
Linux Containers
and Virtualization

A Kernel Perspective
—
Shashank Mohan Jain

Linux Containers
and Virtualization

A Kernel Perspective

Shashank Mohan Jain

Linux Containers and Virtualization: A Kernel Perspective

ISBN-13 (pbk): 978-1-4842-6282-5		 ISBN-13 (electronic): 978-1-4842-6283-2
https://doi.org/10.1007/978-1-4842-6283-2

Copyright © 2020 by Shashank Mohan Jain

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Spandana Chatterjee
Development Editor: Matthew Moodie
Coordinating Editor: Shrikant Vishwakarma

Cover designed by eStudioCalamar

Cover image designed by Pexels

Distributed to the book trade worldwide by Springer Science+Business Media LLC, 1 New York
Plaza, Suite 4600, New York, NY 10004. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book’s product page, located at www.apress.com/
978-1-4842-6282-5. For more detailed information, please visit http://www.apress.com/
source-code.

Printed on acid-free paper

Shashank Mohan Jain
Bengaluru, India

https://doi.org/10.1007/978-1-4842-6283-2

To my parents, my wife, and daughter, for being
patient with me during the making of this book and

always making that positive difference.

v

Table of Contents

Chapter 1: ��Virtualization Basics��1

History of Virtualization��1

What Is Virtualization?���2

VM-Based Virtualization���3

Container-Based Virtualization���4

Hypervisors��4

Virtual Machine Monitor (VMM)��4

Device Model��6

Memory Virtualization��6

Shadow Page Tables���7

Nested Page Tables with Hardware Support��7

CPU Virtualization���8

Binary Translation in the Case of Full Virtualization���9

Paravirtualization��10

IO Virtualization��11

Full Virtualization��11

Paravirtualization��11

About the Author��ix

About the Technical Reviewer��xi

Introduction��xiii

vi

Chapter 2: ��Hypervisors��15

The Intel Vt-x Instruction Set��16

The Quick Emulator (QEMU)���19

Creating a VM Using the KVM Module��21

Vhost Based Data Communication���22

What Is an eventfd?���23

Alternative Virtualization Mechanisms���25

Unikernels��26

Project Dune���28

novm���29

Summary of Alternate Virtualization Approaches���29

Chapter 3: ��Namespaces���31

Namespace Types��32

UTS���33

PID��33

Mount���33

Network��34

IPC��35

Cgroup��35

Time��35

Adding a Device to a Namespace���42

Summary���43

Chapter 4: ��Cgroups��45

Creating a Sample cgroup���46

Cgroup Types��50

CPU Cgroup��51

Table of Contents

vii

Block I/O cgroups���62

Understanding Fairness���67

Understanding Throttling���70

Chapter 5: ��Layered File Systems���81

A File System Primer��81

A Few Words on Pseudo File Systems���85

Layered File Systems���86

The Union File System���87

OverlayFS���88

Chapter 6: ��Creating a Simple Container Framework���������������������������93

The UTS Namespace��93

Golang Installation���95

Building a Container with a Namespace��96

Adding More Namespaces���99

Launching a Shell Program Within the Container��105

Providing Root File System��108

The Mount Proc File System��114

Enabling the Network for the Container���120

Virtual Networking a Small Primer���120

Enabling Cgroups for the Container���135

Summary���144

�Index��145

Table of Contents

ix

About the Author

Shashank Mohan Jain has been working in

the IT industry for nearly 20 years, mainly in

the areas of cloud computing and distributed

systems. He has keen interests in virtualization

techniques, security, and complex, dynamic

systems. Shashank has 25 software patents

(many yet to be published) to his name in the

area of cloud computing, IoT, and machine

learning. He is a speaker at multiple reputed

cloud conferences. Shashank also holds Sun,

Microsoft, and Linux kernel certifications.  

xi

About the Technical Reviewer

Suresh Venkatasubramaniyan has a Ph.D.

from the Indian Institute of Science in image

forensics, compression, and encryption. He

has close to 20 years of experience in machine

learning and data mining. His areas of interests

include natural language understanding,

complex networks, and computational

cognition. At present, he is a Principal Data

Scientist with Walmart Labs. Previously,

he was an R&D expert with SAP Labs and

Accenture AI.  

xiii

Introduction

The motivation for this book goes back to the words of Nobel Laureate

and famous scientist Richard Feynman, “What I cannot create, I do not

understand.”

The idea of the book was to develop a deep understanding of the world

of virtualization and, in particular, go down the rabbit hole as far as Linux

containers are concerned. Readers will get an understanding of what

happens at the Linux operating system level when we talk of virtualization

and Linux containers. The book explores the data structures involved in

creating the isolation provided by Linux containers as well as the various

resource control mechanisms.

The book will be helpful for people working in the area of cloud

computing. Whether its development or DevOps, the book can take

readers through the journey of what is really happening under the hood.

It doesn’t cover the API level, but covers what happens below the APIs

when we use Linux containers. By reading this book and going over the

exercises, readers will get a decent understanding of how the world of

containers works and will be able to better optimize and troubleshoot their

deployments.

1© Shashank Mohan Jain 2020
S. M. Jain, Linux Containers and Virtualization, https://doi.org/10.1007/978-1-4842-6283-2_1

CHAPTER 1

Virtualization Basics
This book explains the basics of virtualization and will help
you create your own container frameworks like Docker, but a
slimmed-down version. Before we get into that process, we need
to understand how the Linux kernel supports virtualization
and how the evolution of the Linux kernel and CPUs helped
advance virtual machines in terms of performance, which in
turn led to the creation of containerization technologies.

The intent of this chapter is to explain what a virtual machine
is and what is happening under the hood. We also look into
some of the basics of hypervisors, which make it possible to
run a virtual machine in a system.

�History of Virtualization
Prior to the virtualization era, the only way to get full physical servers

provisioned was via IT. This was a costly and time-consuming process. One

of the major drawbacks of this method was that the machine’s resources—

like the CPU, memory, and disks—remained underutilized. To get around

this, the notion of virtualization started to gain traction.

The history of virtualization goes back to the 1960s, when Jim

Rymarczyk, who was a programmer with IBM, started virtualizing the IBM

mainframe. IBM designed the CP-40 mainframe for internal usage. This

system evolved into the CP-67, which used partition technology to run

multiple applications at once. Finally came UNIX, which allowed multiple

https://doi.org/10.1007/978-1-4842-6283-2_1#DOI

2

programs to run on the x86 hardware. Still the problem of portability

remained. In the early 90s, Sun Microsystems came up with Java, which

allowed the “write once run anywhere” paradigm to spread its wings. A

user could now write a program in Java that could run across a variety of

hardware architectures. Java did this by introducing intermediary code

(called bytecode), which could then be executed on a Java runtime across

different hardware architectures. This was the advent of process-level

virtualization, whereby the Java runtime environment virtualized the

POSIX layer.

In the late 1990s, VMware stepped in and launched its own

virtualization model. This was related to virtualizing the actual hardware

like the CPU, memory, disks, and so on. This meant that on top of the

VMware software (also called the hypervisor), we could run operating

systems themselves (called guests). This meant that developers were not

restricted to just running Java programs, but could run any program meant

to be run on the guest operating system. Around 2001, VMware launched

the ESX and GSX servers. GSX was a Type 2 hypervisor so it needed an

operating system like Windows to run guests. ESX was a Type 1 hypervisor,

which allowed guest OSes to be run directly on the hypervisor.

�What Is Virtualization?
Virtualization provides abstraction on top of the actual resources we want

to virtualize. The level at which this abstraction is applied changes the way

that different virtualization techniques look.

At a higher level, there are two major virtualization techniques based

on the level of abstraction.

•	 Virtual machine (VM)-based

•	 Container-based

Chapter 1 Virtualization Basics

3

Apart from these two virtualizing techniques, there are other

techniques, such as unikernels, which are lightweight single-purpose VMs.

IBM is currently attempting to run unikernels as processes with projects

like Nabla. In this book, we will mainly look at VM-based and container-

based virtualizations only.

�VM-Based Virtualization
The VM-based approach virtualizes the complete OS. The abstraction

it presents to the VM are virtual devices like virtual disks, virtual CPUs,

and virtual NICs. In other words, we can state that this is virtualizing

the complete ISA (instruction set architecture); as an example,

the x86 ISA.

With virtual machines, multiple OSes can share the same hardware

resources, with virtualized representations of each of the resources

available to the VM. For example, the OS on the virtual machine (also

called the guest) can continue to do I/O operations on a disk (in this

case, it’s a virtual disk), thinking that it’s the only OS running on the

physical hardware (also called the host), although in actuality, it is

shared by multiple virtual machines as well as by the host OS.

VMs are very similar to other processes in the host OS. VMs execute

in a hardware-isolated virtual address space and at a lower privilege

level than the host OS. The primary difference between a process and

a VM is the ABI (Application Binary Interface) exposed by the host

to the VM. In the case of a process, the exposed ABI has constructs

like network sockets, FDs, and so on, whereas with a full-fledged OS

virtualization, the ABI will have a virtual disk, a virtual CPU, virtual

network cards, and so on.

Chapter 1 Virtualization Basics

4

�Container-Based Virtualization
This form of virtualization doesn’t abstract the hardware but uses

techniques within the Linux kernel to isolate access paths for different

resources. It carves out a logical boundary within the same operating

system. As an example, we get a separate root file system, a separate

process tree, a separate network subsystem, and so on.

�Hypervisors
A special piece of software is used to virtualize the OS, called the

hypervisor. The hypervisor itself has two parts:

•	 Virtual Machine Monitor (VMM): Used for trapping

and emulating the privileged instruction set (which

only the kernel of the operating system can perform).

•	 Device model : Used for virtualizing the I/O devices.

�Virtual Machine Monitor (VMM)
Since the hardware is not available directly on a virtual machine (although

in some cases it can be), the VMM traps privileged instructions that access

the hardware (like disk/network card) and executes these instructions on

behalf of the virtual machine.

The VMM has to satisfy three properties (Popek and Goldberg, 1973):

•	 Isolation :  Should isolate guests (VMs) from each other.

•	 Equivalency : Should behave the same, with or without

virtualization. This means we run the majority (almost

all) of the instructions on the physical hardware

without any translation, and so on.

Chapter 1 Virtualization Basics

5

•	 Performance : Should perform as good as it does

without any virtualization. This again means that the

overhead of running a VM is minimal.

Some of the common functionalities of the VMM are as follows:

•	 Does not allow the VM to access privileged states; that

is, things like manipulating the state of certain host

registers should not be allowed from the VM. The VMM

will always trap and emulate those calls.

•	 Handles exceptions and interrupts. If a network

call (i.e., a request) was issued from within a virtual

machine, it will be trapped in the VMM and emulated.

On receipt of a response over the physical network/

NIC, the CPU will generate an interrupt and deliver it to

the actual virtual machine that it’s addressed to.

•	 Handles CPU virtualization by running the majority

of the instructions natively (within the virtual CPU

of the VM) and only trapping for certain privileged

instructions. This means the performance is almost as

good as native code running directly on the hardware.

•	 Handles memory mapped I/O by mapping the calls to

the virtual device-mapped memory in the guest to the

actual physical device-mapped memory. For this, the

VMM should control the physical memory mappings

(Guest Physical memory to Host Physical memory).

More details are covered in a later section of this

chapter.

Chapter 1 Virtualization Basics

6

�Device Model
The device model of the hypervisor handles the I/O virtualization again by

trapping and emulating and then delivering interrupts back to the specific

virtual machine.

�Memory Virtualization
One of the critical challenges with virtualization is how to virtualize

the memory. The guest OS should have the same behavior as the non-

virtualized OS. This means that the guest OS should probably be at least

made to feel that it controls the memory.

In the case of virtualization, the guest OS cannot be given direct access

to the physical memory. What this means is that the guest OS should not

be able to manipulate the hardware page tables, as this can lead to the

guest taking control of the physical system.

Before we delve into how this is tackled, a basic understanding of

memory virtualization is needed, even in the context of normal OS and

hardware interactions.

The OS provides its processes a virtual view of memory; any access

to the physical memory is intercepted and handled by the hardware

component called the Memory Management Unit (MMU). The OS sets up

the CR3 register (via a privileged instruction) and the MMU uses this entry

to walk the page tables to determine the physical mapping. The OS also

takes care of changing these mappings when allocation and deallocation of

physical memory happens.

Now, in the case of virtualized guests, the behavior should be similar.

The guest should not get direct access to the physical memory, but should

be intercepted and handled by the VMM.

Chapter 1 Virtualization Basics

7

Basically, there are three memory abstractions involved when running

a guest OS:

•	 Guest Virtual memory: This is what the process

running on the guest OS sees.

•	 Guest Physical memory: This is what the guest OS

sees.

•	 System Physical  memory: This is what the VMM sees.

There are two possible approaches to handle this:

•	 Shadow page tables

•	 Nested page tables with hardware support

�Shadow Page Tables
In the case of shadow page tables, the Guest Virtual memory is mapped

directly to the System Physical memory via the VMM. This improves

performance by avoiding one additional layer of translation. But this

approach has a drawback. When there is a change to the guest page tables,

the shadow page tables need to be updated. This means there has to be a

trap and emulation into the VMM to handle this. The VMM can do this by

marking the guest page tables as read-only. That way, any attempt by the

guest OS to write to them causes a trap and the VMM can then update the

shadow tables.

�Nested Page Tables with Hardware Support
Intel and AMD provided a solution to this problem via hardware

extensions. Intel provides something called an Extended Page Table (EPT),

which allows the MMU to walk two page tables.

Chapter 1 Virtualization Basics

8

The first walk is from the Guest Virtual to the Guest Physical memory

and the second walk is from the Guest Physical to the System Physical

memory. Since all this translation now happens in the hardware, there is

no need to maintain shadow page tables. Guest page tables are maintained

by the guest OS and the other page table is maintained by the VMM.

With shadow page tables, the TLB cache (translation look-aside buffer,

which is part of MMU) needs to be flushed on a context switch, that is,

bringing up another VM. Whereas, in the case of an EPT, the hardware

introduces a VM identifier via the address space identifier, which means

TLB can have mappings for different VMs at the same time, which is a

performance boost.

�CPU Virtualization
Before we look into CPU virtualization, it would be interesting to

understand how the protection rings are built into the x86 architecture.

These rings allow the CPU to protect memory and control privileges and

determine what code executes at what privilege level.

The x86 architecture uses the concept of protection rings. The kernel

runs in the most privileged mode, Ring 0, and the user space used for

running processes run is in Ring 3.

The hardware requires that all privileged instructions be executed in

Ring 0. If any attempt is made to run a privileged instruction in Ring 3,

the CPU generates a fault. The kernel has registered fault handlers and,

based on the fault type, a fault handler is invoked. The corresponding fault

handler does a sanity check on the fault and processes it. If a sanity check

passes, the fault handler handles the execution on behalf of the process. In

the case of VM-based virtualization, the VM is run as a process on the host

OS, so if a fault is not handled, the whole VM could be killed.

Chapter 1 Virtualization Basics

9

At a high-level, privilege instruction execution from Ring 3 is

controlled by a code segment register via the CPL (code privilege level)

bit. All calls from Ring 3 are gated to Ring 0. As an example, a system call

can be made by an instruction like syscall (from user space), which in

turn sets the right CPL level and executes the kernel code with a higher

privilege level. Any attempt to directly call high-privilege code from upper

rings leads to a hardware fault.

The same concept applies to a virtualized OS. In this case, the guest

is deprivileged and runs in Ring 1 and the process of the guest runs in

Ring 3. The VMM itself runs in Ring 0. With fully virtualized guests, any

privileged instruction has to be trapped and emulated. The VMM emulates

the trapped instruction. Over and above the privileged instructions, the

sensitive instructions also need to be trapped and emulated by the VMM.

Older versions of x86 CPU are not virtualizable, which means not all

sensitive instructions are privileged. Instructions like SGDT, SIDT, and more

can be executed in Ring 1 without being trapped. This can be harmful when

running a guest OS, as this could allow the guest to peek at the host kernel

data structures. This problem can be addressed in two ways:

•	 Binary translation in the case of full virtualization

•	 Paravirtualization in the case of XEN with hypercalls

�Binary Translation in the Case of Full
Virtualization
In this case, the guest OS is used without any changes. The instructions

are trapped and emulated for the target environment. This causes a lot of

performance overhead, as lots of instructions have to be trapped into the

host/hypervisor and emulated.

Chapter 1 Virtualization Basics

10

�Paravirtualization
To avoid the performance problems related to binary translation when

using full virtualization, we use paravirtualization, wherein the guest

knows that it is running in a virtualized environment and its interaction

with the host is optimized to avoid excessive trapping. As an example, the

device driver code is changed and split into two parts. One is the backend

(which is with the hypervisor) and the other is the frontend, which is with

the guest. The guest and host drivers now communicate over ring buffers.

The ring buffer is allocated from the guest memory. Now the guest can

accumulate/aggregate data within the ring buffer and make one hypercall

(i.e., a call to the hypervisor, also called a kick) to signal that the data is

ready to be drained. This avoids excessive traps from the guest to the host

and is a performance win.

In 2005, x86 finally became virtualizable. They introduced one more

ring, called Ring -1, which is also called VMX (virtual machine extensions)

root mode. The VMM runs in VMX root mode and the guests run in non-

root mode.

This means that guests can run in Ring 0 and, for the majority of the

instructions, there is no trap. Privileged/sensitive instructions that guests

need are executed by the VMM in root mode via the trap. We call these

switches the VM Exits (i.e., the VMM takes over instruction executions

from the guest) and VM Entries (the VM gains control from the VMM).

Apart from this, the virtualizable CPU manages a data structure called

VMCS (VM control structure), and it has the state of the VM and registers.

The CPU uses this information during the VM Entries and Exits. The

VMCS structure is like task_struct, the data structure used to represent

a process. One VMCS pointer points to the currently active VMCS. When

there is a trap to the VMM, VMCS provides the state of all the guest

registers, like the reason of exit, and so on.

Chapter 1 Virtualization Basics

11

Advantages of hardware-assisted virtualization are two-fold:

•	 No binary translation

•	 No OS modification

The problem is that the VM Entry and Exits are still heavy calls

involving a lot of CPU cycles, as the complete VM state has to be saved and

restored. Considerable work has gone into reducing the cycles of these

entries and exits. Using paravirtualized drivers helps mitigate some of

these performance concerns. The details are explained in the next section.

�IO Virtualization
There are generally two modes of IO virtualization:

•	 Full virtualization

•	 Paravirtualization

�Full Virtualization
With full virtualization, the guest does not know it’s running on a

hypervisor and the guest O/S doesn’t need any changes to run on a

hypervisor. Whenever the guest makes I/O calls, they are trapped on the

hypervisor and the hypervisor performs the I/O on the physical device.

�Paravirtualization
In this case, the guest OS is made aware that it’s running in a virtualized

environment and special drivers are loaded into the guest to take care of

the I/O. The system calls for I/O are replaced with hypercalls.

Figure 1-1 shows the difference between paravirtualization and full

virtualization.

Chapter 1 Virtualization Basics

12

With the paravirtualized scenario, the guest-side drivers are called the

frontend drivers and the host-side drivers are called the backend drivers.

Virtio is the virtualization standard for implementing paravirtualized

drivers. The frontend network or I/O drivers of the guest are implemented

based on the Virtio standard and the frontend drivers are aware that

they are running in a virtual environment. They work in tandem with

the backend Virtio drivers of the hypervisor. This working mechanism of

frontend and backend drivers helps achieve high-performance network

and disk operations and is the reason for most of the performance benefits

enjoyed by paravirtualization.

