

 Linux Command Line

 (Cover All Essential Linux Commands)

 A Beginner’s Guide

 By Ray Yao

 Copyright © 2014 by Ray Yao

 All Rights Reserved

 Neither part of this book nor whole of this book may be reproduced or transmitted in any form or by any means electronic, photographic or mechanical, including photocopying, recording, or by any information storage or retrieval system, without prior written permission from the author.

Ray Yao

 About the Author

 Ray Yao:

 Certified PHP engineer by Zend, USA

 Certified JAVA programmer by Sun, USA

 Certified SCWCD developer by Oracle, USA

 Certified A+ professional by CompTIA, USA

 Certified ASP. NET expert by Microsoft, USA

 Certified MCP professional by Microsoft, USA

 Certified TECHNOLOGY specialist by Microsoft, USA

 Certified NETWORK+ professional by CompTIA, USA

Preface

 This book is a beginner’s guide for fast learning Linux commands which are frequently used by Linux administrators or beginners. The book covers all essential Linux commands as well as their operations, examples and explanations. It also includes Linux Helping commands, symbols, shortcut keys, run levels and Vi commands. From this book, you can easily learn:

 How to run all essential Linux commands.

 How to copy, move, and delete files and directories.

 How to create, remove, and manage users and groups.

 How to access Linux server, and use SSH commands.

 How to operate the run levels and change the run levels

 How to navigate at the command line by helping commands.

 How to compare files, find out a file, manipulate file contents

 How to start a job, stop a job and schedule a job.

 How to manage permissions, ownership of files, directories

 How to connect across network, communicate with network.

 How to transfer files over network, send network messages

 And much more skill……

 There is a long table containing all common Linux commands in this book, which can give you a great help in your job or study. You can learn all essential Linux commands quickly.

 Table of Contents

 Chapter 1 Introduction to Linux 6

 Chapter 2 Enter First Commands

 Chapter 3 Super User Commands

 Chapter 4 Navigating At Commands

 Chapter 5 File Operation Commands 39

 Chapter 6 Viewing File Commands

 Chapter 7 Comparing File Commands

 Chapter 8 Matching Text Commands

 Chapter 9 Directory Commands

 Chapter 10 Un/Compress Commands 59

 Chapter 11 Processe Commands

 Chapter 12 Account Commands

 Chapter 13 Groups Commands 68

 Chapter 14 Permission Commands

 Chapter 15 Running Job Commands

 Chapter 16 Backup/Restore Commands

 Chapter 17 Date & Time Commands 79

 Chapter 18 Networking Commands

 Chapter 19 Scripting Commands

 Chapter 20 System Commands

 Chapter 21 Helping Commands

 Chapter 22 Skill of Commands 98

 Chapter 23 Access Permissions

 Chapter 24 Linux Symbols

 Chapter 25 Shortcut Keys

 Chapter 26 Run Levels Table

 Chapter 27 The Vi Editor Commands

 Chapter 28 All Essential Linux Commands

 Conclusion

Chapter 1

 Introduction to Linux

 About Linux Operating System

 Linux is a Unix-like and mostly POSIX-compliant computer operating system assembled under the model of free and open-source software development and distribution.

 Linux usually works as a server, because of its stability and security’s feature.

 Linux programs are extremely advantageous:

 Linux programs are free, you’ll see, most of Linux programs are.

 They are frequently updated and for Zero charge!

 Some of them are better than those in windows. And other doesn’t even exist in windows!

 If Linux is free and almost all their softwares are free, it is for a reason; to understand we have to go back to 1984.

 1984

 So we are back in 1984, computer science was not very developed. Microsoft has just launched its first os: MS-DOS, but this one is far away from being done.

 But, was MS-DOS the only one then?

 No! There was other operating system but less known by the public.

 The one that was called the best was “Unix”. It was a lot powerful than MS-DOS but a lot complicated, what explains that only the professionals could use it.

 Graphically UNIX looked a lot like MS-DOS they were both seen like a black screen with some white text in it. We must say that computers back then were not capable of doing better.

 GNU Project

 It is just in 1984, that Richard Stallman created GNU project.

 The GNU Project is free software, mass collaboration project, announced on 27 September 1983, by Richard Stallman at MIT. Its aim is to give computer users freedom and control in their use of their computers and computing devices, by collaboratively developing and providing software that is based on the following freedom rights: users are free to run the software, share it (copy, distribute), study it and modify it. GNU software guarantees these freedom-rights legally (via its license), and is therefore free software; the use of the word "free" always being taken to refer to freedom.

 Richard Stallman was a researcher in Artificial intelligence in MIT. He wanted to create an operating system based on UNIX (the commands still the same).

 But why would he create a copy of “UNIX”?

 Because UNIX was not free and it was getting more expensive! Richard Stallman wanted to react by creating a free alternative: the project GNU was born.

 GNU is an open operating system

 GNU should not only be a free OS; it also had to be "open"

 What is the difference?

 A free program is a program where you can have the source code, that is to say, the "batch recipe." In contrast, Windows is a proprietary OS whose source code is stored by Microsoft. Imagine it's like Coca-Cola: nobody knows the recipe (there are many people who try to imitate it, but hey ...). So we cannot change it or see how it works inside.

 An open program is mostly a free program, it is also a program that has the right to copy, modify, redistribute. It's a real ideology in computer science: people think it is better to give the source code of the programs that we create because it allows knowledge sharing and helps the computer to evolve faster. The slogan of the Free World might be: "Unity is strength."

 They say whenever the program is "open source" because its source code is open; everyone can see it. There are some slight differences between "open source" program and a "free" program, but we will not go into details here.

 Linus Torvalds is doing his hobby

 In 1991, Linus Torvalds, a student at the University of Helsinki (Finland), began creating his free own operating system. This system became known as Linux, referring to the name of its creator (Linux is a contraction of Linus and UNIX).

 Linus Torvalds, creator of Linux

 What relationship with GNU? Well it turns out that these two projects were complementary: while Richard Stallman created the basic programs (program file copy, delete, file, text editor), Linus had embarked on the creation of the "heart" an operating system kernel.

 The GNU (free programs) and Linux (OS kernel) project merged to create GNU / Linux.

 Theoretically, we should talk about GNU / Linux. But it is a bit difficult to write and pronounce, and by abuse of language, we often say just "Linux". This is why I continue to speak of "Linux" in the rest of the book, even though the politically correct name is "GNU / Linux" because it is the merger of two complementary projects.

 Original operating systems

 You should now have a better idea of the origin of the three major operating systems that exist today: Mac OS, Linux and Windows.

 Thus, Mac OS and Linux are both based on UNIX, the ancestor of operating systems, while Windows, from MS-DOS is a separate branch. Overall, this is all you need to remember.

 It is said that Mac OS and Linux are based on UNIX because they have "copied" its operation. It's not pejorative, it’s quite the opposite: it's been an honor to UNIX.

 Linux programs do not use all the same source code as UNIX (it was also the owner, so private). They have been completely rewritten but work the same way.

 If I told you all this is because I believe that knowing the origin of Linux is important. This will help you understand many things thereafter.

 Linux distributions

 A Linux distribution (often called distro for short) is an operating system made as a collection of software based around the Linux kernel and often around a package management system. The most well known distributions are RedHat, SUSE, Debian, Mandriva, Slackware and Ubuntu. You can find much different software and there are hundreds of different ways to install it.

 To make life easier for users and allow them to make a choice, different Linux distributions were created. This is a concept that does not really exist in Windows. It's like the difference between Windows 7 Home and Windows 7 Professional, but it goes much further than that.

 Here's what can differ from one distribution to another:

 Installation: it can be greatly simplified as very complicated;

 Installing management programs: If it is done well and centralized, it can make the installation of new software simpler than Windows, as discussed further!

 The preinstalled programs on your computer (e.g. Windows is bundled with Internet Explorer and Windows Media Player).

 In fact, distribution is somehow packing Linux. The heart itself remains the same for all distributions.

 Whichever distribution you install, you get a Linux compatible with others. Some distributions are just more or less easy to handle. :-)

 Various existing distributions

 There are many different Linux distributions.Hard to choose, you will say: indeed, the first time it is unclear what to choose ... especially since all are free! Do not worry; I'll help you make your choice.

 I will not list all existing distributions, but here at least the main ones:

 Slackware: one of the oldest Linux distributions. It still exists today!

 Mandriva: published by a French company, it is simple to use;

 RedHat: published by an American company, this distribution is known and widespread, especially on servers;

 SUSE: Novell published by the company;

 Debian: Debian distribution alone which is managed by independent developers rather than a business. This is one of the most popular distributions.

 As I have said, whatever the distro (short for distribution) you choose, you will have a Linux. Basically, "just" a screen on first boot and various software preinstalled (I'm simplifying a bit much, but the idea is there).

 Summary

 Windows, Mac OS and Linux are the most popular operating systems.

 Linux usually works as a server, because of its stability and security’s feature.

 Linux has the distinction of being free, that is to say that its source code (the manufacturing recipe) is open: anyone can view it. In contrast, the source code that was used to design Windows and Mac OS is closed; we say that these are proprietary operating systems.

 There are many variants of Linux, called distributions.

Chapter 2

 Enter First Commands

 Dear friends, the big day has finally arrived! You will get the chance to write your first command in console!

 Okay, not too stressed?

 I assure you, we will start with simple things to become familiar with the console. We'll really see the ABC, the basic survival guide of kits.

 What is the Linux shell?

 A Linux shell is a command-line interpreter or shell that provides a traditional user interface for the Linux operating system and for Linux-like systems.

 The shell understands a plenty of shell commands and its option which change their action. The typical syntax of sell command looks like this:

 command –option argument

 or

 command parameter

 (Usually –option argument means parameter)

 Command such as: ls, cat, pwd, cp, mv, date……

 Parameter such as: -a, -l, -s, --all, --help……

 Example:

 ls –a

 Explanation:

 ls is a command meaning list the contents in current directory

 -a is a parameter meaning “all”.

 Result: list all contents in current directory.

 Shell commands can be run at a prompt in text interface mode or in a shell terminal window.

 The command prompts with shell command show something like this:

 username@hostname: ~ $ command parameter

 root@hostname:~# command parameter

 user> command parameter

 Explanation:

 What you see here is called the command prompt. It is a message that prompts you to enter a command by giving you at the same time a lot of information. This command prompt is displayed before each command you type.

 “username@hostname:~$ ”is a command prompt.

 “root@hostname:~#” is a command prompt too.

 “user>” is a command prompt as well.

 About the “username@hostname:~$ ls”

 Example:

 user2014@user-linux:~$ ls

 Explanation:

 user2014: the first element is your nickname. This is the user name under which you are logged and you. Indeed, remember: you can create multiple user accounts on Linux. It is generally advisable to generate a person who’s likely to use the computer.

 @: This symbol indicates nothing special. It's the symbol "at"

 user-linux: that's the name of the computer on which you are working. In my case it is called user-linux, but I could give it any name during installation.

 : Again, this symbol does not mean anything special, it is a separator.

 ~: That's the folder where you currently are. You can navigate from folder to folder in the console and it is very useful that you always be reminded where you are before each command.

 For information, the symbol ~ means that you are in your home directory, so-called "home" under Linux; this is equivalent to the "My Documents" folder on Windows. We will study in detail the operation of the files in Linux in the next chapter.

 $: That symbol is very important; it shows your authorization level on the machine.

 ls: ls is a command, show the contents of current directory.

 More detail about $

 $: Means you are currently using a user "normal" account with limited rights (he cannot change the most important system files). My account user2014 is a normal account with limited rights;

 As you can see, once we speak the same language as the command prompt, you understand what it means!

 "Welcome, you are user2014 at user-linux machine. You are currently in your home directory and have limited user rights. You are using a command “ls” to list the contents in current directory."

 About the “root@hostname:~#whoami”

 Example:

 root@user-linux:~# whoami

 Explanation:

 root: means user work as a super user

 @: This symbol indicates nothing special. It's the symbol "at"

 user-linux: that's the name of the computer on which you are working. In my case it is called user-linux, but I could give it any name during installation.

