

[image: cover.png]

Linux Kernel Programming

Copyright © 2022 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers and distributors will be held liable for any damages caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

Early Access Publication: Linux Kernel Programming

Early Access Production Reference: B18477

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham

B3 2PB, UK

ISBN: 978-1-80323-222-5

www.packt.com

Table of Contents
	Linux Kernel Programming, Second Edition: A practical guide to kernel internals, writing kernel modules, and synchronization
	1 Kernel Workspace Setup	Join our book community on Discord
	Technical requirements
	Running Linux as a guest VM	Selecting a Linux distro and kernel

	Installing an x86_64 Linux guest	Turn on your x86 system's virtualization extension support
	Allocate sufficient space to the disk
	Using pre-built Linux VM images
	Setting up OSBoxes Ubuntu 22.04 as a guest OS
	Installing QEMU and a cross toolchain
	A few remaining tips when running the VM
	Experimenting with the Raspberry Pi

	Additional useful projects	Using the Linux man pages
	Locating and using the Linux kernel documentation
	Static analysis tools for the Linux kernel
	Linux Trace Toolkit next generation
	The procmap utility
	Simple Embedded ARM Linux System FOSS project
	Modern tracing and performance analysis with eBPF
	The LDV - Linux Driver Verification - project

	Summary
	Questions
	Further reading

	
Cover

	
Table of contents

Linux Kernel Programming, Second Edition: A practical guide to kernel internals, writing kernel modules, and synchronization

Welcome to Packt Early Access. We’re giving you an exclusive preview of this book before it goes on sale. It can take many months to write a book, but our authors have cutting-edge information to share with you today. Early Access gives you an insight into the latest developments by making chapter drafts available. The chapters may be a little rough around the edges right now, but our authors will update them over time.

You can dip in and out of this book or follow along from start to finish; Early Access is designed to be flexible. We hope you enjoy getting to know more about the process of writing a Packt book.

	Chapter 1: Kernel Workspace Setup

	Chapter 2: Building the 5.x Linux Kernel from Source - Part 1

	Chapter 3: Building the 5.x Linux Kernel from Source - Part 2

	Chapter 4: Writing Your First Kernel Module - LKMs Part 1

	Chapter 5: Writing Your First Kernel Module - LKMs Part 2

	Chapter 6: Kernel Internals Essentials - Processes and Threads

	Chapter 7: Memory Management Internals - Essentials

	Chapter 8: Kernel Memory Allocation for Module Authors - Part 1

	Chapter 9: Kernel Memory Allocation for Module Authors - Part 2

	Chapter 10: The CPU Scheduler - Part 1

	Chapter 11: The CPU Scheduler - Part 2

	Chapter 12: Kernel Synchronization - Part 1

	Chapter 13: Kernel Synchronization - Part 2

1 Kernel Workspace Setup

Join our book community on Discord

https://packt.link/CyberSec

[image: img]

Hello, and welcome to this book on learning Linux kernel programming. To get the most out of this book, it is very important that you first set up the workspace environment that we will be using throughout the book. This chapter will teach you exactly how to do this and get started.

We will install a recent Linux distribution, preferably as a Virtual Machine (VM), and set it up to include all the required software packages. We will also clone this book's code repository on GitHub, and learn about a few useful projects that will help along this journey.

Right at the outset, something I like to emphasize, is this: the best way to learn something is to do so empirically – not taking anyone's word on anything at all, but trying it out and experiencing it for yourself. Hence, this book gives you many hands-on experiments and kernel code examples that you can and indeed must try out yourself; this will greatly aid in your making real progress, learning deeply and understanding various aspects of Linux kernel and driver development. So, remember:

Be Empirical!

Right, let's begin!

This chapter will take you through the following topics, which will help set up your working environment:

	Running Linux as a guest VM

	Installing an x86_64 Linux guest

	Additional useful projects

Technical requirements

You will need a modern – and preferably powerful - desktop PC or laptop. Ubuntu Desktop specifies "recommended minimum system requirements" for the installation and usage of the distribution here: https://help.ubuntu.com/community/Installation/SystemRequirements. I’d suggest you go with a system well beyond the minimum recommendation, as powerful a system as you can afford to use. This is as performing tasks such as building a Linux kernel from source is a very memory- and CPU-intensive process. It should be pretty obvious – the more RAM, CPU power and disk space the host system has, the better!

Like any seasoned kernel developer, I would say that working on a native Linux system is best. However, for the purposes of this book, we cannot assume that you will always have a dedicated native Linux box available to you. So, we shall assume that you are working on a Linux guest. Working within a guest VM also adds an additional layer of isolation and thus safety. Of course, the downside is performance – working on a high spec native Linux box can be up to twice as fast when compared to working on a VM!

Cloning our code repository: The complete source code for this book is freely available on GitHub at https://github.com/PacktPublishing/Linux-Kernel-Programming_2E. You can clone and work on it by cloning the git tree, like so:

git clone https://github.com/PacktPublishing/Linux-Kernel-Programming_2E

The source code is organized chapter-wise. Each chapter is represented as a directory – for example, ch1/ has the source code for this chapter. The root of the source tree has some code that is common to all chapters, such as the source files convenient.h, klib_llkd.c, as well as others.

For efficient code browsing, I would strongly recommend that you always index the code base(s) with ctags and/or cscope. For example, to set up the ctags index, just cd to the root of the source tree and type ctags -R.

Unless noted otherwise, the code output we show in the book is the output as seen on an x86_64 Ubuntu 22.04 LTS guest VM (running under Oracle VirtualBox 6.1). You should realize that due to (usually minor) distribution – and even within the same distributions but differing versions – differences, the output shown in the book may not perfectly match what you see on your Linux system.

Running Linux as a guest VM

As discussed previously, a practical and convenient alternative to using a native Linux system is to install and use the Linux distribution as a guest OS on a VM.

Selecting a Linux distro and kernel

It's key that you install a recent and well supported Linux distribution, along with a (custom-built) recent long-term Linux kernel. Very briefly, for the purpose of this book, here’s what we’ll select:

Linux kernel version: 5.10.y LTS (longterm); End Of Life (EOL) is December 2026

Linux distribution (or distro): Ubuntu 22.04 LTS (‘Jammy Jellyfish’); free security and maintenance updates guaranteed until April 2027, EOL is April 2032

Hypervisor for the VM: Oracle VirtualBox 6.1.x (runs on the host system).

Our reasoning is simple: all of these are Open Source Software (OSS) with, as of this writing, sufficiently long end-of-life dates, ensuring their continued support and viability for a pretty long while.

You’ll of course get all details as we go along; for the Ubuntu VM installation details, the sections Installing an x86_64 Linux guest and Setting up OSBoxes Ubuntu 22.04 as a guest OS covers it. The Linux kernel versions, what they entail and actually building a custom kernel is covered in depth in the following two chapters; relax, we’ll get there.