As mentioned, the frontend drivers on the guests implement a

common set of interfaces, as described by the Virtio standard. When an

I/O call has to be made from the process in the guest, the process invokes

the frontend driver API and the driver passes the data packets to the

corresponding backend driver through the virtqueue (the virtual queue).

The backend drivers can work in two ways:

•	 They can use QEMU emulation, which means the

QEMU emulates the device call via system calls from

the user space. This means that hypervisor lets the user

space QEMU program make the actual device calls.

Figure 1-1.  Difference between full and paravirtualized drivers

Chapter 1 Virtualization Basics

13

•	 They can use mechanisms like vhost, whereby the

QEMU emulation is avoided and the hypervisor kernel

makes the actual device call.

As mentioned, communication between frontend and backend Virtio

drivers is done by the virtqueue abstraction. The virtqueue presents an API

to interact, which allows it to enqueue and dequeue buffers. Depending on

the driver type, they can use zero or more queues. In the case of a network

driver, it uses two virtqueues—one queue for the request and the other to

receive the packets. The Virtio block driver, on the other hand, uses only

one virtqueue.

Consider this example of a network packet flow, where the guest wants

to send some data over the network:

	 1.	 The guest initiates a network packet write via the

guest kernel.

	 2.	 The paravirtualized drivers (Virtio) in guest take

those buffers and put them into the virtqueue (tx).

	 3.	 The backend of the virtqueue is the worker thread,

and it receives the buffers.

	 4.	 The buffers are then written to the tap device file

descriptor. The tap device can be connected to a

software bridge like an OVS or Linux bridge.

	 5.	 The other side of the bridge has a physical interface,

which then takes the data out over the physical layer.

In this example, when a guest places the packets on the tx queue,

it needs a mechanism to inform the host side that there are packets for

handling. There is an interesting mechanism in Linux called eventfd that’s

used to notify the host side that there are events. The host watches the

eventfd for changes.

Chapter 1 Virtualization Basics

14

A similar mechanism is used to send packets back to the guest.

As you saw in earlier sections, the hardware industry is catching up

in the virtualization space and is providing more and more hardware

virtualization, be it for CPUs (introducing a new ring) and instructions

with vt-x or be it for memory (extended page tables).

Similarly, for I/O virtualization, hardware has a mechanism called

an I/O memory management unit, which is similar to the memory

management unit of CPU, but this is just for I/O-based memory. The

concept is similar to CPU MMU, but here the device memory access is

intercepted and mapped to allow different guests. Guests are physically

mapped to different physical memory and access is controlled by the I/O

MMU hardware. This provides the isolation needed for device access.

This feature can be used in conjunction with something called SRIOV

(single root I/O virtualization), which allows an SRIOV-compatible device

to be broken into multiple virtual functions. The basic idea is to bypass the

hypervisor in the data path and use a pass-through mechanism, wherein

VM directly communicates with the devices. Details of SRIOV are beyond

the scope of this book. Curious users can follow these links for more about

SRIOV:

https://blog.scottlowe.org/2009/12/02/what-is-sr-iov/

https://fir3net.com/Networking/Protocols/what-is-sr-iov-

single-root-i-o-virtualization.html

Chapter 1 Virtualization Basics

https://blog.scottlowe.org/2009/12/02/what-is-sr-iov/
https://fir3net.com/Networking/Protocols/what-is-sr-iov-single-root-i-o-virtualization.html
https://fir3net.com/Networking/Protocols/what-is-sr-iov-single-root-i-o-virtualization.html

15© Shashank Mohan Jain 2020
S. M. Jain, Linux Containers and Virtualization, https://doi.org/10.1007/978-1-4842-6283-2_2

CHAPTER 2

Hypervisors
In the previous chapter, we discussed what virtualization is
and covered the types of virtualization—VM-based and
container-based. In VM-based virtualization, we briefly
discussed the role and importance of the hypervisor, which
facilitates the creation of virtual machines.

In this chapter, we do a deep dive into hypervisors. Most of the
chapter explains virtualization using components like the
Linux Kernel Virtual Machine (KVM) and the Quick Emulator
(QEMU). Based on these components, we then look at how
VMs are created and how data flow between the guest and the
hosts is facilitated.

Linux provides hypervisor facilities by using the QEMU in the user space

and a specialized kernel module called the KVM (the Linux Kernel Virtual

Machine). The KVM uses the Intel vt-x extension instruction set to isolate

resources at the hardware level. Since the QEMU is a user space process,

the kernel treats it like other processes from a scheduling perspective.

Before we discuss the QEMU and KVM, let’s touch upon Intel’s vt-x

and its specific instruction set.

https://doi.org/10.1007/978-1-4842-6283-2_2#DOI

16

The Intel Vt-x Instruction Set
Intel’s virtualization technology (VT) comes in two flavors:

•	 Vt-x (for Intel x86 IA-32 and 64-bit architectures)

•	 Vt-i (for the Itanium processor line)

Functionalities wise, they are similar. To understand the need for

virtualization support at the CPU level, let’s quickly review how programs

and the OS interact with the CPU, as well as how programs in VM interact

with the CPU.

In the case of regular programs running on the host, the OS translates the

program instructions into CPU instructions that are executed by the CPU.

In the case of a virtual machine, to run the programs within the virtual

machine, the guest OS translates program instructions into virtual CPU

instructions and the hypervisor then converts these into instructions for

the physical CPU.

As we can see, for VM, the program instructions are translated twice—

the program instructions are translated into virtual CPU instructions and

the virtual CPU instructions are translated into physical CPU instructions.

This results in large performance overhead and slows down the virtual

machine. CPU virtualization, like the vt-x feature, enables complete

abstraction of the full prowess of the CPU to the virtual machine so that all

the software in the VM can run without a performance hit; it runs as if it

were on a dedicated CPU.

The vt-x also solves the problem whereby the x86 instructions

architecture cannot be virtualized. According to the Popek Goldberg

principle for virtualization (https://en.wikipedia.org/wiki/Popek_and_

Goldberg_virtualization_requirements), all sensitive instructions must

also be privileged. Privileged instructions cause a trap in user mode. In

x86, some instructions are sensitive but not privileged. This means running

them in the user space would not cause a trap. In effect, this means they are

not virtualizable. An example of such an instruction is POPF.

Chapter 2 Hypervisors

https://en.wikipedia.org/wiki/Popek_and_Goldberg_virtualization_requirements
https://en.wikipedia.org/wiki/Popek_and_Goldberg_virtualization_requirements

17

vt-x simplifies the VMM software by closing virtualization holes by

design:

•	 Ring compression: Prior to the introduction of vt-x,

the guest OS would run in Ring 1 and the guest OS

apps would run in Ring 3. To execute the privileged

instructions in the guest OS, we need higher privileges,

which are by default not available to the guest (due

to security reasons). Therefore, to execute those

instructions, we need to trap into the hypervisor (which

runs in Ring 0 with more privileges), which can then

execute the privileged instruction on behalf of the

guest. This is called ring compression or deprivileging.

vt-x avoids this by running the guest OS directly in

Ring 0.

•	 Non-trapping instructions: Instructions like POPF

on x86, which ideally should trap into the hypervisor

as they are sensitive instructions, actually don’t trap.

This is a problem as we need program control to shift

to the hypervisor for all sensitive instructions. vt-x

addresses this by running the guest OS in Ring 0, where

instructions like POPF can trap into the hypervisor

running in Ring -1.

•	 Excessive trapping: Without vt-x, all sensitive and

privileged instructions trap into the hypervisor in Ring

0. With vt-x this becomes configurable and depends

on the VMM as to which instructions cause a trap and

which can be safely handled in Ring 0. Details of this

are beyond the scope of this book.

vt-x adds two more modes—the non-root mode (in Ring -1) is where

VMM runs and the root mode (in Ring 0) is where the guest OS runs.

Chapter 2 Hypervisors

18

To understand how these modes are involved in program execution,

lets look at an example. Say that a program is being executed in VM

and, during the course of its execution, it makes a system call for I/O. As

discussed in the previous chapter, guest programs in user space are

executed in Ring 3. When the program makes an I/O call (which is a

system call), these instructions are executed at the guest OS kernel level

(Ring 0). The guest OS by itself cannot handle I/O calls so it delegates them

to the VMM (Ring -1). When the execution goes from Ring 0 to Ring -1, it’s

called a VMExit and when the execution comes back from Ring -1 to Ring

0, it’s called a VMEntry. This is all shown in Figure 2-1.

Note  Before we dive into the QEMU, as a side note, we want to
bring your attention to some interesting projects in virtualization, like
Dune, which runs a process within the VM environment rather than a
complete OS. In root mode, it’s the VMM that runs. This is the mode
where the KVM runs.

Figure 2-1.  Program execution in the guest with an I/O call

Chapter 2 Hypervisors

19

�The Quick Emulator (QEMU)
The QEMU runs as a user process and handles the KVM kernel module. It

uses the vt-x extensions to provide the guest with an isolated environment

from a memory and CPU perspective. The QEMU process owns the guest

RAM and is either memory mapped via a file or is anonymous. VCPUs are

scheduled on the physical CPUs.

The main difference between a normal process and a QEMU process

is the code executed on those threads. In the case of the guest, since it’s

the virtualized machine, the code executes the software BIOS and the

operating system.

Figure 2-2 shows how the QEMU interacts with the hypervisor.

Figure 2-2.  QEMU interaction with the hypervisor

Chapter 2 Hypervisors

20

The QEMU also dedicates a separate thread for I/O. This thread runs

an event loop and is based on the non-blocking mechanism. It registers

the file descriptors for I/O. The QEMU can use paravirtualized drivers like

virtio to provide guests with virtio devices, such as virtio-blk for block

devices and virtio-net for network devices. Figure 2-3 shows the specific

components that facilitate communication between the guest and the host

(hypervisor).

Figure 2-3.  How a virtual device in the guest OS interacts with the
physical device in the hypervisor layer. The guest has a frontend device
driver, while the host has a backend device driver and these two
together facilitate communication between the guest and host OS

Chapter 2 Hypervisors

21

In Figure 2-3, you see that the guest within the QEMU process

implements the frontend driver, whereas the host implements the

backend drivers. The communication between frontend and backend

driver happens over specialized data structures, called virtqueues. Any

packet that originates from the guest is first put into the virtqueue and

the host side driver is notified over a hypercall, to drain the packet for

actual processing to the device. There can be two variations of this packet

flow, as follows:

•	 The packet from the guest is received by the QEMU and

then pushed to the backend driver on the host. One

example is virtio-net.

•	 The packet from the guest directly reaches the host via

what is called a vhost driver. This bypasses the QEMU

layer and is relatively faster.

�Creating a VM Using the KVM Module
To create a VM, a set of ioctl calls has to be made to the kernel KVM

module, which exposes a /dev/kvm device to the guest. In simplistic terms,

these are the calls from the user space to create and launch a VM:

	 1.	 KVM CREATE VM: This command creates a new VM

that has no virtual CPUs and no memory.

	 2.	 KVM SET USER MEMORY REGION: This command

maps the user space memory for the VM.

	 3.	 KVM CREATE IRQCHIP / KVM CREATE VCPU:

This command creates a hardware component

like a virtual CPU and maps them with vt-x

functionalities.

Chapter 2 Hypervisors

22

	 4.	 KVM SET REGS / SREGS / KVM SET FPU / KVM SET

CPUID / KVM SET MSRS / KVM SET VCPU EVENTS

/ KVM SET LAPIC: These commands are hardware

configurations.

	 5.	 KVM RUN: This command starts the VM.

KVM RUN starts the VM and internally it’s the VMLaunch instruction

invoked by the KVM kernel module that puts the VM code execution

into non-root mode. It then changes the instruction pointer to the code

location in the guest’s memory. This is a slight over-simplification, as the

module does much more to set up the VM, including setting up the VMCS

(VM Control Section), and so on.

�Vhost Based Data Communication
Any discussion about hypervisors would be incomplete without showing

a concrete example. We’ll look at an example of a network packet flow

(depicted in Figure 2-4) in the context of the vhost-net device drivers.

When we use the vhost mechanism, the QEMU is out of the data plane and

there is direct communication between the guest and host over virtqueues.

The QEMU remains in the control plane, where it sets up the vhost device

on the kernel using the ioctl command:

/dev/vhost-net device

When the device is initialized, a kernel thread is created for the specific

QEMU process. This thread handles the I/O for the specific guest. The

thread listens to events on the host side, on the virtqueues. When an

event arrives to drain the data (in virtio terminology, it’s called a kick),

the I/O thread drains the packet from the tx (transmission) queue of

the guest. The thread then transmits this data to the tap device, which it

makes it available to the underlying bridge/switch in order to transmit it

downstream to an overlay or routing mechanism.

Chapter 2 Hypervisors

23

The KVM kernel module registers the eventfd for the guest. This a

file descriptor that’s registered for the guest (by the QEMU) with the KVM

kernel module. The FD is registered against a guest I/O exit event (a kick),

which drains the data.

�What Is an eventfd?
So what basically is an eventfd? It’s an interprocess communication (IPC)

mechanism that offers a wait-notify facility between user space programs

or between the kernel and the user space. The idea is simple. In the same

way that we have FDs for files, we can create file descriptors for events.

The benefit here is that the FDs can then be treated like other FDs and

can be registered with mechanisms like poll, select, and epoll. The

mechanisms can then facilitate a notification system when those FDs are

written to.

The consumer thread can be made to wait on an epoll object via

epoll_wait. Once the producer thread writes to the FD, the epoll

mechanism will notify the consumer (again depending on the edge or level

triggers) of the event.

Edge-triggered means that you only get notified when the event is

detected (which takes place, say in an instant), while level-triggered means

you get notified when the event is present (which will be true over a period

of time).

For example, in an edge-triggered system, if you want a notification to

signal you when data is available to read, you’ll only get that notification

when data was not available to read before, but now is. If you read some

of the available data (so that some of the data is still available to read), you

will not get another notification. If you read all of the available data, you

will get another notification when new data becomes available to read

again. In a level-triggered system, you’d get that notification whenever data

is available to read.

Chapter 2 Hypervisors

https://en.wikipedia.org/wiki/Epoll#Triggering_modes
https://en.wikipedia.org/wiki/Epoll#Triggering_modes

24

The host uses an eventfd by using ioeventfd to send data from the

guest to the host and irqfd to receive an interrupt from the host to the

guest.

Another use case for eventfds is the out of memory (OOM) cgroup.

The way this works is whenever the process exceeds the memcg limit, the

OOM killer can decide to kill it or, if this behavior is disabled, the kernel

can do the following

	 1.	 Create the eventfd.

	 2.	 Write the OOM event to the eventfd.

The process thread will block until the event is generated. Once the

event is generated, the thread is woken up to react to the OOM notification.

The difference between eventfd and a Linux pipe is that the pipe

needs two file descriptors, whereas eventfd just needs one.

The vhost I/O thread watches for the eventfd. Whenever the I/O event

happens from the guest, the I/O thread for the guest gets informed that it

has to drain the buffers from the tx queue.

Similar to ioeventfd, there is an irqfd. The QEMU user space also

registers this (irqfd) FD for the guest. The guest driver listens for changes

to those FDs. The reason for using this is to pass interrupts back to the

guest to notify the guest side driver to process the packets. Taking the

previous example, when the packets have to be sent back to the guest, the

I/O thread fills up the rx queue (the receive queue) buffers for the guest

and the interrupt injection is done to the guest via irqfd. In the reverse

path of packet flow, the packets received on the host over the physical

interface are put to the tap device. The thread that’s interfacing with the

tap device receives the packets to fill up the rx buffers for the guest. It then

notifies the guest driver over irqfds. See Figure 2-4.

Chapter 2 Hypervisors

25

�Alternative Virtualization Mechanisms
After covering virtualization via VM-based mechanisms, it’s time to briefly

look at other means of virtualization that depart from container isolation,

like the namespaces/cgroups-based mechanism we have with Docker. The

motivation is to understand that it is possible to do the following:

•	 Reduce the interfaces exposed by different software

layers like VMM in order to reduce attack vectors. The

attack vectors can come in the form of exploits, like

memory exploits that install malicious software or

control the system by elevating privileges.

•	 Use hardware isolation to isolate the different

containers/processes we run.

Figure 2-4.  Network packet flow

Chapter 2 Hypervisors

26

In summary, can we get the isolation levels of VMs with a reduced or

minimalistic exposed machine interface and with a provisioning speed

similar to that of containers.

We have already discussed how VMs, with the help of the VMM, isolate

these workloads. The VMM exposes the machine model (x86 interface),

whereas the container is exposing the POSIX interface. The VMM, with

hardware virtualization, can isolate CPU, memory, and I/O (vt-d, SRIOV,

and IOMMU). Containers that share the kernel provide this feature via

namespaces and cgroups, but are still considered a weaker alternative to

the hardware-based isolation techniques.

So is there a way to get the two worlds closer? One of the goals would

be to reduce the attack vector by employing a minimalistic interface

approach. What this means is that, instead of exposing complete POSIX

to apps or a complete machine interface to the guest OS, we only provide

what the app/OS needs. This is where we started to see the evolution of

how the unikernel and the library OS started to happen.

�Unikernels
Unikernels provide the mechanism, via toolchains, for preparing a

minimalistic OS. This means if the application only needs network APIs,

then the keyboard, mouse devices, and their drivers are not packaged. This

reduces the attack vector considerably.

One of the problems with unikernels was that they had to be

built across different models of device drivers. With the advent of I/O

virtualization and virtio drivers, this problem is somewhat resolved, as

the unikernels can now be built with exact virtio devices and the drivers

needed for the apps on the guest. This means the guest can be a unikernel

(Library OS) sitting on top of, say, a hypervisor like KVM. This still has

limitations, as the QEMU or the user space part still has a good amount of

codebase, all of which are subject to exploits.

Chapter 2 Hypervisors

27

To achieve further minimalism, one proposal was to package the VMM

alongside the unikernel. What this means is that VMM now plays the role

of the QEMU for the unikernel, but per instance. The VMM code is limited

to the needed functionality and facilitates memory-based communication

between the guest and the VMM. With this model, multiple VMMs can be

made to sit on the hypervisor. The VMM role facilitates I/O and creates the

guest unikernel using the hardware isolation capabilities.

The unikernel itself is a single process with no multi-threading

capabilities, as shown in Figure 2-5.

Figure 2-5.  The unikernel is a single process with no multi-threading
capabilities

In Figure 2-5, we can observe that the image on the left is running a

VMM and the QEMU combined, to run unikernels on top, whereas the

image on the right shows a VMM (monitor) like UKVM packaged alongside

the unikernel. So basically we have reduced the code (the QEMU) and

thereby have eliminated a significant attack vector. This is in line with the

minimalistic interfaces approach we talked about previously.

Chapter 2 Hypervisors

28

�Project Dune
A careful reader can easily make out that the vt-x isolation on the memory

and CPU is not opinionated about running only a guest OS code in the

guest’s memory. Technically, we can provision different sandboxing

mechanisms on top of this hardware isolation. This is precisely what

Project Dune is doing. On top of the hardware isolation of vt-x, Dune

doesn’t spin a guest OS, but a Linux process. This means the process is

made to run in Ring 0 of the CPU and has the machine interface exposed

to it. The process can be made to sandbox by:

	 1.	 Running the trusted code of the process in Ring 0.

This is basically the library that Dune calls libdune.