 : Again, this symbol does not mean anything special, it is a separator.

 ~: That's the folder where you currently are. You can navigate from folder to folder in the console and it is very useful that you always be reminded where you are before each command.

 For information, the symbol ~ means that you are in your home directory, so-called "home" under Linux; this is equivalent to the "My Documents" folder on Windows. We will study in detail the operation of the files in Linux in the next chapter.

 #: means you are working in super user mode

 Whoami: whoami is a command, show the current user name

 More detail about #

 #: Means you are in super user mode, that is to say that you are connected under the pseudonym "root." The root is the master who has the right to do everything on his computer user (even to destroy it!). We'll see how root in more detail later; yet we remain in a limited user account, so we do not risk doing bad things.

 "Welcome, you are super user at user-linux machine. You are currently in your home directory and have super user rights. You are using a command “whoami” to show the current user name."

 About “user>pwd”

 Example:

 user> pwd

 Explanation:

 user> : is a customized command prompt.

 pwd: pwd is a command, print working directory.

 You can customize the command prompt like user>. Of course after you are familiar with Linux command programming, you will be able to customize the shell prompt.

 At this moment, the Linux machine will say hallo to you:

 "Welcome, you are a user at user-linux machine. You are currently in your home directory and have limited user rights. You are using the “pwd” command to print working directory."

 As a bit of everything on Linux, the command prompt is fully configurable. You can shorten it if you find it is too long, or lengthen it if it does not give enough information. You can theoretically put really everything you want in the prompt, such as the current time.

 Working in the console by typing commands, the latter being numerous, you can never know all of them ... and it is not the goal: the goal is that you know by heart to serve the most "common" ones and for the less common you are able to learn to use them by reading their manual.

 About Linux commands

 The typical syntax of sell command looks like this:

 command –option argument

 or

 command parameter

 Let’s see some example of commands and parameters:

 Example:

 Type “date” and press the Enter key.

 user2014 @ user-linux: ~ $ date

 Monday, September 20, 2010, 3:39:51 p.m. (UTC-0200)

 Explanation:

 The first line contains the command prompt followed command I typed. In here, “date” is a command.

 The second line is the computer response to this command: we asked about the date and time!

 About Parameters

 Parameters are options that are written after the command. The command and parameters are separated by a space, like this:

 user2014 @ user-linux: ~ $ command parameters

 The parameters themselves can contain spaces, letters, numbers ... a bit of everything, really. There is no real rule on how the settings, but fortunately programmers have adopted a sort of "agreement" so that we can recognize the different types of parameters.

 Short parameters (one letter)

 The most common parameters are constituted by a single letter preceded by a dash.

 For instance:

 -d

 -l

 -a

 If we have to give several parameters, you can do it like this:

 -d -a -U -h

 Or shorter:

 -daUh

 BEWARE! For short parameters: a parameter in different command has different meanings.

 Example:

 ls -t (-t means “list by timestamps”.)

 eject -t (-t means “tray close”.)

 chfn -f (-f means ”change information by finger name”)

 cut -f (-f means “cut text by a field number”)

 ps -f (-f means “show process status in full information”)

 BEWARE! Parameter is case sensitive (upper / lower case). If you write -u, this has generally not the same sense as –U.

 Does a test with the ls command, and write it the parameter "-a" (lower case), -a means “all”:

 Example:

 user2014@user-linux: ~ $ ls -a.

 .gconfd .mozilla-thunderbird .. gimp-2.2 .nautilus .bash_history .gksu.lock .profile .bash_logout .gnome .recently-used .bashrc .gnome2 .recently-used.xbel .config .gnome2_private .ssh Desktop .gstreamer- .sudo_as_admin_successful .dmrc .gtkrc 0.10-1.2-gnome2 .themes .esd_auth .ICEauthority .thumbnails .evolution .icons .Trash Examples .lesshst tutorials .face .local .update-manager-core .fontconfig .macromedia .update-notifier .gaim. metacity .Xauthority .gconf .mozilla .xsession-errors

 This displays all files of current directory, even hidden files.

 A "cookie" is a Linux file that begins with a period. Normally, if you're in your home directory, you should have a good bunch of hidden files. These are usually configuration files program.

 Long parameters (severalletters)

 The parameters consist of several letters are preceded by two dashes, like this:

 --long parameter

 For instance: --all

 --all is a long parameter, meaning all contents or all things.

 For instance: --version

 --version is a long parameter, meaning the version of the command

 For instance: --help

 --help is a long parameter, meaning get help for current command.

 If you want to put several feature parameters, it will add a space between each one:

 Command --long parametre1 --long parametre2

 One can also combine the long and short parameters in control parameters:

 Command -daUh --All

 Sometimes there are two possible entries for a control parameter: a short version and a long version. This will let you choose whichever you prefer one or the other.

 Note that this is the command that decides the parameters it accepts: sometimes some do not offer a choice between a short version and a long.

 Let's test this on the ls command with the --all parameter, which means "everything":

 Example:

 user2014@user-linux: ~ $ ls --all.

 .gconfd .mozilla-thunderbird .. gimp-2.2 .nautilus .bash_history .gksu.lock .profile .bash_logout .gnome .recently-used .bashrc .gnome2 .recently-used.xbel .config .gnome2_private .ssh Desktop .gstreamer- .sudo_as_admin_successful .dmrc .gtkrc 0.10-1.2-gnome2 .themes .esd_auth .ICEauthority .thumbnails .evolution .icons .Trash Examples .lesshst tutorials .face .local .update-manager-core .fontconfig .macromedia .update-notifier .gaim. metacity .Xauthority .gconf .mozilla .xsession-errors

 As you can see, is a synonym for --all -a. This illustrates what I said a moment ago, which shows that sometimes a command offers two ways to use a parameter: a short and a long.

 Commands and Parameters Examples

 OK! Let’s have a further look about the commands and their parameters.

 su –l : switch user

 Example:

 user> su –l

 (su: going to login as the root super user,

 -l: is a parameter meaning “login”)

 ls –l : list long contents

 Example:

 user>ls –l

 (ls: shows the contents of current directory.

 –l: is a parameter meaning “long list include access permissions, ownership and date & time.”)

 ls –a : list all contents

 Example:

 user>ls –a

 (ls: shows the contents of current directory.

 –a: is a parameter meaning “all contents” including hidden files.)

 rm –ri : remove a directory and its contents

 Example:

 user>rm –ri NonEmptyDir

 (rm: removes a file or a directory.

 –ri: is a parameter meaning remove a non-empty directory and its contents.

 NonEmptyDir is a directory name.)

 w –s : show current process for each user

 Example:

 user>w -s

 (w: shows the shell working processes.

 –s: is a parameter meaning “summary ”)

 usermod –l : modify an existing user account.

 Example:

 user>usermod –l oldname newname

 (usermod: modify an existing user account.

 –l: is a parameter meaning “login name change”)

 What is Virtual Console?

 Virtual Console means an interface where the input device and the output device designed to enable you to interact with your system.

 Linux has 7 virtual consoles, you can switch them using Ctrl+Alt+F1through F7.

 Ctrl+Alt+F1~F6: switch virtual console 1~ virtual console 6

 Ctrl+Alt+F7: enter graphical desktop, which is default virtual console.

 Summary:

 1.When user is a normal user, use:

 username@hostname:~$ command parameter

 2.When user is a super user, use:

 root@hostname:~# command parameter

 3.When the shell prompt has been customized, use:

 User> command parameter

 4.Linux command: ls, pwd, su, whoami, loginname, rm, exit…

 5.Command parameter: -a, -ri, -l,--all, --help…

 6. Virtual Console: let you have several interface shell sessions active at the same time.

Chapter 3

 Super User Commands

 su: switch a normal user into a root super user

 loginname: shows the login name

 exit: exit the shell.

 whoami: shows the current user name

 hostname: shows the current host name

 sudo: allows a user with proper permissions to execute a command as another user, such as the superuser

 su: switch a normal user into a root super user

 Example:

 user2014@user-linux:~$ su –l

 (su: switch a normal user into a root super user.

 –l: enter root password and login.

 Note: After login as a super user, the $ will become #.)

 loginname: shows the login name

 Example:

 root@user-linux: ~ # loginname

 (loginname: shows the login name, the output is “root”.

 Note: After login as a super user, the $ becomes #.)

 exit: exit the shell

 Example:

 root@user-linux:~# exit

 (exit: exit the shell. In here: exit the super user mode, and enter the normal user mode.

 Note: After exit super user, the # will become $.)

 whoami: shows the current user name

 Example:

 user2014@user-linux: ~ $ whoami

 (whoami: shows the current user name, the output is “user2014”)

 hostname: shows the current host name

 Example:

 user2014@user-linux: ~ $ hostname

 (hostname: shows the current host name, the output is “user-linux”)

 sudo: allows a user with proper permissions to execute a command as another user, such as the superuser

 Example:

 root> sudo -u andy ls /home/mydir

 (list the contents of the /home/mydir directory as user andy.

 -u: specify a user)

 root> sudo –v

 (-v: refresh the authentication timeout, the next sudo command will not require a password.)

 root> sudo -k

 (-k: expire the authentication timeout, the next sudo command will require a password.)

 Summary:

 su: switch a normal user into a root super user

 loginname: shows the login name

 exit: exit the shell.

 whoami: shows the current user name

 hostname: shows the current host name

 sudo: allows a user with proper permissions to execute a command as another user, such as the superuser

Chapter 4

 Navigating At Commands

 pwd: print working directory.

 cd dir: change directory.

 cd~ change directory to home directory.

 cd.. change directory to a parental directory.

 type: determine a command type.

 pwd: print working directory.

 Example:

 user> pwd

 (pwd: print working directory, the output is your current working directory.)

 cd dir: change directory

 Example:

 user> cd mydir

 (cd: change directory to mydir, the output is mydir.)

 cd~ change directory to home directory.

 Example:

 user> cd ~

 (cd~ change directory to home directory, the output is home directory.)

 cd.. change directory to a parental directory.

 Example:

 user> cd ..

 (cd.. change directory to a parental directory, the output is a parental directory.)

 type: determine a command type

 Example:

 user> type pwd

 (output: pwd is a shell builtin.)

 Summary:

 pwd: print working directory.

 cd: change directory.

 cd~ change directory to home directory.

 cd.. change directory to a parental directory.

 type: determine a command type.

Chapter 5

 File Operation Commands

 cp: copy a file

 mv: move a file

 mv: rename a file

 rm: remove a file

 rm –ri: remove a non-empty directory

 vi: open vi editor and edit a file

 find: look for a file

 wc: show word count of a file

 file: estimate the type of a file

 ln: create a link between two files

 ln -s: create a symbolic link to a file

 readlink: show the target of a symbolic link

 lpr: sent a file to printer

 lpq: display the print queue.

 cp: copy a file

 Example:

 user> cp myfile /dir1

 (cp: copy myfile to /dir1directory.)

 mv: move a file

 Example:

 user> mv myfile /dir2

 (mv: move myfile to dir2 directory.)

 mv: rename a file

 Example:

 user> mv myfile1 myfile2

 (mv: rename myfiel1 as myfile2.)

 rm: remove a file

 Example:

 user> rm myfile

 (rm: remove myfile.)

 rm –ri: remove a non-empty directory

 Example:

 user> rm –ri NonEmptyDir

 (rm: remove a directory named NonEmptyDir.

 -ri: remove a directory containing contents.)

 vi: open vi editor and edit a file

 Example:

 user> vi myfile.txt

 (vi: open vi editor and edit myfile.txt.)

 find: look for a file

 Example:

 user> find directory –type f –name myfile.txt -print

 (find: look for a file.