Of course, running Linux on a native system has definite performance advantages. For the purpose of this book, though, we can’t assume you have a dedicated spare native Linux system, so we’ll go with running Linux as a VM; it’s also safer and helps avoid unpleasant data loss or other surprises. The fact is when working at the level of the kernel, abruptly crashing the system (and the data loss risks that arise thereof) is actually a commonplace occurrence. For the hypervisor, I recommend using Oracle VirtualBox 6.x (or the latest stable version) or other virtualization software, such as VMware Workstation.

Both of these are freely available. It's just that the code for this book has been tested on VirtualBox 6.1.x. Oracle VirtualBox is considered Open Source Software (OSS) and is licensed under the GPL v2 (the same as the Linux kernel). You can download it from https://www.virtualbox.org/wiki/Downloads. Its documentation can be found here: https://www.virtualbox.org/wiki/End-user_documentation.

The host system – the one where the hypervisor runs - should be either MS Windows 10 or later (of course, even Windows 7 will work), a recent Linux distribution (for example, Ubuntu or Fedora), or macOS.

More Choices

The distro we choose to use – the Ubuntu 22.04 LTS Desktop – is the version of choice for this book, at least. The two primary reasons for this are straightforward:

	Ubuntu Linux is one of the, if not the, most popular Linux (kernel) development workstation environments in industry use today.

	We cannot always, for lack of space and clarity, show the code/build output of multiple environments in this book. Hence, we have typically chosen to show the output as seen on the x86_64 Ubuntu 22.04 LTS Desktop.

Ubuntu 20.04 - or even 18.04 LTS - Desktop are good choices too (they have Long-Term Support (LTS) as well), and everything should work. To download it, visit https://www.ubuntu.com/download/desktop.

Some other Linux distributions that can also be considered include the following:

	CentOS 9 Linux (not CentOS Stream): CentOS Linux is a distribution that's essentially a clone of the popular enterprise server distribution from RedHat (RHEL 9, in our case). You can download it from here: https://www.centos.org/download/.

	Fedora Workstation: Fedora is a very well-known FOSS Linux distribution as well. You can think of it as being a kind of test-bed for projects and code that will eventually land up within RedHat's enterprise products. Download it from https://getfedora.org/ (download the Fedora Workstation image).

	Raspberry Pi as a target: It's really best to refer to the official documentation to set up your Raspberry Pi (Raspberry Pi documentation: https://www.raspberrypi.org/documentation/). It's perhaps worth noting that Raspberry Pi kits are widely available that come completely pre-installed and with some hardware accessories as well. We cover more on using the Raspberry Pi as a target in a later section.

	BeagleBone Black (BBB) as a target: The BBB, like the Raspberry Pi, is an extremely popular embedded ARM SBC for hobbyists and pros. You can get started here: https://beagleboard.org/black. The System Reference Manual for the BBB can be found here: https://cdn.sparkfun.com/datasheets/Dev/Beagle/BBB_SRM_C.pdf. Though we typically don't present examples running on the BBB, nevertheless, it's a valid embedded Linux system that, once properly set up, you can run this book's code on.

	Of course, for more advanced readers, you’ll realize that the Linux system to use is really up to you. Running an as-light-as-possible custom Linux system on a QEMU (emulated) standard PC is a choice as well.

Before we conclude our discussion on selecting our software distribution for the book, here are a few more points to note:

	These distributions are, in their default form, FOSS and non-proprietary, and free to use as an end user.

	Though our aim is to be Linux distribution-neutral, the book’s code has only been tested on an x86_64 guest running Ubuntu 22.04 LTS and "lightly" tested on the ARM-based (both ARM-32 and ARM-64) Raspberry Pi boards typically running the Debian GNU/Linux 11 (bullseye) Linux OS.

	We will, as far as is possible, use a recent (as of the time of writing) stable longterm (LTS) Linux kernel version 5.10 for our custom kernel builds and code runs. Being a longterm kernel with an EOL date of December 2026, the 5.10 kernel series is an excellent choice to run on and learn with.

It is interesting to know that the 5.10 longterm kernels will indeed have a long lifespan; from December 2020 right up to December 2026! This is good news: this book's content thus remains current and valid for years to come!

It's important to realize, for maximized security (with the latest defenses and fixes), that you must run the most recent longterm kernel possible for your project or product.

Now that we have chosen our Linux distribution, and/or hardware boards and VMs, it's time we install the guest along with a user account and essential software packages.

So, let's get started by installing our Linux guest (for the impatient, something to point out – an easier, quicker way to get started is to simply use pre-built Linux VM images! We show you how in the section Using pre-built Linux VM images).

Installing an x86_64 Linux guest

Here, I won't delve into the minutiae of installing Linux as a guest on Oracle VirtualBox, the reason being that this installation is not directly related to Linux kernel development. There are many ways to set up a Linux VM; we really don't want to get into the details and the pros and cons of each of them here.

But if you are not familiar with this, don't worry. For your convenience, here are some excellent resources that will help you out:

	From Ubuntu: How to run Ubuntu Desktop on a virtual machine using VirtualBox: https://ubuntu.com/tutorials/how-to-run-ubuntu-desktop-on-a-virtual-machine-using-virtualbox

	A clearly written tutorial entitled Install Linux Inside Windows Using VirtualBox by Abhishek Prakash (It's FOSS!, August 2019): https://itsfoss.com/install-linux-in-virtualbox/.

	An alternate, similarly excellent resource is Install Ubuntu on Oracle VirtualBox: https://brb.nci.nih.gov/seqtools/installUbuntu.html.

Also, you can look up useful resources for installing a Linux guest on VirtualBox in the Further reading section at the end of this chapter.

Nevertheless, it's important to point out a few key details involved; while you install the Linux VM, keep the following things in mind.

Turn on your x86 system's virtualization extension support

Installing a 64-bit Linux guest requires that CPU virtualization extension support (Intel VT-x or AMD-SV) be turned on within the host system's basic input/output system (BIOS) settings. Worry not, this is a one-time thing. Let's see how to do this:

	Our first step is to ensure that our host CPU(s) supports virtualization:

There are two broad ways to check this while on a Windows host:

	One, run the Task Manager app and switch to the Performance tab. Below the CPU graph, you will see, among several other things, Virtualization, with Enabled or Disabled following it.

	A second way to check on Windows systems is to open a Command window (cmd). In Command Prompt, type systeminfo and press Enter. Among the output seen will be the Virtualization Enabled in firmware line. It will be followed by either Yes or No.

	To check this while on a Linux host, from Terminal, issue the following commands (processor virtualization extension support: vmx is the check for Intel processors, smv is the check for AMD processors):

 egrep --color "vmx|svm" /proc/cpuinfo

For Intel CPUs, the vmx flag will show up (in color) if virtualization is supported. In the case of AMD CPUs, svm will show up (in color). With this, we know that our CPU supports virtualization.

