionality now in libc, maintained to provide
backwards compatibility.

•	 Libdl: Dynamic Linker Library. Functionality now in libc, maintained to provide
backwards compatibility.

•	 Libcrypt: Cryptology Library. Encryption and decryption handling routines.
•	 Libpam: PAM (Pluggable Authentication Module) library. Routines for the PAM.
•	 Libz: Compression/decompression library. General purpose data compression and

deflation functionality.
•	 Libncurses: CRT screen handling and optimization package. Overall screen, window

and pad manipulation; output to windows and pads; reading terminal input; control
over terminal and cursor input and output options; environment query routines; color
manipulation; use of soft label keys.

•	 Libutil: System utilities library. Various system-dependent utility routines used in a
wide variety of system daemons. The abstracted functions are mostly related to pseudo-
terminals and login accounting.

Libraries are placed in the following standard root filesystem locations:

•	 /lib: Libraries required for startup
•	 /usr/lib: Most system libraries
•	 /usr/local/lib: Non-system libraries

Root Filesystem
The root filesystem is where all the files contained in the file hierarchy (including device nodes) are
stored. The root filesystem is mounted as /, containing all the libraries, applications and data.

The folder structure of the root filesystem is defined by FHS (Filesystem-Hierarchy-Standard). The
FHS defines the names, locations, and permissions for many file types and directories. It thereby
ensures compatibility between different Linux distributions and allows applications to make
assumptions about where to find specific system files and configurations.

Building the System Chapter 1

[28]

A Linux embedded root filesystem usually includes the following:

•	 /bin: Commands needed during bootup that might be used by normal users (probably
after bootup).

•	 /sbin: Like /bin, but the commands are not intended for normal users, although they may
use them if necessary and allowed; /sbin is not usually in the default path of normal users,
but will be in root's default path.

•	 /etc: Configuration files specific to the machine.
•	 /home: Like My Documents in Windows.
•	 /root: The home directory for user root. This is usually not accessible to other users on the

system.
•	 /lib: Essential shared libraries and kernel modules.
•	 /dev: Device files. These are special virtual files that help the user interface with the

various devices on the system.
•	 /tmp: Temporary files. As the name suggests, programs running often store temporary files

in here.
•	 /boot: Files used by the bootstrap loader. Kernel images are often kept here instead of in

the root directory. If there are many kernel images, the directory can easily grow too large,
and it might be better to keep it in a separate filesystem.

•	 /mnt: Mount point for mounting a filesystem temporarily.
•	 /opt: Add-on application software packages.
•	 /usr: Secondary hierarchy.
•	 /var: Variable data.
•	 /sys: Exports information about devices and drivers from the kernel device model to user

space, and is also used for configuration.
•	 /proc: Represent the current state of the kernel.

Linux Boot Process
These are the main stages of a Linux embedded boot process:

1. The boot process begins at POR (Power On Reset) where the hardware reset logic
forces the ARM core to begin execution starting from the on-chip boot ROM. The boot
ROM can support several devices (e.g, NOR flash, NAND Flash, SD/eMMC). In the
i.MX7D processor the on-chip boot ROM sets up the DDR memory controller. The DDR
technology is a potential key difference between different boards. If there is a difference
in the DDR technology, the DDR initialization needs to be ported. In the i.MX7D the
DDR initialization is coded in the DCD table, inside the boot header of the U-Boot
image. The DCD (device configuration data) feature allows boot ROM code to obtain
SoC configuration data from an external bootloader residing on the boot device. As an

[29]

Chapter 1 Building the System

[29]

example, DCD can be used to program the DDR controller for optimal settings improving
the boot performance. After setting up the DDR controller the boot ROM loads the U-Boot
image to external DDR and runs it.

The Microchip SAMA5D2 processor also embeds a boot ROM code. It is enabled
depending on BMS (Boot Mode Select) pin state on reset. The ROM code scans the
contents of different media like serial FLASH, NAND FLASH, SD/MMC Card and serial
EEPROM. The Romcode will take the AT91Bootstrap from NAND FLASH and put it on
internal SRAM. AT91Bootstrap is the 2nd level bootloader for Microchip SAMA5D2 SoC
providing a set of algorithms to manage the hardware initialization such as clock speed
configuration, PIO settings, and DRAM initialization. The AT91Bootstrap will take the
U-Boot from NAND FLASH and put it on DDR RAM.

 In another processors the second stage bootloader is known as the SPL.

2. The U-Boot loads both the kernel image and the compiled device tree binary into RAM
and passes the memory address of the device tree binary into the kernel as part of the
launch.

3. The U-Boot jumps to the kernel code.

4. Kernel runs low level kernel initialization, enabling MMU and creating the initial table of
memory pages, and setting up caches. This is done in arch/arm/kernel/head.s. The file head.s
contains CPU architecture specific but platform independent initialization code. Then the
system switches to the non architecture specific kernel startup function start_kernel().

5. Kernel runs start_kernel() located in init/main.c that:

•	 Initializes the kernel core (e.g., memory, scheduling, interrupts, …).
•	 Initializes statically compiled drivers.
•	 Mounts the root filesystem based on bootargs passed to the kernel from U-Boot.

Building the System Chapter 1

[30]

•	 Executes the first user process, init. The process init, by default, is /init for initramfs,
and /sbin/init for a regular filesystem. The three init programs that you usually find in
Linux embedded devices are BusyBox init, System V init, and systemd. If System V is
used, then the process init reads its configuration file, /etc/inittab, and executes several
scripts that perform final system initialization.

In the following image, you can see the Linux embedded boot process:

Building a Linux Embedded System
Building an embedded Linux system requires you to:

1. Select a cross toolchain. The toolchain is the starting point for the development process, as
it is used to build all subsequent software packages. The toolchain consists of the following
parts: Assembler, Compiler, Linker, Debugger, Runtime Libraries and Utilities. A cross
compiler is a compiler capable of creating executable code for a platform other than the
one on which the compiler is running.

2. Select the different packages that will run on the target (Bootloader, Kernel and Root
filesystem).

3. Configure and build these packages.

4. Deploy them on the device.

[31]

Chapter 1 Building the System

[31]

There are several different ways to build an embedded linux system:

1. Manually (creating your own scripts): this option gives you total control, but it is also tedious
and harder to reproduce builds on other machines. It also requires a good understanding of
the software component installation process. For example, create a root filesystem from the
ground up by yourself means:

•	 Download the source code of all software components (libraries, utilities, or applications).
•	 Solve all dependencies and version conflicts and apply patches.
•	 Configure each software component.
•	 Cross-compile each software component.
•	 Install each software component.

2. Using complete distributions (e.g., Ubuntu/Debian): easy to get started, but harder to
customize. A Linux distribution is a preselected kernel version and a root filesystem with a
preselected set of libraries, utilities and applications.

3. Using Build frameworks (e.g., Buildroot, Yocto): This option allows you to customize and
reproduce builds easily. This is becoming the most popular option in the Linux embedded
space. A Build framework typically consists of scripts and configuration meta-data that control
the build process. The Build framework typically downloads, configures, compiles and installs
all required components of the system taking version conflicts and dependencies into account.
It allows for example to create a customized root filesystem. The Build framework output is a
complete image including toolchain, bootloader, kernel and root filesystem.

The "Yocto Project" will be your framework of choice to build the images for the Microchip SAMA5D2
and the NXP i.MX7D processors, whereas Debian will be the image used for the Broadcom BCM2837
processor.

Setting up Ethernet Communication
You are going to transfer files from the host to the target using the TFTP protocol:

1. On the host side, click on the Network Manager tasklet on your desktop, and select Edit
Connections. Choose "Wired connection 1" and click "Edit".

2. Choose the "IPv4 Settings" tab, and select Method as "Manual" to make the interface use a
static IP address, like 10.0.0.1. Click "Add", and set the IP address, the Netmask and Gateway as
follow:

Address: 10.0.0.1
Netmask: 255.255.255.0
Gateway: none or 0.0.0.0

Building the System Chapter 1

[32]

Finally, click the "Save" button.

3. Click on "Wired connection 1" to activate this network interface.

Building a Linux Embedded System for the NXP
i.MX7D Processor
The i.MX7Dual family of processors features an advanced implementation of the Arm
Cortex®-A7 core, which operates at speeds of up to 1.2 GHz, as well as the Arm Cortex-M4 core.
The i.MX7Dual family supports multiple memory types including 16/32-bit DDR3L/LPDDR2/
LPDDR3-1066, Quad SPI memory, NAND, eMMC, and NOR. Several high-speed connectivity
connections include Gigabit Ethernet with AVB, PCIe, and USB. Both parallel and serial Display
and Camera interfaces are provided, as well as a way to directly connect to the Electrophoretic
Displays (EPD).

You can check all the info related to this family at https://www.nxp.com/products/processors-and-
microcontrollers/applications-processors/i.mx-applications-processors/i.mx-7-processors/i.mx-7dual-
processors-heterogeneous-processing-with-dual-arm-cortex-a7-cores-and-cortex-m4-core:i.MX7D.

For the development of the labs the MCIMX7SABRE: SABRE Board for Smart Devices Based
on the i.MX7Dual Applications Processors will be used. The documentation of this board
can be found at https://www.nxp.com/support/developer-resources/hardware-development-tools/
sabre-development-system/sabre-board-for-smart-devices-based-on-the-i.mx-7dual-applications-
processors:MCIMX7SABRE.

Although the MCIMX7SABRE is the board used to develop the i.MX7D drivers throughout this
book, these drivers can be easily ported to another boards as the ARROW IMX7 96 BOARD. The
documentation of this board can be found at https://www.96boards.org/product/imx7-96/.

Introduction
To get the Yocto Project expected behavior in a Linux Host Machine, the packages and utilities
described below must be installed. An important consideration is the hard disk space required in
the host machine. For example, when building on a machine running Ubuntu, the minimum hard
disk space required is about 50 GB for the X11 backend. It is recommended that at least 120 GB is
provided, which is enough to compile all backends together.

The next instructions have been tested on an Ubuntu 14.04 64-bit distribution.

https://www.nxp.com/support/developer-resources/hardware-development-tools/sabre-development-system/sabre-board-for-smart-devices-based-on-the-i.mx-7dual-applicationsprocessors:MCIMX7SABRE
https://www.nxp.com/support/developer-resources/hardware-development-tools/sabre-development-system/sabre-board-for-smart-devices-based-on-the-i.mx-7dual-applicationsprocessors:MCIMX7SABRE
https://www.nxp.com/support/developer-resources/hardware-development-tools/sabre-development-system/sabre-board-for-smart-devices-based-on-the-i.mx-7dual-applicationsprocessors:MCIMX7SABRE

[33]

Chapter 1 Building the System

[33]

Host Packages
A Yocto Project build requires that some packages be installed for the build that are documented
under the Yocto Project. Essential Yocto Project host packages are:

$ sudo apt-get install gawk wget git-core diffstat unzip texinfo gcc-multilib \
build-essential chrpath socat libsdl1.2-dev

Packages for an Ubuntu 14.04 host setup are:

$ sudo apt-get install libsdl1.2-dev xterm sed cvs subversion coreutils \
texi2html docbook-utils python-pysqlite2 help2man make gcc g++ \
desktop-file-utils libgl1-mesa-dev libglu1-mesa-dev mercurial autoconf \
automake groff curl lzop asciidoc u-boot-tools

Setting up the Repo Utility
The repo tool has been developed to make it easier to manage multiple Git repositories. Instead
of downloading each repository separately, the repo tool can download all with one instruction.
Download and install the tool by following the instructions below:

1. Create a directory for the tool. The example below creates a directory named bin in your
home folder:

$ mkdir ~/bin

2. Download the tool:

$ curl http://commondatastorage.googleapis.com/git-repo-downloads/repo > ~/bin/
repo

3. Make the tool executable:

$ chmod a+x ~/bin/repo

4. Add the directory to the PATH variable. The line below could be added to your .bashrc file,
so the path is available in each started shell/terminal:

$ export PATH=~/bin:$PATH

Yocto Project Setup and Image Building
The NXP Yocto Project BSP Release directory contains a "sources" directory, which contains
the recipes used to build, one or more build directories, and a set of scripts used to set up the
environment.

The recipes used to build the project come from both the community and NXP. The Yocto Project
layers are downloaded and placed in the sources directory. This sets up the recipes that are used to
build the project.

Building the System Chapter 1

[34]

The following example shows how to download the NXP Yocto Project Community BSP recipe
layers. For this example, a directory called "fsl-release-bsp" is created for the project:

~$ mkdir fsl-release-bsp
~$ cd fsl-release-bsp/
~/fsl-release-bsp$ git config --global user.name "Your Name"
~/fsl-release-bsp$ git config --global user.email "Your Email"
~/fsl-release-bsp$ git config --list
~/fsl-release-bsp$ repo init -u git://git.freescale.com/imx/fsl-arm-yocto-bsp.git \
-b imx-morty -m imx-4.9.11-1.0.0_ga.xml
~/fsl-release-bsp$ repo sync -j4

When this process is completed, the source code is checked out into the directory
fsl-release-bsp/sources. You can perform periodic repo synchronization with the command repo
sync to update to the latest code. If errors occur during repo initialization, try deleting the .repo
directory and running the repo initialization command again.

 There is a script, fsl-setup-release.sh, that simplifies the setup for i.MX machines. To use the
script, the name of the specific machine to be built for needs to be specified as well as the desired
graphical backend. The script sets up a directory and the configuration files for the specified
machine and backend.

In the meta-fsl-bsp-release layer, i.MX provides new or updated machine configurations that overlay
the meta-fsl-arm machine configurations. These files are copied into the meta-fsl-arm/conf/machine
directory by the fsl-setup-release.sh script.

Before starting the build it must be initialized. In this step the build directory and local
configuration files are created. A distribution must be selected when initializing the build. In
the setting below the machine imx7dsabresd, the build directory build_imx7d and the fsl-imx-x11
distribution is selected:

~/fsl-release-bsp$ DISTRO=fsl-imx-x11 MACHINE=imx7dsabresd source fsl-setup-release.
sh -b build_imx7d

After doing this setting you are redirected to the build_imx7d directory:

~/fsl-release-bsp/build_imx7d$

If you are opening a new terminal, before starting the build, you must source the fsl-setup-release.sh
script:

~/fsl-release-bsp$ source fsl-setup-release.sh -b build_imx7d/

A Yocto Project build can take considerable build resources both in time and disk usage, especially
when building in multiple build directories. There are methods to optimize this, for example,
using a shared sstate cache (caches the state of the build) and shared download directory (holds

[35]

Chapter 1 Building the System

[35]

the downloaded packages). These can be set to any location in the local.conf file under fsl-release-
bsp/build-x11/conf directory by adding statements such as these:

DL_DIR="opt/freescale/yocto/imx/download"
SSTATE_DIR="opt/freescale/yocto/imx/sstate-cache"

Take also care of creating these folders in your host:

~$ sudo mkdir -p /opt/freescale/yocto/imx/download
~$ sudo mkdir -p /opt/freescale/yocto/imx/sstate-cache

These directories need to have appropriate permissions. The shared sstate helps when multiple
build directories are set, each of which uses a shared cache to minimize the build time. A shared
download directory minimizes the fetch time. Without these settings, Yocto Project defaults to the
build directory for the sstate cache and downloads. When you want to start a build from a clean
state, you need to remove both the sstate-cache directory and the tmp directory.

~$ sudo chmod -R a+xrw /opt/freescale/yocto/imx/download/
~$ sudo chmod -R a+xrw /opt/freescale/yocto/imx/sstate-cache/

Build now the Linux image:

~/fsl-release-bsp/build_imx7d$ bitbake fsl-image-validation-imx

When the build has finished the images will be available in the directory specified below. Please
note that this directory will be different if you are using another build directory or machine
configuration.

~$ ls fsl-release-bsp/build_imx7d/tmp/deploy/images/imx7dsabresd/

Finally, you are going to load the image onto a SD card. These are the instructions to program it
using a laptop´s built-in SD reader:

~/fsl-release-bsp/build_im7d/tmp/deploy/images/imx7dsabresd$ dmesg | tail
~/fsl-release-bsp/build_imx7d/tmp/deploy/images/imx7dsabresd$ sudo umount /dev/
mmcblk0p1
~/fsl-release-bsp/build_imx7d/tmp/deploy/images/imx7dsabresd$ sudo dd if=fsl-image-
validation-imx-imx7dsabresd.sdcard of=/dev/mmcblk0 bs=1M && sync

If you are using an external USB SD reader use the following commands:

~/fsl-release-bsp/build_im7d/tmp/deploy/images/imx7dsabresd$ dmesg | tail
~/fsl-release-bsp/build_imx7d/tmp/deploy/images/imx7dsabresd$ sudo umount /dev/sdX
~/fsl-release-bsp/build_imx7d/tmp/deploy/images/imx7dsabresd$ sudo dd if=fsl-image-
validation-imx-imx7dsabresd.sdcard of=/dev/sdX bs=1M && sync

Here, /dev/sdX corresponds to the device node assigned to the SD card in your host system.

Building the System Chapter 1

[36]

Working Outside of Yocto
You may find it more convenient to work on the kernel and develop drivers and applications
outside of the Yocto Project build system. The Yocto Project SDK is going to help you with this
task. The Yocto Project SDK is:

1. A cross-compile toolchain.

2. A combination of two sysroots:

•	 One for the target: Contains headers and libraries for the target. Consistent with the
generated image from which it is derived.

•	 One for the host: Contains host specific tools. These tools ensure things are consistent
and work as expected while building against the target sysroot.

3. An environment script to setup the necessary variables to make these work together.

There are several ways to build a SDK with the Yocto Project build system:

•	 Using bitbake meta-toolchain. This method requires you to still install the target sysroot by
installing and extracting it separately.

•	 Using bitbake image -c populate_sdk. This method has significant advantages over the
previous method because it results in a toolchain installer that contains the sysroot that
matches your target root filesystem.

Remember, before using any bitbake command in a new terminal, you must source the build
environment setup script:

~/fsl-release-bsp$ source fsl-setup-release.sh -b build_imx7d/
~/fsl-release-bsp/build_imx7d$ bitbake -c populate_sdk fsl-image-validation-imx

When the bitbake command completes, the toolchain installer will be in tmp/deploy/sdk in the build
directory. This toolchain installer contains the sysroot that matches your target root filesystem. The
resulting toolchain and matching sysroot can be installed doing:

~/fsl-release-bsp/build_imx7d/tmp/deploy/sdk$./fsl-imx-x11-glibc-x86_64-fsl-image-
validation-imx-cortexa7hf-neon-toolchain-4.9.11-1.0.0.sh

To develop applications on a host machine for a different target architecture, you need a
cross-compiling toolchain. For this you will use the Yocto SDK which was pre-installed in the /opt/
fsl-imx-x11/4.9.11-1.0.0/ directory. Let us explore the Yocto SDK. Type the following command on
the host terminal:

~$ tree -L 3 /opt/fsl-imx-x11/
└── 4.9.11-1.0.0
 ├── environment-setup-cortexa7hf-neon-poky-linux-gnueabi
 ├── site-config-cortexa7hf-neon-poky-linux-gnueabi

[37]

Chapter 1 Building the System

[37]

 ├── sysroots
 │ ├── cortexa7hf-neon-poky-linux-gnueabi
 │ └── x86_64-pokysdk-linux
 └── version-cortexa7hf-neon-poky-linux-gnueabi

Here, the 4.9.11-1.0.0 folder contains scripts to export SDK environment variables. The sysroots
directory contains SDK tools, libs, header files and two sub-directories, one for the host (x86_64)
and one for the target (cortexa7hf). Note that you can find some information about the SDK just by
reading suffixes:

•	 cortexa7hf: SDK, for Cortex-A7 hard float (with floating point unit support).
•	 neon: neon coprocessor support.
•	 linux: for the Linux operating system.
•	 gnueabi: gnu embedded application binary interface.

To setup the SDK, you have to source the environment script:

$ source /opt/fsl-imx-x11/4.9.11-1.0.0/environment-setup-cortexa7hf-neon-poky-linux-
gnueabi

This script will export several environment variables such us:

•	 CC: C compiler with target compilation options.
•	 CFLAGS: Additional C flags, used by the C compiler.
•	 CXX: C++ compiler.
•	 CXXFLAGS: Additional C++ flags, used by the CPP compiler.
•	 LD: Linker.
•	 LDFLAGS: Link flags, used by the linker.
•	 GDB: Debugger.
•	 PATH: SDK binaries added in standard command PATH.

You can look at the full set of environment variables sourced using the command below:

~$ export | more

The compiler is now in the current PATH:

~$ arm-poky-linux-gnueabi-gcc –version
arm-poky-linux-gnueabi-gcc (GCC) 6.2.0
Copyright (C) 2016 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

$CC provides target gcc options:

~$ echo $CC
arm-poky-linux-gnueabi-gcc -march=armv7ve -mfpu=neon -mfloat-abi=hard -mcpu=cortex-a7
--sysroot=/opt/fsl-imx-x11/4.9.11-1.0.0/sysroots/cortexa7hf-neon-poky-linux-gnueabi

Building the System Chapter 1

[38]

•	 arch: armv7ve: compile for armv7ve architecture.
•	 float-abi: hard: application binary interface support hard float (fpu).
•	 fpu: neon: support ARM NEON coprocessor.
•	 sysroot: where libs and header files are located.

Now, a very simple application will be compiled to verify that your toolchain is properly installed.
Create the application file using for example the gedit text editor:

~$ mkdir my_first_app
~$ cd my_first_app/
~/my_first_app$ gedit app.c

Add the code below:

#include <stdio.h>
int main(void)
{

printf("Hello World\n");
}

If you try to cross compile like this you will get a fatal error:

~/my_first_app$ arm-poky-linux-gnueabi-gcc app.c –o app
app.c:1:19: fatal error: stdio.h: No such file or directory
 #include <stdio.h>
 ^
compilation terminated.

The reason is that the compiler has been configured to be generic to a wide range of ARM
processors, and the fine tuning is done when you launch the compiler with the right set of C flags.
You can compile app.c directly with the C compiler ($CC):

~/my_first_app$ $CC app.c -o app

With the UNIX command "file" you can determine the file type (see: man file) and check the
architecture and the linking method:

~/my_first_app$ file app
app: ELF 32-bit LSB executable, ARM, EABI5 version 1 (SYSV), dynamically
linked, interpreter /lib/ld-linux-armhf.so.3, for GNU/Linux 3.2.0,
BuildID[sha1]=7e2e3cf7c3647dce592ab5de92dac39cf4fb4f92, not stripped

Building the Linux Kernel
The kernel will be configured and built outside of the Yocto build system. Copy kernel sources
from the Yocto tmp directory (that was generated after building your image with bitbake) to your
own kernel directory:

[39]

Chapter 1 Building the System

[39]

~$ mkdir my-linux-imx
~$ cp -rpa ~/fsl-release-bsp/build_imx7d/tmp/work/imx7dsabresd-poky-linux-gnueabi/
linux-imx/4.9.11-r0/git/* ~/my-linux-imx/
~$ cd ~/my-linux-imx/

You can also download the kernel source code from the NXP kernel git:

~$ git clone http://git.freescale.com/git/cgit.cgi/imx/linux-imx.git \
-b imx_4.9.11_1.0.0_ga

Prior to compiling the Linux kernel, it is often a good idea to make sure that the kernel sources are
clean and that there are no remnants left over from a previous build:

•	 clean - Remove most generated files but keep the config and enough build support to
build external modules.

•	 mrproper - Remove all generated files + config + various backup files.
•	 distclean - mrproper + remove editor backup and patch files.

~/my-linux-imx$ make mrproper

It is often easiest to start with a base default configuration, and then customize it for your use case
if needed. The imx_v7_defconfig located in arch/arm/configs will be used as a starting point:

~/my-linux-imx$ make ARCH=arm imx_v7_defconfig

When you want to customize the kernel configuration, the easiest way is to use the built-in
kernel configuration systems. One of the most popular configuration systems is the menuconfig
utility. Use a terminal from which the environment-setup-cortexa7hf-neon-poky-linux-gnueabi was not
sourced. Use "cd /" to search in menuconfig:

~/my-linux-imx$ make ARCH=arm menuconfig

Configure the following kernel settings that will be needed during the development of your
drivers:

Device drivers >
 [*] SPI support --->
 <*> User mode SPI device driver support

Device drivers >
 [*] LED Support --->
 <*> LED Class Support
 -*- LED Trigger support --->
 <*> LED Timer Trigger
 <*> LED Heartbeat Trigger

Device drivers >
 <*> Industrial I/O support --->
 -*- Enable buffer support within IIO

Building the System Chapter 1

[40]

 -*- Industrial I/O buffering based on kfifo
 <*> Enable IIO configuration via configfs
 -*- Enable triggered sampling support
 <*> Enable software IIO device support
 <*> Enable software triggers support
 Triggers - standalone --->
 <*> High resolution timer trigger
 <*> SYSFS trigger

Device drivers >
 <*> Userspace I/O drivers --->
 <*> Userspace I/O platform driver with generic IRQ handling
 <*> Userspace platform driver with generic irq and dynamic memory

Device drivers >
 Input device support --->
 -*- Generic input layer (needed for keyboard, mouse, ...)
 <*> Polled input device skeleton
 <*> Event interface

Save the configuration and exit from menuconfig.

Once the kernel has been configured, it must be compiled to generate the bootable kernel image as
well as any dynamic kernel modules that were selected. By default U-Boot expects zImage to be
the type of kernel image used. Be sure that in the terminal used the environment-setup-cortexa7hf-
neon-poky-linux-gnueabi script has been sourced before compiling the kernel:

~/my-linux-imx$ source /opt/fsl-imx-x11/4.9.11-1.0.0/environment-setup-cortexa7hf-
neon-poky-linux-gnueabi
~/my-linux-imx$ make -j4 zImage

Starting with Linux kernel version 3.8 each ARM board has an unique device tree binary file
required by the kernel. Therefore, you will need to build and install the correct dtb for the target
device. All device tree files are located under arch/arm/boot/dts/. To build an individual device tree
file find the name of the dts file for the board you are using and replace the .dts extension with
.dtb. The compiled device tree file will be located under arch/arm/boot/dts/. Then run the following
command to compile an individual device tree file:

~/my-linux-imx$ make -j4 imx7d-sdb.dtb

To build all the device tree files:

~/my-linux-imx$ make -j4 dtbs

By default, the majority of the Linux drivers are not integrated into the kernel image (e.g., zImage).
These drivers are built as dynamic modules. This will result in .ko (kernel object) files being placed
in the kernel tree. These .ko files are the dynamic kernel modules. Whenever you make a change

[41]

Chapter 1 Building the System

[41]

to the kernel it is generally recommended that you rebuild your kernel modules and then reinstall
them. Otherwise, the kernel modules may not load or run. The command to build these modules
is:

~/my-linux-imx$ make -j4 modules

To compile the kernel image, modules, and all the device tree files in a single step:

~/my-linux-imx$ make -j4

Once the Linux kernel, dtb files and modules have been compiled they must be installed. In the
case of the kernel image this can be installed by copying the zImage file to the location where it
will be read from. The device tree binaries should also be copied to the same directory that the
kernel image was copied to. You will read kernel and device tree files from a TFTP Server:

~/my-linux-imx$ cp /arch/arm/boot/zImage /var/lib/tftpboot/
~/my-linux-imx$ cp /arch/arm/boot/dts/imx7d-sdb.dtb /var/lib/tftpboot/

During the development of the drivers for the i.MX7D and SAMA5D2 processors you will use both
TFTP and NFS servers in your host system and only the U-Boot bootloader stored in the SD card
will be needed. The bootloader will fetch the Linux kernel from the TFTP server and the kernel will
mount the root filesystem from the NFS server. Changes to either the kernel or the root filesystem
will be made available without the need to reprogram the SD.

Installing a TFTP Server
If you are not already running a TFTP server, follow the next steps to install and configure a TFTP
server on your Ubuntu 14.04 host:

~$ sudo apt-get install tftpd-hpa

The tftpd-hpa configuration file is installed in /etc/default/tftpd-hpa. By default, it uses /var/lib/
tftpboot as the root TFTP folder. Change the folder permissions to make it accessible to all users by
using the following command:

~$ sudo chmod 1777 /var/lib/tftpboot/

Check the TFTP server status with netstat –a | grep tftp. If there is no result, the server is probably
not started. By safety, stop the service then start it with: sudo service tftpd-hpa stop and sudo service
tftpd-hpa start.

Building the System Chapter 1

[42]

Installing a NFS Server
If you are not already running a NFS server, follow the next steps to install and configure one on
your Ubuntu 14.04 host:

~$ sudo apt-get install nfs-kernel-server

The /nfsroot directory will be used as the root for the NFS server, so the target's root filesystem will
be un-tared from the Yocto build directory, here:

~$ sudo mkdir -m 777 /nfsroot
~$ cd /nfsroot/
~/nfsroot$ sudo tar xvf ~/fsl-release-bsp/build_imx7d/tmp/deploy/images/
imx7dsabresd/fsl-image-validation-imx-imx7dsabresd.tar.bz2

Next, the NFS server will be configured to export the /nfsroot folder. Edit the /etc/exports file and
add the next line of code:

/nfsroot/ *(rw,no_root_squash,async,no_subtree_check)

Then, restart the NFS server for the configuration changes to take effect:

~$ sudo service nfs-kernel-server restart

To install the kernel modules you use another make command similar to the others, but with an
additional parameter which gives the base location where the modules should be installed. This
command will create a directory tree from that location, such us lib/modules/<kernel version>, which
will contain the dynamic modules corresponding to this version of the kernel. The base location
should usually be the root of your target filesystem.

~/my-linux-imx$ source /opt/fsl-imx-x11/4.9.11-1.0.0/environment-setup-cortexa7hf-
neon-poky-linux-gnueabi
~/my-linux-imx$ sudo make ARCH=arm INSTALL_MOD_PATH=/nfsroot/ modules_install

Setting the U-Boot Environment Variables
Power ON the MCIMX7SABRE board. Launch and configure minicom in your host to see the
booting of the system. Set the following configuration: "115.2 kbaud, 8 data bits, 1 stop bit, no
parity". Make sure both hardware and software flow controls are disabled. Stop the U-Boot
sequence by pressing any key.

To perform network booting set the following environment variables at the U-Boot prompt:

U-Boot > setenv serverip 10.0.0.1
U-Boot > setenv ipaddr 10.0.0.10
U-Boot > setenv image zImage
U-Boot > setenv fdt_file imx7d-sdb.dtb
U-Boot > setenv nfsroot /nfsroot
U-Boot > setenv ip_dyn no

[43]

Chapter 1 Building the System

[43]

U-Boot > setenv netargs 'setenv bootargs \
console=${console},${baudrate} ${smp} root=/dev/nfs rootwait \
rw ip=10.0.0.10:10.0.0.1:10.0.0.0:255.255.255.0:off:eth0:off \
nfsroot=${serverip}:${nfsroot},v3,tcp'
U-Boot > setenv bootcmd run netboot
U-Boot> saveenv

Reset your board; it should now boot from the network.

Building a Linux Embedded System for the Microchip
SAMA5D2 Processor
The SAMA5D2 series is a high-performance, ultra-low-power ARM Cortex-A5 processor
based MPU. The Cortex A5 processor runs up to 500MHz and features the ARM NEON SIMD
engine a 128kB L2 cache and a floating point unit. It supports multiple memories, including
latest-generation technologies such as DDR3, LPDDR3, and QSPI Flash. It integrates powerful
peripherals for connectivity (EMAC, USB, dual CAN, up to 10 UARTs, etc.) and user interface
applications (TFT LCD controller, PCAP and resistive touch controllers, touch controller, class D
amplifier, audio PLL, CMOS sensor interface, etc.). The devices offer advanced security functions
to protect customer code and secure external data transfers. These include ARM TrustZone,
tamper detection, secure data storage, hardware encryption engine, on-the-fly decryption of code
stored in external DDR or QSPI memory and a secure boot loader.

You can check all the info related to this family at
http://www.microchip.com/design-centers/32-bit-mpus/microprocessors/sama5/sama5d2-series.

For the development of the labs the SAMA5D2B-XULT: SAMA5D2 (Rev. B) Xplained Ultra
Evaluation Kit will be used. The user guide of this board can be found at http://ww1.microchip.com/
downloads/en/DeviceDoc/Atmel-44083-32-bit-Cortex-A5-Microprocessor-SAMA5D2-Rev.B-Xplained-Ultra_
User-Guide.pdf.

Introduction
To get the Yocto Project expected behavior in a Linux Host Machine, the packages and utilities
described below must be installed. An important consideration is the hard disk space required in
the host machine. For example, when building on a machine running Ubuntu, the minimum hard
disk space required is about 50 GB for the X11 backend. It is recommended that at least 120 GB is
provided, which is enough to compile all backends together.

The instructions have been tested on an Ubuntu 14.04 64-bit distribution.

http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-44083-32-bit-Cortex-A5-Microprocessor-SAMA5D2-Rev.B-Xplained-Ultra_User-Guide.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-44083-32-bit-Cortex-A5-Microprocessor-SAMA5D2-Rev.B-Xplained-Ultra_User-Guide.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-44083-32-bit-Cortex-A5-Microprocessor-SAMA5D2-Rev.B-Xplained-Ultra_User-Guide.pdf

Building the System Chapter 1

[44]

Host Packages
A Yocto Project build requires that some packages be installed for the build that are documented
under the Yocto Project. Essential Yocto Project host packages are:

$ sudo apt-get install gawk wget git-core diffstat unzip texinfo gcc-multilib \
build-essential chrpath socat libsdl1.2-dev

Packages for an Ubuntu 14.04 host setup are:

$ sudo apt-get install libsdl1.2-dev xterm sed cvs subversion coreutils \
texi2html docbook-utils python-pysqlite2 help2man make gcc g++ \
desktop-file-utils libgl1-mesa-dev libglu1-mesa-dev mercurial autoconf \
automake groff curl lzop asciidoc u-boot-tools

Yocto Project Setup and Image Building
The Yocto Project is a powerful building environment. It is build on top of several components
including the famous OpenEmbedded build framework for embedded Linux. Poky is the reference
system for building a whole embedded Linux distribution.

The support for the SAMA5 family is included in a particular Yocto layer: meta-atmel. The sources
for this layer are hosted on Linux4SAM GitHub account: https://github.com/linux4sam/meta-atmel.

You can see below the step by step build procedure:

Create a directory:

~$ mkdir sama5d2_morty
~$ cd sama5d2_morty/

Clone yocto/poky git repository with the proper branch ready:

~/sama5d2_morty$ git clone git://git.yoctoproject.org/poky -b morty

Clone meta-openembedded git repository with the proper branch ready

~/sama5d2_morty$ git clone git://git.openembedded.org/meta-openembedded -b morty

Clone meta-qt5 git repository with the proper branch ready:

~/sama5d2_morty$ git clone git://code.qt.io/yocto/meta-qt5.git
~/sama5d2_morty$ cd meta-qt5/
~/sama5d2_morty/meta-qt5$ git checkout v5.9.1
~/sama5d2_morty$ cd ..
~/sama5d2_morty$

Clone meta-atmel layer with the proper branch ready:

~/sama5d2_morty$ git clone git://github.com/linux4sam/meta-atmel.git -b morty

[45]

Chapter 1 Building the System

[45]

Enter the poky directory to configure the build system and start the build process:

~/sama5d2_morty$ cd poky/
~/sama5d2_morty/poky$

Initialize build directory:

~/sama5d2_morty/poky$ source oe-init-build-env

Add meta-atmel layer to bblayer configuration file:

~/sama5d2_morty/poky/build$ gedit conf/bblayers.conf

POKY_BBLAYERS_CONF_VERSION is increased each time build/conf/bblayers.conf
changes incompatibly
POKY_BBLAYERS_CONF_VERSION = "2"

BBPATH = "${TOPDIR}"
BBFILES ?= ""

BSPDIR := "${@os.path.abspath(os.path.dirname(d.getVar('FILE', True)) +
'/../../..')}"

BBLAYERS ?= " \
 ${BSPDIR}/poky/meta \
 ${BSPDIR}/poky/meta-poky \
 ${BSPDIR}/poky/meta-yocto-bsp \
 ${BSPDIR}/meta-atmel \
 ${BSPDIR}/meta-openembedded/meta-oe \
 ${BSPDIR}/meta-openembedded/meta-networking \
 ${BSPDIR}/meta-openembedded/meta-python \
 ${BSPDIR}/meta-openembedded/meta-ruby \
 ${BSPDIR}/meta-openembedded/meta-multimedia \
 ${BSPDIR}/meta-qt5 \
 "

BBLAYERS_NON_REMOVABLE ?= " \
 ${BSPDIR}/poky/meta \
 ${BSPDIR}/poky/meta-poky \
 "

Edit local.conf to specify the machine, location of source archived, package type (rpm, deb or ipk).
Set MACHINE name to "sama5d2-xplained":

~/sama5d2_morty/poky/build$ gedit conf/local.conf

[...]
MACHINE ??= "sama5d2-xplained"
[...]
DL_DIR ?= "your_download_directory_path"

Building the System Chapter 1

[46]

[...]
PACKAGE_CLASSES ?= "package_ipk"
[...]
USER_CLASSES ?= "buildstats image-mklibs"

To get better performance, use the "poky-atmel" distribution by also adding that line:

DISTRO = "poky-atmel"

Build demo image. Additional local.conf changes are needed for your QT demo image. You can add
these two lines at the end of the file:

~/sama5d2_morty/poky/build$ gedit conf/local.conf

[...]
LICENSE_FLAGS_WHITELIST += "commercial"
SYSVINIT_ENABLED_GETTYS = ""

~/sama5d2_morty/poky/build$ bitbake atmel-qt5-demo-image

Enhancements are added on top of the official v4.9 Linux kernel tag where most of the Microchip SoC
features are already supported. Note as well that Microchip re-integrate each and every stable kernel
release on top of this Long Term Support (LTS) kernel revision. This means that each v4.9.x version is
merged in Microchip branch. You will use the linux4sam_5.7 tag with integration of stable kernel updates
up to v4.9.52. You can chek further info at https://www.at91.com/linux4sam/bin/view/Linux4SAM/LinuxKernel.

You are going to create a SD demo image compiled from tag linux4sam_5.7. Go to https://www.at91.com/
linux4sam/bin/view/Linux4SAM/DemoArchive5_7 and download linux4sam-poky-sama5d2_xplained-5.7.img.bz2
yocto demo image.

To write the compressed image on the SD card, you will have to download and install Etcher. This
tool, which is an Open Source software, is useful since it allows to get a compressed image as input.
More information and extra help is available on the Etcher website at https://etcher.io/. Follow the
steps of the Create a SD card with the demo section at https://www.at91.com/linux4sam/bin/view/Linux4SAM/
Sama5d2XplainedMainPage.

Working Outside of Yocto
In this section, it will described only the instructions to build the Yocto SDK for the SAMA5D2
processor. For further info about the meaning of these instructions check the previous Working
Outside of Yocto section for the i.MX7D processor.

~/sama5d2_morty/poky/build$ bitbake -c populate_sdk atmel-qt5-demo-image
~/sama5d2_morty/poky/build$ cd tmp/deploy/sdk/
~/sama5d2_morty/poky/build/tmp/deploy/sdk$ ls
~/sama5d2_morty/poky/build/tmp/deploy/sdk$./poky-atmel-glibc-x86_64-atmel-qt5-demo-
image-cortexa5hf-neon-toolchain-2.2.3.sh

https://www.at91.com/linux4sam/bin/view/Linux4SAM/DemoArchive5_7
https://www.at91.com/linux4sam/bin/view/Linux4SAM/DemoArchive5_7
https://www.at91.com/linux4sam/bin/view/Linux4SAM/Sama5d2XplainedMainPage
https://www.at91.com/linux4sam/bin/view/Linux4SAM/Sama5d2XplainedMainPage

[47]

Chapter 1 Building the System

[47]

Poky (Yocto Project Reference Distro) SDK installer version 2.2.3
===
Enter target directory for SDK (default: /opt/poky-atmel/2.2.3):
You are about to install the SDK to "/opt/poky-atmel/2.2.3". Proceed[Y/n]? y

Extracting SDK...
..
...done
Setting it up...done
SDK has been successfully set up and is ready to be used.

Building the Linux Kernel
In this section, it will be described only the instructions to build the Linux kernel for the
SAMA5D2 processor. For further info about the meaning of these instructions check the previous
Building the Linux Kernel section for the i.MX7D processor.

Copy the kernel sources from your Yocto build to a new created folder:

~$ mkdir my-linux-sam
~$ cp -rpa ~/sama5d2_morty/poky/build/tmp/work/sama5d2_xplained-poky-linux-gnueabi/
linux-at91/4.9+gitAUTOINC+973820d8c6-r0/git/* ~/my-linux-sam/

You can also download the kernel sources from the Microchip git:

~$ git clone git://github.com/linux4sam/linux-at91.git
~$ cd linux-at91/
~/linux-at91$ git branch -r
~/linux-at91$ git checkout origin/linux-4.9-at91 -b linux-4.9-at91
~/linux-at91$ git checkout linux4sam_5.7

Compile the kernel image, modules, and all the device tree files:

~/linux-at91$ make mrproper
~/linux-at91$ make ARCH=arm sama5_defconfig
~/linux-at91$ make ARCH=arm menuconfig

Configure the following kernel settings that will be needed during the development of the drivers:

Device drivers >
 [*] SPI support --->
 <*> User mode SPI device driver support

Device drivers >
 [*] LED Support --->
 <*> LED Class Support
 -*- LED Trigger support --->
 <*> LED Timer Trigger
 <*> LED Heartbeat Trigger
Device drivers >

Building the System Chapter 1

[48]

 <*> Industrial I/O support --->
 -*- Enable buffer support within IIO
 -*- Industrial I/O buffering based on kfifo
 <*> Enable IIO configuration via configfs
 -*- Enable triggered sampling support
 <*> Enable software IIO device support
 <*> Enable software triggers support
 Triggers - standalone --->
 <*> High resolution timer trigger
 <*> SYSFS trigger

Device drivers >
 <*> Userspace I/O drivers --->
 <*> Userspace I/O platform driver with generic IRQ handling
 <*> Userspace platform driver with generic irq and dynamic memory

Device drivers >
 Input device support --->
 -*- Generic input layer (needed for keyboard, mouse, ...)
 <*> Polled input device skeleton
 <*> Event interface

Save the configuration and exit from menuconfig.

Source the toolchain script and compile kernel, device tree files and modules in a single step:

~/my-linux-sam$ source /opt/poky-atmel/2.2.3/environment-setup-cortexa5hf-neon-poky-
linux-gnueabi
~/my-linux-sam$ make -j4

Once the Linux kernel, dtb files and modules have been compiled they must be installed. In the
case of the kernel image this can be installed by copying the zImage file to the location where it
will be read from. The device tree binaries should also be copied to the same directory that the
kernel image was copied to. You will read kernel and device tree files from a TFTP Server:

~/my-linux-sam$ cp /arch/arm/boot/zImage /var/lib/tftpboot/
~/my-linux-sam$ cp /arch/arm/boot/dts/at91-sama5d2_xplained.dtb /var/lib/tftpboot/

During the development of the driver labs you will use both TFTP and NFS servers in your host
system and only the U-Boot bootloader stored in the SD card will be needed. The bootloader will
fetch the Linux kernel from the TFTP server and the kernel will mount the root filesystem from the
NFS server. Changes to either the kernel or the root filesystem will be made available without the
need to reprogram the SD.

[49]

Chapter 1 Building the System

[49]

Installing a TFTP Server
Follow the next steps to install and configure a TFTP server on your Ubuntu 14.04 host:

~$ sudo apt-get install tftpd-hpa

Change the folder permissions to make it accessible to all users by using the following command:

~$ sudo chmod 1777 /var/lib/tftpboot/

Check the TFTP server status with netstat –a | grep tftp. If there is no result, the server is probably
not started. By safety, stop the service, then start it with: sudo service tftpd-hpa stop and sudo service
tftpd-hpa start.

Installing a NFS Server
Follow the next steps to install and configure one on your Ubuntu 14.04 host:

~$ sudo apt-get install nfs-kernel-server

The /nfssama5d2 directory will be used as the root for the NFS server, so the target's root filesystem
will be un-tared from the Yocto build directory, here:

~$ sudo mkdir -m 777 /nfssama5d2
~$ cd /nfssama5d2/
~/nfssama5d2$ sudo tar xfvp ~/sama5d2_morty/poky/build/tmp/deploy/images/sama5d2-
xplained/atmel-qt5-demo-image-sama5d2-xplained.tar.gz

Next, the NFS server will be configured to export the /nfssama5d2 folder. Edit the /etc/exports file
and add the next line of code:

/nfssama5d2/ *(rw,no_root_squash,async,no_subtree_check)

Then restart the NFS server for the configuration changes to take effect:

~$ sudo service nfs-kernel-server restart

To install the kernel modules you use another make command similar to the others, but with an
additional parameter, which gives the base location where the modules should be installed. This
command will create a directory tree from that location, such us lib/modules/<kernel version>, which
will contain the dynamic modules corresponding to this version of the kernel. The base location
should usually be the root of your target filesystem.

~/my-linux-sam$ source /opt/poky-atmel/2.2.3/environment-setup-cortexa5hf-neon-poky-
linux-gnueabi
~/my-linux-sam$ sudo make ARCH=arm INSTALL_MOD_PATH=/nfssama5d2/ modules_install

Building the System Chapter 1

[50]

Setting the U-Boot Environment Variables
Power ON the SAMA5D2B-XULT board. Launch and configure minicom in your host to see
the booting of the system. Set the following configuration: "115.2 kbaud, 8 data bits, 1 stop bit,
no parity". Make sure both hardware and software flow controls are disabled. Stop the U-Boot
sequence by pressing any key.

To perform network booting set the following environment variables at the U-Boot prompt:

U-Boot > setenv serverip 10.0.0.1
U-Boot > setenv ipaddr 10.0.0.10
U-Boot > setenv nfsroot /nfssama5d2
U-Boot > setenv ip_dyn no
U-Boot > setenv bootargs console=ttyS0,115200 root=/dev/nfs rootwait \
rw ip=10.0.0.10:10.0.0.1:10.0.0.0:255.255.255.0:off:eth0:off \
nfsroot=${serverip}:${nfsroot},v3,tcp
U-Boot > setenv bootcmd 'tftp 0x21000000 zImage; tftp 0x22000000 at91-sama5d2_
xplained.dtb; bootz 0x21000000 - 0x22000000'
U-Boot > saveenv

Reset your board; it should now boot from the network.

Building a Linux Embedded System for the Broadcom
BCM2837 Processor
The BCM2837 processor is the Broadcom chip used in the Raspberry Pi 3, and in later models of
the Raspberry Pi 2. The underlying architecture of the BCM2837 is identical to the BCM2836. The
only significant difference is the replacement of the ARMv7 quad core cluster with a quad-core
ARM Cortex A53 (ARMv8) cluster.

The ARM cores run at 1.2GHz, making the device about 50% faster than the Raspberry Pi 2. The
VideoCore IV runs at 400MHz. You can see documentation of BCM2836 at https://www.raspberrypi.
org/documentation/hardware/raspberrypi/bcm2836/README.md and BCM2835 at https://www.
raspberrypi.org/documentation/hardware/raspberrypi/bcm2835/README.md.

For the development of the labs the Raspberry Pi 3 Model B: Single-board computer with wireless
LAN and Bluetooth connectivity will be used. You can see more info of this board at https://www.
raspberrypi.org/products/raspberry-pi-3-model-b/.

Raspbian
Raspbian is the recommended operating system for normal use on a Raspberry Pi. Raspbian is a
free operating system based on Debian, optimised for the Raspberry Pi hardware. Raspbian comes
with over 35,000 packages: precompiled software bundled in a nice format for easy installation on

https://www.raspberrypi.org/documentation/hardware/raspberrypi/bcm2836/README.md
https://www.raspberrypi.org/documentation/hardware/raspberrypi/bcm2836/README.md
https://www.raspberrypi.org/documentation/hardware/raspberrypi/bcm2835/README.md
https://www.raspberrypi.org/documentation/hardware/raspberrypi/bcm2835/README.md
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/

[51]

Chapter 1 Building the System

[51]

your Raspberry Pi. Raspbian is a community project under active development, with an emphasis
on improving the stability and performance of as many Debian packages as possible.

You will install in a SD a Raspbian_lite image based on kernel 4.9.y. Go to http://downloads.
raspberrypi.org/raspbian_lite/images/ and download 2017-09-07-raspbian-stretch-lite.zip image
included in the folder raspbian_lite-2017-09-08/.

To write the compressed image on the SD card, you will download and install Etcher. This tool,
which is an Open Source software, is useful since it allows to get a compressed image as input.
More information and extra help is available on the Etcher website at https://etcher.io/.

Follow the steps of the Writing an image to the SD card section at https://www.raspberrypi.org/
documentation/installation/installing-images/README.md.

Building the Linux Kernel
There are two main methods for building the kernel. You can build locally on a Raspberry Pi,
which will take a long time; or you can cross-compile, which is much quicker, but requires more
setup. You will use the second method.

First install Git and the build dependencies:

~$ sudo apt-get install git bc

Next get the sources:

~$ git clone --depth=1 -b rpi-4.9.y https://github.com/raspberrypi/linux
~$ cd linux/

Download the toolchain to the home folder:

~$ git clone https://github.com/raspberrypi/tools ~/tools
~$ export PATH=~/tools/arm-bcm2708/gcc-linaro-arm-linux-gnueabihf-raspbian-x64/
bin:$PATH
~$ export TOOLCHAIN=~/tools/arm-bcm2708/gcc-linaro-arm-linux-gnueabihf-raspbian-x64/
~$ export CROSS_COMPILE=arm-linux-gnueabihf-
~$ export ARCH=arm

Compile the kernel, modules and device tree files:

~$ cd linux/
~/linux$ make mrproper
~/linux$ KERNEL=kernel7
~/linux$ make ARCH=arm bcm2709_defconfig
~/linux$ make ARCH=arm menuconfig

http://downloads.raspberrypi.org/raspbian_lite/images/
http://downloads.raspberrypi.org/raspbian_lite/images/
https://www.raspberrypi.org/documentation/installation/installing-images/README.md
https://www.raspberrypi.org/documentation/installation/installing-images/README.md

Building the System Chapter 1

[52]

Configure the following kernel settings that will be needed during the development of the labs:

Device drivers >
 [*] SPI support --->
 <*> BCM2835 SPI controller
 <*> User mode SPI device driver support

Device drivers >
 I2C support --->
 I2C Hardware Bus support --->
 <*> Broadcom BCM2835 I2C controller

Device drivers >
 [*] SPI support --->
 <*> User mode SPI device driver support

Device drivers >
 [*] LED Support --->
 <*> LED Class Support
 -*- LED Trigger support --->
 <*> LED Timer Trigger
 <*> LED Heartbeat Trigger

Device drivers >
 <*> Industrial I/O support --->
 -*- Enable buffer support within IIO
 -*- Industrial I/O buffering based on kfifo
 <*> Enable IIO configuration via configfs
 -*- Enable triggered sampling support
 <*> Enable software IIO device support
 <*> Enable software triggers support
 Triggers - standalone --->
 <*> High resolution timer trigger
 <*> SYSFS trigger

Device drivers >
 <*> Userspace I/O drivers --->
 <*> Userspace I/O platform driver with generic IRQ handling
 <*> Userspace platform driver with generic irq and dynamic memory

Device drivers >
 Input device support --->
 -*- Generic input layer (needed for keyboard, mouse, ...)
 <*> Polled input device skeleton
 <*> Event interface

Save the configuration and exit from menuconfig.

[53]

Chapter 1 Building the System

[53]

Compile kernel, device tree files and modules in a single step:

~/linux$ make -j4

Having built the kernel, you need to copy it onto your Raspberry Pi and install the modules; insert
a uSD into a SD card reader:

~$ lsblk
~$ mkdir ~/mnt
~$ mkdir ~/mnt/fat32
~$ mkdir ~/mnt/ext4
~$ sudo mount /dev/mmcblk0p1 ~/mnt/fat32
~$ sudo mount /dev/mmcblk0p2 ~/mnt/ext4
~$ ls -l ~/mnt/fat32/ /* see the files in the fat32 partition, check that config.txt
is included */

Update the config.txt file adding the next values:

~$ cd mnt/fat32/
~/mnt/fat32$ sudo gedit config.txt

dtparam=i2c_arm=on
dtparam=spi=on
dtoverlay=spi0-cs
Enable UART
enable_uart=1
kernel=kernel-rpi.img
device_tree=bcm2710-rpi-3-b.dtb

Update kernel, device tree files and modules:

~/linux$ sudo cp arch/arm/boot/zImage ~/mnt/fat32/kernel-rpi.img
~/linux$ sudo cp arch/arm/boot/dts/*.dtb ~/mnt/fat32/
~/linux$ sudo cp arch/arm/boot/dts/overlays/*.dtb* ~/mnt/fat32/overlays/
~/linux$ sudo cp arch/arm/boot/dts/overlays/README ~/mnt/fat32/overlays/
~/linux$ sudo make ARCH=arm INSTALL_MOD_PATH=~/mnt/ext4 modules_install
~$ sudo umount ~/mnt/fat32
~$ sudo umount ~/mnt/ext4

Extract the uSD from the SD reader and insert it in the the Raspberry Pi 3 Model B board. Power
ON the board. Launch and configure minicom in your host to see the booting of the system.
Set the following configuration: "115.2 kbaud, 8 data bits, 1 stop bit, no parity". Make sure both
hardware and software flow controls are disabled.

Building the System Chapter 1

[54]

Copying Files to your Raspberry Pi
You can access the command line of a Raspberry Pi remotely from another computer or device on
the same network using SSH. Make sure your Raspberry Pi is properly set up and connected:

pi@raspberrypi:~$ sudo ifconfig eth0 10.0.0.10 netmask 255.255.255.0

Raspbian has the SSH server disabled by default. You have to start the service:

pi@raspberrypi:~# sudo /etc/init.d/ssh restart

By default, the root account is disabled, but you can enable it by using this command and giving it
a password:

pi@raspberrypi:~$ sudo passwd root /* set for instance password to "pi" */

Now, you can log into your pi as the root user. Open the sshd_config file and change
PermitRootLogin to yes (also comment the line out). After editing the file type "Ctrl+x", then type
"yes" and press "enter" to exit.

pi@raspberrypi:~$ sudo nano /etc/ssh/sshd_config

Create a very simple application that will be compiled to verify that your toolchain is properly
installed. Create the application file using for example the gedit text editor:

~$ mkdir my_first_app
~$ cd my_first_app/
~/my_first_app$ gedit app.c

Add the code below:

#include <stdio.h>
int main(void)
{

printf("Hello World\n");
}

Setup the toolchain updating the $PATH environment variables:

~$ export PATH=~/tools/arm-bcm2708/gcc-linaro-arm-linux-gnueabihf-raspbian-x64/
bin:$PATH
~$ export TOOLCHAIN=~/tools/arm-bcm2708/gcc-linaro-arm-linux-gnueabihf-raspbian-x64/
~$ export CROSS_COMPILE=arm-linux-gnueabihf-
~$ export ARCH=arm

You can compile app.c directly with the C compiler:

~/my_first_app$ arm-linux-gnueabihf-gcc app.c -o app

scp is a command for sending files over SSH. This means you can copy files between computers,
say from your Raspberry Pi to your desktop or laptop, or vice-versa. You can copy now the file app

[55]

Chapter 1 Building the System

[55]

from your computer to the pi user's home folder of your Raspberry Pi at the IP address 10.0.0.10
with the following command:

~$ scp app pi@10.0.0.10: /* enter "raspberry" password in the host */
pi@raspberrypi:~$ ls /* see the app application in you raspberry */
pi@raspberrypi:~$./app /* execute the application in your raspberry */

or
~$ scp app root@10.0.0.10: /* enter "pi" password that was set when you enabled your
root account */

You have first to log into your pi as the root user to use in the host the scp app root@10.0.0.10:
command:

pi@raspberrypi:~$ su
Password:pi
root@raspberrypi:/home/pi# cd /root/
root@raspberrypi:~$ ls /* see the app application */
root@raspberrypi:~$./app /* execute the application */

Every time you boot your Raspberry PI you have to execute the next instructions to be able to
transfer files via scp:

pi@raspberrypi:~$ sudo ifconfig eth0 10.0.0.10 netmask 255.255.255.0
pi@raspberrypi:~# sudo /etc/init.d/ssh restart

On the Raspberry PI board (the target), configure the eth0 interface with IP address 10.0.0.10 by
editing the /etc/network/interfaces file. Open the file using the nano editor:

pi@raspberrypi:~$ sudo nano /etc/network/interfaces

Add the following lines:

auto eth0
iface eth0 inet static

address 10.0.0.10
netmask 255.255.255.0

After editing the file type "Ctrl+x", then type "yes" and press "enter" to exit. Now, you only have to
restart the ssh service the next time you boot your target.

Working with Eclipse
Eclipse provides IDEs and platforms for nearly every language and architecture. They are well
known for the Java IDE, C/C++, JavaScript and PHP IDEs built on extensible platforms for creating
desktop, Web and cloud IDEs. These platforms deliver the most extensive collection of add-on
tools available for software developers. Eclipse will help navigate within the Linux kernel sources
instead of using Linux terminal commands.

Building the System Chapter 1

[56]

You will work with the Neon Release to develop the drivers. You can download the Eclipse
environment at https://www.eclipse.org/downloads/packages/eclipse-ide-cc-developers/neonr.
Go to the Neon Packages Release and download the Eclipse IDE for C/C++ developers (Linux 32-bit or
64-bit depending on your Linux host system).

Installing Eclipse is simple. Just download a proper version from the web page and untar it. The
system must have the proper version of Java SDK installed. Ubuntu allows multiple packages
providing a Java Virtual Machine to be installed. For Neon is 8.

~$ sudo apt-get install openjdk-8-jdk

Untar the 64-bit Neon Eclipse download:

~/eclipse_neon$ tar –xf eclipse-cpp-neon-3-linux-gtk-x86_64.tar.gz

Make sure that you run Eclipse from a shell, that was configured for Yocto SDK. This makes
configuring the toolchain (PATH) much easier. It will be used the SAMA5D2 kernel sources and its
Yocto SDK cross-compile toolchain to show how to configure Eclipse for the development of the
drivers.

~/eclipse_neon$ source /opt/poky-atmel/2.2.3/environment-setup-cortexa5hf-neon-poky-
linux-gnueabi

~/eclipse_neon$ cd eclipse/
~$./eclipse & /* launch eclipse */

Select the workspace path, for example:

/home/<user>/workspace_neon

Eclipse Configuration for Working with Kernel Sources
Before configuring Eclipse, the kernel must be configured and built (you have already configured
and built your kernel in previous sections), to define CONFIG_* and generate autoconf.h. Some files
essential for indexer are generated while configuring and building for given architecture.

[57]

Chapter 1 Building the System

[57]

1. Start up Eclipse and then create a new C project:

•	 File->New->C Project.
•	 Set project name (it is just for Eclipse), for example provide the name my_kernel.
•	 Do not use the default location (workspace). Point to the directory containing the

kernel sources: /home/<user>/my-linux-sam.
•	 The kernel is built using make, so choose a Makefile project.
•	 This is using cross-toolchain.
•	 Next->Finish.

Building the System Chapter 1

[58]

2. After creating the project modify its settings. Go to Project->Properties and open the
C/C++ General selection on the left. Click on Preprocessor Include Paths, Macros
etc.., then click on the Entries tab and select GNU C in the Languages list. Select CDT
User Setting Entries in the Setting Entries list. Add include/linux/kconfig.h file as the
Preprocessor macros file:

[59]

Chapter 1 Building the System

[59]

3. Add the file containing the printk() macro definition. Otherwise, indexer will not find it (as
it is used in many places):

Building the System Chapter 1

[60]

4. Click on the Providers tab and turn off the looking to default search path provided via
cross-compiler feature. Indexer should use in-kernel headers instead of those from the
toolchain sysroot path:

[61]

Chapter 1 Building the System

[61]

5. The in-kernel include paths have to be added. The kernel does not use any external
libraries. In the C/C++ General selection click on Paths and Symbols, then click on the
Includes tab and select GNU C in the Languages list. Finally, click on the Add tab and add
the include paths:

•	 /my_kernel/include: generic ones
•	 /my_kernel/arch/arm/include: architecture specific

Building the System Chapter 1

[62]

6. Add the __KERNEL__ (Warning: two underscores KERNEL two underscores) and
__LINUX_ARM_ARCH__ (Value = 7) symbols. The __KERNEL__ symbol is used
in many places to distinguish between parts of files containing user space API (not
defined) from a kernel API (defined); the symbol is set in Makefile during build. In
Paths and Symbols click on the Symbols tab, then click on the Add tab to add the
symbols.

[63]

Chapter 1 Building the System

[63]

7. The arch directory, contains architecture-specific files. The filter has to be defined
to exclude all subdirectories containing code for architectures not used in current
configuration. In Paths and Symbols click on the Source Location tab, then click on the
Edit Filter tab and in the new window appearing click on the Add Multiple tab selecting
all subdirectories of arch/ but arch/arm. Also filter out the tools directory. It contains
conflicting include files.

Building the System Chapter 1

[64]

8. Turn off indexing files not included in the build. This will limit the number of files to
index:

[65]

Chapter 1 Building the System

[65]

9. Set the make parameters needed for building the kernel:

Building the System Chapter 1

[66]

10. Use the sub-page Environment to set the proper path. In this way you do not have to
source the environment each time you open eclipse. Click on the variable PATH (check to
make sure it is highlighted):

11. Click OK in the settings window to save project options and run the indexer. To make
sure everything will be indexed properly force a rebuild. It can be done from the project
manager context menu:

Project->Index->Rebuild

Indexing will take a few minutes. About 700-800MB of data will be created in the workspace
directory. About 20000 files will be parsed (depending on the kernel version).

If Eclipse is configured in the properly, it should expand the symbols under the cursor. This
configuration is not ideal. Some macros and symbols are highlighted as warnings or errors. Eclipse
Indexer does not behave in the same way as GCC. The goal is to make working with kernel sources
easier, rather than removing all warnings.

Now, Eclipse can be used to build the kernel. If you change any of your CONFIG_* settings, in
order for Eclipse to recognize those changes, you may need to do a "build" from within Eclipse.
Note, this does not mean to re-build the index; this means to build the kernel, by having Eclipse
invoke make (this is normally bound to the Ctrl-B key in Eclipse). Eclipse should automatically
detect changes to include/generated/autoconf.h, reread the compilation #defines it uses, and reindex.

[67]

Chapter 1 Building the System

[67]

Eclipse Configuration for Developing Linux Drivers
You are going to create a project in Eclipse to write, build and deploy your drivers. The
configuration looks the same, as in the case of the kernel sources.

1. Create a new Makefile C project. Point to the location where you will store your driver
sources. In the next figure, you can see that the path is /home/<user>/Linux_4.9_sam_drivers.
Follow the steps mentioned below:

•	 File->New->C Project.
•	 Set project name (it is just for Eclipse), for example provide the name my_modules.
•	 Do not use default location (workspace). Point to the directory containing kernel

modules sources.
•	 kernel is build using make, so choose a Makefile project.
•	 Use a cross-toolchain.
•	 Next->Finish.

Building the System Chapter 1

[68]

2. Ater creating the project, modify its settings. Go to Project->Properties and open the
C/C++ General selection on the left. Click on Preprocessor Include Paths, Macros
etc.., then click on the Entries tab and select GNU C in the Languages list. Select
CDT User Setting Entries in the Setting Entries list. Indexer has to be informed
about the kernel configuration. You have to include kconfig.h and printk.h from
the kernel project. Click the Add tab twice, then in the windows appearing select
Workspace Path and add the next paths:

/my_kernel/include/linux/kconfig.h
/my_kernel/include/linux/printk.h

3. Turn off the search of the include paths built-in into the toolchain and set the proper
include path instead. These include paths are the same as in the kernel project (my_kernel/
include and my_kernel/arch/arm/include).

[69]

Chapter 1 Building the System

[69]

Building the System Chapter 1

[70]

4. Define __KERNEL__ symbol and __LINUX_ARM_ARCH__ (Value = 7):

[71]

Chapter 1 Building the System

[71]

5. Use the sub-page Environment to set the proper path. In this way you do not have to
source the environment each time you open Eclipse. Click on the variable PATH. You
should have sourced the path before opening Eclipse.

Type in the OK tab to save the settings.

Create new helloworld.c and Makefile files and save them in the kernel modules source directory. Do
right-click in your my_modules project and then type New->Source File to create the files. You will
write code to these files during the development of the first driver lab. At this time you can leave
them empty.

In the Build Targets Tab, do right-click on my_modules, then select New and write Target name: all.
Repeat the steps writing deploy and clean target names.

my_modules->new->all
my_modules->new->deploy
my_modules->new->clean

Building the System Chapter 1

[72]

You can now build, clean and deploy your Linux kernel modules by clicking on the generated
buttons!!

[73]

2
The Linux Device and Driver

Model
Understanding the Linux device and driver model is central to developing device drivers in
Linux. A unified device model was added in Linux kernel 2.6 to provide a single mechanism for
representing devices and describing their topology in the system. The Linux device and driver
model is an universal way of organizing devices and drivers into buses. Such a system provides
several benefits:

•	 Minimization of code duplication.
•	 Clean code organization with the device drivers separated from the controller drivers, the

hardware description separated from the drivers themselves, etc.
•	 Capability to determine all the devices in the system, view their status and power state, see

what bus they are attached to and determine which driver is responsible for them.
•	 The capability to generate a complete and valid tree of the entire device structure of the

system, including all buses and interconnections.
•	 The capability to link devices to their drivers and viceversa.
•	 Categorization of devices by their type (classes), such as input devices, without the need to

understand the physical device topology.

The device model involves terms like "device", "driver", and "bus":

•	 device: a physical or virtual object which attaches to a bus.
•	 driver: a software entity which may probe for and be bound to devices, and which can

perform certain management functions.
•	 bus: a device which serves as an attachment point for other devices.

The device model is organized around three main data structures:

1. The struct bus_type structure, which represent one type of bus (e.g.; USB, PCI, I2C).
2. The struct device_driver structure, which represents one driver capable of handling certain

devices on a certain bus.
3. The struct device structure, which represents one device connected to a bus.

The Linux Device and Driver Model Chapter 2

[74]

Bus Core Drivers
For each bus supported by the kernel there is a generic bus core driver. A bus is a channel between
the processor and one or more devices. For the purposes of the device model, all devices are
connected via a bus, even if it is an internal, virtual, "platform" bus.

The bus core driver allocates a struct bus_type and registers it with the kernel's list of bus types.
The struct bus_type structure defined in include/linux/device.h represents one type of bus (USB, PCI,
I2C, etc.). The registration of the bus in a system is done using the bus_register() function. The struct
bus_type is defined as:

struct bus_type {
 const char *name;
 const char *dev_name;
 struct device *dev_root;
 struct device_attribute *dev_attrs;
 const struct attribute_group **bus_groups;
 const struct attribute_group **dev_groups;
 const struct attribute_group **drv_groups;

 int (*match)(struct device *dev, struct device_driver *drv);
 int (*uevent)(struct device *dev, struct kobj_uevent_env *env);
 int (*probe)(struct device *dev);
 int (*remove)(struct device *dev);
 void (*shutdown)(struct device *dev);

 int (*online)(struct device *dev);
 int (*offline)(struct device *dev);

 int (*suspend)(struct device *dev, pm_message_t state);
 int (*resume)(struct device *dev);

 const struct dev_pm_ops *pm;

 struct iommu_ops *iommu_ops;

 struct subsys_private *p;
 struct lock_class_key lock_key;
};

An example of struct bus_type instantiation and bus registration is shown in the following code
extracted from the platform core driver (drivers/base/platform.c):

struct bus_type platform_bus_type = {
 .name = "platform",
 .dev_groups = platform_dev_groups,
 .match = platform_match,

[75]

Chapter 2 The Linux Device and Driver Model

[75]

 .uevent = platform_uevent,
 .pm = &platform_dev_pm_ops,
};
EXPORT_SYMBOL_GPL(platform_bus_type);

int __init platform_bus_init(void)
{
 int error;

 early_platform_cleanup();

 error = device_register(&platform_bus);
 if (error)
 return error;
 error = bus_register(&platform_bus_type);
 if (error)
 device_unregister(&platform_bus);
 return error;
}

One of the struct bus_type members is a pointer to the struct subsys_private defined in drivers/base/
base.h as:

struct subsys_private {
 struct kset subsys;
 struct kset *devices_kset;
 struct list_head interfaces;
 struct mutex mutex;

 struct kset *drivers_kset;
 struct klist klist_devices;
 struct klist klist_drivers;
 struct blocking_notifier_head bus_notifier;
 unsigned int drivers_autoprobe:1;
 struct bus_type *bus;

 struct kset glue_dirs;
 struct class *class;
};

The klist_devices member of the struct subsys_private is a list of devices in the system that reside
on this particular type of bus. This list is updated by the device_register() function, which is called
when the bus is scanned for devices by the bus controller driver (during initialization or when a
device is hot plugged).

The Linux Device and Driver Model Chapter 2

[76]

The klist_drivers member of the struct subsys_private is a list of drivers that can handle devices
on that bus. This list is updated by the driver_register() function, which is called when a driver
initializes itself.

When a new device is plugged into the system, the bus controller driver detects the device and
calls device_register(). When a device is registered by the bus controller driver, the parent member
of the struct device is pointed to the bus controller device to build the physical device list. The list of
drivers associated with the bus is iterated over to find out if there are any drivers that can handle
the device. The match function provided in the struct bus_type structure is used to check if a given
driver can handle a given device. When a driver is found that can handle the device, the driver
member of the struct device is pointed to the corresponding device driver.

When a kernel module is inserted into the kernel and the driver calls driver_register(), the list of
devices associated with the bus is iterated over to find out if there are any devices that the driver
can handle using the match function. When a match is found, the device is associated with the
device driver and the driver´s probe() function is called, this is what we call binding.

When does a driver attempt to bind a device?

1. When the driver is registered (if the device already exits).
2. When the device is created (if the driver is already registered).

Summarizing, the bus driver registers a bus in a system and:

1. Allows registration of bus controller drivers, whose role is to detect devices, and configure
their resources.

2. Allows registration of device drivers.
3. Matches devices and drivers.

Bus Controller Drivers
For a specific bus type there could be many different controllers provided by different vendors.
Each of these controllers needs a corresponding bus controller driver. The role of a bus controller
driver in maintenance of the device model, is similar to that of any other device driver in that,
it registers itself to its bus using the driver_register() function. In most cases, these bus controller
devices are autonomous entities in the system discovered during the kernel initialization calling
of_platform_populate(), which walks through the DT finding and registering these "platform
controller devices" to the platform bus at runtime.

[77]

Chapter 2 The Linux Device and Driver Model

[77]

Device Drivers
Every device driver registers itself with the bus core driver using driver_register(). After that, the
device model core tries to bind it with a device. When a device that can be handled by a particular
driver is detected, the probe() member of the driver is called and the device configuration data can
be retrieved from the Device Tree.

Each device driver is responsible for instantiating and registering an instance of the struct
device_driver (defined in include/linux/device.h) with the device model core. The struct
device_driver is defined as:

struct device_driver {
 const char *name;
 struct bus_type *bus;

 struct module *owner;
 const char *mod_name;

 bool suppress_bind_attrs;

 const struct of_device_id *of_match_table;
 const struct acpi_device_id *acpi_match_table;

 int (*probe) (struct device *dev);
 int (*remove) (struct device *dev);
 void (*shutdown) (struct device *dev);
 int (*suspend) (struct device *dev, pm_message_t state);
 int (*resume) (struct device *dev);
 const struct attribute_group **groups;

 const struct dev_pm_ops *pm;

 struct driver_private *p;
};

•	 The bus member is a pointer to the struct bus_type to which the device driver is registered.
•	 The probe member is a callback function that is called for each device detected that is

supported by the driver. The driver should instantiate itself for each device and initialize
the device as well.

•	 The remove member is a callback function that is called to unbind the driver from the
device. This happens when the device is physically removed, when the driver is unloaded,
or when the system is shutdown.

The Linux Device and Driver Model Chapter 2

[78]

The Linux device model is illustrated in the following figure:

Introduction to the Device Tree
The "Open Firmware Device Tree", or simply Device Tree (DT), is a data structure and language for
describing hardware. More specifically, it is a description of hardware that is readable by an operating
system so that the operating system doesn't need to hard code details of the machine.

Structurally, the DT is a tree with named nodes, and nodes may have an arbitrary number of named
properties encapsulating arbitrary data. A mechanism also exists to create arbitrary links from one node
to another outside of the natural tree structure.

Conceptually, a common set of usage conventions, called "bindings", is defined for how data should
appear in the tree to describe typical hardware characteristics including data busses, interrupt lines, GPIO
connections, and peripheral devices. As much as possible, hardware is described using existing bindings
to maximize use of existing support code, but since property and node names are simply text strings, it is
easy to extend existing bindings or create new ones by defining new nodes and properties.

The DT is represented as a set of text files in the Linux kernel source tree. They are located under
arch/arm/boot/dts/ and can have two extensions:

[79]

Chapter 2 The Linux Device and Driver Model

[79]

•	 *.dtsi files are device tree source include files. They describe hardware that is common to
several platforms which include these files on their *.dts files.

•	 *.dts files are device tree source files. They describe one specific platform.

Linux uses DT data for three major purposes:

1. Platform Identification: the kernel will use data in the DT to identify the specific machine.
In a perfect world, the specific platform shouldn't matter to the kernel because all platform
details would be described perfectly by the device tree in a consistent and reliable manner.
Hardware is not perfect though, and so the kernel must identify the machine during early
boot so that it has the opportunity to run machine-specific fixups. In the majority of cases,
the machine identity is irrelevant, and the kernel will instead select setup code based on
the machine's core CPU or SoC. On ARM, for example, setup_arch() in arch/arm/kernel/
setup.c will call setup_machine_fdt() in arch/arm/kernel/devtree.c which searches through the
machine_desc table and selects the machine_desc which best matches the device tree data.
It determines the best match by looking at the compatible property in the root device tree
node, and comparing it with the dt_compat list in struct machine_desc, which is defined in
arch/arm/include/asm/mach/arch.h.

The compatible property contains a sorted list of strings starting with the exact name of
the machine. For example, the sama5d2.dtsi file under arch/arm/boot/dts folder includes the
following compatible property:

compatible = "atmel,sama5d2";

Again on ARM, for each machine_desc, the kernel looks to see if any of the dt_compat
list entries appears in the compatible property. If one does, then that machine_desc is a
candidate for driving the machine. See, for example, the sama5_alt_dt_board_compat[] and
DT_MACHINE_START declarations in arch/arm/mach-at91/sama5.c. They are used to populate
a struct machine_desc.

static const char *const sama5_alt_dt_board_compat[] __initconst = {
 "atmel,sama5d2",
 "atmel,sama5d4",
 NULL
};

DT_MACHINE_START(sama5_alt_dt, "Atmel SAMA5")
 /* Maintainer: Atmel */
 .init_machine = sama5_dt_device_init,
 .dt_compat = sama5_alt_dt_board_compat,
 .l2c_aux_mask = ~0UL,
MACHINE_END

The Linux Device and Driver Model Chapter 2

[80]

After searching the entire table of machine_descs, the setup_machine_fdt() function returns
the "most compatible" machine_desc based on which entry in the compatible property
each machine_desc matches against. If no matching machine_desc is found, then it returns
NULL. The function setup_machine_fdt() is also responsible for early scanning of the device
tree after selecting machine_desc.

2. Runtime configuration: In most cases, a DT will be the sole method of communicating
data from firmware to the kernel, so also gets used to pass in runtime configuration data
like the kernel parameters string and the location of an initrd image. Most of this data is
contained in the /chosen node, and when booting Linux it will look something like this:

 chosen {
 bootargs = "console=ttyS0,115200 loglevel=8";
 initrd-start = <0xc8000000>;
 initrd-end = <0xc8200000>;
 };

The bootargs property contains the kernel arguments, and the initrd-* properties define
the address and size of an initrd blob. During early boot, the setup_machine_fdt()
function calls of_scan_flat_dt() several times with different helper callbacks to parse
device tree data before paging is setup. The of_scan_flat_dt() code scans through the
device tree and uses the helpers to extract information required during early boot.
Typically the early_init_dt_scan_chosen() helper is used to parse the chosen node
including kernel parameters, early_init_dt_scan_root() to initialize the DT address space
model, and early_init_dt_scan_memory() to determine the size and location of usable
RAM.

3. Device population: After the board has been identified, and after the early
configuration data has been parsed, then kernel initialization can proceed in the
normal way. At some point in this process, unflatten_device_tree() is called to convert
the data into a more efficient runtime representation. This is also when machine-
specific setup hooks will get called, like .init_early(), .init_irq() and .init_machine() hooks
on ARM. As can be guessed by the names, .init_early() is used for any machine-specific
setup that needs to be executed early in the boot process, and .init_irq() is used to set
up interrupt handling.

The most interesting hook in the DT context is .init_machine() which is primarily
responsible for populating the Linux device model with data about the platform. The
list of devices can be obtained by parsing the DT, and allocating device structures
dynamically. For the SAMA5D2 processor .init_machine() will call sama5_dt_device_
init(), which in turn calls of_platform_populate() function. See the sama5_dt_device_init()
function in arch/arm/mach-at91/sama5.c:

[81]

Chapter 2 The Linux Device and Driver Model

[81]

static void __init sama5_dt_device_init(void)
{
 struct soc_device *soc;
 struct device *soc_dev = NULL;

 soc = at91_soc_init(sama5_socs);
 if (soc != NULL)
 soc_dev = soc_device_to_device(soc);

 of_platform_default_populate(NULL, NULL, soc_dev);
 sama5_pm_init();
}

int of_platform_default_populate(struct device_node *root,
 const struct of_dev_auxdata *lookup,
 struct device *parent)
{
 return of_platform_populate(root, of_default_bus_match_table, lookup,
 parent);
}
EXPORT_SYMBOL_GPL(of_platform_default_populate);

The of_platform_populate() function located in drivers/of/platform.c walks through the
nodes in the device tree and creates platform devices from it. The second argument to
of_platform_populate() is an of_device_id table, and any node that matches an entry in that
table will also get its child nodes registered.

const struct of_device_id of_default_bus_match_table[] = {
 { .compatible = "simple-bus", },
 { .compatible = "simple-mfd", },
 { .compatible = "isa", },
#ifdef CONFIG_ARM_AMBA
 { .compatible = "arm,amba-bus", },
#endif /* CONFIG_ARM_AMBA */
 {} /* Empty terminated list */
};

"simple-bus" is defined in the ePAPR 1.0 specification as a property meaning a simple
memory mapped bus, so the of_platform_populate() code could be written to just assume
simple-bus compatible nodes will always be traversed. However, we pass it in as an
argument so that board support code can always override the default behaviour.

[83]

3
 The Simplest Drivers
A key concept in the design of the Linux embedded system is the separation of user applications
from the underlying hardware. User space applications are not allowed to access peripheral
registers, storage media or even RAM memory directly. Instead, the hardware is accessed via
kernel drivers, and RAM memory is managed by the memory management unit (MMU), with
applications operating on virtual addresses.

This separation provides robustness. If it is assumed that the Linux kernel is operating correctly
then allowing only the kernel to interact with underlying hardware keeps applications from
accidentally or maliciously misconfiguring hardware peripherals and placing them in unknown
states.

This separation also provides portability. If only the kernel drivers manage the hardware specific
code, only these drivers need to be modified in order to port a system from one hardware platform
to another. Applications access a set of driver APIs that is consistent across hardware platforms,
allowing applications to be moved from one platform to another with little or no modification to
the source code.

Device drivers can be kernel modules or statically built into the kernel image. The default kernel
builds most drivers into the kernel statically, so they are started automatically. A kernel module is
not necessarily a device driver; it is an extension of the kernel. The kernel modules are loaded into
virtual memory of the kernel. Building a device driver as a module makes the development easier
since it can be loaded, tested, and unloaded without rebooting the kernel. The kernel modules are
usually located in /lib/modules/<kernel_version>/ on the root filesystem.

Every Linux kernel module has an init() and an exit() function. The init() function is called once
when the driver is loaded and the exit() function is called when the driver is removed. The init()
function lets the OS know what the driver is capable of and which of its function must be called
when a certain event takes place (for example, register driver to the bus, register a char device..).
The exit() function must free all the resources that were requested by the init() function.

Macros module_init() and module_exit() export the symbols for the init() and exit() functions such that
the kernel code that loads your module can identify these entry points.

The Simplest Drivers Chapter 3

[84]

There are a collection of macros used to identify various attributes of a module. These strings
get packaged into the module and can be accessed by various tools. The most important module
description macro is the MODULE_LICENSE macro. If this macro is not set to some sort of GPL
license tag, then the kernel will become tainted when you load your module. When the kernel
is tainted, it means that it is in a state that is not supported by the community. Most kernel
developers will ignore bug reports involving tainted kernels, and community members may ask
that you correct the tainting condition before they can proceed with diagnosing problems related
to the kernel. In addition, some debugging functionality and API calls may be disabled when the
kernel is tainted.

Licensing
The Linux kernel is licensed under the GNU General Public License version 2. This license gives
you the right to use, study, modify and share the software freely. However, when the software is
redistributed, modified or unmodified, the GPL requires that you redistribute the software under
the same license, with the source code. If modifications are made to the Linux kernel (for example
to adapt it to your hardware), it is a derivative work of the kernel, and therefore must be released
under GPLv2. However, you're only required to do so at the time the device starts to be distributed
to your customers, not to the entire world.

The kernel modules provided in this book are released under the GPL license. For more
information on open source software licenses please see http://opensource.org/licenses.

LAB 3.1: "helloworld" Module
In your first kernel module, you will simply send some info to the console every time you load
and unload the module. The hello_init() and hello_exit() functions include a pr_info() function. This
is much like the printf syntax you use in user applications, except that pr_info() is used to print log
messages in kernel space. If you look into real kernel code, you will always see something like:

printk(KERN_ERR "something went wrong, return code: %d\n",ret);

Where KERN_ERR is one of the eight different log levels defined in include/linux/kern_levels.h and
specifies the severity of the error message. The pr_* macros are simple shorthand definitions
located in include/linux/printk.h for their respective printk call and should be used in newer drivers.

In the Eclipse Configuration for Developing Linux Drivers section in Chapter 1 you created the project
my_modules using the Eclipse IDE. This project will be used to develop all the drivers throughout
this book, although you can use your favorite text editor to write the drivers if you do not want to
work with Eclipse. The helloworld.c and Makefile files were created and saved in the modules labs
directory without writing any code to them. It´s time to write code to these files.

[85]

Chapter 3 The Simplest Drivers

[85]

You will repeat the same steps to create the driver´s source file <module name>.c for the rest of the
labs. The same Makefile will be reused for all the labs by simply adding the new <module name>.o
to the the Makefile variable obj-m.

In the Build Targets Tab, it was added all, deploy and clean buttons to compile, clean and deploy all
the developed lab modules.

See in the next Listing 3-1 the "helloworld" driver source code (helloworld_imx.c) for the i.MX7D
processor.

Note: The source code for the SAMA5D2 (helloworld_sam.c) and BCM2837 (helloworld_rpi.c)
drivers can be downloaded from the GitHub repository of this book.

Listing 3-1: helloworld_imx.c
#include <linux/module.h>

static int __init hello_init(void)
{
 pr_info("Hello world init\n");
 return 0;
}

static void __exit hello_exit(void)
{
 pr_info("Hello world exit\n");
}

module_init(hello_init);
module_exit(hello_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Alberto Liberal <aliberal@arroweurope.com>");
MODULE_DESCRIPTION("This is a print out Hello World module");

See in the next Listing 3-2 the Makefile used to compile this first module. The new developed
kernel module names will be added to this Makefile.

Secure Copy (SCP) will be added to the Makefile to transfer the modules to the target filesystem, as
shown here:

scp *.ko root@10.0.0.10:

The Simplest Drivers Chapter 3

[86]

Listing 3-2: Makefile
obj-m += helloworld.o

KERNEL_DIR ?= $(HOME)/my-linux-imx

all:
 make -C $(KERNEL_DIR) \
 ARCH=arm CROSS_COMPILE=arm-poky-linux-gnueabi- \
 SUBDIRS=$(PWD) modules

clean:
 make -C $(KERNEL_DIR) \
 ARCH=arm CROSS_COMPILE=arm-poky-linux-gnueabi- \
 SUBDIRS=$(PWD) clean

deploy:
 scp *.ko root@10.0.0.10:

helloworld_imx.ko Demonstration
root@imx7dsabresd:~# insmod helloworld_imx.ko /* load module */
root@imx7dsabresd:~# modinfo helloworld_imx.ko /* see MODULE macros defined in your
module */
root@imx7dsabresd:~# cat /proc/sys/kernel/tainted /* should be 4096 = GPL, oot */
root@imx7dsabresd:~# cat /sys/module/helloworld_imx/taint /* should be "O" =
untainted */
root@imx7dsabresd:~# rmmod helloworld_imx.ko /* remove module */

/* Now comment out the MODULE_LICENSE macro in helloworld.c. Build, deploy and load
the module again. Boot!. Work with your tainted module */

root@imx7dsabresd:~# insmod helloworld_imx.ko /* load module */
root@imx7dsabresd:~# cat /proc/sys/kernel/tainted /* should be 4097 = proprietary,
oot */
root@imx7dsabresd:~# cat /proc/modules /* helloworld_imx module should be (PO) */
root@imx7dsabresd:~# find /sys -name "*helloworld*" /* find your module in sysfs */
root@imx7dsabresd:~# ls /sys/module/helloworld_imx /* see what the directory
contains */
root@imx7dsabresd:~# cat /sys/module/helloworld_imx/taint /* should be "PO" =
proprietary, oot */
root@imx7dsabresd:~# rmmod helloworld_imx.ko /* remove module */
root@imx7dsabresd:~# cat /proc/sys/kernel/tainted /* still tainted */

[87]

Chapter 3 The Simplest Drivers

[87]

LAB 3.2: "helloworld with parameters" Module
Many Linux loadable kernel modules (LKMs) have parameters that can be set at load time, boot
time, and sometimes at run-time. In this kernel module you are going to pass a parameter into the
command line that will be set during the module loading. You can also read the parameters via the
sysfs filesystem.

The sysfs is a virtual filesystem provided by the Linux kernel that exports information about
various kernel subsystems, hardware devices, and associated device drivers from the kernel's
device model to user space through virtual files. In addition to providing information about
various devices and kernel subsystems, exported virtual files are also used for their configuration.

The definition of module parameters is done via the macro module_param().

/*
 * the perm argument specifies the permissions
 * of the corresponding file in sysfs.
 */
module_param(name, type, perm);

The main code sections of the driver will now be described:

1. After the #include statements, declare a new integer num variable and use the
module_param() on it:

static int num = 5;

/* S_IRUG0: everyone can read the sysfs entry */
 module_param(num, int, S_IRUG0);

2. Change the pr_info statement in the hello_init() function, as shown below:

pr_info("parameter num = %d.\n", num);

3. Create a new helloword_with_parameters.c file in my_modules project and add
helloworld_with_parameters.o to your Makefile obj-m variable, then build and deploy
the module using Eclipse.

obj-m +=helloworld_imx.o helloworld_imx_with_parameters.o

See in the next Listing 3-3 the "helloworld with parameters" driver source code (helloworld_imx_
with_parameters.c) for the i.MX7D processor.

Note: The source code for the SAMA5D2 (helloworld_sam_with_parameters.c) and BCM2837
(helloworld_rpi_with_parameters.c) drivers can be downloaded from the GitHub repository
of this book.

The Simplest Drivers Chapter 3

[88]

Listing 3-3: helloworld_imx_with_parameters.c
#include <linux/module.h>

static int num = 5;

module_param(num, int, S_IRUGO);

static int __init hello_init(void)
{
 pr_info("parameter num = %d\n", num);
 return 0;
}

static void __exit hello_exit(void)
{
 pr_info("Hello world with parameter exit\n");
}

module_init(hello_init);
module_exit(hello_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Alberto Liberal <aliberal@arroweurope.com>");
MODULE_DESCRIPTION("This is a module that accepts parameters");

helloworld_imx_with_parameters.ko Demonstration
root@imx7dsabresd:~# insmod helloworld_imx_with_parameters.ko /* insert module */
root@imx7dsabresd:~# rmmod helloworld_imx_with_parameters.ko /* remove module */
root@imx7dsabresd:~# insmod helloworld_imx_with_parameters.ko num=10 /* insert the
module again with a parameter value */

/* read parameter value using sysfs filesystem */
root@imx7dsabresd:~# cat /sys/module/helloworld_imx_with_parameters/parameters/num
root@imx7dsabresd:~# rmmod helloworld_imx_with_parameters.ko /* remove module */

LAB 3.3: "helloworld timing" Module
This new kernel module, when unloaded, will display the time (in seconds) that has passed since
the driver was loaded.

You will use the do_gettimeofday() function located in kernel/time/keeping.c to accomplish this task.
When called, it fills a struct timeval structure with seconds and microseconds. The struct timeval
structure is defined as:

[89]

Chapter 3 The Simplest Drivers

[89]

struct timeval {
 __kernel_time_t tv_sec; /* seconds */
 __kernel_suseconds_t tv_usec; /* microseconds */
};

The main code sections of the driver will now be described:

1. Include the header file that defines do_gettimeofday() as a function prototype:

#include <linux/time.h>

2. After the #include statements, declare a struct timeval structure where the time will be
stored when the module is loaded and unloaded:

static struct timeval start_time;

3. When the module is unloaded the time difference is calculated:

pr_info("Unloading module after %ld seconds\n",
 end_time.tv_sec - start_time.tv_sec);

See in the next Listing 3-4 the "helloworld timing" driver source code (helloworld_imx_with_timing.c)
for the i.MX7D processor.

Note: The source code for the SAMA5D2 (helloworld_sam_with_timing.c) and BCM2837
(helloworld_rpi_with_timing.c) drivers can be downloaded from the GitHub repository of
this book.

Listing 3-4: helloworld_imx_with_timing.c
#include <linux/module.h>
#include <linux/time.h>

static int num = 10;
static struct timeval start_time;

module_param(num, int, S_IRUGO);

static void say_hello(void)
{
 int i;
 for (i = 1; i <= num; i++)
 pr_info("[%d/%d] Hello!\n",i,num);
}

static int __init first_init(void)
{

do_gettimeofday(&start_time);

The Simplest Drivers Chapter 3

[90]

 pr_info("Loading first!\n");
 say_hello();
 return 0;
}

static void __exit first_exit(void)
{
 struct timeval end_time;
 do_gettimeofday(&end_time);
 pr_info("Unloading module after %ld seconds\n",
 end_time.tv_sec - start_time.tv_sec);
 say_hello();
}

module_init(first_init);
module_exit(first_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Alberto Liberal <aliberal@arroweurope.com>");
MODULE_DESCRIPTION("This is a module that will print the time \

 since it was loaded");

helloworld_imx_with_timing.ko Demonstration
root@imx7dsabresd:~# insmod helloworld_imx_with_timing.ko /* insert module */
root@imx7dsabresd:~# rmmod helloworld_imx_with_timing.ko /* remove module */
root@imx7dsabresd:~# insmod helloworld_imx_with_timing.ko num=20 /* insert the
module again with a parameter value */

/* read the parameter value using sysfs filesystem */
root@imx7dsabresd:~# cat /sys/module/helloworld_imx_with_timing/parameters/num
root@imx7dsabresd:~# rmmod helloworld_imx_with_timing.ko /* remove module */

[91]

4
Character Drivers

Typically, an operating system is designed to hide the underlying hardware details from the user
or user application. Applications do, however, require the ability to access data that is captured by
hardware peripherals, as well as the ability to drive peripherals with output. Since the peripheral
registers are accessible only by the Linux kernel, only the kernel is able to collect data streams as
they are captured by these peripherals.

Linux requires a mechanism to transfer data from the kernel to user space. This transfer of data
is handled via device nodes, which are also known as virtual files. Device nodes exist within the
root filesystem, though they are not true files. When a user reads from a device node, the kernel
copies the data stream captured by the underlying driver into the application memory space.
When a user writes to a device node, the kernel copies the data stream provided by the application
into the data buffers of the driver, which are eventually output via the underlying hardware. These
virtual files can be "opened" and "read from" or "written to" by the user application using standard
system calls.

Each device has a unique driver that handles requests from user applications that are eventually
passed to the core. Linux supports three types of devices: character devices, block devices and
network devices. While the concept is the same, the difference in the drivers for each of these
devices is the manner in which the files are "opened" and "read from" or "written to". Character
devices are the most common devices, which are read and written directly without buffering,
for example, keyboards, monitors, printers, serial ports, etc. Block devices can only be written to
and read from in multiples of the block size, typically 512 or 1024 bytes. They may be randomly
accessed i.e., any block can be read or written no matter where it is on the device. A classic
example of a block device is a hard disk drive. Network devices are accessed via the BSD socket
interface and the networking subsystems.

Character devices are identified by a c in the first column of a listing, and block devices are
identified by a b. The access permissions, owner, and group of the device is provided for each
device.

Character Drivers Chapter 4

[92]

From the point of view of an application, a character device is essentially a file. A process only
knows a /dev file path. The process opens the file using the open() system call and performs
standard file operations like read() and write().

In order to achieve this, a character driver must implement the operations described in the struct
file_operations structure defined in include/linux/fs.h and register them. In the struct file_operations
below only some of the most common operations for a character driver are shown:

struct file_operations {
 struct module *owner;
 loff_t (*llseek) (struct file *, loff_t, int);

ssize_t (*read) (struct file *, char __user *, size_t, loff_t *);
ssize_t (*write) (struct file *, const char __user *, size_t, loff_t *);
long (*unlocked_ioctl) (struct file *, unsigned int, unsigned long);
int (*mmap) (struct file *, struct vm_area_struct *);
int (*open) (struct inode *, struct file *);
int (*release) (struct inode *, struct file *);

};

The Linux filesystem layer will ensure that the driver's operations are called when an user space
application makes the corresponding system call (On the kernel side the driver implements and
registers callback operations).

[93]

Chapter 4 Character Drivers

[93]

The kernel driver will use the specific functions copy_from_user() and copy_to_user() to exchange
data with user space, as shown in the previous figure.

Both the read() and write() methods return a negative value if an error occurs. A return value
greater than or equal to 0, instead, tells the calling program how many bytes have been
successfully transferred. If some data is transferred correctly and then an error happens, the return
value must be the count of bytes successfully transferred, and the error does not get reported until
the next time the function is called. Implementing this convention requires, of course, that your
driver remember that the error has occurred so that it can return the error status in the future.

The return value for read() is interpreted by the calling application program:

1. If the value equals the count argument passed to the read system call, the requested
number of bytes has been transferred. This is the optimal case.

2. If the value is positive, but smaller than the count, then only part of the data has been
transferred. This may happen for a number of reasons, depending on the device. Most
often, the application program retries the read. For instance, if you read using the fread()
function, the library function reissues the system call until completion of the requested
data transfer. If the value is 0, end-of-file was reached (and no data was read).

3. A negative value means there was an error. The value specifies what the error was,
according to <linux/errno.h>. Typical values returned on error include -EINTR (interrupted
system call) or -EFAULT (bad address).

In Linux, every device is identified by two numbers: a major number and a minor number. These
numbers can be seen by invoking ls -l /dev. Every device driver registers its major number with the
kernel and is completely responsible for managing its minor numbers. When accessing a device
file, the major number selects which device driver is being called to perform the input/output
operation. The major number is used by the kernel to identify the correct device driver when the
device is accessed. The role of the minor number is device dependent, and is handled internally
within the driver. For instance, the i.MX7D has several hardware UART ports. The same driver
can be used to control all the UARTS, but each physical UART needs its own device node, so the
device nodes for these UARTS will all have the same major number, but will have unique minor
numbers.

LAB 4.1: "helloworld character" Module
Linux systems in general traditionally used a static device creation method, whereby a great
number of device nodes were created under /dev (sometimes literally thousands of nodes),
regardless of whether or not the corresponding hardware devices actually existed. This was
typically done via a MAKEDEV script, which contains a number of calls to the mknod program

Character Drivers Chapter 4

[94]

with the relevant major and minor device numbers for every possible device that might exist in the
world.

This is not the right approach to create device nodes nowadays, as you have to create a block or
character device file entry manually and associate it with the device, as shown in the i.MX7D target
terminal command line below:

root@imx7dsabresd:~# mknod /dev/mydev c 202 108

Despite all this, you will develop your next driver using this static method purely for educational
purposes, and you will see in the few next drivers a better way to create the device nodes using
devtmpfs and the miscellaneous framework.

In this kernel module lab, you will interact with user space through an ioctl_test user application. You
will use open() and ioctl() system calls in your application, and write its corresponding driver´s callback
operations on the kernel side, providing the communication between the user and kernel space.

In the first lab, you saw what a basic helloworld driver looks like. This driver didn’t do much except
printing some text during installation and removal. In the next lab, you will expand this driver to create
a device with a major and minor number. You will also create an user application to interact with the
driver. Finally, you will handle file operations in the driver to service requests from user space.

In the kernel, a character-type device is represented by struct cdev, a structure used to register it in the
system

Registration and Unregistration of Character Devices
The registration/unregistration of a character device is made by specifying the major and minor.
The dev_t type is used to keep the identifiers of a device (both major and minor) and can be
obtained using the MKDEV macro.

For the static assignment and unallocation of device identifiers, the register_chrdev_region() and
unregister_chrdev_region() functions are used. The first device identifier is obtained using the
MKDEV macro.

int register_chrdev_region(dev_t first, unsigned int count, char *name);
void unregister_chrdev_region(dev_t first, unsigned int count);

It is recommended that device identifiers be dynamically assigned using the alloc_chrdev_region()
function. This function allocates a range of char device numbers. The major number will be chosen
dynamically, and returned (along with the first minor number) in dev. This function returns zero
or a negative error code.

int alloc_chrdev_region(dev_t* dev, unsigned baseminor,
 unsigned count, const char* name);

[95]

Chapter 4 Character Drivers

[95]

See below the description of the function arguments:

•	 dev: output parameter for first assigned number
•	 baseminor: first of the requested range of minor numbers
•	 count: the number of minor numbers required
•	 name: the name of the associated device or driver

In the line of code below, the second function parameter reserves my_minor_count devices, starting
with my_major major and my_first_minor minor. The first parameter of the register_chrdev_region()
function is the first identifier of the device. The successive identifiers can be retrieved using the
MKDEV macro.

register_chrdev_region(MKDEV(my_major, my_first_minor), my_minor_count,
 "my_device_driver");

After assigning the identifiers, the character device will have to be initialized using the cdev_init()
function and registered to the kernel using the cdev_add() function. The cdev_init() and cdev_add()
functions will be called as many times as assigned device identifiers.

The following sequence registers and initializes MY_MAX_MINORS devices:

#include <linux/fs.h>
#include <linux/cdev.h>

#define MY_MAJOR 42
#define MY_MAX_MINORS 5

struct my_device_data {
 struct cdev cdev;
 /* my data starts here */

 [...]

};

struct my_device_data devs[MY_MAX_MINORS];

const struct file_operations my_fops = {
 .owner = THIS_MODULE,
 .open = my_open,
 .read = my_read,
 .write = my_write,
 .release = my_release,
 .unlocked_ioctl = my_ioctl
};

Character Drivers Chapter 4

[96]

int init_module(void)
{
 int i, err;

 register_chrdev_region(MKDEV(MY_MAJOR, 0), MY_MAX_MINORS,
 "my_device_driver");

for(i = 0; i < MY_MAX_MINORS; i++) {
 /* initialize devs[i] fields and register character devices */
 cdev_init(&devs[i].cdev, &my_fops);
 cdev_add(&devs[i].cdev, MKDEV(MY_MAJOR, i), 1);
 }

 return 0;
}

The following sequence deletes and unregisters the character devices:

void cleanup_module(void)
{
 int i;

 for(i = 0; i < MY_MAX_MINORS; i++) {
 /* release devs[i] fields */
 cdev_del(&devs[i].cdev);
 }
 unregister_chrdev_region(MKDEV(MY_MAJOR, 0), MY_MAX_MINORS);
}

The main code sections of the new driver will now be described:

1. Include the header files required to support character devices:

#include <linux/cdev.h>
#include <linux/fs.h>

2. Define the major number:

#define MY_MAJOR_NUM 202

3. One of the first things your driver will need to do when setting up a char device is to
obtain one or more device identifiers (major and minor numbers) to work with. The
necessary function for this task is register_chrdev_region(), which is declared in include/
linux/fs.h. Add the following lines of code to the hello_init() function to allocate the device
numbers when the module is loaded. The MKDEV macro will combine a major number
and a minor number to a dev_t data type that is used to hold the first device identifier.

[97]

Chapter 4 Character Drivers

[97]

dev_t dev = MKDEV(MY_MAJOR_NUM, 0); /* get first device identifier */
/*
 * Allocates all the character device identifiers,
 * only one in this case, the one obtained with the MKDEV macro
 */
register_chrdev_region(dev, 1, "my_char_device");

4. Add the following line of code to the hello_exit() function to return the device numbers
when the module is removed:

unregister_chrdev_region(MKDEV(MY_MAJOR_NUM, 0), 1);

5. Create a struct file_operations named my_dev_fops. This structure defines function pointers
for "opening" the device, "reading from" and "writing to" the device, etc.

static const struct file_operations my_dev_fops = {
 .owner = THIS_MODULE,
 .open = my_dev_open,
 .release = my_dev_close,
 .unlocked_ioctl = my_dev_ioctl,
};

6. Implement each of the callback functions that are defined in the struct file_operations
structure:

static int my_dev_open(struct inode *inode, struct file *file)
{
 pr_info("my_dev_open() is called.\n");
 return 0;
}

static int my_dev_close(struct inode *inode, struct file *file)
{
 pr_info("my_dev_close() is called.\n");
 return 0;
}

static long my_dev_ioctl(struct file *file, unsigned int cmd,
 unsigned long arg)

{
 pr_info("my_dev_ioctl() is called. cmd = %d, arg = %ld\n", cmd, arg);
 return 0;
}

7. Add these file operation functionalities to your character device. The kernel uses a
structure called struct cdev to represent character devices internally. Therefore, you create
a struct cdev variable named my_dev and initialize it using the cdev_init() function call
,which takes the my_dev variable and the struct file_operations structure named my_dev_fops

Character Drivers Chapter 4

[98]

as parameters. Once the struct cdev structure is set up, you tell the kernel about it using
the cdev_add() function call. You will call these two functions as many times as allocated
character device identifiers (only once in this driver).

static struct cdev my_dev;
cdev_init(&my_dev, &my_dev_fops);
ret= cdev_add(&my_dev, dev, 1);

8. Add the line of code below to the hello_exit() function to delete the struct cdev structure.

cdev_del(&my_dev);

9. Once the kernel module has been dynamically loaded, the user needs to create a device
node to reference the driver. Linux provides the mknod utility for this purpose. The mknod
command has four parameters. The first parameter is the name of the device node that will
be created. The second parameter indicates whether the driver to which the device node
interfaces is a block driver or character driver. The final two parameters to mknod are the
major and minor numbers. Assigned major numbers are listed in the /proc/devices file and
can be viewed using the cat command. The created device node should be placed in the
/dev directory.

root@imx7dsabresd:~# insmod helloworld_imx_char_driver.ko
root@imx7dsabresd:~# cat /proc/devices /* registered 202 "my_char_device" */
root@imx7dsabresd:~# mknod /dev/mydev c 202 0

See in the next Listing 4-1 the "helloworld character" driver source code (helloworld_imx_char_
driver.c) for the i.MX7D processor.

Note: The source code for the SAMA5D2 (helloworld_sam_char_driver.c) and BCM2837 (helloworld_
rpi_char_driver.c) drivers can be downloaded from the GitHub repository of this book.

Listing 4-1: helloworld_imx_char_driver.c
#include <linux/module.h>

/* add header files to support character devices */
#include <linux/cdev.h>
#include <linux/fs.h>

/* define mayor number */
#define MY_MAJOR_NUM 202

static struct cdev my_dev;

static int my_dev_open(struct inode *inode, struct file *file)
{

[99]

Chapter 4 Character Drivers

[99]

 pr_info("my_dev_open() is called.\n");
 return 0;
}

static int my_dev_close(struct inode *inode, struct file *file)
{
 pr_info("my_dev_close() is called.\n");
 return 0;
}

static long my_dev_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
 pr_info("my_dev_ioctl() is called. cmd = %d, arg = %ld\n", cmd, arg);
 return 0;
}

/* declare a file_operations structure */
static const struct file_operations my_dev_fops = {
 .owner = THIS_MODULE,
 .open = my_dev_open,
 .release = my_dev_close,
 .unlocked_ioctl = my_dev_ioctl,
};

static int __init hello_init(void)
{
 int ret;

 /* Get first device identifier */
 dev_t dev = MKDEV(MY_MAJOR_NUM, 0);
 pr_info("Hello world init\n");

 /* Allocate device numbers */
 ret = register_chrdev_region(dev, 1, "my_char_device");
 if (ret < 0){
 pr_info("Unable to allocate mayor number %d\n", MY_MAJOR_NUM);
 return ret;
 }

 /* Initialize the cdev structure and add it to kernel space */
 cdev_init(&my_dev, &my_dev_fops);
 ret= cdev_add(&my_dev, dev, 1);
 if (ret < 0){
 unregister_chrdev_region(dev, 1);
 pr_info("Unable to add cdev\n");
 return ret;
 }

Character Drivers Chapter 4

[100]

 return 0;
}

static void __exit hello_exit(void)
{
 pr_info("Hello world exit\n");
 cdev_del(&my_dev);
 unregister_chrdev_region(MKDEV(MY_MAJOR_NUM, 0), 1);
}

module_init(hello_init);
module_exit(hello_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Alberto Liberal <aliberal@arroweurope.com>");
MODULE_DESCRIPTION("This is a module that interacts with the ioctl system call");

Now write your application using the Eclipse IDE:

1. The first thing you need to do is create an apps subdirectory under your module´s source
directory:

~$ mkdir /home/<user_name>/linux_4.9_<cpu>_drivers/apps

[101]

Chapter 4 Character Drivers

[101]

2. Create with Eclipse a new Makefile project with project name my_apps:

3. In the Build Targets Tab of my_apps project add all, deploy and clean buttons:

my_apps->new->all
my_apps->new->deploy
my_apps->new->clean

4. In my_apps project create new files and store them in the apps directory located in
 /home/<user_name>/Linux_4.9_<cpu>_drivers/apps/:

New->File->ioctl_test.c
New->File-> Makefile

You will use the same Makefile for all the applications developed throughout this book, just change
the name of the application in the Makefile for every new application you want to build and deploy
to the target processor.

Character Drivers Chapter 4

[102]

Listing 4-2: Makefile
all: ioctl_test

app : ioctl_test.c
 $(CC) -o $@ $^
clean :
 rm ioctl_test
deploy : ioctl_test
 scp $^ root@10.0.0.10:

Listing 4-3: ioctl_test.c
#include <stdio.h>
#include <sys/ioctl.h>
#include <fcntl.h>
#include <unistd.h>

int main(void)
{
 /* First you need run "mknod /dev/mydev c 202 0" to create /dev/mydev */

 int my_dev = open("/dev/mydev", 0);

 if (my_dev < 0) {
 perror("Fail to open device file: /dev/mydev.");
 } else {
 ioctl(my_dev, 100, 110); /* cmd = 100, arg = 110. */
 close(my_dev);
 }

 return 0;
}

helloworld_imx_char_driver.ko Demonstration
root@imx7dsabresd:~# insmod helloworld_imx_char_driver.ko /* load module */
root@imx7dsabresd:~# cat /proc/devices /* see allocated 202 "my_char_device" */
root@imx7dsabresd:~# ls –l /dev /* mydev is not created under /dev yet */
root@imx7dsabresd:~# mknod /dev/mydev c 202 0 /* create mydev under /dev */
root@imx7dsabresd:~# ls -l /dev /* verify mydev is now created under /dev */
root@imx7dsabresd:~# ./ioctl_test /* run ioctl_test application */
root@imx7dsabresd:~# rmmod helloworld_imx_char_driver.ko /* remove module */

[103]

Chapter 4 Character Drivers

[103]

Add the Module to the Kernel Build
So far you have been building your driver as a loadable kernel module (LKM), which was loaded
during run-time. Now, make the driver a part of the kernel source tree and have the driver built
into the kernel binary image. This way the driver is already loaded when the new kernel is booted.

In the kernel root directory, you will find the drivers/char/ folder where all the character drivers
reside. First, copy your character driver to this folder:

~$ cp ~/linux_4.9_imx7_drivers/helloworld_imx_char_driver.c ~/my-linux-imx/drivers/
char/

Open the Kconfig file located in the ~/my-linux-imx/drivers/char/ folder using a text editor:

~$ gedit ~/my-linux-imx/drivers/char/Kconfig

Add the lines below at the end of the file, above endmenu:

config HELLOWORLD
tristate "My simple helloworld driver"
default n
help

 The simplest driver.

Open the Makefile file:

~$ sudo gedit ~/my-linux-imx/drivers/char/Makefile

Add the following lines in the end of the Makefile:

obj-$(CONFIG_HELLOWORLD) += helloworld_imx_char_driver.o

Now that you have modified the Kconfig and Makefile to include the hello_imx_char_driver as a part
of the kernel instead of a loadable module, go ahead and build the new kernel image.

Open the menuconfig window. Navigate from the main menu -> Device Drivers -> Character
devices-> My simple helloworld driver. Hit <spacebar> once to see a <*> appear next to the
new configuration. Hit <Exit> until you exit the menuconfig GUI and remember to save the new
configuration.

~/my-linux-imx$ make menuconfig ARCH=arm

Opening the .config file in the kernel root directory will show that the CONFIG_HELLOWORLD
symbol has been added to it.

Compile the new image and copy it to the tftp folder:

~/my-linux-imx$ source /opt/fsl-imx-x11/4.9.11-1.0.0/environment-setup-cortexa7hf
-neon-poky-linux-gnueabi
~/my-linux-imx$ make zImage

Character Drivers Chapter 4

[104]

~/my-linux-imx$ cp /arch/arm/boot/zImage /var/lib/tftpboot/

Boot your i.MX7D target processor:

root@imx7dsabresd:~# cat /proc/devices /* registered 202 "my_char_device" */
root@imx7dsabresd:~# mknod /dev/mydev c 202 0 /* assign minor number */
root@imx7dsabresd:~# ./ioctl_test /* run ioctl_test application */

Creating Device Files with devtmpfs
Before Linux 2.6.32, on basic Linux systems, the device files had to be created manually using the mknod
command. The coherency between device files and devices handled by the kernel was left to the system
developer. With the release of the 2.6 series of stable kernel, a new virtual filesystem called sysfs came about.
The job of sysfs is to export a view of the system's hardware configuration to the user space processes.

You may wonder how sysfs knows about the devices present on a system and what device numbers should
be used for them. Drivers that have been compiled into the kernel directly register their objects with a sysfs
as they are detected by the kernel. For drivers compiled as modules, this registration will happen when the
module is loaded. Once the sysfs filesystem is mounted on /sys, data which the drivers register with sysfs is
available to the user space processes and to udevd for processing (including modifications to device nodes).
The kernel uses sysfs to export device nodes to user space to be used by udev.

Device files are created by the kernel via the devtmpfs filesystem. Any driver that wishes to register a device
node will go through the devtmpfs (via the core driver) to do it. When a devtmpfs instance is mounted on
/dev, the device node will initially be created with a fixed name, permissions, and owner. All device nodes
are owned by root and have the default mode of 0600.

Shortly afterward, the kernel will send an uevent to udevd. Based on the rules specified in the files within the
/etc/udev/rules.d/, /lib/udev/rules.d/, and /run/udev/rules.d/ directories, udevd will create additional symlinks
to the device node, or change its permissions, owner, or group, or modify the internal udevd database entry
(name) for that object. The rules in these three directories are numbered and all three directories are merged
together. If udevd can't find a rule for the device it is creating, it will leave the permissions and ownership at
whatever devtmpfs used initially.

The CONFIG_DEVTMPFS_MOUNT kernel configuration option makes the kernel mount devtmpfs
automatically at boot time, except when booting on an initramfs.

Use a terminal where the environment-setup-cortexa7hf -neon-poky-linux-gnueabi script was not
sourced and open the menuconfig window. Navigate from the main menu -> Device Drivers ->
Generic Driver Options -> Maintain a devtmpfs filesystem to mount at /dev. Hit <spacebar> once
to see a <*> appear next to the new configuration. Hit <Exit> until you exit the menuconfig GUI
and remember to save the new configuration.