 -type f: specify a file

 -name: specify a filename

 -print: print)

 wc: show word count of a file

 Example:

 user> wc myfile.txt

 (wc: show word count of myfile.txt.)

 file: estimate the type of a file

 Example:

 user> file myfile.txt

 (file: estimate the type of myfile.txt.)

 ln: create a link to a file

 Example:

 user> ln dir1/file1.txt dir2/file2.txt

 (ln: create a link between file1 and file2)

 ln -s: create a symbolic link between two files

 Example:

 user> ln –s dir1/file1.txt dir2/file2.txt

 (ln-s: create a symbolic link between file1 and file2)

 (-s: a symbolic link allows a given file to appear in many places or under many names at once. For instance, symbolic links can link to directories.)

 readlink: show the target of a symbolic link

 Example:

 user> readlink dir2/file2.txt

 (the output : dir1/file1.txt)

 lpr: sent a file to printer

 Example:

 user> lpr myfile.txt

 (lpr: sent myfile.txt to printer.)

 lpq: display the print queue.

 Example:

 user> lpq

 (lpq: display the print queue.)

 Summary:

 cp: copy a file

 mv: move a file

 mv: rename a file

 rm: remove a file

 rm –ri: remove a non-empty directory

 vi: open vi editor and edit a file

 find: look for a file

 wc: show word count of a file

 file: estimate the type of a file

 ln: create a link between two files

 ln -s: create a symbolic link to a file

 readlink: show the target of a symbolic link

 lpr: sent a file to printer

 lpq: display the print queue.

Chapter 6

 Viewing File Commands

 cat: show contents of a file

 cat | less: display a file contents page by page

 cat | more: display a file contents screen by screen

 head: show the front part contents of a file

 tail: show the last part contents of a file

 aspell: spelling check for a file

 cut: show the specified column of a text file

 paste: merge two files contents and display

 sort: show lines of text sorted alphabetically

 stat: display the attributes of a file or directory

 wc: display word count in a file

 file: test the file type

 touch: create a file or change file timestamp

 nl: show numbers for each line of a file

 vi: edit or create a text file with vi editor

 tr: transform text in a file

 tee: print standard output, write to a file

 cat: show contents of a file

 Example:

 user> cat myfile.txt

 (cat: show contents of myfile.txt.)

 cat | less: display a file contents page by page

 Example:

 user> cat myfile.txt | less

 (cat: show contents of myfile.txt.

 | : redirect the output to another command

 less: display myfile.txt contents page by page)

 cat | more: display a file contents screen by screen

 Example:

 user> cat myfile.txt | more

 (cat: show contents of myfile.txt.

 | : redirect the output to another command

 more: display myfile.txt contents screen by screen)

 head: show the front part contents of a file

 Example:

 user> head myfile.txt

 (head: show the front part contents of myfile.txt.)

 tail: show the last part contents of a file

 Example:

 user> tail myfile.txt

 (tail: show the last part contents of myfile.txt.)

 aspell: spelling check for a file

 Example:

 user> aspell –c myfile.txt

 (aspell: spelling check for myfile.txt.

 -c: check)

 cut: show the specified column of a text file

 Example:

 user> cut –f2 myfile.txt

 (cut: show the specified column of myfile.txt.

 -f2: specify the second column)

 paste: merge two files contents and display

 Example:

 user> paste myfile1.txt myfile2.txt

 (paste: merge two files contents and display)

 sort: show lines of text sorted alphabetically

 Example:

 user> sort myfile.txt

 (sort: show lines of text sorted alphabetically.)

 stat: display the attributes of a file or directory

 Example:

 root> stat myfile.txt

 (stat: show file name, modify date, change time etc.)

 wc: display word count in a file

 Example:

 root> wc myfile.txt

 (wc: show the number of lines, words, bytes in a file)

 file: test the file type

 Example:

 root> file myfile.txt

 (output: myfile.txt ASCII text)

 touch: create a file or change file timestamp

 Example:

 root> touch myfile.txt

 (touch: create a file named myfile.txt)

 nl: show numbers for each line of a file

 Example:

 root> nl myfile.txt

 (output:

 023 sld slwflflf gjo4ijg gj4jf9ej

 024 wz wg tjletj geg4t4y

 025 sjflew gjlgnu4g jgu675h dk9fh fmj6ju

 026 jf5hjd fjtjfj d8gj1nfj,nuigrr ? rit

 ……)

 vi: edit or create a text file with vi editor

 Example:

 root> vi myfile.txt

 (vi: open myfile.txt with vi editor)

 tr: transform text in a file

 Example:

 root> echo apple | tr “apple” “banana”

 (output: banana)

 tee: print standard output, write to a file

 Example:

 Root> sort file1.txt | tee file2.txt

 (sort file1.txt and write to file2.txt)

 Summary

 cat: show contents of a file

 cat | less: display a file contents page by page

 cat | more: display a file contents screen by screen

 head: show the front part contents of a file

 tail: show the last part contents of a file

 aspell: spelling check for a file

 cut: show the specified column of a text file

 paste: merge two files contents and display

 sort: show lines of text sorted alphabetically

 stat: display the attributes of a file or directory

 wc: display word count in a file

 file: test the file type

 touch: create a file or change file timestamp

 nl: show numbers for each line of a file

 vi: edit or create a text file with vi editor

 tr: transform text in a file

 tee: print standard output, write to a file

Chapter 7

 Comparing File Commands

 diff: show differences between two files

 cmp: compare two files byte by byte

 comm: compare two files line by line

 md5sum: create a md5 checksum number

 cksum: create a crc number

 diff: show differences between two files

 Example:

 user> diff myfile1.txt myfile2.txt

 (diff: show differences between two files.)

 cmp: compare two files byte by byte

 Example:

 user> cmp myfile1.txt myfile2.txt

 (cmp: compare two files byte by byte.)

 comm: compare two files line by line

 Example:

 user> comm myfile1.txt myfile2.txt

 (comm: compare two files line by line.)

 md5sum: create a md5 checksum number

 Example:

 user> md5sum myfile1.txt

 (output: f7tkgu5orj1fjt8kelc2os95nd57jf8r myfile1.txt.)

 cksum: create a crc number

 Example:

 user> chsum myfile2.txt

 (output: 4658791048 19 myfile2.txt.)

 Summary

 diff: show differences between two files

 cmp: compare two files byte by byte

 comm: compare two files line by line

 md5sum: create a md5 checksum number

 cksum: create a crc number

Chapter 8

 Matching Text Commands

 grep: show all lines that contain a specified string

 egrep: show all lines that contain a specified string

 uniq: show unique lines in a file

 find: locate a file in specified directory

 look: show words matching a given prefix

 grep: show all lines that contain a specified string

 Example:

 user> grep good myfile.txt

 (grep: show all lines that contain “good” string.)

 egrep: show all lines that contain a specified string

 Example:

 user> egrep excellent myfile.txt

 (egrep: show all lines that contain “excellent” string.)

 uniq: show unique lines in a file

 Example:

 user> uniq myfile.txt

 (uniq: show unique lines in myfile.txt.)

 find: locate a file in specified directory

 Example:

 user> find /mydir –type f myfile.txt -print

 (find: locate a file in a directory.

 -type f: specify a file

 -print: print)

 look: show words matching a given prefix

 Example:

 User> look ab

 (output: aba, abb, abc, abd…)

 Summary

 grep: show all lines that contain a specified string

 egrep: show all lines that contain a specified string

 uniq: show unique lines in a file

 find: locate a file in specified directory

 look: show words matching a given prefix

Chapter 9

 Directory Commands

 mkdir: make a new directory

 rmdir: remove a empty directory

 basename: display the last part of a file path

 dirname: show the directory path only

 mkdir: make a new directory

 Example:

 user> mkdir mydir

 (mkdir: make a new directory)

 rmdir: remove a empty directory

 Example:

 user> rmdir mydir

 (rmdir: remove a empty directory)

 basename: display the last part of a file path

 Example:

 user> basename /home/foo/usr/file.txt

 (output: file.txt)

 dirname: show the directory path only

 Example:

 User>dirname /foo/bar/baz/myfile.txt

 (output: /foo/bar/baz)

 Summary

 mkdir: make a new directory

 rmdir: remove a empty directory

 basename: display the last part of a file path

 dirname: show the directory path only

Chapter 10

 Un/Compress Commands

 zip: compress a file to zip format

 unzip: uncompress a file from zip format

 gzip: compress files to gzip format

 gunzip: uncompress files from gzip format

 bzip2: compress files to bz2 format

 bunzip2: uncompress files from bz2 format

 zip: compress a file to zip format

 Example:

 user> zip myfile.txt

 (zip: compress myfile.txt to zip format.)

 unzip: uncompress a file from zip format

 Example:

 user> unzip myfile.zip

 (unzip: uncompress myfile.zip.)

 gzip: compress files to gzip format

 Example:

 user> gzip myfile.txt

 (gzip: compress a file to gzip format)

 gunzip: uncompress a file from gzip format

 Example:

 user> gzip myfile.txt.gz

 (gunzip: uncompress myfile.txt.gz)

 bzip2: compress files to bz2 format

 Example:

 user> bzip2 myfile.txt.

 (bzip2: compress myfile to bz2 format)

 bunzip2: uncompress files from bz2 format

 Example:

 user> bunzip2 myfile.txt.bz2

 (bunzip2: uncompress myfile from bz2 format)

 Summary

 zip: compress a file to zip format

 unzip: uncompress a file from zip format

 gzip: compress files to gzip format

 gunzip: uncompress files from gzip format

 bzip2: compress files to bz2 format

 bunzip2: uncompress files from bz2 format

Chapter 11

 Processes Commands

 ps: show the current processes of user

 kill: kill a process by process id

 w: show all current working process.

 df: show disk usage of file system

 uptime: show system uptime

 top: view the top active process or a specified process.

 ps: show the current processes of user

 Example:

 root> ps –u username

 (ps: show the current processes of a user.

 -u: specify a user name)

 kill: kill a process by process id

 Example:

 root> kill 6270

 (kill: kill a process by process id

 6270: a process id.)

 w: show all current working process

 Example:

 root> w -s

 (w: show all current working process.

 -s: show summary of process.)

 df: show disk usage of file system

 Example:

 root> df -h

 (df: show disk usage of file system.

 -h: make the output more understandable)

 uptime: show system uptime

 Example:

 root> uptime

 (uptime: show system uptime.)

 top: view the top active or specified process

 Example:

 root> top -p pid

 (top: show a process by pid)

 (-p:display specified process by pid)

 (pid: process id)

 Summary

 ps: show the current processes of user

 kill: kill a process by process id

 w: show all current working process.

 df: show disk usage of file system

 uptime: show system uptime

 top: view the top active process or a specified process.

Chapter 12

 Account Commands

 useradd: add a new user account

 usermod: modify an existing user account

 userdel: delete an existing user account

 passwd: set a user account password

 chfn: change personal finger information

 finger: display personal user finger information

 useradd: add a new user account

 Example:

 root> useradd username

 (useradd: add a new user account.)

 usermod: modify an existing user account

 Example:

 root> usermod –l oldname newname

 (usermod: modify an existing user account.

 -l: modify login name.)

 userdel: delete an existing user account

 Example:

 root> userdel username

 (userdel: delete an existing user account.)

 passwd: set a user account password

 Example:

 root> passwd username

 (passwd: set a user account password for a user.)

 chfn: change personal finger information

 Example:

 root> chfn username

 (chfn: change finger information for a user).

 finger: display personal user finger information

 Example:

 root> finger username

 (finger: list the user's login name, email, domain name, time. etc.)

 Summary

 useradd: add a new user account

 usermod: modify an existing user account

 userdel: delete an existing user account

 passwd: set a user account password

 chfn: change personal finger information

 finger: display personal user finger information

Chapter 13

 Groups Commands

 groups: show the group membership

 groupadd: create a new group

 groupmod: modify an existing group

 groupdel: delete an existing group

 groups: show the group membership

 Example:

 root> groups username

 (groups: show the group membership of a user.)

 groupadd: create a new group

 Example:

 root> groupadd newgroup

 (groupadd: create a new group named newgroup.)

 groupmod: modify an existing group

 Example:

 root> groupmod newgroup

 (groupmod: modify an existing group named newgroup.)

 groupdel: delete an existing group

 Example:

 root> groupdel newgroup

 (groupdel: delete an existing group named newgroup.)