Hang on though; in order to use it, we need to enable it in the computer BIOS.

	Enter the host system’s BIOS by pressing Del or F12 while booting; the precise key to press can vary with the OEM and/or the BIOS. Please refer to your system's manual to see which key to use. Search for terms such as Virtualization or Virtualization Technology (VT-x). Here is an example for Award BIOS:

[image: Figure 1.1 – Setting the BIOS Virtualization option to the Enabled state]Figure 1.1 – Setting the BIOS Virtualization option to the Enabled state

	Now, choose to use hardware virtualization in VirtualBox's Settings menu for your VM. To do this, click on System and then Acceleration. After that, check the boxes, as shown in the following screenshot:

[image: Figure 1.2 – Enabling hardware virtualization options within the VirtualBox VM settings on a Linux host]Figure 1.2 – Enabling hardware virtualization options within the VirtualBox VM settings on a Linux host

This is an example of how to enable your host processor's hardware virtualization features for optimal performance.

Allocate sufficient space to the disk

For most desktop/laptop systems, allocating a gigabyte of RAM and two CPUs to the guest VM should be sufficient.

However, when allocating space for the guest's disk, please be generous. Instead of the usual/default 8 GB suggested, I strongly recommend you make it 50 GB or even more. Of course, this implies that the host system has more disk space than this available! Further, you can specify this amount to be dynamically allocated or allocated on-demand. The hypervisor will "grow" the virtual disk optimally, not giving it the entire space to begin with.

Using pre-built Linux VM images

The OSBoxes (OSB) project allows you to freely download and use prebuilt VirtualBox (as well as VMware) images for popular Linux distributions. See their site here: https://www.osboxes.org/virtualbox-images/.

In our case, you can download a prebuilt x86_64 Ubuntu 22.04 (as well as others) Linux image here: https://www.osboxes.org/ubuntu/. It comes with the VirtualBox Guest Additions (see the following section for details) preinstalled!

What the heck are VirtualBox Guest Additions?

For best performance, it's important to install the Oracle VirtualBox Guest Additions as well within the guest VM. These are essentially para-virtualization accelerator software, which greatly helps with optimizing performance (especially with regard to disk / network I/O, and graphics).

The default username/password is osboxes/osboxes.org.

In this book, I’ll use the OSBoxes prebuilt Ubuntu 22.04 LTS as my primary VM. It’s advantageous: once downloaded, you’re essentially good to go! Further, it comes with the VirtualBox Guest Additions virtual CD image. The only (slight) downside: it’s rather large, the 7zip compressed image - the one we download - is 2.6 GB in size; when uncompressed, it expands to approximately 8.6 GB (further, it’s set up so that it can grow - storage is allocated dynamically).

Setting up OSBoxes Ubuntu 22.04 as a guest OS

The only tweaks we’ll need to make within our spanking new Ubuntu VM is:

	Install the VirtualBox Guest Additions

	Set up a new user account named c2kp

	Install other required software packages

Let’s perform these steps!

Step 1. Install the VirtualBox Guest Additions

	Start up your OSB Ubuntu 22.04 VM (from within the VirtualBox app)

	Log in to your Linux guest as the user osboxes (recall that the default password is osboxes.org) within the (default) graphical environment

	A prerequisite to installing the Guest Additions: we must first install some minimal packages; let’s do so. In the Terminal app, type (it’s possible you’ll have to wait until an ongoing automated / unattended upgrade completes):

sudo apt update
sudo apt upgrade // if required
sudo apt install gcc make perl build-essential dkms linux-headers-$(uname -r) ssh -y

(The last command should be typed on one line. Also, the -y option switch has apt assume a yes answer to all prompts; careful though, this could be dangerous in other circumstances.)

	From VirtualBox’s menu select Devices | Insert Guest Additions CD image... . Now a “virtual” CD shows up; note the pathname of its mount point (you can use df on the Terminal app to do so); on my system, it happens to be /media/osboxes/VBox_GAs_6.1.26.

	Now, within the Terminal application, do this:

sudo /media/osboxes/VBox_GAs_6.1.26/VBoxLinuxAdditions.run
[...]

Follow the onscreen prompts; the VirtualBox Guest Additions (mostly kernel modules) are installed via this script and all you have to do once it’s done is reboot the VM.

	On Oracle VirtualBox, to ensure that you have access to any shared folders you might have set up, you need to set the guest account to belong to the vboxsf group; you can do so like this (once done, you'll need to log in again, or sometimes even reboot, to have this take effect):

sudo usermod -G vboxsf -a ${USER}

Good going, let’s move onto the next step.

Step 2. Set up a new user account named c2kp

	Okay, setting up a new user account via the CLI is easy:

sudo useradd –m c2kp –s /bin/bash
sudo passwd c2kp

Look up the man page on useradd to understand the options passed. A screenshot showing the action follows:

[image: Figure 1.3 - Setting up our new c2kp account on the OSB Ubuntu Linux VM]Figure 1.3 - Setting up our new c2kp account on the OSB Ubuntu Linux VM

This creates a new account named c2kp, along with the skeleton home directory (and it’s entries) and sets up the password as well (I specified the password as ‘welcome’ - hence the BAD PASSWORD... warning; please do provide a secure password). It automatically creates a group of the same name as well, which will be your primary group.

On a Debian-based distro like this one, as the default account, osboxes, belongs to the groups adm and sudo (and /etc/sudoers allows it), you can exploit using the sudo command and thus run stuff as root (superuser); you simply have to enter your own password when prompted. Note, of course, that on production systems, stuff like this raises security concerns and will typically be constrained if not altogether disabled.

	So, for our account c2kp to run stuff as root (to use sudo), which is important, we need to make it a member of the groups adm and sudo:

sudo usermod -a -G adm,sudo c2kp

Let’s verify it worked:

$ egrep -w "adm|sudo" /etc/group
adm:x:4:syslog,osboxes,test1,c2kp
sudo:x:27:osboxes,c2kp

Yes indeed! c2kp is now a member of groups adm and sudo.

Wait, why’s our user account named c2kp?

Ah, though you’d never ask. In the world of recreational running (jogging), there's a really well known program to get people off their behinds; its named Couch To 5 Kilometers, abbreviated as C25K (http://www.c25k.com/). In a similar vein, let’s go with Couch To Kernel Programmer or c2kp! (Hey, it’s Linux, we prefer to keep account names in lowercase; also, take the name with a pinch of salt - I know you’re smart!).

Great; log out and, from now onward, I’d suggest you always log in to the guest as the user c2kp. A screenshot of the VirtualBox app in the foreground and our OSBoxes guest in the background follows:

[image: Figure 1.4 - Screenshot of the VirtualBox app and our OSBoxes Ubuntu guest]Figure 1.4 - Screenshot of the VirtualBox app and our OSBoxes Ubuntu guest

You can see we’re logged in as c2kp. As my host system (it’s also running Linux!) is quite powerful, I assign 4 CPU cores and 2 GB of RAM to the guest.