Compile the new image and copy it to the tftp folder:

[105]

Chapter 4 Character Drivers

[105]

~/my-linux-imx$ source /opt/fsl-imx-x11/4.9.11-1.0.0/environment-setup-cortexa7hf
-neon-poky-linux-gnueabi
~/my-linux-imx$ make zImage
~/my-linux-imx$ cp /arch/arm/boot/zImage /var/lib/tftpboot/

Boot now your i.MX7D target processor.

LAB 4.2: "class character" Module
In this kernel module lab, you will use your previous helloworld_imx_char_driver at the starting
point, but this time the device node will be created using devtmpfs instead of doing it manually.

In your current driver, you will add an entry in the /sys/class/ directory. The /sys/class/ directory
offers a view of the device drivers grouped by classes.

When the register_chrdev_region() function tells the kernel that there is a driver with a specific major
number, it doesn't specify anything about the type of driver, so it will not create an entry under
/sys/class/. This entry is necessary so that devtmpfs can create a device node under /dev. Drivers
will have a class name and a device name under /sys for each created device.

The driver creates/destroys the class using the next kernel APIs:

class_create() /* creates a class for your devices visible in /sys/class/ */
class_destroy() /* removes the class */

The driver creates the device nodes using the following kernel APIs:

device_create() /* creates a device node in the /dev directory */
device_destroy() /* removes a device node in the /dev directory */

The main points that differ from your previous helloworld_imx_char_driver driver will now be
described:

1. Include the next header file to create the class and device files:

#include <linux/device.h> /* class_create(), device_create() */

2. Your driver will have a class name and a device name; hello_class is used as the class name,
and mydev as the device name. This results in the creation of a device that appears on the
file system at /sys/class/hello_class/mydev. Add the following definitions for the device and
the class names:

#define DEVICE_NAME "mydev"
#define CLASS_NAME "hello_class"

3. The hello_init() function is longer than the one written in the helloworld_imx_char_driver
driver. That is because it now automatically allocates a major number to the device using

Character Drivers Chapter 4

[106]

the function alloc_chrdev_region(), as well as registering the device class, and creating the
device node.

static int __init hello_init(void)
{
 dev_t dev_no;
 int Major;
 struct device* helloDevice;

 /* Allocate dynamically device numbers, only one in this driver */
 ret = alloc_chrdev_region(&dev_no, 0, 1, DEVICE_NAME);

 /*
* Get the device identifiers using MKDEV. We are doing it for

 * for teaching purposes as we only use one identifier in this
 * driver and dev_no could be used as parameter for cdev_add()
 * and device_create() without needing to use the MKDEV macro
 */

 /* Get the mayor number from the first device identifier */
 Major = MAJOR(dev_no);

 /* Get the first device identifier, that matchs with dev_no */
 dev = MKDEV(Major,0);

 /* Initialize the cdev structure and add it to kernel space */
 cdev_init(&my_dev, &my_dev_fops);
 ret = cdev_add(&my_dev, dev, 1);

 /* Register the device class */
 helloClass = class_create(THIS_MODULE, CLASS_NAME);

 /* Create a device node named DEVICE_NAME associated a dev */
 helloDevice = device_create(helloClass, NULL, dev, NULL, DEVICE_NAME);

 return 0;
}

See in the next Listing 4-4 the "class character" driver source code (helloworld_imx_class_driver.c) for
the i.MX7D processor.

Note: The source code for the SAMA5D2 (helloworld_sam_class_driver.c) and BCM2837
(helloworld_rpi_class_driver.c) drivers can be downloaded from the GitHub repository of this
book.

[107]

Chapter 4 Character Drivers

[107]

Listing 4-4: helloworld_imx_class_driver.c
#include <linux/module.h>
#include <linux/fs.h>
#include <linux/device.h>
#include <linux/cdev.h>

#define DEVICE_NAME "mydev"
#define CLASS_NAME "hello_class"

static struct class* helloClass;
static struct cdev my_dev;
dev_t dev;

static int my_dev_open(struct inode *inode, struct file *file)
{
 pr_info("my_dev_open() is called.\n");
 return 0;
}

static int my_dev_close(struct inode *inode, struct file *file)
{
 pr_info("my_dev_close() is called.\n");
 return 0;
}

static long my_dev_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
 pr_info("my_dev_ioctl() is called. cmd = %d, arg = %ld\n", cmd, arg);
 return 0;
}

/* declare a file_operations structure */
static const struct file_operations my_dev_fops = {
 .owner = THIS_MODULE,
 .open = my_dev_open,
 .release = my_dev_close,
 .unlocked_ioctl = my_dev_ioctl,
};

static int __init hello_init(void)
{
 int ret;
 dev_t dev_no;
 int Major;
 struct device* helloDevice;

Character Drivers Chapter 4

[108]

 pr_info("Hello world init\n");

 /* Allocate dynamically device numbers */
 ret = alloc_chrdev_region(&dev_no, 0, 1, DEVICE_NAME);
 if (ret < 0){
 pr_info("Unable to allocate Mayor number \n");
 return ret;
 }

 /* Get the device identifiers */
 Major = MAJOR(dev_no);
 dev = MKDEV(Major,0);

 pr_info("Allocated correctly with major number %d\n", Major);

 /* Initialize the cdev structure and add it to kernel space */
 cdev_init(&my_dev, &my_dev_fops);
 ret = cdev_add(&my_dev, dev, 1);
 if (ret < 0){
 unregister_chrdev_region(dev, 1);
 pr_info("Unable to add cdev\n");
 return ret;
 }

 /* Register the device class */
 helloClass = class_create(THIS_MODULE, CLASS_NAME);
 if (IS_ERR(helloClass)){
 unregister_chrdev_region(dev, 1);
 cdev_del(&my_dev);

 pr_info("Failed to register device class\n");
 return PTR_ERR(helloClass);

 }
 pr_info("device class registered correctly\n");

 /* Create a device node named DEVICE_NAME associated to dev */
 helloDevice = device_create(helloClass, NULL, dev, NULL, DEVICE_NAME);
 if (IS_ERR(helloDevice)){

 class_destroy(helloClass);
 cdev_del(&my_dev);
 unregister_chrdev_region(dev, 1);
 pr_info("Failed to create the device\n");
 return PTR_ERR(helloDevice);

 }
 pr_info("The device is created correctly\n");

 return 0;
}

[109]

Chapter 4 Character Drivers

[109]

static void __exit hello_exit(void)
{
 device_destroy(helloClass, dev); /* remove the device */
 class_destroy(helloClass); /* remove the device class */
 cdev_del(&my_dev);
 unregister_chrdev_region(dev, 1); /* unregister the device numbers */
 pr_info("Hello world with parameter exit\n");
}

module_init(hello_init);
module_exit(hello_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Alberto Liberal <aliberal@arroweurope.com>");
MODULE_DESCRIPTION("This is a module that interacts with the ioctl system call");

helloworld_imx_class_driver.ko Demonstration
root@imx7dsabresd:~# insmod helloworld_imx_class_driver.ko /* load module */
root@imx7dsabresd:~# ls /sys/class /* check that hello_class is created */
root@imx7dsabresd:~# ls /sys/class/hello_class /* check that mydev is created */
root@imx7dsabresd:~# ls /sys/class/hello_class/mydev /* check entries under mydev */
root@imx7dsabresd:~# cat /sys/class/hello_class/mydev/dev /* see the assigned mayor
and minor numbers */
root@imx7dsabresd:~# ls –l /dev /* verify that mydev is created under /dev */
root@imx7dsabresd:~# ./ioctl_test /* run ioctl_test application */
root@imx7dsabresd:~# rmmod helloworld_imx_class_driver.ko /* remove module */

Miscellaneous Character Driver
The Misc Framework is an interface exported by the Linux kernel that allows modules to register
their individual minor numbers.

The device driver implemented as a miscellaneous character uses the major number allocated
by the Linux kernel for miscellaneous devices. This eliminates the need to define an unique
major number for the driver; this is important, as a conflict between major numbers has become
increasingly likely, and use of the misc device class is an effective tactic. Each probed device
is dynamically assigned a minor number, and is listed with a directory entry within the sysfs
pseudo-filesystem under /sys/class/misc/.

Major number 10 is officially assigned to the misc driver. Modules can register individual minor
numbers with the misc driver and take care of a small device, needing only a single entry point.

Character Drivers Chapter 4

[110]

Registering a Minor Number
A misc device is defined by a struct miscdevice structure in include/linux/miscdevice.h:

struct miscdevice {
int minor;
const char *name;
const struct file_operations *fops;
struct list_head list;
struct device *parent;
struct device *this_device;
const char *nodename;
umode_t mode;

};

Where:

•	 minor is the minor number being registered
•	 name is the name for this device, found in the /proc/misc file
•	 fops is a pointer to the struct file_operations structure
•	 parent is a pointer to a struct device structure that represents the hardware device exposed

by this driver

The misc driver exports two functions, misc_register() and misc_deregister(), to register and
unregister their own minor number. These functions are defined as function prototypes in include/
linux/miscdevice.h and defined as a function in drivers/char/misc.c:

int misc_register(struct miscdevice *misc);
int misc_deregister(struct miscdevice *misc);

The misc_register() function registers a miscellaneous device with the kernel. If the minor number is
set to MISC_DYNAMIC_MINOR a minor number is dinamically assigned and placed in the minor
field of the struct miscdevice structure. For other cases, the minor number requested is used.

The structure passed is linked into the kernel and may not be destroyed until it has been
unregistered. By default, an open() syscall to the device sets the file->private_data to point to the
structure. Drivers don't need open in fops for this. A zero is returned on success and a negative
errno code for failure.

The typical code sequence for assigning a dynamic minor number is as follows:

static struct miscdevice my_dev;

int init_module(void)
{
 my_dev.minor = MISC_DYNAMIC_MINOR;
 my_dev.name = "my_device";
 my_dev.fops = &my_fops;

[111]

Chapter 4 Character Drivers

[111]

 misc_register(&my_dev);
 pr_info("my: got minor %i\n", my_dev.minor);
 return 0;
}

LAB 4.3: "miscellaneous character" Module
In this lab, you will use your previous helloworld_imx_char_driver driver at the starting point. You
will achieve the same result through the misc framework, but will write fewer lines of code!!

The main code sections of the driver will now be described:

1. Add the header file that defines the struct miscdevice structure:

#include <linux/miscdevice.h>

2. Initialize the struct miscdevice structure:

static struct miscdevice helloworld_miscdevice = {
 .minor = MISC_DYNAMIC_MINOR,
 .name = "mydev",
 .fops = &my_dev_fops,
}

3. Register and unregister the device with the kernel:

misc_register(&helloworld_miscdevice);
misc_deregister(&helloworld_miscdevice);

See in the next Listing 4-5 the "miscellaneous character" driver source code (misc_imx_driver.c) for
the i.MX7D processor.

Note: The source code for the SAMA5D2 (misc_sam_driver.c) and BCM2837 (misc_rpi_driver.c)
drivers can be downloaded from the GitHub repository of this book.

Listing 4-5: misc_imx_driver.c
#include <linux/module.h>
#include <linux/fs.h>
#include <linux/miscdevice.h>

static int my_dev_open(struct inode *inode, struct file *file)
{
 pr_info("my_dev_open() is called.\n");
 return 0;
}

static int my_dev_close(struct inode *inode, struct file *file)

Character Drivers Chapter 4

[112]

{
 pr_info("my_dev_close() is called.\n");
 return 0;
}

static long my_dev_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
 pr_info("my_dev_ioctl() is called. cmd = %d, arg = %ld\n", cmd, arg);
 return 0;
}

static const struct file_operations my_dev_fops = {
 .owner = THIS_MODULE,
 .open = my_dev_open,
 .release = my_dev_close,
 .unlocked_ioctl = my_dev_ioctl,
};

/* declare & initialize struct miscdevice */
static struct miscdevice helloworld_miscdevice = {
 .minor = MISC_DYNAMIC_MINOR,
 .name = "mydev",
 .fops = &my_dev_fops,
};

static int __init hello_init(void)
{
 int ret_val;
 pr_info("Hello world init\n");

 /* Register the device with the kernel */
 ret_val = misc_register(&helloworld_miscdevice);

 if (ret_val != 0) {
 pr_err("could not register the misc device mydev");
 return ret_val;
 }

 pr_info("mydev: got minor %i\n",helloworld_miscdevice.minor);
 return 0;
}

static void __exit hello_exit(void)
{
 pr_info("Hello world exit\n");

 /* unregister the device with the Kernel */
 misc_deregister(&helloworld_miscdevice);

[113]

Chapter 4 Character Drivers

[113]

}

module_init(hello_init);
module_exit(hello_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Alberto Liberal <aliberal@arroweurope.com>");
MODULE_DESCRIPTION("This is the helloworld_char_driver using misc framework");

misc_imx_driver.ko Demonstration
root@imx7dsabresd:~# insmod misc_imx_driver.ko /* load the module */
root@imx7dsabresd:~# ls /sys/class/misc /* check that mydev is created under the
misc class folder */
root@imx7dsabresd:~# ls /sys/class/misc/mydev /* check entries under mydev */
root@imx7dsabresd:~# cat /sys/class/misc/mydev/dev /* see the assigned mayor and
minor numbers.The mayor number 10 is assigned by the misc framework */
root@imx7dsabresd:~# ls -l /dev /* verify that mydev is created under /dev */
root@imx7dsabresd:~# ./ioctl_test /* run ioctl_test application */
root@imx7dsabresd:~# rmmod misc_imx_driver.ko /* remove the module */

[115]

5
Platform Drivers

So far you have been building your driver as a loadable driver module, which was loaded during
run time. The character driver is complete and has been tested thoroughly with an user space
application. In your next assignment, you will convert the character driver to a platform driver.
On embedded systems, devices are often not connected through a bus, allowing enumeration or
hotplugging for these devices.

However, you still want all of these devices to be part of the device model. Such devices, instead of
being dynamically detected, must be statically described:

1. By direct instantiation of struct platform_device structures, as done on a few old ARM
non-Device Tree based platforms. Definition is done in the board-specific or SoC specific
code.

2. In the Device Tree, a hardware description file used on some architectures. The device
drivers match with the physical devices described in the .dts file. After this matching the
driver´s probe() function is called. An .of_match_table has to be included in the driver´s
code to allow this matching.

Amongst the non-discoverable devices, a huge family is directly part of a system-on-chip: UART
controllers, Ethernet controllers, SPI controllers, graphic or audio devices, etc. In the Linux
kernel, a special bus, called the platform bus has been created to handle such devices. It supports
platform drivers that handle platform devices. It works like any other bus (USB, PCI), except that
devices are enumerated statically instead of being discovered dynamically.

Each platform driver is responsible for instantiating and registering an instance of a struct
platform_driver structure within the device model core. Platform drivers follow the standard
driver model convention, where discovery/enumeration is handled outside the drivers, and
drivers provide probe() and remove() methods. They support power management and shutdown
notifications using the standard conventions. The most important members of the struct
platform_driver are shown below:

struct platform_driver {
int (*probe)(struct platform_device *);
int (*remove)(struct platform_device *);
void (*shutdown)(struct platform_device *);

Platform Drivers Chapter 5

[116]

int (*suspend)(struct platform_device *, pm_message_t state);
int (*suspend_late)(struct platform_device *, pm_message_t state);
int (*resume_early)(struct platform_device *);
int (*resume)(struct platform_device *);
struct device_driver driver;

};

In the struct platform_driver you can see a function pointer variable that points to a function named
probe(). The probe() function is called when the "bus driver" pairs the "device" to the "device
driver". The probe() function is responsible of initializing the device and registering it in the
appropriate kernel framework:

1. The probe() function gets a pointer to a device structure as an argument (for example, struct
pci_dev *, struct usb_dev *, struct platform_device *, struct i2c_client *).

2. It initializes the device, maps I/O memory, allocates buffers, registers interrupt handlers,
timers, and so on…

3. It registers the device to specific framework(s), (for example, network, misc, serial, input,
industrial).

The suspend()/resume() functions are used by devices that support low power management
features.

The platform driver responsible for the platform device should be registered to the platform core
using the platform_driver_register(struct platform_driver *drv) function. Register your platform driver
in your module init() function, and unregister your platform driver in the module exit() function, as
shown in the following example:

static int hello_init(void)
{

pr_info("demo_init enter\n");
platform_driver_register(&my_platform_driver);
pr_info("hello_init exit\n");
return 0;

}

static void hello_exit(void)
{

pr_info("demo_exit enter\n");
platform_driver_unregister(&my_platform_driver);
pr_info("demo_exit exit\n");

}

module_init(hello_init);
module_exit(hello_exit);

[117]

Chapter 5 Platform Drivers

[117]

You can also use the module_platform_driver(my_platform_driver) macro. This is a helper macro for
drivers that don't do anything special in module init()/exit(). This eliminates a lot of boilerplate.
Each module may only use this macro once, and calling it replaces module_init() and module_exit().

/*
 * module_platform_driver() - Helper macro for drivers that don't do
 * anything special in module init/exit. This eliminates a lot of
 * boilerplate. Each module may only use this macro once, and
 * calling it replaces module_init() and module_exit()
 */
#define module_platform_driver(__platform_driver) \
 module_driver(__platform_driver, platform_driver_register, \
 platform_driver_unregister)

LAB 5.1: "platform device" Module
The functionality of this platform driver is the same as the misc char driver, but this time you
will register your char device in the probe() function instead of init() function. When the kernel
module is loaded, the platform device driver registers itself with the platform bus driver using
the platform_driver_register() function. The probe() function is called when the platform device driver
matches the value of one of its compatible char strings (included in one of its of_device_id structures)
with the compatible property value of the DT device node. The process of associating a device with
a device driver is called binding.

The struct of_device_id structure is defined in include/linux/mod_devicetable.h:

/*
 * Struct used for matching a device
 */
struct of_device_id {
 char name[32];
 char type[32];
 char compatible[128];
 const void *data;
};

The main code sections of the driver will now be described:

1. Include the platform device header file, which contains the structure and function
definitions required by platform devices/drivers:

#include <linux/platform_device.h>

2. Declare a list of devices supported by the driver. Create an array of structures struct
of_device_id where you initialize the compatible fields with strings that will be used by the

Platform Drivers Chapter 5

[118]

kernel to bind your driver to devices represented in the device tree that include the same
compatible property. This will automatically trigger your driver´s probe() function if the
device tree contains a compatible device entry.

static const struct of_device_id my_of_ids[] = {
 { .compatible = "arrow,hellokeys"},
 {},
}
MODULE_DEVICE_TABLE(of, my_of_ids);

3. Add a struct platform_driver structure that will be registered to the platform bus:

static struct platform_driver my_platform_driver = {
 .probe = my_probe,
 .remove = my_remove,
 .driver = {
 .name = "hellokeys",
 .of_match_table = my_of_ids,
 .owner = THIS_MODULE,
 }
};

4. After loading the kernel module, the function my_probe() will be called when a device
matching one of the supported device ids is discovered. The function my_remove() will be
called when the driver is unloaded. Therefore, my_probe() does the role of the hello_init()
function and my_remove() does the role of the hello_exit() function. So, it makes sense to
replace hello_init() with my_probe() and hello_exit() with my_remove():

static int __init my_probe(struct platform_device *pdev)
{
 int ret_val;
 pr_info("my_probe() function is called.\n");
 ret_val = misc_register(&helloworld_miscdevice);

if (ret_val != 0) {
 pr_err("could not register the misc device mydev");
 return ret_val;
 }

pr_info("mydev: got minor %i\n",helloworld_miscdevice.minor);
 return 0;
}

static int __exit my_remove(struct platform_device *pdev)
{
 pr_info("my_remove() function is called.\n");
 misc_deregister(&helloworld_miscdevice);
 return 0;
}

[119]

Chapter 5 Platform Drivers

[119]

5. Register your platform driver to the platform bus core:

module_platform_driver(my_platform_driver);

6. Modify the device tree files (under arch/arm/boot/dts/ folder) to include your DT driver´s
device nodes. There must be a DT device node´s compatible property identical to the
compatible string stored in one of the driver´s struct of_device_id structures.

For the MCIMX7D-SABRE Board open the DT file imx7d-sdb.dts and add the hellokeys
node below the memory node:

[...]

/ {
 model = "Freescale i.MX7 SabreSD Board";
 compatible = "fsl,imx7d-sdb", "fsl,imx7d";

memory {
 reg = <0x80000000 0x80000000>;
 };

hellokeys {
 compatible = "arrow,hellokeys";

};

 [...]

For the SAMA5D2B-XULT Board open the DT file at91-sama5d2_xplained_common.dtsi and
add the hellokeys node below the gpio_keys node:

[...]

gpio_keys {
compatible = "gpio-keys";
pinctrl-names = "default";

 pinctrl-0 = <&pinctrl_key_gpio_default>;

bp1 {
 label = "PB_USER";

 gpios = <&pioA 41 GPIO_ACTIVE_LOW>;
 linux,code = <0x104>;

};
};

hellokeys {
 compatible = "arrow,hellokeys";
};

[...]

Platform Drivers Chapter 5

[120]

For the Raspberry Pi 3 Model B Board open the DT file bcm2710-rpi-3-b.dts and add the
hellokeys node inside the soc node:

[...]

&soc {
 virtgpio: virtgpio {
 compatible = "brcm,bcm2835-virtgpio";
 gpio-controller;
 #gpio-cells = <2>;
 firmware = <&firmware>;
 status = "okay";
 };

expgpio: expgpio {
 compatible = "brcm,bcm2835-expgpio";
 gpio-controller;
 #gpio-cells = <2>;
 firmware = <&firmware>;
 status = "okay";
 };

hellokeys {
 compatible = "arrow,hellokeys";
 };

 [...]

7. Build the modified device tree and load it to the target processor.

See in the next Listing 5-1 the "platform device" driver source code (hellokeys_imx.c) for the i.MX7D
processor.

Note: The source code for the SAMA5D2 (hellokeys_sam.c) and BCM2837 (hellokeys_rpi.c) drivers
can be downloaded from the GitHub repository of this book.

Listing 5-1: hellokeys_imx.c
#include <linux/module.h>
#include <linux/fs.h>
#include <linux/platform_device.h>
#include <linux/miscdevice.h>

static int my_dev_open(struct inode *inode, struct file *file)
{
 pr_info("my_dev_open() is called.\n");
 return 0;
}

[121]

Chapter 5 Platform Drivers

[121]

static int my_dev_close(struct inode *inode, struct file *file)
{
 pr_info("my_dev_close() is called.\n");
 return 0;
}

static long my_dev_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
 pr_info("my_dev_ioctl() is called. cmd = %d, arg = %ld\n", cmd, arg);
 return 0;
}

static const struct file_operations my_dev_fops = {
 .owner = THIS_MODULE,
 .open = my_dev_open,
 .release = my_dev_close,
 .unlocked_ioctl = my_dev_ioctl,
};

static struct miscdevice helloworld_miscdevice = {
 .minor = MISC_DYNAMIC_MINOR,
 .name = "mydev",
 .fops = &my_dev_fops,
};

/* Add probe() function */
static int __init my_probe(struct platform_device *pdev)
{
 int ret_val;
 pr_info("my_probe() function is called.\n");
 ret_val = misc_register(&helloworld_miscdevice);

 if (ret_val != 0) {
 pr_err("could not register the misc device mydev");
 return ret_val;
 }

 pr_info("mydev: got minor %i\n",helloworld_miscdevice.minor);
 return 0;
}

/* Add remove() function */
static int __exit my_remove(struct platform_device *pdev)
{
 pr_info("my_remove() function is called.\n");
 misc_deregister(&helloworld_miscdevice);
 return 0;
}

Platform Drivers Chapter 5

[122]

/* Declare a list of devices supported by the driver */
static const struct of_device_id my_of_ids[] = {
 { .compatible = "arrow,hellokeys"},
 {},
};
MODULE_DEVICE_TABLE(of, my_of_ids);

/* Define platform driver structure */
static struct platform_driver my_platform_driver = {
 .probe = my_probe,
 .remove = my_remove,
 .driver = {
 .name = "hellokeys",
 .of_match_table = my_of_ids,
 .owner = THIS_MODULE,
 }
};

/* Register your platform driver */
module_platform_driver(my_platform_driver);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Alberto Liberal <aliberal@arroweurope.com>");
MODULE_DESCRIPTION("This is the simplest platform driver");

hellokeys_imx.ko Demonstration
root@imx7dsabresd:~# insmod hellokeys_imx.ko /* load the module, probe() function should
be called */
root@imx7dsabresd:~# find /sys -name "*hellokeys*" /* find all "hellokeys" sysfs entries */
root@imx7dsabresd:~# ls /sys/devices/soc0 /* See devices entries under soc0. Find
hellokeys device entry */
root@imx7dsabresd:~# ls -l /sys/bus/platform/drivers/hellokeys/hellokeys /* this links to
the hellokeys device entry */
root@imx7dsabresd:~# ls –l /sys/bus/platform/devices /* See the devices at platform bus.
Find hellokeys entry */
root@imx7dsabresd:~# ls /sys/bus/platform/drivers/hellokeys /* this is the hellokeys
platform driver entry */
root@imx7dsabresd:~# ls –l /sys/module/hellokeys_imx/drivers /* this is a link to the
hellokeys driver entry */
root@imx7dsabresd:~# ls /sys/class/misc /* check that mydev is created under the misc
class folder */
root@imx7dsabresd:~# ls /sys/class/misc/mydev /* check entries under mydev */
root@imx7dsabresd:~# cat /sys/class/misc/mydev/dev /* see the assigned mayor and minor
numbers. The mayor number 10 is assigned by the misc framework */
root@imx7dsabresd:~# ls -l /dev /* verify that mydev is created under /dev */
root@imx7dsabresd:~# ./ioctl_test /* run ioctl_test application */
root@imx7dsabresd:~# rmmod hellokeys_imx.ko /* remove the module */

[123]

Chapter 5 Platform Drivers

[123]

Documentation to Interact with the Hardware
During the development of the next drivers, you will interact with different devices (LEDs,
pushbuttons, and I2C devices). You will also interact with some of the processor´s peripheral
registers, so it will be necessary to download the Technical Reference Manuals of the different
processors used in the labs and the schematics of such processor´s development boards.

•	 Go to the NXP Semiconductors site www.nxp.com and download the i.MX7Dual Applications
Processor Reference Manual. At the time of this writing, the last revision is Rev. 0.1, 08/2016.
You also need to download the MCIMX7D-SABRE schematic. The schematic used in this
book has the Document number SOURCE:SCH-28590:SPF-28590 and Rev D.

•	 Go to the Microchip Technology Inc. site www.microchip.com and download the SAMA5D2
Series Datasheet. At the time of this writing, the Datasheet number is DS60001476B. You
also need to download the SAMA5D2 (Rev. B) Xplained Ultra User Guide and the SAMA5D2B-
XULT schematic.

•	 Go to the RASPBERRY PI site www.raspberrypi.org and download the BCM2835 ARM
Peripherals guide and the Raspberry-Pi-3B-V1.2-Schematics.

For simplicity, all documentation needed can be downloaded from the GitHub repository of this
book. It's recommended to use the documentation of the repository to find in a simple way the
pages referenced within this book.

Hardware Naming Convention
A pin represents a physical input or output carrying an electrical signal. Every input or output
signal goes through a physical pin from or into a component. Contact pads are designated surface
areas of a printed circuit board or die of an integrated circuit. Some processors have a lot of
functionality but a limited number of pins (or pads). Even though a single pin can only perform
one function at a time, they can be configured internally to perform different functions. This is
called pin multiplexing.

Every pin/pad in the MPU has a name provided by the manufacturer, for instance D12 in the
i.MX7D processor.

Each pad has a logical/canonical name. This is the name that is shown on the schematic symbol
inside the part, next to the pin and pin number. This pad name typically corresponds to the
first pad functionality. For instance in the i.MX7D processor the D12 pad name has the logical/
canonical name of SAI1_RXC.

Platform Drivers Chapter 5

[124]

The schematics assign a net name to the functional wire connected to the pad. This attempts to
provide a description of what the wire is actually used for. The net name is usually the same as or
similar to the pad multiplexing name. The SAI1_RXC pad can be multiplexed to the next functions:

SAI1_RX_BCLK
NAND_CE3_B
SAI2_RX_BCLK
I2C4_SDA
FLEXTIMER2_PHA
GPIO6_IO17
MQS_LEFT
SRC_CA7_RESET1_B

Go to the MCIMX7D-SABRE schematic and look for the D12 pad name. The net name assigned to
this pad is I2C4_SDA that describes one of the pad functionalities shown above.

The next sections will explain in detail how the pads are being multiplexed in the i.MX7D family
processors. The i.MX7D uses the IOMUX controller (IOMUXC) to accomplish this task.

Pin Controller
In this section, it will be examined the operation of a pin controller, taking the NXP IOMUXC pin
controller as a reference. The IOMUX Controller (IOMUXC), together with the IOMUX, enables
the IC to share one pad to several functional blocks. This sharing is done by multiplexing the pad's
input and output signals, as shown in the following image:

[125]

Chapter 5 Platform Drivers

[125]

Every module also requires a specific pad setting (such as pull up or keeper), and for each
pad, there are up to eight muxing options (called ALT modes). The pad settings parameters are
controlled by the IOMUXC. The IOMUX consists only of combinatorial logic combined from
several basic IOMUX cells. Each basic IOMUX cell handles only one pad signal's muxing. The
figure below illustrates the IOMUX/IOMUXC connectivity in the system:

The main IOMUXC features are:

1. 32-bit software mux control registers (IOMUXC_SW_MUX_CTL_PAD_<PAD NAME> or
IOMUXC_SW_MUX_CTL_GRP_<GROUP NAME>) to configure one of eight alternate
(ALT) MUX_MODE fields for each pad or a predefined group of pads and to enable
forcing of an input path for the pad(s) (SION bit).

2. 32-bit software pad control registers (IOMUXC_SW_PAD_CTL_PAD_<PAD_NAME> or
IOMUXC_SW_PAD_CTL_GRP_<GROUP NAME>) to configure specific pad settings of
each pad, or a predefined group of pads.

3. 32-bit general purpose registers - 14 (GPR0 to GPR13) 32-bit registers according to SoC
requirements for any usage.

Platform Drivers Chapter 5

[126]

4. 32-bit input select control registers to control the input path to a module when more than
one pad drives this module input.

Each SW MUX/PAD CTL IOMUXC register handles only one pad or one pad's group. Only the
minimum number of registers required by software are implemented by hardware. For example,
if only ALT0 and ALT1 modes are used on Pad x then only one bit register will be generated as the
MUX_MODE control field in the software mux control register of Pad x.

The software mux control registers may allow the forcing of pads to become input (input path
enabled) regardless of the functional direction driven. This may be useful for loopback and GPIO
data capture.

Every NXP i.MX7D processor´s pad has up to eight potential "iomux" modes. The selection of this
iomux mode is controlled by a register, whose name is derived from the canonical pad name, for
example, a pad with a canonical name I2C1_SDA has a pad mux register named
IOMUXC_SW_MUX_CTL_PAD_I2C1_SDA (see it in pag. 1704 of the IMX7DRM) that's
responsible for configuring the pad between several different modes, as shown below:

•	 ALT0_I2C1_SDA — Select mux mode: ALT0 mux port: SDA of instance: I2C1
•	 ALT1_UART4_RTS_B — Select mux mode: ALT1 mux port: RTS_B of instance: UART4
•	 ALT2_FLEXCAN1_TX — Select mux mode: ALT2 mux port: TX of instance: FLEXCAN1
•	 ALT3_ECSPI3_MOSI — Select mux mode: ALT3 mux port: MOSI of instance: ECSPI3
•	 ALT4_CCM_ENET1_REF_CLK — Select mux mode: ALT4 mux port: ENET1_REF_CLK of

instance: ENET1
•	 ALT5_GPIO4_IO9 — Select mux mode: ALT5 mux port: IO9 of instance: GPIO4
•	 ALT6_SD3_VSELECT — Select mux mode: ALT6 mux port: VSELECT of instance: SD3

There's also an IOMUXC_SW_PAD_CTL_PAD_I2C1_SDA register (see it in pag. 1899 of the
IMX7DRM) for each pad that's responsible for configuring the physical drive characteristic of the
pad (e.g., hysteresis, pull-up/down, speed, drive strength), which could, again, be mapped to any
of the functions above.

Almost every pad has a GPIO function, in the I2C1_SDA pad this is GPIO4_IO9 and GPIO
functions are internally tracked by a bank/bit convention. There are seven banks of GPIOs with up
to 32 bits each. In the i.MX7D the index is 1-based, not 0 based, but the register addresses are all
0-based, requiring you to subtract 1 from the name.

This is the Linux user space naming convention:

1. Almost every pad has a GPIO function as one of its up to eight potential iomux modes.

2. Linux uses a single integer to enumerate all pads, therefore NXP's bank/bit notation for
GPIOs must be mapped.

[127]

Chapter 5 Platform Drivers

[127]

3. The bank/bit to Linux userspace formula is: linux gpio number = (gpio_bank - 1) * 32 +
gpio_bit so, GPIO4_IO19 maps to (4 - 1) * 32 + 19 = 115.

To analyze the registers related to the canonical pad name I2C1_SDA follow the next steps:

1. Look for the Pad Mux Register associated with I2C1_SDA in the IMX7DRM (you can find
it on page 1704). The address of the IOMUXC_SW_MUX_CTL_PAD_I2C1_SDA register
has an offset of 0x14C over the IOMUCX peripheral base address 0x30330000. This base
address is the first register address of the IOMUXC controller. The ALT5 MUX_MODE
configures this pad as a GPIO signal.

2. Look for the Pad Control Register associated with I2C1_SDA in the IMX7DRM (you
can find it on page 1899). The address of the IOMUXC_SW_PAD_CTL_PAD_I2C1_SDA
register has an offset of 0x3BC over the base address 0x30330000.

Pin Control Subsystem
In the old Linux pin muxing code each architecture had its own pin-muxing code with a specific
API. A lot of similar functionality was implemented in different ways. The pin-muxing had to be
done at the SoC level, and couldn´t be requested by device drivers.

The new Pinctrl subsystem mainly developed and maintained by Linus Walleij, from Linaro/ST-
Ericsson aims at solving these problems. It is implemented in drivers/pinctrl/ and provides:

•	 An API to register a pinctrl driver, for example entities knowing the list of pins, their
functions, and how to configure them. Used by SoC specific drivers (for example,
pinctrl-imx7d.c) to expose pin-muxing capabilities.

•	 An API for device drivers to request the muxing of a certain set of pins.
•	 Interaction with the SoC GPIO drivers.

Platform Drivers Chapter 5

[128]

In the next image you can see the interaction of the i.MX7D pinctrl driver and the i.MX7D gpio
controller driver with the Pinctrl subsystem:

The Pinctrl subsystem in Linux deals with:

•	 Enumerating and naming controllable pins.
•	 Multiplexing of pins.
•	 Configuration of pins, such as software-controlled biasing and driving mode specific pins,

such as pull-up/down, open drain, load capacitance etc.

All the i.MX7D pads are named for the Pinctrl subsystem in the pinctrl-imx7d.c pinctrl driver
located under drivers/pinctrl/ folder.

#include <linux/pinctrl/pinctrl.h>
#include "pinctrl-imx.h"

enum imx7d_pads {
 MX7D_PAD_RESERVE0 = 0,

[129]

Chapter 5 Platform Drivers

[129]

 MX7D_PAD_RESERVE1 = 1,
 MX7D_PAD_RESERVE2 = 2,
 MX7D_PAD_RESERVE3 = 3,
 MX7D_PAD_RESERVE4 = 4,
 MX7D_PAD_GPIO1_IO08 = 5,
 MX7D_PAD_GPIO1_IO09 = 6,
 MX7D_PAD_GPIO1_IO10 = 7,
 MX7D_PAD_GPIO1_IO11 = 8,
 MX7D_PAD_GPIO1_IO12 = 9,
 MX7D_PAD_GPIO1_IO13 = 10,
 MX7D_PAD_GPIO1_IO14 = 11,
 MX7D_PAD_GPIO1_IO15 = 12,

[...]
}

enum imx7d_lpsr_pads {
 MX7D_PAD_GPIO1_IO00 = 0,
 MX7D_PAD_GPIO1_IO01 = 1,
 MX7D_PAD_GPIO1_IO02 = 2,
 MX7D_PAD_GPIO1_IO03 = 3,
 MX7D_PAD_GPIO1_IO04 = 4,
 MX7D_PAD_GPIO1_IO05 = 5,
 MX7D_PAD_GPIO1_IO06 = 6,
 MX7D_PAD_GPIO1_IO07 = 7,
};

/* Pad names for the pinmux subsystem */
static const struct pinctrl_pin_desc imx7d_pinctrl_pads[] = {
 IMX_PINCTRL_PIN(MX7D_PAD_RESERVE0),
 IMX_PINCTRL_PIN(MX7D_PAD_RESERVE1),
 IMX_PINCTRL_PIN(MX7D_PAD_RESERVE2),
 IMX_PINCTRL_PIN(MX7D_PAD_RESERVE3),
 IMX_PINCTRL_PIN(MX7D_PAD_RESERVE4),
 IMX_PINCTRL_PIN(MX7D_PAD_GPIO1_IO08),
 IMX_PINCTRL_PIN(MX7D_PAD_GPIO1_IO09),
 IMX_PINCTRL_PIN(MX7D_PAD_GPIO1_IO10),
 IMX_PINCTRL_PIN(MX7D_PAD_GPIO1_IO11),
 IMX_PINCTRL_PIN(MX7D_PAD_GPIO1_IO12),
 IMX_PINCTRL_PIN(MX7D_PAD_GPIO1_IO13),
 IMX_PINCTRL_PIN(MX7D_PAD_GPIO1_IO14),
 IMX_PINCTRL_PIN(MX7D_PAD_GPIO1_IO15),

[...]
}

/* Pad names for the pinmux subsystem */
static const struct pinctrl_pin_desc imx7d_lpsr_pinctrl_pads[] = {

Platform Drivers Chapter 5

[130]

 IMX_PINCTRL_PIN(MX7D_PAD_GPIO1_IO00),
 IMX_PINCTRL_PIN(MX7D_PAD_GPIO1_IO01),
 IMX_PINCTRL_PIN(MX7D_PAD_GPIO1_IO02),
 IMX_PINCTRL_PIN(MX7D_PAD_GPIO1_IO03),
 IMX_PINCTRL_PIN(MX7D_PAD_GPIO1_IO04),
 IMX_PINCTRL_PIN(MX7D_PAD_GPIO1_IO05),
 IMX_PINCTRL_PIN(MX7D_PAD_GPIO1_IO06),
 IMX_PINCTRL_PIN(MX7D_PAD_GPIO1_IO07),
};

static struct imx_pinctrl_soc_info imx7d_pinctrl_info = {
 .pins = imx7d_pinctrl_pads,
 .npins = ARRAY_SIZE(imx7d_pinctrl_pads),
 .gpr_compatible = "fsl,imx7d-iomuxc-gpr",
};

static struct imx_pinctrl_soc_info imx7d_lpsr_pinctrl_info = {
 .pins = imx7d_lpsr_pinctrl_pads,
 .npins = ARRAY_SIZE(imx7d_lpsr_pinctrl_pads),
 .flags = ZERO_OFFSET_VALID,
};

static struct of_device_id imx7d_pinctrl_of_match[] = {
 { .compatible = "fsl,imx7d-iomuxc", .data = &imx7d_pinctrl_info, },
 { .compatible = "fsl,imx7d-iomuxc-lpsr", .data = &imx7d_lpsr_pinctrl_info },
 { /* sentinel */ }
};

The imx7d_pinctrl_probe() function will call the imx_pinctrl_probe() function located in drivers/pinctrl/
freescale/pinctrl-imx.c. This function configures a struct pinctrl_desc structure with all the information
regarding the pin controller and calls imx_pinctrl_probe_dt() to parse the DT finding the number of
pin function nodes under the iomuxc node, as well as the number of pin configuration nodes below
each pin function node, allocating pin groups. Finally, struct pinctrl_desc is registered against the
Pinctrl subsystem via the devm_pinctrl_register() function located in drivers/pinctrl/core.c.

It is important to understand the inner works of the imx_pinctrl_probe_dt() function. After allocating
all the pin groups, this function will call imx_pinctrl_parse_functions() once per each pin node found
under the iomuxc DT entry, allocating the "mux" and "config" registers associated with each pin.

int imx_pinctrl_probe(struct platform_device *pdev,
 struct imx_pinctrl_soc_info *info)
{
 [...]

struct pinctrl_desc *imx_pinctrl_desc;

[...]

[131]

Chapter 5 Platform Drivers

[131]

 info->pin_regs = devm_kmalloc(&pdev->dev, sizeof(*info->pin_regs) *
 info->npins, GFP_KERNEL);

[...]

imx_pinctrl_desc = devm_kzalloc(&pdev->dev, sizeof(*imx_pinctrl_desc),
 GFP_KERNEL);

 imx_pinctrl_desc->name = dev_name(&pdev->dev);
 imx_pinctrl_desc->pins = info->pins;
 imx_pinctrl_desc->npins = info->npins;
 imx_pinctrl_desc->pctlops = &imx_pctrl_ops;
 imx_pinctrl_desc->pmxops = &imx_pmx_ops;
 imx_pinctrl_desc->confops = &imx_pinconf_ops;
 imx_pinctrl_desc->owner = THIS_MODULE;

 ret = imx_pinctrl_probe_dt(pdev, info);

 [...]

ipctl->info = info;
 ipctl->dev = info->dev;
 platform_set_drvdata(pdev, ipctl);
 ipctl->pctl = devm_pinctrl_register(&pdev->dev,
 imx_pinctrl_desc, ipctl);

[...]

dev_info(&pdev->dev, "initialized IMX pinctrl driver\n");

 return 0;
}

The devm_pinctrl_register() function will call the pinctrl_register() function, that registers all the pins
and calls pinctrl_get(), pinctrl_lookup_state() and pinctrl_select_state() functions.

•	 pinctrl_get() is called in a process context to obtain a handle to all pinctrl information for
a given client device. It will allocate a struct from the kernel memory to hold the pinmux
state. All mapping table parsing or similar slow operations take place within this API.

•	 pinctrl_lookup_state() is called in a process context to obtain a handle to a specific state for a
client device. This operation may be slow, too.

•	 pinctrl_select_state() programs the pin controller hardware according to the definition of the
state as given by the mapping table.

In the i.MX7D pin controller driver, the pinctrl_select_state() function located in drivers/pinctrl/core.c
will take the PINCTRL_STATE_DEFAULT argument (defined as "default" in include/linux/pinctrl/
pinctrl-state.h) performing the next sequence of functions:

Platform Drivers Chapter 5

[132]

1. pinmux_enable_setting() -> imx_pmx_set():
The imx_pmx_set() function located in drivers/pinctrl/freescale/pinctrl-imx.c will configure the
mux mode for each pin in the group for a specific function. See below the struct pinmux_ops
- pinmux operations, declared by the i.MX7D pin controller, where the set_mux field points
to the imx_pmx_set function.

static const struct pinmux_ops imx_pmx_ops = {
 .get_functions_count = imx_pmx_get_funcs_count,
 .get_function_name = imx_pmx_get_func_name,
 .get_function_groups = imx_pmx_get_groups,
 .set_mux = imx_pmx_set,
 .gpio_request_enable = imx_pmx_gpio_request_enable,
 .gpio_disable_free = imx_pmx_gpio_disable_free,
 .gpio_set_direction = imx_pmx_gpio_set_direction,
};

See below part of the code inside the pinmux_enable_setting() function located in drivers/
pinctrl/pinmux.c, where imx_pmx_set() function is called:

/* Now that we have acquired the pins, encode the mux setting */
 for (i = 0; i < num_pins; i++) {
 desc = pin_desc_get(pctldev, pins[i]);
 if (desc == NULL) {
 dev_warn(pctldev->dev,
 "could not get pin desc for pin %d\n",
 pins[i]);
 continue;
 }
 desc->mux_setting = &(setting->data.mux);
 }

 ret = ops->set_mux(pctldev, setting->data.mux.func,
 setting->data.mux.group);

2. pinconf_apply_setting() -> imx_pinconf_set():
The imx_pinconf_set() function located in drivers/pinctrl/freescale/pinctrl-imx.c will configure
the pad setting for each pin in the group for a specific function. See below the struct
pinconf_ops - pin config operations, declared by the i.MX7D pin controller, where the
pin_config_set field points to the imx_pinconfig_set function:

static const struct pinconf_ops imx_pinconf_ops = {
 .pin_config_get = imx_pinconf_get,
 .pin_config_set = imx_pinconf_set,
 .pin_config_dbg_show = imx_pinconf_dbg_show,
 .pin_config_group_dbg_show = imx_pinconf_group_dbg_show,
};

[133]

Chapter 5 Platform Drivers

[133]

See below part of the code inside the pinconf_apply_setting() function located in drivers/
pinctrl/pinconfig.c, where imx_pinconfig_set() function is called:

switch (setting->type) {
case PIN_MAP_TYPE_CONFIGS_PIN:
 if (!ops->pin_config_set) {
 dev_err(pctldev->dev, "missing pin_config_set op\n");
 return -EINVAL;
 }
 ret = ops->pin_config_set(pctldev,
 setting->data.configs.group_or_pin,
 setting->data.configs.configs,
 setting->data.configs.num_configs);
 if (ret < 0) {
 dev_err(pctldev->dev,
 "pin_config_set op failed for pin %d\n",
 setting->data.configs.group_or_pin);
 return ret;
 }
 break;

When a device driver is about to probe, the device core will automatically attempt to issue
pinctrl_get_select_default() on these devices. However, when doing fine-grained state selection
and not using the "default" state, you may have to do some device driver handling of the pinctrl
handles and states. See for instance the i2c0 controller DT node declaration for the NXP Vybrid
vf610 SoC. There are declared two different states: "default" and "gpio":

i2c0: i2c@40066000 { /* i2c0 on vf610 */
 compatible = "fsl,vf610-i2c";
 reg = <0x40066000 0x1000>;
 interrupts =<0 71 0x04>;
 dmas = <&edma0 0 50>,
 <&edma0 0 51>;
 dma-names = "rx","tx";
 pinctrl-names = "default", "gpio";
 pinctrl-0 = <&pinctrl_i2c1>;
 pinctrl-1 = <&pinctrl_i2c1_gpio>;
 scl-gpios = <&gpio5 26 GPIO_ACTIVE_HIGH>;
 sda-gpios = <&gpio5 27 GPIO_ACTIVE_HIGH>;
};

You can check now the NXP I2C controller driver located in drivers/i2c/busses/i2c-imx.c to see how
both states are implemented in the driver. See below the functions where the states are selected.
The two functions are called within the driver´s probe() function:

static const struct of_device_id i2c_imx_dt_ids[] = {
 { .compatible = "fsl,imx1-i2c", .data = &imx1_i2c_hwdata, },
 { .compatible = "fsl,imx21-i2c", .data = &imx21_i2c_hwdata, },

Platform Drivers Chapter 5

[134]

 { .compatible = "fsl,vf610-i2c", .data = &vf610_i2c_hwdata, },
 { /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, i2c_imx_dt_ids);

static void i2c_imx_prepare_recovery(struct i2c_adapter *adap)
{
 struct imx_i2c_struct *i2c_imx;

i2c_imx = container_of(adap, struct imx_i2c_struct, adapter);
pinctrl_select_state(i2c_imx->pinctrl, i2c_imx->pinctrl_pins_gpio);

}

static void i2c_imx_unprepare_recovery(struct i2c_adapter *adap)
{
 struct imx_i2c_struct *i2c_imx;

i2c_imx = container_of(adap, struct imx_i2c_struct, adapter);
pinctrl_select_state(i2c_imx->pinctrl, i2c_imx->pinctrl_pins_default);

}

In this driver, the dual functionality is used in order to recover the I2C bus from a fault condition
requiring some signal management not allowed by the I2C HW peripheral.

Device Tree Pin Controller Bindings
As you have already seen in the previous Pin Controller section, the pin controller allows the
processor to share one pad with several functional blocks. The sharing is done by multiplexing
the PAD input/output signals. In the i.MX7D for each PAD there are up to eight muxing options
(called ALT modes). Since different modules require different PAD settings (e.g. pull up, keeper)
the pin controller controls also the PAD settings parameters. Each pin controller must be
represented as a node in device tree, just like any other hardware module.

Hardware modules whose signals are affected by pin configuration are designated "client devices".
Again, each client device must be represented as a node in device tree, just like any other hardware
module. For a client device to operate correctly, certain pin controllers must set up certain specific
pin configurations. Some client devices need a single static pin configuration, for example, set up
during initialization. Others need to reconfigure pins at run-time, for example, to tri-state pins
when the device is inactive. Hence, each client device can define a set of named states. The number
and names of those states is defined by the client device's own binding.

For each client device individually, every pin state is assigned an integer ID. These numbers start
at 0, and are contiguous. For each state ID, a unique property exists to define the pin configuration.
Each state may also be assigned a name. When names are used, another property exists to map
from those names to the integer IDs.

[135]

Chapter 5 Platform Drivers

[135]

Each client device's own binding determines the set of states that must be defined in its device tree
node, and whether to define the set of state IDs that must be provided, or whether to define the set
of state names that must be provided. These are the required properties:

•	 pinctrl-0: List of phandles, each pointing at a pin configuration node. These referenced pin
configuration nodes must be child nodes of the pin controller that they configure. Multiple
entries may exist in this list so that multiple pin controllers may be configured, or so that a
state may be built from multiple nodes for a single pin controller, each contributing part of
the overall configuration.

These are the optional properties:

•	 pinctrl-1: List of phandles, each pointing at a pin configuration node within a pin controller.
•	 […]
•	 pinctrl-n: List of phandles, each pointing at a pin configuration node within a pin controller.
•	 pinctrl-names: The list of names to assign states. List entry 0 defines the name for integer

state ID 0, list entry 1 for state ID 1, and so on. For example:

/* For a client device requiring named states */
 device {
 pinctrl-names = "active", "idle";
 pinctrl-0 = <&state_0_node_a>;
 pinctrl-1 = <&state_1_node_a &state_1_node_b>;
 };

The pin controller device should contain the pin configuration nodes that client devices reference.
For example:

pincontroller {
 ... /* Standard DT properties for the device itself elided */

 state_0_node_a {
 ...
 };
 state_1_node_a {
 ...
 };
 state_1_node_b {
 ...
 };
 }

The contents of each of those pin configuration child nodes is defined entirely by the binding for
the individual pin controller device. There exists no common standard for this content. The pinctrl
framework only provides generic helper bindings that the pin controller driver can use. You are
going to see now how these bindings are defined for the NXP i.MX7D pin controller (IOMUXC).

Platform Drivers Chapter 5

[136]

Open the imx7s.dtsi file located under arch/arm/boot/dts/ folder and look for the iomuxc_lpsr and
iomuxc nodes:

iomuxc_lpsr: iomuxc-lpsr@302c0000 {
 compatible = "fsl,imx7d-iomuxc-lpsr";
 reg = <0x302c0000 0x10000>;
 fsl,input-sel = <&iomuxc>;
};

iomuxc: iomuxc@30330000 {
 compatible = "fsl,imx7d-iomuxc";
 reg = <0x30330000 0x10000>;
};

The i.MX7D processor supports two iomuxc controllers, the fsl,imx7d-iomuxc controller that is
similar as previous iMX SoC generation and the fsl,imx7d-iomuxc-lpsr, which provides low power
state retention capabilities on gpios that are part of iomuxc-lpsr (GPIO1_IO7..GPIO1_IO0). While
iomuxc-lpsr provides its own set of registers for mux and pad control settings, it shares the input
select register from main iomuxc controller for daisy chain settings, the fsl,input-sel property
extends fsl,imx-pinctrl driver to support iomuxc-lpsr controller.

The 0x302c0000 and 0x30330000 values in the reg properties are the base address of each of the
IOMUXC pin controller registers.

The compatible property fsl,imx7d-iomuxc matchs the struct of_device_id compatible entry of the
i.MX7D pin controller driver. Open the pinctrl-imx7d.c file located under drivers/pinctrl/freescale/
directory and look for the compatible properties that match the iomuxc and iomuxc_lpsr DT nodes
compatible properties:

static const struct of_device_id imx7d_pinctrl_of_match[] = {
 { .compatible = "fsl,imx7d-iomuxc", .data = &imx7d_pinctrl_info, },
 { .compatible = "fsl,imx7d-iomuxc-lpsr", .data = &imx7d_lpsr_pinctrl_info },
 { /* sentinel */ }
};

The DT pin configuration node is a node of a group of pins that can be used for a specific device
or function. This node represents both mux and config of the pins in that group. The "mux" selects
the function mode (also named mux mode) this pin can work on and the "config" configures
various pad settings such as pull-up, open drain, drive strength, etc. Each client device node can
have a pinctrl-0 property with a list of phandles, each pointing to a pin configuration node. The
pin configuration node is defined under the iomuxc controller node to represent what pinmux
functions this SoC supports.

fsl,pins is the required property located inside each pin configuration node: each entry consists of
six integers and represents the mux and config setting for one pin. The first five integers

[137]

Chapter 5 Platform Drivers

[137]

<mux_reg conf_reg input_reg mux_val input_val> are specified using a PIN_FUNC_ID macro,
which can be found in "imx*-pinfunc.h" under the Linux kernel DT folder (imx7d-pinfunc.h
for the i.MX7D). The last integer, CONFIG, is the pad setting value, for example pull-up, on this pin.

While iomuxc-lpsr is intended to be used by dedicated peripherals to take advantages of LPSR
power mode, it is also possible that a processor´s peripheral uses pads from any of the iomux
controllers. For example, the I2C1 controller can use the SCL pad from the iomuxc-lpsr controller
and the SDA pad from the iomuxc controller, as shown below:

i2c1: i2c@30a20000 {
 pinctrl-names = "default";
 pinctrl-0 = <&pinctrl_i2c1_1 &pinctrl_i2c1_2>;
};

iomuxc-lpsr@302c0000 {
 compatible = "fsl,imx7d-iomuxc-lpsr";
 reg = <0x302c0000 0x10000>;
 fsl,input-sel = <&iomuxc>;

 pinctrl_i2c1_1: i2c1grp-1 { /* pin configuration node */
 fsl,pins = <
 MX7D_PAD_GPIO1_IO04__I2C1_SCL 0x4000007f
 >;
 };
};

iomuxc@30330000 {
 compatible = "fsl,imx7d-iomuxc";
 reg = <0x30330000 0x10000>;

 pinctrl_i2c1_2: i2c1grp-2 {
 fsl,pins = <
 MX7D_PAD_I2C1_SDA__I2C1_SDA 0x4000007f
 >;
 };
};

In the previous section you looked for the registers related to the canonical pad name I2C1_SDA.
You checked that the address of the IOMUXC_SW_MUX_CTL_PAD_I2C1_SDA register has an
offset of 0x14C over the IOMUCX peripheral base address 0x30330000 and the address of the
IOMUXC_SW_PAD_CTL_PAD_I2C1_SDA register has an offset of 0x3BC over the base address
0x30330000. Find the PIN_FUNC_ID macro MX7D_PAD_I2C1_SDA__GPIO4_IO9, in the
imx7d-pinfunc-h file under the Linux kernel DT folder arch/arm/boot/dts/.

#define MX7D_PAD_I2C1_SDA__GPIO4_IO9 0x014C 0x03BC 0x0000 0x5 0x0

Platform Drivers Chapter 5

[138]

The relationship of the PIN_FUNC_ID macros values with the registers used to do the "GPIO"
I2C1_SDA pad mux setting will now be analyzed:

•	 0x014C is the offset of the Pad Mux Reg IOMUXC_SW_MUX_CTL_PAD_I2C1_SDA
•	 0x03BC is the offset of the Pad Control Reg IOMUXC_SW_PAD_CTL_PAD_I2C1_SDA
•	 0x5 is the ALT5 mode of the Pad Mux Reg IOMUXC_SW_MUX_CTL_PAD_I2C1_SDA

See the documents below for further information about the i.MX7D pin controller DT bindings:

•	 linux/Documentation/devicetree/bindings/pinctrl/fsl,imx7d-pinctrl.txt
•	 linux/Documentation/devicetree/bindings/pinctrl/fsl,imx-pinctrl.txt

See the documents below for the SAMA5D2 and BCM283x pin controller DT bindings:

•	 linux/Documentation/devicetree/bindings/pinctrl/atmel,at91-pio4-pinctrl.txt
•	 linux/Documentation/devicetree/bindings/pinctrl/brcm,bcm2835-gpio.txt

GPIO Controller Driver
Each GPIO controller driver needs to include the following header, which defines the structures
used to define a GPIO driver:

#include <linux/gpio/driver.h>

Inside a GPIO driver, individual GPIOs are identified by their hardware number, which is a
unique number between 0 and n, n being the number of GPIOs managed by the chip. This number
is purely internal: the hardware number of a particular GPIO descriptor is never made visible
outside of the driver.

On top of this internal number, each GPIO also needs to have a global number in the integer GPIO
namespace so that it can be used with the legacy GPIO interface. Each chip has a "base" number
(which can be automatically assigned), and for each GPIO the global number will be (base +
hardware number). Although the integer representation is considered deprecated, it still has many
users and thus needs to be maintained.

In the gpiolib framework each GPIO controller is packaged as a struct gpio_chip structure (see
include/linux/gpio/driver.h for its complete definition) with members common to each controller of
that type:

•	 methods to establish GPIO line direction
•	 methods used to access GPIO line values
•	 method to set electrical configuration to a a given GPIO line
•	 method to return the IRQ number associated to a given GPIO line
•	 flag saying whether calls to its methods may sleep
•	 optional line names array to identify lines

[139]

Chapter 5 Platform Drivers

[139]

•	 optional debugfs dump method (showing extra state like pullup config)
•	 optional base number (will be automatically assigned if omitted)
•	 optional label for diagnostics and GPIO chip mapping using platform data

The code implementing a struct gpio_chip should support multiple instances of the controller,
possibly using the driver model. That code will configure each struct gpio_chip and issue
gpiochip_add[_data]() or devm_gpiochip_add_data().

GPIO controllers (GPIO chips) can also provide interrupts, usually cascaded off a parent interrupt
controller. The IRQ portions of the GPIO block are implemented using an irqchip using the header
<linux/irq.h>. So basically such a driver is utilizing two sub-systems simultaneously: gpio and irq.

GPIO irqchips usually fall in one of three categories:

1. CHAINED GPIO irqchips: these are usually the type that is embedded on a SoC. This
means that there is a fast IRQ flow handler for the GPIOs that gets called in a chain from
the parent IRQ handler, most typically the system interrupt controller. This means that the
GPIO irqchip handler will be called immediately from the parent irqchip, while holding
the IRQs disabled. The GPIO irqchip will then end up calling something like this sequence
in its interrupt handler:

static irqreturn_t foo_gpio_irq(int irq, void *data)
 chained_irq_enter(...);
 generic_handle_irq(...);
 chained_irq_exit(...);

See below the sequence for the i.MX7D GPIO controller driver (drivers/gpio/gpio-mxc.c):

/* handle 32 interrupts in one status register */
static void mxc_gpio_irq_handler(struct mxc_gpio_port *port, u32 irq_stat)
{
 while (irq_stat != 0) {
 int irqoffset = fls(irq_stat) - 1;

 if (port->both_edges & (1 << irqoffset))
 mxc_flip_edge(port, irqoffset);

 generic_handle_irq(irq_find_mapping(port->domain, irqoffset));

 irq_stat &= ~(1 << irqoffset);
 }
}

/* MX1 and MX3 has one interrupt *per* gpio port */
static void mx3_gpio_irq_handler(struct irq_desc *desc)
{
 u32 irq_stat;

Platform Drivers Chapter 5

[140]

 struct mxc_gpio_port *port = irq_desc_get_handler_data(desc);
 struct irq_chip *chip = irq_desc_get_chip(desc);

 chained_irq_enter(chip, desc);

 irq_stat = readl(port->base + GPIO_ISR) & readl(port->base + GPIO_IMR);

 mxc_gpio_irq_handler(port, irq_stat);

 chained_irq_exit(chip, desc);
}

2. GENERIC CHAINED GPIO irqchips: these are the same as "CHAINED GPIO irqchips",
but chained IRQ handlers are not used. Instead GPIO IRQs dispatching is performed by
generic IRQ handler, which is configured using request_irq(). The GPIO irqchip will then
end up calling something like this sequence in its interrupt handler:

static irqreturn_t gpio_rcar_irq_handler(int irq, void *dev_id)
for each detected GPIO IRQ

 generic_handle_irq(...);

3. NESTED THREADED GPIO irqchips: these are off-chip GPIO expanders and any other
GPIO irqchip residing on the other side of a sleeping bus. Of course such drivers that
need slow bus traffic to read out IRQ status and similar, traffic which may in turn incur
other IRQs to happen, cannot be handled in a quick IRQ handler with IRQs disabled.
Instead they need to spawn a thread and then mask the parent IRQ line until the interrupt
is handled by the driver. The hallmark of this driver is to call something like this in its
interrupt handler:

static irqreturn_t foo_gpio_irq(int irq, void *data)
 ...
 handle_nested_irq(irq);

GPIO Descriptor Consumer Interface
This section describes the new descriptor-based GPIO interface. For a description of the deprecated
integer-based GPIO interface please refer to gpio-legacy.txt under Documentation/gpio/ folder.

All the functions that work with the descriptor-based GPIO interface are prefixed with gpiod_.
The gpio_ prefix is used for the legacy interface. No other function in the kernel should use these
prefixes. The use of the legacy functions is strongly discouraged, new code should use <linux/gpio/
consumer.h> and descriptors exclusively.

[141]

Chapter 5 Platform Drivers

[141]

Obtaining and Disposing GPIOs
With the descriptor-based interface, GPIOs are identified with an opaque, non-forgeable handler
that must be obtained through a call to one of the gpiod_get() functions. Like many other kernel
subsystems, devm_gpiod_get() takes the device that will use the GPIO and the function the
requested GPIO is supposed to fulfill:

struct gpio_desc *devm_gpiod_get(struct device *dev, const char *con_id,
 enum gpiod_flags flags)

If a function is implemented by using several GPIOs together (for example, a simple LED device
that displays digits), an additional index argument can be specified:

struct gpio_desc *devm_gpiod_get_index(struct device *dev,
 const char *con_id,
 unsigned int idx,
 enum gpiod_flags flags)

The flags parameter is used to optionally specify a direction and initial value for the GPIO. Values
can be:

•	 GPIOD_ASIS or 0 to not initialize the GPIO at all. The direction must be set later with one
of the dedicated functions

•	 GPIOD_IN to initialize the GPIO as input
•	 GPIOD_OUT_LOW to initialize the GPIO as output with a value of 0
•	 GPIOD_OUT_HIGH to initialize the GPIO as output with a value of 1

Both functions return either a valid GPIO descriptor, or an error code checkable with IS_ERR().

A GPIO descriptor can be disposed of using the devm_gpiod_put() function:

void devm_gpiod_put(struct device *dev, struct gpio_desc *desc)

Using GPIOs
The first thing a driver must do with a GPIO is setting its direction. If no direction-setting flags
have been given to gpiod_get*(), this is done by invoking one of the gpiod_direction_*() functions:

int gpiod_direction_input(struct gpio_desc *desc)
int gpiod_direction_output(struct gpio_desc *desc, int value)

The return value is zero for success, else a negative errno. For output GPIOs, the value provided
becomes the initial output value. This helps avoid signal glitching during system startup.

Most GPIO controllers can be accessed with memory read/write instructions. Those don't need to
sleep, and can safely be done from inside hard (non-threaded) IRQ handlers and similar contexts.

Use the following calls to access GPIOs from an atomic context:

Platform Drivers Chapter 5

[142]

int gpiod_get_value(const struct gpio_desc *desc);
void gpiod_set_value(struct gpio_desc *desc, int value);

The values are boolean, zero for low, nonzero for high. When reading the value of an output pin,
the value returned should be what's seen on the pin. That won't always match the specified output
value, because of issues including open-drain signaling and output latencies.

The get/set calls do not return errors because "invalid GPIO" should have been reported earlier
from gpiod_direction_*(). However, note that not all platforms can read the value of output pins;
those that can't should always return zero. Also, using these calls for GPIOs that can't safely be
accessed without sleeping is an error.

Some GPIO controllers must be accessed using message based buses like I2C or SPI. Commands
to read or write those GPIO values require waiting to get to the head of a queue to transmit a
command and get its response. This requires sleeping, which can't be done from inside IRQ
handlers. Platforms that support this type of GPIO distinguish them from other GPIOs by
returning nonzero from this call:

int gpiod_cansleep(const struct gpio_desc *desc)

To access such GPIOs, a different set of accessors is defined:

int gpiod_get_value_cansleep(const struct gpio_desc *desc)
void gpiod_set_value_cansleep(struct gpio_desc *desc, int value)

Accessing such GPIOs requires a context which may sleep, for example a threaded IRQ handler,
and those accessors must be used instead of spinlock-safe accessors without the cansleep() name
suffix.

As a driver should not have to care about the physical line level, all of the gpiod_set_value_xxx()
functions operate with the *logical* value. With this they take the active-low property into account.
This means that they check whether the GPIO is configured to be active-low, and if so, they
manipulate the passed value before the physical line level is driven.

With this, all the gpiod_set_value_xxx() functions interpret the parameter "value" as "active" ("1") or
"inactive" ("0"). The physical line level will be driven accordingly.

As an example, if the active-low property for a dedicated GPIO is set, and the gpiod_set_value_xxx()
passes "active" ("1"), the physical line level will be driven low.

To summarize:

Function (example) active-low property physical line
gpiod_set_value(desc, 0); default (active-high) low
gpiod_set_value(desc, 1); default (active-high) high
gpiod_set_value(desc, 0); active-low high
gpiod_set_value(desc, 1); active-low low

[143]

Chapter 5 Platform Drivers

[143]

GPIOs Mapped to IRQs
GPIO lines can quite often be used as IRQs. You can get the Linux IRQ number corresponding to a
given GPIO using the following call:

int gpiod_to_irq(const struct gpio_desc *desc)

It will return a Linux IRQ number, or a negative errno code if the mapping can't be done (most
likely because that particular GPIO cannot be used as IRQ). Using a GPIO that wasn't set up as an
input using gpiod_direction_input(), or using an IRQ number that didn't originally come from
gpiod_to_irq() results in an uncheked error. The gpiod_to_irq() function is not allowed to sleep.

Non-error values returned from gpiod_to_irq() can be passed to request_irq() or free_irq(). They will
often be stored into IRQ resources for platform devices, by the board-specific initialization code.
Note that IRQ trigger options are part of the IRQ interface, for example,
IRQF_TRIGGER_FALLING, as are system wakeup capabilities.

GPIOs in Device Tree
GPIOs can easily be mapped to devices and functions in the device tree. The exact way to do
it depends on the GPIO controller providing the GPIOs (see the device tree bindings for your
controller).

GPIOs mappings are defined in the consumer device's node, in a property named
<function>-gpios, where <function> is the function the driver will request through gpiod_get(). For
example:

foo_device {
 compatible = "acme,foo";
 ...
 led-gpios = <&gpio 15 GPIO_ACTIVE_HIGH>, /* red */
 <&gpio 16 GPIO_ACTIVE_HIGH>, /* green */
 <&gpio 17 GPIO_ACTIVE_HIGH>; /* blue */

power-gpios = <&gpio 1 GPIO_ACTIVE_LOW>;
};

Properties named <function>-gpio are also considered valid and old bindings use it but are only
supported for compatibility reasons and should not be used for newer bindings since it has been
deprecated.

The property led-gpios will make GPIOs 15, 16 and 17 available to the driver, and power-gpios will
make GPIO 1 available to the driver:

struct gpio_desc *red, *green, *blue, *power;
red = gpiod_get_index(dev, "led", 0, GPIOD_OUT_HIGH);

Platform Drivers Chapter 5

[144]

green = gpiod_get_index(dev, "led", 1, GPIOD_OUT_HIGH);
blue = gpiod_get_index(dev, "led", 2, GPIOD_OUT_HIGH);
power = gpiod_get(dev, "power", GPIOD_OUT_HIGH);

The led GPIOs will be active-high, while the power GPIO will be active-low. The second parameter
of the gpiod_get() functions, the con_id string, has to be the <function>-prefix of the GPIO suffixes
("gpios" or "gpio", automatically looked up by the gpiod functions internally) used in the device
tree. With above "led-gpios" example, use the prefix without the "-" as con_id parameter: "led".

Exchanging Data between Kernel and User Space
Modern operating systems not only prevent one process from accessing another process but also
prevent processes from accidentally accessing or manipulating kernel data and services (as the
kernel is shared by all the processes). Operating systems achieve this protection by segmenting
the whole memory into two logical halves, the user and kernel space. This bifurcation ensures that
all processes that are assigned address spaces are mapped to the user space section of memory
and kernel data and services run in kernel space. System calls are the kernel's interfaces to expose
its services to application processes; they are also called kernel entry points. As system calls are
implemented in kernel space, the respective handlers are provided through APIs in user space.
When a process requests a kernel service through a system call, the kernel will execute on behalf of
the caller process. The kernel is now said to be executing in process context. Similarly, the kernel
also responds to interrupts raised by other hardware entities; here, the kernel executes in interrupt
context. When in interrupt context, the kernel is not running on behalf of any process.

A driver for a device is the interface between an application and hardware. As a result, you often
have to access a given user-space driver device. Accessing process address space from the kernel
cannot be done directly (by de-referencing a user-space pointer). Direct access of an user-space
pointer can lead to incorrect behavior (depending on architecture, an user-space pointer may not
be valid or mapped to kernel-space), a kernel oops (the user-mode pointer can refer to a non-
resident memory area) or security issues. Proper access to user-space data is done by calling the
macros/functions below:

1. A single value:

get_user(type val, type *address);

 The kernel variable val gets the value pointed by the user space pointer address.

put_user(type val, type *address);

The value pointed by the user space pointer address is set to the contents of the kernel
variable val.

[145]

Chapter 5 Platform Drivers

[145]

2. A buffer:

unsigned long copy_to_user(void __user *to,
 const void *from,
 unsigned long n);

copy_to_user() copies n bytes from the kernel-space from the address referenced by from in
user-space to the address referenced by to.

unsigned long copy_from_user(void *to,
const void __user *from,
unsigned long n)

copy_from_user() copies n bytes from user-space from the address referenced by from in
kernel-space to the address referenced by to.

MMIO (Memory-Mapped I/O) Device Access
A peripheral device is controlled by writing and reading its registers. Often, a device has multiple
registers that can be accessed at consecutive addresses either in the memory address space
(MMIO) or in the I/O address space (PIO). See below the main differences between Port I/O and
Memory-Mapped I/O:

1. MMIO

•	 Same address bus to address memory and I/O devices
•	 Access to the I/O devices using regular instructions
•	 Most widely used I/O method across the different architectures supported by Linux

2. PIO

•	 Different address spaces for memory and I/O devices
•	 Uses a special class of CPU instructions to access I/O devices
•	 Example on x86: IN and OUT instructions

The three processors described in this book use the MMIO access, so this method will be described
more in detail during this section.

The Linux driver cannot access physical I/O addresses directly - MMU mapping is needed. To
access I/O memory, drivers need to have a virtual address that the processor can handle, because
I/O memory is not mapped by default in virtual memory.

Platform Drivers Chapter 5

[146]

You can obtain this I/O virtual address by two different functions:

1. Map and remove mapping using ioremap()/iounmap() functions. The ioremap() function
accepts the physical address and the size of the area. It returns a pointer to virtual memory
that can be dereferenced (or NULL if mapping is impossible).

void __iomem *ioremap(phys_addr_t offset, unsigned long size)
void iounmap(void *address);

2. Map and remove mapping attached to the driver device using the devm_ioremap()/
devm_iounmap() managed functions (defined as a function prototype in include/linux/io.h
and defined as a function in lib/devres.c) that simplify driver code and error handling.
Using ioremap() in device drivers is now deprecated. You should use the below "managed"
functions instead, which simplify driver coding and error handling:

void __iomem *devm_ioremap(struct device *dev, resource_size_t offset,
 unsigned long size);
void devm_iounmap(struct device *dev, void __iomem *addr);

Each struct device (basic device structure) manages a linked list of resources via its included struct
list_head devres_head structure. Calling a managed resource allocator involves adding the resource
to the list. The resources are released in reverse order when the probe() function exits with an error
status or after the remove() function returns. The use of managed functions in the probe() function
remove the needed resource releases on error handling, replacing goto's and other resource
releases with just a return. It also remove resource releases in remove() function.

Dereferencing the pointer returned by devm_ioremap() is not reliable. Cache and synchronization
issues may occur. The kernel provides functions to read and write to virtual addresses. To do
PCI-style, little-endian accesses, conversion being done automatically use the functions below:

unsigned read[bwl](void *addr);
void write[bwl](unsigned val, void *addr);

There are "generic" interfaces for doing new-style memory-mapped or PIO accesses. Architectures
may do their own arch-optimized versions, these just act as wrappers around the old-style IO
register access functions read[bwl]/write[bwl]/in[bwl]/out[bwl]:

unsigned int ioread8(void __iomem *addr);
unsigned int ioread16(void __iomem *addr);
unsigned int ioread32(void __iomem *addr);
void iowrite8(u8 value, void __iomem *addr);
void iowrite16(u16 value, void __iomem *addr);
void iowrite32(u32 value, void __iomem *addr);

[147]

Chapter 5 Platform Drivers

[147]

The following figure represents the SAMA5D2 PIO_SODR1 register physical address mapping.
In the next driver´s code you can see how this register is mapped to a virtual address using the
devm_ioremap() function.

LAB 5.2: "RGB LED platform device" Module
In this lab, you will apply most of the concepts described so far during this chapter. You will
control several LEDs mapping from physical to virtual several SoC´s peripheral register addresses.
You will create a character device per each LED using the misc framework and control the LEDs
exchanging data between the kernel and user space using write() and read() driver´s operations.
You will use copy_to_user() and copy_from_user() functions to exchange character arrays between
kernel and user space.

LAB 5.2 Hardware Description for the i.MX7D Processor
The i.MX7D GPIO general-purpose input/output peripheral provides dedicated general-
purpose pins that can be configured as either inputs or outputs. When configured as an output,
it is possible to write to an internal register to control the state driven on the output pin. When

Platform Drivers Chapter 5

[148]

configured as an input, it is possible to detect the state of the input by reading the state of an
internal register.

The GPIO functionality is provided through registers, an edge-detect circuit, and interrupt
generation logic. The registers are:

•	 Data register (GPIO_DR)
•	 GPIO direction register (GPIO_GDIR)
•	 Pad sample register (GPIO_PSR)
•	 Interrupt control registers (GPIO_ICR1, GPIO_ICR2)
•	 Edge select register (GPIO_EDGE_SEL)
•	 Interrupt mask register (GPIO_IMR)
•	 Interrupt status register (GPIO_ISR)

The GPIO subsystem contains 7 GPIO blocks, which can generate and control up to 32 signals for
general purpose. These are the GPIO general purpose input/output logic capabilities:

•	 Drives specific data to output using the data register (GPIO_DR).
•	 Controls the direction of the signal using the GPIO direction register (GPIO_GDIR).
•	 Enables the core to sample the status of the corresponding inputs by reading the pad

sample register (GPIO_PSR).

You will write to the GPIO_GDIR and GPIO_DR registers to control the LEDs used in this lab. For
further information about i.MX7D GPIOs see the 8.3 General Purpose Input/Output (GPIO) section of
the i.MX 7Dual Applications Processor Reference Manual, Rev. 0.1, 08/2016.

You will use three pins of the i.MX7D to control each LED. These pins must be multiplexed as
GPIOs in the DT.

The MCIMX7D-SABRE board integrates a mikroBUS™ socket offering an easy hardware
configuration to MikroElektronika’s wide range of click boards™ add-on modules. The
mikroBUS™ pinout and the click board ecosystem is especially suitable for developers who are
working on multi-purpose, modular products.

The purpose of mikroBUS™ is to enable easy hardware expandability with a large number of
standardized compact add-on boards, each one carrying a single sensor, transceiver, display,
encoder, motor driver, connection port, or any other electronic module or integrated circuit.
Created by MikroElektronika, mikroBUS™ is an open standard - anyone can implement
mikroBUS™ in their hardware design, as long as the requirements set by the MikroBUS
specification are being met.

Go to the pag.20 of the MCIMX7D-SABRE schematic to see the MikroBUS connector:

[149]

Chapter 5 Platform Drivers

[149]

You will use the MOSI pin to control the green LED, the SCK pin to control the blue LED and the
PWM pin to control the red LED.

To obtain the LEDs, you will use the Color click™ accessory board with mikroBUS™ form factor.
It’s a compact and easy solution for adding red, green, blue and clear light sensing to your design.
It features TCS3471 color RGB light-to-digital converter, three NPN resistor-equipped transistors
as well as RGB LED. In this lab, you will only use the RGB LED. See the Color click™ accessory
board board at https://www.mikroe.com/color-click. You can download the schematic from that link
or from the GitHub repository of this book.

Connect the MCIMX7D-SABRE mikroBUS™ PWM pin to the Color click™ RD pin, MOSI pin
to GR, and SCK to BL. Supply VCC = +5V from MCIMX7D-SABRE board to the Color click™
accessory board and connect GND between both boards.

LAB 5.2 Hardware Description for the SAMA5D2 Processor
The SAMA5D2 Parallel Input/Output Controller (PIO) manages up to 128 fully programmable
input/output lines (the number of I/O groups is 4, PA, PB, PC and PD). Each I/O line may be
dedicated as a general purpose I/O or be assigned to a function of an embedded peripheral. This
ensures effective optimization of the pins of the product.

Each I/O line of the PIO Controller features:

•	 An input change interrupt enabling level change detection on any I/O line
•	 Rising edge, falling edge, both edge, low-level or high-level detection on any I/O line
•	 A glitch filter providing rejection of glitches lower than one-half of PIO clock cycle

Platform Drivers Chapter 5

[150]

•	 A debouncing filter providing rejection of unwanted pulses from key or push button
operations

•	 Multi-drive capability similar to an open drain I/O line
•	 Control of the pull-up and pull-down of the I/O line
•	 Input visibility and output control
•	 Secure or Non-Secure management of the I/O line

Each pin is configurable, depending on the product, as either a general purpose I/O line only, or
as an I/O line multiplexed with up to 6 peripheral I/Os. As the multiplexing is hardware defined
and thus product-dependent, the hardware designer and programmer must carefully determine
the configuration of the PIO Controllers required by their application. When an I/O line is general
purpose only, i.e., not multiplexed with any peripheral I/O, programming of the PIO Controller
regarding the assignment to a peripheral has no effect and only the PIO Controller can control how
the pin is driven by the product.

To configure I/O lines it must be first defined which I/O line in the group will be targeted by
writing a 1 to the corresponding bit in the PIO Mask Register (PIO_MSKRx). Several I/O lines in
an I/O group can be configured at the same time by setting the corresponding bits in PIO_MSKRx.
Then, writing the PIO Configuration Register (PIO_CFGRx) apply the configuration to the I/O
line(s) defined in PIO_MSKRx.

The PIO Controller provides multiplexing of up to 6 peripheral functions on a single pin. The
selection is performed by writing the FUNC field in PIO_CFGRx. The selected function is applied
to the I/O line(s) defined in PIO_MSKRx. When FUNC is 0, no peripheral is selected and the
General Purpose PIO (GPIO) mode is selected (in this mode, the I/O line is controlled by the PIO
Controller). When FUNC is not 0, the peripheral selected to control the I/O line depends on the
FUNC value.

When the I/O line is assigned to a peripheral function, i.e., the corresponding FUNC field of the
line configuration is not 0, the drive of the I/O line is controlled by the peripheral. According to the
FUNC value, the selected peripheral determines whether the pin is driven or not.

When the FUNC field of an I/O line is 0, then the I/O line is set in General Purpose mode and the
I/O line can be configured to be driven by the PIO Controller instead of the peripheral.

If the DIR bit of the I/O line configuration (PIO_CFGRx) is set (OUTPUT) then the I/O line can
be driven by the PIO Controller. The level driven on an I/O line can be determined by writing in
the PIO Set Output Data Register (PIO_SODRx) and the PIO Clear Output Data Register (PIO_
CODRx). These write operations, respectively, set and clear the PIO Output Data Status Register
(PIO_ODSRx), which represents the data driven on the I/O lines. Writing PIO_ODSRx directly
is possible and only affects the I/O line set to 1 in PIO_MSKRx. When the DIR bit of the I/O line
configuration is at zero, the corresponding I/O line is used as an input only.

[151]

Chapter 5 Platform Drivers

[151]

For further information about SAMA5D2 GPIOs see the 34. Parallel Input/Output Controller (PIO)
section of the SAMA5D2 SERIES DS60001476B data-sheet.

You will use three pins of the SAMA5D2 to control each LED. These pins must be multiplexed as
GPIOs in the DT.

The SAMA5D2B-XULT board integrates a RGB LED. Go to the pag.11 of the SAMA5D2B-XULT
schematic to see the RGB LED:

LAB 5.2 Hardware Description for the BCM2837 Processor
The BCM2837 processor is the Broadcom chip used in the Raspberry Pi 3, and in later models of
the Raspberry Pi 2. The underlying architecture of the BCM2837 is identical to the BCM2836. The
only significant difference is the replacement of the ARMv7 quad core cluster with a quad-core
ARM Cortex A53 (ARMv8) cluster. The BCM2835 processor is the the Broadcom chip used in the
Raspberry Pi Model A, B, B+, the Compute Module, and the Raspberry Pi Zero.

The BCM2837 has 54 general-purpose I/O (GPIO) lines split into two banks. All GPIO pins have at
least two alternative functions within BCM. The alternate functions are usually peripheral IO and
a single peripheral may appear in each bank to allow flexibility on the choice of IO voltage. The
GPIO has 41 registers. All accesses are assumed to be 32-bit.

The function select registers are used to define the operation of the general-purpose I/O pins.
Each of the 54 GPIO pins has at least two alternative functions. The FSEL{n} field determines the
functionality of the nth GPIO pin. All unused alternative function lines are tied to ground and will
output a "0" if selected.

The output set registers are used to set a GPIO pin. The SET{n} field defines the respective GPIO
pin to set, writing a "0" to the field has no effect. If the GPIO pin is being used as in input (by
default) then the value in the SET{n} field is ignored. However, if the pin is subsequently defined

Platform Drivers Chapter 5

[152]

as an output then the bit will be set according to the last set/clear operation. Separating the set and
clear functions removes the need for read-modify-write operations.

The output clear registers are used to clear a GPIO pin. The CLR{n} field defines the respective
GPIO pin to clear, writing a "0" to the field has no effect. If the GPIO pin is being used as in input
(by default) then the value in the CLR{n} field is ignored. However, if the pin is subsequently
defined as an output then the bit will be set according to the last set/clear operation. Separating the
set and clear functions removes the need for read-modify-write operations.

For further information about BCM2837 GPIOs see the section 6 General Purpose I/O (GPIO) of the
BCM2835 ARM Peripherals guide.

You will use three pins of the BCM2837 to control each LED. These pins must be multiplexed as
GPIOs in the DT.

To obtain the GPIOs, you will use the GPIO expansion connector. Go to the Raspberry-Pi-3B-V1.2-
Schematics to see the connector:

[153]

Chapter 5 Platform Drivers

[153]

To obtain the LEDs, you will use the Color click™ accessory board with mikroBUS™ form
factor. See the Color click™ accessory board board at https://www.mikroe.com/color-click. You can
download the schematic from the link above or from the GitHub repository of this book.

Connect the GPIO EXPANSION GPIO27 pin to the Color click™ RD pin, GPIO22 pin to GR, and
GPIO26 to BL.

LAB 5.2 Device Tree for the i.MX7D Processor
From the MCIMX7D-SABRE mikroBUS™ socket, you see that MOSI pin connects to the
SAI2_TXC pad of the i.MX7D processor, the SCK pin to the SAI2_RXD pad and the PWM pin to
the GPIO1_IO02 pad. You have to configure these SAI2_TXC, SAI2_RXD and GPIO1_IO02 pads as
GPIO signals. To look for the macros that assign the required functionality (GPIO) go to the
imx7d-pinfunc.h file under arch/arm/boot/dts/ and find the next macros:

#define MX7D_PAD_SAI2_TX_BCLK__GPIO6_IO20 0x0220 0x0490 0x0000 0x5 0x0
#define MX7D_PAD_SAI2_RX_DATA__GPIO6_IO21 0x0224 0x0494 0x0000 0x5 0x0

Go now to the imx7d-pinfunc-lpsr.h file under arch/arm/boot/dts/ and find the next macro:

#define MX7D_PAD_GPIO1_IO02__GPIO1_IO2 0x0008 0x0038 0x0000 0x0 0x0

The five integers of the macro above are:

•	 IOMUX register offset (0x0008)
•	 Pad configuration register offset (0x0038)
•	 Select input daisy chain register offset (0x0000)
•	 IOMUX configuration setting (0x0)
•	 Select input daisy chain setting (0x0)

The GPIO1_IO02 pad is part of the fsl,imx7d-iomuxc-lpsr controller.

You need a sixth integer that corresponds to the configuration for the PAD control register.
This number defines the low-level physical settings of the pin. You can build this integer using
the information found under the device tree pinctrl documentation binding folder located at
Documentation/devicetree/bindings/pinctrl/. For the i.MX7D check the fsl,imx7d-pinctrl.txt file. You can
also copy and then modify another pin definition that has similar functionality in the DT file. You
can use the 0x11 value for your selected PADs.

CONFIG bits definition:
PAD_CTL_PUS_100K_DOWN (0 << 5)
PAD_CTL_PUS_5K_UP (1 << 5)
PAD_CTL_PUS_47K_UP (2 << 5)
PAD_CTL_PUS_100K_UP (3 << 5)
PAD_CTL_PUE (1 << 4)
PAD_CTL_HYS (1 << 3)

Platform Drivers Chapter 5

[154]

PAD_CTL_SRE_SLOW (1 << 2)
PAD_CTL_SRE_FAST (0 << 2)
PAD_CTL_DSE_X1 (0 << 0)
PAD_CTL_DSE_X2 (1 << 0)
PAD_CTL_DSE_X3 (2 << 0)
PAD_CTL_DSE_X4 (3 << 0)

Now, you will modify the device tree file imx7d-sdb.dts adding the next code in bold below:

/ {
 model = "Freescale i.MX7 SabreSD Board";
 compatible = "fsl,imx7d-sdb", "fsl,imx7d";

 memory {
 reg = <0x80000000 0x80000000>;
 };

 [...]

ledred {
 compatible = "arrow,RGBleds";
 label = "ledred";
 pinctrl-names = "default";
 pinctrl-0 = <&pinctrl_gpio_leds &pinctrl_gpio_led>;

};

ledgreen {
 compatible = "arrow,RGBleds";
 label = "ledgreen";

};

ledblue {
 compatible = "arrow,RGBleds";
 label = "ledblue";

};

[...]

&iomuxc {
pinctrl-names = "default";

 pinctrl-0 = <&pinctrl_hog_1>;

 imx7d-sdb {

 pinctrl_hog_1: hoggrp-1 {
 fsl,pins = <

 MX7D_PAD_EPDC_BDR0__GPIO2_IO28 0x59
 >;

[155]

Chapter 5 Platform Drivers

[155]

 };

 [...]

 pinctrl_gpio_leds: pinctrl_gpio_leds_grp {
fsl,pins = <

 MX7D_PAD_SAI2_TX_BCLK__GPIO6_IO20 0x11
 MX7D_PAD_SAI2_RX_DATA__GPIO6_IO21 0x11
 >;
 };

 [...]

 };
};

[...]

&iomuxc_lpsr {
 pinctrl-names = "default";
 pinctrl-0 = <&pinctrl_hog_2 &pinctrl_usbotg2_pwr_2>;

 imx7d-sdb {
 pinctrl_hog_2: hoggrp-2 {
 fsl,pins = <
 MX7D_PAD_GPIO1_IO05__GPIO1_IO5 0x14
 >;
 };

 [...]

pinctrl_gpio_led: pinctrl_gpio_led_grp {
fsl,pins = <

 MX7D_PAD_GPIO1_IO02__GPIO1_IO2 0x11
 >;
 };

 [...]

 };
};

For simplicity, you will perform the IOMUX setting of the pads in the first ledred device. You need
to be careful not to configure the same pad twice in the device tree. IOMUX configurations are set
by the drivers in the order the kernel probes the configured device. If the same pad is configured
differently by two drivers, the settings associated with the last-probed driver will apply. If you
look for the ecspi3 node in the device tree file imx7d-sdb.dts you can see that the pin configuration

Platform Drivers Chapter 5

[156]

defined on the pinctrl-0 property assigns the "default" name and points to the pinctrl_ecspi3 and
pinctrl_ecspi3_cs pin function nodes:

pinctrl_ecspi3_cs: ecspi3_cs_grp {
 fsl,pins = <
 MX7D_PAD_SD2_CD_B__GPIO5_IO9 0x80000000
 MX7D_PAD_SAI2_TX_DATA__GPIO6_IO22 0x2
 >;
};

pinctrl_ecspi3: ecspi3grp {
 fsl,pins = <
 MX7D_PAD_SAI2_TX_SYNC__ECSPI3_MISO 0x2
 MX7D_PAD_SAI2_TX_BCLK__ECSPI3_MOSI 0x2
 MX7D_PAD_SAI2_RX_DATA__ECSPI3_SCLK 0x2
 >;
};

The SAI2_TX_BCLK and SAI2_RX_DATA pads are being multiplexed for two different drivers (the
ecspi3 and your LED RGB one). You can comment out the entire definition for ecspi3 or disable it
by changing status to "disabled". Use the code below if you choose the second option:

&ecspi3 {
 fsl,spi-num-chipselects = <1>;
 pinctrl-names = "default";
 pinctrl-0 = <&pinctrl_ecspi3 &pinctrl_ecspi3_cs>;
 cs-gpios = <&gpio5 9 GPIO_ACTIVE_HIGH>, <&gpio6 22 0>;
 status = "disabled";

 [...]
}

LAB 5.2 Device Tree for the SAMA5D2 Processor
From the SAMA5D2B-XULT board, you see that LED_RED_PB6 pin connects to the PB6 pad of the
SAMA5D2 processor, the LED_GREEN_PB5 pin to the PB5 pad and the LED_BLUE_PB0 pin to the
PB0 pad. You have to configure the PB6, PB5 and PB0 pads as GPIO signals. To look for the macro
that assigns the required functionality (GPIO) go to the sama5d2-pinfunc.h file under arch/arm/boot/
dts/ and find the next macros:

#define PIN_PB6__GPIO PINMUX_PIN(PIN_PB6, 0, 0)
#define PIN_PB5__GPIO PINMUX_PIN(PIN_PB5, 0, 0)
#define PIN_PB0__GPIO PINMUX_PIN(PIN_PB0, 0, 0)

According to the data-sheet you can see that the pads can be used for several functionalities. See
below the PB5 and PB6 pads functions:

[157]

Chapter 5 Platform Drivers

[157]

You can see in the sama5d2-pinfunc.h file the macros associated to the PB5 pin, the last two numbers
of the macro correspond to the function of the pad and the IO Set of the signal. For instance
PIN_PB5__TCLK2 has function number 1 (A) and TLCK2 signal correspond to the IO Set 1.
PIN_PB5__D10 has function number 2 (B) and D10 signal correspond to the IO Set 1.

#define PIN_PB5 37
#define PIN_PB5__GPIO PINMUX_PIN(PIN_PB5, 0, 0)
#define PIN_PB5__TCLK2 PINMUX_PIN(PIN_PB5, 1, 1)
#define PIN_PB5__D10 PINMUX_PIN(PIN_PB5, 2, 1)
#define PIN_PB5__PWMH2 PINMUX_PIN(PIN_PB5, 3, 1)
#define PIN_PB5__QSPI1_SCK PINMUX_PIN(PIN_PB5, 4, 2)
#define PIN_PB5__GTSUCOMP PINMUX_PIN(PIN_PB5, 6, 3)

Note: I/Os for each peripheral are grouped into IO sets, listed in the column "IO Set" in the
pinout tables. For all peripherals, it is mandatory to use I/Os that belong to the same IO
set. The timings are not guaranteed when IOs from different IO sets are mixed.

Each pin function node will list the pins it needs and how to configure these pins:

node {
 pinmux = <PIN_NUMBER_PINMUX>;
 GENERIC_PINCONFIG;
};

These are the properties:

•	 pinmux: integer array. Each integer represents a pin number plus mux and ioset settings.
Use the macros from arch/arm/boot/dts/<soc>-pinfunc.h file to get the right representation of
the pin.

•	 GENERIC_PINCONFIG: generic pinconfig options to use, bias-disable, bias-pull-down,
bias-pull-up, drive-open-drain, input-schmitt-enable, input-debounce, output-low, output-
high.

Platform Drivers Chapter 5

[158]

For further info go to the device tree pinctrl documentation binding folder located at
Documentation/devicetree/bindings/pinctrl/ and examine the atmel,at91-pio4-pinctrl.txt file.

You can see in the device tree file at91-sama5d2_xplained_common.dtsi that the
pinctrl_led_gpio_default pin function node is already configured under pinctrl node:

pinctrl@fc038000 {

 pinctrl_adc_default: adc_default {
 pinmux = <PIN_PD23__GPIO>;
 bias-disable;
 };

 [...]

 pinctrl_led_gpio_default: led_gpio_default {
 pinmux = <PIN_PB0__GPIO>,
 <PIN_PB5__GPIO>,
 <PIN_PB6__GPIO>;
 bias-pull-up;
 };

 [...]
}

/ {
 model = "Atmel SAMA5D2 Xplained";
 compatible = "atmel,sama5d2-xplained", "atmel,sama5d2", "atmel,sama5";

 chosen {
 stdout-path = "serial0:115200n8";
 };

 [...]

 ledred {
 compatible = "arrow,RGBleds";
 label = "ledred";
 pinctrl-0 = <&pinctrl_led_gpio_default>;
 };

 ledgreen {
 compatible = "arrow,RGBleds";
 label = "ledgreen";
 };

 ledblue {

[159]

Chapter 5 Platform Drivers

[159]

 compatible = "arrow,RGBleds";
 label = "ledblue";
 };

 [...]
};

You can see that the "gpio-leds" driver is configuring the same LEDs. Disable it by changing status
to "disabled".

leds {
 compatible = "gpio-leds";
 pinctrl-names = "default";
 pinctrl-0 = <&pinctrl_led_gpio_default>;
 status = "disabled";

 red {
 label = "red";
 gpios = <&pioA 38 GPIO_ACTIVE_LOW>;
 };

 green {
 label = "green";
 gpios = <&pioA 37 GPIO_ACTIVE_LOW>;
 };

 blue {
 label = "blue";
 gpios = <&pioA 32 GPIO_ACTIVE_LOW>;
 linux,default-trigger = "heartbeat";
 };
 };

LAB 5.2 Device Tree for the BCM2837 Processor
From the Raspberry Pi 3 Model B board, you see that GPIO EXPANSION GPIO27 pin connects to
the GPIO27 pad of the BCM2837 processor, the GPIO22 pin to GPIO22 pad, and GPIO26 pin to
GPIO26 pad.

Each pin configuration node lists the pin(s) to which it applies, and one or more of the mux
function to select on those pin(s), and pull-up/down configuration. These are the properties:

•	 brcm,pins: An array of cells. Each cell contains the ID of a pin. Valid IDs are the integer
GPIO IDs; 0==GPIO0, 1==GPIO1, ... 53==GPIO53.

•	 brcm,function: Integer, containing the function to mux to the pin(s):
0: GPIO in

Platform Drivers Chapter 5

[160]

1: GPIO out
2: alt5
3: alt4
4: alt0
5: alt1
6: alt2
7: alt3

•	 brcm,pull: Integer, representing the pull-down/up to apply to the pin(s):
0: none
1: down
2: up

Each of brcm,function and brcm,pull may contain either a single value, which will be applied to all
pins in brcm,pins, or 1 value for each entry in brcm,pins.

For further info go to the device tree pinctrl documentation binding folder located at
Documentation/devicetree/bindings/pinctrl/ and examine the brcm,bcm2835-gpio.txt file.

Now, you can modify the device tree file bcm2710-rpi-3-b.dts adding the next code in bold below:

/ {
 model = "Raspberry Pi 3 Model B";
};

&gpio {
 sdhost_pins: sdhost_pins {
 brcm,pins = <48 49 50 51 52 53>;
 brcm,function = <4>; /* alt0 */
 };

 [...]

 led_pins: led_pins {
 brcm,pins = <27 22 26>;
 brcm,function = <1>; /* Output */
 brcm,pull = <1 1 1>; /* Pull down */
 };

};

&soc {
 virtgpio: virtgpio {
 compatible = "brcm,bcm2835-virtgpio";
 gpio-controller;
 #gpio-cells = <2>;

[161]

Chapter 5 Platform Drivers

[161]

 firmware = <&firmware>;
 status = "okay";
 };

 expgpio: expgpio {
 compatible = "brcm,bcm2835-expgpio";
 gpio-controller;
 #gpio-cells = <2>;
 firmware = <&firmware>;
 status = "okay";
 };

 [...]

 ledred {
 compatible = "arrow,RGBleds";
 label = "ledred";
 pinctrl-0 = <&led_pins>;
 };

 ledgreen {
 compatible = "arrow,RGBleds";
 label = "ledgreen";
 };

 ledblue {
 compatible = "arrow,RGBleds";
 label = "ledblue";
 };

 [...]

};

LAB 5.2 Code Description of the "RGB LED platform device" Module
The main code sections of the driver will now be described:

1. Include the function headers:

#include <linux/module.h>
#include <linux/fs.h> /* struct file_operations */
#include <linux/platform_device.h> /* platform_driver_register(), platform_set_
drvdata() */

#include <linux/io.h> /* devm_ioremap(), iowrite32() */
#include <linux/of.h> /* of_property_read_string() */
#include <linux/uaccess.h> /* copy_from_user(), copy_to_user() */
#include <linux/miscdevice.h> /* misc_register() */

Platform Drivers Chapter 5

[162]

2. Define the GPIO masks that will be used to configure the GPIO registers. See below the masks
used for the SAMA5D2 processor:
#define PIO_PB0_MASK (1 << 0) /* blue */
#define PIO_PB5_MASK (1 << 5) /* green */
#define PIO_PB6_MASK (1 << 6) /* red */
#define PIO_CFGR1_MASK (1 << 8) /* masked bits direction (output), no PUEN, no PDEN
*/

#define PIO_MASK_ALL_LEDS (PIO_PB0_MASK | PIO_PB5_MASK | PIO_PB6_MASK)

3. Declare physical I/O register addresses. See below the addresses used in the SAMA5D2
processor:

static int PIO_SODR1 = 0xFC038050;
static int PIO_CODR1 = 0xFC038054;
static int PIO_MSKR1 = 0xFC038040;
static int PIO_CFGR1 = 0xFC038044;

4. Declare __iomen pointers that will hold the virtual addresses returned by the dev_ioremap()
function:

static void __iomem *PIO_SODR1_W;
static void __iomem *PIO_CODR1_W;
static void __iomem *PIO_MSKR1_V;
static void __iomem *PIO_CFGR1_V;

5. You now need to create a private structure that will hold each device specific information. In this
driver, you will handle multiple char devices, so a struct miscdevice will be created for each device,
then initialized and added to your device specific private data structure. The second field of the
private structure is a led_mask variable that will hold a red, green, or blue mask depending of the
device. The last field of the private structure is a char array that will hold the command sent by
the user space application to turn the led on/off.

struct led_dev
{
 struct miscdevice led_misc_device; /* assign device for each led */
 u32 led_mask; /* different mask if led is R,G or B */
 const char *led_name; /* stores "label" string */
 char led_value[8];
};

6. Now, in your probe() routine, declare an instance of this private structure and allocate it for
each new probed device. The probe() function will be called tree times (once per each DT node
matched which includes the "arrow,RGBleds" compatible property) allocating the corresponding
devices:

struct led_dev *led_device;
led_device = devm_kzalloc(&pdev->dev, sizeof(struct led_dev), GFP_KERNEL);

[163]

Chapter 5 Platform Drivers

[163]

7. Obtain virtual addresses in the probe() routine using devm_ioremap() function and store
them in the __iomem pointers. See below the mappings for the SAMA5D2 processor:

PIO_MSKR1_V = devm_ioremap(&pdev->dev, PIO_MSKR1, sizeof(u32));
PIO_SODR1_W = devm_ioremap(&pdev->dev, PIO_SODR1, sizeof(u32));
PIO_CODR1_W = devm_ioremap(&pdev->dev, PIO_CODR1, sizeof(u32));
PIO_CFGR1_V = devm_ioremap(&pdev->dev, PIO_CFGR1, sizeof(u32));

8. Initialize each struct miscdevice structure within the probe() routine. As you have seen in
the Chapter 4, the miscellaneous framework provides a simple layer above character files
for devices that don’t have any other framework to connect to. Registering with the misc
subsystem simplifies the creation of a character file. The of_property_read_string() function
will find and read a string from the property label of each probed device node. The third
argument of the function is a pointer to a char pointer variable. The
of_property_read_string() function will store the "label" string in the address pointed by the
led_name pointer variable.

of_property_read_string(pdev->dev.of_node, "label", &led_device->led_name);

led_device->led_misc_device.minor = MISC_DYNAMIC_MINOR;
led_device->led_misc_device.name = led_device->led_name;
led_device->led_misc_device.fops = &led_fops;

9. When you are creating a character file, a struct file_operations structure is needed to
define which driver´s functions to call when an user opens, closes, reads, and writes to
the char file. This structure will be stored in the struct miscdevice and passed to the misc
subsystem when you register a device to it. One thing to note is that when you use the
misc subsystem, it will automatically handle the "open" function for you. Inside the
automatically created "open" function, it will tie the struct miscdevice that you create to
the private data field for the file that’s being opened. This is useful, so in your write/read
functions you can get access to the struct miscdevice, which will let you get access to the
registers and other custom values for this specific device:

static const struct file_operations led_fops = {
 .owner = THIS_MODULE,
 .read = led_read,
 .write = led_write,
};

/* pass file__operations structure to each created misc device */
led_device->led_misc_device.fops = &led_fops;

10. Register each device with the kernel in the probe() routine using the misc_register() function.
The platform_set_drvdata() function will attach each private structure to each struct
platform_device one. This will allow you to access your private data structure in other parts

Platform Drivers Chapter 5

[164]

of the driver. You will recover the private structure in each remove() function call (called
three times) using the platform_get_drvdata() function:

ret_val = misc_register(&led_device->led_misc_device);
platform_set_drvdata(pdev, led_device);

11. Create the led_write() function that gets called whenever a write operation occurs on one
of the character files. At the time you registered each misc device, you didn’t keep any
pointer to the private struct led_dev structure. However, as the struct miscdevice is accessible
through file->private_data, and is a member of the struct lev_dev structure, you can use a
magic macro to compute the address of the parent structure; the container_of() macro gets
the structure that struct miscdevice is stored inside of (which is your private struct led_dev
structure). The copy_from_user() function will get the on/off command from user space,
then you will write to the corresponding processor´s register to switch on/off the led using
the iowrite32() function:

static ssize_t led_write(struct file *file, const char __user *buff,
 size_t count, loff_t *ppos)
{
 const char *led_on = "on";
 const char *led_off = "off";
 struct led_dev *led_device;

 led_device = container_of(file->private_data,
 struct led_dev, led_misc_device);

 copy_from_user(led_device->led_value, buff, count);

 led_device->led_value[count-1] = '\0';

 /* compare strings to switch on/off the LED */
 if(!strcmp(led_device->led_value, led_on)) {
 iowrite32(led_device->led_mask, PIO_CODR1_W);
 }
 else if (!strcmp(led_device->led_value, led_off)) {
 iowrite32(led_device->led_mask, PIO_SODR1_W);
 }
 else {
 pr_info("Bad value\n");
 return -EINVAL;
 }

 return count;
}

[165]

Chapter 5 Platform Drivers

[165]

12. Create the led_read() function that gets called whenever a read operation occurs on one
of the character device files. Recover the private structure using the container_of() macro
and return to the user application the device´s private structure variable led_value (on/off)
using the copy_to_user() function:
static ssize_t led_read(struct file *file, char __user *buff,
 size_t count, loff_t *ppos)
{
 int len;
 struct led_dev *led_device;

 led_device = container_of(file->private_data, struct led_dev,
 led_misc_device);

 if(*ppos == 0){
 len = strlen(led_device->led_value);
 led_device->led_value[len] = '\n'; /* add \n after on/off */
 copy_to_user(buff, &led_device->led_value, len+1);

 *ppos+=1;
 return sizeof(led_device->led_value); /* exit first func call */
 }

return 0; /* exit and do not recall func again */
}

13. Declare a list of devices supported by the driver. Create an array of structures struct
of_device_id where you initialize with strings the compatible fields that will be used by the
kernel to bind your driver with compatible device tree devices. This will automatically
trigger your driver´s probe() function if the device tree contains a compatible device entry
(the probing happens three times in this driver).

static const struct of_device_id my_of_ids[] = {
 { .compatible = " arrow,RGBleds"},
 {},
}
MODULE_DEVICE_TABLE(of, my_of_ids);

14. Add a struct platform_driver structure that will be registered to the platform bus:
static struct platform_driver led_platform_driver = {
 .probe = led_probe,
 .remove = led_remove,
 .driver = {
 .name = "RGBleds",
 .of_match_table = my_of_ids,
 .owner = THIS_MODULE,
 }
};

Platform Drivers Chapter 5

[166]

15. In the init() function register your driver with the platform bus driver using the
platform_driver_register() function:

static int led_init(void)
{

ret_val = platform_driver_register(&led_platform_driver);
 return 0;
}

16. Build the modified device tree, and load it to the target processor.

See in the next Listing 5-2 the "RGB LED platform device" driver source code (ledRGB_sam_
platform.c) for the SAMA5D2 processor.

Note: The source code for the i.MX7D (ledRGB_imx_platform.c) and BCM2837 (ledRGB_rpi_
platform.c) drivers can be downloaded from the GitHub repository of this book.

Listing 5-2: ledRGB_sam_platform.c
#include <linux/module.h>
#include <linux/fs.h> /* struct file_operations */

/* platform_driver_register(), platform_set_drvdata() */
#include <linux/platform_device.h>
#include <linux/io.h> /* devm_ioremap(), iowrite32() */
#include <linux/of.h> /* of_property_read_string() */
#include <linux/uaccess.h> /* copy_from_user(), copy_to_user() */
#include <linux/miscdevice.h> /* misc_register() */

/* declare a private structure */
struct led_dev
{
 struct miscdevice led_misc_device; /* assign char device for each led */
 u32 led_mask; /* different mask if led is R,G or B */
 const char *led_name; /* assigned value cannot be modified */
 char led_value[8];
};

/* Declare physical addresses */
static int PIO_SODR1 = 0xFC038050;
static int PIO_CODR1 = 0xFC038054;
static int PIO_MSKR1 = 0xFC038040;
static int PIO_CFGR1 = 0xFC038044;

/* Declare __iomem pointers that will keep virtual addresses */
static void __iomem *PIO_SODR1_W;
static void __iomem *PIO_CODR1_W;

[167]

Chapter 5 Platform Drivers

[167]

static void __iomem *PIO_MSKR1_V;
static void __iomem *PIO_CFGR1_V;

/* Declare masks to configure the different registers */
#define PIO_PB0_MASK (1 << 0) /* blue */
#define PIO_PB5_MASK (1 << 5) /* green */
#define PIO_PB6_MASK (1 << 6) /* red */
#define PIO_CFGR1_MASK (1 << 8) /* masked bits direction (output), no PUEN, no PDEN
*/

#define PIO_MASK_ALL_LEDS (PIO_PB0_MASK | PIO_PB5_MASK | PIO_PB6_MASK)

/* send on/off value from your terminal to control each led */
static ssize_t led_write(struct file *file, const char __user *buff,
 size_t count, loff_t *ppos)
{
 const char *led_on = "on";
 const char *led_off = "off";
 struct led_dev *led_device;

 pr_info("led_write() is called.\n");

 led_device = container_of(file->private_data,
 struct led_dev, led_misc_device);

 /*
 * terminal echo add \n character.
 * led_device->led_value = "on\n" or "off\n after copy_from_user"
 * count = 3 for "on\n" and 4 for "off\n"
 */
 if(copy_from_user(led_device->led_value, buff, count)) {
 pr_info("Bad copied value\n");
 return -EFAULT;
 }

 /*
 * Replace \n for \0 in led_device->led_value
 * char array to create a char string
 */
 led_device->led_value[count-1] = '\0';

 pr_info("This message is received from User Space: %s\n",
 led_device->led_value);

 /* compare strings to switch on/off the LED */
 if(!strcmp(led_device->led_value, led_on)) {
 iowrite32(led_device->led_mask, PIO_CODR1_W);
 }

Platform Drivers Chapter 5

[168]

 else if (!strcmp(led_device->led_value, led_off)) {
 iowrite32(led_device->led_mask, PIO_SODR1_W);
 }
 else {
 pr_info("Bad value\n");
 return -EINVAL;
 }

 pr_info("led_write() is exit.\n");
 return count;
}

/*
 * read each LED status on/off
 * use cat from terminal to read
 * led_read is entered until *ppos > 0
 * twice in this function
 */
static ssize_t led_read(struct file *file, char __user *buff,
 size_t count, loff_t *ppos)
{
 int len;
 struct led_dev *led_device;

 led_device = container_of(file->private_data, struct led_dev,
 led_misc_device);

 if(*ppos == 0){
 len = strlen(led_device->led_value);
 pr_info("the size of the message is %d\n", len); /* 2 for on */
 led_device->led_value[len] = '\n'; /* add \n after on/off */
 if(copy_to_user(buff, &led_device->led_value, len+1)){
 pr_info("Failed to return led_value to user space\n");
 return -EFAULT;
 }
 ppos+=1; / increment *ppos to exit the function in next call */
 return sizeof(led_device->led_value); /* exit first func call */
 }

 return 0; /* exit and do not recall func again */
}

static const struct file_operations led_fops = {
 .owner = THIS_MODULE,
 .read = led_read,
 .write = led_write,
};

[169]

Chapter 5 Platform Drivers

[169]

static int __init led_probe(struct platform_device *pdev)
{
 /* create a private structure */
 struct led_dev *led_device;
 int ret_val;

 /* initialize all the leds to off */
 char led_val[8] = "off\n";

 pr_info("led_probe enter\n");

 /* Get virtual addresses */
 PIO_MSKR1_V = devm_ioremap(&pdev->dev, PIO_MSKR1, sizeof(u32));
 PIO_SODR1_W = devm_ioremap(&pdev->dev, PIO_SODR1, sizeof(u32));
 PIO_CODR1_W = devm_ioremap(&pdev->dev, PIO_CODR1, sizeof(u32));
 PIO_CFGR1_V = devm_ioremap(&pdev->dev, PIO_CFGR1, sizeof(u32));

 /* Initialize all the virtual registers */
 iowrite32(PIO_MASK_ALL_LEDS, PIO_MSKR1_V); /* Enable all leds */
 iowrite32(PIO_CFGR1_MASK, PIO_CFGR1_V); /* set enabled leds to output */
 iowrite32(PIO_MASK_ALL_LEDS, PIO_SODR1_W); /* Clear all the leds */

 /* Allocate a private structure */
 led_device = devm_kzalloc(&pdev->dev, sizeof(struct led_dev), GFP_KERNEL);

 /*
 * read each node label property in each probe() call
 * probe() is called 3 times, once per compatible = "arrow,RGBleds"
 * found below each ledred, ledgreen and ledblue node
 */
 of_property_read_string(pdev->dev.of_node, "label", &led_device->led_name);

 /* create a device for each led found */
 led_device->led_misc_device.minor = MISC_DYNAMIC_MINOR;
 led_device->led_misc_device.name = led_device->led_name;
 led_device->led_misc_device.fops = &led_fops;

 /* Assigns a different mask for each led */
 if (strcmp(led_device->led_name,"ledred") == 0) {
 led_device->led_mask = PIO_PB6_MASK;
 }
 else if (strcmp(led_device->led_name,"ledgreen") == 0) {
 led_device->led_mask = PIO_PB5_MASK;
 }
 else if (strcmp(led_device->led_name,"ledblue") == 0) {
 led_device->led_mask = PIO_PB0_MASK;
 }
 else {

Platform Drivers Chapter 5

[170]

 pr_info("Bad device tree value\n");
 return -EINVAL;
 }

 /* Initialize each led status to off */
 memcpy(led_device->led_value, led_val, sizeof(led_val));

 /* register each led device */
 ret_val = misc_register(&led_device->led_misc_device);
 if (ret_val) return ret_val; /* misc_register returns 0 if success */

 /*
 * Attach the private structure to the pdev structure
 * to recover it in each remove() function call
 */
 platform_set_drvdata(pdev, led_device);

 pr_info("leds_probe exit\n");

 return 0;
}

/* The remove() function is called 3 times, once per led */
static int __exit led_remove(struct platform_device *pdev)
{
 struct led_dev *led_device = platform_get_drvdata(pdev);

 pr_info("leds_remove enter\n");

 misc_deregister(&led_device->led_misc_device);

 pr_info("leds_remove exit\n");

 return 0;
}

static const struct of_device_id my_of_ids[] = {
 { .compatible = "arrow,RGBleds"},
 {},
};
MODULE_DEVICE_TABLE(of, my_of_ids);

static struct platform_driver led_platform_driver = {
 .probe = led_probe,
 .remove = led_remove,
 .driver = {
 .name = "RGBleds",
 .of_match_table = my_of_ids,

[171]

Chapter 5 Platform Drivers

[171]

 .owner = THIS_MODULE,
 }
};

static int led_init(void)
{
 int ret_val;
 pr_info("demo_init enter\n");

 ret_val = platform_driver_register(&led_platform_driver);
 if (ret_val !=0)
 {
 pr_err("platform value returned %d\n", ret_val);
 return ret_val;
 }

 pr_info("demo_init exit\n");
 return 0;
}

static void led_exit(void)
{
 pr_info("led driver enter\n");

 /* Clear all the leds before exiting */
 iowrite32(PIO_MASK_ALL_LEDS, PIO_SODR1_W);

 platform_driver_unregister(&led_platform_driver);

 pr_info("led driver exit\n");
}

module_init(led_init);
module_exit(led_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Alberto Liberal <aliberal@arroweurope.com>");
MODULE_DESCRIPTION("This is a platform driver that turns on/off \
 three led devices");

ledRGB_sam_platform.ko Demonstration
root@sama5d2-xplained:~# insmod ledRGB_sam_platform.ko /* load module */
root@sama5d2-xplained:~# ls /dev/led* /* see led devices */
root@sama5d2-xplained:~# echo on > /dev/ledblue /* set led blue ON */
root@sama5d2-xplained:~# echo on > /dev/ledred /* set led red ON */
root@sama5d2-xplained:~# echo on > /dev/ledgreen /* set led green ON */

Platform Drivers Chapter 5

[172]

root@sama5d2-xplained:~# echo off > /dev/ledgreen /* set led green OFF */
root@sama5d2-xplained:~# echo off > /dev/ledred /* set led red OFF */
root@sama5d2-xplained:~# cat /dev/ledblue /* check led blue status */
root@sama5d2-xplained:~# cat /dev/ledgreen /* check led green status */
root@sama5d2-xplained:~# cat /dev/ledred /* check led red status */
root@sama5d2-xplained:~# rmmod ledRGB_sam_platform.ko /* remove module */

Platform Driver Resources
Each device managed by a particular driver typically uses different hardware resources (for
example, memory addresses for the I/O registers, DMA channels, IRQ lines).