 Summary

 groups: show the group membership

 groupadd: create a new group

 groupmod: modify an existing group

 groupdel: delete an existing group

Chapter 14

 Permission Commands

 chmod: change mode of access permissions

 chgrp: change group membership

 chown: change ownership of a file or directory

 (Access permission in detail will be in later chapter.)

 chmod: change mode of access permissions

 Example:

 root> chmod 752 myfile1.txt

 (chmod: change mode of access permission for myfile1.txt.

 7: set user permission with read, write, execute

 5: set group permission with read, execute

 2: set others permission with write only.)

 chmod: change mode of access permissions

 Example:

 root> chmod g+w myfile.txt

 (g+w: give write permission to member of the file’s group)

 chgrp: change group membership

 Example:

 root> chgrp groupname myfile2.txt

 (chgrp: change group membership of myfile2.txt)

 chown: change ownership of a file or directory

 Example:

 root> chown username myfile3.txt

 (chown: change ownership of myfile3)

 Example:

 root> chown groupname /user/dir

 (chown: change ownership of dir.)

 Summary:

 chmod: change mode of access permissions

 chgrp: change group membership

 chown: change ownership of a file or directory

 (Access permission in detail will be in later chapter.)

Chapter 15

 Running Job Commands

 job: display the status of all jobs

 fg: run a suspended job in foreground

 bg: run a suspended job in background

 kill: kill a job by number or a process by pid

 at: schedule a job run at a specified time

 atq: display the scheduled jobs

 atrm: remove a scheduled job

 ps: show current process status

 w: show who logged on and what doing

 uptime: show how long the system has been running

 top: view the top active process

 crontab: create a job to run at specified time

 job: display the status of all jobs

 Example:

 root> jobs

 (job: display the status of all jobs.)

 fg: run a suspended job in foreground

 Example:

 root> fg %2

 (fg %2: run a suspended job %2 in foreground.)

 bg: run a suspended job in background

 Example:

 root> bg %3

 (bg %3: run a suspended job %3 in background.)

 kill: kill a job by number or a process by pid

 Example:

 root> kill %4

 (kill %4: kill a running job %4)

 at: schedule a job run at a specified time

 Example:

 root> at 9:30 pm

 (at 9:30: set a schedule job at 9:30.)

 atq: display the scheduled jobs

 Example:

 root> atq

 (atq: display all scheduled jobs)

 atrm: remove a scheduled job

 Example:

 root> atrm 25

 (atrm 25: remove a scheduled job 25.)

 ps: show current process status

 Example:

 root> ps -f

 (ps-f: show full information of current process.)

 ps: show current process status

 Example:

 root> ps -u username

 (ps -u: show a user’s current process.)

 w: show who logged on and what doing

 Example:

 root> w -s username

 (-s: show summary information of a user.)

 uptime: show how long the system running

 Example:

 root> uptime

 (uptime: show system uptime.)

 top: view the top active or specified process

 Example:

 root> top

 (top: display all processes running on the system)

 crontab: create a job to run at specified time

 Example:

 root> crontab -e

 (-e:edit the crontab file, add a crontab job to the table)

 Summary

 job: display the status of all jobs

 fg: run a suspended job in foreground

 bg: run a suspended job in background

 kill: kill a job by number or a process by pid

 at: schedule a job run at a specified time

 atq: display the scheduled jobs

 atrm: remove a scheduled job

 ps: show current process status

 w: show who logged on and what doing

 uptime: show how long the system has been running

 top: view the top active process

 crontab: create a job to run at specified time

Chapter 16

 Backup/Restore Commands

 cpio: output or input an archive cpio file

 tar: create, view, extract archived tar file

 cpio -o: output an archive cpio file

 Example:

 root> cpio -o > directory.cpio

 (-o: backup to a archive cpio file)

 cpio -i: input an archive cpio file

 Example:

 root> cpio -i < directory.cpio

 (-i: restore from a archive cpio file)

 tar -xf: extract an archived tar file

 Example:

 root> tar -xf archive.tar

 (-xf: extract an archive tar file)

 tar -cf: create an archived tar file

 Example:

 root> tar -cf archive.tar

 (-cf: create an archive tar file)

 Summary

 cpio: output or input an archive cpio file

 tar: create, view, extract archived tar file

Chapter 17

 Date & Time Commands

 date: display t date and time

 cal: display a calendar of month

 date: display date and time

 Example:

 root> date

 (date: display the current date and time.)

 date “+%A”: display current day

 Example:

 root> date “+%A”

 (output: Sunday)

 date “+%D”: display current date

 Example:

 root> date “+%D”

 (output: 08/10/14)

 date “+%T”: display current time

 Example:

 root> date “+%T”

 (output: 11:30:28)

 cal: display a calendar of month

 Example:

 root> cal

 (cal: display a month calendar.)

 Summary

 date: display date and time

 cal: display a calendar of month

Chapter 18

 Networking Commands

 host: display remote hostname and IP

 ifconfig: display local network configuration

 ping: send packets to test if remote host reachable

 ssh: securely connect to a remote computer

 ftp: files transfer by “File Transfer Protocol”

 mesg: enable or disable messaging

 write: write a messages to other users

 open: connect to an ftp server

 mail: send and receive mails locally and globally.

 dhclient: provides a means for configuring one or more network interfaces

 nslookup: query internet name servers interactively for IP information.

 host: display remote hostname and IP

 Example:

 root> host www.yahoo.com

 (host: display remote hostname and IP.)

 ifconfig: display local network configuration

 Example:

 root> ifconfig

 (ifconfig: display local network configuration)

 ping: send packets to test if remote host reachable

 Example:

 root> ping -c3 yahoo.com

 (ping: send packets to test if yahoo host is reachable.

 -c3: specify the number of pings)

 ssh: securely connect to a remote computer

 Example:

 root> ssh ray@myusername.com

 (ssh: securely login to a remote computer)

 ftp: files transfer by “File Transfer Protocol”

 Example:

 root> ftp ftpexample.myexample.com

 (ftp: connecting to ftpexample.myexample.com and transfer files remotely)

 mesg: show messaging

 Example:

 root> mesg

 (mesg: show current status of messaging)

 mesg y: enable messaging

 Example:

 root> mesg y

 (mesg y: permit messaging)

 mesg n: disable messaging

 Example:

 root> mesg n

 mesg n: deny messaging)

 write: write a messages to other users

 Example:

 root> write ken

 (write a message to ken)

 open: connect to an ftp server

 Example:

 root> open ftp.myexamples.com

 (open: connect to ftp.myexamples.com)

 mail: send and receive mails locally and globally.

 Example:

 root> mail username@myexamples.com

 (mail: send a mail to username@myexamples.com)

 dhclient: provides a means for configuring one or more network interfaces.

 Example:

 root> dhclient eth0

 (renew the dynamically assigned IP address of a primary Ethernet device.)

 nslookup: query internet name servers interactively for IP information.

 Example:

 root> nslookup myexample.com

 (return an IP address, e.g. 75,126,166, 2XX)

 (nslookup: manually query DNS servers.

 The DNS (Domain Name System) protocol allows you to get an IP address for a given host name from a name server. This process is called resolving.)

 Summary

 host: display remote hostname and IP

 ifconfig: display local network configuration

 ping: send packets to test if remote host reachable

 ssh: securely connect to a remote computer

 ftp: files transfer by “File Transfer Protocol”

 mesg: enable or disable messaging

 write: write a messages to other users

 open: connect to an ftp server

 mail: send and receive mails locally and globally.

 dhclient: provides a means for configuring one or more network interfaces

 nslookup: query internet name servers interactively for IP information.

Chapter 19

 Scripting Commands

 echo: display text.

 expr: perform math calculation

 #!/bin/bash: put in the first line of a bash shell scripts file.

 echo: display text.

 Example:

 root> STR=”Hello World!”

 root> echo $STR

 (echo: display text.

 The output is “Hello World!”)

 echo -e: display text using escape sequences.

 Example:

 root> STR=”Hello World!”

 root> echo –e “\n$STR\n”

 (echo -e: display text using \n. \n means add a new line.)

 The output is

 “

 Hello World!

 ”

 expr: perform math calculation

 Example:

 user> expr 20 + 80

 (The output is “100”)

 Example:

 user> expr 21/7

 (The output is “3”)

 Example:

 user> expr 9 “>” 6

 (The output is “1”, the 1 means true)

 Example:

 user> expr 9 “<” 6

 (The output is “0”, the o means false)

 #!/bin/bash: put in the first line of bash shell scripts.

 Example:

 #!/bin/bash

 If…then…else…fi

 (#!/bin/bash: always put in the first line of bash shell scripts)

 Summary

 echo: display text.

 expr: perform math calculation

 #!/bin/bash: always put in the first line of a bash shell scripts

Chapter 20

 System Commands

 df: show disk usage of file system

 mount: make a device available to file system

 umount: make a device unavailable to file system

 fsck: check and repair the file system

 init n: switch the system to run level n

 who -r: show the current run level

 free: show free disk space

 du: show disk usage of a file or directory

 export: set an environment variable

 printenv: list environment variable names and values

 unset: remove the environment variable

 clear: clear the screen

 exit: exit the shell or logout.

 shutdown –h +n: the system is going down in n minutes!

 df: show disk usage of file system

 Example:

 root> df -h

 (df: show disk usage of file system.

 -h: make output understandable)

 mount: make a device available to file system

 Example:

 root> mount /cdrom

 (mount: make a cd-rom available to file system.)

 umount: make a device unavailable to file system

 Example:

 root> umount /dev/hda1

 (umount: make hda1 unavailable to file system.

 hda1: a hard drive partition)

 fsck: check and repair the file system

 Example:

 root> fsck

 (fsck: check and repair the file system.)

 init n: switch the system to run level n

 Example:

 root@user-linux: ~ # init 5

 (init 5: switch the system to run level 5)

 who -r: show the current run level

 Example:

 root@user-linux: ~ # who -r

 (who -r: show the current run level.)

 free: show free disk space

 Example:

 root@user-linux: ~ # free -m

 (free: show free disk space

 -m: show free disk space in MB unit)

 du: show disk usage of a file or directory

 Example:

 root@user-linux: ~ # du –b myfile.txt

 (du: show disk usage of a file or directory.

 -b: count the number of bytes it occupies.)

 export: set an environment variable

 Example:

 root@user-linux: ~ # export newvar=8

 (echo $newvar. The output is 8)

 printenv: list environment variable names and values

 Example:

 root@user-linux: ~ # printenv

 (printenv: list environment variable names and values)

 unset: remove the environment variable

 Example:

 root@user-linux: ~ # unset var

 (unset var: remove the environment variable var.)

 clear: clear the screen

 Example:

 user>clear

 (clear: clear the screen.)

 exit: exit the shell or logout.

 Example:

 user>exit

 (exit: exit the shell or logout.)

 shutdown –h +n: the system is going down in n minutes!

 Example:

 root@user-linux: ~ # shutdown –h +5

 (shutdown –h +5: the system is going down in 5 minutes!)

 (-h: halt the system

 +n: after n seconds)

 Summary:

 df: show disk usage of file system

 mount: make a device available to file system

 umount: make a device unavailable to file system

 fsck: check and repair the file system

 init n: switch the system to run level n

 who -r: show the current run level

 free: show free disk space

 du: show disk usage of a file or directory

 export: set an environment variable

 printenv: list environment variable names and values

 unset: remove the environment variable

 clear: clear the screen

 exit: exit the shell or logout.

 shutdown –h +n: the system is going down in n minutes!