	 2.	 Running the untrusted code in Ring 3.

The Dune architecture is shown in Figure 2-6.

Figure 2-6.  The Dune architecture

Chapter 2 Hypervisors

29

To bootstrap the process, Dune creates an operating environment,

which entails setting up the page tables (the CR3 register is pointing to

the root). It also sets up the IDT for the hardware exceptions. The trusted

and untrusted code runs in the same address space, wherein the memory

pages of the trusted code are protected by supervisor bits in page table

entries. The system calls trap into the same process and are interposed

with hypercalls to the VMM. For more details on Dune, check out http://

dune.scs.stanford.edu/.

�novm
novm is another type of hardware container used by the project. (It also

uses the KVM APIs to create the VM via using the /dev/kvm device file.)

Instead of presenting a disk interface to the VM, novm presents a file

system (9p) interface back to the VM. This allows packaging of software

that we want to provision as a container. There is no BIOS and the VMM

simply puts the VM in 32-bit protected mode directly. This makes the

provisioning process faster, because steps like device probing are not

needed.

�Summary of Alternate Virtualization Approaches
In summary, this chapter covered three approaches—one approach

packaged a unikernel with a minimal OS interface, the second approach

got rid of the OS interface and ran a process within Ring 0 directly, and the

third approach provided a file system into the VM instead of block devices

directly and optimized booting aspects.

These approaches provide good isolation at the hardware level and

very fast spin-up times and might be a good fit for running serverless

workloads and other cloud workloads.

Chapter 2 Hypervisors

http://dune.scs.stanford.edu/
http://dune.scs.stanford.edu/

30

Is this all? Of course not. We now have companies like Cloudflare and

Fastly trying to address virtualization by offering isolation within a process.

The intent is to use abilities of certain languages to have:

•	 Code flow isolation via control flow integrity

•	 Memory isolation

•	 Capability-based security

We could then use these primitives to build sandboxes within each

process itself. This way, we can get even faster boot times for the code we

want to execute.

WebAssembly is leading the innovation in this space. The basic idea

is to run WebAssembly, aka Wasm modules, within the same process (the

WASM runtime). Each module is isolated from the other modules, so we

get one sandbox per tenant. This fits well into the serverless computer

paradigms and probably prevents problems like cold start.

On a side note, there is a new functionality called hotplug capability

that makes the devices dynamically available in the guest. They allow

developers to dynamically resize the block devices as an example without

restarting the guest. There is also the hotplug-dimm module, which allows

developers to resize the RAM available to the guest.

Chapter 2 Hypervisors

31© Shashank Mohan Jain 2020
S. M. Jain, Linux Containers and Virtualization, https://doi.org/10.1007/978-1-4842-6283-2_3

CHAPTER 3

Namespaces
In this chapter, we touch upon an important aspect of Linux
containers, called Linux namespaces. Namespaces allow the
kernel to provide isolation by restricting the visibility of the
kernel resources like mountpoints, network subsystems among
processes scoped to different namespaces. Examples of such
namespace visibilities are mount points and network
subsystems.

Today, containers are the de facto cloud software provision mechanism.

They provide fast spin-up times and have less overhead than a virtual

machine. There are certain very specific reasons behind these features.

The VM-based virtualization emulates the hardware and provides an

OS as the abstraction. This means that a bulk of the OS code and the device

drivers are loaded as part of the provisioning. On other hand, containers

virtualize the OS itself. This means that there are data structures within the

kernel that facilitate this separation. Most of the time, we are not clear as to

what is happening behind the covers.

Linux containers are made of three Linux kernel primitives:

•	 Linux namespaces

•	 cgroups

•	 Layered file systems

https://doi.org/10.1007/978-1-4842-6283-2_3#DOI

32

A namespace is a logical isolation within the Linux kernel. A namespace

controls visibility within the kernel. All the controls are defined at

the process level. That means a namespace controls which resources

within the kernel a process can see. Think of the Linux kernel as a guard

protecting resources like OS memory, privileged CPU instructions, disks,

and other resources that only kernel should be able to access. Applications

running within user space should only access these resources via a trap, in

which case the kernel takes over control and executes these instructions

on behalf of the user space application. As an example, an application

that wants to access a file on a disk will have to delegate this call to the

kernel via a system call (which internally traps into the kernel) to the Linux

kernel, which then executes this request on behalf of the application.

Since there could be many user space applications running in parallel

on a single Linux kernel, we need a way to provide isolation between these

user space-based applications. By isolation, we mean that there should

be a kind of sandboxing of the individual application, so that certain

resources in the application are confined to that sandbox. As an example,

we would like to have file system sandbox, which would mean that

within that sandbox, we could have our own view of the files. That way,

multiple such sandboxes could be run over the same Linux kernel without

interfering with each other.

The technique to achieve such sandboxing is done by a specific data

structure in the Linux kernel, called the namespace.

�Namespace Types
In this section, we explain the different namespaces that exist within the

Linux kernel and discuss how they are realized within the kernel.

Chapter 3 Namespaces

33

�UTS
This namespace allows a process to see a separate hostname other than

the actual global namespace one.

�PID
The processes within the PID namespace have a different process tree.

They have an init process with PID 1. At the data structure level though,

the processes belong to one global process tree, which is visible only at the

host level. Tools like ps or direct usage of the /proc file system from within

the namespace will list the processes and their related resources for the

process tree within the namespace.

�Mount
This is one of the most important namespaces. It controls which mount

points a process should see. If a process is within a namespace, it will only

see the mounts within that namespace.

A small detour might be of help to explain how mount propagation

works with containers. A mount in the kernel is represented by a data

structure called vfsmount. All mounts form a tree-like structure, with a

child mount structure holding a reference to the parent mount structure.

struct vfsmount {

 struct list_head mnt_hash;

 struct vfsmount *mnt_parent; /* fs we are mounted on */

 struct dentry *mnt_mountpoint; /* dentry of mountpoint */

 struct dentry *mnt_root; /* root of the mounted tree*/

 struct super_block *mnt_sb; /* pointer to superblock */

 struct list_head mnt_mounts; /* list of children,

 anchored here */

Chapter 3 Namespaces

34

 struct list_head mnt_child; /* and going through their

 mnt_child */

 atomic_t mnt_count;

 int mnt_flags;

 char *mnt_devname; /* Name of device e.g.

 /dev/dsk/hda1 */

 struct list_head mnt_list;

};

Whenever a mount operation is invoked, a vfsmount structure is created

and the dentry of the mount point as well as the dentry of the mounted tree is

populated. A dentry is a data structure that maps the inode to the filename.

Apart from mount, there is a bind mount, which allows a directory

(instead of a device) to be mounted at a mount point. The process of bind

mounting results in creating a vfsmount structure that points to the dentry

of the directory.

Containers work on the concept of bind mounts. So, when a volume is

created for a container, it’s actually a bind mount of a directory within the host

to a mount point within the container’s file system. Since the mount happens

within the mount namespace, the vfsmount structures are scoped to the

mount namespace. This means that, by creating a bind mount of a directory,

we can expose a volume within the namespace that’s holding the container.

�Network
A network namespace gives a container a separate set of network

subsystems. This means that the process within the network namespace

will see different network interfaces, routes, and iptables. This separates

the container network from the host network. We will study this in more

depth when we look at an example of the packet flow between two

containers in different namespaces on the same host as well as containers

in different namespaces within the same host.

Chapter 3 Namespaces

35

�IPC
This namespace scopes IPC constructs such as POSIX message queues.

Between two processes within the same namespace, IPC is enabled, but

it will be restricted if two processes in two different namespaces try to

communicate over IPC.

�Cgroup
This namespace restricts the visibility of the cgroup file system to the

cgroup the process belongs to. Without this restriction, a process could

peek at the global cgroups via the /proc/self/cgroup hierarchy. This

namespace effectively virtualizes the cgroup itself.

Apart from the namespaces mentioned here, as of the writing of this

book, there is one more namespace under discussion within the Linux

community—called the time namespace.

�Time
The time namespace has two main use cases:

•	 Changes the date and time inside a container

•	 Adjusts the clocks for a container restored from a

checkpoint

The kernel provides access to several clocks: CLOCK_REALTIME, CLOCK_

MONOTONIC, and CLOCK_BOOTTIME. The last two clocks are monotonous, but

the start points for them are not well defined (currently it is system startup

time, but the POSIX says “since an unspecified point in the past”) and

are different for each system. When a container migrates from one node

to another, all the clocks are restored to their consistent states. In other

words, they have to continue running from the same point where they

were dumped.

Chapter 3 Namespaces

36

Now that you have a basic idea about namespaces, we can study the

details about how some of the data structures in the Linux kernel allow

this separation when it comes to Linux containers. The term used for these

structures is Linux namespaces.

The kernel represents each process as a task_struct data structure. If

we detail this structure and list some of its members, we see the following:

/* task_struct member predeclarations (sorted alphabetically):

*/

struct audit_context;

struct backing_dev_info;

struct bio_list;

struct blk_plug;

struct capture_control;

struct cfs_rq;

struct fs_struct;

struct futex_pi_state;

struct io_context;

struct mempolicy;

struct nameidata;

struct nsproxy;

struct perf_event_context;

struct pid_namespace;

struct pipe_inode_info;

struct rcu_node;

struct reclaim_state;

struct robust_list_head;

struct root_domain;

struct rq;

struct sched_attr;

struct sched_param;

struct seq_file;

Chapter 3 Namespaces

37

struct sighand_struct;

struct signal_struct;

struct task_delay_info;

struct task_group;

The nsproxy structure is a holder structure for the different

namespaces that a task (process) belongs to.

struct nsproxy {

 atomic_t count;

 struct uts_namespace *uts_ns;

 struct ipc_namespace *ipc_ns;

 struct mnt_namespace *mnt_ns;

 struct pid_namespace *pid_ns_for_children;

 struct net *net_ns;

 struct time_namespace *time_ns;

 struct time_namespace *time_ns_for_children;

 struct cgroup_namespace *cgroup_ns;

};

extern struct nsproxy init_nsproxy;

The nsproxy holds the eight namespace data structures. The missing

one is the user namespace, which is part of the cred data structure in the

task_struct.

There are three system calls that can be used to put tasks into specific

namespaces. These are clone, unshare, and setns. The clone and setns

calls result in creating a nsproxy object and then adding the specific

namespaces needed for the task.

We will talk about network namespaces in this chapter. A network

namespace is represented by a net structure. Part of that data structure is

shown here:

Chapter 3 Namespaces

38

struct net {

 /* First cache line can be often dirtied.

 * Do not place read-mostly fields here.

 */

 refcount_t passive; /* �To decide when the

network

 * �namespace should

be freed.

 */

 refcount_t count; /* �To decided when

the network

 * namespace should

be shut down.

 */

 spinlock_t rules_mod_lock;

 unsigned int dev_unreg_count;

 unsigned int dev_base_seq; /* �protected by

rtnl_mutex */

 int ifindex;

 spinlock_t nsid_lock;

 atomic_t fnhe_genid;

 struct list_head list; /* �list of network

namespaces */

 struct list_head exit_list; /* �To linked to

call pernet exit

 * �methods on dead

net (

 * �pernet_ops_rwsem

read locked),

Chapter 3 Namespaces

39

 * �or to unregister

pernet ops

 * �(pernet_ops_rwsem

write locked).

 */

 struct llist_node cleanup_list; /* �namespaces on

death row */

#ifdef CONFIG_KEYS

 struct key_tag *key_domain; /* �Key domain of

operation tag */

#endif

 struct user_namespace *user_ns; /* �Owning user

namespace */

 struct ucounts *ucounts;

 struct idr netns_ids;

 struct ns_common ns;

 struct list_head dev_base_head;

 struct proc_dir_entry *proc_net;

 struct proc_dir_entry *proc_net_stat;

#ifdef CONFIG_SYSCTL

 struct ctl_table_set sysctls;

#endif

 struct sock *rtnl; /* rtnetlink socket */

 struct sock *genl_sock;

 struct uevent_sock *uevent_sock; /* uevent socket */

 struct hlist_head *dev_name_head;

 struct hlist_head *dev_index_head;

 struct raw_notifier_head netdev_chain;

Chapter 3 Namespaces

40

One of the elements of this data structure is the user namespace

to which this network namespace belongs. Apart from that, the major

structural part of this is net_ns_ipv4, which includes the routing table, net

filter rules, and so on.

struct netns_ipv4 {

#ifdef CONFIG_SYSCTL

 struct ctl_table_header *forw_hdr;

 struct ctl_table_header *frags_hdr;

 struct ctl_table_header *ipv4_hdr;

 struct ctl_table_header *route_hdr;

 struct ctl_table_header *xfrm4_hdr;

#endif

 struct ipv4_devconf *devconf_all;

 struct ipv4_devconf *devconf_dflt;

 struct ip_ra_chain __rcu *ra_chain;

 struct mutex ra_mutex;

#ifdef CONFIG_IP_MULTIPLE_TABLES

 struct fib_rules_ops *rules_ops;

 bool fib_has_custom_rules;

 unsigned int fib_rules_require_fldissect;

 struct fib_table __rcu *fib_main;

 struct fib_table __rcu *fib_default;

#endif

 bool fib_has_custom_local_routes;

#ifdef CONFIG_IP_ROUTE_CLASSID

 Int fib_num_tclassid_users;

#endif

 struct hlist_head *fib_table_hash;

 bool fib_offload_disabled;

 struct sock *fibnl;

Chapter 3 Namespaces

41

 struct sock * __percpu *icmp_sk;

 struct sock *mc_autojoin_sk;

 struct inet_peer_base *peers;

 struct sock * __percpu *tcp_sk;

 struct fqdir *fqdir;

#ifdef CONFIG_NETFILTER

 struct xt_table *iptable_filter;

 struct xt_table *iptable_mangle;

 struct xt_table *iptable_raw;

 struct xt_table *arptable_filter;

#ifdef CONFIG_SECURITY

 struct xt_table *iptable_security;

#endif

 struct xt_table *nat_table;

#endif

 int sysctl_icmp_echo_ignore_all;

 int sysctl_icmp_echo_ignore_broadcasts;

 int sysctl_icmp_ignore_bogus_error_responses;

 int sysctl_icmp_ratelimit;

 int sysctl_icmp_ratemask;

 int sysctl_icmp_errors_use_inbound_ifaddr;

 struct local_ports ip_local_ports;

 int sysctl_tcp_ecn;

 int sysctl_tcp_ecn_fallback;

 int sysctl_ip_default_ttl;

 int sysctl_ip_no_pmtu_disc;

 int sysctl_ip_fwd_use_pmtu;

 int sysctl_ip_fwd_update_priority;

 int sysctl_ip_nonlocal_bind;

Chapter 3 Namespaces

42

 int sysctl_ip_autobind_reuse;

 /* �Shall we try to damage output packets if routing dev

changes? */

 int sysctl_ip_dynaddr;

This is how the iptables and routing rules are all scoped into the

network namespace.

Other data structures of relevance here are the net_device (this is

how the kernel represents the network card/device) and sock (a kernel

representation of a socket data structure). These two structures allow the

device to be scoped into a network namespace as well as the socket to be

scoped to the namespace. Both these structures can be part of only one

namespace at a time. We can move the device to a different namespaces

via the iproute2 utility.

Here are some of the user space commands to handle the network

namespaces:

•	 Ip netns add testns :  Adds a network namespace

•	 Ip netns del testns : Deletes the mentioned

namespace

•	 Ip netns exec testns sh: Executes a shell within the

testns namespace

�Adding a Device to a Namespace
First, create a veth pair device (this device can be used to join two

namespaces):

ip link add veth0 type veth peer name veth1

Then add one end of the veth pair to the network namespace testns:

ip link set veth1 netns testns

Chapter 3 Namespaces

43

The other end (veth0) is in the host namespace and so any traffic sent

to veth0 ends up on veth1 in the testns namespace.

Assume that we run an HTTP server in the testns namespace, which

means the listener socket is scoped to the testns namespace, as explained

previously in the sock data structure. So a TCP packet to be delivered to

the IP and port of the application within the testns namespace would be

delivered to the socket scoped within that namespace.

This is how the kernel virtualizes the operating system and various

subsystems like networking, IPC, mounts, and so on.

�Summary
In this chapter, we learned about the Linux namespaces and how they

facilitate isolation between user space-based applications. We also looked

into how different Linux kernel-based data structures are used to realize

the different namespaces. Going forward, we will look into how Linux

kernel provides resource limits to the different user space-based processes

so that one process doesn’t hog the resources of the operating system.

Chapter 3 Namespaces

45© Shashank Mohan Jain 2020
S. M. Jain, Linux Containers and Virtualization, https://doi.org/10.1007/978-1-4842-6283-2_4

CHAPTER 4

Cgroups
In the previous chapter, we learned how to control visibility of
Linux processes by using namespaces and learned how they
are realized within the kernel. In this chapter, we touch upon
another important aspect—resource control—which enables
us to apply quotas to various kernel resources.

We learned about namespaces so we could restrict the visibility of

resources for processes, which we did by putting the processes in separate

namespaces. We also covered the data structures involved in the kernel,

to get an understanding of how a namespace is realized within the Linux

kernel.

Now we ask ourselves the question, as to whether restricting visibility

is good enough for virtualization or do we need more. Assume we

run tenant1 processes in one namespace and tenant2 processes in a

separate namespace. Although the processes can’t access each other’s

resources (mount points, process trees, and so on), as those resources are

scoped to the individual namespace, we don’t achieve true isolation just

via this scoping.

As an example, what stops tenant1 from launching a process that

possibly could hog the CPU via an infinite loop? Flawed code can keep

leaking memory (say, for example, it takes a big chunk of the OS page

cache). A misbehaving process can create tons of processes via forking,

launch a fork bomb, and crash the kernel.

https://doi.org/10.1007/978-1-4842-6283-2_4#DOI

46

This means we need a way to introduce resource controls for processes

within the namespace. This is achieved using a mechanism called control

groups, commonly known as cgroups. cgroups work on the concept of

cgroup controllers and are represented by a file system called cgroupfs in

the Linux kernel.

The version of cgroups currently being used is cgroup v2. We explore

some details about how cgroups work as well as some of the cgroup

controllers seen in the kernel code. We also look at how the cgroups are

realized within the Linux kernel. But before that, let’s briefly see what

cgroups are all about.

First, to use the cgroup, we need to mount the cgroup file system at a

mount point, as follows:

mount -t cgroup2 none $MOUNT_POINT

The difference between cgroup version v1 and v2 is that, while

mounting in v1, we could have specified the mount options to specify the

controllers to enable, while in cgroup v2, no such mount option can be

passed.

�Creating a Sample cgroup
Let’s create a sample cgroup called mygrp. To create a cgroup, we first need

to create a folder where the cgroup artifacts are stored, as follows:

mkdir mygrp

Now we can create a cgroup using the following command (Note:

cgroup2 is supported in kernel version 4.12.0-rc5 onward. I am working on

Ubuntu 19.04, which has kernel version Ubuntu 19.04 with Linux kernel

5.0.0-13.)

mount -t cgroup2 none mygrp

Chapter 4 Cgroups

47

We created a directory called mygrp and then mounted the cgroup v2

file system on it. When we navigate inside the mygrp directory, we can see

multiple files there:

Chapter 4 Cgroups

48

cgroup.controllers: This file contains the

supported controllers. All controllers that are not

mounted on cgroup v1 will show up. Currently on

my system, I have a cgroup v1 mounted by systemd.