The platform driver has access to the resources through a kernel API. These kernel functions
automatically read standard platform device parameters from the struct platform_device resource array
declared at include/linux/platform_device.h. This resource array has been filled with the DT device node
resource properties (for example, reg, clocks, interrupts). See the different resource properties that can be
accesed by index in the resource-names.txt file located under Documentation/devicetree/bindings/.

struct platform_device {
 const char *name;
 u32 id;
 struct device dev;
 u32 num_resources;
 struct resource *resource;
};

See below the definition of the struct resource structure:

struct resource {
 resource_size_t start; /* unsigned int (resource_size_t) */
 resource_size_t end;
 const char *name;
 unsigned long flags;
 unsigned long desc;
 struct resource *parent, *sibling, *child;
 };

This is the meaning of each element included in the previous structure:

•	 start/end: This represents where the resource begins/ends. For I/O or memory regions, it
represents where they begin/end. For IRQ lines, buses or DMA channels, start/end must
have the same value

•	 flags: This is a mask that characterizes the type of resource, for example
IORESOURCE_MEM

•	 name: This identifies or describes the resource

[173]

Chapter 5 Platform Drivers

[173]

There are a number of helper functions that get data out from the resource array:

1. platform_get_resource() defined as a function in drivers/base/platform.c gets a resource
for a device, and returns a struct resource structure filled with the resource values so
that you can use these values later in the driver code, for example, to map them in the
virtual space using devm_ioremap() if they are physical memory addresses (specified with
IORESOURCE_MEM type). In the platform_get_resource() function all the array resources
are checked until the resource type is found, and then the struct resource is returned. See
the code of the platform_get_resource() function below:

struct resource *platform_get_resource(struct platform_device *dev,
 unsigned int type,

 unsigned int num)
{

int i;
 for (i = 0; i < dev->num_resources; i++) {

struct resource *r = &dev->resource[i];
 if (type == resource_type(r) && num-- == 0)
 return r;
 }
 return NULL;
 }

The first parameter tells the function which device you are interested in, so it can
extract the info needed. The second parameter depends on what kind of resource
you are handling. If it is memory (or anything that can be mapped as memory) then
it's IORESOURCE_MEM. You can see all the macros at include/linux/ioport.h. The last
parameter determines which resource of that type is desired, with zero indicating the
first one. Thus, for example, a driver could find and map its second MMIO region (DT reg
property) with the next lines of code:

struct resource *r;
r = platform_get_resource(pdev, IORESOURCE_MEM, 1);

/* ioremap your memory region */
g_ioremap_addr = devm_ioremap(dev, r->start, resource_size(r));

The return value r is a pointer to the struct resource variable:

The resource_size() function will return from the struct resource the memory size that will be
mapped:

static inline resource_size_t resource_size(const struct resource *res)
{

return res->end - res->start + 1;
}

Platform Drivers Chapter 5

[174]

2. platform_get_irq() will extract the struct resource from the struct platform_device structure
retrieving one of the interrupts properties declared in the device tree node. This function
will be explained in more detail in the chapter 7.

Linux LED Class
The LED class will simplify the development of drivers that control LEDs. A "class" is both the
implementation of a set of devices, and the set of devices themselves. A class can be thought of as a
driver in the more general sense of the word. The device model has specific objects called "drivers"
but a "class" is not one of those.

All the devices in a particular class tend to expose much the same interface, either to other devices
or to user space (via sysfs or otherwise). Exactly how uniform the included devices are is really
up to the class though. Some aspects of the interfaces are optional and not all devices implement
them. It is not unheard-of for some devices in the same class to be completely different from
others.

The LED class supports the blinking, flashing, and brightness control features of physical LEDs.
This class requires an underlying device to be available (/sys/class/leds/<device>/). This underlying
device must be able to turn the LED on or off, may be able to set the brightness, and might even
provide timer functionality to autonomously blink the LED with a given period and duty cycle.
Using the brightness file under each device subdirectory, the appropriate LED could be set to
different brightness levels, for example, not just turned on and off but also dimmed. The data type
used for passing the brightness level, enum led_brightness defines only the levels LED_OFF,
LED_HALF and LED_FULL:

enum led_brightness {
 LED_OFF = 0,
 LED_HALF = 127,
 LED_FULL = 255,
};

The LED class introduces the optional concept of LED trigger. A trigger is a kernel based source
of led events. The timer trigger is an example that will periodically change the LED brightness
between LED_OFF and the current brightness setting. The "on" and "off" time can be specified via
/sys/class/leds/<device>/delay_{on,off} sysfs entry in milliseconds. You can change the brightness
value of a LED independently of the timer trigger. However, if you set the brightness value to
LED_OFF it will also disable the timer trigger.

A driver registering a LED class device first needs to allocate and fill a struct led_classdev structure
defined in include/linux/leds.h, then will call the devm_led_classdev_register() function defined in
drivers/leds/led-class.c, which registers a new LED class object.

[175]

Chapter 5 Platform Drivers

[175]

struct led_classdev {
 const char *name;
 enum led_brightness brightness;
 enum led_brightness max_brightness;

 [...]

 /* Set LED brightness level
 * Must not sleep. Use brightness_set_blocking for drivers
 * that can sleep while setting brightness.
 */
 void (*brightness_set)(struct led_classdev *led_cdev,
 enum led_brightness brightness);
 /*
 * Set LED brightness level immediately - it can block the caller for
 * the time required for accessing a LED device register.
 */
 int (*brightness_set_blocking)(struct led_classdev *led_cdev,
 enum led_brightness brightness);
 /* Get LED brightness level */
 enum led_brightness (*brightness_get)(struct led_classdev *led_cdev);

 /*
 * Activate hardware accelerated blink, delays are in milliseconds
 * and if both are zero then a sensible default should be chosen.
 * The call should adjust the timings in that case and if it can't
 * match the values specified exactly.
 * Deactivate blinking again when the brightness is set to LED_OFF
 * via the brightness_set() callback.
 */
 int (*blink_set)(struct led_classdev *led_cdev,
 unsigned long *delay_on,
 unsigned long *delay_off);

 [...]

#ifdef CONFIG_LEDS_TRIGGERS
 /* Protects the trigger data below */
 struct rw_semaphore trigger_lock;

 struct led_trigger *trigger;
 struct list_head trig_list;
 void *trigger_data;
 /* true if activated - deactivate routine uses it to do cleanup */
 bool activated;
#endif

 /* Ensures consistent access to the LED Flash Class device */

Platform Drivers Chapter 5

[176]

 struct mutex led_access;
};

/*
 * devm_led_classdev_register - resource managed led_classdev_register()
 * @parent: The device to register.
 * @led_cdev: the led_classdev structure for this device.
 */
int devm_led_classdev_register(struct device *parent,
 struct led_classdev *led_cdev)
{
 struct led_classdev **dr;
 int rc;

 dr = devres_alloc(devm_led_classdev_release, sizeof(*dr), GFP_KERNEL);
 if (!dr)
 return -ENOMEM;

 rc = led_classdev_register(parent, led_cdev);
 if (rc) {
 devres_free(dr);
 return rc;
 }

 *dr = led_cdev;
 devres_add(parent, dr);

 return 0;
}

LAB 5.3: "RGB LED class" Module
In the previous lab 5.2, you switched on/off several LEDs creating a char device for each LED
device using the misc framework and writing to several GPIO registers. You used the kernel write
file operation and the kernel copy_from_user() function to transmit a char array (on/off command)
from user to kernel space.

In this lab 5.3, you will use the LED subsystem to achieve something very similar to the lab 5.2
but simplifying the code and adding more functionalities such us blinking each LED with a given
period and duty cycle.

LAB 5.3 DT for the i.MX7D, SAMA5D2 and BCM2837 Processors
In this lab 5.3, you will keep the same DT GPIO multiplexing of the previous lab 5.2, as you will
use the same processor´s pads to control the LEDs. In the lab 5.2 a DT device node was declared for

[177]

Chapter 5 Platform Drivers

[177]

each used LED, whereas in this lab 5.3 you will declare a main LED RGB device node that includes several
sub-nodes, each one representing an individual LED.

You will use in this new driver the for_each_child_of_node() function to walk through sub-nodes of the
main node. Only the main node will have the compatible property, so after the matching between the
device and the driver is done, the probe() function will be called only once retrieving the info included in
all the sub-nodes. The LED RGB device has a reg property that includes a GPIO register base address, and
the size of the address region it is assigned. After the driver and the device are probed, the
platform_get_resource() function returns a struct resource filled with the reg property values so that you
can use these values later in the driver code, mapping them in the virtual space using the devm_ioremap()
function.

For the MCIMX7D-SABRE board modify the device tree file imx7d-sdb.dts adding the next code in bold.
The i.MX7D GPIO memory map is shown in the section 8.3.5 GPIO Memory Map/Register Definition of the
i.MX 7Dual Applications Processor Reference Manual, Rev. 0.1, 08/2016. The 0x30200000 base address of the reg
property is the GPIO data register (GPIO1_DR) address.

/ {
 model = "Freescale i.MX7 SabreSD Board";
 compatible = "fsl,imx7d-sdb", "fsl,imx7d";

 memory {
 reg = <0x80000000 0x80000000>;
 };

 [...]

ledclassRGB {
 compatible = "arrow,RGBclassleds";
 reg = <0x30200000 0x60000>;
 pinctrl-names = "default";
 pinctrl-0 = <&pinctrl_gpio_leds &pinctrl_gpio_led>;
 red {
 label = "red";
 };

 green {
 label = "green";
 };

 blue {
 label = "blue";
 linux,default-trigger = "heartbeat";
 };
};

Platform Drivers Chapter 5

[178]

[...]

For the SAMA5D2B-XULT board modify the device tree file at91-sama5d2_xplained_common.dtsi
adding the next code in bold. The 0xFC038000 base address of the reg property is the PIO Mask
Register (PIO_MSKR0) address. See the section 34.7.1 PIO Mask Register of the SAMA5D2 Series
Datasheet.

/ {
 model = "Atmel SAMA5D2 Xplained";
 compatible = "atmel,sama5d2-xplained", "atmel,sama5d2", "atmel,sama5";

 chosen {
 stdout-path = "serial0:115200n8";
 };

 [...]

 ledclassRGB {
 compatible = "arrow,RGBclassleds";
 reg = <0xFC038000 0x4000>;
 pinctrl-names = "default";
 pinctrl-0 = <&pinctrl_led_gpio_default>;
 status = "okay";

 red {
 label = "red";
 };

 green {
 label = "green";
 };

 blue {
 label = "blue";
 linux,default-trigger = "heartbeat";
 };
 };

 [...]
};

For the Raspberry Pi 3 Model B board modify the device tree file bcm2710-rpi-3-b.dts adding
the next code in bold. The 0x7e200000 base address of the reg property is the GPFSEL0 register
address. See the section 6.1 Register View of the BCM2835 ARM Peripherals guide.

/ {
 model = "Raspberry Pi 3 Model B";
};

[179]

Chapter 5 Platform Drivers

[179]

&soc {

 [...]

 expgpio: expgpio {
 compatible = "brcm,bcm2835-expgpio";
 gpio-controller;
 #gpio-cells = <2>;
 firmware = <&firmware>;
 status = "okay";
 };

 [...]

 ledclassRGB {
 compatible = "arrow,RGBclassleds";
 reg = <0x7e200000 0xb4>;
 pinctrl-names = "default";
 pinctrl-0 = <&led_pins>;

 red {
 label = "red";
 };

 green {
 label = "green";
 };

 blue {
 label = "blue";
 linux,default-trigger = "heartbeat";
 };
 };

 [...]

};

Platform Drivers Chapter 5

[180]

LAB 5.3 Code Description of the "RGB LED class" Module
The main code sections of the driver will now be described:

1. Include the function headers:

#include <linux/module.h>
#include <linux/fs.h> /* struct file_operations */
#include <linux/platform_device.h> /* platform_driver_register(), platform_set_
drvdata(), platform_get_resource() */
#include <linux/io.h> /* devm_ioremap(), iowrite32() */
#include <linux/of.h> /* of_property_read_string() */
#include <linux/leds.h> /* misc_register() */

2. Define the GPIO masks that will be used to configure the GPIO registers. You will take the
base address included in the DT reg property as a reference, adding an offset to it for each
of the registers. See below the masks used for the SAMA5D2 processor:

#define PIO_SODR1_offset 0x50
#define PIO_CODR1_offset 0x54
#define PIO_CFGR1_offset 0x44
#define PIO_MSKR1_offset 0x40

#define PIO_PB0_MASK (1 << 0)
#define PIO_PB5_MASK (1 << 5)
#define PIO_PB6_MASK (1 << 6)
#define PIO_CFGR1_MASK (1 << 8)

#define PIO_MASK_ALL_LEDS (PIO_PB0_MASK | PIO_PB5_MASK | PIO_PB6_MASK)

3. You need to create a private structure that will hold the RGB LED device´s specific
information. In this driver, the first field of the private structure is a led_mask variable
that will hold a red, green, or blue mask depending of the LED device under control. The
second field of the private structure is an __iomem pointer holding the GPIO register base
address. The last field of the private structure is a struct led_classdev that will be initialized
with some specific device settings. You will allocate a private structure for each sub-node
device found.

struct led_dev
{
 u32 led_mask; /* different mask if led is R,G or B */
 void __iomem *base;
 struct led_classdev cdev;
};

[181]

Chapter 5 Platform Drivers

[181]

4. See below an extract of the probe() routine with the main lines of code marked in bold:

•	 The platform_get_resource() function gets the I/O registers resource described by the DT
reg property.

•	 The dev_ioremap() function maps the area of register addresses to kernel's virtual
addresses

•	 The for_each_child_of_node() function walks for each sub-node of the main node
allocating a private structure for each one using the devm_kzalloc() function, then
initialize the struct led_classdev field of each allocated private structure.

•	 The devm_led_classdev_register() function registers each LED class device to the LED
subsystem.

static int __init ledclass_probe(struct platform_device *pdev)

{
void __iomem *g_ioremap_addr;

 struct device_node *child;
 struct resource *r;
 struct device *dev = &pdev->dev;
 int count, ret;

 /* get your first memory resource from device tree */
 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);

 /* ioremap your memory region */
 g_ioremap_addr = devm_ioremap(dev, r->start, resource_size(r));
 if (!g_ioremap_addr) {
 dev_err(dev, "ioremap failed \n");
 return -ENOMEM;
 }

 [...]

 /* parse each children device under LED RGB parent node */
 for_each_child_of_node(dev->of_node, child){

 struct led_dev *led_device;
 /* create a led_classdev struct for each child device */
 struct led_classdev *cdev;

 /* Allocate a private structure in each "for" iteration */
 led_device = devm_kzalloc(dev, sizeof(*led_device), GFP_KERNEL);
 cdev = &led_device->cdev;

led_device->base = g_ioremap_addr;

 /* assigns a mask to each children (child) device */
 of_property_read_string(child, "label", &cdev->name);

Platform Drivers Chapter 5

[182]

 if (strcmp(cdev->name,"red") == 0) {
 led_device->led_mask = PIO_PB6_MASK;
 led_device->cdev.default_trigger = "heartbeat";
 }
 else if (strcmp(cdev->name,"green") == 0) {
 led_device->led_mask = PIO_PB5_MASK;
 }
 else if (strcmp(cdev->name,"blue") == 0) {
 led_device->led_mask = PIO_PB0_MASK;
 }
 else {
 dev_info(dev, "Bad device tree value\n");
 return -EINVAL;
 }

/* Initialize each led_classdev struct */
 /* Disable timer trigger until led is on */
 led_device->cdev.brightness = LED_OFF;
 led_device->cdev.brightness_set = led_control;

/* register each LED class device */
 ret = devm_led_classdev_register(dev, &led_device->cdev);
 }

 dev_info(dev, "leds_probe exit\n");

 return 0;
}

5. Write the LED brightness led_control() function. Every time you write to the sysfs brightness
entry (/sys/class/leds/<device>/brightness) under each device, the led_control() function is
called. The LED subsystem hides the complexity of creating a class, the devices under the
class and the sysfs entries under each of the devices. Every time you write to the brightness
sysfs entry, the private structure associated to each device is recovered using the
container_of() function, then you can write to each register using the iowrite32() function,
that takes as a first parameter the recovered led_mask value associated to each LED. See
below the led_control() function for the SAMA5D2 processor:

static void led_control(struct led_classdev *led_cdev, enum led_brightness b)
{

struct led_dev *led = container_of(led_cdev, struct led_dev, cdev);
iowrite32(PIO_MASK_ALL_LEDS, led->base + PIO_SODR1_offset);

if (b != LED_OFF) /* LED ON */
 iowrite32(led->led_mask, led->base + PIO_CODR1_offset);
 else
 /* LED OFF */

[183]

Chapter 5 Platform Drivers

[183]

 iowrite32(led->led_mask, led->base + PIO_SODR1_offset);
}

6. Declare a list of devices supported by the driver.

static const struct of_device_id my_of_ids[] = {
 { .compatible = "arrow,RGBclassleds"},
 {},
};
MODULE_DEVICE_TABLE(of, my_of_ids);

7. Add a struct platform_driver structure that will be registered to the platform bus:

static struct platform_driver led_platform_driver = {
 .probe = led_probe,
 .remove = led_remove,
 .driver = {
 .name = "RGBclassleds",
 .of_match_table = my_of_ids,
 .owner = THIS_MODULE,
 }
};

8. In the init() function register your driver with the platform bus using the
platform_driver_register() function:

static int led_init(void)
{

ret_val = platform_driver_register(&led_platform_driver);
 return 0;
}

9. Build the modified device tree, and load it to the target processor.

See in the next Listing 5-3 the "RGB LED class" driver source code (ledRGB_sam_class_platform.c) for
the SAMA5D2 processor.

Note: The source code for the i.MX7D (ledRGB_imx_class_platform.c) and BCM2837 (ledRGB_rpi_
class_platform.c) drivers can be downloaded from the GitHub repository of this book.

Platform Drivers Chapter 5

[184]

Listing 5-3: ledRGB_sam_class_platform.c
#include <linux/module.h>
#include <linux/fs.h>
#include <linux/platform_device.h>
#include <linux/io.h>
#include <linux/of.h>
#include <linux/leds.h>

#define PIO_SODR1_offset 0x50
#define PIO_CODR1_offset 0x54
#define PIO_CFGR1_offset 0x44
#define PIO_MSKR1_offset 0x40

#define PIO_PB0_MASK (1 << 0)
#define PIO_PB5_MASK (1 << 5)
#define PIO_PB6_MASK (1 << 6)
#define PIO_CFGR1_MASK (1 << 8)

#define PIO_MASK_ALL_LEDS (PIO_PB0_MASK | PIO_PB5_MASK | PIO_PB6_MASK)

struct led_dev
{
 u32 led_mask; /* different mask if led is R,G or B */
 void __iomem *base;
 struct led_classdev cdev;
};

static void led_control(struct led_classdev *led_cdev, enum led_brightness b)
{
 struct led_dev *led = container_of(led_cdev, struct led_dev, cdev);

 iowrite32(PIO_MASK_ALL_LEDS, led->base + PIO_SODR1_offset);

 if (b != LED_OFF) /* LED ON */
 iowrite32(led->led_mask, led->base + PIO_CODR1_offset);
 else
 iowrite32(led->led_mask, led->base + PIO_SODR1_offset); /* LED OFF */
}

static int __init ledclass_probe(struct platform_device *pdev)
{
 void __iomem *g_ioremap_addr;
 struct device_node *child;
 struct resource *r;
 struct device *dev = &pdev->dev;
 int count, ret;

[185]

Chapter 5 Platform Drivers

[185]

 dev_info(dev, "platform_probe enter\n");

 /* get your first memory resource from device tree */
 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
 if (!r) {
 dev_err(dev, "IORESOURCE_MEM, 0 does not exist\n");
 return -EINVAL;
 }
 dev_info(dev, "r->start = 0x%08lx\n", (long unsigned int)r->start);
 dev_info(dev, "r->end = 0x%08lx\n", (long unsigned int)r->end);

 /* ioremap your memory region */
 g_ioremap_addr = devm_ioremap(dev, r->start, resource_size(r));
 if (!g_ioremap_addr) {
 dev_err(dev, "ioremap failed \n");
 return -ENOMEM;
 }

 count = of_get_child_count(dev->of_node);
 if (!count)
 return -EINVAL;

 dev_info(dev, "there are %d nodes\n", count);

 /* Enable all leds and set dir to output */
 iowrite32(PIO_MASK_ALL_LEDS, g_ioremap_addr + PIO_MSKR1_offset);
 iowrite32(PIO_CFGR1_MASK, g_ioremap_addr + PIO_CFGR1_offset);

 /* Switch off all the leds */
 iowrite32(PIO_MASK_ALL_LEDS, g_ioremap_addr + PIO_SODR1_offset);

 for_each_child_of_node(dev->of_node, child){

 struct led_dev *led_device;
 struct led_classdev *cdev;
 led_device = devm_kzalloc(dev, sizeof(*led_device), GFP_KERNEL);
 if (!led_device)
 return -ENOMEM;

 cdev = &led_device->cdev;

 led_device->base = g_ioremap_addr;

 of_property_read_string(child, "label", &cdev->name);

 if (strcmp(cdev->name,"red") == 0) {
 led_device->led_mask = PIO_PB6_MASK;
 led_device->cdev.default_trigger = "heartbeat";

Platform Drivers Chapter 5

[186]

 }
 else if (strcmp(cdev->name,"green") == 0) {
 led_device->led_mask = PIO_PB5_MASK;
 }
 else if (strcmp(cdev->name,"blue") == 0) {
 led_device->led_mask = PIO_PB0_MASK;
 }
 else {
 dev_info(dev, "Bad device tree value\n");
 return -EINVAL;
 }

 /* Disable timer trigger until led is on */
 led_device->cdev.brightness = LED_OFF;
 led_device->cdev.brightness_set = led_control;

 ret = devm_led_classdev_register(dev, &led_device->cdev);
 if (ret) {
 dev_err(dev, "failed to register the led %s\n", cdev->name);
 of_node_put(child);
 return ret;
 }
 }

 dev_info(dev, "leds_probe exit\n");

 return 0;
}

static int __exit ledclass_remove(struct platform_device *pdev)
{
 dev_info(&pdev->dev, "leds_remove enter\n");
 dev_info(&pdev->dev, "leds_remove exit\n");

 return 0;
}

static const struct of_device_id my_of_ids[] = {
 { .compatible = "arrow,RGBclassleds"},
 {},
};
MODULE_DEVICE_TABLE(of, my_of_ids);

static struct platform_driver led_platform_driver = {
 .probe = ledclass_probe,
 .remove = ledclass_remove,
 .driver = {
 .name = "RGBclassleds",

[187]

Chapter 5 Platform Drivers

[187]

 .of_match_table = my_of_ids,
 .owner = THIS_MODULE,
 }
};

static int ledRGBclass_init(void)
{
 int ret_val;
 pr_info("demo_init enter\n");

 ret_val = platform_driver_register(&led_platform_driver);
 if (ret_val !=0)
 {
 pr_err("platform value returned %d\n", ret_val);
 return ret_val;

 }

 pr_info("demo_init exit\n");
 return 0;
}

static void ledRGBclass_exit(void)
{
 pr_info("led driver enter\n");

 platform_driver_unregister(&led_platform_driver);

 pr_info("led driver exit\n");
}

module_init(ledRGBclass_init);
module_exit(ledRGBclass_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Alberto Liberal <aliberal@arroweurope.com>");
MODULE_DESCRIPTION("This is a driver that turns on/off RGB leds \

 using the LED subsystem");

Platform Drivers Chapter 5

[188]

ledRGB_sam_class_platform.ko Demonstration
root@sama5d2-xplained:~# insmod ledRGB_sam_class_platform.ko /* load module, see the
led red blinking due to the heartbeat default trigger */
root@sama5d2-xplained:/sys/class/leds# ls /* check the devices under the LED class
*/
root@sama5d2-xplained:/sys/class/leds/red# echo 0 > brightness /* set led red OFF */
root@sama5d2-xplained:/sys/class/leds/red# echo 1 > brightness /* set led red ON */
root@sama5d2-xplained:/sys/class/leds/blue# echo 1 > brightness /* set led blue ON
and red OFF */
root@sama5d2-xplained:/sys/class/leds/green# echo 1 > brightness /* set led green ON
and blue OFF */
root@sama5d2-xplained:/sys/class/leds/green# ls /* check the sysfs entries under
green device */
root@sama5d2-xplained:/sys/class/leds/green# echo timer > trigger /* set the timer
trigger and see the led green blinking */
root@sama5d2-xplained:~# rmmod ledRGB_sam_class_platform.ko /* remove the module */

Platform Device Drivers in the User Space
Device drivers in Linux traditionally run in kernel space, but can also run in user space. It is not
always necessary to write a device driver for a device, especially in applications where no two
applications will require exclusive access. The most useful example of this is a memory mapped
device, but you can also do this with devices in the I/O space.

The Linux user space provides several advantages for device drivers, including more robust and
flexible process management, standardized system call interface, simpler resource management,
large number of libraries for XML or other configuration methods, and regular expression
parsing, among others. Each call to the kernel (system call) must perform a switch from user
mode to supervisor mode, and then back again. This takes time, which can become a performance
bottleneck if the calls are frequent. It also makes applications more straightforward to debug
by providing memory isolation and independent restart. At the same time, while kernel space
applications need to conform to General Public License guidelines, user space applications are not
bound by such restrictions.

On the other hand, user space drivers have their own drawbacks. Interrupt handling is the biggest
challenge for a user space driver. The function handling an interrupt is called in privileged
execution mode, often called supervisor mode. User space drivers have no permission to execute
in privileged execution mode, making it impossible for user space drivers to implement an
interrupt handler. To deal with this problem you can perform polling or have a small kernel space
driver handling only the interrupt. In the latter case, you can inform to the user space driver of
an interrupt either by a blocking call, which unblocks when an interrupt occurs, or using a POSIX
signal to preempt the user space driver. If your driver must be accessible to multiple processes at

[189]

Chapter 5 Platform Drivers

[189]

once, and/or manage contention for a resource, then you also need to write a real device driver at
the kernel level, and an user space device driver will not be sufficient or even possible. Allocating
memory that can be used for DMA transfers is also non-trivial for user space drivers. In kernel
space there are also frameworks that help solve device interdepencies.

The main advantages and disadvantages of using user space and kernel space drivers are
summarized below:

1. User space driver advantages:

•	 Easy to debug as debug tools are more readily available for application development.
•	 User space services such as floating point are available.
•	 Device access is very efficient as there is no system call required.
•	 The application API of Linux is very stable.
•	 The driver can be written in any language, not just C.

2. User space driver disadvantages:

•	 No access to the kernel frameworks and services.
•	 Interrupt handling cannot be done in user space. It must be handled by a kernel

driver.
•	 There is no predefined API to allow applications to access the device driver.

3. Kernel space driver advantages:

•	 Run in kernel space in the highest privilege mode to allow access to interrupts and
hardware resources.

•	 There are a lot of kernel services such that kernel space drivers can be designed for
complex devices.

•	 The kernel provides an API to user space, which allows multiple applications to access
a kernel space driver simultaneously.

4. Kernel space driver disadvantages:

•	 System call overhead to access drivers.
•	 Challenging to debug.
•	 Frequent kernel API changes. Kernel drivers built for one kernel version may not build

for another.

Platform Drivers Chapter 5

[190]

The following image shows how an user space driver might be designed. The application
interfaces to the user space part of the driver. The user space part handles hardware, but uses its
kernel space part for startup, shutdown, and receiving interrupts.

User Defined I/O: UIO
The Linux kernel provides a framework for developing user space drivers called UIO. This is
a generic kernel driver that allows you to write user space drivers that are able to access device
registers and handle interrupts.

There are two distinct UIO device drivers provided by Linux under drivers/uio/ folder:

1. UIO driver (drivers/uio.c):

•	 The UIO driver creates files attributes in the sysfs describing the UIO device. It also
maps the device memory into the process address space using its mmap() function.

•	 A minimal kernel space driver uio_pdrv_genirq ("UIO platform driver with generic
interrupts"), or user provided kernel driver is required to setup the UIO framework.
The uio.c driver contains common support routines that are used by the
uio_pdrv_genirq.c driver.

[191]

Chapter 5 Platform Drivers

[191]

2. UIO platform device driver (drivers/uio_pdev_genirq.c):

•	 It provides the required kernel space driver for UIO.
•	 It works with the device tree. The device tree node for the device needs to use

"generic-uio" in it’s compatible property.
•	 The UIO platform device driver is configured from the device tree and registers an

UIO device.

Platform Drivers Chapter 5

[192]

The UIO platform device driver can be replaced by a user provided kernel driver. The kernel space
driver is a platform driver configured from the device tree that registers an UIO device inside the
probe() function. The device tree node for the device can use whatever you want in the compatible
property, as it only has to match with the compatible string used in the kernel space driver, as with
any other platform device driver.

The UIO drivers must be enabled in the kernel. Configure the kernel with menuconfig. Navigate
from the main menu -> Device Drivers -> Userspace I/O drivers. Hit <spacebar> once to see a <*>
appear next to the new configuration. Hit <Exit> until you exit the menuconfig GUI and remember
to save the new configuration. Compile the new image and copy it to the tftp folder.

How UIO Works
Each UIO device is accessed through a device file and several sysfs attribute files. The device
file will be called /dev/uio0 for the first device, and /dev/uio1, /dev/uio2 and so on for subsequent
devices.

The UIO driver in the kernel creates file attributes in the sys filesystem describing the UIO device.
The directory /sys/class/uio/ is the root for all the file attributes. A separate numbered directory
structure is created under /sys/class/uio/ for each UIO device:

[193]

Chapter 5 Platform Drivers

[193]

1. First UIO device: /sys/class/uio/uio0.
2. The /sys/class/uio/uio0/name directory contains the name of the device which correlates to

the name in the struct uio_info structure.
3. The /sys/class/uio/uio0/maps directory has all the memory ranges for the device.
4. Each UIO device can make one or more memory regions available for memory mapping.

Each mapping has its own directory in sysfs, the first mapping appears as /sys/class/uio/
uioX/maps/map0/. Subsequent mappings create directories map1/, map2/, and so on.
These directories will only appear if the size of the mapping is not 0. Each mapX/ directory
contains four read-only files that show attributes of the memory:

•	 name: A string identifier for this mapping. This is optional, the string can be empty.
Drivers can set this to make it easier for user space to find the correct mapping.

•	 addr: The address of memory that can be mapped.
•	 size: The size, in bytes, of the memory pointed to by addr.
•	 offset: The offset, in bytes, that has to be added to the pointer returned by mmap() to

get to the actual device memory. This is important if the device's memory is not page
aligned. Remember that pointers returned by mmap() are always page aligned, so it is a
good practice to always add this offset.

Interrupts are handled by reading from /dev/uioX. A blocking read() from /dev/uioX will return
as soon as an interrupt occurs. You can also use select() on /dev/uioX to wait for an interrupt. The
integer value read from /dev/uioX represents the total interrupt count. You can use this number to
figure out if you missed some interrupts.

The device memory is mapped into the process address space by calling the mmap() function of the
UIO driver.

Kernel UIO API
The UIO API is small and simple to use:

1. The struct uio_info tells the framework the details of your driver. Some of the members are
required, others are optional. These are some of the struct uio_info members:

•	 const char *name: Required. The name of your driver as it will appear in sysfs. It is
recommended to use the name of your module for this.

•	 const char *version: Required. This string appears in /sys/class/uio/uioX/version.
•	 struct uio_mem mem[MAX_UIO_MAPS]: Required if you have memory that can

be mapped with mmap(). For each mapping you need to fill one of the struct uio_mem
structures. See the description below for details.

•	 long irq: Required. If your hardware generates an interrupt, it’s your modules task
to determine the irq number during initialization. If you don’t have a hardware

Platform Drivers Chapter 5

[194]

generated interrupt but want to trigger the interrupt handler in some other way, set
irq to UIO_IRQ_CUSTOM. If you had no interrupt at all, you could set irq to
UIO_IRQ_NONE, though this rarely makes sense.

•	 unsigned long irq_flags: Required if you’ve set irq to a hardware interrupt number.
The flags given here will be used in the call to request_irq().

•	 int (*mmap)(struct uio_info *info, struct vm_area_struct *vma): Optional. If you need
a special mmap() function, you can set it here. If this pointer is not NULL, your mmap()
will be called instead of the built-in one.

•	 int (*open)(struct uio_info *info, struct inode *inode): Optional. You might want to
have your own open(), e.g. to enable interrupts only when your device is actually used.

•	 int (*release)(struct uio_info *info, struct inode *inode): Optional. If you define your
own open(), you will probably also want a custom release() function.

•	 int (*irqcontrol)(struct uio_info *info, s32 irq_on): Optional. If you need to be able to
enable or disable interrupts from userspace by writing to /dev/uioX, you can implement
this function. The parameter irq_on will be 0 to disable interrupts and 1 to enable them.

Usually, your device will have one or more memory regions that can be mapped to user
space. For each region, you have to set up a struct uio_mem structure in the mem[] array.
Here’s a description of the fields of the struct uio_mem structure:

•	 int memtype: Required if mapping is used. Set this to UIO_MEM_PHYS if you you
have physical memory to be mapped. Use UIO_MEM_LOGICAL for logical memory
(for example, allocated with kmalloc()). There’s also UIO_MEM_VIRTUAL for virtual
memory.

•	 unsigned long size: Fill in the size of the memory block that addr points to. If the size
is zero, the mapping is considered unused. Note that you must initialize size with zero
for all unused mappings.

•	 void *internal_addr: If you have to access this memory region from within your
kernel module, you will want to map it internally by using something like ioremap().
Addresses returned by this function cannot be mapped to user space, so you must not
store it in addr. Use internal_addr instead to remember such an address.

2. The function uio_register_device() connects the driver to the UIO framework:

•	 Requires a struct uio_info as an input.
•	 It is typically called from the probe() function of a platform device driver.
•	 It creates the device file /dev/uio# (#starting from 0) and all associated sysfs file

attributes.
•	 The function uio_unregister_device() disconnects the driver from the UIO framework

deleting the device file /dev/uio#.

[195]

Chapter 5 Platform Drivers

[195]

LAB 5.4: "LED UIO platform" Module
In this kernel module lab, you will develop an UIO user space driver that controls one of the LEDs
used in the previous lab. The main function of an UIO driver is to expose the hardware registers
to user space and does nothing within kernel space to control them. The LED will be controlled
directly from the UIO user space driver by accessing to the memory mapped registers of the
device. You will also write a kernel driver that obtains the register addresses from the device
tree and initializes the struct uio_info with these parameters. You will also register the UIO device
within the probe() function of the kernel driver.

LAB 5.4 DT for the i.MX7D, SAMA5D2 and BCM2837 Processors
In this lab 5.4, you will keep the same DT GPIO multiplexing of the previous lab 5.3, as you will use
the same processor´s pad to control the LED. In the lab 5.3, you declared a main LED RGB device
node that includes several sub-nodes, each one representing an individual LED. In this lab 5.4, you
will control only one LED, so you do not have to add any children node inside the main node.

For the MCIMX7D-SABRE board modify the device tree file imx7d-sdb.dts adding the next code
in bold. The i.MX7D GPIO memory map is shown in the section 8.3.5 GPIO Memory Map/Register
Definition of the i.MX 7Dual Applications Processor Reference Manual, Rev. 0.1, 08/2016. The 0x30200000
base address of the reg property is the GPIO data register (GPIO1_DR) address.

/ {
 model = "Freescale i.MX7 SabreSD Board";
 compatible = "fsl,imx7d-sdb", "fsl,imx7d";

 memory {
 reg = <0x80000000 0x80000000>;
 };

 [...]

UIO {
 compatible = "arrow,UIO";
 reg = <0x30200000 0x60000>;
 pinctrl-names = "default";
 pinctrl-0 = <&pinctrl_gpio_leds &pinctrl_gpio_led>;

};

[...]

For the SAMA5D2B-XULT board modify the device tree file at91-sama5d2_xplained_common.dtsi
adding the next code in bold. The 0xFC038000 base address of the reg property is the PIO Mask

Platform Drivers Chapter 5

[196]

Register (PIO_MSKR0) address. See the section 34.7.1 PIO Mask Register of the SAMA5D2 Series
Datasheet.

/ {
 model = "Atmel SAMA5D2 Xplained";
 compatible = "atmel,sama5d2-xplained", "atmel,sama5d2", "atmel,sama5";

 chosen {
 stdout-path = "serial0:115200n8";
 };

 [...]

 UIO {
 compatible = "arrow,UIO";
 reg = <0xFC038000 0x4000>;
 pinctrl-names = "default";
 pinctrl-0 = <&pinctrl_led_gpio_default>;
 };

 [...]
};

For the Raspberry Pi 3 Model B board modify the device tree file bcm2710-rpi-3-b.dts adding
the next code in bold. The 0x7e200000 base address of the reg property is the GPFSEL0 register
address. See the section 6.1 Register View of the BCM2835 ARM Peripherals guide.

/ {
 model = "Raspberry Pi 3 Model B";
};

&soc {

 [...]

 expgpio: expgpio {
 compatible = "brcm,bcm2835-expgpio";
 gpio-controller;
 #gpio-cells = <2>;
 firmware = <&firmware>;
 status = "okay";
 };

 [...]

 UIO {
 compatible = "arrow,UIO";
 reg = <0x7e200000 0x1000>;

[197]

Chapter 5 Platform Drivers

[197]

 pinctrl-names = "default";
 pinctrl-0 = <&led_pins>;
 };

 [...]

};

LAB 5.4 Code Description of the "LED UIO platform" Module
The main code sections of the User Provided Kernel Driver will now be described:

1. Include the function headers:

#include <linux/module.h>
#include <linux/platform_device.h> /* platform_get_resource() */
#include <linux/io.h> /* devm_ioremap() */
#include <linux/uio_driver.h> /* struct uio_info, uio_register_device() */

2. Declare the struct uio_info:

 static struct uio_info the_uio_info;

3. In the probe() function, the platform_get_resource() function gets the struct resource filled
with the values described by the DT reg property. The dev_ioremap() function maps the
area of register addresses to kernel virtual addresses:

struct resource *r;
void __iomem *g_ioremap_addr;

/* get your first memory resource from device tree */
r = platform_get_resource(pdev, IORESOURCE_MEM, 0);

/* ioremap your memory region and get virtual address */
g_ioremap_addr = devm_ioremap(dev, r->start, resource_size(r));

4. Initialize the struct uio_info structure:

the_uio_info.name = "led_uio";
the_uio_info.version = "1.0";
the_uio_info.mem[0].memtype = UIO_MEM_PHYS;
the_uio_info.mem[0].addr = r->start; /* physical address needed for the kernel
user mapping */
the_uio_info.mem[0].size = resource_size(r);
the_uio_info.mem[0].name = "demo_uio_driver_hw_region";
the_uio_info.mem[0].internal_addr = g_ioremap_addr; /* virtual address for
internal driver use */

Platform Drivers Chapter 5

[198]

5. Register the device to the UIO framework:

uio_register_device(&pdev->dev, &the_uio_info);

6. Declare a list of devices supported by the driver:

static const struct of_device_id my_of_ids[] = {
 { .compatible = "arrow,UIO"},
 {},
};
MODULE_DEVICE_TABLE(of, my_of_ids);

7. Add a struct platform_driver structure that will be registered to the platform bus:

static struct platform_driver my_platform_driver = {
 .probe = my_probe,
 .remove = my_remove,
 .driver = {
 .name = "UIO",
 .of_match_table = my_of_ids,
 .owner = THIS_MODULE,
 }
};

8. Register your driver with the "Platform Driver" bus:

module_platform_driver(my_platform_driver);

9. Build the modified device tree, and load it to the target processor.

The main code sections of the UIO User Space Driver will now be described:
1. Include the function headers:

#include <sys/mman.h> /* mmap() */

2. Define the path to the sysfs parameter, from where you will obtain the size of memory that
is going to be mapped:
#define UIO_SIZE "/sys/class/uio/uio0/maps/map0/size"

3. Open the UIO device:
open("/dev/uio0", O_RDWR | O_SYNC);

4. Obtain the memory size that is going to be mapped:
FILE *size_fp = fopen(UIO_SIZE, "r");
fscanf(size_fp, "0x%08X", &uio_size);
fclose(size_fp);

5. Perform mapping. A pointer to a virtual address will be returned, that corresponds to the
r->start physical address obtained in the kernel space driver. You can now control the LED
by writing to the virtual register address pointed to by the returned pointer variable. This

[199]

Chapter 5 Platform Drivers

[199]

user virtual address will be different to the kernel virtual address obtained with
dev_ioremap() and pointed to by the_uio_info.mem[0].internal_addr variable.

See in the next Listing 5-4 and Listing 5-5 the "LED UIO platform" kernel driver source code (led_
sam_UIO_platform.c) and the "LED UIO platform" user space driver source code for the SAMA5D2
processor (UIO_app.c).
Note: The source code for the i.MX7D (led_imx_UIO_platform.c & UIO_app.c) and BCM2837 (led_

rpi_UIO_platform.c & UIO_app.c) kernel and user space drivers can be downloaded from the
GitHub repository of this book.

Listing 5-4: led_sam_UIO_platform.c
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/io.h>
#include <linux/uio_driver.h>

static struct uio_info the_uio_info;

static int __init my_probe(struct platform_device *pdev)
{
 int ret_val;
 struct resource *r;
 struct device *dev = &pdev->dev;
 void __iomem *g_ioremap_addr;

 dev_info(dev, "platform_probe enter\n");

 /* get your first memory resource from device tree */
 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
 if (!r) {
 dev_err(dev, "IORESOURCE_MEM, 0 does not exist\n");
 return -EINVAL;
 }
 dev_info(dev, "r->start = 0x%08lx\n", (long unsigned int)r->start);
 dev_info(dev, "r->end = 0x%08lx\n", (long unsigned int)r->end);

 /* ioremap your memory region and get virtual address */
 g_ioremap_addr = devm_ioremap(dev, r->start, resource_size(r));
 if (!g_ioremap_addr) {
 dev_err(dev, "ioremap failed \n");
 return -ENOMEM;
 }

 /* initialize uio_info struct uio_mem array */
 the_uio_info.name = "led_uio";

Platform Drivers Chapter 5

[200]

 the_uio_info.version = "1.0";
 the_uio_info.mem[0].memtype = UIO_MEM_PHYS;
 the_uio_info.mem[0].addr = r->start; /* physical address needed for the kernel
user mapping */
 the_uio_info.mem[0].size = resource_size(r);
 the_uio_info.mem[0].name = "demo_uio_driver_hw_region";
 the_uio_info.mem[0].internal_addr = g_ioremap_addr; /* virtual address for
internal driver use */

 /* register the uio device */
 ret_val = uio_register_device(&pdev->dev, &the_uio_info);
 if (ret_val != 0) {
 dev_info(dev, "Could not register device \"led_uio\"...");
 }

 return 0;
}

static int __exit my_remove(struct platform_device *pdev)
{
 uio_unregister_device(&the_uio_info);
 dev_info(&pdev->dev, "platform_remove exit\n");

 return 0;
}

static const struct of_device_id my_of_ids[] = {
 { .compatible = "arrow,UIO"},
 {},
};
MODULE_DEVICE_TABLE(of, my_of_ids);

static struct platform_driver my_platform_driver = {
 .probe = my_probe,
 .remove = my_remove,
 .driver = {
 .name = "UIO",
 .of_match_table = my_of_ids,
 .owner = THIS_MODULE,
 }
};

module_platform_driver(my_platform_driver);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Alberto Liberal <aliberal@arroweurope.com>");
MODULE_DESCRIPTION("This is a UIO platform driver that turns the LED on/off \

without using system calls");

[201]

Chapter 5 Platform Drivers

[201]

Listing 5-5: UIO_app.c
#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <fcntl.h>
#include <string.h>
#include <unistd.h>
#include <sys/mman.h>

#define BUFFER_LENGHT 128
#define GPIO4_GDIR_offset 0x04
#define GPIO_DIR_MASK 1<<29
#define GPIO_DATA_MASK 1<<29

#define PIO_SODR1_offset 0x50
#define PIO_CODR1_offset 0x54
#define PIO_CFGR1_offset 0x44
#define PIO_MSKR1_offset 0x40

#define PIO_PB0_MASK (1 << 0)
#define PIO_PB5_MASK (1 << 5)
#define PIO_PB6_MASK (1 << 6)
#define PIO_CFGR1_MASK (1 << 8)

#define PIO_MASK_ALL_LEDS (PIO_PB0_MASK | PIO_PB5_MASK | PIO_PB6_MASK)

#define UIO_SIZE "/sys/class/uio/uio0/maps/map0/size"

int main()
{
 int ret, devuio_fd;
 unsigned int uio_size;
 void *temp;
 void *demo_driver_map;
 char sendstring[BUFFER_LENGHT];
 char *led_on = "on";
 char *led_off = "off";
 char *Exit = "exit";

 printf("Starting led example\n");
 devuio_fd = open("/dev/uio0", O_RDWR | O_SYNC);
 if (devuio_fd < 0){
 perror("Failed to open the device");
 exit(EXIT_FAILURE);
 }

Platform Drivers Chapter 5

[202]

 /* read the size that has to be mapped */
 FILE *size_fp = fopen(UIO_SIZE, "r");
 fscanf(size_fp, "0x%08X", &uio_size);
 fclose(size_fp);

 /* do the mapping */
 demo_driver_map = mmap(NULL, uio_size, PROT_READ|PROT_WRITE,

 MAP_SHARED, devuio_fd, 0);

 if(demo_driver_map == MAP_FAILED) {
 perror("devuio mmap");
 close(devuio_fd);
 exit(EXIT_FAILURE);
 }

 temp = demo_driver_map + PIO_MSKR1_offset;
 *(int *)temp |= PIO_MASK_ALL_LEDS;

 /* select output */
 temp = demo_driver_map + PIO_CFGR1_offset;
 *(int *)temp |= PIO_CFGR1_MASK;

 /* clear all the leds */
 temp = demo_driver_map + PIO_SODR1_offset;
 *(int *)temp |= PIO_MASK_ALL_LEDS;

 /* control the LED */
 do {
 printf("Enter led value: on, off, or exit :\n");
 scanf("%[^\n]%*c", sendstring);
 if(strncmp(led_on, sendstring, 3) == 0)
 {
 temp = demo_driver_map + PIO_CODR1_offset;
 *(int *)temp |= PIO_PB0_MASK;
 }
 else if(strncmp(led_off, sendstring, 2) == 0)
 {
 temp = demo_driver_map + PIO_SODR1_offset;
 *(int *)temp |= PIO_PB0_MASK;
 }
 else if(strncmp(Exit, sendstring, 4) == 0)
 printf("Exit application\n");
 else {
 printf("Bad value\n");
 temp = demo_driver_map + PIO_SODR1_offset;
 *(int *)temp |= PIO_PB0_MASK;
 return -EINVAL;
 }

[203]

Chapter 5 Platform Drivers

[203]

 } while(strncmp(sendstring, "exit", strlen(sendstring)));

 ret = munmap(demo_driver_map, uio_size);
 if(ret < 0) {
 perror("devuio munmap");
 close(devuio_fd);
 exit(EXIT_FAILURE);
 }

 close(devuio_fd);
 printf("Application termined\n");
 exit(EXIT_SUCCESS);
}

led_sam_UIO_platform.ko with UIO_app
Demonstration

root@sama5d2-xplained:~# insmod led_sam_UIO_platform.ko /* load the module */
root@sama5d2-xplained:~# ./UIO_app /* start your application to turn on/off the blue
led */

root@sama5d2-xplained:~# ./UIO_app
Starting led example
Enter led value: on, off, or exit :
on
Enter led value: on, off, or exit :
off
Enter led value: on, off, or exit :
exit
Exit application
Application termined

root@sama5d2-xplained:~# rmmod led_sam_UIO_platform.ko /* remove the module */

[205]

6
I2C Client Drivers

I2C (pronounce: I squared C) is a protocol developed by Philips. It is a slow two-wire protocol
(variable speed, up to 400 kHz), with a high speed extension (3.4 MHz). It provides an inexpensive
bus for connecting many types of devices with infrequent or low bandwidth communications
needs. I2C is widely used with embedded systems. Some systems use variants that don't meet
branding requirements, and so are not advertised as being I2C.

SMBus (System Management Bus) is based on the I2C protocol, and is mostly a subset of I2C
protocols and signaling. Many I2C devices will work on a SMBus, but some SMBus protocols
add semantics beyond what is required to achieve I2C branding. Modern PC mainboards rely
on SMBus. The most common devices connected through SMBus are RAM modules configured
using I2C EEPROMs, and hardware monitoring chips. Because the SMBus is mostly a subset of the
generalized I2C bus, you can use its protocols on many I2C systems. However, there are systems
that don't meet both SMBus and I2C electrical constraints; and others which can't implement all
the common SMBus protocol semantics or messages.

If you write a driver for an I2C device, please try to use the SMBus commands if at all possible (if
the device uses only that subset of the I2C protocol). This makes it possible to use the device driver
on both SMBus adapters and I2C adapters (the SMBus command set is automatically translated
to I2C on I2C adapters, but plain I2C commands can not be handled at all on most pure SMBus
adapters).

These are the functions used to stablish a plain I2C communication:

int i2c_master_send(struct i2c_client *client, const char *buf, int count);
int i2c_master_recv(struct i2c_client *client, char *buf, int count);

These routines read and write some bytes from/to a client. The client contains the I2C address, so
you do not have to include it. The second parameter contains the bytes to read/write, the third the
number of bytes to read/write (must be less than the length of the buffer, also should be less than
64k since msg.len is u16.). Returned is the actual number of bytes read/written.

int i2c_transfer(struct i2c_adapter *adap, struct i2c_msg *msg, int num);

The previous function sends a series of messages. Each message can be a read or write, and they
can be mixed in any way. The transactions are combined: no stop bit is sent between transactions.

I2C Client Drivers Chapter 6

[206]

The struct i2c_msg contains for each message the client address, the number of bytes of the message
and the message data itself.

This is the generic function used to stablish a SMBus communication:

s32 i2c_smbus_xfer(struct i2c_adapter *adapter, u16 addr,
 unsigned short flags, char read_write, u8 command,
 int size, union i2c_smbus_data *data);

All functions below are implemented in terms of it. Never use the function i2c_smbus_xfer()
directly.

s32 i2c_smbus_read_byte(struct i2c_client *client);
s32 i2c_smbus_write_byte(struct i2c_client *client, u8 value);
s32 i2c_smbus_read_byte_data(struct i2c_client *client, u8 command);
s32 i2c_smbus_write_byte_data(struct i2c_client *client, u8 command, u8 value);
s32 i2c_smbus_read_word_data(struct i2c_client *client, u8 command);
s32 i2c_smbus_write_word_data(struct i2c_client *client, u8 command, u16 value);
s32 i2c_smbus_read_block_data(struct i2c_client *client, u8 command, u8 *values);
s32 i2c_smbus_write_block_data(struct i2c_client *client, u8 command,

 u8 length, const u8 *values);
s32 i2c_smbus_read_i2c_block_data(struct i2c_client *client, u8 command,

 u8 length, u8 *values);
s32 i2c_smbus_write_i2c_block_data(struct i2c_client *client, u8 command,
 u8 length, const u8 *values);

You can see a detailed description of the SMBus functions at Documentation/i2c/smbus-protocol.

The Linux I2C Subsystem
The Linux I2C subsystem is based in the Linux device model and is composed of several drivers:

1. The I2C bus core of the I2C subsystem is located in the i2c-core.c file under drivers/i2c/
directory. The I2C core in the device model is a collection of code that provides interface
support between an individual client driver and some I2C bus masters such as the i.MX7D
I2C controllers. It manages bus arbitration, retry handling, and various other protocol
details. The I2C bus core is registered with the kernel using the bus_register() function and
declare the I2C struct bus_type structure. The I2C core API is a set of functions used for an
I2C client device driver to send/receive data to/from a device connected to an I2C bus.

2. The I2C controller drivers are located under drivers/i2c/busses/ directory. The I2C
controller is a platform device that must be registered as a device to the platform bus. The
I2C controller driver is a set of custom functions that issues read/writes to the specific
I2C controller hardware I/O addresses. There is a specific code for each I2C controller of
the processor. This controller specific functions are called by the the I2C core API when
this invokes the adap_algo_master_xfer function after an I2C client driver has initiated an

[207]

Chapter 6 I2C Client Drivers

[207]

I2C_transfer function. In the I2C controller driver (for example, the i2c-imx.c) you have to
declare a private structure that includes a struct i2c_adapter variable.

struct imx_i2c_struct {
 struct i2c_adapter adapter;
 struct clk *clk;
 void __iomem *base;
 wait_queue_head_t queue;
 unsigned long i2csr;
 unsigned int disable_delay;
 int stopped;
 unsigned int ifdr; /* IMX_I2C_IFDR */
 unsigned int cur_clk;
 unsigned int bitrate;
 const struct imx_i2c_hwdata *hwdata;
 struct i2c_bus_recovery_info rinfo;

 struct pinctrl *pinctrl;
 struct pinctrl_state *pinctrl_pins_default;
 struct pinctrl_state *pinctrl_pins_gpio;

 struct imx_i2c_dma *dma;
};

In the probe() function, you initialize this adapter structure for each I2C controller that has
been probed:

/* Setup i2c_imx driver structure */
strlcpy(i2c_imx->adapter.name, pdev->name, sizeof(i2c_imx->adapter.name));
i2c_imx->adapter.owner = THIS_MODULE;
i2c_imx->adapter.algo = &i2c_imx_algo;
i2c_imx->adapter.dev.parent = &pdev->dev;
i2c_imx->adapter.nr = pdev->id;
i2c_imx->adapter.dev.of_node = pdev->dev.of_node;
i2c_imx->base

The i2c_imx_algo structure includes a pointer variable to the i2c_imx_xfer() function, that
contains the specific code that will write/read the registers of the I2C hardware controller:

static struct i2c_algorithm i2c_imx_algo = {
 .master_xfer = i2c_imx_xfer,
 .functionality = i2c_imx_func,
};

Finally, in the probe() function, each I2C controller is added to the I2C bus core by calling
the i2_add_numbered_adapter() function (located in drivers/i2c/i2c-core.c):

i2c_add_numbered_adapter(&i2c_imx->adapter);

I2C Client Drivers Chapter 6

[208]

3. The I2C device drivers are located throughout drivers/, depending on the type of device
(for example, drivers/input/ for input devices). The driver code is specific to the device
(for example, accelerometer, digital analog converter) and uses the I2C core API to send
and receive data to/from the I2C device. For example, if the I2C client driver calls the
i2c_smbus_write_byte_data() function declared in drivers/i2c/i2c-core.c, you can see that this
function is calling the i2c_smbus_xfer() function:

s32 i2c_smbus_read_word_data(const struct i2c_client *client, u8 command)
{
 union i2c_smbus_data data;
 int status;

 status = i2c_smbus_xfer(client->adapter, client->addr, client->flags,
 I2C_SMBUS_READ, command,
 I2C_SMBUS_WORD_DATA, &data);
 return (status < 0) ? status : data.word;
}

If you check the code of the i2c_smbus_xfer() function, you can see that this function is
calling the i2c_smbus_xfer_emulated() function, which in turn calls
i2c_adapter.algo->master_xfer() function following the next sequence:

 i2c_smbus_xfer_emulated() -> i2c_transfer() -> __i2c_transfer() -> adap->algo->master_xfer()

This function master_xfer() was initialized to the i2c_imx_xfer() function in your I2C driver
controller, so it is calling to the specific code that is controling your I2C controller registers:

s32 i2c_smbus_xfer(struct i2c_adapter *adapter, u16 addr,
 unsigned short flags, char read_write, u8 command,
 int protocol, union i2c_smbus_data *data)
{
 unsigned long orig_jiffies;
 int try;
 s32 res;

 flags &= I2C_M_TEN | I2C_CLIENT_PEC | I2C_CLIENT_SCCB;

 if (adapter->algo->smbus_xfer) {
 i2c_lock_adapter(adapter);

 /* Retry automatically on arbitration loss */
 orig_jiffies = jiffies;
 for (res = 0, try = 0; try <= adapter->retries; try++) {
 res = adapter->algo->smbus_xfer(adapter, addr, flags,
 read_write, command,
 protocol, data);
 if (res != -EAGAIN)

[209]

Chapter 6 I2C Client Drivers

[209]

 break;
 if (time_after(jiffies,
 orig_jiffies + adapter->timeout))
 break;
 }
 i2c_unlock_adapter(adapter);

 if (res != -EOPNOTSUPP || !adapter->algo->master_xfer)
 return res;
 /*
 * Fall back to i2c_smbus_xfer_emulated if the adapter doesn't
 * implement native support for the SMBus operation.
 */
 }

 return i2c_smbus_xfer_emulated(adapter, addr, flags, read_write,
 command, protocol, data);
}

See the I2C subsystem in the following figure. In the Linux device model the
of_platform_populate() function will register the I2C controller devices to the platform bus
core. In the i.MX7D processor, the i2c-imx.c controller driver registers itself to the platform
bus core. The I2C client drivers are registered by themselves to the I2C bus core. You can
see in the figure the next flow of function calls:

I2C client driver-> I2C bus core driver -> I2C controller driver:

i2c_smbus_write_byte_data() -> i2c_smbus_xfer() -> i2c_imx_xfer()

I2C Client Drivers Chapter 6

[210]

Writing I2C Client Drivers
You will focus now in the writing of I2C client drivers. In this and in successive chapters, you
will develop several I2C client drivers that control I/O expanders, DACs, accelerometers and
Multidisplay LED controllers. In the next sections, you will see a description of the main steps to
set up an I2C client driver.

I2C Client Driver Registration
The I2C subsystem defines a struct i2c_driver structure (inherited from the struct device_driver
structure), which must be instantiated and registered to the I2C bus core by each I2C device
driver. Usually, you will implement a single driver structure, and instantiate all clients from it.
Remember, a driver structure contains general access routines, and should be zero-initialized
except for fields with data you provide. See below an example of a struct i2c_driver structure
definition for an I2C accelerometer device:

static struct i2c_driver ioaccel_driver = {
.driver = {

 .name = "mma8451",
 .owner = THIS_MODULE,
 .of_match_table = ioaccel_dt_ids,
 },
 .probe = ioaccel_probe,
 .remove = ioaccel_remove,
 .id_table = i2c_ids,
};

The i2c_add_driver() and i2c_del_driver() functions are used to register/unregister the driver. They
are included in the init()/exit() kernel module functions. If the driver doesn´t do anything else in
these functions use the module_i2c_driver() macro instead.

static int __init i2c_init(void)
{

return i2c_add_driver(&ioaccel_driver);
}
module_init(i2c_init);

static void __exit i2c_cleanup(void)
{
 i2c_del_driver(&ioaccel_driver);
}
module_exit(i2c_cleanup);

The module_i2c_driver() macro can be used to simplify the code above:

module_i2c_driver(ioaccel_driver);

[211]

Chapter 6 I2C Client Drivers

[211]

In your device driver create an array of struct of_device_id structures where you specify .compatible
strings that should store the same value of the DT device node´s compatible property. The struct
of_device_id is defined in include/linux/mod_devicetable.h as:

struct of_device_id {
 char name[32];
 char type[32];
 char compatible[128];
};

The of_match_table field (included in the driver field) of the struct i2c_driver is a pointer to the array
of struct of_device_id structures that hold the compatible strings supported by the driver:

static const struct of_device_id ioaccel_dt_ids[] = {
 { .compatible = "fsl,mma8451", },
 { }
};
MODULE_DEVICE_TABLE(of, ioaccel_dt_ids);

The driver´s probe() function is called when the compatible field in one of the of_device_id entries
matches with the compatible property of a DT device node. The probe() function is responsible of
initializing the device with the configuration values obtained from the matching DT device node
and also to register the device to the appropriate kernel framework.

In your I2C device driver, you have also to define an array of struct i2c_device_id structures:

static const struct i2c_device_id mma8451_id[] = {
 { "mma8450", 0 },
 { "mma8451", 1 },
 { }
};
MODULE_DEVICE_TABLE(i2c, mma8451_id);

The second argument of the probe() function is an element of this array related to your attached
device:

static ioaccel_probe(struct i2c_client *client, const struct i2c_device_id *id)

You can use id->driver_data (which is unique to each device), for specific device data. For example,
for the "mma8451" device, the driver_data will be 1.

The binding will happen based on the i2c_device_id table or device tree compatible string. The I2C
core first tries to match the device by compatible string (OF style, which is device tree), and if it
fails, it then tries to match device by id table.

I2C Client Drivers Chapter 6

[212]

Declaration of I2C Devices in Device Tree
In the device tree, the I2C controller device is typically declared in the .dtsi file that describes
the processor (for i.MX7D see arch/arm/boot/dts/imx7s.dtsi). The DT I2C controller definition
is normally declared with status = "disabled". For example, in the imx7s.dtsi file there are
declared four DT I2C controller devices that will be registered to the I2C bus core through the
of_platform_populate() function. For the i.MX7D, the i2-imx.c driver will register itself to the I2C
bus core using the module_i2c_driver() function ; the probe() function will be called four times
(one for each compatible = "fsl,imx21-i2c" matching) initializing a struct i2c_adapter structure for
each controller and registering it with the I2C bus core using the i2_add_numbered_adapter()
function. See below the declaration of the i.MX7D DT I2C controller nodes:

i2c1: i2c@30a20000 {
 #address-cells = <1>;
 #size-cells = <0>;
 compatible = "fsl,imx7d-i2c", "fsl,imx21-i2c";
 reg = <0x30a20000 0x10000>;
 interrupts = <GIC_SPI 35 IRQ_TYPE_LEVEL_HIGH>;
 clocks = <&clks IMX7D_I2C1_ROOT_CLK>;
 status = "disabled";
};

i2c2: i2c@30a30000 {
 #address-cells = <1>;
 #size-cells = <0>;
 compatible = "fsl,imx7d-i2c", "fsl,imx21-i2c";
 reg = <0x30a30000 0x10000>;
 interrupts = <GIC_SPI 36 IRQ_TYPE_LEVEL_HIGH>;
 clocks = <&clks IMX7D_I2C2_ROOT_CLK>;
 status = "disabled";
};

i2c3: i2c@30a40000 {
 #address-cells = <1>;
 #size-cells = <0>;
 compatible = "fsl,imx7d-i2c", "fsl,imx21-i2c";
 reg = <0x30a40000 0x10000>;
 interrupts = <GIC_SPI 37 IRQ_TYPE_LEVEL_HIGH>;
 clocks = <&clks IMX7D_I2C3_ROOT_CLK>;
 status = "disabled";
};

i2c4: i2c@30a50000 {
 #address-cells = <1>;
 #size-cells = <0>;
 compatible = "fsl,imx7d-i2c", "fsl,imx21-i2c";

[213]

Chapter 6 I2C Client Drivers

[213]

 reg = <0x30a50000 0x10000>;
 interrupts = <GIC_SPI 38 IRQ_TYPE_LEVEL_HIGH>;
 clocks = <&clks IMX7D_I2C4_ROOT_CLK>;
 status = "disabled";
};

The device tree declaration of I2C devices is done as sub-nodes of the master controller. At the
board/platform level (arch/arm/boot/dts/imx7d-sdb.dts):

•	 The I2C controller device is enabled (status = "okay").
•	 The I2C bus frequency is defined, using the clock-frequency property.
•	 The I2C devices on the bus are described as children of the I2C controller node, where the

reg property provides the I2C slave address on the bus.
•	 In the I2C device node check that the compatible property matchs with one of the driver´s

of_device_id compatible strings.

Find in the DT imx7d-sdb.dts file the i2c4 controller node declaration. The i2c4 controller is enabled
writing "okay" to the status property. In the codec sub-node device declaration the reg property
provides the I2C address of the wm8960 device.

&i2c4 {
 pinctrl-names = "default";
 pinctrl-0 = <&pinctrl_i2c4>;
 status = "okay";

 codec: wm8960@1a {
 compatible = "wlf,wm8960";
 reg = <0x1a>;
 clocks = <&clks IMX7D_AUDIO_MCLK_ROOT_CLK>;
 clock-names = "mclk";
 wlf,shared-lrclk;
 };
};

The pinctrl-0 property inside the i2c4 node points to the pinctrl_i2c4 pin function node, where the
i2c4 controller pads are being multiplexed with I2C functionality:

pinctrl_i2c4: i2c4grp {
 fsl,pins = <
 MX7D_PAD_SAI1_RX_BCLK__I2C4_SDA 0x4000007f
 MX7D_PAD_SAI1_RX_SYNC__I2C4_SCL 0x4000007f
 >;
};

I2C Client Drivers Chapter 6

[214]

LAB 6.1: "I2C I/O expander device" Module
Throughout the upcoming lab, you will implement your first driver to control an I2C device. The
driver will manage several PCF8574 I/O expander devices connected to the I2C bus. You can use
one the multiples boards based on this device to develop this lab, for example, the next one: https://
www.waveshare.com/pcf8574-io-expansion-board.htm.

LAB 6.1 Hardware Description for the i.MX7D Processor
In this lab, you will use the I2C pins of the MCIMX7D-SABRE mikroBUS™ to connect to the
PCF8574 I/O expander board.

Go to the pag.20 of the MCIMX7D-SABRE schematic to see the MikroBUS connector and look for
the SDA and the SCL pins. Connect these pins to the equivalent ones of the PCF8574 I/O expander
board. Connect also VCC 3.3V and GND between the two boards.

LAB 6.1 Hardware Description for the SAMA5D2 Processor
For the SAMA5D2 processor, open the SAMA5D2B-XULT schematic and look for connectors on
board with pins that provide I2C signals. The SAMA5D2B-XULT board have five 8-pin, one 6-pin,
one 10-pin and one 36-pin headers (J7, J8, J9, J16, J17, J20, J21, J22) that enable the PIO connection
of various expansion cards. These headers’ physical and electrical implementation match the
Arduino R3 extension ("shields") system.

You can access to the I2C signals using the J22 header, as shown in the next figure:

[215]

Chapter 6 I2C Client Drivers

[215]

You can also get the same TWCK1, and TWD1 I2C signals from the ISC J18 header, as shown in the
following figure. Having the same signals on two different connectors simplifies the connection to
several PCF8574 boards. You can also get 3V3 and GND signals from this J18 connector.

I2C Client Drivers Chapter 6

[216]

LAB 6.1 Hardware Description for the BCM2837 Processor
For the BCM2837 processor, you will use the GPIO expansion connector to obtain the I2C signals.
Open the Raspberry-Pi-3B-V1.2-Schematics to see the connector. The GPIO2 and GPIO3 pins will be
used to get the SDA1 and SCL1 signals.

LAB 6.1 Device Tree for the i.MX7D Processor
From the MCIMX7D-SABRE mikroBUS™ socket, you see that MKBUS_I2C_SCL pin connects to
the I2C3_SCL pad of the i.MX7D processor, and the MKBUS_I2C_SDA pin to the I2C3_SDA pad.
You have to configure these pads as I2C signals. To look for the macro that assigns the required
I2C functionality open the imx7d-pinfunc.h file under linux/arch/arm/boot/dts/ directory and find the
next macros:

#define MX7D_PAD_I2C3_SDA__I2C3_SDA 0x015C 0x03CC 0x05E8 0x0 0x2
#define MX7D_PAD_I2C3_SCL__I2C3_SCL 0x0158 0x03C8 0x05E4 0x0 0x2

[217]

Chapter 6 I2C Client Drivers

[217]

Now, you can modify the device tree file imx7d-sdb.dts adding the ioexp@38 and the ioexp@39
sub-nodes inside the i2c3 controller master node. The i2c3 controller is enabled writing "okay" to
the status property. The clock-frequency property is set to 100 Khz and the pinctrl-0 property of the
master node points to the pinctrl_i2c3 pin configuration node, where the I2C3_SDA and I2C3_SCL
pads are multiplexed as I2C signals. In the sub-nodes devices declaration the reg property provides
the I2C addresses of the two PCF8574 I/O expanders connected to the I2C bus.

 &i2c3 {
 clock-frequency = <100000>;
 pinctrl-names = "default";
 pinctrl-0 = <&pinctrl_i2c3>;
 status = "okay";

ioexp@38 {
 compatible = "arrow,ioexp";
 reg = <0x38>;
 };
 ioexp@39 {
 compatible = "arrow,ioexp";
 reg = <0x39>;
 };

 sii902x: sii902x@39 {
 compatible = "SiI,sii902x";
 pinctrl-names = "default";
 pinctrl-0 = <&pinctrl_sii902x>;
 interrupt-parent = <&gpio2>;
 interrupts = <13 IRQ_TYPE_EDGE_FALLING>;
 mode_str ="1280x720M@60";
 bits-per-pixel = <16>;
 reg = <0x39>;
 status = "okay";
 };

[...]

};

See below the pinctrl_i2c3 pin configuration node, where I2C controller pads are multiplexed as I2C
signals:

pinctrl_i2c3: i2c3grp {
 fsl,pins = <
 MX7D_PAD_I2C3_SDA__I2C3_SDA 0x4000007f
 MX7D_PAD_I2C3_SCL__I2C3_SCL 0x4000007f
 >;
};

I2C Client Drivers Chapter 6

[218]

LAB 6.1 Device Tree for the SAMA5D2 Processor
Open the SAMA5D2B-XULT board schematic and look for the J22 connector. You see that
EXP_TWCK1_PD5 pin connects to the PD5 pad of the SAMA5D2 processor, and the
EXP_TWD1_PD4 pin to the PD4 pad. You have to configure the PD5, and PD4 pads as I2C signals.
To look for the macro that assigns the required I2C functionality go to the sama5d2-pinfunc.h file
under linux/arch/arm/boot/dts/ directory and find the next macros below. See below in bold the
needed macros to configure the PD4 and PD5 pads as I2C signals:

#define PIN_PD4 100
#define PIN_PD4__GPIO PINMUX_PIN(PIN_PD4, 0, 0)
#define PIN_PD4__TWD1 PINMUX_PIN(PIN_PD4, 1, 2)
#define PIN_PD4__URXD2 PINMUX_PIN(PIN_PD4, 2, 1)
#define PIN_PD4__GCOL PINMUX_PIN(PIN_PD4, 4, 2)
#define PIN_PD4__ISC_D10 PINMUX_PIN(PIN_PD4, 5, 2)
#define PIN_PD4__NCS0 PINMUX_PIN(PIN_PD4, 6, 2)
#define PIN_PD5 101
#define PIN_PD5__GPIO PINMUX_PIN(PIN_PD5, 0, 0)
#define PIN_PD5__TWCK1 PINMUX_PIN(PIN_PD5, 1, 2)
#define PIN_PD5__UTXD2 PINMUX_PIN(PIN_PD5, 2, 1)
#define PIN_PD5__GRX2 PINMUX_PIN(PIN_PD5, 4, 2)
#define PIN_PD5__ISC_D9 PINMUX_PIN(PIN_PD5, 5, 2)
#define PIN_PD5__NCS1 PINMUX_PIN(PIN_PD5, 6, 2)

In the processor´s data-sheet, you can see that the PD4 and PD5 pads can be used for several
functionalities. These pads functions are shown in the table below:

In the macro for the PD4 pin, the last two numbers set the function of the pad and the IO Set
of the signal. For example, the PIN_PD4__TWD1 has function number 1 (A) and TWD1 signal
correspond to the IO Set 2. The PIN_PD5__TWCK1 has function number 1 (A) and TWCK1 signal
correspond to the IO Set 2.

[219]

Chapter 6 I2C Client Drivers

[219]

Note: I/Os for each peripheral are grouped into IO sets, listed in the column "IO Set" in the
pinout tables. For all peripherals, it is mandatory to use I/Os that belong to the same IO
set. The timings are not guaranteed when IOs from different IO sets are mixed.

Open and modify the device tree file at91-sama5d2_xplained_common.dtsi adding the ioexp@38
and the ioexp@39 sub-nodes inside the i2c1 controller master node. The i2c1 controller is enabled
writing "okay" to the status property. The pinctrl-0 property of the master node points to the
pinctrl_i2c1_default pin configuration node, where the PD4 and PD5 pads are multiplexed as I2C
signals. In the sub-nodes devices declaration the reg property provides the I2C addresses of the
two PCF8574 I/O expanders connected to the I2C bus.

i2c1: i2c@fc028000 {
 dmas = <0>, <0>;
 pinctrl-names = "default";
 pinctrl-0 = <&pinctrl_i2c1_default>;
 status = "okay";

 [...]

 ioexp@38 {
 compatible = "arrow,ioexp";
 reg = <0x38>;
 };
 ioexp@39 {
 compatible = "arrow,ioexp";
 reg = <0x39>;
 };

 [...]

 at24@54 {
 compatible = "atmel,24c02";
 reg = <0x54>;
 pagesize = <16>;
 };
 };

See below the pinctrl_i2c1_default pin configuration node, where I2C controller pads are
multiplexed as I2C signals:

pinctrl_i2c1_default: i2c1_default {
 pinmux = <PIN_PD4__TWD1>,
 <PIN_PD5__TWCK1>;
 bias-disable;
};

I2C Client Drivers Chapter 6

[220]

LAB 6.1 Device Tree for the BCM2837 Processor
Open Raspberry-Pi-3B-V1.2-Schematics and find the GPIO EXPANSION connector. You see that
GPIO2 pin connects to the GPIO2 pad of the BCM2837 processor, and the GPIO3 pin to the GPIO3
pad.

Open and modify the device tree file bcm2710-rpi-3-b.dts adding the ioexp@38 and the ioexp@39
sub-nodes inside the i2c1 controller master node. The i2c1 controller is enabled writing "okay" to the
status property. The pinctrl-0 property of the master node points to the i2c1_pins pin configuration
node, where the GPIO2 and GPIO3 pads are multiplexed as I2C signals. In the sub-nodes devices
declaration the reg property provides the I2C addresses of the two PCF8574 I/O expanders
connected to the I2C bus.

&i2c1 {
 pinctrl-names = "default";
 pinctrl-0 = <&i2c1_pins>;
 clock-frequency = <100000>;
 status = "okay";

 [...]

 ioexp@38 {
 compatible = "arrow,ioexp";
 reg = <0x38>;
 };

 ioexp@39 {
 compatible = "arrow,ioexp";
 reg = <0x39>;
 };
};

See below the i2c1_pins pin configuration node, where I2C controller pads are multiplexed as I2C
signals:

i2c1_pins: i2c1 {
brcm,pins = <2 3>; /* GPIO2 and GPIO3 pins */
brcm,function = <4>; /* ALT0 mux function */

};

You can see that the GPIO2 and GPIO3 pins are set to the ALT0 function. See the meaning of
brcm,function = <4> in the brcm,bcm2835-gpio.txt file under Documentation/devicetree/bindings/pinctrl/
directory.

[221]

Chapter 6 I2C Client Drivers

[221]

Open the BCM2835 ARM Peripherals guide and look for the table included in the section 6.2 Alternative
Function Assignments. You can see in the following screenshot that GPIO2 and GPIO3 pins must be
programmed to ALT0 to be multiplexed as I2C signals.

LAB 6.1 Code Description of the "I2C I/O expander device" Module
The main code sections of the driver will now be described:

1. Include the function headers:

#include <linux/module.h>
#include <linux/miscdevice.h>
#include <linux/i2c.h>
#include <linux/fs.h>
#include <linux/of.h>
#include <linux/uaccess.h>

2. You need to create a private structure that will store the I2C I/O device specific
information. In this driver, the first field of the private structure is a struct i2c_client
structure used to handle the I2C device. The second field of the private structure is a struct
miscdevice structure. The misc subsystem will automatically handle the open() function
for you. Inside the automatically created open() function, it will tie your created struct
miscdevice to the private struct ioexp_dev for the file that’s being opened. In this way in your
write/read kernel callback functions you can recover the struct miscdevice structure, which
will allow you to get access to the struct i2c_client that is included in the private struct
ioexp_dev structure. Once you get the struct i2_client structure you can read/write each I2C
specific device using the SMBus functions. The last field of the private structure is a char
array that will hold the name of the I2C I/O device.

struct ioexp_dev {
 struct i2c_client * client;
 struct miscdevice ioexp_miscdevice;
 char name[8]; /* ioexpXX */
};

I2C Client Drivers Chapter 6

[222]

3. Create a struct file_operations structure to define which driver´s functions are called when
the user reads, and writes to the character devices. This structure will be passed to the
misc subsystem when you register a device to it:

static const struct file_operations ioexp_fops = {
 .owner = THIS_MODULE,
 .read = ioexp_read_file,
 .write = ioexp_write_file,
};

4. In the probe() function allocates the private structure with the devm_kzalloc() function. Initalize
each misc device and register it with the kernel using the misc_register() function. The
i2c_set_clientdata() function is attaching each allocated private structure to the struct i2c_client
one, which will allow you to access your private data structure in other parts of the driver, for
example, you will recover the private structure in each remove() function call (called two times,
once per each device attached to the bus) using the i2c_get_clientdata() function:

static int ioexp_probe(struct i2c_client * client,
 const struct i2c_device_id * id)
{
 static int counter = 0;

struct ioexp_dev * ioexp;

 /* Allocate new structure representing device */
 ioexp = devm_kzalloc(&client->dev, sizeof(struct ioexp_dev), GFP_KERNEL);

 /* Store pointer to the device-structure in bus device context */
 i2c_set_clientdata(client,ioexp);

 /* Store pointer to I2C device/client */
 ioexp->client = client;

/* Initialize the misc device, ioexp is incremented
 * after each probe call
 */

 sprintf(ioexp->name, "ioexp%02d", counter++);

 ioexp->ioexp_miscdevice.name = ioexp->name;
 ioexp->ioexp_miscdevice.minor = MISC_DYNAMIC_MINOR;
 ioexp->ioexp_miscdevice.fops = &ioexp_fops;

 /* Register misc device */
 return misc_register(&ioexp->ioexp_miscdevice);

 return 0;
}

[223]

Chapter 6 I2C Client Drivers

[223]

5. Create the ioexp_write_file() kernel callback function, that gets called whenever an user
space write operation occurs on one of the character devices. At the time you registered
each misc device, you didn’t keep any pointer to the private struct ioexp_dev structure.
However, as the struct miscdevice structure is accessible through file->private_data, and is a
member of the struct ioexp_dev structure, you can use the container_of() macro to compute
the address of your private structure and recover the struct i2c_client from it. The copy_
from_user() function will get a char array from user space with values ranging from "0" to
"255"; this value will be converted from a char string to an unsigned long value and you
will write it to the I2C ioexp device using the i2c_smbus_write_byte() SMBus function. You
will also write an ioexp_read_file() kernel callback function, that reads the ioexp device
input and sends the value to user space. See below an extract of the ioexp_write_file()
function:

static ssize_t ioexp_write_file(struct file *file, const char __user *userbuf,
 size_t count, loff_t *ppos)
{
 int ret;
 unsigned long val;
 char buf[4];
 struct ioexp_dev * ioexp;

 ioexp = container_of(file->private_data,
 struct ioexp_dev,
 ioexp_miscdevice);

 copy_from_user(buf, userbuf, count);

 /* convert char array to char string */

buf[count-1] = '\0';

 /* convert the string to an unsigned long */
 ret = kstrtoul(buf, 0, &val);

i2c_smbus_write_byte(ioexp->client, val);

return count;
}

6. Declare a list of devices supported by the driver.

static const struct of_device_id ioexp_dt_ids[] = {
 { .compatible = "arrow,ioexp", },
 { }
};
MODULE_DEVICE_TABLE(of, ioexp_dt_ids);

I2C Client Drivers Chapter 6

[224]

7. Define an array of struct i2c_device_id structures:

static const struct i2c_device_id i2c_ids[] = {
 { .name = "ioexp", },
 { }
};
MODULE_DEVICE_TABLE(i2c, i2c_ids);

8. Add a struct i2c_driver structure that will be registered to the I2C bus:

static struct i2c_driver ioexp_driver = {
 .driver = {
 .name = "ioexp",
 .owner = THIS_MODULE,
 .of_match_table = ioexp_dt_ids,
 },
 .probe = ioexp_probe,
 .remove = ioexp_remove,
 .id_table = i2c_ids,
};

9. Register your driver with the I2C bus:

module_i2c_driver(ioexp_driver);

10. Build the modified device tree, and load it to the target processor.

See in the next Listing 6-1 the "I2C I/O expander device" driver source code (io_imx_expander.c) for
the i.MX7D processor.

Note: The source code for the SAMA5D2 (io_sam_expander.c) and BCM2837 (io_rpi_expander.c)
drivers can be downloaded from the GitHub repository of this book.

Listing 6-1: io_imx_expander.c
#include <linux/module.h>
#include <linux/miscdevice.h>
#include <linux/i2c.h>
#include <linux/fs.h>
#include <linux/of.h>
#include <linux/uaccess.h>

/* Private device structure */
struct ioexp_dev {
 struct i2c_client *client;
 struct miscdevice ioexp_miscdevice;
 char name[8]; /* ioexpXX */

[225]

Chapter 6 I2C Client Drivers

[225]

};

/* User is reading data from /dev/ioexpXX */
static ssize_t ioexp_read_file(struct file *file, char __user *userbuf,
 size_t count, loff_t *ppos)
{
 int expval, size;
 char buf[3];
 struct ioexp_dev *ioexp;

 ioexp = container_of(file->private_data,
 struct ioexp_dev,
 ioexp_miscdevice);

 /* store IO expander input to expval int variable */
 expval = i2c_smbus_read_byte(ioexp->client);
 if (expval < 0)
 return -EFAULT;

 /*
 * converts expval int value into a char string

 * For instance 255 int (4 bytes) = FF (2 bytes) + '\0' (1 byte) string.
 */
 size = sprintf(buf, "%02x", expval); /* size is 2 */

 /*
 * replace NULL by \n. It is not needed to have a char array

 * ended with \0 character.
 */
 buf[size] = '\n';

 /* send size+1 to include the \n character */
 if(*ppos == 0){
 if(copy_to_user(userbuf, buf, size+1)){
 pr_info("Failed to return led_value to user space\n");
 return -EFAULT;
 }
 *ppos+=1;
 return size+1;
 }

 return 0;
}

/* Writing from the terminal command line to /dev/ioexpXX, \n is added */
static ssize_t ioexp_write_file(struct file *file, const char __user *userbuf,
 size_t count, loff_t *ppos)
{

I2C Client Drivers Chapter 6

[226]

 int ret;
 unsigned long val;
 char buf[4];
 struct ioexp_dev * ioexp;

 ioexp = container_of(file->private_data,
 struct ioexp_dev,
 ioexp_miscdevice);

 dev_info(&ioexp->client->dev,
 "ioexp_write_file entered on %s\n", ioexp->name);

 dev_info(&ioexp->client->dev,
 "we have written %zu characters\n", count);

 if(copy_from_user(buf, userbuf, count)) {
 dev_err(&ioexp->client->dev, "Bad copied value\n");
 return -EFAULT;
 }

 buf[count-1] = '\0'; /* replace \n with \0 */

 /* convert the string to an unsigned long */
 ret = kstrtoul(buf, 0, &val);
 if (ret)
 return -EINVAL;

 dev_info(&ioexp->client->dev, "the value is %lu\n", val);

 ret = i2c_smbus_write_byte(ioexp->client, val);
 if (ret < 0)
 dev_err(&ioexp->client->dev, "the device is not found\n");

 dev_info(&ioexp->client->dev,
 "ioexp_write_file exited on %s\n", ioexp->name);

 return count;
}

static const struct file_operations ioexp_fops = {
 .owner = THIS_MODULE,
 .read = ioexp_read_file,
 .write = ioexp_write_file,
};

/* the probe() function is called two times */
static int ioexp_probe(struct i2c_client * client,
 const struct i2c_device_id * id)

[227]

Chapter 6 I2C Client Drivers

[227]

{
 static int counter = 0;

 struct ioexp_dev * ioexp;

 /* Allocate new private structure */
 ioexp = devm_kzalloc(&client->dev, sizeof(struct ioexp_dev), GFP_KERNEL);

 /* Store pointer to the device-structure in bus device context */
 i2c_set_clientdata(client,ioexp);

 /* Store pointer to I2C client device in the private structure */
 ioexp->client = client;

 /* Initialize the misc device, ioexp is incremented after each probe call */
 sprintf(ioexp->name, "ioexp%02d", counter++);
 dev_info(&client->dev,
 "ioexp_probe is entered on %s\n", ioexp->name);

 ioexp->ioexp_miscdevice.name = ioexp->name;
 ioexp->ioexp_miscdevice.minor = MISC_DYNAMIC_MINOR;
 ioexp->ioexp_miscdevice.fops = &ioexp_fops;

 /* Register misc device */
 return misc_register(&ioexp->ioexp_miscdevice);

 dev_info(&client->dev,
 "ioexp_probe is exited on %s\n", ioexp->name);

 return 0;
}

static int ioexp_remove(struct i2c_client * client)
{
 struct ioexp_dev * ioexp;

 /* Get device structure from bus device context */
 ioexp = i2c_get_clientdata(client);

 dev_info(&client->dev,
 "ioexp_remove is entered on %s\n", ioexp->name);

 /* Deregister misc device */
 misc_deregister(&ioexp->ioexp_miscdevice);

 dev_info(&client->dev,
 "ioexp_remove is exited on %s\n", ioexp->name);

I2C Client Drivers Chapter 6

[228]

 return 0;
}

static const struct of_device_id ioexp_dt_ids[] = {
 { .compatible = "arrow,ioexp", },
 { }
};
MODULE_DEVICE_TABLE(of, ioexp_dt_ids);

static const struct i2c_device_id i2c_ids[] = {
 { .name = "ioexp", },
 { }
};
MODULE_DEVICE_TABLE(i2c, i2c_ids);

static struct i2c_driver ioexp_driver = {
 .driver = {
 .name = "ioexp",
 .owner = THIS_MODULE,
 .of_match_table = ioexp_dt_ids,
 },
 .probe = ioexp_probe,
 .remove = ioexp_remove,
 .id_table = i2c_ids,
};

module_i2c_driver(ioexp_driver);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Alberto Liberal <aliberal@arroweurope.com>");
MODULE_DESCRIPTION("This is a driver that controls several I2C IO expanders");

io_imx_expander.ko Demonstration
root@imx7dsabresd:~# insmod io_imx_expander.ko /* load module, probe() is called
twice */
root@imx7dsabresd:~# ls –l /dev/ioexp* /* find ioexp00 and ioexp01 devices */
root@imx7dsabresd:~# echo 0 > /dev/ioexp00 /* set all the outputs to 0 */
root@imx7dsabresd:~# echo 255 > /dev/ioexp01 /* set all the outputs to 1 */
root@imx7dsabresd:~# rmmod io_imx_expander.ko /* remove module, remove() is called
twice */

[229]

Chapter 6 I2C Client Drivers

[229]

The Sysfs Filesystem
Sysfs is a virtual file system that exports information about devices and drivers from the kernel
device model to user space. It provides a means to export kernel data structures, their attributes,
and the linkages between them to user space. Various programs use sysfs: udev, mdev, lsusb, lspci.

Since the Linux device driver model was introduced in version 2.6, the sysfs represents all devices
and drivers as kernel objects. You can see the kernel's view of the system laid by looking under
/sys/, as shown here:

•	 /sys/bus/ - contains the list of buses.
•	 /sys/devices/ - contains the list of devices.
•	 /sys/bus/<bus>/devices/ - devices on a given bus.
•	 /sys/bus/<bus>/drivers/ - drivers on a given bus.
•	 /sys/class/ - this subdirectory contains a single layer of further subdirectories for each

of the device classes that have been registered on the system (for example, terminals,
network devices, block devices, graphics devices, sound devices, and so on). Inside
each of these subdirectories are symbolic links for each of the devices in this class. These
symbolic links refer to entries in the /sys/devices/ directory.

•	 /sys/bus/<bus>/devices/<device>/driver/ - symlink to driver that manages the given device.

Let's focus now on two of the directories shown above:

1. The list of devices: /sys/devices/:

This directory contains a filesystem representation of the device tree. It maps directly to
the internal kernel device tree, which is a hierarchy of struct device structures. There are
three directories that are present on all systems:

•	 system: This contains devices at the heart of the system, including a collection of both
global and individual CPU attributes (cpu) and clocks.

•	 virtual: This contains devices that are memory-based. You will find the memory
devices that appear as /dev/null, /dev/random, and /dev/zero in virtual/mem. You will
find the loopback device, lo, in virtual/net.

•	 platform: This contains devices that are not connected via a conventional hardware
bus. This could be almost anything on an embedded device.

Devices will be added and removed dynamically as the machine runs, and between
different kernel versions, the layout of the devices within this tree will change. Do not rely
on the format of this tree because of this. If a program wishes to find different things in
the tree, use the /sys/class/ structure and rely on the symlinks there to point to the proper
location within the /sys/devices/ tree of the individual devices.

I2C Client Drivers Chapter 6

[230]

2. The Device Drivers Grouped by Classes: /sys/class/:

The /sys/class/ directory consist of a group of subdirectories describing individual classes
of devices in the kernel. The individual directories consist of either subdirectories or
symlinks to other directories.

For example, you will find I2C controller drivers under /sys/class/i2c-dev/. Each registered
I2C adapter gets a number, starting from 0. You can examine /sys/class/i2c-dev/ to see which
number corresponds to which adapter.

Some attribute files are writable and allow you to tune parameters in the driver at runtime.
The dev attribute is particularly interesting. If you look at its value, you will find the major
and minor numbers of the device.

The Kobject Infrastructure
Sysfs is tied inherently to the kobject infrastructure. The kobject is the fundamental structure of
the device model, it allows sysfs representation. The struct kobject structure is defined as follows:

struct kobject {
const char *name;
struct list_head entry;
struct kobject *parent;
struct kset *kset;
struct kobj_type *ktype;
struct sysfs_dirent *sd;
struct kref kref;

[...]

}

For every kobject that is registered with the system, a directory is created for it in sysfs. That
directory is created as a subdirectory of the kobject's parent, expressing internal object hierarchies
to user space. Inside the struct kobject there is a pointer Ktype to the struct kobj_type structure. The
struct Kobj_type controls what happens when the kobject is created and deleted; it is defined as:

struct kobj_type {
void (*release)(struct kobject *kobj);
const struct sysfs_ops *sysfs_ops;
struct attribute **default_attrs;
const struct kobj_ns_type_operations *(*child_ns_type)(struct kobject *kobj);
const void *(*namespace)(struct kobject *kobj);

};

[231]

Chapter 6 I2C Client Drivers

[231]

The struct Kobj_type also contains attributes that can be exported to sysfs directories (directories
are created with kobject_create_and_add() function) as files (files are created with sysfs_create_file()).
These attributes files can be "read/written" via "show/store" methods using the struct sysfs_ops
structure that is pointed via the sysfs_ops pointer variable (included in the struct kobj_type
structure).

struct sysfs_ops {
ssize_t (*show)(struct kobject *, struct attribute *,

 char *);
ssize_t (*store)(struct kobject *, struct attribute *,

 const char *, size_t);
};

Attributes can be exported for kobjects in the form of regular files in the filesystem. Sysfs forwards
file I/O operations to methods defined for the attributes, providing a means to read and write
kernel attributes.

An attribute definition is simply:

struct attribute {
 char *name;
 struct module *owner;
 umode_t mode;
};

int sysfs_create_file(struct kobject * kobj, const struct attribute * attr);
void sysfs_remove_file(struct kobject * kobj, const struct attribute * attr);

A bare attribute contains no means to read or write the value of the attribute. Subsystems are
encouraged to define their own attribute structure and wrapper functions for adding and
removing attributes for a specific object type. For example, the driver model defines struct
device_attribute like:

struct device_attribute {
 struct attribute attr;
 ssize_t (*show)(struct device *dev, struct device_attribute *attr,
 char *buf);
 ssize_t (*store)(struct device *dev, struct device_attribute *attr,
 const char *buf, size_t count);
};

int device_create_file(struct device *, const struct device_attribute *);
void device_remove_file(struct device *, const struct device_attribute *);

It also defines this helper for defining device attributes:

#define DEVICE_ATTR(_name, _mode, _show, _store) \
struct device_attribute dev_attr_##_name = __ATTR(_name, _mode, _show, _store)

I2C Client Drivers Chapter 6

[232]

For example, declaring

static DEVICE_ATTR(foo, S_IWUSR | S_IRUGO, show_foo, store_foo);

is equivalent to doing:

static struct device_attribute dev_attr_foo = {
 .attr = {
 .name = "foo",
 .mode = S_IWUSR | S_IRUGO,
 },
 .show = show_foo,
 .store = store_foo,
};

The macro DEVICE_ATTR requires the following inputs:

•	 A name for the attribute in the filesystem.
•	 Permissions which determine if the attribute can be read and/or written. The macros for

modes are defined in include/linux/stat.h.
•	 A function to read the data from the driver.
•	 A function to write the data into the driver.

You can add/remove a "sysfs attribute file" for the device using the next functions:
int device_create_file(struct device *dev, const struct device_attribute * attr);
void device_remove_file(struct device *dev, const struct device_attribute * attr);

You can add/remove a group of "sysfs attribute files" for the device using the next functions:
int sysfs_create_group(struct kobject *kobj,

 const struct attribute_group *grp);
void sysfs_remove_group(struct kobject * kobj,

 const struct attribute_group * grp);

For example:
You have two structures of type struct device_attribute with respective names foo1 and foo2:

static DEVICE_ATTR(foo1, S_IWUSR | S_IRUGO, show_foo1, store_foo1);
static DEVICE_ATTR(foo2, S_IWUSR | S_IRUGO, show_foo2, store_foo2);

These two attributes can be organized as follows into a group:
static struct attribute *dev_attrs[] = {
 &dev_attr_foo1.attr,
 &dev_attr_foo2.attr,
 NULL,
};

static struct attribute_group dev_attr_group = {
 .attrs = dev_attrs,
};

static const struct attribute_group *dev_attr_groups[] = {

[233]

Chapter 6 I2C Client Drivers

[233]

 &dev_attr_group,
 NULL,
};

You can add/remove the group of sysfs entries to an I2C client device:

int sysfs_create_group(&client->dev.kobj, &dev_attr_group);
void sysfs_remove_group(&client->dev.kobj, &dev_attr_group);

LAB 6.2: "I2C multidisplay LED" Module
In this lab, you will implement a driver to control the Analog Devices LTC3206 I2C Multidisplay
LED controller (http://www.analog.com/en/products/power-management/led-driver-ic/inductorless-
charge-pump-led-drivers/ltc3206.html). The LTC3206 provides independent current and dimming
control for 1-6 LED MAIN, 1-4 LED SUB and RGB LED Displays with 16 individual dimming
states for both the MAIN and SUB displays. Each of the RED, GREEN and BLUE LEDs have
16 dimming states as well, resulting in up to 4096 color combinations. The ENRGB/S (Pin 10) is
used to enable and disable either the RED, GREEN and BLUE current sources or the SUB display
depending on which is programmed to respond via the I2C port. Once ENRGB/S is brought high,
the LTC3206 illuminates the RGB or SUB display with the color combination or intensity that was
previously programmed via the I2C port. The logic level for ENRGB/S is referenced to DVCC.

To use the ENRGB/S pin, the I2C port must first be configured to the desired setting. For example,
if ENRGB/S will be used to control the SUB display, then a non-zero code must reside in the C3-C0
nibble of the I2C port and bit A2 must be set to 1. Now when ENRGB/S is high (DVCC), the SUB
display will be on with the C3-C0 setting. When ENRGB/S is low, the SUB display will be off. If no
other displays are programmed to be on, the entire chip will be in shutdown.

 Likewise, if ENRGB/S will be used to enable the RGB display, then a non-zero code must reside
in one of the RED, GREEN or BLUE nibbles of the serial port (A4-A7 or B0-B7), and bit A2 must be
0. Now when ENRGB/S is high (DVCC), the RGB display will light with the programmed color.
When ENRGB/S is low, the RGB display will be off. If no other displays are programmed to be on,
the entire chip will be in shutdown.

If bit A2 is set to 1 (SUB display control), then ENRGB/S will have no effect on the RGB display.
Likewise, if bit A2 is set to 0 (RGB display control), then ENRGB/S will have no effect on the SUB
display.

If the ENRGB/S pin is not used, it should be connected to DVCC. It should not be grounded or left
floating.

In the Pag.9 of the LTC3206 datasheet you can see the bit assignments.

I2C Client Drivers Chapter 6

[234]

To test the driver, you can use the DC749A - Demo Board (http://www.analog.com/en/design-center/
evaluation-hardware-and-software/evaluation-boards-kits/dc749a.html). You will use the pin 6 of the DC749A
J1 connector to control the ENRGB/S pin, connecting it to a GPIO pin of the used processor. Connect
the processor´s SDA signal to the pin 7 of the J1 connector and the processor´s SCL signal to the pin 4
of the J1 connector. Connect 3.3V between the processor´s board and the J20 DVCC connector. Do not
forget to connect GND between DC749A and the processor´s board. If you do not want to enable the
ENRGB/S pin connect it to DVCC.

The DC749A board schematic is shown below:

To develop the driver, you will use the LED subsystem. Every LED Display device (R, G, B, SUB and
MAIN) will be registered to the LED subsystem using the devm_led_classdev_register() function, being
created five devices (red, green, blue, sub and main) under the /sys/class/leds/ directory. These five
devices will be accesed within the kernel driver´s space throughout the same driver´s led_control()
function, that will be called every time you write to the sysfs brightness entry from user space. Two
additional sysfs entries will be created, allowing to switch from RGB to SUB device and viceversa.
These two driver´s sysfs functions set the A2 bit and enable the ENRGB/S pin to perform the switching.

[235]

Chapter 6 I2C Client Drivers

[235]

LAB 6.2 Hardware Description for the i.MX7D Processor
In this lab, you will use the I2C pins of the MCIMX7D-SABRE mikroBUS™ to connect to the
DC749A - Demo Board.

Go to the pag.20 of the MCIMX7D-SABRE schematic to see the MikroBUS connector and look for
the SDA and the SCL pins. Connect the MikroBUS SDA pin to the pin 7 (SDA) of the DC749A J1
connector and the MikroBUS SCL pin to the pin 4 (SCL) of the DC749A J1 connector. Connect the
3.3V MikroBUS pin to the DC749A Vin J2 pin and to the DC749A J20 DVCC connector. Connect
the MikroBUS MKBUS_INT pin to the pin 6 (ENRGB/S) of the DC749A J1 connector. Do not forget
to connect GND between the two boards.

LAB 6.2 Hardware Description for the SAMA5D2 Processor
Open the SAMA5D2B-XULT board schematic and look for the J22 and J17 connectors. Connect the
pin 8 (EXP_TWCK1_PD5) of the J22 connector to the pin 4 (SCL) of the DC749A J1 connector and
the pin 7 (EXP_TWD1_PD4) of the J22 connector to the pin 7 (SDA) of the DC749A J1 connector.
Connect the pin 30 (ISC_D11/EXP_PB25) of the J17 connector to the pin 6 (ENRGB/S) of the
DC749A J1 connector. Connect 3.3V from processor´s board to the DC749A Vin J2 pin and to the
DC749A J20 DVCC connector. Do not forget to connect GND between the two boards.

LAB 6.2 Hardware Description for the BCM2837 Processor
For the BCM2837 processor, you will use the GPIO expansion connector to obtain the I2C signals.
Go to the Raspberry-Pi-3B-V1.2-Schematics to see the connector. The GPIO2 and GPIO3 pins will be
used to get the SDA1 and SCL1 signals. Connect them to the pin 4 (SCL) and to the pin 7 (SDA)
of the DC749A J1 connector. Connect the GPIO23 pin to the pin 6 (ENRGB/S) of the DC749A J1
connector. Connect 3.3V from processor´s board to the Vin J2 pin and to the DC749A J20 DVCC
connector. Do not forget to connect GND between the two boards.

LAB 6.2 Device Tree for the i.MX7D Processor
From the MCIMX7D-SABRE mikroBUS™ socket, you can see that MKBUS_I2C_SCL pin connects
to the I2C3_SCL pad of the i.MX7D processor, and the MKBUS_I2C_SDA pin to the I2C3_SDA
pad. You have to configure these pads as I2C signals. To look for the macro that assigns the
required I2C functionality go to the imx7d-pinfunc.h file under arch/arm/boot/dts/ directory and find
the next macros:

#define MX7D_PAD_I2C3_SDA__I2C3_SDA 0x015C 0x03CC 0x05E8 0x0 0x2
#define MX7D_PAD_I2C3_SCL__I2C3_SCL 0x0158 0x03C8 0x05E4 0x0 0x2

I2C Client Drivers Chapter 6

[236]

The MKBUS_INT pin connects to the SAI1_TX_SYNC processor´s pad. To look for the macro that
assigns the required GPIO functionality go to the imx7d-pinfunc.h file under arch/arm/boot/dts/
directory and find the next macro:

#define MX7D_PAD_SAI1_TX_SYNC__GPIO6_IO14 0x0208 0x0478 0x0000 0x5 0x0

Now, you can modify the device tree file imx7d-sdb.dts adding the ltc3206@1b sub-node inside the
i2c3 controller master node. The pinctrl-0 property of the ltc3206 node points to the pinctrl_cs pin
configuration node, where the SAI1_TX_SYNC pad is multiplexed as a GPIO signal. The gpios
property will make the GPIO pin 14 of the GPIO6 port available to the driver so that you can set
the pin direction to output and drive the physical line level from 0 to 1 to control the ENRGB/S
pin. The reg property provides the LTC3206 I2C address. Inside the ltc3206 node there are five sub-
nodes representing the different display devices. Each of these five nodes have a label property so
that the driver can identify them and create devices with the provided label names:

 &i2c3 {
 clock-frequency = <100000>;
 pinctrl-names = "default";
 pinctrl-0 = <&pinctrl_i2c3>;
 status = "okay";

ltc3206: ltc3206@1b {
 compatible = "arrow,ltc3206";
 reg = <0x1b>;
 pinctrl-0 = <&pinctrl_cs>;
 gpios = <&gpio6 14 GPIO_ACTIVE_LOW>;

 led1r {
 label = "red";
 };

 led1b {
 label = "blue";
 };

 led1g {
 label = "green";
 };

 ledmain {
 label = "main";
 };

 ledsub {
 label = "sub";
 };

[237]

Chapter 6 I2C Client Drivers

[237]

 };

 sii902x: sii902x@39 {
 compatible = "SiI,sii902x";
 pinctrl-names = "default";
 pinctrl-0 = <&pinctrl_sii902x>;
 interrupt-parent = <&gpio2>;
 interrupts = <13 IRQ_TYPE_EDGE_FALLING>;
 mode_str ="1280x720M@60";
 bits-per-pixel = <16>;
 reg = <0x39>;
 status = "okay";
 };

[...]

};

See below the pinctrl_cs pin configuration node located inside the iomuxc node, where the
SAI1_TX_SYNC pad is multiplexed as a GPIO signal:

pinctrl_cs: cs_gpiogrp {
fsl,pins = <

 MX7D_PAD_SAI1_TX_SYNC__GPIO6_IO14 0x2
 >;
};

LAB 6.2 Device Tree for the SAMA5D2 Processor
Open the SAMA5D2B-XULT board schematic and look for the J22 connector. You see that
EXP_TWCK1_PD5 pin connects to the PD5 pad of the SAMA5D2 processor, and EXP_TWD1_PD4
pin to the PD4 pad. You have to configure the PD5, and PD4 pads as I2C signals. To look for the
macro that assigns the required I2C functionality go to the sama5d2-pinfunc.h file under arch/arm/
boot/dts/ directory and find the next macros below:

#define PIN_PD4__TWD1 PINMUX_PIN(PIN_PD4, 1, 2)
#define PIN_PD5__TWCK1 PINMUX_PIN(PIN_PD5, 1, 2)

Find now the J17 connector. You see that the ISC_D11/EXP_PB25 pin connects to the PB25 pad of
the SAMA5D2 processor. You have to configure this pin as a GPIO signal. To look for the macro
that assigns the required GPIO functionality go to the sama5d2-pinfunc.h file under arch/arm/boot/
dts/ directory and find the next macro:

#define PIN_PB25__GPIO PINMUX_PIN(PIN_PB25, 0, 0)

I2C Client Drivers Chapter 6

[238]

Open and modify the device tree file at91-sama5d2_xplained_common.dtsi adding the ltc3206@1b
sub-node inside the i2c1 controller master node. The pinctrl-0 property of the ltc3206 node points to
the pinctrl_cs_default pin configuration node, where the PB25 pad is multiplexed as a GPIO signal.

The PB25 pad is also being multiplexed as a GPIO for the isc node. This node is included in the
at91-sama5d2_xplained_ov7670.dtsi file under the arch/arm/boot/dts/ folder. Comment out the
following line inside the at91-sama5d2_xplained_common.dtsi file to avoid this "mux" conflict:

//#include "at91-sama5d2_xplained_ov7670.dtsi"

The gpios property will make the GPIO pin 25 of the PIOB port available to the driver so that
you can set the pin direction to output and drive the physical line level from 0 to 1 to control
the ENRGB/S pin. To set up this GPIO pin in the gpios property, you will add I/O lines from the
PIOA GPIO pin 0 to the PIOB GPIO pin 25 setting 32+25 = 57 in the gpios value. The reg property
provides the LTC3206 I2C address. Inside the ltc3206 node there are five sub-nodes representing
the different display devices. Each of these five nodes have a label property so that the driver can
identify and create devices with the provided label names:

i2c1: i2c@fc028000 {
 dmas = <0>, <0>;
 pinctrl-names = "default";
 pinctrl-0 = <&pinctrl_i2c1_default>;
 status = "okay";

 [...]

 ltc3206: ltc3206@1b {
 compatible = "arrow,ltc3206";
 reg = <0x1b>;
 pinctrl-0 = <&pinctrl_cs_default>;
 gpios = <&pioA 57 GPIO_ACTIVE_LOW>;

 led1r {
 label = "red";
 };

 led1b {
 label = "blue";
 };

 led1g {
 label = "green";
 };

 ledmain {
 label = "main";

[239]

Chapter 6 I2C Client Drivers

[239]

 };

 ledsub {
 label = "sub";
 };
 };

 [...]

 at24@54 {
 compatible = "atmel,24c02";
 reg = <0x54>;
 pagesize = <16>;
 };
 };

See below the pinctrl_cs_default pin configuration node, where the PB25 pad is multiplexed as a
GPIO signal:

pinctrl_cs_default: cs_gpio_default {
 pinmux = <PIN_PB25__GPIO>;
 bias-disable;
};

LAB 6.2 Device Tree for the BCM2837 Processor
Open Raspberry-Pi-3B-V1.2-Schematics and find the GPIO EXPANSION connector. You can see that
the GPIO2 pin connects to the GPIO2 pad of the BCM2837 processor, and GPIO3 pin to the GPIO3
pad. These pads are multiplexed as I2C signals using the ALT0 mode. You are going to connect
the GPIO EXPANSION GPIO23 pin to the pin 6 (ENRGB/S) of the DC749A J1 connector, so the
GPIO23 pad must be multiplexed as a GPIO signal.

Open and modify the device tree file bcm2710-rpi-3-b.dts adding the ltc3206@1b sub-node inside
the i2c1 controller master node. The pinctrl-0 property of the ltc3206 node points to the cs_pins pin
configuration node, where the GPIO23 pad is multiplexed as a GPIO signal. The gpios property
will make the GPIO23 available to the driver so that you can set up the pin direction to output and
drive the physical line level from 0 to 1 to control the ENRGB/S pin. The reg property provides the
LTC3206 I2C address. Inside the ltc3206 node there are five sub-nodes representing the different
display devices. Each of the five nodes have a label property so that the driver can identify and
create devices with the provided label names:

&i2c1 {
 pinctrl-names = "default";
 pinctrl-0 = <&i2c1_pins>;
 clock-frequency = <100000>;
 status = "okay";

I2C Client Drivers Chapter 6

[240]

 [...]

 ltc3206: ltc3206@1b {
 compatible = "arrow,ltc3206";
 reg = <0x1b>;
 pinctrl-0 = <&cs_pins>;
 gpios = <&gpio 23 GPIO_ACTIVE_LOW>;

 led1r {
 label = "red";
 };

 led1b {
 label = "blue";
 };

 led1g {
 label = "green";
 };

 ledmain {
 label = "main";
 };

 ledsub {
 label = "sub";
 };
 };

};

See below the cs_pins pin configuration node, where the GPIO23 pad is multiplexed as a GPIO
signal:

cs_pins: cs_pins {
 brcm,pins = <23>;
 brcm,function = <1>; /* Output */
 brcm,pull = <0>; /* none */
 };

Unified Device Properties Interface for ACPI and Device Tree
An Unified Device Properties API has been defined to provide a format compatible with existing
device tree schemas. The purpose for this was to allow for the reuse of the existing schemas and
encourage the development of firmware agnostic device drivers. It is now possible to pass device
configuration information from ACPI in addition to DT. In order to support this, it is needed to
convert the driver to use the unified device property accessors instead of DT specific.

[241]

Chapter 6 I2C Client Drivers

[241]

New generic routines are provided for retrieving properties from device description objects in the
platform firmware in case there are no struct device objects for them (either those objects have not
been created yet or they do not exist at all).

The following functions in bold are provided in analogy with the corresponding functions for the
struct device structure added previously:

fwnode_property_present() for device_property_present()
fwnode_property_read_u8() for device_property_read_u8()
fwnode_property_read_u16() for device_property_read_u16()
fwnode_property_read_u32() for device_property_read_u32()

fwnode_property_read_u64() for device_property_read_u64()
fwnode_property_read_string() for device_property_read_string()
fwnode_property_read_u8_array() for device_property_read_u8_array()
fwnode_property_read_u16_array() for device_property_read_u16_array()
fwnode_property_read_u32_array() for device_property_read_u32_array()
fwnode_property_read_u64_array() for for device_property_read_u64_array()
fwnode_property_read_string_array() for device_property_read_string_array()

For all of these functions, the first argument is a pointer to a struct fwnode_handle structure defined
in include/linux/fwnode.h that allows a device description object (depending on what platform
firmware interface is in use) to be obtained.