Chapter 21

 Helping Commands

 	 Commands

 	 Operations & Examples

 	 man

 	 display manual for a command
 e.g. man nice
 (show the manual for nice command)

 	 info

 	 display information for a command
 e.g. info chmod
 (show information about chmod cmd)

 	 whatis

 	 display a description of what a cmd is
 e.g. whatis ifconfig
 (show a description of what ifconfig is)

 	 help

 	 display help explanation of a cmd
 e.g. help cd
 (show help explanation of cd cmd)

 	 apropos

 	 search manual pages for a keyword
 e.g. apropos download
 (show manual entries with “download”)

 	 --help

 	 -help option gets help for a command
 e.g. wget --help
 (get help for wget cmd)

 Note:

 If you are familiar with helping commands, you will know about the complete Linux commands and their usages.

Chapter 22

 Skill of Commands

 Make use of Tab key to auto complete

 Linux offers so many different commands that we easily to get lost and to forget one. Personally, it happens very regularly, but this is fortunately not a drama. Indeed, Linux offers a variety of ways to find a command that you missed.

 The first "trick" to know what is to auto complete control.

 Example:

 For the date command: you're a little headache and you do not know how it is written. By cons, you are sure the first or second letters of the command are “da”.

 Just type "da" in the console, then double-tap the Tab on the left of your keyboard

 By double tapping Tab, you asked the computer a list of commands that begin with "da". They said you "dash" and "date". So there are two commands that start with "da", and you just find the one you are looking for, that is to say "date".

 Very nice, the computer has rewritten the prompt below and the beginning of the command you typed. You only have to complete with the letters "you" missing and hitting Enter and it will be good. :-)

 Even more fun, if there is only one result for your search, the computer will complete with missing letters and you only have to press Enter!

 Example:

 If you want to type “chsh” command and you are not sure the spelling, you can only type “ch” in the console and press two times on Tab. The command is completed magically. It will display “chfn, chsh”, then you can choose “chfn”.

 Commaaaandes too!

 The command history

 We often need to find a command that was typed there five minutes (or even five seconds). Sometimes it is because we have forgotten the command, but it's often because you like me you really too lazy to rewrite ourselves the entire command.

 This shortcut is gold: press the Up arrow key; you will see the last command you typed.

 If you press again the directional arrow Top, you will see the penultimate command, then the second-to-last, etc.

 If you press the Down arrow key, you will return to the most recent commands.

 Thus I can successively find the commands I just type in reverse command:

 ls --all;

 ls -a,

 ls;

 Date;

 Etc.

 If you want to "go" very far back into the history of your commands, no need to type a hundred times on the directional arrow Top like madmen.

 There is the history command that reminds you of the command history:

 Example:

 Press the Up arrow key; you will see the last command you typed. Then the screen will display:

 Date 152 ls ls ls 153 154 155--all -a 156 157 history

 You will notice that the controls are numbered: thus, we can know that date is the 152nd command I typed into the terminal, that three ls are the 153rd, 154rth and 156th command. The above command you typed will always be history, of course.

 Ctrl + R: find a history command

 In case the directional arrow Top and history command does not suffice to find an old command you typed, there is a super useful shortcut: Ctrl+R. which can help you find out the history command you have just used. So Press Ctrl+R keys simultaneously and computer will switch "looking for a typed command" ("R" as research).

 There you can type any sequence of letters that corresponds to an old command.

 Example:

 If you want to look for a command with “all” you have previously used, please press Ctrl+R and type "all". Then, Linux will find out ls --all containing just the word "all." You just have to hit Enter to run the command! :-)

 If this is not the command you are looking for, again press Ctrl + R to move up the list of commands containing "all".

 It may look stupid on a drive like that, but some are very long and it is a pleasure not to have to rewrite them again!

 Using Wildcards

 You can use wildcards with a lot of Linux commands. A wildcard is a symbol or symbols that indicating other characters. There three kinds of wildcards in Linux command:

 ? A question mark (?) indicates a single character.

 For instance: b??k matches bank, beak, back, bilk, or any other four-letter filename that begins with b and ends with k.

 * An asterisk (*) indicates any character or set of characters, including no character or many characters.

 For instance: b*k matches bk, bkk, bark, break, backtrack.

 [] Characters enclosed in square brackets ([]) usually indicates any character in the set. But please note they are case-sensitive.

 For instance: b[a-z]k matches bak, bbk, bck, bzk, but not matches bAk, bBk, bCk, bZk, because of case-sensitive.

 Wildcards are actually implemented in the Linux commands.

 Example:

 user2014@user-linux:~$ ls b??k

 (The wildcard b??k matches five files in current directory. The output is “bank beak back bilk bark”)

 Example:

 user2014@user-linux:~$ ls a*d

 (The wildcard a*d matches some files in current directory. The output is “ad add acid abroad abounded abed aid”)

 Example:

 user2014@user-linux:~$ ls se[a-e]

 (The wildcard se[a-e] matches five files in current directory. The output is “sea seb sec sed see”)

 About Run Levels

 What is a Run Levels? The term run levels refers to a mode of operation in one of the computer operating systems that implement Linux System V-style initialization. Usually, seven run levels exist, numbered from zero to six; Only one "run level" is executed on boot up - run levels are not executed sequentially, i.e. either run level 2 OR 3 OR 4 is executed, not 2 then 3 then 4.

 "run levels" defines the state of the machine after boot. Different run levels are typically assigned to:

 0.halt-the system is in the process of shutting down.

 1.single-user mode

 2.multi-user mode without network services started

 3.multi-user mode with network services started

 4.system shutdown

 6.system reboot

 Example:

 root@user-linux: ~ # init 3

 (init 3: switch the system to run level 3)

 Summary:

 Tab key can auto complete a missing work command.

 Up arrow key can view the history commands

 Down arrow key can return to most recent commands

 Ctrl+R can find out a history command by a key word.

 ? A question mark (?) indicates a single character.

 * An asterisk (*) indicates any character or set of characters, including no character or many characters.

 [] Characters enclosed in square brackets ([]) usually indicates any character in the set. But please note they are case-sensitive.

 Run Level number describers the level of services that have been initialized and are running.

Chapter 23

 Access Permissions

 What is rwx?

 After using ls –l to view a file’s access permissions, you can see something like this:

 rwx ….. ……

 Explanation:

 rwx signify the access permissions which can be described by a number from 1 to 7. Really? Yes, the numbers from 1 to 7 indicate the access permissions.

 r stands for read permissions, value is 4.

 w stands for write permissions, value is 2.

 x stands for execute permissions, value is 1.

 Vice versa:

 4 means read permissions (r)

 2 means write permissions (w)

 1 means execute permissions (x)

 Example:

 If rwx value is 4, then you can figure out its permission is read only.

 If rwx value is 2, then you figure out its permission is write only.

 If rwx value is 1, then you figure out its permission is execute only.

 The numbers from 1 to 7 indicate the various access permissions:

 7 means permissions with read, write, execute (7=4+2+1)

 6 means permissions with read, write (6=4+2)

 5 means permissions with read, execute (5=4+1)

 4 means permissions with read only (4=4+0)

 3 means permission with write, execute (3=2+1)

 2 means permission with write only (2=2+0)

 1 means permission with execute only (1=1+0)

 Example:

 If rwx value is 7, then you can figure out its permission is read, write and execute.

 If rwx value is 6, then you can figure out its permission is read and write.

 If rwx value is 3, then you can figure out its permission is write and execute.

 What are rwx rwx rwx?

 Access permissions for a file are divided in to three:

 user permissions,

 group permissions,

 others permissions,

 So, when you use ls –l to view the access permission, you will find three rwx look like this:

 rwx rwx rwx……

 Explanation:

 The 1st rwx means user permissions,

 The 2nd rwx means group permissions,

 The 3th rwx means others permissions.

 Example:

 If the 1st rwx is 7, it means user permissions with read, write, execute.

 If the 2nd rwx is 3, it means group permissions with write and execute.

 If the 3th rwx is 6, it means others permissions with read and write.

 From above you can understand the 1st rwx, 2nd rwx and 3th rwx respectively indicate user permissions, group permissions and others permissions.

 Example:

 752 means:

 1st rwx is 7 meaning user permissions with read, write, execute.

 2nd rwx is 5 meaning group permissions with read, and execute.

 3th rwx is 2 meaning others permissions with write only

 chmod is a command, meaning change the mode of access permissions for a file.

 Example:

 chmod 643 myfile.txt

 Explanation:

 Change myfile.txt permissions to 643.

 1st rwx is 6 meaning user permissions with read, and write.

 2nd rwx is 4 meaning group permissions with read only.

 3th rwx is 3 meaning others permissions with write, execute

 Example:

 chmod 751 myfile.txt

 Explanation:

 Change myfile.txt permissions to 751.

 1st rwx is 7, meaning user permissions with r, w, x.

 2nd rwx is 5 meaning group permissions with r, x.

 3th rwx is 1 meaning others permissions with x only.

 Example:

 Chmod u+r

 (gives the user a read permission)

 Example:

 Chmod g-x

 (remove execute permission from members of the file’s group)

 Example:

 Chmod o-w

 (remove write permission from others)

 Summary:

 4 means read permissions (r)

 2 means write permissions (w)

 1 means execute permissions (x)

 The numbers from 1 to 7 indicate the various access permissions:

 7 means permissions with read, write, execute (7=4+2+1)

 6 means permissions with read, write (6=4+2)

 5 means permissions with read, execute (5=4+1)

 4 means permissions with read only (4=4+0)

 3 means permission with write, execute (3=2+1)

 2 means permission with write only (2=2+0)

 1 means permission with execute only (1=1+0)

Chapter 24

 Linux Symbols

 	 Commands

 	 Operations & Examples

 	 <

 	 get input from a file to a command
 e.g. cat < myfile.txt

 	 >

 	 send output from a command to file
 e.g. cat > myfile.txt

 	 >>

 	 append output to a file
 e.g. cat file1.txt >> file2.txt

 	 |

 	 send cmd1 output to cmd2 input
 e.g. ls -al /etc | less

 	 ;

 	 combine two or more commands
 e.g. cd~; ls

 	 \

 	 escape the special character
 e.g. echo -e “\n Hello \t World! \n”

 	 ./

 	 run a script in the current directory
 e.g. ./script.sh

 	 ..

 	 parent directory
 e.g. cd..

 	 ~

 	 home directory
 e.g. cd~

 	 $

 	 variable prefix for variable name and value
 e.g. echo $var

 	 $$

 	 show the running processes number
 e.g. echo $$

 	 !!

 	 repeat the last command
 e.g. !!

 	 !string

 	 run recent cmd that begins with string
 e.g. !cat

Chapter 25

 Shortcut Keys

 	 CTRL+B

 	 move the cursor backward only one character.

 	 CTRL+C

 	 cancel the running command or kill the running process.

 	 CTRL+D

 	 log out of the current session. similar to exit command.

 	 CTRL+F

 	 move the cursor forward only one character.

 	 CTRL+H

 	 erase one backward character. similar to pressing backspace.

 	 CTRL+P

 	 paste the previous line(s) to one specified location.

 	 CTRL+R

 	 type to bring up recent commands, return a list of commands in history

 	 CTRL+S

 	 stop all output on screen. freeze the shell as it locks the terminal output

 	 CTRL+Q

 	 resume all stopped output on screen, continue the terminal output.

 	 CTRL+U

 	 erase the complete line where the cursor locates.

 	 CTRL+W

 	 delete the last recent word you have just typed in.

 	 CTRL+Z

 	 suspend a running process. if want to resume, use fg or bg commands.

Chapter 26

 Run Levels Table

 	 Run Level

 	 Description

 	 0

 	 Halt the system. When this is the current run level, the system is in the process of shutting down.

 	 1

 	 Single user mode. Only small set of kernel processes running. Almost all other services disabled.

 	 2

 	 Basic multiuser mode. This run level starts most services, but does not enable network connection service.

 	 3

 	 Full multiuser mode. This run level starts all services including network connection. but does not start X window

 	 4

 	 User defined mode. No conventional definition applies to run level 4. It is fully open to user configuration.

 	 5

 	 Full multiuser mode with X window. Starts all enabled services with Linux graphical desktop environments.