We can see that all the controllers are there.

Only after unmounting the controllers from v1 should v2 show these

controllers. Sometimes we might need to add the kernel boot parameter

systemd.unified_cgroup_hierarchy=1 and reboot the kernel to make

these changes effective. After making the changes on my machine, I see

the following controllers:

Chapter 4 Cgroups

49

Cgroup.procs: This file contains the processes

within the root cgroup. No PIDs will be there when

the cgroup is freshly created. By writing the PIDs to

this file, they become part of the cgroup.

Cgroup.subtree_control: This holds controllers

that are enabled for the immediate subgroup.

Enabling and disabling controllers in the immediate subgroups of a

parent is done only by writing into its cgroup.subtree_control file. So, for

example, enabling the memory controller is done using this:

echo "+memory" > mygrp/cgroup.subtree_control

And disabling it is done using this:

echo "-memory" > mygrp/cgroup.subtree_control

cgroup.events: This is the cgroup core interface file.

This interface file is unique to non-root subgroups.

The cgroup.events file reflects the number of

processes attached to the subgroup, and it consists

of one item—populated: value. The value is

0 when there are no processes attached to that

subgroup or its descendants, and 1 when there are

one or more processes attached to that subgroup or

its descendants.

Apart from these files, controller-specific interface files are also

created. As an example, for memory controllers, a memory.events file is

created, which can be monitored for events like OOM. Similarly, a PID

controller has files like pids.max to avoid situations like a fork bomb.

Chapter 4 Cgroups

50

In my example, I go ahead and create a child cgroup under mygrp.

We can see the following files under the child directory:

We can see controller-specific files like memory.max. The interface

file called memory.events lists the different events like oom, which can be

enabled and disabled.

The next section explains how cgroups are implemented within the

kernel and how they enable resource control.

�Cgroup Types
There are different types of cgroups, based on which resources we want to

control. Two of the cgroups we will cover are as follows:

•	 CPU: Provides CPU limits to user space processes

•	 Block I/O: Provides I/O limits on block devices for user

space processes

Chapter 4 Cgroups

51

�CPU Cgroup
From the kernel perspective, let’s see how a cgroup is realized. CPU

cgroups can be realized on top of two schedulers:

•	 Completely fair scheduler

•	 Real-time scheduler

In this chapter, we discuss only the completely fair scheduler (CFS).

The CPU cgroup provides two types of CPU resource control:

•	 cpu.shares: Contains an integer value that specifies

a relative share of CPU time available to the tasks in a

cgroup. For example, tasks in two cgroups that have

cpu.shares set to 100 will receive equal CPU time,

but tasks in a cgroup that have cpu.shares set to 200

receive twice the CPU time of the tasks in a cgroup

where cpu.shares is set to 100. The value specified in

the cpu.shares file must be 2 or higher.

•	 cpu.cfs_quota_us: Specifies the total amount of time

in microseconds (μs, represented here as “us”) for

which all tasks in a cgroup can run during one period

(as defined by cpu.cfs_period_us). As soon as tasks

in a cgroup use all the time specified by the quota, they

are stopped for the remainder of the time specified by

the period and not allowed to run until the next period.

•	 Cpu.cfs_period_us: It is the period from which CPU

quotas for cgroups (cpu.cfs_quota_us) are carved out

and the quota and period parameters operate on a per

CPU basis. Consider these examples:

Chapter 4 Cgroups

52

•	 To allow the cgroup to be able to access a single CPU for

0.2 seconds of every second, set the cpu.cfs_quota_us

to 200000 and cpu.cfs_period_us to 1000000.

•	 To allow a process to utilize 100% of a single CPU,

set cpu.cfs_quota_us to 1000000 and cpu.cfs_

period_us to 1000000.

•	 To allow a process to utilize 100% of two CPUs,

set cpu.cfs_quota_us to 2000000 and cpu.cfs_

period_us to 1000000.

To understand both of these control mechanisms, we can look into the

aspects of the Linux CFS task scheduler. The aim of this scheduler is to grant

a fair share of the CPU resources to all the tasks running on the system.

We can break up these tasks into two types:

•	 CPU-intensive tasks: Tasks like encryption, machine

learning, query processing, and so on

•	 I/O-intensive tasks: Tasks that are using disk or

network I/O like DB clients

The scheduler has the responsibility of scheduling both kinds of tasks.

The CFS uses a concept of a vruntime. vruntime is a member of the sched_

entity structure, which is a member of the task_struct structure (each

process is represented in Linux by a task_struct structure):

struct task_struct {

 int prio, static_prio, normal_prio; unsigned int rt_priority;

 struct list_head run_list;

 const struct sched_class *sched_class;

 struct sched_entity se;

 �unsigned int policy; cpumask_t cpus_allowed; unsigned

int time_slice;

 }

Chapter 4 Cgroups

53

struct sched_entity {

 /* For load-balancing: */

 struct load_weight load;

 struct rb_node run_node;

 struct list_head group_node;

 unsigned int on_rq;

 u64 exec_start;

 u64 sum_exec_runtime;

 u64 vruntime;

 u64 prev_sum_exec_runtime;

 u64 nr_migrations;

 struct sched_statistics statistics;

#ifdef CONFIG_FAIR_GROUP_SCHED

 Int depth;

 struct sched_entity *parent;

 /* rq on which this entity is (to be) queued: */

 struct cfs_rq *cfs_rq;

 /* rq "owned" by this entity/group: */

 struct cfs_rq *my_q;

 /* cached value of my_q->h_nr_running */

 unsigned long runnable_weight;

The task_struct has a reference to sched_entity, which holds a

reference to vruntime.

vruntime is calculated using these steps:

	 1.	 Compute the time spent by the process on the CPU.

	 2.	 Weigh the computed running time against the

number of runnable processes.

Chapter 4 Cgroups

54

The kernel uses the update_curr function defined in the https://

elixir.bootlin.com/linux/latest/source/kernel/sched/fair.c file.

/*

 * Update the current task's runtime statistics.

 */

static void update_curr(struct cfs_rq *cfs_rq)

{

 struct sched_entity *curr = cfs_rq->curr;

 u64 now = rq_clock_task(rq_of(cfs_rq));

 u64 delta_exec;

 if (unlikely(!curr))

 return;

 delta_exec = now - curr->exec_start;

 if (unlikely((s64)delta_exec <= 0))

 return;

 curr->exec_start = now;

 schedstat_set(curr->statistics.exec_max,

 max(delta_exec, curr->statistics.exec_max));

 curr->sum_exec_runtime += delta_exec;

 schedstat_add(cfs_rq->exec_clock, delta_exec);

 curr->vruntime += calc_delta_fair(delta_exec, curr);

 update_min_vruntime(cfs_rq);

 if (entity_is_task(curr)) {

 struct task_struct *curtask = task_of(curr);

 �trace_sched_stat_runtime(curtask, delta_exec,

curr->vruntime);

 cgroup_account_cputime(curtask, delta_exec);

Chapter 4 Cgroups

https://elixir.bootlin.com/linux/latest/source/kernel/sched/fair.c
https://elixir.bootlin.com/linux/latest/source/kernel/sched/fair.c

55

 account_group_exec_runtime(curtask, delta_exec);

 }

 account_cfs_rq_runtime(cfs_rq, delta_exec);

}

The function first calculates the delta_exec, which is the time spent by

the current task on the CPU.

This delta_exec is then passed as a parameter to another function

call, named calc_delta_fair.

This call will return the weighted value of the process runtime in

relation to the number of runnable processes. Once vruntime is calculated,

it’s stored as part of the sched_entity structure.

Also, as part of updating the vruntime for the task, the update_curr

function calls update_min_vruntime. This calculates the smallest value of

vruntime among all runnable processes and adds it to a red black tree as

the leftmost node. The CFS scheduler can then look into the red black tree

to schedule the process that has the lowest vruntime.

Basically, the CFS scheduler schedules its heuristic’s schedules and

I/O-intensive tasks more frequently, but gives more time to the CPU-

intensive tasks in a single run. This also could be understood from the

vruntime concept discussed previously. Since I/O tasks are mostly waiting

for network/disk, their vruntimes tend to be smaller than CPU tasks. That

means the I/O tasks will be scheduled more frequently. The CPU-intensive

tasks will get more time once they are scheduled to do the work. This way,

CFS tries to attain a fair scheduling of tasks.

Let’s stop for a minute and think about a potential problem this

scheduling could lead to.

Assume you have two processes, A and B, belonging to different users.

These processes each get 50% share of the CPU. Now say a user owning

process A launches another process, called A1. Now CFS will give a 33%

share to each process. This effectively means that users of process A and A1

Chapter 4 Cgroups

56

now get 66% of the CPU. A classic example is a database like PostgreSQL,

which creates processes per connection. As connections grow, the number

of processes grow. If fair scheduling is in place, each connection would

tend to take away the share of the other non-Postgre processes running on

the same machine.

This problem led to what we call group scheduling. To understand this,

let’s look at other kernel data structure:

/* CFS-related fields in a runqueue */

struct cfs_rq {

 struct load_weight load;

 unsigned int nr_running;

 unsigned int h_nr_running; �/* SCHED_{NORMAL,

BATCH,IDLE} */

 unsigned int idle_h_nr_running; /* SCHED_IDLE */

 u64 exec_clock;

 u64 min_vruntime;

#ifndef CONFIG_64BIT

 u64 min_vruntime_copy;

#endif

 struct rb_root_cached tasks_timeline;

 /*

 * �'curr' points to currently running entity on this

cfs_rq.

 * �It is set to NULL otherwise (i.e. when none are

currently running).

 */

 struct sched_entity *curr;

 struct sched_entity *next;

 struct sched_entity *last;

 struct sched_entity *skip;

Chapter 4 Cgroups

57

This structure holds the number of runnable tasks in the nr_running

member. The curr member is a pointer to the current running scheduling

entity or the task.

Also, the sched_entity is now represented as a hierarchical data

structure:

struct sched_entity {

/* For load-balancing: */

struct load_weight load;

struct rb_node run_node;

struct list_head group_node;

unsigned int on_rq;

u64 exec_start;

u64 sum_exec_runtime;

u64 vruntime;

u64 prev_sum_exec_runtime;

u64 nr_migrations;

struct sched_statistics statistics;

#ifdef CONFIG_FAIR_GROUP_SCHED

 Int depth;

 struct sched_entity *parent;

 /* rq on which this entity is (to be) queued: */

 struct cfs_rq *cfs_rq;

 /* rq "owned" by this entity/group: */

 struct cfs_rq *my_q;

 /* cached value of my_q->h_nr_running */

 unsigned long runnable_weight;

#endif

Chapter 4 Cgroups

58

#ifdef CONFIG_SMP

 /*

 * Per entity load average tracking.

 *

 * Put into separate cache line so it does not

 * collide with read-mostly values above.

 */

 struct sched_avg avg;

#endif

};

This means there can now be sched_entities that are not associated

with a process (task_struct). Instead, these entities can represent a group

of processes. Each sched_entity now maintains a run queue of its own.

A process can be moved to the child schedule entity, which means it will

be part of the run queue that the child schedule entity has. This run queue

can represent the processes in the group.

The code flow in scheduler would do the following.

Pick_next_entity is called to pick up the best candidate for

scheduling. We assume that there is only one group running at this time.

This means that the red black tree associated with the sched_entity

process is blank. The method now tries to get the child sched_entity of

the current sched_entity. It checks the cfs_rq, which has the processes of

the group enqueued. The process is scheduled.

The vruntime is based on the weights of the processes within the

group. This allows us to do fair scheduling and prevent processes within a

group from impacting the CPU usage of processes within other groups.

Once we understand that processes can be placed into groups, let’s see

how bandwidth enforcement can be applied to the group. Another data

structure called cfs_bandwidth, defined in sched.h, plays a role:

Chapter 4 Cgroups

59

struct cfs_bandwidth {

#ifdef CONFIG_CFS_BANDWIDTH

 raw_spinlock_t lock;

 ktime_t period;

 u64 quota;

 u64 runtime;

 s64 hierarchical_quota;

 u8 idle;

 u8 period_active;

 u8 distribute_running;

 u8 slack_started;

 struct hrtimer period_timer;

 struct hrtimer slack_timer;

 struct list_head throttled_cfs_rq;

 /* Statistics: */

 Int nr_periods;

 Int nr_throttled;

 u64 throttled_time;

#endif

};

This structure keeps track of the runtime quota for the group. The cff_

bandwith_used function is used to return a Boolean value when the check

is made in the account_cfs_rq_runtime method of the fair scheduler

implementation file. If no runtime quota remains, the throttle_cfs_rq

method is invoked. It will dequeue the task from the run queue of the

sched_entity and set the throttled flag. The function implementation is

shown here:

static void throttle_cfs_rq(struct cfs_rq *cfs_rq)

{

Chapter 4 Cgroups

60

 struct rq *rq = rq_of(cfs_rq);

 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);

 struct sched_entity *se;

 long task_delta, idle_task_delta, dequeue = 1;

 bool empty;

 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];

 /* freeze hierarchy runnable averages while throttled */

 rcu_read_lock();

 �walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop,

(void *)rq);

 rcu_read_unlock();

 task_delta = cfs_rq->h_nr_running;

 idle_task_delta = cfs_rq->idle_h_nr_running;

 for_each_sched_entity(se) {

 struct cfs_rq *qcfs_rq = cfs_rq_of(se);

 /* throttled entity or throttle-on-deactivate */

 if (!se->on_rq)

 break;

 if (dequeue) {

 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);

 } else {

 update_load_avg(qcfs_rq, se, 0);

 se_update_runnable(se);

 }

 qcfs_rq->h_nr_running -= task_delta;

 qcfs_rq->idle_h_nr_running -= idle_task_delta;

 if (qcfs_rq->load.weight)

 dequeue = 0;

Chapter 4 Cgroups

61

 }

 if (!se)

 sub_nr_running(rq, task_delta);

 cfs_rq->throttled = 1;

 cfs_rq->throttled_clock = rq_clock(rq);

 raw_spin_lock(&cfs_b->lock);

 empty = list_empty(&cfs_b->throttled_cfs_rq);

 /*

 * Add to the _head_ of the list, so that an already-started

 * �distribute_cfs_runtime will not see us. If disribute_

cfs_runtime is

 * �not running add to the tail so that later runqueues

don't get starved.

 */

 if (cfs_b->distribute_running)

 �list_add_rcu(&cfs_rq->throttled_list, &cfs_b-

>throttled_cfs_rq);

 else

 �list_add_tail_rcu(&cfs_rq->throttled_list,

&cfs_b->throttled_cfs_rq);

 /*

 �* If we're the first throttled task, make sure the

bandwidth

 * timer is running.

 */

 if (empty)

 start_cfs_bandwidth(cfs_b);

 raw_spin_unlock(&cfs_b->lock);

}

Chapter 4 Cgroups

62

This explains how the CPU cgroups allow tasks/processes to be

grouped and can use the CPU shares mechanism to enforce fair scheduling

within a group. This also explains how quota and bandwidth enforcement

is accomplished within a group. We now discuss the other cgroup type,

which enforces resource limits on block I/O.

�Block I/O cgroups
The purpose of the block I/O cgroup is twofold:

•	 Provides fairness to the individual cgroup: Makes use of

a scheduler called completely fair queuing.

•	 Does block i/o throttling: Enforces a quota on the block

I/O (bytes as well as iops) per cgroup.

Before delving into details of how the cgroup for block I/O is

implemented, we’ll take a small detour to investigate how the Linux block

I/O works. Figure 4-1 is a high-level block diagram of how the block I/O

request flows through the user space to the device.

Chapter 4 Cgroups

63

The application issues a read/write request via either the file system

or via memory mapped files. In either case, the request hits the page

cache (kernel buffer for caching file data). With a file system-based call,

the virtual file system (VFS) handles the system call and invokes the

underlying registered file system.

The next layer is the block layer where the actual I/O request is constructed.

There are three important data structures within the block layer:

•	 Request_queue: A single queue architecture is where

there is one request queue per device. This is the queue

where the block layer, in tandem with the I/O scheduler,

queues the request. The device driver drains the request

queue and submits the request to the actual device.

Figure 4-1.  The block I/O request flows through the user space to the
device

Chapter 4 Cgroups

64

•	 Request: The request represents the single I/O request

to be delivered to the I/O device. The request is made

of a list of bio structures.

•	 Bio: The bio structure is the basic container for block

I/O. Within the kernel is the bio structure. Defined

in <linux/bio.h>, this structure represents block

I/O operations that are in flight (active) as a list of

segments. A segment is a chunk of a buffer that is

contiguous in memory.

Diagrammatically, bio is shown in Figure 4-2.

Figure 4-2.  The bio structure represents block I/O operations that are
in flight (active) as a list of segments

Chapter 4 Cgroups

65

bio_vec represents a specific segment and has a pointer to the page

holding the block data at a specific offset.

The requests are submitted to the request queue and drained by the

device driver. The important data structures involved in implementing the

block I/O cgroup within the Linux kernel are shown here:

struct blkcg {

 struct cgroup_subsys_state css;

 spinlock_t lock;

 struct radix_tree_root blkg_tree;

 struct blkcg_gq __rcu *blkg_hint;

 struct hlist_head blkg_list;

 struct blkcg_policy_data *cpd[BLKCG_MAX_POLS];

 struct list_head all_blkcgs_node; #ifdef

 CONFIG_CGROUP_WRITEBACK

 struct list_head cgwb_list;

 refcount_t cgwb_refcnt;

#endif

};

This structure represents the block I/O cgroup. Each block I/O cgroup

is mapped to a request queue, which we explained previously.

/* association between a blk cgroup and a request queue */

struct blkcg_gq {

 /* Pointer to the associated request_queue */

 struct request_queue *q;

 struct list_head q_node;

 struct hlist_node blkcg_node;

 struct blkcg *blkcg;

/*

* Each blkg gets congested separately and the congestion state is

Chapter 4 Cgroups

66

* propagated to the matching bdi_writeback_congested.

*/

 struct bdi_writeback_congested *wb_congested;

 /* �all non-root blkcg_gq's are guaranteed to have access to

parent */

 struct blkcg_gq *parent;

 /* request allocation list for this blkcg-q pair */

 struct request_list rl;

 /* reference count */

 atomic_t refcnt;

 /* is this blkg online? protected by both blkcg and q locks */

 Bool online;

 struct blkg_rwstat stat_bytes;

 struct blkg_rwstat stat_ios;

 struct blkg_policy_data *pd[BLKCG_MAX_POLS];

 struct rcu_head rcu_head;

atomic_t use_delay;

atomic64_t delay_nsec;

atomic64_t delay_start;

u64 last_delay;

int last_use;

};

Each request queue is associated with a block I/O cgroup.

Chapter 4 Cgroups

67

�Understanding Fairness
By fairness, we mean that each cgroup should get a fair share of the I/O

issued to the device. To accomplish this, a CFQ (Complete Fair Queuing)

scheduler must be configured. Without cgroups in place, the CFQ

scheduler assigns each process a queue and then gives a time slice to each

queue, thereby handling fairness.

A service tree is a list of active queues/process on which the scheduler

runs. So basically, the CFQ scheduler services requests from the queues on

the service tree.

With cgroup in place, the concept of a CFQ group is introduced. Now,

instead of scheduling per process, the scheduling happens at the group

level. This means each cgroup has multiple service trees on which the

group queues are scheduled. Then there is a global service tree on which

the CFQ groups are scheduled.