/* fwnode.h - Firmware device node object handle type definition. */

enum fwnode_type {
 FWNODE_INVALID = 0,
 FWNODE_OF,
 FWNODE_ACPI,
 FWNODE_ACPI_DATA,
 FWNODE_PDATA,
 FWNODE_IRQCHIP,
};

struct fwnode_handle {
 enum fwnode_type type;
 struct fwnode_handle *secondary;
};

The new function device_for_each_child_node() iterates over the children of the device description
object associated with a given device (for example, struct device *dev = &client->dev) and the function
device_get_child_node_count() returns the number of child nodes of a given device.

I2C Client Drivers Chapter 6

[242]

LAB 6.2 Code Description of the "I2C multidisplay LED" Module
The main code sections of the driver will now be described:

1. Include the function headers:

#include <linux/module.h>
#include <linux/i2c.h>
#include <linux/leds.h>
#include <linux/gpio/consumer.h>
#include <linux/delay.h>

2. Define the masks that will used to select the specific I2C device commands:

#define CMD_RED_SHIFT 4
#define CMD_BLUE_SHIFT 4
#define CMD_GREEN_SHIFT 0
#define CMD_MAIN_SHIFT 4
#define CMD_SUB_SHIFT 0
#define EN_CS_SHIFT (1 << 2)

3. Create a private structure that will store the specific info for each of the five led devices.
The first field is the brightness variable, that will hold values ranging from "0" to "15". The
second field is a struct led_classdev variable, that will be filled for each led device within the
probe() function. The last field is a pointer to a private structure that will hold global data
updated and is exposed to all the led devices; this structure will be analyzed in the next
point:

struct led_device {
 u8 brightness;
 struct led_classdev cdev;
 struct led_priv *private;
};

4. Create a private structure that will store global info accessible to all the led devices. The
first field of the private structure is the num_leds variable, that will hold the number of
declared DT led devices. The second field is an array of three commands that will hold
the command values sent to the LTC3206 device in each of the I2C transactions. The
display_cs variable is a pointer to a struct gpio_desc structure that will allow you to control
the ENRGB/S pin, and the last field is a pointer to a struct i2c_client structure that will allow
you to recover the I2C address of the LTC3206 device:

struct led_priv {
 u32 num_leds;
 u8 command[3];
 struct gpio_desc *display_cs;
 struct i2c_client *client;
};

[243]

Chapter 6 I2C Client Drivers

[243]

5. See below an extract of the probe() routine with the main lines of code marked in bold.
These are the main points to set up the driver within the probe() function:

•	 Declare a pointer to a struct fwnode_handle structure and a pointer to the global private
struct led_priv structure.

•	 Get the number of led devices with the device_get_child_node_count() function.
•	 Allocate the global private structure with devm_kzalloc() and store the pointer to your

client device on it (private->client = client). The i2c_set_clientdata() function is attaching
your allocated private structure to the i2c_client one.

•	 Get the gpio descriptor and store it in the global private structure (private->display_cs
= devm_gpiod_get(dev, NULL, GPIOD_ASIS)). Set the gpio pin direction to output and the
pin physical level to low (gpiod_direction_output(private->display_cs, 1)); in one of the DT
gpios property fields is declared GPIO_ACTIVE_LOW meaning that gpiod_set_value(desc, 1)
will set the physical line to low and gpiod_set_value(desc, 0) to high.

•	 The device_for_each_child_of_node() function walks for each led child node allocating
a private structure struct led_device for each one using the devm_kzalloc() function and
initializing the struct led_classdev field included in each allocated private structure. The
fwnode_property_read_string() function reads each led node label property and stores it
in the cdev->name field of each struct led_device structure.

•	 The devm_led_classdev_register() function registers each LED class device to the LED
subsystem.

•	 Finally, add a group of "sysfs attribute files" to control the ENRGB/S pin using the
function sysfs_create_group().

static int __init ltc3206_probe(struct i2c_client *client,
 const struct i2c_device_id *id)
{
 struct fwnode_handle *child;
 struct device *dev = &client->dev;
 struct led_priv *private;

device_get_child_node_count(dev);

 private = devm_kzalloc(dev, sizeof(*private), GFP_KERNEL);
 private->client = client;
 i2c_set_clientdata(client, private);

 private->display_cs = devm_gpiod_get(dev, NULL, GPIOD_ASIS);
 gpiod_direction_output(private->display_cs, 1);

 /* Register sysfs hooks */
 sysfs_create_group(&client->dev.kobj, &display_cs_group);

I2C Client Drivers Chapter 6

[244]

 /* Do an iteration for each child node */
 device_for_each_child_node(dev, child){

 struct led_device *led_device;
 struct led_classdev *cdev;

 led_device = devm_kzalloc(dev, sizeof(*led_device), GFP_KERNEL);

 cdev = &led_device->cdev;
 led_device->private = private;

 fwnode_property_read_string(child, "label", &cdev->name);

 if (strcmp(cdev->name,"main") == 0) {
 led_device->cdev.brightness_set_blocking = led_control;
 devm_led_classdev_register(dev, &led_device->cdev);
 }
 else if (strcmp(cdev->name,"sub") == 0) {
 led_device->cdev.brightness_set_blocking = led_control;
 devm_led_classdev_register(dev, &led_device->cdev);
 }
 else if (strcmp(cdev->name,"red") == 0) {
 led_device->cdev.brightness_set_blocking = led_control;
 ret = devm_led_classdev_register(dev, &led_device->cdev);
 }
 else if (strcmp(cdev->name,"green") == 0) {
 led_device->cdev.brightness_set_blocking = led_control;
 ret = devm_led_classdev_register(dev, &led_device->cdev);
 }
 else if (strcmp(cdev->name,"blue") == 0) {
 led_device->cdev.brightness_set_blocking = led_control;
 ret = devm_led_classdev_register(dev, &led_device->cdev);
 }
 else {
 dev_err(dev, "Bad device tree value\n");
 return -EINVAL;
 }

 private->num_leds++;
 }

 dev_info(dev, "i am out of the device tree\n");
 dev_info(dev, "my_probe() function is exited.\n");
 return 0;
}

[245]

Chapter 6 I2C Client Drivers

[245]

6. Write the LED brightness led_control() function. Every time your user space application
writes to the sysfs brightness entry (/sys/class/leds/<device>/brightness) under each led
device, the driver´s led_control() function is called. The LED subsystem hides the
complexity of creating a class, the devices under the class and the sysfs entries under each
of the devices. The private struct led_device structure associated to each device is recovered
using the container_of() function. Depending of the cdev->name value of the recovered struct
led_device different masks are applied to the char array command values, then the updated
values are stored in the global struct led_priv structure. Finally, you will send the updated
command values to the LTC3206 device using the ltc3206_led_write() function, which calls
to the plain i2c_master_send() function.

7. In the probe() function, you added a group of "sysfs attribute files" to control the ENRGB/S
pin by writing the line of code sysfs_create_group(&client->dev.kobj, &display_cs_group). Now,
you will create two structures of type struct device_attribute with the respective names 'rgb'
and 'sub' and will organize these two atributes into a group:

static DEVICE_ATTR(rgb, S_IWUSR, NULL, rgb_select);
static DEVICE_ATTR(sub, S_IWUSR, NULL, sub_select);

static struct attribute *display_cs_attrs[] = {
 &dev_attr_rgb.attr,
 &dev_attr_sub.attr,
 NULL,
};

static struct attribute_group display_cs_group = {
 .name = "display_cs",
 .attrs = display_cs_attrs,
};

8. Write the sysfs rgb_select() and sub_select() functions that will be called each time the user
application writes "on" or "off" to the sysfs "rgb" and "sub" entries. Inside these functions
you are going to recover the struct i2_client structure using the to_i2c_client() function and
after that the i2c_get_clientdata() function will recover the global struct led_priv structure.
The i2c_get_clientdata() function takes the previously recovered struct i2_client structure as
a parameter. Once you have retrieved the global private structure you can update the bit
A2 of the command[0] using the mask EN_CS_SHIFT and after that you will send the new
command values to the LTC3206 device using the ltc3206_led_write() function. Depending
of the selected "on" or "off" value the GPIO physical line will be set from "low to high" or
from "high to low" using the gpiod_set_value() function, that takes as a parameter the gpio
descriptor stored in your global struct led_priv structure.

I2C Client Drivers Chapter 6

[246]

9. Declare a list of devices supported by the driver.

static const struct of_device_id my_of_ids[] = {
 { .compatible = "arrow, ltc3206", },
 { }
};
MODULE_DEVICE_TABLE(of, my_of_ids);

10. Define an array of struct i2c_device_id structures:

static const struct i2c_device_id ltc3206_id[] = {
 { "ltc3206", 0 },
 { }
};
MODULE_DEVICE_TABLE(i2c, ltc3206_id);

11. Add a struct i2c_driver structure that will be registered to the I2C bus:

static struct i2c_driver ltc3206_driver = {
 .probe = ltc3206_probe,
 .remove = ltc3206_remove,
 .id_table = ltc3206_id,
 .driver = {
 .name = "ltc3206",
 .of_match_table = my_of_ids,
 .owner = THIS_MODULE,
 }
};

12. Register your driver with the I2C bus:

module_i2c_driver(ltc3206_driver);

13. Build the modified device tree, and load it to the target processor.

See in the next Listing 6-2 the "I2C multidisplay LED" driver source code (ltc3206_imx_led_class.c)
for the i.MX7D processor.

Note: The source code for the SAMA5D2 (ltc3206_sam_led_class.c) and BCM2837 (ltc3206_rpi_led_
class.c) drivers can be downloaded from the GitHub repository of this book.

Listing 6-2: ltc3206_imx_led_class.c
#include <linux/module.h>
#include <linux/i2c.h>
#include <linux/leds.h>
#include <linux/gpio/consumer.h>
#include <linux/delay.h>

[247]

Chapter 6 I2C Client Drivers

[247]

#define LED_NAME_LEN 32
#define CMD_RED_SHIFT 4
#define CMD_BLUE_SHIFT 4
#define CMD_GREEN_SHIFT 0
#define CMD_MAIN_SHIFT 4
#define CMD_SUB_SHIFT 0
#define EN_CS_SHIFT (1 << 2)

/* set a led_device struct for each 5 led device */
struct led_device {
 u8 brightness;
 struct led_classdev cdev;
 struct led_priv *private;
};

/*
 * store the global parameters shared for the 5 led devices
 * the parameters are updated after each led_control() call
 */
struct led_priv {
 u32 num_leds;
 u8 command[3];
 struct gpio_desc *display_cs;
 struct i2c_client *client;
};

/* function that writes to the I2C device */
static int ltc3206_led_write(struct i2c_client *client, u8 *command)
{
 int ret = i2c_master_send(client, command, 3);
 if (ret >= 0)
 return 0;
 return ret;
}

/* the sysfs functions */
static ssize_t sub_select(struct device *dev, struct device_attribute *attr,
 const char *buf, size_t count)
{
 char *buffer;
 struct i2c_client *client;
 struct led_priv *private;

 buffer = buf;

 /* replace \n added from terminal with \0 */
 *(buffer+(count-1)) = '\0';

I2C Client Drivers Chapter 6

[248]

 client = to_i2c_client(dev);
 private = i2c_get_clientdata(client);

 private->command[0] |= EN_CS_SHIFT; /* set the 3d bit A2 */
 ltc3206_led_write(private->client, private->command);

 if(!strcmp(buffer, "on")) {
 gpiod_set_value(private->display_cs, 1); /* low */
 usleep_range(100, 200);
 gpiod_set_value(private->display_cs, 0); /* high */
 }
 else if (!strcmp(buffer, "off")) {
 gpiod_set_value(private->display_cs, 0); /* high */
 usleep_range(100, 200);
 gpiod_set_value(private->display_cs, 1); /* low */
 }
 else {
 dev_err(&client->dev, "Bad led value.\n");
 return -EINVAL;
 }

 return count;
}
static DEVICE_ATTR(sub, S_IWUSR, NULL, sub_select);

static ssize_t rgb_select(struct device *dev, struct device_attribute *attr,
 const char *buf, size_t count)
{
 char *buffer;
 struct i2c_client *client = to_i2c_client(dev);
 struct led_priv *private = i2c_get_clientdata(client);
 buffer = buf;

 *(buffer+(count-1)) = '\0';

 private->command[0] &= ~(EN_CS_SHIFT); /* clear the 3d bit */

 ltc3206_led_write(private->client, private->command);

 if(!strcmp(buffer, "on")) {
 gpiod_set_value(private->display_cs, 1); /* low */
 usleep_range(100, 200);
 gpiod_set_value(private->display_cs, 0); /* high */
 }
 else if (!strcmp(buffer, "off")) {
 gpiod_set_value(private->display_cs, 0); /* high */
 usleep_range(100, 200);
 gpiod_set_value(private->display_cs, 1); /* low */

[249]

Chapter 6 I2C Client Drivers

[249]

 }
 else {
 dev_err(&client->dev, "Bad led value.\n");
 return -EINVAL;
 }

 return count;
}
static DEVICE_ATTR(rgb, S_IWUSR, NULL, rgb_select);

static struct attribute *display_cs_attrs[] = {
 &dev_attr_rgb.attr,
 &dev_attr_sub.attr,
 NULL,
};

static struct attribute_group display_cs_group = {
 .name = "display_cs",
 .attrs = display_cs_attrs,
};

/*
 * this is the function that is called for each led device
 * when writing the brightness file under each device
 * the command parameters are kept in the led_priv struct
 * that is pointed inside each led_device struct
 */
static int led_control(struct led_classdev *led_cdev,
 enum led_brightness value)
{
 struct led_classdev *cdev;
 struct led_device *led;
 led = container_of(led_cdev, struct led_device, cdev);
 cdev = &led->cdev;
 led->brightness = value;

 dev_info(cdev->dev, "the subsystem is %s\n", cdev->name);

if (value > 15 || value < 0)
 return -EINVAL;

 if (strcmp(cdev->name,"red") == 0) {
 led->private->command[0] &= 0x0F; /* clear the upper nibble */
 led->private->command[0] |= ((led->brightness << CMD_RED_SHIFT) & 0xF0);
 }
 else if (strcmp(cdev->name,"blue") == 0) {
 led->private->command[1] &= 0x0F; /* clear the upper nibble */
 led->private->command[1] |=

I2C Client Drivers Chapter 6

[250]

((led->brightness << CMD_BLUE_SHIFT) & 0xF0);
 }
 else if (strcmp(cdev->name,"green") == 0) {
 led->private->command[1] &= 0xF0; /* clear the lower nibble */
 led->private->command[1] |=

((led->brightness << CMD_GREEN_SHIFT) & 0x0F);
 }
 else if (strcmp(cdev->name,"main") == 0) {
 led->private->command[2] &= 0x0F; /* clear the upper nibble */
 led->private->command[2] |=

((led->brightness << CMD_MAIN_SHIFT) & 0xF0);
 }
 else if (strcmp(cdev->name,"sub") == 0) {
 led->private->command[2] &= 0xF0; /* clear the lower nibble */
 led->private->command[2] |= ((led->brightness << CMD_SUB_SHIFT) & 0x0F);
 }
 else
 dev_info(cdev->dev, "No display found\n");

 return ltc3206_led_write(led->private->client, led->private->command);
}

static int __init ltc3206_probe(struct i2c_client *client,
 const struct i2c_device_id *id)
{
 int count, ret;
 u8 value[3];
 struct fwnode_handle *child;
 struct device *dev = &client->dev;
 struct led_priv *private;

 dev_info(dev, "platform_probe enter\n");

 /*
 * set blue led maximum value for i2c testing

 * ENRGB must be set to VCC to do the testing
 */
 value[0] = 0x00;
 value[1] = 0xF0;
 value[2] = 0x00;

 i2c_master_send(client, value, 3);

 dev_info(dev, "led BLUE is ON\n");

 count = device_get_child_node_count(dev);
 if (!count)
 return -ENODEV;

[251]

Chapter 6 I2C Client Drivers

[251]

 dev_info(dev, "there are %d nodes\n", count);

 private = devm_kzalloc(dev, sizeof(*private), GFP_KERNEL);
 if (!private)
 return -ENOMEM;

 private->client = client;
 i2c_set_clientdata(client, private);

 private->display_cs = devm_gpiod_get(dev, NULL, GPIOD_ASIS);
 if (IS_ERR(private->display_cs)) {
 ret = PTR_ERR(private->display_cs);
 dev_err(dev, "Unable to claim gpio\n");
 return ret;
 }

 gpiod_direction_output(private->display_cs, 1);

 /* Register sysfs hooks */
 ret = sysfs_create_group(&client->dev.kobj, &display_cs_group);
 if (ret < 0) {
 dev_err(&client->dev, "couldn't register sysfs group\n");
 return ret;
 }

 /* parse all the child nodes */
 device_for_each_child_node(dev, child){

 struct led_device *led_device;
 struct led_classdev *cdev;

 led_device = devm_kzalloc(dev, sizeof(*led_device), GFP_KERNEL);
 if (!led_device)
 return -ENOMEM;

 cdev = &led_device->cdev;
 led_device->private = private;

 fwnode_property_read_string(child, "label", &cdev->name);

 if (strcmp(cdev->name,"main") == 0) {
 led_device->cdev.brightness_set_blocking = led_control;
 ret = devm_led_classdev_register(dev, &led_device->cdev);
 if (ret)
 goto err;
 dev_info(cdev->dev, "the subsystem is %s and num is %d\n",
 cdev->name, private->num_leds);

I2C Client Drivers Chapter 6

[252]

 }
 else if (strcmp(cdev->name,"sub") == 0) {
 led_device->cdev.brightness_set_blocking = led_control;
 ret = devm_led_classdev_register(dev, &led_device->cdev);
 if (ret)
 goto err;
 dev_info(cdev->dev, "the subsystem is %s and num is %d\n",
 cdev->name, private->num_leds);
 }
 else if (strcmp(cdev->name,"red") == 0) {
 led_device->cdev.brightness_set_blocking = led_control;
 ret = devm_led_classdev_register(dev, &led_device->cdev);
 if (ret)
 goto err;
 dev_info(cdev->dev, "the subsystem is %s and num is %d\n",
 cdev->name, private->num_leds);
 }
 else if (strcmp(cdev->name,"green") == 0) {
 led_device->cdev.brightness_set_blocking = led_control;
 ret = devm_led_classdev_register(dev, &led_device->cdev);
 if (ret)
 goto err;
 dev_info(cdev->dev, "the subsystem is %s and num is %d\n",
 cdev->name, private->num_leds);
 }
 else if (strcmp(cdev->name,"blue") == 0) {
 led_device->cdev.brightness_set_blocking = led_control;
 ret = devm_led_classdev_register(dev, &led_device->cdev);
 if (ret)
 goto err;
 dev_info(cdev->dev, "the subsystem is %s and num is %d\n",

 cdev->name, private->num_leds);
 }
 else {
 dev_err(dev, "Bad device tree value\n");
 return -EINVAL;
 }

 private->num_leds++;
 }

 dev_info(dev, "i am out of the device tree\n");
 dev_info(dev, "my_probe() function is exited.\n");
 return 0;

err:
 fwnode_handle_put(child);
 sysfs_remove_group(&client->dev.kobj, &display_cs_group);

[253]

Chapter 6 I2C Client Drivers

[253]

 return ret;
}

static int ltc3206_remove(struct i2c_client *client)
{
 dev_info(&client->dev, "leds_remove enter\n");
 sysfs_remove_group(&client->dev.kobj, &display_cs_group);
 dev_info(&client->dev, "leds_remove exit\n");

 return 0;
}

static const struct of_device_id my_of_ids[] = {
 { .compatible = "arrow,ltc3206"},
 {},
};
MODULE_DEVICE_TABLE(of, my_of_ids);

static const struct i2c_device_id ltc3206_id[] = {
 { "ltc3206", 0 },
 { }
};
MODULE_DEVICE_TABLE(i2c, ltc3206_id);

static struct i2c_driver ltc3206_driver = {
 .probe = ltc3206_probe,
 .remove = ltc3206_remove,
 .id_table = ltc3206_id,
 .driver = {
 .name = "ltc3206",
 .of_match_table = my_of_ids,
 .owner = THIS_MODULE,
 }
};

module_i2c_driver(ltc3206_driver);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Alberto Liberal <aliberal@arroweurope.com>");
MODULE_DESCRIPTION("This is a driver that controls the \

 ltc3206 I2C multidisplay device");

I2C Client Drivers Chapter 6

[254]

ltc3206_imx_led_class.ko Demonstration
Connect the ENRGB/S pin to DVCC

root@imx7dsabresd:~# insmod ltc3206_imx_led_class.ko /* load the module, probe()
function is called 5 times, and the LED BLUE is ON */
root@imx7dsabresd:~# ls –l /sys/class/leds /* find all the devices under leds class
*/
root@imx7dsabresd:~# echo 10 > /sys/class/leds/red/brightness /* switch on the LED
RED with value 10 of brightness */
root@imx7dsabresd:~# echo 15 > /sys/class/leds/red/brightness /* set maximum
brightness for LED RED */
root@imx7dsabresd:~# echo 0 > /sys/class/leds/red/brightness /* switch off the LED
RED */
root@imx7dsabresd:~# echo 10 > /sys/class/leds/blue/brightness /* switch on the LED
BLUE with value 10 of brightness */
root@imx7dsabresd:~# echo 15 > /sys/class/leds/blue/brightness /* set maximum
brightness for LED BLUE */
root@imx7dsabresd:~# echo 0 > /sys/class/leds/blue/brightness /* switch off the LED
BLUE */
root@imx7dsabresd:~# echo 10 > /sys/class/leds/green/brightness /* switch on the LED
GREEN with value 10 of brightness */
root@imx7dsabresd:~# echo 15 > /sys/class/leds/green/brightness /* set maximum
brightness for LED GREEN */
root@imx7dsabresd:~# echo 0 > /sys/class/leds/green/brightness /* switch off the LED
GREEN */
root@imx7dsabresd:~# echo 10 > /sys/class/leds/main/brightness /* switch on the
display MAIN with value 10 of brightness */
root@imx7dsabresd:~# echo 15 > /sys/class/leds/main/brightness /* set maximum
brightness for MAIN display*/
root@imx7dsabresd:~# echo 0 > /sys/class/leds/main/brightness /* switch off the MAIN
display */
root@imx7dsabresd:~# echo 10 > /sys/class/leds/sub/brightness /* switch on the SUB
display with value 10 of brightness */
root@imx7dsabresd:~# echo 15 > /sys/class/leds/sub/brightness /* set maximum
brightness for SUB display */
root@imx7dsabresd:~# echo 0 > /sys/class/leds/sub/brightness /* switch off the SUB
display */

"Mix RED, GREEN, BLUE colors"

root@imx7dsabresd:~# echo 15 > /sys/class/leds/red/brightness
root@imx7dsabresd:~# echo 15 > /sys/class/leds/blue/brightness
root@imx7dsabresd:~# echo 15 > /sys/class/leds/green/brightness

root@imx7dsabresd:~# rmmod ltc3206_imx_led_class.ko /* remove the module, remove()
function is called 5 times */

"Switch off the board´s supply and connect the ENRGB/S pin to the Mikrobus INT pin.
Switch on the board´s supply booting the target processor"

[255]

Chapter 6 I2C Client Drivers

[255]

root@imx7dsabresd:~# insmod ltc3206_imx_led_class.ko /* load the module, probe()
function is called 5 times, and the LED BLUE is OFF */
root@imx7dsabresd:~# echo 10 > /sys/class/leds/sub/brightness /* switch on the SUB
display with value 10 of brightness, the SUB display is ON */
root@imx7dsabresd:~# echo 10 > /sys/class/leds/red/brightness /* switch on the LED
RED with value 10 of brightness, the LED RED is OFF */
root@imx7dsabresd:~# echo off > /sys/class/i2c-dev/i2c-2/device/2-001b/display_cs/
sub /* switch OFF the SUB display and swith on the LED RED */

root@imx7dsabresd:~# echo off > /sys/class/i2c-dev/i2c-2/device/2-001b/display_cs/
rgb /* switch OFF the RGB LED and swith on the SUB display */

root@imx7dsabresd:~# rmmod ltc3206_imx_led_class.ko /* remove the module, remove()
function is called 5 times */

[257]

7
Handling Interrupts in Device

Drivers
An IRQ is an interrupt request from a device. They can come in over a pin or over a packet. Several
devices may be connected to the same pin, thus sharing an IRQ.

In Linux, the IRQ number is an enumeration of the possible interrupt sources on a machine.
Typically what is enumerated is the number of input pins on all of the interrupt controllers in the
system. The IRQ number is a virtual interrupt ID, and hardware independent.

The current design of the Linux kernel uses a single large number space where each separate IRQ
source is assigned a different number. This is simple when there is only one interrupt controller,
but in systems with multiple interrupt controllers the kernel must ensure that each one gets
assigned non-overlapping allocations of Linux IRQ numbers.

The number of interrupt controllers registered as unique irqchips is growing: for example
subdrivers of different kinds such as GPIO controllers avoid re-implementing identical callback
mechanisms such us the IRQ core system by modelling their interrupt handlers as irqchips
cascading interrupt controllers. Here the interrupt number loses all correspondence to hardware
interrupt numbers. Whereas in the past, IRQ numbers could be chosen so that they matched the
hardware IRQ line into the root interrupt controller (for example, the component actually firing
the interrupt line to the CPU) nowadays this number is just a number. For this reason we need a
mechanism to separate controller-local interrupt numbers, called hardware irq's (hwirq), from
Linux IRQ numbers.

An interrupt controller driver — this one is architecture dependent — registers an irq_chip
structure to the kernel. This structure contains a bunch of pointers to the basic routines that are
needed to manage IRQs. For instance, this includes routines to enable and disable interrupts at the
interrupt controller level, as well as interrupt acknowledgment stub.

/*
 * struct irq_chip - hardware interrupt chip descriptor
 * @parent_device: pointer to parent device for irqchip
 * @name: name for /proc/interrupts

Handling Interrupts in Device Drivers Chapter 7

[258]

 * @irq_startup: start up the interrupt (defaults to ->enable if NULL)
 * @irq_shutdown: shut down the interrupt (defaults to ->disable if NULL)
 * @irq_enable: enable the interrupt (defaults to chip->unmask if NULL)
 * @irq_disable: disable the interrupt
 * @irq_ack: start of a new interrupt
 * @irq_mask: mask an interrupt source
 * @irq_mask_ack: ack and mask an interrupt source
 * @irq_unmask: unmask an interrupt source
 * @irq_eoi: end of interrupt
 * @irq_set_affinity: set the CPU affinity on SMP machines
 * @irq_retrigger: resend an IRQ to the CPU
 * @irq_set_type: set the flow type (IRQ_TYPE_LEVEL/etc.) of an IRQ
 * @irq_set_wake: enable/disable power-management wake-on of an IRQ

 [...]

 */
struct irq_chip {
 struct device *parent_device;
 const char *name;
 unsigned int (*irq_startup)(struct irq_data *data);
 void (*irq_shutdown)(struct irq_data *data);
 void (*irq_enable)(struct irq_data *data);
 void (*irq_disable)(struct irq_data *data);

 void (*irq_ack)(struct irq_data *data);
 void (*irq_mask)(struct irq_data *data);
 void (*irq_mask_ack)(struct irq_data *data);
 void (*irq_unmask)(struct irq_data *data);
 void (*irq_eoi)(struct irq_data *data);

 [...]

};

The chip level hardware descriptor structure struct irq_chip contains all the direct chip relevant
functions, which can be utilized by the IRQ flow implementations. These primitives mean exactly
what their name says: ack means ACK, masking means masking of an IRQ line, etc. It is up to the
flow handler(s) to use these basic units of low-level functionality.

A Linux IRQ number is always tied to a struct irq_desc structure, which is the structure that
represents an IRQ. A list of IRQ descriptors is maintained in an array indexed by the IRQ number
(The interrupt is referenced by an 'unsigned int' numeric value, which selects the corresponding
interrupt description structure in the descriptor structures array), called the IRQ descriptor
table. The struct irq_desc contains a pointer to the struct irq_domain (included in the struct irq_data
structure). The handle_irq element of struct irq_desc is a function pointer of type irq_flow_handler_t,

[259]

Chapter 7 Handling Interrupts in Device Drivers

[259]

which refers to a high-level function that deals with flow management on the line (typedef void
(*irq_flow_handler_t)(struct irq_desc *desc);). Whenever an interrupt triggers, the low level arch code
calls into the generic interrupt code by calling irq_desc->handle_irq. This high level IRQ handling
function only uses irq_desc->irq_data->chip primitives referenced by the assigned chip descriptor
structure.

struct irq_desc {
 struct irq_common_data irq_common_data;
 struct irq_data irq_data;
 unsigned int __percpu *kstat_irqs;
 irq_flow_handler_t handle_irq;
#ifdef CONFIG_IRQ_PREFLOW_FASTEOI
 irq_preflow_handler_t preflow_handler;
#endif
 struct irqaction *action; /* IRQ action list */
 unsigned int status_use_accessors;
 unsigned int core_internal_state__do_not_mess_with_it;
 unsigned int depth; /* nested irq disables */
 unsigned int wake_depth; /* nested wake enables */
 unsigned int irq_count; /* For detecting broken IRQs */
 unsigned long last_unhandled; /* Aging timer for unhandled count */
 unsigned int irqs_unhandled;
 atomic_t threads_handled;
 int threads_handled_last;
 raw_spinlock_t lock;
 struct cpumask *percpu_enabled;
 const struct cpumask *percpu_affinity;
#ifdef CONFIG_SMP
 const struct cpumask *affinity_hint;
 struct irq_affinity_notify *affinity_notify;
#ifdef CONFIG_GENERIC_PENDING_IRQ
 cpumask_var_t pending_mask;

[...]

}

Inside each struct irq_desc there is an instance of struct irq_data (in bold in the struct irq_desc above),
that contains low-level information that is relevant for interrupt management, such as Linux IRQ
number, hwirq number, interrupt translation domain (struct irq_domain), and a pointer to interrupt
controller operations (struct irq_chip) among other important fields.

/**
 * struct irq_data - per irq chip data passed down to chip functions
 * @mask: precomputed bitmask for accessing the chip registers
 * @irq: interrupt number
 * @hwirq: hardware interrupt number, local to the interrupt domain

Handling Interrupts in Device Drivers Chapter 7

[260]

 * @common: point to data shared by all irqchips
 * @chip: low level interrupt hardware access
 * @domain: Interrupt translation domain; responsible for mapping
 * between hwirq number and linux irq number.
 * @parent_data: pointer to parent struct irq_data to support hierarchy
 * irq_domain
 * @chip_data: platform-specific per-chip private data for the chip
 * methods, to allow shared chip implementations
 */
struct irq_data {
 u32 mask;
 unsigned int irq; /* linux IRQ number */
 unsigned long hwirq; /* hwirq number */
 struct irq_common_data *common;
 struct irq_chip *chip; /* low level int controller hw access */
 struct irq_domain *domain;
#ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
 struct irq_data *parent_data;
#endif
 void *chip_data;
};

Linux Kernel IRQ Domain for GPIO Controllers
The kernel internals use a single number space to represent IRQ numbers, there are no two
IRQs having the same numbers. This is also true from the point of view of the hardware when a
system has a single interrupt controller (IC). However, a mapping is needed as soon as two ICs,
for example, two irq_chip, are available (for example, GIC and GPIO IC). To solve this problem,
the Linux kernel came up with the notion of an IRQ domain, which is a well-defined translation
interface between hardware IRQ numbers and the one used internally in the kernel.

The struct irq_domain structure is the interrupt controller "domain" data structure. It handles the
mapping between hardware and virtual interrupt numbers for a given interrupt domain.

struct irq_domain {
 struct list_head link;
 const char *name;
 const struct irq_domain_ops *ops;
 void *host_data;
 unsigned int flags;

 /* Optional data */
 struct fwnode_handle *fwnode;
 enum irq_domain_bus_token bus_token;
 struct irq_domain_chip_generic *gc;
#ifdef CONFIG_IRQ_DOMAIN_HIERARCHY

[261]

Chapter 7 Handling Interrupts in Device Drivers

[261]

 struct irq_domain *parent;
#endif

 /* reverse map data. The linear map gets appended to the irq_domain */
 irq_hw_number_t hwirq_max;
 unsigned int revmap_direct_max_irq;
 unsigned int revmap_size;
 struct radix_tree_root revmap_tree;
 unsigned int linear_revmap[];
};

An interrupt controller driver allocates and registers an irq_domain by calling one of the
irq_domain_add_*() functions. The function will return a pointer to the struct irq_domain structure on
success. The driver must provide to the chosen allocator function a struct irq_domain_ops structure
as an argument. There are several mechanisms available for reverse mapping from hwirq to Linux
IRQ, and each mechanism uses a different allocation function. The majority of drivers should use
the linear map through the irq_domain_add_linear() function. You can see described another map
methods at Documentation/IRQ-domain.txt.

/**
 * irq_domain_add_linear() - Allocate and register a linear revmap irq_domain.
 * @of_node: pointer to interrupt controller's device tree node.
 * @size: Number of interrupts in the domain,eg.,the number of GPIO inputs
 * @ops: map/unmap domain callbacks
 * @host_data: Controller private data pointer
 */
struct irq_domain *irq_domain_add_linear(struct device_node *of_node,
 unsigned int size,
 const struct irq_domain_ops *ops,
 void *host_data)
{
 return __irq_domain_add(of_node_to_fwnode(of_node), size,
 size, 0, ops, host_data);
}

In most cases, the irq_domain will begin empty without any mappings between hwirq and IRQ
numbers. The struct irq_domain is filled with the IRQ mapping by calling irq_create_mapping(),
which accepts the irq_domain and a hwirq number as arguments and returns the Linux IRQ
number:

unsigned int irq_create_mapping(struct irq_domain *domain,
 irq_hw_number_t hwirq)
{
 struct device_node *of_node;
 int virq;

 [...]

Handling Interrupts in Device Drivers Chapter 7

[262]

 of_node = irq_domain_get_of_node(domain);

 /* Check if mapping already exists */
 virq = irq_find_mapping(domain, hwirq);
 if (virq) {
 pr_debug("-> existing mapping on virq %d\n", virq);
 return virq;
 }

 /* Allocate a Linux IRQ number */
 virq = irq_domain_alloc_descs(-1, 1, hwirq, of_node_to_nid(of_node), NULL);
 if (virq <= 0) {
 pr_debug("-> virq allocation failed\n");
 return 0;
 }

 if (irq_domain_associate(domain, virq, hwirq)) {
 irq_free_desc(virq);
 return 0;
 }

 pr_debug("irq %lu on domain %s mapped to virtual irq %u\n",
 hwirq, of_node_full_name(of_node), virq);

 return virq;
}

When writing drivers for GPIO controllers that are also interrupt controllers, irq_create_mapping()
can be called from within gpio_chip.to_irq() callback function. This callback function is called
whenever a driver calls to the gpiod_to_irq() function to get the virtual Linux IRQ number
associated with the GPIO pin of a GPIO interrupt controller. Another possibility is to do the
mapping for each hwirq in advance (inside the probe() function) as shown in the code below:

for (j = 0; j < gpiochip->chip.ngpio; j++) {
irq = irq_create_mapping(
gpiochip ->irq_domain, j);

}

If you do the mapping inside the probe() function, you can recover the mapped Linux IRQ number
inside the gpio_chip.to_irq() callback function, which calls the irq_find_mapping() function, as you can
see for example in the code below extracted from the SAMA5D2 PIO4 controller driver located in
drivers/pinctrl/pinctrl-at91-pio4.c:

static int atmel_gpio_to_irq(struct gpio_chip *chip, unsigned offset)
{
 struct atmel_pioctrl *atmel_pioctrl = gpiochip_get_data(chip);

[263]

Chapter 7 Handling Interrupts in Device Drivers

[263]

 return irq_find_mapping(atmel_pioctrl->irq_domain, offset);
}

static struct gpio_chip atmel_gpio_chip = {
 .direction_input = atmel_gpio_direction_input,
 .get = atmel_gpio_get,
 .direction_output = atmel_gpio_direction_output,
 .set = atmel_gpio_set,
 .to_irq = atmel_gpio_to_irq,
 .base = 0,
};

 If a mapping for the hwirq doesn't already exist then irq_create_mapping() will allocate a new
Linux irq_desc, associate it with the hwirq, and call the irq_domain_ops.map() callback (by means of
the irq_domain_associate() function) so that the driver can perform any required hardware setup.
In the .map() is created a mapping between a Linux IRQ and a hwirq number. The mapping is
done inside .map() calling the irq_set_chip_and_handler() function. The third parameter (handle) of
irq_set_chip_and_handler() determines the wrapper function that will call the real handler registered
using for example request_irq() or request_threaded_irq() for the "GPIO device" driver that caused
the interrupt. This GPIO device can also be a GPIO controller (see for example the gpio-max732x.c
driver located under drivers/gpio/).

If the GPIO controller driver is not implementing the .map() function, then
irq_set_chip_and_handler() can be called within the probe() function, as you can see in the code
below extracted from the SAMA5D2 PIO4 controller driver located in drivers/pinctrl/pinctrl-at91-
pio4.c. Each input pin of the GPIO controller is mapped into the GPIO controller´s irq_domain and
is provided a wrapper handle function handle_simple_irq that will call to the IRQ handler function
of each GPIO device driver that is claiming the Linux IRQ number from a specific input pin of the
GPIO controller.

for (i = 0; i < atmel_pioctrl->npins; i++) {
 int irq = irq_create_mapping(atmel_pioctrl->irq_domain, i);

 irq_set_chip_and_handler(irq, &atmel_gpio_irq_chip,
 handle_simple_irq);
 irq_set_chip_data(irq, atmel_pioctrl);
 dev_dbg(dev,
 "atmel gpio irq domain: hwirq: %d, linux irq: %d\n",
 i, irq);
 }

Handling Interrupts in Device Drivers Chapter 7

[264]

The GPIO irqchips usually fall in one of two categories:

1. CHAINED GPIO irqchips: these are usually the type that is embedded on an SoC. This
means that there is a fast IRQ handler for the GPIOs that gets called in a chain from the
parent IRQ handler, most typically the system interrupt controller. This means the GPIO
irqchip is registered using irq_set_chained_handler() or the corresponding, and the GPIO
irqchip handler will be called immediately from the parent irqchip (for example, the
Advanced Interrupt Controller (AIC) in the SAMA5D2 processor or the Generic Interrupt
Controller (GIC) in the i.MX7D family) while holding the IRQs disabled. The GPIO irqchip
will then end up calling something like this sequence in its interrupt handler:

static void atmel_gpio_irq_handler()
 chained_irq_enter(...);
 generic_handle_irq(...);
 chained_irq_exit(...);

The SoC's GPIO controller driver calls generic_handle_irq() to run the handler of each
particular GPIO device driver (for example, see the first lab driver included in this chapter,
or the gpio-max732x.c driver located under linux/drivers/gpio/).

In the code below, extracted from drivers/pinctrl/pinctrl-at91-pio4.c, you can see the
creation of the SAMA5D2 GPIO banks interrupt handlers using the irq_set_chained_
handler() function. It will be created a handler per GPIO bank interrupt. Inside each
handler atmel_gpio_irq_handler() there is a call to the wrapper generic_handle_irq(), which
in turn calls the interrupt handler of each of the GPIO device driver that is requesting
this specific GPIO controller interrupt pin using the request_irq() function.

/* There is one controller but each bank has its own irq line. */
for (i = 0; i < atmel_pioctrl->nbanks; i++) {
 res = platform_get_resource(pdev, IORESOURCE_IRQ, i);
 if (!res) {
 dev_err(dev, "missing irq resource for group %c\n",
 'A' + i);
 return -EINVAL;
 }
 atmel_pioctrl->irqs[i] = res->start;
 irq_set_chained_handler(res->start, atmel_gpio_irq_handler);
 irq_set_handler_data(res->start, atmel_pioctrl);
 dev_dbg(dev, "bank %i: irq=%pr\n", i, res);
}

static void atmel_gpio_irq_handler(struct irq_desc *desc)
{
 unsigned int irq = irq_desc_get_irq(desc);
 struct atmel_pioctrl *atmel_pioctrl = irq_desc_get_handler_data(desc);
 struct irq_chip *chip = irq_desc_get_chip(desc);

[265]

Chapter 7 Handling Interrupts in Device Drivers

[265]

 unsigned long isr;
 int n, bank = -1;

 /* Find from which bank is the irq received. */
 for (n = 0; n < atmel_pioctrl->nbanks; n++) {
 if (atmel_pioctrl->irqs[n] == irq) {
 bank = n;
 break;
 }
 }

 if (bank < 0) {
 dev_err(atmel_pioctrl->dev,
 "no bank associated to irq %u\n", irq);
 return;
 }

 chained_irq_enter(chip, desc);

 for (;;) {
 isr = (unsigned long)atmel_gpio_read(atmel_pioctrl, bank,
 ATMEL_PIO_ISR);
 isr &= (unsigned long)atmel_gpio_read(atmel_pioctrl, bank,
 ATMEL_PIO_IMR);
 if (!isr)
 break;

 for_each_set_bit(n, &isr, BITS_PER_LONG)
 generic_handle_irq(gpio_to_irq(bank *
 ATMEL_PIO_NPINS_PER_BANK + n));
 }

 chained_irq_exit(chip, desc);
}

See the DT SAMA5D2 PIO4 Controller description at Documentation/devicetree/bindings/
pinctrl/atmel,at91-pio4-pinctrl.txt. The platform_get_resource(pdev, IORESOURCE_IRQ, i) line of
code will retrieve from DT each GPIO bank hwirq number (18, 68, 69, 70) corresponding
to the interrupt pins which are sourced to its parent interrupt controller (AIC for the
SAMA5D2). These hwirq numbers are entered as parameters (res->start) to the irq_set_
chained_handler(res->start, atmel_gpio_irq_handler) together with the GPIO controller
handler. The code below is extracted from atmel,at91-pio4-pinctrl.txt file:

pioA: pinctrl@fc038000 {
 compatible = "atmel,sama5d2-pinctrl";
 reg = <0xfc038000 0x600>;
 interrupts = <18 IRQ_TYPE_LEVEL_HIGH 7>,

Handling Interrupts in Device Drivers Chapter 7

[266]

 <68 IRQ_TYPE_LEVEL_HIGH 7>,
 <69 IRQ_TYPE_LEVEL_HIGH 7>,
 <70 IRQ_TYPE_LEVEL_HIGH 7>;
 interrupt-controller;
 #interrupt-cells = <2>;
 gpio-controller;
 #gpio-cells = <2>;
 clocks = <&pioA_clk>;

 pinctrl_i2c0_default: i2c0_default {
 pinmux = <PIN_PD21__TWD0>,
 <PIN_PD22__TWCK0>;
 bias-disable;
 };

 pinctrl_led_gpio_default: led_gpio_default {
 pinmux = <PIN_PB0>,
 <PIN_PB5>;
 bias-pull-up;
 };

[...]
};

2. NESTED THREADED GPIO irqchips: these are off-chip GPIO expanders and any other
GPIO irqchip residing on the other side of a sleeping bus. Of course such drivers that need
slow bus traffic to read out IRQ status and similar, traffic which may in turn incur other
IRQs to happen, cannot be handled in a quick IRQ handler with IRQs disabled. Instead
they need to spawn a thread and then mask the parent IRQ line until the interrupt is
handled by the driver.

To help out in handling the set-up and management of GPIO irqchips and the
associated irqdomain and resource allocation callbacks, the gpiolib has some helpers
that can be enabled by selecting the GPIOLIB_IRQCHIP Kconfig symbol. These are
gpiochip_irqchip_add() and gpiochip_set_chained_irqchip().

The gpiochip_irqchip_add() function adds an irqchip to a gpiochip. This function does:

•	 Set the gpiochip.to_irq field to gpiochip_to_irq
•	 Allocates an irq_domain to the gpiochip using irq_domain_add_simple()
•	 Create mapping from 0 to gpiochip.ngpio using irq_create_mapping()

The gpiochip_set_chained_irqchip() function sets up a chained irq handler for a gpio_chip
from a parent IRQ (client->irq) and passes the struct gpio_chip structure as handler data.

[267]

Chapter 7 Handling Interrupts in Device Drivers

[267]

Open the driver drivers/gpio/gpio-max732x.c and see the max732x_irq_setup() function that
is called inside the driver´s probe() function as an example of the usage of the gpiolib irq
helpers:

static int max732x_irq_setup(struct max732x_chip *chip,
 const struct i2c_device_id *id)
{
 struct i2c_client *client = chip->client;
 struct max732x_platform_data *pdata = dev_get_platdata(&client->dev);
 int has_irq = max732x_features[id->driver_data] >> 32;
 int irq_base = 0;
 int ret;

 if (((pdata && pdata->irq_base) || client->irq)
 && has_irq != INT_NONE) {
 if (pdata)
 irq_base = pdata->irq_base;
 chip->irq_features = has_irq;
 mutex_init(&chip->irq_lock);

 devm_request_threaded_irq(&client->dev, client->irq,
 NULL, max732x_irq_handler, IRQF_ONESHOT |
 IRQF_TRIGGER_FALLING | IRQF_SHARED,
 dev_name(&client->dev), chip);

 gpiochip_irqchip_add(&chip->gpio_chip,
 &max732x_irq_chip,
 irq_base,
 handle_simple_irq,
 IRQ_TYPE_NONE);

 gpiochip_set_chained_irqchip(&chip->gpio_chip,
 &max732x_irq_chip,
 client->irq,
 NULL);
 }

 return 0;
}

The devm_request_threaded_irq() function inside max732x_irq_setup() will take as a
parameter the driver´s interrupt handler max732x_irq_handler. Inside this handler are
checked the pending GPIO interrupts by reading the pending variable value, then is
returned the position of the first bit set in the 32 bits variable; the _ffs() function is used
to perform this task. For each pending interrupt that is found, there is a call to the
handle_nested_irq() wrapper function, which in turn calls the interrupt handler of each

Handling Interrupts in Device Drivers Chapter 7

[268]

GPIO device driver that is requesting this specific MAX732x GPIO controller pin using
the request_irq() function.

The parameter of the handle_nested_irq() function is the Linux IRQ number previously
returned using the irq_find_mapping() function, which in turn has the hwirq of the input pin
as a parameter (level variable).

After calling handle_nested_irq(), the pending interrupt is cleared by doing pending &=
~(1 << level), and the same process is repeated until all the pending interrupts are being
managed.

static irqreturn_t max732x_irq_handler(int irq, void *devid)
{
 struct max732x_chip *chip = devid;
 uint8_t pending;
 uint8_t level;

 pending = max732x_irq_pending(chip);

 if (!pending)
 return IRQ_HANDLED;

 do {
 level = __ffs(pending);
 handle_nested_irq(irq_find_mapping(chip->gpio_chip.irq.domain,
 level));

 pending &= ~(1 << level);
 } while (pending);

 return IRQ_HANDLED;
}

Device Tree Interrupt Handling
Unlike address range translation, which follows the natural structure of the tree, interrupt signals
can originate from and terminate on any device in a machine. Unlike device addressing, which
is naturally expressed in the device tree, interrupt signals are expressed as links between nodes
independent of the tree. Four properties are used to describe interrupt connections:

1. The interrupt-controller property is an empty property, declaring a node as a device that
receives interrupt signals.

2. The interrupt-cells is a property of the interrupt controller node that indicates the number
of cells in the interrupts property for the child device nodes (for example, cortex-a7-gic

[269]

Chapter 7 Handling Interrupts in Device Drivers

[269]

interrupt controller indicates three cells for the ecspi1 and gpio1 controllers. The gpio1
controller is also an interrupt parent controller for GPIOx signals and indicates two cells
for the slave nodes interrupts property. It is similar to the #address-cells and #size-cells
properties.

3. The interrupt-parent is a property of a device node containing a phandle to the interrupt
controller that it is attached to. Nodes that do not have an interrupt-parent property can
also inherit the property from their parent node.

4. The interrupts property is a property of a device node containing a list of interrupt
specifiers, one for each interrupt output signal on the device.

The interrupt links between several related DT nodes are shown in the following figure. This is a
real example you can check looking at i.MX7D SABRE board DT source files:

In the previous image, you can see that the "sii902x slave node" has the "gpio2 controller node" as
its "interrupt parent" and the "i2c3 controller node " as its "parent node" (sii902x device is attached
to the i2c3 controller bus). In the sii902x node the GPIO interrupts property has two fields (the first

Handling Interrupts in Device Drivers Chapter 7

[270]

field is the gpio2 controller hwirq value the device is requesting and the second value is one of
the IRQ bindings described in the irq.h file under include/dt-bindings/interrupt-controller/) that were
indicated by the #interrupt-cells property of the gpio2 interrupt controller node.

The "intc node" is the "parent interrupt controller node" for the "gpio2 controller node" and the
"i2c3 controller node". In the gpio2 controller and i2c3 controller interrupts properties there are
three fields that were indicated by the #interrupt-cells property of the ARM Generic Interrupt
Controller intc node. See the i2c3, gpio2 and intc nodes in the imx7s.dtsi file under arch/arm/boot/dts/
folder.

In the i2c3, node, the value of the second field of the interrupts property is 37, that matches with
the hwirq number of the i2c3 controller output interrupt signal (see Table 7-1. ARM Domain Interrupt
Summary on page 1217 of the IMX7DQRM) that is being collected by the the Global Interrupt
Controller (GIC).

i2c3: i2c@30a40000 {
 #address-cells = <1>;
 #size-cells = <0>;
 compatible = "fsl,imx7d-i2c", "fsl,imx21-i2c";
 reg = <0x30a40000 0x10000>;
 interrupts = <GIC_SPI 37 IRQ_TYPE_LEVEL_HIGH>;
 clocks = <&clks IMX7D_I2C3_ROOT_CLK>;
 status = "disabled";
};

gpio3: gpio@30220000 {
 compatible = "fsl,imx7d-gpio", "fsl,imx35-gpio";
 reg = <0x30220000 0x10000>;
 interrupts = <GIC_SPI 68 IRQ_TYPE_LEVEL_HIGH>,
 <GIC_SPI 69 IRQ_TYPE_LEVEL_HIGH>;
 gpio-controller;
 #gpio-cells = <2>;
 interrupt-controller;
 #interrupt-cells = <2>;
 gpio-ranges = <&iomuxc 0 45 29>;
};

intc: interrupt-controller@31001000 {
 compatible = "arm,cortex-a7-gic";
 interrupts = <GIC_PPI 9 (GIC_CPU_MASK_SIMPLE(4) | IRQ_TYPE_LEVEL_HIGH)>;
 #interrupt-cells = <3>;
 interrupt-controller;
 reg = <0x31001000 0x1000>,
 <0x31002000 0x2000>,
 <0x31004000 0x2000>,
 <0x31006000 0x2000>;
};

[271]

Chapter 7 Handling Interrupts in Device Drivers

[271]

Look for the sii902x node in the imx7d-sdb.dts file:

&i2c3 {
 clock-frequency = <100000>;
 pinctrl-names = "default";
 pinctrl-0 = <&pinctrl_i2c3>;
 status = "okay";

 ltc2607@72 {
 compatible = "arrow,ltc2607";
 reg = <0x72>;
 };
 ltc2607@73 {
 compatible = "arrow,ltc2607";
 reg = <0x73>;
 };

 ioexp@38 {
 compatible = "arrow,ioexp";
 reg = <0x38>;
 };
 ioexp@39 {
 compatible = "arrow,ioexp";
 reg = <0x39>;
 };

 sii902x: sii902x@39 {
 compatible = "SiI,sii902x";
 pinctrl-names = "default";
 pinctrl-0 = <&pinctrl_sii902x>;
 interrupt-parent = <&gpio2>;
 interrupts = <13 IRQ_TYPE_EDGE_FALLING>;
 mode_str ="1280x720M@60";
 bits-per-pixel = <16>;
 reg = <0x39>;
 status = "okay";
 };

 [...]

};

Handling Interrupts in Device Drivers Chapter 7

[272]

Requesting Interrupts in Linux Device Drivers
Interrupts are scheduled by the CPU and run asynchronously. The kernel could be in any state
when interrupt occurs, so the interrupt context can not access the user buffers, and can not sleep.
Handlers can't run actions that may sleep, because there is nothing to resume their execution.

As with other resources, a driver must gain access to an interrupt line before it can use it and
release it at the end of the execution. In Linux, the request to obtain and release an interrupt is
done using the request_irq() and free_irq() functions. To perform this task is recommended to use
the managed API for automatic freeing at device or module release time:

devm_request_irq(struct device *dev, unsigned int irq, irq_handler_t handler,
 unsigned long irqflags, const char *devname, void *dev_id)
{
 return devm_request_threaded_irq(dev, irq, handler, NULL, irqflags,
 devname, dev_id);
}

To allocate an interrupt line, you call devm_request_irq(). This function allocates interrupt resources
and enables the interrupt line and IRQ handling. When calling this function you must specify as
parameters a pointer to the struct device structure, the Linux IRQ number (irq), a handler that will
be called when the interrupt is generated (handler), flags that will instruct the kernel about the
desired behaviour (irqflags), the name of the device using this interrupt (devname), and a pointer
that can be configured at any value. Usually, dev_id will be a pointer to the device driver’s private
data. The value that devm_request_irq() returns is 0 if the entry was successful or a negative error
code indicating the reason for the failure. A typical value is -EBUSY which means that the interrupt
was already requested by another device driver.

The role of an interrupt handler is to give feedback to its device about interrupt reception and to
read or write data according to the meaning of the interrupt being serviced. The hardware will
replay the interrupt (interrupt flood) or won’t generate other interrupt until you acknowledge it.
The method of acknowledging an interrupt can vary from reading an interrupt controller register,
reading the content of a register, or clearing an "interrupt-pending" bit. Some processors have
an interrupt acknowledge signal that takes care of this automatically in hardware. The handler
function is executed in interrupt context, which means that you can’t call blocking APIs such as
mutex_lock() or msleep(). You must also avoid doing a lot of work in the interrupt handler and
instead use deferred work if needed. The function prototype is shown below:

irqreturn_t (*handler)(int irq_no, void *dev_id);

The interrupt handler function receives as parameters the Linux IRQ number of the interrupt
(irq_no) and the pointer sent to request_irq() when the interrupt was requested. The interrupt
handling routine must return a value with a type of typedef irqreturn_t. For the kernel 4.9 version

[273]

Chapter 7 Handling Interrupts in Device Drivers

[273]

used in this book, there are three valid values: IRQ_NONE, IRQ_HANDLED, and IRQ_WAKE_
THREAD. The device driver must return IRQ_NONE if it notices that the interrupt has not been
generated by the device it is in charge. Otherwise, the device driver must return IRQ_HANDLED
if the interrupt can be handled directly from the interrupt context or IRQ_WAKE_THREAD to
schedule the running of the process context processing function.

/**
 * enum irqreturn
 * @IRQ_NONE interrupt was not from this device or was not handled
 * @IRQ_HANDLED interrupt was handled by this device
 * @IRQ_WAKE_THREAD handler requests to wake the handler thread
 */
enum irqreturn {
 IRQ_NONE = (0 << 0),
 IRQ_HANDLED = (1 << 0),
 IRQ_WAKE_THREAD = (1 << 1),
};

typedef enum irqreturn irqreturn_t;
#define IRQ_RETVAL(x) ((x) ? IRQ_HANDLED : IRQ_NONE)

Your driver should support interrupt sharing whenever this is possible. It is possible if and only if
your driver can detect whether your hardware has triggered the interrupt or not. The argument,
void *dev_id, is a sort of client data; this argument is passed to devm_request_irq() function, and this
same pointer is then passed back as an argument to the handler when the interrupt happens. You
usually pass a pointer to your private device data structure in dev_id, so you don’t need any extra
code in the interrupt handler to find out which device is in charge of the current interrupt event.
If the handler found that its device did, indeed, need attention, it should return IRQ_HANDLED.
If the driver detects that it was not your hardware that caused the interrupt, it will do nothing and
return IRQ_NONE, allowing the kernel to call the next possible interrupt handler.

Handling Interrupts in Device Drivers Chapter 7

[274]

LAB 7.1: "button interrupt device" Module
Throughout the upcoming lab, you will implement your first driver that manages an interrupt.
You will use a pushbutton as an interrupt key. The driver will handle button presses. Each time
you press the button, an interrupt will be generated and handled by the platform driver.

LAB 7.1 Hardware Description for the i.MX7D Processor
Open the MCIMX7D-SABRE board schematic and find the button USR_BT1 in pag.21. This button
will be used to generate the interrupt.

LAB 7.1 Hardware Description for the SAMA5D2 Processor
Open the SAMA5D2B-XULT board schematic and find the button BP1 in pag.11 This button will be
used to generate the interrupt.

LAB 7.1 Hardware Description for the BCM2837 Processor
For the BCM2837 processor, you will use the button of the MikroElektronika Button R click
board. See the board at https://www.mikroe.com/button-r-click. You can download the schematic
from that link or from the GitHub repository of this book. Connect the GPIO23 pin of the GPIO
expansion connector to the INT pin of the Button R click board.

LAB 7.1 Device Tree for the i.MX7D Processor
Open the MCIMX7D-SABRE schematic and find the button USR_BT1. This button is connected to
the SD2_WP pad of the i.MX7D processor. To look for the macro that assigns the required GPIO
functionality go to the imx7d-pinfunc.h file under arch/arm/boot/dts/ directory and find the next
macro:

#define MX7D_PAD_SD2_WP__GPIO5_IO10 0x01B0 0x0420 0x0000 0x5 0x0

You need a sixth integer to include in the fsl,pins property, that corresponds to the configuration
for the PAD control register. This number defines the low-level physical settings of the pin. The
chosen value 0x32 will enable the internal pull-up of the pin. When the button is pressed, the GPIO
input value is set to GND, generating an interrupt if IRQF_TRIGGER_FALLING flag was passed to
the request_irq() function.

Now, you can modify the device tree file imx7d-sdb.dts adding the next code in bold:

/ {
 model = "Freescale i.MX7 SabreSD Board";
 compatible = "fsl,imx7d-sdb", "fsl,imx7d";

 memory {

[275]

Chapter 7 Handling Interrupts in Device Drivers

[275]

 reg = <0x80000000 0x80000000>;
 };

 [...]

int_key{
 compatible = "arrow,intkey";

 pinctrl-names = "default";
 pinctrl-0 = <&pinctrl_key_gpio>;

 label = "PB_USER";
 gpios = <&gpio5 10 GPIO_ACTIVE_LOW>;
 interrupt-parent = <&gpio5>;
 interrupts = <10 IRQ_TYPE_EDGE_FALLING>;
};

[...]

&iomuxc {
pinctrl-names = "default";

 pinctrl-0 = <&pinctrl_hog_1>;

 imx7d-sdb {

 pinctrl_hog_1: hoggrp-1 {
 fsl,pins = <
 MX7D_PAD_EPDC_BDR0__GPIO2_IO28 0x59

>;
 };

 [...]

 pinctrl_key_gpio: key_gpiogrp {
 fsl,pins = <
 MX7D_PAD_SD2_WP__GPIO5_IO10 0x32
 >;
 };

 [...]
};

};

Handling Interrupts in Device Drivers Chapter 7

[276]

LAB 7.1 Device Tree for the SAMA5D2 Processor
Open the SAMA5D2B-XULT board schematic and find the button BP1. This button is connected to
the PB9 pad of the SAMA5D2 processor. You have to configure in the DT the PB9 pad as a GPIO
signal. To look for the macro that assigns the required GPIO functionality go to the sama5d2-
pinfunc.h file under arch/arm/boot/dts/ directory and find the next macro:

#define PIN_PB9__GPIO PINMUX_PIN(PIN_PB9, 0, 0)

The chosen DT value for the pad setting will enable an internal pull-up on the pin. When
the button is pressed, the GPIO input value is set to GND, generating an interrupt if
IRQF_TRIGGER_FALLING flag was passed to the request_irq() function.

Now, you can modify the device tree file at91-sama5d2_xplained_common.dtsi adding the next code
in bold. Disable the gpio_keys node to avoid "mux" conflict with the PB9 pad:

pinctrl@fc038000 {

 pinctrl_adc_default: adc_default {
 pinmux = <PIN_PD23__GPIO>;
 bias-disable;
 };

 [...]

 pinctrl_key_gpio_default: key_gpio_default {
 pinmux = <PIN_PB9__GPIO>;
 bias-pull-up;
 };

 [...]

}

/ {
 model = "Atmel SAMA5D2 Xplained";
 compatible = "atmel,sama5d2-xplained", "atmel,sama5d2", "atmel,sama5";

 chosen {
 stdout-path = "serial0:115200n8";
 };

 [...]

 int_key {
 compatible = "arrow,intkey";
 pinctrl-names = "default";

[277]

Chapter 7 Handling Interrupts in Device Drivers

[277]

 pinctrl-0 = <&pinctrl_key_gpio_default>;
 gpios = <&pioA 41 GPIO_ACTIVE_LOW>;
 interrupt-parent = <&pioA>;
 interrupts = <41 IRQ_TYPE_EDGE_FALLING>;
 };

 [...]

};

LAB 7.1 Device Tree for the BCM2837 Processor
For the BCM2837 processor, the GPIO23 pin will be multiplexed in the DT as a GPIO input
with internal pull-down enabled. When the button is pressed, the GPIO input value is set to
Vcc, then when it is released, the input value is set to GND, generating an interrupt if
IRQF_TRIGGER_FALLING flag was passed to the request_irq() function. Open and modify the
device tree file bcm2710-rpi-3-b.dts adding the next code in bold:

/ {
 model = "Raspberry Pi 3 Model B";
};

&gpio {
 sdhost_pins: sdhost_pins {
 brcm,pins = <48 49 50 51 52 53>;
 brcm,function = <4>; /* alt0 */
 };

 [...]

 key_pin: key_pin {
 brcm,pins = <23>;
 brcm,function = <0>; /* Input */
 brcm,pull = <1>; /* Pull down */
 };

};

&soc {
 virtgpio: virtgpio {
 compatible = "brcm,bcm2835-virtgpio";
 gpio-controller;
 #gpio-cells = <2>;
 firmware = <&firmware>;
 status = "okay";
 };

Handling Interrupts in Device Drivers Chapter 7

[278]

 expgpio: expgpio {
 compatible = "brcm,bcm2835-expgpio";
 gpio-controller;
 #gpio-cells = <2>;
 firmware = <&firmware>;
 status = "okay";
 };

 [...]

 int_key {
 compatible = "arrow,intkey";

 pinctrl-names = "default";
 pinctrl-0 = <&key_pin>;
 gpios = <&gpio 23 0>;
 interrupts = <23 1>;
 interrupt-parent = <&gpio>;
 };

 [...]

};

LAB 7.1 Code Description of the "button interrupt device" Module
The main code sections of the driver will now be described:

1. Include the function headers:

#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/interrupt.h>
#include <linux/gpio/consumer.h>
#include <linux/miscdevice.h>

2. For teaching purposes, in the probe() function you are going to obtain the Linux IRQ
number in two different ways. The first method obtains the GPIO descriptor from the gpios
property of the DT int_key node using the devm_gpiod_get() function, then the Linux IRQ
number corresponding to the given GPIO is returned using the function gpiod_to_irq(), that
takes the GPIO descriptor as a parameter. The second method uses the platform_get_irq()
function, which gets the hwirq number from the interrupts property of the DT int_key node,
then returns the Linux IRQ number.

In the probe() function, you will call devm_request_irq() to allocate the interrupt line. When
calling this function you must specify as parameters a pointer to the struct device structure,
the Linux IRQ number (irq), a handler that will be called when the interrupt is generated

[279]

Chapter 7 Handling Interrupts in Device Drivers

[279]

(hello_keys_isr), a flag that will instruct the kernel about the desired interrupt behaviour
(IRQF_TRIGGER_FALLING), the name of the device using this interrupt (HELLO_KEYS_NAME),
and a pointer that can be configured at any value. In this driver, dev_id will point to your
struct device structure.

static int __init my_probe(struct platform_device *pdev)
{
 int ret_val, irq;
 struct gpio_desc *gpio;
 struct device *dev = &pdev->dev;

 /* First method to get the virtual linux IRQ number */
 gpio = devm_gpiod_get(dev, NULL, GPIOD_IN);
 irq = gpiod_to_irq(gpio);

 /* Second method to get the virtual Linux IRQ number */
 irq = platform_get_irq(pdev, 0);

devm_request_irq(dev, irq, hello_keys_isr,
 IRQF_TRIGGER_FALLING,
 HELLO_KEYS_NAME, dev);

 misc_register(&helloworld_miscdevice);

 return 0;
}

3. Write the interrupt handler. In this driver, an interrupt will be generated and handled (a
message will be printed out to the console) each time you press a button. In the handler
you will recover the struct device structure, that is used as a parameter in the dev_info()
function.

static irqreturn_t hello_keys_isr(int irq, void *data)
{
 struct device *dev = data;
 dev_info(dev, "interrupt received. key: %s\n", HELLO_KEYS_NAME);
 return IRQ_HANDLED;
}

4. Declare a list of devices supported by the driver.

static const struct of_device_id my_of_ids[] = {
 { .compatible = " arrow,intkey"},
 {},
};
MODULE_DEVICE_TABLE(of, my_of_ids);

Handling Interrupts in Device Drivers Chapter 7

[280]

5. Add a struct platform_driver structure that will be registered to the platform bus:

static struct platform_driver my_platform_driver = {
 .probe = my_probe,
 .remove = my_remove,
 .driver = {
 .name = "intkey",
 .of_match_table = my_of_ids,
 .owner = THIS_MODULE,
 }
};

6. Register your driver with the platform bus:

module_platform_driver(my_platform_driver);

7. Build the modified device tree, and load it to the target processor.

See in the next Listing 7-1 the "button interrupt device" driver source code (int_imx_key.c) for the
i.MX7D processor.

Note: The source code for the SAMA5D2 (int_sam_key.c) and BCM2837 (int_rpi_key.c) drivers can
be downloaded from the GitHub repository of this book.

Listing 7-1: int_imx_key.c
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/interrupt.h>
#include <linux/gpio/consumer.h>
#include <linux/miscdevice.h>

static char *HELLO_KEYS_NAME = "PB_KEY";

/* interrupt handler */
static irqreturn_t hello_keys_isr(int irq, void *data)
{
 struct device *dev = data;
 dev_info(dev, "interrupt received. key: %s\n", HELLO_KEYS_NAME);
 return IRQ_HANDLED;
}

static struct miscdevice helloworld_miscdevice = {
 .minor = MISC_DYNAMIC_MINOR,
 .name = "mydev",
};

[281]

Chapter 7 Handling Interrupts in Device Drivers

[281]

static int __init my_probe(struct platform_device *pdev)
{
 int ret_val, irq;
 struct gpio_desc *gpio;
 struct device *dev = &pdev->dev;

 dev_info(dev, "my_probe() function is called.\n");

 /* First method to get the virtual linux IRQ number */
 gpio = devm_gpiod_get(dev, NULL, GPIOD_IN);
 if (IS_ERR(gpio)) {
 dev_err(dev, "gpio get failed\n");
 return PTR_ERR(gpio);
 }
 irq = gpiod_to_irq(gpio);
 if (irq < 0)
 return irq;
 dev_info(dev, "The IRQ number is: %d\n", irq);

 /* Second method to get the virtual Linux IRQ number */
 irq = platform_get_irq(pdev, 0);
 if (irq < 0){
 dev_err(dev, "irq is not available\n");
 return -EINVAL;
 }
 dev_info(dev, "IRQ_using_platform_get_irq: %d\n", irq);

 /* Allocate the interrupt line */
 ret_val = devm_request_irq(dev, irq, hello_keys_isr,
 IRQF_TRIGGER_FALLING,
 HELLO_KEYS_NAME, dev);
 if (ret_val) {

dev_err(dev, "Failed to request interrupt %d, error %d\n",
 irq, ret_val);

 return ret_val;
 }

 ret_val = misc_register(&helloworld_miscdevice);
 if (ret_val != 0)
 {
 dev_err(dev, "could not register the misc device mydev\n");
 return ret_val;
 }

 dev_info(dev, "mydev: got minor %i\n",helloworld_miscdevice.minor);
dev_info(dev, "my_probe() function is exited.\n");

 return 0;

Handling Interrupts in Device Drivers Chapter 7

[282]

}

static int __exit my_remove(struct platform_device *pdev)
{

dev_info(&pdev->dev, "my_remove() function is called.\n");
 misc_deregister(&helloworld_miscdevice);
 dev_info(&pdev->dev, "my_remove() function is exited.\n");

 return 0;
}

static const struct of_device_id my_of_ids[] = {
 { .compatible = "arrow,intkey"},
 {},
};
MODULE_DEVICE_TABLE(of, my_of_ids);

static struct platform_driver my_platform_driver = {
 .probe = my_probe,
 .remove = my_remove,
 .driver = {
 .name = "intkey",
 .of_match_table = my_of_ids,
 .owner = THIS_MODULE,
 }
};

module_platform_driver(my_platform_driver);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Alberto Liberal <aliberal@arroweurope.com>");
MODULE_DESCRIPTION("This is a button INT platform driver");

int_imx_key.ko Demonstration
root@imx7dsabresd:~# insmod int_imx_key.ko /* load module */

"Press the FUNC2 button to generate interrupts"

root@imx7dsabresd:~# cat /proc/interrupts /* check the linux IRQ number (220) and
hwirq number (10) for the gpio-mxc controller */
root@imx7dsabresd:~# rmmod int_imx_key.ko /* remove module */

[283]

Chapter 7 Handling Interrupts in Device Drivers

[283]

Deferred Work
The Linux kernel performs operations in two contexts:

1. Process context: Process context is the mode of operation the kernel is in while it is executing
on behalf of a user process, for example, executing a system call kernel service routine. Also
the deferred work scheduled by Workqueues and Threaded interrupts is said to be executed
in process context; these kernel threads run in kernel space process context but do not
represent any user process. The code executing in process contex is able to block.

2. Interrupt context: on request from a hardware interrupt controller (asynchronously). This
special context is also called "atomic context" because code executing in this context is
unable to block. On the other hand, interrupts are not schedulable. They occur and execute
the interrupt handler spawning its own context. Softirqs, tasklets and timers are running in
interrupt context, which means that they can not call blocking functions.

Deferred work is a class of kernel facilities that allows one to schedule code to be executed at a
later time. This scheduled code can run either in process context using workqueues or threaded
interrupts, both methods using kernel threads or in interrupt context using softirqs, tasklets and
timers. To summarize, the main types of deferred work are kernel threads and softirqs. Work queues
and bottom-half of threaded irqs are implemented on top of kernel threads that are able to block and
tasklets and timers on top of softirqs that cannot call block functions.

Handling Interrupts in Device Drivers Chapter 7

[284]

Deferred work is used to complement the interrupt handler functionality, since interrupts have
important requirements and limitations:

•	 The execution time of the interrupt handler must be as small as possible
•	 In interrupt context you can not use blocking calls

Using deferred work you can perform the minimum required work in the interrupt handler and schedule
an asynchronous action from the interrupt handler to run at a later time and execute the rest of the
operations. This deferred work used in interrupts is also known as bottom-half, since its purpose is to
execute the rest of the actions from an interrupt handler (top-half). The top-half does what needs to be
done immediately, the time critical stuff. Basically the top-half itself is the interrupt handler. It should
complete as quickly as possible since all interrupts are disabled. It schedules a bottom half to handle
the hard processing. The bottom-half does the rest of the processing that has been deferred - the time
dependent, less critical actions. It is signaled by the ISR. A bottom-half is used to process data, letting the
top-half to deal with new incoming interrupts. Interrupts are enabled when a bottom-half runs. Interrupts
can be disabled if necessary, but generally this should be avoided as this goes against the basic purpose
of having a bottom-half - processing data while listening for new interrupts. Interrupt bottom halves are
implemented in Linux as softirqs and tasklets in interrupt context or via threaded irqs in process context.

Softirqs
Softirqs are a form of bottom half processing that run in interrupt context, and are suitable for long
running, non-blocking handlers. They are executed once all interrupt handlers have completed,
before the kernel resumes scheduling processes, so sleeping is not allowed. A softirq is executed
as early as possible but remains interruptible so that the execution can be preempted by any top
half. Softirqs can not be used by device drivers, they are reserved for various kernel subsystems.
Because of this there is a fixed number of softirqs defined at compile time. For the current kernel
version the following types are defined:

enum {
 HI_SOFTIRQ = 0,
 TIMER_SOFTIRQ,
 NET_TX_SOFTIRQ,
 NET_RX_SOFTIRQ,
 BLOCK_SOFTIRQ,
 IRQ_POLL_SOFTIRQ,
 TASKLET_SOFTIRQ,
 SCHED_SOFTIRQ,
 HRTIMER_SOFTIRQ,
 RCU_SOFTIRQ,
 NR_SOFTIRQS
};

[285]

Chapter 7 Handling Interrupts in Device Drivers

[285]

Each type has a specific purpose:

•	 HI_SOFTIRQ and TASKLET_SOFTIRQ - running tasklets
•	 TIMER_SOFTIRQ - running timers
•	 NET_TX_SOFIRQ and NET_RX_SOFTIRQ - used by the networking subsystem
•	 BLOCK_SOFTIRQ - used by the IO subsystem
•	 BLOCK_IOPOLL_SOFTIRQ - used by the IO subsystem to increase performance when the

iopoll handler is invoked
•	 SCHED_SOFTIRQ - load balancing
•	 HRTIMER_SOFTIRQ - implementation of high precision timers
•	 RCU_SOFTIRQ - implementation of RCU type mechanisms

The highest priority is the HI_SOFTIRQ type softirqs, followed in order by the other softirqs
defined. RCU_SOFTIRQ has the lowest priority.

Softirqs are running in interrupt context, which means that they can not call blocking functions. If
the sofitrq handler requires calls to such functions, work queues can be scheduled to execute these
blocking calls.

Handling Interrupts in Device Drivers Chapter 7

[286]

Tasklets
A tasklet is a special form of deferred work that runs in interrupt context, just like softirqs. The
main difference between sofirqs are tasklets are that tasklets can be allocated dynamically and
thus they can be used by device drivers. A tasklet is represented by struct tasklet and as many other
kernel structures it needs to be initialized before being used.

Tasklets are executed within the HI and TASKLET softirqs. They are executed with all interrupts
enabled, but a given tasklet is guaranteed to execute on a single CPU at a time. A pre-initialized
tasklet can be defined as following:

void handler(unsigned long data);
DECLARE_TASKLET(tasklet, handler, data);
DECLARE_TASKLET_DISABLED(tasklet, handler, data);

If you want to initialize the tasklet manually use the tasklet_init() function. A tasklet is simply
implemented as a function. Tasklets can easily be used by individual device drivers, as opposed to
softirqs.

void handler(unsigned long data);
struct tasklet_struct tasklet;
tasklet_init(&tasklet, handler, data);

The interrupt handler can schedule tasklet execution with:

void tasklet_schedule(struct tasklet_struct *tasklet);
void tasklet_hi_schedule(struct tasklet_struct *tasklet);

When using tasklet_schedule, a TASKLET_SOFTIRQ softirq is scheduled and all tasklets
scheduled are run. For tasklet_hi_schedule, a HI_SOFTIRQ softirq is scheduled.

Timers
A particular type of deferred work, very often used, are timers. They are defined by the struct
timer_list structure. They run in interrupt context and are implemented on top of softirqs. To be
used, a timer must first be initialized by calling setup_timer():

void setup_timer(struct timer_list * timer,
 void (*function)(unsigned long),
 unsigned long data);

The previous function initializes the internal fields of the structure and associates function as the
timer handler.

Scheduling a timer is done with mod_timer():

int mod_timer(struct timer_list *timer, unsigned long expires);

[287]

Chapter 7 Handling Interrupts in Device Drivers

[287]

Where expires parameter is the time (in the future) to run the handler function. The function can be
used to schedule or reschedule a timer inside the handler function.

The time unit for timers is jiffie. The absolute value of a jiffie is dependent on the platform and
it can be found using the HZ macro that defines the number of jiffies for 1 second. To convert
between jiffies (jiffies_value) and seconds (seconds_value), the following formulas are used:

jiffies_value = seconds_value * HZ;
seconds_value = jiffies_value / HZ;

The kernel mantains a counter that contains the number of jiffies since the last boot, which can be
accessed via the jiffies global variable or macro. You can use it to calculate a time in the future for
timers:

#include <linux/jiffies.h>

unsigned long current_jiffies, next_jiffies;
unsigned long seconds = 1;

current_jiffies = jiffies;
next_jiffies = jiffies + seconds * HZ;

To stop a timer, use del_timer() and del_timer_sync(). A frequent mistake in using timers is that
you forget to turn off timers. For example, before removing a module, you must stop the timers
because if a timer expires after the module is removed, the handler function will no longer be
loaded into the kernel and a kernel oops will be generated.

You can see below the code of a driver that blinks a LED every second using a timer deferred
work. You can change the blinking period from user space using the sysfs period entry. You can test
the driver using your Raspberry Pi 3 Model B board and the Color click™ accessory board with the
HW configuration used in lab 5.2.

#include <linux/init.h>
#include <linux/module.h>
#include <linux/io.h>
#include <linux/timer.h>
#include <linux/device.h>
#include <linux/platform_device.h>
#include <linux/miscdevice.h>

#define BCM2710_PERI_BASE 0x3F000000
#define GPIO_BASE BCM2710_PERI_BASE + 0x200000

struct GpioRegisters
{
 uint32_t GPFSEL[6];
 uint32_t Reserved1;
 uint32_t GPSET[2];

Handling Interrupts in Device Drivers Chapter 7

[288]

 uint32_t Reserved2;
 uint32_t GPCLR[2];
};

static struct GpioRegisters *s_pGpioRegisters;

static void SetGPIOFunction(int GPIO, int functionCode)
{
 int registerIndex = GPIO / 10;
 int bit = (GPIO % 10) * 3;

 unsigned oldValue = s_pGpioRegisters->GPFSEL[registerIndex];
 unsigned mask = 0b111 << bit;
 pr_info("Changing function of GPIO%d from %x to %x\n", GPIO,
 (oldValue >> bit) & 0b111, functionCode);
 s_pGpioRegisters->GPFSEL[registerIndex] =

(oldValue & ~mask) | ((functionCode << bit) & mask);
}

static void SetGPIOOutputValue(int GPIO, bool outputValue)
{
 if (outputValue)
 s_pGpioRegisters->GPSET[GPIO / 32] = (1 << (GPIO % 32));
 else
 s_pGpioRegisters->GPCLR[GPIO / 32] = (1 << (GPIO % 32));
}

static struct timer_list s_BlinkTimer;
static int s_BlinkPeriod = 1000;
static const int LedGpioPin = 27;

static void BlinkTimerHandler(unsigned long unused)
{
 static bool on = false;
 on = !on;
 SetGPIOOutputValue(LedGpioPin, on);
 mod_timer(&s_BlinkTimer, jiffies + msecs_to_jiffies(s_BlinkPeriod));
}

static ssize_t set_period(struct device* dev,
 struct device_attribute* attr,
 const char* buf,
 size_t count)
{
 long period_value = 0;
 if (kstrtol(buf, 10, &period_value) < 0)
 return -EINVAL;
 if (period_value < 10)

[289]

Chapter 7 Handling Interrupts in Device Drivers

[289]

 return -EINVAL;

 s_BlinkPeriod = period_value;
 return count;
}

static DEVICE_ATTR(period, S_IWUSR, NULL, set_period);

static struct miscdevice led_miscdevice = {
 .minor = MISC_DYNAMIC_MINOR,
 .name = "ledred",
};

static int __init my_probe(struct platform_device *pdev) {

 int result, ret_val;
 struct device *dev = &pdev->dev;

dev_info(dev, "platform_probe enter\n");
s_pGpioRegisters = (struct GpioRegisters *)devm_ioremap(dev, GPIO_BASE,

 sizeof(struct GpioRegisters));

SetGPIOFunction(LedGpioPin, 0b001); /* Configure the pin as output */

 setup_timer(&s_BlinkTimer, BlinkTimerHandler, 0);
 result = mod_timer(&s_BlinkTimer, jiffies + msecs_to_jiffies(s_BlinkPeriod));

 ret_val = device_create_file(&pdev->dev, &dev_attr_period);
 if (ret_val != 0)
 {
 dev_err(dev, "failed to create sysfs entry");
 return ret_val;
 }

 ret_val = misc_register(&led_miscdevice);
 if (ret_val != 0)
 {
 dev_err(dev, "could not register the misc device mydev");
 return ret_val;
 }
 dev_info(dev, "mydev: got minor %i\n",led_miscdevice.minor);

 dev_info(dev, "platform_probe exit\n");
 return 0;

}

static int __exit my_remove(struct platform_device *pdev)
{

Handling Interrupts in Device Drivers Chapter 7

[290]

 dev_info(&pdev->dev, "platform_remove enter\n");
 misc_deregister(&led_miscdevice);
 device_remove_file(&pdev->dev, &dev_attr_period);
 SetGPIOFunction(LedGpioPin, 0);
 del_timer(&s_BlinkTimer);
 dev_info(&pdev->dev, "platform_remove exit\n");
 return 0;
}

static const struct of_device_id my_of_ids[] = {
 { .compatible = "arrow,ledred"},
 {},
};

static struct platform_driver my_platform_driver = {
 .probe = my_probe,
 .remove = my_remove,
 .driver = {
 .name = "ledred",
 .of_match_table = my_of_ids,
 .owner = THIS_MODULE,
 }
};

module_platform_driver(my_platform_driver);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Alberto Liberal <aliberal@arroweurope.com>");
MODULE_DESCRIPTION("This is a blinking led driver");

Threaded Interrupts
There are situations where the device driver handling the interrupts can’t read the device’s
registers in a non-blocking mode (for example a sensor connected to an I2C or SPI bus whose
driver does not guarantee that bus read/write operations are non-blocking). In this situation,
in the interruption, you must plan a work-in-process action (work queue, kernel thread)
to access the device’s registers. Because such a situation is relatively common, the kernel
provides the request_threaded_irq() function to write interrupt handling routines running in
two phases: a process-phase and an interrupt context phase. As with the function request_irq(),
it is recommended to use the managed API devm_request_threaded_irq(). Within the parameters
of the function handler is the function running in interrupt context, and will implement critical
operations while the thread_fn handler runs in process context and implements the rest of the
operations.

[291]

Chapter 7 Handling Interrupts in Device Drivers

[291]

/**
 * devm_request_threaded_irq - allocate an interrupt line for a managed device
 * @dev: device to request interrupt for
 * @irq: Interrupt line to allocate
 * @handler: Function to be called when the IRQ occurs
 * @thread_fn: function to be called in a threaded interrupt context. NULL
 * for devices which handle everything in @handler
 * @irqflags: Interrupt type flags
 * @devname: An ascii name for the claiming device
 * @dev_id: A cookie passed back to the handler function
 *
 * Except for the extra @dev argument, this function takes the
 * same arguments and performs the same function as
 * request_threaded_irq().IRQs requested with this function will be
 * automatically freed on driver detach.
 *
 * If an IRQ allocated with this function needs to be freed
 * separately, devm_free_irq() must be used.
 */
int devm_request_threaded_irq(struct device *dev, unsigned int irq,
 irq_handler_t handler, irq_handler_t thread_fn,
 unsigned long irqflags, const char *devname,
 void *dev_id)
{
 struct irq_devres *dr;
 int rc;

 dr = devres_alloc(devm_irq_release, sizeof(struct irq_devres),
 GFP_KERNEL);
 if (!dr)
 return -ENOMEM;

 rc = request_threaded_irq(irq, handler, thread_fn, irqflags, devname,
 dev_id);
 if (rc) {
 devres_free(dr);
 return rc;
 }

}

Note that the first IRQ handler can be set to NULL so that the default primary handler will be
executed. This default handler does nothing more than to return IRQ_WAKE_THREAD to wake
up the associated kernel thread, which will execute the thread_fn handler. Hence, it is possible
to move the execution of interrupt handlers entirely to process context, which is widely used in
the domain of real-time systems. In such case the IRQF_ONESHOT argument must be passed,
otherwise the request will fail. If you do not specify the IRQF_ONESHOT argument in such a

Handling Interrupts in Device Drivers Chapter 7

[292]

situation, the interrupt would be reenabled after return of the top half, resulting in stack overflows
for level interrupts since the issuing device has still the interrupt line asserted. Hence, the kernel
rejects such requests and throws an error message. Note that thread_fn runs competing for CPU
along with other processes on the runqueue, but it can run for longer duration without hurting the
overall system responsiveness, as it does not run in high-priority by default unlike SoftIRQs. When
the thread_fn completes, the associated kthread would take itself out of the runqueue and remain
in blocked state until woken up again by the hard-IRQ function.

Softirqs run at a high-priority with scheduler preemption being disabled, not relinquishing CPU
to processes/threads until they complete. Thus, if functions registered in softirqs fail to finish
within a jiffy (1 to 10 milliseconds based on CONFIG_HZ of the kernel), this can severely impact
the responsiveness of the kernel, as processes/threads would be starved for CPU. If the scheduler
could not be invoked periodically while there are processes in the run-queue, possibly due to
softirq flooding, any new softirqs raised by the Hard-IRQ handlers would be delegated to run in
process context via ksoftirqd thread, thus making softirqs compete for their CPU share along with
other processes and threads on the runqueue. In general, softirqs are preferred for bottom-half
processing that could finish consistently in few 100 microseconds (well within a jiffy).

Threaded IRQ handlers are preferred for bottom-half processing that would spill over half a jiffy
consistently (for example, more than 500 microseconds if CONFIG_HZ is set to 1000). When you
use the request_threaded_irq() function passing two functions as arguments, this would create a
dedicated kthread similar to [irq-x/device_intr] where the number x represents the irq number
associated with this thread, and device_intr would be the name provided as a string argument to
the request_threaded_irq() function. One of the advantages of using threaded IRQs in multi-core/
SMP architectures is that you can set affinity of hard-IRQ for one CPU, while setting affinity of the
associated kthread to another CPU, thus allowing top half and bottom half to run in parallel. They
are in general, more flexible than softirqs, though interrupt processing might be delayed due to
scheduler preemption if the run-queue is overloaded with lots of CPU hungry processes/threads.

Workqueues
Workqueues are used to schedule actions to run in process context. The base unit with which they
work is called work and is queued in a workqueue. All work items are dequeued and executed
in process context. A kernel thread called worker, picks up the items from the workqueue and
executes the functions associated with those items. If there is no work, the worker will idle, but
wake up as soon as new items arrive in the workqueue. Workqueues are also suitable for long
running and lengthy tasks, since the system scheduler can guarantee forward progress for other
threads. Workqueues can be used inside and outside the context of interrupt handling.

A work item is a simple data structure that holds a pointer to the function that is to be executed
asynchronously. Whenever a user (e.g., a driver or subsystem) wants a function to be executed

[293]

Chapter 7 Handling Interrupts in Device Drivers

[293]

asynchronously by means of workqueues, it has to set up a work item pointing to that function
and queue that work item on a workqueue. Special purpose threads, called worker threads,
execute the functions after dequeuing the items, one after the other. If no work is queued, the
worker threads become idle.

Worker threads are controlled by worker-pools, which take care of the level of concurrency (the
simultaneously running worker threads) and the process management.

The new Concurrency Managed Workqueue (cmwq) design differentiates between the user-facing
workqueues that subsystems and drivers queue work items on and the backend mechanism,
which manages worker-pools and processes the queued work items. There are two worker-pools,
one for normal work items and the other for high priority ones, for each possible CPU and some
extra worker-pools to serve work items queued on unbound workqueues - the number of these
backing pools is dynamic.

Subsystems and drivers can create and queue work items through special workqueue API
functions as they see fit. They can influence some aspects of the way the work items are executed
by setting flags on the workqueue they are putting the work item on. These flags include
things like CPU locality, concurrency limits, priority and more. To get a detailed overview refer to
the API description of the alloc_workqueue() function.

When a work item is queued to a workqueue, the target worker-pool is determined according
to the queue parameters and workqueue attributes and appended on the shared worklist of the
worker-pool. For example, unless specifically overridden, a work item of a bound workqueue will
be queued on the worklist of either normal or high priority worker-pool that is associated to the
CPU the issuer is running on.

Each worker-pool bound to an actual CPU implements concurrency management by hooking into
the scheduler. The worker-pool is notified whenever an active worker wakes up or sleeps and
keeps track of the number of the currently runnable workers. Generally, work items are
not expected to hog a CPU and consume many cycles. That means maintaining just enough
concurrency to prevent work processing from stalling should be optimal. As long as there are one
or more runnable workers on the CPU, the worker-pool doesn't start execution of a new
work, but, when the last running worker goes to sleep, it immediately schedules a new worker
so that the CPU doesn't sit idle while there are pending work items. This allows using a minimal
number of workers without losing execution bandwidth.

The workqueue API offers two types of functions interfaces: first, a set of interface routines
to instantiate and queue work items onto a global workqueue, which is shared by all kernel
subsystems and services, and second, a set of interface routines to set up a new workqueue,
and queue work items onto it. You will begin to explore workqueue interfaces with macros and
functions related to the global shared workqueue.

Handling Interrupts in Device Drivers Chapter 7

[294]

There are two types of work:

•	 structure work_struct - it schedules a task to run at a later time
•	 struct delayed_work - it schedules a task to run after at least a given time interval

A delayed work uses a timer to run after the specified time interval. The calls with this type of
work are similar to those for struct work_struct, but has _delayed in the functions names.
Before using them a work item must be initialized. There are two types of macros that can be used,
one that declares and initializes the work item at the same time and one that only initializes the
work item (and the declaration must be done separately):

#include <linux/workqueue.h>

DECLARE_WORK(name , void (*function)(struct work_struct *));
DECLARE_DELAYED_WORK(name, void(*function)(struct work_struct *));

INIT_WORK(struct work_struct *work, void(*function)(struct work_struct *));
INIT_DELAYED_WORK(struct delayed_work *work,

void(*function)(struct work_struct *));

DECLARE_WORK() and DECLARE_DELAYED_WORK() declare and initialize a work item, and
INIT_WORK() and INIT_DELAYED_WORK() initialize an already declared work item.

The following sequence declares and initiates a work item:

#include <linux/workqueue.h>

void my_work_handler(struct work_struct *work);
DECLARE_WORK(my_work, my_work_handler);

Or, if you want to initialize the work item separately:

void my_work_handler(struct work_struct * work);
struct work_struct my_work;
INIT_WORK(&my_work, my_work_handler);

Once declared and initialized, a work instance can be scheduled into the workqueue through
schedule_work() and schedule_delayed_work(). This function enqueues the given work item on the
local CPU workqueue, but does not guarantee its execution on it. It returns true if the given work is
successfully enqueued, or false if the given work is already found in the workqueue. Once queued,
the function associated with the work item is executed on any of the available CPUs by the relevant
kworker thread:

schedule_work(struct work_struct *work);
schedule_delayed_work(struct delayed_work *work, unsigned long delay);

You can wait for a workqueue to complete running all of its work items by calling flush_scheduled_work():

void flush_scheduled_work(void);

[295]

Chapter 7 Handling Interrupts in Device Drivers

[295]

Finally, the following functions can be used to schedule work items on a particular processor
(schedule_delayed_work_on()), or on all processors (schedule_on_each_cpu()):

int schedule_delayed_work_on(int cpu, struct delayed_work *work,
unsigned long delay);

int schedule_on_each_cpu(void(*function)(struct work_struct *));

A usual sequence to initialize and schedule a work item is the following:

void my_work_handler(struct work_struct *work);
struct work_struct my_work;
INIT_WORK(&my_work, my_work_handler);
schedule_work(&my_work);

And for waiting for termination of a work item:

flush_scheduled_work();

As you can see, the my_work_handler() function receives the task as the parameter. To be able to
access the module’s private data, you can use container_of():

struct my_device_data {
 struct work_struct my_work;

 [...]

};

void my_work_handler(struct work_struct *work)
{
 structure my_device_data * my_data;

my_data = container_of(work, struct my_device_data, my_work);

[...]

}

Scheduling work items with the functions above will run the handler in the context of a thread
kernel called events/x, where x is the processor number. The kernel will initialize a kernel thread (or
a pool of workers) for each processor present in the system. The above functions use a predefined
workqueue (called events), and they run in the context of the events/x thread, as noted above.
Although this is sufficient in most cases, it is a shared resource and large delays in work items
handlers can cause delays for other queue users. For this reason there are functions for creating
additional queues.

A workqueue is represented by the struct workqueue_struct structure. A new workqueue can be
created with these functions:

struct workqueue_struct *create_workqueue(const char *name);
struct workqueue_struct *create_singlethread_workqueue(const char *name);

Handling Interrupts in Device Drivers Chapter 7

[296]

The create_workqueue() function uses one thread for each processor in the system, and
create_singlethread_workqueue() uses a single thread.

To add a task in the new queue, use queue_work() or queue_delayed_work():

int queue_work(struct workqueue_struct * queue, struct work_struct *work);

int queue_delayed_work(struct workqueue_struct *queue,
 struct delayed_work * work , unsigned long delay);

To wait for all work item to finish call flush_workqueue():

void flush_workqueue(struct worksqueue_struct * queue);

To destroy the workqueue call destroy_workqueue():

void destroy_workqueue(structure workqueque_struct *queue);

The next sequence declares and initializes an additional workqueue, declares and initializes a
work item and adds it to the queue:

void my_work_handler(struct work_struct *work);

struct work_struct my_work;
struct workqueue_struct * my_workqueue;

my_workqueue = create_singlethread_workqueue("my_workqueue");
INIT_WORK(&my_work, my_work_handler);

queue_work(my_workqueue, &my_work);

And the next lines of code show how to remove the workqueue:

flush_workqueue(my_workqueue);
destroy_workqueue(my_workqueue);

Locking in the Kernel
Imagine you have two different kthreads that read the value of a shared counter and have to
increment it after reading; it can happen that one of the two kthreads that is running read the value
of the counter, and before incrementing is preempted for the other kthread; the second kthread
also read the value of the counter and in this occasion increment it; now the second kthread is
preempted for the first one that increments the counter. The value of the counter has only been
incremented by one unit after been incremented by the two kthreads. This overlap, where the
result depends on the relative timing of multiple tasks, is called a race condition. The piece
of code containing the concurrency issue is called a critical region. And especially since Linux
starting running on SMP machines, they became one of the major issues in kernel design and
implementation.

[297]

Chapter 7 Handling Interrupts in Device Drivers

[297]

Preemption can have the same effect, even if there is only one CPU, by preempting one task during
the critical region, we have exactly the same race condition. In this case the thread which preempts
might run the critical region itself.

The solution is to recognize when these simultaneous accesses occur, and use locks to make sure
that only one instance can enter the critical region at any time.

There are two main types of kernel locks. The fundamental type is the spinlock (include/asm/
spinlock.h), which is a very simple single-holder lock: if you can’t get the spinlock, you keep trying
(spinning) until you can (disables the preemption in the running core). Spinlocks are very small
and fast, and can be used anywhere.

The second type is a mutex (include/linux/mutex.h); it is like a spinlock, but you may block holding a
mutex. If you can’t lock a mutex, your task will suspend itself, and be woken up when the mutex is
released. This means the CPU can do something else while you are waiting.

Locks and Uniprocessor Kernels
For kernels compiled without CONFIG_SMP, and without CONFIG_PREEMPT spinlocks do not
exist at all. This is an excellent design decision: when no-one else can run at the same time, there is
no reason to have a lock.

If the kernel is compiled without CONFIG_SMP, but CONFIG_PREEMPT is set, then spinlocks
simply disable preemption, which is sufficient to prevent any races.

Sharing Spinlocks between Interrupt and Process Context
It is possible that a critical section needs to be protected by the same lock in both an interrupt and
in non-interrupt (process) execution context in the kernel. In this case spin_lock_irqsave and the
spin_unlock_irqrestore variants have to be used to protect the critical section. This has the effect of
disabling interrupts on the executing CPU. You can see in the steps below what could happen if
you just used spin_lock in the process context:

1. Process context kernel code acquires the spinlock using spin_lock.

2. While the spinlock is held, an interrupt comes in on the same CPU and executes.

3. Interrupt Service Routing (ISR) tries to acquire the spinlock, and spins continuously
waiting for it. Process context is blocked in the CPU and there is never a chance to run
again and free the spinlock.

To prevent this, the process context code needs call spin_lock_irqsave, which has the effect of
disabling interrupts on that particular CPU along with the regular disabling of preemption on the
executing CPU.

Handling Interrupts in Device Drivers Chapter 7

[298]

The ISR can still just call spin_lock instead of spin_lock_irqsave because interrupts are disabled
anyway during ISR on the executing CPU. Often times people use spin_lock_irqsave in an ISR, that’s
not necessary.

Also note that during the executing of the critical section protected by spin_lock_irqsave, the
interrupts are only disabled on the executing CPU. Another interrupt that needs to access to the
shared spinlock can come in on a different CPU and the ISR will be executed there, but that will
not trigger the hard lock condition, because the process-context code is not blocked and can finish
executing the locked critical section and release the spinlock while the ISR spins on the spinlock on
a different CPU waiting for it. The process context does get a chance to finish and free the spinlock
causing no hard lock up.

In the lab 7.3, you will see the use of shared spinlocks to protect between interrupt and process
context.

Locking in User Context
If you have a data structure, which is only ever accessed from user context, then you can use a
simple mutex (include/linux/mutex.h) to protect it. This is the most trivial case: you initialize the
mutex. Then you can call mutex_lock_interruptible() to grab the mutex, and mutex_unlock() to release
it. There is also a mutex_lock(), which should be avoided, because it will not return if a signal is
received.

Sleeping in the Kernel
What does it mean for a user process to sleep? When a process is put to sleep, it is marked as being
in a special state and removed from the scheduler's run queue. Until something comes along to
change that state, the process will not be scheduled on any CPU and, therefore, will not run. A
sleeping process has been shunted off to the side of the system, waiting for some future event to
happen.

Causing a process to sleep is an easy thing for a Linux device driver to do. There are, however, a
couple of rules that you must keep in mind to be able to sleep the process in a safe manner. The
first of these rules is: never sleep when you are running in an atomic context. You also cannot sleep
if you have disabled interrupts. It is legal to sleep while holding a semaphore, but you should look
very carefully at any code that does so. If code sleeps while holding a semaphore, any other thread
waiting for that semaphore also sleeps. So any sleeping that happens while holding semaphores
should be short, and you should convince yourself that, by holding the semaphore, you are not
blocking the process that will eventually wake you up. Another thing to remember with sleeping
is that, when you wake up, you never know how long your process may have been out of the CPU

[299]

Chapter 7 Handling Interrupts in Device Drivers

[299]

or what may have changed in the mean time. You also do not usually know if another process may
have been sleeping due to the same event.

Other relevant point is that your process cannot sleep unless it is assured that somebody will wake
it up. The code doing the waking must also be able to find your process to be able to do its job.
Making it possible for your sleeping process to be found is accomplished through a data structure
called a wait queue. A wait queue is a list of processes, all waiting for a specific event.

In Linux, a wait queue is managed by means of a "wait queue head," a structure of type
wait_queue_head_t, which is defined in linux/wait.h. A wait queue head can be defined and
initialized statically with:

DECLARE_WAIT_QUEUE_HEAD(name);

or dynamically as follows:

wait_queue_head_t my_queue;
init_waitqueue_head(&my_queue);

When a process sleeps, it does so in expectation that some condition will become true in the future.
As noted before, any process that sleeps must check to be sure that the condition it was waiting for
is really true when it wakes up again.

The simplest way of sleeping in the Linux kernel is a macro called wait_event (with a few variants);
it combines handling the details of sleeping with a check on the condition a process is waiting for.
The forms of wait_event are:

wait_event(queue, condition)
wait_event_interruptible(queue, condition)
wait_event_timeout(queue, condition, timeout)
wait_event_interruptible_timeout(queue, condition, timeout)

In all of the above forms, queue is the wait queue head to use. The condition is an arbitrary boolean
expression that is evaluated by the macro before and after sleeping; until the condition evaluates
to a true value, the process continues to sleep. If you use wait_event, your process is put into an
uninterruptible sleep. The preferred alternative is wait_event_interruptible, which can be interrupted
by signals. The timeout versions (wait_event_timeout and wait_event_interruptible_timeout) wait for a
limited time; after that time period (expressed in jiffies) expires, the macros return with a value of
zero regardless of how the condition evaluates.

The other half of the picture, of course, is waking up. Some other thread of execution (a different
process, or an interrupt handler) has to perform the wakeup for you, since your process is, of
course, asleep. The basic function that wakes up sleeping processes is called wake_up. It comes in
several forms (but only two of them will be reviewed now):

void wake_up(wait_queue_head_t *queue); /* wake_up wakes up all processes waiting on

Handling Interrupts in Device Drivers Chapter 7

[300]

the given queue */

void wake_up_interruptible(wait_queue_head_t *queue); /* restricts itself to
processes performing an interruptible sleep */

LAB 7.2: "sleeping device" Module
In the next lab 7.2, you are going to develop a kernel module that causes a process to sleep and
then wakes it up via an interrupt. You can see the driver´s behavior in the following image. When
the user application attempts to read (system call) from the device, the process is put to sleep.
Every time you press or release a button, the generated interrupt will wake up the process and the
driver´s read callback function will send to user space the type of interrupt that was set (Press or
Release). Once you have exited the user application, you can read from a file all the interrupts that
were generated.

You will keep the same HW configuration used in the previous lab 7.1 for all the different
processors.

[301]

Chapter 7 Handling Interrupts in Device Drivers

[301]

LAB 7.2 Device Tree for the i.MX7D Processor
Open the MCIMX7D-SABRE schematic and find the button USR_BT1. This button is connected to
the SD2_WP pad of the i.MX7D processor. To look for the macro that assigns the required GPIO
functionality go to the imx7d-pinfunc.h file under arch/arm/boot/dts/ directory and find the next
macro:

#define MX7D_PAD_SD2_WP__GPIO5_IO10 0x01B0 0x0420 0x0000 0x5 0x0

You need a sixth integer that corresponds to the configuration for the PAD control register. This
number defines the low-level physical settings of the pin. The chosen value will enable an internal
pull-up on the pin. Two interrupts are going to be generated, the first one when the button is
pressed and the second one when it is released. You have to set the IRQ_TYPE_EDGE_BOTH value
in the interrupts property.

Now, you can modify the device tree file imx7d-sdb.dts adding the next code in bold:

/ {
 model = "Freescale i.MX7 SabreSD Board";
 compatible = "fsl,imx7d-sdb", "fsl,imx7d";

 memory {
 reg = <0x80000000 0x80000000>;
 };

 [...]

int_key_wait {
 compatible = "arrow,intkeywait";

 pinctrl-names = "default";
 pinctrl-0 = <&pinctrl_key_gpio>;

 label = "PB_USER";
 gpios = <&gpio5 10 GPIO_ACTIVE_LOW>;
 interrupt-parent = <&gpio5>;
 interrupts = <10 IRQ_TYPE_EDGE_BOTH>;
};

[...]

&iomuxc {
pinctrl-names = "default";

 pinctrl-0 = <&pinctrl_hog_1>;
 imx7d-sdb {

 pinctrl_hog_1: hoggrp-1 {

Handling Interrupts in Device Drivers Chapter 7

[302]

 fsl,pins = <
 MX7D_PAD_EPDC_BDR0__GPIO2_IO28 0x59

>;
 };

 [...]

 pinctrl_key_gpio: key_gpiogrp {
 fsl,pins = <
 MX7D_PAD_SD2_WP__GPIO5_IO10 0x32
 >;
 };

 [...]
};

};

LAB 7.2 Device Tree for the SAMA5D2 Processor
Open the SAMA5D2B-XULT board schematic and find the button BP1. This button is connected
to the PB9 pad of the SAMA5D2 processor. You have to configure in the DT the PB9 pad as
a GPIO signal. To look for the macro that assigns the required GPIO functionality go to the
sama5d2-pinfunc.h file under arch/arm/boot/dts/ directory and find the next macro:

#define PIN_PB9__GPIO PINMUX_PIN(PIN_PB9, 0, 0)

The chosen DT value for the pad setting will enable an internal pull-up on the pin. Two interrupts
are going to be generated, the first one when the button is pressed and the second one when it is
released. You have to set the IRQ_TYPE_EDGE_BOTH value in the interrupts property.

Now, you can modify the device tree file at91-sama5d2_xplained_common.dtsi adding the next code
in bold. Disable the gpio_keys node to avoid "mux" conflict with the PB9 pad:

pinctrl@fc038000 {

 pinctrl_adc_default: adc_default {
 pinmux = <PIN_PD23__GPIO>;
 bias-disable;
 };

 [...]

 pinctrl_key_gpio_default: key_gpio_default {
 pinmux = <PIN_PB9__GPIO>;
 bias-pull-up;
 };

[303]

Chapter 7 Handling Interrupts in Device Drivers

[303]

 [...]

}

/ {
 model = "Atmel SAMA5D2 Xplained";
 compatible = "atmel,sama5d2-xplained", "atmel,sama5d2", "atmel,sama5";

 chosen {
 stdout-path = "serial0:115200n8";
 };

 [...]

 int_key_wait {
 compatible = "arrow,intkeywait";
 pinctrl-names = "default";
 pinctrl-0 = <&pinctrl_key_gpio_default>;
 gpios = <&pioA 41 GPIO_ACTIVE_LOW>;
 interrupt-parent = <&pioA>;
 interrupts = <41 IRQ_TYPE_EDGE_BOTH>;
 };

 [...]

};

LAB 7.2 Device Tree for the BCM2837 Processor
For the BCM2837 processor, the GPIO23 pin will be multiplexed in the DT as a GPIO input
with internal pull-down enabled. Two interrupts are going to be generated, the first one
when the button is pressed and the second one when it is released. You have to set the
IRQ_TYPE_EDGE_BOTH value in the interrupts property.

Open and modify the device tree file bcm2710-rpi-3-b.dts adding the next code in bold:

/ {
 model = "Raspberry Pi 3 Model B";
};

&gpio {
 sdhost_pins: sdhost_pins {
 brcm,pins = <48 49 50 51 52 53>;
 brcm,function = <4>; /* alt0 */
 };

 [...]

Handling Interrupts in Device Drivers Chapter 7

[304]

 key_pin: key_pin {
 brcm,pins = <23>;
 brcm,function = <0>; /* Input */
 brcm,pull = <1>; /* Pull down */
 };
};

&soc {
 virtgpio: virtgpio {
 compatible = "brcm,bcm2835-virtgpio";
 gpio-controller;
 #gpio-cells = <2>;
 firmware = <&firmware>;
 status = "okay";
 };

 expgpio: expgpio {
 compatible = "brcm,bcm2835-expgpio";
 gpio-controller;
 #gpio-cells = <2>;
 firmware = <&firmware>;
 status = "okay";
 };

 [...]

 int_key_wait {
 compatible = "arrow,intkeywait";

 pinctrl-names = "default";
 pinctrl-0 = <&key_pin>;
 gpios = <&gpio 23 0>;
 interrupts = <23 IRQ_TYPE_EDGE_BOTH>;
 interrupt-parent = <&gpio>;
 };

 [...]

};

[305]

Chapter 7 Handling Interrupts in Device Drivers

[305]

LAB 7.2 Code Description of the "sleeping device" Module
The main code sections of the driver will now be described:

1. Include the function headers:

#include <linux/module.h>
#include <linux/fs.h>
#include <linux/platform_device.h>
#include <linux/of_gpio.h>
#include <linux/of_irq.h>
#include <linux/uaccess.h>
#include <linux/interrupt.h>
#include <linux/miscdevice.h>

2. Create a private structure that will store the button device specific information. The second
field of the private structure is a pointer to the struct gpio_desc structure associated with
your button GPIO. In this driver, you will handle a char device, so a struct miscdevice will
be created, initialized and added to your device specific private data structure in the third
field. The fourth field of the private structure is a structure of type wait_queue_head_t, that
will be initialized dynamically within the probe() function. The last field holds your Linux
IRQ number.

struct key_priv {
 struct device *dev;
 struct gpio_desc *gpio;
 struct miscdevice int_miscdevice;
 wait_queue_head_t wq_data_available;
 int irq;
};

3. In the probe() function a wait queue head is initialized with the line of code init_waitqueue_
head(&priv->wq_data_available); you will recover the DT interrupt number using the same
two methods of the lab 7.1. In the probe() function, you will also call devm_request_irq() to
allocate the interrupt line. When calling this function you must specify as parameters a
pointer to the struct device, the interrupt number, a handler that will be called when the
interrupt is generated (hello_keys_isr), a flag that will instruct the kernel about the desired
interrupt behaviour (IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING), the name of
the device using this interrupt (HELLO_KEYS_NAME), and a pointer that in this driver
will point to your private structure.

static int __init my_probe(struct platform_device *pdev)
{
 struct key_priv *priv;
 struct device *dev = &pdev->dev;

Handling Interrupts in Device Drivers Chapter 7

[306]

 /* Allocate new structure representing device */
 priv = devm_kzalloc(dev, sizeof(struct key_priv), GFP_KERNEL);
 priv->dev = dev;

 platform_set_drvdata(pdev, priv);

 init_waitqueue_head(&priv->wq_data_available);

 /* Get Linux IRQ number from device tree in 2 ways */
 priv->gpio = devm_gpiod_get(dev, NULL, GPIOD_IN);
 priv->irq = gpiod_to_irq(priv->gpio);

 priv->irq = platform_get_irq(pdev, 0);

 devm_request_irq(dev, priv->irq, hello_keys_isr,
 IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING,
 HELLO_KEYS_NAME, priv);

 priv->int_miscdevice.name = "mydev";
 priv->int_miscdevice.minor = MISC_DYNAMIC_MINOR;
 priv->int_miscdevice.fops = &my_dev_fops;

 ret_val = misc_register(&priv->int_miscdevice);
 return 0;
}

4. Write now the interrupt handler. In this driver, an interrupt will be generated and handled
each time you press and release a button. In the handler, you will recover the private
structure from the data argument. Once you have retrieved the private structure, you can
read the GPIO input value using the gpiod_get_value() function to determine if you have
pressed or released the button. After reading the input, you will wake up the process
using the wake_up_interruptible() function, that takes as its argument the wait queue head
declared in your private structure.

static irqreturn_t hello_keys_isr(int irq, void *data)
{
 int val;
 struct key_priv *priv = data;
 dev_info(priv->dev, "interrupt received. key: %s\n", HELLO_KEYS_NAME);

 val = gpiod_get_value(priv->gpio);
 dev_info(priv->dev, "Button state: 0x%08X\n", val);

 if (val == 1)
 hello_keys_buf[buf_wr++] = 'P';
 else

[307]

Chapter 7 Handling Interrupts in Device Drivers

[307]

 hello_keys_buf[buf_wr++] = 'R';

 if (buf_wr >= MAX_KEY_STATES)
 buf_wr = 0;

 /* Wake up the process */
 wake_up_interruptible(&priv->wq_data_available);

 return IRQ_HANDLED;
}

5. Create my_dev_read() kernel function that gets called whenever an user space read
operation occurs on the character device file. You will recover the private structure using
the container_of() macro. The wait_event_interruptible() function puts the user process to
sleep into the wait queue waiting for a specific event. In this function, you will set as a
parameter the condition to be evaluated before waking up the process. When the process is
woken up the 'P' or 'R' character (that was stored within the ISR) is sent to user space using
the copy_to_user() function.

static int my_dev_read(struct file *file, char __user *buff,
 size_t count, loff_t *off)
{
 int ret_val;
 char ch[2];
 struct key_priv *priv;

container_of(file->private_data,
 struct key_priv, int_miscdevice);

 /*
 * Sleep the process
 * The condition is checked each time the waitqueue is woken up
 */
 wait_event_interruptible(priv->wq_data_available, buf_wr != buf_rd);

 /* Send values to user application */
 ch[0] = hello_keys_buf[buf_rd];
 ch[1] = '\n';
 copy_to_user(buff, &ch, 2);

 buf_rd++;
 if(buf_rd >= MAX_KEY_STATES)
 buf_rd = 0;
 *off+=1;
 return 2;
}

Handling Interrupts in Device Drivers Chapter 7

[308]

6. Declare a list of devices supported by the driver.

static const struct of_device_id my_of_ids[] = {
 { .compatible = " arrow,intkeywait"},
 {},
};
MODULE_DEVICE_TABLE(of, my_of_ids);

7. Add a struct platform_driver structure that will be registered to the platform bus:

static struct platform_driver my_platform_driver = {
 .probe = my_probe,
 .remove = my_remove,
 .driver = {
 .name = "intkeywait",
 .of_match_table = my_of_ids,
 .owner = THIS_MODULE,
 }
};

8. Register your driver with the platform bus:

module_platform_driver(my_platform_driver);

9. Build the modified device tree, and load it to the target processor.

See in the next Listing 7-2 the "sleeping device" driver source code (int_imx_key_wait.c) for the
i.MX7D processor.