 	 6

 	 Reboot. When this is the current run level, the system is in the process of rebooting.

Chapter 27

 The Vi Editor Commands

 	 Commands

 	 Operations

 	 h,l,k,j

 	 cursor move left, right, up, down

 	 w,b

 	 cursor move forward, backward

 	 0

 	 go to the beginning of line

 	 $

 	 go to the ending of line

 	 G

 	 go to the last line of the file

 	 J

 	 join current line with next line

 	 z

 	 undo last command

 	 .

 	 repeat last command

 	 ZZ

 	 save file and exit

 	 i

 	 insert before the character at cursor

 	 I

 	 insert character to beginning of line

 	 a

 	 append after the character at cursor

 	 A

 	 append character to the ending of line

 	 c

 	 change until…

 	 C

 	 change to end of line

 	 d

 	 delete until…

 	 D

 	 change to end of line

 	 r

 	 replace one character

 	 R

 	 replace more characters

 	 o

 	 open a new line below

 	 O

 	 open a new line above

 	 esc

 	 exit insert mode, go to cmd mode

 	 x

 	 delete the character at cursor

 	 X

 	 delete the character at left

 	 u

 	 undo last change

 	 .

 	 redo last change

 	 U

 	 restore line

 	 m

 	 mark position

 	 M

 	 middle of screen

 	 dw

 	 delete current word

 	 dd

 	 delete current line

 	 cc

 	 change current line

 	 f x

 	 find x on current line

 	 F x

 	 find x on previous line

 	 /string

 	 search string, look forwards

 	 ?string

 	 search string, look backwards

 	 [n]G

 	 go to line number “n”

 	 n

 	 search forward next

 	 N

 	 search backward next

 	 p

 	 paste line(s) below current line

 	 P

 	 paste line(s) above current line

 	 t

 	 to…

 	 T

 	 backward to…

 	 s

 	 substitute

 	 S

 	 substitute entire line

 	 ZZ

 	 write and quit

 	 :e

 	 edit file

 	 :e!

 	 forget change of file

 	 :$

 	 go to last line of file

 	 :number

 	 go to line number

 	 :w

 	 write and save

 	 :w!

 	 save with read-only file

 	 :w filename

 	 save with new file name

 	 :wq

 	 write, save and quit

 	 :n

 	 go to next file

 	 :rew

 	 go to the first file

 	 :q

 	 quit after using :w to save

 	 :q!

 	 quit without saving

 	 :r filename

 	 read file, insert file at cursor position

 	 :! command

 	 run a shell command

 	 :sh

 	 run a temporary shell

Chapter 28

 All Essential Linux Commands

 Note:

 cmd means command

 regex means regular expression

 (*) means the command run by root user

 	 Commands

 	 Operations & Examples

 	 a2p

 	 translate awk to perl
 e.g. a2p myfile.awk> myfile.pl
 (translate myfile.awk into pl file)

 	 alias

 	 create another name for a command
 e.g. alias p="pwd"
 (set p as alias for pwd)

 	 apropos

 	 view the searched term in man pages
 e.g. apropos find
 (list entries with "find" in man page)

 	 apropos -e

 	 view searched term in man pages
 e.g. apropos –e nice
 (-e: show exact word in man pages)

 	 apt-get

 	 install, remove or update a package
 e.g. apt-get install libc6
 (install libc6 package)

 	 aspell

 	 check and correct for misspellings
 e.g. aspell -c test.txt
 (-c:check spelling in test.txt file)

 	 at

 	 run a job at a schedule time
 e.g. at 1 AM Fri
 (run the job at 1am Friday)

 	 awk

 	 match text by regular expression
 e.g. awk 'length($0) > 88' text.txt
 (list only lines longer than 88 words)

 	 basename

 	 display the last part of a file path
 e.g. basename /home/foo/usr/file.txt
 (output: file.txt)

 	 bc

 	 perform a calculation by a calculator
 e.g. bc 8+9
 (output: 17)

 	 bg

 	 resume a stopped job in background
 e.g. bg %3
 (resume %3 job in background)

 	 bunzip2

 	 uncompress a file from zip format
 e.g. bunzip2 myfile.tar.bz2
 (uncompress myfile.tar.bz2)

 	 bzip2

 	 compress a file to zip format
 e.g. bzip2 myfile.dat
 (compress myfile.dat)

 	 cal

 	 display a month or year calendar
 e.g. cal 2014
 (display 2014 calendar)

 	 cal -3

 	 display a month or year calendar
 e.g. cal -3
 (-3:display 3 months)

 	 cat

 	 display contents of one of more files
 e.g. cat file1.txt file2.txt
 (display contents of file1 and file2)

 	 cat -n

 	 display contents of one of more files
 e.g. cat –n myfile.txt
 (-n: specify number of output lines)

 	 cd

 	 change directory
 e.g. cd /home/user/mydir
 (change current directory to mydir)

 	 chattr

 	 set attributes for a file
 e.g. chattr +i myfile.txt
 (+i make the file as read-only)

 	 chfn

 	 change user’s finger information
 e.g. chfn
 (change all users information)

 	 chfn -f

 	 change user’s finger information
 e.g. chfn –f Full-Name
 (-f: change full name)

 	 chgrp *

 	 change the group ownership
 e.g. chgrp groupname /usr/myfile.txt
 (alter group ownership of myfile.txt)

 	 chkconfig*

 	 view and modify run level file
 e.g. chkconfig –list
 (-list: list services of run level)

 	 chmod

 	 change access permission
 e.g. chmod 755 filename
 (set file access permission as 755)

 	 chown *

 	 change ownership of file or directory
 e.g. chown username myfile.txt
 (alter file ownership of myfile.txt)

 	 chpasswd*

 	 change password for users.
 e.g. chpasswd
 (then enter username: password)

 	 chsh *

 	 change login shell for a user
 e.g. chsh -s /bin/bash ray
 (-s specify login shell)

 	 cksum

 	 produce a CRC checksum number
 e.g. cksum file.txt
 (output checksum number of file.txt)

 	 clear

 	 clear the screen.
 e.g. clear
 (clear the shell window)

 	 cmp

 	 compare two files text byte by byte
 e.g. cmp first.txt second.txt
 (compare first.txt and second.txt)

 	 collectl

 	 monitor the current system status
 e.g. collectl
 (list cpu, sys, inter .etc information)

 	 comm

 	 compare two files text line by line
 e.g. comm first.txt second.txt
 (compare first.txt second.txt)

 	 cp

 	 copy file(s) to another directory
 e.g. cp myfile.txt /mydir
 (copy myfile.txt to mydir)

 	 cp -p

 	 copy file(s) to another directory
 e.g. cp –p myfile.txt /mydir
 (-p: keep original permission)

 	 cp -a

 	 copy file(s) to another directory
 e.g. cp –a myfile.txt /mydir
 (-a: keep original attributes)

 	 cpio -o

 	 output archived cpio file
 e.g. cpio -o > directory.cpio
 (-o: backup to an archive cpio file)

 	 cpio -i

 	 input archived cpio file
 e.g. cpio -i < directory.cpio
 (-i: restore from an archive cpio file)

 	 crontab

 	 create a job to run at specified time
 e.g. crontab
 (set to run jobs at regular intervals.)

 	 crontab -e

 	 run a recurring job at a specified time
 e.g. crontab -e
 (-e allow edit the crontab file)

 	 crontab -l

 	 run a recurring job at a specified time
 e.g. crontab -l
 (-l: lists the crontab files)

 	 crontab -r

 	 run a recurring job at a specified time
 e.g. crontab -r
 (-r: remove the crontab file)

 	 csplit

 	 split a file into some separated files
 e.g. csplit myfile.txt ”/part1/” “/part2/”
 (separate files named xx00, xx01)

 	 cut -d

 	 show the specified field of a file
 e.g. cut –d “:” myfile.txt
 (-d: specify a field delimiter “:”)

 	 cut -c

 	 extract contents from a file
 e.g. cut –c 6 myfile.txt
 (-c6: the sixth character of each line)

 	 cut -f

 	 extract contents from a file
 e.g. cut –f 3 myfile.txt
 (-f3: specify a field number as 3)

 	 date

 	 show the date and time
 e.g. date
 (display the current date and time)

 	 date -s

 	 set the date and time
 e.g. date -s "11/20/2014"
 (-s set the date)

 	 dc

 	 open a command line desk calculator
 e.g. dc
 (“dc” means desk calculator)

 	 dd

 	 data dump to convert and copy a file
 e.g. dd if=/dev/sda of=/dev/sdb
 (copy data from sda to sdb)

 	 dmesg

 	 print out all kernel log messages
 e.g. dmesg > kmsg.txt
 (output kernel messages to kmsg.txt)

 	 df

 	 display free disk space
 e.g. df
 (display file system free space)

 	 df -m

 	 display free disk space
 e.g. df -m
 (-m: display sizes in Mb)

 	 dhclient

 	 configure network interfaces
 e.g. dhclient eth0
 (renew IP address of eth0)

 	 diff

 	 show difference between two files
 e.g. diff firstfile.txt secondfile.txt
 (display difference above two files)

 	 diff3

 	 show difference among three files
 e.g. diff3 file1.txt file2.txt file3.txt
 (display difference above three files)

 	 dig

 	 display the details of DNS servers
 e.g. dig xvxaxx.com
 (list information about xvxaxx.com)

 	 dir

 	 show directory contents
 e.g. dir
 (display current directory contents)

 	 dircolors

 	 show color settings for “ls” command.
 e.g. dircolors
 (display directory coloring of ls)

 	 dirname

 	 remove the last part of a file path.
 e.g. dirname /foo/bar/baz/myfile.txt
 (output: /foo/bar/baz)

 	 du -s

 	 display disk usage
 e.g. du -s *.*
 (-s list files size in current directory)

 	 du -h

 	 display disk usage
 e.g. du -h myfile.txt
 (-h: show human readable units)

 	 dump -f

 	 makes backup of filesystem
 e.g. dump -f0 filebk /mydir (-f:backup
 -0:dump-level filebk: dump-file)

 	 echo

 	 display input on standard output
 e.g. echo “Hello World!”
 (show “Hello World!”)

 	 echo -e

 	 display text using escape sequence
 e.g. echo –e “\n Hello World!”
 (-e: allow use \n to show text)

 	 ed

 	 open a command-line text editor
 e.g. ed myfile.txt
 (open myfile.txt with text editor)

 	 egrep

 	 search file(s) for a specified regex
 e.g. egrep "new | string" myfile.txt
 (search myfile.txt for “new | string”)

 	 eject

 	 eject the cd or dvd tray
 e.g. eject cdrom
 (eject cdrom tray)

 	 eject -t

 	 eject or close the cd or dvd tray
 e.g. eject –t cdrom
 (-t: close an open cdrom tray)

 	 emacs

 	 powerful, extensible file editor
 e.g. emacs file.txt
 (launch emacs and open file.txt)

 	 env

 	 show, set the environment variables
 e.g. env
 (list current environment variables)

 	 eval

 	 make a command from its arguments
 e.g. UPLS=”eval cd.. ; ls ”
 (create a command named UPLS)

 	 exit

 	 exit the shell
 e.g. exit
 (terminate the program and log out)

 	 expand

 	 convert tabs into spaces
 e.g. expand myfile.txt
 (convert tabs to spaces for myfile.txt)

 	 expand -t

 	 convert tabs into spaces
 e.g. expand -t 3 myfile.txt
 (-t: set tabs 3 characters apart)

 	 export

 	 set an environment variable & value
 e.g. export newvar=8 echo $newvar
 (output: 8)

 	 expr

 	 evaluate an expression
 e.g. expr 10+8
 (output: 18)

 	 factor

 	 show the prime factors of a number
 e.g. factor 1001
 (output: 7 11 13)

 	 fc

 	 list, edit, re-execute last commands
 e.g. fc -l
 (-l:list the history of commands)

 	 fdisk*

 	 manipulate the hard disk partitions
 e.g. fdisk /dev/hdb
 (list hard disk partitions information)

 	 fg

 	 resume a stopped job in foreground
 e.g. fg %3
 (resume the job 3 in foreground)

 	 fgrep

 	 search file(s) for a specified string
 e.g. fgrep "good" myfile.txt
 (search myfile.txt for “good”)

 	 file

 	 detect the file type.
 e.g. file myfile.tar
 (determine file type of myfile.tar)

 	 find –print
 –name

 	 find file(s) in a directory named dir
 e.g. find dir -print -name 'abc.txt'
 (-print:print, -name:specify file name)

 	 finger

 	 show user’s information
 e.g. finger username
 (list the user's login name, time. etc.)