Let's now move on to a key step: actually installing software components on our Linux guest system so that, in the coming chapters, you can learn and write Linux kernel code on the system!

Step 3. Install required software packages

The packages that are installed by default when you use a typical Linux desktop distribution, such as any recent Ubuntu, Debian, CentOS, or Fedora Linux system, will likely include the minimal set required by a systems programmer: the native toolchain, which includes the GCC compiler along with headers, and the make utility/packages.

In this book, though, we are going to learn how to write kernel-space code using a VM and/or a target system running on a foreign processor (ARM-32 and/or AArch64 being the typical cases). To effectively develop kernel code on these systems, we will need to install additional software packages.

Right, first of all, we’ll assume you’re running an x86_64 Ubuntu VM on VirtualBox with the Guest Additions installed. This is indeed the case when using the OSBoxes prebuilt Ubuntu image. (Just in case you still need to install them, no problem; refer the section Step 1. Install the VirtualBox Guest Additions. Also, this tutorial has you covered: How to Install VirtualBox Guest Additions in Ubuntu: https://www.tecmint.com/install-virtualbox-guest-additions-in-ubuntu/.)

Next, let's cover the installation of some required packages.

Hey, there’s an easier way: I’ve provided a bash script in the book’s GitHub repo that will install all required packages; it’s here: https://github.com/PacktPublishing/Linux-Kernel-Programming_2E/blob/main/ch1/pkg_install4ubuntu_lkp.sh. Do ensure you clone the code repository and work on the code examples and assignments as you go along!

To install the packages, take the following steps:

	Within the Ubuntu VM, logged in as the user c2kp, first do the following: sudo apt update

	Now, to install the required packages for building the Linux kernel, run the following command in a single line:

sudo apt install -y \
bison build-essential flex libncurses5-dev ncurses-dev \
libelf-dev libssl-dev tar util-linux xz-utils

	To install the packages required for work we'll do in other parts of this book, run the following command in a single line:

sudo apt install -y \
bc bpfcc-tools bsdextrautils \
 clang cppcheck cscope curl exuberant-ctags \
fakeroot flawfinder \
git gnome-system-monitor gnuplot hwloc indent \
libnuma-dev linux-headers-$(uname -r) linux-tools-$(uname -r) \
man-db net-tools numactl openjdk-18-jre openssh-server \
perf-tools-unstable psmisc python3-distutils \
rt-tests smem sparse stress sysfsutils \
tldr-py trace-cmd tree tuna virt-what

Recall that the installation of gcc, make, and perl is done first (see the section Step 1. Install the VirtualBox Guest Additions) so that the Oracle VirtualBox Guest Additions can be properly installed straight after.

The disk space taken up by installing these packages (at least on my VM) is in the region of 1.75 GB.

This book, at times, mentions that running a program on another CPU architecture – typically ARM-32 or AArch64 – might be a useful exercise. If you want to try (interesting!) stuff like this – I urge you to do so! - please read on; otherwise, feel free to skip ahead to the Additional useful projects section.

Do note that the book’s GitHub repo does evolve; do a git pull every once in a while, to get the latest version...

Installing QEMU and a cross toolchain

One way to try things on an ARM machine is to actually do so on a physical ARM-based SBC; for example, the Raspberry Pi is a very popular choice. In this case, the typical development workflow is to first build the ARM code on your x86_64 host system. But to do so, we need to install a cross toolchain – a set of tools allowing you to build software on one host CPU such that it executes on a different target CPU. An x86_64 host building programs for an ARM target is a very common case, and indeed is our use case here. Details on installing the cross compiler follow shortly.

Often, an alternate way to just trying things out is to have an ARM/Linux system emulated – this alleviates the need for hardware! To do so, we recommend using the superb QEMU project (https://www.qemu.org/).

To install the required QEMU packages, do the following (takes up close to half a gigabyte disk space on Ubuntu):

	For installation on Ubuntu, use the following:

sudo apt install qemu-system-arm

	For installation on Fedora, use the following:

sudo dnf install qemu-system-arm-<version#>

To get the version number on Fedora, just type the preceding command and after typing the required package name (here, qemu-system-arm-), press the Tab key twice. It will auto-complete, providing a list of choices. Choose the latest version and press Enter.

Installing a cross compiler

If you intend to write a C program that is compiled on a certain host system but must execute on another (foreign) target system, then you need to compile it with what's known as a cross compiler or cross toolchain. For example, in our use case, we want to work – develop code - on an x86_64 host machine. The host can even be an x86_64 guest system, no issues, but the code will run on an ARM-32 target.

We shan’t dig further into the specifics of installing a cross toolchain here and now, as we practically require this – and explain it in depth – in a later chapter (Chapter 3, Building the 5.x Linux Kernel from Source - Part 2 in the section Step 2 – installing a cross-toolchain).

A reasonable question you might have at this point - why are we setting up a cross toolchain in the first place? Yes, though we don’t make use of it just now (after all, this is the ‘setup the workspace’ material), we definitely shall later; in Chapters 3, 5 and 11, where you’ll be configuring and cross-compiling a Linux kernel – and kernel modules - for the ARM processor! Relax, we’ll get there and dig into the details then.

Installing and using a cross toolchain might require some reading up for newbie users. You can visit the Further reading section where I have placed a few useful links that will surely be of great help.

A few remaining tips when running the VM

Sometimes, when the overhead of using the X Window System (or Wayland) GUI (for graphical display) is too high, especially on a guest machine, it's preferable to simply work in console mode. You can do so by appending 3 (the run level) to the kernel command line via the bootloader. However, working in console mode within VirtualBox may not be that pleasant an experience (for one, the clipboard is unavailable, and the screen size and fonts are less than desirable). Thus, doing a remote login (via ssh, putty, or equivalent) into the VM from the host system can be a great way to work (one that I use most of the time).

Next, remember to update the VM regularly and when prompted. This is an essential security requirement. You can do so manually by using the following:

sudo /usr/bin/update-manager

Finally, to be safe, please do not keep any important data on the guest VM. We will be working on kernel development. Crashing the guest kernel can be pretty commonplace. While this usually does not cause data loss, you can never tell! To be safe, always back up any important data.

Experimenting with the Raspberry Pi

The Raspberry Pi is a very popular credit card-sized (or smaller, as with the Raspberry Pi Zero boards) Single-Board Computer (SBC), much like a small-factor PC that has USB ports, a microSD card, HDMI, audio, Ethernet, GPIO, and more. It’s used for learning, by hobbyists, for prototyping and for several real-world products as well. The System on Chip (SoC) that powers it is from Broadcom, and in it is an ARM core or cluster of cores.