Note: The source code for the SAMA5D2 (int_sam_key_wait.c) and BCM2837 (int_rpi_key_wait.c)
drivers can be downloaded from the GitHub repository of this book.

Listing 7-2: int_imx_key_wait.c
#include <linux/module.h>
#include <linux/fs.h>
#include <linux/platform_device.h>
#include <linux/of_gpio.h>
#include <linux/of_irq.h>
#include <linux/uaccess.h>
#include <linux/interrupt.h>
#include <linux/miscdevice.h>
#include <linux/wait.h> /* include wait queue */

#define MAX_KEY_STATES 256

static char *HELLO_KEYS_NAME = "PB_USER";

[309]

Chapter 7 Handling Interrupts in Device Drivers

[309]

static char hello_keys_buf[MAX_KEY_STATES];
static int buf_rd, buf_wr;

struct key_priv {
 struct device *dev;
 struct gpio_desc *gpio;
 struct miscdevice int_miscdevice;
 wait_queue_head_t wq_data_available;
 int irq;
};

static irqreturn_t hello_keys_isr(int irq, void *data)
{
 int val;
 struct key_priv *priv = data;
 dev_info(priv->dev, "interrupt received. key: %s\n", HELLO_KEYS_NAME);

 val = gpiod_get_value(priv->gpio);
 dev_info(priv->dev, "Button state: 0x%08X\n", val);

 if (val == 1)
 hello_keys_buf[buf_wr++] = 'P';
 else
 hello_keys_buf[buf_wr++] = 'R';

 if (buf_wr >= MAX_KEY_STATES)
 buf_wr = 0;

 /* Wake up the process */
 wake_up_interruptible(&priv->wq_data_available);

 return IRQ_HANDLED;
}

static int my_dev_read(struct file *file, char __user *buff,
 size_t count, loff_t *off)
{
 int ret_val;
 char ch[2];
 struct key_priv *priv;

 priv = container_of(file->private_data,
 struct key_priv, int_miscdevice);

 dev_info(priv->dev, "mydev_read_file entered\n");

 /*
 * Sleep the process

Handling Interrupts in Device Drivers Chapter 7

[310]

 * The condition is checked each time the waitqueue is woken up
 */
 ret_val = wait_event_interruptible(priv->wq_data_available, buf_wr != buf_rd);
 if(ret_val)

return ret_val;

 /* Send values to user application */
 ch[0] = hello_keys_buf[buf_rd];
 ch[1] = '\n';
 if(copy_to_user(buff, &ch, 2)){
 return -EFAULT;
 }

 buf_rd++;
 if(buf_rd >= MAX_KEY_STATES)
 buf_rd = 0;
 *off+=1;
 return 2;
}

static const struct file_operations my_dev_fops = {
 .owner = THIS_MODULE,
 .read = my_dev_read,
};

static int __init my_probe(struct platform_device *pdev)
{
 int ret_val;
 struct key_priv *priv;
 struct device *dev = &pdev->dev;

 dev_info(dev, "my_probe() function is called.\n");

 /* Allocate new structure representing device */
 priv = devm_kzalloc(dev, sizeof(struct key_priv), GFP_KERNEL);
 priv->dev = dev;

 platform_set_drvdata(pdev, priv);

 /* Init the wait queue head */
 init_waitqueue_head(&priv->wq_data_available);

 /* Get virual int number from device tree using 2 methods */
 priv->gpio = devm_gpiod_get(dev, NULL, GPIOD_IN);
 if (IS_ERR(priv->gpio)) {
 dev_err(dev, "gpio get failed\n");
 return PTR_ERR(priv->gpio);
 }

[311]

Chapter 7 Handling Interrupts in Device Drivers

[311]

 priv->irq = gpiod_to_irq(priv->gpio);
 if (priv->irq < 0)
 return priv->irq;
 dev_info(dev, "The IRQ number is: %d\n", priv->irq);

 priv->irq = platform_get_irq(pdev, 0);
 if (priv->irq < 0){
 dev_err(dev, "irq is not available\n");
 return priv->irq;
 }
 dev_info(dev, "IRQ_using_platform_get_irq: %d\n", priv->irq);

 ret_val = devm_request_irq(dev, priv->irq, hello_keys_isr,
 IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING,
 HELLO_KEYS_NAME, priv);
 if (ret_val) {
 dev_err(dev, "Failed to request interrupt %d,

 error %d\n", priv->irq, ret_val);
 return ret_val;
 }

 priv->int_miscdevice.name = "mydev";
 priv->int_miscdevice.minor = MISC_DYNAMIC_MINOR;
 priv->int_miscdevice.fops = &my_dev_fops;

 ret_val = misc_register(&priv->int_miscdevice);
 if (ret_val != 0)
 {
 dev_err(dev, "could not register the misc device mydev\n");
 return ret_val;
 }

 dev_info(dev, "my_probe() function is exited.\n");

 return 0;
}

static int __exit my_remove(struct platform_device *pdev)
{
 struct key_priv *priv = platform_get_drvdata(pdev);
 dev_info(&pdev->dev, "my_remove() function is called.\n");
 misc_deregister(&priv->int_miscdevice);
 dev_info(&pdev->dev, "my_remove() function is exited.\n");
 return 0;

}

static const struct of_device_id my_of_ids[] = {

Handling Interrupts in Device Drivers Chapter 7

[312]

 { .compatible = "arrow,intkeywait"},
 {},
};
MODULE_DEVICE_TABLE(of, my_of_ids);

static struct platform_driver my_platform_driver = {
 .probe = my_probe,
 .remove = my_remove,
 .driver = {
 .name = "intkeywait",
 .of_match_table = my_of_ids,
 .owner = THIS_MODULE,
 }
};

module_platform_driver(my_platform_driver);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Alberto Liberal <aliberal@arroweurope.com>");
MODULE_DESCRIPTION("This is a platform driver that sends to user space \
 the number of times you press the switch using INTs");

int_imx_key_wait.ko Demonstration
root@imx7dsabresd:~# insmod int_imx_key_wait.ko /* load module */
root@imx7dsabresd:~# cat /proc/interrupts /* check the linux IRQ number (220) and
hwirq number (10) for the gpio-mxc controller */
root@imx7dsabresd:~# cat /dev/mydev > states /* sleep the process */

"Press and release the FUNC2 button several times"

root@imx7dsabresd:~# cat states /* check all the times you pressed and released the
button */
root@imx7dsabresd:~# rmmod int_imx_key_wait.ko /* remove module */

Kernel Threads
Kernel threads have emerged from the need to run kernel code in process context. Kernel threads
are the basis of the workqueue mechanism. Essentially, a kernel thread is a thread that only runs in
kernel mode and has no user address space or other user attributes.

To create a thread kernel, use kthread_create():

#include <linux/kthread.h>

structure task_struct *kthread_create(int (*threadfn)(void *data),
 void *data, const char namefmt[], ...);

[313]

Chapter 7 Handling Interrupts in Device Drivers

[313]

•	 threadfn is a function that will be run by the kernel thread.
•	 data is a parameter to be sent to the function.
•	 namefmt represents the kernel thread name, as it is displayed in ps/top ; can contain

sequences %d , %s etc., which will be replaced according to the standard printf syntax.

For example, the following call will create a kernel thread with the name mykthread0:

kthread_create(f, NULL, "%skthread%d", "my", 0);

To start the kernel thread, call wake_up_process():

#include <linux/sched.h>

int wake_up_process(struct task_struct *p);

Alternatively, you can use kthread_run() to create and run a kernel thread:

struct task_struct * kthread_run(int (*threadfn)(void *data)
 void *data, const char namefmt[], ...);

To stop a thread use kthread_stop() function. This function works by sending a signal to the thread.
As a result, the thread function will not be interrupted in the middle of some important task. But,
if the thread function never returns and does not check for signals, it will never actually stop.

LAB 7.3: "keyled class" Module
In the last driver of this chapter, you will work with many of the concepts learned during the
previous chapters as well as in the current chapter to develop the driver. You will create a
new class called Keyled. Several led devices will be created under the the Keyled class, and also
several sysfs entries will be created under each led device. You will control each led device
by writing from user space to the sysfs entries under each led device registered to the Keyled
class. In this driver, you will not initialize a struct cdev structure for each device (adding as an
argument a file_operations structure), and then add it to kernel space, so you will not see led
devices under /dev that can be controlled using system calls; the led devices will be controlled
writing to the sysfs entries under /sys/class/Keyled/<led_device>/ directory.

The blinking value period of each led device will be incremented or decremented via interrupts
using two buttons. A kernel thread will manage the led blinking, toggling the output value of the
GPIO connected to the led using the msleep() function.

Handling Interrupts in Device Drivers Chapter 7

[314]

LAB 7.3 Hardware Description for the i.MX7D Processor
You will use three pins of the i.MX7D to control each LED. These pins must be multiplexed as GPIOs in
the DT. Go to the pag.20 of the MCIMX7D-SABRE schematic to see the MikroBUS connector. You will
use the MOSI pin to control the green LED, the SCK pin to control the blue LED and the MKBUS_PWM
pin to control the red LED.

To obtain the LEDs, you will use the Color click™ accessory board with mikroBUS™ form factor. See
the Color click™ accessory board board at https://www.mikroe.com/color-click. You can download the
schematic from that link or from the GitHub repository of this book.

Connect the MCIMX7D-SABRE mikroBUS™ PWM pin to the Color click™ RD pin, MOSI pin to GR,
and SCK to BL. Supply VCC = +5V from MCIMX7D-SABRE board to the Color click™ accessory board
and connect GND between both boards.

Open the MCIMX7D-SABRE board schematic and find the buttons USR_BT0 and USR_BT1 in pag.21.
These buttons will be used to generate the interrupts.

LAB 7.3 Hardware Description for the SAMA5D2 Processor
You will use three pins of the SAMA5D2 to control each LED. These pins must be multiplexed as
GPIOs in the DT.

The SAMA5D2B-XULT board integrates an RGB LED. Go to the pag.11 of the SAMA5D2B-XULT
schematic to see the RGB LED:

Open the SAMA5D2B-XULT board schematic and find the button BP1 in pag.11. This button will be
used to generate one of the interrupts. The second interrupt will be generated using the button of the
MikroElektronika Button R click board. See the board at https://www.mikroe.com/button-r-click. You
can download the schematic from that link or from the GitHub repository of this book. Connect the
PB25 pad of the SAMA5D2 processor that is available to the pin 30 of the J17 connector (pag. 15 of the
SAMA5D2B-XULT board schematic) to the INT pin of the Button R click board.

[315]

Chapter 7 Handling Interrupts in Device Drivers

[315]

LAB 7.3 Hardware Description for the BCM2837 Processor
You will use three pins of the BCM2837 to control each LED. These pins must be multiplexed as
GPIOs in the DT.

To obtain the GPIOs, you will use the GPIO expansion connector. Go to the Raspberry-Pi-3B-V1.2-
Schematics to see the connector:

To obtain the LEDs, you will use the Color click™ accessory board with mikroBUS™ form
factor. See the Color click™ accessory board board at https://www.mikroe.com/color-click. You can
download the schematic from the link above or from the GitHub repository of this book.

Connect the GPIO EXPANSION GPIO27 pin to the Color click™ RD pin, GPIO22 pin to GR, and
GPIO26 to BL.

Handling Interrupts in Device Drivers Chapter 7

[316]

To generate both interrupts, you will use the buttons of two MikroElektronika Button R click
boards. See the board at https://www.mikroe.com/button-r-click. You can download the schematic
from that link or from the GitHub repository of this book. Connect the GPIO23 pin and the
GPIO24 pin of the GPIO expansion connector to the INT pin of each Button R click board.

LAB 7.3 Device Tree for the i.MX7D Processor
From the MCIMX7D-SABRE mikroBUS™ socket, you can see that MOSI pin connects to the
SAI2_TXC pad of the i.MX7D processor, the SCK pin to the SAI2_RXD pad and the PWM pin to
the GPIO1_IO02 pad. You have to configure the SAI2_TXC, SAI2_RXD and GPIO1_IO02 pads as
GPIO signals. To look for the macros that assign the required GPIO functionality go to the
imx7d-pinfunc.h file under arch/arm/boot/dts/ and find the next macros:

#define MX7D_PAD_SAI2_TX_BCLK__GPIO6_IO20 0x0220 0x0490 0x0000 0x5 0x0
#define MX7D_PAD_SAI2_RX_DATA__GPIO6_IO21 0x0224 0x0494 0x0000 0x5 0x0

Go now to the imx7d-pinfunc-lpsr.h file under arch/arm/boot/dts/ and find the next macro:

#define MX7D_PAD_GPIO1_IO02__GPIO1_IO2 0x0008 0x0038 0x0000 0x0 0x0

The USR_BT1 button is connected to the SD2_WP pad of the i.MX7D processor and the USR_BT0 is
connected to the SD2_RESET pad of the i.MX7D processor. To look for the macros that assign the
required GPIO functionality go to the imx7d-pinfunc.h file under arch/arm/boot/dts/ directory and
find the next macros:

#define MX7D_PAD_SD2_WP__GPIO5_IO10 0x01B0 0x0420 0x0000 0x5 0x0
#define MX7D_PAD_SD2_RESET_B__GPIO5_IO11 0x01B4 0x0424 0x0000 0x5 0x0

Now, you can modify the device tree file imx7d-sdb.dts adding the next code in bold:

/ {
 model = "Freescale i.MX7 SabreSD Board";
 compatible = "fsl,imx7d-sdb", "fsl,imx7d";

 memory {
 reg = <0x80000000 0x80000000>;
 };

 [...]

ledpwm {
 compatible = "arrow,ledpwm";

 pinctrl-names = "default";
 pinctrl-0 = <&pinctrl_keys_gpio &pinctrl_gpio_leds &pinctrl_gpio_led>;

 bp1 {

[317]

Chapter 7 Handling Interrupts in Device Drivers

[317]

 label = "KEY_1";
 gpios = <&gpio5 10 GPIO_ACTIVE_LOW>;
 trigger = "falling";
 };

 bp2 {
 label = "KEY_2";
 gpios = <&gpio5 11 GPIO_ACTIVE_LOW>;
 trigger = "falling";
 };

 ledred {
 label = "led";
 colour = "red";
 gpios = <&gpio1 2 GPIO_ACTIVE_LOW>;
 };

 ledgreen {
 label = "led";
 colour = "green";
 gpios = <&gpio6 20 GPIO_ACTIVE_LOW>;
 };

 ledblue {
 label = "led";
 colour = "blue";
 gpios = <&gpio6 21 GPIO_ACTIVE_LOW>;
 };

}

[...]

&iomuxc {
pinctrl-names = "default";

 pinctrl-0 = <&pinctrl_hog_1>;

 imx7d-sdb {

 pinctrl_hog_1: hoggrp-1 {
 fsl,pins = <

 MX7D_PAD_EPDC_BDR0__GPIO2_IO28 0x59
>;

 };

 [...]

 pinctrl_keys_gpio: keys_gpiogrp {
 fsl,pins = <

Handling Interrupts in Device Drivers Chapter 7

[318]

 MX7D_PAD_SD2_WP__GPIO5_IO10 0x32
 MX7D_PAD_SD2_RESET_B__GPIO5_IO11 0x32
 >;
 };

 pinctrl_gpio_leds: pinctrl_gpio_leds_grp {

 fsl,pins = <
 MX7D_PAD_SAI2_TX_BCLK__GPIO6_IO20 0x11
 MX7D_PAD_SAI2_RX_DATA__GPIO6_IO21 0x11
 >;
 };

 [...]

 };
};

[...]

&iomuxc_lpsr {
 pinctrl-names = "default";
 pinctrl-0 = <&pinctrl_hog_2 &pinctrl_usbotg2_pwr_2>;

 imx7d-sdb {
 pinctrl_hog_2: hoggrp-2 {
 fsl,pins = <
 MX7D_PAD_GPIO1_IO05__GPIO1_IO5 0x14
 >;
 };

 [...]

pinctrl_gpio_led: pinctrl_gpio_led_grp {
fsl,pins = <

 MX7D_PAD_GPIO1_IO02__GPIO1_IO2 0x11
 >;
 };

 [...]

 };
};

You need to be careful not to configure the same pad twice in the device tree. IOMUX
configurations are set by the drivers in the order the kernel probes the configured device. If the
same pad is configured differently by two drivers, the settings associated with the last-probed

[319]

Chapter 7 Handling Interrupts in Device Drivers

[319]

driver will apply. If you check the ecspi3 node in the device tree file imx7d-sdb.dts you can see that
the pin configuration defined on the pinctrl-0 property assigns the "default" name and points to the
pinctrl_ecspi3 and pinctrl_ecspi3_cs pin function nodes:

pinctrl_ecspi3_cs: ecspi3_cs_grp {
 fsl,pins = <
 MX7D_PAD_SD2_CD_B__GPIO5_IO9 0x80000000
 MX7D_PAD_SAI2_TX_DATA__GPIO6_IO22 0x2
 >;
};

pinctrl_ecspi3: ecspi3grp {
 fsl,pins = <
 MX7D_PAD_SAI2_TX_SYNC__ECSPI3_MISO 0x2
 MX7D_PAD_SAI2_TX_BCLK__ECSPI3_MOSI 0x2
 MX7D_PAD_SAI2_RX_DATA__ECSPI3_SCLK 0x2
 >;
};

You can see that the SAI2_TX_BCLK and SAI2_RX_DATA pads are configured twice by two
different drivers. You can comment out the entire definition for ecspi3 or disable it by changing
status to "disabled". See the code below if you choose the second option:

&ecspi3 {
 fsl,spi-num-chipselects = <1>;
 pinctrl-names = "default";
 pinctrl-0 = <&pinctrl_ecspi3 &pinctrl_ecspi3_cs>;
 cs-gpios = <&gpio5 9 GPIO_ACTIVE_HIGH>, <&gpio6 22 0>;
 status = "disabled";

 [...]
}

LAB 7.3 Device Tree for the SAMA5D2 Processor
From the SAMA5D2B-XULT board, you can see that LED_RED_PB6 pin connects to the PB6 pad
of the SAMA5D2 processor, the LED_GREEN_PB5 pin to the PB5 pad and the LED_BLUE_PB0 pin
to the PB0 pad. You have to configure the PB6, PB5 and PB0 pads as GPIO signals. To look for the
macro that assigns the required functionality (GPIO) go to the sama5d2-pinfunc.h file under arch/
arm/boot/dts/ and find the next macros:

#define PIN_PB6__GPIO PINMUX_PIN(PIN_PB6, 0, 0)
#define PIN_PB5__GPIO PINMUX_PIN(PIN_PB5, 0, 0)
#define PIN_PB0__GPIO PINMUX_PIN(PIN_PB0, 0, 0)

Handling Interrupts in Device Drivers Chapter 7

[320]

For the buttons, you have to configure the PB9 and PB25 pads of the SAMA5D2 processor as
GPIO signals. To look for the macros that assign the required functionality (GPIO) go to the
sama5d2-pinfunc.h file under linux/arch/arm/boot/dts/ directory and find the next macros:

#define PIN_PB9__GPIO PINMUX_PIN(PIN_PB9, 0, 0)
#define PIN_PB25__GPIO PINMUX_PIN(PIN_PB25, 0, 0)

The PB25 pad is also being multiplexed as a GPIO by the isc node. This node is included in the
at91-sama5d2_xplained_ov7670.dtsi file under the arch/arm/boot/dts/ folder. Comment out the
following line inside the at91-sama5d2_xplained_common.dtsi file to avoid this "mux" conflict:

//#include "at91-sama5d2_xplained_ov7670.dtsi"

Now, you can modify the device tree file at91-sama5d2_xplained_common.dtsi adding the next code
in bold. Disable the gpio_keys node to avoid "mux" conflict with the PB9 pad:

pinctrl@fc038000 {

 pinctrl_adc_default: adc_default {
 pinmux = <PIN_PD23__GPIO>;
 bias-disable;
 };

 [...]

 pinctrl_ledkey_gpio_default: ledkey_gpio_default {
 key {
 pinmux = <PIN_PB25__GPIO>,
 <PIN_PB9__GPIO>;
 bias-pull-up;
 };

 led {
 pinmux = <PIN_PB0__GPIO>,
 <PIN_PB5__GPIO>,
 <PIN_PB6__GPIO>;
 bias-pull-up;
 };
 };

 [...]
}

/ {
 model = "Atmel SAMA5D2 Xplained";
 compatible = "atmel,sama5d2-xplained", "atmel,sama5d2", "atmel,sama5";

 chosen {

[321]

Chapter 7 Handling Interrupts in Device Drivers

[321]

 stdout-path = "serial0:115200n8";
 };

 [...]

 ledpwm {
 compatible = "arrow,ledpwm";

 pinctrl-names = "default";
 pinctrl-0 = <&pinctrl_ledkey_gpio_default>;

 bp1 {
 label = "PB_KEY";
 gpios = <&pioA 41 GPIO_ACTIVE_LOW>;
 trigger = "falling";
 };

 bp2 {
 label = "MIKROBUS_KEY";
 gpios = <&pioA 57 GPIO_ACTIVE_LOW>;
 trigger = "falling";
 };

 ledred {
 label = "led";
 colour = "red";
 gpios = <&pioA 38 GPIO_ACTIVE_LOW>;
 };

 ledgreen {
 label = "led";
 colour = "green";
 gpios = <&pioA 37 GPIO_ACTIVE_LOW>;
 };

 ledblue {
 label = "led";
 colour = "blue";
 gpios = <&pioA 32 GPIO_ACTIVE_LOW>;
 };

};

 [...]
};

You can see that the "gpio-leds" driver is configuring the same LEDs. Disable it by changing status
to "disabled".

Handling Interrupts in Device Drivers Chapter 7

[322]

leds {
 compatible = "gpio-leds";
 pinctrl-names = "default";
 pinctrl-0 = <&pinctrl_led_gpio_default>;
 status = "disabled";

 red {
 label = "red";
 gpios = <&pioA 38 GPIO_ACTIVE_LOW>;
 };

 green {
 label = "green";
 gpios = <&pioA 37 GPIO_ACTIVE_LOW>;
 };

 blue {
 label = "blue";
 gpios = <&pioA 32 GPIO_ACTIVE_LOW>;
 linux,default-trigger = "heartbeat";
 };
 };

LAB 7.3 Device Tree for the BCM2837 Processor
From the Raspberry Pi 3 Model B board, you have to configure the pads GPIO27, GPIO22, GPIO26,
GPIO23 and GPIO24 as GPIO signals.

Modify the device tree file bcm2710-rpi-3-b.dts adding the next code in bold:

/ {
 model = "Raspberry Pi 3 Model B";
};

&gpio {
 sdhost_pins: sdhost_pins {
 brcm,pins = <48 49 50 51 52 53>;
 brcm,function = <4>; /* alt0 */
 };

 [...]

key_pins: key_pins {
 brcm,pins = <23 24>;
 brcm,function = <0>; /* Input */
 brcm,pull = <1 1>; /* Pull down */
 };

[323]

Chapter 7 Handling Interrupts in Device Drivers

[323]

 led_pins: led_pins {
 brcm,pins = <27 22 26>;
 brcm,function = <1>; /* Output */
 brcm,pull = <1 1 1>; /* Pull down */
 };

};

&soc {
 virtgpio: virtgpio {
 compatible = "brcm,bcm2835-virtgpio";
 gpio-controller;
 #gpio-cells = <2>;
 firmware = <&firmware>;
 status = "okay";
 };

 expgpio: expgpio {
 compatible = "brcm,bcm2835-expgpio";
 gpio-controller;
 #gpio-cells = <2>;
 firmware = <&firmware>;
 status = "okay";
 };

 [...]

 ledpwm {
 compatible = "arrow,ledpwm";

 pinctrl-names = "default";
 pinctrl-0 = <&key_pins &led_pins>;

 bp1 {
 label = "MIKROBUS_KEY_1";
 gpios = <&gpio 23 GPIO_ACTIVE_LOW>;
 trigger = "falling";
 };

 bp2 {
 label = "MIKROBUS_KEY_2";
 gpios = <&gpio 24 GPIO_ACTIVE_LOW>;
 trigger = "falling";
 };
 ledred {
 label = "led";
 colour = "red";

Handling Interrupts in Device Drivers Chapter 7

[324]

 gpios = <&gpio 27 GPIO_ACTIVE_LOW>;
 };

 ledgreen {
 label = "led";
 colour = "green";
 gpios = <&gpio 22 GPIO_ACTIVE_LOW>;
 };

 ledblue {
 label = "led";
 colour = "blue";
 gpios = <&gpio 26 GPIO_ACTIVE_LOW>;
 };

 };

 [...]

};

LAB 7.3 Code Description of the "keyled class" Module
The main code sections of the driver will now be described:

1. Include the function headers:

#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/interrupt.h>
#include <linux/property.h>
#include <linux/kthread.h>
#include <linux/gpio/consumer.h>
#include <linux/delay.h>
#include <linux/spinlock.h>

2. Create a private structure that will store the specific info for each of the three led
devices. The first field holds the name of each device. The second field ledd holds the
gpio descriptor of each specific pin connected to one of the three LEDs. The last field is a
pointer to a private struct keyled_priv structure that will hold the global data used for all the
led devices. This struct keyled_priv field will be analyzed in the next point.

struct led_device {
 char name[LED_NAME_LEN];
 struct gpio_desc *ledd;
 struct device *dev;
 struct keyled_priv *private;
};

[325]

Chapter 7 Handling Interrupts in Device Drivers

[325]

3. Create a private struct keyled_priv that will store global info accessible to all the led
devices. The first field of the private structure is the num_leds variable, that will hold the
number of led devices declared in the DT. The led_flag field will tell you if there is any
LED ON to switch first all the LEDs OFF before switching a new LED ON. The task_flag
field will inform you if there is a kthread running. The period field holds the blinking
period. The period_lock is a spinlock that will protect the access to the shared period
variable between user and interrupt context tasks. The task pointer variable will point
to the struct task_struct returned by the kthread_run() function. The led_class field
will point to the struct class returned by the class_create() function; the struct class
structure is used in calls to device_create(). The dev field holds your platform device.
The led_devt field holds the first device identifier returned by the alloc_chrdev_region()
function. The last field is an array of pointers pointing to each of the private
struct led_device structures.

struct keyled_priv {
 u32 num_leds;
 u8 led_flag;
 u8 task_flag;
 u32 period;
 spinlock_t period_lock;
 struct task_struct *task;
 struct class *led_class;
 struct device *dev;
 dev_t led_devt;
 struct led_device *leds[];
};

4. See below an extract of the probe() routine with the main lines of code marked in bold.
These are the main points to set up the driver within the probe() function:

•	 Declare a pointer to a struct fwnode_handle (struct fwnode_handle *child) and a pointer to
the global private structure (struct keyled_priv *priv).

•	 Get the number of LEDs and interrupt devices using the device_get_child_node_count()
function. You should get five devices returned.

•	 Allocate the private structures with devm_kzalloc(). You will allocate space for the
global structure and three pointers (you have to set the number of pointers to do
the allocation of an array of pointers declared inside a structure) to struct led_device
structures (see the sizeof_keyled_priv() function).

•	 Allocate three device numbers with alloc_chrdev_region() and create the Keyled class
with class_create().

•	 Initialize a spinlock with spin_lock_init(); the spinlock will be used to protect access
to the shared period variable between interrupt and user contexts tasks. You will

Handling Interrupts in Device Drivers Chapter 7

[326]

use spin_lock_irqsave() in user context and spin_lock() inside the ISR when using SMP
architectures (i.MX7D and BCM2837). For uniprocessor architectures (SAMA5D2) is
not needed to call spin_lock() inside the ISR, as the ISR cannot be executed in a different
core to the one that has adquired the spinlock in user context.

•	 The device_for_each_child_of_node() function walks for each child node creating a sysfs
device entry (under /sys/class/keyled/) for each found LED device (see the led_device_
register() function, which performs this task). You will get the GPIO descriptor of each
LED pin declared inside each DT led node using the devm_get_gpiod_from_child()
function, then you will set the direction to output with gpiod_direction_output(). The
GPIO descriptor of each INT pin declared inside each DT key node is obtained using
the devm_get_gpiod_from_child() function, then the direction of the pin is set to input
with gpiod_direction_input(). The Linux IRQ numbers are obtained using gpiod_to_irq()
and both interrupts are allocated using devm_request_irq().

static int __init my_probe(struct platform_device *pdev)
{
 int count, ret, i;
 unsigned int major;
 struct fwnode_handle *child;
 struct device *dev = &pdev->dev;
 struct keyled_priv *priv;

 count = device_get_child_node_count(dev);

priv = devm_kzalloc(dev, sizeof_keyled_priv(count-INT_NUMBER),
 GFP_KERNEL);

 /* Allocate 3 device numbers */
 alloc_chrdev_region(&priv->led_devt, 0, count-INT_NUMBER,

 "Keyled_class");
 major = MAJOR(priv->led_devt);
 dev_info(dev, "the major number is %d\n", major);

 priv->led_class = class_create(THIS_MODULE, "keyled");

 /* Create sysfs group */
 priv->led_class->dev_groups = led_groups;
 priv->dev = dev;

 device_for_each_child_node(dev, child){
 int irq, flags;
 struct gpio_desc *keyd;
 const char *label_name, *colour_name, *trigger;
 struct led_device *new_led;

[327]

Chapter 7 Handling Interrupts in Device Drivers

[327]

 fwnode_property_read_string(child, "label", &label_name);

 if (strcmp(label_name,"led") == 0) {

 fwnode_property_read_string(child, "colour",
 &colour_name);

 /*
 * Create led devices under keyled class

 * priv->num_leds is 0 for the first iteration
 * used to set the minor number of each device
 * increased to the end of the iteration
 */

 new_led = led_device_register(colour_name,
priv->num_leds,
dev,

 priv->led_devt,
priv->led_class);

 new_led->ledd = devm_get_gpiod_from_child(dev, NULL,
 child);

 /* Associate each led struct with the global one */
 new_led->private = priv;

 /*
 * Point to each led struct
 * inside the global struct array of pointers

 */
priv->leds[priv->num_leds] = new_led;

 priv->num_leds++;

 /* set direction to output */
 gpiod_direction_output(new_led->ledd, 1);
 gpiod_set_value(new_led->ledd, 1);
 }

 else if (strcmp(label_name,"KEY_1") == 0) {
 keyd = devm_get_gpiod_from_child(dev, NULL, child);
 gpiod_direction_input(keyd);
 fwnode_property_read_string(child, "trigger", &trigger);
 if (strcmp(trigger, "falling") == 0)
 flags = IRQF_TRIGGER_FALLING;
 else if (strcmp(trigger, "rising") == 0)
 flags = IRQF_TRIGGER_RISING;
 else if (strcmp(trigger, "both") == 0)
 flags = IRQF_TRIGGER_RISING |

 IRQF_TRIGGER_FALLING;
 else

Handling Interrupts in Device Drivers Chapter 7

[328]

 return -EINVAL;
 irq = gpiod_to_irq(keyd);

 ret = devm_request_irq(dev, irq, KEY_ISR1,
 flags, "ISR1", priv);
 }

 else if (strcmp(label_name,"KEY_2") == 0) {

 keyd = devm_get_gpiod_from_child(dev, NULL, child);
 gpiod_direction_input(keyd);
 fwnode_property_read_string(child, "trigger", &trigger);
 if (strcmp(trigger, "falling") == 0)
 flags = IRQF_TRIGGER_FALLING;
 else if (strcmp(trigger, "rising") == 0)
 flags = IRQF_TRIGGER_RISING;
 else if (strcmp(trigger, "both") == 0)
 flags = IRQF_TRIGGER_RISING |

 IRQF_TRIGGER_FALLING;
 else
 return -EINVAL;

 irq = gpiod_to_irq(keyd);

 ret = devm_request_irq(dev, irq, KEY_ISR2,
 flags, "ISR2", priv);

 }

 else {
 dev_info(dev, "Bad device tree value\n");
 ret = -EINVAL;
 goto error;
 }
 }

 dev_info(dev, "i am out of the device tree\n");

 /* reset period to 10 */
 priv->period = 10;

 platform_set_drvdata(pdev, priv);

 return 0;

}

[329]

Chapter 7 Handling Interrupts in Device Drivers

[329]

5. In the probe() function, you will set a group of "sysfs attribute files" (to control each LED)
with the line of code priv->led_class->dev_groups = led_groups. You have to declare outside of
the probe() function the next structures:

static struct attribute *led_attrs[] = {
 &dev_attr_set_led.attr,
 &dev_attr_blink_on_led.attr,
 &dev_attr_blink_off_led.attr,
 &dev_attr_set_period.attr,
 NULL,
};

static const struct attribute_group led_group = {
 .attrs = led_attrs,
};

static const struct attribute_group *led_groups[] = {
 &led_group,
 NULL,
};

6. Write the sysfs functions, that are called every time you write from user space (/sys/class/
Keyled/<led_device>/<attribute>) to one of the next attributes (set_led, blink_on, blink_off and
set_period). See below a brief description of what each function does:

•	 The set_led_store() function will receive two parameters ("on" and "off") from user space.
Each specific struct led_device structure is recovered using the dev_get_drvdata() function.
In the led_device_register() function called within probe() was previously done the setting
between each led device and its led_device structure using the dev_set_drvdata() function.
If there is a kthread running then it is stopped. If the parameter received is "on" you will
switch ON the specific LED by previously switching OFF all the LEDs. You will use
gpiod_set_value() to perform this task. If the parameter received is "off" you will switch
OFF the specific LED. The led_flag variable will be always set since the moment you switch
ON the first LED, although all the LEDs are OFF later (I leave you as a task to modify
the operation of this variable so that it is only set when any of the LEDs is ON during the
driver execution).

•	 The blink_on_led_store() function will receive only an "on" parameter from user space. First
of all, all the LEDs will be switched OFF, then if there is no any kthread running, it will be
started a new one performing the LED blinking with a specific period. If there is already a
kthread running the function will be exited.

•	 The blink_off_led_store() function will receive only an "off" parameter from user space. If there
is a kthread running (blinking any of the LEDs) it will be stopped.

Handling Interrupts in Device Drivers Chapter 7

[330]

•	 The set_period_store() function will set a new blinking period.

7. Write the two interrupt handlers. In this driver, an interrupt will be generated and
handled each time you press one of the two buttons. In the handler, you will recover the
global private structure from the ISR data argument. In one of the ISRs, the period variable
will be increased by ten and in the other ISR decreased by the same value. The new value
will be stored in the period variable inside the global private structure. See below the ISR
that increases the period:

static irqreturn_t KEY_ISR1(int irq, void *data)
{
 struct keyled_priv *priv = data;
 priv->period = priv->period + 10;
 if ((priv->period < 10) || (priv->period > 10000))
 priv->period = 10;
 return IRQ_HANDLED;
}

8. Write the function thread. Inside the function, you will recover the struct led_device
structure that was set as a parameter in the kthread_run() function. The function
kthread_should_stop() returns non-zero value if there is a stop request submitted by the
kthread_stop() function. Until the call is exited it will be invoked periodically blinking ON
and OFF the specific LED using gpiod_set_value() and the msleep() delay function:

static int led_flash(void *data){

 u32 value = 0;
 struct led_device *led_dev = data;
 while(!kthread_should_stop()) {
 u32 period = led_dev->private->period;
 value = !value;
 gpiod_set_value(led_dev->ledd, value);
 msleep(period/2);
 }
 gpiod_set_value(led_dev->ledd, 1); /* switch off the led */
 dev_info(led_dev->dev, "Task completed\n");
 return 0;
};

[331]

Chapter 7 Handling Interrupts in Device Drivers

[331]

9. Declare a list of devices supported by the driver.

static const struct of_device_id my_of_ids[] = {
 { .compatible = " arrow,ledpwm"},
 {},
};
MODULE_DEVICE_TABLE(of, my_of_ids);

10. Add a struct platform_driver structure that will be registered to the platform bus:

static struct platform_driver my_platform_driver = {
 .probe = my_probe,
 .remove = my_remove,
 .driver = {
 .name = "ledpwm",
 .of_match_table = my_of_ids,
 .owner = THIS_MODULE,
 }
};

11. Register your driver with the platform bus:

module_platform_driver(my_platform_driver);

12. Build the modified device tree, and load it to the target processor.

See in the next Listing 7-3 the "keyled class" driver source code (keyled_imx_class.c) for the i.MX7D
processor.

Note: The source code for the SAMA5D2 (keyled_sam_class.c) and BCM2837 (keyled_rpi_class.c)
drivers can be downloaded from the GitHub repository of this book.

Listing 7-3: keyled_imx_class.c
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/interrupt.h>
#include <linux/property.h>
#include <linux/kthread.h>
#include <linux/gpio/consumer.h>
#include <linux/delay.h>
#include <linux/spinlock.h>

#define LED_NAME_LEN 32
#define INT_NUMBER 2
static const char *HELLO_KEYS_NAME1 = "KEY1";
static const char *HELLO_KEYS_NAME2 = "KEY2";

Handling Interrupts in Device Drivers Chapter 7

[332]

/* Specific LED private structure */
struct led_device {
 char name[LED_NAME_LEN];
 struct gpio_desc *ledd; /* each LED gpio_desc */
 struct device *dev;
 struct keyled_priv *private; /* pointer to the global private struct */
};

/* Global private structure */
struct keyled_priv {
 u32 num_leds;
 u8 led_flag;
 u8 task_flag;
 u32 period;
 spinlock_t period_lock;
 struct task_struct *task; /* kthread task_struct */
 struct class *led_class; /* the keyled class */
 struct device *dev;
 dev_t led_devt; /* first device identifier */
 struct led_device *leds[]; /* pointers to each led private struct */
};

/* kthread function */
static int led_flash(void *data){
 unsigned long flags;
 u32 value = 0;
 struct led_device *led_dev = data;
 dev_info(led_dev->dev, "Task started\n");
 dev_info(led_dev->dev, "I am inside the kthread\n");
 while(!kthread_should_stop()) {
 spin_lock_irqsave(&led_dev->private->period_lock, flags);
 u32 period = led_dev->private->period;
 spin_unlock_irqrestore(&led_dev->private->period_lock, flags);
 value = !value;
 gpiod_set_value(led_dev->ledd, value);
 msleep(period/2);
 }
 gpiod_set_value(led_dev->ledd, 1); /* switch off the led */
 dev_info(led_dev->dev, "Task completed\n");
 return 0;
};

/*
 * sysfs methods
 */

/* switch on/of each led */
static ssize_t set_led_store(struct device *dev,

[333]

Chapter 7 Handling Interrupts in Device Drivers

[333]

 struct device_attribute *attr,
 const char *buf, size_t count)
{
 int i;
 char *buffer = buf;
 struct led_device *led_count;
 struct led_device *led = dev_get_drvdata(dev);

 /* replace \n added from terminal with \0 */
 *(buffer+(count-1)) = '\0';

 if (led->private->task_flag == 1) {
 kthread_stop(led->private->task);
 led->private->task_flag = 0;
 }

 if(!strcmp(buffer, "on")) {
 if (led->private->led_flag == 1) {
 for (i = 0; i < led->private->num_leds; i++) {
 led_count = led->private->leds[i];
 gpiod_set_value(led_count->ledd, 1);
 }
 gpiod_set_value(led->ledd, 0);
 }
 else {
 gpiod_set_value(led->ledd, 0);
 led->private->led_flag = 1;
 }
 }
 else if (!strcmp(buffer, "off")) {
 gpiod_set_value(led->ledd, 1);
 }
 else {
 dev_info(led->dev, "Bad led value.\n");
 return -EINVAL;
 }

 return count;
}
static DEVICE_ATTR_WO(set_led);

/* blinking ON the specific LED running a kthread */
static ssize_t blink_on_led_store(struct device *dev,
 struct device_attribute *attr,
 const char *buf, size_t count)
{
 int i;
 char *buffer = buf;

Handling Interrupts in Device Drivers Chapter 7

[334]

 struct led_device *led_count;
 struct led_device *led = dev_get_drvdata(dev);

 /* replace \n added from terminal with \0 */
 *(buffer+(count-1)) = '\0';

 if (led->private->led_flag == 1) {
 for (i = 0; i < led->private->num_leds; i++) {
 led_count = led->private->leds[i];
 gpiod_set_value(led_count->ledd, 1);
 }
 }

 if(!strcmp(buffer, "on")) {
 if (led->private->task_flag == 0)
 {
 led->private->task = kthread_run(led_flash, led,

 "Led_flash_tread");
 if(IS_ERR(led->private->task)) {
 dev_info(led->dev, "Failed to create the task\n");
 return PTR_ERR(led->private->task);
 }
 }
 else
 return -EBUSY;
 }
 else {
 dev_info(led->dev, "Bad led value.\n");
 return -EINVAL;
 }

 led->private->task_flag = 1;

 dev_info(led->dev, "Blink_on_led exited\n");
 return count;
}
static DEVICE_ATTR_WO(blink_on_led);

/* switch off the blinking of any led */
static ssize_t blink_off_led_store(struct device *dev,
 struct device_attribute *attr,
 const char *buf, size_t count)
{
 int i;
 char *buffer = buf;
 struct led_device *led = dev_get_drvdata(dev);
 struct led_device *led_count;

[335]

Chapter 7 Handling Interrupts in Device Drivers

[335]

 /* replace \n added from terminal with \0 */
 *(buffer+(count-1)) = '\0';

 if(!strcmp(buffer, "off")) {
 if (led->private->task_flag == 1) {
 kthread_stop(led->private->task);
 for (i = 0; i < led->private->num_leds; i++) {
 led_count = led->private->leds[i];
 gpiod_set_value(led_count->ledd, 1);
 }
 }
 else
 return 0;
 }
 else {
 dev_info(led->dev, "Bad led value.\n");
 return -EINVAL;
 }

 led->private->task_flag = 0;
 return count;
}
static DEVICE_ATTR_WO(blink_off_led);

/* Set the blinking period */
static ssize_t set_period_store(struct device *dev,
 struct device_attribute *attr,
 const char *buf, size_t count)
{
 unsigned long flags;
 int ret, period;
 struct led_device *led = dev_get_drvdata(dev);
 dev_info(led->dev, "Enter set_period\n");

 ret = sscanf(buf, "%u", &period);
 if (ret < 1 || period < 10 || period > 10000) {
 dev_err(dev, "invalid value\n");
 return -EINVAL;
 }

 spin_lock_irqsave(&led->private->period_lock, flags);
 led->private->period = period;
 spin_unlock_irqrestore(&led->private->period_lock, flags);

 dev_info(led->dev, "period is set\n");
 return count;
}
static DEVICE_ATTR_WO(set_period);

Handling Interrupts in Device Drivers Chapter 7

[336]

/* Declare the sysfs structures */
static struct attribute *led_attrs[] = {
 &dev_attr_set_led.attr,
 &dev_attr_blink_on_led.attr,
 &dev_attr_blink_off_led.attr,
 &dev_attr_set_period.attr,
 NULL,
};

static const struct attribute_group led_group = {
 .attrs = led_attrs,
};

static const struct attribute_group *led_groups[] = {
 &led_group,
 NULL,
};

/*
 * Allocate space for the global private struct
 * and the three local LED private structs
 */
static inline int sizeof_keyled_priv(int num_leds)
{
 return sizeof(struct keyled_priv) +
 (sizeof(struct led_device*) * num_leds);
}

/* First interrupt handler */
static irqreturn_t KEY_ISR1(int irq, void *data)
{
 struct keyled_priv *priv = data;
 dev_info(priv->dev, "interrupt KEY1 received. key: %s\n",
 HELLO_KEYS_NAME1);

 spin_lock(&priv->period_lock);
 priv->period = priv->period + 10;
 if ((priv->period < 10) || (priv->period > 10000))
 priv->period = 10;
 spin_unlock(&priv->period_lock);

 dev_info(priv->dev, "the led period is %d\n", priv->period);
 return IRQ_HANDLED;
}

/* Second interrupt handler */
static irqreturn_t KEY_ISR2(int irq, void *data)
{

[337]

Chapter 7 Handling Interrupts in Device Drivers

[337]

 struct keyled_priv *priv = data;
 dev_info(priv->dev, "interrupt KEY2 received. key: %s\n",
 HELLO_KEYS_NAME2);

 spin_lock(&priv->period_lock);
 priv->period = priv->period - 10;
 if ((priv->period < 10) || (priv->period > 10000))
 priv->period = 10;
 spin_unlock(&priv->period_lock);

 dev_info(priv->dev, "the led period is %d\n", priv->period);
 return IRQ_HANDLED;
}

/* Create the LED devices under the sysfs keyled entry */
struct led_device *led_device_register(const char *name, int count,

struct device *parent, dev_t led_devt,
struct class *led_class)

{
 struct led_device *led;
 dev_t devt;
 int ret;

 /* First allocate a new led device */
 led = devm_kzalloc(parent, sizeof(struct led_device), GFP_KERNEL);
 if (!led)
 return ERR_PTR(-ENOMEM);

 /* Get the minor number of each device */
 devt = MKDEV(MAJOR(led_devt), count);

 /* Create the device and init the device's data */
 led->dev = device_create(led_class, parent, devt,
 led, "%s", name);
 if (IS_ERR(led->dev)) {
 dev_err(led->dev, "unable to create device %s\n", name);
 ret = PTR_ERR(led->dev);
 return ERR_PTR(ret);
 }

 dev_info(led->dev, "the major number is %d\n", MAJOR(led_devt));
 dev_info(led->dev, "the minor number is %d\n", MINOR(devt));

 /* To recover later from each sysfs entry */
 dev_set_drvdata(led->dev, led);

 strncpy(led->name, name, LED_NAME_LEN);

Handling Interrupts in Device Drivers Chapter 7

[338]

 dev_info(led->dev, "led %s added\n", led->name);

 return led;
}

static int __init my_probe(struct platform_device *pdev)
{
 int count, ret, i;
 unsigned int major;
 struct fwnode_handle *child;

 struct device *dev = &pdev->dev;
 struct keyled_priv *priv;

 dev_info(dev, "my_probe() function is called.\n");

 count = device_get_child_node_count(dev);
 if (!count)
 return -ENODEV;

 dev_info(dev, "there are %d nodes\n", count);

 /* Allocate all the private structures */
 priv = devm_kzalloc(dev, sizeof_keyled_priv(count-INT_NUMBER), GFP_KERNEL);
 if (!priv)
 return -ENOMEM;

 /* Allocate 3 device numbers */
 alloc_chrdev_region(&priv->led_devt, 0, count-INT_NUMBER, "Keyled_class");
 major = MAJOR(priv->led_devt);
 dev_info(dev, "the major number is %d\n", major);

 /* Create the LED class */
priv->led_class = class_create(THIS_MODULE, "keyled");

 if (!priv->led_class) {
 dev_info(dev, "failed to allocate class\n");
 return -ENOMEM;
 }

 /* Set attributes for this class */
 priv->led_class->dev_groups = led_groups;
 priv->dev = dev;

 spin_lock_init(&priv->period_lock);

 /* Parse all the DT nodes */
 device_for_each_child_node(dev, child){

[339]

Chapter 7 Handling Interrupts in Device Drivers

[339]

 int irq, flags;
 struct gpio_desc *keyd;
 const char *label_name, *colour_name, *trigger;
 struct led_device *new_led;

 fwnode_property_read_string(child, "label", &label_name);

 /* Parsing the DT LED nodes */
 if (strcmp(label_name,"led") == 0) {

 fwnode_property_read_string(child, "colour", &colour_name);

 /*
 * Create led devices under keyled class
 * priv->num_leds is 0 for the first iteration
 * used to set the minor number of each device
 * increased to the end of the iteration
 */

 new_led = led_device_register(colour_name, priv->num_leds, dev,
 priv->led_devt, priv->led_class);
 if (!new_led) {

 fwnode_handle_put(child);
 ret = PTR_ERR(new_led);

 for (i = 0; i < priv->num_leds-1; i++) {
 device_destroy(priv->led_class,

MKDEV(MAJOR(priv->led_devt), i));
 }
 class_destroy(priv->led_class);
 return ret;
 }

 new_led->ledd = devm_get_gpiod_from_child(dev, NULL, child);
 if (IS_ERR(new_led->ledd)) {
 fwnode_handle_put(child);
 ret = PTR_ERR(new_led->ledd);
 goto error;
 }
 new_led->private = priv;
 priv->leds[priv->num_leds] = new_led;
 priv->num_leds++;

 /* set direction to output */
 gpiod_direction_output(new_led->ledd, 1);

 /* set led state to off */
 gpiod_set_value(new_led->ledd, 1);

Handling Interrupts in Device Drivers Chapter 7

[340]

 }

 /* Parsing the interrupt nodes */
 else if (strcmp(label_name,"KEY_1") == 0) {
 keyd = devm_get_gpiod_from_child(dev, NULL, child);
 gpiod_direction_input(keyd);
 fwnode_property_read_string(child, "trigger", &trigger);
 if (strcmp(trigger, "falling") == 0)
 flags = IRQF_TRIGGER_FALLING;
 else if (strcmp(trigger, "rising") == 0)
 flags = IRQF_TRIGGER_RISING;
 else if (strcmp(trigger, "both") == 0)
 flags = IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING;
 else
 return -EINVAL;

 irq = gpiod_to_irq(keyd);
 if (irq < 0)
 return irq;

 ret = devm_request_irq(dev, irq, KEY_ISR1,
 flags, "ISR1", priv);
 if (ret) {
 dev_err(dev,

"Failed to request interrupt %d, error %d\n",
 irq, ret);

 return ret;
 }
 dev_info(dev, "IRQ number: %d\n", irq);
 }
 else if (strcmp(label_name,"KEY_2") == 0) {

 keyd = devm_get_gpiod_from_child(dev, NULL, child);
 gpiod_direction_input(keyd);
 fwnode_property_read_string(child, "trigger", &trigger);
 if (strcmp(trigger, "falling") == 0)
 flags = IRQF_TRIGGER_FALLING;
 else if (strcmp(trigger, "rising") == 0)
 flags = IRQF_TRIGGER_RISING;
 else if (strcmp(trigger, "both") == 0)
 flags = IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING;
 else
 return -EINVAL;

 irq = gpiod_to_irq(keyd);
 if (irq < 0)
 return irq;

[341]

Chapter 7 Handling Interrupts in Device Drivers

[341]

 ret = devm_request_irq(dev, irq, KEY_ISR2,
 flags, "ISR2", priv);
 if (ret < 0) {
 dev_err(dev,

"Failed to request interrupt %d, error %d\n",
 irq, ret);

 goto error;
 }
 dev_info(dev, "IRQ number: %d\n", irq);
 }
 else {
 dev_info(dev, "Bad device tree value\n");
 ret = -EINVAL;
 goto error;
 }
 }

 dev_info(dev, "i am out of the device tree\n");

 /* reset period to 10 */
 priv->period = 10;

 dev_info(dev, "the led period is %d\n", priv->period);

 platform_set_drvdata(pdev, priv);

 dev_info(dev, "my_probe() function is exited.\n");

 return 0;

error:
 /* Unregister everything in case of errors */
 for (i = 0; i < priv->num_leds; i++) {
 device_destroy(priv->led_class, MKDEV(MAJOR(priv->led_devt), i));
 }

class_destroy(priv->led_class);
 unregister_chrdev_region(priv->led_devt, priv->num_leds);
 return ret;
}

static int __exit my_remove(struct platform_device *pdev)
{
 int i;
 struct led_device *led_count;
 struct keyled_priv *priv = platform_get_drvdata(pdev);
 dev_info(&pdev->dev, "my_remove() function is called.\n");

Handling Interrupts in Device Drivers Chapter 7

[342]

 if (priv->task_flag == 1) {
 kthread_stop(priv->task);
 priv->task_flag = 0;
 }

 if (priv->led_flag == 1) {
 for (i = 0; i < priv->num_leds; i++) {
 led_count = priv->leds[i];
 gpiod_set_value(led_count->ledd, 1);
 }
 }

 for (i = 0; i < priv->num_leds; i++) {
 device_destroy(priv->led_class, MKDEV(MAJOR(priv->led_devt), i));
 }
 class_destroy(priv->led_class);
 unregister_chrdev_region(priv->led_devt, priv->num_leds);
 dev_info(&pdev->dev, "my_remove() function is exited.\n");
 return 0;

}

static const struct of_device_id my_of_ids[] = {
 { .compatible = "arrow,ledpwm"},
 {},
};
MODULE_DEVICE_TABLE(of, my_of_ids);

static struct platform_driver my_platform_driver = {
 .probe = my_probe,
 .remove = my_remove,
 .driver = {
 .name = "ledpwm",
 .of_match_table = my_of_ids,
 .owner = THIS_MODULE,
 }
};

module_platform_driver(my_platform_driver);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Alberto Liberal <aliberal@arroweurope.com>");
MODULE_DESCRIPTION("This is a platform keyled_class driver that decreases \
 and increases the led flashing period");

[343]

Chapter 7 Handling Interrupts in Device Drivers

[343]

keyled_imx_class.ko Demonstration
root@imx7dsabresd:~# insmod keyled_imx_class.ko /* load module */
root@imx7dsabresd:~# cat /proc/interrupts /* see the linux IRQ numbers (219 and 220)
and hwirq numbers (10 and 11) for the gpio-mxc controller */
root@imx7dsabresd:~# ls /sys/class/keyled/ /* see devices under keyled class */
root@imx7dsabresd:/sys/class/keyled/blue# ls /* see sysfs entries under one of the
devices */
root@imx7dsabresd:/sys/class/keyled/blue# echo on > set_led /* switch on blue led */
root@imx7dsabresd:/sys/class/keyled/red# echo on > set_led /* switch on red led and
switch off blue led */
root@imx7dsabresd:/sys/class/keyled/green# echo on > set_led /* switch on green led
and switch off red led */
root@imx7dsabresd:/sys/class/keyled/green# echo off > set_led /* switch off green
led */
root@imx7dsabresd:/sys/class/keyled/green# echo on > blink_on_led /* start blinking
the green led */
root@imx7dsabresd:/sys/class/keyled/green# echo off > blink_off_led /* stop blinking
the green led */
root@imx7dsabresd:/sys/class/keyled/red# echo on > blink_on_led /* start blinking
the red led */
root@imx7dsabresd:/sys/class/keyled/red# echo 100 > set_period /* change the
blinking period */

"Increase the blinking period pressing the FUNC2 key"

"Decrease the blinking period pressing the FUNC1 key"

root@imx7dsabresd:/sys/class/keyled/red# echo off > blink_off_led /* stop blinking
the red led */
root@imx7dsabresd:~# rmmod keyled_imx_class.ko /* remove the module */

[345]

8
Allocating Memory with Linux

Drivers
Linux is a virtual memory system, meaning that the addresses seen by user programs do not
directly correspond to the physical addresses used by the hardware. Kernel and user processes use
virtual addresses, and address translation is done in the hardware MMU (Memory Management
Unit). With virtual memory, programs running on the system can allocate far more memory than
is physically available; indeed, even a single process can have a virtual address space larger than
the system's physical memory.

The ARM architecture uses translation tables stored in memory to translate virtual addresses to
physical addresses. The MMU will automatically read the translation tables when necessary, this
process is known as a Table Walk.

An important function of the MMU is to enable the system to run multiple tasks, as independent
programs running in their own private virtual memory space, in many cases sharing virtual
addresses. They do not need any knowledge of the physical memory map of the system, that is,
the addresses that are used by the hardware, or about other programs that might execute at the
same time. You can use the same virtual memory address space for each user program. You can
also work with a contiguous virtual memory map, even if the physical memory is fragmented.
This virtual address space is separated from the actual physical map of memory in the system. You
can write, compile, and link applications to run in the virtual memory space. Virtual addresses are
those used by you, and the compiler and linker, when placing code in memory. Physical addresses
are those used by the actual hardware system.

When a process tries to access memory in a page that is not known to the MMU, the MMU
generates a page fault exception. The page fault exception handler examines the state of the MMU
hardware and the currently running process’s memory information, and determines whether the
fault is a "good" one, or a "bad" one. Good page faults cause the handler to give more memory to
the process; bad faults cause the handler to terminate the process.

Good page faults are expected behavior, and occur whenever a program allocates dynamic
memory, runs a section of code or writes a section of data for the first time, or increases its stack

Allocating Memory with Linux Drivers Chapter 8

[346]

size. When the process attempts to access this new memory, the MMU declares a page fault, and
Linux adds a fresh page of memory to the process’s translation tables. The interrupted process is
then resumed.

Bad faults occur when a process follows a NULL pointer, or tries to access memory that it doesn’t
own. Bad faults can also occur due to programming bugs in the kernel, in which case the handler
will print an "oops" message before terminating the process.

Walking ARM MMU Translation Tables
Addresses generated by the processor core are virtual addresses. The MMU essentially replaces
the most significant bits of this virtual address with some other value, to generate the physical
address (effectively defining a base address of a piece of memory). The lower bits are the same
in both addresses (effectively defining an offset in physical memory from that base address).
The translation is carried out automatically in hardware and is transparent to the application. In
addition to address translation, the MMU controls memory access permissions, memory ordering,
and cache policies for each region of memory.

A full translation table lookup is called a translation table walk and can have a significant cost in
execution time. To support fine granularity of the VA to PA mapping, a single input address to
output address translation can require multiple accesses to the translation tables, with each access
giving finer granularity.

Translation Lookaside Buffers (TLBs) reduce the average cost of a memory access by caching the
results of translation table walks. TLBs behave as caches of the translation table information.

The Translation Lookaside Buffer (TLB) is a cache of page translations within the MMU. During
memory access, the MMU first checks whether the translation is cached in the TLB. If the requested
translation is available, we have a TLB hit, and the TLB provides the translation of the physical
address immediately. If the TLB does not have a valid translation for that address, we have a TLB
miss and an external page table walk is required. This newly loaded translation can then be cached
in the TLB for possible reuse.

The exact structure of the TLB differs between implementations of the ARM processors. There are
one or more micro-TLBs, which are situated close to the instruction and data caches. Addresses
with entries which hit in the micro-TLB require no additional memory look-up and no cycle
penalty. However, the micro-TLB has only a small number of mappings (typically eight on the
instruction side and eight on the data side). This is backed by a larger main TLB (typically 64
entries), but there may be some penalty associated with accesses which miss in the micro-TLB but
which hit in the main TLB.

[347]

Chapter 8 Allocating Memory with Linux Drivers

[347]

A translation table walk occurs as the result of a TLB miss, and starts with a read of the
appropriate starting-level translation table. The result of that read determines whether additional
translation table reads are required.

The SAMA5D2 Cortex-A5 processor supports the ARM v7 VMSA including the TrustZone security
extension, and its ARM MMU supports entries in the translation tables, which can represent 1
Mbyte (section), 64 Kbytes (large page) or 4 Kbytes (small page) of virtual memory. The ARM
MMU supports a multi-level page table architecture with two levels of translation tables: level 1
(L1) and level 2 (L2). The process in which the MMU accesses page tables to translate addresses is
known as page table walking. Page table L1 will translate 1 Mbyte pages, whereas page table L2
will translate 4 Kbytes and 64 Kbytes pages.

When the processor generates a memory access, the MMU:

1. Performs a lookup for the requested virtual address and current ASID and security state in
the relevant instruction or data micro TLB.

2. If there is a miss in the micro TLB, performs a lookup for the requested virtual address and
current ASID and security state in the main TLB.

3. If there is a miss in main TLB, performs a hardware translation table walk.

Allocating Memory with Linux Drivers Chapter 8

[348]

The MMU can be configured to perform hardware translation table walks in cacheable regions by
setting the IRGN bits in TTRB0 and TTRB1 register.

The L1 page table divides the full 4GB address space into 4096 equally sized 1MB sections. The L1
page table therefore contains 4096 entries, each entry being word sized. Each entry can be the base
address of a level 2 page table or a page table entry for translating a 1MB section. If the page table
entry is translating a 1MB section, it gives the base address of the 1MB page in physical memory.

The base address of the L1 translation table is known as the Translation Table Base Address and
must be aligned to a 16KB boundary. The Translation table locations are defined by the Translation
Table Base Registers (TTRB0 and TTRB1). The translation tables are split in two and two TTBR
registers are used: TTBR0 points to the level 1 page table location for user space processes and
TTBR1 to the level 1 page table for kernel space. During a context switch, only TTBR0 is changed
and as a consequence the kernel space pages are always mapped in. There will be different level 1
and level 2 translation tables per process, the location of each level 1 translation table is updated in
a context switch via TTBR0. The translation table pointed to by TTBR0 is used by the kernel when
the topmost n bits of the virtual address (VA) are all set to 0. The translation table pointed to by
TTBR1 is used when the topmost n bits of the VA are all set to 1. The value for n is defined by the
Translation Table Base Control Register (TTBCR).

Each task will have its own unique set of translation tables residing in physical memory. Typically,
much of the memory system is organized so that the virtual-to-physical address mapping is fixed,
with translation table entries that never change. This typically is used to contain operating system
code and data. Whenever an application is started, the operating system will allocate itself a set
of translation table entries, which map both the actual code and data used by the application to
physical memory. If the application requires mapping in code or extra data space (for example
through a malloc() call), the kernel can subsequently modify these tables. When a task completes
and the application is no longer running, the kernel can remove any associated translation
table entries and re-use the space for a new application. Upon a task switch, the kernel switches
translation tables to the new ones of the next thread to be run. The expected use of two different
set of translation tables managed by TTBR0 and TTBR1 is to reduce the cost of OS context switches
by enabling the OS, and each individual task or process, to have its own pagetable without
consuming much memory. In this model, the virtual address space is divided into two regions:

•	 0x0 -> 1<<(32-N) that TTBR0 controls.
•	 1<<(32-N) -> 4GB that TTBR1 controls.

The value of N is set in the TTBCR. If N is zero, then TTBR0 is used for all addresses. If N is not
zero, the OS and memory mapped IO are located in the upper part of the memory map, TTBR1,
and the tasks or processes all occupy the same virtual address space in the lower part of the
memory, TTBR0. This allows one to have a design where the operating system and memory-

[349]

Chapter 8 Allocating Memory with Linux Drivers

[349]

mapped I/O are located in the upper part of the address space and managed by the translation
table in TTBR1 and user processes are in the lower part of memory and managed by the tranlation
table pointed by TTBR0. On a context switch, the operating system has to change TTBR0 to point
to the first-level table location for the new process. The L1 offset of the virtual address will set the
index of the new L1 translation table pointed by the TTBR0 register. The TTBR1 register will still
contain the memory map for the operating system and memory-mapped I/O.

To locate the relevant entry in the L1 translation table, the top 12 bits (2^12 =4096) of the virtual
address are summed to the Translation Table Base Address (TTBR0 or TTBR1), obtaining the index
to one of the 4096 words within the L1 translation table. The upper 20 bits of the L1 translation
table entry (Small Page Base Address) select the base address of the L2 translation table. If the L1
entry is is translating a 1MB section, it gives the base address of the 1MB page in physical memory
using the 16 upper bits of the L1 translation table entry (Large Page Base Address); the lower 16
bits of the virtual address will set the index of the 1MB page in physical memory.

A L2 translation table divides the 1MB section further into either large pages of 64KB or small
pages of 4KB size each. Each L2 page table entry is 4 bytes and besides the page base address also
contains memory access bits and other information, such as whether data of this page should be
cached or executed. There are 256 L2 page table entries per table, thus a L2 page table consumes
1KB of memory. The Bits [19:12] of the virtual address are used to index within the 256 entries in
the L2 translation table. The upper 20 bits of the L2 translation table entry select the base address
of the 4KB small page in physical memory; the lower 12 bits of the virtual address will set the
index of the 4KB page in physical memory.

Allocating Memory with Linux Drivers Chapter 8

[350]

The next figure shows a general view of the address translation:

Processors that implement the ARMv7-A Large Physical Address Extension (LPAE), like the NXP
i.MX7D expand the range of accessible physical addresses from 4GB to 1024GB, a terabyte, by
translating 32-bit virtual memory addresses into 40-bit physical memory addresses. To do this they
use the Long-descriptor format.

The translation table walking steps are similar to those previously described for processors that do
not implement LPAE. Individual translation table entries are now 64-bit in size. With LPAE, there
are 3 levels of page tables. Each level has 512 entries of 8 bytes each, occupying a 4K page. The first
level table covers a range of 512GB, each entry representing 1GB. Since we are limited to 4GB input
address range, only 4 entries in the PGD are used. The first level entries point to the second level
translation table. The second label contains 512 entries, each entry representing 2MB and pointing
to a third translation label. The third level contrains 512 entries, each entry addressing a 4KB range.

[351]

Chapter 8 Allocating Memory with Linux Drivers

[351]

The page table definitions have been separated into pgtable-2level.h and pgtable-3level.h files located
under arch/arm/include/asm/ directory.

Linux uses a four-level paging model:

•	 Page Global Directory (PGD): It is the first level (level 1) page table. Each entry's
type is pgd_t in kernel (generally an unsigned long), and point on an entry in table at the
second level. In kernel, the struct task_struct structure represents a process's description,
which in turn has a member mm whose type is struct mm_struct, and that characterizes and
represents the process's memory space. In the struct mm_struct, there is a processor-specific
field pgd, which is a pointer on the first entry (entry 0) of the process's level-1 (PGD) page
table.

struct task_struct { :include/linux/sched.h
 ...
 struct mm_struct *mm
 ...
}

struct mm_struct{ :include/linux/mm_types.h
 ...
 pgd_t * pgd;
 ...
}

Allocating Memory with Linux Drivers Chapter 8

[352]

•	 Page Upper Directory (PUD): This exist only on architectures using four-level tables. It
represents the second level of indirection.

•	 Page Middle Directory (PMD): This is the third indirection level, and exists only on
architectures using four-level tables

•	 Page Table (PTE): It is an array of pte_t, where each entry points to the physical page. The
SAMA5D2 MMU only supports a 2 level page table (PGD and PTE), whereas the i.MX7D
MMU supports a 3 level page table (PGD, PMD and PTE). In arch/arm/mm/proc-v7.S:

#ifdef CONFIG_ARM_LPAE
#include "proc-v7-3level.S"
#else
#include "proc-v7-2level.S"
#endif

Let's look how is performed the switching of the translation tables during the context switch in a
32-bit ARM without LPAE, which uses 2-Level page table where Level-1: pgd is the page global
directory and Level-2: pte is the page table entry.

Whenever a context switch happens in Linux, the pgd base of the next process has to be stored in
TTBR (note that this is not done while switching to kernel threads as the kernel threads doesn't
have a mm struct of it's own). As you have seen previosuly in this section ARM supports two page
table trees simultaneously, using the hardware registers TTBR0 and TTBR1. A virtual address is
mapped to a physical address by the CPU depending on settings in TTBRC. This control register
has a field which sets a split point in the address space. Addresses below the cutoff value are
mapped through the page tables pointed to by TTBR0, and addresses above the cutoff value are
mapped through TTBR1. TTBR0 is unique per-process, and when a context switch occurs, the
kernel sets TTBR0 to the current->mm.pgd for new process. TTBR1 is global for the whole system,
and represents the page tables for the kernel. It is referenced in the global kernel variable
swapper_pg_dir. Note that both of these addresses are virtual addresses. You can find the physical
address of the first-level page table by using virt_to_phys() functions on these addresses.

For ARM, in particular, the second-level page table (PTE) layout is weird. The ARM hardware
supports 1K tables at this level (256 entries of 4bytes each). However, the Linux kernel needs some
bits that are not provided on some hardware (like DIRTY and YOUNG). These are synthesized by
the ARM MMU code via permissions and faulting, effectively making them software-managed.
They have to be stored outside the hardware tables, but still in a place where the kernel can get to
them easily. In order to keep things aligned into units of 4K, the kernel therefore keeps 2 hardware
second-level page tables and 2 parallel arrays (totalling 512 entries) on a single page. When a new
second-level page table is created, it is created 512 entries at a time, with the hardware entries at
the top of the table, and Linux software entries (synthesized flags and values) at the bottom.

[353]

Chapter 8 Allocating Memory with Linux Drivers

[353]

Linux Address Types
The following is a list of address types used in Linux:

1. User Virtual Addresses - these are the regular addresses seen by user space programs.
User addresses are either 32 or 64 bits in length, depending on the underlying hardware
architecture, and each process has its own virtual address space. The virtual address space
is split; the lower part is used for user space and the upper part is used for the kernel. If
you assign 1GB of virtual address space for the kernel on 32-bit processors, the split is at
0xC0000000.

2. Physical Addresses - the addresses used between the processor and the system's memory.
Physical addresses are 32-bit or 64-bit quantities; even 32-bit systems can use larger
physical addresses in some situations.

3. Bus Addresses - the addresses used between peripheral buses and memory. Often, they
are the same as the physical addresses used by the processor, but that is not necessarily
the case. Some architectures can provide an I/O memory management unit, IOMMU, that
remaps addresses between a bus and main memory. Programming the IOMMU is an extra
step that must be performed when setting up DMA operations.

Allocating Memory with Linux Drivers Chapter 8

[354]

4. Kernel Logical Addresses - these make up the normal address space of the kernel. These
are the virtual addresses above CONFIG_PAGE_OFFSET. On most architectures, logical
addresses and their associated physical addresses differ only by a constant offset, this
makes converting between physical and virtual addresses easy. The kmalloc() function
returns a pointer variable that points to a kernel logical address space that is mapped to
continuous physical pages. The kernel logical memory cannot be swapped out. Kernel
logical addresses can be converted to and from physical addresses using the macros:
__pa(x) and __va(x).

5. Kernel Virtual Addresses - kernel virtual addresses are similar to logical addresses
in that they are a mapping from a kernel space address to a physical address. Kernel
virtual addresses do not necessarily have the linear, one-to-one mapping to physical
addresses that characterize the logical address space, however. All logical addresses are
kernel virtual addresses, but many kernel virtual addresses are not logical addresses. For
example, the function vmalloc() will return a block of virtual memory, however this virtual
memory is only continous in virtual space, it may not be continous in physical space.
Memory returned by ioremap() will also be dynamically placed in this region. Machine
specific static mappings are also located here, through iotable_init().

User Process Virtual to Physical Memory Mapping
In Linux, kernel space is constantly present and maps the same physical memory in all processes.
Kernel code and data are always addressable, ready to handle interrupts or system calls at any
time. By contrast, the mapping for the user-mode portion of the address space changes whenever a
process switch happens.

Every user space process, has its own virtual memory layout, containing four logical areas:

1. Text segment - program code, stores the binary image of the process (../bin/app).

2. Data segment (data+bss+heap) - various data structures created and initialized at
the start of a process or while it is running (e.g., heap). The heap provides runtime
memory allocation, like the stack, meant for data that must outlive the function doing
the allocation, unlike the stack. In C, the main interface to heap allocation is the malloc()
function. A data segment stores static initialized variables, and BSS segment unitialized
static variables filled with zeros.

3. Memory mapping segment - here the kernel maps the contents of files directly to memory.
Any application can ask for such a mapping via the Linux mmap() system call (including
dynamic libraries, for instance /lib/libc.so). It is also possible to create an anonymous
memory mapping that does not correspond to any files, being used instead for program

[355]

Chapter 8 Allocating Memory with Linux Drivers

[355]

data. In Linux, if you request a large block of memory via malloc(), the C library will create
such an anonymous mapping instead of using heap memory.

4. Stack segment - starts near the end of area available to process, and grows downwards:
stores local variables and function parameters in most programming languages. Calling a
method or function pushes a new stack frame onto the stack. The stack frame is destroyed
when the function returns. This simple design, possible because the data obeys strict
LIFO order, means that no complex data structure is needed to track stack contents, a
simple pointer to the top of the stack will do. Pushing and popping are thus very fast and
deterministic. Also, the constant reuse of stack regions tends to keep active stack memory
in the CPU caches, speeding up access. Each thread in a process gets its own stack.

Kernel Virtual to Physical Memory Mapping
The kernel virtual address space starts from 0xc0000000. You can go to the kernel config settings to
allow the kernel to access more physical memory:

The kernel virtual address space is printed in the kernel message buffer during boot:

Virtual kernel memory layout:
 vector : 0xffff0000 - 0xffff1000 (4 kB)
 fixmap : 0xffc00000 - 0xfff00000 (3072 kB)
 vmalloc : 0xc0800000 - 0xff800000 (1008 MB)

Allocating Memory with Linux Drivers Chapter 8

[356]

 lowmem : 0x80000000 - 0xc0000000 (1024 MB)
 pkmap : 0x7fe00000 - 0x80000000 (2 MB)
 modules : 0x7f000000 - 0x7fe00000 (14 MB)
 .text : 0x80008000 - 0x80a00000 (10208 kB)
 .init : 0x80e00000 - 0x80f00000 (1024 kB)
 .data : 0x80f00000 - 0x80f886e0 (546 kB)
 .bss : 0x80f8a000 - 0x810005a0 (474 kB)

You can split the kernel physical memory into four zones:

1. ZONE_DMA - mapped to the kernel virtual address space (HIGHMEM). In ARM 32-bit
CPUs is mapped to kernel virtual addresses ranging from ffc00000 to fffeffff. The mapped
virtual DMA memory region is returned by the dma_alloc_xxx functions.

2. ZONE_NORMAL - mapped to the kernel logical address space (LOWMEM). Used by the
kernel for internal data structures as well as other system and user space allocations.

3. ZONE_HIGHMEM - mapped to the kernel virtual address space (HIGHMEM). Used
exclusively for system allocations (file system buffers, user space allocations, etc.). Mapped
to kernel virtual addresses returned by vmalloc function.

4. Memory-Mapped I/O - mapped to kernel virtual address space (HIGHMEM). Memory
returned by ioremap() will be also dynamically placed in this kernel virtual region.

In the next figure, you can see the kernel memory mapping layout:

[357]

Chapter 8 Allocating Memory with Linux Drivers

[357]

Kernel Memory Allocators
The Linux kernel provides a few memory allocation methods. The main one is the Page Allocator
that works on pages. The SLAB allocator is built upon page allocator, getting memory from it and
handling it using smaller entities. Kernel memory allocators allocate physical pages, and kernel
allocated memory cannot be swapped out, so no fault handling is required. Most kernel memory
allocation functions also return a pointer to a kernel virtual address to be used within kernel space.

PAGE Allocator
The Page Allocator is responsible for the management of page allocations to the entire system.
This code manages lists of physically contiguous pages and maps them into the MMU page tables,
so as to provide other kernel subsystems with valid physical address ranges when the kernel
requests them (physical to virtual address mapping is handled by a higher layer of the VM). The
name Buddy Allocator is derived from the algorithm this subsystem uses to maintain it free page
lists. All physical pages in RAM are cataloged by the buddy allocator and grouped into lists. Each
list represents clusters of 2n pages, where n is incremented in each list. If no entries exist on the
requested list, an entry from the next list up is broken into two separate clusters and is returned

Allocating Memory with Linux Drivers Chapter 8

[358]

to the caller while the other is added to the next list down. When an allocation is returned to the
buddy allocator, the reverse process happens. Note that the buddy allocator also manages memory
zones, which define pools of memory that have different purposes.

Page Allocator API
To allocate pages, these are some of the available functions:

unsigned long get_zeroed_page(int flags) /* Returns the virtual address of a free
page, initialized to zero */

The most common flags are:

•	 GFP_KERNEL: Standard kernel memory allocation. The allocation may block in order
to find enough available memory. Fine for most needs, except in an interrupt handler
context.

•	 GFP_ATOMIC: RAM allocated from code which is not allowed to block (interrupt
handlers or critical sections). Never blocks, allows to access emergency pools, but can fail
if no free memory is readily available.

•	 GFP_DMA: Allocates memory in an area of the physical memory usable for DMA
transfers.

unsigned long __get_free_page(int flags) /* Same, but doesn't initialize the contents
*/

unsigned long __get_free_pages(int flags, unsigned int order) /* Returns the starting
virtual address of an area of several contiguous pages in physical RAM, with the
order being log2(number_of_pages. Can be computed from the size with the get_order()
function */

SLAB Allocator
The SLAB Allocator allows creation of "caches", one cache for each object type (for example,
inode_cache, dentry_cache, buffer_head, vm_area_struct). Each cache consists of many "slabs"
(usually one page long and always contiguous), and each slab contains multiple initialized
objects.

The primary intention of the slab allocation technique was to efficiently manage the allocation of
kernel objects and prevent memory fragmentation caused by memory allocation and deallocation.
The kernel objects are the allocated and initialized objects of the same type that are usually
represented in the form of struct in C. These objects are only used by the kernel core, modules, and
drivers that run in kernel space. The object size can be smaller or greater than the page size. The
SLAB allocator takes care of increasing or reducing the size of the cache as needed, depending on
the number of allocated objects, using the page allocator to allocate and free pages.

[359]

Chapter 8 Allocating Memory with Linux Drivers

[359]

The SLAB allocator consists of a variable number of caches that are linked together on a doubly
linked circular list called a "cache chain". In order to reduce fragmentation, the slabs are sorted in
three groups:

•	 Full slabs with zero free objects.
•	 Partial slabs.
•	 Empty slabs with no allocated objects.

If partial slabs exist, then new allocations come from these slabs, otherwise from empty slabs or
new slabs are allocated.

In the Linux kernel there are three different implementations of the slab allocation technique,
namely SLAB, SLUB and SLOB:

•	 CONFIG_SLAB: legacy.
•	 CONFIG_SLOB: Simple allocator, saves about 0.5MB of memory, but does not scale well.

It is used for very small systems with limited memory (option activates after selecting
CONFIG_EMBEDDED).

•	 CONFIG_SLUB: Default since 2.6.23. Simpler than SLAB, scales better.

Allocating Memory with Linux Drivers Chapter 8

[360]

In the following figure, you can see the general memory layout of the SLAB allocator:

To understand Linux kernel SLAB allocators, the following terms are defined, which appear
frequently in the SLAB allocator source code:

1. Cache: cache is a group of the kernel objects of the same type. Cache is identified by a
name that is usually the same as the C structure name. The kernel uses a doubly-linked list
to link the created caches.

2. Slab: slab is the contiguous block of memory stored in one or more physical page(s) of the
main memory. Each cache has a number of slabs that store the actual kernel objects of the
same type.

3. Kernel object: the kernel object is the allocated and initialized instance of a C struct. Each
slab may contain some objects (depending on the size of the slab and each object). A kernel
object in the slab can be either active (object is being used by the kernel) or free (the object
is in the memory pool and ready to be used upon request).

[361]

Chapter 8 Allocating Memory with Linux Drivers

[361]

SLAB Allocator API
The Linux kernel SLAB allocation sub-system provides a general interface for creating and
destroying a memory cache regardless of the type of SLAB allocator:

1. The kmem_cache_create() function creates a new memory cache:

struct kmem_cache *kmem_cache_create(const char *name, size_t size,
 size_t align, unsigned long flags,
 void (*ctor)(void*))

where:

•	 name: A string which is used in /proc/slabinfo to identify this cache.
•	 size: The size of objects to be created in this cache.
•	 align: Additional space added to each object (for some additional data).
•	 flags: SLAB flags.
•	 constructor: Used to initialize objects.

2. The kmem_cache_destroy() function allows destruction of a memory cache by providing the
kmem_cache object of the desired cache:

void kmem_cache_destroy(struct kmem_cache *cp)

SLOB, SLAB and SLUB allocators provide two functions for allocating (taking from cache) and
freeing (putting back into the cache) a kernel object. Defined as a function in mm/slub.c, these are
mm/slob.c or mm/slab.c depending on the chosen slab technique.

1. The kmem_cache_alloc() function allocates an object of a specified type from a cache (a
cache for that specified object must be created before allocation):

void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)

2. The kmem_cache_free() function frees an object and put it back in the cache:

void kmem_cache_free(struct kmem_cache *s, void *x)

Assume that a Linux kernel module needs to allocate and release an object of a particular type
often. The module makes a request to the SLAB allocator through the kmem_cache_create() function
to create a cache of that type struct so that it can satisfy subsequent memory allocations (and
releases). Based on the size of the struct, the SLAB allocator calculates the number of memory
pages required for storing each slab cache (power of 2) and the number of objects that can be
stored on each slab. Then, it returns a pointer of type kmem_cache as a reference to the created
cache.

Allocating Memory with Linux Drivers Chapter 8

[362]

At the time of creating a new cache, the SLAB allocator generates a number of slabs and populates them
with the allocated and initialized objects. When creation of a new object of the same type is needed it makes
a request to the SLAB allocator through the kmem_cache_alloc() function with the pointer (of type kmem_
cache) to the cache. If the cache has a free object, it immediately returns it. However, if all objects within the
cache slabs are already in use (active), the SLAB allocator increases the cache by making a request to the
Page Allocator through the alloc_pages() function to get free pages. After receiving free pages from the page
allocator, the SLAB allocator creates one or more slabs (in the free physical pages) and populates them with
the new allocated and initialized objects. On the other hand, at the time of releasing the active object, it is
called kmem_cache_free() function with the cache and object pointers as the parameters. The SLAB allocator
marks the object as free and keeps the object in the cache for the subsequent requests.

Kmalloc Allocator
This is the allocator for the driver code. For large sizes it relies on the page allocator, for smaller
sizes it relies on generic SLAB caches, named Kmalloc-xxx in /proc/slabinfo. The allocated area
is guaranteed to be physically contiguous and uses the same flags as the page allocator (GFP_
KERNEL, GFP_ATOMIC, GFP_DMA, etc.). Maximum sizes for ARM are 4 MB per allocation and
128MB for total allocations. The kmalloc allocator should be used as the primary allocator unless
there is a strong reason to use another one. See the kmalloc allocator API below:

1. Allocate memory using kmalloc() or kzalloc() functions:
#include <linux/slab.h>

static inline void *kmalloc(size_t size, int flags)
void *kzalloc(size_t size, gfp_t flags) /* Allocates a zero-initialized buffer
*/

These functions allocate size bytes and return a pointer to the virtual memory area. The size
parameter is the number of bytes to allocate and the flags parameter use the same variants
as the page allocator.
To free a block of memory previously allocated with kmalloc() use the kfree() function:
void kfree(const void *objp)

2. Conforming to unified device model, memory allocations can be attached to the device.
The devm_kmalloc() function is a resource-managed kmalloc():
/* Automatically free the allocated buffers when the corresponding
device or module is unprobed */
void *devm_kmalloc(struct device *dev, size_t size, int flags)

/* Allocates a zero-initialized buffer */
void *devm_kzalloc(struct device *dev, size_t size, int flags);

/* Useful to immediately free an allocated buffer */
void *devm_kfree(struct device *dev, void *p);

[363]

Chapter 8 Allocating Memory with Linux Drivers

[363]

LAB 8.1: "linked list memory allocation" Module
In this kernel module lab, you will allocate in kernel memory a circular single linked list composed
of several nodes. Each node will be composed of two variables:

1. A buffer pointer that points to a memory buffer allocated with devm_kmalloc() using a "for"
loop.

2. A next pointer that points to the next node of the linked list.

The linked list will be managed through the items of a structure named liste. The driver´s write()
callback function will get the characters written to the user space console. These characters fill
each node buffer of the linked list starting from the first member. It will be moved to the next node
when the node is filled with the selected buffer size (variable BlockSize). The driver will write again
to the first node buffer of the linked list when the last node buffer has been filled.

You can read all the values written to the nodes via the driver´s read() callback function. The
reading starts from the first node buffer to the last written node buffer of the linked list. After
exiting the read() function, all the liste pointers point to the first node of the linked list and the
cur_read_offset and cur_write_offset variables are set to zero to start writing again from the first
node.

The main code sections of the driver will now be described:

1. Create each node of the linked list:

typedef struct dnode
{

char *buffer;
 struct dnode *next;
} data_node;

2. Create a liste structure to manage the nodes of the linked list:

typedef struct lnode
{

data_node *head;
 data_node *cur_write_node;
 data_node *cur_read_node;
 int cur_read_offset;
 int cur_write_offset;
} liste;

3. Allocate the first node of the linked list inside the createlist() function (createlist() is called
inside the probe() function) using the devm_kmalloc() function (all the nodes will be freed
automatically when the module is unprobed):

Allocating Memory with Linux Drivers Chapter 8

[364]

 /* allocate the first node */
newNode = devm_kmalloc(&device->dev, sizeof (data_node), GFP_KERNEL);

/* allocate first node memory buffer */
 newNode->buffer = devm_kmalloc(&device->dev,

 BlockSize*sizeof(char),
 GFP_KERNEL);

newNode->next = NULL;
newListe.head = newNode;
headNode = newNode;
previousNode = newNode;

4. In the createlist() function allocate the rest of the linked list nodes up to BlockNumber
through a for loop. After the for loop, link the last linked list node with the first one:

for (i = 1; i < BlockNumber; i++)
{

newNode = (data_node *)devm_kmalloc(&device->dev,
sizeof (data_node),
GFP_KERNEL);

newNode->buffer = (char *)devm_kmalloc(&device->dev,
 BlockSize*sizeof(char),
 GFP_KERNEL);

newNode->next = NULL;
previousNode->next = newNode;
previousNode = newNode;

}
newNode->next = headNode;
newListe.cur_read_node = headNode;
newListe.cur_write_node = headNode;
newListe.cur_read_offset = 0;
newListe.cur_write_offset = 0;

5. Modify the device tree files under arch/arm/boot/dts/ to include your DT driver´s device
nodes. There must be a DT device node´s compatible property identical to the compatible
string stored in one of the driver´s of_device_id structures.

For the MCIMX7D-SABRE Board open the DT file imx7d-sdb.dts and add the
linked_memory node below the memory node:

[...]

/ {
 model = "Freescale i.MX7 SabreSD Board";
 compatible = "fsl,imx7d-sdb", "fsl,imx7d";

memory {
 reg = <0x80000000 0x80000000>;
 };

[365]

Chapter 8 Allocating Memory with Linux Drivers

[365]

linked_memory {
 compatible = "arrow,memory";

};

 [...]

For the SAMA5D2B-XULT Board open the DT file at91-sama5d2_xplained_common.dtsi and
add the linked_memory node below the gpio_keys node:

[...]

gpio_keys {
compatible = "gpio-keys";
pinctrl-names = "default";

 pinctrl-0 = <&pinctrl_key_gpio_default>;
bp1 {
 label = "PB_USER";

 gpios = <&pioA 41 GPIO_ACTIVE_LOW>;
 linux,code = <0x104>;

};
};

linked_memory {
 compatible = "arrow,memory";
};

[...]

For the Raspberry Pi 3 Model B Board open the DT file bcm2710-rpi-3-b.dts and add the
linked_memory node inside the soc node:

[...]

&soc {
 virtgpio: virtgpio {
 compatible = "brcm,bcm2835-virtgpio";
 gpio-controller;
 #gpio-cells = <2>;
 firmware = <&firmware>;
 status = "okay";
 };

expgpio: expgpio {
 compatible = "brcm,bcm2835-expgpio";
 gpio-controller;
 #gpio-cells = <2>;
 firmware = <&firmware>;
 status = "okay";
 };

linked_memory {
 compatible = "arrow,memory";

Allocating Memory with Linux Drivers Chapter 8

[366]

 };

 [...]

6. Build the modified device tree and load it to the target processor.

See in the next Listing 8-1 the "linked list memory allocation" driver source code (linkedlist_imx_
platform.c) for the i.MX7D processor.

Note: The source code for the SAMA5D2 (linkedlist_sam_platform.c) and BCM2837 (linkedlist_rpi_
platform.c) drivers can be downloaded from the GitHub repository of this book.

Listing 8-1: linkedlist_imx_platform.c
#include <linux/module.h>
#include <linux/fs.h>
#include <linux/platform_device.h>
#include <linux/uaccess.h>
#include <linux/miscdevice.h>
#include <linux/delay.h>

static int BlockNumber = 10;
static int BlockSize = 5;
static int size_to_read = 0;
static int node_count= 1;
static int cnt = 0;

typedef struct dnode
{
 char *buffer;
 struct dnode *next;
} data_node;

typedef struct lnode
{
 data_node *head;
 data_node *cur_write_node;
 data_node *cur_read_node;
 int cur_read_offset;
 int cur_write_offset;
} liste;

static liste newListe;

static int createlist (struct platform_device *pdev)
{
 data_node *newNode, *previousNode, *headNode;

[367]

Chapter 8 Allocating Memory with Linux Drivers

[367]

 int i;

 /* new node creation */
 newNode = devm_kmalloc(&pdev->dev, sizeof(data_node), GFP_KERNEL);
 if (newNode)
 newNode->buffer = devm_kmalloc(&pdev->dev,

 BlockSize*sizeof(char),
 GFP_KERNEL);

 if (!newNode || !newNode->buffer)
 return -ENOMEM;

 newNode->next = NULL;

 newListe.head = newNode;
 headNode = newNode;
 previousNode = newNode;

 for (i = 1; i < BlockNumber; i++)
 {
 newNode = devm_kmalloc(&pdev->dev, sizeof(data_node), GFP_KERNEL);
 if (newNode)
 newNode->buffer = devm_kmalloc(&pdev->dev,

 BlockSize*sizeof(char),
 GFP_KERNEL);

 if (!newNode || !newNode->buffer)
 return -ENOMEM;
 newNode->next = NULL;
 previousNode->next = newNode;
 previousNode = newNode;
 }

 newNode->next = headNode;

 newListe.cur_read_node = headNode;
 newListe.cur_write_node = headNode;
 newListe.cur_read_offset = 0;
 newListe.cur_write_offset = 0;

 return 0;
}

static ssize_t my_dev_write(struct file *file, const char __user *buf,
 size_t size, loff_t *offset)
{
 int size_to_copy;
 pr_info("my_dev_write() is called.\n");
 pr_info("node_number_%d\n", node_count);

Allocating Memory with Linux Drivers Chapter 8

[368]

 if ((*(offset) == 0) || (node_count == 1))
 {
 size_to_read += size;
 }

 if (size < BlockSize - newListe.cur_write_offset)
 size_to_copy = size;
 else
 size_to_copy = BlockSize - newListe.cur_write_offset;

 if(copy_from_user(newListe.cur_write_node->buffer + newListe.cur_write_offset,
 buf,
 size_to_copy))

 {
 return -EFAULT;
 }

 *(offset) += size_to_copy;
 newListe.cur_write_offset += size_to_copy;

 if (newListe.cur_write_offset == BlockSize)
 {
 newListe.cur_write_node = newListe.cur_write_node->next;
 newListe.cur_write_offset = 0;
 node_count = node_count+1;
 if (node_count > BlockNumber)
 {
 newListe.cur_read_node = newListe.cur_write_node;
 newListe.cur_read_offset = 0;
 node_count = 1;
 cnt = 0;
 size_to_read = 0;
 }
 }
 return size_to_copy;
}

static ssize_t my_dev_read(struct file *file, char __user *buf,
 size_t count, loff_t *offset)
{

int size_to_copy;
 int read_value;

 read_value = (size_to_read - (BlockSize * cnt));

 if ((*offset) < size_to_read)
 {
 if (read_value < BlockSize - newListe.cur_read_offset)

[369]

Chapter 8 Allocating Memory with Linux Drivers

[369]

 size_to_copy = read_value;
 else
 size_to_copy = BlockSize - newListe.cur_read_offset;
 if(copy_to_user(buf,
 newListe.cur_read_node->buffer + newListe.cur_read_offset,
 size_to_copy))
 {
 return -EFAULT;
 }
 newListe.cur_read_offset += size_to_copy;
 (*offset)+=size_to_copy;

 if (newListe.cur_read_offset == BlockSize)
 {
 cnt = cnt+1;
 newListe.cur_read_node = newListe.cur_read_node->next;
 newListe.cur_read_offset = 0;
 }
 return size_to_copy;
 }
 else
 {
 msleep(250);
 newListe.cur_read_node = newListe.head;
 newListe.cur_write_node = newListe.head;
 newListe.cur_read_offset = 0;
 newListe.cur_write_offset = 0;
 node_count = 1;
 cnt = 0;
 size_to_read = 0;
 return 0;
 }
}

static int my_dev_open(struct inode *inode, struct file *file)
{
 pr_info("my_dev_open() is called.\n");
 return 0;
}

static int my_dev_close(struct inode *inode, struct file *file)
{
 pr_info("my_dev_close() is called.\n");
 return 0;
}

static const struct file_operations my_dev_fops = {
 .owner = THIS_MODULE,

Allocating Memory with Linux Drivers Chapter 8

[370]

 .open = my_dev_open,
 .write = my_dev_write,
 .read = my_dev_read,
 .release = my_dev_close,
};

static struct miscdevice helloworld_miscdevice = {
 .minor = MISC_DYNAMIC_MINOR,
 .name = "mydev",
 .fops = &my_dev_fops,
};

static int __init my_probe(struct platform_device *pdev)
{
 int ret_val;
 pr_info("platform_probe enter\n");
 createlist(pdev);
 ret_val = misc_register(&helloworld_miscdevice);
 if (ret_val != 0)
 {
 pr_err("could not register the misc device mydev");
 return ret_val;
 }
 pr_info("mydev: got minor %i\n",helloworld_miscdevice.minor);

 return 0;
}

static int __exit my_remove(struct platform_device *pdev)
{
 misc_deregister(&helloworld_miscdevice);
 pr_info("platform_remove exit\n");
 return 0;
}

static const struct of_device_id my_of_ids[] = {
 { .compatible = "arrow,memory"},
 {},
};

MODULE_DEVICE_TABLE(of, my_of_ids);

static struct platform_driver my_platform_driver = {
 .probe = my_probe,
 .remove = my_remove,
 .driver = {
 .name = "memory",
 .of_match_table = my_of_ids,

[371]

Chapter 8 Allocating Memory with Linux Drivers

[371]

 .owner = THIS_MODULE,
 }
};

static int demo_init(void)
{
 int ret_val;
 pr_info("demo_init enter\n");

 ret_val = platform_driver_register(&my_platform_driver);
 if (ret_val !=0)
 {
 pr_err("platform value returned %d\n", ret_val);
 return ret_val;

 }
 pr_info("demo_init exit\n");
 return 0;
}

static void demo_exit(void)
{
 pr_info("demo_exit enter\n");

platform_driver_unregister(&my_platform_driver);
pr_info("demo_exit exit\n");

}

module_init(demo_init);
module_exit(demo_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Alberto Liberal <aliberal@arroweurope.com>");
MODULE_DESCRIPTION("This is a platform driver that writes in and read \
 from a linked list of several buffers ");

linkedlist_imx_platform.ko Demonstration
root@imx7dsabresd:~# insmod linkedlist_imx_platform.ko /* load module */
root@imx7dsabresd:~# echo abcdefg > /dev/mydev /* write values to the nodes buffer
*/
root@imx7dsabresd:~# cat /dev/mydev /* read the values and point to the first node
buffer */
root@imx7dsabresd:~# rmmod linkedlist_imx_platform.ko /* remove module */

[373]

9
Linux DMA in Device Drivers

Direct Memory Access (DMA) is the hardware mechanism that allows peripheral components to
transfer their I/O data directly to and from main memory without the need to involve the system
processor. Use of this mechanism can greatly increase throughput to and from a device, because a
great deal of computational overhead is eliminated.

The CPU manages DMA operations via a DMA controller unit. While the DMA transfer is in
progress, the CPU can continue executing code. When the DMA transfer is completed, the DMA
controller will signal the CPU with an interrupt.

Typical scenarios of block memory copy where DMA can be useful are network packet routing
and video streaming. DMA is a particular advantage in situations where the blocks to be
transferred are large or the transfer is a repetitive operation that would consume a large portion of
potentially useful CPU processing time.

Cache Coherency
On processors with a data cache an unwanted side effect of using DMA is the possibility that the
contents of the cache are no longer coherent with respect to main memory, which can lead to data
corruption problems. Imagine a CPU equipped with a cache and external memory that can be
accessed directly by devices using DMA. When the CPU tries to access data X located in the main
memory could happen that the current value has been cached by the processor, then subsequent
operations on X will update the cached copy of X, but not the external memory version of X,
assuming a write-back cache. If the cache is not flushed to the main memory before the next time a
device (DMA) tries to transfer X, the device will receive a stale value of X. Similarly, if the cached
copy of X is not invalidated before a device (DMA) writes a new value to the main memory, then
the CPU will operate on a stale value of X. Also, when the cache is flushed, the stale data will be
written back to the main memory overwriting the new data stored by the DMA. The end result is
that the data in main memory is not correct.

Some processors include a mechanism called bus snooping or cache snooping; the snooping
hardware notices when an external DMA transfer refers to main memory using an address that
matches data in the cache, and either flushes/invalidates the cache entry so that the DMA transfers

Linux DMA in Device Drivers Chapter 9

[374]

the correct data and the state of the cache entry is updated accordingly. These systems are called
coherent architectures providing a hardware to take care of cache coherency related problem.
Hardware will itself maintain coherency between caches and main memory and will ensure that all
the subsystem (CPU and DMA) have the same view of the memory.

For non-coherent architectures, the device driver should explicitly flush or invalidate the data
cache before initiating a transfer or making data buffers available to bus mastering peripherals.
This can also complicate the software and will cause more transfers between cache and main
memory, but it does allow the application to use any arbitrary region of cached memory as a data
buffer.

Linux kernel provides two struct dma_map_ops structures for ARM processors, one for non-
coherent architectures (arm_dma_ops) that doesn’t provide additional hardware support
for coherency management, so software needs to take care of it, and one for coherent ARM
architecture (arm_coherent_dma_ops) that provides hardware to take care of cache coherency:

struct dma_map_ops arm_dma_ops = {
 .alloc = arm_dma_alloc,
 .free = arm_dma_free,
 .mmap = arm_dma_mmap,
 .get_sgtable = arm_dma_get_sgtable,
 .map_page = arm_dma_map_page,
 .unmap_page = arm_dma_unmap_page,
 .map_sg = arm_dma_map_sg,
 .unmap_sg = arm_dma_unmap_sg,
 .sync_single_for_cpu = arm_dma_sync_single_for_cpu,
 .sync_single_for_device = arm_dma_sync_single_for_device,
 .sync_sg_for_cpu = arm_dma_sync_sg_for_cpu,
 .sync_sg_for_device = arm_dma_sync_sg_for_device,
};
EXPORT_SYMBOL(arm_dma_ops);

struct dma_map_ops arm_coherent_dma_ops = {
 .alloc = arm_coherent_dma_alloc,
 .free = arm_coherent_dma_free,
 .mmap = arm_coherent_dma_mmap,
 .get_sgtable = arm_dma_get_sgtable,
 .map_page = arm_coherent_dma_map_page,
 .map_sg = arm_dma_map_sg,
};
EXPORT_SYMBOL(arm_coherent_dma_ops);

[375]

Chapter 9 Linux DMA in Device Drivers

[375]

Linux DMA Engine API
The Linux DMA Engine API specifies an interface to the actual DMA controller hardware
functionality to initialize/clean-up and perform DMA transfers.

The slave DMA API usage consists of following steps:

•	 Allocate a DMA slave channel
•	 Set slave and controller specific parameters
•	 Get a descriptor for transaction
•	 Submit the transaction
•	 Issue pending requests and wait for callback notification

The details of these operations are:

1. Allocate a DMA slave channel: Channel allocation is slightly different in the slave DMA
context, client drivers typically need a channel from a particular DMA controller only and
even in some cases a specific channel is desired. To request a channel dma_request_chan()
API is used.

struct dma_chan *dma_request_chan(struct device *dev, const char *name)

Which will find and return the DMA channel associated with the dev device. A channel
allocated via this interface is exclusive to the caller, until dma_release_channel() is called.

2. Set slave and controller specific parameters: Next step is always to pass some specific
information to the DMA driver. Most of the generic information which a slave DMA can
use is in struct dma_slave_config. This allows the clients to specify DMA direction, DMA
addresses, bus widths, DMA burst lengths, etc for the peripheral. If some DMA controllers
have more parameters to be sent then they should try to embed struct dma_slave_config in
their controller specific structure. That gives flexibility to client to pass more parameters, if
required.

int dmaengine_slave_config(struct dma_chan *chan,
struct dma_slave_config *config)

3. Get a descriptor for transaction: For slave usage the various modes of slave transfers
supported by the DMA-engine are:

•	 slave_sg: DMA a list of scatter gather buffers from/to a peripheral.
•	 dma_cyclic: Perform a cyclic DMA operation from/to a peripheral till the operation is

explicitly stopped.
•	 interleaved_dma: This is common to slave as well as M2M clients. For slave address of

devices’ fifo could be already known to the driver. Various types of operations could
be expressed by setting appropriate values to the dma_interleaved_template members.

Linux DMA in Device Drivers Chapter 9

[376]

A non-NULL return of this transfer API represents a "descriptor" for the given transaction.

struct dma_async_tx_descriptor *dmaengine_prep_slave_sg(
 struct dma_chan *chan, struct scatterlist *sgl,
 unsigned int sg_len, enum dma_data_direction direction,
 unsigned long flags);

struct dma_async_tx_descriptor *dmaengine_prep_dma_cyclic(
 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
 size_t period_len, enum dma_data_direction direction);

struct dma_async_tx_descriptor *dmaengine_prep_interleaved_dma(
 struct dma_chan *chan, struct dma_interleaved_template *xt,
 unsigned long flags);

The peripheral driver is expected to have mapped the scatterlist for the DMA operation
prior to calling dmaengine_prep_slave_sg(), and must keep the scatterlist mapped until the
DMA operation has completed. The scatterlist must be mapped using the DMA struct
device. If a mapping needs to be synchronized later, dma_sync_*_for_*() must be called
using the DMA struct device, too. So, normal setup should look like this:

 nr_sg = dma_map_sg(chan->device->dev, sgl, sg_len);
 desc = dmaengine_prep_slave_sg(chan, sgl, nr_sg, direction, flags);

Once a descriptor has been obtained, the callback information can be added and the
descriptor must then be submitted.

4. Submit the transaction: Once the descriptor has been prepared and the callback
information added, it must be placed on the DMA engine drivers pending queue.

dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc)

This returns a cookie that can be used to check the progress of DMA engine activity via
other DMA engine calls. The dmaengine_submit() call will not start the DMA operation, it
merely adds it to the pending queue. For this, see step 5, dma_async_issue_pending().

5. Issue pending DMA requests and wait for callback notification: The transactions in the
pending queue can be activated by calling the issue_pending API. If channel is idle then
the first transaction in queue is started and subsequent ones queued up. On completion of
each DMA operation, the next in queue is started and a tasklet triggered. The tasklet will
then call the client driver completion callback routine for notification, if set.

void dma_async_issue_pending(struct dma_chan *chan)

There are several kinds of addresses involved in the Linux DMA API, and it's important to
understand the differences. As seen in previous Chapter 8, the kernel normally uses virtual
addresses. Any address returned by kmalloc(), vmalloc(), and similar interfaces is a virtual address.

[377]

Chapter 9 Linux DMA in Device Drivers

[377]

The virtual memory system translates virtual addresses to CPU physical addresses, which are
stored as phys_addr_t or resource_size_t.

The kernel manages device resources like registers as physical addresses. These are the addresses
in /proc/iomem. The physical address is not directly useful to a driver; it must use the ioremap()
function to map the space and produce a virtual address.

I/O devices use a third kind of address: a bus address. If a device performs DMA to read or
write system memory, the addresses used by the device are bus addresses. In many systems, bus
addresses are identical to CPU physical addresses.

If the device supports DMA, the driver sets up a buffer using kmalloc() or a similar interface, which
returns a virtual address (X). The virtual memory system maps X to a physical address (Y) in
system RAM. The driver can use virtual address X to access the buffer, but the device itself cannot
because DMA doesn't go through the CPU virtual memory system. This is part of the reason for
the DMA API: the driver can give a virtual address X to an interface like dma_map_single(), which
returns the DMA bus address (Z). The driver then tells the device to perform DMA to Z.

The memory accessed by the DMA should be physically contiguous. Any memory allocated by
kmalloc() (up to 128 KB) or __get_free_pages() (up to 8MB) can be used. What cannot be used is
vmalloc() memory allocation (it would have to setup DMA on each individual physical page).

The Contiguous Memory Allocator (or CMA), has been developed to allow allocation of big,
physically-contiguous memory blocks. Simple in principle, it has grown quite complicated,
requiring cooperation between many subsystems. CMA is integrated with the DMA subsystem,
and is accessible using dma_alloc_coherent() DMA API. In fact, device drivers should never need
to call the CMA API directly, since instead of bus addresses and kernel mappings it operates
on pages and page frame numbers (PFNs), and provides no mechanism for maintaining cache
coherency.

The CMA has to be integrated with the DMA subsystem of a given architecture. This is performed
in two steps:

1. CMA works by reserving memory early at boot time. This memory, called a CMA area or
a CMA context, is later returned to the buddy allocator so that it can be used by regular
applications. To do the reservation, one needs to call:

void dma_contiguous_reserve(phys_addr_t limit);

just after the low-level "memblock" allocator is initialized but prior to the buddy
allocator setup. On ARM, for example, it is called in arm_memblock_init(). The amount of
reserved memory depends on a few Kconfig options and a cma kernel parameter. The
dma_contiguous_reserve() function will reserve memory and prepare it to be used with

Linux DMA in Device Drivers Chapter 9

[378]

CMA. On some architectures (eg. ARM) some architecture-specific work needs to be
performed as well. To allow that, CMA will call the following function:

void dma_contiguous_early_fixup(phys_addr_t base, unsigned long size);

2. The second thing to do is to change the architecture's DMA implementation to use the
whole machinery. To allocate CMA memory one uses:

struct page *dma_alloc_from_contiguous(struct device *dev, int count,
 unsigned int align);

Its first argument is a device that the allocation is performed on behalf of. The second
specifies the number of pages (not bytes or order) to allocate. The third argument is the
alignment expressed as a page order. The return value is the first of a sequence of count
allocated pages.

Types of DMA Mappings
A DMA mapping is a combination of allocating a DMA buffer and generating an address for that
buffer that is accessible by the device. There are two types of DMA mappings:

1. Coherent DMA Mappings - use uncached memory mapping from kernel space, usually
allocated using dma_alloc_coherent(). The kernel allocates a suitable buffer and sets the
mapping for the driver. Can simultaneously be accessed by the CPU and device, so this
has to be in a cache coherent memory area. Usually allocated for the whole time the
module is loaded. Buffers are usually mapped at driver initialization, unmapped at the
end and to do this the hardware should guarantee that the device and the CPU can access
the data in parallel and will see updates made by each other without any explicit software
flushing.

If the processor has a coherent architecture the allocator function dma_alloc_coherent() will
not make the memory uncached. It will only allocate the memory and create a phys to virt
mapping for cpu.

If the architecture is non-coherent dma_alloc_coherent() will make the memory uncached,
so that coherency is maintained. This function calls arm_dma_alloc(), which in turns calls
__dma_alloc() which takes pgprot_t as argument which is basically the page attributes to
make this memory uncached:

[379]

Chapter 9 Linux DMA in Device Drivers

[379]

static inline void *dma_alloc_coherent(struct device *dev, size_t size,
 dma_addr_t *dma_handle, gfp_t flag)
{
 return dma_alloc_attrs(dev, size, dma_handle, flag, 0);
}

static inline void *dma_alloc_attrs(struct device *dev, size_t size,
 dma_addr_t *dma_handle, gfp_t flag,
 unsigned long attrs)
{
 struct dma_map_ops *ops = get_dma_ops(dev);
 void *cpu_addr;

 BUG_ON(!ops);

 if (dma_alloc_from_coherent(dev, size, dma_handle, &cpu_addr))
 return cpu_addr;

 if (!arch_dma_alloc_attrs(&dev, &flag))
 return NULL;
 if (!ops->alloc)
 return NULL;

 /* non-coherent architecture, calls arm_dma_alloc() */
 cpu_addr = ops->alloc(dev, size, dma_handle, flag, attrs);
 debug_dma_alloc_coherent(dev, size, *dma_handle, cpu_addr);
 return cpu_addr;
}

/*
 * Allocate DMA-coherent memory space and return both the kernel remapped
 * virtual and bus address for that space.
 */
void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
 gfp_t gfp, unsigned long attrs)
{
 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);

 return __dma_alloc(dev, size, handle, gfp, prot, false,
 attrs, __builtin_return_address(0));
}

Linux DMA in Device Drivers Chapter 9

[380]

To allocate and map large (PAGE_SIZE or so) consistent DMA regions, you should do:

#include <linux/dma-mapping.h>
dma_addr_t dma_handle;
cpu_addr = dma_alloc_coherent(dev, size, &dma_handle, gfp);

The dma_alloc_coherent() function allocates uncached, unbuffered memory for a device
for performing DMA. It allocates pages, returns the CPU-viewed (virtual) address, and
sets the third argument to the device-viewed address. A buffer is automatically placed
where the device access it. The argument dev is a struct device pointer. This function may
be called in an interrupt context with the GFP_ATOMIC flag. The argument size is the
length of the region you want to allocate in bytes and gfp is a standard GFP flag. The
dma_alloc_coherent() function returns two values: the virtual address cpu_addr, which
you can use to access it from the CPU and the dma_handle DMA address.

The CPU virtual address and the DMA address are both guaranteed to be aligned to the
smallest PAGE_SIZE order which is greater than or equal to the requested size.

To unmap and free such a DMA region, you call:

dma_free_coherent(dev, size, cpu_addr, dma_handle);

Where dev, and size are the same as in the above dma_alloc_coherent() call and cpu_addr and
dma_handle are the values that dma_alloc_coherent() returned to you. This function may not
be called in interrupt context.

2. Streaming DMA Mappings - use cached mapping and clean or invalidate it according
to the operation needed using dma_map_single() and dma_unmap_single(). This is different
from coherent mapping because the mappings deal with addresses that were chosen
apriori, which are usually mapped for one DMA transfer and unmapped right after it.

For non-coherent processors the dma_map_single() function will call dma_map_single_attrs(),
which in turn calls arm_dma_map_page() which ensures that any data held in the cache is
appropriately discarded or written back.

#define dma_map_single(d, a, s, r) dma_map_single_attrs(d, a, s, r, 0)

static inline dma_addr_t dma_map_single_attrs(struct device *dev, void *ptr,
 size_t size,
 enum dma_data_direction dir,
 unsigned long attrs)
{
 struct dma_map_ops *ops = get_dma_ops(dev);
 dma_addr_t addr;

 kmemcheck_mark_initialized(ptr, size);
 BUG_ON(!valid_dma_direction(dir));

[381]

Chapter 9 Linux DMA in Device Drivers

[381]

 /* calls arm_dma_map_page for ARM architectures */
 addr = ops->map_page(dev, virt_to_page(ptr),
 offset_in_page(ptr), size,
 dir, attrs);
 debug_dma_map_page(dev, virt_to_page(ptr),
 offset_in_page(ptr), size,
 dir, addr, true);
 return addr;
}

/*
 * arm_dma_map_page - map a portion of a page for streaming DMA
 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 * @page: page that buffer resides in
 * @offset: offset into page for start of buffer
 * @size: size of buffer to map
 * @dir: DMA transfer direction
 *
 * Ensure that any data held in the cache is appropriately discarded
 * or written back.
 *
 * The device owns this memory once this call has completed. The CPU
 * can regain ownership by calling dma_unmap_page().
 */
static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
 unsigned long offset, size_t size, enum dma_data_direction dir,
 unsigned long attrs)
{
 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
 __dma_page_cpu_to_dev(page, offset, size, dir);
 return pfn_to_dma(dev, page_to_pfn(page)) + offset;
}

The streaming DMA mapping routines can be called from interrupt context. There are two
versions of each map/unmap, one that will map/unmap a single memory region, and one
that will map/unmap a scatterlist.

To map a single region, see the code below:

struct device *dev = &my_dev->dev;
dma_addr_t dma_handle;
void *addr = buffer->ptr;
size_t size = buffer->len;
dma_handle = dma_map_single(dev, addr, size, direction);

Linux DMA in Device Drivers Chapter 9

[382]

where dev is a struct device pointer, addr is the pointer that contains the virtual buffer
address allocated with kmalloc(), size is the buffer size, and the direction choices are:
DMA_BIDIRECTIONAL, DMA_TO_DEVICE or DMA_FROM_DEVICE. The dma_handle
is the DMA bus address returned for the device.

To unmap the memory region:

dma_unmap_single(dev, dma_handle, size, direction);

You should call dma_unmap_single() when the DMA activity is finished, e.g., from the
interrupt that indicated that the DMA transfer is done.

These are the rules for streaming DMA mapping:

•	 A buffer can only be used in the direction specified.
•	 A mapped buffer belongs to the device, not the processor. The device driver must keep its

hands off the buffer until it is unmapped.
•	 A buffer used to send data to a device must contain the data before it is mapped.
•	 The buffer must not be unmapped while DMA is still active, or serious system instability is

guaranteed.

LAB 9.1: "streaming DMA" Module
You will now develop your first kernel DMA module. This driver will allocate two kernel buffers,
wbuf and rbuf. The driver will receive characters from user space and store them in the wbuf buffer,
then it will set up a DMA transaction (memory to memory) to copy values from wbuf to rbuf.
Finally, both buffers will be compared to check if they contain the same values or not.