 	 fmt

 	 format text files
 e.g. fmt myfile1.txt > myfile2.txt
 (format myfile1 & output to myfile2)

 	 fmt -u

 	 format text files
 e.g. fmt –u myfile.txt
 (-u: provide uniform word spacing)

 	 fold

 	 wrap each line to fit a specified width
 e.g. fold -w 15 myfile.txt
 (-w specify how many words)

 	 for in

 	 set conditional parameter for loop
 e.g. for n in 3 6 9 do echo $n done
 (output: 3 6 9)

 	 free

 	 displays free memory information
 e.g. free
 (list free, used, total memory…)

 	 free -m

 	 displays free memory information
 e.g. free -m
 (-m: show sizes in Mb.)

 	 fsck *

 	 file system check
 e.g. fsck
 (check or fix Linux file system)

 	 ftp

 	 transfer files by File Transfer Protocol
 e.g. ftp ServerURL
 (transfer files using ftp)

 	 gawk

 	 find or replace text in a file
 e.g. gawk 'length($0) > 88'
 (list lines longer than 88 characters)

 	 grep

 	 match a specified string or regex.
 e.g. grep onestring myfile.txt
 (search myfile.txt for onestring)

 	 groups

 	 list groups to which the user belongs
 e.g. groups
 (print the groups of user)

 	 groupadd *

 	 add a new group
 e.g. groupadd newgroup
 (create a new group)

 	 groupadd * -f

 	 add a new group
 e.g. groupadd –f newgroup
 (-f: check group doesn’t exist)

 	 groupdel *

 	 delete an existing group.
 e.g. groupdel existinggroup
 (remove an existing group)

 	 groupmod *-n

 	 modify an existing group
 e.g. groupmod -n newgrp oldgrp
 (-n change group name)

 	 gunzip

 	 uncompress a file from gzip format
 e.g. gunzip myfile.txt.gz
 (uncompress myfile.txt.gz)

 	 gzip

 	 compress a file to gzip format
 e.g. gzip myfile.txt
 (compress myfile.txt)

 	 halt

 	 shutdown the system
 e.g. halt
 (power off the system)

 	 hash

 	 access the hash table
 e.g. hash
 (list commands from hash table)

 	 head

 	 display some front lines in a file
 e.g. head myfile.txt
 (output the first ten lines of myfile.txt)

 	 head -n

 	 display some front lines in a file
 e.g. head –n 4 myfile.txt
 (-n: specify a number of lines)

 	 help

 	 show help information of commands
 e.g. help echo
 (show information about echo)

 	 history

 	 show the commands history
 e.g. history
 (list commands in this shell session)

 	 host

 	 find the ip address of a domain name
 e.g. host websprogram.com
 (show ip of websprogram.com)

 	 hostid

 	 display id of the current host in hex.
 e.g. hostid
 (print the current host id)

 	 hostname

 	 show or set the host name
 e.g. hostname
 (display the name of current host)

 	 id

 	 show the user or group id number
 e.g. id
 (display the root user uid, gid. etc.)

 	 ifconfig

 	 show, configure the network interface
 e.g. ifconfig
 (display the network settings)

 	 init *

 	 set the system run level
 e.g. init 5
 (change to run level 5)

 	 info

 	 show help information of a command
 e.g. info man
 (show help page for man)

 	 install

 	 copy files, set permission, ownership
 e.g. install myfiles /home/user
 (copy myfiles to user directory)

 	 install -o

 	 copy files, set permission, ownership
 e.g. install –o myfiles ray /home
 (-o: specify ownership)

 	 jobs

 	 show all jobs’ status
 e.g. jobs
 (list all running jobs’ information)

 	 join

 	 join lines of files having common field
 e.g. join myfile1.txt myfile2.txt
 (join lines of two files by same field)

 	 join

 	 join lines of two files
 e.g. join –i myfile1.txt myfile2.txt
 (-i: ignore the differences)

 	 kill

 	 stop a job by number.
 e.g. kill %3
 (terminate job %3)

 	 kill

 	 stop a process by pid.
 e.g. kill 3956
 (terminate process 3956)

 	 killall

 	 stop a process by name
 e.g. killall no respond
 (terminate process no respond)

 	 last

 	 show most recently logged-in users
 e.g. last
 (list recent users’ date, time…)

 	 lastb

 	 show bad login attempts
 e.g. lastb
 (display bad login attempts)

 	 lastlog

 	 display the last login information
 e.g. lastlog -u username
 (-u: specify a user)

 	 less

 	 show contents page by page
 e.g. less myfile.txt
 (display myfile.txt page by page)

 	 let

 	 perform arithmetic on shell variables
 e.g. let a=12; let a=a+8; echo $a
 (output: 20)

 	 link

 	 create a link to a file.
 e.g. link file1.txt file2.txt
 (create a link from file1 to file2)

 	 ln

 	 create a hard link to a file
 e.g. ~/myfile.txt
 (create a hard link to myfile.txt)

 	 ln -s

 	 create a link between two files
 e.g. ln -s file1.txt file2.txt
 (create a symbolic link to file1/file2)

 	 locate

 	 find the location of a file or a directory
 e.g. locate myfile.txt
 (locate myfile.txt on local machine)

 	 logname

 	 show the current user’s login name
 e.g. logname
 (display the login name of user)

 	 look

 	 show words matching a given prefix
 e.g. look ab
 (output: aba, abb, abc, abd…)

 	 lpc

 	 run the line printer control program
 e.g. lpc status
 (show status of current print queue)

 	 lpq

 	 show the printer queue status
 e.g. lpq
 (list the print queue)

 	 lpr

 	 send a print request to printer
 e.g. lpr myfile.txt
 (send myfile.txt to printer)

 	 lprm

 	 cancel the printing job in print queue
 e.g. lprm 2
 (remove printing job 2)

 	 ls

 	 list the contents of current directory
 e.g. ls
 (list files and sub-directories)

 	 ls -l

 	 long list contents of current directory
 e.g. ls -l
 (-l:long lists including permissions)

 	 ls -a

 	 lists all entries including hidden files
 e.g. ls -a
 (-a: show all files)

 	 ls -t

 	 lists all entries by time stamps
 e.g. ls -t
 (-t: show by time stamps)

 	 ls -lh

 	 lists contents in current directory
 e.g. ls -lh
 (-lh: list files with size in mb and gb.)

 	 lsattr

 	 list the attribute of a file or a directory
 e.g. lsattr myfile.txt
 (show myfile.txt attribute)

 	 lsof

 	 list opened files
 e.g. lsof
 (list all opened files)

 	 man

 	 get command help from manual
 e.g. man cat
 (show manual page for cat)

 	 man -k

 	 search manual pages for keyword
 e.g. man –k printf
 (-k: specify a keyword)

 	 md5sum

 	 create a md5 checksum number
 e.g. md5sum -c file.txt
 (-c validate file against a checksum)

 	 mesg

 	 enable or disable messaging
 e.g. mesg
 (show the current write status)

 	 mesg y/n

 	 enable or disable messaging
 e.g. mesg y/n
 (y or n: permit or deny messaging)

 	 mail

 	 send and receive mails
 e.g. mail ray@websprogram.com
 (email to ray@websprogram.com)

 	 mkdir

 	 make a new directory
 e.g. mkdir mydir
 (create a directory named mydir)

 	 mknod

 	 make a device file
 e.g. mknod /dev/dk b 45 0 (dk:device; b:block; 45:major no.; 0:minor no.)

 	 more

 	 show content one screen at one time
 e.g. more +2 myfile.txt
 (+2: beginning at line 2)

 	 mount

 	 mount a storage device
 e.g. mount /dev/cd
 (mount a device cd)

 	 mount -l

 	 mount or show devices
 e.g. mount -l
 (-l: list all mounted devices)

 	 mt

 	 magnetic tape drive control
 e.g. mt -f /dev/tape eod
 (-f select eod; move to end of data)

 	 mv

 	 move a file to another directory
 e.g. mv myfile.txt /home/user/mydir
 (move myfile.txt to mydir directory)

 	 mv

 	 rename a file
 e.g. mv myfile1.txt myfile2.txt
 (rename mayfile1 to myfile2)

 	 netstat

 	 display network status
 e.g. netstat (print network connections, routing tables.etc)

 	 nice *

 	 set the priority level of a job
 e.g. nice -19 ftp
 (set priority level as 19 for ftp)

 	 nl

 	 add text with number lines
 e.g. nl mylist.txt
 (make number lines for mylist.txt)

 	 nohup

 	 ignore hangup signals
 e.g. nohup find ftp
 (run ftp ignoring hangup signals)

 	 nslookup

 	 query internet name servers for IP
 e.g. nslookup myxxexample.com
 (return IP like 75.126.162.XXX)

 	 passwd

 	 modify a user password
 e.g. passwd username
 (change password for username)

 	 paste

 	 merge lines of multiple files
 e.g. paste file1.txt file2.txt
 (merge contents for file1 and file2)

 	 pidof

 	 show process ID of running program
 e.g. pidof console
 (display console’s process id)

 	 ping

 	 send data to a host, await response
e.g. ping xvxmjfz.com
 (test if remote host can be reached)

 	 ping -c

 	 test if remote host can be reached
e.g. ping –c5 xvxmjfz.com
 (-c5: specify the number of pings)

 	 pkill

 	 kill a running process
 e.g. pkill firefox
 (stop web browser firefox)

 	 pr

 	 prepare text files for printing
 e.g. pr myfile.txt
 (prepare myfile.txt for printing)

 	 pr -n

 	 prepare text files for printing
 e.g. pr –n myfile.txt
 (-n: specify number in each line)

 	 pr -h

 	 prepare text files for printing
 e.g. pr –h “Good” myfile.txt
 (-h: specify a header)

 	 printenv

 	 show the environment variables
 e.g. printenv
 (list values of environment variables)

 	 printf

 	 format and print data
 e.g. printf "start\b"
 (\b: backspace output: star)

 	 printf

 	 format and print data
 e.g. printf 'hello \n world \n !'
 (\n: prints by newlines. output 3 lines)

 	 ps -f

 	 show the process status
 e.g. ps -f
 (-f full information of current process)

 	 ps -u

 	 show the process status
 e.g. ps -u ray
 (-u specify a user’s current process)

 	 pstree

 	 displays process in tree structure
 e.g. pstree
 (show all process as a tree)

 	 pwd

 	 print working directory
 e.g. pwd
 (display current directory)

 	 rcp

 	 remotely copy file between two hosts
 e.g. rcp file.txt host2:/dir2/file.txt
 (remotely copy file.txt to host2)

 	 read

 	 read a line from standard input
 e.g. read name (input ray)
 echo “$name” (output ray)

 	 reboot*

 	 restart the system
 e.g. reboot
 (cause the computer to restart)

 	 renice *

 	 change the priority level of a job
 e.g. renice 3 23001
 (set priority level as 3 for job 23001)

 	 restore

 	 restores data from the backup file
 e.g. restore -f databackup
 (-f:specify a backup file)

 	 rlogin

 	 remotely login to a system
 e.g. rlogin -l username domain.com
 (-l: specify a username)

 	 rm

 	 remove one or more files
 e.g. rm myfile.txt
 (remove myfile.txt)

 	 rm -r

 	 remove non-empty directory
 e.g. rm -r /NonEmptyDir
 (-r: remove directory and its content)