Though not mandatory, of course, in this book, we strive to also test and run our code on some of these embedded form-factory systems (the Raspberry Pi Zero W and the Raspberry Pi 4 Model B boards). Running your code on different target architectures is always a good eye-opener to possible defects, and helps with testing, and learning. I encourage you to do the same.

[image: Figure 1.5 – The Raspberry Pi 4 with a USB-to-RS232 TTL UART serial adapter cable attached to its GPIO pins]Figure 1.5 – The Raspberry Pi 4 with a USB-to-RS232 TTL UART serial adapter cable attached to its GPIO pins

You can work on the Raspberry Pi target either using a digital monitor/TV via HDMI as the output device and a traditional keyboard/mouse over its USB ports or, more commonly for developers, over a remote shell via ssh. The SSH approach, though, does not cut it in all circumstances. Having a serial console on the Raspberry Pi helps, especially when doing stuff like kernel bring-up and debugging.

I would recommend that you check out the following article, which will help you set up a USB-to-serial connection, thus getting a console login to the Raspberry Pi from a PC/laptop: WORKING ON THE CONSOLE WITH THE RASPBERRY PI, kaiwanTECH: https://kaiwantech.wordpress.com/2018/12/16/working-on-the-console-with-the-raspberry-pi/.

Of course, my Linux Kernel Debugging book (Packt, August 2022), covers kernel debugging tools and techniques in-depth; do check it out.

To set up your Raspberry Pi, please refer to the official documentation: https://www.raspberrypi.org/documentation/. As of this writing, my Raspberry Pi system runs the "official" Debian Linux for Raspberry Pi; it’s called the Raspberry Pi OS (it used to be called Raspbian) and sports a very recent 5.15 based Linux kernel. (Later, in the following two chapters, you’ll not only learn how to build your own custom Linux kernel, but also one specifically for the Raspberry Pi!).

On the console (or a Terminal window) of the Raspberry Pi, to look up version details, we run the following commands:

rpi $ lsb_release -a
No LSB modules are available.
Distributor ID: Debian
Description: Debian GNU/Linux 11 (bullseye)
Release: 11
Codename: bullseye
rpi $ uname –a
Linux rpi4gui 5.15.32-v8+ #1538 SMP PREEMPT Thu Mar 31 19:40:39 BST 2022 aarch64 GNU/Linux
rpi $

Quick tip

There are several interesting commands to query hardware/software info; try the hostnamectl, ls{cpu|pci|usb}; next, specific to x86: hwinfo, lshw; specific to the Raspberry Pi OS: raspinfo commands for even more details.

Also, of course, no reason you have to confine yourself to the Raspberry Pi family; there are several other excellent prototyping / evaluation boards available. One that springs to mind is the popular BeagleBone Black (BBB) board.

In fact, for professional development and product work, the Raspberry Pi is perhaps not the best choice, for several reasons... a bit of googling will help you understand this. Having said that, as a learning and prototyping environment it's hard to beat, with the strong community (and tech hobbyist) support it enjoys.

Several modern choices of microprocessors for embedded Linux (and much more) are discussed and contrasted in this excellent in-depth article: SO YOU WANT TO BUILD AN EMBEDDED LINUX SYSTEM?, Jay Carlson, Oct 2020 : https://jaycarlson.net/embedded-linux/; do check it out.

By now, I expect that you have set up Linux as a guest machine (or are using a native "test" Linux box) and have cloned the book's GitHub code repository. So far, we have covered some information regarding setting up Linux as a guest (as well as optionally using boards such as the Raspberry Pi or the BeagleBone).

Congratulations! This completes the software setup, and your kernel journey begins! Now, let's check out a few additional and useful projects to complete this chapter. It's certainly recommended that you read through these as well.

Additional useful projects

This section brings you details of some additional miscellaneous projects that you might find very useful indeed. In a few appropriate places in this book, we refer to or directly make use of some of them, thus making them important to understand.

Let's get started with the well-known and important Linux man pages project.

Using the Linux man pages

You must have noticed the convention followed in most Linux/Unix literature:

	The suffixing of user commands with (1) – for example, gcc(1) or gcc.1

	System calls with (2) – for example, fork(2) or fork().2

	Library APIs with (3) – for example, pthread_create(3) or pthread_create().3

As you are no doubt aware, the number in parentheses (or after the period) denotes the section of the manual (the man pages) that the command/API in question belongs to. A quick check with man(1), via the man man command (that's why we love Unix/Linux!) reveals the sections of the Unix/Linux manual:

$ man man
[...]
A section, if provided, will direct man to look only in that section of the manual. [...]
 The table below shows the section numbers of the manual followed by the types of pages they contain.
 1 Executable programs or shell commands
 2 System calls (functions provided by the kernel)
 3 Library calls (functions within program libraries)
 4 Special files (usually found in /dev)
 5 File formats and conventions eg /etc/passwd
 6 Games
 7 Miscellaneous (including macro packages and conventions), e.g. man(7), groff(7)
 8 System administration commands (usually only for root)
 9 Kernel routines [Non standard]
[...]

So, for example, to look up the man page on the stat(2) system call, you would use the following:

man 2 stat # (or: man stat.2)

At times though, the man pages are simply too detailed to warrant reading through when a quick answer is all that's required. Enter the tldr project – read on!

The tldr variant

While we're discussing man pages, a common annoyance is that the man page on a command is, at times, too large. Take the ps(1) utility as an example. It has a really large man page as, of course, it has a huge number of option switches. Wouldn't it be nice, though, to have a simplified and summarized "common usage" page? This is precisely what the tldr pages project aims to do.

TL;DR literally means Too Long; Didn't Read.

In the tldr project’s own words: “The tldr pages are a community effort to simplify the beloved man pages with practical examples” (I love the wording – the beloved man pages; indeed!).

The tldr project seems to be pretty popular, with a large number of spin-offs, implementing the same idea in different ways. Check these out:

The main website: https://tldr.sh/

The tldr wiki site with various clients: https://github.com/tldr-pages/tldr/wiki/tldr-pages-clients

Practically, let’s use it via the superb web client: https://tldr.ostera.io/.

Using the tldr web client

Head over to the web client (https://tldr.ostera.io/), simply type in the command name (I used tar) and see the result instantly pop up:

Very interesting, the URL now becomes https://tldr.ostera.io/tar (meaning, you can append a command name to the URL and it’ll just work; lovely.). Well, a picture’s worth a thousand words:

[image: Figure 1.6 – A screenshot of the web tldr client utility in action]Figure 1.6 – A screenshot of the web tldr client utility in action

Using the tldr CLI client

A couple of steps to follow to get the tldr CLI running on our Ubuntu guest:

	Install it:

sudo apt install -y tldr

	Update it (internally, this step clones a git repo and populates stuff under ~/.local/share/tldr)

tldr --update

Done; use it on the shell; for example, tldr tar.