The main code sections of the driver will now be described:

1. Include the required header files:

#include <linux/module.h>
#include <linux/uaccess.h>
#include <linux/dma-mapping.h> /* DMA mapping functions */
#include <linux/fs.h>

/*
 * To enumerate peripheral types. Used for NXP SDMA controller.
 */
#include <linux/platform_data/dma-imx.h>

/*
* Functions needed to allocate a DMA slave channel, set slave and controller
* specific parameters, get a descriptor for transaction, submit the
* transaction, issue pending requests and wait for callback notification

[383]

Chapter 9 Linux DMA in Device Drivers

[383]

*/
#include <linux/dmaengine.h>

#include <linux/miscdevice.h>
#include <linux/platform_device.h>

2. Create a private structure that will store the DMA device specific information. In this
driver, you will handle a char device, so a struct miscdevice will be created, initialized and
added to your private structure in its first field. The wbuf and rbuf pointer variables will
hold the addresses of your allocated buffers. The dma_m2m_chan pointer variable will hold
the DMA channel associated with the dev device.

struct dma_private
{
 struct miscdevice dma_misc_device;
 struct device *dev;
 char *wbuf;
 char *rbuf;
 struct dma_chan *dma_m2m_chan;
 struct completion dma_m2m_ok;
};

The last field of your private structure is a struct completion variable. A common pattern
in kernel programming involves initiating some activity outside of the current thread,
then waiting for that activity to complete. This activity can be the creation of a new kernel
thread, a request to an existing process, or some sort of hardware-based action (like a
DMA transfer). In such cases, it can be tempting to use a semaphore for synchronization of
the two tasks, with code such as:

struct semaphore sem;
init_MUTEX_LOCKED(&sem);
start_external_task(&sem);
down(&sem);

The external task can then call up(&sem) when its work is done. As is turns out,
semaphores are not the best tool to use in this situation. In normal use, code attempting to
lock a semaphore finds that semaphore available almost all the time; if there is significant
contention for the semaphore, performance suffers and the locking scheme needs to be
reviewed. So semaphores have been heavily optimized for the available case. When used
to communicate task completion in the way shown above, however, the thread calling
down will almost always have to wait; performance will suffer accordingly. Semaphores
can also be subject to a (difficult) race condition when used in this way if they are declared
as automatic variables. In some cases, the semaphore could vanish before the process
calling up is finished with it.

Linux DMA in Device Drivers Chapter 9

[384]

These concerns inspired the addition of the completion interface in the 2.4.7 kernel.
Completions are a lightweight mechanism with one task: allowing one thread to tell another
that the job is done. The advantage of using completions is clear intent of the code, but also
more efficient code as both threads can continue until the result is actually needed.

3. Despite the generic DMA engine API, it could be needed to provide a custom data structure
for the specific processor´s DMA controller. In the i.MX7D processor the struct imx_dma_data
is initialized and passed as an argument to the dma_request_channel() function within the
probe() function:

static int __init my_probe(struct platform_device *pdev)
{

 [...]

 struct imx_dma_data m2m_dma_data = {0};

 [...]

 m2m_dma_data.peripheral_type = IMX_DMATYPE_MEMORY;
 m2m_dma_data.priority = DMA_PRIO_HIGH;

dma_device->dma_m2m_chan = dma_request_channel(dma_m2m_mask,
 dma_m2m_filter,

 &m2m_dma_data);

 [...]

}

4. In the probe() function set up the capabilities for the channel that will be requested,
initialize the struct imx_dma_data structure, allocate the wbuf and rbuf buffers, and request
the DMA channel from the DMA engine using the dma_request_channel() function. The
dma_request_channel() function takes three parameters:

•	 The dma_m2m_mask that holds the channel capabilities
•	 The m2m_dma_data i.MX7D custom data structure
•	 The dma_m2m_filter that helps to select a more specific channel between multiple

channel possibilities. When allocating a channel, the dma engine finds the first
channel that matches the mask and calls the filter function. See below your
driver´s dma_m2m_filter callback function:

static bool dma_m2m_filter(struct dma_chan *chan, void *param)
{
 if (!imx_dma_is_general_purpose(chan))
 return false;
 chan->private = param;
 return true;
}

[385]

Chapter 9 Linux DMA in Device Drivers

[385]

Once the channel is obtained, you have to configure it by filling the struct dma_slave_config
structure with the proper values to do a DMA transaction. Most of the generic information
that a slave DMA can use is included in this struct dma_slave_config structure. It allows the
clients to specify DMA direction, DMA addresses, bus widths, DMA burst lengths, etc.
If some DMA controllers have more parameters to be sent then they should try to embed
struct dma_slave_config in their controller specific structure. That gives flexibility to pass
more parameters, if required.

static int __init my_probe(struct platform_device *pdev)
{
 /* Create private structure */

struct dma_private *dma_device;

 dma_cap_mask_t dma_m2m_mask;
 struct imx_dma_data m2m_dma_data = {0};
 struct dma_slave_config dma_m2m_config = {0};

 /* Allocate private structure */

 dma_device = devm_kzalloc(&pdev->dev,
 sizeof(struct dma_private),
 GFP_KERNEL);

 /* Create your char device */
 dma_device->dma_misc_device.minor = MISC_DYNAMIC_MINOR;
 dma_device->dma_misc_device.name = "sdma_test";
 dma_device->dma_misc_device.fops = &dma_fops;

 /* store the DMA device in your private struct */
 dma_device->dev = &pdev->dev;

 /* Allocate the DMA buffers */
 dma_device->wbuf = devm_kzalloc(&pdev->dev, SDMA_BUF_SIZE, GFP_KERNEL);
 dma_device->rbuf = devm_kzalloc(&pdev->dev, SDMA_BUF_SIZE, GFP_KERNEL);

 /* Set up the channel capabilities */
 dma_cap_zero(dma_m2m_mask); /* Clear the mask */
 dma_cap_set(DMA_MEMCPY, dma_m2m_mask); /* Set the capability */

 /* Initialize custom DMA processor´s controller structure */
 m2m_dma_data.peripheral_type = IMX_DMATYPE_MEMORY;
 m2m_dma_data.priority = DMA_PRIO_HIGH;

 /* Request the DMA channel */
 dma_device->dma_m2m_chan = dma_request_channel(dma_m2m_mask,

 dma_m2m_filter,
 &m2m_dma_data);

Linux DMA in Device Drivers Chapter 9

[386]

 /* Set slave and controller specific parameters */
 dma_m2m_config.direction = DMA_MEM_TO_MEM;
 dma_m2m_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 dmaengine_slave_config(dma_device->dma_m2m_chan, &dma_m2m_config);

 retval = misc_register(&dma_device->dma_misc_device);
 platform_set_drvdata(pdev, dma_device);

 return 0;
}

5. Write the sdma_write() function to communicate with user space. This function gets the
characters written to the the char device using copy_from_user() and store them in the wbuf
buffer. The DMA addresses dma_src and dma_dst are obtained using the dma_map_single()
function, that takes as parameters the wbuf and rbuf virtual addresses previously obtained
in the probe() function and stored in your DMA private structure; these virtual addresses
are retrieved in sdma_write() using the container_of() function.

Get a descriptor for the transaction using device_prep_dma_memcpy(). Once the descriptor
has been obtained, the callback information can be added and the descriptor must then be
submitted using dmaengine_submit().

Finally, issue pending DMA requests and wait for callback notification
(see dma_m2m_callback() function). The dmaengine_submit() function will not start the
DMA operation, it merely adds it to the pending queue. For this, do
dma_async_issue_pending(). The transactions in the pending queue can be activated
by calling the issue_pending API. If the channel is idle then the first transaction in
the queue is started and subsequent ones queued up. On completion of each DMA
operation, the next in queue is started and a tasklet triggered. The tasklet will then
call the client driver´s completion callback routine for notification.

static ssize_t sdma_write(struct file * file, const char __user * buf,
 size_t count, loff_t * offset)
{

 struct dma_async_tx_descriptor *dma_m2m_desc;
 struct dma_device *dma_dev;
 struct dma_private *dma_priv;
 struct device *chan_dev;
 dma_cookie_t cookie;
 dma_addr_t dma_src;
 dma_addr_t dma_dst;

 /* Retrieve the private structure */
 dma_priv = container_of(file->private_data,

[387]

Chapter 9 Linux DMA in Device Drivers

[387]

 struct dma_private,
 dma_misc_device);

 /* Get the channel dev */
 dma_dev = dma_priv->dma_m2m_chan->device;
 chan_dev = dma_priv->dma_m2m_chan->device->dev;

 /* Receive characters from user space and store in wbuf */
 if(copy_from_user(dma_priv->wbuf, buf, count)){
 return -EFAULT;
 }

 /* Get DMA addresses */
 dma_src = dma_map_single(chan_dev, dma_priv->wbuf,
 SDMA_BUF_SIZE, DMA_TO_DEVICE);

 dma_dst = dma_map_single(chan_dev, dma_priv->rbuf,
 SDMA_BUF_SIZE, DMA_FROM_DEVICE);

 /* Get a descriptor for the DMA transaction */
 dma_m2m_desc = dma_dev->device_prep_dma_memcpy(dma_priv->dma_m2m_chan,

 dma_dst,
 dma_src,
 SDMA_BUF_SIZE, 0);

 dev_info(dma_priv->dev, "successful descriptor obtained");

 /* Add callback information */
 dma_m2m_desc->callback = dma_m2m_callback;
 dma_m2m_desc->callback_param = dma_priv;

 /* Init the completion event */
 init_completion(&dma_priv->dma_m2m_ok);

 /* Add DMA operation to the pending queue */
 cookie = dmaengine_submit(dma_m2m_desc);

 /* Issue DMA transaction */
 dma_async_issue_pending(dma_priv->dma_m2m_chan);

 /* Wait for completion of the event */
 wait_for_completion(&dma_priv->dma_m2m_ok);

 /* check the status of the channel */
 dma_async_is_tx_complete(dma_priv->dma_m2m_chan, cookie, NULL, NULL);

 dev_info(dma_priv->dev, "The rbuf string is %s\n", dma_priv->rbuf);

Linux DMA in Device Drivers Chapter 9

[388]

 /* Unmap after finishing the DMA transaction */
 dma_unmap_single(dma_priv->dev, dma_src,
 SDMA_BUF_SIZE, DMA_TO_DEVICE);
 dma_unmap_single(dma_priv->dev, dma_dst,
 SDMA_BUF_SIZE, DMA_TO_DEVICE);

 /* Check the buffers (CPU access) after doing unmap */
if (*(dma_priv->rbuf) != *(dma_priv->wbuf)) {

 dev_err(dma_priv->dev, "buffer copy failed!\n");
 return -EINVAL;
 }

 return count;
}

6. Create a callback function to inform about the completion of the DMA transaction. Signal
the completion of the event inside this function:

static void dma_m2m_callback(void *data)
{

struct dma_private *dma_priv = data;
 dev_info(dma_priv->dev, "%s\n finished DMA transaction" ,__func__);
 complete(&dma_priv->dma_m2m_ok);
}

7. Modify the device tree files under arch/arm/boot/dts/ to include your DT driver´s device
nodes. There must be a DT device node´s compatible property identical to the compatible
string stored in one of the driver´s of_device_id structures.

For the MCIMX7D-SABRE Board open the DT file imx7d-sdb.dts and add the sdma_m2m
node below the / node:

[...]

/ {
 model = "Freescale i.MX7 SabreSD Board";
 compatible = "fsl,imx7d-sdb", "fsl,imx7d";

memory {
 reg = <0x80000000 0x80000000>;
 };

sdma_m2m {
 compatible ="arrow,sdma_m2m";
};

 [...]

[389]

Chapter 9 Linux DMA in Device Drivers

[389]

For the SAMA5D2B-XULT Board open the DT file at91-sama5d2_xplained_common.dtsi and
add the sdma_m2m node below the gpio_keys node:

[...]

gpio_keys {
compatible = "gpio-keys";
pinctrl-names = "default";

 pinctrl-0 = <&pinctrl_key_gpio_default>;
bp1 {
 label = "PB_USER";

 gpios = <&pioA 41 GPIO_ACTIVE_LOW>;
 linux,code = <0x104>;

};
};

sdma_m2m {
 compatible ="arrow,sdma_m2m";
};

[...]

For the Raspberry Pi 3 Model B Board open the DT file bcm2710-rpi-3-b.dts and add the
sdma_m2m node inside the soc node:

[...]

&soc {
 virtgpio: virtgpio {
 compatible = "brcm,bcm2835-virtgpio";
 gpio-controller;
 #gpio-cells = <2>;
 firmware = <&firmware>;
 status = "okay";
 };

expgpio: expgpio {
 compatible = "brcm,bcm2835-expgpio";
 gpio-controller;
 #gpio-cells = <2>;
 firmware = <&firmware>;
 status = "okay";
 };

sdma_m2m {
 compatible ="arrow,sdma_m2m";
};

 [...]

Linux DMA in Device Drivers Chapter 9

[390]

8. Build the modified device tree and load it to the target processor.

See in the next Listing 9-1 the "streaming DMA" driver source code (sdma_imx_m2m.c) for the
i.MX7D processor.

Note: The source code for the SAMA5D2 (sdma_sam_m2m.c) and BCM2837 (sdma_rpi_m2m.c)
drivers can be downloaded from the GitHub repository of this book.

Listing 9-1: sdma_imx_m2m.c
#include <linux/module.h>
#include <linux/uaccess.h>
#include <linux/dma-mapping.h>
#include <linux/fs.h>
#include <linux/platform_data/dma-imx.h>
#include <linux/dmaengine.h>
#include <linux/miscdevice.h>
#include <linux/platform_device.h>

/* private structure */
struct dma_private
{
 struct miscdevice dma_misc_device;
 struct device *dev;
 char *wbuf;
 char *rbuf;
 struct dma_chan *dma_m2m_chan;
 struct completion dma_m2m_ok;
};

/* set the buffer size */
#define SDMA_BUF_SIZE (1024*63)

/* function to filter a specific DMA channel */
static bool dma_m2m_filter(struct dma_chan *chan, void *param)
{
 if (!imx_dma_is_general_purpose(chan))
 return false;
 chan->private = param;
 return true;
}

/* callback notification handling */
static void dma_m2m_callback(void *data)
{
 struct dma_private *dma_priv = data;
 dev_info(dma_priv->dev, "%s\n finished DMA transaction" ,__func__);

[391]

Chapter 9 Linux DMA in Device Drivers

[391]

 complete(&dma_priv->dma_m2m_ok);
}

static ssize_t sdma_write(struct file * file, const char __user * buf,
 size_t count, loff_t * offset)
{
 struct dma_async_tx_descriptor *dma_m2m_desc;
 struct dma_device *dma_dev;
 struct dma_private *dma_priv;
 struct device *chan_dev;
 dma_cookie_t cookie;
 dma_addr_t dma_src;
 dma_addr_t dma_dst;

 /* retrieve the private structure */
 dma_priv = container_of(file->private_data,
 struct dma_private, dma_misc_device);

 /* get the channel dev */
 dma_dev = dma_priv->dma_m2m_chan->device;
 chan_dev = dma_priv->dma_m2m_chan->device->dev;

 /* Receive characters from user space and store in wbuf */
 if(copy_from_user(dma_priv->wbuf, buf, count)){
 return -EFAULT;
 }

 dev_info(dma_priv->dev, "The wbuf string is %s\n", dma_priv->wbuf);

 /* get DMA addresses */
 dma_src = dma_map_single(chan_dev, dma_priv->wbuf,
 SDMA_BUF_SIZE, DMA_TO_DEVICE);

dev_info(dma_priv->dev, "dma_src map obtained");

dma_dst = dma_map_single(chan_dev, dma_priv->rbuf,
 SDMA_BUF_SIZE, DMA_FROM_DEVICE);

 dev_info(dma_priv->dev, "dma_dst map obtained");

 /* get a descriptor for the DMA transaction */
dma_m2m_desc = dma_dev->device_prep_dma_memcpy(dma_priv->dma_m2m_chan,

 dma_dst, dma_src,
 SDMA_BUF_SIZE, 0);

 dev_info(dma_priv->dev, "successful descriptor obtained");

 /* add callback notification information */

Linux DMA in Device Drivers Chapter 9

[392]

 dma_m2m_desc->callback = dma_m2m_callback;
 dma_m2m_desc->callback_param = dma_priv;

 /* init the completion event */
 init_completion(&dma_priv->dma_m2m_ok);

 /* add DMA operation to the pending queue */
 cookie = dmaengine_submit(dma_m2m_desc);

 if (dma_submit_error(cookie)){
 dev_err(dma_priv->dev, "Failed to submit DMA\n");
 return -EINVAL;
 };

 /* issue DMA transaction */
 dma_async_issue_pending(dma_priv->dma_m2m_chan);

 /* wait for completion of the event */
 wait_for_completion(&dma_priv->dma_m2m_ok);

 /* check the status of the channel */
 dma_async_is_tx_complete(dma_priv->dma_m2m_chan, cookie, NULL, NULL);

 dev_info(dma_priv->dev, "The rbuf string is %s\n", dma_priv->rbuf);

 /* unmap after finishing the DMA transaction */
 dma_unmap_single(dma_priv->dev, dma_src,
 SDMA_BUF_SIZE, DMA_TO_DEVICE);
 dma_unmap_single(dma_priv->dev, dma_dst,
 SDMA_BUF_SIZE, DMA_TO_DEVICE);

 /* check the buffers (CPU access) after doing unmap */
if (*(dma_priv->rbuf) != *(dma_priv->wbuf)) {

 dev_err(dma_priv->dev, "buffer copy failed!\n");
 return -EINVAL;
 }

dev_info(dma_priv->dev, "buffer copy passed!\n");
 dev_info(dma_priv->dev, "wbuf is %s\n", dma_priv->wbuf);
 dev_info(dma_priv->dev, "rbuf is %s\n", dma_priv->rbuf);

 return count;
}

struct file_operations dma_fops = {
 write: sdma_write,
};

[393]

Chapter 9 Linux DMA in Device Drivers

[393]

static int __init my_probe(struct platform_device *pdev)
{
 int retval;

 /* create private structure */
 struct dma_private *dma_device;
 dma_cap_mask_t dma_m2m_mask;
 struct imx_dma_data m2m_dma_data = {0};
 struct dma_slave_config dma_m2m_config = {0};

 dev_info(&pdev->dev, "platform_probe enter\n");

 /* allocate private structure */
 dma_device = devm_kzalloc(&pdev->dev, sizeof(struct dma_private), GFP_KERNEL);

 /* create your char device */
 dma_device->dma_misc_device.minor = MISC_DYNAMIC_MINOR;
 dma_device->dma_misc_device.name = "sdma_test";
 dma_device->dma_misc_device.fops = &dma_fops;

 dma_device->dev = &pdev->dev;

 /* allocate wbuf and rbuf buffers */
 dma_device->wbuf = devm_kzalloc(&pdev->dev, SDMA_BUF_SIZE, GFP_KERNEL);
 if(!dma_device->wbuf) {
 dev_err(&pdev->dev, "error allocating wbuf !!\n");
 return -ENOMEM;
 }

 dma_device->rbuf = devm_kzalloc(&pdev->dev, SDMA_BUF_SIZE, GFP_KERNEL);
 if(!dma_device->rbuf) {
 dev_err(&pdev->dev, "error allocating rbuf !!\n");
 return -ENOMEM;
 }

 /* set up the channel capabilities */
 dma_cap_zero(dma_m2m_mask); /* Clear the mask */
 dma_cap_set(DMA_MEMCPY, dma_m2m_mask); /* Set the capability */

/* initialize custom DMA processor´s controller structure */
 m2m_dma_data.peripheral_type = IMX_DMATYPE_MEMORY;
 m2m_dma_data.priority = DMA_PRIO_HIGH;

 /* request the DMA channel */
dma_device->dma_m2m_chan = dma_request_channel(dma_m2m_mask,

 dma_m2m_filter,
 &m2m_dma_data);

 if (!dma_device->dma_m2m_chan) {

Linux DMA in Device Drivers Chapter 9

[394]

 dev_err(&pdev->dev,
 "Error opening the SDMA memory to memory channel\n");
 return -EINVAL;
 }

 /* set slave and controller specific parameters */
 dma_m2m_config.direction = DMA_MEM_TO_MEM;
 dma_m2m_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 dmaengine_slave_config(dma_device->dma_m2m_chan, &dma_m2m_config);

 retval = misc_register(&dma_device->dma_misc_device);
 if (retval) return retval;

/*
 * attach the private structure to the pdev structure
 * to recover it in each remove() function call
 */
 platform_set_drvdata(pdev, dma_device);

 dev_info(&pdev->dev, "platform_probe exit\n");

 return 0;
}

static int __exit my_remove(struct platform_device *pdev)
{

struct dma_private *dma_device = platform_get_drvdata(pdev);
 dev_info(&pdev->dev, "platform_remove enter\n");
 misc_deregister(&dma_device->dma_misc_device);
 dma_release_channel(dma_device->dma_m2m_chan);
 dev_info(&pdev->dev, "platform_remove exit\n");
 return 0;
}

static const struct of_device_id my_of_ids[] = {
 { .compatible = "arrow,sdma_m2m"},
 {},
};

MODULE_DEVICE_TABLE(of, my_of_ids);

static struct platform_driver my_platform_driver = {
 .probe = my_probe,
 .remove = my_remove,
 .driver = {
 .name = "sdma_m2m",
 .of_match_table = my_of_ids,
 .owner = THIS_MODULE,

[395]

Chapter 9 Linux DMA in Device Drivers

[395]

 }
};

static int demo_init(void)
{
 int ret_val;
 pr_info("demo_init enter\n");

 ret_val = platform_driver_register(&my_platform_driver);
 if (ret_val !=0)
 {
 pr_err("platform value returned %d\n", ret_val);
 return ret_val;
 }
 pr_info("demo_init exit\n");
 return 0;
}

static void demo_exit(void)
{
 pr_info("demo_exit enter\n");
 platform_driver_unregister(&my_platform_driver);
 pr_info("demo_exit exit\n");
}

module_init(demo_init);
module_exit(demo_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Alberto Liberal <aliberal@arroweurope.com>");
MODULE_DESCRIPTION("This is a SDMA memory to memory driver");

sdma_imx_m2m.ko Demonstration
root@imx7dsabresd:~# insmod sdma_imx_m2m.ko /* load module */
root@imx7dsabresd:~# echo abcdefg > /dev/sdma_test /* write values to the wbuf
buffer, start DMA transaction that copies values from wbuf to rbuf and compares both
buffers values */
root@imx7dsabresd:~# rmmod sdma_imx_m2m.ko /* remove module */

Linux DMA in Device Drivers Chapter 9

[396]

DMA Scather/Gather Mappings
The allocated buffer can be fragmented in the physical memory and does not need to be allocated
contiguously. These allocated physical memory blocks are mapped to a contiguous buffer in the
calling process virtual address space, thus enabling easy access to the allocated physical memory
blocks.

There are different ways to send contents of several buffers over DMA. They can be sent one at a time
mapping each or with scatter/gather, can be sent them all at once (speed). Many devices can accept a
scatterlist of array pointers and lengths. Scatterlist entries must be the size of a page (except ends).

Scatter/gather I/O allows the system to perform DMA I/O operations on buffers which are scattered
throughout physical memory. Consider, for example, the case of a large (multi-page) buffer created
in user space. The application sees a continuous range of virtual addresses, but the physical pages
behind those addresses will almost certainly not be adjacent to each other. If that buffer is to be
written to a device in a single I/O operation, one of two things must be done: (1) the data must be
copied into a physically-contiguous buffer, or (2) the device must be able to work with a list of
physical addresses and lengths, grabbing the right amount of data from each segment. Scatter/gather
I/O, by eliminating the need to copy data into contiguous buffers, can greatly increase the efficiency
of I/O operations while simultaneously getting around the problem generated by the creation of
large, physically-contiguous buffers. In order to set up a scatterlist mapping, you should:

1. First, create a struct scatterlist structure to perform a scatterlist DMA transfer:

struct scatterlist *sg

The struct scatterlist structure is defined in include/linux/scatterlist.h as follows:

struct scatterlist {
unsigned long page_link;
unsigned int offset;
unsigned int length;
dma_addr_t dma_address;
unsigned int dma_length;

};

2. Initialize a scatterlist array with:

void sg_init_table(struct scatterlist *sg, unsigned int nents)

Here, sg points to the allocated array, and nents is the number of allocated scatter/gather
entries.

Set each entry in the allocated array sg to point at given data:

void sg_set_buf(struct scatterlist *sg, const void *buf, unsigned int buflen)

[397]

Chapter 9 Linux DMA in Device Drivers

[397]

Here, buf is the virtual address pointer of your allocated buffer and buflen is the length of
your allocated buffer.

3. Map the scatterlist to get the DMA addresses. For each buffer in the input scatterlist,
dma_map_sg() determines the proper bus address to give to the device:

int dma_map_sg(device, sg, nent, direction)

Returns the number of DMA buffers to send (<= nent).

4. Once the transfer is complete, a scatter/gather mapping is unmapped with a call to
dma_unmap_sg():

void dma_unmap_sg(device, sg, nent, direction)

LAB 9.2: "scatter/gather DMA device" Module
In this second DMA lab, you are going to develop a kernel module that will send the contents from
three "wbuf" buffers to three "rbuf" buffers at the same time using a scatter/gather DMA.

The driver will create four scatter lists, two of them with three buffer entries and another two
with just one entry, then will allocate six buffers (wbuf, wbuf2, wbuf3 and rbuf, rbuf2, rbuf3) using
the kzalloc() function. The driver will fill the wbuf buffers with some selected values. Next, it
will receive characters from user space and store them in the dma_src_coherent buffer, which is
allocated using the coherent allocation method.

After allocating all the buffers and storing the characters in the transmission side buffers, the
driver will set up a first DMA transaction from wbuf´s to rbuf´s. Then, it will set up a second DMA
transaction from dma_src_coherent to dma_dst_coherent.

After each DMA transaction, the driver will check that all the values in the source and destination
buffers are identical.

It will be described now the main code sections that differ from the previous lab 9.1 driver:

1. Create the scatter list structure arrays and buffer pointer variables:

static dma_addr_t dma_dst;
static dma_addr_t dma_src;
static char *dma_dst_coherent;
static char *dma_src_coherent;
static unsigned int *wbuf, *wbuf2, *wbuf3;
static unsigned int *rbuf, *rbuf2, *rbuf3;
static struct scatterlist sg3[1],sg4[1];
static struct scatterlist sg[3],sg2[3];

Linux DMA in Device Drivers Chapter 9

[398]

2. Get the virtual buffer addresses inside the probe() function:

wbuf = devm_kzalloc(&pdev->dev, SDMA_BUF_SIZE, GFP_KERNEL);
wbuf2 = devm_kzalloc(&pdev->dev, SDMA_BUF_SIZE, GFP_KERNEL);
wbuf3 = devm_kzalloc(&pdev->dev, SDMA_BUF_SIZE, GFP_KERNEL);

rbuf = devm_kzalloc(&pdev->dev, SDMA_BUF_SIZE, GFP_KERNEL);
rbuf2 = devm_kzalloc(&pdev->dev, SDMA_BUF_SIZE, GFP_KERNEL);
rbuf3 = devm_kzalloc(&pdev->dev, SDMA_BUF_SIZE, GFP_KERNEL);

dma_dst_coherent = dma_alloc_coherent(&pdev->dev, SDMA_BUF_SIZE,
 &dma_dst, GFP_DMA);
dma_src_coherent = dma_alloc_coherent(&pdev->dev, SDMA_BUF_SIZE,
 &dma_src, GFP_DMA);

3. In sdma_write() fill in the wbuf, wbuf2, and wbuf3 with some selected values:

index1 = wbuf;
index2 = wbuf2;
index3 = wbuf3;

for (i=0; i<SDMA_BUF_SIZE/4; i++) {
 *(index1 + i) = 0x12345678;
}
for (i=0; i<SDMA_BUF_SIZE/4; i++) {
 *(index2 + i) = 0x87654321;
}
for (i=0; i<SDMA_BUF_SIZE/4; i++) {
 *(index3 + i) = 0xabcde012;
}

4. In sdma_ write() initialize scatterlist arrays with sg_init_table(), and set each entry in the
allocated arrays with sg_set_buf() to point at given data. You should provide the exact
DMA direction if you know it. Map the scatterlist to get the DMA addresses using the
dma_map_sg() function.

sg_init_table(sg, 3);
sg_set_buf(&sg[0], wbuf, SDMA_BUF_SIZE);
sg_set_buf(&sg[1], wbuf2, SDMA_BUF_SIZE);
sg_set_buf(&sg[2], wbuf3, SDMA_BUF_SIZE);
dma_map_sg(dma_dev->dev, sg, 3, DMA_TO_DEVICE);

sg_init_table(sg2, 3);
sg_set_buf(&sg2[0], rbuf, SDMA_BUF_SIZE);
sg_set_buf(&sg2[1], rbuf2, SDMA_BUF_SIZE);
sg_set_buf(&sg2[2], rbuf3, SDMA_BUF_SIZE);
dma_map_sg(dma_dev->dev, sg2, 3, DMA_FROM_DEVICE);

sg_init_table(sg3, 1);
sg_set_buf(sg3, dma_src_coherent, SDMA_BUF_SIZE);

[399]

Chapter 9 Linux DMA in Device Drivers

[399]

dma_map_sg(dma_dev->dev, sg3, 1, DMA_TO_DEVICE);
sg_init_table(sg4, 1);
sg_set_buf(sg4, dma_dst_coherent, SDMA_BUF_SIZE);
dma_map_sg(dma_dev->dev, sg4, 1, DMA_FROM_DEVICE);

5. In sdma_write() get the channel descriptors, add DMA operations to the pending queue,
issue pending DMA requests, set and wait for callback notifications. After each DMA
transaction compare the values of the transmition and reception buffers.

/* Get the DMA descriptor for the first DMA transaction */
dma_m2m_desc = dma_dev->device_prep_dma_sg(dma_m2m_chan,sg2, 3, sg, 3, 0);

dma_m2m_desc->callback = dma_sg_callback;
dmaengine_submit(dma_m2m_desc);
dma_async_issue_pending(dma_m2m_chan);
wait_for_completion(&dma_m2m_ok);
dma_unmap_sg(dma_dev->dev, sg, 3, DMA_TO_DEVICE);
dma_unmap_sg(dma_dev->dev, sg2, 3, DMA_FROM_DEVICE);

/* compare values of the first transaction */
for (i=0; i<SDMA_BUF_SIZE/4; i++) {
 if (*(rbuf+i) != *(wbuf+i)) {
 pr_info("buffer 1 copy failed!\n");
 return -EINVAL;
 }
}
pr_info("buffer 1 copy passed!\n");

for (i=0; i<SDMA_BUF_SIZE/4; i++) {
 if (*(rbuf2+i) != *(wbuf2+i)) {
 pr_info("buffer 2 copy failed!\n");
 return -EINVAL;
 }
}
pr_info("buffer 2 copy passed!\n");

for (i=0; i<SDMA_BUF_SIZE/4; i++) {
 if (*(rbuf3+i) != *(wbuf3+i)) {
 pr_info("buffer 3 copy failed!\n");
 return -EINVAL;
 }
}
pr_info("buffer 3 copy passed!\n");

reinit_completion(&dma_m2m_ok);

/* Get the DMA descriptor for the second DMA transaction */
dma_m2m_desc = dma_dev->device_prep_dma_sg(dma_m2m_chan, sg4, 1, sg3, 1, 0);
dma_m2m_desc->callback = dma_m2m_callback;
dmaengine_submit(dma_m2m_desc);

Linux DMA in Device Drivers Chapter 9

[400]

dma_async_issue_pending(dma_m2m_chan);
wait_for_completion(&dma_m2m_ok);
dma_unmap_sg(dma_dev->dev, sg3, 1, DMA_TO_DEVICE);
dma_unmap_sg(dma_dev->dev, sg4, 1, DMA_FROM_DEVICE);

/* compare values of the first transaction */
if (*(dma_src_coherent) != *(dma_dst_coherent)) {
 pr_info("buffer copy failed!\n");
 return -EINVAL;
}
pr_info("buffer coherent sg copy passed!\n");

6. You will use the same DT node of the lab 9.1.

sdma_m2m {
 compatible ="arrow,sdma_m2m";
};

See in the next Listing 9-2 the "scatter/gather DMA device" driver source code (sdma_imx_m2m.c)
for the i.MX7D processor.

Note: This driver has only been implemented in the i.MX7D processor.

Listing 9-2: sdma_imx_sg_m2m.c
#include <linux/module.h>
#include <linux/uaccess.h>
#include <linux/dma-mapping.h>
#include <linux/fs.h>
#include <linux/platform_data/dma-imx.h>
#include <linux/dmaengine.h>
#include <linux/miscdevice.h>
#include <linux/platform_device.h>

static dma_addr_t dma_dst;
static dma_addr_t dma_src;
static char *dma_dst_coherent;
static char *dma_src_coherent;
static unsigned int *wbuf, *wbuf2, *wbuf3;
static unsigned int *rbuf, *rbuf2, *rbuf3;

static struct dma_chan *dma_m2m_chan;

static struct completion dma_m2m_ok;

static struct scatterlist sg3[1],sg4[1];
static struct scatterlist sg[3],sg2[3];

[401]

Chapter 9 Linux DMA in Device Drivers

[401]

#define SDMA_BUF_SIZE (63*1024)

static bool dma_m2m_filter(struct dma_chan *chan, void *param)
{
 if (!imx_dma_is_general_purpose(chan))
 return false;
 chan->private = param;
 return true;
}

static void dma_sg_callback(void *data)
{
 pr_info("%s\n finished SG DMA transaction\n",__func__);
 complete(&dma_m2m_ok);
}

static void dma_m2m_callback(void *data)
{
 pr_info("%s\n finished DMA coherent transaction\n" ,__func__);
 complete(&dma_m2m_ok);
}

static ssize_t sdma_write(struct file * filp, const char __user * buf,
 size_t count, loff_t * offset)
{
 unsigned int *index1, *index2, *index3, i;
 struct dma_async_tx_descriptor *dma_m2m_desc;
 struct dma_device *dma_dev;
 dma_dev = dma_m2m_chan->device;

 pr_info("sdma_write is called.\n");

 index1 = wbuf;
 index2 = wbuf2;
 index3 = wbuf3;

 for (i=0; i<SDMA_BUF_SIZE/4; i++) {
 *(index1 + i) = 0x12345678;
 }

 for (i=0; i<SDMA_BUF_SIZE/4; i++) {
 *(index2 + i) = 0x87654321;
 }

 for (i=0; i<SDMA_BUF_SIZE/4; i++) {
 *(index3 + i) = 0xabcde012;
 }

Linux DMA in Device Drivers Chapter 9

[402]

 init_completion(&dma_m2m_ok);

 if(copy_from_user(dma_src_coherent, buf, count)){
 return -EFAULT;
 }

 pr_info ("The string is %s\n", dma_src_coherent);

 sg_init_table(sg, 3);
 sg_set_buf(&sg[0], wbuf, SDMA_BUF_SIZE);
 sg_set_buf(&sg[1], wbuf2, SDMA_BUF_SIZE);
 sg_set_buf(&sg[2], wbuf3, SDMA_BUF_SIZE);
 dma_map_sg(dma_dev->dev, sg, 3, DMA_TO_DEVICE);

 sg_init_table(sg2, 3);
 sg_set_buf(&sg2[0], rbuf, SDMA_BUF_SIZE);
 sg_set_buf(&sg2[1], rbuf2, SDMA_BUF_SIZE);
 sg_set_buf(&sg2[2], rbuf3, SDMA_BUF_SIZE);
 dma_map_sg(dma_dev->dev, sg2, 3, DMA_FROM_DEVICE);

 sg_init_table(sg3, 1);
 sg_set_buf(sg3, dma_src_coherent, SDMA_BUF_SIZE);
 dma_map_sg(dma_dev->dev, sg3, 1, DMA_TO_DEVICE);
 sg_init_table(sg4, 1);
 sg_set_buf(sg4, dma_dst_coherent, SDMA_BUF_SIZE);
 dma_map_sg(dma_dev->dev, sg4, 1, DMA_FROM_DEVICE);

 dma_m2m_desc = dma_dev->device_prep_dma_sg(dma_m2m_chan,
 sg2, 3,
 sg, 3, 0);

 dma_m2m_desc->callback = dma_sg_callback;
 dmaengine_submit(dma_m2m_desc);
 dma_async_issue_pending(dma_m2m_chan);
 wait_for_completion(&dma_m2m_ok);
 dma_unmap_sg(dma_dev->dev, sg, 3, DMA_TO_DEVICE);
 dma_unmap_sg(dma_dev->dev, sg2, 3, DMA_FROM_DEVICE);

 for (i=0; i<SDMA_BUF_SIZE/4; i++) {
 if (*(rbuf+i) != *(wbuf+i)) {
 pr_info("buffer 1 copy failed!\n");
 return -EINVAL;
 }
 }
 pr_info("buffer 1 copy passed!\n");

 for (i=0; i<SDMA_BUF_SIZE/4; i++) {
 if (*(rbuf2+i) != *(wbuf2+i)) {

[403]

Chapter 9 Linux DMA in Device Drivers

[403]

 pr_info("buffer 2 copy failed!\n");
 return -EINVAL;
 }
 }
 pr_info("buffer 2 copy passed!\n");

 for (i=0; i<SDMA_BUF_SIZE/4; i++) {
 if (*(rbuf3+i) != *(wbuf3+i)) {
 pr_info("buffer 3 copy failed!\n");
 return -EINVAL;
 }
 }
 pr_info("buffer 3 copy passed!\n");

 reinit_completion(&dma_m2m_ok);

 dma_m2m_desc = dma_dev->device_prep_dma_sg(dma_m2m_chan,
 sg4, 1,
 sg3, 1, 0);

 dma_m2m_desc->callback = dma_m2m_callback;
 dmaengine_submit(dma_m2m_desc);
 dma_async_issue_pending(dma_m2m_chan);
 wait_for_completion(&dma_m2m_ok);
 dma_unmap_sg(dma_dev->dev, sg3, 1, DMA_TO_DEVICE);
 dma_unmap_sg(dma_dev->dev, sg4, 1, DMA_FROM_DEVICE);

 if (*(dma_src_coherent) != *(dma_dst_coherent)) {
 pr_info("buffer copy failed!\n");
 return -EINVAL;
 }
 pr_info("buffer coherent sg copy passed!\n");
 pr_info("dma_src_coherent is %s\n", dma_src_coherent);
 pr_info("dma_dst_coherent is %s\n", dma_dst_coherent);

 return count;
}

struct file_operations dma_fops = {
 write: sdma_write,
};

static struct miscdevice dma_miscdevice = {
 .minor = MISC_DYNAMIC_MINOR,
 .name = "sdma_test",
 .fops = &dma_fops,
};

Linux DMA in Device Drivers Chapter 9

[404]

static int __init my_probe(struct platform_device *pdev)
{
 int retval;
 dma_cap_mask_t dma_m2m_mask;
 struct imx_dma_data m2m_dma_data = {0};
 struct dma_slave_config dma_m2m_config = {0};

 pr_info("platform_probe enter\n");
 retval = misc_register(&dma_miscdevice);
 if (retval) return retval;

 pr_info("mydev: got minor %i\n",dma_miscdevice.minor);

 wbuf = devm_kzalloc(&pdev->dev, SDMA_BUF_SIZE, GFP_KERNEL);
 if(!wbuf) {
 pr_info("error wbuf !!!!!!!!!!!\n");
 return -ENOMEM;
 }

 wbuf2 = devm_kzalloc(&pdev->dev, SDMA_BUF_SIZE, GFP_KERNEL);
 if(!wbuf2) {
 pr_info("error wbuf !!!!!!!!!!!\n");
 return -ENOMEM;
 }

 wbuf3 = devm_kzalloc(&pdev->dev, SDMA_BUF_SIZE, GFP_KERNEL);
 if(!wbuf3) {
 pr_info("error wbuf2 !!!!!!!!!!!\n");
 return -ENOMEM;
 }

 rbuf = devm_kzalloc(&pdev->dev, SDMA_BUF_SIZE, GFP_KERNEL);
 if(!rbuf) {
 pr_info("error rbuf !!!!!!!!!!!\n");
 return -ENOMEM;
 }

 rbuf2 = devm_kzalloc(&pdev->dev, SDMA_BUF_SIZE, GFP_KERNEL);
 if(!rbuf2) {
 pr_info("error rbuf2 !!!!!!!!!!!\n");
 return -ENOMEM;
 }

 rbuf3 = devm_kzalloc(&pdev->dev, SDMA_BUF_SIZE, GFP_KERNEL);
 if(!rbuf3) {
 pr_info("error rbuf2 !!!!!!!!!!!\n");
 return -ENOMEM;
 }

[405]

Chapter 9 Linux DMA in Device Drivers

[405]

 dma_dst_coherent = dma_alloc_coherent(&pdev->dev, SDMA_BUF_SIZE,
 &dma_dst, GFP_DMA);
 if (dma_dst_coherent == NULL) {
 pr_err("dma_alloc_coherent failed\n");
 return -ENOMEM;
 }

 dma_src_coherent = dma_alloc_coherent(&pdev->dev, SDMA_BUF_SIZE,
 &dma_src, GFP_DMA);
 if (dma_src_coherent == NULL) {
 dma_free_coherent(&pdev->dev, SDMA_BUF_SIZE,
 dma_dst_coherent, dma_dst);
 pr_err("dma_alloc_coherent failed\n");
 return -ENOMEM;
 }

 dma_cap_zero(dma_m2m_mask);
 dma_cap_set(DMA_MEMCPY, dma_m2m_mask);
 m2m_dma_data.peripheral_type = IMX_DMATYPE_MEMORY;
 m2m_dma_data.priority = DMA_PRIO_HIGH;

 dma_m2m_chan = dma_request_channel(dma_m2m_mask,
 dma_m2m_filter,

 &m2m_dma_data);
 if (!dma_m2m_chan) {
 pr_err("Error opening the SDMA memory to memory channel\n");
 return -EINVAL;
 }

 dma_m2m_config.direction = DMA_MEM_TO_MEM;
 dma_m2m_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 dmaengine_slave_config(dma_m2m_chan, &dma_m2m_config);

 return 0;
}

static int __exit my_remove(struct platform_device *pdev)
{
 misc_deregister(&dma_miscdevice);
 dma_release_channel(dma_m2m_chan);
 dma_free_coherent(&pdev->dev, SDMA_BUF_SIZE,
 dma_dst_coherent, dma_dst);
 dma_free_coherent(&pdev->dev, SDMA_BUF_SIZE,
 dma_src_coherent, dma_src);
 pr_info("platform_remove exit\n");
 return 0;
}

Linux DMA in Device Drivers Chapter 9

[406]

static const struct of_device_id my_of_ids[] = {
 { .compatible = "arrow,sdma_m2m"},
 {},
};
MODULE_DEVICE_TABLE(of, my_of_ids);

static struct platform_driver my_platform_driver = {
 .probe = my_probe,
 .remove = my_remove,
 .driver = {
 .name = "sdma_m2m",
 .of_match_table = my_of_ids,
 .owner = THIS_MODULE,
 }
};

static int __init demo_init(void)
{
 int ret_val;

 ret_val = platform_driver_register(&my_platform_driver);
 if (ret_val !=0)
 {
 pr_err("platform value returned %d\n", ret_val);
 return ret_val;
 }

 return 0;
}

static void __exit demo_exit(void)
{
 platform_driver_unregister(&my_platform_driver);
}

module_init(demo_init);
module_exit(demo_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Alberto Liberal <aliberal@arroweurope.com>");
MODULE_DESCRIPTION("This is a SDMA scatter/gather memory to memory driver");

[407]

Chapter 9 Linux DMA in Device Drivers

[407]

sdma_imx_sg_m2m.ko Demonstration
root@imx7dsabresd:~# insmod sdma_imx_sg_m2m.ko /* load module */
root@imx7dsabresd:~# echo abcdefg > /dev/sdma_test /* write selected values to the
wbuf buffers, store characters written to the terminal into the dma_src_coherent
buffer. Then, start a sg DMA transaction that copies values from sg wbuf(s) to sg
rbuf(s). After the transaction compare the buffer values; start a second sg DMA
transaction from coherent dma_src_coherent buffer to dma_dst_coherent buffer, and
after the transaction compare the buffer values */
root@imx7dsabresd:~# rmmod sdma_imx_sg_m2m.ko /* remove module */

DMA from User Space
Linux provides frameworks that allows user space to interface with kernel space for most types
of devices (except DMA). User space DMA is defined as the ability to access buffers for DMA
transfers and control DMA transfers from an user space application.

For larger buffers copying data with copy_to_user() and copy_from_user() is inefficient and in the
case of DMA it defeats the purpose of using DMA to move the data. Mapping a kernel space
allocated memory buffer into user space removes the need to copy data.

A process can allocate memory on its heap at runtime using malloc(). This mapping is taken care of
by the kernel, however a process can also manipulate its memory map in a explicit way using the
mmap() function.

The mmap() file operation allows memory of the device driver to be mapped into the address space
of the user space process. When an user space process calls mmap() to map device memory into its
address space, the system responds by creating a new VMA to represent that mapping. A driver
that supports mmap (and, thus, that implements the mmap method) needs to help that process by
completing the initialization of that VMA.

The Linux frame buffer and the Video 4 Linux, version 2 (V4L2) are two examples of drivers that
use the mmap() function to map kernel buffers to user space.

Linux DMA in Device Drivers Chapter 9

[408]

See in the next figure how the memory is mapped from kernel to user space using mmap():

You can see below the main points to implement mmap() in the user space:

•	 The call to mmap() requires an address and size for the memory being mapped into user
space.

•	 The application passes zero for the address to map, since it doesn’t know the address of
the buffer allocated in the kernel driver.

•	 The size cannot be zero or mmap() will return an error.

void * mmap(
void *start, /* Often 0, preferred starting address */
size_t length, /* Length of the mapped area */
int prot, /* Permissions: read, write, execute */
int flags, /* Options: shared mapping, private copy... */
int fd, /* Open file descriptor */
off_t offset

)

The mmap() function returns a pointer to a process virtual address. If you translate this virtual
address to the physical space you can see that it matchs with the physical memory space that was
allocated by the kernel. This process virtual address is different from the kernel virtual address

[409]

Chapter 9 Linux DMA in Device Drivers

[409]

returned by kzalloc(), but both virtual addresses share the same physical address. Once the memory
is mapped user space can read and write to it.

You can see below the main points to implement mmap() in kernel space:

•	 Implement a mmap() file operation and add it to the driver´s file operations:

int (*mmap)(
struct file *, /* Open file structure */
struct vm_area_struct * /* Kernel VMA structure */

)

•	 Initialize the mapping. This can be done in most cases with the remap_pfn_range() function,
which takes care of most of the job. Only one argument has to be created, as all others
come in the VMA structure. The third argument of the remap_pfn_range() is the page frame
number, which is based on the physical address.

#include <linux/mm.h>

int remap_pfn_range(
struct vm_area_struct *, /* VMA struct */
unsigned long virt_addr, /* Starting user virtual address */
unsigned long pfn, /* pfn of the starting physical address, use dma_map_
single() to get it from pointer to the virtual address of the allocated
buffer */
unsigned long size, /* Mapping size */
pgprot_t prot /* Page permissions */

)

LAB 9.3: "DMA from user space" Module
In this lab, the sdma_m2m.c driver will be used as a starting point to develop your new DMA
driver. These are the main points of the new driver:

•	 You will use driver´s callback sdma_ioctl() function instead of sdma_write() to manage the
DMA transaction.

•	 The sdma_mmap() callback function is added to the driver to do the mapping of the kernel
buffer.

•	 The process virtual address will be returned to user space using the mmap() system call.
Any text can be written from the user application to the returned virtual memory buffer.
After that, the ioctl() system call manages the DMA transaction sending the written text
from the dma_src buffer to the dma_dst buffer without any CPU intervention.

Linux DMA in Device Drivers Chapter 9

[410]

The main code sections of your driver will now be described:

1. In the sdma_open() file operation obtain the dma_src DMA address using dma_map_single()
that takes as a parameter the previously allocated wbuf kernel virtual address:

dma_priv->dma_src = dma_map_single(dma_priv->dev, dma_priv->wbuf,
 SDMA_BUF_SIZE, DMA_TO_DEVICE)

2. Replace the sdma_write() file operation with the sdma_ioctl() one.

3. Add a struct file_operations structure including the sdma_mmap() function:

struct file_operations dma_fops = {
 .owner = THIS_MODULE,
 .open = sdma_open,
 .unlocked_ioctl = sdma_ioctl,
 .mmap = sdma_mmap,
};

4. Create the mmap() function. The third parameter of remap_pfn_range() is the page
frame number shifting the DMA physical address dma_src that you obtained using
dma_map_single():

static int sdma_mmap(struct file *file, struct vm_area_struct *vma) {
struct dma_private *dma_priv;
dma_priv = container_of(file->private_data,

 struct dma_private,
 dma_misc_device);

 if(remap_pfn_range(vma, vma->vm_start, dma_priv->dma_src >> PAGE_SHIFT,
 vma->vm_end - vma->vm_start, vma->vm_page_prot))
 return -EAGAIN;

return 0;
}

5. In the sdma.c user application, you will get the process virtual address (mapped from
DMA dma_src address) using mmap() call, and will send some text to it using a char
pointer. You will copy the text to the DMA dma_src buffer using the strcpy() function.

char *virtaddr;
char *phrase = "Arrow web: www.arrow.com\n";
virtaddr = (char *)mmap(0, SDMA_BUF_SIZE, PROT_READ | PROT_WRITE,
 MAP_SHARED, my_dev, 0);
strcpy(virtaddr, phrase);

6. The ioctl() function called in user space (sdma.c) will have its corresponding sdma_ioctl()
callback function in kernel space, which is in charge of executing the DMA transaction
from dma_src to dma_dst.

[411]

Chapter 9 Linux DMA in Device Drivers

[411]

7. Create the sdma.c application in my_apps project. Modify the application Makefile to build
and deploy the sdma application.

8. You will use for this driver the same DT node of the lab 9.1 and lab 9.2.

sdma_m2m {
 compatible ="arrow,sdma_m2m";
};

See in the next Listing 9-3 the "DMA from user space" driver source code (sdma_imx_mmap.c) for
the i.MX7D processor.

Note: The source code for the SAMA5D2 (sdma_sam_mmap.c) driver can be downloaded from
the GitHub repository of this book. This driver has not been implemented in the BCM2837
processor.

Listing 9-3: sdma_imx_mmap.c
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/uaccess.h>
#include <linux/dma-mapping.h>
#include <linux/fs.h>
#include <linux/platform_data/dma-imx.h>
#include <linux/dmaengine.h>
#include <linux/miscdevice.h>
#include <linux/platform_device.h>

struct dma_private
{
 struct miscdevice dma_misc_device;
 struct device *dev;
 char *wbuf;
 char *rbuf;
 struct dma_chan *dma_m2m_chan;
 struct completion dma_m2m_ok;
 dma_addr_t dma_src;
 dma_addr_t dma_dst;
};

#define SDMA_BUF_SIZE (1024*63)

static bool dma_m2m_filter(struct dma_chan *chan, void *param)
{
 if (!imx_dma_is_general_purpose(chan))
 return false;
 chan->private = param;

Linux DMA in Device Drivers Chapter 9

[412]

 return true;
}

static void dma_m2m_callback(void *data)
{

struct dma_private *dma_priv = data;
 dev_info(dma_priv->dev, "%s\n finished DMA transaction" ,__func__);
 complete(&dma_priv->dma_m2m_ok);
}

static int sdma_open(struct inode * inode, struct file * file)
{
 struct dma_private *dma_priv;
 dma_priv = container_of(file->private_data,
 struct dma_private, dma_misc_device);

 dma_priv->wbuf = kzalloc(SDMA_BUF_SIZE, GFP_DMA);
 if(!dma_priv->wbuf) {
 dev_err(dma_priv->dev, "error allocating wbuf !!\n");
 return -ENOMEM;
 }

 dma_priv->rbuf = kzalloc(SDMA_BUF_SIZE, GFP_DMA);
 if(!dma_priv->rbuf) {
 dev_err(dma_priv->dev, "error allocating rbuf !!\n");
 return -ENOMEM;
 }

 dma_priv->dma_src = dma_map_single(dma_priv->dev, dma_priv->wbuf,
 SDMA_BUF_SIZE, DMA_TO_DEVICE);

 return 0;
}

static long sdma_ioctl(struct file *file,
 unsigned int cmd,

 unsigned long arg)
{

struct dma_async_tx_descriptor *dma_m2m_desc;
 struct dma_device *dma_dev;
 struct dma_private *dma_priv;
 dma_cookie_t cookie;

 dma_priv = container_of(file->private_data,
 struct dma_private,
 dma_misc_device);

 dma_dev = dma_priv->dma_m2m_chan->device;

[413]

Chapter 9 Linux DMA in Device Drivers

[413]

 dma_priv->dma_src = dma_map_single(dma_priv->dev, dma_priv->wbuf,
 SDMA_BUF_SIZE, DMA_TO_DEVICE);
 dma_priv->dma_dst = dma_map_single(dma_priv->dev, dma_priv->rbuf,
 SDMA_BUF_SIZE, DMA_TO_DEVICE);

dma_m2m_desc = dma_dev->device_prep_dma_memcpy(dma_priv->dma_m2m_chan,
dma_priv->dma_dst,

 dma_priv->dma_src,
 SDMA_BUF_SIZE,
 DMA_CTRL_ACK | DMA_PREP_INTERRUPT);

 dev_info(dma_priv->dev, "successful descriptor obtained");

 dma_m2m_desc->callback = dma_m2m_callback;
 dma_m2m_desc->callback_param = dma_priv;
 init_completion(&dma_priv->dma_m2m_ok);

 cookie = dmaengine_submit(dma_m2m_desc);

 if (dma_submit_error(cookie)){
 dev_err(dma_priv->dev, "Failed to submit DMA\n");
 return -EINVAL;
 };

 dma_async_issue_pending(dma_priv->dma_m2m_chan);
 wait_for_completion(&dma_priv->dma_m2m_ok);
 dma_async_is_tx_complete(dma_priv->dma_m2m_chan, cookie, NULL, NULL);

 dma_unmap_single(dma_priv->dev, dma_priv->dma_src,
 SDMA_BUF_SIZE, DMA_TO_DEVICE);
 dma_unmap_single(dma_priv->dev, dma_priv->dma_dst,
 SDMA_BUF_SIZE, DMA_TO_DEVICE);

 if (*(dma_priv->rbuf) != *(dma_priv->wbuf)) {
 dev_err(dma_priv->dev, "buffer copy failed!\n");
 return -EINVAL;
 }

 dev_info(dma_priv->dev, "buffer copy passed!\n");
 dev_info(dma_priv->dev, "wbuf is %s\n", dma_priv->wbuf);
 dev_info(dma_priv->dev, "rbuf is %s\n", dma_priv->rbuf);

 kfree(dma_priv->wbuf);
 kfree(dma_priv->rbuf);

 return 0;
}

Linux DMA in Device Drivers Chapter 9

[414]

static int sdma_mmap(struct file *file, struct vm_area_struct *vma) {
struct dma_private *dma_priv;

 dma_priv = container_of(file->private_data,
 struct dma_private, dma_misc_device);

 if(remap_pfn_range(vma, vma->vm_start, dma_priv->dma_src >> PAGE_SHIFT,
 vma->vm_end - vma->vm_start, vma->vm_page_prot))
 return -EAGAIN;

 return 0;
}

struct file_operations dma_fops = {
 .owner = THIS_MODULE,
 .open = sdma_open,
 .unlocked_ioctl = sdma_ioctl,
 .mmap = sdma_mmap,
};

static int __init my_probe(struct platform_device *pdev)
{
 int retval;
 struct dma_private *dma_device;
 dma_cap_mask_t dma_m2m_mask;
 struct imx_dma_data m2m_dma_data = {0};
 struct dma_slave_config dma_m2m_config = {0};

 dev_info(&pdev->dev, "platform_probe enter\n");

 dma_device = devm_kzalloc(&pdev->dev, sizeof(struct dma_private), GFP_KERNEL);

 dma_device->dma_misc_device.minor = MISC_DYNAMIC_MINOR;
 dma_device->dma_misc_device.name = "sdma_test";
 dma_device->dma_misc_device.fops = &dma_fops;

 dma_device->dev = &pdev->dev;

 dma_cap_zero(dma_m2m_mask);
 dma_cap_set(DMA_MEMCPY, dma_m2m_mask);
 m2m_dma_data.peripheral_type = IMX_DMATYPE_MEMORY;
 m2m_dma_data.priority = DMA_PRIO_HIGH;

 dma_device->dma_m2m_chan = dma_request_channel(dma_m2m_mask,
 dma_m2m_filter,
 &m2m_dma_data);

 if (!dma_device->dma_m2m_chan) {
 dev_err(&pdev->dev,

[415]

Chapter 9 Linux DMA in Device Drivers

[415]

"Error opening the SDMA memory to memory channel\n");
 return -EINVAL;
 }

 dma_m2m_config.direction = DMA_MEM_TO_MEM;
 dma_m2m_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 dmaengine_slave_config(dma_device->dma_m2m_chan, &dma_m2m_config);

 retval = misc_register(&dma_device->dma_misc_device);
 if (retval) return retval;

 platform_set_drvdata(pdev, dma_device);

 dev_info(&pdev->dev, "platform_probe exit\n");

 return 0;
}

static int __exit my_remove(struct platform_device *pdev)
{

struct dma_private *dma_device = platform_get_drvdata(pdev);
 dev_info(&pdev->dev, "platform_remove enter\n");
 misc_deregister(&dma_device->dma_misc_device);
 dma_release_channel(dma_device->dma_m2m_chan);
 dev_info(&pdev->dev, "platform_remove exit\n");
 return 0;
}

static const struct of_device_id my_of_ids[] = {
 { .compatible = "arrow,sdma_m2m"},
 {},
};
MODULE_DEVICE_TABLE(of, my_of_ids);

static struct platform_driver my_platform_driver = {
 .probe = my_probe,
 .remove = my_remove,
 .driver = {
 .name = "sdma_m2m",
 .of_match_table = my_of_ids,
 .owner = THIS_MODULE,
 }
};

static int demo_init(void)
{
 int ret_val;

Linux DMA in Device Drivers Chapter 9

[416]

 pr_info("demo_init enter\n");

 ret_val = platform_driver_register(&my_platform_driver);
 if (ret_val !=0)
 {
 pr_err("platform value returned %d\n", ret_val);
 return ret_val;

 }
 pr_info("demo_init exit\n");
 return 0;
}

static void demo_exit(void)
{
 pr_info("demo_exit enter\n");
 platform_driver_unregister(&my_platform_driver);
 pr_info("demo_exit exit\n");
}

module_init(demo_init);
module_exit(demo_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Alberto Liberal <aliberal@arroweurope.com>");
MODULE_DESCRIPTION("This is a SDMA mmap memory to memory driver");

See in the next Listing 9-4 the "sdma mmap" application source code (sdma.c) for the i.MX7D and
SAMA5D2 processors. This application has not been implemented in the BCM2837 processor

Listing 9-4: sdma.c
#include <stdio.h>
#include <fcntl.h>
#include <unistd.h>
#include <sys/mman.h>
#include <string.h>

#define SDMA_BUF_SIZE (1024*63)

int main(void)
{
 char *virtaddr;
 char phrase[128];
 int my_dev = open("/dev/sdma_test", O_RDWR);

[417]

Chapter 9 Linux DMA in Device Drivers

[417]

 if (my_dev < 0) {
 perror("Fail to open device file: /dev/sdma_test.");
 } else {

printf("Enter phrase :\n");
 scanf("%[^\n]%*c", phrase);
 virtaddr = (char *)mmap(0, SDMA_BUF_SIZE,

 PROT_READ | PROT_WRITE,
 MAP_SHARED, my_dev, 0);

 strcpy(virtaddr, phrase);
 ioctl(my_dev, NULL);
 close(my_dev);
 }

return 0;
}

sdma_imx_mmap.ko Demonstration
root@imx7dsabresd:~# insmod sdma_imx_mmap.ko /* load module */
root@imx7dsabresd:~# ./sdma /* map kernel DMA physical address into an user space
virtual address, write string to the user space virtual address returned, and do
ioctl() call that enables DMA transaction from dma_src to dma_dst buffer.
root@imx7dsabresd:~# rmmod sdma_imx_mmap.ko /* remove module */

[419]

10
Input Subsystem Framework for

Device Drivers

Many device drivers are not implemented directly as character drivers. They are implemented
under a framework, specific to a given device type (e.g., networking, MTD, RTC, v4L2, serial, IIO).
The framework factors out the common parts of drivers for the same type of devices to reduce
code duplication.

The framework allows provision of a coherent user space interface for every type of device,
regardless of the driver. The application can still see many of the device drivers as character
devices. For example, the network framework of Linux provides a socket API such that an
application can connect to a network using any network driver without knowing the details of the
network driver.

Throughout this chapter, you will explore the input subsystem framework in detail. Several
kernel modules are going to be developed helping you to understand the use of this framework to
develop drivers for the same type of devices.

Input Subsystem Framework for Device Drivers Chapter 10

[420]

Observe in the following image how the driver interfaces with a framework to expose the
hardware to user applications and also with a bus infrastructure, part of the device model that
communicates with the hardware:

Input Subsystem Drivers
The Input subsystem takes care of all the input events coming from the human user. Input
device drivers will capture the hardware event information in an uniform format
(struct input_event structure) and report to the core layer, then the core layer sorts the data,
escalates to the appropriate event-handling driver, and finally through the events layer
passes the information to user space. Applications using /dev device node can get event
information.

Initially written to support the USB HID (Human Interface Device) devices, the Input subsystem
quickly grew up to handle all kind of inputs (using USB or not): keyboards, mice, joysticks,
touchscreens, etc.

The Input subsystem is split in two parts:

1. Device drivers: they talk to the hardware (e.g., USB, I2C), and provide events (e.g.,
keystrokes, accelerometer movements, touchscreen coordinates) to the input core.

[421]

Chapter 10 Input Subsystem Framework for Device Drivers

[421]

2. Event handlers: Input event drivers that get events from device drivers and pass them to
user space and in-kernel consumers, as needed via various interfaces. The evdev driver is
a generic input event interface in the Linux kernel. It generalizes raw input events from
device drivers and makes them available through character devices in the /dev/input/
directory. The event interface will represent each input device as a /dev/input/event<X>
character device. This is the preferred interface for user space to consume user input, and
all clients are encouraged to use it.

You can use blocking and nonblocking reads, and also select() on the /dev/input/eventX devices, and
you’ll always get a whole number of input events on a read. Their layout is:

struct input_event {
struct timeval time;
unsigned short type;
unsigned short code;
unsigned int value;

};

A very useful application for input device testing is evtest located at http://cgit.freedesktop.org/
evtest/. The evtest application displays information on the input device specified on the command
line, including all the events supported by the device. It then monitors the device and displays all
the events layer events generated.

There are other event handlers like keyboard, mousedev and joydev.

Input Subsystem Framework for Device Drivers Chapter 10

[422]

In the next figure, you can see an Input subsystem diagram that can be used as an example for the
next kernel module lab, where you will control an I2C accelerometer using the Input subsystem.

[423]

Chapter 10 Input Subsystem Framework for Device Drivers

[423]

Check that "Input device support" has been selected in the kernel configuration, also select "Polled
input device skeleton":

~/my-linux-imx$ make menuconfig ARCH=arm

If it was not selected, add it to the kernel, compile the new image and load it to the target
processor:

~/my-linux-imx$ make zImage
~/my-linux-imx$ cp /arch/arm/boot/zImage /var/lib/tftpboot

LAB 10.1: "input subsystem accelerometer" Module
In this kernel module, you will control the tilt of an accelerometer board connected to the I2C bus
of the processor. You can use the ADXL345 Accel click mikroBUS™ accessory board to develop the
driver; you will acces to the schematic of the board at http://www.mikroe.com/click/accel/.

Your driver will scan periodically the value of one of the accelerometer axes, and depending of the
tilt of the board it will generate an event that is exposed to the application evtest.

In this accelerometer kernel module you will use the polled input subclass. A polled input device
provides a skeleton for supporting simple input devices that do not raise interrupts but have to be
periodically scanned or polled to detect changes in their state.

Input Subsystem Framework for Device Drivers Chapter 10

[424]

A polled input device is described by the struct input_polled_dev defined in include/linux/input-
polldev.h:

struct input_polled_dev {
 void *private;

void (*open)(struct input_polled_dev *dev);
 void (*close)(struct input_polled_dev *dev);
 void (*poll)(struct input_polled_dev *dev);
 unsigned int poll_interval; /* msec */
 unsigned int poll_interval_max; /* msec */
 unsigned int poll_interval_min; /* msec */

struct input_dev *input;

/* private: */
 struct delayed_work work;

bool devres_managed;
};

You will allocate and free struct input_polled_dev using the next functions:

struct input_polled_dev *input_allocate_polled_device(void)
void input_free_polled_device(struct input_polled_dev *dev)

The accelerometer driver will support EV_KEY type events, with a KEY_1 event that will be set to
0 or to 1 depending of the board´s tilt; the set_bit() call is an atomic operation allowing it to set a
particular bit to 1.

set_bit(EV_KEY, ioaccel->polled_input->input->evbit); /* supported event types
(support for EV_KEY events) */
set_bit(KEY_1, ioaccel->polled_input->input->keybit); /* Set the event code support
(event KEY_1) */

The struct input_polled_dev structure will be handled by the poll() callback function. This function
polls the device and posts input events. The poll_interval field will be set to 50 ms in your driver.
Inside the poll() function, the event is sent by the driver to the event handler using the input_event()
function.

After submitting the event, the input core must be notified using the function input_sync():

void input_sync(struct input_dev *dev)

The device registration/unregistration is done with the following functions:

int input_register_polled_device(struct input_polled_dev *dev)
void input_unregister_polled_device(struct input_polled_dev *dev)

The main code sections of the driver will be described using three categories: device tree, input
framework as an I2C interaction, and input framework as an input device. You will implement for

[425]

Chapter 10 Input Subsystem Framework for Device Drivers

[425]

this driver the same hardware description of the lab 6.2 connecting the SDA and SCL pins of the
processor to the SDA and SCL pins of the ADXL345 Accel click mikroBUS™ accessory board.

Device Tree
Modify the device tree files under arch/arm/boot/dts/ folder to include your DT driver´s device
nodes. There must be a DT device node´s compatible property identical to the compatible string
stored in one of the driver´s of_device_id structures.

For the MCIMX7D-SABRE Board open the DT file imx7d-sdb.dts and add the adxl345@1c node
inside the i2c3 controller master node. The reg property provides the ADXL345 I2C address:

&i2c3 {
 clock-frequency = <100000>;
 pinctrl-names = "default";
 pinctrl-0 = <&pinctrl_i2c3>;
 status = "okay";

adxl345@1c {
 compatible = "arrow,adxl345";
 reg = <0x1d>;
 };

 sii902x: sii902x@39 {
 compatible = "SiI,sii902x";
 pinctrl-names = "default";
 pinctrl-0 = <&pinctrl_sii902x>;
 interrupt-parent = <&gpio2>;
 interrupts = <13 IRQ_TYPE_EDGE_FALLING>;
 mode_str ="1280x720M@60";
 bits-per-pixel = <16>;
 reg = <0x39>;
 status = "okay";
 };

[...]

};

For the SAMA5D2B-XULT Board open the DT file at91-sama5d2_xplained_common.dtsi and add
the adxl345@1bc sub-node inside the i2c1 controller master node. The reg property provides the
ADXL345 I2C address:

i2c1: i2c@fc028000 {
 dmas = <0>, <0>;
 pinctrl-names = "default";
 pinctrl-0 = <&pinctrl_i2c1_default>;

Input Subsystem Framework for Device Drivers Chapter 10

[426]

 status = "okay";

 [...]

 adxl345@1c {
 compatible = "arrow,adxl345";
 reg = <0x1d>;
 };

[...]

 at24@54 {
 compatible = "atmel,24c02";
 reg = <0x54>;
 pagesize = <16>;
 };
 };

For the Raspberry Pi 3 Model B Board open the DT file bcm2710-rpi-3-b.dts and add the adxl345@1c
node below the i2c1 controller master node. The reg property provides the ADXL345 I2C address:

&i2c1 {
 pinctrl-names = "default";
 pinctrl-0 = <&i2c1_pins>;
 clock-frequency = <100000>;
 status = "okay";

 [...]

 adxl345@1c {
 compatible = "arrow,adxl345";
 reg = <0x1d>;
 };
};

Build the modified device tree and load it to your target processor.

Input Framework as an I2C Interaction
These are the main code sections:

1. Include the required header files:

 #include <linux/i2c.h> /* struct i2c_driver, struct i2c_client(), i2c_get_
clientdata(), i2c_set_clientdata() */

2. Create a struct i2c_driver structure:

static struct i2c_driver ioaccel_driver = {

[427]

Chapter 10 Input Subsystem Framework for Device Drivers

[427]

 .driver = {
 .name = "adxl345",
 .owner = THIS_MODULE,
 .of_match_table = ioaccel_dt_ids,
 },
 .probe = ioaccel_probe,
 .remove = ioaccel_remove,
 .id_table = i2c_ids,
};

3. Register to the I2C bus as a driver:

module_i2c_driver(ioaccel_driver);

4. Add "adxl345" to the list of devices supported by the driver:

static const struct of_device_id ioaccel_dt_ids[] = {
 { .compatible = "arrow,adxl345", },
 { }
};
MODULE_DEVICE_TABLE(of, ioaccel_dt_ids);

5. Define an array of struct i2c_device_id structures:

static const struct i2c_device_id i2c_ids[] = {
 { "adxl345", 0 },
 { }
};
MODULE_DEVICE_TABLE(i2c, i2c_ids);

6. Use SMBus functions for accessing to the accelerometer registers. After VS is applied, the
ADXL345 device enters standby mode, where power consumption is minimized and the
device waits for VDD I/O to be applied and for the command to enter measurement mode
to be received. This command can be initiated by setting the measure bit (Bit D3) in the
POWER_CTL register (Address 0x2D):

#define POWER_CTL 0x2D
#define PCTL_MEASURE (1 << 3)
#define OUT_X_MSB 0x33

/* enter measurement mode */
i2c_smbus_write_byte_data(client, POWER_CTL, PCTL_MEASURE);

The axis value is read with the next line of code:

i2c_smbus_read_byte_data(ioaccel->i2c_client, OUT_X_MSB);

Input Subsystem Framework for Device Drivers Chapter 10

[428]

Input Framework as an Input Device
These are the main code sections:

1. Include the required header files:

include linux/input-polldev.h /* struct input_polled_dev, input_allocate_polled_
device(), input_register_polled_device() */

2. The device model needs to keep pointers between physical devices (devices as handled by the
physical bus, I2C in this case) and logical devices (devices handled by subsystems, like the Input
subsystem in this case). This need is typically implemented by creating a private data structure to
manage the device and implement such pointers between the physical and logical worlds. As you
have seen in another labs throughout this book, this private structure allows the driver to manage
multiple devices using the same driver. Add the next private structure definition to your driver
code:

struct ioaccel_dev {
 struct i2c_client *i2c_client;
 struct input_polled_dev *polled_input;
};

3. In the ioaccel_probe() function, declare an instance of this structure and allocate it:

struct ioaccel_dev *ioaccel;

ioaccel = devm_kzalloc(&client->dev,
 sizeof(struct ioaccel_dev),
 GFP_KERNEL);

4. To be able to access your private data structure in other functions of the driver, you need to attach it
to struct i2c_client using the i2c_set_clientdata() function. This function stores ioaccel in
client->dev->driver_data. You can retrieve the ioccel pointer from the private structure using the
function i2c_get_clientdata(client).

i2c_set_clientdata(client, ioaccel); /* write it in the probe() function */
ioaccel = i2c_get_clientdata(client); /* write it in the remove() function */

5. Allocate the struct input_polled_dev structure in probe() using the next line of code:

ioaccel->polled_input = devm_input_allocate_polled_device(&client->dev);

6. Initialize the polled input device. Keep pointers between physical devices (devices as handled by
the physical bus, I2C in this case) and logical devices:

ioaccel->i2c_client = client; /* Keep pointer to the I2C device, needed for exchanging
data with the accelerometer */
ioaccel->polled_input->private = ioaccel; /* struct polled_input can store the driver-
specific data in void *private. Place the pointer to the private structure here; in
this way you will be able to recover the ioaccel pointer later (as it can be seen for

[429]

Chapter 10 Input Subsystem Framework for Device Drivers

[429]

example in the ioaccel_poll() function) */
ioaccel->polled_input->poll_interval = 50; /* Callback interval */
ioaccel->polled_input->poll = ioaccel_poll; /* Callback, that will be called every 50
ms interval */
ioaccel->polled_input->input->dev.parent = &client->dev; /* keep pointers between
physical devices and logical devices */
ioaccel->polled_input->input->name = "IOACCEL keyboard"; /* input sub-device
parameters that will appear in log on registering the device */
ioaccel->polled_input->input->id.bustype = BUS_I2C; /* input sub-device parameters */

See the links between physical and logical devices structures in the next figure:

7. Set the event type and the event generated for this device:

set_bit(EV_KEY, ioaccel->polled_input->input->evbit); /* supported event type
(support for EV_KEY events) */
set_bit(KEY_1, ioaccel->polled_input->input->keybit); /* Set the event code
support (event KEY_1) */

Input Subsystem Framework for Device Drivers Chapter 10

[430]

8. Register in probe() and unregister in remove() the polled_input device to the input core. Once
registered, the device is global for the rest of the driver functions until it is unregistered.
After this call, the device is ready to accept requests from user space applications.

input_register_polled_device(ioaccel->polled_input);
input_unregister_polled_device(ioaccel->polled_input);

9. Write the ioaccel_poll() function. This function will be called every 50ms, the OUT_X_MSB
register (address 0x33) of the ADXL345 accelerometer will be read using the
i2c_smbus_read_byte_data() function. The first parameter of the i2c_smbus_read_byte_data()
function is a pointer to the struct i2c_client structure. This pointer will allow you to get the
ADXL345 I2C address (0x1d). The 0x1d value will be retrieved from client->address. After
binding, the I2C bus driver gets this I2C address value from the ioaccel device tree node
and stores it in the struct i2c_client structure, then this I2C address is sent to the
ioaccel_probe() function via a client pointer variable that points to this struct i2c_client
structure.

An input event KEY_1 will be reported with values of 0 or 1 depending of the ADXL345
board´s tilt. You can use a different range of acceleration values to report these events.

static void ioaccel_poll(struct input_polled_dev * pl_dev)
{
 struct ioaccel_dev * ioaccel = pl_dev->private;
 int val = 0;
 val = i2c_smbus_read_byte_data(ioaccel->i2c_client, OUT_X_MSB);

 if ((val > 0xc0) && (val < 0xff)) {
 input_event(ioaccel->polled_input->input, EV_KEY, KEY_1, 1);
 } else {
 input_event(ioaccel->polled_input->input, EV_KEY, KEY_1, 0);
 }

 input_sync(ioaccel->polled_input->input);
}

See in the next Listing 10-1 the "input subsystem accelerometer" driver source code (i2c_imx_
accel.c) for the i.MX7D processor.

Note: The source code for the SAMA5D2 (i2c_sam_accel.c) and BCM2837 (i2c_rpi_accel.c) drivers
can be downloaded from the GitHub repository of this book.

[431]

Chapter 10 Input Subsystem Framework for Device Drivers

[431]

Listing 10-1: i2c_imx_accel.c
#include <linux/module.h>
#include <linux/fs.h>
#include <linux/i2c.h>
#include <linux/input-polldev.h>

/* create private structure */
struct ioaccel_dev {
 struct i2c_client *i2c_client;
 struct input_polled_dev * polled_input;
};

#define POWER_CTL 0x2D
#define PCTL_MEASURE (1 << 3)
#define OUT_X_MSB 0x33

/* poll function */
static void ioaccel_poll(struct input_polled_dev * pl_dev)
{
 struct ioaccel_dev *ioaccel = pl_dev->private;
 int val = 0;
 val = i2c_smbus_read_byte_data(ioaccel->i2c_client, OUT_X_MSB);

if ((val > 0xc0) && (val < 0xff)) {
 input_event(ioaccel->polled_input->input, EV_KEY, KEY_1, 1);
 } else {
 input_event(ioaccel->polled_input->input, EV_KEY, KEY_1, 0);
 }

 input_sync(ioaccel->polled_input->input);
}

static int ioaccel_probe(struct i2c_client * client,
 const struct i2c_device_id * id)
{
 /* declare an instance of the private structure */
 struct ioaccel_dev *ioaccel;

 dev_info(&client->dev, "my_probe() function is called.\n");

 /* allocate private structure for new device */
 ioaccel = devm_kzalloc(&client->dev, sizeof(struct ioaccel_dev), GFP_KERNEL);

 /* Associate client->dev with ioaccel private structure */
 i2c_set_clientdata(client, ioaccel);

Input Subsystem Framework for Device Drivers Chapter 10

[432]

 /* enter measurement mode */
 i2c_smbus_write_byte_data(client, POWER_CTL, PCTL_MEASURE);

 /* allocate the struct input_polled_dev */
 ioaccel->polled_input = devm_input_allocate_polled_device(&client->dev);

 /* initialize polled input */
 ioaccel->i2c_client = client;
 ioaccel->polled_input->private = ioaccel;

ioaccel->polled_input->poll_interval = 50;
 ioaccel->polled_input->poll = ioaccel_poll;

ioaccel->polled_input->input->dev.parent = &client->dev;
ioaccel->polled_input->input->name = "IOACCEL keyboard";

 ioaccel->polled_input->input->id.bustype = BUS_I2C;

 /* set event types */
 set_bit(EV_KEY, ioaccel->polled_input->input->evbit);
 set_bit(KEY_1, ioaccel->polled_input->input->keybit);

 /* register the device, now the device is global until being unregistered */
 input_register_polled_device(ioaccel->polled_input);

 return 0;
}

static int ioaccel_remove(struct i2c_client * client)
{
 struct ioaccel_dev *ioaccel;
 ioaccel = i2c_get_clientdata(client);
 input_unregister_polled_device(ioaccel->polled_input);
 dev_info(&client->dev, "ioaccel_remove()\n");
 return 0;
}

/* add entries to device tree */
static const struct of_device_id ioaccel_dt_ids[] = {
 { .compatible = "arrow,adxl345", },
 { }
};
MODULE_DEVICE_TABLE(of, ioaccel_dt_ids);

static const struct i2c_device_id i2c_ids[] = {
 { "adxl345", 0 },
 { }
};
MODULE_DEVICE_TABLE(i2c, i2c_ids);

/* create struct i2c_driver */

[433]

Chapter 10 Input Subsystem Framework for Device Drivers

[433]

static struct i2c_driver ioaccel_driver = {
 .driver = {
 .name = "adxl345",
 .owner = THIS_MODULE,
 .of_match_table = ioaccel_dt_ids,
 },
 .probe = ioaccel_probe,
 .remove = ioaccel_remove,
 .id_table = i2c_ids,
};

/* register to i2c bus as a driver */
module_i2c_driver(ioaccel_driver);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Alberto Liberal <aliberal@arroweurope.com>");
MODULE_DESCRIPTION("This is an accelerometer INPUT framework platform driver");

i2c_imx_accel.ko Demonstration
"Use i2c-utils suite to interact with sensors (before loading the module)"

"i2cdetect is a tool of the i2c-tools suite. It is able to probe an i2c bus from
user space and report the addresses in use"

root@imx7dsabresd:~# i2cdetect -l /* list available buses, accelerometer is in bus 2
*/

i2c-3 i2c 30a50000.i2c I2C adapter
i2c-1 i2c 30a30000.i2c I2C adapter
i2c-2 i2c 30a40000.i2c I2C adapter
i2c-0 i2c 30a20000.i2c I2C adapter

root@imx7dsabresd:~# i2cdetect -y 2 /* see detected devices, see the "1d"
accelerometer address */

 0 1 2 3 4 5 6 7 8 9 a b c d e f

00: -- -- -- -- -- -- -- -- -- -- -- -- --

10: -- -- -- -- -- -- -- -- -- -- -- -- -- 1d -- --

20: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

30: -- -- -- -- -- -- -- -- -- UU -- -- -- -- -- --

40: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

50: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

60: 60 -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

70: -- -- -- -- -- -- -- --

Input Subsystem Framework for Device Drivers Chapter 10

[434]

root@imx7dsabresd:~# i2cset -y 2 0x1d 0x2d 0x08 /* enter measurement mode */

root@imx7dsabresd:~# while true; do i2cget -y 2 0x1d 0x33; done /* you can see the
OUT_X_MSB register values. The 0x33 value correspond to the OUT_X_MSB register
address. You can move the i.MX7D board and see the OUT_X_MSB register values
changing. Set different range of values to generate the event. This range of values
will be set inside the ioaccel_poll() function */

"Load now the i2_imx_accel.ko module"

root@imx7dsabresd:~# insmod i2c_imx_accel.ko
adxl345 2-001d: my_probe() function is called.
input: IOACCEL keyboard as /devices/soc0/soc/30800000.aips-bus/30a40000.i2c/i2c-
2/2-001d/input/input5

"Launch evtest application and see the input available devices. Select 4. After
launching the module and executing the evtest application move the i.MX7D board
until you see the event KEY_1 being generated"

root@imx7dsabresd:~# evtest
No device specified, trying to scan all of /dev/input/event*

Available devices:

/dev/input/event0: fxos8700

/dev/input/event1: fxas2100x

/dev/input/event2: 30370000.snvs:snvs-powerkey

/dev/input/event3: mpl3115

/dev/input/event4: IOACCEL keyboard

Select the device event number [0-4]: 4

Input driver version is 1.0.1

Input device ID: bus 0x18 vendor 0x0 product 0x0 version 0x0

Input device name: "IOACCEL keyboard"

Supported events:

 Event type 0 (EV_SYN)

 Event type 1 (EV_KEY)

 Event code 2 (KEY_1)

Properties:

Testing ... (interrupt to exit)

Event: time 1510654662.383415, type 1 (EV_KEY), code 2 (KEY_1), value 1

Event: time 1510654662.383415, -------------- SYN_REPORT ------------

[435]

Chapter 10 Input Subsystem Framework for Device Drivers

[435]

Event: time 1510654662.443578, type 1 (EV_KEY), code 2 (KEY_1), value 0

Event: time 1510654662.443578, -------------- SYN_REPORT ------------

Event: time 1510654669.763539, type 1 (EV_KEY), code 2 (KEY_1), value 1

Event: time 1510654669.763539, -------------- SYN_REPORT ------------

Event: time 1510654669.823578, type 1 (EV_KEY), code 2 (KEY_1), value 0

Event: time 1510654669.823578, -------------- SYN_REPORT ------------

Event: time 1510654679.063539, type 1 (EV_KEY), code 2 (KEY_1), value 1

Event: time 1510654679.063539, -------------- SYN_REPORT ------------

root@imx7dsabresd:~# rmmod i2c_imx_accel.ko /* remove the module */

Using SPI with Linux
The Serial Peripheral Interface (SPI) is a synchronous four wire serial link used to connect
microprocessors to sensors, memory, and peripherals. It's a simple "de facto" standard, not
complicated enough to require a standardization body. The SPI uses a master/slave configuration.

The three signal wires hold a clock (SCK, often in the range of 1-20 MHz), and parallel data lines
with "Master Out, Slave In" (MOSI) or "Master In, Slave Out" (MISO) signals. There are four
clocking modes through which data is exchanged; mode-0 and mode-3 are most commonly used.
Each clock cycle shifts data out and data in; the clock doesn't cycle except when there is a data bit
to shift. Not all data bits are used though; not every protocol uses those full duplex capabilities.

SPI masters use a "chip select" line to activate a given SPI slave device, so those three signal wires
may be connected to several chips in parallel. All SPI slaves support chipselects; they are usually
active low signals, labeled nCSx for slave 'x' (e.g., nCS0). Some devices have other signals, often
including an interrupt to the master.

The programming interface is structured around two kinds of drivers: the controller and protocol
drivers. The controller drivers support the SPI master controller and drive hardware to control

Input Subsystem Framework for Device Drivers Chapter 10

[436]

clock and chip selects, shift data bits on/off wire and configure basic SPI characteristics like clock
frequency and mode; you can see for example the Linux driver for Broadcom BCM2835 auxiliary
SPI controllers (drivers/spi/spi-bcm2835aux.c). The protocol drivers support the SPI slave specific
functionality, are based on messages and transfer and rely on controller driver to program SPI
master hardware.

The I/O model is a set of queued messages. A single message (fundamental argument to all SPI
subsystem read/write APIs) is an atomic sequence of transfers built from one or more struct
spi_transfer objects, each of which wraps a full duplex SPI transfer, which is processed and
completed synchronously or asynchronously. When using synchronous request, the caller is block
until the call succeeds. When using asynchronous request, you are periodically checking if the
transaction is finished. The driver for a SPI controller manages access to those devices through
a queue of struct spi_message transactions, copying data between CPU memory and a SPI slave
device. For each such message it queues, it calls the message’s completion function when the
transaction completes.

See the at25_ee_read() function of the at25.c driver located under drivers/misc/eeprom/ as an
example of a SPI transaction:

struct spi_transfer t[2];
struct spi_message m;
spi_message_init(&m);
memset(t, 0, sizeof t);

t[0].tx_buf = command;
t[0].len = at25->addrlen + 1;
spi_message_add_tail(&t[0], &m);

t[1].rx_buf = buf;
t[1].len = count;
spi_message_add_tail(&t[1], &m);
status = spi_sync(at25->spi, &m);

The basic I/O primitive is spi_async(). Async requests may be issued in any context (irq handler,
task, etc) and completion is reported using a callback provided with the message. After any
detected error, the chip is deselected and processing of that struct spi_message is aborted.

There are also synchronous wrappers like spi_sync(), and wrappers like spi_read(), spi_write(), and
spi_write_then_read(). These may be issued only in contexts that may sleep, and they're all clean
(and small, and "optional") layers over spi_async().

The spi_write_then_read() call, and convenience wrappers around it, should only be used with small
amounts of data where the cost of an extra copy may be ignored. It's designed to support common

[437]

Chapter 10 Input Subsystem Framework for Device Drivers

[437]

RPC-style requests, such as writing an eight bit command and reading a sixteen bit response
-- spi_w8r16() being one its wrappers, doing exactly that.

static inline ssize_t spi_w8r16(struct spi_device *spi, u8 cmd)

{
 ssize_t status;
 u16 result;

 status = spi_write_then_read(spi, &cmd, 1, &result, 2);

 /* return negative errno or unsigned value */
 return (status < 0) ? status : result;
}

See the m41t93_set_reg() function of the rtc-m41t93.c driver located under drivers/rtc/ as an example
of a wrapper SPI transaction:

static inline int m41t93_set_reg(struct spi_device *spi, u8 addr, u8 data)
{
 u8 buf[2];

 /* MSB must be '1' to write */
 buf[0] = addr | 0x80;
 buf[1] = data;

 return spi_write(spi, buf, sizeof(buf));
}

The Linux SPI Subsystem
The Linux SPI subsystem is based in the Linux device model and is composed of several drivers:

1. The SPI bus core of the SPI subsystem is located in the spi.c file under drivers/spi/ directory.
The SPI core in the device model is a collection of code that provides interface support
between an individual client driver and some SPI bus masters such as the i.MX7D SPI
controllers. The SPI bus core is registered itself with the kernel using the bus_register()
function and also declares the SPI struct bus_type structure:

struct bus_type spi_bus_type = {
 .name = "spi",
 .dev_groups = spi_dev_groups,
 .match = spi_match_device,
 .uevent = spi_uevent,
};
EXPORT_SYMBOL_GPL(spi_bus_type);

Input Subsystem Framework for Device Drivers Chapter 10

[438]

The SPI core API is a set of functions (spi_write_then_read(), spi_sync(), spi_async) used for a
SPI client device driver to manage SPI transactions with a device connected to a SPI bus.

2. The SPI controller drivers are located under drivers/spi/ directory. The SPI controller is a
platform device that must be registered as a device to the platform bus via the
of_platform_populate() function and registered itself as a driver using the
module_platform_driver() function:

static struct platform_driver bcm2835_spi_driver = {
 .driver = {
 .name = DRV_NAME,
 .of_match_table = bcm2835_spi_match,
 },
 .probe = bcm2835_spi_probe,
 .remove = bcm2835_spi_remove,
};
module_platform_driver(bcm2835_spi_driver);

The SPI controller driver is a set of custom functions that issues read/writes to the specific
SPI controller hardware I/O addresses. There is specific code for each different processor´s
SPI master driver. The main task of this SPI driver is to provide a struct spi_master per each
probed SPI controller. The spi_alloc_master() function is called to allocate the master, and
spi_master_get_devdata() is called to get the driver-private data allocated for that device.

 struct spi_master *master;
 master = spi_alloc_master(dev, sizeof *c);

c = spi_master_get_devdata(master);

The driver will initialize the fields of struct spi_master with the methods used to interact
with the SPI core and SPI protocol drivers. After that, struct spi_master is initialized and
devm_spi_register_master() registers each SPI controller to the SPI bus core publishing it to
the rest of the system. At that time, device nodes for the controller and any predeclared SPI
devices will be made available, and the driver model core will take care of binding them to
drivers. These are some of the SPI master methods:

•	 master->setup(struct spi_device *spi): this sets up the device clock rate, SPI mode,
and word sizes.

•	 master->transfer_one(struct spi_master *master, struct spi_device *spi, struct spi_transfer
*transfer): the subsystem calls the driver to transfer a single transfer while queuing
transfers that arrive in the meantime. When the driver has finished this transfer,
it must call spi_finalize_current_transfer() so that the subsystem can issue the next
transfer. This may sleep.

[439]

Chapter 10 Input Subsystem Framework for Device Drivers

[439]

See below the initialization and registration of a Broadcom bcm2835 SPI master controller
inside the probe() function of the spi-bcm2835.c driver located under drivers/spi/ folder:

static int bcm2835_spi_probe(struct platform_device *pdev)
{
 struct spi_master *master;
 struct bcm2835_spi *bs;
 struct resource *res;
 int err;

 master = spi_alloc_master(&pdev->dev, sizeof(*bs));

 platform_set_drvdata(pdev, master);

 master->mode_bits = BCM2835_SPI_MODE_BITS;
 master->bits_per_word_mask = SPI_BPW_MASK(8);
 master->num_chipselect = 3;
 master->setup = bcm2835_spi_setup;
 master->set_cs = bcm2835_spi_set_cs;
 master->transfer_one = bcm2835_spi_transfer_one;
 master->handle_err = bcm2835_spi_handle_err;
 master->prepare_message = bcm2835_spi_prepare_message;
 master->dev.of_node = pdev->dev.of_node;

 bs = spi_master_get_devdata(master);

 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
 bs->regs = devm_ioremap_resource(&pdev->dev, res);

 bs->clk = devm_clk_get(&pdev->dev, NULL);

 bs->irq = platform_get_irq(pdev, 0);

 clk_prepare_enable(bs->clk);

 bcm2835_dma_init(master, &pdev->dev);

 /* initialise the hardware with the default polarities */
 bcm2835_wr(bs, BCM2835_SPI_CS,
 BCM2835_SPI_CS_CLEAR_RX | BCM2835_SPI_CS_CLEAR_TX);

 devm_request_irq(&pdev->dev, bs->irq, bcm2835_spi_interrupt, 0,
 dev_name(&pdev->dev), master);

 devm_spi_register_master(&pdev->dev, master);

 return 0;
}

Input Subsystem Framework for Device Drivers Chapter 10

[440]

The SPI master driver needs to implement a mechanism to send the data on the SPI bus
using the SPI device specified settings. It's the SPI master driver's responsibilities to
operate the hardware to send out the data. Normally, the SPI master needs to implement:

•	 a message queue: to hold the messages from the SPI device driver
•	 a workqueue and workqueue thread: to pump the messages from the message queue

and start transfer
•	 a tasklet and tasklet handler: to send the data on the hardware
•	 an interrupt handler: to handle the interrupts during the transfer

3. The SPI device drivers are located throughout linux/drivers/, depending on the type of
device (for example, drivers/input/ for input devices). The driver code is specific to the
device (for example, an accelerometer, a digital analog converter, etc.) and uses the SPI
core API to communicate with the SPI master driver and receive data to/from the SPI
device.

For example, if the SPI client driver calls spi_write_then_read() declared in drivers/spi/spi.c,
then this function calls spi_sync(), which in turn calls __spi_sync(). The __spi_sync() function
calls __spi_pump_messages(), which processes spi message queue and checks if there is any
spi message in the queue that needs processing and if so calls out to the driver to initialize
hardware and transfer each message. The __spi_pump_messages() function is called both
from the kthread itself and also from inside spi_sync(); the queue extraction handling at the
top of the function should deal with this safely. Finally __spi_pump_messages() calls
master->transfer_one_message() that in the BCM2835 SPI master driver was initialized to
bcm2835_spi_transfer_one() (master driver function that interacts with the specific SPI
controller hardware).

Writing SPI Client Drivers
You will focus now in the writing of SPI client drivers. In this and in successive chapters, you will
develop several SPI client drivers to control an accelerometer and an analog to digital converter
device. In the next sections, it will be covered the main steps to set up a SPI client driver.

SPI Client Driver Registration
The SPI subsystem defines a struct spi_driver structure that is inherited from struct device_driver, and
which must be instantiated and registered to the SPI bus core by each SPI device driver. Usually,
you will implement a single driver structure, and instantiate all clients from it. Remember, a driver
structure contains general access routines, and should be zero-initialized except for fields with
data you provide. See the example below of a struct spi_driver definition for a SPI accelerometer
device:

[441]

Chapter 10 Input Subsystem Framework for Device Drivers

[441]

static struct spi_driver adxl345_driver = {
 .driver = {
 .name = "adxl345",
 .owner = THIS_MODULE,
 .of_match_table = adxl345_dt_ids,
 },
 .probe = adxl345_spi_probe,
 .remove = adxl345_spi_remove,
 .id_table = adxl345_id,
};
module_spi_driver(adxl345_driver);

The module_spi_driver() macro is used to register/unregister the driver.

In your device driver you create an array of structures struct of_device_id where you specify
compatible strings that hold the same value of the DT device node´s compatible property. The struct
of_device_id located in include/linux/mod_devicetable.h is defined as:

struct of_device_id {
 char name[32];
 char type[32];
 char compatible[128];
};

The of_match_table field (included in the driver field) of the struct spi_driver is a pointer to the array
of structures struct of_device_id that stores the compatible strings supported by the driver:

static const struct of_device_id adxl345_dt_ids[] = {
 { .compatible = "arrow,adxl345", },
 { }
};
MODULE_DEVICE_TABLE(of, adxl345_dt_ids);

The driver´s probe() function is called when the field compatible in one of the of_device_id entries
matches with the compatible property of a DT device node. The probe() function is responsible of
initializing the device with the configuration values obtained from the matching DT device node
and also to register the device to the appropriate kernel framework.

In your SPI device driver you also define an array of struct spi_device_id structures:

static const struct spi_device_id adxl345_id[] = {
 { .name = "adxl345", },
 { }
};
MODULE_DEVICE_TABLE(spi, adxl345_id);

Input Subsystem Framework for Device Drivers Chapter 10

[442]

Declaration of SPI Devices in Device Tree
In the device tree, each SPI controller device is typically declared in the .dtsi file that describes the
processor (for i.MX7D see arch/arm/boot/dts/imx7s.dtsi). The SPI DT controller is normally declared with
status = "disabled". In the imx7s.dtsi file there are declared four DT SPI controllers devices, that are registered
to the SPI bus core through the of_platform_populate() function. For the i.MX7D, the spi-imx.c driver located
under drivers/spi will register itself to the SPI bus core using the module_spi_driver() function. The probe()
function inside spi-imx.c will be called four times (one for each compatible = " fsl,imx51-ecspi " matching)
initializing a struct spi_master for each controller and registering it to the SPI bus core using the devm_spi_
register_master() function. See below the declaration of three of the four i.MX7D DT SPI controller nodes:

ecspi1: ecspi@30820000 {
 #address-cells = <1>;
 #size-cells = <0>;
 compatible = "fsl,imx7d-ecspi", "fsl,imx51-ecspi";
 reg = <0x30820000 0x10000>;
 interrupts = <GIC_SPI 31 IRQ_TYPE_LEVEL_HIGH>;
 clocks = <&clks IMX7D_ECSPI1_ROOT_CLK>,
 <&clks IMX7D_ECSPI1_ROOT_CLK>;
 clock-names = "ipg", "per";
 status = "disabled";
 };

 ecspi2: ecspi@30830000 {
 #address-cells = <1>;
 #size-cells = <0>;
 compatible = "fsl,imx7d-ecspi", "fsl,imx51-ecspi";
 reg = <0x30830000 0x10000>;
 interrupts = <GIC_SPI 32 IRQ_TYPE_LEVEL_HIGH>;
 clocks = <&clks IMX7D_ECSPI2_ROOT_CLK>,
 <&clks IMX7D_ECSPI2_ROOT_CLK>;
 clock-names = "ipg", "per";
 status = "disabled";
 };

 ecspi3: ecspi@30840000 {
 #address-cells = <1>;
 #size-cells = <0>;
 compatible = "fsl,imx7d-ecspi", "fsl,imx51-ecspi";
 reg = <0x30840000 0x10000>;
 interrupts = <GIC_SPI 33 IRQ_TYPE_LEVEL_HIGH>;
 clocks = <&clks IMX7D_ECSPI3_ROOT_CLK>,
 <&clks IMX7D_ECSPI3_ROOT_CLK>;
 clock-names = "ipg", "per";
 status = "disabled";
 };

[443]

Chapter 10 Input Subsystem Framework for Device Drivers

[443]

These are the required properties for an i.MX7D DT SPI controller node:

•	 compatible: "fsl,imx51-ecspi" for SPI compatible with the one integrated on i.MX7D.
•	 reg: offset and length of the register set for the device.
•	 interrupts: should contain eCSPI interrupt.
•	 clocks: clock specifiers for both ipg and per clocks.
•	 clock-names: clock names should include both "ipg" and "per". See the clock consumer

binding, in Documentation/devicetree/bindings/clock/clock-bindings.txt
•	 dmas: DMA specifiers for tx and rx dma. See the DMA client binding, in Documentation/

devicetree/bindings/dma/dma.txt
•	 dma-names: DMA request names should include "tx" and "rx" if present.

And these are the optional properties:

•	 cs-gpios: Specifies the gpio pins to be used for chip selects.
•	 num-cs: Total number of chip selects.

If cs-gpios is used the number of chip selects will be increased automatically with max(cs-gpios >
hw cs). So, if for example the controller has 2 CS lines, and the cs-gpios property looks like this:

cs-gpios = <&gpio1 0 0>, <0>, <&gpio1 1 0>, <&gpio1 2 0>;

Then it should be configured so that num_chipselect = 4 with the following mapping:

cs0 : &gpio1 0 0
cs1 : native
cs2 : &gpio1 1 0
cs3 : &gpio1 2 0

Input Subsystem Framework for Device Drivers Chapter 10

[444]

See in the following figure a SPI controller with multiple chip selects connected to several SPI
devices:

The device tree declaration of SPI devices is done as sub-nodes of the SPI master controller at the board/
platform level (arch/arm/boot/dts/imx7d-sdb.dts). These are the required and optional properties:

•	 reg: (required) chip select address of device.
•	 compatible: (required) name of SPI device that should match with one of the driver´s

of_device_id compatible strings.
•	 spi-max-frequency: (required) maximum SPI clocking speed of device in Hz.
•	 spi-cpol: (optional) empty property indicating device requires inverse clock polarity (CPOL)

mode.
•	 spi-cpha: (optional) empty property indicating device requires shifted clock phase (CPHA) mode.
•	 spi-cs-high: (optional) empty property indicating device requires chip select active high.
•	 spi-3wire: (optional) empty property indicating device requires 3-wire mode.
•	 spi-lsb-first: (optional) empty property indicating device requires LSB first mode.
•	 spi-tx-bus-width: (optional) the bus width (number of data wires) that is used for MOSI; defaults to

1 if not present.
•	 spi-rx-bus-width: (optional) the bus width (number of data wires) that is used for MISO; defaults to

1 if not present.
•	 spi-rx-delay-us: (optional) microsecond delay after a read transfer.
•	 spi-tx-delay-us: (optional) microsecond delay after a write transfer.

[445]

Chapter 10 Input Subsystem Framework for Device Drivers

[445]

Find in the DT imx7d-sdb.dts file the ecspi3 controller declaration. The ecspi3 controller is enabled writing
"okay" to the status property. In the cs-gpios property you can see that there are two chip selects enabled,
the first one will enable the tsc2046 device and the second one will enable the ADXL345 accelerometer.
The pinctrl-0 property inside the ecspi3 node points to the pinctrl_ ecspi3 and pinctrl_ecspi3_cs function
nodes, where the chip selects pads are being multiplexed with GPIO functionality.

In the ADXL345 sub-node you can see that reg value is equal to 1, whereas in the tsc2046
sub-node the reg value is 0 to select the different chip selects. Inside each sub-node you can see some
required properties like the spi-max-frequency and the compatible one.

&ecspi3 {
 fsl,spi-num-chipselects = <2>;
 pinctrl-names = "default";
 pinctrl-0 = <&pinctrl_ecspi3 &pinctrl_ecspi3_cs>;
 cs-gpios = <&gpio5 9 GPIO_ACTIVE_HIGH>, <&gpio6 22 0>;
 status = "okay";

tsc2046@0 {
 compatible = "ti,tsc2046";
 reg = <0>;
 spi-max-frequency = <1000000>;
 pinctrl-names ="default";
 pinctrl-0 = <&pinctrl_tsc2046_pendown>;
 interrupt-parent = <&gpio2>;
 interrupts = <29 0>;
 pendown-gpio = <&gpio2 29 GPIO_ACTIVE_HIGH>;
 ti,x-min = /bits/ 16 <0>;
 ti,x-max = /bits/ 16 <0>;
 ti,y-min = /bits/ 16 <0>;
 ti,y-max = /bits/ 16 <0>;
 ti,pressure-max = /bits/ 16 <0>;
 ti,x-plate-ohms = /bits/ 16 <400>;
 wakeup-source;
 };

 ADXL345@1 {
 compatible = "arrow,adxl345";
 pinctrl-names ="default";
 pinctrl-0 = <&pinctrl_accel_gpio>;
 spi-max-frequency = <5000000>;
 spi-cpol;
 spi-cpha;
 reg = <1>;
 int-gpios = <&gpio6 14 GPIO_ACTIVE_LOW>;
 interrupt-parent = <&gpio6>;
 interrupts = <14 IRQ_TYPE_LEVEL_HIGH>;
 };
};

Input Subsystem Framework for Device Drivers Chapter 10

[446]

LAB 10.2: "SPI accel input device" Module
Throughout the upcoming lab, you will implement your first driver for a SPI device. The driver
will manage an accelerometer device connected to the SPI bus. You can use the same ADXL345
Accel click mikroBUS™ accessory board from the previous lab.

To develop the new driver you will draw on the mainlined ADXL345 Input 3-Axis Digital
Accelerometer Linux Driver from Michael Hennerich removing some features to simplify it for
educational purposes. Your ADXL345 driver will only support SPI. See a description of the Michael
Hennrich driver at https://wiki.analog.com/resources/tools-software/linux-drivers/input-misc/adxl345.

The driver will support single tap motion detection on any of the 3 axis. The tap detection
threshold is defined by the THRESH_TAP register (Address 0x1D). The SINGLE_TAP bit of
the INT_SOURCE register (Address 0x30) is set when a single acceleration event greater than
the value in the THRESH_TAP register (Address 0x1D) occurs for less time than is specified in
the DUR register (Address 0x21). The single tap interrupt is triggered when the acceleration
goes below the threshold, as long as DUR has not been exceeded (see pag 28 of the ADXL345
data-sheet). You will select by default the tap motion detection only in the Z axis enabling it by
writing in the TAP_AXES (Address 0x2A) register.

LAB 10.2 Hardware Description for the i.MX7D Processor
In this lab, you will use the SPI pins of the MCIMX7D-SABRE board mikroBUS™ to connect to
the ADXL345 Accel click mikroBUS™ accessory board. The Accel Click™ board communicates
with the main board via I2C or SPI interface depending on the position of the J1, J2 and J3 SMD
jumpers. These jumpers are soldered in I2C interface position by default. You should solder the
jumpers in SPI interface position for this lab.

Go to the pag.20 of the MCIMX7D-SABRE schematic to see the MikroBUS connector and look for
the SPI pins. Connect these pins to the SPI ones of the ADXL345 Accel click mikroBUS™ accessory
board. The ADXL345 will generate an interrupt, so connect INT pin between both mikroBUS™
boards. Connect also VCC 3.3V and GND between both boards. See below a description of the
connections:

•	 Connect i.MX7D MKBUS_ESPI3_SS0_B (CS) to ADXL345 CS (CS)

•	 Connect i.MX7D MKBUS_ESPI3_SCLK (SCK) to ADXL345 SCL (SCK)

•	 Connect i.MX7D MKBUS_ESPI3_MISO (MISO) to ADXL345 SDO (MISO)

•	 Connect i.MX7D MKBUS_ESPI3_MOSI (MOSI) ADXL345 SDI (MOSI)

•	 Connect i.MX7D MKBUS_INT (INT) to ADXL345 INT1 (INT)

[447]

Chapter 10 Input Subsystem Framework for Device Drivers

[447]

LAB 10.2 Hardware Description for the SAMA5D2 Processor
For the SAMA5D2 processor, open the SAMA5D2B-XULT board schematic and look for connectors
on board with pins that provide SPI signals. The SAMA5D2B-XULT board have five 8-pin, one
6-pin, one 10-pin and one 36-pin headers (J7, J8, J9, J16, J17, J20, J21, J22) that enable the PIO
connection of various expansion cards. These headers’ physical and electrical implementation
match the Arduino R3 extension ("shields") system.

You can access to the SPI signals using the J17 header. See below a description of the connections
between both boards:

•	 Connect SAMA5D2 ISC_PCK/SPI1_NPCS0_PC4 (pin 26 of J17) to ADXL345 CS (CS)

•	 Connect SAMA5D2 SC_D7/SPI1_SPCK_PC1 (pin 17 of J17) to ADXL345 SCL (SCK)

•	 Connect SAMA5D2 ISC_D9/SPI1_MISO_PC3 (pin 22 of J17) to ADXL345 SDO (MISO)

•	 Connect SAMA5D2 ISC_D8/SPI1_MOSI_PC2 (pin 23 of J17) to ADXL345 SDI (MOSI)

•	 Connect SAMA5D2 ISC_D11/EXP_PB25 (pin 30 of J17) to ADXL345 INT1 (INT)

LAB 10.2 Hardware Description for the BCM2837 Processor
For the BCM2837 processor, you will use the GPIO expansion connector to obtain the SPI signals.
Go to the Raspberry-Pi-3B-V1.2-Schematics to see the J8 connector. See below a description of the
connections between both boards:

•	 Connect BCM2837 SPI_CE0_N (pin 24 of J8) to ADXL345 CS (CS)

•	 Connect BCM2837 SPI_SCLK (pin 23 of J8) to ADXL345 SCL (SCK)

•	 Connect BCM2837 SPI_MISO (pin 21 of J8) to ADXL345 SDO (MISO)

•	 Connect BCM2837 SPI_MOSI (pin 19 of J8) to ADXL345 SDI (MOSI)

•	 Connect BCM2837 GPIO23 (pin 16 of J8) to ADXL345 INT1 (INT)

LAB 10.2 Device Tree for the i.MX7D Processor
Modify the device tree file imx7d-sdb.dts adding the adxl345@1 sub-node inside the ecspi3 controller
master node. The pinctrl-0 property of the adxl345 node points to the pinctrl_accel_gpio pin
configuration node, where the SAI1_TX_SYNC pad is multiplexed as a GPIO signal. The int-gpios
property will make the GPIO pin 14 of the GPIO6 port available to the driver so that you can set
the pin direction to input and get the Linux IRQ number associated to this pin. The reg property
provides the CS number; there are two chip selects inside the ecspi3 node, one for the tsc2046 node

Input Subsystem Framework for Device Drivers Chapter 10

[448]

and the other one for the adxl345 node. Don´t forget to set the status property to "okay", as it was
"disabled" in previous labs. These are other DT properties that you can see inside the adxl345 node:

•	 spi-max-frequency: maximum SPI clock frequency for this device
•	 spi-cpha: needs to be set for the correct SPI mode
•	 spi-cpol: needs to be set for the correct SPI mode
•	 interrupt-parent: specifies which IRQ controller is used
•	 interrupts: the interrupt associated with the INT pin

&ecspi3 {
 fsl,spi-num-chipselects = <1>;
 pinctrl-names = "default";
 pinctrl-0 = <&pinctrl_ecspi3 &pinctrl_ecspi3_cs>;
 cs-gpios = <&gpio5 9 GPIO_ACTIVE_HIGH>, <&gpio6 22 0>;
 status = "okay";

tsc2046@0 {
 compatible = "ti,tsc2046";
 reg = <0>;
 spi-max-frequency = <1000000>;
 pinctrl-names ="default";
 pinctrl-0 = <&pinctrl_tsc2046_pendown>;
 interrupt-parent = <&gpio2>;
 interrupts = <29 0>;
 pendown-gpio = <&gpio2 29 GPIO_ACTIVE_HIGH>;
 ti,x-min = /bits/ 16 <0>;
 ti,x-max = /bits/ 16 <0>;
 ti,y-min = /bits/ 16 <0>;
 ti,y-max = /bits/ 16 <0>;
 ti,pressure-max = /bits/ 16 <0>;
 ti,x-plate-ohms = /bits/ 16 <400>;
 wakeup-source;
 };

 Accel: ADXL345@1 {
 compatible = "arrow,adxl345";
 pinctrl-names ="default";
 pinctrl-0 = <&pinctrl_accel_gpio>;
 spi-max-frequency = <5000000>;
 spi-cpol;
 spi-cpha;
 reg = <1>;
 int-gpios = <&gpio6 14 GPIO_ACTIVE_LOW>;
 interrupt-parent = <&gpio6>;
 interrupts = <14 IRQ_TYPE_LEVEL_HIGH>;
 };

};

[449]

Chapter 10 Input Subsystem Framework for Device Drivers

[449]

See below the pinctrl_accel_gpio pin configuration node located inside the iomuxc node, where the
SAI1_TX_SYNC pad is multiplexed as a GPIO signal:

pinctrl_accel_gpio: pinctrl_accel_gpiogrp {

 fsl,pins = <
 MX7D_PAD_SAI1_TX_SYNC__GPIO6_IO14 0x2
 >;
};

LAB 10.2 Device Tree for the SAMA5D2 Processor
Open the device tree file at91-sama5d2_xplained_common.dtsi and create the spi1 controller node.
The pinctrl-0 property of the spi node points to the pinctrl_spi1_default pin configuration node, where
the spi controller pads are multiplexed as SPI signals. The spi controller is enabled setting the status
property to "okay". Add now the adxl345@0 sub-node inside the spi1 controller master node. The
pinctrl-0 property of the adxl345 node points to the pinctrl_accel_gpio_default pin configuration node,
where the PB25 pad is multiplexed as a GPIO signal. The int-gpios property will make the GPIO pin
25 of the PIOB port available to the driver so that you can set the pin direction to input and get the
Linux IRQ number associated to this pin. The reg property provides the CS number; there is only
one CS inside the spi1 node.

spi1: spi@fc000000 {
 pinctrl-names = "default";
 pinctrl-0 = <&pinctrl_spi1_default>;
 status = "okay";

Accel: ADXL345@0 {
 compatible = "arrow,adxl345";
 reg = <0>;
 spi-max-frequency = <5000000>;
 pinctrl-names = "default";
 pinctrl-0 = <&pinctrl_accel_gpio_default>;
 spi-cpol;
 spi-cpha;
 int-gpios = <&pioA 57 GPIO_ACTIVE_LOW>;
 interrupt-parent = <&pioA>;
 interrupts = <57 IRQ_TYPE_LEVEL_HIGH>;
 };
};

Input Subsystem Framework for Device Drivers Chapter 10

[450]

See below the pinctrl_spi_default pin configuration node, where the PC1, PC2, PC3, and PC4 pads
are multiplexed as SPI signals:

pinctrl_spi1_default: spi1_default {
 pinmux = <PIN_PC1__SPI1_SPCK>,
 <PIN_PC2__SPI1_MOSI>,
 <PIN_PC3__SPI1_MISO>,
 <PIN_PC4__SPI1_NPCS0>;
 bias-disable;
};

See below the pinctrl_accel_gpio_default pin configuration node, where the PB25 pad is multiplexed
as a GPIO signal:

pinctrl_accel_gpio_default: accel_gpio_default {
 pinmux = <PIN_PB25__GPIO>;
 bias-disable;
};

[451]

Chapter 10 Input Subsystem Framework for Device Drivers

[451]

LAB 10.2 Device Tree for the BCM2837 Processor
Open and modify the device tree file bcm2710-rpi-3-b.dts adding the adxl345@0 sub-node inside the
spi0 controller master node. The pinctrl-0 property of the adxl345 node points to the accel_int_pin pin
configuration node, where the GPIO23 pad is multiplexed as a GPIO signal. The int-gpios property
will make the GPIO23 available to the driver so that you can set the pin direction to input and
get the Linux IRQ number associated to this pin. The reg property provides the CS number; there
are two chip selects inside the spi0 node, but you will only use the first one <&gpio 8 1> for the
ADXL345 device.