 	 rm -i

 	 remove non-empty directory or a file
 e.g. rm -i myfile.txt
 (-i: ask before removing)

 	 rmdir

 	 remove empty directory
 e.g. rmdir /emptydir
 (delete directory without contents)

 	 route

 	 show or modify the IP routing table
 e.g. route -n
 (-n: show in numerical format)

 	 rsync

 	 remotely synchronize files
 e.g. rsync myfile host2:/dir2/myfile
 (sync. myfile with remote host2)

 	 scp

 	 securely copy files amid two hosts
 e.g. scp file.txt host2:/dir2/file.txt
 (securely copy file to remote host2)

 	 screen

 	 open the terminal window manager
 e.g. screen
 (start a new screen)

 	 sdiff

 	 show two files’ difference side by side
 e.g. sdiff myfile1.txt myfile2.txt
 (compare two files side by side)

 	 sed

 	 filter and transform input text
 e.g. sed “{print $3}” myfile.txt
 (display the third word of each line)

 	 seq

 	 list sequent numbers in given range
 e.g. seq 1 8
 (output: 1 2 3 4 5 6 7 8)

 	 seq -w

 	 list sequent numbers in given range
 e.g. seq –w 1 3
 (-w: with zeros output: 01 02 03)

 	 seq

 	 list sequent numbers in given range
 e.g. seq –s\| 1 3
 (-s: with separators output: 1| 2 |3)

 	 set

 	 set shell variable or function
 e.g. set n=`who am i`; echo $n
 (output: who am i)

 	 sftp

 	 securely transfer files by ftp
 e.g. sftp SeverURL
 (securely transfer files to a Server)

 	 shopt

 	 show the shell option settings
 e.g. shopt
 (show the shell behavior settings)

 	 shutdown *

 	 close system
 e.g. shutdown 22:00
 (shut down at 22:00 o’clock)

 	 shutdown-h

 	 close system
 e.g. shutdown –h +5
 (-h+5: halt after 5 minutes)

 	 shutdown -r

 	 shutdown and restart
 e.g. shutdown -r now
 (-r:shut down and instantly restart)

 	 sleep

 	 pause for a specified amount of time
 e.g. sleep 10
 (pause for 10 seconds)

 	 sort

 	 show sorted contents alphabetically
 e.g. sort -r myfile.txt
 (-r sort file in reverse order)

 	 split -b

 	 split a file to some files in given size
 e.g. split -b 11 file.txt (split file to some 11 byte files named xaa,xab,xac, etc.)

 	 split -l

 	 split a file to some files in given size
 e.g. split -l 8 file.txt (split file to some 8 line files named xaa,xab,xac, etc.)

 	 ssh

 	 login to remote secure shell
 e.g. ssh ray@myexample.com
 (securely connect to a remote host)

 	 ssh -l

 	 login to remote secure shell
 e.g. ssh -l username hostname
 (-l specify your remote username)

 	 stat

 	 list status about file size, access, etc.
 e.g. stat myfile.txt
 (show myfile.txt statistics)

 	 su

 	 switch user
 e.g. su user2
 (switch user named user2)

 	 su -l

 	 login as a root super user
 e.g. su –l
 (-l:enter password, login root account)

 	 sudo -u

 	 execute a command as another user
 e.g. sudo -u user2 ls /home/mydir
 (-u: specify user2 to execute ls cmd)

 	 sudo -v

 	 refresh the authentication timeout
 e.g. sudo -v
 (next sudo will not require password.)

 	 sudo -k

 	 expire the authentication timeout
 e.g. sudo -k
 (next sudo will require password.)

 	 sum

 	 summarize a file with a checksum e.g. sum myfile.txt
 (create a checksum for myfile.txt)

 	 suspend

 	 suspend the working shell
 e.g. suspend
 (pause system during execution)

 	 sync

 	 synchronize disk data with memory
 e.g. sync
 (flush all file system buffers to disk)

 	 tac

 	 display lines of a file in reverse order
 e.g. tac myfile.txt
 (print file from last line to first line)

 	 tail

 	 show the final part of a file
 e.g. tail -n 20 file.txt
 (-n20:output last 20 lines of file.txt)

 	 talk

 	 communicate with another user
 e.g. talk ray
 (talk to user ray)

 	 tar -xf

 	 extract an archived tar file
 e.g. tar -xf archive.tar
 (-xf: extract an archive tar file)

 	 tar -cf

 	 create an archived tar file
 e.g. tar -cf archive.tar
 (-cf: create an archive tar file)

 	 tee

 	 print standard output, write to a file
 e.g. sort file1.txt | tee file2.txt
 (sort file1.txt and write to file2.txt)

 	 tee -a

 	 print standard output, write to a file
 e.g. sort file1.txt | tee –a file2.txt
 (-a: append instead of overwrite)

 	 test

 	 calculate a boolean expression
 e.g. [8 -gt 6]; echo $?
 (output: 0 0:true; 1:false)

 	 test

 	 calculate a boolean expression
 e.g. [5 -eq 6]; echo $?
 (output: 1 0:true; 1:false)

 	 time

 	 show the time taken to run a program
 e.g. time ftp
 (display the time taken to execute ftp)

 	 times

 	 show the uptime of sell
 e.g. times
 (display the system uptime)

 	 tload

 	 show a graphic report of system load
 e.g. tload (show the current system load average to a specified process)

 	 top

 	 list the top active or specified process
 e.g. top -p pid
 (-p:display specific process by pid)

 	 touch

 	 update timestamp for an existing file
 e.g. touch myfile.txt
 (modify myfile.txt to the current time)

 	 touch -t

 	 update timestamp for an existing file
 e.g. touch –t myfile.txt
 (-t: specify a time)

 	 tr

 	 translates sets of characters
 e.g. echo apple | tr “apple” “banana”
 (output: banana)

 	 traceroute*

 	 trace the route to a host
 e.g. traceroute xvauhdhxv.com
 (trace packets route to another host)

 	 trap

 	 run a command on receiving a signal
 e.g. trap
 (display the current signal traps)

 	 tree -p

 	 list directory contents in tree format
 e.g. tree –p
 (-p: also show the file permissions)

 	 tty

 	 show the name of the terminal device
 e.g. tty
 (show the terminal filename)

 	 type

 	 detect the type of a command
 e.g. type wait
 (output: wait is a shell builtin)

 	 ulimit -a

 	 limit user resources
 e.g. ulimit -a
 (-a:display all limits for the system)

 	 umask

 	 show or set the file permission value
 e.g. umask 0022 (allow user read, write privileges and all others to read)

 	 umask

 	 show or set the file permission value
 e.g. umask 0002 (allow group read, write privileges and all others to read)

 	 umask

 	 show or set the file permission value
 e.g. umask 0077 (allow user read, write privileges and no for others)

 	 umount

 	 unmount a device or filesystem
 e.g. umount /dev/dvd
 (unmount a device DVD)

 	 unalias

 	 remove an alias
 e.g. unalias aliasname
 (delete a specified alias)

 	 uname -a

 	 show the current system information
 e.g. uname -a
 (-a: display all information)

 	 uname -n

 	 show the current system information
 e.g. uname -n
 (-n: display the host name)

 	 unexpand

 	 convert spaces into tabs
 e.g. unexpand myfile.txt
 (convert spaces to tabs for myfile.txt)

 	 uniq

 	 filter out repeated lines in a file
 e.g. uniq myfile.txt
 (show unique line in myfile.txt)

 	 unset

 	 remove shell variable or function
 e.g. unset var
 (delete a variable)

 	 unzip

 	 uncompress files from zip format
 e.g. unzip archive.zip
 (uncompress file from archive.zip)

 	 uptime

 	 show system uptime
 e.g. uptime
 (display system uptime)

 	 useradd *

 	 add a new user account
 e.g. useradd username
 (create a user account)

 	 useradd* -d

 	 display default value for new users
 e.g. useradd -d
 (show default data for a new user)

 	 userdel *

 	 delete an existing user account
 e.g. userdel username
 (remove a user account)

 	 usermod* -d

 	 modify home directory
 e.g. usermod -d /home/mydir andy
 (-d: specify home directory for andy.)

 	 usermod * -l

 	 modify an existing user account
 e.g. usermod -l oldname newname
 (-l: login name change)

 	 usermod * -p

 	 modify an existing user account
 e.g. usermod -p password username
 (-p:modify password of a user)

 	 users

 	 display current logged-in users
 e.g. users
 (list users currently logged in)

 	 vdir

 	 verbosely show directory contents
 e.g. vdir
 (vdir just like ls, but more verbose)

 	 vi

 	 open the vi text editor
 e.g. vi filename
 (open a file with vi text editor)

 	 vmstat

 	 report virtual memory statistics…
 e.g. vmstat
 (also report swap, disk i/o devices…)

 	 w

 	 list current processes for each users
 e.g. w username
 (show the user’s process)

 	 w -s

 	 list current processes by summary
 e.g. w -s
 (-s: show a summary of shell process)

 	 wait

 	 wait for a process to change state
 e.g. wait 10788
 (wait for 10788 to change state)

 	 watch

 	 execute a command periodically
 e.g. watch –n 5 date
 (-n5:update date every 5 seconds)

 	 wc

 	 show word count, line count, etc
 e.g. wc myfile.txt
 (list word, line count… for myfile.txt)

 	 wc -c

 	 show word count, line count, etc
 e.g. wc –c myfile.txt
 (-c: show the byte counts)

 	 wget

 	 download a web page from a website
 e.g. wget http://www.xvfwkaljo.com
 (download webpage from above url)

 	 wget -c

 	 download a web page from a website
 e.g. wget –c http://www.examp.com
 (-c: continue download previous web)

 	 whatis

 	 show manual page of a command
 e.g. whatis ping
 (show manual page of ping)

 	 whereis

 	 locate source, man for a command
 e.g. whereis ls
 (show source, man locations of ls)

 	 which

 	 show path of a executable command e.g. which ftp
 (show the full path of ftp command)

 	 who

 	 show who currently logged in
 e.g. who
 (list all logged-in users, date, time…)

 	 who -a

 	 list all users currently logged in
 e.g. who -a
 (-a: all information)

 	 whoami

 	 show the current user’s login name
 e.g. whoami
 (show your own user name)

 	 whois

 	 show domain owner’s information
 e.g. whois xvqizx.com
 (list xvqizx.com owner’s information)

 	 write

 	 write a message to another user
 e.g. write username
 (then write your message…)

 	 xargs

 	 execute a command with arguments
 e.g. find -name " a*.* " | xargs rm
 (find files named a*.*, remove them)

 	 xcalc

 	 launch a graphical calculator
 e.g. xcalc
 (open a scientific calculator)

 	 xclock

 	 launch graphical clock
 e.g. xclock -digital
 (-digital: specify a digital clock)

 	 yes

 	 output a string repeatedly until killed
 e.g. yes “hello”
 (output hello repeatedly until killed)

 	 yum

 	 rpm-based package manager
 e.g. yum install update
 (install a package named "update")

 	 zcat

 	 output compressed text
 e.g. zcat myfiles.txt.gz | less
 (uncompress file and show contents)

 	 zless

 	 show un/compressed file contents
 e.g. zless myfile.txt.gz
 (zless: show contents by page)

 	 zmore

 	 show un/compressed file contents
 e.g. zmore myfile.txt.gz
 (zmore: show contents by screen)

 	 zip

 	 compress files to zip format
 e.g. zip documents *
 (create documents.zip for all files)

 	 unzip

 	 uncompress files from zip format
 e.g. unzip myfile.zip
 (uncompress myfile.zip.)

Conclusion

 My friends,

 This book is only for a basic Linux commands quick learning. Thank you for your support!

 I will greatly appreciate if you kindly give a positive review to this book.

 Thank you very much!

 Best Regards

 Sincerely

 Ray Yao

 My friend, See you!

 cover.jpeg
Linux
Command Line

(Cover All Essential
Linux Commands)

A BEGINNER'S GUIDE

Ray Yao