The CFQ group structure is defined as follows:

struct cfq_group {

 /* must be the first member */

 struct blkg_policy_data pd;

 /* group service_tree member */

 struct rb_node rb_node;

 /* group service_tree key */

u64 vdisktime;

 /*

 * The number of active cfqgs and sum of their weights under this

 * cfqg. This covers this cfqg's leaf_weight and all children's

 * weights, but does not cover weights of further descendants.

 *

 * If a cfqg is on the service tree, it's active. An active cfqg

Chapter 4 Cgroups

68

 * �also activates its parent and contributes to the

children_weight

 * of the parent.

 */

 int nr_active;

 unsigned int children_weight;

 /*

 * vfraction is the fraction of vdisktime that the tasks in this

 * cfqg are entitled to. This is determined by compounding the

 * ratios walking up from this cfqg to the root.

 *

 * It is in fixed point w/ CFQ_SERVICE_SHIFT and the sum of all

 * vfractions on a service tree is approximately 1. The sum may

 * �deviate a bit due to rounding errors and fluctuations

caused by

 * cfqgs entering and leaving the service tree.

 */

 * unsigned int vfraction;

 /*

 * �There are two weights - (internal) weight is the weight

of this

 * cfqg against the sibling cfqgs. leaf_weight is the weight of

 * this cfqg against the child cfqgs. For the root cfqg, both

 * weights are kept in sync for backward compatibility.

 */

 unsigned int weight;

 unsigned int new_weight;

 unsigned int dev_weight;

Chapter 4 Cgroups

69

 unsigned int leaf_weight;

 unsigned int new_leaf_weight;

 unsigned int dev_leaf_weight;

 /* number of cfqq currently on this group */

 int nr_cfqq;

 /*

 * Per group busy queues average. Useful for workload slice calc.

 * �We create the array for each prio class but at runtime it

is used

 * only for RT and BE class and slot for IDLE class remains unused.

 * This is primarily done to avoid confusion and a gcc warning.

 */

 unsigned int

 busy_queues_avg[CFQ_PRIO_NR]; /*

 *�rr lists of queues with requests. We maintain service

trees for

 *RT and BE classes. These trees are subdivided in subclasses

 * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For

 * �the IDLE class there is no subclassification and all the

CFQ queues go on

 * a single tree service_tree_idle.

 * Counts are embedded in the cfq_rb_root

 */

 struct cfq_rb_root service_trees[2][3];

 struct cfq_rb_root service_tree_idle;

 u64 saved_wl_slice;

 enum wl_type_t saved_wl_type;

 enum wl_class_t saved_wl_class;

Chapter 4 Cgroups

70

 /* �number of requests that are on the dispatch list or

inside driver */

 int dispatched;

 struct cfq_ttime ttime;

 struct cfqg_stats stats; /* stats for this cfqg */

 /* async queue for each priority case */ struct

 cfq_queue *async_cfqq[2][IOPRIO_BE_NR]; struct

 cfq_queue *async_idle_cfqq;

};

Each CFQ group contains an “io weight” value that can be configured

in cgroup. The CFQG’s (CFQ groups) vdisktime decides its position on

the “cfqg service tree,” and then it’s charged according to the “io weight,”

�Understanding Throttling
Throttling provides a means to apply resource limits to the block I/O. This

enables the kernel to control the max block I/O that a user space process

can get. The kernel realizes this via the block I/O cgroup.

Throttling the block I/O per cgroup is done using a set of different

functions. The first function is blk_throttl_bio and it’s defined in blk-

throttle.c (see https://elixir.bootlin.com/linux/latest/source/

block/blk-throttle.c):

bool blk_throtl_bio(struct request_queue *q, struct blkcg_gq

 *blkg, struct bio *bio)

{

 struct throtl_qnode *qn = NULL;

 struct throtl_grp *tg = blkg_to_tg(blkg ?: q-

 >root_blkg); struct throtl_service_queue *sq; bool rw =

 bio_data_dir(bio);

Chapter 4 Cgroups

https://elixir.bootlin.com/linux/latest/source/block/blk-throttle.c
https://elixir.bootlin.com/linux/latest/source/block/blk-throttle.c

71

 bool throttled = false;

 struct throtl_data *td = tg->td;

 WARN_ON_ONCE(!rcu_read_lock_held());

 /* see throtl_charge_bio() */

 if (bio_flagged(bio, BIO_THROTTLED) || !tg->has_rules[rw])

 goto out;

 spin_lock_irq(q->queue_lock);

 throtl_update_latency_buckets(td);

 if (unlikely(blk_queue_bypass(q)))

 goto out_unlock;

 blk_throtl_assoc_bio(tg, bio);

 blk_throtl_update_idletime(tg);

 sq = &tg->service_queue;

 again:

 while (true) {

 if (tg->last_low_overflow_time[rw] == 0) tg-

 >last_low_overflow_time[rw] = jiffies;

 throtl_downgrade_check(tg);

 throtl_upgrade_check(tg);

 /* throtl is FIFO - if bios are already queued, should queue

 */

 if (sq->nr_queued[rw])

 break;

 /* if above limits, break to queue */

 if (!tg_may_dispatch(tg, bio, NULL)) {

 tg->last_low_overflow_time[rw] = jiffies;

Chapter 4 Cgroups

72

 if (throtl_can_upgrade(td, tg)) {

 throtl_upgrade_state(td);

 goto again;

 }

 break;

 }

 /* within limits, let's charge and dispatch directly */

 throtl_charge_bio(tg, bio);

 /*

 * We need to trim slice even when bios are not being queued

 * otherwise it might happen that a bio is not queued for

 * a long time and slice keep on extending and trim is not

 * called for a long time. Now if limits are reduced suddenly

 * we take into account all the IO dispatched so far at new

 * low rate and * newly queued IO gets a really long dispatch

 * time.

 *

 * So keep on trimming slice even if bio is not queued. */

 throtl_trim_slice(tg, rw);

 /*

 * @bio passed through this layer without being throttled.

 * Climb up the ladder. If we’re already at the top, it

 * can be executed directly.

 **/

 qn = &tg->qnode_on_parent[rw];

 sq = sq->parent_sq;

 tg = sq_to_tg(sq);

 if (!tg)

 goto out_unlock;

Chapter 4 Cgroups

73

 }

 /* out-of-limit, queue to @tg */

 throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu

 iodisp=%u iops=%u queued=%d/%d",

 rw == READ ? 'R' : 'W',

 tg->bytes_disp[rw], bio->bi_iter.bi_size,

 tg_bps_limit(tg, rw),

 tg->io_disp[rw], tg_iops_limit(tg, rw),

 sq->nr_queued[READ], sq->nr_queued[WRITE]);

 tg->last_low_overflow_time[rw] = jiffies;

 td->nr_queued[rw]++;

 throtl_add_bio_tg(bio, qn, tg);

 throttled = true;

 /*

 * Update @tg's dispatch time and force schedule dispatch

if @tg

 * was empty before @bio. The forced scheduling isn't likely to

 * �cause undue delay as @bio is likely to be dispatched

directly if

 * @tg's disptime is not in the future.

 */

 if (tg->flags & THROTL_TG_WAS_EMPTY) {

 tg_update_disptime(tg);

 �throtl_schedule_next_dispatch(tg->service_queue.

parent_sq,

 true);

 }

 out_unlock:

Chapter 4 Cgroups

74

 spin_unlock_irq(q->queue_lock);

 out:

 bio_set_flag(bio, BIO_THROTTLED);

 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW

 if (throttled || !td->track_bio_latency) bio->

 bi_issue.value |= BIO_ISSUE_THROTL_SKIP_LATENCY;

 #endif

 return throttled;

 }

The following code snippet checks if the bio can be dispatched to be

pushed to the device driver:

 if (!tg_may_dispatch(tg, bio, NULL)) { tg-

 >last_low_overflow_time[rw] = jiffies;

 if (throtl_can_upgrade(td, tg)) {

 throtl_upgrade_state(td);

 goto again;

 }

 break;

 }

The tg_may_dispatch definition is shown here:

 static bool tg_may_dispatch(struct throtl_grp *tg, struct

bio *bio, unsigned long *wait)

{

 bool rw = bio_data_dir(bio);

 unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;

 /*

Chapter 4 Cgroups

75

 * �Currently the whole state machine of group depends on

first bio

 * �queued in the group bio list. So one should not be

calling

 * this function with a different bio if there are other bios

 * queued.

 * /

 BUG_ON(tg->service_queue.nr_queued[rw] &&

 bio != throtl_peek_queued(&tg->service_queue.queued[rw]));

 /* If tg->bps = -1, then BW is unlimited */

 if (tg_bps_limit(tg, rw) == U64_MAX &&

 tg_iops_limit(tg, rw) == UINT_MAX) {

 if (wait)

 *wait = 0;

 return true;

 }

 /*

 * If the previous slice expired, start a new one, otherwise

 * �renew/extend the existing slice to make sure it is at

least throtl_slice interval

 * �long since now. The new slice is started only for empty

throttle

 * group. If there is queued bio, that means there should be an

 * active slice and it should be extended instead.

 * /

 if (throtl_slice_used(tg, rw) &&

 !(tg->service_queue.nr_queued[rw]))

 throtl_start_new_slice(tg, rw);

 else {

 if (time_before(tg->slice_end[rw],

Chapter 4 Cgroups

76

 jiffies + tg->td->throtl_slice))

 throtl_extend_slice(tg, rw,

 jiffies + tg->td->throtl_slice);

 }

 if (tg_with_in_bps_limit(tg, bio, &bps_wait) &&

 tg_with_in_iops_limit(tg, bio, &iops_wait)) {

 if (wait)

 *wait = 0;

 return true;

 }

 max_wait = max(bps_wait, iops_wait);

 if (wait)

 *wait = max_wait;

 if (time_before(tg->slice_end[rw], jiffies + max_wait))

 throtl_extend_slice(tg, rw, jiffies + max_wait);

 return false;

 The snippet

 if (tg_with_in_bps_limit(tg, bio, &bps_wait) &&

 tg_with_in_iops_limit(tg, bio, &iops_wait)) {

 if (wait)

 *wait = 0;

 return true;

}

This determines if the bio is within the limits for that cgroup or not.

As evident, it checks both the bytes per sec limit as well as the I/O per sec

limit for the cgroup.

If the limit is not exceeded, the bio is first charged to the cgroup:

Chapter 4 Cgroups

77

/* within limits, let's charge and dispatch directly */ throtl_

charge_bio(tg, bio);

static void throtl_charge_bio(struct throtl_grp *tg, struct bio

*bio) {

 bool rw = bio_data_dir(bio);

 unsigned int bio_size =

 throtl_bio_data_size (bio);

 /* Charge the bio to the group */

 tg->bytes_disp[rw] += bio_size;

 tg->io_disp[rw]++;

 tg->last_bytes_disp[rw] += bio_size;

 tg->last_io_disp[rw]++;

 /*

 * BIO_THROTTLED is used to prevent the same bio to be throttled

 * �more than once as a throttled bio will go through

blk-throtl the

 * second time when it eventually gets issued. Set it when a bio

 * is being charged to a tg.

 */

 if (!bio_flagged(bio, BIO_THROTTLED))

 bio_set_flag(bio, BIO_THROTTLED);

 }

This function charges the bio (the bytes and iops) to the throttle

group. It then passes the bio up to the parent, as evident in the following

code:

/*

 * @bio passed through this layer without being throttled.

 * Climb up the ladder. If we’re already at the top, it

Chapter 4 Cgroups

78

 * can be executed directly.

 */

 qn = &tg->qnode_on_parent[rw];

 sq = sq->parent_sq;

 tg = sq_to_tg(sq);

If the limits are exceeded, the code takes a different flow. The following

code snippet is called:

 throtl_add_bio_tg(bio, qn, tg);

 throttled = true;

Let’s look at the throtl_add_bio_tg function in more detail:

 /**

 * throtl_add_bio_tg - add a bio to the specified throtl_grp

 * @bio: bio to add

 * @qn: qnode to use

 * @tg: the target throtl_grp

 *

 �Add @bio to @tg's service_queue using @qn. If @qn is not

specified,

 tg->qnode_on_self[] is used.

 */

static void throtl_add_bio_tg(struct bio *bio, struct

throtl_qnode *qn,

 struct throtl_grp *tg)

{

 struct throtl_service_queue *sq = &tg-

 >service_queue; bool rw = bio_data_dir(bio);

Chapter 4 Cgroups

79

 if (!qn)

 qn = &tg->qnode_on_self[rw];

 /*

 * If @tg doesn't currently have any bios queued in the same

 * direction, queueing @bio can change when @tg should be

 * dispatched. Mark that @tg was empty. This is automatically

 * cleared on the next tg_update_disptime().

 */

 if (!sq->nr_queued[rw])

 tg->flags |= THROTL_TG_WAS_EMPTY;

 throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);

 sq->nr_queued[rw]++;

 throtl_enqueue_tg(tg);

 }

This function adds the bio to the throttle service queue. This queue

acts as a mechanism to throttle the bio requests. The service request is

then drained later.

 /**

 *blk_throtl_drain - drain throttled bios

 *@q: request_queue to drain throttled bios for

 *Dispatch all currently throttled bios on @q through

 - >make_request_fn().

 */

 void blk_throtl_drain(struct request_queue *q)

 __releases(q->queue_lock) __acquires(q->queue_lock)

{

Chapter 4 Cgroups

80

 struct throtl_data *td = q-

 >td; struct blkcg_gq *blkg;

 struct cgroup_subsys_state *pos_css;

 struct bio *bio;

 int rw;

 queue_lockdep_assert_held(q);

 rcu_read_lock();

 /*

 * Drain each tg while doing post-order walk on the blkg tree, so

 * that all bios are propagated to td->service_queue. It'd be

 * better to walk service_queue tree directly but blkg walk is

 * easier.

 */

 �blkg_for_each_descendant_post(blkg, pos_css, td->queue-

>root_blkg)

 tg_drain_bios(&blkg_to_tg(blkg)->service_queue);

 /* finally, transfer bios from top-level tg's into the td */

 tg_drain_bios(&td->service_queue);

 rcu_read_unlock();

 spin_unlock_irq(q->queue_lock);

 /* all bios now should be in td->service_queue, issue them

 */ for (rw = READ; rw <= WRITE; rw++)

 while ((bio = throtl_pop_queued(&td-

>service_queue.queued[rw],

 NULL)))

 generic_make_request(bio);

 spin_lock_irq(q->queue_lock);

Chapter 4 Cgroups

81© Shashank Mohan Jain 2020
S. M. Jain, Linux Containers and Virtualization, https://doi.org/10.1007/978-1-4842-6283-2_5

CHAPTER 5

Layered File Systems
In the previous chapters, we learned about namespaces and
cgroups. In this chapter, we touch upon another interesting
aspect of the container ecosystem, which is the layered file sys-
tem. We discuss how it enables file-sharing on the host and
how this helps run multiple containers on the host.

In previous chapters, we addressed topics of process isolation via Linux

namespaces and resource control for individual processes via cgroups.

Now we delve into the topic of layered file systems, which constitute the

third building block of the Linux container, after namespaces and cgroups.

Lets start by discussing what a file system is.

�A File System Primer
The Linux philosophy is to treat everything as a file. As an example, socket,

pipe, and block devices are all represented as files in Linux.

The file systems in Linux act as containers to abstract the underlying

storage in the case of block devices. For non-block devices like sockets and

pipes, there are file systems in memory that have operations which can be

invoked using the standard file system API.

Linux abstracts all file systems using a layer called the Virtual File

System (VFS). All file systems register with the VFS. The VFS has the

following important data structures:

https://doi.org/10.1007/978-1-4842-6283-2_5#DOI

82

•	 File: This represents the open file and captures the

information, like offset, and so on. The user space has

a handle to an opened file via a structure called the file

descriptor. This is the handle used to interface with the

file system.

•	 Inode: This is mapped 1:1 to the file. The inode is one

of the most critical structures and holds the metadata

about the file. As an example, it includes in which

data blocks the file data is stored and which access

permissions are on the file. This info is part of the

inode. Inodes are also stored on disk by the specific file

system, but there is a representation in memory that’s

part of the VFS layer. The file system is responsible for

enumerating the VFS inode structure.

•	 Dentry: This is the mapping between filename and

inode. This is an in-memory structure and is not stored

on disk. This is mainly relevant to lookup and path

traversal.

•	 Superblock: This structure holds all the information

about the file system, including how many blocks are

there, the device name, and so on. This structure is

enumerated and brought into memory during a mount

operation.

Each of these data structures holds pointers to their specific

operations. As an example, file has file_ops for reading and writing

and superblock has operations via super_ops to mount, unmount, and

so on.

Chapter 5 Layered File Systems

83

The mount operation creates a vfsmount data structure, which holds

a reference to a new superblock structure created from the file system to

be mounted on the disk. The dentry has a reference to the vfsmount. This

is where the VFS distinguishes between a directory and a mount point.

During a traversal, the vfsmount is found in a dentry, the inode number 2

on the mounted device is used (inode 2 is reserved for the root directory).

So how does this all fit together in the case of a block device? Say

that the user space process makes a call to read a file. The system call is

made to the kernel. The VFS checks the path and determines if there are

dentries cached from the root. As it traverses and finds the right dentry,

it locates the inode for the file to be opened. Once the inode is located,

the permissions are checked and the data blocks are loaded from the disk

into the OS page cache. The same data is moved into the user space of the

process.

The page cache is an interesting optimization in the OS. All reads and

writes (except direct I/O) happen over the page cache. The page cache

itself is represented by a data structure called the address_space. This

address_space holds a tree of memory pages and the file inode holds a

reference to that address_space data structure.

Figure 5-1.  Mapping a file to a page cache

Figure 5-1 shows how a file maps into the page cache. This is also the

key to understanding how operations like mmap for memory mapped files

work. We will cover that when we cover file systems like tmpfs and shared

memory IPC primitives.

Chapter 5 Layered File Systems

84

If the file read request is in the page cache (which is determined via the

address_space structure of the file’s inode), the data is served from there.

Whenever a write call is made on the file via the file descriptor, the writes

are first written to the page cache. The memory pages are marked dirty

and the Linux kernel uses the write-back cache mechanism, which means

there are threads in the background (called pdflush) that drain the page

cache and write to the physical disk via the block driver. The mechanism of

marking pages dirty doesn’t happen at the page level. Pages can be 4KB in

size and even a minimal change will then cause a full page write.

To avoid that, there are structures that have more fine-grained

granularity and represent a disk block in memory. These structures are

called buffer heads. For example, if the block size is 512 bytes, there are

eight buffer heads and one page in the page cache.

That way, individual blocks can be marked dirty and made part of the

writes.

The buffers can be explicitly flushed to disk via these system calls:

•	 Sync(): Flushes all dirty buffers to disk.

•	 Fsync(fd): Flushes only the file-specific dirty buffers to

disk, including the changes to inode.

•	 Fdatasync(fd): Flushes only the dirty data buffers of

the file to disk. Doesn’t flush the inodes.

Here’s an example of how this sync process works:

	 1.	 Check if the superblock is dirty.

	 2.	 Write back the superblock.

	 3.	 Iterate over each inode from the inode list:

	 a.	 If the inode is dirty, write it back.

	 b.	 If the page cache of the inode is dirty, write it back.

	 c.	 Clear the dirty flag.

Chapter 5 Layered File Systems

85

Figure 5-2 shows the file system’s different layers under the kernel.

Examples of different kinds of file systems include:

•	 Ext4: This file system is used to access the underlying

block devices.

•	 ProcFS: This is an in-memory file system and is used to

provide features. This is also called a pseudo file system.

�A Few Words on Pseudo File Systems
Recall that the general philosophy of Linux is that everything is a file.

Working on that premise, there are file systems that expose some of the

kernel’s resources over the file interface. We call them pseudo file systems.

One such file system is procfs.

The procfs file system is mounted on the rootfs under the proc

directory. The data under procfs is not persisted and all operations

happen in memory.

Some of the structures exposed via procfs are explained in the

following table:

Figure 5-2.  The different layers of a file system under the kernel

Chapter 5 Layered File Systems

86

Structure Description

/proc/cpuinfo CPU details like cores, CPU size, make, etc.

/proc/meminfo Information about physical memory

/proc/interrupts Information about interrupts and handlers

/proc/vmstat Virtual memory stats

/proc/filesystems Active file systems on the kernel

/proc/mounts Current mounts and devices; this will be specific to the

mount namespace

/proc/uptime Time since the kernel was up

/proc/stat System statistics

/proc/net Network-related structures like TCP sockets, files, etc.

proc also exposes some process-specific information

via files

/proc/pid/cmdline Command-line name of the process

/proc/pid/environ Environment variables of the process

/proc/pid/mem Virtual memory of the process

/proc/pid/maps Mapping of the virtual memory

/proc/pid/fdinfo Open file descriptors of the process

/proc/pid/task Details of the child processes

�Layered File Systems
Now that you have a better understanding of the file systems in Linux, it’s

time to take a look at the layered file systems in Linux.

The layered file system allows files to be shared on disk, thereby saving

space. Since these files are shared in memory (loaded in page cache), a

layered file system allows optimal space utilization as well as faster bootup.

Chapter 5 Layered File Systems

87

Consider an example of running ten Cassandra databases on the same

host, each database running its own namespaces. If we have separate

file systems for each database’s different inodes, we don’t enjoy these

advantages:

•	 Memory sharing

•	 Sharing on disk

Whereas in the case of a layered file system, the file system is broken

into layers and each layer is a read-only file system. Since these layers are

shared across the containers on the same host, they tend to use storage

optimally. And, since the inodes are the same, they refer to the same OS

page cache. This makes things optimal from all aspects.

Compare this to VM-based provisioning, where each rootfs

is provisioned as a disk. This means they all have different inode

representations on the host and there is no optimal storage as compared to

the containers.

Hypervisors also tend to reach optimization using techniques like KSM

(Kernel Same Page Merging) so they can de-duplicate across VMs for the

same pages.

Next, we discuss the concept of union file systems, which is a type of

layered file system.

�The Union File System
According to Wikipedia, the union file system is a file system service for

Linux, FreeBSD, and NetBSD that implements a union mount for other

file systems. It allows files and directories of separate file systems, known

as branches, to be transparently overlaid, forming a single coherent file

system. The contents of any directories that have the same path within the

merged branches will be seen together in a single merged directory, within

the new virtual file system.

Chapter 5 Layered File Systems

88

So basically, a union file system allows you to take different file systems

and create a union of their contents, with the top layer providing a view

of all the files underlying it. If duplicate files are found, the top layer

supersedes the layers below it.

�OverlayFS
This section looks at OverlayFS as one example of a union FS. OverlayFS

has been part of the Linux Kernel since 3.18. It overlays (as the name

suggests) the contents of one directory onto other. The source directories

can be on different disks or file systems.

With OverlayFS v1, there were only two layers, and they were used to

create a unified layer, as shown in Figure 5-3.

Figure 5-3.  OverlayFS v1 with two layers (upper and lower)

OverlayFS v2 has three layers:

•	 Base: This is the base layer. This is primarily read-only.

•	 Overlay: This layer provides visibility from the base

layer and allows one to add new files/directories. If any

files from the base layer change, they are stored in the

next layer.

Chapter 5 Layered File Systems

89

•	 Diff: The changes made in the overlay layer are stored

in the diff layer. Any changes to files in the base layer

lead to copying the file from the base layer to the diff

layer. The changes are then written in the diff layer.

Lets look at an example of how OverlayFS v2 works:

root@instance-1: mkdir base diff overlay workdir

root@instance-1: echo "test data" > base/test1

root@instance-1: sudo mount \

> -t overlay \

> -o lowerdir=base,upperdir=diff,workdir=workdir \

> overlay \

> overlay

root@instance-1:-# I

We create a file in the overlay directory and can see that it appears in diff:

root@instance-1:/overlay# touch test2

root@instance-1:/overlay# ls

test1 test2

root@instance-1:-/overlay# cd ../diff

root@instance-1:-/diff# ls

test2

Chapter 5 Layered File Systems

90

We now modify the test1 file:

If we check the file in the diff directory, we see the changed file.

However, if we go to the base directory, we still see the old file. This means

that when we modified the file in the base directory, it was copied to the

diff directory first, after which the changes were made.

After these examples are executed, if users wanted to do a cleanup of

resources, they could execute the following command to unmount the

OverlayFS:

root@instance-1: umount overlay

After the unmount is complete, the directories can also be removed if

desired.

Chapter 5 Layered File Systems

91

Lets now think about how container engines like Docker implement

this process. There is an Overlay2 storage driver in Docker, which you can

find out more about at https://github.com/moby/moby/blob/master/

daemon/graphdriver/overlay2/overlay.go.

Docker creates multiple read layers (base layers) and one read/write

layer called the container layer (in our case, the overlay layer).

The multiple read layers can be shared across different containers

on the same host, thereby attaining very high optimization. As hinted at

earlier, since we have the same file system and the same inodes, the OS

page cache is also shared across all containers on the same host.

Contrary to this, if we see a Docker driver device mapper, since it

gives a virtual disk for each layer, we might not experience the sharing

we get with OverlayFS .But now, even with the device mapper usage in

Docker, we can pass the –shared-rootfs option to the daemon to share

the rootfs. This basically works by creating a device for the first container

base image and then doing bind mounts for subsequent containers. The

bind mounts allow us to preserve the same inodes and therefore the page

cache is shared.

Chapter 5 Layered File Systems

https://github.com/moby/moby/blob/master/daemon/graphdriver/overlay2/overlay.go
https://github.com/moby/moby/blob/master/daemon/graphdriver/overlay2/overlay.go

93© Shashank Mohan Jain 2020
S. M. Jain, Linux Containers and Virtualization, https://doi.org/10.1007/978-1-4842-6283-2_6

CHAPTER 6

Creating a Simple
Container Framework

In the previous chapters, we learned about the important
building blocks of the container framework, like namespaces,
cgroups, and layered file systems. In this chapter, we use that
knowledge to build a simple container framework and learn
how these building blocks make up the container framework.

Since we have covered the basics of what constitutes a container, it

is time to look at how to write your own simple container. By end of this

chapter, you will have created your own simple container using namespace

isolation.

Let’s get started.

I have tested the commands mentioned in the chapter on Ubuntu

19.04 with Linux Kernel 5.0.0-13.

The first command we explore is called unshare. This command allows

you to unshare a set of namespaces from the host.

�The UTS Namespace
We will enter a new uts namespace and change the hostname within that

namespace.

https://doi.org/10.1007/978-1-4842-6283-2_6#DOI

94

root@osboxes:~# unshare -u /bin/bash

root@osboxes:~# hostname test

root@osboxes:~# hostname

test

root@osboxes:~# exit

exit

root@osboxes:~# hostname

osboxes

When we entered the UTS namespace, we changed the hostname to

test and this is what is reflected within that namespace. Once we exit and

re-enter the host namespace, we get the host namespace.

The command unshare -u /bin/bash creates the uts namespace

and executes our process (/bin/bash) within that namespace. The careful

reader might observe that if we don’t change the hostname after entering

the namespace, we still get the hostname of the host. This is not desirable,

as we need a way to set this before executing our program within the

namespace.

This is where we will explore writing a container using Golang (also

called Go) and then set up namespaces before we launch the process

within the container. We will be writing the container in Golang, so we

need to have Golang installed on the VM or on the machine on which we

are working. (For Golang installation, visit https://golang.org/doc/

install.)

Golang is the most common systems programming language around.

It is used to create container runtimes like Docker, as well as container

orchestration engines like Swarm and Kubernetes. Apart from that, it has

been used in various other systems programming settings. It’s a good idea

to have a decent understanding of Golang before you delve into the code in

this chapter.

Chapter 6 Creating a Simple Container Framework

https://golang.org/doc/install
https://golang.org/doc/install

95

�Golang Installation
Here are the quick Golang install commands:

root@osboxes:~#wget https://dl.google.com/go/go1.12.7.linux-

amd64.tar.gz

root@osboxes:~# tar -C /usr/local -xzf go1.12.7.linux-amd64.tar.gz

You can add the following line to /root/.profile to add the Golang

binaries to the system PATH variable:

root@osboxes:~# export PATH=$PATH:/usr/local/go/bin

Then run this command in your terminal:

root@osboxes:~# source ~/.profile

To check if Go (Golang) is installed properly, you can run this command:

root@osboxes:~# go version

If the installation was successful, you should see the following output:

Now we will build a container with only a namespace and then keep

modifying the program to add more functionalities, like shell support,

rootfs, networking, and cgroups.

Chapter 6 Creating a Simple Container Framework

96

�Building a Container with a Namespace
Let’s revisit Linux namespaces briefly before we build the container.

Namespaces are in the Linux kernel, similar to sandbox kernel resources

like file systems, process trees, message queues, and semaphores, as well

as network components like devices, sockets, and routing rules.

Namespaces isolate processes within their own execution sandbox

so that they run completely isolated from other processes in different

namespaces.

There are six namespaces:

•	 PID namespace: The processes within the PID

namespace have a different process tree. They have an

init process with a PID of 1.

•	 Mount namespace: This namespace controls which

mount points a process can see. If a process is within

a namespace, it will only see the mounts within that

namespace.

•	 UTS namespace: This allows a process to see a

different namespace than the actual global namespace.

•	 Network namespace: This namespace gives a different

network view within a namespace. Network constructs

like ports, iptables, and so on, are scoped within the

namespace.

•	 IPC namespace: This namespace confines interprocess

communication structures like pipes within a specific

namespace.

•	 User-namespace: This namespace allows for a

separate user and group view within the namespace.

Chapter 6 Creating a Simple Container Framework

97

We don’t discuss the cgroup namespace here, which also allows the

cgroups to be scoped into their own namespaces.

Now let’s get our hands dirty and create a Go class called myuts.go.

Copy the following snippet and use go build myuts.go to get the myuts

binary. Also execute the myuts binary as the root user.

package main

import (

 "fmt"

 "os"

 "os/exec"

 "syscall"

)

func main() {

 cmd := exec.Command("/bin/bash")

 // The statements below refer to the input, output and error

streams of the process created (cmd)

 cmd.Stdin = os.Stdin

 cmd.Stdout = os.Stdout

 cmd.Stderr = os.Stderr

 //setting an environment variable

 cmd.Env = []string{"name=shashank"}

 // the command below creates a UTS namespace for the process

 cmd.SysProcAttr = &syscall.SysProcAttr{

 Cloneflags: syscall.CLONE_NEWUTS,

 }

Chapter 6 Creating a Simple Container Framework

98

 if err := cmd.Run(); err != nil {

 fmt.Printf("Error running the /bin/bash command - %s\n", err)

 os.Exit(1)

 }

}

This is a simple Go program that executes a shell, sets up the I/O

streams for the process, and then sets one env variable. Then it uses the

following command:

cmd.SysProcAttr = &syscall.SysProcAttr{

 Cloneflags: syscall.CLONE_NEWUTS,

 }

It then passes the CLONE flags (in this case, we just pass UTS as the

Clone flag). The clone flags control which namespaces are created for the

process.

After that, we build and run this Golang process. We can see whether

the new namespace was created by using the proc file system and checking

the proc/<<pid>>/ns:

root@osboxes:~/book_prep# ls -li /proc/self/ns/uts

60086 lrwxrwxrwx 1 root root 0 Apr 13 10:10 /proc/self/ns/uts –

> 'uts:[4026531838]'

root@osboxes:~/book_prep# ./myuts

root@osboxes:/root/book_prep# ls -li /proc/self/ns/uts

60099 lrwxrwxrwx 1 root root 0 Apr 13 10:10 /proc/self/ns/uts –

> 'uts:[4026532505]'

root@osboxes:/root/book_prep#exit

First, we print the namespace of the host and then we print the

namespace of the container we are in.

We can see that the uts namespaces are different.

Chapter 6 Creating a Simple Container Framework

99

�Adding More Namespaces
In the previous section, we displayed how a UTS namespace could be

created. In this section, we add more namespaces.

First, we add more clone flags, in order to create more namespaces for

the container we are creating.

package main

import (

 "fmt"

 "os"

 "os/exec"

 "syscall"

)

func main() {

 cmd := exec.Command("/bin/bash")

 cmd.Stdin = os.Stdin

 cmd.Stdout = os.Stdout

 cmd.Stderr = os.Stderr

 cmd.Env = []string{"name=shashank"}

 //�command below creates the UTS, PID and IPC , NETWORK and

USERNAMESPACES

 cmd.SysProcAttr = &syscall.SysProcAttr{

 Cloneflags: syscall.CLONE_NEWNS |

 syscall.CLONE_NEWUTS |

 syscall.CLONE_NEWIPC |

 syscall.CLONE_NEWPID |

 syscall.CLONE_NEWNET |

 syscall.CLONE_NEWUSER,

 }

Chapter 6 Creating a Simple Container Framework

100

 if err := cmd.Run(); err != nil {

 fmt.Printf("Error running the /bin/bash command - %s\n", err)

 os.Exit(1)

 }

}

Here we added more namespaces via the clone flag. We build and run

the program as follows:

root@osboxes:~/book_prep# ./myuts

nobody@osboxes:/root/book_prep$ ls -li /proc/self/ns/ total 0

63290 lrwxrwxrwx 1 nobody nogroup 0 Apr 13 10:14 cgroup ->

'cgroup:[4026531835]'

63285 lrwxrwxrwx 1 nobody nogroup 0 Apr 13 10:14 ipc ->

'ipc:[4026532508]'

63289 lrwxrwxrwx 1 nobody nogroup 0 Apr 13 10:14 mnt ->

'mnt:[4026532506]'

63283 lrwxrwxrwx 1 nobody nogroup 0 Apr 13 10:14 net ->

'net:[4026532511]'

63286 lrwxrwxrwx 1 nobody nogroup 0 Apr 13 10:14 pid ->

'pid:[4026532509]'

63287 lrwxrwxrwx 1 nobody nogroup 0 Apr 13 10:14 pid_for_

children -> 'pid:[4026532509]'

63288 lrwxrwxrwx 1 nobody nogroup 0 Apr 13 10:14 user ->

'user:[4026532505]'

63284 lrwxrwxrwx 1 nobody nogroup 0 Apr 13 10:14 uts ->

'uts:[4026532507]'

We have the namespaces this container belongs to. Now we see

that the ownership belongs to nobody. This is because we also used a

user-namespace as a clone flag. The container is now within a new user-

namespace. User-namespaces require that we map the user from the

namespace to the host. Since we have not done anything yet, we still see

nobody as the user.

Chapter 6 Creating a Simple Container Framework

101

We now add user mapping to the code:

package main

import (

 "fmt"

 "os"

 "os/exec"

 "syscall"

)

func main() {

 cmd := exec.Command("/bin/bash")

 cmd.Stdin = os.Stdin

 cmd.Stdout = os.Stdout

 cmd.Stderr = os.Stderr

 cmd.Env = []string{"name=shashank"}

 //command below creates the UTS, PID and IPC , NETWORK and

 // USERNAMESPACES and adds the user and group mappings.

 cmd.SysProcAttr = &syscall.SysProcAttr{

 Cloneflags: syscall.CLONE_NEWNS |

 syscall.CLONE_NEWUTS |

 syscall.CLONE_NEWIPC |

 syscall.CLONE_NEWPID |

 syscall.CLONE_NEWNET |

 syscall.CLONE_NEWUSER,

 UidMappings: []syscall.SysProcIDMap{

 {

 ContainerID: 0,

 HostID: os.Getuid(),

 Size: 1,

 },

Chapter 6 Creating a Simple Container Framework

102

 },

 GidMappings: []syscall.SysProcIDMap{

 {

 ContainerID: 0,

 HostID: os.Getgid(),

 Size: 1,

 },

 },

 }

 if err := cmd.Run(); err != nil {

 �fmt.Printf("Error running the /bin/bash command -

%s\n", err)

 os.Exit(1)

 }

}

You can see that we have UidMappings and GidMappings. We have a

field called ContainerID, which we are setting to 0. This means we are

mapping the uid and gid 0 within the container to the uid and gid of the

user who launched the process.

There is one interesting aspect I would like to touch upon in the

context of user-namespaces. We don’t need to be the root on the host

in order to create a user-namespace. This provides a way to create

namespaces and thereby containers without being the root on the

machine, which means it’s a big security win as providing root access to

a process can be hazardous. If programs are launched as the root, any

compromise to those programs can give root privileges to the attacker. In

turn, the whole machine gets compromised.

We can technically be non-root on the host and then create a

user-namespace and other namespaces within that user-namespace. Mind

Chapter 6 Creating a Simple Container Framework

103

you, all the other namespaces, if launched without a user-namespace, will

need root access.

If we take the previous example, where we are passing all the flags

together, the system first creates a user-namespace and places all the other

namespaces within that user-namespace.

I cannot cover the user-namespace topic in its entirety here, but it is

an interesting area for curious readers to explore. One area I can mention

straightaway is the area of Docker builds, wherein we need root access

to build an image within a container. This is necessary for many reasons,

as we need some layered file systems mounted within the container and

creating a new mount requires root privilege.

The same holds for setting up virtual network devices like veth

pairs in order to wire containers to the host. Having said that, there

has been momentum in the area of rootless containers, which allow

developers to run containers without the root. If you want to read about

this in more detail, you can explore this topic at the following: https://

rootlesscontaine.rs/ and https://github.com/rootless-containers.

What we have achieved thus far is the ability to launch a process

within a set of namespaces. But we definitely need more. We need a way to

initialize these namespaces before we launch the container.

Back to the program we created. Let’s build and run it:

root@osboxes:~/book_prep# ./myuts

root@osboxes:/root/book_prep# whoami

root

root@osboxes:/root/book_prep# id

uid=0(root) gid=0(root) groups=0(root)

Now we see that the user within the container is the root.

The program checks the first argument. If the first command is run,

then the program executes /proc/self/exe, which is simply saying execute

yourself (/proc/self/exe is the copy of the binary image of the caller itself).

Chapter 6 Creating a Simple Container Framework

https://rootlesscontaine.rs/
https://rootlesscontaine.rs/
https://github.com/rootless-containers

104

One might ask why we need to execute /proc/self/exe. When we

execute this command, it launches the same binary with some arguments

(in our case, we pass fork as the argument to it). Once we are into different

namespaces, we need some setup for the namespaces, like setting the

hostname, before we launch the process within the container.

Executing /proc/self/exe gives us the opportunity to set up the

namespaces like so:

	 1.	 Set the hostname.

	 2.	 Within the mount namespace, we do a pivot root,

which allows us to switch the root file system. It does

this by copying the old root to some other directory

and making the new path the new root. This

pivot root has to be done from within the mount

namespace, as we don’t want to move the rootfs off

the host. We also mount the proc file system. This

is done because the mount namespace inherits the

proc of the host and we want a proc mount within

the mount namespace.

	 3.	 Once the namespaces are initialized and set up, we

invoke the container process (in this case, the shell).

Running this program launches the shell into a sandbox confined by

the proc, mount, and uts namespace.

Now we work on initializing the namespaces before launching the

process within the container. In the following example, we will have a

different hostname in the uts namespace. In the following code, we make

the required changes.

We have a function parent that:

	 1.	 Clones the namespaces.

	 2.	 Launches the same process again via /proc/self/

exe and passes a child as the parameter.

Chapter 6 Creating a Simple Container Framework

105

Now the process is called again. Checks in the main function lead to

invocations of the child function. Now you can see that we cloned the

namespaces. All we do now is change the hostname to myhost within the

uts namespace. Once that is done, we invoke the binary passed as the

command-line parameter (in this case, /bin/bash).

�Launching a Shell Program Within
the Container
In previous sections, we explained how to create different Linux namespaces.

In this section, we explain how to enter those namespaces. Entering the

confines of the namespaces can be done by launching a program/process

within the namespaces. The following program launches a shell program

within these namespaces.

package main

import (

 "fmt"

 "os"

 "os/exec"

 "syscall"

)

func main() {

switch os.Args[1] {

 case "parent":

 parent()

 case "child":

 child()

 default:

 panic("help")

Chapter 6 Creating a Simple Container Framework

106

 }

}

// the parent function invoked from the main program which sets

up the needed namespaces

func parent() {

 cmd := exec.Command("/proc/self/exe",

append([]string{"child"}, os.Args[2:]...)...)

 cmd.Stdin = os.Stdin

 cmd.Stdout = os.Stdout

 cmd.Stderr = os.Stderr

 cmd.Env = []string{"name=shashank"}

 cmd.SysProcAttr = &syscall.SysProcAttr{

 Cloneflags: syscall.CLONE_NEWNS |

 syscall.CLONE_NEWUTS |

 syscall.CLONE_NEWIPC |

 syscall.CLONE_NEWPID |

 syscall.CLONE_NEWNET |

 syscall.CLONE_NEWUSER,

 UidMappings: []syscall.SysProcIDMap{

 {

 ContainerID: 0,

 HostID: os.Getuid(),

 Size: 1,

 },

 },

 GidMappings: []syscall.SysProcIDMap{

 {

 ContainerID: 0,

 HostID: os.Getgid(),

Chapter 6 Creating a Simple Container Framework

107

 Size: 1,

 },

 },

 }

 must(cmd.Run())

}

// �this is the child process which is a copy of the parent

program itself.

func child () {

cmd := exec.Command(os.Args[2], os.Args[3:]...)

 cmd.Stdin = os.Stdin

 cmd.Stdout = os.Stdout

 cmd.Stderr = os.Stderr

//�the command below sets the hostname to myhost. Idea here is

to showcase the use of UTS namespace

must(syscall.Sethostname([]byte("myhost")))

// �this command executes the shell which is passed as a program

argument

must(cmd.Run())

}

func must(err error) {

 if err != nil {

 fmt.Printf("Error - %s\n", err)

 }

}

Chapter 6 Creating a Simple Container Framework

108

Upon executing the program, we can launch the binary within the new

namespaces. Also note that the hostname is set to myhost:

root@osboxes:~/book_prep# ./myuts parent /bin/bash

root@myhost:/root/book_prep# hostname

myhost

root@myhost:/root/book_prep#

After the uts namespace, it’s time to get more adventurous. We now

will work on initializing the mount namespace.

One thing to understand here is that all mounts from the host are

inherited within the mount namespace. Therefore, we need a mechanism

to clear the mounts and only make mounts for the mount namespace

visible within that namespace.

Before we move ahead, one of the things to understand conceptually

is the system call pivot_root. This system call allows us to change the root

file system for the process. It mounts the old root to some other directory

(in the following example, the author used pivot_root as the directory

to mount the old root on) else and mounts the new directory on /. This

allows us to clear all the host mounts within the namespace.

Again, we need to be inside the mount namespace before we do the

pivot_root. Since we already have a hook on namespace initialization (via

the /proc/self/exe hack), we need to introduce a pivot root mechanism.

�Providing Root File System
We will use the rootfs from busybox, which you can download from

https://github.com/allthingssecurity/containerbook (busybox.tar).

After downloading busybox.tar, extract it to /root/book_prep/rootfs

in your system. This location is referred to in this code as the location of

rootfs. As shown in Figure 6-1, the contents of the /root/book_prep/

rootfs should look the same on your system.

Chapter 6 Creating a Simple Container Framework

https://github.com/allthingssecurity/containerbook

109

After extracting the rootfs, we can see the directory structure under

the rootfs directory.

The following program does a pivot root to the rootfs within the

mount namespace.

The mount namespace becomes important, as it allows us to sandbox

the file system mounts. This is one way to get an isolated view of the

file system hierarchy and see what is present on the host or on different

sandboxes running on the same host.

As an example, assume there are two sandboxes—sandboxA and

sandboxB—running on the host. When sandboxA gets its own mounts, its

file system sees a different and isolated mount from what sandboxB sees,

and neither can see the mounts of the host. This provides security at the

file system level, as individual sandboxes cannot access files from different

sandboxes or from the host.

Figure 6-1.  The contents of the /root/book_prep/rootfs path

Chapter 6 Creating a Simple Container Framework

110

//providing rootfile system

package main

import (

 "fmt"

 "os"

 "os/exec"

 "path/filepath"

 "syscall"

)

func main() {

switch os.Args[1] {

 case "parent":

 parent()

 case "child":

 child()

 default:

 panic("help")

 }

}

func pivotRoot(newroot string) error {

 putold := filepath.Join(newroot, "/.pivot_root")

 //�bind mount newroot to itself - this is a slight hack

needed to satisfy the

 //�pivot_root requirement that newroot and putold must

not be on the same

 //filesystem as the current root

 �if err := syscall.Mount(newroot, newroot, "", syscall.

MS_BIND|syscall.MS_REC, ""); err != nil {

 return err

Chapter 6 Creating a Simple Container Framework

111

 }

 // create putold directory

 if err := os.MkdirAll(putold, 0700); err != nil

 { return err

 }

 // call pivot_root

 if err := syscall.PivotRoot(newroot, putold); err != nil {

 return err

 }

 // ensure current working directory is set to new

 root if err := os.Chdir("/"); err != nil {

 return err

 }

 //�umount putold, which now lives at /.pivot_root putold

= "/.pivot_root"

 �if err := syscall.Unmount(putold, syscall.MNT_DETACH);

err !=

 nil {

 return err

 }

 // remove putold

 if err := os.RemoveAll(putold); err != nil

 { return err

 }

 return nil

}

Chapter 6 Creating a Simple Container Framework

112

func parent() {

 �cmd := exec.Command("/proc/self/exe", append([]

string{"child"}, os.Args[2:]...)...)

 cmd.Stdin = os.Stdin

 cmd.Stdout = os.Stdout

 cmd.Stderr = os.Stderr

 cmd.Env = []string{"name=shashank"}

 cmd.SysProcAttr = &syscall.SysProcAttr{

 Cloneflags: syscall.CLONE_NEWNS |

 syscall.CLONE_NEWUTS |

 syscall.CLONE_NEWIPC |

 syscall.CLONE_NEWPID |

 syscall.CLONE_NEWNET |

 syscall.CLONE_NEWUSER,

 UidMappings: []syscall.SysProcIDMap{

 {

 ContainerID: 0,

 HostID: os.Getuid(),

 Size: 1,

 },

 },

 GidMappings: []syscall.SysProcIDMap{

 {

 ContainerID: 0,

 HostID: os.Getgid(),

 Size: 1,

 },

 },

 }

Chapter 6 Creating a Simple Container Framework

113

 must(cmd.Run())

}

func child () {

cmd := exec.Command(os.Args[2], os.Args[3:]...)

 cmd.Stdin = os.Stdin

 cmd.Stdout = os.Stdout

 cmd.Stderr = os.Stderr

must(syscall.Sethostname([]byte("myhost")))

 if err := pivotRoot("/root/book_prep/rootfs"); err != nil

 { fmt.Printf("Error running pivot_root - %s\n",

 err) os.Exit(1)

 }

must(cmd.Run())

}

func must(err error) {

 if err != nil {

 fmt.Printf("Error - %s\n", err)

 }

}

After executing the following program:

Chapter 6 Creating a Simple Container Framework

114

We can see the directories under rootfs and see that the hostname has

changed. We can also see the uid as 0 (the root within the container).

We still have a problem. The proc mount is not there. We need the proc

mount to provide information about different processes running within

the namespace and as an interface to the kernel for other utilities, as

explained in the pseudo file systems in earlier chapters. We need to mount

the proc file system within the mount namespace.

�The Mount Proc File System
We add the new mountProc function to the program:

package main

import (

 "fmt"

 "os"

 "os/exec"

 "path/filepath"

 "syscall"

)

func main() {

switch os.Args[1] {

 case "parent":

 parent()

 case "child":

 child()

 default:

 panic("help")

 }

}

Chapter 6 Creating a Simple Container Framework

115

func pivotRoot(newroot string) error {

 putold := filepath.Join(newroot, "/.pivot_root")

 // �bind mount newroot to itself - this is a slight hack

needed to satisfy the

 // �pivot_root requirement that newroot and putold must

not be on the same

 // filesystem as the current root

 // i�f err := syscall.Mount(newroot, newroot, "",

syscall.MS_BIND|syscall.MS_REC, ""); err != nil {

 return err

 }

 // create putold directory

 if err := os.MkdirAll(putold, 0700); err != nil {

 return err

 }

 // call pivot_root

 if err := syscall.PivotRoot(newroot, putold); err != nil {

 return err

 }

 // ensure current working directory is set to new root

 if err := os.Chdir("/"); err != nil {

 return err

 }

 // �umount putold, which now lives at /.pivot_root

putold = "/.pivot_root"

 �if err := syscall.Unmount(putold, syscall.MNT_DETACH);

err !=

 nil {

Chapter 6 Creating a Simple Container Framework

116

 return err

 }

 // remove putold

 if err := os.RemoveAll(putold); err != nil

 { return err

 }

 return nil

}

func parent() {

 cmd := �exec.Command("/proc/self/exe", append([]

string{"child"}, os.Args[2:]...)...)

 cmd.Stdin = os.Stdin

 cmd.Stdout = os.Stdout

 cmd.Stderr = os.Stderr

 cmd.Env = []string{"name=shashank"}

 cmd.SysProcAttr = &syscall.SysProcAttr{

 Cloneflags: syscall.CLONE_NEWNS |

 syscall.CLONE_NEWUTS |

 syscall.CLONE_NEWIPC |

 syscall.CLONE_NEWPID |

 syscall.CLONE_NEWNET |

 syscall.CLONE_NEWUSER,

 UidMappings: []syscall.SysProcIDMap{

 {

 ContainerID: 0,

 HostID: os.Getuid(),

 Size: 1,

 },

 },

Chapter 6 Creating a Simple Container Framework

117

 GidMappings: []syscall.SysProcIDMap{

 {

 ContainerID: 0,

 HostID: os.Getgid(),

 Size: 1,

 },

 },

 }

 must(cmd.Run())

}

func child () {

cmd := exec.Command(os.Args[2], os.Args[3:]...)

 cmd.Stdin = os.Stdin

 cmd.Stdout = os.Stdout

 cmd.Stderr = os.Stderr

//make a call to mountProc function which would mount the proc

filesystem to the already

//created mount namespace

must(mountProc("/root/book_prep/rootfs"))

must(syscall.Sethostname([]byte("myhost")))

 if err := pivotRoot("/root/book_prep/rootfs"); err != nil

 { fmt.Printf("Error running pivot_root - %s\n",

 err) os.Exit(1)

 }

must(cmd.Run())

}

Chapter 6 Creating a Simple Container Framework

118

func must(err error) {

 if err != nil {

 fmt.Printf("Error - %s\n", err)

 }

}

// this function mounts the proc filesystem within the

// new mount namespace

func mountProc(newroot string) error {

 source := "proc"

 target := filepath.Join(newroot, "/proc")

 fstype := "proc"

 flags := 0

 data := ""

//make a Mount system call to mount the proc filesystem within

the mount namespace

 os.MkdirAll(target, 0755)

 if err := syscall.Mount(

 source,

 target,

 fstype,

 uintptr(flags),

 data,

); err != nil {

 return err

 }

 return nil

}

Chapter 6 Creating a Simple Container Framework

119

Now, when we run ps inside the container to list the processes running

within the sandbox, we get the output shown here. The reason for this is

that ps uses the /proc file system.

We can use the nsenter command to enter the created container

namespaces. To try that, let the created container be in the running state

and open another Linux terminal. Then run this command:

ps -ef | grep /bin/sh

You should see the output shown here. In my case, my container’s PID

is 5387. Users should use the PIDs on their machines.

Executing nsenter -a -t 5387 /bin/sh allows this shell to be created

in the namespaces of the process with the PID 5387, as shown.

Chapter 6 Creating a Simple Container Framework

120

�Enabling the Network for the Container
In previous sections, we created a container with uts, PID, and mount

namespaces. We didn’t add the network namespace. In this section, we

discuss how to set up network namespaces for the container.

Before we delve into the networking topic, I will provide a small

primer on virtual devices in Linux, which are essential for understanding

container-based networks, or for that matter any virtual networking.

�Virtual Networking a Small Primer
In a virtualized world, there is a need to send packets across virtual

machines to the actual physical devices, between virtual machines, or

between different containers. We need a mechanism to use virtualized

devices in this way. Linux provides a mechanism to create virtual network

devices, called tun and tap. The tun device acts at Layer 3 of the network

stack, which means it receives the IP packets. The tap device acts at Layer 2,

where it receives raw Ethernet packets.

Now one might ask, what are these devices used for? Consider a

scenario where containerA needs to send packets outbound to another

container. The packets from one packet are transmitted to the host

machine, which smartly uses a tap device to pass the packet to a software

bridge. The bridge can then be connected to another container.

Let’s see how these tap devices work with a simple example. Here,

I create two tap devices, called mytap1 and mytap2:

Listing the tap devices, we can see there are two network interfaces:

Chapter 6 Creating a Simple Container Framework

121

We assign IP addresses to these devices:

Running a simple ping from one device to other results in the

following:

In these examples, we explicitly created two tap devices and tried a

ping between the two.

We can also use veth pairs, which can be thought of as virtual cables

that connect the virtual devices. They are used in openstack to connect

software bridges.

First, we create a veth pair as follows:

Chapter 6 Creating a Simple Container Framework

122

This creates two tap interfaces, called firstap and secondtap.

Now, we add IP addresses to the tap devices and run a ping:

With a basic understanding of tun and tap devices, let’s move on to

how the networking set up should work between the namespace created

for the container and the host’s namespace. For that process, we follow

these steps:

	 1.	 Create a Linux bridge on the host.

	 2.	 Create a veth pair.

	 3.	 One end of veth pair must be connected to the

bridge.

	 4.	 The other end of the bridge must be connected to

the network interface on the container namespace.

These steps are illustrated in Figure 6-2.

Figure 6-2.  Networking between the container’s namespace and the
host’s namespace

Chapter 6 Creating a Simple Container Framework

123

Now we modify the code to enable the network namespace:

package main

import (

 "fmt"

 "os"

 "os/exec"

 "path/filepath"

 "syscall"

 "time"

 "net"

)

func main() {

 switch os.Args[1] {

 case "parent":

 parent()

 case "child":

 child()

 default:

 panic("help")

 }

}

func waitForNetwork() error {

 maxWait := time.Second * 3

 checkInterval := time.Second

Chapter 6 Creating a Simple Container Framework

124

 timeStarted := time.Now()

 for {

 interfaces, err := net.Interfaces()

 if err != nil {

 return err

 }

 // pretty basic check ...

 // > 1 as a lo device will already

 exist if len(interfaces) > 1 {

 return nil

 }

 if time.Since(timeStarted) > maxWait {

 �return fmt.Errorf("Timeout after %s waiting for

network", maxWait)

 }

 time.Sleep(checkInterval)

 }

}

// The function allows mounting of proc filesystem

func mountProc(newroot string) error {

 source := "proc"

 target := filepath.Join(newroot, "/proc")

 fstype := "proc"

Chapter 6 Creating a Simple Container Framework

125

 flags := 0

 data := ""

 os.MkdirAll(target, 0755)

 if err := syscall.Mount(

 source,

 target,

 fstype,

 uintptr(flags),

 data,

); err != nil {

 return err

 }

 return nil

}

// this function allows to pivot the root filesystem. This allows us

// to have the root filesystem available in the sandbox

func pivotRoot(newroot string) error {

 putold := filepath.Join(newroot, "/.pivot_root")

 // �bind mount newroot to itself - this is a slight hack

needed to satisfy the

 // �pivot_root requirement that newroot and putold must not

be on the

 //same

Chapter 6 Creating a Simple Container Framework

126

 //filesystem as the current root

 if err := syscall.Mount(newroot, newroot, "",

syscall.MS_BIND|syscall.MS_REC, ""); err != nil {

 return err

 }

 // create putold directory

 if err := os.MkdirAll(putold, 0700); err != nil {

 return err

 }

 // call pivot_root

 if err := syscall.PivotRoot(newroot, putold); err != nil {

 return err

 }

 // ensure current working directory is set to new

 root if err := os.Chdir("/"); err != nil {

 return err

 }

 umount putold, which now lives at

 /.pivot_root putold = "/.pivot_root"

 if err := syscall.Unmount(putold, syscall.MNT_DETACH); err

!= nil {

 return err

 }

Chapter 6 Creating a Simple Container Framework

127

 // remove putold

 if err := os.RemoveAll(putold); err != nil {

 return err

 }

 return nil

}

func parent() {

 cmd := exec.Command("/proc/self/exe", append([]

string{"child"}, os.Args[2:]...)...)

 cmd.Stdin = os.Stdin

 cmd.Stdout = os.Stdout

 cmd.Stderr = os.Stderr

 cmd.Env = []string{"name=shashank"}

 cmd.SysProcAttr = &syscall.SysProcAttr{

 Cloneflags: syscall.CLONE_NEWNS |

 syscall.CLONE_NEWUTS |

 syscall.CLONE_NEWIPC |

 syscall.CLONE_NEWPID |

 syscall.CLONE_NEWNET |

 syscall.CLONE_NEWUSER,

 UidMappings: []syscall.SysProcIDMap{

Chapter 6 Creating a Simple Container Framework

128

 {

 ContainerID: 0,

 HostID: os.Getuid(),

 Size: 1,

 },

},

 GidMappings: []syscall.SysProcIDMap{

 {

 ContainerID: 0,

 HostID: os.Getgid(),

 Size: 1,

 },

 },

}

must(cmd.Start())

pid := fmt.Sprintf("%d", cmd.Process.Pid)

// Code below does the following

// Creates the bridge on the host

// Creates the veth pair

// Attaches one end of veth to bridge

// �Attaches the other end to the network namespace. This is

interesting

// �as we now have access to the host side and the network side

until // we block.

Chapter 6 Creating a Simple Container Framework

129

netsetgoCmd := exec.Command("/usr/local/bin/netsetgo", "-pid", pid)

 if err := netsetgoCmd.Run(); err != nil {

 fmt.Printf("Error running netsetgo - %s\n", err)

 os.Exit(1)

 }

 if err := cmd.Wait(); err != nil {

 fmt.Printf("Error waiting for reexec.Command - %s\n", err)

 os.Exit(1)

}

}

func child () {

cmd := exec.Command(os.Args[2], os.Args[3:]...)

 cmd.Stdin = os.Stdin

 cmd.Stdout = os.Stdout

 cmd.Stderr = os.Stderr

must(mountProc("/root/book_prep/rootfs"))

//must(syscall.Mount("proc", "proc", "proc", 0, ""))

must(syscall.Sethostname([]byte("myhost")))

 if err := pivotRoot("/root/book_prep/rootfs"); err != nil {

 fmt.Printf("Error running pivot_root - %s\n", err)

 os.Exit(1)

Chapter 6 Creating a Simple Container Framework

130

 }

//must(syscall.Mount("proc", "proc", "proc", 0, ""))

if err := waitForNetwork(); err != nil {

 fmt.Printf("Error waiting for network - %s\n", err)

 os.Exit(1)

}

if err := cmd.Run(); err != nil {

 fmt.Printf("Error starting the reexec.Command - %s\n", err)

 os.Exit(1)

}

//must(cmd.Run())

}

func must(err error) {

 if err != nil {

 fmt.Printf("Error - %s\n", err)

 }

}

There are a few aspects that are worth considering here. In the earlier

code examples, we initialized namespaces (like changing the hostname

and pivot root) in the child method. Then we launched the shell (/bin/sh)

within the namespaces.

Chapter 6 Creating a Simple Container Framework

131

This mechanism worked because we just needed to initialize the

namespaces, and that was being done within the namespaces themselves.

When it comes to the network namespace, we need to carry out certain

activities like the following:

•	 Create a bridge on the host.

•	 Create the veth pair and make one end connect to

the bridge on the host and the other end within the

namespace.

The problem with the current way is that when we launch the shell,

we remain in the namespace until we purposely exit it. So, we need a way

to return the code immediately in the API so we can execute the network

setup on the host and join the veth pairs.

Fortunately, the cmd.Run command can be broken into two parts.

•	 Cmd.Start() returns immediately.

•	 Cmd.Wait() blocks until the shell is exited.

We use this to our advantage in the parent method. We execute the

cmd.Start method, which returns immediately.

After the start method, we use a library called netsetgo created by Ed

King from Pivotal. It does the following.

	 1.	 Creates the bridge on the host.

	 2.	 Creates the veth pair.

	 3.	 Attaches one end of the veth to the bridge.

	 4.	 Attaches the other end to the network namespace.

This is interesting, as we now have access to the host

side and the network side until we block.

Chapter 6 Creating a Simple Container Framework

132

Follow the instructions to download and install netsetgo:

wget "https://github.com/teddyking/netsetgo/releases/

download/0.0.1/netsetgo"

sudo mv netsetgo /usr/local/bin/

sudo chown root:root /usr/local/bin/netsetgo

sudo chmod 4755 /usr/local/bin/netsetgo

In fact, a lot of these explanations are adapted from his examples.

The related code snippet is shown here:

must(cmd.Start())

pid := fmt.Sprintf("%d", cmd.Process.Pid)

netsetgoCmd := exec.Command("/usr/local/bin/netsetgo", "-pid", pid)

if err := netsetgoCmd.Run(); err != nil {

 fmt.Printf("Error running netsetgo - %s\n", err)

 os.Exit(1)

}

if err := cmd.Wait(); err != nil {

 fmt.Printf("Error waiting for reexec.Command - %s\n", err)

 os.Exit(1)

}

Once this is done, we use cmd.Wait(), which relaunches the program

(/proc/self/exe). Then we execute the child process and go ahead with

all the other initializations. After the initializations, we can launch the shell

within the namespaces.

Chapter 6 Creating a Simple Container Framework

133

Next, we should verify the network communication from the host to

the container and from the container to the host. First run this program:

/myuts parent /bin/sh

Within the container shell, run the ifconfig command. You should

see the container’s IP address, as shown here.

Keep the container running and open another terminal (a bash shell)

on the host. Run the following command, which pings the container’s IP:

ping 10.10.10.2

Note that we are able to ping the container’s IP address from the host.

Now try the pinging the host IP address from the container. First, get

the host IP address by running the ifconfig command. As you can see

here, my host IP address is 10.0.2.15:

Chapter 6 Creating a Simple Container Framework

134

Now ping this host IP from the container:

As you can see, we could ping from the container to the host as well as

from the host to the container, so networking communication is working

both ways.

Let’s recap what we have achieved thus far.

•	 We created a container with unshare and demonstrated

the ability to change the hostname within a uts

namespace.

•	 We created a container with Golang with namespaces

like UTS and user-namespaces.

Chapter 6 Creating a Simple Container Framework

135

•	 We add mount namespaces and demonstrated how a

separate proc file system can be mounted within the

namespace.

•	 We added network capabilities to the namespace,

which allow us to communicate between the container

namespaces and the host namespace.

�Enabling Cgroups for the Container
We earlier mounted a cgroup on /root/mygrp. We created a directory

child within it. Now we will put our process within the cgroup and cap its

maximum memory.

Here is the sample code snippet:

func enableCgroup() {

 cgroups := "/root/mygrp"

 pids := filepath.Join(cgroups, "child")

 must(ioutil.WriteFile(filepath.Join(pids, "memory.max"), []

byte("2M"), 0700))

 must(ioutil.WriteFile(filepath.Join(pids, "cgroup.procs"),

 []byte(strconv.Itoa(os.Getpid())), 0700))

}

In this code snippet, we add the PID of the process we create within

the container (/bin/sh) to the cgroup.procs file and cap the maximum

memory for the process to 2MB.

Before executing this code, you need to make one configuration

change to the OS. Open the /etc/default/grub file using Nano or your

favorite editor:

nano /etc/default/grub

Chapter 6 Creating a Simple Container Framework

136

In this file, you have to modify the GRUB_CMDLINE_LINUX_DEFAULT key

to add systemd.unified_cgroup_hierarchy=1. Refer the following image

for clarification.

GRUB_CMDLINE_LINUX_DEFAULT="quiet splash systemd.unified_

cgroup_hierarchy=1"

After the update, run the command and reboot the system:

sudo update-grub

After the system reboots, run this command:

cat /proc/cmdline

You should see systemd.unified_cgroup_hierarchy=1 as the BOOT_

IMAGE key in the /proc/cmdline.

To create a cgroup, run the following commands in the terminal. Use

the same folders we used in the program.

Chapter 6 Creating a Simple Container Framework

137

mkdir -p /root/mygrp

mount -t cgroup2 none /root/mygrp

mkdir -p /root/mygrp/child

Now you can run this program:

package main

import (

 "fmt"

 "io/ioutil"

 "os"

 "os/exec"

 "path/filepath"

 "strconv"

 "syscall"

 "time"

 "net"

)

func main() {

switch os.Args[1] {

 case "parent":

 parent()

 case "child":

 child()

 default:

 panic("help")

 }

}

Chapter 6 Creating a Simple Container Framework

138

func enableCgroup() {

 cgroups := "/root/mygrp"

 pids := filepath.Join(cgroups, "child")

 must(ioutil.WriteFile(filepath.Join(pids,

"memory.max"), []byte("2M"), 0700))

 must(ioutil.WriteFile(filepath.Join(pids,

"cgroup.procs"), []byte(strconv.Itoa(os.Getpid())), 0700))

}

func waitForNetwork() error {

 maxWait := time.Second * 3

 checkInterval := time.Second

 timeStarted := time.Now()

 for {

 interfaces, err := net.Interfaces()

 if err != nil {

 return err

 }

 // pretty basic check ...

 // > 1 as a lo device will already exist

 if len(interfaces) > 1 {

 return nil

 }

 if time.Since(timeStarted) > maxWait {

 return fmt.Errorf("Timeout after %s waiting

 for network", maxWait)

 }

Chapter 6 Creating a Simple Container Framework

139

 time.Sleep(checkInterval)

 }

}

func mountProc(newroot string) error {

 source := "proc"

 target := filepath.Join(newroot, "/proc")

 fstype := "proc"

 flags := 0

 data := ""

 os.MkdirAll(target, 0755)

 if err := syscall.Mount(

 source,

 target,

 fstype,

 uintptr(flags),

 data,

); err != nil {

 return err

 }

 return nil

}

func pivotRoot(newroot string) error {

 putold := filepath.Join(newroot, "/.pivot_root")

 // �bind mount newroot to itself - this is a slight hack

needed

 // �to satisfy the pivot_root requirement that newroot

and putold

 // must not be on the same filesystem as the current root

Chapter 6 Creating a Simple Container Framework

140

 if err := syscall.Mount(newroot, newroot, "",

syscall.MS_BIND|syscall.MS_REC, ""); err != nil {

 return err

 }

 // create putold directory

 if err := os.MkdirAll(putold, 0700); err != nil

 { return err

 }

 // call pivot_root

 if err := syscall.PivotRoot(newroot, putold); err != nil

 { return err

 }

 // ensure current working directory is set to new

 root if err := os.Chdir("/"); err != nil {

 return err

 }

 // umount putold, which now lives at

 /.pivot_root putold = "/.pivot_root"

 if err := syscall.Unmount(putold, syscall.MNT_DETACH); err !=

nil {

 return err

 }

 // remove putold

 if err := os.RemoveAll(putold); err != nil {

 return err

 }

 return nil

}

Chapter 6 Creating a Simple Container Framework

141

func parent() {

 cmd := �exec.Command("/proc/self/exe", append([]

string{"child"}, os.Args[2:]...)...)

 cmd.Stdin = os.Stdin

 cmd.Stdout = os.Stdout

 cmd.Stderr = os.Stderr

 cmd.Env = []string{"name=shashank"}

 cmd.SysProcAttr = &syscall.SysProcAttr{

 Cloneflags: syscall.CLONE_NEWNS |

 syscall.CLONE_NEWUTS |

 syscall.CLONE_NEWIPC |

 syscall.CLONE_NEWPID |

 syscall.CLONE_NEWNET |

 syscall.CLONE_NEWUSER,

 UidMappings: []syscall.SysProcIDMap{

 {

 ContainerID: 0,

 HostID: os.Getuid(),

 Size: 1,

 },

 },

 GidMappings: []syscall.SysProcIDMap{

 {

 ContainerID: 0,

 HostID: os.Getgid(),

 Size: 1,

 },

 },

}

Chapter 6 Creating a Simple Container Framework

142

 must(cmd.Start())

pid := fmt.Sprintf("%d", cmd.Process.Pid)

netsetgoCmd := exec.Command("/usr/local/bin/netsetgo", "-pid",

pid) if err := netsetgoCmd.Run(); err != nil {

 fmt.Printf("Error running netsetgo - %s\n", err)

 os.Exit(1)

}

if err := cmd.Wait(); err != nil {

 fmt.Printf("Error waiting for reexec.Command - %s\n", err)

 os.Exit(1)

}

}

Func child () {

//enable the cgroup functionality

enableCgroup()

cmd := exec.Command(os.Args[2], os.Args[3:]...)

 cmd.Stdin = os.Stdin

 cmd.Stdout = os.Stdout

 cmd.Stderr = os.Stderr

must(mountProc("/root/book_prep/rootfs"))

//must(syscall.Mount("proc", "proc", "proc", 0, ""))

must(syscall.Sethostname([]byte("myhost")))

 if err := pivotRoot("/root/book_prep/rootfs"); err != nil

 { fmt.Printf("Error running pivot_root - %s\n",

 err) os.Exit(1)

 }

//must(syscall.Mount("proc", "proc", "proc", 0, ""))

Chapter 6 Creating a Simple Container Framework

143

if err := waitForNetwork(); err != nil {

 fmt.Printf("Error waiting for network - %s\n", err)

 os.Exit(1)

 }

if err := cmd.Run(); err != nil {

 �fmt.Printf("Error starting the reexec.Command - %s\n", err)

 os.Exit(1)

 }

//must(cmd.Run())

}

func must(err error) {

 if err != nil {

 fmt.Printf("Error - %s\n", err)

 }

}

Figure 6-3 shows the process PID added to the cgroup and the value

stored in the memory.max file, which we defined in the program.

Figure 6-3.  The process PID added to the cgroup and the value stored
in the memory.max file

Chapter 6 Creating a Simple Container Framework

144

�Summary
In the book, we covered the basics of virtualization. We delved into

how virtualization works and the basic techniques used to achieve it.

We covered different packet flow scenarios, as to how communication

happens from a VM to a hypervisor.

The book covered the specifics of Linux containers (namespaces,

cgroups, and union file systems) and how containers are realized within

the Linux kernel. We took a stab at writing a Linux container and saw how,

with some simple programming, we can create a simple container runtime

like Docker.

You are advised to go over each exercise and try different combinations

of the code. As an example, you could do the following:

	 1.	 Try a new rootfs rather than busybox.

	 2.	 Try container-to-container networking.

	 3.	 Play with more resource controls.

	 4.	 Run an HTTP server within one container and an

HTTP client within other container and establish a

communication over HTTP.

You should now have a decent idea as to what happens under the

hood within a container. Therefore, when you use different container

orchestrators like Kubernetes or Swarm, you’ll more easily understand

what is actually happening.

Chapter 6 Creating a Simple Container Framework

145© Shashank Mohan Jain 2020
S. M. Jain, Linux Containers and Virtualization, https://doi.org/10.1007/978-1-4842-6283-2

Index
A
Alternative virtualization

mechanisms
Docker, 25
hotplug capability, 30
novm, 29
POSIX interface, 26
project dune, 28, 29
unikernels, 26, 27

Application Binary Interface (ABI), 3

B
Block I/O cgroup

bio structure, 64
data structures, 63
purpose, 62
request queue, 65, 66
user space, 63

C, D
Cgroups

directory child, 135
/etc/default/grub file, 135
mount point, 46
mygrp, 46, 47, 49, 50
/proc/cmdline, 136–143

process PID, 143
system reboots, 136

Code privilege level (CPL), 9
Complete Fair Queuing (CFQ)

scheduler, 67
Completely fair scheduler (CFS), 51
CPU cgroups

cff_bandwith_used function, 59
hierarchical data structure, 57
kernel data structure, 56
Pick_next_entity, 58
resource control, 51
sched_entity, 53
schedulers, 51
tasks/processes, 52, 62
throttle_cfs_rq method, 59, 61
vruntime, 53–55

CPU virtualization
binary translation, 9
CPL, 9
paravirtualization, 10
protection rings, 8

E
Eventfd

epoll_wait, 23
I/O thread, 24

https://doi.org/10.1007/978-1-4842-6283-2#DOI

146

IPC, 23
irqfd, 24
network packet flow, 25
OOM, 24

Excessive trapping, 17
Extended Page

Table (EPT), 7

F, G
Fairness

CFQ scheduler, 67
IDLE class, 69
service tree, 67
vdisktime, 70
vfraction, 68

Full virtualization, 11

H
Hypercall, 10
Hypervisor

device model, 6
software, 4
VMM, 4, 5

I, J, K
Intel Vt-x instruction set, 16–18
Interprocess communication

(IPC), 23

L
Layered file system, 81–91
Linux containers, 31
Linux kernel, 144

M
Memory Management Unit

(MMU), 6
Memory virtualization

abstraction, 7
EPT, 7
guest OS, 6
shadow page tables, 7

N
Namespaces

cgroup, 35
CLONE flags, 98–100
ContainerID, 102
IPC, 35
Linux kernel, 32
mount, 33, 34
mountProc function, 114–117
myuts binary, 97
network, 34, 120
nsenter command, 119
PID, 33
processes, 96
proc mount, 114

Eventfd (cont.)

INDEX

147

rootfs, 108, 109, 111–113
rootless containers, 103
set up, 104, 105
shell program, 105–108
user mapping, 101
UTS, 33

Non-trapping instructions, 17

O
Out of memory (OOM), 24

P
Paravirtualization

backend drivers, 12
eventfd, 13
vs. full virtualization, 11
network packet flow, 13
SRIOV, 14
virtqueue, 12

procfs file system, 85
Pseudo file system, 85

Q
Quick Emulator (QEMU)

hypervisor, 19
KVM kernel module, 19
packet flow, 21
virtio-blk, 20
virtio-net, 20
virtqueues, 21

R
Ring compression, 17

S
Service tree, 67
Simple container framework

Golang installation, 95
Namespace (see Namespaces)
uts namespace, 93, 94

Single root I/O virtualization
(SRIOV), 14

T
Throttling

bio, 77
blk-throttle.c, 70–73
block I/O, 70
device driver, 74
I/O per sec limit, 76
service request, 79, 80
tg_may_dispatch, 74, 76
throtl_add_bio_tg function, 78

Time namespace
iproute2 utility, 42
net_device, 42
nsproxy, 37
task_struct data structure,

36, 38–41
use cases, 35
veth pair device, 42

INDEX

148

U
Unikernels, 26, 27
Union file system

OverlayFS, 88–90
branches, 87

V, W, X, Y, Z
Vhost based data communication,

22, 23
Virtual File System (VFS), 63

address_space, 83
buffer heads, 84
data structures, 81
dentry, 82
inode, 82
kernel, 85
page cache, 83
vfsmount, 83

Virtualization
container-based approach, 4
guests, 2
history, 1

hypervisor, 2
intermediary code, 2
process-level, 2
techniques, 2
unikernels, 3
VM-based approach, 3

Virtual machine extensions
(VMX), 10

Virtual Machine Monitor
(VMM), 4, 5

Virtual networking
cmd.Run command, 131
code modification, 123–130
container, 134, 135
ifconfig command, 133
IP addresses, 121, 122
netsetgo installation, 132
network namespaces, 131
parent method, 131
process, 122
tap device, 120
tun device, 120

VM creation, KVM module, 21

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewer
	Introduction
	Chapter 1: Virtualization Basics
	History of Virtualization
	What Is Virtualization?
	VM-Based Virtualization
	Container-Based Virtualization

	Hypervisors
	Virtual Machine Monitor (VMM)
	Device Model

	Memory Virtualization
	Shadow Page Tables
	Nested Page Tables with Hardware Support

	CPU Virtualization
	Binary Translation in the Case of Full Virtualization
	Paravirtualization

	IO Virtualization
	Full Virtualization
	Paravirtualization

	Chapter 2: Hypervisors
	The Intel Vt-x Instruction Set
	The Quick Emulator (QEMU)
	Creating a VM Using the KVM Module
	Vhost Based Data Communication
	What Is an eventfd?
	Alternative Virtualization Mechanisms
	Unikernels
	Project Dune
	novm
	Summary of Alternate Virtualization Approaches

	Chapter 3: Namespaces
	Namespace Types
	UTS
	PID
	Mount
	Network
	IPC
	Cgroup
	Time
	Adding a Device to a Namespace

	Summary

	Chapter 4: Cgroups
	Creating a Sample cgroup
	Cgroup Types
	CPU Cgroup
	Block I/O cgroups

	Understanding Fairness
	Understanding Throttling

	Chapter 5: Layered File Systems
	A File System Primer
	A Few Words on Pseudo File Systems
	Layered File Systems
	The Union File System
	OverlayFS

	Chapter 6: Creating a Simple Container Framework
	The UTS Namespace
	Golang Installation
	Building a Container with a Namespace
	Adding More Namespaces
	Launching a Shell Program Within the Container
	Providing Root File System
	The Mount Proc File System
	Enabling the Network for the Container
	Virtual Networking a Small Primer

	Enabling Cgroups for the Container
	Summary

	Index