&spi0 {
 pinctrl-names = "default";
 pinctrl-0 = <&spi0_pins &spi0_cs_pins>;
 cs-gpios = <&gpio 8 1>, <&gpio 7 1>;

 Accel: ADXL345@0 {
 compatible = "arrow,adxl345";
 spi-max-frequency = <5000000>;
 spi-cpol;
 spi-cpha;
 reg = <0>;
 pinctrl-0 = <&accel_int_pin>;
 int-gpios = <&gpio 23 0>;
 interrupts = <23 1>;
 interrupt-parent = <&gpio>;
 };
};

See below the accel_int_pin pin configuration node, where the GPIO23 pad is multiplexed as a
GPIO signal:

accel_int_pin: accel_int_pin {
 brcm,pins = <23>;
 brcm,function = <0>; /* Input */
 brcm,pull = <0>; /* none */
};

LAB 10.2 Code Description of the "SPI accel input device" Module
The main code sections of the driver will now be described:

1. Include the function headers:

#include <linux/module.h>
#include <linux/input.h>
#include <linux/spi/spi.h>

Input Subsystem Framework for Device Drivers Chapter 10

[452]

#include <linux/of_gpio.h>
#include <linux/spi/spi.h>
#include <linux/interrupt.h>

2. Define the masks and the macros used to generate the specific commad byte of the SPI
transaction (spi_read(), spi_write(), spi_write_then_read()):

#define ADXL345_CMD_MULTB (1 << 6)
#define ADXL345_CMD_READ (1 << 7)
#define ADXL345_WRITECMD(reg) (reg & 0x3F)
#define ADXL345_READCMD(reg) (ADXL345_CMD_READ | (reg & 0x3F))
#define ADXL345_READMB_CMD(reg) (ADXL345_CMD_READ | ADXL345_CMD_MULTB \
 | (reg & 0x3F))

3. Define the registers of the ADXL345 device:

/* ADXL345 Register Map */
#define DEVID 0x00 /* R Device ID */
#define THRESH_TAP 0x1D /* R/W Tap threshold */
#define DUR 0x21 /* R/W Tap duration */
#define TAP_AXES 0x2A /* R/W Axis control for tap/double tap */
#define ACT_TAP_STATUS 0x2B /* R Source of tap/double tap */
#define BW_RATE 0x2C /* R/W Data rate and power mode control */
#define POWER_CTL 0x2D /* R/W Power saving features control */
#define INT_ENABLE 0x2E /* R/W Interrupt enable control */
#define INT_MAP 0x2F /* R/W Interrupt mapping control */
#define INT_SOURCE 0x30 /* R Source of interrupts */
#define DATA_FORMAT 0x31 /* R/W Data format control */
#define DATAX0 0x32 /* R X-Axis Data 0 */
#define DATAX1 0x33 /* R X-Axis Data 1 */
#define DATAY0 0x34 /* R Y-Axis Data 0 */
#define DATAY1 0x35 /* R Y-Axis Data 1 */
#define DATAZ0 0x36 /* R Z-Axis Data 0 */
#define DATAZ1 0x37 /* R Z-Axis Data 1 */
#define FIFO_CTL 0x38 /* R/W FIFO control */

4. Create the rest of #defines to perform operations in the ADXL345 registers and to pass
some of them as arguments to several functions of the driver:

/* DEVIDs */
#define ID_ADXL345 0xE5

 /* INT_ENABLE/INT_MAP/INT_SOURCE Bits */
#define SINGLE_TAP (1 << 6)

/* TAP_AXES Bits */
#define TAP_X_EN (1 << 2)
#define TAP_Y_EN (1 << 1)
#define TAP_Z_EN (1 << 0)

[453]

Chapter 10 Input Subsystem Framework for Device Drivers

[453]

/* BW_RATE Bits */
#define LOW_POWER (1 << 4)
#define RATE(x) ((x) & 0xF)

/* POWER_CTL Bits */
#define PCTL_MEASURE (1 << 3)
#define PCTL_STANDBY 0X00

/* DATA_FORMAT Bits */
#define FULL_RES (1 << 3)

/* FIFO_CTL Bits */
#define FIFO_MODE(x) (((x) & 0x3) << 6)
#define FIFO_BYPASS 0
#define FIFO_FIFO 1
#define FIFO_STREAM 2
#define SAMPLES(x) ((x) & 0x1F)

 /* FIFO_STATUS Bits */
#define ADXL_X_AXIS 0
#define ADXL_Y_AXIS 1
#define ADXL_Z_AXIS 2

#define ADXL345_GPIO_NAME "int"

/* Macros to do SPI operations */
#define AC_READ(ac, reg) ((ac)->bops->read((ac)->dev, reg))
#define AC_WRITE(ac, reg, val) ((ac)->bops->write((ac)->dev, reg, val))

5. Create the different structures of the driver:

/* define a structure to hold SPI bus operations */
struct adxl345_bus_ops {
 u16 bustype;
 int (*read)(struct device *, unsigned char);
 int (*read_block)(struct device *, unsigned char, int, void *);
 int (*write)(struct device *, unsigned char, unsigned char);
};

struct axis_triple {
 int x;
 int y;
 int z;
};

/* define a structure to hold specific driver´s information */
struct adxl345_platform_data {
 u8 low_power_mode;
 u8 tap_threshold;
 u8 tap_duration;

#define ADXL_TAP_X_EN (1 << 2)

Input Subsystem Framework for Device Drivers Chapter 10

[454]

#define ADXL_TAP_Y_EN (1 << 1)
#define ADXL_TAP_Z_EN (1 << 0)

u8 tap_axis_control;
 u8 data_rate;

#define ADXL_FULL_RES (1 << 3)
#define ADXL_RANGE_PM_2g 0
#define ADXL_RANGE_PM_4g 1
#define ADXL_RANGE_PM_8g 2
#define ADXL_RANGE_PM_16g 3

u8 data_range;
u32 ev_code_tap[3];

 u8 fifo_mode;
 u8 watermark;
};

/* Set initial adxl345 register values */
static const struct adxl345_platform_data adxl345_default_init = {
 .tap_threshold = 50,
 .tap_duration = 3,
 .tap_axis_control = ADXL_TAP_Z_EN,
 .data_rate = 8,
 .data_range = ADXL_FULL_RES,
 .fifo_mode = FIFO_BYPASS,
 .watermark = 0,
};

/* Define a private data structure */
struct adxl345 {
 struct gpio_desc *gpio;
 struct device *dev;
 struct input_dev *input;
 struct adxl345_platform_data pdata;
 struct axis_triple saved;
 u8 phys[32];
 int irq;
 u32 model;
 u32 int_mask;
 const struct adxl345_bus_ops *bops;
};

6. Initialize the struct adxl345_bus_ops with the functions that will perform the bus operations
and send it to the adxl345_probe() function as an argument:

static const struct adxl345_bus_ops adxl345_spi_bops = {
 .bustype = BUS_SPI,
 .write = adxl345_spi_write,
 .read = adxl345_spi_read,

[455]

Chapter 10 Input Subsystem Framework for Device Drivers

[455]

 .read_block = adxl345_spi_read_block,
};

static int adxl345_spi_probe(struct spi_device *spi)
{
 /* Create a private structure */
 struct adxl345 *ac;

/* initialize the driver and returns the initialized private struct */
 ac = adxl345_probe(&spi->dev, &adxl345_spi_bops);

 /* Attach the SPI device to the private structure */
 spi_set_drvdata(spi, ac);
 return 0;
}

7. See below an extract of the adxl345_probe() routine with the main lines of code commented:

struct adxl345 *adxl345_probe(struct device *dev,
 const struct adxl345_bus_ops *bops)
{
 /* declare your private structure */
 struct adxl345 *ac;

 /* create the input device */
 struct input_dev *input_dev;

 /* create pointer to const struct platform data */
 const struct adxl345_platform_data *pdata;

/* Allocate private structure */
 ac = devm_kzalloc(dev, sizeof(*ac), GFP_KERNEL);

 /* Allocate the input_dev structure */
 input_dev = devm_input_allocate_device(dev);

 /*
 * Store the previously initialized platform data
 * in your private structure
 */
 pdata = &adxl345_default_init; /* Points to const platform data */
 ac->pdata = *pdata; /* Store values to pdata inside private ac */
 pdata = &ac->pdata; /* change where pdata points, now to pdata in ac */

/* Store the input device in your private structure */
 ac->input = input_dev;
 ac->dev = dev; /* dev is &spi->dev */

/* Store the SPI operations in your private structure */
 ac->bops = bops;

 /* Initialize the input device */
 input_dev->name = "ADXL345 accelerometer";

Input Subsystem Framework for Device Drivers Chapter 10

[456]

 input_dev->phys = ac->phys;
 input_dev->dev.parent = dev;
 input_dev->id.product = ac->model;
 input_dev->id.bustype = bops->bustype;

/* Attach the input device and the private structure */
 input_set_drvdata(input_dev, ac);

 /*
 * Set EV_KEY type event with 3 events code support
 * event sent when a single tap interrupt is triggered
 */
 __set_bit(EV_KEY, input_dev->evbit);
 __set_bit(pdata->ev_code_tap[ADXL_X_AXIS], input_dev->keybit);
 __set_bit(pdata->ev_code_tap[ADXL_Y_AXIS], input_dev->keybit);
 __set_bit(pdata->ev_code_tap[ADXL_Z_AXIS], input_dev->keybit);

 /*
 * Check if any of the axis has been enabled
 * and set the interrupt mask
 * In this driver only SINGLE_TAP interrupt
 */
 if (pdata->tap_axis_control & (TAP_X_EN | TAP_Y_EN | TAP_Z_EN))
 ac->int_mask |= SINGLE_TAP;
 /*
 * Get the gpio descriptor, set the gpio pin direction to input
 * and store it in the private structure
 */
 ac->gpio = devm_gpiod_get_index(dev, ADXL345_GPIO_NAME, 0, GPIOD_IN);

 /* Get the Linux IRQ number associated with this gpio descriptor */
 ac->irq = gpiod_to_irq(ac->gpio);

 /* Request threaded interrupt */
 devm_request_threaded_irq(input_dev->dev.parent,

 ac->irq, NULL,
 adxl345_irq,

IRQF_TRIGGER_HIGH | IRQF_ONESHOT, dev_name(dev),
ac);

 /* create a group of sysfs entries */
sysfs_create_group(&dev->kobj, &adxl345_attr_group);

 /* Register the input device to the input core */
 input_register_device(input_dev);

 /* Initialize the ADXL345 registers */

/* Set the tap threshold and duration */
 AC_WRITE(ac, THRESH_TAP, pdata->tap_threshold);
 AC_WRITE(ac, DUR, pdata->tap_duration);

[457]

Chapter 10 Input Subsystem Framework for Device Drivers

[457]

/* set the axis where the tap will be detected (AXIS Z) */
 AC_WRITE(ac, TAP_AXES, pdata->tap_axis_control);

/*
 * set the data rate and the axis reading power

 * mode, less or higher noise reducing power
 */
 AC_WRITE(ac, BW_RATE, RATE(ac->pdata.data_rate) |
 (pdata->low_power_mode ? LOW_POWER : 0));

/* 13-bit full resolution right justified */
 AC_WRITE(ac, DATA_FORMAT, pdata->data_range);

/* Set the FIFO mode, no FIFO by default */
 AC_WRITE(ac, FIFO_CTL, FIFO_MODE(pdata->fifo_mode) |
 SAMPLES(pdata->watermark));

/* Map all INTs to INT1 pin */
 AC_WRITE(ac, INT_MAP, 0);

/* Enables interrupts */
 AC_WRITE(ac, INT_ENABLE, ac->int_mask);

/* Set RUN mode */
 AC_WRITE(ac, POWER_CTL, PCTL_MEASURE);

 /* return initialized private structure */
 return ac;
}

8. A threaded interrupt will be added to the driver to service the single tap interrupt. In a
threaded interrupt, the interrupt handler is executed inside a thread. It is allowed to block
during the interrupt handler, which is often needed for I2C/SPI devices, as the interrupt
handler needs to communicate with them. In this driver, you are going to communicate
via SPI with the ADXL345 device inside the interrupt handler.
static irqreturn_t adxl345_irq(int irq, void *handle)
{
 struct adxl345 *ac = handle;
 struct adxl345_platform_data *pdata = &ac->pdata;
 int int_stat, tap_stat;

/*
 * ACT_TAP_STATUS should be read before clearing the interrupt
 * Avoid reading ACT_TAP_STATUS in case TAP detection is disabled
 * Read the ACT_TAP_STATUS if any of the axis has been enabled
 */
 if (pdata->tap_axis_control & (TAP_X_EN | TAP_Y_EN | TAP_Z_EN))
 tap_stat = AC_READ(ac, ACT_TAP_STATUS);
 else
 tap_stat = 0;

Input Subsystem Framework for Device Drivers Chapter 10

[458]

/* Read the INT_SOURCE (0x30) register. The interrupt is cleared */
 int_stat = AC_READ(ac, INT_SOURCE);

/*
 * if the SINGLE_TAP event has occurred the axl345_do_tap function
 * is called with the ACT_TAP_STATUS register as an argument
 */
 if (int_stat & (SINGLE_TAP)){
 dev_info(ac->dev, "single tap interrupt has occurred\n");
 adxl345_do_tap(ac, pdata, tap_stat);
 };

input_sync(ac->input);
return IRQ_HANDLED;

}

9. The events type EV_KEY will be generated with 3 different event codes that will be set
depending of the axis where the tap motion detection has been selected. These events will
be sent inside the ISR by calling the adxl345_do_tap() function.
/*
 * Set EV_KEY type event with 3 events code support
 * event sent when a single tap interrupt is triggered
 */
 __set_bit(EV_KEY, input_dev->evbit);
 __set_bit(pdata->ev_code_tap[ADXL_X_AXIS], input_dev->keybit);
 __set_bit(pdata->ev_code_tap[ADXL_Y_AXIS], input_dev->keybit);
 __set_bit(pdata->ev_code_tap[ADXL_Z_AXIS], input_dev->keybit);

static void adxl345_send_key_events(struct adxl345 *ac,
 struct adxl345_platform_data *pdata, int status, int press)
{
 int i;

 for (i = ADXL_X_AXIS; i <= ADXL_Z_AXIS; i++) {
 if (status & (1 << (ADXL_Z_AXIS - i)))
 input_report_key(ac->input,
 pdata->ev_code_tap[i], press);
 }
}

/* Function called in the ISR when there is a SINGLE_TAP event */
static void adxl345_do_tap(struct adxl345 *ac,
 struct adxl345_platform_data *pdata,

 int status)
{
 adxl345_send_key_events(ac, pdata, status, true);
 input_sync(ac->input);
 adxl345_send_key_events(ac, pdata, status, false);
}

[459]

Chapter 10 Input Subsystem Framework for Device Drivers

[459]

10. You will create several sysfs entries to access to the driver from user space. You can set
and read the sample rate, read the 3 axis values, and show the last stored axis values using
sysfs hooks.

The sysfs attributes will be created with the DEVICE ATTR(name, mode, show, store) macro:

static DEVICE_ATTR(rate, 0664, adxl345_rate_show, adxl345_rate_store);
static DEVICE_ATTR(position, S_IRUGO, adxl345_position_show, NULL);
static DEVICE_ATTR(read, S_IRUGO, adxl345_position_read, NULL);

These attributes can be organized as follows into a group:

static struct attribute *adxl345_attributes[] = {
 &dev_attr_rate.attr,
 &dev_attr_position.attr,
 &dev_attr_read.attr,
 NULL
};

static const struct attribute_group adxl345_attr_group = {
 .attrs = adxl345_attributes,
};

See below the adxl345_position_read() code where the tree axis values will be read:

static ssize_t adxl345_position_read(struct device *dev,
 struct device_attribute *attr,

 char *buf)
{
 struct axis_triple axis;
 ssize_t count;
 struct adxl345 *ac = dev_get_drvdata(dev);
 adxl345_get_triple(ac, &axis);

 count = sprintf(buf, "(%d, %d, %d)\n",
 axis.x, axis.y, axis.z);

 return count;
}

The adxl345_position_read() function calls adxl345_get_triple(), which in turn calls the
ac->bops->read_block() function:

/* Get the adxl345 axis data */
static void adxl345_get_triple(struct adxl345 *ac, struct axis_triple *axis)
{
 __le16 buf[3];

 ac->bops->read_block(ac->dev, DATAX0, DATAZ1 - DATAX0 + 1, buf);

Input Subsystem Framework for Device Drivers Chapter 10

[460]

 ac->saved.x = sign_extend32(le16_to_cpu(buf[0]), 12);
 axis->x = ac->saved.x;

 ac->saved.y = sign_extend32(le16_to_cpu(buf[1]), 12);
 axis->y = ac->saved.y;

 ac->saved.z = sign_extend32(le16_to_cpu(buf[2]), 12);
 axis->z = ac->saved.z;
}

You can see that read_block is a member of the struct adxl345_bus_ops initialized to the
adxl345_spi_read_block SPI bus function:

static const struct adxl345_bus_ops adxl345_spi_bops = {
 .bustype = BUS_SPI,
 .write = adxl345_spi_write,
 .read = adxl345_spi_read,
 .read_block = adxl345_spi_read_block,
};

See below the code of the adxl345_spi_read_block() function. The reg parameter is the
address of the first register you want to read and count is the total number of registers that
are going to be read starting from the reg one. The buf parameter is a pointer to the buffer
where the axis values are going to be stored.

/* Read multiple registers */
static int adxl345_spi_read_block(struct device *dev,
 unsigned char reg,

 int count,
 void *buf)
{
 struct spi_device *spi = to_spi_device(dev);
 ssize_t status;

 /* Add MB flags to the reading */
 reg = ADXL345_READMB_CMD(reg);

 /* write byte stored in reg (address with MB)
 * read count bytes (from successive addresses)
 * and stores them to buf
 */
 status = spi_write_then_read(spi, ®, 1, buf, count);

 return (status < 0) ? status : 0;
}

The adxl345_spi_read_block() function calls spi_write_then_read() that sends to the SPI bus
a command byte composed of the address of the first register to read (bits A0 to A5) plus

[461]

Chapter 10 Input Subsystem Framework for Device Drivers

[461]

the MB bit (set to one for multi reading), and R bit (set to one for reading), then reads the
value of six registers (count) starting from the reg (bits A0 to A5) one. See in the next figure
a SPI 4-Wire Read diagram:

See below the macros for the SPI commands used to read and write to your SPI device:

#define ADXL345_CMD_MULTB (1 << 6)
#define ADXL345_CMD_READ (1 << 7)
#define ADXL345_WRITECMD(reg) (reg & 0x3F)
#define ADXL345_READCMD(reg) (ADXL345_CMD_READ | (reg & 0x3F))
#define ADXL345_READMB_CMD(reg) (ADXL345_CMD_READ | ADXL345_CMD_MULTB \
 | (reg & 0x3F))

11. Declare a list of devices supported by the driver.

static const struct of_device_id adxl345_dt_ids[] = {
 { .compatible = "arrow,adxl345", },
 { }
};
MODULE_DEVICE_TABLE(of, adxl345_dt_ids);

12. Define an array of struct spi_device_id structures:

static const struct spi_device_id adxl345_id[] = {
 { .name = "adxl345", },
 { }
};
MODULE_DEVICE_TABLE(spi, adxl345_id);

13. Add a struct spi_driver structure that will be registered to the SPI bus:

static struct spi_driver adxl345_driver = {
 .driver = {
 .name = "adxl345",
 .owner = THIS_MODULE,

Input Subsystem Framework for Device Drivers Chapter 10

[462]

 .of_match_table = adxl345_dt_ids,
 },
 .probe = adxl345_spi_probe,
 .remove = adxl345_spi_remove,
 .id_table = adxl345_id,
};

14. Register your driver with the SPI bus:

module_spi_driver(adxl345_driver);

15. Build the modified device tree, and load it to your target processor.

See in the next Listing 10-2 the "SPI accel input device" driver source code (adxl345_imx.c) for the
i.MX7D processor.

Note: The source code for the SAMA5D2 (adxl345_sam.c) and BCM2837 (adxl345_rpi.c) drivers can
be downloaded from the GitHub repository of this book.

Listing 10-2: adxl345_imx.c
#include <linux/input.h>
#include <linux/module.h>
#include <linux/spi/spi.h>
#include <linux/of_gpio.h>
#include <linux/spi/spi.h>
#include <linux/interrupt.h>

#define ADXL345_CMD_MULTB (1 << 6)
#define ADXL345_CMD_READ (1 << 7)
#define ADXL345_WRITECMD(reg) (reg & 0x3F)
#define ADXL345_READCMD(reg) (ADXL345_CMD_READ | (reg & 0x3F))
#define ADXL345_READMB_CMD(reg) (ADXL345_CMD_READ | ADXL345_CMD_MULTB \
 | (reg & 0x3F))

/* ADXL345 Register Map */
#define DEVID 0x00 /* R Device ID */
#define THRESH_TAP 0x1D /* R/W Tap threshold */
#define DUR 0x21 /* R/W Tap duration */
#define TAP_AXES 0x2A /* R/W Axis control for tap/double tap */
#define ACT_TAP_STATUS 0x2B /* R Source of tap/double tap */
#define BW_RATE 0x2C /* R/W Data rate and power mode control */
#define POWER_CTL 0x2D /* R/W Power saving features control */
#define INT_ENABLE 0x2E /* R/W Interrupt enable control */
#define INT_MAP 0x2F /* R/W Interrupt mapping control */
#define INT_SOURCE 0x30 /* R Source of interrupts */

[463]

Chapter 10 Input Subsystem Framework for Device Drivers

[463]

#define DATA_FORMAT 0x31 /* R/W Data format control */
#define DATAX0 0x32 /* R X-Axis Data 0 */
#define DATAX1 0x33 /* R X-Axis Data 1 */
#define DATAY0 0x34 /* R Y-Axis Data 0 */
#define DATAY1 0x35 /* R Y-Axis Data 1 */
#define DATAZ0 0x36 /* R Z-Axis Data 0 */
#define DATAZ1 0x37 /* R Z-Axis Data 1 */
#define FIFO_CTL 0x38 /* R/W FIFO control */

/* DEVIDs */
#define ID_ADXL345 0xE5

/* INT_ENABLE/INT_MAP/INT_SOURCE Bits */
#define SINGLE_TAP (1 << 6)

/* TAP_AXES Bits */
#define TAP_X_EN (1 << 2)
#define TAP_Y_EN (1 << 1)
#define TAP_Z_EN (1 << 0)

/* BW_RATE Bits */
#define LOW_POWER (1 << 4)
#define RATE(x) ((x) & 0xF)

/* POWER_CTL Bits */
#define PCTL_MEASURE (1 << 3)
#define PCTL_STANDBY 0X00

/* DATA_FORMAT Bits */
#define FULL_RES (1 << 3)

/* FIFO_CTL Bits */
#define FIFO_MODE(x) (((x) & 0x3) << 6)
#define FIFO_BYPASS 0
#define FIFO_FIFO 1
#define FIFO_STREAM 2
#define SAMPLES(x) ((x) & 0x1F)

/* FIFO_STATUS Bits */
#define ADXL_X_AXIS 0
#define ADXL_Y_AXIS 1
#define ADXL_Z_AXIS 2

#define ADXL345_GPIO_NAME "int"

/* Macros to do SPI operations */
#define AC_READ(ac, reg) ((ac)->bops->read((ac)->dev, reg))
#define AC_WRITE(ac, reg, val) ((ac)->bops->write((ac)->dev, reg, val))

Input Subsystem Framework for Device Drivers Chapter 10

[464]

struct adxl345_bus_ops {
 u16 bustype;
 int (*read)(struct device *, unsigned char);
 int (*read_block)(struct device *, unsigned char, int, void *);
 int (*write)(struct device *, unsigned char, unsigned char);
};

struct axis_triple {
 int x;
 int y;
 int z;
};

struct adxl345_platform_data {
/*

 * low_power_mode:
 * A '0' = Normal operation and a '1' = Reduced
 * power operation with somewhat higher noise.
 */

 u8 low_power_mode;

 /*
 * tap_threshold:
 * holds the threshold value for tap detection/interrupts.
 * The data format is unsigned. The scale factor is 62.5 mg/LSB
 * (i.e. 0xFF = +16 g). A zero value may result in undesirable
 * behavior if Tap/Double Tap is enabled.
 */

 u8 tap_threshold;

 /*
 * tap_duration:
 * is an unsigned time value representing the maximum
 * time that an event must be above the tap_threshold threshold
 * to qualify as a tap event. The scale factor is 625 us/LSB. A zero
 * value will prevent Tap/Double Tap functions from working.
 */

 u8 tap_duration;

 /*
 * TAP_X/Y/Z Enable: Setting TAP_X, Y, or Z Enable enables X,
 * Y, or Z participation in Tap detection. A '0' excludes the
 * selected axis from participation in Tap detection.
 * Setting the SUPPRESS bit suppresses Double Tap detection if
 * acceleration greater than tap_threshold is present during the

[465]

Chapter 10 Input Subsystem Framework for Device Drivers

[465]

 * tap_latency period, i.e. after the first tap but before the
 * opening of the second tap window.
 */

#define ADXL_TAP_X_EN (1 << 2)
#define ADXL_TAP_Y_EN (1 << 1)
#define ADXL_TAP_Z_EN (1 << 0)

 u8 tap_axis_control;

 /*
 * data_rate:
 * Selects device bandwidth and output data rate.
 * RATE = 3200 Hz / (2^(15 - x)). Default value is 0x0A, or 100 Hz
 * Output Data Rate. An Output Data Rate should be selected that
 * is appropriate for the communication protocol and frequency
 * selected. Selecting too high of an Output Data Rate with a low
 * communication speed will result in samples being discarded.
 */

 u8 data_rate;

 /*
 * data_range:
 * FULL_RES: When this bit is set with the device is
 * in Full-Resolution Mode, where the output resolution increases
 * with RANGE to maintain a 4 mg/LSB scale factor. When this
 * bit is cleared the device is in 10-bit Mode and RANGE determine the
 * maximum g-Range and scale factor.
 */

#define ADXL_FULL_RES (1 << 3)
#define ADXL_RANGE_PM_2g 0
#define ADXL_RANGE_PM_4g 1
#define ADXL_RANGE_PM_8g 2
#define ADXL_RANGE_PM_16g 3

 u8 data_range;

 /*
 * A valid BTN or KEY Code; use tap_axis_control to disable
 * event reporting
 */

 u32 ev_code_tap[3];

 /*
 * fifo_mode:

Input Subsystem Framework for Device Drivers Chapter 10

[466]

 * BYPASS The FIFO is bypassed
 * FIFO FIFO collects up to 32 values then stops collecting data
 * STREAM FIFO holds the last 32 data values. Once full, the FIFO's
 * oldest data is lost as it is replaced with newer data
 *
 * DEFAULT should be FIFO_STREAM
 */

 u8 fifo_mode;

 /*
 * watermark:
 * The Watermark feature can be used to reduce the interrupt load
 * of the system. The FIFO fills up to the value stored in watermark
 * [1..32] and then generates an interrupt.
 * A '0' disables the watermark feature.
 */

 u8 watermark;

};

/* Set initial adxl345 register values */
static const struct adxl345_platform_data adxl345_default_init = {
 .tap_threshold = 50,
 .tap_duration = 3,
 .tap_axis_control = ADXL_TAP_Z_EN,
 .data_rate = 8,
 .data_range = ADXL_FULL_RES,
 .ev_code_tap = {BTN_TOUCH, BTN_TOUCH, BTN_TOUCH}, /* EV_KEY {x,y,z} */
 .fifo_mode = FIFO_BYPASS,
 .watermark = 0,
};

/* Create private data structure */
struct adxl345 {
 struct gpio_desc *gpio;
 struct device *dev;
 struct input_dev *input;
 struct adxl345_platform_data pdata;
 struct axis_triple saved;
 u8 phys[32];
 int irq;
 u32 model;
 u32 int_mask;
 const struct adxl345_bus_ops *bops;
};

[467]

Chapter 10 Input Subsystem Framework for Device Drivers

[467]

/* Get the adxl345 axis data */
static void adxl345_get_triple(struct adxl345 *ac, struct axis_triple *axis)
{
 __le16 buf[3];

 ac->bops->read_block(ac->dev, DATAX0, DATAZ1 - DATAX0 + 1, buf);

 ac->saved.x = sign_extend32(le16_to_cpu(buf[0]), 12);
 axis->x = ac->saved.x;

 ac->saved.y = sign_extend32(le16_to_cpu(buf[1]), 12);
 axis->y = ac->saved.y;

 ac->saved.z = sign_extend32(le16_to_cpu(buf[2]), 12);
 axis->z = ac->saved.z;
}

/*
 * This function is called inside adxl34x_do_tap() in the ISR
 * when there is a SINGLE_TAP event. The function check
 * the ACT_TAP_STATUS (0x2B) TAP_X, TAP_Y, TAP_Z bits starting
 * for the TAP_X source bit. If the axis is involved in the event
 * there is a EV_KEY event
 */
static void adxl345_send_key_events(struct adxl345 *ac,
 struct adxl345_platform_data *pdata,

 int status, int press)
{
 int i;

 for (i = ADXL_X_AXIS; i <= ADXL_Z_AXIS; i++) {
 if (status & (1 << (ADXL_Z_AXIS - i)))
 input_report_key(ac->input,
 pdata->ev_code_tap[i], press);
 }
}

/* Function called in the ISR when there is a SINGLE_TAP event */
static void adxl345_do_tap(struct adxl345 *ac,
 struct adxl345_platform_data *pdata,

 int status)
{
 adxl345_send_key_events(ac, pdata, status, true);
 input_sync(ac->input);
 adxl345_send_key_events(ac, pdata, status, false);
}

/* Interrupt service routine */

Input Subsystem Framework for Device Drivers Chapter 10

[468]

static irqreturn_t adxl345_irq(int irq, void *handle)
{
 struct adxl345 *ac = handle;
 struct adxl345_platform_data *pdata = &ac->pdata;
 int int_stat, tap_stat;

 /*
 * ACT_TAP_STATUS should be read before clearing the interrupt
 * Avoid reading ACT_TAP_STATUS in case TAP detection is disabled
 * Read the ACT_TAP_STATUS if any of the axis has been enabled
 */
 if (pdata->tap_axis_control & (TAP_X_EN | TAP_Y_EN | TAP_Z_EN))
 tap_stat = AC_READ(ac, ACT_TAP_STATUS);
 else
 tap_stat = 0;

 /* Read the INT_SOURCE (0x30) register. The interrupt is cleared */
 int_stat = AC_READ(ac, INT_SOURCE);

 /*
 * if the SINGLE_TAP event has occurred the axl345_do_tap function
 * is called with the ACT_TAP_STATUS register as an argument
 */
 if (int_stat & (SINGLE_TAP)){
 dev_info(ac->dev, "single tap interrupt has occurred\n");
 adxl345_do_tap(ac, pdata, tap_stat);
 };

 input_sync(ac->input);

 return IRQ_HANDLED;
}

static ssize_t adxl345_rate_show(struct device *dev,
 struct device_attribute *attr,

char *buf)
{
 struct adxl345 *ac = dev_get_drvdata(dev);

return sprintf(buf, "%u\n", RATE(ac->pdata.data_rate));
}

static ssize_t adxl345_rate_store(struct device *dev,
 struct device_attribute *attr,
 const char *buf, size_t count)
{
 struct adxl345 *ac = dev_get_drvdata(dev);
 u8 val;
 int error;

[469]

Chapter 10 Input Subsystem Framework for Device Drivers

[469]

 /* transform char array to u8 value */
 error = kstrtou8(buf, 10, &val);
 if (error)
 return error;

 /*
 * if I set ac->pdata.low_power_mode = 1
 * then is lower power mode but higher noise is selected
 * getting LOW_POWER macro, by default ac->pdata.low_power_mode = 0
 * RATE(val) sets to 0 the 4 upper u8 bits
 */
 ac->pdata.data_rate = RATE(val);
 AC_WRITE(ac, BW_RATE,
 ac->pdata.data_rate |
 (ac->pdata.low_power_mode ? LOW_POWER : 0));

 return count;
}

static DEVICE_ATTR(rate, 0664, adxl345_rate_show, adxl345_rate_store);

static ssize_t adxl345_position_show(struct device *dev,
 struct device_attribute *attr,

char *buf)
{
 struct adxl345 *ac = dev_get_drvdata(dev);
 ssize_t count;

count = sprintf(buf, "(%d, %d, %d)\n",
 ac->saved.x, ac->saved.y, ac->saved.z);

 return count;
}

static DEVICE_ATTR(position, S_IRUGO, adxl345_position_show, NULL);

static ssize_t adxl345_position_read(struct device *dev,
 struct device_attribute *attr,

char *buf)
{
 struct axis_triple axis;
 ssize_t count;
 struct adxl345 *ac = dev_get_drvdata(dev);
 adxl345_get_triple(ac, &axis);
 count = sprintf(buf, "(%d, %d, %d)\n",
 axis.x, axis.y, axis.z);

 return count;
}

Input Subsystem Framework for Device Drivers Chapter 10

[470]

static DEVICE_ATTR(read, S_IRUGO, adxl345_position_read, NULL);

static struct attribute *adxl345_attributes[] = {
 &dev_attr_rate.attr,
 &dev_attr_position.attr,
 &dev_attr_read.attr,
 NULL
};

static const struct attribute_group adxl345_attr_group = {
 .attrs = adxl345_attributes,
};

struct adxl345 *adxl345_probe(struct device *dev,
 const struct adxl345_bus_ops *bops)
{
 /* declare your private structure */
 struct adxl345 *ac;

/* create the input device */
 struct input_dev *input_dev;

 /* create pointer to const struct platform data */
 const struct adxl345_platform_data *pdata;
 int err;
 u8 revid;

 /* Allocate private structure*/
 ac = devm_kzalloc(dev, sizeof(*ac), GFP_KERNEL);
 if (!ac) {
 dev_err(dev, "Failed to allocate memory\n");
 err = -ENOMEM;
 goto err_out;
 }

 /* Allocate the input_dev structure */
 input_dev = devm_input_allocate_device(dev);
 if (!ac || !input_dev) {
 dev_err(dev, "failed to allocate input device\n");
 err = -ENOMEM;
 goto err_out;
 }

 /* Initialize your private structure */

 /*
 * Store the previously initialized platform data
 * in your private structure
 */

[471]

Chapter 10 Input Subsystem Framework for Device Drivers

[471]

 pdata = &adxl345_default_init; /* Points to const platform data */
 ac->pdata = *pdata; /* Store values to pdata inside ac */
 pdata = &ac->pdata; /* change where pdata points, now to pdata in private ac */

 ac->input = input_dev;
 ac->dev = dev; /* dev is &spi->dev */

 /* Store the SPI operations in your private structure */
 ac->bops = bops;

 revid = AC_READ(ac, DEVID);
 dev_info(dev, "DEVID: %d\n", revid);

 if (revid == 0xE5){
 dev_info(dev, "ADXL345 is found");
 }
 else
 {
 dev_err(dev, "Failed to probe %s\n", input_dev->name);
 err = -ENODEV;
 goto err_out;
 }

 snprintf(ac->phys, sizeof(ac->phys), "%s/input0", dev_name(dev));

 /* Initialize the input device */
 input_dev->name = "ADXL345 accelerometer";
 input_dev->phys = ac->phys;
 input_dev->dev.parent = dev;
 input_dev->id.product = ac->model;
 input_dev->id.bustype = bops->bustype;

 /* Attach the input device and the private structure */
 input_set_drvdata(input_dev, ac);

 /*
 * Set EV_KEY type event with 3 events code support
 * event sent when a single tap interrupt is triggered
 */
 __set_bit(EV_KEY, input_dev->evbit);
 __set_bit(pdata->ev_code_tap[ADXL_X_AXIS], input_dev->keybit);
 __set_bit(pdata->ev_code_tap[ADXL_Y_AXIS], input_dev->keybit);
 __set_bit(pdata->ev_code_tap[ADXL_Z_AXIS], input_dev->keybit);

 /*
 * Check if any of the axis has been enabled
 * and set the interrupt mask
 * In this driver only SINGLE_TAP interrupt

Input Subsystem Framework for Device Drivers Chapter 10

[472]

 */
 if (pdata->tap_axis_control & (TAP_X_EN | TAP_Y_EN | TAP_Z_EN))
 ac->int_mask |= SINGLE_TAP;

/*
 * Get the gpio descriptor, set the gpio pin direction to input

 * and store it in the private structure
 */

ac->gpio = devm_gpiod_get_index(dev, ADXL345_GPIO_NAME, 0, GPIOD_IN);
 if (IS_ERR(ac->gpio)) {
 dev_err(dev, "gpio get index failed\n");
 err = PTR_ERR(ac->gpio); // PTR_ERR return an int from a pointer
 goto err_out;
 }

 /* Get the Linux IRQ number associated with this gpio descriptor */
 ac->irq = gpiod_to_irq(ac->gpio);
 if (ac->irq < 0) {
 dev_err(dev, "gpio get irq failed\n");
 err = ac->irq;
 goto err_out;
 }
 dev_info(dev, "The IRQ number is: %d\n", ac->irq);

 /* Request threaded interrupt */
 err = devm_request_threaded_irq(input_dev->dev.parent, ac->irq, NULL,
 adxl345_irq, IRQF_TRIGGER_HIGH | IRQF_ONESHOT,

 dev_name(dev), ac);
 if (err)
 goto err_out;

/* create a group of sysfs entries */
 err = sysfs_create_group(&dev->kobj, &adxl345_attr_group);
 if (err)
 goto err_out;

 /* Register the input device to the input core */
 err = input_register_device(input_dev);
 if (err)
 goto err_remove_attr;

 /* Initialize the ADXL345 registers */

 /* Set the tap threshold and duration */
 AC_WRITE(ac, THRESH_TAP, pdata->tap_threshold);
 AC_WRITE(ac, DUR, pdata->tap_duration);

 /* set the axis where the tap will be detected */

[473]

Chapter 10 Input Subsystem Framework for Device Drivers

[473]

 AC_WRITE(ac, TAP_AXES, pdata->tap_axis_control);

 /* set the data rate and the axis reading power
 * mode, less or higher noise reducing power
 */
 AC_WRITE(ac, BW_RATE, RATE(ac->pdata.data_rate) |
 (pdata->low_power_mode ? LOW_POWER : 0));

 /* 13-bit full resolution right justified */
 AC_WRITE(ac, DATA_FORMAT, pdata->data_range);

 /* Set the FIFO mode, no FIFO by default */
 AC_WRITE(ac, FIFO_CTL, FIFO_MODE(pdata->fifo_mode) |
 SAMPLES(pdata->watermark));

 /* Map all INTs to INT1 pin */
 AC_WRITE(ac, INT_MAP, 0);

 /* Enables interrupts */
 AC_WRITE(ac, INT_ENABLE, ac->int_mask);

 /* Set RUN mode */
 AC_WRITE(ac, POWER_CTL, PCTL_MEASURE);

 /* return initialized private structure */
 return ac;

 err_remove_attr:
 sysfs_remove_group(&dev->kobj, &adxl345_attr_group);

/*
 * this function returns a pointer
 * to a struct ac or an err pointer
 */
 err_out:
 return ERR_PTR(err);
}

/*
 * Write the address of the register
 * and read the value of it
 */
static int adxl345_spi_read(struct device *dev, unsigned char reg)
{
 struct spi_device *spi = to_spi_device(dev);
 u8 cmd;

 cmd = ADXL345_READCMD(reg);

Input Subsystem Framework for Device Drivers Chapter 10

[474]

 return spi_w8r8(spi, cmd);
}

/*
 * Write 2 bytes, the address
 * of the register and the value to store on it
 */
static int adxl345_spi_write(struct device *dev,
 unsigned char reg, unsigned char val)
{
 struct spi_device *spi = to_spi_device(dev);
 u8 buf[2];

 buf[0] = ADXL345_WRITECMD(reg);
 buf[1] = val;

 return spi_write(spi, buf, sizeof(buf));
}

/* Read multiple registers */
static int adxl345_spi_read_block(struct device *dev,
 unsigned char reg,

 int count,
 void *buf)
{
 struct spi_device *spi = to_spi_device(dev);
 ssize_t status;

 /* Add MB flags to the reading */
 reg = ADXL345_READMB_CMD(reg);

 /*
 * write byte stored in reg (address with MB)

 * read count bytes (from successive addresses)
 * and stores them to buf
 */
 status = spi_write_then_read(spi, ®, 1, buf, count);

 return (status < 0) ? status : 0;
}

/* Initialize struct adxl345_bus_ops to SPI bus functions */
static const struct adxl345_bus_ops adxl345_spi_bops = {
 .bustype = BUS_SPI,
 .write = adxl345_spi_write,
 .read = adxl345_spi_read,
 .read_block = adxl345_spi_read_block,
};

[475]

Chapter 10 Input Subsystem Framework for Device Drivers

[475]

static int adxl345_spi_probe(struct spi_device *spi)
{
 struct adxl345 *ac;

 /* send the spi operations */
 ac = adxl345_probe(&spi->dev, &adxl345_spi_bops);

 if (IS_ERR(ac))
 return PTR_ERR(ac);

 /* Attach the SPI device to the private structure */
 spi_set_drvdata(spi, ac);

 return 0;
}

static int adxl345_spi_remove(struct spi_device *spi)
{
 struct adxl345 *ac = spi_get_drvdata(spi);
 dev_info(ac->dev, "my_remove() function is called.\n");
 sysfs_remove_group(&ac->dev->kobj, &adxl345_attr_group);
 input_unregister_device(ac->input);
 AC_WRITE(ac, POWER_CTL, PCTL_STANDBY);
 dev_info(ac->dev, "unregistered accelerometer\n");
 return 0;
}

static const struct of_device_id adxl345_dt_ids[] = {
 { .compatible = "arrow,adxl345", },
 { }
};
MODULE_DEVICE_TABLE(of, adxl345_dt_ids);

static const struct spi_device_id adxl345_id[] = {
 { .name = "adxl345", },
 { }
};
MODULE_DEVICE_TABLE(spi, adxl345_id);

static struct spi_driver adxl345_driver = {
 .driver = {
 .name = "adxl345",
 .owner = THIS_MODULE,
 .of_match_table = adxl345_dt_ids,
 },
 .probe = adxl345_spi_probe,
 .remove = adxl345_spi_remove,
 .id_table = adxl345_id,
};

Input Subsystem Framework for Device Drivers Chapter 10

[476]

module_spi_driver(adxl345_driver);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Alberto Liberal <aliberal@arroweurope.com>");
MODULE_DESCRIPTION("ADXL345 Three-Axis Accelerometer SPI Bus Driver");

adxl345_imx.ko Demonstration
root@imx7dsabresd:~# insmod adxl345_imx.ko /* load module */
adxl345_imx: loading out-of-tree module taints kernel.
adxl345 spi2.1: DEVID: 229
adxl345 spi2.1: ADXL345 is found
adxl345 spi2.1: The IRQ number is: 256
input: ADXL345 accelerometer as /devices/soc0/soc/30800000.aips-bus/30840000.ecs
pi/spi_master/spi2/spi2.1/input/input6

root@imx7dsabresd:~# cd /sys/class/input/input6/device/
root@imx7dsabresd:/sys/class/input/input6/device# ls /* see the sysfs entries */
root@imx7dsabresd:/sys/class/input/input6/device# cat read /* read the three axes
values */
(-1, 3, 241)

root@imx7dsabresd:/sys/class/input/input6/device# cat read /* move the accel board
and read again */
(-5, 250, -25)

root@imx7dsabresd:/sys/class/input/input6/device# cat rate /* read the data rate */
root@imx7dsabresd:/sys/class/input/input6/device# echo 10 > rate /* change the data
rate */
root@imx7dsabresd:~# evtest /* launch the evtest application. Move the accelerometer
board in the z axis direction and see the interrupts and events generated */
No device specified, trying to scan all of /dev/input/event*
Available devices:
/dev/input/event0: fxos8700
/dev/input/event1: fxas2100x
/dev/input/event2: 30370000.snvs:snvs-powerkey
/dev/input/event3: ADS7846 Touchscreen
/dev/input/event4: mpl3115
/dev/input/event5: ADXL345 accelerometer
Select the device event number [0-5]: 5
Input driver version is 1.0.1
Input device ID: bus 0x1c vendor 0x0 product 0x0 version 0x0
Input device name: "ADXL345 accelerometer"
Supported events:
 Event type 0 (EV_SYN)
 Event type 1 (EV_KEY)
 Event code 330 (BTN_TOUCH)
Properties:

[477]

Chapter 10 Input Subsystem Framework for Device Drivers

[477]

Testing ... (interrupt to exit)
adxl345 spi2.1: single tap interrupt has occurred
Event: time 1510654071.237172, type 1 (EV_KEY), code 330 (BTN_TOUCH), value 1
Event: time 1510654071.237172, -------------- SYN_REPORT ------------
Event: time 1510654071.237185, type 1 (EV_KEY), code 330 (BTN_TOUCH), value 0
Event: time 1510654071.237185, -------------- SYN_REPORT ------------
adxl345 spi2.1: single tap interrupt has occurred
Event: time 1510654073.316372, type 1 (EV_KEY), code 330 (BTN_TOUCH), value 1
Event: time 1510654073.316372, -------------- SYN_REPORT ------------
Event: time 1510654073.316385, type 1 (EV_KEY), code 330 (BTN_TOUCH), value 0
Event: time 1510654073.316385, -------------- SYN_REPORT ------------

root@imx7dsabresd:~# rmmod adxl345_imx.ko /* remove module */

[479]

11
Industrial I/O Subsystem for

Device Drivers

The main purpose of the Industrial I/O subsystem (IIO) is to provide support for devices that in
some sense perform either analog-to-digital conversion (ADC), digital-to-analog conversion (DAC)
or both. The aim is to fill the gap between the somewhat similar hwmon and input subsystems.
Hwmon is directed at low sample rate sensors used to monitor and control the system itself, like
fan speed control or temperature measurement. Input is, as its name suggests, focused on human
interaction input devices (keyboard, mouse, touchscreen). In some cases there is considerable
overlap between these and IIO.

Devices that fall into the IIO category include:

•	 Analog to digital converters (ADCs)
•	 Accelerometers
•	 Capacitance to digital converters (CDCs)
•	 Digital to analog converters (DACs)
•	 Gyroscopes
•	 Inertial measurement units (IMUs)
•	 Color and light sensors
•	 Magnetometers
•	 Pressure sensors
•	 Proximity sensors
•	 Temperature sensors

Usually, these sensors are connected via SPI or I2C. A common use case of the sensors devices is to
have combined functionality (e.g., light plus proximity sensor). However, typical DMA mastered
devices such as ones connected to a high speed synchronous serial or high speed synchronous
parallel peripherals are also subject to this subsystem.

Industrial I/O Subsystem for Device Drivers Chapter 11

[480]

The Industrial I/O core offers:

1. A unified framework for writing drivers for many different types of embedded sensors.
2. A standard interface to user space applications manipulating sensors.

The implementation can be found under linux/drivers/iio/ folder in the industrialio-* files. An IIO
device usually corresponds to a single hardware sensor and it provides all the information needed
by a driver handling a device. First, you will have a look at the functionality embedded in an IIO
device, then you will see how a device driver makes use of an IIO device.

There are two ways for an user space application to interact with an IIO driver:

1. /sys/bus/iio/iio:deviceX - this represents a hardware sensor and groups together the data
channels of the same chip.

2. /dev/iio:deviceX - this is the character device node interface used for buffered data transfer
and for events information retrieval.

A typical IIO driver will register itself as an I2C or SPI driver and will create two routines, probe()
and remove(). At probe():

1. The driver will call devm_iio_device_alloc(), which allocates memory for an IIO device.
2. The driver will initialize IIO device fields with driver specific information (e.g., device

name, device channels).

[481]

Chapter 11 Industrial I/O Subsystem for Device Drivers

[481]

3. The driver will call devm_iio_device_register(), that registers the device to the IIO core.
Now, the device is global to the rest of the driver functions until it is unregistered. After
this call, the device is ready to accept requests from user space applications.

IIO Device Sysfs Interface
Attributes are sysfs files used to expose chip info and also allowing applications to set various
configuration parameters. For a device with index X, attributes can be found under /sys/bus/iio/
iio:deviceX/ directory. These are some common attributes:

•	 name - description of the physical chip.
•	 dev - shows the major:minor pair associated with /dev/iio:deviceX node.
•	 device configuration attributes like sampling_frequency_available.
•	 data channel access attributes like out_voltage0_raw.
•	 Attributes under buffer/, events/, trigger/, scan elements/ subdirectories.

The available standard attributes for IIO devices are described in the linux/Documentation/ABI/
testing/sysfs-bus-iio file.

IIO Device Channels
An IIO device channel is a representation of a data channel. An IIO device can have one or
multiple channels. For example:

•	 A thermometer sensor has one channel representing the temperature measurement.
•	 A light sensor with two channels indicating the measurements in the visible and infrared

spectrum.
•	 An accelerometer can have up to three channels representing acceleration on the X, Y and

Z axes.

An IIO channel is described by the struct iio_chan_spec structure.

In the next lab, you are going to develop a kernel module that controls three channels of a dual
digital-to-analog converter, channel 0 represents the digital value sent to DAC A, channel 1
represents the digital value sent to DAC B, and channel 2 represents a digital value that will be
sent simultaneously to both DAC A and DACB. You can see below the IIO channels definition that
will be used in the next developed digital-to-analog converter driver:

static const struct iio_chan_spec ltc2607_channel[] = {
{

 .type = IIO_VOLTAGE,
 .indexed = 1,
 .output = 1,

Industrial I/O Subsystem for Device Drivers Chapter 11

[482]

 .channel = 0,
 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW),

},{
 .type = IIO_VOLTAGE,
 .indexed = 1,
 .output = 1,
 .channel = 1,
 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW),

},{
 .type = IIO_VOLTAGE,
 .indexed = 1,
 .output = 1,
 .channel = 2,
 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW),

}

};

Channel sysfs attributes exposed to user space are specified in the form of bitmasks. Depending
on their specific or shared info, attributes can be set in one of the following masks:

•	 info_mask_separate, attributes will be specific to this channel.
•	 info_mask_shared_by_type, attributes are shared by all channels of the same type.
•	 info_mask_shared_by_dir, attributes are shared by all channels of the same direction.
•	 info_mask_shared_by_all, attributes are shared by all channels.

When there are multiple data channels per channel type there are two ways to distinguish between
them:

1. Set the .modified field of iio_chan_spec to 1. Modifiers are specified using the .channel2 field
of the same struct iio_chan_spec and are used to indicate a physically unique characteristic
of the channel such as its direction or spectral response. For example, a light sensor can
have two channels, one for infrared light and one for both infrared and visible light.

2. Set the .indexed field of iio_chan_spec to 1. In this case the channel is simply another
instance with an index specified by the .channel field.

The IIO channels definition above will generate the following data channel access attributes below:

/sys/bus/iio/devices/iio:deviceX/out_voltage0_raw
/sys/bus/iio/devices/iio:deviceX/out_voltage1_raw
/sys/bus/iio/devices/iio:deviceX/out_voltage2_raw

The attribute's name is automatically generated by the IIO core with the following pattern:
{direction}_{type}_{index}_{modifier}_{info_mask}:

[483]

Chapter 11 Industrial I/O Subsystem for Device Drivers

[483]

•	 direction corresponds to the attribute direction, according to the char array pointers const
iio_direction located in drivers/iio/industrialio-core.c:

static const char * const iio_direction[] = {
[0] = "in",
[1] = "out",

};

•	 type corresponds to the channel type, according to the char array pointers const
iio_chan_type_name_spec:

static const char * const iio_chan_type_name_spec[] = {
[IIO_VOLTAGE] = "voltage",
[IIO_CURRENT] = "current",
[IIO_POWER] = "power",
[IIO_ACCEL] = "accel",

[...]

[IIO_UVINDEX] = "uvindex",
[IIO_ELECTRICALCONDUCTIVITY] = "electricalconductivity",
[IIO_COUNT] = "count",
[IIO_INDEX] = "index",
[IIO_GRAVITY] = "gravity",

};

•	 index pattern depends on the channel .indexed field being set or not. If set, the index will
be taken from the .channel field in order to replace the {index} pattern.

•	 modifier pattern depends on the channel .modified field being set or not. If set, the modifier
will be taken from the .channel2 field, and the {modifier} pattern will be replaced according
to the char array pointers const iio_modifier_names:

static const char * const iio_modifier_names[] = {
[IIO_MOD_X] = "x",
[IIO_MOD_Y] = "y",
[IIO_MOD_Z] = "z",
[IIO_MOD_X_AND_Y] = "x&y",
[IIO_MOD_X_AND_Z] = "x&z",
[IIO_MOD_Y_AND_Z] = "y&z",

[...]

[IIO_MOD_CO2] = "co2",
[IIO_MOD_VOC] = "voc",

};

Industrial I/O Subsystem for Device Drivers Chapter 11

[484]

•	 info_mask depends on the channel info mask, private or shared, indexing value in the
char array pointers const iio_chan_info_postfix:

/* relies on pairs of these shared then separate */
static const char * const iio_chan_info_postfix[] = {

[IIO_CHAN_INFO_RAW] = "raw",
[IIO_CHAN_INFO_PROCESSED] = "input",
[IIO_CHAN_INFO_SCALE] = "scale",
[IIO_CHAN_INFO_CALIBBIAS] = "calibbias",

[...]

[IIO_CHAN_INFO_SAMP_FREQ] = "sampling_frequency", [IIO_CHAN_INFO_
FREQUENCY] = "frequency",

[...]

};

The iio_info Structure
This structure is used to declare the hooks the core can use for this device. There are a lot of hooks
available corresponding to interactions that user space can make through sysfs attributes. The
read/write operations to sysfs data channel access attributes are mapped to kernel callbacks:

static const struct iio_info adxl345_info = {
 .driver_module = THIS_MODULE,
 .read_raw = adxl345_read_raw,
 .write_raw = adxl345_write_raw,
 .read_event_value = adxl345_read_event,
 .write_event_value = adxl345_write_event,
};

•	 read_raw is called to request a value from the IIO device. A bitmask allows to know more
precisely which type of value is requested, and for which channel if needed. The return
value will specify the type of value (val or val2) returned by the device. The val and val2
values will contain the elements making up the returned value.

•	 write_raw is called to write a value to the IIO device. Parameters are the same as for
read_raw. Writing for example a value x to the out_voltage0_raw sysfs attribute calls the
write_raw hook, with the mask argument set to IIO_CHAN_INFO_RAW, the chan argument
set with the struct iio_chan_spec structure corresponding to the channel 0 (chan->channel is
0), and the val argument set to the x value.

[485]

Chapter 11 Industrial I/O Subsystem for Device Drivers

[485]

Buffers
The Industrial I/O core offers a way for continuous data capture based on a trigger source.
Multiple data channels can be read at once from /dev/iio:deviceX character device node, thus
reducing the CPU load.

IIO Buffer Sysfs Interface
An IIO buffer has associated sysfs attributes under /sys/bus/iio/iio:deviceX/buffer/ directory. Here are
some of the existing attributes:

•	 length, the total number of data samples (capacity) that can be stored by the buffer.
•	 enable, activate buffer capture.

The meta information associated with a channel reading placed in a buffer is called a scan element.
The important bits configuring scan elements are exposed to user space applications via the
sysfs entries under /sys/bus/iio/iio:deviceX/scan_elements/ directory. This directory contains type
attributes:

•	 type, description of the scan element data storage within the buffer and hence the form in
which it is read from user space. Format is [be|le]:[s|u]bits/storagebitsXrepeat[>>shift] . * be
or le, specifies big or little endian. * s or u, specifies if signed (2’s complement) or unsigned.
* bits, is the number of valid data bits. * storagebits, is the number of bits (after padding)
that it occupies in the buffer. * shift, if specified, is the shift that needs to be applied prior
to masking out unused bits. * repeat, specifies the number of bits/storagebits repetitions.
When the repeat element is 0 or 1, then the repeat value is omitted. For example, a driver
for a 3-axis accelerometer with 12 bit resolution where data is stored in two 8-bit registers
will have the following scan element type for each axis:

$ cat /sys/bus/iio/devices/iio:device0/scan_elements/in_accel_y_type
le:s12/16>>4

An user space application will interpret data samples read from the buffer as two byte little endian
signed data, that needs a 4 bits right shift before masking out the 12 valid bits of data.

IIO Buffer Setup
For implementing buffer support, a driver should initialize the following fields (marked in bold
below) within a struct iio_chan_spec structure:

struct iio_chan_spec {
/* other members */
 int scan_index
 struct {
 char sign;

Industrial I/O Subsystem for Device Drivers Chapter 11

[486]

 u8 realbits;
 u8 storagebits;
 u8 shift;
 u8 repeat;
 enum iio_endian endianness;
 } scan_type;
 };

You will implement an accelerometer driver in the last chapter of this book with the following
channel definition, where you can see the initialization of the previous fields:

static const struct iio_chan_spec adxl345_channels[] = {
 ADXL345_CHANNEL(DATAX0, X, 0),
 ADXL345_CHANNEL(DATAY0, Y, 1),
 ADXL345_CHANNEL(DATAZ0, Z, 2),
 IIO_CHAN_SOFT_TIMESTAMP(3),
};

#define ADXL345_CHANNEL(reg, axis, idx) { \
 .type = IIO_ACCEL, \
 .modified = 1, \
 .channel2 = IIO_MOD_##axis, \
 .address = reg, \
 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
 .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \
 BIT(IIO_CHAN_INFO_SAMP_FREQ), \
 .scan_index = idx, \
 .scan_type = { \
 .sign = 's', \
 .realbits = 13, \
 .storagebits = 16, \
 .endianness = IIO_LE, \
 }, \
 .event_spec = &adxl345_event, \
 .num_event_specs = 1 \
}

Here, scan_index defines the order in which the enabled channels are placed inside the buffer.
Channels with a lower scan_index will be placed before channels with a higher index. Each channel
needs to have an unique scan_index.

Setting scan_index to -1 can be used to indicate that the specific channel does not support buffered
capture. In this case no entries will be created for the channel in the scan_elements directory.

The function responsible to allocate the trigger buffer for your device (usually done in the probe()
function) is iio_triggered_buffer_setup(). In the next section you will see what an IIO trigger is.

[487]

Chapter 11 Industrial I/O Subsystem for Device Drivers

[487]

The data (i.e., the accelerometer axis values) will be pushed to the IIO device’s buffer using the
iio_push_to_buffers_with_timestamp() function within the trigger handler. If timestamps are enabled
for the device, the function will store the supplied timestamp as the last element in the sample data
buffer before pushing it to the device buffers. The sample data buffer needs to be large enough to
hold the additional timestamp (usually the buffer should be indio->scan_bytes bytes large). See a
description of the iio_push_to_buffers_with_timestamp() function´s parameters below:

int iio_push_to_buffers_with_timestamp(struct iio_dev * indio_dev,
 void * data,
 int64_t timestamp)

•	 struct iio_dev * indio_dev: pointer to struct iio_dev structure.
•	 void * data: sample data
•	 int64_t timestamp: timestamp for the sample data

Triggers
In many situations, it is useful for a driver to be able to capture data based on some external
event (trigger) as opposed to periodically polling for data. An IIO trigger can be provided by a
device driver that also has an IIO device based on hardware generated events (e.g., data ready or
threshold exceeded) or provided by a separate driver from an independent interrupt source (e.g.,
GPIO line connected to some external system, timer interrupt or user space writing a specific file
in sysfs). A trigger may initiate data capture for a number of sensors and also it may be completely
unrelated to the sensor itself.

You can develop your own trigger driver, but in this chapter you will focus only on existing ones.
These are:

•	 iio-trig-interrupt: This provides support for using any IRQ as IIO triggers. The kernel
option to enable this trigger mode is CONFIG_IIO_INTERRUPT_TRIGGER.

•	 iio-trig-hrtimer: This provides a frequency-based IIO trigger using HRT as the interrupt
source. The kernel option responsible for this trigger mode is IIO_HRTIMER_TRIGGER.

•	 iio-trig-sysfs: This allow us to use sysfs entry to trigger data capture. The kernel option
responsible for this trigger mode is CONFIG_IIO_SYSFS_TRIGGER.

Triggered Buffers
Now that you know what buffers and triggers are let’s see how they work together. As it was
indicated in the previous section, a trigger buffer is allocated using the iio_triggered_buffer_setup()
function. This function combines some common tasks, which will normally be performed when
setting up a triggered buffer. It will allocate the buffer and the pollfunc. Before calling this function

Industrial I/O Subsystem for Device Drivers Chapter 11

[488]

the struct indio_dev structure should already be completely initialized, but not yet registered. In
practice this means that this function should be called right before iio_device_register(). To free the
resources allocated by this function call iio_triggered_buffer_cleanup(). You can also use the managed
functions devm_iio_triggered_buffer_setup() and devm_iio_device_register(). See a description of the
iio_triggered_buffer_setup() function´s parameters below:

int iio_triggered_buffer_setup(struct iio_dev *indio_dev,
 irqreturn_t (*h)(int irq, void *p),
 irqreturn_t (*thread)(int irq, void *p),
 const struct iio_buffer_setup_ops *setup_ops)

•	 struct iio_dev * indio_dev: pointer to the IIO device structure.

•	 irqreturn_t (*h)(int irq, void *p): function which will be used as pollfunc top half. It should
do as little processing as possible, because it runs in interrupt context. The most common
operation is recording of the current timestamp and for this reason one can use the IIO
core defined iio_pollfunc_store_time() function.

•	 irqreturn_t (*thread)(int irq, void *p): function which will be used as pollfunc bottom half.
This runs in the context of a kernel thread and all the processing takes place here. It
usually reads data from the device and stores it in the internal buffer together with the
timestamp recorded in the top half using the iio_push_to_buffers_with_timestamp() function.

See below how looks like the triggered buffer setup of the ADXL345 IIO driver that will developed
in the next chapter:

int adxl345_core_probe(struct device *dev,
 struct regmap *regmap,

 const char *name)
{
 struct iio_dev *indio_dev;
 struct adxl345_data *data;

 [...]

/* iio_pollfunc_store_time do pf->timestamp = iio_get_time_ns(); */
 devm_iio_triggered_buffer_setup(dev, indio_dev,

 &iio_pollfunc_store_time,
 adxl345_trigger_handler, NULL);

devm_iio_device_register(dev, indio_dev);

 return 0;
}

[489]

Chapter 11 Industrial I/O Subsystem for Device Drivers

[489]

static irqreturn_t adxl345_trigger_handler(int irq, void *p)
{

 struct iio_poll_func *pf = p;
 struct iio_dev *indio_dev = pf->indio_dev;
 struct adxl345_data *data = iio_priv(indio_dev);

 /* 6 bytes axis + 2 bytes padding + 8 bytes timestamp */
 s16 buf[8];
 int i, ret, j = 0, base = DATAX0;
 s16 sample;

 /* read the channels that have been enabled from user space */
for_each_set_bit(i, indio_dev->active_scan_mask,

indio_dev->masklength) {
 ret = regmap_bulk_read(data->regmap,

base + i * sizeof(sample),
 &sample, sizeof(sample));
 if (ret < 0)
 goto done;
 buf[j++] = sample;
 }

 iio_push_to_buffers_with_timestamp(indio_dev, buf,
 pf->timestamp);

done:
 iio_trigger_notify_done(indio_dev->trig);

 return IRQ_HANDLED;
}

Industrial I/O Events
The Industrial I/O subsystem provides support for passing hardware generated events up to user
space. In IIO, events are not used for passing normal readings from the sensing devices to user
space, but rather for out of band information. Normal data reaches user space through a low
overhead character device - typically via either software or hardware buffer. The stream format
is pseudo fixed, so is described and controlled via sysfs rather than adding headers to the data
describing what is in it.

Pretty much, all IIO events correspond to thresholds on some value derived from one or more
raw readings from the sensor. They are provided by the underlying hardware. Events have
timestamps. Examples include:

•	 Straight crossing a voltage threshold.

Industrial I/O Subsystem for Device Drivers Chapter 11

[490]

•	 Moving average crosses a threshold.
•	 Motion detectors (lots of ways of doing this).
•	 Thresholds on sum squared or rms values.
•	 Rate of change thresholds.
•	 Lots more variants…

The event sysfs attributes exposed to user space are specified in the form of bitmasks. Each
channel event is specified with a struct iio_event_spec structure:

struct iio_event_spec {
 enum iio_event_type type;
 enum iio_event_direction dir;
 unsigned long mask_separate;
 unsigned long mask_shared_by_type;
 unsigned long mask_shared_by_dir;
 unsigned long mask_shared_by_all;
};

Where:

•	 type: type of the event.
•	 dir: direction of the event.
•	 mask_separate: bit mask of enum iio_event_info values; attributes set in this mask will be

registered per channel.
•	 mask_shared_by_type: bit mask of enum iio_event_info values; attributes set in this mask will

be shared by channel type.
•	 mask_shared_by_dir: bit mask of enum iio_event_info values; attributes set in this mask will

be shared by channel type and direction.
•	 mask_shared_by_all: bit mask of enum iio_event_info values; attributes set in this mask will

be shared by all channels.

See below the initialization of the struct iio_event_spec structure for the ADXL345 IIO driver that
will developed in the next chapter:

static const struct iio_event_spec adxl345_event = {
 .type = IIO_EV_TYPE_THRESH,
 .dir = IIO_EV_DIR_EITHER,
 .mask_separate = BIT(IIO_EV_INFO_VALUE) |
 BIT(IIO_EV_INFO_PERIOD)
};

This adxl345_event structure will be integrated in each struct iio_chan_spec structure, as you can see
in the next line of code in bold:

[491]

Chapter 11 Industrial I/O Subsystem for Device Drivers

[491]

static const struct iio_chan_spec adxl345_channels[] = {
 ADXL345_CHANNEL(DATAX0, X, 0),
 ADXL345_CHANNEL(DATAY0, Y, 1),
 ADXL345_CHANNEL(DATAZ0, Z, 2),
 IIO_CHAN_SOFT_TIMESTAMP(3),
};

#define ADXL345_CHANNEL(reg, axis, idx) { \
 .type = IIO_ACCEL, \
 .modified = 1, \
 .channel2 = IIO_MOD_##axis, \
 .address = reg, \
 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
 .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \
 BIT(IIO_CHAN_INFO_SAMP_FREQ), \
 .scan_index = idx, \
 .scan_type = { \
 .sign = 's', \
 .realbits = 13, \
 .storagebits = 16, \
 .endianness = IIO_LE, \
 }, \
 .event_spec = &adxl345_event, \
 .num_event_specs = 1 \
}

You have to create the kernel hooks corresponding to interactions that user space can make
through the event sysfs attributes:

static const struct iio_info adxl345_info = {
 .driver_module = THIS_MODULE,
 .read_raw = adxl345_read_raw,
 .write_raw = adxl345_write_raw,
 .read_event_value = adxl345_read_event,
 .write_event_value = adxl345_write_event,
};

•	 read_event_value: read a configuration value associated with the event.
•	 write_event_value: write a configuration value for the event.

The event notification can be enabled by writing to the sysfs attributes under the /sys/bus/iio/
devices/iio:deviceX/events/ directory.

Industrial I/O Subsystem for Device Drivers Chapter 11

[492]

Delivering IIO Events to User Space
The iio_push_event() function tries to add an event to the list for user space reading. It is usually
called within a threaded IRQ.

int iio_push_event(struct iio_dev *indio_dev, u64 ev_code, s64 timestamp)

•	 indio_dev: pointer to the IIO device structure
•	 ev_code: contains channel type, modifier, direction, event type; these are some macros

for packing/unpacking event codes: IIO MOD EVENT CODE and IIO EVENT CODE
EXTRACT

•	 timestamp: when the event occurred

See below how to deliver IIO events to user space inside the ISR of the ADXL345 IIO driver that
will developed in the next chapter:

/* Interrupt service routine */
static irqreturn_t adxl345_event_handler(int irq, void *handle)
{
 u32 tap_stat, int_stat;
 int ret;
 struct iio_dev *indio_dev = handle;
 struct adxl345_data *data = iio_priv(indio_dev);

 data->timestamp = iio_get_time_ns(indio_dev);

 /*
 * ACT_TAP_STATUS should be read before clearing the interrupt
 * Avoid reading ACT_TAP_STATUS in case TAP detection is disabled
 * Read the ACT_TAP_STATUS if any of the axis has been enabled
 */
 if (data->tap_axis_control & (TAP_X_EN | TAP_Y_EN | TAP_Z_EN)) {
 ret = regmap_read(data->regmap, ACT_TAP_STATUS, &tap_stat);
 if (ret) {
 dev_err(data->dev, "error reading ACT_TAP_STATUS register\n");
 return ret;
 }
 }
 else
 tap_stat = 0;

 /* Read the INT_SOURCE (0x30) register
 * The tap interrupt is cleared
 */
 ret = regmap_read(data->regmap, INT_SOURCE, &int_stat);
 if (ret) {
 dev_err(data->dev, "error reading INT_SOURCE register\n");
 return ret;

[493]

Chapter 11 Industrial I/O Subsystem for Device Drivers

[493]

 }

 /*
 * if the SINGLE_TAP event has occurred the axl345_do_tap function
 * is called with the ACT_TAP_STATUS register as an argument
 */
 if (int_stat & (SINGLE_TAP)) {
 dev_info(data->dev, "single tap interrupt has occurred\n");

 if (tap_stat & TAP_X_EN){
 iio_push_event(indio_dev,
 IIO_MOD_EVENT_CODE(IIO_ACCEL,
 0,
 IIO_MOD_X,

IIO_EV_TYPE_THRESH,
0),

 data->timestamp);
 }
 if (tap_stat & TAP_Y_EN) {
 iio_push_event(indio_dev,

 IIO_MOD_EVENT_CODE(IIO_ACCEL,
 0,
 IIO_MOD_Y,
 IIO_EV_TYPE_THRESH,
 0),
 data->timestamp);
 }
 if (tap_stat & TAP_Z_EN) {
 iio_push_event(indio_dev,
 IIO_MOD_EVENT_CODE(IIO_ACCEL,
 0,
 IIO_MOD_Z,
 IIO_EV_TYPE_THRESH,
 0),
 data->timestamp);
 }
 }

 return IRQ_HANDLED;
}

The access from user space is via an IOCTL interface on the character device /dev/iio:deviceX. User
space application will set up monitoring via IIO_GET_EVENT_FD_IOCTL, then polls for events.
To receive an event, follow these steps after setting the threshold using the event sysfs entries:

1. Include <linux/iio/events.h> for the events and ioctl definitions:

#include <linux/iio/events.h>

Industrial I/O Subsystem for Device Drivers Chapter 11

[494]

2. Use the iio:deviceX directory name and open the device file /dev/iio:deviceX.

3. Use the fd of the step 2 to get the event file descriptor:

ioctl(fd, IIO_GET_EVENT_FD_IOCTL, &event_fd)

4. Call read on this event_fd:

read(event_fd, &event, sizeof(event));

Here, event is of type struct iio_event_data. Decipher this event as described in events.h file
to locate the exact event. This read is a blocking call, which is released when any event has
occurred.

IIO Utils
There are some useful tools you can use during your IIO driver development. They are available
under /tools/iio/ folder:

•	 lsiio: enumerates IIO triggers, devices, and accessible channels
•	 iio_event_monitor: monitors on IIO device's ioctl interface for IIO events
•	 iio_generic_buffer: monitors, processes, and print data received from an IIO device's

buffer
•	 libiio: a powerful library developed by Analog devices to interface IIO devices, and

available at https://github.com/analogdevicesinc/libiio.

LAB 11.1: "IIO subsystem DAC" Module
This new kernel module will control the Analog Devices LTC2607 device. The LTC2607 is a dual
12-bit, 2.7V to 5.5V rail-to-rail voltage output DAC. It uses a 2-wire, I2C compatible serial interface.
The LTC2607 operates in both the standard mode (clock rate of 100kHz) and the fast mode (clock
rate of 400kHz).

The driver will control each LTC2607 internal DAC individually or both DACA + DACB in a
simultaneous mode. The IIO framework will generate three separate sysfs files (attributes) used for
sending data to the dual DAC from user space application.

You will implement for this driver the same hardware description of the lab 6.2 connecting the
SDA and SCL pins of the processor to the SDA and SCL pins of the LTC2607 DC934A evaluation
board.

Download the schematics of the Analog Devices DC934A evaluation board at http://www.analog.
com/en/design-center/evaluation-hardware-and-software/evaluation-boards-kits/dc934a.html.

https://www.analog.com/en/design-center/evaluation-hardware-and-software/evaluation-boards-kits/dc934a.html
https://www.analog.com/en/design-center/evaluation-hardware-and-software/evaluation-boards-kits/dc934a.html

[495]

Chapter 11 Industrial I/O Subsystem for Device Drivers

[495]

You are going to power the LTC2607 with a 5V supply connected to V+, pin 1 of the DC934A´s
connector J1. Also connect GND between the DC934A (i.e., pin 3 of connector J1) and processor´s
boards. You will use the device U3´s (LT1790ACS6-5) 5V output as the VREF (select JP1 VREFA
jumper) and this 5V output will be also used to supply the LTC2607 DAC (select 5V REF in jumper
JP2).

Using the 5V regulator (5V REG in JP2) as the source for VCC has the limitation that VCC may be
slightly lower than VREF, which may affect the full-scale error. Selecting the 5V REF as the source
for VCC overcomes this, however the total current that the LTC2607 can source will be limited to
approximately 5mA.

Remove device U7 from the DC934A board and also the LTC2607 I2C pull-up resistors.

In the LTC2607 device, CA0, CA1, and CA2 are set to Vcc. If you go to the LTC2607 data-sheet you
can see that it matchs with the next I2C slave address= 01110010=0x72.

The main code sections of the driver will be described using three categories: Device Tree,
Industrial Framework as an I2C Interaction, and Industrial Framework as an IIO device.

Device Tree
Modify the device tree files under arch/arm/boot/dts/ folder to include your DT driver´s device
nodes. There must be a DT device node´s compatible property identical to the compatible string
stored in one of the driver´s of_device_id structures.

For the MCIMX7D-SABRE Board open the DT file imx7d-sdb.dts and add the ltc2607@72 and
ltc2607@73 sub-nodes inside the i2c3 controller master node. The reg properties provide the
LTC2607 I2C addresses. The I2C address = 0x72 is provided setting CA0, CA1, and CA2 to Vcc, and
the I2C address = 0x73 is always present in the device in addition to the HW selected I2C address.

&i2c3 {
 clock-frequency = <100000>;
 pinctrl-names = "default";
 pinctrl-0 = <&pinctrl_i2c3>;
 status = "okay";

 ltc2607@72 {
 compatible = "arrow,ltc2607";
 reg = <0x72>;
 };

 ltc2607@73 {
 compatible = "arrow,ltc2607";
 reg = <0x73>;
 };

Industrial I/O Subsystem for Device Drivers Chapter 11

[496]

 sii902x: sii902x@39 {
 compatible = "SiI,sii902x";
 pinctrl-names = "default";
 pinctrl-0 = <&pinctrl_sii902x>;
 interrupt-parent = <&gpio2>;
 interrupts = <13 IRQ_TYPE_EDGE_FALLING>;
 mode_str ="1280x720M@60";
 bits-per-pixel = <16>;
 reg = <0x39>;
 status = "okay";
 };

[...]

};

For the SAMA5D2B-XULT Board open the DT file at91-sama5d2_xplained_common.dtsi and add the
ltc2607@72 and ltc2607@73 sub-nodes inside the i2c1 controller master node.

i2c1: i2c@fc028000 {
 dmas = <0>, <0>;
 pinctrl-names = "default";
 pinctrl-0 = <&pinctrl_i2c1_default>;
 status = "okay";

 [...]

 ltc2607@72 {
 compatible = "arrow,ltc2607";
 reg = <0x72>;
 };

 ltc2607@73 {
 compatible = "arrow,ltc2607";
 reg = <0x73>;
 };

[...]

 at24@54 {
 compatible = "atmel,24c02";
 reg = <0x54>;
 pagesize = <16>;
 };
 };

For the Raspberry Pi 3 Model B Board open the DT file bcm2710-rpi-3-b.dts and add the ltc2607@72
and ltc2607@73 sub-nodes below the i2c1 controller master node.

[497]

Chapter 11 Industrial I/O Subsystem for Device Drivers

[497]

&i2c1 {
 pinctrl-names = "default";
 pinctrl-0 = <&i2c1_pins>;
 clock-frequency = <100000>;
 status = "okay";

 [...]

 ltc2607@72 {
 compatible = "arrow,ltc2607";
 reg = <0x72>;
 };

 ltc2607@73 {
 compatible = "arrow,ltc2607";
 reg = <0x73>;
 };
};

Build the modified device tree and load it to your target processor.

Industrial Framework as an I2C Interaction
These are the main code sections:

1. Include the required header files:
#include <linux/i2c.h> /* struct i2c_driver, struct i2c_client(), i2c_get_
clientdata(), i2c_set_clientdata() */

2. Create a struct i2c_driver structure:

static struct i2c_driver ltc2607_driver = {
 .driver = {
 .name = LTC2607_DRV_NAME,
 .owner = THIS_MODULE,
 .of_match_table = dac_dt_ids,
 },
 .probe = ltc2607_probe,
 .remove = ltc2607_remove,
 .id_table = ltc2607_id,
};

3. Register to the I2C bus as a driver:

module_i2c_driver(ltc2607_driver);

4. Add "ltc2607" to the list of devices supported by the driver:

static const struct of_device_id dac_dt_ids[] = {
 { .compatible = "arrow,ltc2607", },

Industrial I/O Subsystem for Device Drivers Chapter 11

[498]

 { }
};
MODULE_DEVICE_TABLE(of, dac_dt_ids);

5. Define an array of struct i2c_device_id structures:

static const struct i2c_device_id ltc2607_id[] = {
 { "ltc2607", 0 },
 { }
};
MODULE_DEVICE_TABLE(i2c, ltc2607_id);

Industrial Framework as an IIO Device
These are the main code sections:

1. Include the required header files:

#include <linux/iio/iio.h> /* devm_iio_device_alloc(), iio_priv */

2. The device model needs to keep pointers between physical devices (devices as handled
by the physical bus, I2C in this case) and logical devices (devices handled by subsystems,
like the Industrial subsystem in this case). This need is typically implemented by creating
a private data structure to manage the device and implement such pointers between the
physical and logical worlds. This way, when the remove() routine is called (typically if the
bus detects the removal of a device), you can find out which logical device to unregister.
Conversely, when there is an event on the logical side (such as opening or closing an input
device for the first time), you can find out which I2C slave this corresponds to, to do the
specific things with the hardware. Each device´s private structure is allocated dynamically
each time probe() is called. A pointer to the private structure has to be stored somewhere.
The bus abstraction gives us a void pointer to a struct device. Some getter/setter functions
are defined e.g., i2c_set_clientdata()/ i2c_get_clientdata() so that you can attach/get each
private structure to/from the struct device at probe()/remove() calls.

Now, add the next private structure definition to your driver code:

struct ltc2607_device {
 struct i2c_client *client;
 char name[8];
};

3. Allocate the struct iio_dev structure in ltc2607_probe() using the devm_iio_device_alloc()
function:

struct iio_dev *indio_dev;
indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data));

[499]

Chapter 11 Industrial I/O Subsystem for Device Drivers

[499]

4. Initialize the struct iio_device and the data private structure within the ltc2607_probe()
function. The data private structure should be previously allocated using the iio_priv()
function. Keep pointers between physical devices (devices as handled by the physical bus,
I2C in this case) and logical devices:

struct ltc2607_device *data;

data = iio_priv(indio_dev); /* To be able to access the private data structure
in other parts of the driver you need to attach it to the iio_dev structure
using the iio_priv() function. You will retrieve the pointer "data" to the
private structure using the same function iio_priv() */

data->client = client; /* Keep pointer to the I2C device, needed for exchanging
data with the LTC2607 device */

sprintf(data->name, "DAC%02d", counter++); /* create a different name for each
device attached to the DT. In the driver two DAC names will be created, one
for each i2c address. Store the names in each private structure.The probe()
function will be called twice, once per DT LTC2607 node found */

indio_dev->name = data->name; /* store the name in the IIO device */

indio_dev->dev.parent = &client->dev; /* keep pointers between physical devices
(devices as handled by the physical bus, I2C in this case) and logical devices
*/

indio_dev->info = <c2607_info; /* store the address of the iio_info structure
which contains a pointer variable to the IIO raw writing callback */

indio_dev->channels = ltc2607_channel; /* store address of the iio_chan_spec
structure which stores each channel info for the LTC2607 dual DAC */

indio_dev->num_channels = 3; /* set number of channels of the device */

indio_dev->modes = INDIO_DIRECT_MODE;

See the links between physical and logical devices structures of the LTC2607 driver in the
following image:

Industrial I/O Subsystem for Device Drivers Chapter 11

[500]

5. Register the devices to the IIO core (two devices will be registered, one with I2C address
0x72 and other one with I2C address 0x73). Now, the devices are global to the rest of the
driver functions until they are unregistered. After this call, the devices are ready to accept
requests from user space applications. The probe() function will be called twice, registering
one of the devices in each call. You will control the same device with two different I2C
addresses, this has the effect that two different devices are connected to the bus, but you
are adding only one physical device. We are doing this for teaching purposes.

devm_iio_device_register(&client->dev, indio_dev);

6. An IIO device channel is a representation of a data channel. An IIO device can have one or
multiple channels. Add the code below for the LTC2607 IIO channels definition:

static const struct iio_chan_spec ltc2607_channel[] = {

{
 .type = IIO_VOLTAGE,
 .indexed = 1,

[501]

Chapter 11 Industrial I/O Subsystem for Device Drivers

[501]

 .output = 1,
 .channel = 0,
 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW),

},{
 .type = IIO_VOLTAGE,
 .indexed = 1,
 .output = 1,
 .channel = 1,
 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW),

},{
 .type = IIO_VOLTAGE,
 .indexed = 1,
 .output = 1,
 .channel = 2,
 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW),

}

};

The IIO channels definition above will generate the following data channel access
attributes for each iio:device:

/sys/bus/iio/devices/iio:device0/out_voltage0_raw
/sys/bus/iio/devices/iio:device0/out_voltage1_raw
/sys/bus/iio/devices/iio:device0/out_voltage2_raw

/sys/bus/iio/devices/iio:device1/out_voltage0_raw
/sys/bus/iio/devices/iio:device1/out_voltage1_raw
/sys/bus/iio/devices/iio:device1/out_voltage2_raw

The attribute's name is automatically generated by the IIO core with the following pattern:
{direction}_{type}_{index}_{modifier}_{info_mask}:

out_voltage0_raw is the sysfs entry where you write the digital value that is sent to DACA,
out_voltage1_raw is the sysfs entry where you write the digital value that is sent to DACB,
and out_voltage2_raw is the sysfs entry where you write the digital value that is sent
simultaneously to both DACA and DACB.

7. Write the struct iio_info structure. The read/write user space operations to sysfs data
channel access attributes are mapped to kernel callbacks.

static const struct iio_info ltc2607_info = {
.write_raw = ltc2607_write_raw,

 .driver_module = THIS_MODULE,
};

You will write a single IIO write_raw writing callback function named ltc2607_write_raw()
to map in the kernel all the user space write operations to the sysfs data channel attributes

Industrial I/O Subsystem for Device Drivers Chapter 11

[502]

of both IIO devices. This kernel function will receive the next parameters when a sysfs
attribute is accessed from user space:

•	 struct iio_dev *indio_dev: a pointer to the struct iio_dev structure related with the
accessed device.

•	 struct iio_chan_spec const *chan: the accessed channel number of the IIO device.
•	 int val: The value written from user space to the sysfs attribute.
•	 long mask: The info_mask included in the accessed sysfs attribute name.

The ltc2607_write_raw() function contains a switch(mask) that is setting different tasks
depending of the received parameter values. If the received info_mask value is
[IIO_CHAN_INFO_RAW] = "raw", the ltc2607_set_value() function is called recovering
the private data through the iio_priv() function. Once the private info is recovered, the
I2C device address will be retrieved from the I2C client pointer variable (data->client).
This data->client pointer variable is the first parameter of the i2c_master_send() function,
which is used to communicate with the Analog Devices DAC writing each channel in an
independent way, or in a simultaneous mode.

Use the command value 0x03 to write and update the DAC device. The DAC values will
range from 0 to 0xFFFF (65535). For example, if the DAC value is set to 0xFFFF, then
the DACA output is close to 5V (Vref). Depending of the DAC address, the data will be
written to DACA (0x00), DACB (0x01), or both DACs (0x0F). In the next table, you can see
all the commands and addresses with their respective descriptions.

Output Voltage = Vref x DAC value/65535

[503]

Chapter 11 Industrial I/O Subsystem for Device Drivers

[503]

See below the code of the ltc2607_write_raw() and the ltc2607_set_value() functions:

static int ltc2607_set_value(struct iio_dev *indio_dev, int val, int channel)

{
 struct ltc2607_device *data = iio_priv(indio_dev);
 u8 outbuf[3];
 int chan;

 if (channel == 2)
 chan = 0x0F;
 else
 chan = channel;

 if (val >= (1 << 16) || val < 0)
 return -EINVAL;

 outbuf[0] = 0x30 | chan; /* write and update DAC */
 outbuf[1] = (val >> 8) & 0xff; /* MSB byte of dac_code */
 outbuf[2] = val & 0xff; /* LSB byte of dac_code */

 i2c_master_send(data->client, outbuf, 3);
 return 0;
}

static int ltc2607_write_raw(struct iio_dev *indio_dev,
 struct iio_chan_spec const *chan,
 int val, int val2, long mask)
{
 int ret;

 switch (mask) {
 case IIO_CHAN_INFO_RAW:
 ret = ltc2607_set_value(indio_dev, val, chan->channel);
 return ret;
 default:
 return -EINVAL;
 }
}

See in the next Listing 11-1 the "IIO subsystem DAC" driver source code (ltc2607_imx_dual_device.c)
for the i.MX7D processor.

Note: The source code for the SAMA5D2 (ltc2607_sam_dual_device.c) and BCM2837 (ltc2607_rpi_
dual_device.c) drivers can be downloaded from the GitHub repository of this book.

Industrial I/O Subsystem for Device Drivers Chapter 11

[504]

Listing 11-1: ltc2607_imx_dual_device.c
#include <linux/module.h>
#include <linux/i2c.h>
#include <linux/iio/iio.h>

#define LTC2607_DRV_NAME "ltc2607"

struct ltc2607_device {
 struct i2c_client *client;
 char name[8];
};

static const struct iio_chan_spec ltc2607_channel[] = {
{

 .type = IIO_VOLTAGE,
 .indexed = 1,
 .output = 1,
 .channel = 0,
 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW),

},{
 .type = IIO_VOLTAGE,
 .indexed = 1,
 .output = 1,
 .channel = 1,
 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW),

},{
 .type = IIO_VOLTAGE,
 .indexed = 1,
 .output = 1,
 .channel = 2,
 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW),

}

};

static int ltc2607_set_value(struct iio_dev *indio_dev, int val, int channel)
{
 struct ltc2607_device *data = iio_priv(indio_dev);
 u8 outbuf[3];
 int ret;
 int chan;

 if (channel == 2)
 chan = 0x0F;
 else
 chan = channel;

[505]

Chapter 11 Industrial I/O Subsystem for Device Drivers

[505]

 if (val >= (1 << 16) || val < 0)
 return -EINVAL;

 outbuf[0] = 0x30 | chan; /* write and update DAC */
 outbuf[1] = (val >> 8) & 0xff; /* MSB byte of dac_code */
 outbuf[2] = val & 0xff; /* LSB byte of dac_code */

 ret = i2c_master_send(data->client, outbuf, 3);
 if (ret < 0)
 return ret;
 else if (ret != 3)
 return -EIO;
 else
 return 0;
}

static int ltc2607_write_raw(struct iio_dev *indio_dev,
 struct iio_chan_spec const *chan,
 int val, int val2, long mask)
{
 int ret;

 switch (mask) {
 case IIO_CHAN_INFO_RAW:
 ret = ltc2607_set_value(indio_dev, val, chan->channel);
 return ret;
 default:
 return -EINVAL;
 }
}

static const struct iio_info ltc2607_info = {
 .write_raw = ltc2607_write_raw,
 .driver_module = THIS_MODULE,
};

static int ltc2607_probe(struct i2c_client *client,
 const struct i2c_device_id *id)
{
 static int counter = 0;
 struct iio_dev *indio_dev;
 struct ltc2607_device *data;
 u8 inbuf[3];
 u8 command_byte;
 int err;
 dev_info(&client->dev, "DAC_probe()\n");

Industrial I/O Subsystem for Device Drivers Chapter 11

[506]

 command_byte = 0x30 | 0x00; /* Write and update register with value 0xFF */
 inbuf[0] = command_byte;
 inbuf[1] = 0xFF;
 inbuf[2] = 0xFF;

 /* Allocate the iio_dev structure */
 indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data));
 if (indio_dev == NULL)
 return -ENOMEM;

 data = iio_priv(indio_dev);
 i2c_set_clientdata(client, data);
 data->client = client;

 sprintf(data->name, "DAC%02d", counter++);
 dev_info(&client->dev, "data_probe is entered on %s\n", data->name);

 indio_dev->name = data->name;
 indio_dev->dev.parent = &client->dev;
 indio_dev->info = <c2607_info;
 indio_dev->channels = ltc2607_channel;
 indio_dev->num_channels = 3;
 indio_dev->modes = INDIO_DIRECT_MODE;

 err = i2c_master_send(client, inbuf, 3); /* write DAC value */
 if (err < 0) {
 dev_err(&client->dev, "failed to write DAC value");
 return err;
 }

 dev_info(&client->dev, "the dac answer is: %x.\n", err);

 err = devm_iio_device_register(&client->dev, indio_dev);
 if (err)
 return err;

 dev_info(&client->dev, "ltc2607 DAC registered\n");

 return 0;
}

static int ltc2607_remove(struct i2c_client *client)
{
 dev_info(&client->dev, "DAC_remove()\n");
 return 0;
}

static const struct of_device_id dac_dt_ids[] = {

[507]

Chapter 11 Industrial I/O Subsystem for Device Drivers

[507]

 { .compatible = "arrow,ltc2607", },
 { }
};
MODULE_DEVICE_TABLE(of, dac_dt_ids);

static const struct i2c_device_id ltc2607_id[] = {
 { "ltc2607", 0 },
 { }
};
MODULE_DEVICE_TABLE(i2c, ltc2607_id);

static struct i2c_driver ltc2607_driver = {
 .driver = {
 .name = LTC2607_DRV_NAME,
 .owner = THIS_MODULE,
 .of_match_table = dac_dt_ids,
 },
 .probe = ltc2607_probe,
 .remove = ltc2607_remove,
 .id_table = ltc2607_id,
};
module_i2c_driver(ltc2607_driver);

MODULE_AUTHOR("Alberto Liberal <aliberal@arroweurope.com>");
MODULE_DESCRIPTION("LTC2607 16-bit DAC");
MODULE_LICENSE("GPL");

Industrial I/O Subsystem for Device Drivers Chapter 11

[508]

LAB 11.2: "IIO subsystem DAC" Module with "SPIDEV
dual ADC user" Application
You have just developed a driver for the dual DAC, and the next challenge will be to develop
a driver that reads the analog outputs from the DAC device. To accomplish this task, you will
use the LTC2422 dual ADC SPI device that is included in the DC934A board. The LTC2607 DAC
outputs are connected to both LTC2422 ADC inputs. Prior to developing the driver you are going
to read the DAC analog outputs using the Linux user space SPI API.

The LTC2422 Analog Devices device is a 2-channel 2.7V to 5.5V micropower 20-bit analog-to-
digital converter with an integrated oscillator, 8ppm INL and 1.2ppm RMS noise. This device
uses delta-sigma technology and a new digital filter architecture that settles in a single cycle. This
eliminates the latency found in conventional sigma delta converters and simplifies multiplexed
applications. This converter accept an external reference voltage from 0.1V to VCC.

The LTC2422 serial output data stream is 24 bits long. The first 4 bits represent status information
indicating the sign, selected channel, input range and conversion state. The next 20 bits are the
conversion result, MSB first:

•	 Bit 23 (first output bit) is the end of conversion (EOC) indicator. This bit is available at the
SDO pin during the conversion and sleep states whenever the CS pin is LOW. This bit is
HIGH during the conversion and goes LOW when the conversion is complete.

•	 Bit 22 (second output bit) for the LTC2422, this bit is LOW if the last conversion was
performed on CH0 and HIGH for CH1. This bit is always LOW for the LTC2421.

•	 Bit 21 (third output bit) is the conversion result sign indicator (SIG). If VIN is > 0, this bit is
HIGH. If VIN is < 0, this bit is LOW. The sign bit changes state during the zero code.

•	 Bit 20 (fourth output bit) is the extended input range (EXR) indicator. If the input is within
the normal input range 0 ≤ VIN ≤ VREF, this bit is LOW. If the input is outside the normal
input range, VIN > VREF or VIN < 0, this bit is HIGH.

•	 Bit 19 (fifth output bit) is the most significant bit (MSB).
•	 Bits 19-0 are the 20-bit conversion result MSB first.
•	 Bit 0 is the least significant bit (LSB).

Data is shifted out of the SDO pin under control of the serial clock (SCK), whenever CS is HIGH,
SDO remains high impedance and any SCK clock pulses are ignored by the internal data out shift
register. In order to shift the conversion result out of the device, CS must first be driven LOW. EOC
is seen at the SDO pin of the device once CS is pulled LOW. EOC changes real time from HIGH
to LOW at the completion of a conversion. This signal may be used as an interrupt for an external
microcontroller. Bit 23 (EOC) can be captured on the first rising edge of SCK. Bit 22 is shifted out of
the device on the first falling edge of SCK. The final data bit (Bit 0) is shifted out on the falling edge

[509]

Chapter 11 Industrial I/O Subsystem for Device Drivers

[509]

of the 23rd SCK and may be latched on the rising edge of the 24th SCK pulse. On the falling edge
of the 24th SCK pulse, SDO goes HIGH indicating a new conversion cycle has been initiated. This
bit serves as EOC (Bit23) for the next conversion cycle.

In the DC934A schematic you can see that the LTC2607 DAC output B is connected to LTC2422
channel 0 and that the LTC2607 DAC output A is connected to the LTC2422 channel 1.

There is a generic SPI device driver spidev.c located under drivers/spi/, which you can enable
through the kernel configuration CONFIG_SPI_SPIDEV. Configure your kernel and add spidev
driver selecting Device Drivers -> SPI support -> <*> User mode SPI device driver. It creates a device node
for each SPI controller, which allows you to access SPI chips from user space. The device nodes are
named spidev[bus].[chip select].

In this lab you are going to use this spidev driver to access to the LTC2422 SPI device.

SPI devices have a limited Linux user space API, supporting basic half-duplex read() and
write() access to SPI slave devices. Using ioctl() requests, full duplex transfers and device I/O
configurations are also available.

Some reasons you might want to use this user space interface include:

•	 Prototyping in an environment that's not crash-prone; stray pointers in user space won't
normally bring down a Linux system.

•	 Developing simple protocols used to talk to microcontrollers acting as SPI slaves, which
you may need to change quite often.

Of course, there are drivers that can never be written in user space, because they need to access
kernel interfaces (such as IRQ handlers or other layers of the driver stack) that are not accessible to
user space. See more info about the spidev driver at https://www.kernel.org/doc/Documentation/spi/
spidev.

Industrial I/O Subsystem for Device Drivers Chapter 11

[510]

LAB 11.2 Hardware Description for the i.MX7D Processor
In this lab, you will use the SPI pins of the MCIMX7D-SABRE board mikroBUS™ to connect to the
LTC2422 dual ADC SPI device that is included in the DC934A board.

Go to the pag.20 of the MCIMX7D-SABRE schematic to see the MikroBUS connector and look for
the SPI pins. The CS, SCK and MISO (Master In, Slave Out) signals will be used. The MOSI (Master
out, Slave in) signal won´t be needed, as you are only going to receive data from the LTC2422
device. Connect the next processor´s pins to the LTC2422 SPI ones obtained from the DC934A
board J1 connector:

•	 Connect i.MX7D MKBUS_ESPI3_SS0_B (CS) to LTC2422 CS

•	 Connect i.MX7D MKBUS_ESPI3_SCLK (SCK) to LTC2422 SCK

•	 Connect i.MX7D MKBUS_ESPI3_MISO (MISO) to LTC2422 MISO

LAB 11.2 Hardware Description for the SAMA5D2 Processor
For the SAMA5D2 processor, open the SAMA5D2B-XULT board schematic and look for connectors
on board with pins that provide SPI signals.

You can access to the SPI signals using the J17 header. See below a description of the connections
between both boards:

•	 Connect SAMA5D2 ISC_PCK/SPI1_NPCS0_PC4 (pin 26 of J17) to LTC2422 CS

•	 Connect SAMA5D2 SC_D7/SPI1_SPCK_PC1 (pin 17 of J17) to LTC2422 SCK

•	 Connect SAMA5D2 ISC_D9/SPI1_MISO_PC3 (pin 22 of J17) to LTC2422 MISO

LAB 11.2 Hardware Description for the BCM2837 Processor
For the BCM2837 processor, you will use the GPIO expansion connector to obtain the SPI signals.
Go to the Raspberry-Pi-3B-V1.2-Schematics to see the J8 connector. See below a description of the
connections between both boards:

•	 Connect BCM2837 SPI_CE0_N (pin 24 of J8) to LTC2422 CS

•	 Connect BCM2837 SPI_SCLK (pin 23 of J8) to LTC2422 SCK

•	 Connect BCM2837 SPI_MISO (pin 21 of J8) to LTC2422 MISO

[511]

Chapter 11 Industrial I/O Subsystem for Device Drivers

[511]

LAB 11.2 Device Tree for the i.MX7D Processor
Modify the device tree file imx7d-sdb.dts adding the spidev@1 sub-node inside the ecspi3 controller
master node. The reg property provides the CS number; there are two chip selects inside the ecspi3
node, one for the tsc2046 node and the other one for the spidev node.

&ecspi3 {
 fsl,spi-num-chipselects = <1>;
 pinctrl-names = "default";
 pinctrl-0 = <&pinctrl_ecspi3 &pinctrl_ecspi3_cs>;
 cs-gpios = <&gpio5 9 GPIO_ACTIVE_HIGH>, <&gpio6 22 0>;
 status = "okay";

tsc2046@0 {
 compatible = "ti,tsc2046";
 reg = <0>;
 spi-max-frequency = <1000000>;
 pinctrl-names ="default";
 pinctrl-0 = <&pinctrl_tsc2046_pendown>;
 interrupt-parent = <&gpio2>;
 interrupts = <29 0>;
 pendown-gpio = <&gpio2 29 GPIO_ACTIVE_HIGH>;
 ti,x-min = /bits/ 16 <0>;
 ti,x-max = /bits/ 16 <0>;
 ti,y-min = /bits/ 16 <0>;
 ti,y-max = /bits/ 16 <0>;
 ti,pressure-max = /bits/ 16 <0>;
 ti,x-plate-ohms = /bits/ 16 <400>;
 wakeup-source;
 };

 spidev@1 {
 compatible = "spidev";
 spi-max-frequency = <2000000>; /* SPI CLK Hz */
 reg = <1>;
 };

};

LAB 11.2 Device Tree for the SAMA5D2 Processor
For the SAMA5D2B-XULT Board open the DT file at91-sama5d2_xplained_common.dtsi and add the
spidev@0 sub-node inside the spi1 controller master node.

spi1: spi@fc000000 {
 pinctrl-names = "default";
 pinctrl-0 = <&pinctrl_spi1_default>;
 status = "okay";

Industrial I/O Subsystem for Device Drivers Chapter 11

[512]

 spidev@0 {
 compatible = "spidev";
 spi-max-frequency = <2000000>;
 reg = <0>;
 };
};

LAB 11.2 Device Tree for the BCM2837 Processor
Open and modify the device tree file bcm2710-rpi-3-b.dts adding the spidev@0 sub-node inside the
spi0 controller master node.

&spi0 {
 pinctrl-names = "default";
 pinctrl-0 = <&spi0_pins &spi0_cs_pins>;
 cs-gpios = <&gpio 8 1>, <&gpio 7 1>;

 /* CE0 */
 spidev0: spidev@0{
 compatible = "spidev";
 reg = <0>;
 #address-cells = <1>;
 #size-cells = <0>;
 spi-max-frequency = <500000>;
 };

 }

Create the LTC2422_spidev application in my_apps project. Modify the application Makefile to build
and deploy LTC2422_spidev to your target processor.

See in the next Listing 11-2 the "SPIDEV dual ADC user" application source code (LTC2422_spidev.c)
for the i.MX7D processor.

Note: The source code for the SAMA5D2 (LTC2422_spidev.c) and BCM2837 (LTC2422_spidev.c) can
be downloaded from the GitHub repository of this book.

Listing 11-2: LTC2422_spidev.c
#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <fcntl.h>

[513]

Chapter 11 Industrial I/O Subsystem for Device Drivers

[513]

#include <sys/ioctl.h>
#include <linux/types.h>
#include <linux/spi/spidev.h>

int8_t read_adc();

/* Demo Board Name */
char demo_name[] = "DC934";

/* Global Variable. The LTC2422 LSB value with 5V full-scale */
float LTC2422_lsb = 4.7683761E-6;

/* Global Constants. Set 1 second LTC2422 SPI timeout */
const uint16_t LTC2422_TIMEOUT= 1000;

#define SPI_CLOCK_RATE 2000000 /* SPI Clock in Hz */

#define SPI_DATA_CHANNEL_OFFSET 22
#define SPI_DATA_CHANNEL_MASK (1 << SPI_DATA_CHANNEL_OFFSET)

#define LTC2422_CONVERSION_TIME 137 /* ms */

/* MISO timeout in ms */
#define MISO_TIMEOUT 1000

/*
 * Returns the Data and Channel Number(0=channel 0, 1=Channel 1)
 * Returns the status of the SPI read. 0=successful, 1=unsuccessful.
 */
int8_t LTC2422_read(uint8_t *adc_channel, int32_t *code, uint16_t timeout);

/* Returns the Calculated Voltage from the ADC Code */
float LTC2422_voltage(uint32_t adc_code, float LTC2422_lsb);

int8_t LTC2422_read(uint8_t *adc_channel, int32_t *code, uint16_t timeout)
{
 int fd;
 int ret;
 int32_t value;
 uint8_t buffer[4];
 unsigned int val;

 struct spi_ioc_transfer tr = {
 .tx_buf = 0, /* no data to send */
 .rx_buf = (unsigned long) buffer, /* store received data */
 .delay_usecs = 0, /* no delay */
 .speed_hz = SPI_CLOCK_RATE, /* SPI clock speed (in Hz) */
 .bits_per_word = 8, /* transaction size */
 .len = 3 /* number bytes to transfer */

Industrial I/O Subsystem for Device Drivers Chapter 11

[514]

 };

 /* Open the device */
 fd = open("/dev/spidev2.1", O_RDWR);
 if (fd < 0)
 {
 close(fd);
 return (1);
 }

 /* Perform the transfer */
 ret = ioctl(fd, SPI_IOC_MESSAGE(1), &tr);
 if (ret < 1)
 {
 close(fd);
 return (1);
 }

 /* Close the device */
 close(fd);

 value = buffer[0] << 16;
 value |= buffer[1] << 8;
 value |= buffer[2];

 /* Determine the channel number */
 *adc_channel = (value & SPI_DATA_CHANNEL_MASK) ? 1 : 0;

printf("the value is %x\n", value);

 /* Return the code */
 *code = value;

 return(0);
}

/* Returns the Calculated Voltage from the ADC Code */
float LTC2422_voltage(uint32_t adc_code, float LTC2422_lsb)
{
 float adc_voltage;
 if (adc_code & 0x200000)
 {
 adc_code &= 0xFFFFF;

/* Clears Bits 20-23 */
 adc_voltage=((float)adc_code)*LTC2422_lsb;
 }
 else
 {

[515]

Chapter 11 Industrial I/O Subsystem for Device Drivers

[515]

 adc_code &= 0xFFFFF;

/* Clears Bits 20-23 */
 adc_voltage = -1*((float)adc_code)*LTC2422_lsb;
 }
 return(adc_voltage);
}

void delay(unsigned int ms)
{
 usleep(ms*1000);
}

int8_t read_adc()
{
 float adc_voltage;
 int32_t adc_code;
 uint8_t adc_channel;

 /* Array for ADC data
 * Useful because you don't know which channel until the LTC2422 tells you.
 */

 int32_t adc_code_array[2];
 int8_t return_code;

 /* Read ADC. Throw out the stale data */
 LTC2422_read(&adc_channel, &adc_code, LTC2422_TIMEOUT);
 delay(LTC2422_CONVERSION_TIME);

 /* Get current data for both channels */
 return_code = LTC2422_read(&adc_channel, &adc_code, LTC2422_TIMEOUT);

 /* Note that channels may return in any order */
 adc_code_array[adc_channel] = adc_code;
 delay(LTC2422_CONVERSION_TIME);

 /* that is, adc_channel will toggle each reading */
 return_code = LTC2422_read(&adc_channel, &adc_code, LTC2422_TIMEOUT);
 adc_code_array[adc_channel] = adc_code;

 /* The DC934A board connects VOUTA to CH1 */
 adc_voltage = LTC2422_voltage(adc_code_array[1], LTC2422_lsb);
 printf(" ADC A : %6.4f\n", adc_voltage);

 /* The DC934A board connects VOUTB to CH0 */
 adc_voltage = LTC2422_voltage(adc_code_array[0], LTC2422_lsb);
 printf(" ADC B : %6.4f\n", adc_voltage);
 return(return_code);

Industrial I/O Subsystem for Device Drivers Chapter 11

[516]

}

int main(void)
{
 read_adc();
 printf("Application termined\n");
 return 0;
}

ltc2607_imx_dual_device.ko with LTC2422_spidev
Demonstration

"Use i2c-utils suite to interact with the LTC2607 (before loading the module)"

"i2cdetect is a tool of the i2c-tools suite. It is able to probe an i2c bus from
user space and report the addresses in use"

root@imx7dsabresd:~# i2cdetect -l /* list available buses, LTC2607 is in bus 2 */

i2c-3 i2c 30a50000.i2c I2C adapter
i2c-1 i2c 30a30000.i2c I2C adapter
i2c-2 i2c 30a40000.i2c I2C adapter
i2c-0 i2c 30a20000.i2c I2C adapter

root@imx7dsabresd:~# i2cdetect -y 2 /* see detected devices, see the "72" and "73"
LTC2607 addressess */

 0 1 2 3 4 5 6 7 8 9 a b c d e f

00: -- -- -- -- -- -- -- -- -- -- -- -- --

10: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

20: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

30: -- -- -- -- -- -- -- -- -- UU -- -- -- -- -- --

40: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

50: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

60: 60 -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

70: -- -- 72 73 -- -- -- --

root@imx7dsabresd:~# insmod ltc2607_imx_dual_device.ko /* Load the module. You will
see that the probe() function is called twice. The reason is that the driver matchs
two devices with the same DT compatible property. Now you can manage both devices
from user space */

ltc2607 2-0072: DAC_probe()
ltc2607 2-0072: data_probe is entered on DAC00

[517]

Chapter 11 Industrial I/O Subsystem for Device Drivers

[517]

ltc2607 2-0072: the dac answer is: 3.
ltc2607 2-0072: ltc2607 DAC registered
ltc2607 2-0073: DAC_probe()
ltc2607 2-0073: data_probe is entered on DAC01
ltc2607 2-0073: the dac answer is: 3.
ltc2607 2-0073: ltc2607 DAC registered

root@imx7dsabresd:~# cd /sys/bus/iio/devices/
root@imx7dsabresd:/sys/bus/iio/devices# ls /* check the iio devices */
iio:device0 iio:device1 iio:device2 iio:device3 iio_sysfs_trigger

root@imx7dsabresd:/sys/bus/iio/devices/iio:device2# ls /* see the sysfs entries
under iio_device2 */
dev of_node out_voltage1_raw power uevent
name out_voltage0_raw out_voltage2_raw subsystem

root@imx7dsabresd:/sys/bus/iio/devices/iio:device3# ls /* see the sysfs entries
under iio_device3 */
dev of_node out_voltage1_raw power uevent
name out_voltage0_raw out_voltage2_raw subsystem

root@imx7dsabresd:/sys/bus/iio/devices/iio:device3# echo 65535 > out_voltage2_raw
/* set both DAC outputs to 5V */

root@imx7dsabresd:~# ./LTC2422_spidev /* get both ADC ouputs with your app */
the value is 6ffa77
the value is 2ffc59
the value is 6ffa34
 ADC A : 4.9929
 ADC B : 4.9955
Application termined

root@imx7dsabresd:/sys/bus/iio/devices/iio:device3# echo 0 > out_voltage0_raw /* set
VOUTA to 0V */

root@imx7dsabresd:~# ./LTC2422_spidev /* get both ADC ouputs with your app */
the value is 2ffc5a
the value is 6000c2
the value is 2ffc47
 ADC A : 0.0009
 ADC B : 4.9955
Application termined

root@imx7dsabresd:/sys/bus/iio/devices/iio:device3# echo 0 > out_voltage1_raw /* set
VOUTB to 0V */

root@imx7dsabresd:~# ./LTC2422_spidev /* get both ADC ouputs with your app */
the value is 600086
the value is 2000dd
the value is 600045
 ADC A : 0.0003

Industrial I/O Subsystem for Device Drivers Chapter 11

[518]

 ADC B : 0.0011
Application termined

root@imx7dsabresd:~# cd /sys/bus/iio/devices/iio:device2/ /* change to the iio_
device2 */
root@imx7dsabresd:/sys/bus/iio/devices/iio:device2# echo 65535 > out_voltage2_raw /*
set both outputs to 5V */

root@imx7dsabresd:~# ./LTC2422_spidev /* get both ADC ouputs with your app */
the value is 2000ba
the value is 6ffa1c
the value is 2ffc6b
 ADC A : 4.9928
 ADC B : 4.9956
Application termined

root@imx7dsabresd:~# rmmod ltc2607_imx_dual_device.ko /* remove the module */
ltc2607 2-0073: DAC_remove()
ltc2607 2-0072: DAC_remove()

LAB 11.3: "IIO subsystem ADC" Module
You have controlled the LTC2422 from user space using the spidev driver. Now you are going to
develop a LTC2422 driver using the IIO framework. You will use this driver to read the two ADC
channels values via SPI; then, you will transform these digital values to real analog voltages with
the user application LTC2422_app.

The main code sections of the driver will be described using three categories: Device Tree,
Industrial Framework as a SPI Interaction, and Industrial Framework as an IIO device.

Device Tree
Modify the device tree files under arch/arm/boot/dts/ folder to include your DT driver´s device
nodes. There must be a DT device node´s compatible property identical to the compatible string
stored in one of the driver´s of_device_id structures.

For the MCIMX7D-SABRE Board open the DT file imx7d-sdb.dts and add the ltc2422@1 sub-node
inside the ecspi3 controller master node. The reg property provides the CS number; there are two
chip selects inside the ecspi3 node, one for the tsc2046 node and the other one for the ltc2422 node.