Earlier, recall, with respect to APIs, that we said that userspace system calls fall under section 2 of the man pages, library subroutines under section 3, and kernel APIs under section 9. Given this, then, in this book, why don't we specify the, say, printk kernel function (or API) as printk(9) – as man man shows us that section 9 of the manual is Kernel routines? Well, it's fiction, really (at least on today's Linux): no man pages actually exist for kernel APIs! So, how do you get documentation on the kernel APIs and so on? That's just what we will briefly delve into in the following section.

Locating and using the Linux kernel documentation

The community has developed and evolved the Linux kernel documentation into a good state over many years of effort. The latest version of the kernel documentation, presented in a nice and modern "web" style, can always be accessed online here: https://www.kernel.org/doc/html/latest/.

Of course, as we will mention in the next chapter, the kernel documentation is always available for that kernel version within the kernel source tree itself, within the directory named Documentation/.

As just one example of the online kernel documentation, see the following partial screenshot of the page on Core Kernel Documentation/Basic C Library Functions (https://www.kernel.org/doc/html/latest/core-api/kernel-api.html#basic-c-library-functions):

[image: Figure 1.7 – Partial screenshot showing a small part of the modern online Linux kernel documentation]Figure 1.7 – Partial screenshot showing a small part of the modern online Linux kernel documentation

As can be gleaned from the screenshot, the modern documentation is pretty comprehensive. It even advises you that the simple_strtoull() API’s considered obsolete, and to use the kstrtoull() API instead.

Generating the kernel documentation from source

You can literally generate the full Linux kernel documentation from within the kernel source tree in various popular formats (including PDF, HTML, LaTeX, EPUB, or XML), in a Javadoc or Doxygen-like style. The modern documentation system used internally by the kernel is called Sphinx. Using make help within the kernel source tree will reveal several documentation targets, among them htmldocs, pdfdocs, and more. So, you can, for example, cd to the kernel source tree and run make pdfdocs to build the complete Linux kernel documentation as PDF documents (the PDFs, as well as some other meta-docs, will be placed in Documentation/output/latex). The first time, at least, you will likely be prompted to install several packages and utilities (we don't show this explicitly).

Don't worry if the preceding details are not crystal clear yet. I suggest you first read Chapter 2, Building the 5.x Linux Kernel from Source – Part 1, and Chapter 3, Building the 5.x Linux Kernel from Source – Part 2, and then revisit these details.

Static analysis tools for the Linux kernel

Static analysers are tools that, by examining the source code, attempt to identify potential errors within it. They can be tremendously useful to you as the developer, though you must learn how to "tame" them – in the sense that they can result in false positives.

Several useful static analysis tools exist. Among them, the ones that are more relevant for Linux kernel code analysis include the following:

	Sparse: https://sparse.wiki.kernel.org/index.php/Main_Page

	Coccinelle: http://coccinelle.lip6.fr/ (requires the ocaml package installed)

	Smatch: http://smatch.sourceforge.net/, http://repo.or.cz/w/smatch.git

Besides them, these are general-purpose C/C++ static analyzers that can be useful as well:

	Flawfinder (geared toward finding security issues): https://dwheeler.com/flawfinder/

	Cppcheck: https://github.com/danmar/cppcheck

For example, to install and try Sparse, do the following:

sudo apt install sparse
cd <kernel-src-tree>
make C=1 CHECK="/usr/bin/sparse"

Of course, there are also several high-quality commercial static analysis tools available. Among them are the following:

	SonarQube: https://www.sonarqube.org/​ (a free and open-source community edition is available)

	Coverity Scan: https://scan.coverity.com/

	Klocwork: https://www.meteonic.com/klocwork

clang is a compiler frontend to GCC that is becoming popular even for kernel builds; it has a static analysis component as well.

Static analysis tools can save the day. Time spent learning to use them effectively is time well spent!

Linux Trace Toolkit next generation

A superb tool for tracing and profiling is the powerful Linux Tracing Toolkit next generation (LTTng) toolset, a Linux Foundation project. LTTng allows you to trace both userspace (applications) and/or the kernel code paths in minute detail. This can tremendously aid you in understanding where performance bottlenecks occur, as well as aiding you in understanding the overall code flow and thus in debugging scenarios and learning about how the code actually performs its tasks.

In order to learn how to install and use it, I refer you to its very good documentation here: https://lttng.org/docs​ (try https://lttng.org/download/ for installation for common Linux distributions).

It’s also highly recommended that you install the Trace Compass GUI: https://www.eclipse.org/tracecompass/. It provides an excellent GUI for examining and interpreting LTTng's output.

Trace Compass minimally requires a Java Runtime Environment (JRE) to be installed as well. We’ve installed one on our Ubuntu 22.04 LTS system – the openjdk-18-jre package.

As an example (I can't resist!), here's a screenshot of a capture by LTTng being "visualized" by the superb Trace Compass GUI. Here, I show a couple of hardware interrupts (IRQ lines 1 and 130, the interrupt lines for the i8042 and Wi-Fi chipset, respectively, on my native x86_64 system):

[image: Figure 1.8 – Sample screenshot of the Trace Compass GUI; samples recorded by LTTng showing IRQ lines 1 and 130]Figure 1.8 – Sample screenshot of the Trace Compass GUI; samples recorded by LTTng showing IRQ lines 1 and 130

The pink color in the upper part of the preceding screenshot represents the occurrence of a hardware interrupt. Underneath that, in the IRQ vs Time tab (it's only partially visible), the interrupt distribution is seen. (In the distribution graph, the y axis is the time taken; interestingly, the network interrupt handler – in red – seems to take very little time, the i8042 keyboard/mouse controller chip's handler – in blue – takes more time, even – in this case at least - exceeding 200 microseconds).

Disclaimer: among the next few utilities/projects mentioned, I am the primary author of the procmap and SEALS project efforts.

The procmap utility

Visualizing the complete memory map of the kernel Virtual Address Space (VAS) as well as any given process's user VAS is what the procmap utility is designed to do.

The description on its GitHub page sums it up:

“It outputs a simple visualization of the complete memory map of a given process in a vertically-tiled format ordered by descending virtual address. The script has the intelligence to show kernel and userspace mappings as well as calculate and show the sparse memory regions that will be present. Also, each segment or mapping is scaled by relative size (and color-coded for readability). On 64-bit systems, it also shows the so-called non-canonical sparse region or 'hole' (typically close to a whopping 16,384 PB on the x86_64).”

The utility includes options to see only kernel space or userspace, verbose and debug modes, the ability to export its output in convenient CSV format to a specified file, as well as other options. It has a kernel component as well and currently works (and auto-detects) on x86_64, AArch32, and Aarch64 CPUs.

Do note, though, that this utility is still under development; there are several caveats. Feedback and contributions are most appreciated!

Download/clone it from https://github.com/kaiwan/procmap:

[image: Figure 1.9 – A partial screenshot of the procmap utility's output, showing only the top portion of kernel VAS on x86_64]Figure 1.9 – A partial screenshot of the procmap utility's output, showing only the top portion of kernel VAS on x86_64

We make good use of this utility in Chapter 7, Memory Management Internals - Essentials.