&ecspi3 {
 fsl,spi-num-chipselects = <1>;
 pinctrl-names = "default";
 pinctrl-0 = <&pinctrl_ecspi3 &pinctrl_ecspi3_cs>;
 cs-gpios = <&gpio5 9 GPIO_ACTIVE_HIGH>, <&gpio6 22 0>;
 status = "okay";

[519]

Chapter 11 Industrial I/O Subsystem for Device Drivers

[519]

tsc2046@0 {
 compatible = "ti,tsc2046";
 reg = <0>;
 spi-max-frequency = <1000000>;
 pinctrl-names ="default";
 pinctrl-0 = <&pinctrl_tsc2046_pendown>;
 interrupt-parent = <&gpio2>;
 interrupts = <29 0>;
 pendown-gpio = <&gpio2 29 GPIO_ACTIVE_HIGH>;
 ti,x-min = /bits/ 16 <0>;
 ti,x-max = /bits/ 16 <0>;
 ti,y-min = /bits/ 16 <0>;
 ti,y-max = /bits/ 16 <0>;
 ti,pressure-max = /bits/ 16 <0>;
 ti,x-plate-ohms = /bits/ 16 <400>;
 wakeup-source;
 };

 ADC: ltc2422@1 {
 compatible = "arrow,ltc2422";
 spi-max-frequency = <2000000>;
 reg = <1>;
 };
};

For the SAMA5D2B-XULT Board open the DT file at91-sama5d2_xplained_common.dtsi and add the
ltc2422@0 sub-node inside the spi1 controller master node.

spi1: spi@fc000000 {
 pinctrl-names = "default";
 pinctrl-0 = <&pinctrl_spi1_default>;
 status = "okay";

 ADC: ltc2422@0 {
 compatible = "arrow,ltc2422";
 spi-max-frequency = <2000000>;
 reg = <0>;
 };
};

For the Raspberry Pi 3 Model B Board open the DT file bcm2710-rpi-3-b.dts and add the ltc2422@0
sub-node below the spi0 controller master node.

&spi0 {
 pinctrl-names = "default";
 pinctrl-0 = <&spi0_pins &spi0_cs_pins>;
 cs-gpios = <&gpio 8 1>, <&gpio 7 1>;

Industrial I/O Subsystem for Device Drivers Chapter 11

[520]

 ADC: ltc2422@0 {
 compatible = "arrow,ltc2422";
 spi-max-frequency = <2000000>;
 reg = <0>;
 };
};

Build the modified device tree and load it to your target processor.

Industrial Framework as a SPI Interaction
These are the main code sections:

1. Include the required header files:

#include <linux/spi/spi.h>

2. Create a struct spi_driver structure:

static struct spi_driver ltc2422_driver = {
 .driver = {
 .name = "ltc2422",
 .owner = THIS_MODULE,
 .of_match_table = ltc2422_dt_ids,
 },
 .probe = ltc2422_probe,
 .id_table = ltc2422_id,
};

3. Register to the SPI bus as a driver:

module_spi_driver(ltc2422_driver);

4. Add "ltc2422" to the list of devices supported by the driver:

static const struct of_device_id ltc2422_dt_ids[] = {
 { .compatible = "arrow,ltc2422", },
 { }
};
MODULE_DEVICE_TABLE(of, ltc2422_dt_ids);

5. Define an array of struct spi_device_id structures:

static const struct spi_device_id ltc2422_id[] = {
 { .name = "ltc2422", },
 { }
};
MODULE_DEVICE_TABLE(spi, ltc2422_id);

[521]

Chapter 11 Industrial I/O Subsystem for Device Drivers

[521]

Industrial Framework as an IIO Device
These are the main code sections:

1. Include the required header files:

#include <linux/iio/iio.h> /* devm_iio_device_alloc(), iio_priv() */

2. Create a private data structure to manage the device.

struct ltc2422_state {
 struct spi_device *spi;
 u8 buffer[4];
};

3. In the ltc2422_probe() function, declare an instance of the private structure and allocate the
iio_dev structure.

struct iio_dev *indio_dev;
struct ltc2422_state *st;
indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*st));

4. Initialize the iio_device and the data private structure within the ltc2422_probe() function.
The data private structure will be previously allocated using the iio_priv() function. Keep
pointers between physical devices (devices as handled by the physical bus, SPI in this
case) and logical devices:

st = iio_priv(indio_dev); /* To be able to access the private data structure in
other parts of the driver you need to attach it to the iio_dev structure using
the iio_priv() function.You will retrieve the pointer "data" to the private
structure using the same function iio_priv() */

st->spi = spi; /* Keep pointer to the SPI device, needed for exchanging data
with the LTC2422 device */

indio_dev->name = id->name; /* Store the iio_dev name. Before doing this within
your probe() function, you will get the spi_device_id that triggered the match
using spi_get_device_id() */

indio_dev->dev.parent = &spi->dev; /* keep pointers between physical devices
(devices as handled by the physical bus, SPI in this case) and logical devices
*/

indio_dev->info = <c2422_info; /* store the address of the iio_info structure
which contains a pointer variable to the IIO raw reading callback */

indio_dev->channels = ltc2422_channel; /* store address of the iio_chan_spec
structure which stores each channel info for the LTC2422 dual ADC */

indio_dev->num_channels = 1; /* set number of channels of the device */

indio_dev->modes = INDIO_DIRECT_MODE;

Industrial I/O Subsystem for Device Drivers Chapter 11

[522]

5. Register the device to the IIO core. Now, the device is global to the rest of the driver
functions until it is unregistered. After this call, the device is ready to accept requests from
user space applications.

devm_iio_device_register(&spi->dev, indio_dev);

6. An IIO device channel is a representation of a data channel. An IIO device can have one or
multiple channels. Add the code below for the LTC2422 IIO channel definition:

static const struct iio_chan_spec ltc2422_channel[] = {

{
 .type = IIO_VOLTAGE,
 .indexed = 1,
 .output = 1,
 .channel = 0,
 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW),

}

};

The IIO channel definition above will generate the following data channel access attribute
for the iio:device:

/sys/bus/iio/devices/iio:device2/out_voltage0_raw

The attribute's name is automatically generated by the IIO core with the following pattern:
{direction}_{type}_{index}_{modifier}_{info_mask}:

out_voltage0_raw is the sysfs entry where you are going to read each ADC channel:

cat /sys/bus/iio/devices/iio:device2/out_voltage_0_raw /* discard first val */
cat /sys/bus/iio/devices/iio:device2/out_voltage_0_raw /* read first chan */
cat /sys/bus/iio/devices/iio:device2/out_voltage_0_raw /* read second chan */

7. Write the struct iio_info structure. The read/write user space operations to sysfs data
channel access attributes are mapped to kernel callbacks.

static const struct iio_info ltc2422_info = {
 .read_raw = <c2422_read_raw,
 .driver_module = THIS_MODULE,
};

You will write a single IIO read_raw reading callback function named ltc2422_read_raw() to
map in the kernel the user reads to the sysfs data channel attribute out_voltage_0_raw. This
kernel function will receive the next parameters when a sysfs attribute is read from user
space:

[523]

Chapter 11 Industrial I/O Subsystem for Device Drivers

[523]

•	 struct iio_dev *indio_dev: pointer to the struct iio_dev structure related with the
accessed device.

•	 struct iio_chan_spec const *chan: the accessed channel of the IIO device.
•	 long mask: the info_mask included in the accessed sysfs attribute name.

When the ltc2422_read_raw() function receives the info_mask value
[IIO_CHAN_INFO_RAW] = "raw", it reads the ADC channel value using the spi_read()
function. Before reading the ADC value, the private info is recovered using the iio_priv()
function, then the struct spi_device structure is retrieved from the private structure and
sent as a first parameter to the spi_read() function, which is used to communicate with the
Analog Devices ADC to get each channel value. The ADC value is stored in the val variable
and returned with IIO_VAL_INT.

See below the code of the ltc2422_read_raw() function:

static int ltc2422_read_raw(struct iio_dev *indio_dev,
 struct iio_chan_spec const *chan,

int *val, int *val2, long m)
{
 int ret;
 struct ltc2422_state *st = iio_priv(indio_dev);

 switch (m) {
 case IIO_CHAN_INFO_RAW:

 ret = spi_read(st->spi, &st->buffer, 3);
 if (ret < 0)
 return ret;

 *val = st->buffer[0] << 16;
 *val |= st->buffer[1] << 8;
 *val |= st->buffer[2];

 return IIO_VAL_INT;

 default:
 return -EINVAL;
 }
}

See in the next Listing 11-3 the "IIO subsystem ADC" driver source code (ltc2422_imx_dual.c) for the
i.MX7D processor.

Note: The source code for the SAMA5D2 (ltc2422_sam_dual.c) and BCM2837 (ltc2422_rpi_dual.c)
drivers can be downloaded from the GitHub repository of this book.

Industrial I/O Subsystem for Device Drivers Chapter 11

[524]

Listing 11-3: ltc2422_imx_dual.c
#include <linux/module.h>
#include <linux/spi/spi.h>
#include <linux/iio/iio.h>

struct ltc2422_state {
 struct spi_device *spi;
 u8 buffer[4];
};

static const struct iio_chan_spec ltc2422_channel[] = {

{
 .type = IIO_VOLTAGE,
 .indexed = 1,
 .output = 1,
 .channel = 0,
 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW),

}

};

static int ltc2422_read_raw(struct iio_dev *indio_dev,
 struct iio_chan_spec const *chan, int *val, int *val2, long m)
{
 int ret;
 struct ltc2422_state *st = iio_priv(indio_dev);

 switch (m) {
 case IIO_CHAN_INFO_RAW:

 ret = spi_read(st->spi, &st->buffer, 3);
 if (ret < 0)
 return ret;

 *val = st->buffer[0] << 16;
 *val |= st->buffer[1] << 8;
 *val |= st->buffer[2];

 dev_info(&st->spi->dev, "the value is %x\n", *val);

 return IIO_VAL_INT;

 default:
 return -EINVAL;
 }

[525]

Chapter 11 Industrial I/O Subsystem for Device Drivers

[525]

}

static const struct iio_info ltc2422_info = {
 .read_raw = <c2422_read_raw,
 .driver_module = THIS_MODULE,
};

static int ltc2422_probe(struct spi_device *spi)
{
 struct iio_dev *indio_dev;
 struct ltc2422_state *st;
 int err;
 dev_info(&spi->dev, "my_probe() function is called.\n");

 const struct spi_device_id *id = spi_get_device_id(spi);

 indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*st));
 if (indio_dev == NULL)
 return -ENOMEM;

 st = iio_priv(indio_dev);

 st->spi = spi;

 indio_dev->dev.parent = &spi->dev;
 indio_dev->channels = ltc2422_channel;
 indio_dev->info = <c2422_info;
 indio_dev->name = id->name;
 indio_dev->num_channels = 1;
 indio_dev->modes = INDIO_DIRECT_MODE;

 err = devm_iio_device_register(&spi->dev, indio_dev);
 if (err < 0)
 return err;

 return 0;
}

static const struct of_device_id ltc2422_dt_ids[] = {
 { .compatible = "arrow,ltc2422", },
 { }
};
MODULE_DEVICE_TABLE(of, ltc2422_dt_ids);

static const struct spi_device_id ltc2422_id[] = {
 { .name = "ltc2422", },
 { }
};
MODULE_DEVICE_TABLE(spi, ltc2422_id);

Industrial I/O Subsystem for Device Drivers Chapter 11

[526]

static struct spi_driver ltc2422_driver = {
 .driver = {
 .name = "ltc2422",
 .owner = THIS_MODULE,
 .of_match_table = ltc2422_dt_ids,
 },
 .probe = ltc2422_probe,
 .id_table = ltc2422_id,
};

module_spi_driver(ltc2422_driver);

MODULE_AUTHOR("Alberto Liberal <aliberal@arroweurope.com>");
MODULE_DESCRIPTION("LTC2422 DUAL ADC");
MODULE_LICENSE("GPL");

LTC2422_app User Space Application
The LTC2422 ADC 24-bit output word is read using the ltc2422_dual driver, but you will select the
reading channel, transform the digital values to analog voltages and display them to the console
using the application ltc2422_app.

Create the ltc2422_app application in my_apps project. Modify the application Makefile to build and
deploy ltc2422_app.

Listing 11-4: ltc2422_app.c
#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <fcntl.h>
#include <sys/ioctl.h>
#include <linux/types.h>

int8_t read_adc();

/* The LTC2422 least significant bit value with 5V full-scale */
float LTC2422_lsb = 4.7683761E-6;

/* The LTC2422 least significant bit value with 3.3V full-scale */
/* float LTC2422_lsb = 3.1471252E-6; */
/* check which number is the ADC iio:deviceX and replace x by the number */

[527]

Chapter 11 Industrial I/O Subsystem for Device Drivers

[527]

#define LTC2422_FILE_VOLTAGE "/sys/bus/iio/devices/iio:device4/out_voltage0_raw"
#define SPI_DATA_CHANNEL_OFFSET 22
#define SPI_DATA_CHANNEL_MASK (1 << SPI_DATA_CHANNEL_OFFSET)
#define LTC2422_CONVERSION_TIME 137 /* ms */

/*
 * Returns the Data and Channel Number(0- channel 0, 1-Channel 1)
 * Returns the status of the SPI read. 0=successful, 1=unsuccessful.
 */
int8_t LTC2422_read(uint8_t *adc_channel, int32_t *code);

/* Returns the Calculated Voltage from the ADC Code */
float LTC2422_voltage(uint32_t adc_code, float LTC2422_lsb);

int8_t LTC2422_read(uint8_t *adc_channel, int32_t *code)
{
 int a2dReading = 0;
 FILE *f = fopen(LTC2422_FILE_VOLTAGE, "r");
 int read = fscanf(f, "%d", &a2dReading);
 if (read <= 0) {
 printf("ERROR: Unable to read values from voltage input file.\n");
 exit(-1);
 }

 /* Determine the channel number */
 *adc_channel = (a2dReading & SPI_DATA_CHANNEL_MASK) ? 1 : 0;
 *code = a2dReading;
 fclose(f);

 return(0);
}

/* Returns the Calculated Voltage from the ADC Code */
float LTC2422_voltage(uint32_t adc_code, float LTC2422_lsb)
{
 float adc_voltage;
 if (adc_code & 0x200000)
 {
 adc_code &= 0xFFFFF; /* Clears Bits 20-23 */
 adc_voltage=((float)adc_code)*LTC2422_lsb;
 }
 else
 {
 adc_code &= 0xFFFFF; /* Clears Bits 20-23 */
 adc_voltage = -1*((float)adc_code)*LTC2422_lsb;
 }
 return(adc_voltage);
}

Industrial I/O Subsystem for Device Drivers Chapter 11

[528]

void delay(unsigned int ms)
{
 usleep(ms*1000);
}

int8_t read_adc()
{
 float adc_voltage;
 int32_t adc_code;
 uint8_t adc_channel;
 int32_t adc_code_array;
 int8_t return_code;
 int a2dReading = 0;

 LTC2422_read(&adc_channel, &adc_code);
 delay(LTC2422_CONVERSION_TIME);

 LTC2422_read(&adc_channel, &adc_code);
 adc_voltage = LTC2422_voltage(adc_code, LTC2422_lsb);
 printf("the value of ADC channel %d\n", adc_channel);
 printf(" is : %6.4f\n", adc_voltage);
 delay(LTC2422_CONVERSION_TIME);

 LTC2422_read(&adc_channel, &adc_code);
 adc_voltage = LTC2422_voltage(adc_code, LTC2422_lsb);
 printf("the value of ADC channel %d\n", adc_channel);
 printf(" is : %6.4f\n", adc_voltage);

 return(0);
}

int main(void)
{
 read_adc();
 printf("Application termined\n");
 return 0;
}

[529]

Chapter 11 Industrial I/O Subsystem for Device Drivers

[529]

ltc2422_imx_dual.ko with ltc2422_app Demonstration
root@imx7dsabresd:~# insmod ltc2607_imx_dual_device.ko /* load the ltc2607 module */
root@imx7dsabresd:~# insmod ltc2422_imx_dual.ko /* load the ltc2422 module */
root@imx7dsabresd:/sys/bus/iio/devices# ls /* check the iio_devices */
iio:device0 iio:device2 iio:device4
iio:device1 iio:device3 iio_sysfs_trigger

root@imx7dsabresd:/sys/bus/iio/devices# cd iio:device4
root@imx7dsabresd:/sys/bus/iio/devices/iio:device4# ls /* see the sysfs entries
under the iio:device4, this is your ADC device */
dev name of_node out_voltage0_raw power subsystem uevent

root@imx7dsabresd:/sys/bus/iio/devices/iio:device3# echo 65535 > out_voltage2_raw
/* set both DAC outputs to 5V */
root@imx7dsabresd:/sys/bus/iio/devices/iio:device4# cat out_voltage0_raw /* read ADC
device and discard first value */
root@imx7dsabresd:/sys/bus/iio/devices/iio:device4# cat out_voltage0_raw /* read
first ADC channel */
root@imx7dsabresd:/sys/bus/iio/devices/iio:device4# cat out_voltage0_raw /* read
second ADC channel */
root@imx7dsabresd:~# ./LTC2422_app /* Load your ADC app that calls the LTC2422_
dual.ko driver and shows analog values. The first readed value is discarded */

ltc2422 spi2.1: the value is 2ffc9a
ltc2422 spi2.1: the value is 6ff9e8
the value of ADC channel 1
 is : 4.9926
ltc2422 spi2.1: the value is 2ffc22
the value of ADC channel 0
 is : 4.9953
Application termined

root@imx7dsabresd:~# rmmod ltc2607_imx_dual_device.ko /* remove the DAC module */
root@imx7dsabresd:~# rmmod ltc2422_imx_dual.ko /* remove the ADC module */

LAB 11.4: "IIO subsystem ADC with hardware
triggering" Module
In this last lab of the chapter, you are going to reuse part of the ltc2422_dual driver, but this
time the ADC conversion will be started using a hardware trigger. As in lab 7.1, you will use
a button that generates an interrupt triggering the ADC conversion. A wait queue will be
used to synchronize the kernel code running in process and interrupt contexts. When the user
application reads the out_voltage_0_raw sysfs entry, the process is put to sleep inside the kernel

Industrial I/O Subsystem for Device Drivers Chapter 11

[530]

callback ltc2422_read_raw() function. Every time you press the button, the generated interrupt will
wake up the process and the driver´s read callback function will send to user space the ADC value.

The following figure details the main parts of the new driver:

You will keep the same HW button configuration as in previous lab 7.1 for all the processor
variants. You will also keep the same HW SPI ADC configuration as in previous lab 11.3 for all the
processor variants.

This time the main code segments included in the driver will not be described in detail. A large
portion of the previous lab 11.3 driver will be reused, hence only the new parts will be highlighted.

LAB 11.4 DT for the i.MX7D, SAMA5D2 and BCM2837 Processors
In this lab 11.4, you will keep the same DT configuration as in the previous lab 11.3, but adding
an int-gpios property for the GPIO pin that is going to be connected to the button and a pinctrl-0

[531]

Chapter 11 Industrial I/O Subsystem for Device Drivers

[531]

property that points to a pin configuration node, where a processor´s pad is multiplexed as a
GPIO; this GPIO matchs with the GPIO pin requested in the int-gpios property.

For the MCIMX7D-SABRE Board open the DT file imx7d-sdb.dts and add the ltc2422@1 sub-node
inside the ecspi3 controller master node. The reg property provides the CS number; there are
two chip selects inside the ecspi3 node, one for the tsc2046 node and another one for the ltc2422
node. The int-gpios property will make the GPIO available to the driver so that you can set the pin
direction to input and get the Linux IRQ number associated to this pin.

&ecspi3 {
 fsl,spi-num-chipselects = <1>;
 pinctrl-names = "default";
 pinctrl-0 = <&pinctrl_ecspi3 &pinctrl_ecspi3_cs>;
 cs-gpios = <&gpio5 9 GPIO_ACTIVE_HIGH>, <&gpio6 22 0>;
 status = "okay";

tsc2046@0 {
 compatible = "ti,tsc2046";
 reg = <0>;
 spi-max-frequency = <1000000>;
 pinctrl-names ="default";
 pinctrl-0 = <&pinctrl_tsc2046_pendown>;
 interrupt-parent = <&gpio2>;
 interrupts = <29 0>;
 pendown-gpio = <&gpio2 29 GPIO_ACTIVE_HIGH>;
 ti,x-min = /bits/ 16 <0>;
 ti,x-max = /bits/ 16 <0>;
 ti,y-min = /bits/ 16 <0>;
 ti,y-max = /bits/ 16 <0>;
 ti,pressure-max = /bits/ 16 <0>;
 ti,x-plate-ohms = /bits/ 16 <400>;
 wakeup-source;
 };

 ADC: ltc2422@1 {
 compatible = "arrow,ltc2422";
 spi-max-frequency = <2000000>;
 reg = <1>;
 pinctrl-names ="default";
 pinctrl-0 = <&pinctrl_key_gpio>;
 int-gpios = <&gpio5 10 GPIO_ACTIVE_LOW>;
 };
};

Add the pinctrl_key_gpio configuration node inside the iomuxc node:

&iomuxc {
pinctrl-names = "default";

Industrial I/O Subsystem for Device Drivers Chapter 11

[532]

 pinctrl-0 = <&pinctrl_hog_1>;

 imx7d-sdb {

 pinctrl_hog_1: hoggrp-1 {
 fsl,pins = <
 MX7D_PAD_EPDC_BDR0__GPIO2_IO28 0x59
 >;
 };

 [...]

 pinctrl_key_gpio: key_gpiogrp {
 fsl,pins = <
 MX7D_PAD_SD2_WP__GPIO5_IO10 0x32
 >;
 };

 [...]
};

};

For the SAMA5D2B-XULT Board open the DT file at91-sama5d2_xplained_common.dtsi and add the
ltc2422@0 sub-node inside the spi1 controller master node.

spi1: spi@fc000000 {
 pinctrl-names = "default";
 pinctrl-0 = <&pinctrl_spi1_default>;
 status = "okay";

 ADC: ltc2422@0 {
 compatible = "arrow,ltc2422";
 spi-max-frequency = <2000000>;
 reg = <0>;
 pinctrl-0 = <&pinctrl_key_gpio_default>;
 int-gpios = <&pioA 41 GPIO_ACTIVE_LOW>;
 };
};

Add the pinctrl_key_gpio_default configuration node inside the pinctrl node:

pinctrl@fc038000 {

 pinctrl_adc_default: adc_default {
 pinmux = <PIN_PD23__GPIO>;
 bias-disable;
 };

 [...]

[533]

Chapter 11 Industrial I/O Subsystem for Device Drivers

[533]

 pinctrl_key_gpio_default: key_gpio_default {
 pinmux = <PIN_PB9__GPIO>;
 bias-pull-up;
 };

 [...]

};

For the Raspberry Pi 3 Model B Board open the DT file bcm2710-rpi-3-b.dts and add the ltc2422@0
sub-node inside the spi0 controller master node.

&spi0 {
 pinctrl-names = "default";
 pinctrl-0 = <&spi0_pins &spi0_cs_pins>;
 cs-gpios = <&gpio 8 1>, <&gpio 7 1>;

 ADC: ltc2422@0 {
 compatible = "arrow,ltc2422";
 spi-max-frequency = <2000000>;
 reg = <0>;
 pinctrl-0 = <&key_pin>;
 int-gpios = <&gpio 23 0>;
 };
};

Add the key_pin configuration node inside the gpio node:

&gpio {
 sdhost_pins: sdhost_pins {
 brcm,pins = <48 49 50 51 52 53>;
 brcm,function = <4>; /* alt0 */
 };

 [...]

 key_pin: key_pin {
 brcm,pins = <23>;
 brcm,function = <0>; /* Input */
 brcm,pull = <1>; /* Pull down */
 };
};

Build the modified device tree and load it to your target processor.

Industrial I/O Subsystem for Device Drivers Chapter 11

[534]

Sleep and Wake up in the Driver
These are the main steps to put a process to sleep and wake it up in the driver:

1. You will put the process to sleep by means of a wait queue structure. A wait queue is a list
of processes, all waiting for a specific event. In Linux, a wait queue is managed by means
of a structure of type wait_queue_head_t, which is defined in linux/linux/wait.h. In your
driver, the wait_queue_head_t structure will be declared inside the private structure:

struct ADC_data {
 struct gpio_desc *gpio;
 int irq;
 wait_queue_head_t wq_data_available;
 struct spi_device *spi;
 u8 buffer[4];
 bool conversion_done;
 struct mutex lock;
};

then initialized dynamically within the probe() function:

init_waitqueue_head(&st->wq_data_available);

2. Put the user process to sleep. When a process sleeps, it does so in expectation that some
condition will become "true" in the future. Any process that sleeps must check to be sure
that the condition it was waiting for is really true when it wakes up again. The simplest
way of sleeping in the Linux kernel is a macro called wait_event (with a few variants);
it combines handling the details of sleeping with a check on the condition a process is
waiting for. You will use in the driver the wait_event_interruptible() variant, which is called
inside the ltc2422_read_raw() callback function. The wait_event_interruptible() function will
not wake up the process until the starting of the ADC conversion is signaled by the ISR
(condition is set to "true"):

static int ltc2422_read_raw(struct iio_dev *indio_dev,
 struct iio_chan_spec const *chan, int *val, int *val2, long m)
{
 struct ADC_data *st = iio_priv(indio_dev);

 switch (m) {
 case IIO_CHAN_INFO_RAW:

 wait_event_interruptible(st->wq_data_available,
 st->conversion_done);

spi_read(st->spi, &st->buffer, 3);

 *val = st->buffer[0] << 16;

[535]

Chapter 11 Industrial I/O Subsystem for Device Drivers

[535]

 *val |= st->buffer[1] << 8;
 *val |= st->buffer[2];

 st->conversion_done = false;

 return IIO_VAL_INT;

 default:
 break;
 }
 return -EINVAL;
}

3. You will wake up the process inside the interrupt handler:

static irqreturn_t ltc2422_adc_interrupt(int irq, void *data)
{
 struct ADC_data *st = data;

 /* set true condition, ADC conversion is starting pressing button */
 st->conversion_done = true;
 wake_up_interruptible(&st->wq_data_available);
 return IRQ_HANDLED;
}

Interrupt Management
In the probe() function, you will get the GPIO descriptor from the int-gpios property of the DT
ADC node ltc2422 using the devm_gpiod_get_index() function, then you will obtain the Linux IRQ
number corresponding to the given GPIO using the function gpiod_to_irq(), which takes the GPIO
descriptor as a parameter.

In the probe() function, you will also call devm_request_irq() to allocate the interrupt line. When
calling this function you must specify as parameters a pointer to the struct device, the Linux IRQ
number, a handler that will be called when the interrupt is generated (ltc2422_adc_interrupt), a flag
that will instruct the kernel about the desired interrupt behaviour (IRQF_TRIGGER_FALLING),
the name of the device using this interrupt (id->name), and a pointer variable st that points to your
private structure.

struct ADC_data *st;
st->gpio = devm_gpiod_get_index(&spi->dev, LTC2422_GPIO_NAME, 0, GPIOD_IN);
st->irq = gpiod_to_irq(st->gpio);
devm_request_irq(&spi->dev, st->irq, ltc2422_adc_interrupt,
 IRQF_TRIGGER_FALLING, id->name, st);

Industrial I/O Subsystem for Device Drivers Chapter 11

[536]

See in the next Listing 11-5 the "IIO subsystem ADC with hardware triggering" driver source code
(ltc2422_imx_trigger.c) for the i.MX7D processor.

Note: The source code for the SAMA5D2 (ltc2422_sam_trigger.c) and BCM2837 (ltc2422_rpi_
trigger.c) drivers can be downloaded from the GitHub repository of this book.

Listing 11-5: ltc2422_imx_trigger.c
#include <linux/module.h>
#include <linux/spi/spi.h>
#include <linux/interrupt.h>
#include <linux/of_gpio.h>
#include <linux/iio/iio.h>
#include <linux/wait.h>

#define LTC2422_GPIO_NAME "int"

struct ADC_data {
 struct gpio_desc *gpio;
 int irq;
 wait_queue_head_t wq_data_available;
 struct spi_device *spi;
 u8 buffer[4];
 bool conversion_done;
 struct mutex lock;
};

static irqreturn_t ltc2422_adc_interrupt(int irq, void *data)
{
 struct ADC_data *st = data;
 st->conversion_done = true;
 wake_up_interruptible(&st->wq_data_available);
 return IRQ_HANDLED;
}

static const struct iio_chan_spec ltc2422_channel[] = {
{

 .type = IIO_VOLTAGE,
 .indexed = 1,
 .output = 1,
 .channel = 0,
 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW),

}

};

[537]

Chapter 11 Industrial I/O Subsystem for Device Drivers

[537]

static int ltc2422_read_raw(struct iio_dev *indio_dev,
 struct iio_chan_spec const *chan,
 int *val, int *val2, long m)
{
 int ret;
 struct ADC_data *st = iio_priv(indio_dev);

 dev_info(&st->spi->dev, "Press PB_USER key to start conversion\n");

 switch (m) {
 case IIO_CHAN_INFO_RAW:
 mutex_lock(&st->lock);

 ret = wait_event_interruptible(st->wq_data_available,
 st->conversion_done);
 if (ret) {
 dev_err(&st->spi->dev, "Failed to request interrupt\n");
 return ret;
 }
 spi_read(st->spi, &st->buffer, 3);

 *val = st->buffer[0] << 16;
 *val |= st->buffer[1] << 8;
 *val |= st->buffer[2];

 st->conversion_done = false;

 mutex_unlock(&st->lock);

 return IIO_VAL_INT;

 default:
 break;
 }
 return -EINVAL;
}

static const struct iio_info ltc2422_info = {
 .read_raw = <c2422_read_raw,
 .driver_module = THIS_MODULE,
};

static int ltc2422_probe(struct spi_device *spi)
{
 struct iio_dev *indio_dev;
 struct ADC_data *st;
 int ret;
 dev_info(&spi->dev, "my_probe() function is called.\n");

Industrial I/O Subsystem for Device Drivers Chapter 11

[538]

 /* get the id from the driver structure to use the name */
 const struct spi_device_id *id = spi_get_device_id(spi);

 indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*st));
 if (indio_dev == NULL)
 return -ENOMEM;

 st = iio_priv(indio_dev);
 st->spi = spi;
 spi_set_drvdata(spi, indio_dev);

 /*
 * you can also use
 * devm_gpiod_get(&spi->dev, LTC2422_GPIO_NAME, GPIOD_IN);
 */
 st->gpio = devm_gpiod_get_index(&spi->dev, LTC2422_GPIO_NAME, 0, GPIOD_IN);
 if (IS_ERR(st->gpio)) {
 dev_err(&spi->dev, "gpio get index failed\n");
 return PTR_ERR(st->gpio);
 }

 st->irq = gpiod_to_irq(st->gpio);
 if (st->irq < 0)
 return st->irq;
 dev_info(&spi->dev, "The IRQ number is: %d\n", st->irq);

 indio_dev->dev.parent = &spi->dev;
 indio_dev->channels = ltc2422_channel;
 indio_dev->info = <c2422_info;
 indio_dev->name = id->name;
 indio_dev->num_channels = 1;
 indio_dev->modes = INDIO_DIRECT_MODE;

 init_waitqueue_head(&st->wq_data_available);
 mutex_init(&st->lock);

 ret = devm_request_irq(&spi->dev, st->irq, ltc2422_adc_interrupt,
 IRQF_TRIGGER_FALLING, id->name, st);
 if (ret) {
 dev_err(&spi->dev, "failed to request interrupt %d (%d)", st->irq, ret);
 return ret;
 }

 ret = devm_iio_device_register(&spi->dev, indio_dev);
 if (ret < 0)
 return ret;

[539]

Chapter 11 Industrial I/O Subsystem for Device Drivers

[539]

 st->conversion_done = false;

 return 0;
}

static int ltc2422_remove(struct spi_device *spi)
{
 dev_info(&spi->dev, "my_remove() function is called.\n");
 return 0;
}

static const struct of_device_id ltc2422_dt_ids[] = {
 { .compatible = "arrow,ltc2422", },
 { }
};
MODULE_DEVICE_TABLE(of, ltc2422_dt_ids);

static const struct spi_device_id ltc2422_id[] = {
 { .name = "ltc2422", },
 { }
};
MODULE_DEVICE_TABLE(spi, ltc2422_id);

static struct spi_driver ltc2422_driver = {
 .driver = {
 .name = "ltc2422",
 .owner = THIS_MODULE,
 .of_match_table = ltc2422_dt_ids,
 },
 .probe = ltc2422_probe,
 .remove = ltc2422_remove,
 .id_table = ltc2422_id,
};

module_spi_driver(ltc2422_driver);

MODULE_AUTHOR("Alberto Liberal <aliberal@arroweurope.com>");
MODULE_DESCRIPTION("LTC2422 DUAL ADC with triggering");
MODULE_LICENSE("GPL");

Industrial I/O Subsystem for Device Drivers Chapter 11

[540]

ltc2422_imx_trigger.ko with LTC2422_app
Demonstration

root@imx7dsabresd:~# insmod ltc2607_imx_dual_device.ko /* load the ltc2607 module */
root@imx7dsabresd:~# insmod ltc2422_imx_trigger.ko /* load the ltc2422 module */
root@imx7dsabresd:/sys/bus/iio/devices/iio:device3# echo 65535 > out_voltage2_raw
/* set both DAC outputs to 5V */
root@imx7dsabresd:~# ./LTC2422_app /* Launch LTC2422_app that calls your ltcC2422_
imx_trigger.ko driver and shows the readed analog values. Press the FUNC2 button
three times to read the ADC spi digital output discarding the first readed value,
then the DAC output analog values are displayed before exiting the application */

ltc2422 spi2.1: Press FUNC2 key to start conversion
ltc2422 spi2.1: Press FUNC2 key to start conversion
the value of ADC channel 0
 is : 4.9954
ltc2422 spi2.1: Press FUNC2 key to start conversion
the value of ADC channel 1
 is : 4.9931
Application termined

root@imx7dsabresd:~# rmmod ltc2607_imx_dual_device.ko
root@imx7dsabresd:~# rmmod ltc2422_imx_trigger.ko

[541]

12
Using the Regmap API in Linux

Device Drivers

As you have seen throughout different chapters of this book, Linux has subsystems such as I2C
and SPI, which are used to connect to devices that reside on these buses. Both these buses have
the common function of reading and writing registers from the devices connected to them. This
often causes redundant code to be present in the subsystems that have this register read and write
functionality.

To avoid this and to factor out common code, as well as for easy driver maintenance and
development, Linux developers introduced a new kernel API from version 3.1, which is called
regmap. This infrastructure was previously present in the Linux AsoC (ALSA) subsystem, but has
now been made available to entire Linux through the regmap API.

So far, you have developed several I2C and SPI device drivers using the specific core APIs
implemented for each of these buses. Now, you will use the regmap API to do so. The regmap
subsystem takes care of calling the relevant calls of the SPI or I2C subsystem.

A device that can be accesed using the SPI or the I2C buses, as the ADXL345 accelerometer, is
a good candidate to use the regmap API to read and write to their respective buses. For this
ADXL345 device you can develop two simple drivers using the regmap API, one for the I2C
bus support (adxl345-i2c.c) and another for the SPI bus support (adxl345-spi.c), writing specific
code for each bus. This specific code includes the configuration for the register map by a struct
regmap_config structure and the initialization of the register map using the next functions:

The following function initialises the regmap data structures based on the SPI configuration:

struct regmap * devm_regmap_init_spi(struct spi_device *spi,
 const struct regmap_config);

The following function initialises regmap data structures based on the I2C configuration:

struct regmap * devm_regmap_init_i2c(struct i2c_client *i2c,
 const struct regmap_config);

Using the Regmap API in Linux Device Drivers Chapter 12

[542]

In the two previous regmap initialisation routines, the regmap_config configuration is taken; then
the regmap structure is allocated and the configuration is copied to it. The read/write functions of
the respective buses are also copied in the regmap structure. For example, in the case of the SPI bus,
the regmap read and write function pointers will point to the SPI read and write functions.

See below the main lines of code of the proposed adxl345-i2c.c driver for the I2C register map
configuration and initialization:

static const struct regmap_config adxl345_i2c_regmap_config = {
 .reg_bits = 8,
 .val_bits = 8,
};

static int adxl345_i2c_probe(struct i2c_client *client,
 const struct i2c_device_id *id)
{
 struct regmap *regmap;

 regmap = devm_regmap_init_i2c(client, &adxl345_i2c_regmap_config);

 return adxl345_core_probe(&client->dev, regmap, id ? id->name : NULL);
}

See below the main lines of code of the proposed adxl345-spi.c driver for the SPI register map
configuration and initialization:

static const struct regmap_config adxl345_spi_regmap_config = {
 .reg_bits = 8,
 .val_bits = 8,
 /* Setting bits 7 and 6 enables multiple-byte read */
 .read_flag_mask = BIT(7) | BIT(6),
};

static int adxl345_spi_probe(struct spi_device *spi)
{
 const struct spi_device_id *id = spi_get_device_id(spi);
 struct regmap *regmap;

 regmap = devm_regmap_init_spi(spi, &adxl345_spi_regmap_config);

 return adxl345_core_probe(&spi->dev, regmap, id->name);
}

After you have implemented the regmap configuration and initialization using two specific SPI/
I2C drivers you will develop a common core driver (adxl345-accel-core.c) that can talk to the device
using the following functions:

int regmap_write(struct regmap *map, unsigned int reg, unsigned int val);

[543]

Chapter 12 Using the Regmap API in Linux Device Drivers

[543]

int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val);
int regmap_update_bits(struct regmap *map, unsigned int reg,

 unsigned int mask, unsigned int val);

Implementing Regmap
The regmap infrastructure provides two important data structures defined in include/linux/regmap.h
to implement Linux regmap; these are regmap_config and regmap structures.

The regmap_config structure is a per device configuration structure used by the regmap subsystem
to talk to the device. It is defined by driver code, and contains all the information related to the
registers of the device. Descriptions of its important fields are listed below:

•	 reg_bits: This is the number of bits in the registers of the device, e.g., in case of 1 byte
registers it will be set to the value 8.

•	 val_bits: This is the number of bits in the value that will be set in the device register.

•	 writeable_reg: This is an optional callback function written in driver code, which is called
whenever a register is to be written. Whenever the driver calls the regmap subsystem to
write to a register, this driver function is called; it will return "false" if this register is not
writeable and the write operation will return an error to the driver.

•	 wr_table: If the driver does not provide the writeable_reg callback, then wr_table is checked
by regmap before doing the write operation. If the register address lies in the range
provided by the wr_table, then the write operation is performed. This is also optional, and
the driver can omit its definition and can set it to NULL.

•	 readable_reg: This is an optional callback function written in driver code, which is called
whenever a register is to be read. Whenever the driver calls the regmap subsystem to
read a register, this driver function is called to ensure the register is readable. The driver
function will return "false" if this register is not readable and the read operation will return
an error to the driver.

•	 rd_table: If a driver does not provide a readable_reg callback, then the rd_table is checked
by regmap before doing the read operation. If the register address lies in the range
provided by rd_table, then the read operation is performed. This is also optional, and the
driver can omit its definition and can set it to NULL.

•	 reg_read: Optional callback that if filled will be used to perform all the reads from
the registers. Should only be provided for devices whose read operation cannot be
represented as a simple read operation on a bus such as SPI, I2C, etc. Most of the devices
do not need this.

Using the Regmap API in Linux Device Drivers Chapter 12

[544]

•	 reg_write: Same as above for writing.

•	 volatile_reg: This is a callback function called whenever a register is written or read
through the cache. Whenever a driver reads or writes a register through the regmap cache,
this function is called first, and if it returns "false" only then is the cache method used; else,
the registers are written or read directly, since the register is volatile and caching is not to
be used.

•	 volatile_table: If a driver does not provide a volatile_reg callback, then the volatile_table
is checked by regmap to see if the register is volatile or not. If the register address lies in
the range provided by the volatile_table then the cache operation is not used. This is also
optional, and the driver can omit its definition and can set it to NULL.

•	 lock: This is an optional callback function written in driver code, which is called before
starting any read or write operation. The function should take a lock and return it.

•	 unlock: This is an optional callback function written in driver code for unlocking the lock,
which is created by the lock callback function.

•	 fast_io: regmap internally uses mutex to lock and unlock, if a custom lock and unlock
mechanism is not provided. If the driver wants regmap to use the spinlock, then fast_io
should be set to "true"; else, regmap will use the mutex based lock.

•	 max_register: Whenever any read or write operation is to be performed, regmap checks
whether the register address is less than max_register first, and only if it is, is the operation
performed. The max_register is ignored if it is set to 0.

•	 read_flag_mask: Normally, in SPI or I2C, a write or read transaction will have the highest
bit set in the top byte to differentiate write and read operations. This mask is set in the
higher byte of the register value.

•	 write_flag_mask: This mask is also set in the higher byte of the register value. If both
read_flag_mask and write_flag_mask are empty the regmap_bus default masks are used.

The regmap infrastructure also provides APIs that are defined in include/linux/regmap.h and
implemented under drivers/base/regmap/. The following are the details of the regmap_write and the
regmap_read APIs:

1. regmap_write: This function is used to write data to the device. It takes in the regmap
structure returned during initialisation, registers the address and the value to be set. The
following are the steps performed by the regmap_write routine:

•	 First, regmap_write takes the lock, which will be spinlock if fast_io in regmap_config was
set; else, it will be mutex.

[545]

Chapter 12 Using the Regmap API in Linux Device Drivers

[545]

•	 Next, if max_register is set in regmap_config, then it will check if the register address
passed is less than max_register. If it is less than max_register, then only the write
operation is performed; else, -EIO (invalid I/O) is returned.

•	 After that, if the writeable_reg callback is set in regmap_config, then that callback is
called. If that callback returns "true", then further operations are done; if it returns
"false", then an error -EIO is returned.

•	 If writeable_reg is not set, but wr_table is set, then there’s a check on whether the
register address lies in no_ranges, in which case an -EIO error is returned; else, it is
checked whether it lies in the yes_ranges. If it is not present there, then an -EIO error
is returned and the operation is terminated. If it lies in the yes_ranges, then further
operations are performed. This step is only performed if wr_table is set; else, it is
skipped.

•	 Whether caching is permitted is now checked. If it is permitted, then the register value
is cached instead of writing directly to hardware, and the operation finishes at this
step. If caching is not permitted, it goes to the next step.

•	 After the above steps are taken, the hardware write routine is called to write the value
in the hardware register, this function writes the write_flag_mask to the first byte of the
value and the value is written to the device.

•	 After completing the write operation, the lock that was taken before writing is released
and the function returns.

2. regmap_read: This function is used to read data from the device. It takes in the regmap
structure returned during initialisation, and registers the address and a pointer to the
variable in which the data is to be read. The following are the steps performed by the
regmap_read routine:

•	 First, the read function will take a lock before performing the read operation. This will
be a spinlock if fast_io is set in regmap_config; else, regmap will use mutex.

•	 Next, it will check whether the passed register address is less than max_register; if it is
not, then -EIO is returned. This step is only done if max_register is set greater than zero.

•	 Then, it will check if the readable_reg callback is set. If it is, then that callback is called,
and if this callback returns "false" being the read operation terminated returning an
-EIO error. If this callback returns "true" then further operations are performed. This
step is only performed if readable_reg is set.

•	 What is checked next is whether the register address lies in the no_ranges of the
rd_table in config. If it does, then an –EIO error is returned. If it doesn’t lie either in

Using the Regmap API in Linux Device Drivers Chapter 12

[546]

the no_ranges or in the yes_ranges, then too an -EIO error is returned. Only if it lies in
the yes_ranges can further operations be performed. This step is only performed if the
rd_table is set.

•	 Now, if caching is permitted, then the register value is read from the cache and the
function returns the value being read. If caching is set to bypass, then the next step is
performed.

•	 After the above steps have been taken, the hardware read operation is called to read
the register value, and the value of the variable which was passed is updated with the
value returned.

•	 The lock that was taken before starting this operation is now released and the function
returns.

LAB 12.1: "SPI regmap IIO device" Module
In this last lab of the book, you will develop a driver with similar functionality to the lab 10.2 one,
but this time you will use the IIO framework instead of the input framework to develop it. You
will also access to the registers of the ADXL345 device using the regmap API instead of the SPI
specific core APIs.

As in the lab 10.2 driver, this new driver will support single tap motion detection on any of the 3
axis. The tap detection threshold is defined by the THRESH_TAP register (Address 0x1D). The
SINGLE_TAP bit of the INT_SOURCE register (Address 0x30) is set when a single acceleration
event greater than the value in the THRESH_TAP register (Address 0x1D) occurs for less time
than is specified in the DUR register (Address 0x21). The single tap interrupt is triggered when the
acceleration goes below the threshold, as long as DUR has not been exceeded (see pag 28 of the
ADXL345 data-sheet). The tap motion detection will be exposed to user space sending an IIO event
by the iio_push_event() function, which is called within the ISR of the driver. You will set the value
of the THRESH_TAP and DUR registers by writing from user space to the event sysfs attributes
under /sys/bus/iio/devices/iio:deviceX/events/ directory.

You will also create an IIO trigger buffer, which is used to store the three axis values (plus a
timestamp value) captured by an IIO trigger (iio-trig-hrtimer or a iio-trig-sysfs trigger) in each of
the IIO buffer entries.

You will keep the same HW and DT configuration as in previous lab 10.2 for all the processor
variants.

The main code sections of the driver will now be described:

[547]

Chapter 12 Using the Regmap API in Linux Device Drivers

[547]

1. Include the function headers:

#include <linux/module.h>
#include <linux/regmap.h>
#include <linux/spi/spi.h>
#include <linux/of_gpio.h>
#include <linux/iio/events.h>
#include <linux/iio/buffer.h>
#include <linux/iio/trigger_consumer.h>
#include <linux/iio/triggered_buffer.h>

2. Define the registers of the ADXL345 device:

/* ADXL345 Register Map */
#define DEVID 0x00 /* R Device ID */
#define THRESH_TAP 0x1D /* R/W Tap threshold */
#define DUR 0x21 /* R/W Tap duration */
#define TAP_AXES 0x2A /* R/W Axis control for tap/double tap */
#define ACT_TAP_STATUS 0x2B /* R Source of tap/double tap */
#define BW_RATE 0x2C /* R/W Data rate and power mode control */
#define POWER_CTL 0x2D /* R/W Power saving features control */
#define INT_ENABLE 0x2E /* R/W Interrupt enable control */
#define INT_MAP 0x2F /* R/W Interrupt mapping control */
#define INT_SOURCE 0x30 /* R Source of interrupts */
#define DATA_FORMAT 0x31 /* R/W Data format control */
#define DATAX0 0x32 /* R X-Axis Data 0 */
#define DATAX1 0x33 /* R X-Axis Data 1 */
#define DATAY0 0x34 /* R Y-Axis Data 0 */
#define DATAY1 0x35 /* R Y-Axis Data 1 */
#define DATAZ0 0x36 /* R Z-Axis Data 0 */
#define DATAZ1 0x37 /* R Z-Axis Data 1 */
#define FIFO_CTL 0x38 /* R/W FIFO control */
#define FIFO_STATUS 0x39 /* R FIFO status */

3. Create the rest of #defines to perform operations in the ADXL345 registers and pass as
arguments to several functions of the driver:

#define ADXL345_GPIO_NAME "int"

/* DEVIDs */
#define ID_ADXL345 0xE5

/* INT_ENABLE/INT_MAP/INT_SOURCE Bits */
#define SINGLE_TAP (1 << 6)
#define WATERMARK (1 << 1)

/* TAP_AXES Bits */
#define TAP_X_EN (1 << 2)
#define TAP_Y_EN (1 << 1)

Using the Regmap API in Linux Device Drivers Chapter 12

[548]

#define TAP_Z_EN (1 << 0)

/* BW_RATE Bits */
#define LOW_POWER (1 << 4)
#define RATE(x) ((x) & 0xF)

/* POWER_CTL Bits */
#define PCTL_MEASURE (1 << 3)
#define PCTL_STANDBY 0X00

/* DATA_FORMAT Bits */
#define ADXL_FULL_RES (1 << 3)

/* FIFO_CTL Bits */
#define FIFO_MODE(x) (((x) & 0x3) << 6)
#define FIFO_BYPASS 0
#define FIFO_FIFO 1
#define FIFO_STREAM 2
#define SAMPLES(x) ((x) & 0x1F)

/* FIFO_STATUS Bits */
#define ADXL_X_AXIS 0
#define ADXL_Y_AXIS 1
#define ADXL_Z_AXIS 2

/* Interrupt AXIS Enable */
#define ADXL_TAP_X_EN (1 << 2)
#define ADXL_TAP_Y_EN (1 << 1)
#define ADXL_TAP_Z_EN (1 << 0)

4. Create a private adxl345_data structure:

struct adxl345_data {
 struct gpio_desc *gpio;
 struct regmap *regmap;
 struct iio_trigger *trig; // creo que no es necesario
 struct device *dev;
 struct axis_triple saved;
 u8 data_range;
 u8 tap_threshold;
 u8 tap_duration;
 u8 tap_axis_control;
 u8 data_rate;
 u8 fifo_mode;
 u8 watermark;
 u8 low_power_mode;
 int irq;
 int ev_enable;

[549]

Chapter 12 Using the Regmap API in Linux Device Drivers

[549]

 u32 int_mask;
 s64 timestamp;
};

5. Create the iio_chan_spec and iio_event_spec structures to expose to user space the channel
and the event sysfs attributes. The scan_index variable defines the order in which the
enabled channels are placed inside the IIO trigger buffer. The channels with a lower
scan_index will be placed before channels with a higher index. Each channel needs to have
a unique scan_index.

/*
 * Each axis will have two event sysfs attributes
 * You will set THRESH_TAP register value associated to the specific axis
 * writing to the sysfs attribute with bitmask IIO_EV_INFO_VALUE
 * You will modify DUR register associated to the specific axis writing to the
 * sysfs attribute with bitmask IIO_EV_INFO_PERIOD
 * The THRESH_TAP and DUR registers are shared for all the axis so it
 * could have had more sense to use mask_shared_by_type instead mask_separate
 */
static const struct iio_event_spec adxl345_event = {
 .type = IIO_EV_TYPE_THRESH,
 .dir = IIO_EV_DIR_EITHER,
 .mask_separate = BIT(IIO_EV_INFO_VALUE) |
 BIT(IIO_EV_INFO_PERIOD)
};

/*
 * Each axis will have is own channel sysfs attribute and there are two shared
 * sysfs attributes for the IIO_ACCEL type
 * You will get each axis value reading each channel sysfs attribute with
 * bitmask IIO_CHAN_INFO_RAW
 * There is a shared attribute to read the scale value with bitmask
 * IIO_CHAN_INFO_SCALE
 * There is a shared attribute to write the accel data rate with bitmask
 * IIO_CHAN_INFO_SAMP_FREQ
 */
#define ADXL345_CHANNEL(reg, axis, idx) { \
 .type = IIO_ACCEL, \
 .modified = 1, \
 .channel2 = IIO_MOD_##axis, \
 .address = reg, \
 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
 .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \
 BIT(IIO_CHAN_INFO_SAMP_FREQ), \
 .scan_index = idx, \
 .scan_type = { \
 .sign = 's', \

Using the Regmap API in Linux Device Drivers Chapter 12

[550]

 .realbits = 13, \
 .storagebits = 16, \
 .endianness = IIO_LE, \
 }, \
 .event_spec = &adxl345_event, \
 .num_event_specs = 1 \
}

static const struct iio_chan_spec adxl345_channels[] = {
 ADXL345_CHANNEL(DATAX0, X, 0),
 ADXL345_CHANNEL(DATAY0, Y, 1),
 ADXL345_CHANNEL(DATAZ0, Z, 2),
 IIO_CHAN_SOFT_TIMESTAMP(3),
};

6. Create the struct iio_info structure to declare the hooks the IIO core will use for this device.
There are four kernel hooks available corresponding to user space interactions through the
channel and event sysfs attributes.

static const struct iio_info adxl345_info = {
 .driver_module = THIS_MODULE,
 .read_raw = adxl345_read_raw,
 .write_raw = adxl345_write_raw,
 .read_event_value = adxl345_read_event,
 .write_event_value = adxl345_write_event,
};

See below a brief description of each of these callback functions:

•	 adxl345_read_raw: This function returns each axis value when user space access to
each channel sysfs attribute with bitmask IIO_CHAN_INFO_RAW. It also returns the
accelerometer scale when user space reads the shared sysfs attribute with bitmask
IIO_CHAN_INFO_SCALE. See in the code below the regmap regmap_bulk_read() function
used to access via SPI to the two registers of each axis.

static int adxl345_read_raw(struct iio_dev *indio_dev,
 struct iio_chan_spec const *chan,
 int *val, int *val2, long mask)
{
 struct adxl345_data *data = iio_priv(indio_dev);
 __le16 regval;

 switch (mask) {
 case IIO_CHAN_INFO_RAW:
 regmap_bulk_read(data->regmap, chan->address, ®val,
 sizeof(regval));

[551]

Chapter 12 Using the Regmap API in Linux Device Drivers

[551]

 *val = sign_extend32(le16_to_cpu(regval), 12);

 return IIO_VAL_INT;

 case IIO_CHAN_INFO_SCALE:
 *val = 0;
 *val2 = adxl345_uscale;
 return IIO_VAL_INT_PLUS_MICRO;

 default:
 return -EINVAL;
 }
}

•	 adxl345_write_raw: This function sets the data rate and power mode control of the
ADXL345 device (BW_RATE register), whenever user space writes to the shared sysfs
attribute with bitmask IIO_CHAN_INFO_SAMP_FREQ. See in the code below the regmap
regmap_write() function used to access via SPI to the register BW_RATE of the ADXL345
device.

static int adxl345_write_raw(struct iio_dev *indio_dev,
 struct iio_chan_spec const *chan,
 int val, int val2, long mask)
{
 struct adxl345_data *data = iio_priv(indio_dev);

 switch (mask) {
 case IIO_CHAN_INFO_SAMP_FREQ:
 data->data_rate = RATE(val);
 return regmap_write(data->regmap, BW_RATE, data->data_rate |

(data->low_power_mode ? LOW_POWER : 0));
 default :
 return -EINVAL;
 }
}

•	 adxl345_read_event: This function returns the value of the THRESH_TAP and DUR
registers, whenever each axis sysfs attributes with bitmask IIO_EV_INFO_VALUE and
IIO_EV_INFO_PERIOD are read from user space.

static int adxl345_read_event(struct iio_dev *indio_dev,
 const struct iio_chan_spec *chan,
 enum iio_event_type type,
 enum iio_event_direction dir,
 enum iio_event_info info,
 int *val, int *val2)
{

Using the Regmap API in Linux Device Drivers Chapter 12

[552]

 struct adxl345_data *data = iio_priv(indio_dev);

 switch (info) {
 case IIO_EV_INFO_VALUE:
 *val = data->tap_threshold;
 break;
 case IIO_EV_INFO_PERIOD:
 *val = data->tap_duration;
 break;
 default:
 return -EINVAL;
 }

 return IIO_VAL_INT;
}

•	 adxl345_write_event: This function sets the value of the THRESH_TAP and DUR
registers, whenever each axis sysfs attributes with bitmask IIO_EV_INFO_VALUE and
IIO_EV_INFO_PERIOD are written from user space.

static int adxl345_write_event(struct iio_dev *indio_dev,
 const struct iio_chan_spec *chan,
 enum iio_event_type type,
 enum iio_event_direction dir,
 enum iio_event_info info,
 int val, int val2)
{
 struct adxl345_data *data = iio_priv(indio_dev);

 switch (info) {
 case IIO_EV_INFO_VALUE:
 data->tap_threshold = val;
 return regmap_write(data->regmap, THRESH_TAP,

 data->tap_threshold);

 case IIO_EV_INFO_PERIOD:
 data->tap_duration = val;
 return regmap_write(data->regmap, DUR, data->tap_duration);
 default:
 return -EINVAL;
 }
}

7. See below the main lines of code for the SPI register map configuration and initialization:

static const struct regmap_config adxl345_spi_regmap_config = {
 .reg_bits = 8,
 .val_bits = 8,

[553]

Chapter 12 Using the Regmap API in Linux Device Drivers

[553]

 /* Setting bits 7 and 6 enables multiple-byte read */
 .read_flag_mask = BIT(7) | BIT(6),
};

static int adxl345_spi_probe(struct spi_device *spi)
{
 struct regmap *regmap;

 /* get the id from the driver structure to use the name */
 const struct spi_device_id *id = spi_get_device_id(spi);

 regmap = devm_regmap_init_spi(spi, &adxl345_spi_regmap_config);

 return adxl345_core_probe(&spi->dev, regmap, id->name);
}

8. In the adxl345_core_probe() routine request a threaded interrupt. A threaded interrupt
will be added to the driver to service the single tap interrupt. In a threaded interrupt,
the interrupt handler adxl345_event_handler is executed inside a thread. It is allowed to
block during the interrupt handler, which is often needed for SPI devices, as the interrupt
handler needs to communicate with them. In this driver, you are going to communicate
via SPI with the ADXL345 device inside the interrupt handler using the regmap regmap_
read() function. The SINGLE_TAP events will be sent to user space using the iio_push_
event() function.

/* Request threaded interrupt */
devm_request_threaded_irq(dev, data->irq, NULL, adxl345_event_handler,

 IRQF_TRIGGER_HIGH | IRQF_ONESHOT, dev_name(dev),
 indio_dev);

/* Interrupt service routine */
static irqreturn_t adxl345_event_handler(int irq, void *handle)
{
 u32 tap_stat, int_stat;
 struct iio_dev *indio_dev = handle;
 struct adxl345_data *data = iio_priv(indio_dev);

 data->timestamp = iio_get_time_ns(indio_dev);

 if (data->tap_axis_control & (TAP_X_EN | TAP_Y_EN | TAP_Z_EN)) {
 regmap_read(data->regmap, ACT_TAP_STATUS, &tap_stat);
 }
 else
 tap_stat = 0;

 /* Read the INT_SOURCE (0x30) register
 * The tap interrupt is cleared

Using the Regmap API in Linux Device Drivers Chapter 12

[554]

 */
 regmap_read(data->regmap, INT_SOURCE, &int_stat);

 /*
 * if the SINGLE_TAP event has occurred the axl345_do_tap function
 * is called with the ACT_TAP_STATUS register as an argument
 */
 if (int_stat & (SINGLE_TAP)) {
 dev_info(data->dev, "single tap interrupt has occurred\n");

 if (tap_stat & TAP_X_EN){
 iio_push_event(indio_dev,
 IIO_MOD_EVENT_CODE(IIO_ACCEL,
 0,
 IIO_MOD_X,
 IIO_EV_TYPE_THRESH,
 0),
 data->timestamp);
 }
 if (tap_stat & TAP_Y_EN) {
 iio_push_event(indio_dev,
 IIO_MOD_EVENT_CODE(IIO_ACCEL,
 0,
 IIO_MOD_Y,
 IIO_EV_TYPE_THRESH,
 0),
 data->timestamp);
 }
 if (tap_stat & TAP_Z_EN) {
 iio_push_event(indio_dev,
 IIO_MOD_EVENT_CODE(IIO_ACCEL,
 0,
 IIO_MOD_Z,
 IIO_EV_TYPE_THRESH,
 0),
 data->timestamp);
 }
 }

 return IRQ_HANDLED;
}

9. In the adxl345_core_probe() routine allocate an IIO trigger buffer using the
devm_iio_triggered_buffer_setup() function. This function combines some common
tasks which will normally be performed when setting up a triggered buffer. It
allocates the buffer and sets the "pollfunc top half" and the "pollfunc bottom half"
handlers. The pollfunc bottom half adxl345_trigger_handler runs in the context of a

[555]

Chapter 12 Using the Regmap API in Linux Device Drivers

[555]

kernel thread and all the processing takes place here. It reads the tree axis values from
the ADXL345 device and stores them in the internal buffer (together with the timestamp
obtained in the top half) using the iio_push_to_buffers_with_timestamp() function. The
pollfunc top half should do as little processing as possible, because it runs in interrupt
context. The most common operation is recording of the current timestamp and for this
reason you can use the IIO core iio_pollfunc_store_time() function. Before calling devm_
iio_triggered_buffer_setup() the struct indio_dev structure should already be completely
initialized, but not registered yet. In practice this means that this function should be called
right before devm_iio_device_register().

int adxl345_core_probe(struct device *dev,
 struct regmap *regmap,
 const char *name)
{
 struct iio_dev *indio_dev;
 struct adxl345_data *data;

 [...]

/* iio_pollfunc_store_time do pf->timestamp = iio_get_time_ns(); */
 devm_iio_triggered_buffer_setup(dev, indio_dev,
 &iio_pollfunc_store_time,
 adxl345_trigger_handler, NULL);

devm_iio_device_register(dev, indio_dev);

 return 0;
}

static irqreturn_t adxl345_trigger_handler(int irq, void *p)
{
 struct iio_poll_func *pf = p;
 struct iio_dev *indio_dev = pf->indio_dev;
 struct adxl345_data *data = iio_priv(indio_dev);

 /* 6 bytes axis + 2 bytes padding + 8 bytes timestamp */
 s16 buf[8];
 int i, ret, j = 0, base = DATAX0;
 s16 sample;

 /* read the channels that have been enabled from user space */
 for_each_set_bit(i, indio_dev->active_scan_mask,

indio_dev->masklength) {
 ret = regmap_bulk_read(data->regmap,

 base + i * sizeof(sample),
 &sample, sizeof(sample));

Using the Regmap API in Linux Device Drivers Chapter 12

[556]

 if (ret < 0)
 goto done;
 buf[j++] = sample;
 }

 iio_push_to_buffers_with_timestamp(indio_dev, buf,
 pf->timestamp);

done:
 iio_trigger_notify_done(indio_dev->trig);

 return IRQ_HANDLED;
}

10. Declare a list of devices supported by the driver.

static const struct of_device_id adxl345_dt_ids[] = {
 { .compatible = "arrow,adxl345", },
 { }
};
MODULE_DEVICE_TABLE(of, adxl345_dt_ids);

11. Define an array of struct spi_device_id structures:

static const struct spi_device_id adxl345_id[] = {
 { .name = "adxl345", },
 { }
};
MODULE_DEVICE_TABLE(spi, adxl345_id);

12. Add a struct spi_driver structure that will be registered to the SPI bus:

static struct spi_driver adxl345_driver = {
 .driver = {
 .name = "adxl345",
 .owner = THIS_MODULE,
 .of_match_table = adxl345_dt_ids,
 },
 .probe = adxl345_spi_probe,
 .remove = adxl345_spi_remove,
 .id_table = adxl345_id,
};

13. Register your driver with the SPI bus:

module_spi_driver(adxl345_driver);

14. Build the modified device tree, and load it to the target processor.

[557]

Chapter 12 Using the Regmap API in Linux Device Drivers

[557]

See in the next Listing 12-1 the "SPI regmap IIO device" driver source code (adxl345_imx_iio.c) for
the i.MX7D processor.

Note: The source code for the SAMA5D2 (adxl345_sam_iio.c) and BCM2837 (adxl345_rpi_iio.c)
drivers can be downloaded from the GitHub repository of this book.

Listing 12-1: adxl345_imx_iio.c
#include <linux/module.h>
#include <linux/regmap.h>
#include <linux/spi/spi.h>
#include <linux/of_gpio.h>
#include <linux/iio/events.h>
#include <linux/iio/buffer.h>
#include <linux/iio/trigger.h>
#include <linux/iio/trigger_consumer.h>
#include <linux/iio/triggered_buffer.h>

/* ADXL345 Register Map */
#define DEVID 0x00 /* R Device ID */
#define THRESH_TAP 0x1D /* R/W Tap threshold */
#define DUR 0x21 /* R/W Tap duration */
#define TAP_AXES 0x2A /* R/W Axis control for tap/double tap */
#define ACT_TAP_STATUS 0x2B /* R Source of tap/double tap */
#define BW_RATE 0x2C /* R/W Data rate and power mode control */
#define POWER_CTL 0x2D /* R/W Power saving features control */
#define INT_ENABLE 0x2E /* R/W Interrupt enable control */
#define INT_MAP 0x2F /* R/W Interrupt mapping control */
#define INT_SOURCE 0x30 /* R Source of interrupts */
#define DATA_FORMAT 0x31 /* R/W Data format control */
#define DATAX0 0x32 /* R X-Axis Data 0 */
#define DATAX1 0x33 /* R X-Axis Data 1 */
#define DATAY0 0x34 /* R Y-Axis Data 0 */
#define DATAY1 0x35 /* R Y-Axis Data 1 */
#define DATAZ0 0x36 /* R Z-Axis Data 0 */
#define DATAZ1 0x37 /* R Z-Axis Data 1 */
#define FIFO_CTL 0x38 /* R/W FIFO control */
#define FIFO_STATUS 0x39 /* R FIFO status */

enum adxl345_accel_axis {
 AXIS_X,
 AXIS_Y,
 AXIS_Z,
 AXIS_MAX,
};

Using the Regmap API in Linux Device Drivers Chapter 12

[558]

#define ADXL345_GPIO_NAME "int"

/* DEVIDs */
#define ID_ADXL345 0xE5

/* INT_ENABLE/INT_MAP/INT_SOURCE Bits */
#define SINGLE_TAP (1 << 6)
#define WATERMARK (1 << 1)

/* TAP_AXES Bits */
#define TAP_X_EN (1 << 2)
#define TAP_Y_EN (1 << 1)
#define TAP_Z_EN (1 << 0)

/* BW_RATE Bits */
#define LOW_POWER (1 << 4)
#define RATE(x) ((x) & 0xF)

/* POWER_CTL Bits */
#define PCTL_MEASURE (1 << 3)
#define PCTL_STANDBY 0X00

/* DATA_FORMAT Bits */
#define ADXL_FULL_RES (1 << 3)

/* FIFO_CTL Bits */
#define FIFO_MODE(x) (((x) & 0x3) << 6)
#define FIFO_BYPASS 0
#define FIFO_FIFO 1
#define FIFO_STREAM 2
#define SAMPLES(x) ((x) & 0x1F)

/* FIFO_STATUS Bits */
#define ADXL_X_AXIS 0
#define ADXL_Y_AXIS 1
#define ADXL_Z_AXIS 2

/* Interrupt AXIS Enable */
#define ADXL_TAP_X_EN (1 << 2)
#define ADXL_TAP_Y_EN (1 << 1)
#define ADXL_TAP_Z_EN (1 << 0)

static const int adxl345_uscale = 38300;

struct axis_triple {
 int x;
 int y;
 int z;

[559]

Chapter 12 Using the Regmap API in Linux Device Drivers

[559]

};

struct adxl345_data {
 struct gpio_desc *gpio;
 struct regmap *regmap;
 struct iio_trigger *trig;
 struct device *dev;
 struct axis_triple saved;
 u8 data_range;
 u8 tap_threshold;
 u8 tap_duration;
 u8 tap_axis_control;
 u8 data_rate;
 u8 fifo_mode;
 u8 watermark;
 u8 low_power_mode;
 int irq;
 int ev_enable;
 u32 int_mask;
 s64 timestamp;
};

/* set the events */
static const struct iio_event_spec adxl345_event = {
 .type = IIO_EV_TYPE_THRESH,
 .dir = IIO_EV_DIR_EITHER,
 .mask_separate = BIT(IIO_EV_INFO_VALUE) |
 BIT(IIO_EV_INFO_PERIOD)
};

#define ADXL345_CHANNEL(reg, axis, idx) { \
 .type = IIO_ACCEL, \
 .modified = 1, \
 .channel2 = IIO_MOD_##axis, \
 .address = reg, \
 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
 .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \
 BIT(IIO_CHAN_INFO_SAMP_FREQ), \
 .scan_index = idx, \
 .scan_type = { \
 .sign = 's', \
 .realbits = 13, \
 .storagebits = 16, \
 .endianness = IIO_LE, \
 }, \
 .event_spec = &adxl345_event, \
 .num_event_specs = 1 \
}

Using the Regmap API in Linux Device Drivers Chapter 12

[560]

static const struct iio_chan_spec adxl345_channels[] = {
 ADXL345_CHANNEL(DATAX0, X, 0),
 ADXL345_CHANNEL(DATAY0, Y, 1),
 ADXL345_CHANNEL(DATAZ0, Z, 2),
 IIO_CHAN_SOFT_TIMESTAMP(3),
};

static int adxl345_read_raw(struct iio_dev *indio_dev,
 struct iio_chan_spec const *chan,
 int *val, int *val2, long mask)
{
 struct adxl345_data *data = iio_priv(indio_dev);
 __le16 regval;
 int ret;

 switch (mask) {
 case IIO_CHAN_INFO_RAW: /* Add an entry in the sysfs */

 /*
 * Data is stored in adjacent registers:
 * ADXL345_REG_DATA(X0/Y0/Z0) contain the least significant byte
 * and ADXL345_REG_DATA(X0/Y0/Z0) + 1 the most significant byte
 * we are reading 2 bytes and storing in a __le16
 */
 ret = regmap_bulk_read(data->regmap, chan->address, ®val,
 sizeof(regval));
 if (ret < 0)
 return ret;

 *val = sign_extend32(le16_to_cpu(regval), 12);

 return IIO_VAL_INT;

 case IIO_CHAN_INFO_SCALE: /* Add an entry in the sysfs */
 *val = 0;
 *val2 = adxl345_uscale;
 return IIO_VAL_INT_PLUS_MICRO;

 default:
 return -EINVAL;
 }
}

static int adxl345_write_raw(struct iio_dev *indio_dev,
 struct iio_chan_spec const *chan,
 int val, int val2, long mask)
{

[561]

Chapter 12 Using the Regmap API in Linux Device Drivers

[561]

 struct adxl345_data *data = iio_priv(indio_dev);

 switch (mask) {
 case IIO_CHAN_INFO_SAMP_FREQ:
 data->data_rate = RATE(val);
 return regmap_write(data->regmap, BW_RATE,
 data->data_rate |

(data->low_power_mode ? LOW_POWER : 0));
 default :
 return -EINVAL;
 }
}

static int adxl345_read_event(struct iio_dev *indio_dev,
 const struct iio_chan_spec *chan,
 enum iio_event_type type,
 enum iio_event_direction dir,
 enum iio_event_info info,
 int *val, int *val2)
{
 struct adxl345_data *data = iio_priv(indio_dev);

 switch (info) {
 case IIO_EV_INFO_VALUE:
 *val = data->tap_threshold;
 break;
 case IIO_EV_INFO_PERIOD:
 *val = data->tap_duration;
 break;
 default:
 return -EINVAL;
 }

 return IIO_VAL_INT;
}

static int adxl345_write_event(struct iio_dev *indio_dev,
 const struct iio_chan_spec *chan,
 enum iio_event_type type,
 enum iio_event_direction dir,
 enum iio_event_info info,
 int val, int val2)
{
 struct adxl345_data *data = iio_priv(indio_dev);

 switch (info) {
 case IIO_EV_INFO_VALUE:
 data->tap_threshold = val;

Using the Regmap API in Linux Device Drivers Chapter 12

[562]

 return regmap_write(data->regmap, THRESH_TAP, data->tap_threshold);

 case IIO_EV_INFO_PERIOD:
 data->tap_duration = val;
 return regmap_write(data->regmap, DUR, data->tap_duration);
 default:
 return -EINVAL;
 }
}

static const struct regmap_config adxl345_spi_regmap_config = {
 .reg_bits = 8,
 .val_bits = 8,
 /* Setting bits 7 and 6 enables multiple-byte read */
 .read_flag_mask = BIT(7) | BIT(6),
};

static const struct iio_info adxl345_info = {
 .driver_module = THIS_MODULE,
 .read_raw = adxl345_read_raw,
 .write_raw = adxl345_write_raw,
 .read_event_value = adxl345_read_event,
 .write_event_value = adxl345_write_event,
};

/* Available channels, later enabled from user space or using active_scan_mask */
static const unsigned long adxl345_accel_scan_masks[] = {
 BIT(AXIS_X) | BIT(AXIS_Y) | BIT(AXIS_Z),
 0};

/* Interrupt service routine */
static irqreturn_t adxl345_event_handler(int irq, void *handle)
{
 u32 tap_stat, int_stat;
 int ret;
 struct iio_dev *indio_dev = handle;
 struct adxl345_data *data = iio_priv(indio_dev);

 data->timestamp = iio_get_time_ns(indio_dev);

 /*
 * ACT_TAP_STATUS should be read before clearing the interrupt
 * Avoid reading ACT_TAP_STATUS in case TAP detection is disabled
 * Read the ACT_TAP_STATUS if any of the axis has been enabled
 */
 if (data->tap_axis_control & (TAP_X_EN | TAP_Y_EN | TAP_Z_EN)) {
 ret = regmap_read(data->regmap, ACT_TAP_STATUS, &tap_stat);
 if (ret) {

[563]

Chapter 12 Using the Regmap API in Linux Device Drivers

[563]

 dev_err(data->dev, "error reading ACT_TAP_STATUS register\n");
 return ret;
 }
 }
 else
 tap_stat = 0;

 /*
 * read the INT_SOURCE (0x30) register
 * the tap interrupt is cleared
 */
 ret = regmap_read(data->regmap, INT_SOURCE, &int_stat);
 if (ret) {
 dev_err(data->dev, "error reading INT_SOURCE register\n");
 return ret;
 }

 /*
 * if the SINGLE_TAP event has occurred the axl345_do_tap function
 * is called with the ACT_TAP_STATUS register as an argument
 */
 if (int_stat & (SINGLE_TAP)) {
 dev_info(data->dev, "single tap interrupt has occurred\n");

 if (tap_stat & TAP_X_EN){
 iio_push_event(indio_dev,
 IIO_MOD_EVENT_CODE(IIO_ACCEL,
 0,
 IIO_MOD_X,
 IIO_EV_TYPE_THRESH,
 0),
 data->timestamp);
 }
 if (tap_stat & TAP_Y_EN) {
 iio_push_event(indio_dev,
 IIO_MOD_EVENT_CODE(IIO_ACCEL,
 0,
 IIO_MOD_Y,
 IIO_EV_TYPE_THRESH,
 0),
 data->timestamp);
 }
 if (tap_stat & TAP_Z_EN) {
 iio_push_event(indio_dev,
 IIO_MOD_EVENT_CODE(IIO_ACCEL,
 0,
 IIO_MOD_Z,
 IIO_EV_TYPE_THRESH,

Using the Regmap API in Linux Device Drivers Chapter 12

[564]

 0),
 data->timestamp);
 }
 }

 return IRQ_HANDLED;
}

static irqreturn_t adxl345_trigger_handler(int irq, void *p)
{
 struct iio_poll_func *pf = p;
 struct iio_dev *indio_dev = pf->indio_dev;
 struct adxl345_data *data = iio_priv(indio_dev);
 //s16 buf[3];

s16 buf[8] /* 16 bytes */
 int i, ret, j = 0, base = DATAX0;
 s16 sample;

 /* read the channels that have been enabled from user space */
 for_each_set_bit(i, indio_dev->active_scan_mask, indio_dev->masklength) {
 ret = regmap_bulk_read(data->regmap, base + i * sizeof(sample),
 &sample, sizeof(sample));
 if (ret < 0)
 goto done;
 buf[j++] = sample;
 }

 /* each buffer entry line is 6 bytes + 2 bytes pad + 8 bytes timestamp */
 iio_push_to_buffers_with_timestamp(indio_dev, buf, pf->timestamp);

done:
 iio_trigger_notify_done(indio_dev->trig);

 return IRQ_HANDLED;
}

int adxl345_core_probe(struct device *dev, struct regmap *regmap,
 const char *name)
{
 struct iio_dev *indio_dev;
 struct adxl345_data *data;
 u32 regval;
 int ret;

 ret = regmap_read(regmap, DEVID, ®val);
 if (ret < 0) {
 dev_err(dev, "Error reading device ID: %d\n", ret);
 return ret;

[565]

Chapter 12 Using the Regmap API in Linux Device Drivers

[565]

 }
 if (regval != ID_ADXL345) {
 dev_err(dev, "Invalid device ID: %x, expected %x\n",
 regval, ID_ADXL345);
 return -ENODEV;
 }

 indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
 if (!indio_dev)
 return -ENOMEM;

 /* link private data with indio_dev */
 data = iio_priv(indio_dev);
 data->dev = dev;

 /* link spi device with indio_dev */
 dev_set_drvdata(dev, indio_dev);

 data->gpio = devm_gpiod_get_index(dev, ADXL345_GPIO_NAME, 0, GPIOD_IN);
 if (IS_ERR(data->gpio)) {
 dev_err(dev, "gpio get index failed\n");
 return PTR_ERR(data->gpio);
 }

 data->irq = gpiod_to_irq(data->gpio);
 if (data->irq < 0)
 return data->irq;
 dev_info(dev, "The IRQ number is: %d\n", data->irq);

 /* Initialize your private device structure */
 data->regmap = regmap;
 data->data_range = ADXL_FULL_RES;
 data->tap_threshold = 50;
 data->tap_duration = 3;
 data->tap_axis_control = ADXL_TAP_Z_EN;
 data->data_rate = 8;
 data->fifo_mode = FIFO_BYPASS;
 data->watermark = 32;
 data->low_power_mode = 0;

 indio_dev->dev.parent = dev;
 indio_dev->name = name;
 indio_dev->info = &adxl345_info;
 indio_dev->modes = INDIO_DIRECT_MODE;
 indio_dev->available_scan_masks = adxl345_accel_scan_masks;
 indio_dev->channels = adxl345_channels;
 indio_dev->num_channels = ARRAY_SIZE(adxl345_channels);

Using the Regmap API in Linux Device Drivers Chapter 12

[566]

 /* Initialize the ADXL345 registers */
 /* 13-bit full resolution right justified */
 ret = regmap_write(data->regmap, DATA_FORMAT, data->data_range);
 if (ret < 0)
 goto error_standby;

 /* Set the tap threshold and duration */
 ret = regmap_write(data->regmap, THRESH_TAP, data->tap_threshold);
 if (ret < 0)
 goto error_standby;
 ret = regmap_write(data->regmap, DUR, data->tap_duration);
 if (ret < 0)
 goto error_standby;

 /* set the axis where the tap will be detected */
 ret = regmap_write(data->regmap, TAP_AXES, data->tap_axis_control);
 if (ret < 0)
 goto error_standby;

 /*
 * set the data rate and the axis reading power

 * mode, less or higher noise reducing power, in
 * the initial settings is NO low power
 */
 ret = regmap_write(data->regmap, BW_RATE, RATE(data->data_rate) |
 (data->low_power_mode ? LOW_POWER : 0));
 if (ret < 0)
 goto error_standby;

 /* Set the FIFO mode, no FIFO by default */
 ret = regmap_write(data->regmap, FIFO_CTL, FIFO_MODE(data->fifo_mode) |
 SAMPLES(data->watermark));
 if (ret < 0)
 goto error_standby;

 /* Map all INTs to INT1 pin */
 ret = regmap_write(data->regmap, INT_MAP, 0);
 if (ret < 0)
 goto error_standby;

 /* Enables interrupts */
 if (data->tap_axis_control & (TAP_X_EN | TAP_Y_EN | TAP_Z_EN))
 data->int_mask |= SINGLE_TAP;

 ret = regmap_write(data->regmap, INT_ENABLE, data->int_mask);
 if (ret < 0)
 goto error_standby;

[567]

Chapter 12 Using the Regmap API in Linux Device Drivers

[567]

 /* Enable measurement mode */
 ret = regmap_write(data->regmap, POWER_CTL, PCTL_MEASURE);
 if (ret < 0)
 goto error_standby;

 /* Request threaded interrupt */
 ret = devm_request_threaded_irq(dev, data->irq, NULL, adxl345_event_handler,
 IRQF_TRIGGER_HIGH | IRQF_ONESHOT, dev_name(dev), indio_dev);
 if (ret) {
 dev_err(dev, "failed to request interrupt %d (%d)", data->irq, ret);
 goto error_standby;
 }

 dev_info(dev, "using interrupt %d", data->irq);

 ret = devm_iio_triggered_buffer_setup(dev, indio_dev, &iio_pollfunc_store_time,
 adxl345_trigger_handler, NULL);
 if (ret) {
 dev_err(dev, "unable to setup triggered buffer\n");
 goto error_standby;
 }

 ret = devm_iio_device_register(dev, indio_dev);
 if (ret) {
 dev_err(dev, "iio_device_register failed: %d\n", ret);
 goto error_standby;
 }

 return 0;

error_standby:
 dev_info(dev, "set standby mode due to an error\n");
 regmap_write(data->regmap, POWER_CTL, PCTL_STANDBY);
 return ret;
}

int adxl345_core_remove(struct device *dev)
{
 struct iio_dev *indio_dev = dev_get_drvdata(dev);
 struct adxl345_data *data = iio_priv(indio_dev);
 dev_info(data->dev, "my_remove() function is called.\n");
 return regmap_write(data->regmap, POWER_CTL, PCTL_STANDBY);
}

static int adxl345_spi_probe(struct spi_device *spi)
{
 struct regmap *regmap;

Using the Regmap API in Linux Device Drivers Chapter 12

[568]

 /* get the id from the driver structure to use the name */
 const struct spi_device_id *id = spi_get_device_id(spi);

 regmap = devm_regmap_init_spi(spi, &adxl345_spi_regmap_config);
 if (IS_ERR(regmap)) {
 dev_err(&spi->dev, "Error initializing spi regmap: %ld\n",
 PTR_ERR(regmap));
 return PTR_ERR(regmap);
 }

 return adxl345_core_probe(&spi->dev, regmap, id->name);
}

static int adxl345_spi_remove(struct spi_device *spi)
{
 return adxl345_core_remove(&spi->dev);
}

static const struct spi_device_id adxl345_id[] = {
 { .name = "adxl345", },
 { }
};
MODULE_DEVICE_TABLE(spi, adxl345_id);

static const struct of_device_id adxl345_dt_ids[] = {
 { .compatible = "arrow,adxl345" },
 { },
};
MODULE_DEVICE_TABLE(of, adxl345_dt_ids);

static struct spi_driver adxl345_driver = {
 .driver = {
 .name = "adxl345",
 .owner = THIS_MODULE,
 .of_match_table = adxl345_dt_ids,
 },
 .probe = adxl345_spi_probe,
 .remove = adxl345_spi_remove,
 .id_table = adxl345_id,
};

module_spi_driver(adxl345_driver);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Alberto Liberal <aliberal@arroweurope.com>");
MODULE_DESCRIPTION("ADXL345 Three-Axis Accelerometer Regmap SPI Bus Driver");

[569]

Chapter 12 Using the Regmap API in Linux Device Drivers

[569]

adxl345_imx_iio.ko Demonstration
"In the Host build the IIO tools. Edit the Makefile under my-linux-imx/tools/iio/
folder"

~/my-linux-imx/tools/iio$ gedit Makefile /* Comment out the first line and modify
second line */

//CC = $(CROSS_COMPILE)gcc
CFLAGS += -Wall -g -D_GNU_SOURCE -I$(INSTALL_HDR_PATH)/include

~/my-linux-imx$ source /opt/fsl-imx-x11/4.9.11-1.0.0/environment-setup-cortexa7hf-
neon-poky-linux-gnueabi

~/my-linux-imx$ make headers_install INSTALL_HDR_PATH=~/my-linux-sam/headers/
~/my-linux-imx$ make -C tools/iio/ INSTALL_HDR_PATH=~/my-linux-sam/headers/ /* Build
IIO tools */
~/my-linux-sam/tools/iio$ scp iio_generic_buffer root@10.0.0.10: /* send iio_
generic_buffer application to the target */
~/my-linux-sam/tools/iio$ scp iio_event_monitor root@10.0.0.10: /* send iio_event_
monitor application to the target */

"Boot now the i.MX7D device"

root@imx7dsabresd:~# insmod adxl345_imx_iio.ko /* load module */
root@imx7dsabresd:~# cd /sys/bus/iio/devices/iio:device2/
root@imx7dsabresd:/sys/bus/iio/devices/iio:device2# ls /* see the sysfs entries
under the iio device */

buffer in_accel_x_raw scan_elements
current_timestamp_clock in_accel_y_raw subsystem
dev in_accel_z_raw trigger
events name uevent
in_accel_sampling_frequency of_node
in_accel_scale power

root@imx7dsabresd:/sys/bus/iio/devices/iio:device2# cat name /* read the device name
*/
adxl345

root@imx7dsabresd:/sys/bus/iio/devices/iio:device2# cat in_accel_z_raw /* read the z
axis value */
245

root@imx7dsabresd:/sys/bus/iio/devices/iio:device2# cat in_accel_z_raw /* move the
accel board and read again the z axis value */
-252

root@imx7dsabresd:/sys/bus/iio/devices/iio:device2# /* move the accel board until
several interrupts are being generated */
adxl345 spi2.1: single tap interrupt has occurred
adxl345 spi2.1: single tap interrupt has occurred

Using the Regmap API in Linux Device Drivers Chapter 12

[570]

adxl345 spi2.1: single tap interrupt has occurred
adxl345 spi2.1: single tap interrupt has occurred

root@imx7dsabresd:/sys/bus/iio/devices/iio:device2# cat in_accel_scale /* read the
accelerometer scale */
0.038300

"Sysfs trigger interface"

root@imx7dsabresd:/sys/bus/iio/devices# ls /* see the created iio_sysfs_trigger
folder */
iio:device0 iio:device1 iio:device2 iio_sysfs_trigger

root@imx7dsabresd:/sys/bus/iio/devices# echo 1 > iio_sysfs_trigger/add_trigger /*
create a sysfs trigger */
root@imx7dsabresd:/sys/bus/iio/devices# ls /* see the trigger0 folder created */
iio:device0 iio:device1 iio:device2 iio_sysfs_trigger trigger0

root@imx7dsabresd:/sys/bus/iio/devices# cat trigger0/name > iio:device2/trigger/
current_trigger /* attach the trigger to the iio device */

root@imx7dsabresd:/sys/bus/iio/devices# echo 1 > iio:device2/scan_elements/in_ac
cel_x_en /* enable x axis scan element */

root@imx7dsabresd:/sys/bus/iio/devices# echo 1 > iio:device2/scan_elements/in_ac
cel_y_en /* enable y axis scan element */

root@imx7dsabresd:/sys/bus/iio/devices# echo 1 > iio:device2/scan_elements/in_ac
cel_z_en /* enable z axis scan element */

root@imx7dsabresd:/sys/bus/iio/devices# echo 1 > iio:device2/scan_elements/in_ti
mestamp_en /* enable timestamp scan element */

root@imx7dsabresd:/sys/bus/iio/devices# echo 100 > iio:device2/buffer/length /* set
the number of sample sets that may be held by the buffer */
root@imx7dsabresd:/sys/bus/iio/devices# echo 1 > iio:device2/buffer/enable /* enable
the buffer */
root@imx7dsabresd:/sys/bus/iio/devices# echo 1 > trigger0/trigger_now /* do first
adquisition */
root@imx7dsabresd:/sys/bus/iio/devices# echo 1 > trigger0/trigger_now /* do second
adquisition */
root@imx7dsabresd:/sys/bus/iio/devices# hexdump -v -e '16/1 "%02x " "\n"' < /dev
/iio\:device2 /* show the adquired values: the tree axis + timestamp */

ff ff f3 ff f0 00 0c a8 47 52 1e 21 b6 ec f6 14
ff ff f1 ff f4 00 0c a8 10 4f 91 93 ba ec f6 14

root@imx7dsabresd:/sys/bus/iio/devices# echo 0 > iio:device2/buffer/enable /*
disable the buffer */
root@imx7dsabresd:/sys/bus/iio/devices# echo "" > iio:device2/trigger/current_
trigger /* detach the trigger */

root@imx7dsabresd:~# rmmod adxl345_imx_iio.ko /* remove the module */

"Reboot again your target system. Use the iio_generic_buffer application to set

[571]

Chapter 12 Using the Regmap API in Linux Device Drivers

[571]

the buffer length and number of adquisitions, enable the scan elements and show the
adquired values"

root@imx7dsabresd:~# insmod adxl345_imx_iio.ko /* load module */

/* create the sysfs trigger */
root@imx7dsabresd:~# echo 1 > /sys/bus/iio/devices/iio_sysfs_trigger/add_trigger
root@imx7dsabresd:~# echo sysfstrig1 > /sys/bus/iio/devices/iio:device2/trigger/
current_trigger /* attach the trigger to the device */

root@imx7dsabresd:~# ./iio_generic_buffer --device-num 2 -T 0 -a -l 10 -c 5 & /*
launch the iio_generic_buffer application */

[1] 600
root@imx7dsabresd:~# iio device number being used is 2
iio trigger number being used is 0
No channels are enabled, enabling all channels
Enabling: in_accel_y_en
Enabling: in_accel_x_en
Enabling: in_timestamp_en
Enabling: in_accel_z_en
/sys/bus/iio/devices/iio:device2 sysfstrig1

root@imx7dsabresd:~# echo 1 > /sys/bus/iio/devices/trigger0/trigger_now /* do first
adquisition, you can do until 5 conversions */
-0.038300 -0.536200 9.268600 1510654204332659500

root@imx7dsabresd:~# echo 1 > /sys/bus/iio/devices/trigger0/trigger_now /* do second
adquisition */
0.229800 0.153200 -9.919700 1510654243352620000

root@imx7dsabresd:/sys/bus/iio/devices# echo 0 > iio:device2/buffer/enable /*
disable the buffer */
root@imx7dsabresd:/sys/bus/iio/devices# echo "" > iio:device2/trigger/current_
trigger /* detach the trigger */

root@imx7dsabresd:~# rmmod adxl345_imx_iio.ko /* remove the module */

"Capture now data using the hrtimer trigger. Reboot your target system"

root@imx7dsabresd:~# insmod adxl345_imx_iio.ko /* load the module */
root@imx7dsabresd:~# mkdir /config /* create the config folder */
root@imx7dsabresd:~# mount -t configfs none /config /* mount the configfs file system */
root@imx7dsabresd:~# mkdir /config/iio/triggers/hrtimer/trigger0 /* create the
hrtimer trigger */
root@imx7dsabresd:/sys/bus/iio/devices/trigger0# echo 50 > sampling_frequency /* set
the sampling frequency */
root@imx7dsabresd:~# echo trigger0 > /sys/bus/iio/devices/iio:device2/trigger/cu
rrent_trigger /* attach the trigger to the device */

root@imx7dsabresd:~# ./iio_generic_buffer --device-num 2 -T 0 -a -l 10 -c 10 &
/* use the iio_generic_buffer application to set the buffer length and number of
conversions; the application enable the scan elements, do the adquisitions and show
them; after that, disable the scan elements */

Using the Regmap API in Linux Device Drivers Chapter 12

[572]

iio device number being used is 2
iio trigger number being used is 0
No channels are enabled, enabling all channels
Enabling: in_accel_y_en
Enabling: in_accel_x_en
Enabling: in_timestamp_en
Enabling: in_accel_z_en
/sys/bus/iio/devices/iio:device2 trigger0
-0.574500 -0.612800 9.306900 1510654381725464500
-0.612800 -0.536200 9.268600 1510654381745453000
-0.612800 -0.536200 9.268600 1510654381765445875
-0.612800 -0.536200 9.230300 1510654381785415750
-0.612800 -0.536200 9.230300 1510654381805414625
-0.612800 -0.497900 9.268600 1510654381825415000
-0.612800 -0.497900 9.268600 1510654381845414750
-0.612800 -0.536200 9.268600 1510654381865414500
-0.612800 -0.536200 9.268600 1510654381885414625
-0.574500 -0.574500 9.345200 1510654381905413000
Disabling: in_accel_y_en
Disabling: in_accel_x_en
Disabling: in_timestamp_en
Disabling: in_accel_z_en

root@imx7dsabresd:~# rmdir /config/iio/triggers/hrtimer/trigger0 /* remove the
trigger */

"Now launch the iio_event_monitor application and move the accel board until you see
several IIO events"

root@imx7dsabresd:~# ./iio_event_monitor /dev/iio\:device2
adxl345 spi2.1: single tap interrupt has occurred
Event: time: 1510654097324288875,adxl345 spi2.1: single tap interrupt has occurr
ed
 type: accel(z), channel: 0, evtype: thresh, direction: either
Event: time: 1510654097329211750, type: accel(z), channel: 0, evtype: thresh, di
rection: either
adxl345 spi2.1: single tap interrupt has occurred
Event: time: 1510654107219470250, type: accel(z), channel: 0, evtype: thresh, di
rection: either
adxl345 spi2.1: single tap interrupt has occurred
Event: time: 1510654107238069500,adxl345 spi2.1: single tap interrupt has occurr
ed
 type: accel(z), channel: 0, evtype: thresh, direction: either
Event: time: 1510654107242770125, type: accel(z), channel: 0, evtype: thresh, di
rection: either

root@imx7dsabresd:~# rmmod adxl345_imx_iio.ko /* remove the module */

[573]

References
1. NXP, "i.MX 7Dual Applications Processor Reference Manual". Document Number: IMX7DRM
Rev. 0.1, 08/2016.

2. Microchip, "SAMA5D2 Series Datasheet". Datasheet number: DS60001476B.

3. Broadcom, "BCM2835 ARM Peripherals" guide.

4. NXP, "i.MX Yocto Project User's Guide". Document Number: IMXLXYOCTOUG. Rev.
L4.9.11_1.0.0-ga+mx8-alpha, 09/2017.

5. Marcin Bis, "Exploring Linux Kernel Source Code with Eclipse and QTCreator". ELCE 2016,
Berlin, 10/2016.
https://bis-linux.com/en/elc_europe2016

6. Raspberry Pi Linux Documentation.
https://www.raspberrypi.org/documentation/linux/

7. Linux & Open Source related information for AT91 Smart ARM Microcontrollers.
http://www.at91.com/linux4sam/bin/view/Linux4SAM

8. The Linux kernel DMAEngine Documentation.
https://www.kernel.org/doc/html/v4.15/driver-api/dmaengine/index.html

9. The Linux kernel Input Documentation.
https://www.kernel.org/doc/html/v4.12/input/input.html

10. The Linux kernel PINCTRL (PIN CONTROL) subsystem Documentation.
https://www.kernel.org/doc/html/v4.15/driver-api/pinctl.html

11. The Linux kernel General Purpose Input/Output (GPIO) Documentation.
https://www.kernel.org/doc/html/v4.17/driver-api/gpio/index.html

12. Hans-Jürgen Koch, "The Userspace I/O HOWTO".
http://www.hep.by/gnu/kernel/uio-howto/

13. Daniel Baluta, "Industrial I/O driver developer's guide".
https://dbaluta.github.io/

14. Rubini, Corbet, and Kroah-Hartman, "Linux Device Drivers", third edition, O’Reilly, 02/2005.
https://lwn.net/Kernel/LDD3/

15. bootlin, "Linux Kernel and Driver Development Training".
https://bootlin.com/doc/training/linux-kernel/

References

[574]

16. Corbet, LWN.net, Kroah-Hartman, The Linux Foundation, "Linux Kernel Development report",
seventh edition, 08/2016.
https://www.linux.com/publications/linux-kernel-development-how-fast-it-going-who-doing-it-what-they-are-
doing-and-who-5/

[575]

A
alloc_chrdev_region() function 94-95

B
binding
 matching, device and driver 15, 76, 117, 211,
 438
Bootloader 20-21
Broadcom BCM2837 processor 50
bus_register() function 74
bus_type structure 74

C
C compiler 37, 38, 54
C runtime library
 about 25
 glibc 26
cdev structure 94
cdev_add() function 95
cdev_init() function 95
character device
 about 91
 devtmpfs, creation 104
 identification 91
 major and minor numbers 93
 misc framework, creation 109-111
character device driver
 about 92
 alloc_chrdev_region() function 94-95
 cdev_add() function 95
 cdev_init() function 95

 copy_from_user() function 93
 copy_to_user() function 93
 file_operations structure 92
 MAKEDEV script 94-96
 registering devices 94-95
 register_chrdev_region() function 94, 95
 unregister_chrdev_region() function 94
class, Linux
 about 174
 class_create() function 105
 class_destroy() function 105
 device_create() function 105
 device_destroy() function 105
 LED class 174
copy_from_user() function 93, 145
copy_to_user() function 93, 145
create_singlethread_workqueue() function 295-
296
create_workqueue() function 295-296

D
DECLARE_WAIT_QUEUE_HEAD() function 299
DECLARE_WORK() function 294
deferred work
 about 283-284
 bottom-half, about 284
 softirqs 283, 284-285
 tasklets 283, 286
 threaded interrupts 283, 290-292
 timers 283, 286-287
 top-half, about 284
 workqueues 283, 292-296

Index

Index

[576]

delayed_work structure 294
del_timer() function 287
del_timer_sync() function 287
destroy_workqueue() function 296
device node 91
device tree
 about 78
 building, on BCM2837 processor 53
 building, on i.MX7D processor 40
 building, on SAMA5D2 processor 48
 chosen node 80
 compatible property, about 79
 loading 29
 location 78
 machine_desc structure 79
 of_platform_populate() function 80-81
 of_scan_flat_dt() function 80
 setup_machine_fdt() function 79, 80
 unflatten_device_tree() function 80
device tree, bindings
 about 78
 gpios 143-144
 I2C controller and devices 212-213
 interrupt, connections 268-271
 interrupt, controller 268
 interrupt, device nodes 269
 pin controller 134-138
 resource properties 172
 spi controller 443
 spi devices 444
device structure 73
device_create() function 105
device_destroy() function 105
device_driver structure 73
device_for_each_child_node() function 243, 326
device_get_child_node_count() function 241
device_register() function 75-76
devm_get_gpiod_from_child() function 326

devm_gpiochip_add_data() function 139
devm_gpiod_get() function 141
devm_gpiod_get_index() function 141
devm_gpiod_put() function 141
devm_iio_device_alloc() function 480
devm_iio_device_register() function 481
devm_iio_triggered_buffer_setup() function 488
devm_input_allocate_polled_device() function
428
devm_ioremap() function 146
devm_iounmap() function 146
devm_kmalloc() function 362
devm_kzalloc() function 362
devm_led_classdev_register() function 174
devm_pinctrl_register() function 130
devm_regmap_init_i2c() function 541
devm_regmap_init_spi() function 541
devm_request_irq() function 272-273
devm_request_threaded_irq() function 290-291
devm_spi_register_master() function 438, 442
Direct Memory Access (DMA)
 about 373
 cache coherency 373-374
 dma_map_ops structure 374
DMA engine Linux API
 about 375
 bus address 377
 Contiguous Memory Allocator (CMA) 377-
 378
 Descriptor, for transaction 375-376
 dmaengine_prep_slave_sg() function 376
 dmaengine_slave_config() function 375
 dma_async_issue_pending() function 376
 dma_request_chan() function 375
 dma_slave_config structure 375
DMA from user space
 about 407-409
 mmap() function 407-409

[577]

 Index

[577]

 remap_pfn_range() function 409
DMA mapping, coherent
 about 378-380
 dma_alloc_coherent() function 378-380
 dma_free_coherent() function 380
DMA mapping, scather/gather
 about 396-397
 dma_map_sg() function 397
 dma_unmap_sg() function 397
 scatterlist structure 396
 sg_init_table() function 396
 sg_set_buf() function 396
DMA mapping, streaming
 about 380-382
 dma_map_single() function 380, 381
 dma_unmap_single() function 380, 382
dmaengine_prep_slave_sg() function 376
dmaengine_slave_config() function 375
dmaengine_submit() function 376
dma_alloc_coherent() function 378-380
dma_async_issue_pending() function 376
dma_free_coherent() function 380
dma_map_ops structures 374
dma_map_sg() function 397
dma_map_single() function 380, 381
dma_request_chan() function 375
dma_unmap_sg() function 397
dma_unmap_single() function 380, 382
documentation, for processors 123
driver_register() function 77

E
Eclipse
 about 55
 configuring, for kernel sources 56-66
 configuring, for Linux drivers 67-72
 installing 56
 URL, for installing 56

environment variables
 U-Boot, on i.MX7D processor 42-43
 U-Boot, on SAMA5D2 processor 50
 Yocto SDK 36-37
ethernet, setting up 31-32
exit() function 83

F
file_operations structure 92
flush_scheduled_work() function 294, 295
flush_workqueue() function 296
for_each_child_of_node() function 177, 181
free_irq() function 272
fsl,pins, device tree 136-137
fwnode_handle structure 241

G
get_user() function 144
glibc 26
GPIO controller driver
 about 138-140
 gpio_chip structure 138-139
GPIO interface, descriptor based
 devm_get_gpiod_from_child() function 326
 devm_gpiod_get() function 141
 devm_gpiod_get_index() function 141
 devm_gpiod_put() function 141
 gpiod_direction_input() function 141
 gpiod_direction_output() function 141
 gpiod_to_irq() function 143
 mapping, GPIOs to IRQs 143
 obtaining GPIOS 141
 using GPIOS 141-142
GPIO interface, integer based 140
GPIO irqchips, categories 139-140, 264-268
GPIO linux number 127
gpiod_direction_input() function 141

Index

[578]

gpiod_direction_output() function 141
gpiod_to_irq() function 143
gpio_chip.to_irq() function 262

H
hardware irq’s (hwirq) 257

I
I2C, definition 205
I2C device driver
 i2c_add_driver() function 210
 i2c_device_id structure 211
 i2c_driver structure 210
 registering 210
I2C subsystem, Linux
 I2C bus core 206
 I2C controller drivers 206-207
 I2C device drivers 208-209
 registering, I2C controller devices 209
 registering, I2C controller drivers 207
i2cdetect, application 433, 516
i2c_adapter structure 212
i2c_add_driver() function 210
i2c_del_driver() function 210
i2c_set_clientdata() function 222
i2c-utils, application 433, 516
IIO buffers
 about 485
 iio_chan_spec structure 485-486
 iio_push_to_buffers_with_timestamp() function
 487
 setup 485-487
 sysfs interface 485
IIO device, channels
 about 481
 iio_chan_spec structure 481-482
 sysfs attributes 482-484

IIO device, sysfs interface 481
IIO driver
 devm_iio_device_alloc() function 480
 devm_iio_device_register() function 481
 registration 480-481
IIO events
 about 48
 iio_event_spec structure 490
 iio_push_event() function 492
 kernel hooks 491
 sysfs attributes 490
IIO triggered buffers
 about 487-488
 devm_iio_triggered_buffer_setup() function 488
 iio_triggered_buffer_cleanup() function 488
 iio_triggered_buffer_setup() function 487
IIO utils 494
iio_info structure
 about 484
 kernel hooks 484
iio_priv() function 499, 502, 521
iio_push_event() function 492
iio_push_to_buffers_with_timestamp() function
487
iio_triggered_buffer_cleanup() function 488
iio_triggered_buffer_setup() function 487
Industrial I/O framework (IIO), about 479
init process 30
init programs 30
init() function 83
init_waitqueue_head() function 299
INIT_WORK() function 294
Input subsystem framework
 about 419
 drivers 420-421
 evtest, application 421
 input_event() function 424
 input_polled_dev structure 424

[579]

 Index

[579]

 input_register_polled_device() function 424
 input_sync() function 424
 input_unregister_polled_device() function 424
 set_bit() function 424
interrupt context, kernel 283
interrupt controllers 257
interrupt handler
 about 272
 function, parameters 272
 function, return values 273
interrupt links, device tree 269-270
interrupts, device tree 269
interrupt-cells, device tree 268
interrupt-controller, device tree 268
interrupt-parent, device tree 269
ioremap() function 146
IRQ domain 260
IRQ number 257
irq_chip structure 257-258
irq_create_mapping() function 261-262
irq_data structure 259-260
irq_desc structure 258-259
irq_domain structure 260-261
irq_domain_add_*() functions 261
irq_find_mapping() function 262, 268
irq_set_chip_and_handler() function 263

J
jiffie 287

K
kernel memory, allocators
 kmalloc allocator 362
 PAGE allocator 357-358
 PAGE allocator API 358
 SLAB allocator 358-360
 SLAB allocator API 361-362

kernel modules
 building and installing, on BCM2837
 processor 53
 building and installing, on i.MX7D
 processor 42
 building and installing, on SAMA5D2
 processor 49
kernel object (kobject)
 attributes 231-233
 structures 230
kernel physical memory
 memory-mapped I/O 356
 ZONE_DMA 356
 ZONE_HIGMEM 356
 ZONE_NORMAL 356
kernel threads
 definition 312
 kthread_create() function 312-313
 kthread_run() function 313
 kthread_stop() function 313
 wake_up_process() function 313
kfree() function 362
kmalloc allocator
 about 362
 devm_kmalloc() function 362
 devm_kzalloc() function 362
 kfree() function 362
 kmalloc() function 362
 kzalloc() function 362
kthread_create() function 312-313
kthread_run() function 313
kthread_stop() function 313

L
led_classdev structure 174-176
Linux, address types
 bus addresses 353
 kernel logical addresses 354

Index

[580]

 kernel virtual addresses 354
 physical addresses 353
 user virtual addresses 353
Linux, boot process
 DDR initialization 28
 main stages 28-30
 on-chip boot ROM 28-29
 start_kernel() function 29-30
Linux, device and driver model
 about 73
 binding 76
 bus controller drivers 76
 bus core drivers 74-76
 bus_register() function 74
 bus_type structure 74
 data structures 73
 device drivers 77
 device_driver structure 77
 device_register() function 75, 76
 driver_register() function 76, 77
 probe() function 76, 77
Linux embedded
 about 19
 building, cross toolchain 30
 building, methods 31
 building, on BCM2837 processor 50-51
 building, on i.MX7D processor 32-35
 building, on SAMA5D2 processor 43-46
 main components 19
Linux kernel
 about 22
 building, on BCM2837 processor 51-52
 building, on i.MX7D processor 39-40
 building, on SAMA5D2 processor 47-48
 distribution kernels 25
 licensing 84
 longterm 22, 24
 mainline 22, 23
 prepatch 23

 stable 22, 23
 subsystems 23
Linux kernel modules
 about 83
Linux LED class
 about 174
 devm_led_classdev_register() function 174
 registering 174
list_head devres_head structure 146
locking, kernel
 about 296-297
 mutex 297
 spinlock 297

M
menuconfig 39 ,47, 51, 103, 104, 192 ,423
Microchip SAMA5D2 processor 43
mikroBUS™ standard 148
miscellaneous devices 109, 110
miscdevice structure 110
misc_deregister() function 110
misc_register() function 110
mmap() function 407-409
MMIO (Memory-Mapped I/O)
 about 145
 devm_ioremap() function 146
 ioremap() function 146
 reading/writing, interfaces 146
MMU (Memory Management Unit) 345-346
MMU translation tables 346-352
mm_struct structure 351
module_exit() function 83
module_init() function 83
MODULE_LICENSE macro 84
module_platform_driver() function 117
module_spi_driver() function 441
multiplexing, pin 123
mutex, kernel lock 297

[581]

 Index

[581]

N
net name, schematic 124
Network File System (NFS) server
 installing, on i.MX7D processor 42
 installing, on SAMA5D2 processor 49
NXP i.MX7D processor 32

O
of_device_id structure 117
of_match_table
 I2C device driver 211
 platform device driver 115
 SPI device driver 441
of_platform_populate() function 81
of_property_read_string() function 163
of_scan_flat_dt() function 80
open() system call 92

P
pad
 definition 123
 gpio function 126
 iomux mode, on BCM2837 processor 151
 iomux mode, on i.MX7D processor 126
 iomux mode, on SAMA5D2 processor 150
 logical/canonical name 123
PAGE allocator, kernel memory 357-358
PAGE allocator API, kernel memory 358
Page Global Directory (PGD), MMU 351
Page Middle Directory (PMD), MMU 352
Page Table (PTE), MMU 352
Page Upper Directory (PUD), MMU 352
pin configuration node, device tree 135, 136
pin control subsystem, about 127-134
pin controller, about 124-127
pin, definition 123

pinctrl-0, device tree 135
pinctrl_desc structure 130
platform bus, about 115
platform device driver
 about 115
 module_platform_driver() function 117
 platform_driver structure 115-116
 platform_driver_register() function 116
 platform_get_irq() function 174, 278
 platform_get_resource() function 173
 platform_set_drvdata() function 163
 probe() function 115, 116
 registering 116, 117
 resources, structures and APIs 172-174
 resource_size() function 173
platform devices
 about 115
 registering 81
platform_driver_register() function 116
platform_get_drvdata() function 164
platform_get_irq() function 174, 278
platform_get_resource() function 173
platform_set_drvdata() function 163
probe() function 116
process context, kernel 283
put_user() function 144

Q
queue_work() function 296

R
race, condition 296
Raspbian
 about 50-51
 installing, on BCM2837 processor 51
read() system call 92, 93
register_chrdev_region() function 94, 95

Index

[582]

Regmap
 about 541
 devm_regmap_init_i2c() function 541
 devm_regmap_init_spi() function 541
 regmap structure 541
 regmap_config structure 542
Regmap, implementation
 APIs 544-546
 regmap_config structure 543-544
regmap_bulk_read() function 550
remap_pfn_range() function 409
repo, utility 33
request_irq() function 272
resource structure 172
resource_size() function 173
root filesystem 27-28

S
schedule_delayed_work_on() function 295
schedule_on_each_cpu() function 295
schedule_work() function 294
setup_arch() function 79
setup_machine_fdt() function 79, 80
set_bit() function 424
sg_init_table() function 396
sg_set_buf() function 396
SLAB allocator, kernel memory 358-360
SLAB allocator API, kernel memory 361-362
sleeping, kernel
 about 298-299
 DECLARE_WAIT_QUEUE_HEAD() function 299
 init_waitqueue_head() function 299
 wait queue 299
 wait_event() function 299
 wait_event_interruptible() function 299
 wait_queue_head_t structure 299
 wake_up() function 299-300
SMBus, definition 205

softirqs, deferred work 283, 284-285
SPI, about 435
SPI device drivers
 about 440
 registration 440-441
 spi_driver structure 440-441
SPI, Linux
 controller drivers 435
 protocol drivers 436
 spi_async() function 436
 spi_read() function 436
 spi_sync() function 436
 spi_write() function 436
 spi_write_then_read() function 436, 438, 440
SPI, Linux subsystem
 SPI bus core drivers 437
 SPI controller drivers 438-440
 SPI device drivers 440
spidev driver 509
spinlock, kernel lock 297
spi_w8r16() function 437
spi_write_then_read() function 436, 438, 440
start_kernel() function 29-30
sysfs filesystem
 about 87, 229-233
system call, interface
 about 25
 open() system call 92
 read() system call 92, 93
 write() system call 92, 93
system shared libraries
 about 26
 locations 27

T
tasklets, deferred work 283, 286
task_struct structure 351

[583]

 Index

[583]

threaded interrupts, deferred work 283, 290-
292
timers, deferred work 283, 286-287
timer_list structure 286
timeval structure 88-89
toolchain
 about 30
 setting up, on BCM2837 processor 51
 setting up, on i.MX7D processor 36-37
 setting up, on SAMA5D2 processor 46-47
Translation Lookaside Buffers (TLBs), MMU
346
Translation Table Base Control Register
(TTBCR), MMU 348
Translation Table Base Registers (TTRB0 and
TTRB1), MMU 348
Trivial File Transfer Protocol (TFTP) server
 installing, on i.MX7D processor 41
 installing, on SAMA5D2 processor 49

U
UIO driver 190-192
UIO framework
 APIs 193-194
 definition 190
 working 192-193
UIO platform device driver 191
uio_register_device() function 194
unflatten_device_tree() function 80
Unified Device Properties, API
 about 240
 functions 241
unregister_chrdev_region() function 94
user space, drivers
 advantages 189
 disadvantages 189
U-Boot
 about 20

 main features 21
 setting up environment variables, on i.MX7D
 processor 42-43
 setting up environment variables, on SAMA5D2
 processor 50

V
virtual file, about 91
virtual interrupt ID 257
virtual memory layout, user space process
 data segment 354
 memory mapping segment 354-355
 stack segment 355
 text segment 354
virtual to physical, memory mapping, kernel
355-356

W
wait queue, kernel sleeping 299
wait_event() function 299
wait_event_interruptible() function 299
wake_up() function 299-300
workqueues, deferred work
 about 283, 292-296
 create_singlethread_workqueue() function 295-
 296
 create_workqueue() function 295-296
 DECLARE_WORK() function 294
 destroy_workqueue() function 296
 flush_scheduled_work() function 294, 295
 flush_workqueue() function 296
 INIT_WORK() function 294
 queue_work() function 296
 schedule_delayed_work_on() function 295
 schedule_on_each_cpu() function 295
 schedule_work() function 294
 work item 292

Index

[584]

 work types 293-294
 worker 292
 workqueue_struct structure 295
 work_struct structure 294
write() system call 92, 93

Y
Yocto
 about 31
 host packages 33, 44
 setting up, on i.MX7D processor 33-35
 setting up, on SAMA5D2 processor 44-46
Yocto Project SDK
 about 36
 setting up, on i.MX7D processor 36-38
 setting up, on SAMA5D2 processor 46-47

	Title Page
	Copyright
	About the Author
	Table of Contents
	Preface
	1. Building the System
	2. The Linux Device and Driver Model
	3. The Simplest Drivers
	4. Character Drivers
	5. Platform Drivers
	6. I2C Client Drivers
	7. Handling Interrupts in Device Drivers
	8. Allocating Memory with Linux Drivers
	9. Linux DMA in Device Drivers
	10. Input Subsystem Framework for Device Drivers
	11. Industrial I/O Subsystem for Device Drivers
	12. Using the Regmap API in Linux Device Drivers
	References
	Index

		2018-12-05T20:42:31+0000
	Preflight Ticket Signature