Simple Embedded ARM Linux System FOSS project

SEALS or Simple Embedded ARM Linux System is a very simple "skeleton" Linux base system running on an emulated ARM machine. It provides a primary Bash script that asks the end user what functionality they want via a menu, then accordingly proceeds to cross-compile a Linux kernel for ARM, and then creates and initializes a simple root filesystem. It can then call upon QEMU (qemu-system-arm) to emulate and run an ARM platform (the Versatile Express CA-9 is the default board emulated). The useful thing is, the script builds the target kernel, the root filesystem, and the root filesystem image file, and sets things up for boot. It even has a simple GUI (or console) frontend, to make usage a bit simpler for the end user. The project's GitHub page is here: https://github.com/kaiwan/seals/. Clone it and give it a try... I definitely recommend you have a look at its wiki section pages at https://github.com/kaiwan/seals/wiki for help.

Modern tracing and performance analysis with eBPF

An extension of the well-known Berkeley Packet Filter or BPF, eBPF is the extended BPF. (FYI, at times it's referred to simply as BPF, dropping the 'e' prefix; here we’ll explicitly use the term eBPF). Very briefly, BPF used to provide the supporting infrastructure within the kernel to effectively trace network packets. eBPF is a very recent kernel innovation – available only from the Linux 4.0 kernel onward. It extends the BPF notion, allowing you to trace much more than just the network stack. eBPF is essentially virtual machine technology, allowing one to write (small) programs and run them in a safe isolated environment within the kernel! In effect, eBPF and its frontends are a really modern and powerful approach to tracing and performance analysis on Linux systems, even in production.

To use eBPF, you will need a system with the following:

	Linux kernel 4.0 or later

	Kernel support for BPF (https://github.com/iovisor/bcc/blob/master/INSTALL.md#kernel-configuration)

	The BCC or bpftrace frontends installed (link to install them on popular Linux distributions: https://github.com/iovisor/bcc/blob/master/INSTALL.md#installing-bcc)

	Root access on the target system

Using the eBPF kernel feature directly is very hard, so there are several easier front ends to use. Among them, BCC and bpftrace are regarded as very useful. Check out the following link to a picture that opens your eyes to just how many powerful BCC tools are available to help trace different Linux subsystems and hardware: https://github.com/iovisor/bcc/blob/master/images/bcc_tracing_tools_2019.png.

You can install the BCC tools for your regular host Linux distro by reading the installation instructions here: https://github.com/iovisor/bcc/blob/master/INSTALL.md. Why not on our guest Linux VM? You can, when running a distro kernel (such as an Ubuntu- or Fedora-supplied kernel). The reason: the installation of the BCC toolset includes (and depends upon) the installation of the linux-headers-$(uname -r) package; this linux-headers package exists only for distro kernels (and not for our custom 5.10 kernel that we shall often be running on the guest).

The main site for BCC can be found at https://github.com/iovisor/bcc. We shall make use of a little of the eBPF tooling in some later chapters.

FYI, the book Linux Kernel Debugging, Packt, August 2022, covers using LTTng, Trace Compass, KernelShark, ftrace, trace-cmd, procmap, and many more debugging tools and techniques in-depth.

The LDV - Linux Driver Verification - project

The Russian Linux Verification Center, founded in 2005, is an opensource project; it has specialists in, and thus specializes in, automated testing of complex software projects. This includes comprehensive test suites, frameworks, and detailed analyses (both static and dynamic) being performed on the core Linux kernel as well as on the primarily device drivers within the kernel. This project puts a great deal of focus on the testing and verification of kernel modules as well, which many similar projects tend to skim.

Of particular interest to us here is the Online Linux Driver Verification Service page (http://linuxtesting.org/ldv/online?action=rules); it contains a list of a few verified Rules (Figure 1.10):

[image: Figure 1.10 – Screenshot of the 'Rules' page of the Linux Driver Verification (LDV) project site]Figure 1.10 – Screenshot of the 'Rules' page of the Linux Driver Verification (LDV) project site

By glancing through these rules, we'll be able to not only see the rule but also instances of actual cases where these rules were violated by driver/kernel code within the mainline kernel, thus introducing bugs. The LDV project has successfully discovered and fixed (by sending in patches in the usual manner) several driver/kernel bugs. In a few of the upcoming chapters, we shall mention instances of these LDV rule violations (for example, memory leakage, Use After Free (UAF) bugs, and locking violations) having been uncovered, and (probably) even fixed.

Here are some useful links on the LDV website:

	The Linux Verification Center home page; http://linuxtesting.org/

	Linux Kernel Space Verification; http://linuxtesting.org/kernel

	Online Linux Driver Verification Service page with verified Rules : http://linuxtesting.org/ldv/online?action=rules

	Problems in Linux Kernel page; lists over 400 issues found in existing drivers (mostly fixed as well); http://linuxtesting.org/results/ldv

Summary

In this chapter, we covered in detail the hardware and software requirements to set up an appropriate development environment for beginning to work on Linux kernel programming. In addition, we mentioned the basics and provided links, wherever appropriate, for setting up a Raspberry Pi device, installing powerful tools such as QEMU (and a cross toolchain), and so on. We also threw some light on other "miscellaneous" tools and projects that you, as a budding kernel and/or device driver developer, might find useful, as well as information on how to begin looking up kernel documentation.

In this book, we definitely recommend and expect you to try out and work on kernel code in a hands-on fashion – remember, always be empirical! To do so, you must have a proper kernel workspace environment set up, which we have successfully done in this chapter.

Now that our environment is ready, let's move on and explore the brave world of Linux kernel development! The next two chapters will teach you how to download, extract, configure, and build a Linux kernel from source.

Questions

As we conclude, here is a list of questions for you to test your knowledge regarding this chapter's material: https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions. You will find some of the questions answered in the book's GitHub repo: https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn.

Further reading

To help you delve deeper into the subject with useful materials, we provide a rather detailed list of online references and links (and at times, even books) in a Further reading document in this book's GitHub repository. The Further reading document is available here: https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md.

EPUB/media/file4.png
LKP2e_book [Running] - Oracle VM VirtualBox - o @

File Machine View Input Devices Help
Activities) Terminal Aug3 00:30

m c2kp@osboxes: ~ el @ 6 @

-

c2kp@osboxes:~$ id

>, uid=1002(c2kp) gid=1002(c2kp) groups=1002(c2kp),4(adm),27(sudo)

c2kp@osboxes:~$

c2kp@osboxes:-$ 1lsb_release -a
, No LSB modules are available.
Distributor ID: Ubuntu
Description: Ubuntu 22.04.1 LTS VirtualBox - About x
Release: 22.04
Codename: jammy
c2kp@osboxes:-$ uname -a
Linux osboxes 5.15.0-43-generic #46-Ubuntu S
GNU/Linux
c2kp@osboxes:~$
c2kp@osboxes:~$ nproc

ORACLE’
VM

4
c2kp@osboxes:~$ free -h

total used
Mem: 1.9GL 787ML
Swap: 8.9GL 8.0ML
c2kp@osboxes:~$
c2kp@osboxes:~$
c2kp@osboxes:~$

VirtualBox Graphical User Interface
Version 6.1.26 r145957 (Qt5.12.8)

EPUB/media/cover.png
EEEEEEEEEEEEE

Linux Kernel
Progromming

Apflgdfk If Iwrfg
and synchrol

nel modules

Second Edition

Kaiwan Billimoria (pOCkf)

EPUB/media/file1.png
x

Internal Graphics Mode [Disabled]

UMA Frame Buffer Size 128MB
Surround Uiew Disabled
Onboard UGA output connect D-SUB/DUI
Init Display First [PEG]
Virtualization [Enabled]

AMD K8 Cool&Quiet control [Autol

Hard Disk Boot Priority [Press Enter]
First Boot Device [Hard Disk]
Second Boot Device [USB-HDD1]
Third Boot Device [CDROM]
Password Check [Setupl

HDD S.M.A.R.T. Capability [Enabled]
Away Mode [Disabled]

Backup BIOS Image to HDD [Enabled]l

EPUB/media/file2.png
LKP2e_book - Settings

9] General System

(W] isplay
Storage
Do Au
& Network

Paravirtualization Interface: | Default ~

Hardware Virtualization: v Enable Nested Pa

EPUB/media/file7.png
€ > C 00 & https//wwwkemelorg/doc/html/latest/core-api/kernel-api.html#basic-c-library-functions

the name of the hlist_node within the struct.

Basic C Library Functions

E.CorsARt Docismentation ‘When writing drivers, you cannot in general use routines which are from the C Library.
Some of the functions have been found generally useful and they are listed below. The
behaviour of these functions may vary slightly from those defined by ANSI, and these
deviations are noted in the text.

String Conversions

unsigned long long simple_strtoull(const char * cp, char ** endp, unsigned int base)

convert astring to an unsigned long long

Parameters

const char * cp
‘The start of the string

char ** endp
‘A pointer to the end of the parsed string will be placed here

unsigned int base
‘The number base to use
Description

"This function is obsolete. Please use kstrtoull instead.

EPUB/media/file9.png
[= PROCMAP
Process Virtual Address Space (VAS) Visualization utility
https://github. con/kaiwan/procmap

Sun Dec 27 ©09:47:44 IST 2020
[=: Start memory map for 1:systemd
[Pathname: /usr/lib/systemd/systemd]

VAS mappings: name [size,perms,u:maptype,u:0xfile-offset
- KERNEL VAS endkva -k FEEEFEFEEFEFFEFT
. K sparse region ...> [8.00 MB,---]

|
-+ FEFFFEFFEf7Tfo00
| fixmap region [2.52 MB,r--]

I
R B -+ FEFFfFfff579000
K sparse region . 1 |

I
- ---+ FFFFFFFFFF000000
module region [1008.00 MB,rwx] |

---+ fFffffffco000000
1 |

. K sparse region ...

|
- - ---+ fFFfd764bFFFFfff

vmalloc region [31.99 TB,rw- |

<-- FIXADDR_START

<-- MODULES_END

<-- MODULES_VADDR

<-- VMALLOC_END

EPUB/media/file10.png
RUSSIAN Login | Registration
Institute for Syst ramming of the Rus

VERIFICATION CENTER l nux

‘OF THE OPERATING SYSTEM

Wil Online Linux Driver Verification Service (alpha)

' About Center
o OurTeam

o News

o Partners

o Contacts

» Linux Kemel Space
Verification ‘This page contains the list of veriied rules. You can see more detailed information on them by clicking on the corresponding rule

» LSB Infrastructure name.
» Testing Technologies

» Tests and Frameworks Mutex lock/uniock

» Portability Tools. 'NOIO allocation under usb_lock
Module getiput

PCI pool createldestroy, allociiree
Delay in probe_irq on/off

‘Memory allocation inside spinlocks
Linked list double add

Usb allocfree urb

‘Spinlocks lock/unlock

Start Verification Verification History Rules

EPUB/media/file5.png

EPUB/media/file3.png
LKP2e_book [Running] - Oracle VM VirtualBox

File Machine View Input Devic

Activities) Terminal Aug3 0023 0

‘ m osboxes@osboxes: ~

osboxes@osboxes:~$

Sof) osboxes@osboxes:~$
osboxes@osboxes:-$ sudo useradd -m c2kp -s /bin/bash
osboxes@osboxes:-$ sudo passwd c2kp
New password:
BAD PASSWORD: The password is shorter than 8 characters
Retype new password:
passwd: password updated successfully
osboxes@osboxes:~$
osboxes@osboxes:~$

[
@ osboxeseosboxes: § sudo usermod
B
Y

-G adn,sudo c2kp
osboxes@osboxes:~$

osboxes@osboxes:-$ egrep --color=auto -w "adm|sudo” /etc/group
adm yslog,osboxes, test1,c2kp

<udo:x:27:0sboxes,c2kp

osboxes@osboxes:~$

osboxes@osboxes:~$ I

EPUB/media/file0.png

EPUB/media/file8.png
Trace Compass

File Tools Window Help

& Project Explor 52| = O || 1 Resources 5% |k Control Flow [statistics =|
BS%Y 8 EHE HEI REBY § O

09:41:32 09:41:33 09:41:34 09:
~ [Views
K Active Thread || ¥ kemel2) L . A
» m CPUusage ¥ CPU1 States T WTRT I TN T Ty T v i iy e s m - i
= itch >IRQ1 HHHHHE—F it i
Context switch |y g 130 o

| Countens CPU2 States -
» & Futex Contenti |\~ !
~ & IRQ Analysis

IRQ Statisti|

o
E11RQTable =
lliiHistog D Prope HllBook EIRQS EJIRQT [u. IRQV |LLIRQV X |EXMLT H critic Elsyste = O

Lost Events

. IRQUS Coun
14, IRQs Time S
2= control 53 =8 M * et
o
ERONN 4 o o &

09:41:32 09:41:33 09:41:34 09:41:35
-3009:41:12.015277178 A: 0.000003238s (3.2 pis)

EPUB/media/file6.png
& - C @ tldrosteraio/tar Q <

> tldr _ | tar C)star 1,499

If this web site has been useful to you, consider supporting me on Patreon

tar

Archiving utility. Often combined with a compression method, such as gzip or bzip2.
More information: HTTPS://WWW.GNU.ORG/SOFTWARE/TAR.

[clreate an archive and write it to a [flile:

[clreate a compressed archive and write it to a [flile, using [alrchive suffix to determine the
compression program:

