
Architecting IoT Solutions on Azure

Conquering Complexity for Scalable Device and Data Management

Blaize Stewart

Architecting IoT Solutions on Azure

by Blaize Stewart

Copyright © 2024 Blaize Stewart. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

		Acquisitions Editor: Aaron Black

		Development Editor: Rita Fernando

		Production Editor: Clare Laylock

		
 Copyeditor:
 Charles Roumeliotis

 	
 Proofreader:
 Piper Editorial Consulting, LLC

 	
 Indexer:
 Potomac Indexing, LLC

		Interior Designer: David Futato

		Cover Designer: Karen Montgomery

		Illustrator: Kate Dullea

		January 2024: First Edition

 Revision History of the First Edition

 	2024-01-09: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781098142865 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Architecting IoT Solutions on Azure, the cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the author and do not represent the publisher’s views. While the publisher and the author have used good faith efforts to ensure that the information and instructions contained in this work are accurate, the publisher and the author disclaim all responsibility for errors or omissions, including without limitation responsibility for damages resulting from the use of or reliance on this work. Use of the information and instructions contained in this work is at your own risk. If any code samples or other technology this work contains or describes is subject to open source licenses or the intellectual property rights of others, it is your responsibility to ensure that your use thereof complies with such licenses and/or rights.

978-1-098-14286-5

[LSI]

Preface

At a Gartner conference in sunny San Diego around 2012, I first encountered the term “IoT Architecture.” At first glance, it seemed a simple idea: the nexus of internet-connected devices. Just as the mobile wave was cresting and cloud computing was gaining traction, the challenge of efficiently managing IoT workloads emerged as a resonant topic among technologists and device makers everywhere. As I delved deeper, this seemingly straightforward realm revealed myriad nuances. As it turns out, the Internet of Things (IoT) isn’t merely a web of gadgets that flicker to life at the touch of a button. It’s a sophisticated network of interconnected devices, autonomously collecting, transmitting, and receiving vast amounts of data. As I ventured further into this domain, even more pressing questions surfaced: How does one seamlessly update all those devices? What measures ensure their tamper-resistance? And perhaps most dauntingly, how can one effectively process and analyze the deluge of data they produce?

In response to these questions, Microsoft has unveiled a vast IoT ecosystem on Azure, encompassing a range of Microsoft-managed cloud services, state-of-the-art edge components, and SDKs. Each component plays a pivotal role in the lifecycle of an IoT solution. Navigating this expansive realm requires methodical organization. I’ve found mapping out domains, creating a taxonomy, to be an invaluable strategy in clarifying the otherwise overwhelming world of IoT. Each domain, while self-contained, intertwines with others, forming a comprehensive picture I’ve come to describe as the IoT Landscape.

In this book, I segment this intricate topic into smaller domains. My aim is to provide readers with both a panoramic view and deep dives into its many aspects. My goal extends beyond mere knowledge dissemination; I strive to empower you, the reader, to navigate the Azure IoT ecosystem with ease and design IoT solutions tailored to your distinct needs and budget.

Who Should Read This Book

If you’re looking for a book that speaks to holistic IoT solutions on Azure, you’re in the right place. This book has a little something for everyone in IT, including management, architects, engineers, and administrators.

For folks in the C-suite and IT managers, this book will help inform your business decisions when implementing an IoT solution on Azure. You’ll learn why something is done a particular way, and why Azure is a versatile platform for solutions. Definitely start with Chapter 1 to build your foundational knowledge of what goes into an IoT solution.

For those in architect roles, there will be plenty for you to feast on in this book. I’ll serve up the nitty-gritty details of each domain so you can enrich your understanding of IoT solutions on Azure. Whether you’re a new architect or a battle-tested one, you’ll find something of interest in this book.

For engineers who may be responsible for implementing many of these solutions, the domain-specific chapters in particular, such as those on data engineering or cloud messaging, will give you what you need to know to implement an Azure-based solution.

Finally, for administrators and those managing cloud infrastructure, you’ll be particularly interested in the chapters dedicated to monitoring, security, and governance.

In essence, no matter your role in IT and IoT, there’s something here for you!

Navigating This Book

Chapter 1 introduces you to the Azure IoT Landscape and gives an overview of how all the domains I discuss in this book fit together into an IoT solution.

Chapter 2 marks the beginning of your journey through the Azure IoT Landscape. Chapters 2 through 6 focus on dealing with devices at scale. These discussions provide theory and practice around building devices interacting with Azure IoT offerings and managing those devices through a device’s lifecycle. Although the book discusses a few devices from Microsoft oriented toward Azure, the primary takeaway is how to think about those devices in the context of Azure under the guiding principles outlined in the architecture.

Chapters 7 through 12 shift the focus to what one does once the devices have done their job and have sent data to the cloud. These chapters are driven by architecture and show how to understand data architectures and implement them practically using Azure solutions. As before, it would be impossible to cover every permutation, and there are many different practical solutions for problems. Still, they can generally fit under a typical reference architecture that guides the decision making about and integration of those services.

Chapter 13 highlights the need to watch over not just the information from IoT devices but also the overall well-being of the whole IoT system. It talks about setting clear goals, measuring them with KPIs, and using tools like Azure Monitor and Azure Security Center. These tools help gather records, solve problems, and boost security, which Chapter 14 digs deeper into.

Chapter 14 is all about making sure IoT systems are safe. It gives tips on protecting software, stopping malware, keeping data safe, and much, much more.

Lastly, Chapter 15 gives you more resources to learn about topics like creating devices, managing data, and working with edge solutions, which are all things talked about in this book.

Throughout this book, you’ll encounter hands-on examples that will show you how the technology all works together. Some of the examples have many parts and build on examples from previous chapters. There’s no way I can do an example for everything, but what I have chosen exemplifies the concepts and patterns. That’s the important part.

At the end of the day, whatever your IoT solution looks like, I hope that you will use this book as a resource to help inform the decisions you make along the way. There is nothing simple about IoT, but investing the time to read and consider architecture up front can save tons of time and money down the road.

Conventions Used in This Book

The following typographical conventions are used in this book:

	Italic

	
Indicates new terms, URLs, email addresses, filenames, and file extensions.

	Constant width

	
Used for program listings, as well as within paragraphs to refer to program elements such as variable or function names, databases, data types, environment variables, statements, and keywords.

	Constant width bold

	
Shows commands or other text that should be typed literally by the user.

	Constant width italic

	
Shows text that should be replaced with user-supplied values or by values determined by context.

Using Code Examples

Supplemental material (code examples, exercises, etc.) is available for download at https://oreil.ly/supp-AIoT.

If you have a technical question or a problem using the code examples, please send email to support@oreilly.com.

 This book is here to help you get your job done. In general, if example code is offered with this book, you may use it in your programs and documentation. You do not need to contact us for permission unless you’re reproducing a significant portion of the code. For example, writing a program that uses several chunks of code from this book does not require permission. Selling or distributing examples from O’Reilly books does require permission. Answering a question by citing this book and quoting example code does not require permission. Incorporating a significant amount of example code from this book into your product’s documentation does require permission.

We appreciate, but generally do not require, attribution. An attribution usually includes the title, author, publisher, and ISBN. For example: “Architecting IoT Solutions on Azure by Blaize Stewart (O’Reilly). Copyright 2024 Blaize Stewart, 978-1-098-14286-5.”

If you feel your use of code examples falls outside fair use or the permission given above, feel free to contact us at permissions@oreilly.com.

O’Reilly Online Learning

Note

For more than 40 years, O’Reilly Media has provided technology and business training, knowledge, and insight to help companies succeed.

Our unique network of experts and innovators share their knowledge and expertise through books, articles, and our online learning platform. O’Reilly’s online learning platform gives you on-demand access to live training courses, in-depth learning paths, interactive coding environments, and a vast collection of text and video from O’Reilly and 200+ other publishers. For more information, visit https://oreilly.com.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

 	O’Reilly Media, Inc.

 	1005 Gravenstein Highway North

 	Sebastopol, CA 95472

 	800-889-8969 (in the United States or Canada)

 	707-829-7019 (international or local)

 	707-829-0104 (fax)

 	support@oreilly.com

 	https://www.oreilly.com/about/contact.html

We have a web page for this book, where we list errata, examples, and any additional information. You can access this page at https://oreil.ly/ArchitectingIoT.

For news and information about our books and courses, visit https://oreilly.com.

Find us on LinkedIn: https://linkedin.com/company/oreilly-media.

Follow us on Twitter: https://twitter.com/oreillymedia.

Watch us on YouTube: https://youtube.com/oreillymedia.

Acknowledgments

First, I would like to thank all of my reviewers, Marvin Garcia, Ken Muse, and Robert Stackowiak. These amazing people have deep knowledge and experience in IoT and data; they helped fill in a lot of the places I was missing and even pointed out things that were probably less than ideal.

I’d also like to thank my outstanding editor, Rita Fernando, who helped keep things on track and offered valuable feedback on making the book better all the way around. And I’d like to thank Aaron Black and Jon Hassell at O’Reilly for helping this project get started.

I’d like to thank my loving wife who put up with me during the many long hours of writing this book. It’s no simple task, yet she helped me through it.

And lastly, I’d like to thank Dad, Blaize Stewart I (I’m Blaize II) who got me into computing at a young age. Who knew that the plunky Commodore 64 would set the trajectory of my career?

Chapter 1. The IoT Landscape

When contemplating the Internet of Things (IoT), you might initially envision the countless devices seamlessly interwoven into our modern landscape. IoT has permeated practically every part of our lives, from the simplest light bulb to orchestrations on a monumental scale within the contours of smart cities. These devices are aptly dubbed the “things” in the IoT realm. To fathom the entirety of this intricate tapestry, one must not simply ascend to the metaphorical 40,000-foot vantage from an airplane. This perspective reveals the devices and the elaborate symphony of parts, all orchestrated in harmonious collaboration. It’s the IoT Landscape—a panoramic view that captures the collective essence of every element and orchestration that conspires to set these IoT devices into remarkable motion. It gives a taxonomy to each individual part, assigning purpose and place within the grand design. In this book, I’ll take you through the IoT Landscape that is specific to Azure, which offers a plethora of Microsoft-managed cloud services, edge components, and software development kits (SDKs) to choose from. So, without further ado, take your first look at the Azure IoT Landscape shown in Figure 1-1.

[image:]
Figure 1-1. The IoT Landscape for Azure

This book explores each facet within this landscape, delving into the interplay of each part within the framework of a comprehensive IoT solution. Envision this as a voyage—an expedition starting from the leftward side (with devices) that generally moves to the right. In navigating this trajectory, you’ll traverse significant junctures, including edge computing, IoT management and messaging, data pathways, data persistence, data servicing, and the expansive sphere of data consumers. However, to acclimate you to this voyage, let us embark with an overview of each point on the journey. This strategic prelude will chart your course, starting with devices.

Off Azure

The first section of the Azure IoT Landscape is, oddly enough, the things that exist outside of Azure: devices and edge computing.

IoT Devices

It’s hard to define an IoT device exactly because it’s not as simple as one might think. A textbook definition for the “Internet of Things” would be a network of interconnected devices that can collect, transmit, and receive data without direct human intervention. Sure, some things are pretty obvious. A smart light bulb or connected appliance is an IoT device, but that line gets a little blurry with things like televisions or media players. Quite the opposite might be true with some devices. They may be purpose-built to work with humans, like an excavator or smart toothbrushes. Notice what I said: they are purpose-built, like moving dirt or cleaning your teeth. The device has a specialized purpose rather than having a general purpose like a laptop or smartphone.

IoT devices generally, though, have some common characteristics. With devices, you almost always have connectivity for getting the device to talk to the internet, sensors for collecting data, data processing on the device to deal with the collected data, and actuators for responding to commands. Combining these things can create a complex or simple device, depending on the context.

Because there’s a huge variety of devices ranging from light bulbs to traffic cameras, to bulldozers, to heart monitors, it’s impossible to address all of them. It’s even daunting to attempt to generalize because, inevitably, there seem to be exceptions. In Chapter 2, I’ll take you through the Azure-centric hardware offerings from Microsoft and we will study how they work together for different purposes. I’ll also show you the different software offerings for constrained devices (also known as resource-constrained or edge devices, IoT devices with limitations in computing power, memory, energy, and communication capabilities) and unconstrained devices (cloud-connected or gateway devices, with higher computational power, memory, and communication capabilities compared to constrained devices). These devices are designed to perform specific tasks with minimal resources and are often deployed in remote or challenging environments where frequent maintenance or resource replenishment might be difficult.

In Chapter 3, I’ll show you how to get started with exploring IoT devices without needing to invest in hardware right away.

Devices ultimately connect to the internet. They can do that directly in some cases, but in others, they may use a proxy that assists the devices in their work. Such a proxy would be part of edge computing.

Edge Computing

Edge computing is a decentralized approach to data processing where computations occur closer to the data source, reducing latency and enhancing real-time decision making. It involves processing data at or near the devices or local servers rather than sending all data to a centralized cloud server.

Edge computing is extending the cloud into a data center rather than thinking of the cloud as an extension to the data center, which is more of a hybrid model. It is especially valuable for applications that require quick responses, low latency, efficient use of network bandwidth, and offline and intermittent connected computing scenarios. Edge computing suits scenarios where immediate data processing is essential, such as industrial automation, remote monitoring, and smart cities. IoT, therefore, is a pertinent topic in the scope of edge computing.

As of the writing of this book, edge computing is a hot topic, with a flurry of activity in Microsoft space attempting to bring Azure closer to the edge. Within this context, Microsoft has two major initiatives encompassing many different resources. Specifically for the IoT, Azure offers Azure IoT Edge runtime. It’s a lightweight container orchestration platform for building modular IoT devices and edge appliances. Beyond that, Azure offers Azure Arc, a general-purpose tool for extending the Azure control plane into off-Azure environments. One of its biggest abilities is its capacity to manage Kubernetes clusters. Users can deploy services like stream processing, SQL Server, machine learning, and messaging to the edge through Arc. Because Arc leverages Kubernetes, Azure Arc and Azure IoT Edge both use Docker containers, so you can’t ignore that! Containers, in any case, are a part of these solutions. Chapter 6 goes into detail about the edge options for Azure.

These different technologies make edge computing one of the most exciting parts of IoT solutions. Even if you don’t plan on using edge, some things about edge computing can be incorporated into your devices. Regardless of how you connect your devices to the internet, they will need a place online to manage them. That’s the next part of the IoT Landscape.

Azure

Now, we come to the IoT Landscape that exists in Azure. Here, we have IoT messaging and management, data processing, data persistence, and data presentation.

IoT Messaging and Management

IoT messaging and management encompasses a massive set of interrelated topics. A cloud solution like Azure IoT Hub combines them into a platform-as-a-service (PaaS) offering that you can leverage as a solution builder. Here’s what Azure IoT Hub and its related services provide for your devices in terms of IoT messaging and management:

		Device registration and provisioning

		
	Devices must be registered within the IoT Hub to establish secure communication. Azure Device Provisioning Services (DPS) provides mechanisms for automatic device provisioning, enabling devices to join the network securely.

	

		Secure communication

		
	Devices connect to Azure IoT Hub using secure communication protocols such as MQTT, AMQP, or HTTPS. End-to-end security over the internet is maintained through device authentication, authorization, and encryption over one of these communication protocols.

	

		Device twins and desired properties

		
	Twinning is a way of tracking the settings of devices on the cloud without having to query each device in the cloud. A “device twin” maintained by Azure IoT Hub represents the device’s state and metadata. Device twins store desired properties that can be set by the cloud application and reported properties that devices update.

	

		Cloud-to-device (C2D) messaging

		
	Azure IoT Hub enables cloud applications to send commands or messages to individuals or groups of devices. It provides APIs and routing capabilities for these messages. Devices receive these messages and can take action accordingly.

	

		Device-to-cloud (D2C) messaging

		
	Devices can send telemetry data, status updates, and other information to the cloud. Azure IoT Hub provides many ways to move this data onto downstream data processing engines for analysis and monitoring, like databases, Azure Functions, Logic Apps, and Stream Analytics.

	

		Device management and monitoring

		
	Azure IoT Hub provides tools to monitor the health and status of connected devices. Devices can report their state, and cloud applications can query this information for troubleshooting and maintenance.

	

		Edge device management

		
	We already discussed Azure IoT Edge, but Azure IoT Hub supports managing IoT devices at the edge, where data processing occurs closer to the data source. Azure IoT Edge extends this capability for deploying and managing containerized workloads on edge devices.

	

		Scalability and performance

		
	Azure IoT Hub is designed to handle large numbers of devices and high message throughput. With thousands of devices connected at a time, the potential data deluge is daunting. It offers tiered options for scaling to accommodate diverse IoT scenarios.

	

Chapter 4 dives into all things related to device lifecycle management. This process encompasses everything from a device’s inception to the day it’s offloaded and no longer used. It entails device design, device provisioning, device maintenance, and finally, device decommissioning and disposal.

Chapter 5 covers what happens during a device’s main sequence, where it communicates with the cloud through messaging from the device to the cloud and messages from the cloud to the device.

As you can see, there’s no one thing that IoT Hub does for managing messaging and devices at scale. It’s the central nervous system of your IoT solution. It brokers the relationship between your potentially thousands of devices and the downstream systems that handle the telemetry and data coming off those devices through data processing.

Data Processing

Data processing is a crucial component in IoT solutions that involves managing, preparing, and analyzing the vast amounts of data generated by IoT devices. Data processes ensure data is collected, transformed, and utilized effectively to extract insights and drive meaningful actions.

Data processing involves gathering data from these devices, integrating data from diverse sources into datasets, ensuring the collected data is stored appropriately in databases or data lakes, cleaning and transforming to ensure its quality and consistency, and ultimately presenting the data with well-designed data schemas so data can be queried and analyzed.

There are a ton of ways to do this, though. You can think of this as real-time processing and batch processing. Real-time processing involves immediate analysis of streaming data from IoT devices, enabling quick responses to anomalies and triggering alerts or actions. Batch processing analyzes historical data in predefined batches to uncover trends, patterns, and correlations that offer insights into past events. This approach is particularly valuable for long-term analysis.

In both cases, data is summarized and consolidated through aggregation, reducing its volume while retaining its informative content. More advanced techniques like machine learning and artificial intelligence are employed to perform complex analytics, identify hidden patterns, and predict future outcomes. The outcome of data processing is actionable insights that guide decision making, optimize operations, and enhance overall efficiency. These are part of data architecture.

Data architecture provides a general framework for how one thinks about data processing. It spans from data collection to insightful outcomes. It encompasses methodologies, tools, and strategies for efficiently handling large volumes of data from sources like IoT devices. It looks at data sources, how data is received, how data is integrated, how data is transformed, how data is processed, and how data is presented. When designing data processing architecture, factors such as real-time versus batch processing, data latency, data quality, integration with existing systems, and scalability need to be considered.

Chapter 7 starts the last half of the book, shifting focus to creating scalable data solutions on Azure. Chapter 8 extends the processing concepts by looking at three different architectures commonly used in IoT data.

While I just named two broad categories—real-time and batch-style processing—some more nuance can be applied to this context with hot, warm, and cold paths. Each of these takes a different approach to data processing within data architecture.

Hot paths

“Hot path” data refers to the portion of data within a system that requires immediate or real-time processing to facilitate quick decision making, rapid responses, and timely actions. (Hot path is usually thought of as “fast” processing, but it should not be conflated with speed because speed is not the only concern.) Hot path data is processed in real time or near real time, allowing for rapid analysis and decision making. It often contains critical information that, when acted upon swiftly, can prevent or mitigate issues, optimize processes, or enhance user experiences. These actions could be automated responses, user notifications, or system parameter adjustments. In the context of IoT, hot path data entails telemetry events that feed into systems that provide real-time and near real-time responses to data. A canonical example of a hot path telemetry event may be a smoke detector sending a signal to get the fire department’s attention.

Azure provides tooling for managing this through options like Stream Analytics, Azure Functions, Event Grids, Event Hubs, Service Buses, and other real-time processing capabilities. These all work well together to make complete solutions for IoT hot paths. I’ll talk about hot paths in more detail in Chapter 9. Still, there are more than hot paths. There’s something way cooler: warm paths.

Warm paths

Warm path data represents a category that holds a position between “hot path” and “cold path” data regarding its urgency and processing frequency. It is characterized by requiring faster processing than cold path data but not as immediate as hot path data. Like a hot path, speed is important, but it’s not the only factor. Warm path data provides insights and support decisions that can tolerate a brief processing delay.

Unlike hot path data that demands immediate action, warm path data is processed with moderate latency, falling into near real-time or slightly delayed analysis. Its purpose is to contribute insights that aid ongoing monitoring, optimization efforts, and decisions requiring timely attention without needing instant reactions. Warm path data is utilized in scenarios where efficiency and optimization are priorities. These situations benefit from insights that are prompt enough to drive action but don’t require an immediate response.

Regarding data processing architecture, warm path data is typically processed using techniques like stream processing that balance real-time insights and a slight delay in processing. This ensures that the data is transformed into actionable insights within a timeframe that aligns with the needs of operational decision making and ongoing optimization. In essence, warm path data plays a crucial role in enabling organizations to balance the urgency of hot path data and the longer-term insights derived from cold path data. For IoT, a warm path helps you gain insights into ongoing operations, monitoring, and optimizations within a timeframe that balances prompt analysis with acceptable delay. A warm path provides situational awareness by providing insights into changes or trends in IoT device behavior, performance, or environmental conditions. See Chapter 10 for more details on warm paths.

Azure supports warm paths through time-series data. Azure Data Explorer and Azure Stream Analytics are the primary services that accomplish this. Data Explorer is more of a database service but has the compute capacity and integrated services to make it useful for warm paths. Stream Analytics can look at historical data in time windows, too. But for large windows of time or when data does not need immediate processing, you can consider the next type: cold paths.

Cold paths

Cold path data is a category in data processing and analytics characterized by its focus on long-term storage and historical analysis. It’s not exactly synonymous with batch processing, but it often is implemented as such. Unlike data in the hot or warm path, cold path data is stored and processed with a lower frequency of access. It serves purposes such as historical reporting, trend analysis, and gaining deep insights that don’t demand rapid responses. Processing of cold path data doesn’t require immediate urgency and is subject to longer intervals, typically ranging from hours to days. Its primary utility lies in retrospective analysis, identifying trends, historical patterns, and anomalies that have occurred over a substantial period. It’s also useful as an integration pattern for more traditional workloads that leverage more conventional extract, transform, and load (ETL) styles of integrations.

Organizations tend to store cold path data using cost-effective storage solutions, as frequent and fast access is not a central requirement. It is used when regulatory compliance is essential, as industries need to retain historical data for auditing purposes. For businesses, cold path data contributes to generating historical reports, tracking performance over time, and making informed decisions based on a comprehensive historical context.

For IoT, cold path data’s contribution extends to predictive analytics, such as when machine learning models are trained on historical patterns for forecasting. It aids in root cause analysis, enabling detailed investigations into past incidents or anomalies. Moreover, businesses utilize cold path data to plan for the future by understanding the consequences of past decisions and events. I focus on cold paths in Chapter 10.

In data processing architectures, Azure Data Factory, Azure Synapse, Azure Databricks, and HDInsights provide the compute resources to work with the storage to make cold paths work. Cold path data is stored in data warehouses such as Azure Synapse, Azure Data Lake, specialized archival systems, or something as simple as object storage like Azure Blob Storage. All of these are part of persistence.

Data Persistence

Unless you deal only with transient data, you will need to store it somewhere. Even transient data systems, like message queues, will persist data for a while.

Data persistence in the context of data processing refers to the methods and mechanisms used to store and maintain data beyond its initial processing or input. It ensures that data remains accessible, retrievable, and usable for various purposes such as analysis, reporting, and future processing. Different kinds of data persistence serve various needs in data processing architectures:

		Temporary or volatile storage

		
	Temporary storage involves holding data in memory or cache for immediate processing. This type of persistence is short-lived and is primarily used during the immediate processing stage. Once the processing is complete, data in temporary storage is discarded. It’s suitable for holding data that needs to be accessed frequently and quickly during processing, but it’s not intended for long-term retention. You’ll encounter this storage for things like Azure Service Bus, Event Grids, and stream processing technologies like Azure Stream Analytics. Stream storage is used for managing real-time data streams generated by IoT devices, sensors, or other sources. This type of persistence allows for the immediate storage and processing of streaming data, enabling real-time analytics and decision making.

	

		Raw storage or data lakes

		
	Data lakes are repositories that store raw, unprocessed data in its original format. This form of persistence is ideal for storing diverse data types, such as structured, semi-structured, and unstructured data, without immediate structuring or transformation. Data lakes facilitate future processing and analysis, enabling organizations to derive insights from data as needs arise. Batch processing and ETL tools use data lakes and raw storage like Blob Storage as part of their processing.

	

		Structured storage or data warehouses

		
	Structured storage, commonly found in data warehouses, involves storing data in a structured format that is optimized for query and analysis. This type of persistence is particularly suitable for processed and transformed data that is ready for reporting, analytics, and business intelligence. Data warehouses provide optimized performance for querying large datasets and generating insights. Databases are useful for querying data for transactional workloads. For IoT, there’s no one database that does everything well, but Azure Cosmos DB and Azure Data Explorer provide some level of transactional storage while Azure Synapse provides more analytic storage.

	

While no one chapter is dedicated to data persistence, this book talks about persistence quite a bit, especially in the context of data processing. In an IoT solution, you’re likely to run into many different kinds of data storage. You’ll use these as part of your data movement and processing.

In data processing architectures, especially IoT, combining these data persistence methods creates different processing and analysis stages. Temporary storage aids immediate processing, data lakes store raw data, structured storage enables efficient querying, and archival storage ensures data retention. All these, at some level, however, support a data presentation.

Data Presentation Layer

In software architecture and system design, a presentation layer, sometimes called a servicing layer, refers to a component or set of features that facilitate the interaction between different parts of a system. It is an intermediary that handles various communication-related tasks, data processing, and exposure to functionality. The primary purpose of a servicing layer is to provide a unified and standardized interface for different clients, allowing them to access services and resources consistently. This layer helps abstract the underlying complexity of the system’s components and provides a cohesive interface for users and other systems to interact with.

By acting as a bridge between clients (consumers) and core functionalities, the servicing layer abstracts technical intricacies, allowing users to interact without needing to understand the inner workings. It manages the exchange of data between these entities, ensuring smooth communication through various protocols and transformations. It’s, in effect, a façade pattern atop complex data processing. A servicing layer provides security for data, APIs for serving data, pushes for data subscribers, data caches for download, and many other things that data consumers use.

This layer also addresses cross-cutting concerns such as logging, monitoring, and error handling, which are essential to maintaining a stable and well-monitored environment. The servicing layer can be designed for scalability, enabling the system to handle increased traffic and demand without compromising performance. Its role is vital in creating a simple, secure, and efficient bridge between the data and consumers. Chapter 11 dives into the servicing layer in great detail, where it talks about all the nuances of each of these styles of data exposure.

No one service in Azure provides a data presentation layer; however, the services used for this are typically forward-facing. For push-style deliveries, you may use some low-level protocols like FTP. Still, push-style for web apps and data integrations can be accomplished through webhooks, Azure Web PubSub, and Azure SignalR integration. Other integrations also may use APIs like those exposed through Azure Functions or an API service or with a tool like Azure Data API Builder. All these tools and integration points provide a way for consumers to get the data they need for their purposes.

Data Consumers

In the expansive landscape of IoT, data consumers encompass a diverse set of entities and systems that find value in the data generated by IoT devices. These consumers are instrumental in translating data into meaningful insights and actionable information. Several distinct categories of data consumers emerge within this ecosystem:

		
	Some consumers demand immediate results from real-time data, acting swiftly on the incoming information to make instantaneous decisions and trigger responses. These real-time analytics and decision systems are essential for predictive maintenance, security breach detection, and event-driven operations. These systems consume APIs and push-style data integrations.

	

		
	Operational dashboards and monitoring tools, like Power BI, present real-time data and reporting. These tools provide an easy-to-comprehend snapshot of ongoing operations and performance metrics, supporting operational teams in managing resources effectively and identifying anomalies in a timely manner. They facilitate informed choices and strategy formulation by delivering insights from real-time, historical, and aggregated IoT data.

	

		
	Dataset consumers, such as predictive analytics and machine learning models, tap into historical and real-time IoT data, deducing patterns, trends, and insights that serve as a foundation for future predictions. These consumers are vital in optimizing processes, anticipating maintenance requirements, and guiding strategic planning.

	

		
	External applications and APIs utilize IoT data for integration into other software systems, applications, or services. They range from third-party applications enhancing functionality to data marketplaces offering access to specific IoT datasets. They are likely to consume APIs and real-time data feeds. Industry apps and consumer apps empower users with insights into their data. These applications allow users to make informed choices and remotely manage their IoT devices.

	

Each type of data consumer possesses unique demands and purposes. A robust data architecture and a well-crafted servicing layer must be in place to effectively serve this diverse array. This ensures that the data generated by IoT devices is accessible, relevant, and available in formats tailored to the needs of each consumer, enabling them to extract maximum value from the IoT ecosystem. Chapter 12 dives into this topic and gives you some practical examples of each.

Monitoring, Logging, and Security

The IoT Landscape encompasses different domains within the context of IoT, but monitoring, logging, and security are cross-cutting concerns on the Azure IoT Landscape. They’re like fertilizer, water, and sunlight that make crops grow well.

In the context of Microsoft Azure and IoT deployments on the Azure platform, monitoring, logging, and security are three crucial aspects to consider. These aspects are fundamental to ensuring the reliability, visibility, and protection of IoT systems and data. You not only monitor your devices. You need to monitor your software systems and Azure itself.

Monitoring in an Azure IoT solution refers to the ongoing observation and measurement of system components, device behavior, and data flows. It involves using tools and services to track the performance, availability, and health of IoT resources. IoT Hub provides the data, but tools like Azure Monitor provide various monitoring capabilities, including real-time telemetry data visualization. Azure provides Defender for IoT, Azure Security Center, and Azure Sentinel to gain insights into device activities, detect anomalies, and ensure that your IoT solution functions as expected. By monitoring IoT devices and infrastructure, you can proactively identify issues, optimize performance, and provide a smooth user experience.

Monitoring is based on logging, which systematically records events, activities, and interactions within an IoT solution. Azure IoT solutions can generate substantial data, and effective logging is essential for troubleshooting, auditing, and understanding system behavior. Azure provides Azure Log Analytics and Azure Monitor, which enables you to capture and store logs centrally. These logs can offer valuable insights into device behavior, application interactions, and system events, helping you diagnose problems and analyze historical data for improvements. Chapter 13 talks about how to monitor your Azure estate and how the available tooling captures and logs data.

Security is a cross-cutting concern in IoT deployments, and Azure offers robust features to protect your IoT solution. Azure IoT provides secure device provisioning, identity management, and authentication using technologies like X.509 certificates or device keys. Role-based access control (RBAC) allows you to control access to resources based on user roles, ensuring that only authorized individuals can manage and interact with IoT components. As mentioned, Microsoft provides Azure Security Center and Sentinel for threat detection and protection capabilities, helping you identify and address potential security vulnerabilities in your IoT environment. Chapter 14 enumerates different threats related to IoT devices and offers strategies to mitigate these threats.

Monitoring, logging, and security are integral to Azure IoT deployments. Monitoring empowers you to oversee the health and performance of your solution in real time, logging enables effective troubleshooting and historical analysis, and security measures safeguard your IoT environment from unauthorized access and potential threats. These aspects collectively contribute to a reliable, well-managed, and secure IoT ecosystem on the Azure platform.

Conclusion

The last few pages have given you a distilled version of what this book entails. Each component illuminated has its role and significance within the IoT Landscape. There’s much to consider, from devices to data pathways and edge computing to data servicing. Welcome to the forefront of innovation, where Azure IoT offerings wait and stand as your gateway to possibilities.

Chapter 2. Azure-Centric IoT Devices

Chapter 1 provided the view of the world of IoT solutions from 40,000 feet. By now, you have the gist of what architecting an IoT solution on Azure is all about. But hold tight, because the real adventure is just getting started. In Chapter 2, you come down from the bird’s-eye view straight into the nitty-gritty world of devices. Before you get too carried away, though, understand there’s no way to cram every detail about every device into a single chapter. The focus here is on Azure-centric devices, where hardware, supporting software, and cloud services all shake hands.

Speaking of devices, my first internet-connected device was an IP camera. I wasn’t thinking “IoT” back then—I just wanted a camera that let me peek at video streams online for home security. It was just another device, right? Fast forward, now I have a smart thermostat, Chromecast, internet-linked home alarm, robot vacuum, you name it. It wasn’t long before my house was a full-blown IoT hub alongside my trusty phones and gadgets. But here’s the kicker. As I kept adding gear, my inner network security guy started ringing alarm bells. I eyed those IoT devices with a bit of caution. They came with mysteries and challenges. Heck, I even set up a separate access point for my IoT squad, just to keep them at arm’s length from my computers and tablets. While my experience is certainly my own, I do not think it is all that different from most folks. There are countless IoT devices and endless applications for IoT. Even some of my less tech-savvy friends have more devices than I do. Everything that you might install as part of a “smart home,” such as light bulbs, thermostats, and microwaves, is an IoT device. Entertainment devices, like Alexa speakers and Chromecasts, are IoT devices. Beyond the walls of the home, IoT devices are found in stores, hospitals, as part of the electrical grid, in factories, in trains, in planes, in ships, and practically anywhere else you might want to install a device to monitor and interact with an environment while connected to the internet. They are everywhere. They have invaded our lives and world to the point that more IoT devices exist on the planet than people. There are now 13 billion devices, and that number is projected to grow to over 29 billion by 2030.1

The IoT device invasion was silent. Phones, on the other hand, were loud. Apple made sure everyone knew that the iPhone was not like the trusty old Nokia or Razr phones of the early 2000s. Marketing hype made sure everyone knew that the iPhone and its competitors were the most revolutionary thing since the invention of the wheel. Contrast that with IoT. Most people, like me, probably bought their first IoT devices without even realizing they could be categorized as IoT.

Folks are probably most familiar with devices as part of IoT, but they’re really only a small part of the picture. On the IoT Landscape, devices occupy a small part of an IoT solution, as seen in Figure 2-1. But while an IoT solution might be thought of as a single system, devices are prolific with potentially millions of devices as part of a device ecosystem. So much of the work for IoT happens outside the immediate context of devices. Much of the rest of this book talks about everything that’s to the right of devices in the IoT Landscape. You can generally think of these domains as being in “the cloud.”

[image:]
Figure 2-1. Devices in the IoT Landscape

IoT Devices as the Nexus of Three Domains

Zooming in on devices reveals more nuances, however, and that they aren’t merely big buckets of things. These devices have a life of their own. Fundamentally though, you can think of IoT devices as the nexus of three different domains: hardware, software, and cloud, as seen in Figure 2-2.

[image:]
Figure 2-2. IoT devices as the nexus of hardware, software, and cloud

All three of these parts of IoT interact to create network-connected devices as part of a comprehensive IoT device.

Hardware

Hardware in the context of IoT is pretty straightforward: it composes the physical “thing.” IoT device hardware varies depending on the context in which it is used. It can be as simple as a microphone attached to a WiFi network or something much more sophisticated, such as a piece of medical imaging equipment that does 3D brain scans.

At the core of every IoT device is some kind of compute capacity—a composition of a processor, memory, and storage. This is the central “brain” that translates interactions with an analog world into digital signals that can be processed, packaged, and transmitted over a network and reverses that process for signals coming off a network into something that the device does. The level of sophistication of the compute hardware, like the devices they control, can vary from something rather simple to something incredibly complex.

IoT devices fit into one of two large categories, although the line between these is a bit blurry. One category contains the most basic compute hardware. These are constrained devices, with extremely limited compute capacity, available resources, and RAM. This sort of compute is typically a tiny computer on a small board and is referred to as a microcontroller unit (MCU). These devices have benefits such as low costs and minimal power draw measured in single-digit milliwatts or even microwatts. MCUs can run an operating system such as a real-time operating system (discussed in “Azure IoT Device SDKs”) but an operating system is not required. Instead, the device can run embedded code, typically written in a low-level language like C, that runs right on top of the MCU. MCUs have all kinds of applications, such as home appliances, sensors, and tracking tags, among many other things. Constrained devices compose the majority of IoT devices.

Outside of constrained devices, the second category, unconstrained devices, contains devices more recognizable as what one might consider a computer. These devices, like the Raspberry Pi, are also small, but they have more capable hardware that can drive displays, run a full-blown operating system like Linux, run multiple applications simultaneously, and perform more CPU-intensive operations that make the device more intelligent. Some have compute capacity more or less equivalent to desktop and laptop computers, and they are more capable of performing tasks. In some cases, these IoT devices are PCs embedded into a machine. Some of these devices may even include specialty hardware, such as dedicated circuitry for processing AI models.

Unconstrained devices also include devices containing server-grade compute. These devices are typically edge devices that interact with other IoT devices. They provide services to other devices that might typically run in the cloud closer to the devices they serve.

Software

Software in the context of IoT provides the instruction set for how a device interacts with its environment. In its simplest form on IoT devices, the software simply reads data, packages it up, and sends it to the cloud. More sophisticated devices, however, can do more. Some of these devices interact physically with the environment. ATMs, for instance, receive and dispense money. Self-checkout kiosks scan groceries and accept payments. All these applications, from the simple to the sophisticated, require software at some level to collect data, transmit data, receive data, and react to events.

Cloud

Technically, the cloud is hardware and software, too. But from the perspective of an IoT device, the cloud is just some external entity that the device sends data to and receives data from. The device understands the inputs and sends outputs that the cloud responds to. The interactions between devices and cloud services are one of the defining characteristics of IoT devices. Sometimes, a high concentration of devices in a building or area warrants the use of something collocated with the devices to manage them, assist with data-related tasks, or help get them connected to the internet. Such tasks are managed by edge computing.

For the discussion here, all cloud-side services and edge computing are lumped into this category, but these will be picked apart in later chapters. The cloud components and services that are pertinent to a specific kind of device are discussed as part of the device’s cloud offerings.

IoT devices are the nexus of hardware, software, and cloud services. Microsoft, being a tech company that makes hardware, software, and cloud services, has much to offer in this space. It is sometimes good to look at where you have come from to understand where you are going. From here, the journey continues with a look at Microsoft as a company, and how that positions them as an IoT solutions provider.

IoT Devices and Microsoft

From a technical perspective, this book concerns itself with Microsoft Azure for cloud services. The chapters discussing cloud-side components will talk about Azure specifically. For this reason, it is a good idea to get acquainted with Microsoft and what positions Microsoft as a leader in IoT solutions and innovations.

When most people think of Microsoft, they do not think of a hardware company. Microsoft’s success as a software company most certainly overshadows its attempts in hardware, but a closer look reveals success in hardware, too.

Microsoft the Software Company

Microsoft was one of the first companies solely focused on software in a time when most people thought of software as something that came with the computer, not as a thing in itself. By the 1990s Microsoft solidified its position as a mainstay in enterprise software with products like Windows Server, SQL Server, and Great Plains. By the turn of the century, Microsoft was venturing into entertainment with games and media. Microsoft’s expansion into practically every niche in the software market positioned them well to extend many of these offerings into the cloud.

Microsoft’s success is in part due to how it has tried to make tools and products that developers want to use. BASIC, one of its first commercial products, was a programming language designed to make writing programs for computers simpler. Microsoft built on BASIC over time with an IDE for GW BASIC and QBasic that the company bundled with early versions of DOS. This IDE, while text-based, incorporated many of the features and motifs still found even in modern IDEs. For Windows, Microsoft created Visual Studio, a product that they continued to evolve and expand over 25 years after its original release. Visual Studio 2002 marked the first version of the product for use with the .NET Framework, which became the backbone for desktop and web development on the Microsoft platform. .NET’s rich ecosystem has been widely adopted by enterprises and adapted to numerous other platforms beyond its original inception to include mobile, Linux, and IoT.

Microsoft focused on a closed-source model for most of its existence. However, when cloud computing arose, Microsoft also started pivoting toward open source by offering Linux as a key Azure operating system, opening up .NET, and providing numerous open source tools and SDKs for developers to use with Azure. Microsoft also expanded beyond .NET with its SDKs to include many popular open source languages like Python, JavaScript via Node.js, and Java, and many of these include support for Azure’s IoT offerings.

Microsoft’s commitment to developers and its commitment to software is in the company’s DNA. As a developer, I have worked with numerous platforms and tools over my career, but Microsoft tools and technologies have always been some of the best and most used tools in my development toolbox. Azure’s IoT tools are among these, and they integrate well as part of the larger Microsoft development ecosystem.

Microsoft as a Hardware Company

While Microsoft is primarily known as a software company, Microsoft has a long history as a hardware company, too. This history dates back to 1980, merely five years after the company started. Microsoft developed an expansion card for the Apple II called the SoftCard, which effectively turned an Apple II into a platform capable of running the CP/M operating system, an OS that Microsoft had invested heavily into for apps and software development. The SoftCard is a forgotten success. Microsoft soon turned its attention to operating systems, and produced DOS, which became the dominant PC platform in the world by the 1990s.

Microsoft did make a few peripherals for PCs, like mice and keyboards in the 1980s and speaker sets and other PC peripherals in the 1990s, but they did not branch out beyond the PC peripherals until at least the late 1990s with phone systems. The biggest change happened, however, when the company pivoted from hardware that interacted with a PC to hardware that was another platform altogether. These platforms not only ran Microsoft software but also invited developers and companies to include their own apps and software. In the early 2000s, the company made a foray into devices in the gaming space with the Xbox and in the mobile space. For mobile, Microsoft produced a version of Windows for handheld computers and the Kin mobile phone. Microsoft attempted to create a media player to compete with the iPod called Zune. By the end of the decade, Microsoft had a fledgling mobile platform with Windows Phone and even made in-house Lumia line handsets for the platform. In the 2010s Microsoft abandoned its mobile and media player ambitions but created its own line of PCs with surface tablets and laptops that is still going strong. Xbox continues to be a success. Microsoft is developing the HoloLens platform as well.

Not everything Microsoft created for hardware and software was a success. Despite this, the company has found a sweet spot with many of its products. Even with Microsoft’s long history with hardware, these platforms inevitably always came with a set of tools and SDKs to encourage developers to build apps, games, and solutions for the platforms. Moreover, Microsoft has maintained long-term working relationships with a network of original equipment manufacturers (OEMs) that make PCs and hardware used by PCs. Whether Microsoft is designing and building hardware itself or working with others, the company has historically created a ubiquitous set of tools and platforms.

Microsoft’s pivot to the cloud with Azure has positioned the company to consider other opportunities to enable different kinds of hardware to leverage its platform, including IoT workloads. To this end, Microsoft has created numerous, parallel streams that empower and enable organizations to leverage the cloud and develop solutions with Microsoft technologies. Some of these solutions are hardware-oriented, while others are more software-oriented. As with most of Microsoft’s other hardware platforms, each of these comes with ways to create solutions that both leverage the IoT device platform and the supporting cloud-side components.

Microsoft as a Cloud Company

Microsoft’s cloud journey started in the late 2000s under the code name Project Red Dog, which later became Azure. Released in 2008, Azure initially had very few offerings. It could run web apps, host SQL databases, and run virtual machines. Since that time, it has exploded to include a swath of services for almost every compute need imaginable. Microsoft has expanded its Azure operations all over the globe with regional data centers on every continent except Antarctica. The suite of tools, technologies, and offerings is as broad as it is deep, and the platform has become one of Microsoft’s largest revenue producers.

While Azure is a focus of this book, Microsoft’s cloud also supports the Dynamics 365 platform and the Office 365 platform. Dynamics integrates numerous enterprise resource planning (ERP) features and applications to create a system for managing business resources and processes. Office 365 is Microsoft’s productivity suite evolved in the cloud that offers tools for managing business data, collaboration, and communication.

Like Office 365 and Dynamics 365, Azure owes part of its success to how well it integrates with existing enterprise systems. Azure, since its inception, has provided tools and technology to create hybrid cloud computing environments that enable organizations to share data and compute between cloud resources on Azure and on premises. Many of the technologies offer ways to extend on-premises data centers into the cloud and also bring cloud services back to on premises. This bidirectional integration is crucial for many IoT workloads that need Azure-style compute on the edge of networks.

IoT on Azure: Microsoft’s Combination of Software, Hardware, and Cloud

IoT on Azure brings together three things that Microsoft has been successful at in the past: software, hardware, and cloud, the cornerstones for building a successful IoT device. Microsoft has created a number of IoT-specific services in the Azure cloud and Azure-centric hardware platforms for interacting with those services. Additionally, Microsoft provides tools and software built on many of the successful Microsoft offerings that allow developers to bring solutions to life.

Now that you understand where Microsoft has been, it’s time to take the plunge and explore exactly what devices Microsoft has to offer, starting with Azure Sphere.

Azure Sphere

It is hard to talk about Azure Sphere as a device—it’s so much more than that. Azure Sphere is really an entire ecosystem designed for Azure and IoT. It contains its own specialized hardware, device-specific software, and a set of cloud services that support it. The nexus in Figure 2-3 shows how Azure Sphere combines cloud services to support hardware tailor-made for Azure integrations. The value added by Azure Sphere comes from how it automates large portions of device lifecycle management with the services and adds security features through cloud services.

[image:]
Figure 2-3. Azure Sphere IoT nexus

Azure Sphere Hardware

“Devices as a service” are probably not possible, but Azure Sphere is about as close to that as you can get. Azure Sphere is both a security-hardened device combined with security and management services on Azure. Azure Sphere boards vary depending on the manufacturer, but they are, generally speaking, a system on a chip (SoC) with an ARM Cortex 7 CPU and modest amounts of RAM and storage. The boards all run the same Azure Sphere operating system and support the same kind of apps regardless of the board manufacturer. Although Azure Sphere runs a custom Linux OS, for practical purposes the device is a constrained device.

Azure Sphere Software

The operating system for an Azure Sphere device is a Microsoft-maintained Linux distribution that creates a secure container for user applications. The operating system provides a set of APIs for interacting with the device’s hardware while protecting the internals of the operating system and the device from user applications. This strict separation of concerns exists to ensure that the code running in the container does not harm the device or access anything the device connects to beyond what is exposed through the APIs.

Azure Sphere provides development tools for the C language with specific extensions for Azure Sphere in Visual Studio Code and Visual Studio. It supports two different kinds of applications for different kinds of programming: high-level apps and real-time apps. High-level apps behave more like an application where users might expect an application wait state and manage a state machine, even if the application is performing tasks in the background. A real-time application does not reflect a wait mode but rather continuously runs and responds to events as they happen. Real-time apps run closer to the metal than high-level apps. These applications require closer management of the application’s logic, resources, and other internals of the application’s logic flow, while high-level applications take care of many of those details for developers. Real-time apps can also run via a real-time operating system, which provides a framework for real-time development for applications.

Both high-level and real-time application paradigms require that developers familiarize themselves with the pros and cons of each pattern, and select the one that best suits deployment needs.

Azure Sphere Cloud Services

The security services for Azure Sphere devices maintain the devices through cloud services, including regular security patches for the operating system, device authentication, and device attestation. Users are still responsible for maintaining the code in the container, but much of the work that typically falls to IoT device makers is handled through Microsoft’s IoT services. Users pay a license for these services on a per-device basis.

What’s It For?

Azure Sphere is a general-purpose platform for IoT workloads. It provides value-added services for devices with stringent security requirements, a desire to outsource some of the device lifecycle management, or both. Like the Azure MXChip, which I’ll discuss in the next section, the hardware for Azure Sphere is modest and therefore will not work for devices that require a rich user experience. Azure Sphere, however, can be a part of a more complex system that uses Azure Sphere for its connectivity and integration capabilities. Beyond the Azure Sphere services, Azure Sphere devices can interact with all other Azure IoT Services.

Azure Sphere has a slight learning curve for adoption. It uses the C language for development, and the app paradigms and tools are provided by Microsoft for developers. Likewise, Azure Sphere is more of a closed ecosystem that is coupled with Microsoft services. The development community for Azure Sphere is smaller than other platforms but still vibrant enough to find help and qualified individuals.

What Makes It Unique?

Azure Sphere takes care of much of the device lifecycle management through its offerings for Azure Sphere by patching and updating the devices. This is not a complete solution, but it does substantially mitigate the device lifecycle management burden. Azure Sphere IoT devices are for teams that want to focus more on bringing a device to life but do not have the human resources to develop and maintain the operating system, authentication, and attestation for IoT devices.

Azure MXChip

The Azure MXChip is a small, Arduino-compatible, IoT-centric device especially designed to work with Azure solutions. The MXChip was co-developed by Microsoft and the company MXChip for a wide array of IoT applications. The value MXChip brings is an Azure-focused Arduino board with special software and hardware for Azure, illustrated by the nexus shown in Figure 2-4.

[image:]
Figure 2-4. MXChip IoT nexus

MXChip Hardware

The MXChip comes with many sensors already on board, including a humidity and temperature sensor, a pressure sensor, a magnetometer, a motion sensor, and a 28-pin general-purpose input/output (GPIO). The small board has a 128×64 OLED display as well as an RGB LED, a user LED, and another system LED to show connectivity to WiFi (also built-in) and Azure. The device also has two built-in user-programmable buttons. While the chip boasts a wide array of built-in hardware, its CPU and storage are rather modest, with only a 100 Mhz ARM CPU, 256 K of RAM, and 3 MB of storage that is split between user storage and the device’s storage. Like all Arduino devices, this is a constrained device.

MXChip Software

The MXChip itself is compatible with Arduino SDKs and tools. Arduino is an open-source platform that allows anyone to manufacture Arduino chips on the general public license (GPL) that governs the chip. It has a large, vibrant community that makes finding developers and help straightforward for users of the platform. These factors can help accelerate development.

The MXChip emulator pictured in Figure 2-5 offers an environment for developing solutions for the MXChip without the need to install anything in a local dev environment. Code runs on the emulator, which can also interact with Azure services.

[image:]
Figure 2-5. The MXChip online emulator for development work

The MXChip requires developers to use C. For developers used to working in languages like C#, Java, or Node.js, C can be a challenge because many of the features built into C#, Java, and Node.js are not available in C. For instance, developers are required to manage the memory they use more explicitly rather than relying on something like a garbage collector.

MXChip Cloud Services

There are no unique services for MXChip like Azure Sphere beyond the standard Azure IoT services discussed in Chapter 1. MXChip, however, makes connecting to Azure services easier through the provided classes and built-in network support.

What’s It For?

The MXChip board is intended to provide a way to quickly prototype devices for use with Azure IoT solutions. The devices using the MXChip can be productized using Arduino-compatible devices. MXChip does provide some user controls and a small display, but the kind of solutions for the MXChip are not solutions that demand much compute power. The device is principally designed to create a solution that, once created, will remain on the device without much human intervention. These solutions will basically read data from whatever sensor is needed from the built-in sensors or sensors attached via GPIO, bundle the sensor data in a message, then send that message to solutions on Azure. The device can receive messages from the cloud as well either as twinning changes or direct messages. See Chapter 3 for how to update twinning data and send messages from the cloud to the device.

One of the main advantages of the Azure MXChip is its built-in support for use with Azure. The chip’s SDKs are written for C and offer many prebuilt libraries for inclusion in the C project. Projects for MXChip can use Visual Studio or Azure’s own MXChip emulator.

Likewise, because of the device’s limited compute, MXChip will not be able to do much computing on the device. Data will need to be sent to the Azure cloud or an IoT Edge device with more compute capacity to handle the heavier compute needs. Edge computing and IoT Edge are covered in more depth in Chapter 6.

What Makes It Unique?

While the MXChip is not particularly unique, its combination of Arduino-compatible compute, built-in sensors, and connectivity to networks and Azure accelerates the development of hardware solutions.

Kinect

Strictly speaking, Kinect is not an Azure-centric IoT device like Azure Sphere or MXChip, but it is worth mentioning because it is intended for many IoT-based applications. Its nexus combines PC class hardware with the Kinect device, specialized SDKs, and Azure Services for speech and vision (Figure 2-6). Historically, Kinect was used for entertainment purposes by creating augmented reality for games. The use cases of Kinect, however, have been expanded beyond games to include any number of applications that can take advantage of augmented reality.

[image:]
Figure 2-6. Kinect IoT nexus

Kinect Hardware

Azure Kinect contains a suite of AI-assisted sensors that capture video, sound, and motion. These applications collect data that can be processed by a connected PC or sent to the cloud for processing on Azure. Kinect itself needs a computer of some kind running Windows or Linux to work. The camera on the device is coupled with a depth-of-field camera to enable multidimensional applications. The microphone array offers multipoint audio that enables the detection of directional sounds and more accurate filtering and processing than a mono or stereo microphone.

Kinect Software

Kinect needs a PC to work, so any application running on Kinect connects to the devices from the PC using USB. Kinect has two primary SDKs available for applications: a more general-purpose sensor SDK and a body-tracking SDK. The sensor SDK gives applications access to the camera, microphones, and motion sensors on the devices. The body tracking SDK tracks movement using the camera and depth-of-field camera on the device.

Kinect Cloud Services

Azure does not provide any services unique to Kinect, but Kinect can integrate with Azure Speech Services and Azure Vision Services. Speech services can render recorded speech to text or translate the speech. Vision services include object recognition, optical character recognition (OCR) for extracting text from video, and spatial analysis that extracts multidimensional data from the capture of two-dimensional images.

Speech and Vision Services from Azure can run on Azure or be containerized and run on an Azure IoT Edge deployment. Azure IoT Edge can either run on the same computer connected to the Kinect hardware or another computer. See Chapter 6 for more information about IoT Edge.

What’s It For?

Kinect as a device is principally for applications that need more than a basic camera. It has a body detection API, making it useful as a human-interface device for things like exercise equipment. The advanced camera and microphone array also give the devices more special awareness, so they can detect movement and sound from different angles. Combined with AI for sound and image processing, it has uses in industrial IoT for things like quality control on an assembly line.

What Makes It Unique?

Kinect provides an accelerator for applications that want to create intelligent vision and audio applications. The hardware and SDKs combined with cloud services provide a robust platform for creating augmented reality applications or applying the sensors for purposes like logistics or medical applications. Device integrators can use Kinect with a PC platform to create many different kinds of applications.

Windows for IoT

Windows for IoT is a special SKU for Windows intended for IoT workloads. It creates a nexus around the Windows operating system with its software, cloud, and supported hardware for IoT applications (Figure 2-7).

[image:]
Figure 2-7. Windows IoT nexus

Windows IoT Software

Windows IoT is a special SKU of Windows 10 and Windows 11. It is the spiritual successor to the venerable Windows Embedded operating system that was intended for applications that were not considered general-purpose computers. Organizations cannot purchase Windows IoT and install it; rather it is available only to original equipment manufacturers, and it is sold and distributed with the device it runs on. Early versions of Windows IoT were otherwise identical to enterprise versions of Windows, but more recent versions contain changes to reduce storage requirements for the operating system. More changes in the future may happen.

Windows IoT offers a few different SKUs, depending on the need.

Windows IoT Core

Windows IoT Core brings Windows to ARM-based compute, such as Raspberry Pis, but can still run on x86 hardware. The OS provides a minimal Windows experience on more modest hardware. ARM CPUs are not capable of running code written for x86 CPUs without an emulation layer. Windows apps written using Windows UWP, however, can run on Windows IoT Core. IoT Core allows only one app at a time to run. The cloud service offerings for IoT Core are more limited, and it cannot be domain-joined to a traditional Active Directory domain.

Microsoft last provided downloadable images from IoT Core in 2018, but at the time of this writing, images integrated with Azure will continue to receive updates to the operating system under the Long-Term Servicing Channel (LTSC) until 2029. Windows IoT Core can still be configured and installed on flash media using the Windows IoT Core Dashboard. The Dashboard application downloads images and writes them to SD cards for use with dev boards like Raspberry Pis or NXP dev boards from Intel.

Windows 11 has been ported to ARM processors, but as of this writing, there does not appear to be any ARM-based “core” version of the OS intended for IoT usage.

Windows IoT Enterprise

Windows IoT Enterprise is available in Windows 10 and Windows 11 versions. It supports both x86 and ARM-based architectures, depending on the SKU. ARM-based support limits the kinds of apps that can run on the devices to UWP applications, but the platform is not as limited as IoT Core in the number of applications it can run simultaneously. Likewise, these devices can be domain-joined and support other standard enterprise features not available to IoT Core.

Otherwise, Windows IoT Enterprise on x86 hardware is functionally identical to a standard Windows SKU. It supports the same hardware models, driver models, application models, and management models. It integrates with existing Windows environments, such as Windows domains, and when becoming part of a mobile device management solution.

Windows Server IoT

Like Windows IoT Enterprise, Windows Server IoT 2019 and 2022 provide similar features as the general-purpose versions of Windows Server. These editions are available only to OEMs for use with devices that ship with Server preinstalled.

The intent of Windows Server IoT is to provide services for edge computing for IoT devices. It integrates with many cloud offerings, such as Azure Arc, to create hybrid cloud solutions for IoT devices. For more about edge computing for IoT, see Chapter 6.

Windows for IoT Hardware

Windows IoT does not come with any prescribed hardware, so therefore it is truly “bring your own hardware.” The intended use cases for Windows IoT, however, are applications that need a richer user experience not possible with more modest hardware, such as kiosks, rich screen-based user interfaces, and monitoring. Some examples include point-of-sale systems, medical imaging equipment, and infotainment solutions. None of these are intended as general-use computers and some attach specialty hardware for their environment, such as barcode scanners and payment terminals.

Windows for IoT Cloud Services

Because Windows IoT Enterprise is fundamentally Windows, it can take advantage of solutions to manage Windows deployments on and off Azure. Windows IoT can authenticate using Azure AD, integrate with an existing Windows domain, and use any number of other services that manage Windows clients.

Windows IoT Core comes with a tailored set of services for managing Windows 10 IoT Core devices on Azure with Windows 10 IoT Core Services. These services provide an Azure-based control panel and integrated services that update the device’s operating system.

What’s It For?

Windows IoT operating systems are intended to create more powerful IoT devices than what is possible with more constrained devices like Azure Sphere and Azure MXChip. Compute resources for the platform are similar to those found in desktops, laptops, and servers. In many cases, devices running Windows IoT include common PC hardware but will have a specific purpose in mind. One of the canonical use cases for Windows IoT would be something like a point-of-sale system or a self-checkout kiosk. These have a single-app user experience with attachments, like scales, scanners, and payment terminals. The user drives the device through a touch screen. Windows as an operating system provides a foundation for connecting devices to the central compute through one of its many supported hardware interfaces. Apps bring these devices together to create complete solutions.

What Makes It Unique?

Windows IoT brings together the Windows ecosystem with IoT devices and supports these devices with all the same services that support standard Windows deployments. In some cases, such as Windows 10 IoT Core Services, Microsoft provides specialized services to manage devices at scale.

Azure IoT Device SDKs

Whether or not you use hardware from Microsoft, if you want to use Azure resources, you will need a way to talk to those services, and this is orchestrated by software. While it is possible to manually implement everything against Microsoft’s APIs, Microsoft has gone to great lengths to ensure that the APIs have coverage with SDKs, which makes interacting with the APIs much simpler than trying to write everything manually. The support they provide creates the nexus (Figure 2-8) between cloud services and hardware where they live.

[image:]
Figure 2-8. Nexus for IoT SDKs

Microsoft SDKs for Azure IoT services work by providing wrappers around many of the common protocols used by IoT devices, such as HTTP, MQTT, and AMQP (see Chapter 5 on device messaging to see the pros and cons of each of these protocols). The wrappers provide a common interface that abstracts the underlying protocol from the implementation. This allows the protocols to seamlessly swap with one another should one protocol not be feasible for the particular need.

Microsoft’s device SDKs provide coverage for the common tasks that devices perform against the Microsoft services during a device’s lifecycle, covered in Chapter 4:

		Device provisioning

		
	Device provisioning SDKs interact with Azure Device Provisioning Service, which brokers a device’s first-time connection to the cloud by generating credentials and assigning the device to an IoT Hub.

	

		Securing device communication

		
	The SDKs provide inflight message encryption and a client that brokers authentication between a device and an IoT Hub.

	

		Device updates

		
	Device updates are provided through Azure IoT Hub. The SDK checks for updates to a device and brokers applying the update from the cloud to the device.

	

		Messaging to and from the cloud

		
	Messaging services are the backbone of any IoT platform. The SDKs provide robust support for sending and receiving telemetry, sending files, receiving commands, and sending events.

	

		Device twinning

		
	Part of maintaining a fleet of devices includes maintaining a digital twin of a device’s configuration in the cloud. The SDKs provide seamless integration to notify the cloud when configurations change and also allows the cloud to push down changes.

	

The Azure Device SDKs principally aim at providing clients for connecting to Azure IoT services. Not all of these services have to be used, so there are different SDKs for each context, depending on the need.

The SDKs mentioned here are generic SDKs, and therefore should not be confused with other SDKs that are more specific to devices and device-centric services, such as the Azure Sphere SDK or Kinect SDK. Moreover, the SDKs do not provide any assistance for interacting with hardware. These SDKs, as mentioned, are for working with the cloud services and will therefore need to be amended with device-specific SDKs or code to interact with the hardware.

Supported Languages and Platforms

Azure IoT supplies SDKs for .NET, Python, Node.js, Java, and C. The SDKs are provided as prebuilt packages that can be readily downloaded and included with the package manager for the platform, such as Pip for Python, Nuget for .NET, or NPM for Node.js. The source code for the packages is all available as open source on GitHub if for some reason you need to build the SDKs yourself.

Even if you do not use the SDK source code from GitHub, the GitHub repos are an excellent source for code samples on how to implement the SDKs.

Real-Time Operating System (RTOS)

The standard device SDKs are not for constrained devices such as MXChip or Azure Sphere. For these, Microsoft provides an RTOS with special libraries for embedded systems. An RTOS is essentially a tiny operating system for embedded microcontrollers. It provides features similar to those of a more robust operating system but at a much more essential level for the device it runs on. An RTOS typically uses only 1 to 2 kilobytes of memory. An RTOS can manage threading, CPU cycles, memory, and access to I/O stacks like USB or TCP. An RTOS is designed to accelerate development and make managing code simpler for constrained devices.

For more constrained devices, Microsoft provides the Azure RTOS. The Azure RTOS works with MXChip, Azure Sphere, and other approved devices. Beyond the common tasks like multithreading, Azure RTOS provides connectivity to Azure IoT services. Additionally, Microsoft provides middleware for FreeRTOS and open source projects ported to a number of different microcontrollers.

An RTOS is not necessary for embedded devices. For some applications, the C libraries for the embedded microcontroller are sufficient.

When All Else Fails, Use the APIs

If for some reason you are unable to use the SDKs, Microsoft does expose APIs that can be called through any of the supported protocols, and devices can use non-Microsoft implementations of clients to connect to these APIs, such as general-purpose MQTT clients or HTTP clients. Because the SDKs wrap much of the complexity, implementing these services without the SDKs will be a more substantial undertaking.

All in all, using SDKs makes development easier. One way to learn the SDKs and apply them quickly in your context is to use a device simulator, which I’ll talk about in Chapter 3.

Summary

Throughout this chapter, you’ve learned about all kinds of things related to devices. The chapter started by looking at devices and ecosystems from Microsoft, including Azure Sphere, MXChip, and Kinect. Beyond these physical devices, the chapter covered other Microsoft IoT ecosystems like Windows IoT and SDKs. Table 2-1 contains a summary.

	Table 2-1. A summary of Azure-centric IoT device solutions
	
		
				Solution
				Hardware
				Software
				Cloud
				Purpose
		

	
	
		
				Azure Sphere
				Azure Sphere devices
				Azure Sphere OS with high-level apps, low-level apps, and RTOS implementation
				Azure Sphere services for security and OS maintenance
				Value added services for security and device lifecycle management
		

		
				MXChip
				Arduino-compatible sensor loaded dev board
				Arduino tools, Azure libraries for Azure services, MXChip Simulator
				Standard IoT services
				A general-purpose dev board for Azure-centric IoT workloads
		

		
				Kinect
				AI-assisted cameras and microphones connected to a Windows or Linux PC
				Kinect SDK for sensors and body motion, and other dev tools for applications run by the connected PC
				Standard IoT services
				Applications that can take advantage of the spatial sensors on the Kinect device
		

		
				Windows IoT
				PC-class hardware connected to IoT peripherals
				Standard Windows SDK and driver models for hardware
				Standard Azure IoT services, Azure Windows IoT Core services, Windows management services, Azure Arc
				IoT application for integration with a Windows ecosystem or applications that need a more robust UX
		

		
				SDKs
				Nonconstrained devices
				SDKs for C, C#, Node.js, Java, and Python for interacting with Azure IoT services
				Standard IoT services
				Applications on nonconstrained hardware to accelerate development
		

		
				RTOS
				Constrained hardware, MXChip, Azure Sphere
				Provides abstractions for many common tasks like I/O access and threading
				Standard IoT services
				Applications that need better support for managing common tasks on constrained devices
		

		
				Embedded
				Constrained hardware, MXChip, Azure Sphere
				C libraries to provide access to standard IoT services
				Standard IoT services
				Use for applications on constrained devices
		

	

Chapter 3 brings devices back into the spotlight but with a fresh angle. You’ll deep dive into how you can work with building a device without having to actually buy any hardware. It’s a fun ride, full of ideas that can help bring you from an idea to a working prototype. So get ready: more devices to come!

1 Lionel Sujay Vailshery, “Number of Internet of Things (IoT) connected devices worldwide from 2019 to 2023, with forecasts from 2022 to 2030”, Statista.

Chapter 3. How to Try Before You Buy, IoT Edition

After diving deep into the Azure-centric IoT Landscape in the second chapter, it’s understandable if you’re feeling a touch overwhelmed by all the options. So, in this chapter, let me throw you a line to help you find your bearings as you venture into device development for your solution.

It’s good to roll up your sleeves and tinker with new technology to get a feel for real-world scenarios. Starting with software is more approachable than starting with hardware. Not only is it easier to set up and tinker with, but it also won’t break the bank while you experiment. You can employ your computer to simulate an IoT device using a cool combo of simulators, emulators, and virtualization. This paves the way for you to dip your toes into device development waters without committing to fresh hardware. So, get ready to craft a device simulator and prep a device for some hands-on experimentation used throughout this book.

Thinking Through Your Software

In Chapter 2, I described the IoT device nexus, which is the overlap of software, devices, and cloud. The software is the part that tells the hardware what to do. It’s the brains of what your device does. Before you get too far down the road with simulators and the like, it’s good to think about what you want your device to do functionally and detail the kind of data you want to collect with the device. Once you have your head around what you want to do, you can start to tinker. After that, you can commit to hardware, but let’s start by thinking about what you want your device to do.

You want your device to do something useful, and sometimes, the best place to start is with what’s familiar. You’ll get into some of that in a moment, but before going there, first, try to think about what your device will do and design it like you might design an app. Essentially, an IoT device is an app running on purpose-built hardware for that app. Thinking of the app in these terms helps shape what the software will do and what kind of hardware you may need for the device to work. Let’s start with the user experience.

The User Experience

Part of software design is coming up with how your user interacts with the device, and that is powered by software. Think about your phone. Your phone has a screen, but it also contains numerous sensors. Seeing and touching the screen is how a user physically interacts with the device, but it’s the apps that tell the device how to respond. Even the most basic devices have some kind of user experience. The experience may be as simple as installing and forgetting about the device. Even this process requires the user to interact with the device in some way. Many devices that do not have human interface hardware (screens, keyboards, touchpads, keypads, microphones, cameras, etc.) built in to the device will connect to a device that does and use something like a web browser interface or a mobile app. This is a common experience for things like internet routers.

More complex devices may include human interface hardware on the device. A gas pump, for instance, is something that has a user experience associated with the device—for example, a payment card terminal, keypad, and a screen for reading data such as gas volume. Such a device also can use the same hardware for tasks like configuration. Industrial devices, in many cases, do not have what one might consider a user-friendly interface for configuring the device. They sometimes depend on command-line interfaces that connect a network or a serial terminal on the device to a laptop.

The user experience impacts the hardware you will select for your device. You don’t have to pick the hardware at the time of thinking about the device, but you’ll need to ensure that compute hardware on the device can drive whatever software or user experience you create. User experience is important, but the thrust of this book is not about the user experience; it’s about data and the device’s interaction with the cloud, so let’s think about data and how it’s collected, manipulated, and transmitted.

Collecting Data

If you were just building a device like a power drill, you likely would not be building an IoT device. One of the main reasons IoT devices are connected to the internet is to transmit all their data, and there is potential data to sift, even for the simplest devices. You should consider these four broad categories of data when planning your device.

Data Collected from User Inputs

Data collected from user inputs is fairly straightforward and includes information about the user or users, such as IDs, registration details, contact information, some configuration data, and payment data if the device accepts payments. This data helps communicate with the user, correlate the device with organizations, control security, and make purchases, among other tasks. This data is useful for filtering and grouping data in the cloud and for routing data to any customizations that you might add for customers.

Data Collected from the Environment

Data collected from the environment is likely the data you will be most interested in because it’s the data about the primary function of your device. Sometimes, the primary function of an IoT device is data collection, such as a weather station or a wearable heart monitor used by athletes. Other times, the data might be more about activities the device performs. An electric toothbrush, for instance, collects telemetry about how well a user brushes and gives reports based on that data. IoT devices employ a variety of sensors to detect these things, like thermometers, accelerometers, barometers, shock sensors, speedometers, GPS, light sensors, proximity sensors, infrared sensors, microphones, cameras, and many more.

This data category is the hardest to figure out because you need to decide what data you will need and how you want to model that data. Other decisions to make include how often the data needs to be transmitted and how to collect that data.

Data About the Device

In addition to monitoring an environment, devices often monitor themselves. The device collects data about what is going on with the device, such as CPU temperature, available storage, available memory, software versions, hardware versions, battery charge percentage, and uptime, among others. Also, a device collects data about actions that happen on the device, such as reboots, power-ups, power-downs, network issues, login attempts, and hardware failures. Data from devices is useful for knowing the health and state of your devices. In many industrial IoT applications, this kind of data allows for predictive maintenance on machinery so the devices do not break prematurely.

Data About the Software on the Device

The software on a device also generates tons of data. Typically, the software creates logs that write out things that happen in the software. Some of this data is informational, but other times it contains errors or problems with the software that are useful for finding code bugs.

At some point, data will be relayed to the cloud using messaging, as discussed in Chapter 5. The data is packaged as telemetry and forwarded to the cloud using the internet. This, along with other issues related to the care and maintenance of the device, are included in how a device will interact with the cloud.

As you move forward with your device, getting a handle on the data helps shape the software you will ultimately install on the device. Before you do that, though, you can get started by simulating this data using a device simulator.

Device Simulators

A device simulator is exactly what it sounds like—an app that acts like a device. A device simulator interacts with cloud services the same way an actual device would, but instead of using hardware to gather data, it generates its own data to mimic how the device would act when in actual use. Instead of taking a reading from an actual thermometer, a device simulator might randomly generate a temperature value within a given range. Instead of taking an image from a camera, a device might create an image or use an existing one.

Device simulators may seem like an unnecessary bit of code to create and maintain, especially if you already have hardware that you can use. One common complaint about device simulators is that device simulators cannot simulate “real-world” behaviors. While there may be some merit to this argument in that device simulators are not actual devices, the purpose of device simulators is not necessarily to simulate the real world. There are several pertinent reasons to have a device simulator. Here are a few.

Accelerate Development

Setting up a device for development may seem like a simple task, but it can be a hassle, especially when development changes rapidly. You have to create a device, ensure that the device is powered, and then connect that device to a network. After that, you must configure the device manually to work with a development environment. Then, with each iteration in the code, the device has to be manually triggered or, worse, updated. These iterations lengthen development time.

Enable Feature Development Independent of Device Development

There is a time and place for device development, but this usually happens once the cloud services are in a form that is unlikely to change. Foundational work can certainly be done before connecting to the cloud, such as provisioning a device’s operating system or building its hardware and sensors. Still, these are tasks that a device simulator would not concern itself with.

All device simulators must do is take care of the parts that interact with the cloud services and maybe provide a user experience if there is one. Once a device simulator is created, it can be automated as part of a build pipeline to accelerate the development of cloud-side components. This leads to the next realized benefit that device simulators offer automated testing.

Enable Automated Testing

Device simulators enable automated testing through integration, regression, and scale testing.

Integration and regression testing

Integration testing combines software components to ensure they all work together as intended. Regression testing is similar to integration testing but instead focuses on ensuring that existing tests still pass. This ensures that new changes do not adversely impact existing code. With cloud-side components in IoT solutions, tests are done by standing up, or putting into service, an environment with all software components installed the same way they would be installed on a production system, or at least in a state similar enough to the production system to ensure that the tests are valid. Developers stand up the cloud-side components in the cloud and test the components by interacting with the test environment over a network.

Both integration and regression tests can be easily automated with device simulators. While it may be possible to automate this process with an actual device, the automation would require hooking up a device to a test runner and having the test runner provision and invoke the device to interact with the cloud services. A device simulator simplifies this process by simply running the device simulator app, which can be run practically anywhere, including within an automation suite, without needing a physical device.

Scale and load testing

Device simulators shine in scale-testing and load-testing cloud-side components. Scale testing tests how well your solution grows its capacity as request volume increases or reduces capacity when it decreases. Load testing is similar to this, but it’s looking to see how well a solution can hold up to a sustained burst of activity, usually at a predetermined threshold, like ten thousand messages a minute. While it is possible to automate hundreds or thousands of devices in a lab environment, such environments are expensive, unwieldy, and difficult to maintain. Devices must be wired up, provisioned, and invoked through an automated system that interacts with the actual devices. On the other hand, device simulators can easily be created and destroyed simply by creating new processes. A single computer can usually run dozens, if not hundreds, of instances of a device simulator. Scaled across multiple computers, a device simulator can simulate potentially thousands upon thousands of devices, all generating data. Once these tests are finished, the simulated devices are easily destroyed by shutting down the instances of the device simulator.

This simulated data tests the limits of the capacity of cloud-based systems for both throughput and scalability. Scale tests and load tests help discover metrics useful in other areas, including:

	Upper limits of throughput for data coming in from IoT devices

	Conditions to monitor so autoscaling can be tuned to workloads

	Performance benchmarks used for regression and integration tests

	Using benchmarks and throughput to establish service level agreements

	Discovering bottlenecks in a solution that may not be uncovered otherwise

	Creating conditions to debug failures due to load, latency, or both

I hope by now that you are convinced that a device simulator is worth the effort, even if it is not an actual device. With that in mind, here are some best practices.

Device Simulator Best Practices

For the reasons discussed, creating and maintaining device simulators as part of an IoT solution is imperative to the present and ongoing success of IoT projects. The lack of device simulators introduces many unknowns into a solution, even if the simulators themselves are not “real world.” Here are a few best practices for creating and maintaining a device simulator:

	Start development with a device simulator before developing an actual device to accelerate development.

	Maintain feature parity with the device the device simulator is mimicking, including nonfunctional requirements like security and device provisioning. Ensure that acceptance criteria for new features include updating device simulators and devices.

	Ensure that the device simulator returns realistic data that can be treated like actual data.

	Make a device simulator configurable to simulate different conditions an actual device might encounter.

	Do not do all your simulations from the same locale. You can use the cloud to distribute load to simulate multiple points of origin rather than everything coming from a single IP address or computer.

	Run scale and load tests often with device simulators to ensure performance benchmarks are maintained with new features or code changes.

	If possible, create a device simulator using the same or similar codebase as an actual device to help ease maintaining the device simulator code.

	Testing with an actual device is imperative, but let device simulators run first to fail fast.

Incorporating a comprehensive approach to development, it is advised to initiate the process with a device simulator, expediting the overall progress before transitioning to tangible device development. This ensures alignment of features between the device and its simulator, encompassing even nonfunctional facets such as security and provisioning. Device simulators are not going to solve all your problems, but following these best practices will give you something useful and valuable.

A Word About Device Simulator Services

Many entrepreneurial organizations and individuals have tried to commoditize device simulators as a service. Even a few open source projects, including one from Microsoft that is now deprecated, attempt to do this. Most of these services provide the functionality to simulate data from devices. For some purposes, this may be enough.

More often than not, though, these simulations are limited:

	They do not provide context-specific behaviors that are hard to emulate.

	They do not offer simulations around nonfunctional requirements like device provisions or security.

	Integrations with automated testing can be a challenge. Some offer APIs, but that requires more work for the testers to implement for full automation.

For these reasons, developing and maintaining a device simulator app is preferable. If this is not possible, using one of these services or projects is a good second choice.

Experiment Using Virtualization

Another way to tinker with software is using virtualization. There are a ton of different ways to virtualize hardware for devices. Most PCs can virtualize hardware using apps like VMWare, VirtualBox, HyperV, Parallels, or Qemu. The first four are x86 virtualization apps that let you run operating systems other than the one installed on your PC. A Windows PC, for instance, can run Linux and vice versa. Qemu is another kind of platform because it emulates different kinds of CPUs beyond x86, such as many ARM-based CPUs found in IoT devices. The kind of device you intend to build will likely determine the kind of hardware virtualization you may end up using. Still, beginning with x86 hardware is not a bad place to start because code written on x86 hardware in most cases can cross-compile to other CPUs.

Using virtualization lets you play around with different operating systems and ecosystems as well. The ecosystem includes the tools, services, and community around the operating system, all of which are important to building a device. Here are a few platforms popular among IoT devices:

	Yocto Project

	The Yocto Project is not an operating system per se but rather a highly customizable set of tools that enable you to customize a Linux build for your device. The project also supports a wide variety of hardware and processors.

	Ubuntu Core

	Ubuntu from Canonical is a wildly popular Linux distro with wide support for different hardware and software. Ubuntu is many people’s first Linux experience. I have been using Linux for longer than Ubuntu has been around, but I still like to use it because many software vendors, if they are targeting Linux, will create builds of software for Ubuntu. Ubuntu Core is a version of Ubuntu that provides an absolutely basic installation on a device. From there, a user can expand on that base install using snaps with Snapcraft.

	Windows IoT Core

	For Raspberry Pi 2 and 3 models, Microsoft provides a version of Windows IoT Core. This operating system is discussed in Chapter 2, but it is like Yocto and Ubuntu Core, wherein it provides just enough to get the device running, and you can build on top of that.

If you are still unsure or just want to kick the tires on one of the operating systems, here’s how to set up Ubuntu Core on a virtual machine (VM). It uses the device simulator or sample device as a snap to show you the basics of how this can work. It is purposely pared down to include only the essentials you need to run a secure operating system on your device with minimal system requirements. You’ll need a couple of things to get started:

	An Ubuntu One account.

	A VM environment. These instructions use VirtualBox. You can download and install VirtualBox from VirtualBox’s website if you want to follow along.

Once you have these, you’re ready to go. The first thing to do is set up an SSH key:

	You will need to create an SSH key pair. To do this, open a terminal window on a Mac or in Linux or PowerShell on Windows. There, type ssh-keygen in the terminal. This will generate the key pair you need. Note where the keyfiles are stored. If you already have keys, you can usually find those in your home folder under a subfolder called .ssh such as ~/.ssh/.

	In the folder with the keyfiles, there is a file called id_rsa.pub. Print the content of this file by typing cat id_rsa.pub into the terminal. It will look something like this:

 ssh-rsa AAAAB3prCWnxmYghZk....dSXWfyLvZqU= blaize@DESKTOP-G660322

	Copy this text to the clipboard.

	Go to Ubuntu One and log in with the account you signed up with.

	On the menu on the left, you’ll find a link for SSH. Select that link.

	On the screen, you’ll see a text box labeled “Public SSH Key:”. Paste the copied text into the text box.

	Click “Import SSH Key.” The key is imported.

Now that the key is imported, you are ready to create the VM. Launch VirtualBox. If you are using other VM software, create a VM for Ubuntu (64-bit) with 2 cores, 2 GB of RAM, and 10 GB of storage, and you’ll need EFI enabled. EFI stands for Extensible Firmware Interface, which is an industry standard used by PC manufacturers that loads first before your operating system loads.

If you are using VirtualBox, do the following to create the VM. Otherwise, skip ahead.

	Create a VM. You can name it whatever you want, but I used “Ubuntu Core.” For the Type, select “Linux” and then select “Ubuntu 64” for the Version. Click Next to go to the next screen.

	For Memory Size, select at least 2 GB of RAM, then click Next.

	For Hard Disk, select a virtual hard disk of at least 10 GBs in size, then click Create.

	For the format, take the default, then click Next.

	For Storage of a Physical Disk, select “Dynamically Allocated.”

	Click Create.

	Once the VM is created, select the Settings for the VM, then select System, and check “Enable EFI.” On the next tab, Processor, select 2 cores.

	Once that’s checked, select Storage, then select the drive under IDE. Select “Choose a Disk File,” then find the .iso file for the Ubuntu Desktop you downloaded.

	Under Network, select “Bridged.”

	Finally, click OK. Your VM is now configured.

Once the VM is configured, start the VM:

	Once the VM boots, select “Try Ubuntu.” This will continue the boot process to a desktop environment without installing the OS.

	Launch Firefox and navigate to https://oreil.ly/PpfYW.

	Download ubuntu-core-22-amd64.img.xz. This is the image file for Ubuntu Core. It is not like a DVD Image file (.iso); rather it is intended to be written to storage directly. Since this is a VM, you can flash the image to the virtual hard disk you created.

	Now, launch a terminal. You can do this by selecting Activities in the top right corner, then typing terminal in the search box. This will find the Terminal app. Click on it to launch the app.

	In the terminal, drop to root by typing sudo -i.

	Type cd /home/ubuntu/Download to navigate to the download location.

	Type xzcat ubuntu-core-22-amd64.img.xz | dd of=/dev/sda bs=32M status=progress; sync to install the image. This process can take a few minutes to finish.

	Once that finishes, reboot the VM. The VM may reboot a few times to finish the prep of the image. This is normal.

	Once the initialization process is finished, walk through the setup screens. The VM will detect the network settings and ask for the email you used with Ubuntu One so it can install your SSH keys.

	Now, from the host machine, ssh into the Ubuntu Core instance using the command shown on the screen. In my case, the command is ssh theonemule@10.0.2.15. You can do this from Windows PowerShell or a Mac or Linux terminal session. You’ll be prompted to enter the passphrase you used when you created your SSH keys.

	Once you are logged into your VM, you can install the device simulator for the examples in this book. I built the device simulator as a snap using Snapcraft. Snapcraft is simply a way to package and install applications for different versions of Linux. These run as containers on the device. Ubuntu Core does not support Aptitude and apt packages out of the box. It uses snaps for security because it provides app isolation and also keeps Ubuntu Core to a minimum on the device. To install the device, type in snap install iot-arch-device --edge. The output from this will create a snap on your Ubuntu Core. You will get output that looks like this:

 iot-arch-device (edge) 1.0.0 from Blaize Stewart (theonemule) installed

	Now, you can run the device simulator with the command iot-arch-device.device. It is currently configured to work offline as a simulator. You will see the output in the console.

If you want to explore more about snaps, you can look at snapcraft.yaml in the code repository for Chapter 3, which contains the device code. You also can see the builds for the simulator on Snapcraft’s website. Snaps are just one way to package apps and the native way for Ubuntu. You also can use Docker or the Azure update mechanism to deploy and update code to devices. See “Updates” for details on how to use the built-in support updates and Chapter 6 for a strategy for deploying Docker containers to a device.

Software development without the hardware you will need for the device is good for prototyping your user experience and your device’s interactions with the cloud. At some point, however, you’ll need to start thinking about gathering data from the actual hardware. Even here, you do not have to fully commit to a dev board or anything like that just yet; you will need to start interacting with hardware to gather data to get a feel for how sensors will respond.

Hardware Without Dev Boards

Many times, people think that they have to go out and get a dev board and a bunch of other hardware to begin working on IoT devices. That’s simply not the case. You already saw one way to work using a VM, but you can also use your computer to interact with sensors without a dev board. Your computer has components, such as a camera and microphone, already built into the device. You can expand these to include other hardware through interfaces on your computer, like USB devices. USB also provides support for accessing different kinds of sensors, especially through GPIO interfaces. From here, you can interact with the devices on GPIO like GPS, accelerometers, thermometers, barometers, shock sensors, and many others. GPIO is a common interface for sensors on many IoT devices, so it’s a shared experience that enables you to develop against GPIO in the way you’d use a dev board.

Creating a Device for the Examples

To show you how you can use your computer for device development, you can run the device sample for this book right on your computer and use your computer’s hardware, like the camera. This book uses an example where each concept builds on the previous in a small way. In doing so, you will be exposed to every aspect of the IoT Landscape in Chapter 1. To follow along with these examples, you’ll need to set up a working device to go with the examples in each chapter.

For the example device I have provided two examples with identical feature sets. One is a simple program that reads sensor data of a computer, such as memory utilization, drive utilization, CPU temperature, CPU utilization, and network utilization, as reported by the computer. It also attempts to use a computer’s camera to take pictures on command. This device interacts with the physical hardware of a computer and is more in line with what an actual deployed device would do.

There are two ways to do this, and you can follow along with the examples in this book.

First, you could use a simple program that uses your computer as the hardware for the device. It will give you the actual sensor data from your computer and use your computer’s camera to take pictures.

Second, you could use a device simulator.

The second device is a device simulator for the first device. Instead of reading actual metrics from a computer, it uses random numbers generated by a program to stand in the place of the data. Moreover, instead of using a computer camera to take pictures, the device creates images using a Mandelbrot set. The simulator works essentially the same way as the code interacting with the physical hardware.

For the most part, you can use whichever version you choose. Either one will work for most of the demos in this book. If there is a deviation from that, each chapter will instruct you to use one or the other.

Setting Up the Sample Device or the Device Simulator

The setup for the sample device and the device simulator is pretty straightforward but not trivial. For this, you’ll need to set up some dependencies first. Once these are installed, you can then clone the code from the GitHub repo and set up the device, simulator, or both if you want to.

Dependencies

The device and device simulator code require a few things before they can work. You will need Node.js; Visual Studio Code is recommended but optional. The instructions in this book assume you are using Visual Studio Code. Also, you may need Git, but it, too, is optional. There are a few additional OS-specific dependencies for interacting with the hardware.

Node.js

Node.js is an open source JavaScript runtime based on Google’s V8 JavaScript engine that enables developers to create apps in JavaScript that run outside a browser context. The device and simulator are written using Node.js and will run on Windows, Linux, or Mac OS. You will need to install Node.js on your computer. On Windows and Mac OS, visit the Node.js website and download and install your system’s latest recommended version of Node.js. You will need to find the instructions for your preferred distribution for Linux. Visit the Node.js Linux install page for more details. The device and device simulator were tested on Ubuntu 22.04 Jammy Jellyfish, Raspberry Pi OS for Raspberry Pi 5, Windows 10, Windows 11, and Mac OS. Your OS may work, too.

Visual Studio Code

The examples in this book suggest you use Visual Studio Code, sometimes called VS Code, for changing files and working with the code in the samples. VS Code is a free, cross-platform integrated development environment (IDE) for Windows, Mac OS, and Linux. You can run the examples in this book using other tools, but the instructions here assume that you will be using VS Code and the screenshots and instructions will be for VS Code–specific actions. Other tools, like the Azure Portal and Azure IoT Explorer, will also be referenced. To get the device sample code, start by visiting VS Code’s website to download and install the packages for your OS.

Git

Git is one of the most ubiquitous tools for managing code repositories, branches, merges, and other code features. The code samples for this book are housed in a public GitHub repository. Visual Studio Code integrates with Git, so I recommend that you use Git to clone the repository from GitHub to your local context, or you can fork the repository online and clone your repo locally. You’ll want to use Git to interact with the code repositories online. You can download Git for Windows, Mac OS, or Linux from Git’s website if you have not already done so.

Cloning the Repository

Once you install Node.js, Git, and VS Code, you are ready to get the code for the device and device simulator from the repository:

	Open VS Code on your computer. If it is the first time you are running the app, you may need to select a theme. I like the Light theme over the Dark theme, so you’ll see those screenshots in this book. Walk through the wizard to set up VS Code.

	Once VS Code is set up and running, click on the “Source Control” icon on the left side of the screen, and choose “Clone Repository.”

	After clicking “Clone Repository,” VS Code will prompt you to enter the URL for the code repo. Type https://github.com/theonemule/azure-iot-architecture.

Next, VS Code will prompt you to select a folder. Pick or create a folder somewhere on your file system. From there, VS Code will finish the process by cloning the code from the repository into the folder. Once it’s finished, click “Open” on the prompt to open the newly cloned repository report.

	VS Code will ask if you want to trust the authors of the files that you just opened. If you trust me, check the box “Trust the authors of all the files in the parent folder, <foldername>" and select “Yes, I trust the authors.”

Once done, you have the code for the example device and device simulator!

Explore the Code

The code is laid out by chapter, so the code for the sample device and device simulator is in the Chapter 3 folder. Every other folder has code pertinent to that chapter; however, some chapters may refer you to Chapter 3 to set up the device or device simulator to run the samples in each chapter.

The Chapter 3 folder contains the device sample code and the simulator code. These are part of the same project so you can switch between the simulator and the sample device through a configuration change. The simulator is easier to work with because it has no external dependencies beyond what is in the folder.

	In the Chapter 3 folder, select “settings.json” to configure the settings.

	The settings.json file contains data that influences how the device behaves in the environment. The file is pretty simple:

	For now, set the property called “start” to “offline.”

	Optionally, you can also set the polling frequency with the “pollFreq” parameter. The default is to read or simulate a read every 5,000 milliseconds or once every 5 seconds.

	For “camera,” either set this to “device” if you want to use your computer’s camera or set it to the simulator to use the simulated camera.

	Similarly, set telemetry to “device” if you want to read data from your computer’s hardware sensors or use “simulator” if you’re going to use simulated data.

	Do not worry about the rest of the settings. These will become relevant in other chapters.

	Save the file!

Example 3-1 contains a sample from the settings.json file.

Example 3-1. Sample parameters in the settings.json file

{
 "start": "offline",
 "telemetry": "simulator",
 "camera": "simulator",
 "pollFreq": 5000,
 …
}

	Now that the settings have been updated, you need to install the dependencies for the sample device simulator of the device sample. From the “Terminal” menu, select “New Terminal.”

	This will launch an integrated Terminal pane in VS Code. On Linux and Mac, it will launch a new Terminal window with Bash or whatever the shell environment for your operating system might be. On Windows, the Terminal uses PowerShell.

	In the Terminal, type cd 'Chapter 3'.

	After that, type npm install. The commands should look like those shown in Example 3-2. NPM is short for Node Package Manager. The command reads the package.json file, looking for Node.js dependencies needed to run the code. From there, NPM will download and install the dependencies in a folder called node_modules.

Example 3-2. Terminal commands

PS C:\iot-solutions> cd Chapter 3
PS C:\iot-solutions\Chapter 3\> npm install

	If you are running Linux, you’ll need fswebcam, a small utility for capturing images from the command line or through integration. The capture for Linux wraps fswebcam and stores the image. For Ubuntu, simply type: sudo apt-get install fswebcam.

	Mac OS relies on imagesnap, a small utility similar to fswebcam for taking shots. You can install it with Homebrew on the terminal using brew install imagesnap.

	Now that the Node.js modules are installed, you can run the application. The application has a start configuration in the .vscode folder that tells the app to launch new terminal windows when the application starts. This exists because the app can take a keyboard command to snap a picture, and VS Code blocks that action if you use the integrated debug terminal. The output and other data is still in the debug terminal, and the code will debug the same. To run the app, press F5, or select the “Run” menu, then select “Start Debugging.”

	Once the application starts, you should see a new terminal window open, and telemetry will be written to the screen on the cadence you set with the “pollFreq” parameter in settings.json. Here, press “P,” and the app will take a picture and log the file path to the console. If the camera is not working, you may get an error. Reconfigure the “camera” parameter in settings.json to use “simulator” to work around any camera issues. Close the terminal window to stop the application.

	In the file tree on the left, you should see a new folder called images if you used the camera. You can expand this folder to see the images you snapped with the camera or the generated images.

It is important that you have a working device or device simulator for the rest of the chapters. The rest of the book explores concepts downstream of the device here. With the cloud-connected device, you will send and filter telemetry in the cloud, collate that telemetry, create data paths, create data presentations, send device twinning updates, apply patches to the device, send commands from the cloud to take pictures, work with the images on the cloud and their associated telemetry, and much, much, more!

Committing to a Dev Board

While you can use your computer to interface with sensors and other data-gathering devices, at some point, you will need to select a device, and this is where a dev board can be helpful. Dev boards are hardware devices that come in an accessible package, making prototyping devices easier. A dev board is usually a stepping stone to something more robust, but it shares more in common with the final version of your device than a PC does. If you are still unsure where to start, here are some easy options for building devices with dev boards.

For constrained devices, I recommend that you choose MXChip or Azure Sphere, both described in Chapter 2. MXChip is an Arduino-based, Azure-focused device that integrates with Azure and a payload of sensors that can easily be programmed with the MXChip SDKs. Azure Sphere is another constrained device, but it comes with services that help meet many of the nonfunctional requirements for device lifecycle management, like OS updates, security patches, easy integrations with Azure, and many more. MXChip and Azure Sphere provide devkits to get started. Once you’ve reached a point where you are ready to start building a prototype for manufacturing, you can select a different board that will run your code or adopt one of the manufacturers who implement Arduino or Azure Sphere. The sample device, however, does not run on Azure Sphere or MXChip.

For an unconstrained device, I recommend that you get a Raspberry Pi, an inexpensive dev board with GPIO, USB, Ethernet, and WiFi support on some models. Some models can run more advanced user experiences through a desktop environment on the device. The great thing about a Raspberry Pi is its ease of use and broad support for various operating systems, including Ubuntu Core, Yocto Linux, and Windows IoT Core. All three operating systems are broadly supported by hardware with an active development community. They also provide LTS versions and security patches, are secure out-of-the-box, are simple, have broad hardware support, and are easy to use. The sample device can run on a Raspberry Pi with Yocto or Ubuntu Core.

Summary

This chapter has given you some pointers on how to start developing your IoT solution without committing to hardware right away. You can do a lot with just software and the materials you already have. Here are a few things to remember:

	Think about the kind of data your device will collect and transmit to the cloud. You will need to ensure that your device can handle the inputs that create this data and manage the network connections between the device and the cloud.

	Do not skimp on device simulators. These little apps can save you a lot of time and effort for the development of your cloud services.

	You can experiment with different technologies before committing to hardware using virtualization techniques and using your computer.

	Manufacturers provide many different dev boards you can use for prototyping, including MXChip, Azure Sphere, and Raspberry Pi.

Much of a device’s development goes into supporting the user experience and data gathering through hardware. This includes securely connecting a device to the cloud, updating a device, working with messaging, and deprovisioning a device—all parts of device lifecycle management.

Embracing device simulators, virtualization, and other development tools really smooths the way for this journey. In the upcoming chapter, all the instances we’ll be going over involve the device simulator or the provided code samples from the repository. This hands-on experience will give you a solid grasp of how these pieces groove together with the cloud. As you experiment with software and hardware, combining that know-how with device lifecycle management, you’ll be orchestrating a device’s entire journey from a mere idea to a tangible reality. So, let’s jump right in!

Chapter 4. The Device Lifecycle

By now, you’ve delved into the intricate world of IoT solutions, where hardware, software, and the cloud come together in a symphony of technology. Your choice of devices or their combinations hinges on the specific needs you’re aiming to address. In the previous chapter, we took a deep dive into the “try before you buy” concept, exploring avenues to determine the best fit for your device. However, it’s crucial to understand that acquiring a device and setting it in motion is merely the tip of the iceberg—I wish it were as simple as that! IoT solutions encompass far more than meets the eye.

Drawing a parallel to automobiles might help illustrate the point. A car’s core purpose is transportation from point A to B. This involves an engine, fuel, a steering mechanism, and seating for passengers. These aspects are the baseline functional requirements. Yet, you demand more from your car than the essentials—consider headlights, seat belts, climate control, and the like. Furthermore, the realm of maintenance comes into play, necessitating skilled mechanics, spare parts, safety assessments, and adherence to regulatory standards. All these facets are meticulously addressed well before a car graces a showroom floor.

While your IoT venture might not match the complexity of car manufacturing, it’s imperative to recognize that addressing both functional and nonfunctional requirements for your device is needed long before implementation. A systematic approach to this entails embedding these requirements within the device’s lifecycle management. Beyond just aiding in the orchestration of the device’s activities, this framework serves as a vessel to encapsulate functional and nonfunctional needs. The decisions surrounding device management post-deployment need to be made well in advance, even before the device takes its maiden voyage.

Hence, in this chapter, you will go through each phase of the device’s lifecycle. Within these stages, I’ll point out the requirements that warrant your attention.

Device Lifecycle Management

Device lifecycle management covers all of the tasks within a device’s life that pertain to its development, manufacturing, maintenance, and eventual retirement. In the broader context of the IoT Landscape discussed in Chapter 1, device lifecycle management is part of the cloud side of things on Azure, as shown in Figure 4-1.

[image:]
Figure 4-1. Device lifecycle management on the IoT Landscape

Think of everything that goes into lifecycle management as being part of a control plan. When you’re dealing with one or a few dozen devices, managing them with a control plan may seem like overkill, but if you’re dealing with thousands or millions of devices, a control plan makes the seemingly impossible manageable. Device lifecycle management is applicable for all devices, whether they are meant to be used by a single user or for a worldwide organization. The steps are the same, although done at different scales. The steps are depicted in Figure 4-2.

[image:]
Figure 4-2. Device lifecycle management

A device’s lifecycle is chronologically broken into overlapping parts, marked by some significant events:

		
	The research and design phase begins with an idea for a device, which is then developed until it becomes a thing that can be manufactured. You’ve already read quite a bit about this part in the last two chapters, but it also includes considering how you are going to maintain your device.

	

		
	The manufacturing phase takes the plans made during the research and design phase and puts them into action to actually make the device.

	
			
		Device claiming happens as a part of manufacturing and is a significant event within the manufacturing process wherein a device is registered with a device management solution. In the case of Azure, the solution is the Device Provisioning Service.

		

			
		The device is shipped and considered ready for use after the manufacturing process has been completed.

		

	

	

		
	The device provisioning phase happens once a device ships and is ready for deployment. Deployment brings that device online with a device management solution so it can securely communicate with the cloud.

	

		
	The main sequence is when the device performs its primary function while communicating with the cloud through messaging, twinning, and receiving software updates. Software patches and updates are periodically applied to the device to keep it running optimally and securely.

	

		
	The device deprovisioning phase is when the device is no longer useful for its intended purpose. It is then taken out of service and disposed of.

	

Security is a cross-cutting concern throughout the device lifecycle, which is why it appears as a box around everything else in Figure 4-2. This book has an entire chapter (Chapter 14) dedicated to security because it is such a cross-cutting concern.

Let’s go through each phase in more detail, starting with research and design.

Research and Design

Research and design (R&D) for devices, in most cases, focuses on planning how your device will solve a problem and deciding how it will do so. There are a myriad of seemingly disparate things you need to consider when designing your device during this phase, including hardware, operating systems, and SDKs, among other things, to use. This section will not cover everything you will need to think about for your device during its R&D phase, but it will give you a sense of where to start.

Let’s begin with the three phases of R&D.

Three Phases of R&D

During the R&D phase, the device will be developed until it gets to a state where there’s a clear plan for its feasibility and ultimate manufacturing. At a high level, the steps are proof of concept, prototyping, and finally, a minimal viable product as seen in Figure 4-3.

[image:]
Figure 4-3. From design to manufacturing

Proof of concept

When you prepare a proof of concept for a device, it is little more than a technical demonstration of the feasibility of an idea for a device. It shows that the functional requirements of the device can be done, even if its methods are far from optimal, secure, scalable, or efficient. The point of a proof of concept is not to make an elegant product that one can start manufacturing, and it is usually quite raw. It may be just a breadboard with wires, sensors, servos, and other hardware running with a connected PC with output streaming to a monitor. In any case, these raw products are just there to give you the certainty that something can be done.

Sometimes, connecting things to Azure is part of this proof-of-concept process because you need to send data to the cloud to demonstrate how the data is used. This connectivity will likely support the functional requirements of your device with little thought to device lifecycle management.

Prototype

Once you have a proof of concept that shows the technical feasibility of a device, you make a prototype to show how the final product will look and function. The prototype takes on a product-oriented finish that demonstrates not just the functional requirements but also some of the nonfunctional requirements. If you’re planning an enterprise-wide solution, the prototype is typically something you may want to show to an investor or an external party to generate interest in the device. These prototypes may not be perfect, but they show that your plan will result in a functional device that can be manufactured and used.

While you develop the prototype, you may also start to think about, and perhaps even test, how your device will be managed during the rest of its lifecycle. You may want to create an Azure IoT Hub, connect the device to the IoT Hub, and send and receive data.

Minimum viable product

After you’ve refined your prototype, you then have a minimum viable product that has all of the functional and nonfunctional features needed for the device to be considered “complete.” By this time, you should have figured out how your device can be managed from the cloud with all the supporting cloud services. Sometimes, a minimum viable product is the most basic form of a product, or maybe slightly more than that. This is all you may need for some devices to ensure that the device is ready to be manufactured, at least for its first generation.

During the three R&D phases, you will be faced with making many decisions about your device and its many functional and nonfunctional requirements. You can go through each of the categories discussed in the following sections to identify what requirements you may want to consider for your device.

Hardware

Most of the hardware you choose for a device goes to support the primary function of your device. Using the car example from earlier, most of the hardware components—such as the wheels, the steering wheel, the engine, and so on—support the car’s functional requirements for transportation. The car’s nonfunctional requirements are reflected in the hardware as well. You have a way to change the oil with a plug and a removable oil filter. There’s a diagnostics port to plug into a computer to read codes from the car. These go into the nonfunctional requirements stemming from maintenance.

Here’s another example in the context of IoT: imagine an imaging device with a camera. The camera and the needed compute resources for image processing will drive the hardware selection. However, some devices, especially if they do not have a user interface like a touchscreen, may need a port to plug in a cable so a technician can log into the device and fix things. Sometimes, devices come with a special diagnostics mode that enables a technician or user to fix problems on the device.

When considering the hardware for your device, you’ll need to think about items such as the compute needed to power what you want the device to do, security measures it may require, and connectivity features it’ll need to access the cloud, which is almost assumed as an IoT device. You’ll also want to consider what hardware features will be the best for the device’s lifecycle management.

Compute

During the R&D phase, you’ll need to select compute resources that support both managing the device and your device’s primary function. On the low end of the compute range, you have the most basic, constrained devices that measure RAM storage in megabytes and speeds in megahertz. On the other end of the spectrum, you have hardware appliances that can feature hundreds of gigabytes of RAM, terabytes of storage, and multicore processors, and often have dedicated compute resources, such as GPUs, for specialized processing cases.

The trade-off for more compute power is power consumption. Even though constrained devices have minimal compute capabilities, they usually consume single-digit milliwatts or even microwatts of power. Some applications require minimal power consumption over time because the devices must be installed in an environment and run for long periods—perhaps years—without recharging the device.

For a device, you want to select just enough hardware to run your application plus some extra overhead with compute, RAM, and storage for nonfunctional requirements or in case a future update needs more compute. Your device will need enough storage to download an update and apply those changes over the existing code.

Security features

When considering the hardware for your device, you’ll want to think about security as well. Security is a major part of device lifecycle management, especially when it comes to code execution, device claiming, device provisioning, and security in general. Selecting the appropriate hardware-based security, therefore, is one of the best defenses against a number of security challenges and provisioning discussed later in this chapter.

One such security feature is a trusted platform module (TPM). TPMs have existed on computers since the early 2010s. These cryptographic microcontrollers provide a suite of functions used in cryptography and security on devices. One of the primary functions of a TPM is storing keys. Devices use these keys and store them in the TPM rather than memory. Once written, the keys cannot be removed without wiping the TPM. If the keys are lost, then many other things based on the keys will not work, such as encrypted storage. Another primary function of TPMs is to provide hardware-based attestation. Attestation validates that the device is indeed one that was created and shipped from a manufacturer. This is particularly useful in IoT devices. The TPM provides uniqueness to the device and authenticates the device against a provisioning service.

TPMs use an industry-published specification, currently on version 2.0 as of late 2023. TPMs are implemented in many different ways depending on the device, but most use a discrete microcontroller for this purpose. Hypervisors integrate a virtual TPM or use a host device’s TPM for virtual machines. Machines without a physical TPM can use software-based TPMs provided by the device’s firmware (BIOS, UEFI, etc.) or the operating system. Software TPMs may work for dev purposes, but these are not recommended for production apps. Use a hardware TPM instead.

Many security-hardened, constrained devices like Azure Sphere have built-in security features, and a TPM on these devices would not be necessary. However, using a TPM for attestation is advisable on unconstrained devices that use more commodity compute, such as x86- or ARM-based boards for a device, especially on devices with significant security concerns.

A TPM can be used as a solution to mitigate many common security threats, but it’s also used in device provisioning. This is discussed later in this chapter.

AI and ML

Artificial intelligence (AI) and machine learning (ML) are not always used in IoT solutions, but they are increasingly being adopted because they have many pertinent applications in IoT workloads. Sometimes it is hard to know if your IoT solution needs ML on the device while you are designing it. AI is a broad term used to cover a swath of different computer systems that attempt to do tasks that typically require human intelligence. ML is a subset of AI that focuses on creating and applying models developed from the analysis of large datasets to find the right models, and then applies those models to new inputs. My colleague, Jeff Prosise, has written an entire book on the topic.1

Some of the canonical use cases for AL and ML include signal processing, such as images, video, and audio, and identification of patterns in large datasets. In the past, IoT devices were typically not capable of running these kinds of workloads on a device. Data had to be relayed to the cloud or an edge device for processing. However, recent advancements in chip designs enable these workloads to run on IoT devices. Imaging and audio processing have broad applications in many different contexts, such as inventory management, self-driving cars, video surveillance, manufacturing, and smart homes. One of the more popular use cases involves notifying someone when a person (as opposed to an animal or a random object) arrives at one’s front door. This is because a model was trained to recognize people using computer vision. The model is implemented on the device so it can send the notification without having to send a video stream back to the internet for analysis there.

To support these kinds of workloads, two primary kinds of hardware are used in AI-based workloads: graphics processing units (GPUs) and AI accelerators. GPUs were the first broadly used computer hardware for AI processing because many PCs, such as workstations and gaming computers, had GPUs available. In 2007, NVIDIA began providing SDKs useful for AI-based workloads with CUDA. GPUs tend to work well for AI workloads on PC class hardware, but their cooling requirements, power draw, and size put them out of range of most IoT applications; however, GPUs can still work when a device is in some environments with edge applications.

One of the more popular examples is Google’s Tensor Processing Unit (TPU), which is now finding its way into devices like phones. A TPU works with Google’s TensorFlow library, allowing models designed for TensorFlow to run on a TPU. Google has built several kinds of TPUs, including single-board computers, USB-based devices, and PCIe-based devices.

AI workloads on IoT or edge devices were initially only possible on powerful, centralized computers like servers or cloud-based computers. This method is still relevant to IoT, but AI-enabled IoT devices have two primary advantages. First, AI-enabled IoT devices process data in real time with low latency and no risks of network outages. This allows IoT devices to make decisions more quickly and reliably. Second, AI on IoT devices reduces network loads. Data is processed locally and therefore does not need to be transmitted over a network to an edge device or the cloud for processing.

Widespread adoption of AI-enabled devices for IoT is yet to be realized. Still, the trickle-down effect of technology as it finds its way into mobile devices, single-board computers, and low-powered modules implies that AI on IoT devices will change the application architecture for IoT and hardware design.

Connectivity

Device connectivity hardware plays into how a device will communicate with the cloud to send and receive data on the cloud. Each form has different advantages, disadvantages, and security concerns.

Ethernet

Ethernet is a tried-and-true method for connecting devices to a network. Ethernet is still a widely supported means of connecting IoT devices. The major advantage of Ethernet is that it provides a great deal of convenience for a device’s connectivity needs because of its simplicity and ubiquity in networking. All one needs is an Ethernet cable, and the network takes care of the rest. Ethernet has the advantage of providing Power over Ethernet (POE), which can provide enough power to more constrained devices. Even though it is simple, Ethernet can cause security issues, as it does not provide hardware-level encryption like other media does. Network security, therefore, is imperative. You should secure a network port on a switch, isolate IoT devices through segmentation, and restrict physical access to a device.

WiFi

WiFi is the most common type of network connection used for devices because it is inexpensive, fast, secure, and widely supported. WiFi installation varies, and WiFi includes backward compatibility with devices going all the way back to the first generation of WiFi that started in the 1990s.

WiFi does have a few drawbacks. First, WiFi connections for constrained devices can be a strain on the power of a device. Second, WiFi networks can create an attack vector because they are accessible over the air (you don’t have to physically break into a building to access the network). Devices on WiFi networks should implement strong encryption and securely stored WiFi keys.

Cellular

Cellular connections to cellular networks make sense for devices that will not be near any kind of network installation. WiFi and Ethernet are typically restricted to buildings, but cellular coverage exists in most populated areas in the world. If it’s not the primary connection for a device, it can also serve as a backup for a device.

Cellular modems, like WiFi, can consume quite a bit of power for constrained devices. Also, even though cellular networks are usually tightly controlled by a cellular provider, one should never assume that a cellular network is secure in and of itself. Devices on a cellular network are on a public network and should therefore be security-hardened to the degree possible.

Bluetooth

Bluetooth does not usually provide connectivity to the internet, but it can relay information from one device to another device that has an internet connection. In many cases, the internet-connected device acts as a proxy, hub, and edge for several other Bluetooth-enabled devices. The Bluetooth device itself may be an IoT device or, in some cases, a phone or a laptop. Usually, these solutions use an app if it’s a consumer device or a security connection with Bluetooth between the device and its internet proxy.

Bluetooth is a relatively easy-to-implement protocol for developers, but this means that a device must have another device like a phone or laptop to proxy its connection to the internet. Moreover, Bluetooth has a relatively limited range.

Others

Ethernet, WiFi, cellular, and Bluetooth are common modes of connection, but IoT is by no means limited to these. Some device makers create specialized connections over media to provide connectivity, such as coaxial cables, electrical infrastructure, or a proprietary wireless protocol.

Regardless of how the device connects, it needs to consider security and other nonfunctional requirements like claiming, provisioning, updating, and deprovisioning to work with Azure, and these all require a network connection to work.

Software

Software as part of the IoT nexus provides all of the instructions that your device’s hardware executes for gathering and processing data before it ultimately sends it off to the cloud. The software needed to make that happen is layered with operating systems, SDKs, and ultimately your application code. Each layer has different aspects you should consider when selecting what software to use in your device.

Operating systems

An operating system provides a foundation for all of your other software to run. They’re all different, so you need to think about which operating system aligns with your design goals and hardware requirements. You would not be able to run a heavier operating system like Ubuntu IoT Core that you saw in Chapter 3 on something like an Arduino device, and you cannot expect FreeRTOS to work well on PC-class hardware. The bottom line is that an operating system needs to work for your device’s needs and fit with your device’s overall lifecycle.

Chapter 2 discussed a few operating systems related to Azure with Azure Sphere, Azure RTOS, and Windows IoT. Beyond the scope of an Azure-centric operating system, however, you may want to consider:

Security features

Regardless of the application, be it simple or complex, the operating system that you select for a device should be secure. Most operating systems intended explicitly for IoT use are built from the ground up with security in mind. Linux-based operating systems are known for having tight security controls and can be hardened for optimal device security. Additionally, they support security hardware features like TPMs. Chapter 14 covers different kinds of security considerations when building devices.

Compatibility

A major driver in selecting an operating system for a device is its compatibility with your planned software and hardware. For software, most unconstrained operating systems, like those based on Linux or Windows, will support a wide array of software platforms like .NET, Python, or JavaScript. More constrained devices will be much more selective, with some platforms especially built for specific languages. However, IoT devices can run C and C++ applications in most cases.

An OS’s hardware compatibility entails what CPUs are supported by a device and what other hardware, like network connectivity hardware, device integration through drivers, and hardware interfaces like GPIO, serial, and USB, are supported by an operating system. Linux-based operating systems enjoy broad support for a wide range of hardware. More constrained OSs, like FreeRTOS, have fewer options but generally do not heavy hardware requirements.

Simplicity

Simplicity, as it pertains to operating systems, is the one criterion likely to have the most significant impact because “simplicity” can have many meanings. An operating system should:

		
	Be easy to use, build, and secure

	

		
	Have a small footprint

	

		
	Require fewer compute resources such as RAM and CPU

	

		
	Be easy to update and maintain

	

		
	Be more secure with a small attack surface

	

Simplicity does not imply that one is compromising on capabilities, though. A simple operating system starts with minimalism as a design goal and allows users to build upon that using tools like package managers and configuration scripts.

Consistency

When selecting an OS for a device, you should aim for consistency, which means that the OS should have regular, predictable lifecycle management. Many modern operating systems use a long-term support (LTS) model for managing updates. An LTS version of an operating system is a particular build that will bring system updates, usually security patches, until a published date. The version, however, may not receive new features. For OSs on devices that will not receive hardware upgrades, LTS versions are a boon: a device maker can deploy an OS and predictably patch that OS into the future without reimaging or upgrading the operating system. Moreover, devices do not always need the newest operating system features to continue performing the purpose they were designed for. Windows IoT and most Linux builds like Ubuntu Core and Yocto Linux provide LTS versions.

Operating systems provide the foundation for a device’s operation. Choosing the right one is not simple.

SDKs

Chapter 2 covered Azure SDKs for constrained and unconstrained devices for Azure connectivity. Those SDKs, however, will be only a few of the SDKs you will use for your device. If you are working with hardware from a hardware vendor, you’ll likely be supplied with SDKs for that hardware. Moreover, you can build an SDK for your device if you intend to extend it.

SDKs are a dependency for your application, but many SDKs have their own dependencies, too. They will rely on the application framework, such as Node.js, Python, or .NET, and likely will include packages and code that the SDK needs to run on top of what they provide. Software is constantly evolving, so it becomes necessary to update software and dependencies from time to time. Here are a few things to ensure:

		
	Monitor SDKs and their dependencies for updates, especially security updates.

	

		
	Develop automated regression tests and scan the latest code for security vulnerabilities with tools like SonarQube.

	

		
	Include updates as part of a predictable device update lifecycle.

	

App isolation

Chapter 14 discusses security at length, but one way to significantly improve application security is by adopting app isolation. App isolation means that your app code, and usually the associated runtimes, run in an isolated environment away from the primary operating system. The operating system only exposes what is essential for an application to run.

One easy way to do this on Linux-based systems is to use chroot. The command chroot is short for “change” and “root.” It sets up an isolated file system for a process. The process cannot browse files on the host’s filesystem, only those inside the chroot context. This utility also provides some execution isolation and security around a process to isolate it from the rest of the operating system.

Docker is another way to isolate processes. Docker is more than simply isolation, though. It’s an entire ecosystem used for packaging and deploying software in containers. Docker images run on a host operating system in a completely isolated environment. They provide a convenient way to distribute apps because they are packaged and published to a container registry. The images are pulled from the registry and started as new instances of the image as containers. You can publish a new version of your container image if you need to update your app. Docker can install that image without needing to update the underlying operating system. Chapter 6 contains a complete explanation of Docker containers and the Docker container workflow.

A third way that works with many Linux distros leverages a project called Snapcraft. Snapcraft builds packages called “snaps” that deploy to a Linux device through a package manager. It uses an app isolation model similar to Docker with containers but provides a more declarative approach that includes both build and run instructions for the app and exposes different things more implicitly than explicitly, like network connectivity or access to particular hardware. Snapcraft lets the snapd daemon figure out the particulars of what these declarations mean. Snaps are widely supported on IoT-focused Linux distros like Yocto and Ubuntu Core.

Azure Sphere, while a constrained device, does provide app isolation to improve security on the device. The apps here run in a container that exposes the hardware through an API.

Build, test, and release

The process of building, testing, and releasing software for a device is multifaceted, as it involves operating systems, frameworks, SDKs, dependencies, and your software.

The most basic form of this process consists of manually building something and pushing it to a device. This, however, does not lend itself well to quality, secure code. To improve the quality and security of code, code must undergo a series of scans and tests before it is pushed out to the device. To expedite this process, developers use continuous integration and continuous delivery (CI/CD) through automation, typically called pipelines.

The CI/CD process involves building software from the source code, testing that software using automated testing with, for example, unit tests and device simulators for integration testing, packaging your software, and ultimately deploying that software to devices.

CI/CD through automation has the added benefit of additional layers of security that help improve code quality and security. Leveraging these security features through automation usually does not add time to a build process:

		
	Ensure that users contributing to the code are trusted actors with appropriate permissions to view and contribute code.

	

		
	Ensure that developers contribute code through a review process. This typically disallows committing code to a project’s “main” branch. Contributions should be submitted as a pull request, and only authorized agents, after reviewing the code, can commit the code to the main branch.

	

		
	Ensure that code going through a build process does so with a trusted principal, usually one that is not a user principal.

	

		
	Use code signing to ensure that the device can validate the code installed on a device before installing it using trusted certificate authorities.

	

		
	Do not allow contributors to directly commit any releases to a build repository, such as a container registry.

	

Using tests, security scans, and security controls around a build and test process can help improve the overall quality of a product from the initial stages of development, through the prototyping phase, through the manufacturing process, and ultimately through the update process.

To the degree possible, you should build and test code without the need for devices because this allows code to “fail fast,” meaning that problems can be found in code before pushing that code to a device. If a device is needed, try using emulated hardware if it is available with a project like Qemu, which provides processor emulation for creating virtual machines of all varieties. Qemu can run on a Linux host as part of a CI/CD pipeline.

Chapter 3 discussed the use of device simulators in integration tests, regression tests, load tests, and performance tests as part of automation for cloud-side code. Code that runs on a device should go through a similar process with its integration tests, regression tests, load tests, and performance tests. Like all code, it should use unit tests to validate the code units (typically down to the method level) and scan for security vulnerabilities and patterns using tools like SonarQube.

Ultimately, the code will need to be tested on a physical device. To the degree possible, automate this process as well, but running tests off a device is usually preferable because it requires less time and fewer manual interventions between builds.

Once the code goes through a build and test phase, the code is built and packaged for a release. A release is simply a version of the code that could potentially run as a final version. This code may go through a few more checks, such as acceptance testing or similar tests, before it is pushed to an environment for publishing.

The last several sections have looked at the various nonfunctional requirements you must consider when building an IoT device with hardware and software concerns. As you begin to develop a prototype, you will likely spend as much time working on the nonfunctional requirements of the device as you do with the device’s primary function. This is quite natural. Devices, especially IoT devices, must consider these as part of a device’s backlog of features and tasks. Some of this can be “outsourced” by adopting more feature-complete platforms like Azure Sphere, but ultimately, a device is your creation—it is your design to fulfill a specific need that you envision. Even if you use services for some level of automation, these must be integrated with the device, even if you do not build them yourself.

Manufacturing

The manufacturing process involves taking a refined prototype and creating the actual product that will be used. The complexity of the process depends on the scope and scale of the device, and who will be using it. The manufacturing process for devices will look radically different for such applications. The commodity tags are produced by the thousands in a factory using a repeatable process. In contrast, more custom solutions may make only dozens of devices, with each one tailored to the user’s needs.

The manufacturing of IoT devices usually does not take raw materials and compose those into something useful; rather, manufacturing requires procuring hardware components and assembling those components, installing software, and preparing the device for provisioning. The process of manufacturing begins in parallel with research and design.

As a device moves from proof of concept toward a prototype and even a minimally viable product, device makers investigate possible solutions and begin procuring the hardware and facilities to make IoT devices. As a device moves closer to a production state, detailed plans for creating a device are crafted. A manufacturer will do a small batch of pre-production devices to ensure the devices meet the required specs. After that, the device is mass produced. Finally, the product is packaged and shipped to a user, who will set up the device or have a representative set it up.

Regardless of the process, the start of the first manufacturing production runs is the point in the product lifecycle that marks the end of the significant research and design phase as the device starts its main sequence with provisioning.

Shipping

After a device is manufactured, it’s moved from the manufacturer to its place of deployment. Depending on the kind of device, this might be as simple as taking it from the factory to the place of installation and deploying it to something much more involved, such as retail distribution. All of these imply some kind of shipping process.

I mention shipping here, not because it’s particularly technical, but rather because it’s a significant milestone in the life of a device. It is likely the last time that a device manufacturer will physically see the device. The device at this point has everything on it required to run, and it’s ready to perform its primary function.

Claiming and Provisioning

While device claiming is technically a step in the manufacturing process, it is a rather important step in device lifecycle management because it is the step where a device receives its initial set of credentials used in provisioning.

The two primary Azure services used in device provisioning are the Device Provisioning Service (DPS) and the associated IoT Hub associated with the device. Azure’s DPS is a connection broker between a device and an Azure IoT Hub. A DPS is not necessary for devices if the devices ship with the credentials to the IoT Hub already on the device. But a DPS is a great way to handle device provisioning because it automates device creation and management on an IoT Hub. Moreover, a single DPS can handle more than one IoT Hub, making it more conducive for large-scale IoT device deployments.

The IoT Hub on Azure facilitates many operations for device communication, twinning, updates, and messaging. It is the all-important cloud-side component for devices because of that. I’ll go over twinning and updates later in this chapter. Chapter 6 covers IoT Edge deployments, and Chapter 5 goes deep into the different kinds of messaging supported by IoT Hub. For now, think of messaging as one of the two sides of what the DPS is brokering.

Claiming and provisioning involve the following:

		
	Claiming begins by creating an initial set of credentials to be loaded on a device. This action is performed cloud-side on the DPS. These credentials can be:

	
			Shared Access Signature (SAS) tokens

			
		A SAS token uses a key stored on the device and in the cloud. The device uses the key to sign a token, and the DPS uses the same key to validate the token.

		

			X.509 certificates

			
		An X.509 certificate uses Private Key Infrastructure (PKI) to create a certificate that uses a trusted certificate authority between the device and the cloud.

		

	

	

		
	Both can be used, but certificates are probably more secure and will also be needed if you want to use a TPM-based device attestation. The credentials can be a unique set of credentials for a device, or the credentials can be shared as part of a group of devices, depending on the need. A single device needs to provide a device ID to identify the device properly.

	

		
	Claiming continues after the credentials are created on the DPS. These credentials are saved on the device before it ships. The credentials can be a part of a build process and baked into the firmware or operating system installed on the device. The credentials also can be installed separately after the device has its firmware or operating system installed. Once these initial credentials are loaded, claiming is complete.

	

		
	The device ships after the manufacturing process and after claiming. Shipping refers to the device moving from its manufacturing stage to being ready for installation.

	

		
	Once a device is at the place intended for installation, it is ready for provisioning. Provisioning starts once the device is powered on and connected to a network. The device uses the preloaded credentials to contact the DPS through one of three different schemes:

	
			Shared Access Signature (SAS) tokens

			
		SAS tokens are generated using the shared access key shipped on the device. The device’s ID and other metadata compose the SAS token, which is then signed using the key. The signature and metadata are returned to the DPS for authentication.

		

			X.509 certificates

			
		Certificates provide a robust security mechanism because they use a third-party certificate authority to validate the certificates before using them. The certificate is issued from the DPS. Once validated, the certificate is presented to the DPS to authenticate the device against a root certificate.

		

			TPM-based attestation with certificates

			
		TPM-based authentication provides a hardware-level authentication method that uses certificates stored on a TPM. The TPM uses its hardware IDs and the certificate to authenticate the device. This method is the most secure because it mitigates spoofing and other attacks against a cloud using IoT.

		Once the credentials have been accepted, the DPS assigns a device to an IoT Hub. The IoT Hub assignment can be one of many different hubs assigned as part of a round-robin selection process or a specific hub for the provided credentials.

		

	

	

		
	Once the device authenticates with the device credentials, the DPS creates a device-specific set of credentials for the IoT Hub. The device credentials on the IoT Hub can either be a connection string using a SAS token or an X.509 certificate derived from another certificate. At this point, the IoT Hub is ready for the device to connect. Provisioning is considered complete at this point.

	

		
	After the credentials are created on the IoT Hub, the credentials are sent to the device by the DPS. These credentials are stored on the device and ought to be secured like any other set of credentials. The credentials contain information about where to find the IoT Hub as well. Also, the DPS sends an initial configuration for the device. This is the same data stored in the device twin on Azure.

	

		
	The last step is to use the credentials provided by the IoT Hub.

	

Once the device has the credentials it needs for the IoT Hub, the DPS can step out of the way and let the device and IoT Hub communicate with one another directly. If a device should ever need to be reprovisioned, the device simply goes through the same process as provisioning. It receives a new set of credentials, which may or may not talk to the same Azure IoT Hub. In any case, device provisioning sets the stage for the device’s main sequence as part of its lifecycle.

Provision Devices with an IoT Hub through the Device Provisioning Service

Setting up a Device Provisioning Services and an IoT Hub on Azure is pretty straightforward. The template is also in the Chapter 4 folder of the book’s code repository if you want to deploy it some other way. In any case, the template takes two parameters: the Provisioning Service Name and the IoT Hub Name. These are part of the hostname for each, so they’ll need to be unique. Once you have a name you can populate the fields in the Azure portal. You’ll also need to select a subscription and a resource group, or you can create a new resource group. Select a region for the resource group.

Once you are ready, click on the “Review + create” button. The ARM template will link the IoT Hub to the Device Provisioning Service as part of the deployment. Wait a few moments for this to finish. You can monitor this under “Deployment is in progress.” Once it is finished, click on “Go to resource group” to finish the setup detailed here:

		
	In the resource group, choose the Device Provisioning Service.

	

		
	Select “Manage enrollments,” then choose “Add enrollment group.” An enrollment group allows multiple devices to register against one or more IoT Hubs. An individual enrollment is for a specific device.

	

		
	The “Add Enrollment Group” blade has several fields to fill out. As of the writing of this book, there is no way to automate setting up an enrollment group using an ARM template.

	
			
		For “Group name,” enter a descriptive name for the group.

		

			
		For “Attestation Type,” select “Symmetric Key.” The symmetric key is suitable for the purposes of this walkthrough, but a Certificate is preferable for a more secure deployment.

		

			
		Keep “Auto-generate keys” checked.

		

			
		Keep “IoT Edge Device” set to false. In Chapter 5, you’ll set up an IoT Edge device using this DPS.

		

			
		Take the default on the “Select how you want to assign devices to hubs.” Since there is only a single IoT Hub, this setting is fine. For larger device deployments, you can use a different method or even customize it with an Azure Function.

		

			
		The blade will default to the IoT Hub you created when you created the DPS.

		

			
		Take the defaults on “Select how you want device data to be handled on reprovisioning.”

		

			
		For “Initial Device Twin State,” delete what is in the text box, and replace it with an empty set of curly braces {}.

		

			
		Leave “Enable entry” on Enable.

		

			
		Finally, click “Save.”

		

	

	

		
	Now, select the enrollment group you just created.

	

		
	Click the “Copy to clipboard” button next to the value for Primary Key.

	

		
	In Visual Studio Code, open the folder for the device you worked with in Chapter 2. If you have not done so, you can create a sample device or a simulated device using the code in the repository. Follow the instructions in Chapter 2 for information on how to do this.

	

		
	Open settings.json.

	

		
	Paste the key you copied into the value for symmetricKey.

	

		
	Now, navigate to the “Overview” blade in the Azure portal. You need to get some values off this tab:

	
			
		Get the “ID Scope” value from the blade and paste it into the value for idScope in settings.json.

		

			
		Get the “Service endpoint” value from the blade and paste it into the value for provisioningHost in settings.json.

		When you’re done, you should have a settings.json that looks something like this:

		
{
 "start":"dps",
 "telemetry":"simulator",
 "camera":"simulator",
 "pollFreq": 5000,
 "connString": "",
 "provisioningHost":"blaizedps1.azure-devices-provisioning.net",
 "idScope":"0ne007C4D38",
 "symmetricKey":"rREfrgOcrb7Bm4da…6WvRs2HzwLPcg==",
 "registrationId":"device1"
}

		

	

	

		
	Save settings.json. This is essentially the claiming portion of a device’s lifecycle.

	

		
	Now, start the device. The device will use the key against the Provisioning Service for attestation and complete the provisioning process. The device, whether you are using a sample device or a simulator, creates a file called conn.json in the root folder of the repository. This file contains the connection string for the device. Each subsequent time you run the device, it uses this file to know what IoT Hub to look for and how to connect.

	

		
	In the Azure portal, browse the IoT Hub you created. There, under devices, you should see a device with the registration ID “device1” or whatever you changed it to in the settings.json file.

	

This demonstration shows the claiming process and the provisioning process through IoT Hub and the Device Provisioning Service. From here, the device enters its main sequence where it will receive updates, twinning data, and other messaging. Keep the device and resource around for other demonstrations for twinning and updates.

Main Sequence

The main sequence of the device starts after device provisioning and the device starts to perform its primary function. The main sequence of a device’s lifecycle has three primary functions when dealing with the cloud. First, a device has to communicate with the cloud. This entails all the telemetry, commands, and events that flow from a device to the cloud and the cloud to the device. Second, a device sends and receives twinning updates. And third, the primary sequence of a device includes software patches and updates.

Communication

Communication between a device and the cloud is critical to a device’s function. Whatever data devices collect or function the devices provide, the device needs to communicate with the cloud to do this. Even device provisioning updates are communications between the device and the cloud. For our purposes here, communication is the main communication sequence that involves transmitting events and telemetry from the device to the cloud and allowing the cloud to send commands and other data to the device. Chapter 5 covers communication in depth.

Twinning

In IoT, twinning means that the cloud stores a copy of a device’s configuration, state, or both on the cloud. This “twin” enables applications to query for information across all devices in an IoT workload without having to contact each device, a process that could take forever to complete, and even that might not be reliable. Device twins exist for several reasons, but the main reason is to enable cloud-side services and applications to query and report against device states without actually contacting every device that is part of an IoT deployment. This data allows device management to make decisions about a device. For instance, the device data may contain version information about the software installed on the device, such as its operating system, app version, SDK version, or hardware version. When new software becomes available, the cloud-side update mechanism can use the twinning data to know which devices it needs to update and then track the updates as they are applied.

Another everyday use for twinning is to enable centralized configuration management of a device for nonfunctional and functional aspects. When a device is provisioned, it may receive an initial configuration as part of that provisioning. However, as time progresses, a configuration may need to change. For instance, if a device is configured to report into the cloud once an hour with new data, a new configuration may be sent to tell the device to report every other hour to save on bandwidth.

Azure IoT Hub provides all the plumbing to manage the state of devices connected to an IoT Hub. The IoT Hub tracks the twinning state in a database that is part of the hub. Users can read data about devices using a SQL-like query language based on their twinning data. A digital twin comes with two sets of data: desired and reported. Desired reflects from the cloud to the machine what the cloud believes the state of the twinning data ought to be. Once the twinning data is changed, it fires an event that notifies a device that the twinning data has changed, and it passes the new data to the device as part of that event. On the flip side, devices will emit data about their state, which becomes the reported state portion of the twinning data.

Desired and reported data, however, do not have to match. How twinning data is used and reported depends on the solution. For instance, a device may report data about its state stored as part of the digital twin, but that state is inconsequential—it’s merely information about the device’s state.

In other conditions, a device should report a state consistent with the desired state. This is especially true for the configuration state. Consider the example I gave earlier about how often a device should report back to the cloud. If the desired state posts that the device should report every two hours, but the reported state comes back that the device is configured for every one hour, something is amiss for that device.

As a device designer, you must use state data and events appropriately. The Azure IoT Hub SDKs provide events you can wire up in your code to respond to event updates from the cloud. Likewise, it has special calls for posting reported twin data back to the cloud.

Device Twinning with IoT Hub

If you have not already done so, deploy the IoT Hub and Device Provisioning Service following the instructions given earlier in this chapter, and provision your device sample or simulator with the DPS so that it can talk to the IoT Hub. Once you are done with this, you can work with IoT Hub twinning:

		
	In the IoT Hub, find the device you provisioned under devices. You can do this by looking at your IoT Hub, then selecting devices left. From here, you should see the device that you provisioned.

	

		
	After you have located your device, start your device in Visual Studio Code. The device will start sending data to the IoT Hub on the default interval, which is once every 5,000 milliseconds.

	

		
	On the device in the Azure portal, select “Device twin.”

	

		
	There, you will see a bunch of JSON data. The JSON data contains data about your device, such as its name, status, and other bits of information. Under the properties section, you will see two objects: the desired object and reported object. The desired object expresses the desired state of the device, and reported reflects the actual state of the device. desired has no set properties, but reported should have pollFreq set with some metadata that looks like this:

	
"reported": {
 "pollFreq": 5000,
 "$metadata": {
 "$lastUpdated": "2022-10-08T00:43:52.339081Z",
 "pollFreq": {
 "$lastUpdated": "2022-10-08T00:43:52.339081Z"
 }
 },
 "$version": 9
}

	The $version property is incremented every time the device reports its state. In this case, it is nine times.

	

		
	Under desired, add the following code:

	
"desired": {
 "pollFreq": 7000
}

	You can remove the metadata and version information.

	

		
	Now, click the “Save” button. After saving, the portal will add metadata to the desired property:

	
"desired": {
 "pollFreq": 7000,
 "$metadata": {
 "$lastUpdated": "2022-10-08T00:55:39.6799755Z",
 "$lastUpdatedVersion": 2,
 "pollFreq": {
 "$lastUpdated": "2022-10-08T00:55:39.6799755Z",
 "$lastUpdatedVersion": 2
 }
 },
 "$version": 2
}

	

		
	The device will receive the new state and will start reporting at whatever interval you set. In the example, the interval is 7,000 milliseconds, or once every 7 seconds. You should see data in the console indicating that the property was updated:

	
new desired properties received:{"pollFreq":7000,"$version":2}

	

		
	Back in the Azure portal, navigate to your IoT Hub and select “Queries.”

	

		
	In the “Query” box, enter the following SQL query, then click “Run query.” This query will select all the devices that have a desired property, pollFreq, set to 7,000, which is probably only your device:

	
SELECT * FROM devices WHERE devices.properties.desired.pollFreq = 7000

	

		
	You can change the query if you want to look at reported properties or any other property in the twinning data. Experiment with different queries.

	

Querying the IoT Hub against the twinning data works for many use cases. If a device deployment uses several IoT Hubs, there’s no built-in way to query multiple IoT Hubs for the twinning data. You could query each hub, but that could be slow if many devices exist. It also requires that these separate queries be filtered or aggregated in the calling application. Moreover, if the data needs to be joined or aggregated in some way, there is no way to do that either. In these cases, the data needs to be exported to an external datastore to manage twinning data through a centralized database.

Twinning databases can be any kind of database, but one of the most widely used formats for tracking twinning data is a graph database, depicted in Figure 4-4. If you are unfamiliar with a graph database, it is rather simple to understand but its possibilities are profound. A graph database consists of any number of nodes and edges.

[image:]
Figure 4-4. Graph database with nodes and edges

Nodes are essentially objects that have properties, typically expressed as a key-value pair for each property. An edge is a connection between two nodes. The edge itself can have properties, too, also expressed as key-value pairs. The power of a graph database is that it allows any node to connect to another node by way of an edge. There is no limit to how many other nodes a single node can relate to. This kind of database allows for arbitrary relationships between different nodes.

IoT works well with this database because twinning data is often expressed as a set of key-value pairs. Each device in the database acts as a node. IoT devices can connect to many other things in the database. These could be other nodes representing geographies, buildings, networks, other devices (IoT or otherwise), and edge devices, among others. These connections create a traversable graph so that datasets can be returned to show relationships between all the devices and allow for experiments for when a device’s data may change. Azure Digital Twin and Azure Cosmos DB are two excellent tools for doing just this with graph databases.

Azure Digital Twin

Azure Digital Twin (ADT) is the turnkey software-as-a-service (SaaS) solution for this purpose. It serves as a centralized graph database that tracks twinning data for deployed devices, but it also allows for complex topologies that reflect how devices and other assets, such as buildings, networks, cities, and edges, are connected beyond mere twinning data. These topologies allow users to run simulations with twinning data against ADT to answer “what-if” scenarios about the devices.

While ADT is turnkey, it does not, as of the writing of this book, provide any native integrations with IoT Hub to integrate device twinning changes into ADT. To do this, the user needs to define something that can respond to lifecycle events on a device that gets passed to IoT Hub and record the results in the database.

Azure Cosmos DB

If ADT does not seem like a good fit for your application, you can create a graph database using Azure Cosmos DB’s Graph API. The Graph API is based on Gremlin, a query language for graph traversals. Cosmos DB’s Graph API enables edges and nodes to store key-value pair data on the node or the edge for whatever it represents.

Chapter 6 will take up the database options, looking at how different database paradigms and architectures work with IoT workloads, including Cosmos DB and Azure Digital Twin.

Beyond twinning, there’s another type of update: software updates. This book has hinted about this already, but now it is time to have a closer look.

Updates

You know about device updates if you own a smartphone or a computer. Every so often, you’ll get a notification telling you that your phone has an update that needs to be downloaded and deployed to the device. Many of us put this off because it seems to happen at the worst time. Eventually, you begrudgingly let the device download the updates and render your device useless for some time until it completes. Sometimes, the update fails, and your device may no longer work. In any case, it’s never a fun experience.

Updates are needed mostly for nonfunctional requirements, such as fixing software bugs or enhancing security. Occasionally, updates can add functionality to a device that did not come on the device, but this is within the constraints of what hardware is already on the device.

Despite being no fun, device updates are a lifeline for devices. Through updates, devices receive software upgrades, new features, security patches, and other much-needed software maintenance that should make a device perform better and more securely. IoT updates are no different. Devices need occasional updates applied for all the same reasons laptops and phones need software updates. The biggest difference, however, is that IoT devices typically do not have a user component to the update and, therefore, must almost entirely be managed through remote management tools.

Devices need a few different kinds of software updates:

		Operating system updates

		
	Operating system updates apply to the operating system running on the device if it has one. Some constrained devices do not have an OS, but even these may have a real-time operating system (RTOS). Other devices need OS updates that may update hardware drivers, kernel patches, and OS security fixes, among many others. Often, these kinds of updates are managed through a device’s package manager, if it has one, such as Aptitude for Ubuntu or Windows Update on Windows.

	

		Platform updates

		
	Platform updates patches, upgrades, and fixes for anything related to the needed files for your app, such as a patch for Node.js or .NET. Sometimes these are managed through package manager the same way OS updates are managed. If not, you may need to consider how this impacts your application’s delivery. Platforms built around containers have a comprehensive set of tools for packaging platforms with an application and efficiently delivering these to a device.

	

		Software updates

		
	Software updates relate to any code you write and maintain. This may range from simple scripts or agents responsible for gathering and relaying data to the cloud to something more robust with a complete user experience and complex logic. In any case, your app will likely need patching over time.

	

		Key rotations

		
	Rotating security keys and certificates is a security best practice and works similarly to how other updates work. The update cycle can periodically push out new keys that replace old ones in the way that new software replaces old ones. These new keys enable connectivity to the platform, while the old ones are typically revoked once the new keys are in place.

	

As of late 2022, Azure has a feature in preview for doing “over the air” (OTA) updates. These updates provide three different kinds of updates for devices, through the device update agent installed as part of the code on a constrained device or as a daemon on unconstrained devices.

The Azure Device Update agent follows a pattern used for updating devices wherein a device will run a separate program or daemon that is not a part of the primary software, typically an entirely different process, that is responsible for doing updates. Using an update agent ensures that updates can more reliably be applied to a device. If an update fails, the agent can restart the update or recover.

Applying updates to the sample device in a Docker container

Containers are one of many ways to deploy device code and are one way to make a platform more extensible, similar to how IoT Edge works. While IoT Edge is covered in Chapter 6, here you will see how you might do this with Docker on an unconstrained device. Earlier in the chapter, you saw one way to deploy containerized code using Ubuntu Core with a snap through Snapcraft. Here, you’ll simply do a Docker build with the device, push it to an Azure container registry, and deploy it to a Linux host. Beyond this, you will see how Docker can also serve as an agent, using the Watchtower project, a Docker container that looks for updates and applies these to your Docker environment.

To run this, first, you’ll need a virtual machine with Ubuntu or a Raspberry Pi with Ubuntu. You can use Ubuntu Desktop for this, but Ubuntu Server is likely the easiest to set up and use. If you don’t want to bother with a local VM, an Azure VM works just as well. Deploy an Ubuntu VM on Azure using the marketplace image:

		
	Before you get started, you’ll need some information from the Azure Container Registry that deployed with the ARM template you ran when you created the Device Provisioning Service and IoT Hub. Find your Container Registry in the resource group with your IoT Hub, navigate to Access Keys, and make note of the “Username,” “password,” and “Login server” fields. You may want to keep the tab open or copy the values to a text editor.

	

		
	Once you have your virtual machine ready and you are connected to it, get root access with the sudo command: sudo -i.

	

		
	Next, install Docker and its dependencies. You can use the script in the repository to install it. Use the following command:

	
bash <(curl -s \
 https://raw.githubusercontent.com/theonemule/
 azure-iot-architecture/main/Chapter%203/install-docker.sh)

	You can check the Docker install with docker ps to ensure everything is installed OK.

	

		
	Now, you are ready to build a container. Clone the code repository from GitHub with a git command:

	
git clone https://github.com/theonemule/azure-iot-architecture.git

	This will clone the code into the root home folder.

	

		
	Change directories to the Chapter 2 directory:

	
cd azure-iot-architecture/Chapter\ 2

	

		
	Now, you can build the image. Run the following Docker command, but replace <loginserver> with the value from “Login server” from step 1:

	
docker build -t <loginserver>/device-sample:latest

	

		
	Before you can push the image, you need to log in to your Azure Container Registry with Docker. Again, replace <loginserver> with the value from “Login server” from step 1:

	
docker login <loginserver>

	

		
	Now, you can push the image. Again, replace <loginserver> with the value from “Login server” from step 1. It is not necessary to push the container to run it locally, but Watchtower checks the registry for updates so it can apply these updates once they are posted:

	
docker push <loginserver>/device-sample:latest

	

		
	Run the container:

	
docker run --name devicesample -it \
 -e POLLFREQ=7000 <loginserver>/device-sample

	The container uses environment variables to configure the device. You can play with these values using the -e parameter followed by the variable and value (i.e., -e POLLFREQ=7000):

	
			START

			
		The connection type. Either “dps,” “connection_string,” or “offline.” “dps” requires you to set PROVISIONINGHOST, IDSCOPE, SYMMETRICKEY, and REGISTRATIONID with the values from the Device Provisioning Service as you did in the claiming and provisioning section. “connection_string” requires a device connection string from the IoT Hub be provided and populated on CONNSTR. The default is “offline.”

		

			TELEMETRY

			
		Either set to “device” for real telemetry or “simulator” for simulated data.

		

			CAMERA

			
		Either set to “device” for the device’s camera or “simulator” for a simulated camera. This will work only if the camera is attached and mapped to the host, then mapped to the container. Use the simulator, otherwise.

		

			POLLFREQ

			
		This is a value in milliseconds for how often you want the devices to poll for data. The default is 5000.

		

			CONNSTR

			
		Use this for a device’s connection string from the IoT Hub for the device if START is set to “connection_string.”

		

			PROVISIONINGHOST

			
		Get the provisioning hostname from the Device Provisioning Service if START is set to “dps.”

		

			IDSCOPE

			
		Get the ID scope from the Device Provisioning Service if START is set to “dps.”

		

			SYMMETRICKEY

			
		Get the symmetric key from the Device Provisioning Service if START is set to “dps.”

		

			REGISTRATIONID

			
		Create an ID for your device to identify it with the Device Provisioning Service.

		

	

	

		
	Once the container is running, you are ready to start Watchtower. Watchtower takes a number of parameters explained in the documentation. Suffice it to say, the most relevant one is WATCHTOWER_POLL_INTERVAL. This parameter sets how often Watchtower will poll the registry for changes. In the following example, it is set for every 60 seconds. In a production environment, you may want to check less often, maybe once a day or once every couple of hours:

	
docker run --detach --name watchtower \
 --volume /var/run/docker.sock:/var/run/docker.sock \
 -e WATCHTOWER_DEBUG=true \
 -e WATCHTOWER_NOTIFICATIONS_LEVEL=debug \
 -e WATCHTOWER_CLEANUP=true \
 -e WATCHTOWER_POLL_INTERVAL=60 \
 -e WATCHTOWER_NO_PULL=false \
 -e WATCHTOWER_MONITOR_ONLY=false \
 containrrr/watchtower

	

		
	Note the current run times for the devicesample container and the watchtower containers with docker ps -a. The command lists the running containers. The devicesample container should have been running longer than the watchtower container at this point.

	

		
	Now, make a trivial change to the code in the container. You can edit settings.json and add a line to the top of the file with nano:

	
nano settings.json

	Change the file, then press Ctrl + O to save the file. Press Ctrl + X to leave nano back to the CLI.

	

		
	Rebuild the container:

	
docker build -t <loginserver>/device-sample:latest

	

		
	Repush the container:

	
docker push <loginserver>/device-sample:latest

	

		
	Wait for a few minutes. After a moment, run docker ps -a again. You should see that your devicesample container restarted. This is because Watchtower, your update agent, detected a change on your container registry. From there, it pulled the latest image and restarted your device sample with the latest image.

	

Docker updates are pretty straightforward. The only discrepancy is that Docker does not have an automatic way to check for new containers while they are running. Watchtower performs this essential role and acts as the device update agent for containers on your Docker host.

Device updates are a part of the device’s main sequence along with twinning updates and messaging. Once the main sequence winds down, a device will eventually fail or fall into obsolescence. In any case, it is good to have an exit strategy for devices, too, as a means to deprovision a device.

Deprovisioning

No device will last forever. Over time a device will break down, or the hardware becomes outdated to the point where it cannot run the latest software. There is no rule for how long a device should be in service. Some devices have a relatively short lifetime measured in weeks or even days, and others can last for years. Regardless of how long the device lasts, the device needs a deprovisioning process to ensure that the device is wiped and decommissioned.

Deprovisioning a device requires a few steps. First, if any keys are stored on the device, these keys should be revoked. Revoking the keys ensures that the device will be unable to connect to a cloud platform either in an attempt to send and receive a message or in an attempt to reprovision itself as a new device. Second, if the device stores data, the device’s data should be wiped. Wiping a device ensures that any residual data left on the device cannot be extracted for nefarious use or accidentally leaked.

Azure can revoke keys without any problem, but Azure does not provide specific services that can remotely wipe a device. This functionality should be built into the device and triggerable from the cloud to the device.

Lastly, as part of device provisioning, the device needs proper disposal. A responsible manufacturing plan includes ensuring that a device is either recycled or safely disposed of. Many devices contain toxic chemicals and materials that should not end up in landfills. The best course of action is recycling, which usually extracts reusable components from a device, such as batteries, removes any other components with harmful materials, and disposes of the rest.

Summary

Device lifecycle management is a broad topic, touching on all sorts of considerations you need to consider when making a device—so much so that getting a device to perform its primary function may seem like the easy part.

As you have seen, the journey from inception to deprovisioning starts with research and design and moves through manufacturing until, finally, a device is claimed and shipped. From there, a device is provisioned and enters its primary sequence, where it communicates with the cloud, receives updates, and sends and receives state through twinning. At some point (like this chapter!), it finally ends. Here are a few points to keep in mind from this chapter:

		
	Device lifecycle management is a crucial part of designing and building a device. You start thinking about this long before you ever build a device.

	

		
	Research and development is an interactive phase that moves the device from inception to a minimally viable product for manufacturing.

	

		
	Once a device ships, it needs a way to register itself with the cloud. This process is device provisioning. Azure provides the Device Provisioning Service to associate your device with an IoT Hub.

	

		
	While your devices are running, they need to receive software and configuration updates. Configuration updates are managed through twinning, and the software updates are managed through daemons on the device that download and install software.

	

Having equipped you with the essential insights to navigate pivotal decisions and understand Microsoft’s comprehensive support for the device creation journey, this chapter merely scratches the surface. Brace yourself, as the upcoming chapter delves deeper into the intricate workings of a device’s main sequence, decoding the intricate web of messaging details. Though focused, this discussion is a linchpin, weaving into the device’s operations and profoundly influencing how cloud-side elements manage device outputs. Your journey into the heart of device orchestration continues. You’re still in device management on the IoT Landscape, but don’t miss the chance to unveil the crucial details that lie ahead.

1 Jeff Prosise, Applied Machine Learning and AI for Engineers (O’Reilly, 2022).

Chapter 5. Device Messaging

I still remember the first time I ever sent someone a message through a computer in 1989. I typed in a brief message on my Intel 286 and sent it to a friend across town who used the same BBS. At that time, sending an electronic message to a computer across town or across the state may as well have been magic for most people. Then, electronic messaging was a novelty, but now it’s so common most people don’t even think about it. My exposure to electronic messaging was a bit before it became mainstream, but messaging has been around since long before I was born. The ability to send a message from device A to device B, then reverse that process and send it from device B to device A, was and still is one of the primary uses of the internet and devices. And while messaging has been around for a long time, it has not fundamentally changed much, even with IoT devices.

In the context of IoT, device messaging, simply put, is device-to-cloud (D2C) messaging and cloud-to-device (C2D) messaging. While these two categories are broad, there’s some nuance to these message types that relates to what goes into messages, how they are delivered, and what protocol, or language, is used to deliver them. Both of these messaging types imply that messages go in a particular direction. You already learned in Chapter 4 that messaging is part of a device’s main sequence to support its primary function. Messaging, therefore, falls into the same part of the IoT Landscape (Figure 5-1) as most management features like updates, twinning, and provisioning. It is not entirely separate because some messaging does support a device’s nonfunctional requirements around telling the cloud about what happens on a device.

[image:]
Figure 5-1. Messaging in the IoT Landscape

This layer helps you understand how messaging works in IoT workloads so that you can get asynchronous messaging and support real-time and store-and-forward strategies at the same time.

Synchronous Versus Asynchronous Messaging

IoT can be either synchronous or asynchronous. Synchronous communication is like talking on the telephone. Once the channels are established, messages are sent, and the recipient expects instant feedback. Asynchronous communication requires building and sending a message to a recipient. The expectation is that there may be some delay from the recipient, so the recipient is not expecting an immediate response. It is like sending a letter through the mail.

Asynchronous messaging in the context of IoT is preferred for two main reasons. First, not all devices can maintain a persistent connection with the cloud because they are in circumstances where internet connectivity is sporadic, such as a device attached to an airplane or cargo ship. In these contexts, a device connects and disconnects from a network for long periods, perhaps even days or weeks. Second, asynchronous messaging enables better scalability because the device is not expecting instant results (if it is expecting anything at all) from the cloud. This enables cloud-side components to process the message as soon as possible. Sometimes, the cloud-side components get inundated with messages such that it can receive them but not process them. In the meantime, the cloud will typically scale to meet the demand and allow devices to continue sending messages. That said, this does not imply that messages cannot be sent and processed in real time.

Real-Time Versus Store-and-Forward Messaging

Real-time messaging means messages flow from a source to a destination with little latency between the message’s origination and reception. Not every messaging system is real time, though. Some systems use store and forward, where messages are stored until such time that a sender can send a message (maybe because the network went down or is intermittent) or the receiver is offline and cannot receive a message. In both cases, having a message broker to store and forward messages is a critical feature of the messaging infrastructure.

Both real-time and store-and-forward schemes for messaging should be supported in most IoT workloads, but they may not apply to every context. For instance, storing messages containing data for a future transmission is not very useful if a device is needed to report current wind speed for real-time tracking. On the other hand, if the same device is monitoring the weather for analysis, storing and forwarding the same message containing data is perfectly acceptable, and the data can be sent later. The determining factor for how quickly a message should be sent depends mostly on how the data is intended to be used.

The downstream side of messaging, especially device-to-cloud messaging, requires a whole host of considerations around data and data processing that the latter half of this book covers with data engineering and data architecture. Still, the considerations begin when deciding how data is to be used, which determines how it should be sent. One of those considerations is the direction data can flow: bidirectional versus unidirectional

Bidirectional Versus Unidirectional Communication

The difference between bidirectional and unidirectional communication has more to do with the protocol (you’ll read about common protocols later) used to send the messages than it does with the messaging itself. Protocols impact how messages are sent and received. A unidirectional protocol is one that a client typically initiates. The client makes a request, and a server responds to the request. In this scheme, the server cannot initiate a request to a device. It has to wait for the device to connect again before anything can be sent to the device. A bidirectional protocol means that a client initiates a persistent connection with the server. The device can send messages to the server, and the server can send messages to the device while the device is connected without having to wait.

Unidirectional messaging can simulate bidirectional communication using a concept called long polling, which opens a connection, emits a request, and waits for a response. Unidirectional communication requires this when a server cannot push messages to the device. The server will either send a reply or the connection will time out. In either case, the client immediately opens a new connection and repeats the process. This scheme works, but it is not as scalable as other schemes and tends to make protocols unnecessarily chatty, meaning that they send data more often than is absolutely necessary. To this end, bidirectional communication is preferable; however, it’s not always possible, so supporting a store-and-forward scheme is still needed for all message types, regardless of their direction.

Asynchronous, bidirectional messaging with support for store and forward works best for IoT for all the reasons you have seen. Regardless of how you send messages, messages need encapsulation—which has everything to do with how a message is formatted. Standardizing a message format ensures that the messages will work for every part of the IoT solution you are building.

Message Formatting

IoT messages consist of a few essential parts, similar to an email message. An email has the sender’s address, the receiver’s address, and maybe a subject if it is more formal. The letter also has a body containing the actual message content. In the same way, a message in the context of IoT has a structure. It includes property information, which typically tells where the message is from and where it is going, and gives some context. It also contains a body that typically contains machine-readable data, such as telemetry, as you have already seen with the device sample I introduced to you in Chapter 3. On Azure, the metadata, like the sender’s name, is referred to as “properties,” and the message content is a part of the body. Let’s take a look at properties first.

Properties

Message properties are key-value pairs and are simply metadata, which is data about data. These pairs give context to the message body. Here are some common properties that you can set:

		Creation timestamp

		
	A creation timestamp is handy for creating time windows in downstream data systems. This timestamp is not necessarily the same as the sending time because a message may be queued before it is sent. The timestamp usually needs time zone information or at least needs to be pegged to a time zone.

	

		Sending timestamp

		
	Stamping a message for when it was sent is useful for understanding latency on a system or a device. Sometimes, the latency can be caused by network issues that backlog messages on a device before they can be sent to the cloud.

	

		Device ID

		
	A device ID is essentially the analog to the “from” field in an email message. It lets the cloud side know what device sent the message. This is helpful for reporting, message routing, and data ownership for downstream data systems.

	

		Correlation ID

		
	A correlation ID matches a message with another message. Messaging in IoT systems is asynchronous, so a response from a request is not immediately sent once a message is sent. Instead, a message will be sent along with a correlation ID request. Once the message is processed, another message is sent back to the sender with a response and the same correlation ID. The sender can match the message to the original request. Correlation IDs work both ways, too. C2D and D2C messages can send and receive messages with correlation IDs.

	

		Message type

		
	A message type indicates a high-level category for the message, such as telemetry or an event. This is discussed further later in the chapter.

	

		Message subtype

		
	A message subtype usually maps onto a specific kind of a more general message type. If a device sends multiple kinds of telemetry, the subtype notes the kind of telemetry in the body. This helps route and store messages in cloud data systems.

	

		Content type

		
	The content type notes what data is in the message body. These are typically expressed as Multipurpose Internet Mail Extensions (MIME) types. Common types are JSON (application/json), XML (application/xml), or binary (application/octet-stream). Other content types exist, too. These three are discussed later in the chapter. Azure uses the contentType property for routing in Azure IoT Hub and Azure Service Bus. Service Bus is covered in Chapter 9.

	

		Content length

		
	Content length lets the receiver know how long to expect the message body to be. If it is shorter or longer, then it may not have completed the transmission properly.

	

		Content hash

		
	A hash provides a way of ensuring that the message was sent successfully. Sometimes, the hash may be a signature that signs the message with a key on the cloud or device. This approach helps prevent tampering with messages in flight.

	

		Message encoding

		
	Almost every system nowadays uses a Unicode character set, but they may use different encodings for that character set. Encoding is how the character values are represented as numbers when stored in a file or transmitted over the internet. Most systems will use UTF-8 encoding; however, others exist. Azure uses contentEncoding for routing on Azure IoT Hub and Service Bus.

	

		Severity

		
	For certain kinds of messages, such as events, severity can be assigned to the event if events are for reporting problems. 0 is benign or information only. 1 may be a warning. 2 may be a recoverable error. 3 may be an unrecoverable error. 4 may be a catastrophic failure that indicates something is wrong with the device.

	

		Title or subject

		
	Some messages contextualize the message with special text fields, like title or subject.

	

This list is by no means exhaustive. As a device maker or architect, you can establish your message properties for your system. Some of these are needed, while others may not be. In any case, getting a good set of properties for your messages helps make data processing easier because the cloud will better understand what to do with what comes next in the message: the body.

Body

A message body is the part of a message that contains the data your device and cloud systems care about. Data in the body can be arbitrarily complex rather than a set of key-value pairs like the message properties. The data in the body is typically sent as a document as JavaScript Object Notation (JSON) or Extensible Markup Language (XML). These documents are tree-like, starting with a root and branching out from there. They can contain data sets like lists, lists of objects, numerical data, text data, and binary data.

JavaScript Object Notation (JSON)

JSON data is the most commonly supported message type for IoT messages. It uses JavaScript-like syntax to express data using data keys and values. Values can be text (string) data, numbers, objects, or arrays. A JSON document looks something like the following code. This code doesn’t do anything in particular; it just shows the key-value pair formatting used by JSON:

{
 "someKey": "Some value",
 "anotherKey" :{
 "key1":[1,2,3],
 "key2" :["abc", "123"],
 "key3":[
 {
 "objectkey1": "xyz"
 },
 {
 "objectkey3": "jkl"
 }
]
 }
}

The advantage of JSON is its speed and simplicity. Data in a JSON document is compact relative to other formats, such as XML, which I’ll talk about in the next section. Many languages support parsing JSON, and the parsers are generally faster than other formats for encoding and decoding data in a JSON format.

JSON does have some drawbacks. First, JSON does not have great support for dates (although many systems use the IS0 8601 standard), so the sender and receiver must agree upon a date format and send that date as a string. JSON does not try to handle a date, so the sender or receiver must parse the date using logic. Second, there is no official JSON schema (although there have been efforts to create one) for checking JSON data. The conventions are widely accepted, but you need to create a way to validate the JSON messages and their data before parsing and storing it in a data system. Third, JSON does not have a way to tell the receiver what character encoding it is using, though UTF-8 is commonly used.

Extensible Markup Language (XML)

XML is both loved and hated for all the same reasons. At first glance, XML looks a lot like HTML. That is because XML was primarily influenced by HTML when it was created. XHTML was standardized XML and HTML under one spec, but it never caught on. Even so, XML as a data format became wildly popular before the advent of JSON. It is still widely used by numerous systems, including IoT systems.

XML uses open and closing tags and attributes as part of the document:

 <?xml version="1.0" encoding="UTF-8" ?>
<root>
 <someKey>Some value</someKey>
 <anotherKey>
 <key1>1</key1>
 <key1>2</key1>
 <key1>3</key1>
 <key2>abc</key2>
 <key2>123</key2>
 <key3>
 <objectkey1>xyz</objectkey1>
 </key3>
 <key3>
 <objectkey3>jkl</objectkey3>
 </key3>
 </anotherKey>
</root>

One of the main advantages of XML is that it can handle all kinds of data as part of its official specification. Likewise, XML has official support for schema development that allows XML documents to be validated before processing. The XML ecosystem also has several tools for querying data (XQuery, XPath) and transforming and formatting data (XSLT) as part of the specification.

XML does, however, have several drawbacks. First, it tends to be extremely verbose relative to other formats. The sample document above is functionally equivalent to the JSON document preceding it, but it is over 50% larger. On low-bandwidth networks, every byte counts. Second, XML parsers tend to be relatively slow compared to JSON parsers. Third, XML seems to be falling out of favor with many cloud systems, so support for it is patchy relative to JSON, which is the de facto standard nowadays.

You often may not have a choice about what kind of data you will need to support because the systems you connect may force you to use one or the other. Still, if you have a choice, it is best to stick with JSON for its simplicity and ubiquity in the IoT space. You may, however, run into XML from time to time, such as one of the protocols mentioned later.

Encoding

JSON and XML contend with encoding issues. These are both text-based message formats. Almost every system nowadays uses the Unicode character set, which maps a numerical value to a specific character. “A” has a character value of 65. The value 65, however, can be stored or transmitted in many different ways. The way it is stored is called encoding. The most common encoding format for modern computers is UTF-8. Still, others exist and older encodings like Windows-12xx are used in older versions of Windows and more constrained devices use 8-bit ASCII or 7-bit ANSI.

I cannot remember how often I have had to chase down an encoding issue because a sender encoded a message one way, and the receiver assumed it was encoded in another. Even though everything looked right, the encoded data was undecipherable by the receiver. Fortunately, encoding issues have become less frequent in recent years because many systems have converged around UTF-8 as the standard system. If in doubt, using UTF-8 is probably a safe bet. It’s also backward compatible with older standards like ANSI and ASCII, so that’s a plus. However, if the text data is garbled when you receive it, it might be an encoding issue, so check that first.

Binary

Binary data is anything else that is not text-based data. Binary data may be images, sound recordings, video recordings, compressed text data, encrypted data, or other formats. You can still use a content type property with binary data as part of the metadata. If you are sending a particular file format, such as a JPEG file, then using the image/jpeg property lets the receiver know what kind of data is in the body of the message.

Messaging is not intended for file transfers, even if your data is in a binary format. If the data is something you might write to a file, like an image, sound file, video, or document, don’t use messaging to send it. Still, the better pattern is to first upload a file to a storage repository, such as Azure Blob Storage, then emit a message that contains data about the file and a pointer to the file you uploaded. This process is outlined later in “File Uploads”.

The last few sections have discussed the nuts and bolts of what composes a message. It’s essential to identify what your message structure will look like so both sides will agree on what to expect in the messages when you send and receive them. But to send those messages, you need a protocol.

Common Protocols

When abstracted away, messages in the context of IoT have the same basic structure with a property and a body. Most of the SDKs for Azure IoT Hub provide a common object that is shaped this way. Once the object is created, the data is formatted and put on the wire or airwaves using several different protocols.

A protocol is essentially a language. It has a set of commands that the sender and receiver understand. The sender can invoke a command with parameters for sending messages. A receiver can likewise invoke messages to receive messages.

Almost all protocols in IoT assume a client-server architecture. Up to now, I have referred to those that emit messages as senders and those that get the message as receivers. These don’t map onto clients and servers, though. A client can be both a sender and a receiver, and a server can also be a sender and receiver. In the case of client-server, it depends on the role they play. The server in the case of Azure is Azure IoT Hub. It handles multiple clients. In contrast, a client typically talks to only one server. The client initiates the connection, but the client and the server can send and receive messages once connected.

Additionally, protocols implement connections differently. Some protocols are bidirectional, like MQTT and AMQP. In this case, a client opens a connection to a server and holds that connection open. The client can send a message at any time, or the server can. This allows for near-instantaneous communication between the client and the server. Other protocols are unidirectional, like HTTP 1.x. In this case, the client opens the connection, issues a command, the server responds, then the connection is terminated. Unidirectional protocols can still send and receive messages, but the client must constantly poll the server for new messages. Sending the messages is simply about establishing a connection, sending the message, then disconnecting.

MQ Telemetry Transport (MQTT)

MQTT was developed in 1999 as a lightweight protocol for sending and receiving data for industrial applications. Its widespread use in industrial applications evolved into one of the most widely used protocols for IoT applications.

MQTT implements a publisher/subscriber model for sending data and supports queues and topics, which are messaging patterns used for sending and receiving data. These are discussed more in Chapter 9. A sender connected to an MQTT server either publishes new messages to a queue or topic. A receiver subscribes to a queue or topic on the server, typically referred to as a “broker.” The protocol has other features for managing queues and topics, authentication, built-in quality of service (QoS), and many other features.

MQTT’s main advantage is its weight and simplicity relative to other protocols like AMQP or even HTTP. There are two primary drawbacks, though. First, MQTT has very little built into the protocol for security. This requires the user to implement much of this on top of MQTT. The connection for MQTT can be secured using TLS over TCP to secure the traffic, but the language conventions do not prevent a client from listening to everything on the server using wildcards. Second, MQTT does not have much flexibility beyond managing queues and topics and sending messages to those endpoints. Even with its drawbacks, MQTT is the recommended protocol for IoT workloads.

Advanced Message Queuing Protocol (AMQP)

AMQP is another popular messaging protocol. Like MQTT, it is useful for sending data to and from topics and queues using a publisher/subscriber pattern. AMQP, however, is a much richer platform. It allows a user to create a complex messaging infrastructure and embed things like message routing data and metadata in the message. This enables AMQP to go beyond topics and queues. It can be used for interoperability between multiple message brokers and can be used to create peer-to-peer messaging solutions.

While AMQP is supported on Azure IoT Hub, IoT Hub does not allow AMQP to perform many of the features and functions that a more general-purpose AMQP broker would create. In this context, it essentially has feature parity with MQTT but with more overhead. So, while AMQP is supported on Azure, it is generally not preferable to use AMQP because it offers no real advantages over MQTT on Azure.

Hypertext Transfer Protocol (HTTP)

HTTP is a tried-and-true protocol. It dates back to the early 1990s when it was used to serve content to web browsers. The universality of the web browser made this protocol wildly popular for sending more than just web pages. Desktop apps implemented the protocol to fetch data. Eventually, web browsers supported this scheme using XML HTTP requests. Later, JSON became preferable, and mobile devices, desktop devices, web pages, and servers were using it to send and receive data.

HTTP is interesting, though. I started this chapter with a discussion that tried to convince you to use asynchronous and bidirectional communication. HTTP is neither of these. (It’s not entirely true that HTTP is unidirectional. HTTP 2.0 is bidirectional. It’s widely implemented and growing in popularity.) The unidirectional nature means that HTTP has to poll for incoming messages by opening a connection, waiting, closing the connection, and repeating this over and over. Sometimes, this can be managed using a scheme known as long polling, where the client opens a connection and holds it open until the connection expires or the client receives a message. In either case, the client reestablishes a new connection to wait again. Moreover, HTTP has no concept of queues, topics, or the publisher/subscriber pattern built into the protocol. It’s basically used for sending a request and getting a response. Therefore, any notion of queues or topics has to be implemented through an API using a convention rather than using the protocol itself to manage these sorts of things.

If HTTP is so antithetical to IoT, then why use it all? HTTP does have two significant advantages over MQTT and AMQP. First, HTTP is relatively simple to use and implement, even by more constrained devices. Its simplicity implies that convention drives sending a message more than a protocol, so there is less code to implement in the HTTP client than in an MQTT or AMQP client. Second, HTTP’s ubiquity means it usually requires network changes for a device to communicate with an IoT Hub. Most networks already allow for traffic on standard HTTP ports, and many security devices can scan HTTP traffic for security threats.

While MQTT is still the preferable protocol in IoT, HTTP has its place with IoT workloads on Azure. HTTP supports WebSockets, which can broker a bidirectional connection over the same channels used by the unidirectional version of the protocol. IoT Hub on Azure supports MQTT over WebSockets as well. This works by an HTTP connection brokering the connection between an MQTT message broker and client over HTTP. Once the connection has been established, the client and the broker can communicate over the WebSocket channel instead of directly establishing that connection. WebSockets are generally well supported by security endpoints, too, so fewer network changes are needed.

Azure IoT Hub supports all three of these protocols. MQTT, however, is preferable because it is lighter than AMQP and also bidirectional. MQTT over WebSockets would be a second choice, followed by HTTP and AMQP. MQTT is probably a good default, but since it is so easy, making the protocol configurable in your code may be a good choice.

When it comes down to it, changing a protocol is easy, but the body format (JSON, XML, or binary) should be ironed out before you get too far into designing a solution. The downstream systems that have to process the data need to be able to read it. The easier you can make reading data, the better off you will be. Additionally, nailing down the schema for your messages is essential, too. This book has not yet talked much about models, but this is a concept that later chapters will explore. All this stuff becomes practical once you start sending data from a device with device-to-cloud messaging.

Device-to-Cloud (D2C) Messaging

D2C messaging is exactly what it sounds like: it is when a device sends a message to the cloud for an event or telemetry. A D2C message may have to jump through a few hoops before it gets to the cloud, such as when a device uses an edge appliance as a message broker, but for now, let us assume that a device is talking directly to the cloud, or in the case of Azure, IoT Hub.

A D2C message contains the essential parts discussed earlier: property information and a body, with metadata properties and the body including the pertinent data. In the context of D2C messaging, there are two broad categories for data: telemetry and events.

Telemetry

Telemetry is the data that your device collects and sends to the cloud. A device typically has a payload of sensors to detect things about its environment, how it is being used, and the state of the device. For instance, a weather station would collect data on rain accumulation, barometric pressure, wind speed, temperature, and UV readings. The same weather station may also report data about itself, such as the number of days it has been online, information about its components (CPU temp, RAM usage, storage), and other such data pertinent to the device’s current state. All of this data is periodically sent to the cloud from the device.

Sometimes, a device may transmit multiple kinds of data. These different data types each have a different schema. Once you have figured out what kind of data you want to send, you need to figure out what triggers the transmission, like a timer or some kind of event on the device.

The trigger for sending data from a device to the cloud is often a timer on a specified cadence. In the context of a weather station, every fifteen minutes may be sufficient. If a storm is moving through, it may be configurable through twinning to update that frequency. Other conditions, such as in the context of a motion detector, may send telemetry only when the device detects something. Otherwise, the device is quiet most of the time. Another standard scheme is to send data when a buffer reaches a certain size. When that threshold is exceeded, the device will batch up a block of messages and transmit them all at once.

The trigger for the telemetry needs to be a consideration. If you have millions or even thousands of devices, devices reporting on a tight cadence can create a deluge of data that is hard to consume. Figuring out the events that trigger telemetry transmission is essential to creating an intelligent device with respect to how and when it sends data. Also, an edge device can mitigate some of the data deluge. Chapter 6 explains how that is handled.

Telemetry is one of the two main kinds of D2C messages. The other is events.

Events

Events are another D2C message category. Events are, broadly speaking, “things that happen” on the device. Something in the device state changed, like its configuration. Someone tried to log in. The network connection was reestablished. The device rebooted. The device is overheating. All of these things are events. These differ from telemetry because these are not based on data collected by the device’s sensors for reporting data. Instead, these are events that happened that need reporting.

Events themselves can be benign in nature or serious. Serious events sometimes have a special status attached, designating them as an alarm. A device overheating is an example. These demand more immediate attention.

Creating an event schema for consumption in the cloud helps ensure that these events get routed appropriately by downstream systems. Standardizing for all events helps with logging and establishing prioritization, such as separating events, security events, security incidents (i.e., failed login attempts), and alarms. Establishing these kinds of categories helps the cloud-side components respond to the events if something somewhere needs to be addressed.

File Uploads

Sometimes, devices need to send data that will not fit into a single message. It’s possible to chunk the data and send it in multiple messages, but this strategy requires that the data be received and reassembled once the file has been transmitted. This scheme is both complex and cumbersome. The better way is to enable a side channel for sending these larger payloads as a file to a file store in the cloud, such as Azure Blob Storage. Azure IoT Hub supports this scheme natively. The SDKs can request a file upload, and the IoT Hub will broker the connection to a storage account on Azure Blob Storage. Once the endpoint is available, the device can upload a file to that storage account. File uploads work best for large data sizes, such as images, videos, sound files, or other media or documents with more data than a message can hold. The file upload, however, should not replace sending events or telemetry.

For some use cases, the upload may be sufficient. IoT Hub can send notifications when files are uploaded to a built-in endpoint. Azure has hooks using Event Grid topics to notify downstream services, such as a Function App or Service Bus, that a file has been uploaded to Blob Storage, and the services can react accordingly. You can also emit an event from the device, signaling that a file was uploaded.

In “Cloud-to-Device (C2D) Messaging”, there are instructions for using the device sample for this book to upload an image captured or generated by your device.

Once a message is on the cloud, you can now start doing something with it. IoT solutions have different processes for handling telemetry and events. To get the messages to the right handler, they need something to get them there. That’s where routing comes in.

Message Routing

Once a message is on IoT Hub, it needs to go somewhere. IoT Hub is not a place to persist messages. They persist for one day by default, but you can persist them for up to seven days. IoT Hub wants to receive the messages from devices and hand them off to something else on Azure as soon as the messages come in.

By default, everything on IoT Hub goes to a built-in endpoint. You can use this endpoint with the standard Event Hubs SDKs and integrations; however, all the data will be unfiltered. This may be fine for simple workloads, but it becomes unwieldy fast, so it’s best to use the two ways to route messages on IoT Hub: integrated routing or Azure Event Grid.

Integrated message routing

IoT Hub’s integrated routing works by setting up endpoints to external services like Service Bus, Event Hubs, and storage accounts:

		
	Event Hubs is a messaging platform optimized for handling massive amounts of data from millions of tiny messages. Event Hubs distinguishes between “events” and “messages” in its context, calling “events” small changes in state. In the context of IoT Hub, telemetry or events can be “events” when using Event Hubs. The main considerations for Event Hubs are the message size and the number of messages you will transmit from your devices.

	

		
	Service Bus is a messaging platform that provides a general-purpose solution for receiving messages in topics and queues. Service Bus has many features to enrich, filter, and forward messages not available on Azure IoT Hub.

	

		
	Storage accounts store data in an Avro file. For this to work, the message must be in a JSON format with the contentType property set to application/json and the contentEncoding property set to UTF-8. If you do not need to process a message right away, storage accounts provide a solution for persisting a message until something can process them as part of a batch process.

	

Once an endpoint is configured, you can filter the messages sent to the endpoint using a SQL-like syntax against the message property data, the message body, or the device’s twin data. The routing feature forwards the message to one of the three outlined services if a match is found.

Event Grid routing

Event Grid is another service that’s useful for message routing. It works for both telemetry and events. Event Grid sets up topics that can support multiple subscribers to a single event, similar to Service Bus. The message must be in a JSON format with the contentType property set to application/json and the contentEncoding property set to UTF-8. Event Grid, like integrated routing, allows users to filter messages based on content. More than one Event Grid topic can route data, and a single Event Grid topic supports multiple subscribers to the messages.

Topics support the following types of subscribers:

		Azure Automation

		
	Allows you to execute runbooks written with a visual designer, PowerShell, or Python to operations on Azure resources.

	

		Azure Functions

		
	Provides a serverless programming paradigm for events and telemetry coming off a topic using languages like C#, JavaScript, or Java.

	

		Event Hubs

		
	Work as output bindings for topics and highly scalable messages.

	

		Logic Apps

		
	Provide integration middleware in a no-code or low-code designer. These provide workflows for moving data of different kinds.

	

		Power Automate

		
	Part of the Power Platform, enables users to create workflows for automating business processes within it and its tangential services.

	

		Queue Storage

		
	A low-cost queuing service as part of a storage account. It works like other queuing services but is generally not ideal for high-throughput scenarios.

	

		Service Bus

		
	Service B similar to Service Bus is a general-purpose messaging platform for topics and queues.

	

		Webhooks

		
	External HTTP endpoints that Azure can call with messages from the platform.

	

Choosing between Event Grid and the integrated routing on IoT Hub comes down to how the messages will be used and processed. IoT Hub’s integrated services work well for data-oriented tasks that process the data as part of a speed or batch layer. These concepts are discussed later in the book (Chapters 6 through 9), but they heavily leverage services like Event Hubs, Service Bus, and storage accounts. Moreover, IoT Hub’s integrated routing will publish events related to twin changes, but Event Grid does not. The Event Grid topics work well for solutions that need to respond to events using one of the other supported platforms on or off Azure, like Azure Automation, Function Apps, Logic Apps, Power Automate, and Webhooks.

As a rule, prefer integrated routing until you have a reason to use an Event Grid topic. Many of the services listed, like Function Apps, Logic Apps, and Power Automate, can respond to queues and topics on Event Hubs and Service Bus.

Setting up message routing

Up to now, you have read about message structures, protocols, D2C messaging, telemetry, events, and routing. Let’s put it all together by setting message routing on Azure IoT Hub. After setting this up, you’ll send data from the sample device or simulator through the IoT Hub.

Before you begin, ensure that you have deployed the ARM template from Chapter 3, where you set up a DPS and an IoT Hub. Connect your device to the IoT Hub using the DPS. Once you finish this, you are ready to set up message routing. Make a note of the resource group where you deployed these resources.

		
	In the Azure portal, in the search box, type in “Service Bus,” then find the link for Service Bus under Marketplace.

	

		
	On the “Basics” blade:

	
			
		Select the resource group for your IoT Hub and DPS. You don’t have to put this in the same resource group; it just makes things easier to manage.

		

			
		Give the Service Bus a Namespace name.

		

			
		Put the Service Bus in the same region as your other resources.

		

			
		For the “Pricing Tier,” select “Standard.” That should be more than enough for what this is doing. This incurs small charges on your Azure subscription at this tier.

		

			
		Click “Review + create” when you are finished.

		

	

	

		
	After the validations finish, click “Create.”

	

		
	Once your Service Bus is finished deploying, find the resource in your resource group, then click on “Queues” under “Entities.”

	

		
	Click “+ Queue” to add a queue.

	

		
	On the configuration page, simply enter the name iot-telemetry and take the defaults for the rest. This queue will handle device telemetry.

	

		
	Add another queue and call it iot-events. This queue is for events.

	

		
	Once your queues are created, find your IoT Hub resource, and select “Message Routing.”

	

		
	Click “+ Add.”

	

		
	Click “+ Add endpoint” and select “Service bus queue.” This will take you to a screen to configure the queue.

	

		
	For the “Endpoint name,” call it device-telemetry-ep. Find your Service Bus instance in the list for “Service bus namespace,” then pick your queue called iot-telemetry. After that, click “Create.”

	

		
	After the endpoint is created, you’ll be redirected back to the route configuration screen. Here, name the route device-telemetry.

	

		
	For the “Data source,” select “Device Telemetry Messages.”

	

		
	Click “Save.” Once you save the route, device telemetry will flow to the Service Bus.

	

		
	Repeat steps 10-14, except choose “Device Twin Events” for the “Data source,” create a Service Bus endpoint called device-events-ep that maps to your iot-events queue, and name it device-twin-events.

	

		
	Repeat steps 10-14, except choose “Device Lifecycle Events” for the “Data source.” Do not create a Service Bus endpoint; instead, select your existing device-telemetry-ep. Name it device-lifecycle-events.

	

		
	Now, you should have two new routes. One goes to the IoT device telemetry queue, and the other goes to the device event queue.

	

		
	Start your device sample or simulator. Refer to Chapter 3 on using the DPS to provision the device and get it up and running. The device simulator should start reporting telemetry to the cloud. Now that the routes are in place, the messages will be sent to the Service Bus queues.

	

		
	Back on the Azure portal, find your Service Bus again. Select “Queues,” then select your iot-telemetry queue.

	

		
	Choose “Service Bus Explorer” and click “Peek from start.” You should see a list of messages coming from your device. Right now, you are not doing anything with the messages other than queuing them. In the following chapters, you’ll work with different parts of Azure that will consume these messages from the Service Bus or Event Grid.

	

		
	Click on any of the messages in the list. You can see the body in the “Message Body” text box. The messages from the device sample or simulator use a JSON format, shown as follows:

	
{
 "timestamp": 1667958144152,
 "memTotal": 32000000,
 "memUsed": 4750023,
 "cpuLoad": 38,
 "cpuTemp": 58,
 "fs": [
 {
 "name": "d1",
 "size": 32000000,
 "used": 67.4
 },
 {
 "name": "d2",
 "size": 64000000,
 "used": 58.3
 }
],
 "network": [
 {
 "name": "net1",
 "sent": 20161121,
 "received": 38535440
 }
],
 "batteryPercent": 85,
 "batteryCharging": true,
 "messageType": "telemetry"
}

	

		
	Look at the “Message Properties,” too. These properties are set by the message broker, in this case, IoT Hub, and by the SDK with custom properties.

	

		
	Pull up the Service Bus Explorer for your iot-events queue to look at the messages from twinning and lifecycle events you routed to this queue.

	

In this example, you created a Service Bus, created some queues, created some routes to those queues, sent some messages from a device to the queues, and finally looked at the message data. This is quite a bit, but it encapsulates a device’s direct interactions with the cloud. Telemetry from your device tells the cloud what your device is doing as it performs its primary function. Downstream, you can use this data to get valuable information about your devices for analytics, AI, and tons of other workloads. Even with this complete, sometimes, before a message is routed off IoT Hub, you might want to add data to the message. This process is called enrichment.

Message Enrichments

Message enrichment enables you to add properties to messages. One common enrichment is to add data about the IoT Hub that landed the message on Azure. Using enrichments gives more context to messages so that downstream processors have better handles on filtering that data. Message enrichments allow tags from the device’s twin or the IoT Hub.

Adding enrichments to messages

Adding an enrichment to a message is pretty straightforward. You give the key a name, and then you can use twinning data from the device or message data for the value. Here’s how you can do it with your sample:

		
	In the Azure portal, find your IoT Hub again, and select “Message routing.” From there, select “Enrich messages.”

	

		
	On the form to add a new enrichment, enter “hubName” for the “Name” and “$iothubname” for the “Value.” In the dropdown for “Endpoints,” choose your Service Bus queue endpoints. This enrichment adds the IoT Hub to the message as a property.

	

		
	Click “Apply.”

	

		
	Start your simulator or sample device to emit some more messages.

	

		
	Open Service Bus Explorer and peek for the latest messages. Select any one of them and look at the “Message Properties.” You will see a new custom property called “iotHub” with the name of your IoT Hub as the value.

	

IoT Hub allows up to 10 enrichments that can be sent to any of your routes. This is not the last time you will see enrichments, though. Enrichments also play a part in data processing. In later chapters of this book, you will see data enrichment as part of batch jobs and streaming jobs. These enrichments here are simply for adding context to the messages as they pass through the IoT Hub and before they are routed onward to something downstream of the IoT Hub.

Up to now, everything has been about device-to-cloud messaging, looking at telemetry and events and how you can move those messages around on Azure. Data, however, goes both ways in IoT. The other way reverses the process and involves messages from the cloud to the device.

Cloud-to-Device (C2D) Messaging

Cloud-to-device (C2D) messaging reverses what device-to-cloud messaging does. So much of the conversation around messaging in the cloud centers around D2C messaging, and rightfully so, because it is by far the majority. Because of this, C2D seems an afterthought but is no less critical. C2D messaging is also simpler because it does not have to contend with routing issues and data values. Like D2C messaging, C2D messaging has two kinds of messages: general messages and direct methods. Covering direct methods first clarifies general messaging, so let’s start there.

Commands (Direct Methods)

Cloud-to-device direct methods messages are simply the cloud telling a device to do something with a command. The command is essentially a remote procedure call (RPC). RPCs harken back to the earliest days of networks when computers could tell a computer on the other end to do something on its behalf. Sometimes, the calling computer expected results. Sometimes, it did not. Sometimes the calling computer sent parameters. Sometimes, it did not. RPC to an IoT device is no different—it is just something in the cloud telling a device to act.

Direct methods in the context of IoT should be treated a little differently due to the nature of cloud-based messaging. With the cloud, the network between a device and the cloud is typically the internet. (Sometimes, this may be a brokered high-speed connection like ExpressRoute on Azure, but that is the exception, not the rule.) The internet, by design, does not have any guaranteed service level agreement (SLA) for things like throughput or latency. This sort of connection is a “best effort” SLA. Because of this, a device may not immediately receive a message quickly or may not receive it at all if the connection is bad! Likewise, any response from the message suffers from the same constraints. When issuing commands that expect results back, the answer to the message is an acknowledgment that the command was received. The device can then perform actions associated with the direct method and, if need be, send the results back to the cloud as a D2C event or telemetry.

Let’s look at an example. The device sample or simulator you’ve been using can capture an image and upload it to Azure Blob Storage, so the following demo shows two things at once: using a direct method and a file upload. Direct methods don’t have to send something to the cloud, but this demo does just that.

Using a direct method to upload a file to Azure

Direct methods are super simple to use and are just another message. Here, you will set up storage associated with your IoT Hub and use the sample device or simulator to upload a file to that storage account using a direct method:

		
	In the Azure portal, find your IoT Hub. Select “File upload” under “Hub settings.” Once there, choose “Select Azure Storage Container” on the configuration blade.

	

		
	On the “Storage accounts” blade, you can pick an existing storage account, but here, create a new one by selecting “+ Storage account.”

	

		
	On the “Create storage account” blade, give it a unique name. I’ve used blaizeiotuploads. You can take the defaults on the rest of the settings. Click “OK” when you’re done.

	

		
	Back on the “Storage accounts” blade, select your newly created storage account, and then “+ Container.”

	

		
	Name the container iotimages and click “Create.”

	

		
	Click on the new container and then click “Select.”

	

		
	Optionally, under “File notifications settings,” you can turn that on and a new message will be emitted on the messages/servicebound/filenotifications endpoint. This is another routable message you can use if you want to know when a file is uploaded. It will contain info about the file and what device uploaded it.

	

		
	Click “Save” to save your settings.

	

		
	If you have not already done so, start your device.

	

		
	On the IoT Hub, click “devices” and find your sample device or device simulator in the list of devices. It’s probably the only one.

	

		
	Click “Direct method” to go to the corresponding blade.

	

		
	Put “takePicture” into the “Method name” field. The device code has already been configured to handle this method name.

	

		
	This method does not require a payload, so put {} into the Payload field. If you want to parameterize methods, you can put JSON data as the payload.

	

		
	Now, click “Invoke method” and wait a few seconds.

	

		
	The “Result” box shows the payload the device sent back.

	

		
	Now, find the storage account you created in step 3. Select “Containers,” then the “iotimages” container, and then click the folder for your device.

	

		
	In that folder, you should see an image that matches the name of what was sent back in the payload of the “Results.” Select that file.

	

		
	Click “Download” to download the image to your computer and view it in your image viewing app. The sample sends a snap from your device’s camera.

	

File uploads work well for data that is too big for a message. Images from a camera are one such example. You can also use it for other captured data, like videos, sound files, large datasets, log files, or anything you need in the cloud, which are covered in the “File Uploads” section earlier in the chapter.

This example looked at direct methods to invoke a command to take a picture and upload it to the cloud using a file upload. Direct methods are useful for telling a device to do something, but if you just want to send data to a device, plain-old messaging works this way, too.

General Messages

Everything else that is not a direct method is just like any other message. It has properties and a body, just like every other message. Whenever your device connects to the cloud, it receives whatever messages are queued for it. While connected, the messages are sent in real time through whatever protocol you used to connect. MQTT and AMQP are both bidirectional, so they can maintain a connection indefinitely so long as the network stays operational. HTTP relies on polling the cloud for new messages.

Once a message is received by the device, it’s up to the device’s code to handle that message. The device SDKs create plumbing that enables developers to wire up methods to handle the messages. This is super easy to do.

Cloud-to-device messaging from the Azure portal

Sending a message from the cloud to a device is as simple as sending a message from a device to the cloud. The Azure portal provides an interface for doing this:

		
	Start your device simulator or sample if you have not already done so.

	

		
	In the Azure portal, locate your IoT Hub, select “Devices,” and then find your device in the device list.

	

		
	Click on “Message to Device.” This opens a form to send a message to a device. Notice the form has two parts for building a message: a body and properties, just like D2C messages.

	

		
	In the message body, put in a simple, short message, like “Hello, There!” You can add optional properties. The device simulator or device sample ignores these. It just echoes the message to the output stream.

	

		
	Click “Send Message” once you are done.

	

		
	In the device’s output, you should see the message echoed back:

	
Body: Hello, There!

	

Messages to the device are useful for anything other than direct methods and twin updates. This could be cloud-to-device telemetry or events or even messages from other devices or apps the cloud relayed.

C2D messages and D2C messages in this chapter centered around Azure IoT Hub. IoT Hub should be the first choice for any kind of IoT device connecting to Azure; however, it may not work for everything. There are some use cases where IoT Hub might not work. For that, you may need to build something custom. The following section talks about what you should consider before doing that because it is not as easy as it might seem!

Custom Solutions

A custom message handling solution on Azure is no small undertaking because it requires you to create at some level of feature parity with some of the basics of IoT Hub. As a rule, I would discourage this practice. However, if you need to support a protocol, you can create a protocol gateway. A protocol gateway essentially translates one protocol to another supported protocol. Azure IoT Edge supports this use case. Even if you cannot run IoT on premises, you can still run it in the cloud and use your custom or unsupported protocol with that instead. You’ll learn about this in the next chapter. So, if you must build something like IoT Hub for messaging, IoT Hub performs some critical functionality you’ll need to support: security, device management, and message routing.

Security

Security in a custom solution requires data encryption in flight and device authentication. TLS is the standard way of encrypting data for transmission on the internet. Supporting a TLS connection requires setting up a TCP or UDP connection, then establishing a TLS connection using asymmetric keys with a certificate authority. Many libraries support TLS connections over TCP. For UDP, the standard is DTLS.

Beyond securing the connection, a solution would also need to authenticate devices. The device needs some kind of credential, such as a signing key, token, or X.509 certificate. These credential schemes need to be supported by an IoT solution. A one-time authentication is enough if you can support bidirectional commands using a session. However, many devices that require more custom solutions are constrained and therefore do not maintain a persistent connection to decrease power consumption. Using a stateless mechanism to send and receive data works better in these scenarios.

Device Management

Device management is another essential function of an IoT solution. It provides a way to connect new devices, remove old devices, and manage device credentials. Beyond that, features like configuration management with concepts like twinning, while nice, are not necessary.

Message Routing

Message brokering is probably the most essential function that any custom solution should provide, and it might be the entire reason for creating a custom solution in the first place. I have seen instances where a device could not use one of the supported protocols on the IoT Hub, and an IoT Edge was not feasible because of the disparate, often-changing location of devices.

Protocols

Azure IoT Hub supports MQTT, AMQP, and HTTP out of the box for applications. These are all TCP-based protocols. Many constrained devices can handle an MQTT connection or at least an HTTP connection. Still, there are times when a device may be so constrained that even TCP might be challenging. These devices, therefore, prefer UDP.

Custom TCP and UDP

Custom TCP and UDP solutions can be created using socket programming. Socket programming gives you the ability to send raw bytes over the connection, so you, as a developer, design the protocol for sending and receiving data.

One common reason to use a custom protocol like this is to use fewer bytes to make messages smaller. Modern protocols do not care much about space now because bandwidth is sometimes relatively cheap and fast. But, in the early days of networking, every byte in a stream was intentionally used. Many protocols used fixed-width fields without tags to save space. Every byte in the field carried a value. The client and the server knew how to slice the stream at the byte level. This scheme is still used in some cases by devices that have limited bandwidth, so data has to be as compact as possible. A custom protocol is usually not a robust solution and will be more challenging to integrate with existing solutions. If you are concerned about contained devices, consider CoAP as an alternative.

Constrained Application Protocol (CoAP)

Beyond a minimalist custom protocol, many devices can at least use a Constrained Application Protocol (CoAP) to send and receive data. CoAP is similar to HTTP in its command set, but the protocol runs over UDP and is secured with DTLS. Unlike AMQP or MQTT, the protocol does not have the concept of queues or topics, so any server-side solution would need to interpret requests accordingly.

Constrained devices have numerous libraries written in C and C++ to support CoAP. CoAP is supported in higher-level languages like C#, Node.js, and Java.

Extensible Messaging and Presence Protocol (XMPP)

I bring up XMPP because it is another protocol often used in IoT solutions. Many people like it because of its open nature and breadth of support among different kinds of servers and clients. XMPP was originally developed as an open chat protocol for Jabber that was widely used for point-of-presence software and chat apps in enterprises before the advent of collaboration software like Teams or Slack. With XMPP, users could send messages and files, and do voice over IP (VOIP) with the client software. As it matured, it became messaging middleware for applications and eventually was adopted by some IoT applications.

XMPP is sometimes referenced and used by integrators and other solutions, so you may have to support it at some level, but as a rule, prefer one of the supported protocols. If you can support XMPP, you can probably support MQTT or AMQP on your device.

Scaling

Another consideration is how to scale a solution for high availability and handle large data volumes. Any solution that uses a custom TCP or UDP protocol or implements CoAP needs to run as a daemon of some kind, such as a Windows service or Linux daemon. This style of hosting would require either virtual machines or containers to run. Azure supports VM Scale Sets and availability groups for virtual machines. Azure provides Azure Kubernetes Services and Azure Container Apps for running containers at scale.

Also, to scale well, a daemon should support multiple incoming connections and, to the degree possible, should not maintain any state. Treat the solution as a relay. The relay may perform lightweight transforms and enrichments, but it does not maintain a session or message state.

Integrations with Azure

On Azure, create your custom solution to leverage Azure as much as possible. Rather than reimplementing queues and topics, a solution should relay messages to Event Hubs or Service Bus using one of the supported protocols for these services in the way IoT Hub does.

A custom solution may be necessary for some implementations. There are, however, other ways to remediate these problems for constrained devices using IoT Edge and a protocol gateway, a pattern covered in Chapter 6.

Summary

Here’s the TL;DR version of this chapter:

		
	Use asynchronous, bidirectional, store-and-forward schemes in messaging for IoT solutions.

	

		
	Messages have properties and a body. Properties are for metadata. The body contains the pertinent content being sent.

	

		
	Device-to-cloud (D2C) messages send telemetry and events to the cloud.

	

		
	Cloud-to-device (C2D) messages send commands (direct methods) and messages from the cloud to the device.

	

		
	Use file uploads for large files.

	

		
	Prefer JSON for the message body format.

	

		
	Prefer MQTT for the protocol.

	

		
	Use routes to relay telemetry and events to other Azure services.

	

		
	In order of precedence, prefer Event Hubs and Event Grid for message routing.

	

		
	Avoid building a custom protocol. If you have to, prefer a protocol gateway with IoT Edge.

	

Most of the details around messaging have to do with figuring out how to format your message, choosing which protocol to use to transmit those messages, and deciding how to route those messages once they are on the cloud. Messaging for telemetry will likely make up most of the messages you send from devices, and fortunately, telemetry is probably the easiest kind of message to implement. The complexity of messaging is dealing with all that data once it is in the cloud. Before you go there, though, there’s one more thing to talk about with messaging and devices: IoT Edge. In the next chapter, I’ll show you how IoT Edge provides some really cool services and paradigms that can take your IoT solutions to a whole new level.

Chapter 6. Life on the Edge

It seems everything wants to be “cutting edge,” “bleeding edge,” or “leading edge” nowadays. So, when I first heard of “edge computing,” my eyes rolled. I thought it was a marketing term used to discuss new computing technology, but I couldn’t have been more wrong. It had nothing to do with its newness and everything to do with where it sits relative to other computing models: between more traditional on-premises models and the cloud. Its location in this context is still on premises, but it is at the “edge” of on-premises computing, where it touches the internet and the cloud. Therefore the “edge” on the IoT Landscape is between devices and the cloud (which is generally everything on the right side of the landscape), as seen in Figure 6-1.

[image:]
Figure 6-1. The edge in the IoT Landscape

But edge computing is more than location. It’s not only about where the computing is done but also about how the computing is done. Edge computing occupies the same relative space as perimeter computing for network security with things like reverse proxies and web application firewalls (WAFs). While edge computing does some of these, it is unique. To describe it, it’s best to look at where edge computing came from.

What most people think of as the modern cloud started around 2008 with big players like AWS and Azure. Online hosting for web apps and co-location services existed before then, but the on-demand, hyperscale services that differentiated AWS and Azure from these other models created the demarcation between more legacy approaches and the modern cloud. This newer model offered economies of scale with on-demand compute, allowing organizations to run their workloads for less in a more secure, scalable environment. The business proposition was solid, so organizations started the arduous process of moving data centers to the cloud.

Along the way, many organizations and cloud providers realized that moving entirely to the cloud was not, in most cases, workable. To compensate for this, cloud providers still promoted the benefits of cloud computing while offering many services to create “hybrid” data centers. The mantra was to “treat the cloud as an extension of your data center.” This solution uses many of the same on-premises paradigms for running workloads, including virtual networks, virtual machines, storage management, and compute management, among others.

Over time, the cloud matured by creating new and innovative services available in the cloud only as platform as a service (PaaS), which are services where the cloud provider maintains much of the supporting infrastructure. These services offered customers great value, but they wanted them on premises. Therefore, the next generation of innovation attempted to bring cloud services back to the data center. This innovation is edge computing.

While “hybrid” describes extending a data center into the cloud, “edge” computing is about extending the cloud PaaS services beyond the cloud into the data center and other environments, including those with IoT deployments. Nowadays, most major cloud providers offer hundreds, often overlapping, services for all kinds of workloads. These services, however, require that an organization have a presence in the cloud to use them. Around 2018, cloud providers began thinking about how to deliver cloud services to organizations on premises. Instead of the mantra of “treat the cloud as an extension of your data center,” the question is now, “how can I treat my data center as an extension of the cloud?” But the next question after “what is cloud computing?” is “why use it at all?”

Why Use Edge Computing?

Edge computing, in the grand scheme of IoT, is not always necessary. For more distributed applications, like consumer devices that show up in homes or offices, edge computing is not practical. But it has value in applications with a large concentration of IoT devices, like manufacturing plants, commercial buildings, medical facilities, ships, shipping terminals, restaurants, and many others. There are many reasons to consider edge computing and many concern themselves with IoT. Here are a few.

Better Response Time to Events on Premises

In some IoT workloads, response times are critical to ensuring smooth operations. One of the canonical use cases for IoT device interactions with edge computing is speeding up response time from when a message is sent and when it receives a response. Most times, edge computing enables quicker response times because it cuts out much of the latency added by the internet and potential bottlenecks on cloud services.

Reliable Connectivity for Critical Services

The internet, for the most part, has no guaranteed service level agreement (SLA). It is usually a “best effort” approach, meaning that internet service provider (ISP) and network operators do their best to keep the networks up and running, but there is no guarantee that the network will be available when needed. This might be OK sometimes. If I cannot watch Netflix because my internet connection is down, I’m probably going to be pretty annoyed, but if a 911 call center cannot operate because it cannot access its critical services, then lives are at stake.

Edge computing helps ease the problems of network availability by bringing critical services closer to the devices that use them. In IoT, some of these services employ systems that aggregate data from a suite of devices and use that data to make critical decisions, such as fire suppressants and alarm systems. Having localized edge computing in this context helps ensure services are more likely to be available to the devices that use them.

Access to Critical Services Without Bandwidth Constraints

Bandwidth is pretty cheap nowadays, but it can sometimes be quite congested depending on what uses it. IoT devices generating tons of data can sometimes overwhelm networks. Edge computing can help ease this in the same way it brings critical services into an environment for more reliable connections. Edge computing keeps critical services on local networks with ample capacity to manage the loads created by IoT devices rather than sending them over the internet.

Aggregations and Filtering Data to Reduce Network Traffic

One of the common practices in data analytics takes a large block of data and summarizes that data through some aggregation, such as sums, averages, means, maxes, and so on. Rather than transmit this data over the internet to let the cloud process it, sometimes organizations will store the data in a local context and aggregate it on an edge device. The edge device then sends the aggregate data to the cloud for storage in an analytics system such as a data warehouse or data lake. (Chapter 10 goes more into depth about data lakes and data warehouses.)

Needless to say, IoT devices generate tons of data. Not all of that data has to traverse the internet if it is more for reporting, so aggregating data on the edge instead of in the cloud is one way to save bandwidth on a network that could otherwise be overwhelmed, especially with a high volume of data from IoT devices.

Compute Offloading to Save Network Bandwidth

Similar to data aggregation, compute offloading at the edge provides localized compute without the need to send data to the cloud. One canonical use case involves using AI on the edge for image, sound, and video processing. In these use cases, rather than transmit these large, bandwidth-hogging files to the cloud for processing, edge computing can process them on the edge using GPU-equipped edge devices that can run the same models the cloud uses for object detection. Once processed, the images can be stored locally, but the results, usually orders of magnitude smaller, can be transmitted instead. IoT workloads sometimes have AI and specialized compute built into the device, but this is not always possible, especially on constrained devices. Edge computing brings the AI closer to these devices and saves on network bandwidth at the same time.

Data Localization When Dealing with Data Sovereignty and Security Issues

In recent years, data localization has become a political football in many parts of the world. What data can and cannot leave a country is the subject of much political debate and is codified as law in many countries, like the European countries that use the GDPR standards. Other issues stem from security concerns about shipping data out of a data center or storing data in the public cloud. As I’ve said, IoT devices generate tons of data, and some of that data falls under compliance and security rules. Edge computing offers a solution that enables organizations to leverage cloud computing while retaining data in geography under such compliance standards and security concerns.

A Disconnected Cloud That Performs with No Network Connection

Many industrial workloads need the cloud in places with no or severely constrained network connections. One such location is on ocean-going vessels. While satellite communication can ease lack of connectivity, it’s not always reliable or available to ships as they move about the world. Still, ships need compute services because they, like all large and complex machines, have tons of components that need compute power, much of which is used by IoT workloads that monitor the ships.

It’s possible to use more traditional service models on ships. Many companies, however, have turned to edge computing to extend the cloud to ships. Doing so allows companies to better manage these workloads in the same way that cloud resources do. When a ship comes into range of a reliable connection, updates and data exchanges can happen with the cloud, but to the users, these natively integrate with the cloud, and the user can use the same tools to manage both the edge and cloud workloads. After updates and exchanges apply, the ship can return to sea and operate disconnected and autonomously.

Azure has many hardware and software solutions that bring the cloud onto ships and into data centers, including Azure Stack, Azure IoT Edge, Azure Arc, and Azure Data Box Gateway. I’ll get to all of them in this chapter, but let’s focus on IoT Edge and Azure Arc for now. IoT Edge and Azure Arc for Kubernetes are different software solutions, but they both leverage Docker-based container technology.

Container Basics

A container is both a virtualization technology and a way of packaging apps. As a virtualization technology, containers provide what is a virtualized kernel. By comparison, virtual machines (VMs) provide virtual hardware as components like disks, network adapters, CPUs, GPUs, and so on. An operating system uses virtual hardware in the same way it uses physical hardware. Containers take a similar approach, but the abstraction is at the kernel level. A container exposes system calls, memory management, process management, and so on that look like a native kernel rather than an abstract kernel to the apps running in the container. Containers shave off the need for additional operating system installs, cutting down on maintenance, disk space, memory, and CPU utilization. All these savings create better application density on the same hardware. The trade-off, though, is that containers have an operating system affinity. Linux containers need a Linux host, though the distro can vary. Windows containers need a Windows host to run.

Container workflows are pretty straightforward, too:

		
	Create a script called a Dockerfile that contains instructions for building a container image.

	

		
	Run the Dockerfile in a build context to create the image.

	

		
	Push the image from the build context to a container registry.

	

		
	Pull the image from a container registry to a runtime environment.

	

		
	Create one or more container instances from the container image to run the app in the container.

	

Each of these steps has some nuance, but all container workloads follow this basic pattern, including Azure IoT Edge and Kubernetes.

Azure has many ways to run containers, but one service they can all share helps facilitate container-based workloads: Azure Container Registry.

A container registry is simply a repository for container images. A build environment uploads images to the registry and tags the images. The tags are useful for organizing the container images on the container registry. Once here, container runtime environments can download them. Azure Container Registry (ACR) is a first-party offering that provides the essential services of a container registry and hosts some value-added features for building and maintaining containers on Azure, such as build services, security, and registry replication for high availability.

Almost all services on Azure that can run containers have native integrations with ACR, but any service on or off Azure can use it as a standard container registry, including IoT devices and edge environments that run containers. In Chapter 3, you used a container from ACR with Docker and Watchtower to apply updates to a container. You can do similar things in the edge context with IoT Edge and Azure Arc with Kubernetes.

Azure IoT Edge

Azure IoT Edge is a point solution for running and supporting IoT workloads. It integrates with IoT Hub and provides container orchestration on an edge device with Docker containers. IoT Edge easily installs on your hardware using either Linux or Windows. Microsoft also offers a hardware appliance version of it through Azure Stack—more on that later.

IoT Hub treats IoT Edge like a device but as a special use case because it enables IoT Hub to orchestrate the extensibility offered through modules on IoT Hub. There are two primary ways to use IoT Edge. The first and perhaps primary way Microsoft intended the IoT Edge runtime for use is as a gateway for other devices. A gateway provides many services for other devices, such as message brokering, filtering, AI, data, and more. You set the gateway up as a parent device, and it manages child devices through the gateway. The device hierarchy is visible and supported natively through the Azure IoT Hub. Second, IoT Edge can manage software on your end device. Here, the IoT Edge runtime installs on the device as part of its firmware and acts like an agent for managing software installation and upgrades using custom IoT modules. While a less common use of the IoT Edge runtime, this method of running IoT solves many challenges related to updating and maintaining software on a device. Regardless of how it’s deployed, IoT Edge enables many Azure services on an IoT Edge device through modules.

IoT Edge Modules

IoT Edge modules are Docker containers managed by the IoT runtime on your edge device. When you install the runtime, it starts with two basic modules that create the runtime on the device. From here, you can add new modules. Microsoft offers many modules so you can customize your IoT Edge environment to suit your needs. Most of these are pretty straightforward to install and use, depending on the service. They are all essentially extensions of existing Azure services enabled on your IoT Edge device.

Message Brokering

As a gateway, one of the primary functions of an IoT Edge device is message brokering on the edge similar to how Azure IoT Hub brokers messages for devices. A system running the IoT Edge runtime creates an IoT Edge hub that allows other child devices to connect to the IoT Edge in the way they connect to the IoT hub natively. They relay the messages from the child devices through the IoT Edge device. This scheme is helpful because it allows message routing, storing, filtering, and enrichment among other actions for messages on the IoT Edge.

Transparent gateway

As a transparent gateway, the IoT Edge enables child devices to seamlessly connect to the IoT Edge device in the same way they connect to the IoT Hub using X.509 certificates. When a message is transmitted from a child device, the IoT Edge can route the message to the IoT or through many of the IoT modules running as part of the IoT Edge runtime.

Protocol gateway

A protocol gateway, discussed in Chapter 5, is like a transparent gateway, except it is not as seamless. The purpose of a protocol gateway is to translate one protocol not supported by the IoT Hub into one that is. For instance, if you have a scenario where you need to use Constrained Application Protocol (CoAP), you can create a protocol gateway for CoAP. The CoAP devices send the messages to the IoT Edge. The IoT Edge device repackages the message properties and body from the CoAP message into a protocol supported by IoT Hub, such as MQTT, then forwards the message. Likewise, the message can be processed using any of the aforementioned processes, such as Stream Analytics or Azure ML.

Message filtering and enrichment

Message filtering and enrichment at the edge eases the volumes of messages going to the cloud, providing more context to messages from devices, reducing bandwidth needs, offloading compute from the cloud to the edge, and more.

IoT Edge provides two primary ways to filter messages using Azure Functions and Stream Analytics. A function is custom code you write. You can create a function using any of the supported languages, including C#, Node.js, and Python. The function receives the message and processes it. Within that function, the code can do more to the message, such as enrich the data or store the message. Stream Analytics works similarly to Azure Functions, except the Stream Analytics job uses a designer on Azure and the SQL language to filter and enrich data. Either way works, but the Azure Functions service is the most straightforward way to manage the filtering and enrichment of data.

Data

IoT Edge enables users to leverage SQL databases to IoT Edge-enabled devices with Azure SQL Edge and SQL Server on a container. SQL Server with IoT Edge is exactly what it sounds like—you can run SQL Server in an IoT Edge module, and it works like any other SQL Server. Azure SQL Edge is a special edition of SQL that brings a suite of tools for stream processing, AI, and data storage. SQL Edge, though, is significantly heavier than SQL Server, requiring 8 cores and 64 GB of memory to run, so it’s not likely to be useful on more constrained devices. If you need lighter stream processing, look at Function Apps or Azure Stream Analytics. SQL Server itself is good for simply storing data at a smaller scale.

Storage

Beyond database storage, IoT Edge also can run a localized instance of Azure Blob Storage on the device. Blob Storage, as discussed in Chapter 3, is useful for sending large files that won’t fit into a message. Having storage on the IoT Edge-enabled device enables child devices to perform similar functionality for sending files without sending them over the internet. The Blob Storage on an IoT Edge device can be synced with an upstream, cloud-side storage account or used locally by other devices and services talking to the same IoT Edge device.

Bringing the Cloud Closer with AI

You can run AI workloads if you equip your IoT Edge device with GPUs or Tensor Processing Units (TPUs). One common use case for AI on the edge is for image, video, and audio processing. Shipping a stream of data to the cloud for processing is bandwidth-intensive. Using an edge device, however, allows the AI to run in a localized context. If all you need is output, then the edge processes the large file and simply sends the output to the cloud instead.

Azure supports creating models using Azure ML. It provides many pretrained models adaptable to many kinds of workloads. These models provide transfer learning (pretrained models that can be extended with new models) against a custom dataset that enables you to create accurate models with a small sample set used for training.

Extensibility (Bring Your Own Code)

All the functionality for IoT Edge for using it as a transparent gateway, for Stream Analytics, for SQL Server, for Edge SQL, for Azure ML, and for Blob Storage is offered without having to write any code. I mentioned functions—custom code—but this code is primarily for data filtering at the edge. As a user, it does not restrict you to these modules because IoT Edge can run practically anything that comes packaged as a Docker container. For instance, if you wanted to create a caching service on your edge device, you could pull down Redis in a container as a module. Earlier, I mentioned using the IoT Edge as a plain old device rather than a gateway device. If you have an app that you want to deliver to such a device, you can containerize it and let the IoT Edge be your agent on the device to download and upgrade the app as new versions become available.

IoT Edge is pretty straightforward to set up and use, too. I’d recommend going through the following demo to familiarize yourself with creating an IoT Edge device. In a production-oriented workload, you wouldn’t do these steps manually, but we will do so here so you can see how it works.

Creating an IoT Edge Device and Deploying a Module

You set up a container registry in Chapter 4 when you deployed the sample device to a Docker instance and used Watchtower to update the container. Now, you will use IoT Edge with ACR to deploy the device sample as a module from the ACR. Assuming that you already have the image built and in your container registry, you’ll use this as a starting place for deploying a module, in this case, the device sample.

Instead of sending telemetry straight to the cloud, the module will relay the telemetry through the IoT Edge’s built-in hub. The hub brokers messages between IoT devices, modules, and an IoT Hub. You can use a device using IoT Edge to broker messages between devices, between modules, between devices and modules, and of course, send messages from modules and devices to the cloud. It can also receive messages from the cloud and relay these back to devices and modules. It’s like a message bus, except at a smaller scale.

For the example here, you’ll deploy the device simulator as a module and see it send messages through the edge hub and up to the IoT Hub, which can then be routed to the Service Bus you created in Chapter 5.

Install Azure IoT Edge

You can install IoT Edge on Windows or Linux, but these instructions assume Ubuntu 22.04. You can install this on a local VM or deploy an Azure VM. Once you’re connected to the box with a CLI, you can start working:

		
	Download supporting IoT Edge components with the following:

	
curl -sL https://oreil.ly/W5VEk -o packages-microsoft-prod.deb

	

		
	Install the components:

	
sudo dpkg -i packages-microsoft-prod.deb

	

		
	Install IoT Edge and Moby. Moby is a componentized version of Docker. Rather than install the monolithic Docker runtime, Moby supports a modular design. It’s compatible with Docker containers and the Docker CLI tools but works more like a toolkit. You can pare it down for IoT workloads to make a slimmer environment. You can install IoT Edge and Moby with the following:

	
sudo apt-get install moby-engine aziot-edge

	

		
	In the Azure portal, find your IoT Hub, select “IoT Edge” under “Device Management,” then select “+ Add IoT Edge Device.”

	

		
	For the “Device ID,” enter something like iotedge-device1. You can leave the other options as is and click “Save.”

	

		
	Click on your new IoT Edge device, iotedge-device1, on the list of IoT Edge devices.

	

		
	Copy the value for “Primary connection string” by clicking the copy button at the end of the line.

	

		
	Back on your Ubuntu VM, connect the IoT Edge to your IoT Hub using the connection string. Replace <YOURCONNECTIONSTRING> with the connection string you just copied:

	
sudo iotedge config mp --connection-string '<YOURCONNECTIONSTRING>'

	This command will deploy a few items to your device as Docker containers, including the Edge agent that orchestrates module deployments and performs other administrative tasks and the Edge hub, which brokers messages.

	

Deploy a Module on IoT Edge

You can deploy several modules to the IoT Edge, including some from the Azure Marketplace, such as SQL Edge, Azure Storage, and Stream Analytics. These are useful for providing cloud services in your edge context, which helps bring the cloud closer to your devices.

Here, you’ll set up the device simulator on the edge using a deployment JSON file. You will need a machine with the Azure CLI installed on it. It’s possible to do this from the same machine where you installed the IoT Edge. You can install the Azure CLI on the machine with IoT Edge using this command:

curl -sL https://aka.ms/InstallAzureCLIDeb | bash

Once installed, you can ensure you are logged in by using az login. This will give you a URL and a code you can use in your browser to connect your machine to Azure.

If you have not already done so, you can download the repo for this book to the machine using the following command:

git clone https://github.com/theonemule/azure-iot-architecture.git

Now, you’re ready to deploy a module:

		
	In the Chapter 6 folder, open the deployment.json file. This is a configuration file for all things on your IoT Edge. It tells IoT Edge what versions of the Edge agent and hub to run, the modules you want to configure, and the routes you want to configure.

	

		
	In the file, you should see a section called registryCredentials. This section contains the hostname, username, and password for your Azure Container Registry, where you pushed the image you created in Chapter 4. Enter your credentials here. You can get these credentials by looking at “Access Keys” in your container registry in the Azure portal. Use “Login Server” for the address properties value, “Username” for the username value, and one of the provided passwords for the password value. It should look something like this when you’re done:

	
"registryCredentials": {
 "address": "arcdemoblaize.azurecr.io",
 "password": "7eNqcOa…/zt+ACRCXX/BR",
"username": "arcdemoblaize"
}

	

		
	Under the "modules" section, you’ll see a reference to "device". This section tells the IoT Edge what to deploy as a module. Replace the value for the image in this section with the image on your container registry. Your image contains the name of the registry, the repository, and tag. It should look something like this:

	
"image": "arcdemoblaize.azurecr.io/device:latest"

	The tags under the "env" section are injected as environment variables into the container when it creates. The start is set to "iotedge", which lets the device code know that you’re deploying this to an IoT Edge instance. The device uses a different client to communicate with the Edge than it does with IoT Hub.

	Also, notice that under the "$edgeHub" section that a route is defined. This route tells the edge to relay the messages from the module to "upstream", which in this case is IoT Hub. IoT Edge instances can be hierarchical, too, meaning that there can be upstream IoT Edge devices that receive relayed messages from other IoT Edge devices.

	

		
	Save the file.

	

		
	Finally, apply the config. For -n use the name of your IoT Hub. For the value of deviceid use the device id of your IoT Edge device. It should look like this:

	
az iot edge deployment create -d mydeployment -n blaizeiothub1
 --content deployment.json --target-condition "deviceid=iotedge2"

	Once you have created the deployment, you should start seeing telemetry from the device sample show up in the Service Bus you created in Chapter 5. You can use Service Bus Explorer to see the messages that have flowed from the device into the Service Bus.

	

IoT Edge offers lightweight orchestration and tight integrations with Azure IoT Hub. It works great as a standalone setup or gateway for other devices downstream of the device. IoT Hub, however, is not the only way to create an edge environment. If you need something that needs to orchestrate lots of modules and provide other edge services, Kubernetes may be a great fit. An Azure Arc–enabled Kubernetes cluster still gives you many of the same benefits IoT Hub gives you with tight integration with Azure. So let’s look at that and see how it compares.

Azure Arc and Kubernetes

Azure Arc extends Azure beyond Microsoft data centers. The service enables you to take Azure management and governance and apply it to on-premises resources and resources on other clouds. Once deployed, these resources show up as first-class services on Azure.

Unlike Azure resources, though, the integration with these resources is not as straightforward as running an ARM template on Azure. Each resource you add to Arc has a different means to extend Arc. Once there, the resources show up, and you’re ready to go. Microsoft enabled Arc on Kubernetes as one of its first services.

The Kubernetes integrations with Azure Arc run deep. The central use case for Kubernetes is orchestrating containers at scale across a cluster of nodes. It provides security, networking, storage, and compute services to container apps. You manage the resources declaratively using manifests. The platform abstracts away the underlying infrastructure so that users do not have to know how to manage or configure the infrastructure. This enables high degrees of automation without having to know anything or, at most, minimal knowledge about the underlying infrastructure, and also enables dynamic scalability for applications, self-healing, and a myriad of other benefits.

While Kubernetes is a clustering technology, it can be run as a single node, so users can still take advantage of some of the automation and security it brings. Some IoT devices use a minimalist version of Kubernetes that works similarly to IoT Edge. Several minimalist Kubernetes implementations include MicroK8S, K3S, and Minikube. MicroK8S and K3S provide a more production-ready experience, while Minikube is intended more for development. Still, any of these can work with Azure Arc. For IoT and Edge, I’d recommend MicroK8S as it’s more “vanilla” Kubernetes than K3S.

Arc is how Azure is extended onto your edge by Kubernetes deployments. You can practically manage the entire cluster using Azure and also extend the cluster with some value-added services. Here are a few extensions that are pertinent to IoT workloads:

		Data controller

		
	The data controller creates Azure Manage Instances for SQL databases on your Kubernetes cluster. It enables local databases while the data controller is managed by Azure.

	

		App Services

		
	This extension is in preview as of the writing of this book, but it enables App Services, Azure Functions, and Logic Apps to run on the cluster. These enable localized APIs, services, and integrations for IoT workloads.

	

		Event Grid

		
	Similar to its Azure counterpart, Event Grid enables workloads to use integration services in the local context. Using this service would not integrate with the IoT Hub routes or anything like that, but if you needed a more custom solution, Event Grid would be one way to create messaging infrastructure on the edge.

	

		Azure Monitor for Containers

		
	Adding this service enables you to monitor workloads and send the telemetry and data back to a Log Analytics Workspace for analytics. Logs are one type of data that IoT devices emit and are useful for knowing their state and health.

	

		AzureML

		
	Azure Arc provides a way to push AzureML models to Arc Kubernetes services. Usually, these require that the edge device has a GPU to run. However, Arc-enabled Kubernetes on the edge can provide AI to IoT data in the same way IoT Edge does.

	

IoT Edge or Arc with Kubernetes?

Azure Arc and IoT Edge have a tremendous overlap both in how they create an edge environment and how they integrate with Azure. IoT Edge is certainly the more “native” solution, given its tight integrations with Azure IoT Hub, but it is also more opinionated. Kubernetes with Arc offers the world of Kubernetes at the edge. One approach that is supported by Microsoft is using IoT Edge on Kubernetes. IoT Edge on Kubernetes gets you the best of both worlds; however, this approach has considerable overhead because it uses nested virtualization within Kubernetes to run IoT Edge modules. Even a minimalist install of Kubernetes like MicroK8S and K3S requires at least 512 MB of RAM to boot, which is considerably higher than IoT Edge and does not include workloads. The CPU utilization largely depends on the workloads on the device, though. Table 6-1 summarizes the comparison between the two.

	Table 6-1. Comparing IoT Edge with Arc + Kubernetes
	
		
				
				IoT Edge
				Arc + Kubernetes
		

	
	
		
				IoT Hub integration
				Native Integration for devices
				Can run IoT Edge as a pod for IoT Hub integration
		

		
				Data
				SQL Server supported as a module
				Data controller extension for Azure SQL MI and MySQL
		

		
				Messaging platforms
				As a transparent gateway or proxy
				Azure Event Grid extension
		

		
				Azure Functions
				Run Azure Functions as a module
				Preview support for Azure App Services that can run Functions, containerized Functions runtime
		

		
				Extensibility
				Custom IoT modules, third-party containerized applications
				Custom containers, tons of third-party containers for all kinds of workloads in the Kubernetes ecosystem
		

		
				Module/container mgt.
				IoT Edge manifests
				GitOps and kubectl
		

		
				AI/ML
				Azure ML
				Azure ML
		

		
				As a device
				Yes
				Yes
		

	

The deciding factor between these two platforms comes down to a decision involving the tighter integration with Azure IoT Hub and the level of extensibility one wants to support. While IoT Edge can run custom modules, it’s not a full-blown container orchestration platform. Kubernetes, however, provides all the features of a container orchestration platform, making extensibility more appealing. If you have many custom containers you want to use, consider using an Arc-enabled Kubernetes cluster. Otherwise, use IoT Edge.

Setting Up Arc with MicroK8S

Now that you’ve been introduced to MicroK8S and Arc, it’s time to learn how to set them up. MicroK8S is a great, minimal Kubernetes install for a single-node cluster, so it works well for smaller IoT installations or edge applications, but it can also scale to a multi-mode cluster. You can also use other Kubernetes deployments, if you like. If you want to skip the MicroK8S instructions here and use another flavor of Kubernetes, the Arc enablement should work for most installs.

I designed these instructions with Ubuntu in mind. You can use Ubuntu Core for MicroK8s, but these instructions are for an Ubuntu Server machine. Edge appliances are usually less resource constrained; therefore, they can run a more robust OS, like Ubuntu Server. Ubuntu Server is still pretty compact relative to a desktop Ubuntu install or Windows Server but not nearly as minimal as Ubuntu Core. You can get an Ubuntu VM on Azure or create one by installing Ubuntu on a VM in your favorite hypervisor. I recommend using Ubuntu Server 20.04 or 22.04. Once your server is installed and connected to the server using a secure shell (SSH), you are ready to go.

If you want to copy and paste these commands, there is a markdown file in the code repository for Chapter 6 with the same instructions:

		
	Get root access on your Ubuntu Server with this command:

	
sudo -i

	

		
	Update your Apt repositories so you can get the latest version of the software you will install:

	
apt-get update

	

Set Up MicroK8S

MicroK8S is a minimalist “vanilla” version of Kubernetes intended for smaller clusters or single-node deployments, such as a device or an edge deployment. It’s straightforward to set up MicroK8S using Snapcraft, similar to how we used Snapcraft in Chapter 3 to deploy the sample device Ubuntu Core. Snapcraft works on Ubuntu and other versions of Linux as well, but here we’ll use Ubuntu:

		
	Install MicroK8S using snap with the following command. The company behind Ubuntu maintains this snap. You will install this in “classic” mode rather than the Snapcraft sandbox because it installs system components like a container runtime and the supporting Kubernetes components:

	
snap install microk8s --classic

	

		
	Enable the add-ons for MicroK8S with the following command. The add-ons enable a local storage driver for mapping local paths to containers for storage, DNS so apps can resolve names off and on the cluster, and an ingress controller to manage incoming HTTP traffic:

	
microk8s enable ingress dns storage

	

		
	Install kubectl, the command-line utility for managing workloads on Kubernetes. Technically, MicroK8S installs a version of this but does not follow the conventions. Here, you can do a standard kubectl installation on the VM:

	
snap install kubectl --classic

	

		
	To do kubectl work, you need to output the Kubernetes config to a file with credentials for accessing the cluster. Follow these commands:

	
cd $HOME
mkdir .kube
cd .kube
microk8s config > config

	

		
	Once this is configured, you can type in kubectl commands. Try the following to get a list of pods running on the cluster:

	
kubectl get pods -a
NAMESPACE NAME READY STATUS RESTARTS AGE
kube-system calico...82svg 1/1 Running 0 2m8s
kube-system calico...9zw6 1/1 Running 0 2m8s
ingress nginx...dctgg 1/1 Running 0 106s
kube-system coredns...lfzqr 1/1 Running 0 104s
kube-system hostpath...mxh6l 1/1 Running 0 26s

	

Connect MicroK8S to Azure Arc

To connect MicroK8S to Azure Arc, first you need to install Helm, a Kubernetes package manager, and the Azure command-line interface (CLI) to connect the cluster to Arc:

		
	Install Helm. The Azure CLI leverages Helm to install the Arc components in your cluster:

	
curl -sL https://oreil.ly/BsMR6 | bash

	

		
	Install the Azure CLI. The Azure CLI connects your cluster to Azure Arc:

	
curl -sL https://aka.ms/InstallAzureCLIDeb >| bash

	

		
	Log in to your Azure subscription. You will see a URL (https://microsoft.com/devicelogin) that you can paste into a browser. In the browser, paste in the code from the CLI and log in using your Microsoft credentials. You’ll enable the CLI to run commands against Azure and your cluster:

	
az login

	

		
	After installing the Azure CLI, you’ll need to enable a few providers on Azure using the following three commands. Wait a few minutes for this process to complete. Arc needs the first two to configure your cluster and the last one to create Extended Locations for resources used with Arc, like the data extension:

	
az provider register --namespace Microsoft.Kubernetes
az provider register --namespace Microsoft.KubernetesConfiguration
az provider register --namespace Microsoft.ExtendedLocation

	

		
	Run the following three commands to create a new Kubernetes user locally. This user is useful for creating tokens that allow you to see and change resources on your cluster in the Azure portal:

	
kubectl create serviceaccount arc-user
kubectl create clusterrolebinding arc-user-binding
 --clusterrole cluster-admin --serviceaccount default:arc-user
kubectl create clusterrolebinding arc-user-binding
 --clusterrole cluster-admin --serviceaccount default:arc-user

	

		
	Create a secret for your new user:

	
kubectl apply -f - <<EOF
apiVersion: v1
kind: Secret
metadata:
 name: arc-user-secret
 annotations:
 kubernetes.io/service-account.name: arc-user
type: kubernetes.io/service-account-token
EOF

	

		
	Now, in the Azure portal, you can search for “arc” in the search box at the top to find Azure Arc. Select it under “Services.” This will take you to the Azure Arc blade.

	

		
	Under “Infrastructure,” find “Kubernetes clusters,” select “+ Add,” and then click “Add a Kubernetes Cluster with Azure Arc.”

	

		
	In the wizard for Azure Arc, you can skip the first blade because you’ve already installed all the prerequisites.

	

		
	On the “Cluster Details” blade, choose a subscription and create a resource group for your cluster. Give your cluster a name, such as “arc-kube1,” and select a region near your cluster.

	

		
	On the “Tags” blade, you can add tags. These are useful for sorting and finding clusters in the Azure portal and with scripts. These are not required for this example, so you can skip this blade if you want to.

	

		
	On the “Run Script” blade, you’ll see a list of commands. You need to run only the last two. They look something like this:

	
az account set --subscription 686021ad-9b61-4806-899c-c1dc94305a86
az connectedk8s connect --name arc-kube1
 --resource-group ubuntu-vm_group --location eastus
 --correlation-id c18ab9d0-685e-48e7-ab55-12588447b0ed

	The CLI may ask you to install an extension. Select “Y” if prompted so that the Azure CLI can install the Arc extension for Kubernetes. This command can take a while because it downloads and configures several new pods to your Kubernetes cluster that support Azure Arc. It also registers your cluster with Arc. It takes some time, so get a cup of coffee while this completes.

	

		
	Once the process completes, click “Verification” in the Azure portal. This validates that you connected the cluster to Arc. Afterward, click on “Go to the cluster.”

	

		
	Back on the CLI, grab the token from the secret. This command outputs a long, Base64-encoded string that you can paste from the console into the Azure portal:

	
echo $(kubectl get secret arc-user-secret -o jsonpath='{$.data.token}' |
 base64 -d | sed 's/$/\n/g'.

	

		
	Back on the Azure portal, click “Workloads,” paste in the token you got for the CLI, and click “Sign in.” You should see a list of deployments if the sign-in worked.

	

Install the Device Simulator to MicroK8S Using the Azure Portal

The Azure portal allows you to manage workloads running on the connected MicroK8S cluster, such as configuring the cluster, installing and upgrading workloads, applying governance rules, retrieving logs, etc. The tight integration between Kubernetes and Azure Arc–enabled clusters makes them ideal for edge deployments.

The next step in setting up Arc with MicroK8S is to add a workload, which is our device simulator, to the cluster using the Azure portal. This requires that you have already built and pushed the image to a container registry as you did in Chapter 4 when you created a container, deployed it to Docker, and updated it with Watchtower. Instead of deploying directly to Docker, you’ll use the Azure portal to deploy that image:

		
	Back on your Ubuntu VM, run the following command to download a script from the book’s repo. This script creates a service principal on Azure, assigns it to your ACR instance, then connects your Kubernetes cluster using the service principal:

	
curl -sL https://oreil.ly/esIC8 -o connect-acr.sh

	

		
	Run the script with the following, but remember to replace <YOURACR> with the name of your Azure Container Registry:

	
bash ./connect-acr.sh --acrname=<YOURACR>.

	The script outputs the name of your service principal and its password for your reference:

	
Service principal ID: 81927b45-1234-abcd-4321-08050df6baf5
Service principal password: kXX8Q~..._bhg

	

		
	The Chapter 6 folder of the code repository contains a file called device.yaml. This file is a Kubernetes manifest file for creating a single pod, the most basic unit on a Kubernetes cluster. A pod wraps a container and interfaces the container with Kubernetes. This manifest will deploy a pod containing the device simulator. Change <YOURACR> to the name of your Azure Container Registry. Your file should look something like the following. Save the file when you’re done editing:

	
apiVersion: v1
kind: Pod
metadata:
 name: device-simulator
spec:
 containers:
 - name: device-simulator
 image: <YOURACR>.azurecr.io/device:latest
 imagePullPolicy: IfNotPresent
 env:
 - name: START
 value: "offline"
 - name: TELEMETRY
 value: "simulator"
 - name: CAMERA
 value: "simulator"
 - name: POLLFREQ
 value: "5000"
 imagePullSecrets:
 - name: acrcreds

	

		
	Back in the Azure portal on the “Arc Workloads” blade, click on “+Add.”

	

		
	Paste in the YAML and click “Add.” This will deploy the pod. You can click on “Pods” on the Workloads blade to see the pod deploy.

	

		
	Back on your VM, you can use kubectl to follow the logs and see the output:

	
kubectl logs -f device-simulator

	The logs should look like the output from the sample device. Press Ctrl + C to stop following the logs.

	

Arc-enabled Kubernetes clusters provide an extremely powerful way to create and manage edge deployments at scale using familiar tools. Arc also provides all the extensions that enable things like Azure ML, Azure App Services for Function Apps, SQL Server on edge, and others. Its ability to scale and interact with local contexts like on-premises resources and local hardware like GPUs makes it one of the best ways to create edge deployments.

Beyond these more software-oriented solutions, Microsoft has a few other ways to create edge environments. These environments ease even more of the management of resources in the same way the cloud did, but these approaches sit in your data center with hardware and software from Microsoft.

Azure Data Box Gateway

Azure Data Box Gateway is a solution for moving data to the cloud using network file shares. In Chapter 5, you read about how to send files. IoT Edge can act as a broker for sending files, too. For large-scale data movements or bulk data movements, though, these solutions are not practical. An Azure Data Box Gateway can serve as an intermediator for large-scale bulk uploads to the cloud. It works by creating shares that devices can write to. The Data Box Gateway will then move the data from the Data Box Gateway to the cloud into an Azure storage account as a file share or as part of Blob Storage. Azure Stack Edge can act as a Data Box Gateway, or you can install the Data Box Gateway on a hypervisor.

Azure Stack

Azure Arc enables commodity hardware to run some Azure workloads on the edge. Even though Azure Arc enables Azure management for much of the solution, large portions of the management still fall to the users because the user must manage the hardware. To enable more cloud-based management for even some of the networking underlying the OS, Microsoft offers Azure Stack. Azure Stack is essentially Azure running on hardware sitting in your environment, not merely an extension of Azure to your environment like Azure Arc. Azure Stack has three flavors depending on the scope and size of the workloads you want to run off Azure. Though these solutions are located off Azure, Microsoft manages them using seamless Azure integrations.

Azure Stack Hub

Azure Stack Hub essentially enables PaaS offerings to run in your environment the same way they would in the cloud on Azure. Azure Stack Hub supports Azure App Services, which can run Azure Functions, SQL databases, storage accounts, and Event Hubs. These systems can run in a disconnected mode, so they can run offline while Azure Stack Hub is unavailable.

As a developer, you can develop solutions against Azure Stack Hub using the Azure Stack Development Kit. It requires substantial hardware to run. Azure Stack Hub’s minimal requirements make it impractical for some environments because it requires at least four nodes. Each of these nodes requires many cores, RAM, and storage devices (SSDs and HDDs) to run. Azure Stack Hub may make sense for environments with numerous devices, such as industrial IoT implementations. Also, Azure Stack Hub does not offer any native integrations with the aforementioned IoT solutions, either.

Azure Stack HCI

Azure Stack Hyperconverge Infrastructure (HCI) is a custom operating system installable on hardware that you own or from a vendor from Microsoft. HCI’s primary goal is Windows and Linux-based workloads running on your infrastructure with tight integrations with Azure, including VDI, SQL Server databases, VMs, and Azure Kubernetes Services (AKS) clusters. HCI can also function as an edge device with support for GPU-enabled workloads. It enables the cloud to manage legacy workloads. HCI still enables you to use other tools and exposes more of the networking, infrastructure, and management to you.

HCI’s more infrastructure approach makes it more appropriate for field deployments for IoT applications of all sizes. Some of the approved devices for HCI are ruggedized and portable. Others are more minimal. Still, HCI can scale to much larger applications with more hardware and nodes.

HCI does not have native support for any IoT solutions on Azure, but its support for VMs implies that HCI infrastructure can support IoT workloads with IoT Edge installed on the VM. Outside an IoT Edge VM, you can use virtualization and other workloads.

Azure Stack Edge

Azure Stack Edge is the smallest of the three in terms of footprint and relative size of the compute. It enables either VMs, Kubernetes with or without Azure Arc, or Azure IoT Edge as part of the Azure Stack Edge deployment. Azure Stack Edge, in this case, is “Hardware as a Service,” wherein you can lease the hardware without buying it. This model makes IoT Edge applications available to you with no up-front costs.

Azure Stack Edge is also the lightest of the three options. It works in most small- to medium-sized environments with the offerings available from Azure Stack. If you need something larger, HCI or Hub can scale to multi-node clusters, but this requires you to purchase the hardware to run Hub or HCI. IoT Edge or an Arc-enabled Kubernetes cluster brings the same benefits you saw with Azure Arc and IoT already with IoT modules, Arc extensions for storage and apps, and third-party containers. Azure Stack Edge can also run as an Azure Data Box Gateway.

Azure Stack with HCI, Hub, and Edge, Azure Data Box, Azure Arc, and Azure IoT Edge are all solutions that create edge computing for IoT devices. Obviously, IoT Edge is the most tailored for IoT devices and IoT solutions on Azure because of its tight integrations with Azure IoT Hub. Of all the solutions, it is a great place to start (and probably stay) if you use Azure IoT Hub. Azure Stack Edge supports IoT Edge if you want an appliance instead of building your own edge. Still, the other solutions offer different strategies for different needs. Regardless, there’s something for everyone.

Summary

Edge computing is a useful subject to understand in the context of IoT. Here, you learned:

		
	Edge computing helps bring the cloud back on premises by providing cloud services on your architecture.

	

		
	Edge computing for IoT enables closer, more responsive actions for devices on premises, like localized AI models, store-and-forward messaging, message filtering, compute offloading, data aggregations, protocol gateways, and much more.

	

		
	Azure IoT Edge and Azure Arc are both solutions that use containers to provide manageability and extensibility for edge deployment from the cloud.

	

		
	IoT Edge is a lightweight edge runtime that manages messaging and extensibility with native integration with many Azure services like SQL databases.

	

		
	Azure Arc enables cloud-managed Kubernetes services on the edge with extensibility with SQL databases and storage.

	

		
	Microsoft offers other edge services with Azure Data Box Gateway, Azure Stack Hub, Azure Stack HCI, and Azure Stack Edge, each with different design goals.

	

From here, you’ll start getting into the “cloud side” of things for building robust, cloud-side architectures to handle large volumes of data flowing in from devices. There are all kinds of things to consider, including how to store data, how to process data, how fast to process data, how to deliver data, and much, much more. But let’s start with the basics: strategies for storing data for all kinds of purposes.

Chapter 7. Scalable Data Architecture

Let’s talk about data. No, I’m not talking about the android on Star Trek: The Next Generation. I’m talking about the massive deluge of bits and bytes that IoT devices create, and somehow you have to figure out what to do with all of it. Pretty much the entire right side of the IoT Landscape (Figure 7-1) deals with data, and the next few chapters of this book are going to look at this, but one of the basic questions to answer for all data needs is: “Where am I going to store all this stuff?”

[image:]
Figure 7-1. Data architectures in the IoT Landscape

Not too long ago, this might have been a simple question to answer: stuff the data into a database and be done with it. This solution would have been suitable for most workloads then, but as data grew exponentially larger, the database platforms at the time did not increase proportionally. The notion of “big data” was born, and a whole new class of data tools, processes, and analytic procedures were developed to handle the deluge of data while keeping costs down. One of those solutions involved using new patterns for storing data.

The plethora of new storage patterns had profound implications for data storage, and because every solution has unique needs, there is no one-size-fits-all for solutions. Every IoT solution I have ever looked at had nuances, and these nuances can radically shape how storage is used. So, the universality is not in a specific solution but in how you look at the problems you are trying to solve. From there, you contextualize the patterns to create something that will solve your data problems while performing well and keeping costs in check. With that in mind, perhaps the best place to start is with general principles for data storage in IoT solutions that apply to every context.

General Principles for Data Storage

If storing data for scalability was as easy as getting a bigger, faster storage disk, I could conclude this book here. The problem with data is that it grows faster than the capacity and performance increases between generations of storage technologies. This isn’t a problem for consumer devices, but it’s always been a problem for enterprises. Most early storage solutions focused on extracting the most performance from the hardware without breaking the bank. Even then, you could select a technology, install your database, and have performance and scalability without having to think about the database software per se. But now, you must think about multiple aspects and adjust them accordingly. These are the general principles you need to keep in mind when setting up data storage.

Partition Your Data Appropriately

Partitioning, in the most basic terms, is dividing up your data so it can be stored on different storage devices. Data, especially in the cloud, typically involves more than a single storage device, such as a storage disk, and can handle throughput, input/output operations per second (IOPs), latency, or just sheer size. Spinning disks such as hard disk drives (HDDs) are fantastic for capacity but are abysmal for latency and IOPs. Solid state drives (SSDs) offer high throughput, low latency, and high IOPs but usually have much more limited capacity than HDDs. All these factors mean that for a storage system to ensure it can deliver performance characteristics while also being able to store data in a large capacity, that data has to be spread across multiple storage devices.

Partitioning in IoT systems is an unavoidable necessity due to the generation of substantial data, leading cloud storage services and databases to consider it a given, with potential implicit partitioning occurring behind the scenes. For instance, Blob Storage on Azure (more on this later in the chapter) uses the blob name to partition data. Blobs that start with similar names will likely be on the same partition. Other services, like Azure Table Storage and Cosmos DB, and databases require that the user provide a partition key. The service uses a partition key to distribute the data onto partitions in whatever storage medium the storage is using. Because data is distributed based on a partition key, you must plan how to properly partition your data because poorly partitioned data can result in terrible performance in a data storage system.

When you decide to partition your data, the best way to begin is to think about the most common use case for how your data will be filtered and use that as a partition key. For example, if you were writing some tax software for the US, you may want to partition data by state because, in most cases, the data your software will be accessing applies a state-level filter. You want to do this because it minimizes the amount of compute and data nodes needed to read your data, which means that your queries will perform better in general. When doing this, however, you want to avoid partitioning your data so that you have a huge imbalance in your queries. Taking the previous example—if you partitioned by state, you may end up with unbalanced partitions because some states, like California, New York, or Texas, will have more data than less populous states like Wyoming or North Dakota. So you may need to think about taking some of these outliers and finding a scheme that uses state or subregions within a state.

If there is no typical scenario, the next best option is to at least attempt to balance the partitions, for example a scheme might round-robin the data among partitions by cyclically distributing data in a sequential and equitable manner. In this case, it at least helps distribute the data eventually and, subsequently, the writes, rather than having a single partition do all the work.

There are scenarios when you may want to use a single partition for data. If you have a small set of data, and you do not anticipate that data growing much, then a single partition, thus a single partition key, for the entire dataset is advisable. This works well for lookup data, sometimes called dimensional data, like lists of countries or product catalogs.

In any case, coming up with a partitioning strategy for your data ensures that your data will be well-groomed in the data storage you ultimately use for your data.

Storage Is Cheap, Compute Is Expensive

Databases have two basic components to make them work: storage and compute. Storage is where the data lives, typically on a disk. In any cloud, this is typically pennies per gigabyte per month. Compute is the CPU and memory needed to read, filter, collate, aggregate, and package the data. Compute reservations on the cloud are typically pennies per hour per core, but that adds up fast when you add more cores. Of the two, compute is the most expensive but also the most variable, so it’s the one that folks will typically optimize solution costs around.

The problem with traditional options, like remote database management systems (RDBMS) such as SQL Server, is that they have always-on storage and always-on compute. When it is needed, it’s great, but not all data needs to be stored in a way that has always-on compute attached to it. More modern options, though, attempt to minimize the compute by making it more dynamic. So, in the cloud, unless you need the data on demand, don’t store it that way. Take advantage of the dynamic compute models where possible. I prefer a storage mechanism that simply stores data, such as using Blob Storage instead of a database. You can then marshal CPU resources to process the data if the data is needed. Many batch-oriented processes take this approach, so you pay for CPU only when you need it for a brief period. Some models use “serverless” compute, which basically meters by the second and dynamically scales to zero when it’s not being used.

Regardless of the compute model you choose, one of the best things you can do to reduce compute costs is process data once and store the results. This creates data duplication, but using pre-processed data can significantly reduce costs and improve response times for reading data. The trade-off is, of course, keeping all of this data synced. There are strategies to mitigate this, but first, let’s talk about ways you can store data that optimize performance and reduce costs.

Loosen up on normalization

Normalization is great for databases that want to represent data in its most atomized form with zero data duplication. I was in college when I learned about normalization as part of my database class. The practices were explained well, but they did not discuss anything else. After some experience, though, I found that while normalization is a great way of ensuring that data is well organized and easier to maintain, it is not always the best way to store data for performant use. For performance, sometimes, creating derivative data sets with denormalized data makes for more performant queries and operations on that data because it eliminates the need for joins. The data is stored as if the join had been performed from normalized data with duplicate data in some columns. Storing denormalized data this way may use more disk space, but it makes up for it in saved CPU cycles for frequently used queries.

Summarized data

Like storing denormalized data, storing aggregated data is another way to save on CPU cycles. If you find yourself often summarizing data with averages, sums, and the like, you can perform these calculations once and store the calculated results alongside the raw data. Frequently, this is what data warehouses will do to speed up analysis. It does not destroy the original data; rather, it creates aggregates from it and uses them to produce reports, views, dashboards, and other analytical presentations.

Star schemas

A star schema is another way to store data between completely denormalized data and normalized data. It’s a popular presentation that works well with simple queries and offers quick results.

Star schemas work by having two kinds of tables: fact tables and dimension tables. Facts are the numeric performance measures that are essential for a business. They are usually quantifiable data points that can be analyzed and measured, such as sales revenue, profit, or any other metric that is vital for analyzing organizational performance. Fact tables generally include keys that link them to related dimension tables, enabling detailed and context-rich analysis. Dimensions are the descriptive, contextual, or categorical information that helps give meaning to the facts. Dimensions are essentially the “who, what, where, when, and how” of the fact. For instance, a sales revenue fact can be broken down into dimensions like time, geography, and product to enable detailed analysis data for a product in a region for a time period.

If the presentation of a star schema is too simple, sometimes you can create multiple star schemas from the same source data or use a snowflake schema, which is similar but uses more normalization with the dimension tables.

Of all ways of getting data into a workable solution that saves on CPU while using disk, star schemas are one of the best for IoT data because of the telemetry and events that come off devices. The events and telemetry usually reference more static entities, like device IDs, vehicles, machines, and buildings, but they will have variable data within the time-stamped telemetry, like temperature, pressure, acceleration, and flow rates. Fact tables store the readings, while dimension tables store the more static data. Moreover, star schemas don’t have to be in a database. You can store star schemas in data lakes, data warehouses, or on a file system with something as simple as comma-separated values (CSV).

Prefer Eventual Consistency over Strong Consistency

Strong consistency is the opposite of eventual consistency, which is what most traditional RDBMSs like SQL Server implement. When a client writes data, any other client trying to access the data gets exactly the same data. In other words, strong consistency guarantees that data is available for reading as soon as a write completes. Strong consistency works great if all your data is collocated in a database system within the same data center. Here, there are high-speed, low latency (typically sub-millisecond times) connections between all the database nodes and storage, so writes and replication happen quickly.

IoT, by its nature, is eventually consistent. In basic terms, eventual consistency means that it’s possible that the latest data might not be available to read by every client trying to access it after the initial write. This has profound implications for availability, scalability, and performance. It’s at the heart of practically everything else this chapter talks about.

Moreover, another consideration extends beyond the database to an entire system. It’s one thing to have strong consistency in a database, but to ensure that an entire system uses strong consistency across multiple data stores where data is being read is something else entirely. Historically, folks reading reports did not expect to have the latest data. They usually reported data for yesterday’s inventory counts or last week’s sales data. The reports did not need the latest data; only the application did.

It was hard at first to get used to using eventual consistency because it seemed too risky. However, when I started working with IoT data, the strong consistency melted away because it was impractical. Now, I prefer eventual consistency outside of IoT for other applications because of the benefits it creates for building massively scalable systems in the cloud. In modern systems, with near real-time reporting and monitoring, having the latest data is paramount for seeing things as they happen. However, the drawback of strong consistency is on distributed networks with substantial latency. Strong consistency requires record locking that can back up database queues and bog down data systems if replications happen over a latent network, even if the network has ample bandwidth. Implementing strong consistency in these systems would be nearly impossible due to the latency concerns, but usually, eventual consistency is good enough and can work even in real-time scenarios.

Strong consistency may seem desirable, and for some applications, it’s needed. Odds are, however, it’s probably not needed. But letting go of consistency has its advantages. The CAP theorem speaks to these. The “C” stands for consistency, the “A” for availability, and the “P” for partition tolerance. You already read about consistency, but according to the theorem, consistency (consistency in the theorem refers to strong consistency) implies that you get the latest reads or an error. Availability implies getting a request, but you might not have the latest writes. Partition tolerance implies that the storage system continues to work even if messages between the nodes on the system are lost due to network errors. The theorem states that you can support up to two of these. Most traditional systems, as stated, prefer (strong) consistency and partition tolerance over availability. Still, many cloud storage options prefer availability and partition tolerance over (strong) consistency because these can scale better and be more highly available—even globe-spanning if necessary.

Preferring availability and partition tolerance doesn’t mean data won’t be consistent; it just means that it might take time to make it consistent across data storage nodes, as that’s what eventual consistency tries to deliver. There may be some lag in the data replication between write and a system wanting to read that data. But as mentioned, this is an expectation with an IoT system. If telemetry or an event emits from a device, it may take several seconds before that data lands on the cloud and in a system that can read it. For this reason, treating all data with eventual consistency in an IoT solution is more “natural.” It also allows for separate reads and writes, idempotence, data optimizations, and other benefits. The first part of eventual consistency is just getting your data into the cloud as part of landing your data.

Separate Reads and Writes

One common problem I have seen in many IoT systems stems from performance around databases. Organizations typically have a single, monolithic database for everything in an application or system. That pattern used to work for old-style N-tier architecture where everything was on premises, but it does not scale well beyond a few hundred or even a few thousand users. Either the database performs well in writes but poorly in reads, performs well in reads but poorly in writes, or neither reads nor writes perform well. Most of the time, it’s the third option.

One remedy for this problem is splitting storage for your read-heavy workloads and your write-heavy workloads so you can optimize your data storage strategy for both. If you can create processes that allow writes to happen, then move the data into another read-optimized form, you can architect a system that allows for high-performance reads and writes without sacrificing either. There are trade-offs for this, such as eventual consistency, but for IoT, the trade-off is more or less inherent, so it’s not usually a problem. The next three chapters in this book talk about different ways to manage this, but it’s good to think about it now while thinking about data storage.

Treat Writes as Idempotent

Treating your writes as idempotent stems from separating your reads from your writes. Idempotent means that once something is written, it can’t be modified. In database terms, the data is usually never updated or deleted. (Deletions as part of a data clean-up or archival process are an exception.) Idempotence is an important part of transactional systems like financial ledgers. Rather than modify old records, new ones are entered to adjust things. This helps keep a record of everything that happened, even mistakes. “Transactional systems” do not refer only to those that handle financial data. Almost all data flowing in from devices is transactional. The transactions, in this case, are the telemetry and events flowing from the devices. These are sequenced and timestamped, so they show up in a data system like transactions in a ledger and can thus be treated the same way. Star schemas and summarized data are usually idempotent because they work like a ledger.

Treating writes as idempotent allows you to have append-only storage, which does not lock up data for queries under heavy, random read and write loads typical in databases with both. Moreover, such a system typically requires less compute and memory to track the current sessions.

Idempotence, however, is not a universally applicable principle. Sometimes, metered data, like running averages or items to date, might periodically update. But in these cases, you’ll want to use idempotent data to create these more mutable data forms. These summaries are part of data intended for reading and one reason to separate reads from writes, even if the data is frequently updated.

Store Data in an Optimized Form for Its Intended Use

Like treating writes as idempotent, storing data in an optimized form for its use makes reads more performant. This means you will have more than one representation or even more than a single copy of the same data. Suppose you were going to create an API for telemetry coming off devices. You would want to store the data to allow for fast retrieval of the data for the most common forms of searching the data, which may be on a class of devices or a certain geography. At the same time, you want to create reports with hourly summaries for the telemetry that can be quickly filtered. A backup allows you to at least store the data until things like an RDBMS can index and partition the data, so it’s quickly searchable, filterable, and sortable. In the second case, you would process the same data to create summaries and store the summarized data in a data warehouse. Both of these use cases are based on the same source data, but the outputs for reading are two different storage systems. Considering these scenarios, here are a few contrasting ways to think about how to store data:

	Reads versus writes

	Reads on databases work better when the data is arranged on a disk sequentially so that the reader does not have to skip around or read anything superfluous. Writes work best when they do not have to update existing data or skip around on the disk to finish the write. Rarely do the optimal conditions for both reads and writes align, so for some data systems, it’s good to store read-optimized and write-optimized versions of the data.

	Transactions versus analytics

	Transactional stores work best on single entities, so the transactions perform better when the entities are contiguous on a disk or a storage media instead of spread out. For analytics, the opposite is true. Analytics perform well if you can break up entities and store the fields of like entities together. Storing transactional data apart from analytic copies of the data can optimize performance.

	Online versus offline

	Online storage that is intended to have something hit it randomly, typically through transactional queries or the like, optimize through the use of indexing and uncompressed data formats to expedite accessing the data. Offline storage, however, is useful for storing data in a form that does not need on-demand transactional queries. Storing data in an organized, compressed file for bulk data transfers or ETL processes is better for this storage.

By optimizing data storage, you are further optimizing the data for its intended use. Here, you do not have to reprocess data from the source whenever you want to get summaries or read the data from an unindexed source for your APIs. These more optimized solutions create more performant results too, which saves on costs and increases performance. It’s a win-win.

Create Retention Policies

Over time, your data will grow. To keep the data from becoming large and unwieldy, you should create data retention policies that can archive or delete data. Archiving data in the cloud is usually a fraction of the cost of keeping it in a non-archive state. Good data grooming practices like this keep your data storage economical and more performant with time.

Data retention policies vary by jurisdiction, industry, and business requirements, so there are really no rules here other than to identify those constraints and then implement a process to archive or delete data.

Landing Your Data

One of the first things you should do once your data hits the cloud is “land” it. Landing data refers to the process of storing the raw data, usually with the intention of using it in further analysis. Typically, you can just write the data as is on cheap, bulk storage. The practice of landing data provides several benefits:

	Protection against data loss and processing that data for further analysis. Sometimes, the intended permanent home for data becomes unavailable, so having a backup allows you to at least store the data until you can process and move the data into its intended home. This also preserves the data and metadata in their original form.

	Seeds batch processes. Chapter 8 involves batch processing with “cold path” data movement methods, but the “raw” data is where this all begins.

	Debug and replay processes that fail. If your data processes fail, having the source data enables you to re-create the original conditions so you can replay the processes to find out what went wrong or reprocess the data as intended.

	A record of what is happening for security and monitoring purposes. Security and monitoring are increasingly data-driven, so the data enables you to use it for more than merely creating an API or report.

	New avenues for analytics like artificial intelligence and business intelligence.

In short, your raw data is like crude oil. In its raw form, it may seem like black sludge, but that black sludge is useful for all kinds of applications that are harder to do once the sludge has been refined.

Because landing your data is an essential function of IoT data, Azure IoT Hub supports it right out of the box; you merely need to configure it. Azure offers two primary means for landing data with Blob Storage and Azure Data Lake.

Azure Blob Storage

Azure Blob Storage is one of the most essential services on Azure, and thus it backs many other services. Blob Storage is “object storage” because it can store any kind of data you can write to a file: text, images, sound files, video files, backups, documents, spreadsheets, ebooks, etc. But although Blob Storage can store files, it’s not a file system. Your operating system typically provides a file system on your computer for organizing and storing files on your computer’s disks. Servers can also provide network shares that provide a shared file system on a network. Blob Storage is instead accessed through a web-based API that can upload, update, download, and delete files through the API. Having an API like this enables Blob Storage to be accessible by anything that can support HTTP requests, so even the most constrained devices can use it.

Key features that make Blob Storage useful for IoT workloads include:

	Elasticity

	You pay only for the storage that you are using. If you remove files, your cost goes down, and vice versa, it goes up with more data.

	Optional geo-replication

	You can easily move your data to another geography using the replication option.

	Built-in support for soft deletes

	Soft deletes means that if a file is deleted, it’s not removed from storage immediately. It can be restored up to a point where it’s permanently removed.

	Built-in support for retention

	Blob storage has different tiers: archive, cool, and hot. With retention policies, you can move from hot to cool, then from cool to archive. Hot costs more per gigabyte than cool, and cool is more than archive. The trade-off is that cool costs more to read, and archive takes significantly more time to hydrate data if needed. You can tune your policies to move data between tiers.

	Support for NFS

	While Blob Storage is not a file system, it provides a wire-level implementation of the Network File System (NFS) protocol. This enables clients that support NFS (practically all Linux hosts and as an add-on feature for Windows) to access Blob Storage like it was part of a file system.

As a solution, Blob Storage provides scalable, highly available data for landing data for your devices. Atop it, though, another solution adds value to Blob Storage: Azure Data Lake.

Azure Data Lake

Azure Data Lake is a product that implements the general idea of a data lake. A data lake is a data repository, like a file system, but it’s primarily intended to house massive amounts of data used for analytical purposes. Because it’s designed for analytics, it’s optimized for analytics, meaning that it’s typically going to be fast on retrieving data, but at the expense of other operations like scanning for files or random reads and writes on data in the data lake.

Azure Data Lake was originally a standalone product, but with Gen 2, it’s a feature of Blob Storage. Under the covers, Data Lake uses Blob Storage, but it exposes the data differently, and the storage for Data Lake is more optimized for analytical workloads. It might be useful to think of Azure Data Lake Gen 2 as a specialized form of Blob Storage while Blob Storage is more general purpose. Here are a few key differences between Azure Data Lake and Blob Storage:

	One primary optimization is its use of hierarchical namespaces, like a directory structure with folders. Blob Storage has containers but does not natively support folders, although many tools mimic folders by parsing a blob’s path and name. You can move, rename, and filter files faster than Blob Storage. Blob Storage does not maintain an index of filenames, which makes it much slower.

	Data Lake has support for the Hadoop Distributed File System (HDFS) protocol. HDFS is a specially designed file system protocol for big data workloads and is widely used in the Hadoop ecosystem, which Azure implements as HDInsights. Azure uses other parts of the Hadoop ecosystem within Azure Synapse, Azure Databricks, and Azure Data Factory, all of which are at least in part based on Apache Spark. These tools can take advantage of the optimization offered by Azure Data Lake for their intended purposes. We’ll get more into these offerings in later chapters.

	Another key feature of Data Lake is its support for access control lists (ACLs) down to the file level. HDFS supports UNIX-like file permissions and ACLs. This allows users to section off Data Lake parts that need security and only expose what’s necessary.

General-Purpose Blob Storage Versus Data Lake

So, given that a Data Lake is like a specialty version of Blob Storage, it would seem natural to prefer it over general-purpose Blob Storage. After all, the storage costs are about the same. While Data Lake is certainly more feature-rich, it’s not for everything. Its abundant features come at a cost, meaning that you have to make more calls to the APIs to leverage the features effectively. The overall effects, in this case, are chat sessions between clients and the data lake. Because Azure meters API calls, egress, and storage costs, Data Lake can be unnecessarily more expensive if you don’t need these extra features. For instance, if you were just storing image data and accessing the data as part of a web app, Data Lake would be a less effective solution. However, suppose you were using those same images to train AI models. In that case, Data Lake may be more useful because of the optimizations for querying the data in the storage.

For IoT workloads, it’s hard to say definitively which one you should use because it depends less on what the IoT devices are sending and more on how you want to use the data. If you plan to make something that heavily uses analytics, Data Lake might be your choice. If that’s not what you intend to do, then Blob Storage might be a good choice. Sometimes, you may want to use both for different parts of your solution—it just depends.

If you’re not sure, start with Blob Storage. You can switch to Data Lake in the future if you need it. It would require a data migration, but Azure has support for moving data between two instances of Blob Storage. Without leaving Azure, you could transfer data from Blob Storage to Data Lake.

Regardless of which one you choose, there are principles and practices for organizing data in a data repository like this that you can apply to your data. You’ll get more on this later in Chapters 8 through 12 on data movement.

Set Up Azure Blob Storage to Land Data

Setting up Blob Storage to land data is just like creating a route in IoT Hub. You create an endpoint and choose Blob Storage. It asks you for the storage account you want to use, and events and telemetry are recorded in Blob Storage. Rather than atomize every message as a separate blob, the messages are batched and regularly recorded to reduce the number of files. These can be stored as JSON documents, which is a text-based format, or as Avro files, which is a compressed table format widely used in the Hadoop ecosystem (more on that later).

To set this up, you’ll first need a storage account. You may have already set one up in the chapter on messaging when you created a storage account to land images for file uploads. You can repurpose that one with a new container for telemetry or create a new one. With that done, you can then set up a route to writing data to Blob Storage:

	In the Azure portal, find your IoT Hub and select “Message routing” under “Hub settings.”

	On routes, click on “+Add.” This will launch the “Add a route” wizard.

	For the name, name it telemetry-landing.

	Click “+ Add endpoint” and select “Storage.”

	For the endpoint name, call it telemetry-storage.

	Click on “Pick a container.”

	Here, you can create a storage account by selecting “+ Storage account,” but you can just select the one you’ve already created as well.

	From your storage account, create a new container by clicking “+ Container.”

	Call the container telemetry and click “Create.”

	Click on the container and then “Select.”

	For the Encoding, select “JSON.” I’d recommend using Avro files for a production workload intended for Apache Spark, Databricks, or Data Factory. Applications like Azure Functions can more easily read JSON files.

	Finally, click “Create” to make the endpoint.

	For “Data sources,” ensure that “Device Telemetry Messages” is selected.

	Back on the “Add a route” screen, click “Save.”

	Start your device simulator or device sample, and messages will flow into the storage account.

	Open your storage account and browse your container. You’ll see that your telemetry is organized using the IoT Hub name along with date data.

	Download one of the files, and you’ll find a JSON file with device telemetry as one message per line. The devices are sending JSON data, but IoT Hub uses a single line per message. This style of JSON flattens the data so you can easily ingest these using data analytics tools.

In Chapter 10 on cold path data, we’ll use this storage account as a source for an ETL process. As of this writing, a preview feature allows data to go directly into Cosmos DB from IoT Hub. Later in this chapter, you’ll learn how to do this with an Event Grid trigger and Azure Functions. When the feature becomes generally available, using the native integration removes some of the ceremony of Event Grid and Function Apps. Still, this pattern may be desirable for messages needing some processing. In any case, even if data goes into Cosmos DB, landing the data in Blob Storage is still advisable as a backup and for better availability.

What About File Shares or File Sharing Services?

File shares from a server enable you to use the server’s storage as part of your local operating system’s file system. When networks were first introduced to businesses, file shares were all the rage, but they don’t work in the cloud. Web-based file sharing, such as OneDrive, SharePoint, or Dropbox, have supplanted these services. These solutions are great for sharing files between devices like tablets, computers, and phones, but IoT mostly focuses on storing millions of small messages and occasionally storing files. As you’ve seen, IoT Hub handled file uploads as an out-of-band process from the primary way that devices send data like telemetry and events. It’s best to use object stores like Blob Storage or Data Lake for IoT workloads instead of these services.

Regardless of where you land your data, it’s more or less “safe” and is useful. It’s important to keep it that way, which is one reason not to allow anyone to change it, thus making it idempotent. From here, it’s ready for transactions and analytics.

Online Transaction Processor (OLTP) Versus Online Analytics Processor (OLAP)

I cannot remember how often I have seen organizations attempt to use an online transaction processor (OLTP) as an online analytics processor (OLAP). I’ve seen this enough to look for it as an antipattern when assessing data storage solutions suffering from suboptimal performance.

Before getting into why you want to separate these two, let’s define them. OLTP and OLAP are older terms but refer to two different classes of database technologies. OLTP data is typically normalized while OLAP is typically in a star schema. An OLTP is what most people think of as a more traditional database, though it’s not limited to that. It is transactionally oriented and designed to quickly handle small requests against the normalized data it stores. At the risk of oversimplifying, an OLTP focuses on row-oriented operations if one is talking about tables. It attempts to update, insert, and delete rows as part of written transactions and find rows as part of read transactions. Similarly, in a document database, the operations are against individual documents. OLTP engines store data in a way that makes row-oriented operations much faster.

An OLAP solution is what many people think of as a data warehouse. These solutions work well for storing data in a way that makes it accessible for analytics processes like reporting and business intelligence. In contrast to OLTP, OLAP focuses on column-oriented operations against denormalized data, like grouping data, summarizing it with averages, means, sums, and the like, or slicing the data against multiple columns to get more complex analytics from the data.

While it’s possible to summarize data in an OLTP, it does not optimize them for these kinds of operations. On the other hand, OLAP engines store data in a way that makes data aggregations much more efficient and, sometimes, will persist summarized, so it does not have to recalculate data when additional requests come in. Azure offers many OLTP and OLAP solutions.

OLTP Solutions on Azure

There’s no shortage of OLTP solutions on Azure because of the plethora of databases that have arisen over the years. Microsoft created numerous implementations of their products and open source databases that provide databases as a service (DBaaS). A DBaaS is a managed service that offers an endpoint for applications and users to read and write data from without the headaches of patching and maintaining the database. Many of these have different SKUs (tiers) for different kinds of workloads. Let’s survey a few of these OLTP solutions and their purposes.

Cosmos DB

Cosmos DB is a multi-paradigm database supporting document, graph, columnar, and relational databases. It’s a fully managed, highly scalable service with tunable consistency models and easily replicates across regions on Azure. The service started as an internal project at Microsoft, but it was generalized and made available to Azure consumers. Since its introduction, it has become one of the most popular services on Azure. Cosmos DB has six APIs:

	SQL API

	Uses a dialect of SQL against a document database. A document database is used for storing semi-structured data, such as JSON documents. These documents don’t have to conform to a specific schema to work with Cosmos DB. This works great for storing event data and telemetry data. Cosmos DB indexes all data by default.

	Mongo API

	Mongo is a popular open source document database. Cosmos DB implements a wire-level protocol implementation of the MongoDB API but still allows you to use the different consistency models and other features available to Cosmos DB. The Mongo API works with standard MongoDB clients. It’s not a 100% compatible implementation, as there are limits, but this API works well for many applications needing Mongo.

	Graph API

	Implements the Gremlin query language used in Neo4J. A graph database works by creating nodes that connect to other nodes. The resulting data structures and relationships look something like a web. In IoT workloads, graph databases are great for expressing relationships between devices and twinning data. Azure’s own Digital Twin services provide this service, but the Graph API works similarly if you want to create a more custom solution.

	Cassandra API

	Cassandra is an open source column store database. Column store databases still use table-like structures for storing data, but there’s no predefined schema. Each row (technically, they are not rows, but rather “column families”) can have a different set of columns from the next row in the same table. Column-store databases store data using column-oriented storage because it makes performing column-oriented queries, such as aggregations, sums, averages, etc., faster. These databases are useful for big data workloads and can perform some of the same things that an OLAP solution can do. However, these are still transactionally oriented tables and do not replace OLAP solutions.

	Table API

	The Table API in Cosmos DB is an evolution of Table storage from storage accounts. It’s another column store database useful for storing rows with an arbitrary set of columns. The Table API in Cosmos DB is like Table storage, except it can take advantage of the features of Cosmos DB, like the different consistency models and SLAs on the database.

	PostgreSQL API

	PostgreSQL is an API on Cosmos DB that brings a relational database to Cosmos. PostgreSQL in Cosmos DB is for distributed tables, which allows tables to spread across nodes on a PostgreSQL cluster. This scheme enables compute nodes to combine their CPU, RAM, and I/O capacity to accelerate queries in a PostgreSQL context. Cosmos DB, being a distributed database, works well for this use case. It allows for high transactional throughput on your database tables.

Beyond the different APIs, Cosmos DB supports other consistency models as well. Some of the models support stronger consistency within a specific context, such as the current session being able to read all of its own writes while other sessions use eventual consistency. I still prefer eventual consistency as a default unless there’s a compelling reason to use another consistency model. It offers the highest throughput and performance because it does not need to track sessions or ensure consistency at any level.

Of the databases mentioned, Cosmos DB stands as one of the most useful databases for building transactional data stores for IoT, especially using the SQL API. The SQL API is widely supported across many different services on Azure, scales well, and supports the kinds of data coming off devices. The trick to making the API work is ensuring that you partition the data in Cosmos DB in a way that supports the major use cases for your workloads. Also, ensure that you regularly groom the data to control the size of collections in Cosmos DB.

Azure Data Explorer (ADX)

Microsoft optimized Azure Data Explorer (ADX) for streaming data analytics with high concurrency. ADX offers low-latency ingestions on persistent storage useful for analytics. It provides the analytics backbone for everything in the Azure Monitor ecosystem, including Azure Log Analytics, Azure Sentinel, and Azure App Insights. ADX is for these services, but Microsoft generalized it to make it adaptable to other applications that need to process data streams, including IoT workloads.

Azure Data Explorer can ingest data streams from Event Hubs and Service Bus into a table and other sources. The ingestion from these sources keeps data intact, but it’s not in the same format; rather, it’s converted to something conducive for ADX queries.

Once data is in the database, ADX supports time series analysis with AI and other methods to make predictions based on patterns in the data. ADX also supports materialized views and automated data exports to move data out of ADX into other data stores that might be more appropriate for a more general-purpose data store, like Azure SQL or Cosmos DB.

While ADX primarily uses streamed and time-series data, it’s not a message bus, so one cannot expect ADX to have quick exports of ingested data or other similar outputs. If you need a quick way to stream data, use Stream Analytics or Azure Functions to process the data. Chapter 9 on creating hot data paths covers these in more detail. Still, ADX offers a valuable resource for processing data streams at scale. Of the databases mentioned, this one is the most well-suited for data stream processing against large volumes of data.

Azure SQL

Azure SQL is a suite of database management solutions all built atop Microsoft’s SQL implementation. The databases all use the familiar relational table models, but several tunable options on Azure SQL make it useful for different tasks:

	Serverless

	One of the most cost-effective models on Azure SQL is its serverless model. It provides on-demand compute for databases that autoscales up and down. Serverless can scale to zero, but should it be needed, there’s a slight warmup time to bring a compute node online to process new requests.

	DTU model

	A Data Transaction Unit (DTU) is a combination of reads, writes, CPU, and memory provided as a unit for transactions on a SQL database. The DTU model uses typical database consumption for SQL Server, so it might not be the best for databases that need heavy compute or use large, in-memory datasets.

	Elastic Pools

	Elastic pools provide a set of shared compute resources between different databases. This storage is useful for many smaller databases with sporadic access. Elastic pools use eDTUs as the measure of compute, memory, reads, and writes similar to the DTU model.

	General Purpose

	General Purpose databases use a vCore model, which bundles memory and compute resources similar to selecting a virtual machine. This tier has different types of compute that offer different ratios of cores to RAM. You can choose a series that uses more RAM for more memory-intensive databases or more CPU for more compute-intensive databases.

	Business Critical

	A vCore model that uses more premium storage for better IOPs and throughput. It also provides better availability and support for larger databases than the General Purpose tier.

	Hyperscale

	This tier aims to provide a SQL Server option for big data applications. Hyperscale enables data partitioning at scale to support vast quantities of data. This option is useful for workloads that need to store large amounts of data and analyze that data using SQL.

	Managed Instances

	These fully managed services provide better compatibility with existing SQL databases. It’s a popular option for database migrations from on premises to Azure because of the support.

	SQL VMs

	Virtual machines that run SQL Server. The user is responsible for maintaining the OS and SQL Server instance on the VM, but these have some Azure integration that helps make the management processes easier. This is usually an option of last resort for compatibility in the cloud when none of the other options will work for database migrations. Using the other offerings is certainly preferable.

As a rule, Azure SQL is great for transactional data that needs strong consistency. Some features of Azure SQL are useful in streaming workloads, but most options aim for transaction-oriented (OLTP) type workloads. It’s useful for lighter reporting loads, backing APIs for applications, and data stores that need more general-purpose database needs. I have used these as part of IoT solutions, but they are usually part of the data presentations. Still, there are cases when SQL might be useful.

If you’re not committed to SQL, consider using Cosmos DB or Azure Data Explorer for transactional databases. These have more native support for eventual consistency.

Open Source Databases

Azure also has many open source databases, such as:

	Azure SQL for MySQL

	Provides a managed instance of MySQL, which is hugely popular with PHP-based web applications but is not really used in IoT workloads.

	Azure SQL for Maria DB

	Maria DB is functionally identical to MySQL but tends to be a little faster. Still, it’s not used very much in IoT workloads.

	Azure SQL for PostgreSQL

	This is separate from Azure Cosmos DB’s PostgreSQL offering. This option provides a more traditional PostgreSQL experience and more advanced options for larger data workloads. Like MySQL and Maria DB, it’s not used very much in IoT.

	Azure Cache for Redis

	Redis is a general-purpose memory caching system that can be used for storing data in a way that makes it quickly accessible for applications. It’s useful for storing application state data and data that does not often need a refresh. In IoT, it’s sometimes used to help accelerate data enrichment and filtering in stream processing.

Most of the open source databases on Azure are useful for providing databases to applications that need these databases. As a rule, they are not used heavily in IoT workloads for the same reason that IoT steers away from SQL Server: they default to strong consistency. However, these databases may be useful in other contexts as a solution if you have an application that needs one of these database formats. Many of the analytics tools support reading and writing to these open source databases.

OLAP Solutions on Azure

OLAP is a technology used for organizing, analyzing, and reporting large volumes of multidimensional data in a flexible and interactive manner. It enables users to perform complex calculations, drill down into detailed data, and gain insights by empowering decision-making processes in areas such as business intelligence, data mining, and financial analysis. OLAP solutions utilize multidimensional data models, such as cubes, to provide fast and efficient data retrieval, aggregation, and slicing across different dimensions for in-depth analysis. Azure has two suites for processing data: Azure Synapse Analytics and Azure HDInsight.

Azure Synapse Analytics

Azure Synapse is the evolution of Microsoft’s own SQL data warehouse platform that combines different tools using data warehousing, integration, and analytics tools. The single source of tools creates more of an ecosystem in Synapse rather than using a set of disparate tools to attempt to do the same thing. The tools in Synapse work as a set, providing a much more unified and integrated experience.

As far as storage goes, Synapse likes to “own” the data in a way that brings the data from the source system into Synapse in a more or less unmodified form. Synapse prefers an ELT (extract, load, transform) process for data ingestion over an ETL (extract, transform, load) process. Later chapters go into these more in depth, but for now, just know that the process basically moves data into Synapse and “loads” the data before the transforms happen. ETL processes transform the data before loading it into a target system. In ELT, the “load” step essentially normalizes the data in a way that is more native to Azure Synapse before it does any transformation involving data enrichments, aggregations, summarizations, and so on. The data, in this case, is stored more in its original state from the source system but is optimized for inside of Synapse.

Having the data stored more in its original state enables Synapse to perform several different analyses on the data:

	Create different kinds of outputs more optimized for analytical work. One of the main advantages of having the data closer to the source is that different outputs can be created more easily using more iterative approaches with a unified set of tools.

	Apply machine learning against the data with Azure Cognitive Services and Azure Machine Learning. The data stored in a more normalized form gives a common format for integrating these types of tools for analytics.

	Use different languages like SQL, Python, or Scala to perform analytics jobs on the source data. Again, having a common format gives a more consistent integration point.

	Use a SQL engine or an integrated Spark cluster to analyze data.

	Work with data as a data lake or use data like a data warehouse with a unified set of tools.

Azure Synapse for OLAP is a specialized tool from Microsoft, but it does lean on open source standards for many of the analytics processes. It would be hard to call it proprietary, but it certainly is more opinionated. The trade-off for using the tool is that it provides a more integrated experience that’s hard to find in other devices while providing a common format for storing data for analytics processes.

HDInsight

While Synapse is more of a Microsoft-first tool with some open source standards incorporated, HDInsight is a completely open source tool that Microsoft has implemented as a first-class Azure offering. HDInsight builds on the Hadoop ecosystem, a whole suite of tools integrated with Hadoop for big data.

It’s hard to say exactly what Hadoop “is” because it incorporates many different things to suit different needs. I like to think of Hadoop as a framework or kernel that can add different things. Hadoop provides the core services for operating tools, similar to how an operating system kernel provides the services for running apps on a computer. Hadoop itself is not a storage technology but rather more of a compute technology built on top of HDFS, so it’s hard to talk about it merely in the context of storage, which is the primary focus of this chapter. Hadoop works with HDFS, the Hadoop Distributed File System, which Azure Data Lake supports as one of the access APIs. Hadoop also provides Yarn, a resource manager similar to how a kernel manages resources, and MapReduce, a programming model for creating apps on Hadoop. Within Hadoop, there are a ton of different utilities to use, but there are two worth briefly mentioning here in the context of IoT.

First, one of the most popular tools in the Hadoop ecosystem is Apache Spark. I’ve mentioned Spark many times already because it’s the backbone for several Azure products like Azure Data Factory, Azure Databricks, and Azure Synapse. Spark is a compute cluster that allows you to perform jobs while it orchestrates the cluster across the nodes. It also supports in-memory processing for better performance than what you could get with Hadoop. Also, you focus mostly on running your jobs without the fuss of resource management. On HDInsight, Spark is probably in its most vanilla state, but if you want a more managed experience, I’d recommend using Azure Databricks. It’s still Apache Spark, but the ability to spin up and down clusters and run jobs on Databricks is simple.

The second is Apache Kafka. Kafka is a platform that combines messaging and stream processing within a single tool within the Hadoop ecosystem. Like other messaging platforms, it has producers and consumers; in some contexts, these are called publishers and subscribers. The platform ingests messages from sources, like IoT devices, processes them using logic on the Kafka cluster, and then writes the results for consumption. The processing, in this case, can be a passthrough but can also be much more robust with data enrichments, filtering, and transformations, depending on the need.

Compared to Synapse, HDInsight has a steep learning curve. While many organizations use it successfully, it may not be easy to pick up if big data analytics is not your focus. Azure Synapse requires less specialized knowledge to get going because it hides more of the complexities of the cluster from you that HDInsight exposes. That said, if you want to take advantage of stream processing with Synapse, Azure Stream Analytics with Azure Synapse with Spark can create a complete solution. Also, Azure Cosmos DB with the hybrid transactional/analytics processor (HTAP—more on this later) feature enabled can create high-throughput, near real-time analytics for Azure Data Explorer. Even with Synapse’s limitations, I still recommend it because it’s more of a managed experience than what HDInsight offers. Chapter 9 on hot path processing delves into this topic in more detail.

Data Lakes Versus Data Warehouses

You already read about data lakes, and in the context of OLAP, data lakes can play a prominent role. That’s simply because data lakes are more than just a place to land data or a file system for HDInsight—they are in many ways one of the most critical pieces of a data analytics architecture, and for good reason. This chapter started by pointing out several general tips for data storage, two of which are particularly salient here: “storage is cheap, compute is expensive” and “store data in an optimized form for its intended use.” These two tips stand at odds with one of the major complaints about data warehousing. In general, data warehousing is expensive—really expensive—because it requires a massive amount of compute and storage to make it practical. Data warehouses can be cost-prohibitive compared to the value they provide. Many organizations, therefore, never bothered with them and missed out on the analytics and insights they can provide.

A data lake, however, can mitigate this. First, a data lake is designed to work on commodity storage that is generally inexpensive, so it can scale. Data is partitioned across the commodity storage using partitioning schemes, so increasing capacity is as simple as adding more storage to the data lake. This can be challenging with a data warehouse because it typically requires high-performance disks, and expanding it is difficult. Modern data warehousing has mitigated this some, but it’s not entirely gone. On Azure, Blob Storage backs Azure Data Lakes. It’s inexpensive, dynamically scalable storage wherein you pay only for what you use and not a cent more.

Second, a data lake decouples compute and storage. A data warehouse typically keeps compute and storage together. When one is completely online, the other is completely online. When one is offline, the other is offline. Data lakes don’t need compute to operate, or at least they need only minimal compute to handle basic reads and writes to the storage. When analytics are required, compute can be allocated, the analytics jobs run, then the compute is deallocated without taking the storage offline. This allows the storage to remain online and use compute on demand, thus minimizing costs.

The biggest trade-off with using a data lake is that it’s not very conducive for ad hoc querying like a data warehouse. This makes it impractical for business users who want the ability to sift data themselves. A data warehouse works like a database, where queries can execute on the engine and return results at will. For a system that uses a data warehouse as a store for analytics and business intelligence, having the ability to perform ad hoc queries is essential.

A few patterns can mitigate the need for ad hoc queries. One is to load aggregated data into a transactional database. I have used this strategy before, and for some things, it works OK. But it’s not necessarily the best approach because RDBMS is, as mentioned, more optimized for transactional queries than for data aggregations. The other, more proper pattern is to use what is colloquially called a “lakehouse.”

Lakehouse

The “lakehouse” approach is a hybrid solution that attempts to bring together both a data lake and a data warehouse to create a solution that can offer the best of both worlds. From the data lake side, it still uses commodity storage for storing the bulk of the data. In some cases, it still uses on-demand compute for much of the transformation and aggregation. But the final results are loaded into a more modest data warehouse that serves more ad hoc queries but does not need the massive compute to perform the transforms and aggregation. The lakehouse pattern merges the capabilities of both data lakes and data warehouses. It allows businesses to perform BI (business intelligence) analytics and machine learning on data within the data lake, while still benefiting from the performance and structure of a data warehouse.

A lakehouse ingests data from various sources, like IoT devices, applications, and logs, in its native format. Using ETL or ELT processes, the raw data is transformed and curated. With the lakehouse pattern, technologies like Delta Lake can be utilized to enforce schema and manage transactions, ensuring data reliability. Once the processing is done, analysts and data scientists can derive insights from the same platform. Insights derived from the analytics and machine learning models are utilized for business reporting, driving decisions, or triggering automated actions.

Lakehouses incorporate ACID (atomicity, consistency, isolation, durability) transactions, ensuring data reliability and consistency, which is often missing in traditional data lakes. You can also enforce schemas on read and write operations to maintain data quality and integrity. Likewise, they provide capabilities like data versioning, allowing for rollbacks, audits, and reproducing machine learning experiments with historical data.

Delta Lake, an open source storage layer, brings ACID transactions to data lakes, ensuring reliable data is available for analytics. Delta Architecture, which uses the lakehouse pattern, is discussed in Chapter 8.

On Azure, Synapse can still serve as a lakehouse. Instead of scaling up a massive Synapse cluster, you can use Synapse as a serverless model with on-demand compute. The data ingestions and transforms on the data lake use another tool, such as Azure Data Factory, Databricks, or the built-in ELT tools on Synapse to perform the transform and aggregation jobs.

Even with the lakehouse approach, there is one solution that I prefer. I’ve mentioned it already, and that’s the hybrid approach that combines my preferred database, Cosmos DB, with Azure Synapse.

Hybrid Transaction Analytics Processor (HTAP)

More recent developments of OLAP and OLTP attempt to combine these two, or at least reduce the impedance between the two, by creating a feed between the transaction processor and the analytics processor to create a hybrid transactional/analytics processor (HTAP). One implementation of HTAP on Azure uses Azure Cosmos DB and Azure Synapse. The integration of these two creates a feed from changes in Cosmos DB into Azure Synapse. HTAP processors attempt to keep the data as it’s presented in the database. Still, HTAP stores data more optimally for analytics processing, typically in a columnar fashion that makes analytical operations faster. The flow is pretty straightforward and builds on what you’ve already done in previous chapters. This time, you’ll get the database from a messaging platform and store it in Cosmos DB, which will automatically store the data in a format conducive to analytics by Synapse, as seen in Figure 7-2.

[image:]
Figure 7-2. The HTAP flow into Cosmos DB and Synapse Analytics

The HTAP enablement on Cosmos DB works with MongoDB and the SQL API against document databases. It’s simple to use and set up. This data in the data warehouse will still follow a flow that looks more like a traditional ELT job that Synapse prefers because the data is more or less as it appears in Cosmos DB once it’s been copied into the Synapse tables. Still, you can work with this data and take advantage of some of the integration tools in Synapse that help mitigate some of the costs because they use a serverless billing model.

OLTP as OLAP

“But wait,” you say, “couldn’t I use an OLTP as an OLAP?” Yes, you could, but it’s not a great solution. In fact, I’ve seen enough failed attempts that I’d even call it an antipattern. Instead of using an OLTP as an OLAP, a better solution would be to use an HTAP. Next, I’ll take you through an example of how to create an HTAP with Cosmos DB and Azure Synapse Analytics.

Creating an HTAP with Cosmos DB and Azure Synapse Analytics

Although setting up the integration between Cosmos DB and Azure Synapse Analytics is pretty straightforward, getting the data into Cosmos DB is a little tricky. As of the writing of this book, there is a preview feature on IoT Hub that is supposed to stream data from IoT Hub into Cosmos DB directly, but in my tests, it was not very reliable. There are, however, other ways to do this. They all involve a pattern of queuing a message onto a messaging platform such as Service Bus, Event Hubs, or Event Grid. After this, some integration services can read the message from the messaging platform and write it to Cosmos DB, such as Azure Functions, Stream Analytics, or Logic Apps. Stream Analytics and Logics Apps are probably unnecessarily expensive for the purposes here, but these both certainly have their place, especially Stream Analytics. So here, you’ll use an Event Grid System Topic with an Azure Function. It is both cheap and reliable, even for production workloads.

To make this work, you’ll need to start by creating the Cosmos DB instance. After that, you will set the Azure Function, then generate the Event Grid Topic. After this, you’ll integrate the Function App with the Event Grid and Cosmos DB. Once data flows into Cosmos DB, you’ll set up a Synapse Analytics workspace to integrate it with Cosmos DB to create the HTAP. Let’s try this out with the example device.

Creating a Cosmos DB database

Creating a Cosmos DB cluster is pretty straightforward. For this example, you’ll use the SQL API, but the HTAP works with Mongo and the Graph API as well:

	In the Azure portal, search for “Cosmos DB” and select “Azure Cosmos DB” under “Services.” This will bring up a list of Cosmos DB instances you may have.

	Click on “+ Create.” This takes you to the “Basics” blade to configure the database.

	Click “Create” under “Azure Cosmos DB for NoSQL.”

	Populate the form.

	Select a Resource Group or create a new one.

	Type in a name like blaizeiottelemetry for “Account Name.”

	Put the database in the same region as your IoT Hub for location.

	For capacity mode, select “Serverless.” This capacity should be enough for our purposes here, but a more production-oriented workload will likely need more provisioned throughput, depending on the complexity and volume of the data.

	Click “Review + create” to run the validation.

	After the validation passes, click “Create.” The creation process takes a few minutes to complete.

	Once the database account provisions, open the resource and click on “Data Explorer.”

	In the Data Explorer, select “New container.” This opens a blade to add a new database and container. For the “Database Id,” call the database iot-telemetry-db and for the “Container Id” enter iot-telemetry-container. You’ll need these IDs later when you configure the Function App.

	Click OK to create the container and database. This process takes a few seconds to complete.

The wizard has a few sections with defaults that are not necessary for this setup but are nice to have features, such as private endpoints and replication. The defaults are a single-region deployment with access from all addresses. For a production-oriented workload, you’ll want to set up redundancy to get better availability and also lock down the networking to suit your security needs.

Create a Function App

For this example integration, you’ll use a Function App. The Function App bridges the Event Grid Topic and the database. Function Apps work well as part of a data pipeline and can operate on demand using the consumption (serverless) model for running the functions. While this example is trivial, a Function App can often enrich, filter, and otherwise process data before putting it into a database or sending it to something else downstream of the Function App. To create a function app, do the following:

	In the Azure portal, type “Function App” into the search and select “Function App” under “Services.” This will pull up a list of existing Function Apps.

	Click “+ Create” to create a new one.

	Populate the “Basic” form.

	Select your Subscription and Resource Group for the Function App.

	You’ll need a unique name for the app as part of its hostname, like blaizeiottelemetry or something like that.

	Ensure that the Region is the same region as your Cosmos DB database and IoT Hub.

	Ensure that “Code” is selected for “Publish.”

	Select “Node.js” for the “Runtime stack.”

	Take the latest non-preview version.

	Choose Linux for the “Operating System.”

	For “Plan Type,” select “Consumption (Serverless).”

	Click “Review + create.”

	Finally, click “Create” to start the creation process and let it finish. This can take a minute or two.

	After the deployment finishes, select “Functions,” then click “+ Create.”

	Select “Develop in portal” for “Development environment.”

	Select “Azure Event Grid trigger” for the template.

	For the name, use “TelemetryTrigger.”

	Click “Create” and let the portal create the Function.

	After the Function is created, click on “Integration.”

	There, choose “+ Add output” under “Output.” This will pull in a form for adding the output.

	For the Binding Type, choose “Azure Cosmos DB.”

	Click “New” under “Cosmos DB account connection” to add a new connection. This will pop up a dialog to choose an account.

	Find your account and select it from the dropdown menu and click “OK.”

	Leave the “Document parameter name” as “outputDocument.”

	Use iot-telemetry-db for the database name. This should match the name of the database you created previously.

	Use iot-telemetry-container for the “Collection name.”

	Click “OK” to create the output binding.

	Click on “Code + Test.”

	Add an empty line after line 3 and add this line of code. It takes the content from the Event Grid Topic Message and populates the document for the database with the message:

 context.bindings.outputDocument = JSON.stringify(eventGridEvent.data);

Your code should look like this:

module.exports = async function (context, eventGridEvent) {
 context.log(typeof eventGridEvent);
 context.log(eventGridEvent);
 context.bindings.outputDocument =
 JSON.stringify(eventGridEvent.data);
};

	Click “Save” to save the code.

Now that this is set up, you need to create the Event Grid System Topic to trigger the Function.

Create an Event Grid System Topic

Event Grid System Topics allow you to subscribe to events on Azure that Azure services invoke. Creating a new blob in Blob Storage is a common event. In this example, you’ll create a topic for IoT Hub telemetry data and connect to the Function App as a subscriber to the event:

	Back in the Azure portal, in the search, look for “Event Grid System Topics” and select the resource under “Services.”

	Click “+ Create.”

	Select “IoT Hub Accounts” on the form for the “Topic Types.”

	Select the Subscription, Resource Group, and IoT Hub you created.

	Name the topic IoTTelemetry.

	Click on “Review + create” to review the topic.

	Click “Create” to create the topic after validation passes.

	After the resource is created, click on “Event Subscriptions.”

	Click “+ Event Subscription.”

	On the “Basics” blade, name the subscription Telemetry2CosmosDB.

	Under Event Types, select “Device Telemetry” and deselect everything else.

	For the Endpoint Type, select “Azure Function.”

	Click “Select and endpoint” and choose your Subscription, Resource Group, Function App, and “TelemetryTrigger” function.

	Click “Confirm Selection.”

	Finally, click “Create.”

Now, you can start a device simulator or sample device. Let it run for a moment. Then you should be able to browse your Cosmos DB account using Data Explorer. You should see some items if everything is flowing correctly into the database while your devices are running. Now that Cosmos DB is filling with data, you can use Synapse Link to enable the HTAP feature on Azure Synapse.

Create an Azure Synapse Analytics workspace and link it to Cosmos DB

All your data should be flowing into Azure Cosmos DB now. This is exactly what you need for the next part, which is getting Azure Synapse Link working with Cosmos DB, and truthfully it’s probably the easiest part to do once the Synapse workspace is running. When this is done, you’ll have an HTAP instance between Cosmos DB (your transactional store and processor) and Synapse (your analytics store and processor) running together. Again, in the Azure portal:

	In the search, look for “Synapse” and select “Azure Synapse Analytics” under “Services.”

	Click “+ Create” to add an instance.

	On the “Basics” form:

	Select your Subscription and Resource Group, and then give the instance a name, like blaizetelemetryanalytics-rg for the Managed resource group. This resource group manages resources created by Synapse behind the scenes.

	For the Workspace name, give it a name like blaizetelemetryanalytics.

	Ensure that the Synapse instance is in the same region as your IoT Hub and Cosmos DB instance. (Technically, it does not have to be, but for performance reasons and to minimize bandwidth costs, it’s best to keep these collocated.)

	Click “Create New” to create a data lake if you don’t already have one. Synapse uses this for different kinds of jobs for storing data. Name it something like blaizedl.

	Similarly, choose “Create New” for “File system name.” Name it something like blaizedl-fs.

	Leave the checkbox for the roles assignments checked.

	Click “Review + create.”

	Click “Create” and let Azure create the workspace for you. This may take a few seconds to complete.

	Once it completes, find your instance of Cosmos DB.

	In Cosmos DB, find “Azure Synapse Link” under “Integrations.”

	Click “Enable.” This process can take a moment to complete.

	Once Azure Synapse Link is enabled, select the telemetry container you created in your database, and click “Enable Synapse Link for these container(s).” You’ll have to wait for this to complete as well. This process does a data transformation to store your document data in a columnar form behind the scenes. Any new data is automatically transformed as it is added to the database; thus, the data is available for both transactions and analytics in near real time. You may need to refresh the browser page a few times to get updates. When it’s finished, click “Next.”

	On the next screen, select your Subscription, Cosmos DB database, and Workspace. Click “Next” after you’ve selected these.

	Click “Create link service” to create the link. This happens quickly.

	Now, you can click “Launch workspace.” This will take you to the Azure Synapse Analytics Workspace application in a new tab. You can also access a link to this app from the “Overview” blade in your Azure Synapse Analytics instance.

	On Cosmos DB, click on “Keys” under settings and copy the value for the Primary Key. You’ll need this in just a second.

	In the Synapse app you just opened, expand “Azure Cosmos DB,” then expand the database under that, and finally, the container.

	Click on the ellipses (…) next to the container, which reveals a menu. Select “New SQL Script.” This will open a tab that has some sample code in it. Remove the code.

	Run the following script to create a credential. Be sure to replace <YOUR SECRET> with the key you copied from Cosmos DB:

 CREATE CREDENTIAL [iottelemetry] WITH IDENTITY
 = 'SHARED ACCESS SIGNATURE', SECRET = '<YOUR SECRET>'

	Now, run a query to summarize some data. In the Chapter 7 folder, there is a SQL script called summarize-cpu-temp.sql. Open the SQL file in a text editor and copy the file’s contents into your Synapse instance.

	Replace <YOURACCOUNT> with the name of your Cosmos DB account. The rest should match the database, container, and credential you just created. You can leave these unchanged if you used the names in this guide. Otherwise, you’ll need to edit the values for these, too.

	If all goes well, you should see some output that summarizes the data for your device. This is the average CPU by hour. You can change this if you wish by tweaking the last line of the query. Use 60000 (the number of milliseconds in a minute) if you want to group by a minute or so.

With this, you’ve created an HTAP solution that stores data in two ways: one optimized for transactional workloads in the document database and the other stored for analytics purposes for the analytics processor. You set up some data movement that got data out of the IoT Hub and into the database, which is a necessary step. You’ll cover the kinds of data movements in the next few chapters, but the point of this exercise was storing data in different ways for different purposes.

Summary

The goal of this chapter was not to get prescriptive as much as it was to frame the thought processes for data storage solutions. The two big takeaways are to land your data first and then optimize your storage for its intended purpose, whether working with transactions, providing some kind of analytics, or both. In this chapter, you learned to:

	Partition your data to optimize storage across storage nodes for efficient access.

	Choose a storage option that will perform best for the principal workload.

	Use a data storage solution that can store data without an attached compute if you do not need online storage.

	Store data on data storage that allows for efficient queries rather than the most normalized form.

	Prefer eventual consistency over strong consistency for IoT with idempotence for fact-based data, which is virtually all telemetry and events on IoT.

	Choose optimized storage for reads for read-heavy workloads; choose optimized storage for writes for read-heavy workloads.

	Create retention policies for data.

	Land your data even if you are using a streaming data solution.

	Choose OLAP for analytics; choose OLTP for transactions.

You may not need a transactional store for OLTP or an OLAP solution for analytics if your solution does not demand it, but in almost every case, you’re probably going to need one or the other. In most cases I’ve seen, both exist. The question then arises: what is the most efficient way to move data around in all of the different systems? You’ve already read about one with the HTAP solution at some level, but that’s still only part of the way there. There’s something else, and that’s where data movement comes into play with hot and cold paths that move data from one storage form to another and may transform it along the way.

Chapter 8. Data Processing Architectures

Architecture—it’s the design behind what you build. Sure, you can build stuff without a plan, but it’s usually easier whenever you start to plan something first so you’re not stuck with a big ball of mud that is hard to use and maintain. Even as a fledgling developer in sixth grade, I liked to draw up grandiose plans for how I would write a program. It was needed even for simpler stuff and even more so for IoT, as the entire point of this book is IoT architecture. A big part of that architecture revolves around data processing architecture. Looking back at the IoT Landscape as seen in Figure 8-1, the three horizontal bars called hot path, cold path, and warm path are all about data processing architectures. These paths are general terms but have some nuances this chapter will unpack for you.

[image:]
Figure 8-1. The IoT Landscape data paths

When you build an IoT solution, one thing you must ask is: “How will I process all this data flowing into Azure from all of my devices?” You’ve already touched on this in the previous chapter about data storage. Here, you’ll build on that and learn about the data processing loop, then explore different kinds of data movements in data processing. Once you have your head around that, you’ll get a taste of three different architectural flavors. So let’s pick up where we left off with data storage.

Data Storage (Again)

Before we get too carried away with data processing, let’s talk about how data storage relates to data processing because it is a cross-cutting concern on Azure and in processing. Although I talked about some things that touch data storage in Chapter 7, the focus was on showing how storing data impacts the performance and costs of a data solution. The general takeaway was all about optimizing your storage for the use cases you want, whether that optimization is for archival purposes, transactional processes, analytics, or something else. Data uses storage heavily depending on where you are with your data processing. It’s important to remember these principles so that your data processing will run smoothly and scale well with the storage that supports it.

Data Processing Cycle

Collection, preparation, input, processing, output, and storage are the six steps in data processing. In some cases, data processing both starts and ends with storage. One process’s output is another process’s input, so it’s a cycle, as shown in Figure 8-2.

[image:]
Figure 8-2. Data processing cycle

These steps are not always explicitly defined in a data flow, but the idea here is to call them out as steps because each step has a specific boundary and shapes how the entire process works. So let’s drill down into each step.

Data Collection

Data collection involves getting data from one or more sources. In IoT, the data sources are primarily the events and telemetry coming off devices. Other sources, however, may be relevant depending on the context. You may need to access personal data, sales data, inventory data, device state data, etc., that are not coming from devices. They may come from databases, external APIs, files, or data feeds. Collecting this data can either copy it from a source and store it or use the original source as a connected online source. In any case, the data here is in a “raw” form.

Data Preparation

Data preparation involves data grooming to ensure that the collected data is in good condition and useful. In this step, data is cleaned, and errors are fixed. You may need to fill in missing values, remove extraneous data like outliers and duplicate data, remove sensitive data if needed, and sometimes get the data into a format that downstream steps can easily read. Sometimes, the preparation is minimal because data is already pretty clean. With IoT devices that you control, the data is more likely to be in decent condition when it arrives; however, it’s good not to assume that it will be perfect. Deduplicating data, especially for telemetry, is a good idea.

Data Input

Data input is where the data is staged for the next, all-important step: processing. The data input can be a data conversion or loading program that moves the data from its prepared state into something that can consume it. Sometimes, this step is masked or implicit in the processing because it does not require a discrete step.

Data Processing

Data processing involves taking the prepared, input data and doing something with it. Here’s some of what you can do in this step:

		Enrichments

		
	Data coming in from IoT devices is typically fact-heavy data with references to dimensions. Enrichments amend this data by adding some context to the facts from dimensional references and the things that these touch. Adding enrichments is useful for filtering, sorting, and analyzing data in downstream processes. It also makes data easier to understand and can speed up downstream processes by alleviating external lookups on data.

	

		Aggregations

		
	Data aggregations summarize data using minimums, maximums, sums, medians, means, etc. They can perform these with time boxes and grouping things together with common dimensions. Aggregating data reduces the size of the data needed for reporting. Reporting and analytic engines, such as Power BI, typically do not need access to every transaction or piece of telemetry reported by a device, so aggregating the data reduces the compute and storage requirements.

	

		Transformations

		
	Transformation happens by changing the data’s primary structure. This is more than adding new fields like enrichments or reducing the size with aggregates. Transforms change the normalization of the data by either normalizing the data, removing data duplication, or denormalizing the data (also known as “flattening”), duplicating some data but reducing the joining contexts. Transformation often involves flattening data because it makes summarizing, filtering, querying, and sorting the data easier. IoT data, like telemetry, is typically pretty flat from devices. If it has referenced dimensional data, the flattening will reproduce the dimensional data into a two-dimensional structure like a table to avoid joins.

	

		Predictions and forecasting

		
	Using data to get insights and make predictions is where data becomes more proactive and is something downstream processes and automation can leverage. Predictions can happen in many ways with interpolations and extractions from statistical analysis or through more cutting-edge methods involving artificial intelligence, machine learning, and deep learning. IoT systems can leverage all of these, depending on the application. Using machine learning, for instance, allows for anomaly detection in data sets from machinery, which enables users to perform preventative maintenance. AI also has applications in data sets that use different kinds of unstructured data, like images or video.

	

		Dataset generation

		
	During processing, processors generate datasets for external consumers to use. The datasets provide a clean set of reliable data useful for other, downstream data processing use cases, such as AI or ingestion for analytics. Many data sets for training ML models will use a preprocessing step to remove anything that is not essential to the training data for ML. The ML then uses the more essential data to create models.

	

		Training

		
	A downstream data generation process involves training ML models from datasets. AI workloads use models trained by data, and newer and better data makes a model more accurate over time as more and better data becomes available. The refined models are like a new version of an app, which needs to be installed on whatever is using the model.

	

The processing step naturally creates artifacts that need to be delivered, which is the next step, output from processing.

Output

Output from data processing can be any number of things, such as reports, graphics, videos, documents, summaries, streams, images, transformed data, or something like an AI model. Whatever the output may be, it needs to be delivered for it to be useful, which again brings everything back to storage.

Storage

Storing the output from data processing, whether it’s a PDF report, image file, or a dataset, is usually pretty straightforward. You can store these outputs on a file sharing service where they can be downloaded, deliver them through email, upload them to a website, or whatever the results may be. For AI models, the model needs to be operationalized by whatever is using the model, such as installing an image classification model on an edge appliance or a device if the device is AI-enabled. Such a process would follow a similar update path to that outlined in Chapter 4 for updating a device.

The one special case is when the output is more data-oriented, like raw data. Data as output needs to be stored in a way optimized for its intended use. The process may generate analytical data; therefore, you would want to store the analytical data in an analytical tool like Azure Synapse. If the data is for transactional use, store the data in a transactional store like Azure Cosmos DB or other transactionally oriented databases.

The data processing cycle gives us a taxonomy for thinking logically about how to work with data. Having a visual model is good because it helps peg exactly where you are with your data.

The process itself, though, says very little about the technical details to make that a reality. You may have noticed that each step has its inputs, processing, and outputs as data moves through the loop. You may actually store data between each step. For instance, data collection may involve copying data from one database to another database with other data sources so the data can be prepared. The data preparation step picks up this data, prepares it, and stores it again. Note that storing data between steps might be needed, but it’s not required. Some processes can do a more direct handoff between one step and the next without using intermediate storage. Regardless of how it’s handled, some kind of data movement is always happening.

Data Movement

Data movement is the path data takes from a source to a destination, sometimes called a “sink.” While simple in concept, there are tons of ways to move data, and in the process of moving data, sometimes you may change the data—which we already discussed as the steps of data processing. Creating a path for data movement is the essence of data engineering. Data engineering makes data pipelines, which is analogous to moving fluids between sources.

There are two basic categories for data movements: hot paths and cold paths. Hot and cold paths are defined by the time difference between data creation and data storage or output. If it happens fast, that is typically characterized as a hot path. If it happens slowly, that is characterized as a cold path. Now, how one interprets “fast” and “slow” is subjective. There can also be a warm path that has features of both hot and cold paths.

Although “fast” and “slow” are subjective, the patterns for hot path and cold path are distinct. Because architecture focuses on patterns, the focus of this section will be on the patterns more than their specific implementation. The next two chapters will delve into Azure’s technical implementations for hot and cold paths. Many of the hot and cold path solutions have overlapping technologies that one can use for both, so this chapter won’t bring them up except as examples.

So you’ll start with the hot path, since the topic is burning in your mind.

Hot Path

As you already learned, a hot path depends on the time between when data is created and when the output of its process writes it to some storage. A hot path does this quickly. For some, fast could mean sub-second times; for others, it could mean minutes. Usually, more than minutes is considered a “cold path” or the more moderate “warm path” that sits between the two.

In hot path, the data usually flows without stopping. For IoT, this means that once data is emitted from a device, it moves through its data pipeline until it reaches its final persistent store. Landing your data, even with streaming data, is a good practice, as you learned in Chapter 6. This movement is also called a data stream.

There are two ways to think about data streams: real-time processing and near real-time processing. The distinction between these two is sometimes thought to be the amount of lag between “right this instant” and “just a few seconds or minutes behind right this instant.” This is somewhat true, but the difference between these two has more to do with the patterns used in processing the data.

Real time

By design, real-time data processing aims to complete the data processing loop as quickly as possible, thus minimizing latency between the data’s origination and its readiness for consumption. In some cases, the output from real-time processing is immediately available, even if nothing is using it. In other cases, the data is delivered to an external consumer.

In some of the examples you’ve completed, you have already built much of the infrastructure used by real-time processing, like you did in Chapter 4 and when you built the HTAP solution. In the context of IoT, telemetry and event messages originate on devices. Telemetry can be used in different contexts, but it’s mostly used for reporting and analytics purposes. Events, too, can be benign and tell you about what happens on the device. Some events, however, may require immediate attention, such as alarms. These kinds of events happen when something wrong or malicious is happening on the device, such as too many failed login attempts or an overheating component.

As you’ve seen in most of the examples, devices transmit events and telemetry to the cloud via the internet. The cloud-side platforms receive these messages and route them to a messaging platform. The platform then hands it off to a real-time processing platform that might apply some logic to the message to perform some basic transforms and enrichments, and then finally, the message is delivered. With this in mind, here are a few common IoT uses for real-time streams:

		
	Messages, like alerts, are certainly logged in a database, but many IoT systems have hooks that allow external users and systems to subscribe to the events and telemetry. Some enable a system to send SMS messages, push notifications, or emails to those who might need to be notified. A hot path provides the necessary plumbing to enable these kinds of deliveries.

	

		
	Besides delivering messages to people quickly, one of the main advantages of real-time data is that it allows for real-time interventions on devices through automation. Take the failed login attempt scenario. Automation in that scenario could revoke the device’s credentials and remote wipe it after too many failed login attempts. This action protects the data in the cloud and whatever data and credentials are on the device. Other such interventions can happen quickly with real-time data.

	

		
	Real-time processing is useful for data ingestion into different kinds of data stores. You already set up one of these when you created the HTAP solution. The export to Blob Storage is more of a near real-time type of ingestion, but you made a real-time ingestion pipeline using the messaging and integration pattern. There are other ways to handle this, but this approach gets data from devices into a transactional store for querying quickly. This makes data available for both analytical and transactional use.

	

One of the main drawbacks of real-time data is that it limits any heavier data processing, such as data aggregations. In real time, some of these calculations can take time to build. Lighter calculations are possible, but a data deluge could easily overwhelm a system that spends significant resources on each message. For heavier calculations and aggregations, consider using batch or near real-time types of movements.

Near real time

Near real-time movement, as stated, typically lags behind real-time data, but not by wide margins. In this scenario, the priority is to have up-to-date data that can be readily used for different reporting and analytics. Data processing is prioritized over speed, which allows for creating more computationally heavy data movements. Data in real-time and near real-time streams should be persisted, but the near real-time data is persisted along with its processed data.

In IoT, telemetry that needs quick processing will fit better into this type of a hot path because telemetry is typically what most analytics processes use. You will want your data to be enriched, transformed, and ready to use.

Near real-time data often looks at historical and the latest data through a window. The window is an interval relative to either the time data is received through a hot path or a fixed interval that triggers based on a timer. There are several different kinds of windows. The three most common types are:

		Tumbling window

		
	A tumbling window uses a preset interval, and the events or telemetry in that window are included in the aggregations and process analysis. If the interval is set to five minutes, then every five minutes, a window closes, and a new one opens. This means that events or telemetry will be seen at most only once.

	

		Hopping window

		
	A hopping window is like a tumbling window in that it uses a fixed interval but allows for some overlap with other windows. For instance, the interval can be set to two minutes, but the window includes the last five minutes’ worth of events or telemetry. This means you may have events and telemetry processed more than once.

	

		Sliding window

		
	A sliding window is another overlapping scheme. It is not triggered on a timer but rather on the arrival of new data. The sliding window will use the arrival time as one end, then look back from that time for the start of the window. If an event or telemetry shows up at 7:06 PM and the window looks at five minutes’ worth of data, all the events or telemetry between 7:01 and 7:06 would be included. Like a hopping window, this implies that some events or telemetry may be included more than once.

	

Most of the time, in the context of IoT, these kinds of windows look for patterns or apply rules across data. Using data in this way has many uses, but here are a few common ones:

		
	Near real-time data helps eliminate noise and enable monitoring. For instance, if you were measuring the temperature of something with a device, you would expect the occasional temperature to spike as normal behavior. You wouldn’t want to make a big deal about this. But, if the temperature stays high for too long, it could create problems for the device. In this scenario, the output for this processing would be to raise an alarm or notify someone.

	

		
	Near real-time streaming uses aggregates to create summaries. For example, you may want to make a running average of the CPU temperature for a downstream dashboard for aggregation. The data looks at the last five minutes of data to get that average using a sliding window. Once the temperature is calculated, you can emit a message with that calculation to the dashboard. Likewise, a tumbling window can store the summarized data in a data analytics store for further analysis.

	

		
	Telemetry data is useful for looking at the state of whatever the devices are measuring with their sensors. Still, event data is useful for detecting security anomalies in IoT data. This pattern is not unique to IoT, but it is pertinent because IoT devices need security as much as anything on a network. In this case, IoT events, like device logins, network outages, malicious access attempts, and device configuration changes, are useful for detecting malicious activity. There are point solutions for anomaly detection and security monitoring on IoT platforms. Azure integrates Azure Security Center and Azure Sentinel to monitor device events. These solutions use AI, heuristics, and rules against datasets to detect anomalies and either report them or act on them.

	

Although these are all common uses for near real-time movements using a hot path, every IoT domain has different applications. Retail can monitor inventory and customer activity in real time with these sorts of patterns. Medical IoT can monitor patients to create lifesaving solutions. Industrial IoT can monitor production lines and machinery to prevent accidents and waste. There’s no one-size-fits-all solution, but thinking about how these work in your context starts with thinking about how you want to use the data and then selecting the appropriate pattern. If the hot path doesn’t work for you, you may want to consider the cold path.

Cold Path

Earlier in this chapter, I defined “hot path” data as data that is processed quickly, but said that it had more to do with the patterns applied to the data that differentiated between a hot path and cold path. Cold path is no different in that respect. Yes, the data latency with a cold path is typically much slower than real-time and near real-time processing, but that’s because these kinds of movements deprioritize how quickly the data needs to be available in favor of other factors, like costs, storage, or the nature of the processing job itself. Let’s look at a few of these factors:

		
	Many organizations want to minimize costs. Storage is cheap; compute is expensive. One way to minimize costs in the cloud is by minimizing the amount of compute capacity one is paying for. To do this, an organization will allow data to accumulate on storage. After a defined interval, like a size threshold or a timer, compute spins up, processes the data, then spins down. This minimizes the time the compute is online, therefore minimizing costs.

	

		
	Storage is another key factor for preferring a cold path. Many always-on transactional and analytics processors, or even serverless models, do not use storage economically; rather, they optimize storage for the job intended, creating indexes, caches, data projections, and the like. Cold path data does not need to concern itself as much with these and typically will use cheaper object storage or data lakes for storing data. In these stores, the data can be compressed and kept until it’s needed. Approaching data this way is another way to save.

	

		
	One of the main factors in preferring cold path approaches comes down to the processing needs of a job that are impractical in real time or near real time. This could be due to improving the quality of the data, the volume of data needed to complete a process, or the time required to complete the process. For these reasons, adopting a cold path just makes sense.

	

All these factors, and perhaps more, drive the decision to choose a cold path, and they all pretty much use the pattern virtually synonymous with cold paths: batch processing.

Batch processes

Batch processes create work and small and large batches of data. Near real-time workloads can handle small batches, so it’s technically also batch processing, but there are some key differences between a cold-path batch and a hot-path batch. In a cold path, the data in data movement starts on persistent storage and is written to persistent storage between each step in the data processing cycle. The process may look something like this:

		
	Collection loads data from external sources and persists the data in an object store.

	

		
	Preparation loads the data from the object store, deduplicates and normalizes it, and then writes it to a data lake.

	

		
	Input loads a portion of the data from the data lake and feeds it to Processing.

	

		
	Processing does work on the data, like enrichments, transformations, etc.

	

		
	Processing hands the processed data to Output.

	

		
	Output may deliver the data but ultimately writes it back to Storage.

	

		
	Storage holds the data until the next process picks it up or something else needs it.

	

The Collection, Preparation, Input, and Output stages all use some persistent storage as part of their data movements. This “read, write, and then read again” scheme is common for batch processes because keeping large amounts of data in memory is impossible, impractical, or unnecessary.

Movements in big data, particularly regarding Kappa Architecture (I’ll talk about this later in the chapter), see batch processing as almost an antipattern in modern data processing without actually calling it that. I sympathize with this assessment, but in the context of IoT, there are still many use cases for batch processing.

IoT use cases for batch processing

IoT use cases for batch processing will follow a pattern described earlier that makes heavy use of persistent storage as the data is moved through a data processing loop. Here are a few common use cases in IoT for batch processing.

Bulk uploads sometimes happen in IoT. In logistics and transportation, some devices can be offline for a significant amount of time, sometimes days or weeks. When this happens, the data the devices collect is stored locally. The data is uploaded in bulk to the cloud when the devices come online. A bulk upload like this as part of the Collection step can be done by iterating through the data and uploading each point of telemetry one by one, but this would be incredibly time-consuming considering the back-and-forth nature of smaller transactions like this. Rather than do this, the entire dataset is uploaded at once, then a batch process can handle it in bulk and sometimes do the next kind of work, bulk inserts.

Bulk inserts are a common way to import massive amounts of data without doing the inserts transactionally, one at a time. Many databases, including Azure SQL and Cosmos DB, have a way to perform bulk inserts. These inserts disregard the transaction checks and constraints that happen with more unary inserts and write the data to tables and other entity stores as is. The databases expect that the data is in good shape before doing this. Disregarding the checks allows data to be written much faster. When data comes in bulk, sometimes bulk inserts are necessary to get the data into a store quickly.

Generating datasets is another common output from a data processor. IoT devices generate tons of data. When turned into a dataset, the data is useful for all kinds of applications, like ingestion into other data systems via bulk inserts, ingestion into BI systems for analytics, and use in machine learning for training models and integration work. The entire processing loop, in this case, aims at this end, so it is likely to perform a persistence-heavy data processing loop as I described earlier, with the output being some kind of dataset.

Machine learning (ML) leverages batch processing because building models uses compute-heavy processing. The data preparation step in the data processing loop in this case preps data by grouping the data and then labeling each group of data. Each atomic record in the data is a feature. An ML algorithm uses labels to build a test model. The data is divided into training data and testing data. The algorithm reads the training data as inputs and uses neural networks to analyze it to create a model. The testing data is then read as input to test the model for accuracy. While testing, the more often the model correctly infers the label, the better the model is. This process may be repeated with the same data several times to improve the model’s accuracy iteratively. The output model is then loaded into something that will apply the model, like AI-enabled IoT devices, edge appliances, or for use in the cloud. IoT data is a goldmine for ML models, training, and use, and it has tons of applications in virtually every industry vertical leveraging AI.

Legacy systems use batch processing because batch processing was one of the first widely adopted methods for data processing. As much as many organizations would like to modernize, it’s not always practical or cost-effective. Instead, organizations create integration layers around the legacy systems using the processes that the legacy system understands, which in many cases is a batch process. IoT generates tons of data, which may flow through a hot path to land in a persistent store that makes it immediately available for use. Still, a batch process may pick that up later and integrate it into a legacy system. Likewise, data may need to be extracted from legacy systems. In this case, a pipeline extracts data from the legacy system as a batch process and stores it somewhere else.

External integrations sometimes rely on data exports. These data exports are sometimes datasets that an external system picks up or simply a connection into a data system that extracts data in bulk as part of a Collection step. The IoT system does not necessarily own the batch process in this context, but it would need to support this kind of integration if necessary.

Reports are one of the canonical use cases for batch processing. Before the days of live dashboards, a batch process would read and analyze data and print out reports. This eventually transitioned into outputting digital formats like PDFs, but the pattern was still the same. In any case, this style of generation is not likely to go away any time soon if some kind of document is needed to convey information. IoT data plays into this some because IoT usage can be linked to accounts, usage reports, histories, and the like.

There are many other use cases for batch processing. Replacing these integration styles is not always practical or even possible. It’s important to consider them because of their implications on the style of architecture you want to support in your data processing needs.

Warm Path

By now, you’ve probably guessed that warm path movements are somewhere between a cold path and hot path, and you’re right. While the priority of hot paths is low latency and the priorities of cold paths are other things like cost, the warm path attempts to strike a balance between low latency and other priorities. To accomplish this, warm path movements incorporate aspects of both hot path and cold path movements depending on their needs.

Time series data is one example of what might be considered a warm path. Time series data uses timestamped data, which is practically everything coming off a device in IoT. The principal concern would likely be your telemetry data that’s measuring something and reporting those measurements at regular intervals. This kind of data may sound something like near real-time data, and it is like this, but instead of analyzing windowed intervals, time series data tends to look at wider scopes. It uses more storage and compute, so it may introduce more latency than expected with near real-time data. The wider scopes deduce patterns in the data through things like curve fitting, regressions, interpolations, or extrapolations from the data. Finding a curve or fitting it to an expected curve creates models and predictions based on time series data. Machine learning is similar, but it works with neural networks instead.

Time series data in the context of IoT uses time series databases that have storage optimized for this kind of analytics. A time series database is somewhere between a transactional and analytic store. It still needs to store and access data points transactionally, but it also needs to process data rapidly. The time series data treats transactions as idempotent for optimization; the transactions are timestamped and then stored in a way that optimizes analysis. On Azure, the canonical database is Azure Data Explorer. We’ll explore this option in a later chapter.

Which Type of Data Path Should You Use?

Figure 8-3 shows hot path and cold path data characteristics. Thinking about the way data moves on a gradient indicates there’s no clear distinction between these categories. Still, as you move from one side to the other, the characteristics move to something between the two poles with variability in latency, data sizes, computational complexity, and how much access to data persistence is used.

[image:]
Figure 8-3. Summary of data paths

Keeping these in mind helps you understand where you’re going next, attempting to grapple with these as a holistic pattern in a unified data architecture.

Data Architectures

Data architecture looks holistically at all data processing, storage, and movements to provide a unified set of patterns for data that can scale and perform well. Think of it as the blueprint for all your organization’s data processing. The domain is fairly broad because it encompasses policy, compliance, and other constraints that drive decision making for data architecture, which are all beyond the scope of this book. Here, I’ll focus on the part of data architecture that is pertinent to the patterns and practices for building solutions on Azure.

Applying data architecture gives you visibility, accountability, and standardizations that help you reduce waste and develop a better understanding of how data is being processed and used in your organization. The first two sections of this chapter explained some of the nuts and bolts of what composes data architecture with the data processing loop and the various kinds of data movement one can apply within that loop. Chapter 7 discussed about data storage and the different types of data storage you can use for different problems. Data architecture attempts to bring all of these different ideas together, so you have a plan or framework for building data systems.

Much of what this book has talked about so far has been about data flows with IoT data because it’s one of the primary concerns of data architecture. A few things tangential to this are out of the scope of this book. One is data modeling. Data modeling is the process of creating a logical representation of real-world things and events. It is pertinent to database designs and application development. Another is information architecture. Information architecture is the process of creating higher-level domains of data and organizing the data accordingly. It then maps these domains onto the existing data systems that use them. Information architecture is useful for understanding data sources, but it’s not the primary concern of data architecture. I bring these up because they can often become the topic of conversation, especially when dealing with those who live in these worlds, like application developers, database administrators, and their respective architects. Here, I’ll focus on how data is collected, processed, stored, and serviced.

With the rise of big data and especially IoT in recent years, many different folks have proposed different architectures to provide the framework. Three of these have risen to the top of the stack, and they all take their name from the Greek alphabet: Lambda Architecture, Kappa Architecture, and Delta Architecture. Each of these has different approaches to solving the same basic problem. In doing so, they will have different pros and cons.

Lambda Architecture

Lambda Architecture was one of big data’s first and most widely adopted architectures. The concept borrows heavily from patterns used in data warehousing. Still, it extended this in new ways to big data to answer some of the challenges that more traditional practices faced. In the past, to get data from a transactional database like SQL Server to a data warehouse, you had to create an integration job that moved the data from the SQL Server database and into a data warehouse using an extract, transform, and load (ETL) tool designed for transferring data from transactional stores into the data warehouse. ETL jobs were built using batch processes that extracted data from one or more data sources, transformed the data into a form useful for a data warehouse, then loaded the data into the warehouse.

Other data movement patterns emerged with the rise of event-driven systems that generated small messages, like IoT. These systems emitted messages that needed to be handled quickly, so ad hoc hot path solutions were created. Both data movement patterns seemed rather disparate, but data architects wanted a way to bring these two together in a way that supported both.

To support both, Lambda Architecture, depicted in Figure 8-4, proposes using both a speed layer for hot paths and a batch layer for cold paths. Each would use their respective data sources and process data in their appropriate context. The outputs from these layers would place data into a servicing layer used by data consumers for ad hoc queries, message delivery, and data persistence.

[image:]
Figure 8-4. Lambda Architecture

Lambda Architecture addresses many of the shortcomings of data warehousing around cost and scalability. It saves money by moving some of the analytics processing out of a data warehouse and into a data lake. It’s one of the first architectural patterns to heavily use a data lake, especially in the batch layer. Data lakes offer more commodity storage and do not require the compute to be online all the time. This allows the data storage to scale out more without having to extend the compute along with it. In Lambda Architecture, the data processing still uses ETL, but it takes a more iterative approach instead of big bang integrations. The entire data processing loop has a place, and data is classified into tiers.

Advantages

Because Lambda Architecture is essentially the evolution of more traditional patterns, its biggest advantage is that it offers a rather straightforward path with existing services and solutions that users might already have. Many more conventional ETL tools can continue to work as part of a Lambda Architecture solution. This enables organizations using ETL jobs to hook into Lambda Architecture in the cloud while maintaining backward compatibility.

Additionally, Lambda Architecture uses storage and minimizes compute better, compared to other architectures, and therefore tends to cost much less to operate. This alone has made Lambda Architecture appealing to many organizations that want to use it.

Disadvantages

One of the biggest complaints about Lambda Architecture is its complexity. The two separate paths require two nearly independent stacks to support and maintain. The hot path tends to be lighter than the cold path, but still, the setup may be unnecessarily complex. If data in both paths require the same processing, then two codebases are needed to support both sides. Changes are doubled, along with everything else that comes with code development. This double coding and perceived extra complexity are the main drivers for the next proposed architecture, Kappa Architecture.

Kappa Architecture

Kappa Architecture evolved from Lambda Architecture to address some of its perceived shortcomings, namely the two paths problem that requires two codebases and all the complexity that comes along with that. To address this, the architecture uses only a hot path for stream processing instead of two paths. In this case, all the code is reduced to a single set. Batch processing in the context of Kappa Architecture is a special case of the speed layer. In this case, a batch process sends the processing to the speed layer incrementally and lets the unified processing architecture process both, as depicted in Figure 8-5.

Kappa Architecture in the context of IoT makes a lot of sense because IoT deals heavily with streams. Data coming off of IoT devices lands on messaging platforms before it is handed off to an integration platform that processes, sends, and stores the data. A speed layer, in this case, that can handle batch processes would be ideal.

If they do exist, IoT batch processes are likely from batch ingestion of telemetry and event data that needs processing. The data is chunked into smaller sizes and sent to a hot bath for processing. Streaming from batch processing does not imply that the data will become available more quickly. It simply means that the data will be sent through the processing streams when the batch job fires in the same way that data coming off a messaging platform would be handled.

[image:]
Figure 8-5. Kappa Architecture

Advantages

Because Kappa Architecture unifies the hot and cold paths used in Lambda Architecture, it is generally seen as simpler. There is less code, less complexity, and less overhead. Reducing complexity saves time and effort on soft costs, like development time and time spent maintaining the more complex Lambda Architecture.

Moreover, stream processing in the cloud can take advantage of the cloud’s rapid elasticity. Almost every aspect of Kappa Architecture can scale, some of them automatically. Many services offer elastic options, like Function Apps on Azure or Azure Synapse Analytics. These elastic services mean costs will align more with usage with less waste.

Disadvantages

One of the potential disadvantages of a stream-oriented system is cost. Batch processes, in many cases, take advantage of features in an ETL tool that allows them to make bulk exports and imports of data from data systems that can make extraction and ingestion in these cases much faster and cheaper. Stream processing typically treats each message atomically and thus treats these transactionally on data systems rather than in bulk. Other costs stem from the need to provision enough throughput and compute and memory capacity to handle a batch process.

Another problem with a purely stream-oriented architecture is that it does not work well for existing systems that already use batch processing heavily. In these cases, batches would need to be adapted or rewritten to take advantage of Kappa Architecture. In IoT workloads, this may not be a problem because most of these are already more stream-oriented. The problem would likely be from more tangential needs for batch processing. So, let’s revisit some of the common kinds of batch processes one might have and why Kappa Architecture might not be practical:

		
	Bulk uploads in IoT happen from time to time if data was captured offline for an extended period and then uploaded. In this scenario, stream processing is still possible. One way to handle bulk uploads is to break up the bulk into smaller segments while enabling the stream processor to handle small batches of messages instead of one at a time. This way, you can adapt to the bulk on both ends while maintaining a single codebase.

	

		
	Bulk inserts write data to a database through a side channel rather than transactionally. You probably wouldn’t want to do this for a stream processor. But again, chunking the bulk data and then inserting smaller chunks transactionally can give you decent performance while still using a stream-oriented processor.

	

		
	Generating datasets usually requires compiling a set of files for download. The struggle with this use case for a batch processor is creating the final bundle of data that is likely to be some collection of data files, like CSVs or Avro files, that need to be zipped and delivered to someplace where they can be downloaded or uploaded to some external storage. Stream processing is not conducive to this kind of workload.

	

		
	Machine learning (ML) usually requires a large data set consumed by a training algorithm for use with a neural network. ML training tends to fan out over GPUs or other compute hardware that is highly parallelized to make the processing timelier. Still, even this requires substantial amounts of time and compute resources that would put this kind of workload outside the scope of what you might want to do with stream processing.

	

		
	Legacy systems are a mixed bag, so the processing of this kind of data depends on the system. For either exports or imports into these systems, you would have to find something that works. For legacy systems, batch-oriented processes may be all that is possible.

	

		
	External systems, like legacy systems, depend on external integrations. If possible, stream data; otherwise, these might require a batch process of some kind to do the integration work.

	

		
	Traditional reports are one such use case that still exists and has not been fully replaced by BI tools and dashboards. While they may not be printed, many of these reports are mailed or stashed on a file server somewhere for consumption as PDFs and still require some utility to generate the reports. This, too, would be outside of what one might want to do with a stream.

	

This assessment of these does not mean that Kappa Architecture is impossible or impractical. As a pattern, I think it has its place and therefore should not be ignored even if it can’t do everything you would like. Later in this chapter, you’ll read more about this problem and a strategy to mitigate it.

Delta Architecture

Of these three data processing architectures, Delta Architecture is the newest. It attempts to address the perceived shortcoming in Lambda and Kappa Architectures that relates to data being idempotent as it moves through a data processor. Any updates from a data source to existing data could create discrepancies in the data that are hard to account for if the system depends on the idempotence of the data.

Compared to Lambda and Kappa Architectures, Delta Architecture probably resembles Lambda Architecture the most, as seen in Figure 8-6. It still preserves the data lake–focused data storage, keeps batch-style processes for data ingestions, and uses a bronze/silver/gold tiered approach for data states. Once everything is in the data lake, the real-time and near real-time processors take over for formatting, processing, and analyzing data in the way that Kappa Architecture manages data.

[image:]
Figure 8-6. Delta Architecture

Databricks with Delta Lake epitomizes Delta Architecture in its approach. Delta Lake implements the lakehouse style of storage you read about in Chapter 7 that leans heavily on data lakes.

Advantages

Delta Architecture seems to resolve many of the issues related to Kappa and Lambda Architectures by reducing the complexity of Lambda Architecture like Kappa Architecture but also allowing for transactional changes to data.

It is also more friendly to more traditional integration patterns because it preserves some aspects of batch ingestion and can accommodate batch-style workloads for data exports and ML even though the primary data processing is real time or near real time.

Disadvantages

Although there are gains in Delta Architecture, there are also trade-offs and a few disadvantages. First, compared to Kappa Architecture, which treats everything as idempotent, Delta Architecture adds some complexity. The additional complexity is not huge, but it is a consideration.

Second, enabling random reads and writes on data means that it’s harder to optimize data storage around specific kinds of workloads, like read-heavy or write-heavy workloads. This could impact the performance of some workloads. Delta is optimized for sequential writes.

Third, Delta Architecture leans toward keeping data more transactional. Treating analytical data as transactional data can impact performance as well.

Which Style of Architecture Should You Use?

There’s no one-size-fits-all option, but I prefer Kappa Architecture because events and telemetry create data streams, which is exactly what Kappa Architecture is optimized for. Here are a few other reasons why I prefer Kappa Architecture for IoT:

		
	The simplicity Kappa Architecture provides is a straightforward implementation for code for cold and hot paths, but the primary focus is on hot paths. Everything is treated as a stream, which is perfect for IoT because almost all IoT data is streamed.

	

		
	Kappa Architecture has many possible solutions on Azure. The plethora of messaging, processing, and storage options on Azure enables Kappa Architecture to take many different shapes. These services can be tuned to your needs.

	

		
	Kappa Architecture enables optimized storage for different kinds of workloads. It prefers idempotence, which Delta Architecture tries to work around, but for data going into fact tables, idempotence is usually not a problem.

	

Having said that, I do have one caveat. If I were building a Kappa-style architecture for an IoT solution, I would still support batch-style processing for ingestions and data exports as part of the solution where needed. This is typically on the edges, so it is not a primary mode of data ingestion or data processing. It’s not a purist implementation of Kappa Architecture. The main thing to remember about architecture is not to be bullish about the patterns. The patterns are good. They provide a blueprint to follow when building a solution; however, these should not be considered immutable laws. Exceptions exist, and that’s OK. You should strongly prefer an architectural pattern and do what you can to champion and conform to that pattern, but when it’s not possible, you make an exception.

But whatever you do, do not rule by exception. If you find yourself in the design phase of your solution and you’re making more exceptions than you feel comfortable with, odds are you may have chosen the wrong architecture.

Summary

This chapter was all about data architectures. You started with data processing and what goes on in the data processing loop, looked at different paths for that, then looked at data architectures. From this, here’s the TL;DR:

		
	The data processing loop consists of storage, collection, preparation, input, processing, and output, and ends back on storage.

	

		
	Data movements in data processing move data from one store to another and may modify it. These follow one of two high-level paths: hot path and cold path.

	

		
	Hot path describes data that is processed for low latency, with small data sets, minimal computation, and minimal access to persistent storage. This enables real-time and near real-time data movements.

	

		
	Cold path is virtually synonymous with batch processing, which has high latency, larger data sets, and more complex computations and makes heavy use of persistent storage.

	

		
	Architectures attempt to rationalize hot path and cold path data movements in data processing.

	

		
	Lambda Architecture uses two distinct data paths for both hot path and cold path data.

	

		
	Kappa Architecture treats everything as streaming data (hot path) and treats batch processing as a special case of hot path.

	

		
	Delta Architecture maintains hot and cold paths in a real-time processor while enabling updates and deleting on the data persistence.

	

		
	Kappa Architecture seems to fit best with IoT workloads, but other architectures may work well, too.

	

The next two chapters will take what you learned here about hot and cold paths and apply it in practical ways. There are many solutions to choose from, so it is fitting to dedicate some time to discussing them, what they are for, and how they work.

Chapter 9. Hot Path Data Processing

After a theory-heavy Chapter 8, here you’ll get a break from noodling and actually build something—actually four things—that all pretty much do the same thing but in four different ways using four different services on Azure. Since IoT data is largely event-driven and message-oriented in the form of telemetry and events, hot paths are right at home in IoT workloads. In looking at the IoT Landscape, this chapter is zooming in on the top horizontal bar as seen in Figure 9-1. The horizontal bars represent data processing pathways from when data is landed on Azure to the point where it is presented in a consumable fashion.

[image:]
Figure 9-1. The hot path on the IoT Landscape

Messaging Platforms

In the last chapter, you learned that data processing is all about moving data from a source to a destination, or a sink, and that data may be changed in some way. Messaging, as you learned in Chapter 8, is an integral part of data movement. We covered messaging platforms for data movement purposes in Chapter 4. There, you learned how Azure IoT Hub brokers connections with devices and then routes messages to several different messaging platforms, including Azure Event Hubs, Azure Event Grid, Azure Service Bus, and Azure Queue Storage. Each platform has a different use case, depending on what you’re trying to do.

With a hot path, a messaging platform moves data between its source and output or storage. If everything flows, the time between a message’s origination on a device and its output or storage should be minimal. There may be persistence along the way, but ideally, this should be minimal, and the hot path does not access persistent storage as an intermediate step. Instead, everything is event-driven. A message enqueued triggers whatever is listening to the queue or topic to process that message.

Messaging platforms generally focus on message delivery and not data manipulation. Still, Service Bus does have some functionality that can modify messages. I’ll cover this in a moment. Even so, these platforms are the glue between the various compute-oriented parts of a solution that do more data manipulation, like Stream Analytics, Azure Functions, and Logic Apps.

Hot Paths

Chapter 8 looked at hot paths as part of data movement in data processing and how they fit into the three major data architectures—Lambda, Kappa, and Delta. Regardless of which one you choose, they all implement a hot path in some fashion, and they naturally fit with IoT data streams coming off of devices with telemetry and events. You learned that low latency, smaller data sets, simpler computations, and minimal access to persistent storage as part of the data processing cycle all characterize a hot path. These factors contribute to data moving from its origination on a device to a place consumable through a servicing layer.

As you recall, hot paths typically manifest as either real-time or near real-time data streams. The boundary between these two is subtle but typically stems from how the data is processed. Near real-time data will typically look at data in small, incremental windows, while real-time streams process data as soon as it arrives. In either case, you quickly get results that are ready for consumption.

In this chapter, I’ll take you through technical implementations of hot paths on Azure. You’ll look at some of the key services on Azure for utilizing hot paths, namely Azure Stream Analytics, Azure Functions, Azure Logic Apps, and Azure Service Bus.

Azure Stream Analytics

As its name suggests, Azure Stream Analytics is the canonical offering for stream processing on Azure, including stream processing for telemetry and events like IoT devices. Stream Analytics supports real-time and near real-time analytics, depending on your use.

Since Stream Analytics processes streams, the input comes from stream-oriented data sources like Event Hubs. However, it can process data from IoT Hub (which uses Event Hubs under the hood) and Azure storage accounts using Blob Storage or Data Lake v2. Blob Storage is a less conventional approach, but often ingress jobs, particularly those brokered by a batch process, cannot write to a stream processor like Stream Analytics. Stream Analytics will monitor where a batch process can write and process the outputs as a stream as the batch process works on the data. This is one of the patterns I like to use that leans toward Kappa Architecture. At the same time, it still allows for more traditional batch processes for data ingestion or even external processes that bulk-load data into a storage account.

In addition to streaming data inputs, Stream Analytics allows for external, nonstreaming sources it calls reference data. Often the streaming data is fact data (timestamped data that would end up in a fact table), and the reference data is dimension data, referenced by fact data. The reference data, in this case, can come from a Blob Storage account or a SQL database. Either source should work well without a major difference in performance. Stream Analytics will maintain a cached copy of the data rather than query the reference data freshly every time a new message comes through the Stream Analytics job.

Once a job finishes, Stream Analytics can write to any number of different kinds of outputs, including messaging platforms (Service Bus, Event Hubs), databases (Cosmos DB, Azure Data Explorer, Azure SQL, Azure PostgreSQL, Azure Synapse), storage accounts (Blob Storage, Data Lake, and Table Storage) or Azure Functions. The outputs are a little more straightforward, but in any case, the data is ready for either an additional step in a data processor or consumption.

With streaming inputs and reference data, Stream Analytics has three primary ways of processing data:

		SQL queries

		
	This is the primary way for Stream Analytics to create stream analytics jobs. The SQL query selects data from the streaming and reference data, performs filtering, transformations, aggregations, and other operations on the data, then writes the data to one or more of the data outputs. The SQL language can also have conditional outputs depending on the logic you incorporate in the query.

	

		JavaScript user-defined functions

		
	There are two kinds of JavaScript user-defined functions: scalar value and aggregate. Scalar value functions work well for computations when doing so with a SQL query is arduous. These functions are still invoked using SQL, have a limited scope, and are stateless, so these are not a programming environment within Stream Analytics. You can use them to perform complex calculations, but each invocation is new and unique with its inputs and outputs. Aggregate value functions allow for state. The specification uses several event registrations to process new data within the function’s scope. Aggregate functions are useful when you need a more complex aggregate than what is possible with a SQL query, such as conditional aggregates.

	

		Azure Machine Learning invocations

		
	This is one of the most powerful features in Stream Analytics. With Azure Machine Learning, you can create a model using many machine learning tools, like PyTorch, TensorFlow, and scikit-learn. These models, once deployed, can be called from the SQL queries with data from the stream processor. These jobs run externally to the stream processor, so the computation must be marshaled from outside the stream, such as running the model on a VM or in Azure Kubernetes Service.

	

One of the coolest features of Azure Stream Analytics is its integration with Azure IoT Edge. You ran the IoT Edge runtime in Chapter 6, which covered edge computing in the context of IoT. Stream Analytics with IoT Edge allows you to deploy Azure Stream Analytics jobs. However, edge analytics jobs are more limited. They cannot use JavaScript functions or Azure Machine Learning. These do, however, integrate with the integrated IoT Edge Event Hub for inputs and outputs or a local SQL database. Using Stream Analytics on the edge can offload some of the data processing to the edge, so messages are filtered, aggregated, and enriched before they get to the cloud. This helps reduce cloud-based CPU utilization and saves on bandwidth consumption.

Stream Analytics is probably the most powerful purpose-built tool for stream processing on Azure. If you have a workflow that needs a hot path, you should first consider Stream Analytics for its simplicity and scalability in stream processing. Still, it’s not the only tool in the toolbox. Use something else when tasks become too arduous or kludgy with Stream Analytics.

Creating a Stream Analytics workflow is pretty straightforward. Everything needed to get data out of IoT Hub into a Cosmos DB is built into Stream Analytics. This example uses the sample device wired up to an IoT Hub. You’ll tap into the IoT Hub with Stream Analytics and create some filters that will put the data into Cosmos DB containers as depicted in Figure 9-2.

[image:]
Figure 9-2. The data flow for this example

Follow these steps:

		
	In the Azure portal, search for “Stream Analytics Jobs” in the search, and select it from under “Services.”

	

		
	Next, select “+ Create.”

	

		
	On the “New Stream Analytics job” form:

	
			
		Select your Subscription and Resource Group.

		

			
		Give the job a name. Call it telemetry-and-alarms.s

		

			
		Use the same region as your IoT Hub to reduce latency.

		

			
		For Streaming Units, select “1,” which should be fine for demo purposes.

		

			
		Select “Review and Create.”

		

	

	

		
	Now, click “Create.” Let the job finish creating, which should only take a few seconds.

	

		
	Click “Go to resource” when it’s done.

	

		
	Select “Inputs” under “Job topology.”

	

		
	Click “+ Add stream input” and select “IoT Hub.”

	

		
	On the form for the IoT Hub:

	
			
		Use “iothub” for the “Input alias.”

		

			
		Find your IoT Hub by selecting your Subscription and IoT Hub under their respective dropdowns.

		

			
		You can use the default on “Consumer group,” “Shared access policy name,” and “Shared access policy key.”

		

			
		Click “Save.”

		

	

	

		
	Select “Outputs” under “Job topology.”

	

		
	Click “+ Add” to add an output and select “Cosmos DB.”

	

		
	On the form:

	
			
		Supply “telemetry” for the “Output alias.”

		

			
		Choose “Select Cosmos DB from your Subscriptions.”

		

			
		Find your Cosmos account by selecting your Subscription and Account ID.

		

			
		For the “Database,” choose “Use existing” and select “telemetrydb.”

		

			
		For the “Container name,” choose “Use existing” and select “telemetry.”

		

			
		Click “Save.”

		

	

	

		
	Again, select “Outputs” under “Job topology.”

	

		
	Again, click “+ Add” to add an output and select “Cosmos DB.”

	

		
	On the form:

	
			
		Supply “alarms” for the “Output alias.”

		

			
		Choose “Select Cosmos DB from your Subscriptions.”

		

			
		Find your Cosmos account by selecting your Subscription and Account ID.

		

			
		For the “Database,” choose “Use existing” and select “telemetrydb.”

		

			
		For the “Container name,” choose “Use existing” and select “alarms.”

		

			
		Click “Save.”

		

	

	

		
	Click “Query” under Job Topology.

	

		
	Paste in the following code. You can get the code from the stream-analytics.sql file in the repo for Chapter 9:

	
SELECT timestamp, memTotal, memUsed, cpuLoad, cpuTemp, fs, network,
 batteryPercent, batteryCharging, EventProcessedUtcTime,
 EventEnqueuedUtcTime, IoTHub.IoTHub.MessageId as messageId INTO
 [alarms] FROM [iothub] WHERE
 GetMetadataPropertyValue(iothub, '[User].[isAlarm]') = 'true';

	
SELECT timestamp, memTotal, memUsed, cpuLoad, cpuTemp, fs, network,
 batteryPercent, batteryCharging, EventProcessedUtcTime,
 EventEnqueuedUtcTime, IoTHub.IoTHub.MessageId as messageId INTO
 [telemetry] FROM [iothub]

	

		
	Click “Save query” to save the results.

	

		
	Click on the “Overview” tab and select “Start” to process data. The data will now show up in your Cosmos DB account.

	

As you’ve seen, Stream Analytics is relatively straightforward and powerful for data-heavy processing, making it a great choice when data is pertinent. This example did not touch all the features of Stream Analytics, but it shows you the basics of using Stream Analytics to flatten data and route it using conditions.

Azure Functions

Azure Functions is Microsoft’s “serverless” solution for development. Serverless does not mean without a server as the name might imply; rather, it means that you, the developer, do not have to worry about all the stuff that comes with managing, patching, scaling, monitoring, and configuring for a server just to run your code. Instead, you adopt a framework that gives you specific patterns. If used correctly, the framework manages all the server details so you can focus on your code.

A function’s pattern is pretty straightforward. It uses an event-driven model wherein something triggers a small chunk of code to run. The function has inputs that orchestrate data coming into the function and can have zero or more outputs that have the results of the function. Triggers and input bindings are sometimes separate but can be together depending on the input binding. The trigger can be any number of bindings, such as a message queue receiving a message, a timer, a blob uploaded to Blob Storage, or an HTTP request. The input bindings might be the data associated with the trigger, such as the message on the message queue, a reference to a blob, or the request body for an HTTP request. All these input bindings appear as objects in whatever language you use with your function.

The function runtime manages the code in a function, but you can choose several languages, including C#, Java, JavaScript (Node.js), Python, PowerShell, and Go. Given the breadth of languages, there’s probably one that will work for your needs. Functions also bear the full feature set of whatever framework you are using. C# can leverage the .NET Framework, Node.js can use NPM packages, etc. There’s no limit to what you can code up with the tools, but you do want to be mindful of complexity, memory usage, and the like because you typically want functions to spin up, run for a short while, and spin down, especially if you use them for stream processing. Also, in your function, you’ll generally want to ensure that your function uses asynchronous programming if your language of choice supports it. This improves performance on functions drastically.

Once your code finishes executing, the function runtime will pick up the output from your function, if you have any. This is exposed to your function as an output binding. An output binding can be one or more outputs, such as an HTTP response, writing the results to a database like Cosmos DB, queuing a message onto a message queue, or writing a blob to Blob Storage. These operations happen automatically, so you do not have to actually write the code to write something to the database. You set the output, and it does the rest.

In some cases, you may need to perform something unsupported as an output binding in the context of a function, like calling out to a webhook. In this case, you would write the code using the native HTTP client built into whatever framework you are using to call the webhook.

Azure Functions dynamically adds more compute capacity to meet the demands of a load. You can create multiple instances of the same function that run in parallel jobs against the input binding. This is particularly useful if you have something like a Service Bus queue that receives a deluge of messages at a rate faster than the function can handle them. The functions can add more instances to meet demand. Once things cool off, the function can scale back down to more “normal” operations.

It’s also important to note that functions may trigger more than once for a given event because they guarantee at-least-once delivery. You need to ensure that your target datastore can handle duplication if that happens.

Functions generally work best if they are stateless. Stateful implies that some data is retained between each event the function reacts to. Stateless, therefore, means that everything they need to run is either passed in as part of the inputs or something the function can retrieve when each new instance starts to run. They should not expect anything to be present from other simultaneous executions or past executions of the function. If you need some kind of state, try to manage it outside the function using something like Redis. If the state is such that you cannot manage the state with something like Redis, you should write durable functions. These allow you to have more stateful services and also orchestrate work between different functions in your app. In IoT workloads, it’s best to make them as stateless as possible. Make your functions do one thing and nothing more. Focus their work on the telemetry or event messages coming off the IoT Hub without adding external dependencies. The more you add to the function, the slower they get, so keep them to a minimum.

Of all the solutions for stream processing, Azure Functions is probably the most versatile because you can make functions whatever you want. They can also be very economical to run. The consumption model is based on computational time, and if your function is fast, it can be cheap to run even with millions of requests coming through it. They do put much of the responsibility for making good decisions on code design and complexity in your hands as the developer. If you’re not a developer and want a more controlled environment, then Logic Apps would be a better choice. (I’ll talk about Logic Apps in the next section.) Still, I prefer Function Apps over other solutions because they tend to be fast, highly scalable, inexpensive, and ultimately one of the most flexible options.

You can use the portal to set up a Function App that subscribes to the events of an IoT Hub, as depicted in Figure 9-3. This solution works by using a function’s input and output bindings to get data off the IoT Hub and put it in Cosmos DB the way the Stream Analytics job did.

[image:]
Figure 9-3. Using a function for a data flow

This example follows the same basic path as the previous example:

		
	In the Azure portal, search for “Function Apps.”

	

		
	Click “+ Create” to add a new one.

	

		
	On the “Basics” blade on the “Create Function App” form:

	
			
		Select the appropriate Subscription and Resource Group for the Function App.

		

			
		Give it a unique name, like telemetryalarms, for Function App Name.

		

			
		Select “Code” for “Publish.”

		

			
		Select “Node.js” for the “Runtime stack.”

		

			
		Take the latest version for “Version.”

		

			
		For “Region,” select the same region as your IoT Hub.

		

			
		For “Operating System,” select “Linux.”

		

			
		Use “Consumption (Serverless)” for the “Plan Type.”

		

	

	

		
	Click “Review + Create.”

	

		
	On the “Review + Create” tab, select “Create.” This will create the Function App. Give it a few minutes to finish, then click on “Go to resource.”

	

		
	Select “Functions” under the “Functions” group.

	

		
	Click “+ Create” to add a new one.

	

		
	On the “Create function” form:

	
			
		Keep “Develop in portal” for “Development environment.”

		

			
		Select “Azure Event Hub trigger” for the template. (There is a template for IoT Hub, but in my experience, the Event Hub trigger one seems to work better.)

		

			
		For “New Function,” call it TelemetryAndAlarms.

		

			
		Select “New” under “Event Hub Connection.” This will pop up a dialog. Select “IoT Hub,” then choose your IoT Hub under “Event Hub connection” and leave the second menu as “Events (built-in endpoint).” After that, click “OK.”

		

			
		For “Event Hub name,” use the name of your IoT Hub. If you’re unsure, you can find this on your IoT Hub under “Built-in endpoints” in the portal. There, you’ll see a field called “Event Hub-compatible name.” This is the value you want.

		

			
		Leave the Consumer Group as “$Default.”

		

			
		Click “Create.”

		

	

	

		
	Under Integrations:

	
			
		Click “Outputs.”

		

			
		For “Binding Type,” select “Azure Cosmos DB.”

		

			
		Select “New” under “Cosmos DB account connection.”

		

			
		Select your Cosmos DB account from the popup and click “OK.”

		

			
		Under “Database Name,” enter telemetrydb.

		

			
		Under “Collection Name,” enter telemetry.

		

			
		Under “Document parameter name,” enter telemetryDocument.

		

			
		Finally, click “OK.”

		

	

	

		
	Add another integration:

	
			
		Click “Outputs.”

		

			
		For “Binding Type” select “Azure Cosmos DB.”

		

			
		Select your existing connection for “Cosmos DB account connection.”

		

			
		Select your Cosmos DB account from the pop-up and click “OK”

		

			
		Under “Database Name,” enter telemetrydb.

		

			
		Under “Collection Name,” enter alarms.

		

			
		Under “Document parameter name,” enter alarmsDocument.

		

			
		Finally, click “OK.”

		

	

	

		
	Click on the “Azure Event Hubs” under “Trigger.”

	
			
		Select “One” under “Event hub cardinality.”

		

			
		Set the “Event hub data type” in the blank option (the first one in the list).

		

			
		Click “Save.”

		

	

	

		
	Click on “Code + Test.”

	
			
		In the code, replace the default code with the following code. You can find this code in the repo for Chapter 9 in function.js.

		
module.exports = async function (context, eventHubMessage) {
 context.log(`Message: ${JSON.stringify(eventHubMessage)}`);
 context.bindings.telemetryDocument = eventHubMessage;
 if (context.bindingData.properties.isAlarm){
 context.bindings.alarmsDocument = eventHubMessage;
 }
};

		

			
		Click “Save.”

		

	

	

Now, everything should flow into the database with all telemetry messages going into the “telemetry” collection and anything with a cpuTemp greater than 80 going into your database’s “alarms” collection.

The Cosmos DB and IoT Hub (Event Hub) integrations with Azure work well. There is not much ceremony for making these kinds of integration work, and the processing time and speed for the messages is quick—usually just a few milliseconds. Functions can scale well, too, so they should be able to handle even demanding workloads. Still, if code is not your cup of tea, you can use Logic Apps.

Azure Logic Apps

Logic Apps is a popular option on Azure for integrations and offers a “no code” or “low code” approach to building integrations. A Logic App instance is like a LEGO kit. It has many blocks that snap together to create something. It’s not necessarily smooth around the edges, and the blocky design shows. But you know what it is when you finish. Function Apps have a little more polish because they are much more custom. Like Function Apps, the Logic Apps service is another serverless option on Azure.

A Logic App instance uses a workflow in a workspace for creating the app. The workflow contains connectors. The connectors make the inputs (if there are any) and trigger the workflow. These triggers can be scheduled or respond to events, like responding to messages on a message queue. The Logic App instance can have multiple branching actions after the trigger. These steps create the flow, and you can do all kinds of things with each action in the workflow. Once the actions finish, the Logic App can have some output as an external connector, such as sending an email, writing something to a database, sending a file, and so on.

Logic Apps for IoT work best if they are stateless, but they can be stateful. Everything the workflow uses has to be gathered as part of the flow or passed in as input. Stateful workflows allow you to retain some data between each execution. This is an important design consideration when using Logic Apps, especially if the workflow needs to reference the same data repeatedly in your Logic App. Looking that up can be time-consuming.

Azure Arc–enabled Logic Apps are one feature of note for IoT because you can deploy these Logic Apps to an edge device. As of this writing, this feature is in preview. You read about edge computing in Chapter 6. That chapter covered Azure Arc and deploying Arc to an edge device.

For anyone used to coding, Logic Apps can feel like a step back or like you’re getting in the way. I remember working with Logic Apps once, trying to do something simple. I just wanted to get some data from a webhook, transform the data to craft an email, and then send the email. I fought Logic Apps for about an hour before I got this solution to work. I went to Function Apps and had a functionally identical solution in five minutes because I knew how to write code.

Logic Apps are not all bad, though. They make sense for some organizations with IT pros that cannot code. Enabling citizen developers—non-IT staff that build IT solutions—with the blessing of IT prevents “shadow IT.” Shadow IT is when one creates IT solutions in a clandestine manner. You should avoid shadow IT because it’s a huge support nightmare and security risk.

Let’s go through an example with Logic Apps that basically replicates what you did in the Stream Analytics and Azure Functions examples, as shown in Figure 9-4. Logic Apps has almost everything you need.

[image:]
Figure 9-4. The data flow using Logic Apps

To create a Logic Apps workspace and wire it to the IoT Hub and Cosmos DB, follow these steps:

		
	In the Azure portal, search for “Logic Apps” in the search bar.

	

		
	Click “+Add” to open the blade to create a new Logic App.

	

		
	Fill out the form with the following:

	
			
		Select your Subscription and Resource Group for your Logic App.

		

			
		Give the Logic App a name. The name has to be unique on Azure. I used blaize-la.

		

			
		Keep “Publish” as “Standard.”

		

			
		Choose the region you want this to be in. It’s best to keep it collocated with your Cosmos DB and your IoT Hub.

		

			
		For “Plan,” select “Consumption.”

		

			
		Click “Review + Create.” This takes you to the “Review + Create” tab. There, click “Create.”

		

	

	

		
	After the resource is created, select “Go to Resource.” This will open the Logic App Designer by default.

	

		
	Click “Blank Logic App” to start on a new Logic App.

	

		
	Under “True” for the condition, select “Add an action.”

	

		
	Search for “Cosmos DB” and select “Azure Cosmos DB”

	

		
	Under “Actions” select “Create or Update document (V3).” This will pull up a form to configure a connection. Fill it out with the following:

	
			
		Enter a name for your connection, like blaizecosmosdb.

		

			
		For the authentication type, select “Access Key.”

		

			
		Type in the name of your Cosmos DB account without documents.azure.com at the end.

		

			
		On another browser tab, navigate to your instance of Cosmos DB, select “Keys” under “Settings,” then copy the value for “Primary Key.”

		

			
		Paste the copied key into the “Access Key to your Cosmos DB Account.”

		

			
		Click “Create.” Behind the scenes, this creates an API connection for Cosmos DB.

		

	

	

		
	After the connection is created, you will see a form to populate the settings for Cosmos DB:

	
			
		Select your newly created Azure Cosmos DB connection for “Account Name.”

		

			
		Select “telemetrydb” for your “Database ID.”

		

			
		Select “alarms” for your “Collection ID.”

		

			
		Select “Item” for the Document from the list of Dynamic Content. This may add a for each loop to your workflow.

		

	

	

		
	Now, select “+ New Step” after the “Condition.”

	

		
	Search for and select “Cosmos DB” again, and choose “Create or update document (V3)” again. This step adds all data to the “telemetry” collection.

	
			
		Select your newly created Azure Cosmos DB connection for “Account Name.”

		

			
		Select “telemetrydb” for your “Database ID.”

		

			
		Select “telemetry” for your “Collection ID.”

		

			
		Select “Item” for the Document from the list of Dynamic Content. This may add a for each loop to your workflow.

		

	

	

		
	Now, click “Save” on the workflow.

	

This workflow is a simple point-and-click designer for building the workflows. The workflow does this with the Function App by writing some of the data to the “alarms” collection and everything else to the “telemetry” table. It’s straightforward, but its processing time relative to a function is hundreds of milliseconds rather than just a few. That is because Logic Apps have significantly more overhead. Still, if you want a no-code solution, these can work. But if performance is a concern, use Stream Analytics or Function Apps. Still, there’s one more option to look at: Service Bus.

Azure Service Bus

If you’ve worked with Azure, you’ve probably heard of Azure Service Bus as a message broker platform that can create topics and queues. Although it sounds underwhelming on the surface, if you dive deeper, you’ll find there’s a lot more to it than merely topics and queues. With the internal plumbing of Azure Service Bus, you can create complex data pipelines that can filter and enrich data as part of those pipelines. Before getting too far into Azure Service Bus, let’s cover the basics first.

Azure Service Bus, at its core, is a messaging platform that supports topics and queues. Topics and queues are similar in that they both receive and deliver messages. A message is enqueued by a producer and dequeued by a consumer. The producers in the case of IoT are devices but indirectly so. As you already saw in Chapter 5, messages from Azure IoT devices come through an IoT Hub, which can then route these to a Service Bus. The messages originate on devices, but the IoT Hub is the message producer. The consumer in the context of IoT can be any number of things, such as a Function App, an external consumer, an Event Grid, or something else entirely.

Queues and Topics

Producers and consumers work with the two basic patterns on Service Bus. The first pattern is the queue. A queue is a one-to-one message delivery pattern. It allows multiple producers to publish messages and multiple consumers to read messages, but any one message passes through the queue only once.

A topic is like a queue wherein multiple producers can create messages and publish the messages to a queue. The topic, however, allows for numerous subscriptions to listen to the topic. Service Bus will deliver a copy of the message to each subscriber on the topic. The subscriber, then, works much like a queue wherein one or more consumers listening to the subscription can read the messages from it, but each message in the subscription passes through each subscription only once, although a copy of the message may pass through multiple subscriptions independently.

Auto-Forwarders and Subscription Filtering

On an Azure Service Bus, topics and queues can be chained together to create complex messaging infrastructure. Chaining works through auto-forwarding. This allows topics to be the consumer of a queue or a queue to be the consumer of a topic. With auto-forwarding, you can consolidate multiple message streams from different topics and queues into a single topic queue for processing and delivery.

Conversely, topics allow for branching schemes through subscriptions to topics. On Service Bus, a subscription can use filtering to allow only messages with a specific criterion to enter the subscription, and the rest are filtered out. This allows a subscription to process and deliver a subset of messages. Multiple subscriptions on the same topic create a branching flow of messages based on filtering.

Filtering on topics and auto-forwarders, when used together, allow messages to split and converge, depending on needs.

Topic Actions

Actions on topics enable lightweight annotations to messages that can enrich the messages with contextual data. They can also change and remove properties on messages as well. Actions are applied to subscriptions on messages after they have been filtered, but before that are inserted into the subscription. Actions are not available on queues, so you need to pass queued data through a topic and subscription to use these.

Actions do not have access to external data sources, so they are fairly limited in their enrichment capabilities. They cannot read or modify the properties in the body of your message, but they can change things with system and user properties. Still, the Service Bus APIs are useful for creating actions and basically “hardcoding” the values you want as part of the enrichment into the action.

Performance Considerations

Filtering, forwarding, and actions impact Service Bus overall performance. The more complex your messaging pipelines become, the more CPU they need to work. So if you plan to use these features, you may want to disable or minimize the impact of CPU utilization with a few others:

		
	Disable message ordering unless you need it. Most of the time, telemetry and event messages on Service Bus are self-contained. If they arrive out of order, this likely will not impact your solution or your data’s integrity. If message ordering is on, it can kill your performance.

	

		
	Turn off deduplication or use small windows for deduplication. Sometimes, a device may inadvertently resend a message because it thinks the message failed to deliver even though it was successful. Scenarios like this cause messages to end up on a Service Bus twice. Service Bus can deduplicate messages automatically within a tunable window. A larger window requires more time and CPU than a smaller window. If you are okay with data duplication, then you simply turn it off.

	

		
	Turn off sessions if you don’t need them. Sessions enable you to have first-in, first-out operations, and request/response messaging patterns. These patterns are usually not needed or even possible on IoT workloads, with IoT devices being proxied through an IoT Hub.

	

Service Bus is a capable system for conditional message flows and some lightweight enrichments through actions, but it’s still not as robust as some other data processing systems for stream processing. The other three—Function Apps, Logic Apps, and Stream Analytics—are more powerful. I hate to even call Service Bus a stream processor, but because it offers some incredibly useful features for stream processing, I included it in this list.

Regarding solutions, Azure Service Bus works mainly as a piece of middleware. It does not have native integration with databases, so any data ingestion from Service Bus needs to flow through some integration piece, such as Function Apps.

Create a Service Bus with a Topic and Subscriptions

In Figure 9-5, you’ll see the solution you’ll build as a demo. This solution uses a simple pipeline to show the filtering features of Service Bus using topics and subscriptions.

[image:]
Figure 9-5. The data flow using an Azure Service Bus

First, you’ll need to create a Service Bus:

		
	In the Azure portal, search for “Service Bus” in the search box and select it under “Services.”

	

		
	Click “+ Create” to start creating a new Service Bus.

	

		
	On the form for creating a Service Bus:

	
			
		Select the Subscription and Resource Group for your Service Bus.

		

			
		For the name, provide a unique name, like blaizesb.

		

			
		Put the Service Bus in the same region as your IoT Hub for “Location.”

		

			
		Select “Standard” for the “Pricing tier.”

		

			
		Click “Review + Create.”

		

	

	

		
	After validation, select “Create” and let Azure deploy the Service Bus.

	

		
	After the resource deploys, click “Go to resource.”

	

		
	Click “+ Topic” on the “Overview” blade.

	

		
	On the New Topic form:

	
			
		“Name” the topic telemetryandalarms.

		

			
		Leave the rest of the items as defaults.

		

			
		Click “Create.”

		

	

	

		
	Select “Topics” under “Entities.”

	

		
	Select the topic you created.

	

		
	Select “+ Subscription.”

	

		
	On the form for the Subscription:

	
			
		“Name” the subscription “telemetry.”

		

			
		Enter “1” for “Max delivery count.”

		

			
		Leave the rest of the options on the defaults.

		

			
		Click “Create.”

		

	

	

		
	Again, select “+ Subscription.”

	

		
	On the form for the Subscription:

	
			
		“Name” the subscription “alarms.”

		

			
		Enter “1” for “Max delivery count.”

		

			
		Leave the rest of the options on the defaults.

		

			
		Click “Create.”

		

	

	

		
	After the “alarms” subscription is created, select it from the list of subscriptions.

	

		
	On the “Overview,” select “Add filter” at the bottom.

	

		
	On the form:

	
			
		Enter “alarmFilter” for the “Name.”

		

			
		For “Filter Type,” select “SQL Filter.”

		

			
		Enter isAlarm = 'true' in the text box.

		

			
		Click “Save changes.”

		

	

	

Create a New Route on IoT Hub

Next, we need to create a new route on your IoT Hub:

		
	Find your IoT Hub and select “Message routing.”

	

		
	Select “Custom endpoints” and select “+ Add.”

	

		
	Select “Service bus topic.”

	

		
	On the “Add a service bus endpoint” form:

	
			
		Enter telemetryandalarmsSB for the endpoint name.

		

			
		Select your Service Bus and your Topic under their respective dropdowns.

		

			
		Click “Create.”

		

	

	

		
	Select “Routes” after the endpoint finishes creating.

	

		
	Click “+ Add.”

	

		
	On the form for “Add a route”:

	
			
		For name, enter telemetryandalarmsRoute.

		

			
		Select the telemetryandalarmsSB endpoint you just created for “Endpoint.”

		

			
		Click “Save” to save the route.

		

	

	

Create Some Functions Save Data

Now, all the telemetry and alarms should flow into your Service Bus. The topic will use filters to route messages to the alarms subscription and all the messages go to the telemetry subscription. You need to add some code to move messages from the subscription into Cosmos DB. This is where a simple function comes in:

		
	In the Azure portal, search for “Function Apps.”

	

		
	Click “+ Create” to add a new one.

	

		
	On the “Basics” blade on the “Create Function App” form:

	
			
		Select the appropriate Subscription and Resource Group for the Function App.

		

			
		Give it a unique name, like telemetryalarms, for Function App Name.

		

			
		Select “Code” for “Publish.”

		

			
		Select “Node.js” for the “Runtime stack.”

		

			
		Take the latest version for Version.

		

			
		For “Region,” select the same region as your IoT Hub.

		

			
		For “Operating System,” select “Linux.”

		

			
		Use “Consumption (Serverless)” for the “Plan Type.”

		

	

	

		
	Click “Review + Create.”

	

		
	On the “Review + Create” tab, select “Create.” This will create the Function App. Give it a few minutes to finish, then click on “Go to resource.”

	

		
	Select “Functions” under the “Functions” group.

	

		
	Click “+ Create” to add a new one.

	

		
	On the “Create function” form:

	
			
		Keep “Develop in portal” for “Development environment.”

		

			
		Select “Service Bus Topic trigger” for the template.

		

			
		For “New Function,” call it TelemetryToCosmos.

		

			
		Select “New” under “Service Bus connection.” This will pop up a dialog. Select your Service Bus under “Service Bus connection” and leave the second menu as “RootManagedSharedAccessKey.” After that, click “OK.”

		

			
		For “Topic name,” use telemetryandalarms.

		

			
		For “Subscription name,” use “telemetry.”

		

			
		Click “Create.”

		

	

	

		
	Under Integrations:

	
			
		Click “Outputs.”

		

			
		For “Binding Type” select “Azure Cosmos DB.”

		

			
		Select “New” under “Cosmos DB account connection.”

		

			
		Select your Cosmos DB account from the pop-up and click “OK.”

		

			
		Under “Database Name,” enter telemetrydb.

		

			
		Under “Collection Name,” enter telemetry.

		

			
		Under “Document parameter name,” enter telemetryDocument.

		

			
		Finally, click “OK.”

		

	

	

		
	Click on “Code + Test.”

	
			
		In the code, replace the default code with the following code. You can find this code in the repo for Chapter 9 in service-bus-telemetry-function.js.

		
module.exports = async function(context, mySbMsg) {
 context.log('Processed: ', mySbMsg);
 context.bindings.telemetryDocument = mySbMsg;
};

		

			
		Click “Save.”

		

	

	

		
	Click “+ Create” to add a new one.

	

		
	On the “Create function” form:

	
			
		Keep “Develop in portal” for “Development environment.”

		

			
		Select “Service Bus Topic trigger” for the template.

		

			
		For “New Function,” call it “AlarmsToCosmos.”

		

			
		Select the connection you created in step 9.

		

			
		For “Topic name,” use telemetryandalarms.

		

			
		For “Subscription name,” use “telemetry.”

		

			
		Click “Create.”

		

	

	

		
	Under Integrations:

	
			
		Click “Outputs.”

		

			
		For “Binding Type” select “Azure Cosmos DB.”

		

			
		Select the connection you created in step 10 for “Cosmos DB account connection.”

		

			
		Select your Cosmos DB account from the pop-up and click “OK.”

		

			
		Under “Database Name,” enter telemetrydb.

		

			
		Under “Collection Name,” enter alarms.

		

			
		Under “Document parameter name,” enter alarmDocument.

		

			
		Finally, click “OK.”

		

	

	

		
	Click on “Code + Test.”

	
			
		In the code, replace the default code with the following code. You can find this code in the repo for Chapter 9 in service-bus-alarms-function.js.

		
module.exports = async function(context, mySbMsg) {
 context.log('Processed: ', mySbMsg);
 context.bindings.alarmsDocument = mySbMsg;
};

		

			
		Click “Save.”

		

	

	

This solution is rather lengthy because Service Bus does not have native integrations with Cosmos DB or anything else, but it can use routes and Function Apps to supplement these. I like to use Service Bus to manage message flows instead of trying to route them through a function, so I show it here. The consuming function, in this case, was basically the same, but in a more production-oriented system, I might have a consumer function deliver an email or SMS in response to an alarm or something similar and just write telemetry to a data store. In any case, it’s still extremely useful.

Summary

In this chapter, I took you through the weeds of four hot path data processing technologies. Leveraging the right one for the job helps create optimal solutions for your needs. Let’s compare them side-by-side in Table 9-1.

	Table 9-1. Comparing fast path options on Azure
	
		
				
				Flow control
				Data manipulation
				Build mechanism
				Best for
		

	
	
		
				Service Bus
				Queues, topics, forwarders, subscriptions, and filters.
				Modest support with actions to modify and amend message properties.
				ARM templates, Azure portal, APIs, Azure Service Bus Explorer.
				Complex message routing at scale, such as conditional routing.
		

		
				Stream Analytics
				Controls through SQL-like queries against data.
				Strong support for data enrichment through reference data and data windows. Strong support for projections.
				ARM templates, Azure portal for the designer. SQL query language and JavaScript functions.
				Data-heavy streaming workloads and windowed data.
		

		
				Function Apps
				Flow controls are managed through input and output bindings with code.
				Data is manipulated with code based on inputs and gathered data in the function.
				Function Apps use popular programming languages, like C#, JavaScript, and Python.
				Complex rules are needed for message manipulation or routing.
		

		
				Logic Apps
				Connectors and actions in a workflow control the data flow.
				Moderate support for data sets and data manipulations in the designer.
				Low-code or no-code approaches with a designer. Can be built using pure code, too.
				Enables IT pros and non-IT personnel to create workflows. Other lightweight integrations.
		

	

Even after all this, if you’re still unsure which one to use, start with Stream Analytics. It’s the canonical solution for stream processing. If that doesn’t fit, think about how Function Apps can help solve your problem. These options are certainly not the only ones available, but these are the first-party ones.

While I wish it was possible to do everything with a hot path, that’s not always possible. Even with some of the more modern data architectures, there’s still a need for old-fashioned batch-style processing. Azure tools, however, give it a modern feel. So let’s slow down and do things on a cold path.

Chapter 10. Cold Path Data Processing

Recall back to Chapter 8, when you looked at the different architectures on Azure for data. In IoT, no matter how you slice it, inevitably, there will be a need to at least support a cold path, even if you adopt an architecture that is supposed to treat everything as hot path data. In Lambda Architecture, a cold path is inherent. Kappa Architecture is supposed to treat cold paths as a special case of hot paths. Although I prefer Kappa-style architecture, it’s possible only in the best scenarios. Therefore, I acknowledge that architectures still need to be at least open to the possibility of cold paths. Suffice it to say, the need for cold paths is frozen and here to stay.

In Figure 10-1, the cold path is represented as the bar at the bottom of the IoT Landscape.

[image:]
Figure 10-1. The cold path on the IoT Landscape

Remember, cold paths are not so much about speed. The defining characteristics are higher latency, larger data sets, complex computations, and heavier use of persistent storage as part of the data processing cycle. These characteristics lean heavily into batch processes that run on larger batches of data rather than small datasets or atomic messages like hot path processes do. Many of these batches might run in intervals like five minutes. Others could be hourly, daily, weekly, monthly, yearly, or longer. The relative size of the data triggers some. Timers are generally the most common form of trigger, however. It depends on the context.

In this chapter, I’ll talk about the tools that Azure provides for cold path–style workflows that can be seen as either time series data or batch processors. The legacy system on Azure for time-series data is Time Series Insights, but as of writing, this product is soon to be deprecated, so I will not be covering it. Azure Data Explorer (ADX) is now the canonical service for time series data. ADX is a database with compute and storage, while the batch offerings covered in this chapter focus mostly on compute resources that draw on external storage.

Azure has three different offerings for batch processing: Azure Data Factory, Azure Synapse Pipelines, and Azure Batch. Azure Data Factory and Azure Synapse Pipelines are very similar because they share the same underpinnings, so I’ll be covering just Data Factory here. Still, almost everything about Data Factory applies to Synapse as well. Azure Batch is a completely unique service aimed at high-performance compute (HPC). This offering is the granddaddy of batch services and seems archaic, but it is still worth considering because of its power.

Azure Data Explorer

Azure Data Explorer, as mentioned, is the spiritual successor to Azure Time Series Insights, but it’s not restricted to timeseries data. ADX provides both storage and a compute engine for doing analytics against large volumes of data. The kind of analytics possible with ADX depends on the needs, but its primary focus is analytics as opposed to transactionally oriented services like a SQL database. While I would not call ADX an OLAP solution, it leans more that way than it does toward an OLTP solution. Its architecture distributes data access storage and compute nodes that are optimized for analytics. If you recall, OLTP is oriented around transaction processing, which allows for reading data, adding new data, updating existing data, and removing data. ADX generally prefers to treat data as idempotent; although it can be updated, it’s not something you would want to do. If you need to update data, use another solution, like Cosmos DB.

ADX is sometimes pitched as being able to do real-time analytics. Given that this chapter is about cold paths and warm paths, it might seem like a contradiction to pitch ADX as a solution for real-time analytics. ADX can do real-time analytics because it can handle data streams from sources like Event Hubs in the same way that other stream processors can. But ADX persists data, too. If speed is of the essence, then ADX is probably not the best solution; it does have some lag that you won’t experience if you’re doing stream processing. It would not work well as a messaging platform.

Because of this, ADX sits nicely between a batch-style processor like Azure Data Factory and a stream processor like Azure Stream Analytics. You can use it to ingest data from streams and get quick results but also use it to aggregate large amounts of historical data. The combination makes ADX the most ideal solution for time series data.

Let’s take a step back for a second and talk about time series data itself. Time series data is a type of data that is collected and organized based on the order of time. It is a sequence of observations recorded at regular intervals over a period of time, so looking at IoT telemetry and events makes time series data one of the key applications of ADX to IoT data. For time series data, look at:

		Time dependence

		
	The data points in a time series are, obviously, ordered by time, and each observation point depends on the preceding observation. ADX stores historical data, so previous observations are accessible.

	

		Seasonality

		
	Time series data often exhibits repeating patterns over a fixed period, seconds, minutes, hours, or even longer intervals like daily, weekly, monthly, or yearly cycles. IoT cycles largely depend on the application.

	

		Trend

		
	Time series data can also exhibit a trend, representing a long-term increase or decrease in the data. Trends are useful for forecasting.

	

		Stationarity

		
	A time series is stationary if the statistical properties such as mean and variance remain constant.

	

Time series data can be analyzed using various statistical and machine learning functions. Regardless of the analysis method, some of the applications include forecasting, anomaly detection, pattern recognition, and signal processing.

Because ADX works for both real-time and historical data, ADX supports both batch-style ingestions and streaming ingestions. It is capable of ingesting data from streaming messaging platforms, which makes it useful for processing that enables quick results on some of the analytics it performs, but more importantly, it works well for integrations with many of the other Azure services, particularly native integrations with Azure Event Hubs, Event Grid, and most notably, Azure IoT Hub. In the context of Azure IoT Hub, ADX’s integration allows both telemetry and events coming off the IoT Hub into ADX without any extra middleware.

ADX uses the Kusto Query Language (KQL) to perform analytics. It has some similarities to SQL but is not a dialect of SQL. It is intended more for aggregate functions like grouping, aggregates, time series analytics, and other features for summarizing data in different ways. It still has many familiar conventions, like joins, filters, and projections, that allow you to tailor results to your needs.

ADX offers materialized views as a feature for providing data summaries that update as new data is added to the data sources. Unlike traditional views, materialized views are not calculated when called. The view persists the results like a table so they can be accessed like a table in the database. Materialized views are useful for query patterns that you may access often. If you find yourself creating and running the same query over and over, it may be advantageous to create a materialized view to make a stored version of that data. This saves time at the expense of storage because storage is cheap, and compute is expensive. You can perform further aggregations or analytics on the data in the view.

ADX also has built-in support for data exports, but these are more batch-oriented than stream-oriented. The continuous export feature allows you to export data on a regular interval, but it is not in real time. Exports in any case can go to an Azure SQL database or to Blob Storage in a storage account. However, if you want to use ADX for analytics, it’s probably best to put it downstream rather than upstream of the transaction store. You can easily integrate Cosmos DB to feed data into ADX. This pattern is more conducive than trying to configure ADX to feed data into Cosmos DB. You already set up Cosmos DB in this way in Chapter 8 as an HTAP solution from Cosmos DB to Azure Synapse. As of this writing, ADX has a preview feature to tap into the Cosmos DB change feed to get new data from Cosmos into ADX.

Batch Processing on Azure

So far, you’ve looked at stream processing, near real-time analytics, and time series data processing. Now, it’s time to round out that list with batch processing. Batch processing, as you recall, involves periodically taking large chunks of data and processing these chunks all at once rather than processing the data as it arrives.

Batch processing has historically used a pattern called extract, transform, and load (ETL) as a means to process data. In the processing loop, ETL operations can happen as a part of a larger data processing cycle or encompass the entire process itself. Regardless, the process starts by extracting data from a source. This could be an external data source or data that has been landed and staged for consumption. The data is then transformed with enrichments, aggregations, flattening, or other modifications. From there, the data is loaded into a place where it can be consumed or loaded into an external system.

ETL processes outline the basic steps used by the two primary batch processors on Azure: Azure Data Factory and Azure Batch.

Azure Batch

Azure Batch is one of the unsung heroes on Azure. It’s often overlooked for other services, but it brings to bear a set of incredibly powerful tools.

In short, it’s the high-performance compute (HPC) solution on Azure. HPC, loosely defined, leverages distributed compute resources to process massive amounts of data in parallel using custom applications. HPC typically involves the use of specialized hardware, such as clusters of servers, supercomputers, or high-end graphics processing units (GPUs), as well as specialized software that can use these resources effectively. It’s used for scientific research, engineering, finance, and machine learning (ML). For example, HPC can be used to simulate the behavior of complex physical systems, analyze large datasets, perform advanced image and signal processing, or train large ML models. All of these, particularly image and signal processing and ML modeling, are pertinent to IoT workloads.

HPC systems deliver high levels of performance, scalability, and reliability, which require careful design and optimization of hardware and software components and efficient algorithms and data structures that can take full advantage of the computing resources. Azure does most of this work for you. Your primary concern is getting the data into the compute nodes on the cluster efficiently. You can do this by chunking data, working with queues, partitioning the data, or other schemes that minimize redundancy and eliminate contention on the data.

Azure performs HPC by leveraging on-demand compute from virtual machines. With Azure Batch, you orchestrate a job, which spins and provisions up any number of virtual machines that you need. From there, the VMs iterate on data. The data can be introduced in any number of ways, but storage accounts are one common way to get data on the VM. Once the VM is running, you can use whatever tools and languages you want on the VM to process the data. It’s up to you. If you want to write C or use something else entirely to process the data, you can.

Batch is attractive to many organizations because the services do not require any large capital investments in large compute clusters. With Batch, customers pay only for what they use for as long as they use it for, then the compute is deallocated.

Within the context of IoT, there are many different use cases where Batch might apply:

		Image and video processing

		
	Real-time image and video processing requires a large amount of compute reservation if you have tons of devices. Many IoT solutions try to mitigate this by keeping as much of the processing on the devices or on the edge rather than centralizing it on the cloud. Still, if you can live with the latency, using batch processing to handle image and video processing can save money by using on-demand compute rather than always-on reservations.

	

		AI models

		
	Some AI models require large compute clusters to train. Azure’s AI services provide these compute clusters as a service so you don’t have to build your own, but if you need to run your own, Azure Batch gives you the tools to do this. You can orchestrate large clusters to train and test models, then shut them down when you’re done.

	

		Optical character recognition (OCR)

		
	OCR is another kind of image processing, but it turns text data embedded in graphics into text files readable by a computer. OCR has been around for decades and is fairly sophisticated nowadays with AI enhancements. Still, it requires significant amounts of compute to process the graphics to extract text. Batch processing can do this on documents uploaded to an online store.

	

		Anomaly detection

		
	Finding outliers in statistics is usually pretty straightforward, but in a complex, multidimensional data set, it can be complex, and thus requires large-scale compute to sift the data. AI and other methods are useful for detecting anomalies.

	

		Large-scale ETL operations

		
	Azure Data Factory is the canonical tool for ETL jobs on Azure, but sometimes you may need a custom solution that Data Factory cannot manage or larger compute not available in Data Factory. Azure Batch can provide any VM class on Azure to help with the outliers in ETL operations.

	

Next, I’ll walk you through how to set up and run a batch job for the sample device. Although it’s a trivial example that does not really exemplify the full power of Azure Batch, it does expose you to the nature of setting up and running a batch job. The job in this example is pretty straightforward. It takes the output from the IoT Hub that is writing data to Blob Storage and moves it into Cosmos DB. This process uses a set of Azure VMs to run the batch process that the job orchestrates.

Create a Batch Account

First, you need to create a Batch account. To set it up, do the following:

		
	In the Azure portal, search for “Batch Accounts” in the search. Select “Batch accounts” from the list. This will list your Batch accounts. You may not have any.

	

		
	Click “+ Create” to add a new one.

	

		
	On the “Basics” screen, select your Subscription and Resource Group.

	

		
	Assign an “Account name.” It has to be unique for your region.

	

		
	Select the “Location.” You’ll want to keep this in the same region as your IoT Hub, storage account, and Cosmos DB instance for performance and cost reasons.

	

		
	Click on “Review + create” and then click the “Create” button to start the creation of the account.

	

Set Up the Batch Job

Next, you need to set up the batch job. Setting up a batch job requires three things: a pool, a job, and a task.

A pool is a set of VMs that you can use to run a task. When you define a pool you can select the OS you want (here, you’ll use Ubuntu) and set the size and number of the VMs. You can also set up networking, scaling, and other things that pertain to running the batch jobs. You can customize the VMs with the software you need to run your tasks with VM images, but it’s best to use some of the tasks built in to Batch to provision the machines from Marketplace images.

Relative to a pool configuration, the job configuration is pretty straightforward. It sets a schedule and tells the tasks in the job where to run.

A task is more complicated, though; it’s how you define what happens in a job. You can use the parts of the tasks to stage data and install software dependencies.

To set up a batch job, do the following:

		
	Under “Features” on the Batch account, select “Pools.”

	

		
	Select “+ Add (JSON editor).”

	

		
	Under “Pool ID,” enter iotpool. (You can change the Pool ID to something else, but you’ll have to edit the job to reflect the change.)

	

		
	From the Chapter 10 folder of the code repo for this book, open pool.json. This file contains text that defines the Batch pool; it is pretty verbose. Copy and paste the text from the file over the default text in the “Add pool” dialog.

	

		
	Click “Create.” This will start the creation of the pool.

	

		
	While the pool is creating, select “Jobs” under “Features.”

	

		
	Select “+ Add (JSON Editor).”

	

		
	From the Chapter 10 folder of the code repo for this book, open job.json. Copy and paste the text from the file over the default text in the “Add job” dialog.

	

		
	Click “Create” to create the job.

	

		
	Click on “iotjob” after the job is created to see the tasks for this job. Currently, there are none.

	

		
	Click on “+ Add (JSON Editor).”

	

		
	From the Chapter 10 folder, open task.json. Copy and paste the text from the file over the default text in the “Add task” dialog.

	

		
	A few things need to be updated in this file to populate to environment variables under “environmentSettings” for the task. For each of the following, place the appropriate value next to “value” in the file:

	
			
		For “STORAGE_CONNSTR,” get a SAS URL. You can do this by going to the storage account where IoT Hub is landing your data and selecting “Access keys” under “Security and networking.” Click “Show” next to one of the connection strings and copy the value. Paste the value into the value field.

		

			
		For “COSMOSDB_ENDPOINT,” get the endpoint for your Cosmos DB account. You can find this on the “Overview” blade in your Cosmos DB account next to “URI.” It will look something like https://blaizecosmosdb.documents.azure.com:443/.

		

			
		For “COSMOSDB_KEY,” get a key from the “Keys” blade under “Settings” in your Cosmos DB account. Copy the Primary or Secondary key and paste it into the value field.

		

			
		For “COSMOSDB_DATABASE,” open “Data Explorer” and find the name of your database. It’s a top-level object under “Data” and contains your containers. Enter this value into the value field.

		

			
		For “COSMOSDB_CONTAINER,” find the name of the container you used to write your data to under your database and enter that value into the value field.

		

			
		For “IOTHUB_NAME,” enter the name of your IoT Hub. You can get this from the “Overview” blade on your IoT Hub.

		

	

	

		
	Click “Create” to create the task.

	

The task will start immediately. It does a couple of things. First, it installs the Node.js modules needed for the task to run. Second, it starts the index.js file using Node.js. The file is designed to support concurrency, which Batch processing supports. This allows multiple nodes to iterate on the data at the same time. In large batch processes, spreading the work across multiple nodes is needed to complete jobs promptly. After the task runs, you should be able to see the output stdout file, which is a log file. If there was a problem, look at the stderr file to get the error logs. The process logs the files it reads from Blob Storage and writes out the data inserted in Cosmos DB.

In short, Azure Batch is a fallback for many other solutions on Azure when a task exceeds the scope or scale of the other solutions. Azure Batch is not a first choice, but it is certainly one to consider when considering batch processes on Azure. Next, let’s look at the canonical batch processor: Data Factory.

Azure Data Factory

Azure Data Factory, like Azure Batch, focuses on processing rather than storage. Under the hood, Azure Data Factory runs on Apache Spark, the same technology that runs Azure Databricks, is part of Azure Synapse, and is a big part of the HDInsight suite. Fortunately, you do not have to know anything about Spark, Synapse, Databricks, or anything else to use it. It’s helpful to understand data partitioning, though, to correctly partition the data to optimize the underlying compute. It uses a low- or no-code solution for designing and running batch processes on Azure. Azure Data Factory offers a fully managed, serverless platform for data integration at scale, enabling you to process and integrate that data with various data stores and services. It allows you to create, schedule, and orchestrate data pipelines that move and transform data from various sources to different destinations.

Azure Data Factory jobs have two basic parts: pipelines and dataflows. Pipelines are used to orchestrate the jobs. They provide logic for when one might trigger a data flow. A data flow is the part of a pipeline that performs all the work on data. It may be as simple as moving data from one source to another, but it can have complex transforms and logic in between those sources. Data Factory defines a set of data flows, a series of operations that do ETL (extract, transform, and load) data from various sources to destinations. These operations can include data mapping, data transformation, data conversion, and data validation. Data Factory supports various data sources, including Azure Blob Storage, Azure Data Lake Storage, Azure SQL Database, Azure Cosmos DB, and more. It also supports various data destinations, including Azure Blob Storage, Azure Data Lake, Azure SQL Database, Azure Synapse Analytics, and more. From Data Lakes and Blob Storage, it can read structured and unstructured data, like JSON files and CSVs. It also supports many data file formats like Parquet, Avro, and ORC files. These are explored more in depth in Chapter 11. When using Data Factory, preferring formats like Parquet and Avro can speed things up, but this is only sometimes possible, depending on the data sources. Azure Data Factory also integrates with other Azure services such as Azure Databricks, Azure Functions, Azure Logic Apps, and more, enabling users to perform more complex data transformation and processing.

Data Factory, however, is more targeted around orchestrations for data movements and data transformations. The transformations and external integrations allow it to work with many other things on Azure, so it can do things related to AI with Azure Machine Learning. Besides the Databricks-based flows, Data Factory also supports SQL Server integrations with SQL Server Integration Services (SSIS) from SQL Server. Azure SQL databases do not have a way to integrate these natively. You can use a VM, but Databricks provides a way to orchestrate SSIS integrations from file shares and Blob Storage into SQL databases. Allowing for SSIS integration provides backward compatibility for integration jobs generated from on-premises data sources targeting Azure SQL databases.

Next, I’ll take you through a series of demos using our sample device to demonstrate how Data Factory works.

Create a Data Factory to Move Data

For this demo, you’ll create a Data Factory to move data from the JSON documents into Cosmos DB for our sample device. It’s pretty straightforward in Data Factory to do these kinds of data movements. Do the following:

		
	In the Azure portal, search for “Data Factory.”

	

		
	Select “Data factories” from the search results, then select “+ Create.”

	

		
	On the “Basics” blade:

	
			
		Select your Subscription and Resource Group.

		

			
		For the “Name,” supply a name for the instance of Data Factory.

		

			
		Choose a region close to your storage account where you are landing your data as JSON.

		

	

	

		
	Select “Review + create.”

	

		
	Click “Create” and let the Data Factory instance work. It takes a few moments to complete.

	

		
	Select “Go to resource” after the instance finishes.

	

Now you have a Data Factory that can be used to move data. Next, you’ll need to create a source dataset from your storage account.

Create a Source Dataset from Your Storage Account

To set up a data source from the JSON data that you are landing in your storage account, do the following:

		
	On the “Overview” blade, click “Launch studio.” This takes you to Azure Data Factory (ADF) Studio.

	

		
	In ADF Studio, select the “Author” icon that looks like a pencil.

	

		
	Click the ellipsis (…) next to “Datasets” and click “New dataset” from the menu. This expands a blade from the right side of the screen.

	

		
	On the blade, select “Azure,” then “Azure Blob Storage.”

	

		
	Click “Continue” at the bottom of the screen.

	

		
	Select “JSON” for the format, then click “Continue” at the bottom of the screen.

	

		
	On the next screen, click on the menu beneath “Linked services” and select “New.”

	

		
	Under “Account selection method,” select your Azure subscription containing your storage account, then select the storage account under “Storage account name.”

	

		
	Click “Create.” This creates a linked service and a dataset from the storage account.

	

		
	To get the schema, click the folder icon next to “File path.” Browse to the container that holds your data, then select the name of your IoT Hub. In that folder, you should see a list of JSON documents. Choose one of them and click “OK.”

	

Now you have a source dataset from your storage account. We’ll use this to create a data sink for Cosmos DB.

Create a Data Sink for Cosmos DB

A CosmosDB sink is the output for the pipeline. Data Factory will write new data to the data sink. To create a data sink for Cosmos DB, do the following:

		
	Click the ellipsis (…) next to “Datasets” and click “New dataset” from the menu. This expands a blade from the right side of the screen.

	

		
	On the blade, select “Azure,” then “Azure Cosmos DB for NoSQL.”

	

		
	Click “Continue” at the bottom of the screen.

	

		
	On the next screen, click on the menu beneath “Linked services” and select “New.”

	

		
	Under “Account selection method,” select the Azure subscription containing your Cosmos DB instance, your account under “Azure Cosmos DB account name,” and your database under “Database name.”

	

		
	Click “Create” to create the linked service.

	

		
	On the next blade, select the container for your telemetry under “Container.”

	

		
	Click “OK.”

	

The data sink is the output. Now that the sink is done, you can create a data flow to move data into the sink.

Create a Data Flow to Move Data

A data flow is a process that can move and transform data. A copy merely copies data from one place to another. We want a data flow to move the data, then delete it from the storage account:

		
	Next to “Data flows,” click the ellipsis (…) and select “New data flow.”

	

		
	Click “Add Source.”

	

		
	On the “Source settings” for “Add Source,” select “Json1” from the dataset.

	

		
	On the “Source options,” enter “<youriothubname>/**/*.json” into the value for “Wildcard path.” Replace <youriothubname> with the name of your IoT Hub instance.

	

		
	Check the box next to “Allow no files found.”

	

		
	Select “Delete source files” next to “After completion.”

	

		
	Next to “Source1” on the canvas, click the plus (+) icon, and select “Sink” under “Destination” at the bottom of the menu.

	

		
	On the “Source settings” for “Add Source,” select “CosmosDBNoSQLContainer1” from the dataset.

	

		
	After this, select “Validate.” This checks the data flow for any issues.

	

The data flow moves data while also manipulating the data. It can have complex logic that does all kinds of things, like filtering, flattening, joining, transforming, and reformatting data.

Create a Pipeline to Move Data

Now that the datasets are set up, you can create a pipeline to move data between the storage account and Cosmos DB:

		
	Next to “Pipelines,” click the ellipsis (…) and select “New pipeline.”

	

		
	Expand “Move & transform.”

	

		
	Drag “Data flow” onto the canvas.

	

		
	Under “Settings” for the data flow, select “dataflow1” from the “Data flow” menu.

	

The pipeline is effectively the orchestrator for the data flow. Pipelines don’t do the heavy lifting but will invoke the data flow.

Start the Data Flow

Now that we have a pipeline to move data between the storage account and Cosmos DB, we can finally start the data flow:

		
	Select, “Debug.” This opens a blade on the right.

	

		
	Click “OK” on the blade. This starts a Batch cluster.

	

		
	Once the cluster is created, click “Debug” again to start the job. The job should run for a few minutes or longer, depending on how many files are in the storage account.

	

		
	Once it’s finished, look at your storage account. There should be only a few new JSON files in the folder. The Cosmos DB database should be full of new data, too.

	

Beyond the basics, Data Factory integrates with DevOps tools like GitHub and Azure DevOps to store the code and configurations backing the pipelines and data flows. It manages these environments so you can author workflows before publishing them into a more production-like environment. The DevOps integration allows code from one instance of Data Factory to run on another by deploying the code to another target. This is useful to separate development from production with different resources and environments.

Data Factory also provides security, monitoring, and alerting. You need these features to control access to the environments and get alerted when things don’t work, such as when a job fails.

In short, Data Factory is a versatile data integration service with a wide range of data integration scenarios, from simple data movement to complex data transformation and orchestration. Its flexibility, scalability, and integration with other Azure services make it an ideal solution for data integration in the cloud or on premises. For these reasons, it’s usually my first choice for batch-style integrations on Azure.

Of course, you can use other services, but Azure Batch and Azure Data Factory are the two canonical services for doing this sort of workload. You also can consider Azure Synapse if you’re working in that context. It’s very similar to Data Factory and shares many of the same workflows and pipeline features. Databricks works well too but requires learning how to use Databricks, which can be a steep learning curve. Azure Functions is an option if you’re working with lighter data. In short, you have lots of choices.

Summary

This chapter focused mainly on the canonical services for performing batch-style processing on Azure:

		
	Azure Data Explorer can work well for batch processing using its filtering and export features.

	

		
	Azure Batch provides orchestration for a cluster of VMs to perform long-running, compute-intensive jobs.

	

		
	Azure Batch allows you to bring your own languages and tools, so you can write processes in whatever language works best for your data.

	

		
	Azure Data Factory is a visual designer for building data processes.

	

		
	It works as an ETL tool or as a data processing tool for batch-style integrations.

	

As mentioned in Chapter 8, the trend in the industry is to figure out how to mitigate batch-style processing and move to something like a Kappa-style architecture, to treat batch as a special case of a speed layer. Like I said then, though: as hard as we might try, you’ll probably have to support batch in some fashion for the foreseeable future because of legacy systems, and not everything works well with a speed layer.

Regardless of which way you go, you’ll still need to present your data to consumers. In the next chapter, you’ll learn all about how presentation works with push-style and pull-style deliveries of data.

Chapter 11. The Servicing Layer

The last few chapters have taken you down the hot, cold, and warm data paths. These paths all revolved around what it takes to process data from its raw form as it comes off devices into something usable by consumers of the data. Between the consumers, though, lives the servicing layer in the IoT Landscape, as shown in Figure 11-1, and it’s all about exposing and delivering processed data to the consumers. The layer includes light processing capabilities, integrations, and transformation technologies that make the data usable. It may also have some data cleansing, validation, and enrichment to improve data quality. Technically speaking, the servicing layer uses delivery mechanisms like webhooks and server-side push technologies like SignalR or Azure Web PubSub. Many times, APIs become a big part of this layer. For some other more traditional integrations, the layer may provide common protocols for downloading datasets.

[image:]
Figure 11-1. The servicing layer of the IoT Landscape

The servicing layer in data architecture provides abstractions between the data storage and processing layer and the presentation layer. In programming terms, it’s effectively a façade pattern. The façade provides an abstraction that masks some of the complexities of a system. This pattern provides simplified access to anyone wanting to consume the data by masking the tons of complexities that happen behind the scenes. The presentation layer does not need to understand the intricacies or the inner workings of the data processing architectures used to generate the data. Throughout this book, you’ve seen numerous ways to move and manipulate data. Creating the servicing layer obfuscates this. It’s a single interface that encapsulates all the complexity, making it much easier and more manageable for those who want to consume the data.

The servicing layer can also provide significant scalability advantages. By separating the presentation layer from the backend, the servicing layer scales independently of the backend with the demands of the presentation layer.

The servicing layer takes on all different kinds of roles, but you can think of them as fulfilling two broad categories: push-style data delivery and pull-style data delivery. The basic difference between these two stems from the side that initiates the delivery. The servicing layer initiates push-style deliveries, while the consumer initiates pull-style deliveries in the presentation layer. In this chapter, I’ll talk about how the servicing layer deals with both push- and pull-style data delivery. Before that, though, you need to understand something they have in common: datasets.

Datasets

Regardless of what data processing architecture you adopt, you will get clean, pristine data as the output. The data processing loop takes “raw” data from devices, manipulates it, and produces something you want to deliver for whatever purpose you need, such as reporting, apps, dashboards, machine learning, automation, and countless other uses. Part of the struggle, though, is figuring out how you will deliver all this data. Entire databases can be massive and unwieldy even in their processed form. You also must consider data cleaning, normalization, privacy, and security regulations, depending on the type of data they contain and how they are used.

That’s where thinking in terms of datasets can be helpful. A dataset is a collection of data organized and stored in a specific format, but more importantly, for a particular purpose. In other words, a dataset will not necessarily be all the data in your data estate or even an entire database; rather, the dataset is likely to be a subset of the whole data. If I have a database of all your IoT history, I may need to provide only the last seven days’ worth of data. The dataset is usually organized in a structured format like tables, spreadsheets, or files around specific information, like devices, events, or a particular kind of telemetry.

Databases and data estates are typically general purpose and can contain one or more datasets with their metadata describing the relationships between the data.

Data storage comes in many different formats, such as structured (e.g., databases), semi-structured (e.g., JSON files, Excel spreadsheets), and unstructured data (e.g., images, sound files, videos). IoT events and telemetry might be semi-structured when the data comes in from the devices. Still, data processing helps to structure the data, or at least create well-organized, well-groomed semi-structured data, if you use a document database. Other data, like images, can be considered unstructured data, but data processing also frequently extracts data from these sources to create structured or semi-structured data.

Datasets in the context of IoT may expose some raw form of data. Still, it’s not without a semi-structured or structured counterpart that can be used to organize unstructured data to make it more accessible. For example, raw images may be available, but these are usually associated with tags and organized according to them so an API or application can sift through them.

In Chapter 7, you learned about different strategies to improve data throughput, such as using star schemas and denormalizing your data. With normalized datasets, data is often divided into multiple tables to eliminate data redundancy and ensure consistency. Denormalizing the data makes the dataset inherently simpler and, thus, easier for the consumer to use. It involves adding redundant data to tables to simplify queries and improve performance. For example, a normalized design might have separate tables for device locations and device data. In a denormalized design, the redundant data from the location table would be added to the device table. While denormalization can improve query performance, it can also lead to data inconsistency, so it’s important to keep data sets idempotent.

Data Formats for Datasets

Once you know what your dataset should contain, you’ll need to figure out how you want to deliver that data. If you plan on delivering data in bulk, such as a daily data dump that provides new data from the last 24 hours, there are several data formats you might want to consider. These apply to push and pull data delivery styles, which are covered later:

	CSV (comma-separated values)

	CSV consists of a text file where each line contains a row of data, and commas separate the values within each row. CSV files are widely used and easily imported into many software tools, including spreadsheets and databases. Usually, supporting CSV is a good idea for semi-structured data because it is so ubiquitous in data. Most database management tools, ETL tools, and software frameworks have ways to use CSV data.

	JSON (JavaScript Object Notation)

	Chapter 5 already discussed JSON to deliver events and telemetry from devices to the cloud and vice versa. JSON is also useful for data interchange. It can support structured and semi-structured data, and the format is easy for humans to read and write and for machines to parse and generate. JSON is commonly used for web applications and APIs.

	XML (Extensible Markup Language)

	The industry still uses XML widely as a data interchange format because of legacy systems in enterprises and government for integrations that do not support other forms but need more controls around the data than offered by JSON or CSV.

	HDF5 (Hierarchical Data Format version 5)

	HDF5 is a data model, library, and file format for storing and managing large, complex data. It is widely used in scientific computing, including astronomy, bioinformatics, and engineering but to a lesser degree in IoT. Still, it’s worth noting here because the format is common in big data analytics tools.

	Avro

	Avro is a compact data serialization format, making data storage and transmission efficient. It is widely used in distributed systems and big data processing frameworks such as Apache Hadoop and Apache Spark, which includes Azure Data Factory, Azure Databricks, HDInsight, and Azure Synapse. If you plan to integrate with these platforms, delivering data in this format can drastically improve data integration performance over JSON, CSV, and other text-based formats. It’s optimized more for transactional purposes and data interchange than processing.

	Parquet

	Parquet is a columnar format optimized for large-scale analytics workloads. It supports the efficient processing of complex data structures such as nested and repeated fields, making it well-supported for analytic purposes. Like Avro, Parquet is widely used in the Apache Hadoop and Apache Spark ecosystems, which include Azure Data Factory, Azure Databricks, HDInsight, and Azure Synapse.

	ORC (Optimized Row Columnar)

	This format uses a columnar file format for analytic workloads. It, too, is part of the Spark ecosystem. ORC efficiently compresses columnar data for fast processing and querying of large datasets. The compression scheme in ORC files gives more control to the users so that it can be highly optimized depending on their needs. ORC also works well with distributed data processing.

	Delta

	Delta is a newer data format that has recently gained popularity for managing large datasets in big data environments. It was developed by Databricks. Delta is actually built on Parquet, but it adds transactional capabilities to the format and other features like versioning and schema enforcement. It works well for systems that need better audibility and data history.

No one format works well for everything, but at a minimum, you want to support at least one text-based format and another more optimized format, like Avro or Parquet. The best approach is to understand the needs of the consumers and then design a dataset that will make integrations with the consumer as simple and efficient as possible.

With a dataset in hand, you can now deliver that dataset. We’ll next explore how you can do that with various push- and pull-style deliveries and why you might choose each.

Push-Style Delivery

In a servicing layer, a push-style delivery sends data from the data source—your datasets—to the people and systems who will use the data. As the servicing layer developer, you identify when new data is available to send or when that data should be sent to the data consumer.

With push-style delivery, there are two ways to look at these deliveries, which correspond to hot paths and cold paths. They, in a way, act as a natural extension of a hot path and cold path but are less concerned about data processing and more concerned about delivery. The mechanisms, therefore, are similar in each respective path, but the technologies address the specific concerns of each.

Cold Path Push

Cold path push deliveries are perhaps the most traditional form of data delivery. The data source (the servicing layer) generates the data on a schedule and then sends it to the data consumer. Data might be compressed and packaged into a single file or a set of files, like one of the formats mentioned in the previous section. These files are transferred using the File Transfer Protocol (FTP). Depending on the size of the dataset and the available network bandwidth, it may be necessary to split the data into smaller chunks or to use compression to reduce the file size and improve transfer speed.

Push-style delivery works well when the consumer uses batch-style processing, even if you are not. For example, you might roll up telemetry data from a selection of devices and deliver that to the consumer for integration into the consumer’s system.

In Azure, generating and staging these datasets can be done by using one of the many data processing techniques that were discussed in Chapter 10. You can dynamically generate datasets with an API call, which can be costly and time-consuming. As a pattern, create the dataset and land it on storage like Azure Blob Storage. The only native tooling on Azure for delivering FTP files is in Azure Logic Apps. If you want to create a workflow for FTP delivery in Logic Apps, it is pretty straightforward and can be triggered by a new file on Azure Blob Storage. You could also create a custom activity for Azure Data Factory or use an Azure Function with an FTP library for similar results.

Hot Path Push

The hot path counterpart to push-style deliveries works in real time or near real time. This delivery style is useful in many scenarios where data needs to be delivered quickly. For example, your consumer may want to respond to high-priority events from your devices, like an overheating component or anomalous behaviors. In this case, push-style delivery sends data from sensors or other devices to your cloud-based IoT data processes, which use hot paths to process the data and get it ready for delivery. From here, in the servicing layer, push-style delivery sends data to downstream applications or services in real time, enabling faster processing and more timely decision making. The integrations for external consumers pick up the events and telemetry and deliver them to external consumers.

Data in this context is typically atomic rather than batch. If there are batches of messages, they are usually pretty small. Datasets in this context are still important, though. Even though data is still processed in real time, data is typically stored for later retrieval even after the data is delivered. The dataset and whatever you are pushing should correlate somehow and, in many cases, are usually identical, with a record or row corresponding to a telemetry message or event.

On Azure, two out-of-the-box mechanisms work well for real-time delivery: Azure Web PubSub and Azure SignalR Service. Also, Azure supports calling webhooks using Azure Functions and Azure Logic Apps.

Azure Web PubSub

Azure Web PubSub is a cloud-based service enabling real-time messaging and broadcasting scenarios using WebSockets. You can build real-time web applications that send and receive multiple clients’ messages in real time. Moreover, Web PubSub works bidirectionally, allowing communication between the server and clients over WebSockets for applications like monitoring and real-time dashboards.

Out of the box, Web PubSub also provides several features to help you manage and scale your real-time applications, such as:

	Broad support

	Azure Web PubSub provides libraries for JavaScript, .NET, Java, and Python.

	Authentication and access control

	You authenticate users and control access to your WebSockets using Azure Active Directory or Azure AD B2C.

	Serverless functions

	Use Azure Functions to process and respond to Web PubSub messages.

	Scaling

	Scale your Web PubSub service horizontally with App Services, Azure Kubernetes Service, or Azure Container Instances.

Web PubSub is a newer service on Azure, but Azure also offers first-party support for an older real-time integration framework, SignalR.

Azure SignalR Service

SignalR is both a service and a framework. The service on Azure supports the framework, which is implemented in your code. The framework enables you to build real-time web applications with bidirectional communication between the client and the server, meaning that servers can push client messages. Like PubSub, SignalR uses WebSockets, but it can also use other transports like long polling and Server-Sent Events (SSE) for clients that do not support WebSockets, but these are rarer these days because of widespread support for WebSockets. The framework abstracts the transport details so you can focus on writing application-specific code.

SignalR was originally written in .NET, so it enjoys broad support in the .NET ecosystem with ASP.NET, ASP.NET Core, ASP.NET MVC, and Xamarin. However, other implementations exist for different languages.

Azure SignalR Service is a fully managed real-time messaging service provided by Microsoft Azure. It is a cloud-based version of the SignalR framework that allows developers to add real-time functionality to their applications without managing the infrastructure required for real-time communication.

Azure SignalR Service provides the server-side infrastructure for real-time applications by offloading the real-time communication infrastructure to the cloud. It uses WebSockets, SSE, and long polling like the client-side frameworks. Also, Azure SignalR Service has features like autoscaling, connection management, and message broadcasting. It integrates with other Azure services such as Azure Functions, Azure App Service, and Azure Logic Apps to provide a complete solution for building real-time applications in the cloud.

Web PubSub versus SignalR Service

Given the similarities, it may not be easy to figure out which hot-path push-style delivery method to use. There’s no clear-cut answer, but here are a few points of comparison that might help:

	Transport mechanisms

	Azure Web PubSub supports WebSockets and SSE as transport mechanisms, while SignalR supports WebSockets, SSE, long polling, and other transport mechanisms. For older integrations, SignalR might make more sense.

	Scalability

	Azure Web PubSub can handle millions of connections per hub. SignalR can scale but not as easily as Web PubSub.

	Architecture

	Azure Web PubSub is more of a serverless service. SignalR Service is more monolithic but still offers a managed experience.

	Features

	Azure Web PubSub provides features such as routing, event handling, and connection management out of the box. SignalR offers similar features but requires additional coding and configuration to set up.

Azure Web PubSub and SignalR are powerful real-time messaging services that can be used to build real-time applications, but they have different strengths and weaknesses. Azure Web PubSub is a serverless service designed for massive scale and ease of use, while SignalR provides more flexibility in transport mechanisms and architecture. The choice between the two will depend on the specific requirements of your application.

Setting up Web PubSub and SignalR

The Azure implementation of Web PubSub and SignalR is pretty similar. It requires a few steps. First, an API brokers the connection between a client and the service. The client uses the information provided by the API service. Once connected, the client can send and receive data. The principal use case for this is receiving data, so wiring up something to listen for new messages and push them to clients is needed too.

These steps are easily built with Azure Functions, which contain SignalR and Web PubSub bindings. To demo both of these, there’s a folder in the book repo for Chapter 11 with two similar sample projects. Each contains a browser-based client served up by a function called “index,” another function called “negotiate” that returns the information needed to connect to the SignalR service or Web PubSub service, and another function that listens for messages on an IoT Hub and forwards them to the listening client. To wire these up, you’ll first need to install the development tools for local development for Azure Functions.

Get your IoT Hub connection

The first thing you need to do is wire up your IoT Hub, so you’ll start by grabbing the IoT Hub connection. The IoT Hub will push messages to clients using SignalR and PubSub clients:

	Go to the Azure portal, find your IoT Hub, and open it.

	Under “Hub settings,” click “Built-in endpoints.”

	On the pane, copy the setting under “Event Hub-compatible endpoint.”

	In the folder for the book for Chapter 11, open local.settings.json under either SignalR or WebPubSub.

	Paste the value copied in step 2 in the value for “IoTHubConnectionString” and save the file.

You now have an IoT Hub connection. Next, you’ll need this to connect SignalR Service to get data flowing to your clients.

Create a SignalR Service instance

Signal R uses a connection from IoT Hub to provide data to the client. You’ll set that up here:

	In the Azure portal, search for “SignalR” and select “SignalR” from the search results.

	Click “+ Create” to start adding a new service.

	For “Subscription” and “Resource group,” select the Subscription and Resource Group containing your IoT Hub.

	Name resource something unique like blaizeiotsignalr for “Resource Name.”

	Choose the “Region” containing your IoT Hub.

	For “Pricing tier,” click “Change,” and select the “Free” tier. This will be fine for development and test purposes. After selecting it, click “Select.”

	For “Service mode,” select “Serverless.” SignalR will require a SignalR server implemented in an external function unless you use the Serverless mode. For relaying messages, Serverless is great.

	Click “Review + create.”

	After the service validates, click “Create” to start the creation process.

	After the service is created, click on “Go to resource.”

	Under settings, select “Keys” and then copy the value under “Connection string.”

	In the local.settings.json file, paste the copied connection string into the value for “AzureSignalRConnectionString.”

You now have a Signal R Service instance ready for use. We’ll connect a client to this later.

Create a Web PubSub service instance

Now you need to create a Web PubSub service instance. This process is very similar to the process for SignalR. It will serve the same purposes for relaying messages from an IoT Hub to clients. To set it up, do the following:

	In the Azure portal, search for “Web PubSub Service” and select “Web PubSub Service” from the search results.

	Click “+ Create” to start adding a new service.

	For “Subscription” and “Resource group,” select the Subscription and Resource Group containing your IoT Hub.

	Name resource something unique like blaizeiotwebpubsub for “Resource Name.”

	Choose the “Region” containing your IoT Hub.

	For “Pricing tier,” click “Change,” and select the “Free” tier. This will be fine for development and test purposes. After selecting it, click “Select.”

	For “Service mode,” select “Serverless.” Web PubSub will require a Web PubSub server implemented in an external function unless you use the Serverless mode. For relaying messages, Serverless is great.

	Click “Review + create.”

	After the service validates, click “Create” to start the creation process.

	After the service is created, click on “Go to resource.”

	Under settings, select “Keys” and then copy the value under “Connection string.”

	In the local.settings.json file, paste the copied connection string into the value for “WebPubSubConnectionString.”

You now have a Web PubSub instance ready for use. We’ll connect a client to this later.

Start the service

For both Web PubSub and SignalR, you can finally turn on the client to see messages flow into the client. Just start everything up, and you’re ready to go!

	Open a Command Prompt or PowerShell in Windows or a terminal window on Linux and MacOS. From there, change the directory to the folder containing the local.settings.json file.

	Type in func start to start the Function App.

	In a browser, navigate to http://localhost:7071/api/index to start the app. You should start seeing messages stream to your browser for the SignalR or Web PubSub service.

This demo wired up an IoT Hub to SignalR and Web PubSub using Function Apps. Function Apps with either service provide a simple way to orchestrate connections and relay messages. You can do it with the SDKs outside of Function Apps, but Function Apps are much simpler. In any case, if you don’t want to use services like this, you can always put more of this burden on the consumer with webhooks.

Webhooks

Webhooks are a way to call an HTTP endpoint from your servicing layer with a message. Webhooks allow you to push information to your consumer using the HTTP protocol rather than requiring the recipient to check for updates periodically. Typically, a web call is initiated from a web client, such as a browser, to a web server, and the web server returns a response. A webhook uses the same mechanism. Here, your servicing layer becomes the web client and calls out to the consumer’s web server with a message. This is for receiving real-time notifications or data updates from a web application.

Webhooks are useful for integrating data between different systems and services in data architecture. Webhooks are useful in data architecture because they allow data to flow between systems more efficiently and in real time without additional frameworks or proprietary libraries. They leverage well-established standards for sending data. Besides that, webhooks also differ from SignalR and Web PubSub, which both require the client to initiate a connection with the service before messages are sent back and forth. Webhooks don’t work this way; they assume that the endpoint they are trying to reach is available so that when the servicing layer makes a request, it attempts to reach the webhook’s web server and publish a message, but it may fail. Webhooks, therefore, are not very useful for client applications with intermittent connections, like mobile apps, but they work well for integrations with other services.

Because a webhook is simply an HTTP request, just about anything that can make a web request can call a webhook. The two primary ways to call webhooks on Azure use Event Grids and Azure Logic Apps. Both of these can be triggered by any number of different events that they support.

These solutions focus on delivery, but there’s nothing inherent to them that manages the webhooks themselves. Clients with SignalR and Web PubSub register themselves with their endpoints and let the services know what they want to receive. Still, webhook delivery schemes on Azure can only deliver the messages, not manage the endpoints, so you would need to create a mechanism that allows consumers to add their webhooks. It may be as simple as a manual process, but scalable solutions generally have some interface enabling users to configure webhooks as consumers. Once configured, messages can be delivered to these consumers. Also, a webhook solution would need to handle retries if a webhook becomes unavailable.

As a pattern, I like to use a Service Bus topic with a Function App. The topic allows message filtering, which enables consumers to get exactly what they want. It also uses actions to enrich messages with endpoint data, so this data does not have to be collected at delivery time. Once messages are filtered, a Function App subscriber delivers the messages enriched with the endpoint data to the endpoint. If it fails, it can keep the messages on the topic subscription for a while until it can place them in a dead letter queue or topic.

SignalR, Web PubSub, and webhooks work for real-time and near real-time data in a push configuration. Now let’s look at pull-style delivery for when you have something that uses client-initiated requests for data.

Pull-Style Delivery

Pull-style data integrations are commonly used when the servicing layer cannot push data or when the data is not as time-sensitive. Pull-style data integrations contrast from push-style delivery in that instead of the servicing layer pushing data to a consumer, the consumer requests data from the servicing layer. If there’s data for the consumer, the servicing layer responds with the data. In this way, the consumer initiates the request instead of vice versa. Sometimes, the consumer periodically queries the source system and pulls data into the target system. There are two primary ways to get data using a pull-style delivery. First, you can download dataset files using protocols such as FTP or HTTP. Second, a pull-style delivery can use an HTTP API to request data. Sometimes, a mashup of these methods can occur, but let’s look at them separately before considering them together.

File downloads are among the oldest and most common ways of delivering data and datasets to consumers. The story here is pretty straightforward: your data processing creates a dataset, and at some point, a consumer logs in and downloads the dataset as a file or set of files. This style of integration, while old, is still widely used for all kinds of applications, especially in legacy and enterprise environments.

Azure provides many different solutions for staging data for downloads, but most center around Azure storage accounts like these:

	Azure Blob Storage

	You’ve already read about Azure Blob Storage and its use in many different aspects of IoT workloads on Azure. It also works well for data stores for downloads because it’s accessible via HTTP downloads. It’s often used with an API to generate temporary Shared Access Signature (SAS) tokens useful for downloading specific files that contain data.

	Azure Blob Storage with FTP

	Blob Storage with FTP allows you to access and manage your blob data through the File Transfer Protocol (FTP), a standard network protocol to transfer files between servers and clients. This can be useful for large-scale data transfers or for integrating with legacy systems that support FTP. The service manages local users, so they do not have to have Azure AD credentials to log in to the FTP server.

	Azure Blob Storage with HDFS

	This protocol allows you to manage your blob data through the Hadoop Distributed File System (HDFS), a distributed file system designed to store and manage large datasets. This can be useful for integrating with Hadoop-based applications or performing large-scale data processing tasks. Blob Storage with HDFS allows user access with granular security on data in the storage accounts.

	Azure Files

	Azure Files supports the SMB (Server Message Block) protocol so consumers can access files. This can be useful for integrating with legacy applications or providing seamless access to your data from on-premises or enterprise applications.

	NFS with Azure Files and Blob Storage

	Network File System (NFS) for Azure Files and Blob Storage allows consumers to access files with the NFS protocol, a standard protocol for file sharing between computers popular in the Linux context.

Of all these, FTP is the most ubiquitous for downloading files. Therefore, using FTP on Blob Storage for more traditional integrations will likely be a win. SMB and NFS are common for enterprise and on-premises networks.

For more fine-grained control, downloading a file is probably not enough. You’ll need APIs for that.

Azure Data Share

Azure Data Share serves as a robust data-sharing solution, catering to both internal and external sharing needs within your organization. Whether you are sharing data with colleagues or extending access to partners, suppliers, or customers across tenant boundaries, Azure Data Share is meticulously designed to ensure secure and efficient data-sharing practices. It empowers you to grant recipients either one-time or recurring access with scheduled data updates. You can seamlessly share data from various Azure services such as Azure Blob Storage, Azure Data Lake, and Azure SQL Database, maintaining precise control over data selection, authorized recipients, and update frequencies, including the creation of data snapshots.

Snapshot-based data sharing is a valuable feature that enables you to generate point-in-time data copies, making it particularly advantageous when sharing large datasets that may pose network transfer challenges due to their size or associated costs. With snapshot sharing, you guarantee that data consumers have access to specific data versions at designated moments, enhancing the precision of your data-sharing operations.

In contrast, in-place data sharing streamlines the sharing process further by allowing you to share data without generating additional copies, such as snapshots. Instead, data providers grant data consumers direct access to their existing data resources, including file shares or databases. However, it is imperative to exercise meticulous management of access permissions, encompassing read and query privileges, to uphold data integrity and security. This approach often proves to be more efficient compared to snapshot-based sharing, as it eliminates the need for creating and transferring extra data duplicates, ensuring a simplified yet controlled data-sharing experience.

HTTP APIs

HTTP-based application programming interfaces (APIs) are the preferred way of accessing data because of the widespread use of web browsers and mobile apps to access backend servers. APIs, though, are nothing more than a set of standards that enables different apps to communicate. Apps will share data and functionality. The interface determines how requests and responses are formatted.

There are two broad categories of APIs: program-oriented and data access. Program-oriented or functional APIs expose specific functions or actions of a software program or service. Developers use these APIs to build or integrate custom applications with existing systems. Program-oriented APIs often have a specific syntax and format for the requests and responses and are typically used to trigger specific actions or operations. For example, you may use a functional API to send email or turn on a device. It’s worth mentioning these kinds of APIs to differentiate them from data access APIs, which are the primary focus of this section.

Data access APIs using HTTP, or data-oriented APIs, are designed to provide access to stored data. These APIs typically create, read, update, or delete data (collectively known as CRUD operations) from a database or other storage system. Still, in the case of a servicing layer, these are usually used for reads. APIs can be divided into different types based on their implementation, such as REST APIs or SOAP APIs based on the type of communication used for different data formats. The concern here, though, is not to bore you with these details but to describe how Azure supports data access APIs for exposure in a servicing layer, namely with OData and GraphQL.

OData

OData (short for Open Data Protocol) is an open standard mostly for consuming RESTful data access APIs that expose data, including databases, file systems, and other data services. Enterprises widely adopted OData, where data must be shared and consumed across different database systems, particularly in the Microsoft ecosystem. Developers created numerous libraries in many languages to support it, including .NET, Java, Node.js, and many others. Some popular data sources that support OData include Microsoft SQL Server, SAP, Salesforce, Power BI, and Excel.

OData abstracts the underlying data store, so the consumer does not need to know what technology is used. OData uses conventions with HTTP query parameters, such as $filter, $orderby, and $select, which have analogs in most data query languages like SQL. It also delivers metadata that describes the structure of the data. These databases and data sources have their own data querying languages, so your API translates the OData requests into these native languages before running the queries against the database. However, some databases do have native support.

On Azure, the two primary implementations of OData are Table API for Cosmos DB and Storage Tables. These implementations are limited relative to other APIs, but .NET has robust tools for creating OData endpoints atop Azure SQL databases or other data sources.

Let’s see this in action with a demo. In this example, we’ll use the Cosmos DB Table API to store a flattened version of the data and then use OData to make some queries against that data. The implementation uses an Azure Function to move data from the Cosmos DB SQL API to the Table API, as shown in these steps:

	Search for “Cosmos DB” and select “Azure Cosmos DB” under “Services.”

	Click “+ Create” to add a new instance.

	From the API options, choose “Create” next to “Azure Cosmos DB for Table.”

	Select the “Subscription” and the “Resource group” that your other “Cosmos DB account” uses.

	Give the account a unique name, like blaizeiotodata.

	Select “Serverless” for “Capacity mode.”

	Click “Review + create” to review the database.

	Finally, click “Create” under the “Review + create” blade.

	After the resource is created, select “Go to resource.”

	Click “Data Explorer” to launch the data explorer.

	Click “New Table” to add a new table.

	Supply “telemetry” for the “Table id” and click “OK.”

	Under “Settings,” select “Connection strings.”

	Copy the value under “Primary Connection String.”

	In the book’s code repo, locate the tables subfolder of the Chapter 11 folder.

	Open local.settings.json.

	Paste the copied connection string in the value for “TableStorageConnection.”

	Find the IoT Cosmos DB you’ve been using for other demos and copy the connection string for that database.

	Paste the copied connection string for that database into “DocumentStorageConnection.”

	Open a Command Prompt, PowerShell instance, or Terminal instance and change directories to the folder containing the local.settings.json file.

	Start the Function App by running “func start.”

	This will start using the change feed to move data from the Cosmos DB SQL API storage to the Cosmos DB Table API, but it also flattens the data to remove hierarchical data.

	Open the Data Explorer for your Table API. You can expand your “telemetry” table and click “Entities.”

	You can use the “Query Builder” to build a query, then select “Query Text” to see the OData representation of the query.

OData is a simple, standard way to query the data. It’s an older standard and typically works best for tabular data, so you may have to do some data flattening to get data into a table so you can query it. Still, it’s not the only game in town, as you also can use GraphQL.

GraphQL

Enterprises previously adopted OData because of its ease of use with structured data, but it didn’t translate well to other kinds of data storage. To answer these shortcomings, Facebook created GraphQL, which other organizations like GitHub, Airbnb, and Shopify have adopted. It has a growing ecosystem of tools and libraries for consumer GraphQL APIs.

GraphQL is a query language and runtime for APIs. Consumers specify the structure and parameters of the data they need from a service, and then the server returns only the requested data in a single response. GraphQL provides strong typing and schema validation.

As of the writing of this book, there are no native implementations of GraphQL on Azure. That does not mean you cannot use GraphQL for your IoT solution on Azure. Many third-party libraries provide abstractions over popular databases, like MongoDB, that Cosmos DB supports. One popular application of GraphQL is the Apollo Server, which is not a database server but acts as middleware between databases and APIs that implement GraphQL.

Microsoft offers a new tool called Data API Builder (DAB). DAB enables developers to easily create APIs for Cosmos DB’s SQL API using GraphQL. You must first install the .NET 6 or 7 SDK to use the tool. The SDK installs the “dotnet” command-line utility. Once this is installed, you are ready to install and use DAB.

To create a GraphQL API atop Cosmos DB using DAB, you need to do the following:

	Open Command Prompt, PowerShell, or a Terminal instance for Linux/MacOS.

	Run the following command to install the tool:

 dotnet tool install –global Microsoft.DataAPIBuilder

	In the folder for Chapter 11, you’ll find a folder called dab. Change directories to that folder.

	Find the IoT Cosmos DB you’ve been using for other demos and copy the connection string for that database.

	Run the following command to create a DAB config file:

 dab init --database-type "cosmosdb-nosql"
 --graph-schema schema.gql
 --cosmosdb_nosql-database <YOURDATABASENAME>
 --connection-string "<YOURCONNECTIONSTRING>"
 --host-mode "Development"

Be sure to replace <YOURDATABASENAME> with the name of your database and <YOURCONNECTIONSTRING> with the connection string you copied from the portal.

	Now, start DAB by running “dab start.”

	Open “Postman” and click “New.”

	Select “HTTP” from the options.

	Set the action to “POST.”

	For the URL, type in http://localhost:5001/graphql.

	Select “Body,” and supply the following queries:

{
 telemetries(first: 50, orderBy: {id: DESC}){
 items{
 id
 Body {
 memUsed
 cpuLoad
 }
 }
 }
}

	Now, you can click “Send” to run the query. This will return results from your Cosmos DB database from telemetry items stored in the database.

OData versus GraphQL

OData and GraphQL are complementary technologies in some ways, though the developer community seems to prefer GraphQL. I consider OData a viable option because of its simplicity. Still, here are some points of comparison when considering OData and GraphQL:

	Support

	OData works with many data sources, including databases, file systems, and web services. GraphQL is more commonly used with APIs that expose data from a single backend system.

	Queries

	GraphQL is more flexible, so consumers can request the data they need in a single request. OData is more limited, so multiple requests might be necessary to get the data you need.

	Responses

	GraphQL returns data in a hierarchical format to match the query. OData returns data in a tabular form with metadata to describe the relationships in the data.

In short, OData is better for structured data, while GraphQL is better for unstructured data. Still, this isn’t a hard and fast rule.

Hybrid approaches

File downloads and API requests are not all that different from one another. Think of a file download as a request that is already prepared rather than a request that is dynamically fulfilled upon request, like an API call. Hybrid approaches between file downloads and APIs, therefore, are possible. One common approach, especially with data-access APIs, is to enable the consumer to specify how the data should be delivered, such as choosing JSON, XML, or CSVs.

Also, file downloads will often need a means to authenticate users. Azure provides SAS tokens, which APIs generate so a consumer can download a specific file. This approach is incredibly useful because it does not require any special client or knowledge about the credentials to download the file; the URL for the file embeds them. The consumer uses the URL to access and download the file from Blob Storage.

In any case, whatever you put into your servicing layer should serve the needs of the consumers.

Summary

This chapter explored the concept of servicing layers and discussed topics related to managing and delivering datasets efficiently:

	The servicing layer initiates push-style delivery later to deliver data to consumers.

	You can push entire datasets and data changes or create hot paths for individual telemetry and events as they come in from devices.

	Web PubSub and SignalR Service are Azure services that offer easy consumer integration.

	Webhooks provide a more low-level way of delivering data.

	Pull-style delivery means that consumers ask for data from the servicing layer.

	Data access APIs over HTTP are a common approach to enabling consumers to query datasets.

	Azure Data Share provides an Azure service for sharing data snapshots and in-place data access to data consumers.

	Cosmos DB Table API and Azure Table Storage support OData, a standard protocol that uses HTTP query parameters to build filters and projections of data.

	GraphQL is an up-and-coming query protocol that works well with hierarchical data. You can easily build data APIs with the Data API Builder from Microsoft.

This chapter showcased the essential components and technologies involved in servicing layers, including datasets, data formats, delivery methods, Azure services, APIs, OData, GraphQL, and file downloads. Organizations can build robust and efficient servicing layers to handle data management and delivery requirements by effectively understanding and leveraging these concepts. But every service needs consumers, so let’s talk about them next.

Chapter 12. Data Consumers

You finally made it to the far right side of the IoT Landscape. You are currently looking at the IoT Landscape while considering it from the perspective of people or systems that consume data generated by IoT devices. Data consumers, highlighted in Figure 12-1, do not have visibility into all the intricate processes involved in enabling data to move from IoT devices to their end use. Instead, they are limited to observing the servicing layer. In basic terms, data consumers may not understand all the complexities behind data collection, transmission, and processing; they only interact with the final, service-oriented aspects of the system. As you learned in the previous chapter, data architectures contain a servicing layer, which bridges the raw data and the end users, the data consumers. These data consumers play a crucial role in extracting meaningful insights and driving actionable outcomes from the vast amounts of data available, which is what you’ll learn in this chapter.

[image:]
Figure 12-1. The consumer domain of the IoT Landscape

In the last chapter, you read about different approaches to exposing data through push- and pull-style delivery mechanisms. On the consumer side, the types of consumers could be either, so rather than look at them through the delivery style, it’s helpful to see them according to their consumption patterns. Consumers use five patterns: reporting tools, business intelligence (BI) tools, applications, external system integrations, and raw data consumers.

Reporting Tools

Reports are typically generated by a reporting system that utilizes data from the servicing layer. Reporting software facilitates the creation, management, and distribution of reports. It focuses on providing functionalities and features that enable users to generate, customize, and share reports effectively.

A reporting service usually connects directly to a database or data warehouse to execute the necessary queries for data gathering. Reporting software connects and integrates data from various databases, data warehouses, spreadsheets, and other data repositories. The software offers connectors and integration capabilities to retrieve data in a structured format, ensuring access to relevant and accurate data for reporting purposes.

Data from an IoT system typically consists of summarized datasets in a database used by the reporting system. Reporting software often includes basic tools for transforming and aggregating data for reporting purposes. It allows users to apply calculations, filters, sorting, grouping, and summarization functions to manipulate and organize data meaningfully. While reporting software can handle these tasks, it is advisable to deliver data in a format that minimizes the need for aggregations and transformations within the reporting software.

Azure does not have a native reporting service per se. However, certain reporting capabilities exist in Azure Data Explorer for generating visuals. SQL Server Reporting Services (SSRS) can also run on a virtual machine against Azure SQL data sources. Nevertheless, business intelligence tools like Power BI have replaced and expanded much of the reporting functionality.

Business Intelligence Tools

Business intelligence (BI) tools are software applications designed to gather, analyze, and visualize large volumes of data from various sources, to derive actionable insights and support informed decision making within organizations.

BI tools differ from reporting tools in a few critical ways. First, reporting tools focus on generating and distributing reports. They are typically used to answer specific questions or provide regular updates on operational activities. BI tools have a broader scope, encompassing reporting, data exploration, analysis, and decision support. They enable users to dive deeper into data, perform ad hoc queries, create interactive visualizations, and gain insights through data discovery. They focus on empowering users to explore data from multiple angles, uncover patterns, and make data-driven decisions based on a comprehensive understanding of the data.

Another key distinction stems from data states. Reporting tools often provide limited interactivity, offering predefined reports with fixed layouts and data views. Data and reports tend to be more static in nature. You can access and consume these reports but have limited flexibility to modify or interact with the data directly. BI tools, on the other hand, enable you to interact with static and real-time data. BI tools provide self-service capabilities, allowing you to create custom queries, build dashboards, and perform in-depth analysis. They empower users to explore and manipulate data to derive insights specific to their needs.

Reporting tools usually use a database or data warehouse, but these differences between BI tools imply different consumption patterns, namely real-time data and resident datasets. You’ve read quite a bit about real-time data in the last few chapters. A BI tool is simply a consumer of these real-time data paths. The second category, resident datasets, are a local copy of data that many BI tools ingest from multiple data sources to enable the BI tool to perform analytics interactively. The resident data sets, however, can become unwieldy or even impossible, especially for larger datasets, as IoT data tends to be rather large. They occasionally need to refresh data to ingest the latest data from their sources.

In other words, you don’t want to use your BI tool as an ETL or data processing tool. Instead, in the servicing layer, you can provide a mechanism to the BI tool to enable the tool to perform passthrough queries against a data source. Use the compute on data processing to create and store the datasets in a data store that the BI tool can consume, typically a database or data warehouse like Azure SQL or Azure Synapse.

The differences manifest themselves in two ways. First, BI tools can provide dashboards. A dashboard visualizes data that provides a consolidated view of key information, metrics, and insights relevant to an organization’s goals and objectives. A dashboard consists of various visual components that display data in a visually appealing and easily understandable format. These components include charts, graphs, tables, maps, gauges, and other data visualizations. Each visual component represents a specific aspect of the data and helps convey information quickly and effectively. The key distinction between a dashboard and a report is that dashboards provide interactivity and drill-down capabilities, allowing users to interact with and explore the data at different levels of detail. You can click on specific visual components to drill down into underlying data, apply filters, or change dimensions to gain deeper insights. Interactivity enables users to answer ad hoc questions and perform on-the-fly analysis directly within the dashboard.

Second, and similarly, BI tools use real-time dashboards. These present data but, unlike their more static counterparts, update with the latest data as it becomes available. They retrieve real-time data from streaming sources. The visualizations can change in real time to represent changes in the underlying data. Users can see the data updating and evolving as events occur, enabling them to monitor changes and trends as they happen. Real-time dashboards often incorporate alerting and notification features. You can set up predefined thresholds or conditions for specific metrics, and when those thresholds are crossed, or conditions are met, the dashboard triggers alerts or notifications. IoT monitoring tools take advantage of these approaches, and if they are not using a custom application, dashboards from BI tools are likely the second-best choice.

Providing direct access to the database or data warehouse will in most cases enable passthrough queries. If you don’t want external BI and reporting tools to connect to your databases, encourage your users to use a database or data warehouse, then ingest datasets or ingest messages in real time to the database.

Power BI

Although not explicitly part of Azure, Power BI is a Microsoft-developed BI tool that belongs to the Microsoft Power Platform. It encompasses various functionalities expected of a BI tool, including data analysis and visualizations from diverse sources, enabling users to gain insights and make data-driven decisions. Power BI offers extensive features and capabilities that empower organizations to transform raw data into interactive dashboards, reports, and visualizations.

Power BI consists of two primary components: the desktop app and the Power BI service. The desktop app operates locally on Windows desktops, allowing users to build dashboards and reports. The service, on the other hand, is cloud-based and essential for sharing data and dashboards with collaborators and consumers.

With Power BI, users can connect to multiple data sources on premises and in the cloud. While most IoT use cases in this book focus on cloud-based data sources, the on-premises connector remains significant for on-premises databases. Power BI supports various data connectors, including popular databases, spreadsheets, cloud services, and APIs. It integrates seamlessly with other Microsoft tools and services such as Excel, SharePoint, Teams, and Azure, enabling users to leverage their existing Microsoft ecosystem. These connectors and integrations facilitate the importation and combination of data from different sources, creating a unified view for analysis. Power BI data can be imported or connected through one of the connectors.

While Power BI offers a comprehensive set of data preparation and transformation tools for shaping, cleaning, and transforming data, it is still preferable to preprocess the data. The Power BI query editor allows users to apply filters to data. At the same time, the designers enable the creation of charts, graphs, maps, and custom visuals through a drag-and-drop interface. The platform also provides a library of pre-built and custom visuals in the Power BI marketplace, enabling users to generate interactive and informative visualizations that effectively communicate insights. Additionally, Power BI supports advanced analytics features through its integration with Azure Machine Learning and R. Users can leverage machine learning algorithms, statistical functions, and scripting capabilities to perform advanced data analysis and predictive modeling.

A notable feature of Power BI is its collaboration and sharing capabilities. Users can publish their reports and dashboards to the Power BI service, making them accessible to others within the organization. The service provides functionalities for data exploration, sharing, and collaboration. Users can securely share dashboards with colleagues, set up data alerts, and collaborate on reports in real time. Furthermore, Power BI offers mobile apps for iOS and Android devices, enabling users to access their reports and dashboards.

Connecting Power BI to Data

Power BI, as an analytics tool, is most effective when analyzing data from a data warehouse, time-series database, or an HTAP (hybrid transactional/analytical processing) solution, rather than relying solely on the source data stored in a transactional database like Cosmos DB. While Azure Data Explorer may be considered an option, leveraging Azure Synapse Link is recommended for integrating Power BI. This approach involves transforming the data from Cosmos DB into a column store format using Azure Synapse Link and a Synapse cluster for data analysis.

Although Power BI can directly query Cosmos DB, this method is suboptimal. Additionally, Cosmos DB does not have access to the linked data sources that Synapse utilizes. To overcome this limitation, a view must be created in Synapse to expose the data. Once the view is established, the data can be incorporated into the Power BI data model. Another advantage of this approach is that it allows Synapse to handle specific data transformations, if necessary, rather than relying on Power BI for those tasks.

However, BI tools like to minimize pass-through queries if possible. To avoid importing too much data into a BI tool, you will probably want to work with aggregated data in some form. Create a dataset specifically for what you care about using some kind of upstream data tools. If you need record-level access to data, then Power BI is probably not the best tool to use.

This demo works by creating a simple view based on the HTAP solution you built earlier to demonstrate how you can use an analytics store to build dashboards without overburdening the transactional store while allowing for live queries of the database.

To connect Power BI to your data, you can do the following approach, using the sample device for example, which builds upon the HTAP solution created in Chapter 7:

		
	Open your instance of Azure Synapse Analytics from the Azure portal.

	

		
	In the SQL Script view, type CREATE DATABASE IoTDatabase to create a database in Synapse.

	

		
	Click “Run” to create the database.

	

		
	Click on the refresh button next to the “Use database” list.

	

		
	Select “IoTDatabase” from the list of databases.

	

		
	Next, create a view with this code. You can find this code in the Chapter 12 folder for the GitHub repo for this book:

	
CREATE VIEW telemetryVw
AS
SELECT deviceId,
DATEADD(S, CONVERT(int,LEFT(ts, 10)), '1970-01-01') as tsDate, cpuTemp,
cpuLoad
FROM OPENROWSET(​PROVIDER = 'CosmosDB',
 CONNECTION = 'Account=<YOUR ACCOUNT>;Database=<YOUR DATABASE>',
 OBJECT = '<YOUR CONTAINER>',
 SERVER_CREDENTIAL = 'iottelemetry'
)
WITH (deviceId varchar(50) '$.SystemProperties.connectionDeviceId',
 ts BIGINT '$.Body.timestamp',
 cpuTemp INT '$.Body.cpuTemp',
 cpuLoad INT '$.Body.cpuLoad'
) AS [telemetry]

	Be sure to replace <YOUR ACCOUNT> with the name of your CosmosDB Account, <YOUR DATABASE> with the name of your database, and <YOUR CONTAINER> with the name of the container with your telemetry data.

	

		
	Click “Run” to start the query to create the view.

	

		
	Open Power BI Desktop.

	

		
	On the welcome screen, select “Get data.”

	

		
	Select “Azure” from the menu, then select “Azure Synapse Analytics SQL.”

	

		
	Click “Connect.”

	

		
	In the Azure portal, open the “Overview” blade for your Synapse workspace.

	

		
	Copy the value for “Serverless SQL endpoint.”

	

		
	Back in Power BI Desktop, paste the value next to “Server.”

	

		
	Select “DirectQuery” for the Data Connectivity mode.

	

		
	Click “OK.”

	

		
	You should get a window asking for credentials. Select “Microsoft account,” then click “Sign in.” This launches a browser window. Sign in with the same credentials you use for the Azure portal.

	

		
	After signing in, click “Connect.”

	

		
	Expand the tree menu on the Navigator window for your database and select the view you created.

	

		
	Click “Load.”

	

		
	After this loads, you should see the view under your Data pane in the Power BI Desktop.

	

		
	From the “Visualizations” toolbox, find “Line Chart” and click on it. This will add a Line Chart visual to the canvas. Expand the view to your liking.

	

		
	From the data pane, expand the telemetry view.

	

		
	Drag cpuLoad and cpuTemp to the y-axis.

	

		
	On the y-axis, change the calculation from “Sum” to “Average” by choosing “Average” from the drop-down menu text for each value.

	

		
	Drag tsDate to the x-axis. This will plot the average cpuLoad and cpuTemp by year by default. You can remove “Year,” “Month,” and “Quarter” by clicking the X next to each of these in the tsDate field. Getting down to the data shows the average by day. Remove any grouping if you want to show just a raw graph of cpuLoad and cpuTemp.

	

Power BI is pretty useful for creating visuals and the like on the desktop. The reports generated here, though, are available only to you. You need the Power BI service to share and collaborate on these reports.

Data visualization and reporting are just one kind of consumption but an important one. You will use it to get a bird’s-eye view of your data. Sometimes, you may want to interact with only one or two devices. This is where an app might come in handy.

Applications

If you have purchased any smart devices such as plugs, light bulbs, switches, or appliances in recent years, chances are you have downloaded various apps to your phone to set up and control these devices. For example, I have separate apps for controlling my cleaning robots, light fixtures, garage door openers, alarm systems, media streaming devices, DSLR remotes, and surveillance camera live feeds. I even have an app for my toothbrush. As you can see, the range of apps is vast.

Technically, a reporting tool and a BI tool are both types of applications, but their focus is primarily on viewing and understanding data within an IoT data system. However, for this discussion, we focus more on functional applications that interact directly with the devices rather than applications that focus on data like Power BI. Functional applications can monitor and modify device settings within my home. Unlike reporting and BI tools, these device-specific apps are focused on a small number of particular devices, resulting in slightly different use cases.

The emphasis on a single or a few devices typically means that these apps will utilize APIs to access specific data. These APIs can be data APIs, as discussed in the previous chapter, or they can trigger commands on the devices, such as opening and closing a garage door or starting a vacuum robot. These commands utilize cloud-to-device messaging, as explained in Chapter 4. APIs serve as an interface for these commands.

However, feedback from commands and other monitoring activities is asynchronous and provided through real-time feedback to the application or other channels such as SMS or push notifications. For example, if my garage door opens using the wall panel, I still receive a notification informing me that the garage door has been opened. If my vacuum cleaner gets stuck, I receive a notification indicating that the vacuum cannot continue. Command feedback is delivered in the same way, informing me that my door has opened, regardless of whether I opened it using the app, the wall panel, or the car’s fob on the sun visor.

Mobile apps have their own notification ecosystems. Apple uses Apple Push Notification (APN) services, while Android typically utilizes Firebase from Google. Direct integration with real-time platforms like SignalR, Web PubSub, or webhooks is not encouraged for mobile apps. However, it is possible to develop middleware that listens for messages through these push-style delivery mechanisms and then relays them via push notifications on their respective platforms. Web-based apps can also utilize push notifications, although they are less common. Generally, web apps connect to endpoints like SignalR or Web PubSub to consume device messages. The examples from Chapter 11 for SignalR and Web PubSub used a web client to receive messages from these endpoints. However, web apps do not use webhooks, although the servers hosting the web apps might employ them.

External Systems Integrations

Rarely are IoT solutions all that one has to worry about because businesses depend on many other kinds of solutions. IoT solutions therefore have to integrate with these other systems. Each system can touch on IoT differently, depending on the context. IoT data can enrich and often drive some of the decision making in these systems. Here are a few examples:

		Customer relationship management (CRM) systems

		
	IoT systems can integrate with CRM systems to enrich customer data with IoT-generated insights. IoT data from devices correlates with users to determine customer behavior, preferences, and usage patterns. The data from IoT personalizes customer experiences, provides targeted marketing campaigns, or improves customer service.

	

		Enterprise resource planning (ERP) systems

		
	IoT systems may integrate with ERP systems to enable seamless data exchange between IoT devices and an organization’s business processes. IoT data works with inventory management, supply chain optimization, asset tracking, and other business operations. Some of the functions of an IoT device correlate directly with ERP systems, especially with asset tracking and manufacturing.

	

		Supply chain management systems

		
	IoT systems can integrate with supply chain management systems to track and monitor goods throughout the supply chain. Raw materials, components, and finished products move from their points of origin through manufacturing and to their final destination. IoT devices integrate with these systems to allow real-time visibility of inventory, shipment status, and condition monitoring of goods. IoT data can optimize supply chain operations, improve logistics, and enhance efficiency.

	

		Manufacturing execution systems (MES)

		
	This book touched on industrial contexts already. IoT applications and systems often integrate with MES to optimize production processes, monitor equipment performance, and enhance operational efficiency. Integration with MES enables real-time data exchange between IoT devices and manufacturing systems, facilitating real-time decision making and automation in the production environment. In some cases, IoT devices are involved in the manufacturing process itself.

	

		Energy management systems

		
	IoT systems in the energy sector often integrate with energy management systems to monitor and optimize energy consumption. IoT devices are responsible for data collection, but management system integration helps organizations identify energy inefficiencies, optimize energy usage, and improve sustainability practices.

	

Each of these systems will have devices performing different functions, depending on the context. These systems represent different industry verticals with enterprise or commercial customers in mind rather than single-device applications. They can be considered a mashup of a BI tool that looks at data holistically and a consumer application that focuses on single devices. At some level, these sorts of systems will be interested in all the data produced by IoT devices. At the same time, these systems have to be able to manage devices as a fleet and at the individual device level, too. In short, the scope is broad.

These devices will still use the same integration patterns to get data back into the cloud, collated, processed, and stored before it’s ultimately integrated with the external system. The way it integrates, however, is contextual based on the system. Some will use a real-time push-style integration. Others will use APIs. Still, others will ingest datasets or interact with a database directly. There’s no single integration pattern for these external systems, but the architectures described in this book can at least create a foundation for an integration pattern that will likely work.

Raw Data Consumers

Raw data consumers are systems that will take the data you give them and ingest it wholesale without filtering, transformations, or aggregations. In some rare cases, a consumer may simply ask for the rawest data that comes off devices or something with minimal processing. These consumers typically perform their data processing for particular use cases, such as AI.

It may seem simple to support these kinds of use cases because, as you learned earlier, one of the best things you can do is land your data into something like a data lake or storage account, even if you treat it as streaming data. It’s not always as easy as it may seem to support these use cases because you have to provide some access to the data lake or storage account. Moreover, the changes between what was inserted between the updates now are not always easy to figure out.

If you can, discourage the consumption of raw data and push users to use something like a dataset prepared on a regular cadence. The dataset will apply due diligence using some data processing tools to ensure good data integrity as well as that the data meets minimal compliances and regulatory constraints and is processed in a way that makes it more easily consumed. The consumer can pick up any new files like a CSV or another data format and ingest that using their ETL tools.

Security and Privacy

The opening chapters of this book harped on the exponential growth of IoT devices and the vast quantities of data that they generate. All of this data raises security and data privacy considerations. As a solution builder, you must be able to navigate the unique challenges posed by the diverse range of interconnected devices and the data they generate. Balancing the imperative to protect sensitive information and respect individual privacy rights while harnessing the transformative power of IoT requires careful attention to the details in security and data privacy.

Security

When providing data, it’s your responsibility as a data provider to ensure that the data access is secure and the data itself does not violate compliance, regulatory, or business constraints. This book has an entire chapter dedicated to security because it is a cross-cutting issue. Still, it’s worth mentioning here because this is one of the few places in an IoT system where external entities you do not control interface with your data and system. Still, it does not mean that you should let your guard down internally, either.

Data Privacy

More pertinent to the topic of data exposure is data privacy. There are many issues related to this that you need to consider when working with data. The IoT data you’ve been dealing with has been mostly low-level technical stuff, and very little of it contains anything that would be too alarming regarding privacy, because it’s mostly been data about the device’s health. That data does not contain any data that is particularly sensitive. You are not collecting data about people or data from sensitive areas. Still, commercial systems will likely deal with privacy concerns. Here are a few to take a look at:

		Data access controls

		
	Limit access to personal data to authorized individuals with a legitimate need for accessing the information. Implement role-based access controls (RBAC), strong authentication mechanisms, and least privilege principles to restrict data access. When writing APIs, ensure you have clear roles defined for your data access. For direct access models, like connecting to a database directly, Azure provides robust security models for most of its data offerings.

	

		Consent and transparency

		
	IoT devices collect tons of data. How you use this data is important, especially if it contains sensitive information. If you are making a consumer product, obtain explicit consent from individuals before collecting and processing their personal data through a policy. You will want to communicate the purpose of data collection, how it will be used, and any third parties involved. Always maintain transparent privacy policies and disclosures, and inform individuals about their rights and how their data is handled.

	

		Data classification

		
	If you plan to store data, you want to classify it based on its sensitivity and criticality. Identify personally identifiable information (PII), sensitive financial data, or any other sensitive information within your dataset. This classification helps in applying appropriate privacy protections based on the sensitivity level. IoT devices sometimes collect this kind of data, such as with payment consoles or anything that asks for user information, like telephone numbers, addresses, etc. Ensure that you protect this data.

	

		Data minimization

		
	As a rule, collect only the minimal amount of data you need to accomplish your purposes. Retain only the necessary data required for the intended purpose.

	

		Anonymization and pseudonymization

		
	Where possible, anonymize or pseudonymize personal data to reduce the risk of identification, especially data released to parties that did not collect the data. Remove, obfuscate, or encrypt any PII information, making it impossible to link the data back to an individual.

	

		Cross-border data transfers and data sovereignty

		
	If transferring data across international borders, ensure compliance with relevant data protection regulations. Understand the legal requirements and mechanisms for transferring data, such as standard contractual clauses or Privacy Shield frameworks. If data sovereignty is a concern, select an Azure region that satisfies this concern.

	

		Data retention and disposal

		
	Establish clear policies for data retention and disposal. Determine appropriate retention periods based on legal requirements and business needs, and dispose of the data when it is no longer needed.

	

		Employee training and awareness

		
	Awareness is a major safeguard in preventing data exfiltration and loss. Educate employees regularly about data privacy principles, best practices, and their responsibilities regarding data protection.

	

		Compliance with regulations

		
	As a data provider, you need to stay informed about and compliant with relevant data protection regulations such as the General Data Protection Regulation (GDPR) and California Consumer Privacy Act (CCPA).

	

In this context, understanding the distinct data considerations related to security and privacy within the realm of IoT is essential for organizations seeking to build secure, trustworthy, and ethically responsible IoT solutions. Safeguarding personal information, respecting individual privacy rights, and fostering trust with data subjects are crucial and form the foundation of any robust and responsible IoT solution. This responsibility extends beyond the technical staff and lies with those who consume the data. However, as a solution provider, you must ensure that your data consumers can utilize their own data safely and securely. Chapter 14 emphasizes the imperative of establishing a comprehensive framework within your solution, leveraging the robust suite of security offerings that Azure provides.

Summary

This chapter looked at data consumers with some special attention given to Power BI. The broad nature of data consumers makes it hard to tell you exactly what kind of consumers you will have to interact with. Still, it’s useful to think about the use cases and try to predict some of them depending on your context. So here’s the summary of these points:

		
	Reporting tools are an older style of data consumer, but they still exist. These read data in batches and produce static reports for data consumers to read.

	

		
	BI tools build on reporting by adding the ability to interact with the data in addition to reporting the data. With BI tools you can gain actionable insights and learn about the data by interacting with live dashboards and data flows.

	

		
	Power BI is the canonical BI tool from Microsoft. It provides a desktop app and an online service for authoring and sharing reports and dashboards.

	

		
	Applications to control devices will likely be one of the main consumers for your devices, especially if you plan to build consumer devices. The applications usually control only a few devices and consume small amounts of data about those devices.

	

		
	External systems vary widely depending on business needs. IoT systems integrate with these systems for different purposes, so you may have to build integrations that adapt to these systems.

	

		
	Some consumers may want access to the raw data. You can grant this, but it’s best not to. Try to encourage data consumer patterns.

	

		
	Exfiltrated data from your solution needs to comply with security and privacy concerns dictated by laws, regulations, and business drivers.

	

While we’re through with the IoT Landscape, there are still a few things to talk about, such as how to monitor Azure itself and security. We’ll take these one at a time, but first onto monitoring.

Chapter 13. Monitoring and Logging

When driving, besides the road, you probably most often pay attention to the speedometer and maybe a GPS if you’re using one. These two provide telemetry about how fast you’re going and where you’re located. But sometimes, you will see something else pop up, such as a check engine light. This indicator tells you that something is wrong with the car itself, and you should get it inspected.

In an IoT solution, you need to have a check engine light for your solution. You learned how to deal with device telemetry and events over the past 12 chapters, but now you must look at how to monitor your solution. Monitoring tracks IoT devices and services’ health, behavior, and utilization, enabling businesses to respond proactively to potential issues and enhance the overall user experience. To do this, there are several key aspects of monitoring online IoT solutions, but it all starts with figuring out what exactly you need to watch for. These are your goals, and when things fall out of bounds, this is where you raise the alarm. But let’s start with establishing what we need to consider as goals and translating those into service level agreements.

Setting Goals with Service Level Agreements

One of the most important things you need to do before setting up monitoring is to establish the goals you want to achieve with your system. These goals are typically expressed as growth goals or service level agreements (SLAs). Growth goals are usually business drivers for a platform and largely depend on the business model you are using with the platform. For some platforms, like consumer-oriented platforms, a goal of producing a certain number of new devices per month might be one such goal. It’s up to you and your organization to determine these goals.

SLAs, however, are operational goals. These are usually stated numbers that define the performance characteristics of the platform. They indicate to users what they can expect from your solution and, in some cases, may have contractual ramifications if the platform does not achieve them. An SLA, therefore, should:

	Establish clear expectations between the service provider and the customer. This is done by publishing how the user can expect the platform to perform in a quantifiable way. The SLA states the goal, and then how that goal is measured using the available metrics from the solution.

	Hold you, the service provider, accountable for the system’s performance. Therefore, you must understand what the SLA is and how you can meet and exceed it.

	Establish a process for resolving disputes and conflicts by establishing agreed-upon procedures and escalation paths. The process allows solution users and providers a way to resolve conflicts over alleged breaches of SLAs. It should also include remedies and penalties should a breach happen.

	Promote continuous improvement for your solution by setting targets. You should, therefore, regularly review the SLAs you have in place to ensure that they are being met and continue to align with the stated goals of your solution.

With this in mind, here are a few goal types for IoT devices you may want to consider:

	Device connectivity SLA

	A device may have an expected connectivity rate or uptime, especially for devices in mission-critical situations. This SLA defines the minimum acceptable percentage of time that devices should remain connected to the IoT solution. For some cases, however, this might not be realistic or applicable for reasons outside of your control.

	Solution uptime SLA

	Most cloud services indicate what a consumer can expect for uptime. This is typically measured as a percentage of time per month, usually as several “nines,” such as “five nines,” indicating 99.999% uptime. For many cloud-based systems, some downtime is expected, but within reason, you should minimize this. Some systems, like the IoT solution controlling smart bulbs in a home, may not be mission-critical. However, a solution for patients at a hospital may have zero tolerance for downtime.

	Data ingestion SLA

	This SLA outlines expectations for data ingestion, such as megabytes per second or messages per second. Defining this SLA helps indicate the scale of your solution and what consumers can expect from the solution when they onboard devices. It also serves as an indicator for growth should the solution ever approach the SLA.

	Latency SLA

	Latency measures how long a solution takes to process a message or request. In some cases, this might not be applicable. Still, for solutions that employ a hot path, you may want to establish a reasonable SLA for the time needed to process a message from its receipt by the solution until its availability or delivery for consumption. This can usually be less than one second for leaner systems, but it may take longer for other more complex or less dependent, rapidly processing solutions.

	Response time SLA

	This SLA defines the expected response time for device commands or events. It specifies the maximum acceptable time for the IoT platform to respond to requests initiated by devices or users.

	Recovery point objectives (RPOs)

	An RPO measures tolerance for data loss if a disaster occurs, typically as a measure of time. If you establish an RPO of one hour, that means you can tolerate up to an hour of data loss. Should a system go down at 2:00 PM, you should be able to recover the system between 1:00 PM and 2:00 PM to meet the RPO. If your last good recovery point is around 1:20 PM, that would meet the RPO.

	Recovery time objectives (RTOs)

	An RTO is a tolerance for how long a system can be down before it should come back online. Some RTOs are measured in hours, such as 8 hours. This means that if a disaster happens, a consumer can expect the system to be back up sometime within 8 hours after the disaster occurs.

	Reporting SLA

	If you provide data about your solution to your consumers, this SLA reports the cadence of reporting on key performance metrics.

After you have SLAs that define what your system ought to do, you need to show that your system performs up to the standards you outlined in your SLAs. This is where monitoring comes in.

Monitoring Your Solution

Monitoring does not happen by accident. Before you even think about how you will monitor the solution, you first have to consider what you want to know about the solution, which precipitates from your SLAs. These data points will determine what data you need to collect and how you will respond to that data. In the context of IoT, you have several key performance indicators (KPIs). These measure the value that shows how effectively your solution is working.

The objectives vary and can be financial, operational, customer-related, or focused on other aspects of performance. IoT solutions are typically operationally oriented by looking at how the solution performs on the load it’s designed to handle. Here are a few key KPIs to consider for IoT solutions:

	Device adoption rate

	This measures the rate at which new IoT devices are onboarded to the platform. It reflects the growth and adoption of the IoT solution and can be useful in projecting the growth of the system and the need for more capacity in the future.

	Data ingestion rate

	Like device adoption rate, this metric looks at how much data the platform ingests from devices. It’s useful for projecting the size of data storage and growth needs. It can also give averages for data per device, so taken with device adoption rate, it also can be used as a growth indicator.

	Message throughput

	Knowing how many messages per unit of time is critical for a few reasons. First, it is useful for projecting growth like data ingestion rates and device adoption rates. Second, it’s useful for scaling a platform using automation so the platform can handle the capacity. Third, it’s useful for measuring performance against SLAs for throughput. There’s more on this later.

	Message success rates

	Some messages on IoT systems will inevitably fail to send or process, but minimizing message failures helps improve users’ overall perception of system dependability and reliability. Measuring a success rate is useful for understanding the performance characteristics of the solutions for successes and failures.

	Response time

	This metric measures how long it takes for a platform to handle a message. Like throughput, it’s useful for scaling a messaging platform that is taking too long to process and for measuring performance against response time SLAs.

	Platform downtime

	Downtime falls into two categories: planned downtime and unplanned downtime. Planned downtime is usually not considered when measuring a solution against its goals, but unplanned downtime is. Measuring downtime helps identify if a solution is delivering on its stated goals.

	Device uptime

	This is a measure of the time that IoT devices remain up. Depending on the intent of the device, it can show how often a device is being used, such as a smart bulb. In other cases, it may show how reliable a device is if it is designed to be up nearly all the time.

	Device online time

	Similar to device uptime, this measures how much time a device spends connected to the platform. It’s another indicator of device reliability or connectivity for a device’s environment. It may not apply to all devices, but for devices that need a consistent connection for monitoring purposes, it helps address problem areas.

	Device health

	The telemetry examples used throughout this book examined device health. The examples were measuring things like CPU usage, CPU temperature, memory usage, etc. These metrics are useful for showing a device’s health.

	Cost

	Monitoring costs for resource utilization is important for several reasons. Using this metric against other metrics, like message throughput, response time, and ingestion rates, helps show where a platform could use better cost optimizations.

To calculate your KPIs, you’ll need to gather the data, which is where logging comes into play. Before we get too far into that subject, though, there are a few other things that you need to monitor that don’t necessarily contribute towards SLAs or KPIs but are important, nevertheless:

	Fault detection and diagnostics

	Even if everything in your system is working well within acceptable parameters, you’ll still want to monitor for faults to prevent a problem from cascading should things get worse. Early fault detection, especially on mission-critical devices and systems, enables you to fix a problem before it happens. You can check system logs, error rates, device failures, sensor malfunctions, and communication errors. AI modeling, too, can assist in this endeavor.

	Performance and scalability

	Even if your solution’s performance already meets and exceeds your SLAs and KPIs, you still need to pay attention to performance and scalability because it does not take much to slip, especially as a system grows in usage. Preempting potential bottlenecks before they happen ensures you will continue meeting your SLAs and KPIs.

	Compliance and regulations

	Compliance and regulations are constantly in flux, so you need to be aware of these changes and monitor your solution to ensure that it maintains compliance. Monitor compliance-related metrics and perform regular audits to identify any potential issues.

	System maintenance

	Like any software system, you must patch things occasionally. Staying on top of patch cycles and monitoring upstream software stacks ensures that devices and solution components are up to date. If you’re using managed solutions on Azure, you won’t have to do as much of this, but if you’re using custom software like Function Apps or APIs for servicing data, it becomes more of an issue. Tracking and upgrading versions periodically ensures your solution stays updated with security and performance patches.

	Device alarms

	You learned about device alarms as being a special case of events from devices. Devices raise alarms because they demand attention to fix problems detected on the device.

After setting your SLA goals and figuring out how to measure them with KPIs, you can create a monitoring solution on Azure with Azure Monitor that captures data and metrics and act accordingly.

Azure Monitor

All monitoring solutions on Azure are, at some level, built atop Azure Monitor and Azure Data Explorer (ADX).1 They offer a comprehensive solution on Azure, designed to provide insights into the performance and health of various Azure resources and applications. They enable you to collect and analyze telemetry data from different sources, devices, IoT Hubs, virtual machines, databases, containers, applications, infrastructure components, and Azure activity.

Moreover, ADX is a fully managed service, which means that Microsoft handles the underlying infrastructure, including automatic scaling and data replication. You don’t have to do much tuning with ADX, either. Optimizations are automatic.

Data Collection

Azure Monitor has three essential parts: data collection, analytics, and of course, monitoring. For data collection, Azure Monitor centralizes and correlates data from diverse sources for collection, providing a holistic view of the entire system. It uses agents, APIs, and connectors, allowing users to monitor metrics, logs, and traces in near real time. Centralized logging on Azure Monitor simplifies monitoring and facilitates proactive identification of issues, so you can find problems quickly and minimize downtime.

For monitoring Azure resources, like IoT Hubs and databases, there’s very little you have to set up. You enable monitoring for the solution and point the resource to your Log Analytics Workspace. Some solutions built on Azure Monitor are more purpose-built, such as Azure App Insights, which you’ll read about later in the chapter.

Azure Data Explorer (Log Analytics)

For data analytics, Azure Monitor provides advanced capabilities. Monitor integrates with Log Analytics, enabling users to perform queries and run powerful analytics on collected data in an ADX database, sometimes called a Log Analytics Workspace. You’ve already touched on ADX when integrating Cosmos DB with ADX as a time series database. In that case, you integrated IoT telemetry from a transactional store like Cosmos DB. ADX, however, can handle high-speed data ingestion from IoT Hubs and other sources that generate logs. The service supports ingestion rates of millions of records per second, enabling real-time analysis and near-instantaneous querying.

ADX is a column store database, meaning the storage is column-oriented instead of row-oriented, like in a SQL database. This approach allows for efficient compression and indexing for data aggregations and summations over large datasets. This helps accelerate queries on ADX for monitoring KPIs and monitoring for problems. Moreover, ADX is schema-agnostic and can handle structured, semi-structured, and unstructured data. You can query and analyze data without defining a rigid schema in advance, making it flexible and adaptable to changing data structures.

Kusto Query Language (KQL)

ADX uses the Kusto Query Language (KQL), which provides powerful capabilities for filtering, aggregating, and transforming data. KQL treats data as tables with rows and columns, but you can query semi-structured data as well.

You can perform ad hoc queries and run complex analytics with KQL. Like any query language, it supports various operations, including filtering, aggregation, sorting, joining, and grouping. You can use logical operators (AND, OR, NOT), comparison operators (=, >, <), and functions to construct complex queries. Its rich suite of tools for time-series analysis allows for time-based operations, such as aggregating data over specific time intervals, filtering data within specific time ranges, and extracting date and time components from timestamps. This is extremely useful for calculating the many time-bound KPIs you may measure.

KQL also can create visualization capabilities and has a set of data exploration tools built in. Using the render operator, you can create charts, graphs, and visualizations directly within your queries. This allows you to gain insights from data and present them visually. However, you would probably use Power BI for more complex scenarios.

For more complex aggregations, ADX also supports materialized views. These database objects store the results of a query in a precomputed, optimized form. They are used to improve the performance of queries by reducing the need to compute results repeatedly. Instead of executing a complex query each time it is invoked, the materialized view stores the query result and can be accessed directly, resulting in faster response times. If you’re frequently querying your database for KPIs, you may want to create materialized views for the KPI instead of recalculating it with each new request.

Monitoring and Alerting

Azure Monitor also offers alerting and notification mechanisms, allowing users to define thresholds and receive alerts when specific conditions are met. These alerts can be configured to trigger various actions, such as sending email notifications, invoking automation workflows, or even scaling resources automatically.

Azure Monitor provides two essential monitoring types: metrics and log monitoring. Azure Monitor collects and analyzes performance metrics from various Azure resources and services when you enable it. For IoT Hubs, Azure Monitor collects information about device counts, connection statuses, and message throughput, all useful for calculating KPIs. Custom metrics can also be collected to monitor specific application or resource-level metrics.

For logs, Azure Monitor collects logs from various sources, including Azure resources like IoT Hub, operating systems, and custom applications. You can use formats like JSON, plain text, or semi-structured data. These logs can monitor events, errors, and other diagnostic information. IoT Hub provides event data when devices connect, disconnect, or change their state. Likewise, Azure Monitor’s Service Health provides visibility into the status of Azure services and regions. You can use it to monitor real-time updates on service disruptions, planned maintenance, and health advisories. Service Health helps you stay informed about potential impacts on your resources and plan for necessary mitigations.

Whether you are monitoring metrics or logs, Azure Monitor lets you set up alerts based on specific conditions or thresholds. When an alert condition is met, it triggers notifications through various channels, such as email, SMS, or webhook. Alerts can be configured to notify relevant stakeholders and initiate automated actions, such as scaling resources or running remediation scripts. The recipient of an output is part of an action group. Azure Monitor defines a set of notification preferences and actions to be taken when alerts are triggered. You can configure multiple notification channels within an action group, such as email, SMS, Azure Functions, Logic Apps, or IT Service Management (ITSM) tools. This provides flexibility in defining the response mechanism for different types of alerts.

All the monitoring tools Azure Monitor offers can ultimately be used to create customizable dashboards and visualization options, which are different from those offered by ADX and Power BI. The built-in dashboards allow you to create consolidated metrics, logs, and other monitoring data from multiple sources.

Azure Monitor styles itself as a general-purpose monitoring tool for resources. In some cases, Azure provides point solutions for specific roles, which is the case with Azure Application Insights for Application Monitoring, Azure Security Center for general security monitoring, and Azure Sentinel, a security information and event management (SIEM) solution.

Azure Application Insights

If you plan on running any custom code on Azure, you’ll probably want to take a long look at Azure Application Insights for many reasons. Application Insights is a comprehensive application performance monitoring and analytics on Microsoft Azure. While it’s an Azure resource, it can monitor code on and off Azure, regardless if the code is running in a browser, on premises on a virtual machine, on an IoT device, or in a container in AWS. It helps your developers and IT pros get insights into your applications’ performance, availability, and usage.

Azure Application Insights is commonly mistaken as a .NET-only tool, but it supports all kinds of platforms for instrumentation and logging out of the box, including .NET, Java, Node.js, and Python. These SDKs enable easy instrumentation of applications to collect telemetry data. You can track custom events, metrics, and dependencies, providing a comprehensive view of application behavior and performance.

Azure Application Insights collects and analyzes telemetry data from applications in real time and stores this in an ADX database. You can access the logs directly using KQL, but Application Insights provides a portal with views purpose-built for viewing the data.

Application Insights enables distributed tracing, allowing you to trace requests as they traverse multiple services and components. It provides a visual representation of the entire transaction flow, showing the timing and dependencies of each step. Distributed tracing helps identify performance issues and understand the impact of service dependencies on overall application performance. You can track and analyze user interactions and workflows within your application from distributed tracing. It traces requests across various components, such as web servers, APIs, databases, and external dependencies, providing insights across the entire transaction flow. This helps identify performance issues and bottlenecks across the entire application stack.

Application Insights looks at three primary kinds of data: instrumentation, logs, and user analytics.

Instrumentation

Application instrumentation refers to monitoring code behavior, performance, and usage. Application Insights collects relevant telemetry data, such as response times, CPU usage, memory consumption, database query durations, API call durations, external service integrations, and network requests. These data points help identify performance bottlenecks, resource utilization issues, and areas for optimization, which can be used for calculating relevant KPIs.

You can watch many of these metrics with the Live Metrics Stream feature. It provides real-time streaming of telemetry data from your application. It allows you to monitor application metrics, request rates, dependency durations, and other live data in real time. Live Metrics Stream is useful for monitoring application behavior during load testing or performance testing, or in live production environments.

Instrumentation for apps running on Azure App Services, including Azure Functions, is simple to enable with the Azure portal. Applications running off Azure need an instrumentation key. How you use the key depends on the framework, but it usually includes installing a library with your application and distributing the application with the instrumentation key as a setting. The library uses the key to authenticate and send data to your Log Analytics Workspace.

Application Logging

Beyond instrumentation, Application Insights looks at logs. While Azure Monitor can monitor logs, Azure Application Insights is specifically designed for application logs. Applications usually follow a scheme that separates logged events into different categories, like informational events, warnings, and handled errors. Sometimes, something happens that logs do not capture, such as an application crash or exception. Instrumentation picks up handled and unhandled events and reports them to Azure Application Insights. With Application Insights, you can see the more benign happenings of your app. But the real value of Application Insights shines when you can see the problem areas. It can show exception types, values of variables, settings, stack traces, memory dumps, and many other data points that make application diagnosis easier.

If you plan on running any custom code on Azure, you will want to use Azure Monitor. Most of the Azure-side code in this book has used Azure Functions, as it provides a great solution for different IoT needs. Regardless of what you use, turning on Application Insights for logging and instrumentation for Azure-side code is imperative.

For devices, however, this can be a little tricky. Complex devices with more computing resources can leverage instrumentation without a problem, but monitoring these on constrained devices adds overhead and consumes precious resources. Additionally, defaulting to logging application and instrumentation data can overwhelm Application Insights with the sheer volume of data. For this, make instrumentation a feature you can turn off and on by changing the device’s state. In any case, you still want to report errors and problems in the code. You can do this through app instrumentation, but I recommend using event messaging channels. If you need more data, enabling instrumentation remotely on a device through a state change can report more data. You can also use sampling to minimize the amount of data you ingest into Application Insights.

User Analytics

Application Insights includes user analytics capabilities for UI applications so that you can understand user behavior and usage patterns. It tracks user sessions, flows, and engagement metrics, allowing you to gain insights into how users interact with your application. This information can be valuable for improving user experiences, identifying popular features, and optimizing application design.

User analytics is probably less important in IoT solutions unless you plan on integrating a user experience through a companion website, mobile app, or integrated UI on a device. Still, it’s not something to ignore, especially for more user-centric or consumer-oriented products.

Azure Security Center

Azure Security Center is a unified security management and monitoring service provided by Microsoft Azure. It offers a centralized view of the security posture of Azure resources and provides advanced threat protection and security recommendations. You can look at these in two categories: assessments and monitoring.

Security Assessments

Security assessments are about securing your devices and solutions before the breaches happen. Azure Security Center continuously monitors the security hygiene of Azure resources by assessing configurations, settings, and vulnerabilities to identify potential security risks and compliance issues. It also scans virtual machines and container images for known vulnerabilities, missing patches, misconfigurations, encryption recommendations, and access controls recommendations. From here, you can use Azure Update Management and Azure Automation for automated patching and configuration management.

Beyond this scanning, you can create security policies across your Azure resources. You can create custom security policies or use built-in policies based on industry standards, regulatory compliance requirements, and best practices. Security policies help ensure that your resources adhere to security configurations and standards. These apply mostly to Azure resources.

Also, Azure Security Center integrates with Azure Defender as a solution for assessing IoT devices. Azure Defender for IoT conducts vulnerability assessments on IoT devices to identify security weaknesses, misconfigurations, and missing patches. It provides recommendations for mitigating vulnerabilities and improving the overall security posture of the devices. It maintains an up-to-date inventory of IoT devices to get information about device properties, firmware versions, and configurations. This enables organizations to track and manage their IoT assets effectively and ensure they are properly secured.

In any case, you’ll need some level of device-level security to ensure the device does not become your solution’s attack vector. The next chapter acts as a resource for many of the threats IoT devices face and solutions for how to mitigate these threats. Using Defender with Azure Security Center is a good start, but it’s not the whole story for IoT devices.

Security Monitoring

Security monitoring follows security assessments by providing real-time monitoring and response to detected security threats. Security Center offers advanced threat detection capabilities. It analyzes security events and logs from Azure resources, network traffic, and external threat intelligence sources. It uses machine learning algorithms and behavioral analytics to detect suspicious activities, potential threats, and indicators of compromise. It also integrates with Azure Sentinel for centralized security incident detection and response.

Again, Azure Security Center integrates with Azure Defender to provide additional advanced threat protection capabilities. Defender provides enhanced security for Azure resources, including virtual machines, containers, SQL databases, and IoT devices. It offers features like network threat detection, application whitelisting, and behavioral analytics for detecting and mitigating advanced attacks.

Incident Response

Azure Security Center facilitates security incident response through automated alerts, playbooks, and integration with incident response workflows similar to how Azure Monitor works. You configure automated responses and triggers based on specific security events or indicators of compromise. It helps streamline the incident response process, reducing the time to detect and respond to security incidents.

In many cases with IoT, one common strategy is quarantining a device and its telemetry. This approach shifts the device to a zone where it can transmit events and telemetry, but the data is landed in a place cordoned off from the primary system. This approach allows you to analyze data and behavior without threatening your live system until you remediate.

Sometimes, you may need to shut a device down or remove it, such as a stolen or rogue device. If that functionality exists, you can use automation to revoke credentials, block IP addresses, or remote wipe devices. In all cases, staying on top of cloud and device security is important and prevents incidents.

Azure Sentinel

Azure Sentinel is a cloud-native SIEM and security orchestration, automation, and response (SOAR) solution. A SIEM provides centralized and real-time visibility into its IT infrastructure’s security. As a solution, Sentinel collects, analyzes, and correlates security event data from various sources across the network, applications, devices, and systems. The primary goal of a SIEM is to help organizations detect and respond to cybersecurity threats effectively.

Sentinel is built atop Azure Log Analytics (within Azure Monitor), so Azure Monitor gathers most of the log and even collection data. Specifically, though, Sentinel is interested in security-related data from network devices (firewalls, routers, switches), servers, applications, endpoints (e.g., laptops, desktops), and IoT devices. These logs contain valuable information about system events, security incidents, and potential threats. The SIEM analyzes and correlates the collected log data in real time by cross-referencing events from multiple sources. The system identifies patterns and relationships indicating malicious activities or security incidents. This kind of detection is different from what Security Center tries to address. Azure Security Center tries to protect against known threats, while a SIEM, like Sentinel, attempts to guard against unknown threats, particularly anomalous behaviors. Sentinel uses machine learning and behavioral analysis to detect emerging threats and zero-day attacks. These analytics enhance the SIEM’s ability to identify sophisticated and previously unknown threats.

Once a threat is detected in the SIEM portion of Azure, the SOAR part picks up from there. The SOAR is all about security automation. Azure Sentinel’s SOAR capabilities automate response actions based on predefined playbooks and workflows. This automation reduces manual intervention, accelerates response times, and ensures consistent and efficient incident handling. The SOAR provides help for triaging incidents and provides tools for incident investigation. Security analysts gather and analyze relevant data from different sources.

By combining log management, event correlation, real-time monitoring, and advanced analytics, SIEM solutions provide a proactive approach to cybersecurity. They empower organizations to detect security incidents early, respond swiftly to threats, and improve their overall security posture by gaining better visibility into their IT environment.

Sentinel provides seamless integration for Microsoft Defender for IoT through a connector. The connector facilitates the smooth flow of Microsoft Defender for IoT data into Microsoft Sentinel, enabling a holistic view, analysis, and response to Microsoft Defender for IoT alerts and the corresponding incidents within the broader context of organizational threats.

Summary

So much of IoT focuses on the data you get from devices that you can often overlook the data your solution is generating that tells you about the health of the entire solution. The bottom line, however, is that you must pay attention to it because so much depends on having a healthy and responsive solution. So here’s a summary of what this chapter looked at:

	Establish the goals for your platform, such as uptime or throughput. These goals should be quantifiable so you can measure them.

	Set your goals as SLAs that you publish so your consumers understand what they can expect from your solution. Explain how you calculate the SLA.

	Measure your goals using KPIs and regularly check your KPIs against your SLAs to ensure you meet and exceed the goals.

	Monitor other facets of your solution to mitigate problems.

	Use Azure Monitor to aggregate logs and events from your solution and your devices.

	Set up monitoring and alerting on KPIs and other events to ensure you can respond to incidents promptly.

	Use Azure Application Insights to debug code in your cloud and device solution if possible. Make it possible to toggle Application Insights to enable remote debugging.

	Use Azure Security Center to monitor your solution for security problems. Use Defender for IoT as part of Azure Security Center.

	Use Azure Sentinel with Azure Security Center to detect anomalous behavior and unknown threats.

The end of this chapter looked at security from a monitoring perspective, but the next chapter takes a deep dive into more security-related items. Think of it as a continuation to this chapter and so much more!

1 Azure Monitor and Azure Data Explorer started as Azure Log Analytics; some literature still references these resources. Regardless of the branding, though, the core technologies behind these two have remained essentially the same since their inception, with mostly just new features being added over time.

Chapter 14. IoT Security

Not a day goes by without some new article detailing how some computer system was hacked, and millions of records were exposed. I cannot remember how many pieces of mail I have received over the years from an organization apologizing to me because their computer systems were compromised and my data was exposed. The problem is to the point where most folks accept it as just part of living in a digital world, and entire business models have popped up for dealing with identity theft. This problem will continue to escalate as the world hurtles toward a future with billions of connected devices in the next several years, further amplifying the already massive data influx. With this expansion comes even more attack vectors and an ever-growing attack surface.

The nature of IoT security threats is ever-evolving, constantly adapting to technological advancements and the methods employed by malicious agents. Traditional security measures must be equipped to handle the novel challenges that IoT introduces. The next wave of cybersecurity will involve figuring out how to secure IoT devices and the data they transmit. IoT device security is a concern that impacts every part of device lifecycle management. For this reason, you should take time to consider the potential threats to your IoT devices and take measures to ensure that you mitigate these threats. For some applications, these threats matter more than others. Even if a device’s application is mundane, its network peers may not be. IoT devices, therefore, should take steps to ensure that they do not become a security liability.

Examining the anatomy of IoT security vulnerabilities uncovers many issues that demand attention. Weak authentication and authorization mechanisms, insecure network communications, and the absence of data encryption are just the tip of the iceberg. Unpatched firmware, inadequate software security, and potential physical tampering present additional challenges. And it’s not just hardware and software problems; there’s always the human element. Social engineering, insider threats, and user negligence can create vulnerabilities that even the most advanced cybersecurity measures cannot fully prevent. Educating end users, manufacturers, and developers about IoT security best practices and the significance of maintaining a security-first mindset is vital to mitigating risks effectively. By fostering a security awareness and responsibility culture, you can build a stronger defense against the ever-looming threat landscape.

In this chapter, you’ll delve into the intricacies of IoT security, exploring the evolving threat landscape, key vulnerabilities, and the human element that influences its security posture. By illuminating the path to a secure IoT future, you can equip stakeholders with the knowledge and awareness necessary to ensure that the potential of IoT is harnessed responsibly and safely. Because security is a cross-cutting concern, this chapter is organized around specific issues with mitigating actions presented as lists highlighting how you guard against security threats in your IoT solution.

Software Vulnerabilities

Perhaps one of the most obvious security vulnerabilities in a device is software. Software on a device encompasses microcode on a processor, device firmware, a device’s operating system, application code, and any libraries included to support the application. Naturally, not every device will have all of this. Embedded systems tend to have significantly less code because they have much more minimal compute, RAM, and storage. Even so, it is vital to ensure that all the code on a device is secured, and should a vulnerability be found, the device should be patched. The following are a few ways to mitigate software vulnerabilities that can impact the research and development process and the ongoing updates of a device after it ships:

	Prefer minimalist builds of operating systems to minimize the attack surface, such as Yocto Linux, Ubuntu Core, Windows IoT Core, or Azure Sphere.

	Use execution isolation for processes, such as Docker containers or Snap, for code.

	Leverage Trusted Execution Environment (TEE)-enabled processors on devices.

	Use a minimal set of permissions with an app to access a file system on the device.

	Use a secure CI/CD process to manage code changes and builds.

	Scan builds using CI/CD for vulnerabilities with scanners like SonarQube or Qualys.

	Ensure that devices ship with an update mechanism that can be controlled remotely.

	Use Azure IoT Update services or similar services to manage updates to devices.

	Ensure that your cloud-side code is patched with the latest libraries and references.

Malware

IoT devices are no different from any other network-connected computing devices, like laptops, servers, and smartphones. For this reason, IoT devices also need to be protected against malware.

One advantage of IoT devices over more general-purpose compute is that the software they run is for a single purpose and includes only what it absolutely needs to work. This means that IoT devices have a bare minimum attack surface for developers to worry about.

Another advantage of IoT devices is that, by and large, they do not require a way to sideload data onto the device from external sources, such as SD cards, USB drives, cables, or other means like Bluetooth or NFC transfers. The more limited user experience also helps protect against malware.

In any case, developers should still be vigilant by heeding the following tips:

	Before creating a build or installing an update, check for malware and vulnerabilities in the software intended for the device. Sometimes, the vulnerability will be in dependencies, not in your code.

	Disable sideloading data through USB or other mechanisms if possible.

	Scan data from a device (such as file uploads) for malware or evidence of malware.

	Monitor devices by looking at logs and alerts for actions such as remote logins onto a device.

	Before shipping a device, restrict device network access to essential services. Use built-in firewalls or network tools to limit incoming and outgoing traffic from the device.

	Encourage device users to isolate devices from computer networks.

	Ensure that the device does not expose credentials to the device or the services used by storing them securely on a device, such as by using a Trusted Platform Module (TPM).

Within the context of malware, two categories need special attention from device makers because of the threats they pose: botnets and ransomware.

Botnets

A botnet happens when malware infects devices and connects the device to a central command and control server. When activated, a device can execute malicious code or be used to orchestrate a larger attack against a cloud provider or internet service as part of a distributed denial of service (DDoS) attack. A botnet also may be leveraged as distributed compute at the device owner’s expense for operations such as crypto mining.

The Mirai botnet is one of the most famous examples of IoT device exploitation. Mirai malware exploited many routers, printers, baby monitors, and IP cameras. These devices were used in a DDoS attack against Dyn DNS, which rendered many sites like GitHub, Twitter, Reddit, and Netflix unavailable. These devices were exploited by using default usernames and passwords for the devices. Once logged in, the command-and-control servers could upload malware to the device and use it to orchestrate attacks.

Problems like those exposed by Mirai are not likely to get better. The proliferation of IoT devices has provided billions of potential targets for botnets to exploit. At some point, IoT devices will outnumber laptops, servers, and smartphones. Botnets on IoT devices are particularly nasty because they can be harder to detect. Even while an attack is in progress, users may not know a botnet exists. For this reason, it becomes even more critical for device makers to secure and prevent their use in a botnet and other exploitations. Everything listed under the “Data Leaks,” “Insecure Data,” “Lax Access Controls,” “Physical Threats,” and “Lax Network Security” sections in this chapter applies to mitigating the threats of botnets from IoT devices.

Ransomware

In 2021, hackers managed to gain access to a network that controlled the Colonial Pipeline, a major supplier of oil and gas for much of the Southeastern United States. This ransomware attack accessed the pipeline’s company data, and the pipeline was shut down as a result. Ransomware is malicious software that encrypts a victim’s files or systems, rendering them inaccessible. The attackers then demand a ransom, usually in cryptocurrency, in exchange for a decryption key to unlock the files. It’s a form of cyber extortion that can have devastating consequences for individuals, businesses, or even entire organizations.

Ransomware attacks like the one against Colonial Pipeline have become a huge income generator for hackers worldwide. They typically use social engineering and pull off a confidence trick on an unsuspecting user. A confidence trick, or “con,” is a deceptive scheme where individuals or groups exploit another’s trust and confidence to deceive them, often resulting in financial or personal loss. Once a device is compromised, hackers will install an agent that encrypts the data on the device and spreads the agent to other devices on the network. The hacker will then extort money from the user to gain access to a program to decrypt the data.

Because ransomware attacks usually depend on a con to gain access to a device like a laptop, IoT devices have not been the preferred target for organizations. However, this landscape is changing as more IoT devices come online. Insecure data practices, lax network controls, and lax access control all play into potential ransomware attacks, but protecting the data on a device, minimizing data on a device, and protecting data in the cloud mitigate an attacker’s reach. Here are a few ways to protect against ransomware:

	While a device is running, minimize the data stored on devices to only what is essential to a device’s operation.

	Disable root and administrator access to a device before shipping the device.

	Transmit data as soon as possible, so the device does not need to retain the data.

	Ensure that device credentials can be revoked as a security measure or as part of device deprovisioning.

	Ensure that devices can be remotely wiped either as a security measure or as part of device deprovisioning.

	Back up data in the cloud and ensure data adequate retention policies exist.

Data Leaks

Data leaks, also known as data breaches, occur when sensitive or confidential information is unintentionally or maliciously exposed to unauthorized individuals or entities. These leaks can happen through various means, such as hacking, improper data storage, employee negligence, or social engineering attacks. Data leaks are one of an organization’s biggest threats today, and IoT devices don’t make dealing with that threat any easier. In fact, IoT devices may compound it because of the sheer amount of data they generate. On top of that, devices are geographically dispersed rather than set behind the strong perimeter defense that local area networks provide. They don’t always have the added protections offered by things like firewalls. Here are a few ways, however, to mitigate data leaks:

	Encrypt all data regardless of where it is stored.

	Use hardware-based security to store keys, such as a TPM.

	Encrypt data in flight using the latest Transport Layer Security (TLS) standard and use certificates from a trusted certificate authority (CA).

	Minimize to the degree possible data stored on the device.

	Regularly remove unneeded data from a device, such as deleting data after it successfully transmits to the cloud.

	Rotate keys and certificates often to ensure they do not stay on the device for long periods.

	Scan for anomalous behaviors as devices send telemetry and logs to the cloud.

	Recommend that users install devices on separate networks not shared by other devices.

DoS

A denial of service (DoS) attack happens when an attacker attempts to overwhelm a target by flooding it with requests. These attacks try to deny others access to a resource or exploit an edge case, such as a buffer overrun, that allows the attacker to exploit a device or service. Most current DoS attacks are not against single devices but against cloud services like Azure. DoS attacks are difficult to mitigate for a single device, but you can:

	Limit the number of concurrent requests a device can send and receive from a network.

	Filter outgoing and incoming connections for specific IP ranges and ports and drop all other requests.

	Recommend that users install devices on segmented networks and behind firewalls.

	Use Azure DDoS Protection for cloud services to mitigate threats to environments.

	Use private endpoints for Azure services if the devices are in a controlled environment that allows for an ExpressRoute or VPN.

Insecure Communications

Internet connections for devices are a defining characteristic of IoT devices. It would be hard to call a network of devices the “Internet of Things” without the internet. Not all IoT devices connect directly to the internet and may use a proxy or a relay. Regardless, the device can ultimately transmit data over the internet in some way that makes it a part of the Internet of Things.

Secure communication, therefore, becomes imperative for IoT devices. Communication happens at multiple levels: between a sensor and a connection, between devices, between devices and edge systems, and between devices and the cloud. In all of these scenarios, communication happens over some media, be it WiFi, Bluetooth, NFC, a wired network connection, or others. Devices, therefore, should broker secure communication when possible. The following are a few ways to prevent insecure communications:

	Prefer X.509-based authentication when possible.

	Use the latest TLS versions when possible with a trusted CA.

	Store certificates for communication on a TPM.

	Rotate keys and certificates often as part of an update process.

	Have a well-defined device reprovisioning process.

	Prefer TPM-based attestation for provisioning services.

	Revoke expired certificates to force devices to reprovision.

Device Spoofing

One of the age-old ways of hacking into a network is spoofing a device. Before the days of free WiFi at Starbucks, many folks used device spoofing to gain access to the free WiFi by simply scanning nearby connected computers, getting the MAC address from that computer, and spoofing it on their device. Seconds later, the user was connected.

While this scheme was relatively easy to bum WiFi at a coffee shop, device spoofing to gain access to a network or system can be much more sophisticated. IoT devices are particularly vulnerable to spoofing because they are usually removed from a controlled environment. Malicious actors may even purchase a device through legitimate channels and reverse engineer it so they can spoof it.

While it may be impossible to completely safeguard a device from spoofing, IoT device makers do not have to make it easy. Using device-level cryptographic services and onboard security features can mitigate these attacks:

	Have a clear, secure process for device provisioning and device claiming.

	Use hardware attestation for devices using TPMs.

	Store credentials on cryptographic hardware like a TPM.

	Do not store credentials in a user-accessible area.

	Rotate or refresh keys often as part of an update process.

	Monitor device behavior to detect abnormal behaviors from transmitted telemetry and logs using a SIEM like Azure Sentinel.

	Adopt services that mitigate against device spoofing, such as Azure Sphere.

Insecure Data

Data is ultimately what hackers are trying to exploit—either by accessing valuable data or attempting to extort value from those using the data. In any case, securing data is paramount to ensuring that IoT devices do not become a liability. “Insecure Communications” talked about ways to secure data in flight; here are a few ways to secure data at rest:

	Encrypt local data on a device.

	Remove data once it has been transmitted.

	Use hardware-based cryptographic solutions like TPMs for storing sensitive data.

	Rotate keys often as part of an update process.

	Have robust cloud-side RBAC policies for accessing data in the cloud.

Lax Access Controls

As the old proverb goes, a chain is only as strong as its weakest link. IoT security is only as strong as its least secure point for access controls on a device. One of the most often exploited channels in computer networks is device credentials that can be used to gain access to data without performing any technical exploit and look as if the unauthorized access is entirely legitimate. This happens by stealing credentials or creating a vector where credentials can be guessed or read.

Access controls for devices, therefore, should start at the point of inception for a device and follow the device throughout its lifecycle. Every part of a device’s lifecycle, from manufacturing to deprovisioning, requires access controls to prevent unauthorized mechanisms or other vulnerabilities from slipping into the device, intentionally or unintentionally.

	R&D, manufacturing, and claiming

	
	Ensure that software and firmware applied to a device go through gated check-ins and are scanned thoroughly before pushing these to devices.

	Disable root or administrator-level access to a device before shipping.

	Have a robust device claiming procedure to ensure that devices come from a trusted manufacturer.

	Device provisioning

	
	Use a controlled device provisioning process to ensure that devices are onboarded by trusted personnel for highly sensitive applications like medical, banking, or industrial applications.

	Use device-level controls such as TPM-based attestation as part of device provisioning.

	Device main sequence

	
	Avoid storing usernames and passwords. Instead, use token-based authentication for users.

	Ensure that software and firmware updates applied to a device go through gated check-ins and are scanned thoroughly before pushing these to devices.

	Use isolated execution environments like containers on devices and grant minimal permissions to users for running processes on a device.

	Rotate credentials often on the device, such as key rotations and certificate rotations.

	Access controls on Azure

	
	Control access to an Azure environment using Azure Active Directory and role-based access controls.

	Setup Azure Privileged Identity Manager (APIM) to manage elevated access.

	Use CI/CD pipelines to deploy to production environments.

Physical Threats

Network connections are like doors—they are a point of entrance into a network. Any time a device is in an area that exposes the device to the public, that device becomes a potential attack vector for network intrusion. Many of these devices use physical, wired connections. Those that would use such devices or the device’s network connection to gain access to a network can do so without having to learn a WiFi key. Moreover, devices in these places will contain credentials and other sensitive information to access whatever system they are designed to use.

There is little a device maker can do to control how an end user will deploy a device unless the maker is the one doing the installation. Even so, it may not be possible to dictate how a facility owner secures a building or how a device may be applied. The device maker, however, should do everything possible to secure the device itself. Beyond that, educating users is probably the best policy to ensure that devices and their location are not compromised. Here are a few recommendations to mitigate against physical threats:

	Recommend that device users have controlled access to where devices are housed, especially for medical and industrial applications.

	Recommend network isolation from other devices and segmentation from other parts of a network.

	Use TPMs for credential storage and device attestation.

	Use tamper-resistant hardware to prevent device spoofing.

	Check machine-readable component IDs as part of a boot-up security check to detect hardware changes.

	Use isolated execution environments like Docker containers and snaps on devices.

Lax Network Security

When I started using IoT devices, I did not realize how much access to my network I was given when I connected these devices. They were on the same network as my computers and phones. I became more conscientious about IoT devices after the second or third one I connected to my network. In response, I set up a separate network for IoT devices at my home. Call it paranoia, but these devices and the software they contained were entirely out of my control. If one of these devices were to be compromised, intentionally or unintentionally, they would have unfettered access to all the other devices on my network, like my laptops and servers.

My cautious approach to accessing IoT devices was intended just for my home security, but when it comes to enterprise networks, having such controls is essential. Device makers cannot control the networks their users may own, but like physical access, device makers can certainly recommend network security practices. Moreover, device makers can take the following steps to ensure that devices do not unnecessarily expose themselves to network threats:

	Drop any packets not intended for the device and close unnecessary network ports.

	Prefer device-initiated connections to the cloud to prevent a device from having to expose a network port.

	Accept only secure communications with trusted credentials. Avoid unencrypted protocols like Telnet, unsecured FTP, SMTP, or HTTP.

	Prefer certificate-based authentication for devices.

	Recommend network isolation and segmentation for devices from other devices such as servers and desktops.

	Recommend limited broadcast traffic on networks with IoT devices.

	Do not support weak or vulnerable WiFi standards like WEP or WPS.

DNS Threats

The Domain Name System (DNS) is what translates hostnames into IP addresses. The protocol is inherently insecure in its most common form. For many use cases, this is not a big deal, but it can be a potential security risk for some cases. Many services depend on reliable DNS name resolution because certificates are tied to the hostname instead of a specific IP address. In this scheme, a compromised DNS server can be used to direct a device to a malicious host that can attempt to compromise the device. DNS as a protocol, however, has evolved to address some of these concerns by enhancing DNS with validation with DNSSEC. The validation provides a layer of trust to the hostname’s resolution, thereby enhancing security. Devices, therefore, should support DNSSEC, and device makers should recommend its use:

	For devices deployed in a trusted environment, recommend using trusted DNS servers when possible.

	Use DNSSEC if possible.

	Block any attempt to use DNS servers other than the trusted DNS servers.

Man-in-the-Middle

Man-in-the-middle attacks happen not by compromising a device but by tricking it into thinking that the device is talking to a service when it is actually talking to an attacker. The attacker will decrypt requests a device sends, repackage the request, and forward them to the legitimate service. Upon the reply from the legitimate service, the attacker decrypts the response, reads it, and then forwards the answer to the device. The device and the legitimate service are completely unaware of the man-in-the-middle because the requests and replies look like they came from a trusted source.

Man-in-the-middle attacks are generally harder to pull off because they require getting hold of the root credentials, typically a key of some kind, and using that key with a device that trusts it. They also require getting a device to talk to the attacker’s malicious service instead of the legitimate service. However, if these conditions are met, such an attack can be hard to detect before the damage is done. The best course of action is to make this exploit hard to pull off. Here are a few ways:

	Use X.509 certificates from a trusted CA for authentication and encryption. Remove any unneeded CA certificates from a certificate store.

	Rotate certificates and credentials often as part of an update routine and use shorter certificate periods.

	Have a well-defined certificate refresh process.

	Use the latest version of TLS with certificates from a trusted CA.

	Store certificates on a TPM.

	Use TPM attestation for devices.

Social Engineering

Social engineering attacks persuade users to give away sensitive data through psychological manipulation rather than device exploitation. Many IoT devices are virtually immune to this attack because they do not have a user experience beyond the device’s setup. At the same time, wearables and other IoT devices with a user experience can be used as part of a social engineering attack.

One of the most common means of social engineering is phishing, which uses email. This is called “smishing” when SMS is used or “vishing” if telephony is used. This attack sends a fake notification to a potential victim. The notification directs the victim to a legitimate-looking website or app or to respond to a message wherein the victim enters whatever data the attacker wants. The data may be a username and password, a credit card number, a bank number, or some other piece of sensitive data. Once entered, the attacker can use the information to access what resources the attacker is trying to access.

When preventing these attacks, devices with a user experience are not much different from phones and computers, so they should follow the same kinds of security methods phones and computers use:

	Use multifactor authentication for devices with a user experience.

	Regularly require users to reauthenticate.

	Rotate security keys and certificates often as part of an updated plan.

	Educate users about password policies and the need for resets.

Advanced Persistent Threats

Advanced persistent threats (APTs) are not specific kinds of attacks but rather large-scale attacks used as part of an espionage effort. APTs create a plan that is typically multilayered and intended to extract as much data over an extended period while remaining undetected. The plans typically start by compromising a system through a compromised individual or technical exploitation. Once a system is compromised, an APT attack will typically not execute any offense; instead, the attacker will probe a system to establish a stronger foothold in it. Once a foothold has been established, the attacker will attempt to exfiltrate data from the system and then cover its tracks to prevent detection.

APTs are sophisticated attacks that are difficult to detect. For IoT deployments, a device itself is not likely what the APT is after; instead, it would go after central controls and data housed in the cloud, or beyond that if possible. IoT devices, however, create a large attack surface that an APT might attempt to exploit, similar to how a botnet works. For this reason, device makers should make every effort to security-harden devices and apply security practices at every level to prevent APT attacks from exploiting a computer system through an IoT device.

Managing Threats with Microsoft Defender for IoT

Microsoft has a complete solution for monitoring and managing threats for IoT workloads with Microsoft Defender for IoT. It is both a general-purpose solution and works with IoT and operational technology (OT) found in industrial IoT applications (IIoT):

	Agentless monitoring for networks

	The solution provides tooling that monitors networks using standard network protocols. This allows a user to create a visualization of an IoT deployment and discover where devices are and how they are behaving without needing to install agents on the devices.

	Agent-based threat monitoring and management for devices

	Agent-based threat management requires an agent to be installed on the device before the device leaves the factory or as a device update. These agents work much like traditional endpoint protection for laptops, such as actively monitoring a device for threats, receiving security updates, and sending telemetry about the device, among many other things. The agent works with both unconstrained devices and constrained devices. The constrained agent is tiny, with the source code available so that it can be compiled into a device’s firmware or RTOS.

	Integration with Azure Sentinel and other SIEM/SOAR solutions

	Telemetry from the monitoring tools and agents can be fed into Azure Sentinel, an Azure-based security information and event management (SIEM) system. Sentinel allows rule-based or heuristics-based alerting on telemetry data coming from the device and can alert on threats and sometimes remediate them as they arise.

Defender for IoT is not limited to Azure Sentinel, as it also integrates with other SIEM/SOAR tools like Splunk or QRadar.

Defender for IoT is threat management but itself is no replacement for due diligence when it comes to computing. The best way to stop threats is to prevent them from happening in the first place by using good security practices throughout a device’s lifecycle—from inception to deprovisioning.

The code repository for this book has a checklist that compiles all the security recommendations in this chapter. Use the list to assess your security posture for dealing with the myriad threats to IoT devices.

Summary

Security is a broad category that is not easily nuanced around a particular part of a solution. At a high level, you looked at these actions:

	Ensure that your software is patched and use a process that scans for vulnerabilities and ensures users cannot introduce security flaws into your software.

	Lock down your devices and scan them often to prevent malware from hijacking your device.

	Don’t store any more data on a device than you have to. Encrypt the data on the device.

	Ensure that data is encrypted before transmitting it. Do not use vulnerable versions of protocols.

	Use strong access controls for accessing your cloud-side services and harden your devices against device tampering and device spoofing.

	Put your devices on isolated networks and ensure that a building’s physical security is adequate for an IoT solution.

	Authenticate your users, if you have a user interface on your device, using multifactor authentication and strong authentication practices.

No solution, no matter how well it’s built, is immune to security threats, so it will remain an ongoing part of the solution from its inception until the day you shut it down. Taking steps to mitigate security threats is the best way to prevent security breaches, but still—be prepared for the worst. You’ll be glad you did.

Chapter 15. Further Reading

You’re finally here: the end of an immersive journey through the IoT Landscape on Azure. If you’re feeling a bit overwhelmed, that’s understandable. It’s a broad topic! There are so many moving parts that it’s hard to track everything. To architect solutions, you don’t have to be an expert in everything, but you must understand it well enough to apply it.

Still, there’s much more to learn, and that’s where this chapter comes in. This concluding chapter serves as a bridge between the knowledge you have acquired and the topics that await your exploration because the topics we covered are a deep vertical. I’ll mention several things that I did not cover and recommend other topics for further exploration. So we’ll look at it like this: devices, containers and edge computing, IoT management, and data architecture. Let’s start with devices.

Devices

While this book primarily explores the use of devices for IoT solutions on Microsoft Azure, it’s essential to acknowledge that the world of devices is incredibly vast, and various other applications and technologies exist beyond our scope. In Chapters 2 through 4, you delved into Azure-centric offerings and strategies for incorporating devices into Azure-based solutions. However, there are countless other devices and diverse ways to utilize them in different contexts. To expand your understanding beyond what we’ve covered here, I recommend further exploration of topics related to devices and their applications. They include:

	Microcontroller or Microprocessor

	This is the brain of the device, responsible for processing data and controlling the device’s functions. The book talked about a few classes of devices with constrained and unconstrained devices in Chapter 2. Still, there is nuance around the types of microcontrollers and processors available for IoT, each with its strengths and weaknesses.

	Sensors

	Depending on the device’s purpose, sensors like temperature, humidity, motion, light, and so on are integrated to collect environmental data. How each sensor works and how it can be applied in your device needs exploration. Picking up a book and a kit for these devices and using them with a board is one way to learn.

	Actuators

	Actuators can perform actions based on data or commands. Examples include motors, servos, relays, or LED indicators. While this book focused mostly on data received from sensors, cloud-to-device messaging and onboard controls will invoke actuators. Chapter 5 talked about some of the options.

	Connectivity module

	Chapter 3 discussed the different ways to connect a device, but the hardware that accomplishes this depends on your device. Ethernet, WiFi, Bluetooth, cellular, LoRa, Zigbee, or other technologies enable the device to communicate with other devices or the cloud.

	Power supply

	Power is essential for devices. Determining whether your device will be battery-powered, solar-powered, or connected to a power source is part of designing a device. Power management is crucial for device longevity.

	Memory and storage

	Depending on the complexity of the device, you might need memory for storing data, program code, and configuration settings. Like sensors, actuators, connectivity, and power, there are many options for memory and storage, such as SSDs, eMMC, SD cards, flash memory, and many more.

	User interface (UI)

	If required, components like buttons, switches, touchscreens, or LEDs can be included for user interaction. You must account for how these UI components are exposed and how to work with the input they provide.

	Enclosure

	Design an enclosure to protect the device’s internals from environmental factors and physical damage. Some environments may be places like factories that produce heat or dust. Others may be places exposed to the elements such as precipitation, humidity, temperature extremes, and wind. Other factors may include physical threats from malicious actors.

	Firmware and operating systems

	Firmware is low-level software that runs on more constrained devices, while operating systems are more robust and provide an ecosystem for applications. Chapter 3 mentioned Windows IoT Core, Ubuntu Core, and Yocto Linux as options. Regardless, there’s much to explore for operating systems and firmware.

	Device drivers

	If your device uses various components, you’ll need drivers to interface with sensors, actuators, and other peripherals. You will need to ensure that drivers exist, and if not, create them. Moreover, you’ll have to create interactions with drivers to send and receive data to sensors, actuators, and other components.

	Security measures

	Implement encryption, authentication, and authorization mechanisms to secure data and prevent unauthorized access. Chapter 14 on security covers different kinds of threats and offers mitigating factors to help lower the security threshold of such threats.

In short, there’s a lot to think about regarding devices. To that end, I recommend picking up a few books and getting familiar with a dev kit, even if you’re not the one that is going to build devices.

You can go right with everything that implements the Arduino standard for constrained devices. You can always pick up a MXChip from Microsoft or any number of other Arduino chips. With it, you can usually get a bin full of sensors and actuators to build stuff. For unconstrained devices, look no further than a Raspberry Pi. Raspberry Pi democratized single-board computers. They are small enough to put in a device yet powerful enough to do complex computing tasks, like running AI models against data. Like Arduino, you can get a bin of sensors and actuators and get a good book to help you along. Here are a few books I’d recommend:

	Arduino Cookbook: Recipes to Begin, Expand, and Enhance Your Projects, 3rd ed., by Michael Margolis, Brian Jepson, and Nicholas Robert Weldin (O’Reilly, 2021). This book is replete with many in-depth examples of Arduino. If you plan to do anything with Arduino, you will want this book.

	Programming the Internet of Things: An Introduction to Building Integrated, Device-to-Cloud IoT Solutions by Andrew King (O’Reilly, 2021). King covers many of the nuts and bolts of wiring up sensors and actuators, goes deep into the protocols used by devices, and talks about how to effectively use these for production-ready devices.

	IoT Projects with Arduino Nano 33 BLE Sense: Step-By-Step Projects for Beginners by Agus Kurniawan (Apress, 2021). Kurniawan covers what you need to know to get started with Arduino projects for working with sensors and building in AI.

	Raspberry Pi IoT Projects: Prototyping Experiments for Makers by John C. Shovic (Apress, 2021) is a practical guide to making things with a Raspberry Pi. Shovic has several example projects that are easy to build with Raspberry Pi, and this exposes you to the nature of IoT development for prototyping.

	Raspberry Pi Cookbook: Software and Hardware Problems and Solution, 4th ed., by Simon Monk (O’Reilly, 2023) has everything you need to know and more for programming with a Raspberry Pi.

Getting your device up and running is only part of the equation, though. The Internet of Things has other parts, like edge computing and the cloud.

Edge and Containers

Chapter 6 talked extensively about edge computing and the options from Microsoft. You learned about the Azure IoT runtime and how to use Kubernetes-enabled edge devices for extending the cloud closer to your devices. In all cases, however, these solutions used Docker containers. Docker containers, as you learned, are a way to package and deploy applications consistently across a diverse computing ecosystem. To that end, skilling up on all things containers is critical to expanding your knowledge of edge computing.

But before that, you may want to consider edge topics in general. I would recommend exploring edge concepts and doing some technical deep dives into what differentiates edge computing from IoT devices and how edge computing works with the cloud. For that, I’d recommend reading IoT and Edge Computing for Architects: Implementing Edge and IoT Systems from Sensors to Clouds with Communication Systems, Analytics, and Security by Perry Lea (Packt Publishing, 2020). This book does an amazing job of reviewing everything you need to know about edge computing. Beyond this, you can dive into specifics around containers and IoT.

Containers are another area where you may want to skill up, especially if you intend to use anything on the edge. Containers don’t just happen. They, like all software, have a process that governs everything including how they are built, how they are managed, and how they are deployed. That process involves a set of tools and practices that you should follow.

Containers and GitOps

To get started learning more about containers and GitOps, you should look into resources that cover Docker and Docker development. Docker development involves a set of tools that get you from an app to a working container. One of the best books on this is Docker: Up & Running: Shipping Reliable Containers in Production, 3rd ed., by Sean P. Kane and Karl Matthias (O’Reilly, 2018). This book is older, but it covers many topics, including critical topics related to creating and building at a low level, especially for developers who want to build containers.

Beyond the basics of containers, you may want to familiarize yourself with everything that goes into managing container pipelines that build, deploy, and manage containers using DevOps, a process known as GitOps. For this, look at Repeatability, Reliability, and Scalability Through GitOps: Continuous Delivery and Deployment Codified by Bryan Feuling (Packt Publishing, 2021). GitOps can be accomplished using lots of different tooling. Feuling’s book doesn’t go into any tooling in particular, but it will help you at least understand the practices needed to make it work. It’s difficult not to talk about containers when talking about Kubernetes, especially on the edge.

Kubernetes on the Edge

Kubernetes, as you learned in this book, is all about orchestrating containers. I took you through many practical examples on how to work with Kubernetes for an IoT device. If you’d like to do a deeper dive, there are several books dedicated to Kubernetes, but one of the best is The Kubernetes Book by Nigel Poulton (Nielsen Book Services, 2023). I suggest that you round out your knowledge of how Kubernetes relates to edge computing in particular:

	For a great overview on edge computing with Kubernetes, check out IoT and Edge Computing for Architects: Implementing Edge and IoT Systems from Sensors to Clouds with Communication Systems, Analytics, and Security by Perry Lea (Packt Publishing, 2020). This book covers the technical details independent of any implementation that go into making an IoT edge solution work. It’s a must-read for anyone interested in edge computing for IoT.

	For Azure Arc, you should look at Implementing Hybrid Cloud with Azure Arc: Explore the New-Generation Hybrid Cloud and Learn How to Build Azure Arc-Enabled Solutions by Amit Malik and Daman Kaur (Packt Publishing, 2021). Here, you can do a deep dive into what Azure Arc offers, from deploying and managing Kubernetes clusters to managing the workloads with Azure Arc enabled.

	For Azure Arc–enabled data services, check out Azure Arc-Enabled Data Services Revealed: Deploying Azure Data Services on Any Infrastructure by Ben Weissman (Apress, 2022). While this book is a niche player, it does a decent job of covering the SQL Server–related offerings from Azure Arc.

	You learned about deploying for MicroK8S as part of an edge system in this book. If you want to learn more, try IoT Edge Computing with MicroK8s: A Hands-on Approach to Building, Deploying, and Distributing Production-Ready Kubernetes on IoT and Edge Platforms by Karthikeyan Shanmugam (Packt Publishing, 2022). This book is a practical guide for setting up and managing MicroK8S in a production-ready environment for IoT and is a good complement to books on Azure Arc.

Edge computing is a pretty hot topic as of writing this book. I can only imagine that you will see more books and resources in this space, so keep your eyes open. In any case, the Azure IoT Edge is more settled. You may want to check it out, too.

Azure IoT Edge

The Azure IoT Edge runtime is hard to ignore. Beginning Azure IoT Edge Computing: Extending the Cloud to the Intelligent Edge by David Jensen (Apress, 2019) is a practical guide to everything you need to know about running Azure IoT Edge with containers.

A great free resource is the Microsoft IoT Developers YouTube channel. It’s a trove of videos for all things Azure IoT-related. Regardless of your plan, this one is worth checking out.

Many things that edge computing manages can be a part of the device, even if you are not planning on using edge computing in your IoT solution. Beyond the edge, the next thing you may want to learn more about is IoT management.

IoT Management

The crux of this book is IoT device management and handling messaging to and from the cloud, how to wrangle data, and many other related topics. The lack of resources related to this topic was a big motivator for writing this book, which is why it’s hard to recommend anything.

One area, however, that I spent little time on is twinning with Azure Digital Twin. For that, I suggest picking up Hands-On Azure Digital Twins: A Practical Guide to Building Distributed IoT Solutions by Alexander Meijers (Packt Publishing, 2022). This book focuses on the twinning aspect of creating data models with devices and other data to simulate systems.

As it sits, IoT management is the middleware between the IoT devices and the data systems they feed.

Data Architecture

Data architecture for IoT was a big part of this book because most other books discuss devices or data. Still, it’s good to do a deep dive into data architecture on Azure so that you fully understand the scope of everything you need to do to make your IoT solution successful. A good book on data architecture with Azure in mind is Azure Data and AI Architect Handbook: Adopt a Structured Approach to Designing Data and AI Solutions at Scale on Microsoft Azure by Olivier Mertens and Breght Van Baelen (Packt Publishing, 2023). I have yet to get through this book, but it’s one of the only books I’ve seen that attempts to cover the Azure data landscape through the lens of architecture. It doesn’t cover a breadth of technologies, but it has a very similar presentation to this book, focusing on data architecture.

Beyond this book, I can recommend a few books that go deeper into many of the topics that this book talks about, covering a variety of topics on Azure:

	One excellent resource about a modern data warehouse that uses Azure Synapse, Data Factory, and Data Lake is The Definitive Guide to Azure Data Engineering: Modern ELT, DevOps, and Analytics on the Azure Cloud Platform by Ron C. L’Esteve (Apress, 2021). This book provides broad and deep coverage of these technologies in a way that will sound familiar to what you learned in this book, such as different data states and data processing, data storage, data optimization, and so on.

	For Azure Data Factory, I can recommend two books. These books don’t look at some newer features in Data Factory. Moreover, they are similar enough to one another that I think you could get either one and be fine. Both present everything by example. First, look at Azure Data Factory by Example: Practical Implementation for Data Engineers by Richard Swinbank (Apress, 2021). Second, look at Azure Data Factory Cookbook: Build and Manage ETL and ELT Pipelines with Microsoft Azure’s Serverless Data Integration Service by Dmitry Anoshin, Dmitry Foshin, Roman Storchak, and Xenia Ireton (Packt Publishing, 2020). Either one should work.

	I mentioned Power BI as part of consumption. One of the best books for this is Expert Data Modeling with Power BI: Enrich and Optimize Your Data Models to Get the Best Out of Power BI for Reporting and Business Needs by Soheil Bakhshi (Packt Publishing, 2023). This book only touches on Power BI, but so much of the data and reporting in the Microsoft space uses it. If you plan on reporting with this tool, many of the ideas discussed in my book are fleshed out in practical detail in Bakhshi’s book.

	For data processing that provides more context to streaming and batch data, look at Azure Storage, Streaming, and Batch Analytics: A Guide for Data Engineers by Richard L. Nuckolls (Manning, 2020). It does a great job covering the different technologies for both patterns, regardless of what architecture you may choose to govern your data. Also consider Azure Data Engineering Cookbook: Get Well Versed in Various Data Engineering Techniques in Azure Using This Recipe-Based Guide by Nagaraj Venkatesan and Ahmad Osama (Packt Publishing, 2022). This book is similar but is very practical in its implementation.

	A complementary work to Nuckolls’s book is Data Engineering on Azure by Vlad Riscutia (Manning, 2021). This book is less practical but does talk about some of the topics related to managing data flows with DevOps, security, and governance, three very important topics in today’s data world.

	A book focusing on modeling data using SQL and NoSQL databases is Data Modeling for Azure Data Services: Implement Professional Data Design and Structures in Azure by Peter ter Braake (Packt Publishing, 2021).

	As you have probably gathered, I am a big fan of integrations on Azure with Cosmos DB and Azure Functions. For a book on this subject, check out Building Serverless Apps with Azure Functions and Cosmos DB: Leverage Azure Functions and Cosmos DB for Building Serverless Applications by Hansamali Gamage (BPB Publications, 2021).

	I did not cover Databricks at all in this book in detail but still recommend anyone who wants to use this tool to look at Azure Databricks Cookbook: Accelerate and Scale Real-Time Analytics Solutions Using the Apache Spark-Based Analytics Service by Phani Raj and Vinod Jaiswal (Packt Publishing, 2021). This is another learn-by-example book that helps build practical solutions to various data integration and analytical needs.

	If you want to build and manage data APIs, you may want to check out Mastering Azure API Management: A Practical Approach to Designing and Implementing an API-Centric Enterprise Architecture by Sven Malvik (Apress, 2022). This book is a practical guide for exposing services like Kubernetes and Azure Functions.

Conclusion

In this book, we have embarked on a journey through the intricate landscape of Azure IoT. From the foundational concepts to the advanced methodologies, we have crossed the IoT Landscape from beginning to end, hopefully leaving no stone unturned or no domain unexplored. Throughout our exploration, you witnessed how complex the topic of IoT can be and examined the challenges faced by practitioners in the field. Still, you have solutions that answer some of the hardest challenges.

In closing, I hope this book has served as a valuable resource for both novices seeking an introduction to Azure IoT and IT professionals aiming to deepen their expertise. The ever-evolving landscape of technology ensures that our exploration is far from over, and I encourage each reader to carry forth the torch of curiosity and innovation. As you continue to push the boundaries of what is possible, may the insights gained from these pages contribute to a future where the frontiers of knowledge are limitless, and the pursuit of excellence knows no bounds.

Thank you for joining me on this enlightening journey through Azure IoT. Here’s to the exciting horizons that await as you continue to explore, learn, and create IoT solutions on Azure.

Index
A
	access control lists (ACLs), Azure Data Lake
	access, data (see data access)
	ACID (atomicity, consistency, isolation, durability), Lakehouse
	ACR (Azure Container Registry), Container Basics
	actions on topics, Service Bus, Topic Actions
	actuators, Devices
	ADT (Azure Digital Twins), Azure Digital Twin, IoT Management
	Advanced Message Queuing Protocol (AMQP), Advanced Message Queuing Protocol (AMQP)
	advanced persistent threats (APTs), Advanced Persistent Threats
	ADX (see Azure Data Explorer)
	agent-based threat management, Managing Threats with Microsoft Defender for IoT
	agentless monitoring for networks, Managing Threats with Microsoft Defender for IoT
	aggregate value functions, JavaScript, Azure Stream Analytics
	aggregation, data, Data Processing	in data processing, Data Processing
	edge computing’s advantage in, Aggregations and Filtering Data to Reduce Network Traffic
	and reporting, Reporting Tools
	to save on storage, Summarized data

	AI (see artificial intelligence)
	AI accelerators, AI and ML
	alarms, device, Monitoring Your Solution
	alerts	Azure Monitor, Monitoring and Alerting
	Azure Security Center, Incident Response

	AMQP (Advanced Message Queuing Protocol), Advanced Message Queuing Protocol (AMQP)
	analytics	ADX, Azure Data Explorer (ADX), Azure Data Explorer
	cold path data for predictive, Cold paths
	Log Analytics, Azure Data Explorer (Log Analytics), Azure Sentinel
	OLAP, Online Transaction Processor (OLTP) Versus Online Analytics Processor (OLAP), OLTP as OLAP
	Stream Analytics, Message filtering and enrichment, Azure Stream Analytics-Azure Stream Analytics
	Synapse Analytics, Azure Synapse Analytics, Creating an HTAP with Cosmos DB and Azure Synapse Analytics-Create an Azure Synapse Analytics workspace and link it to Cosmos DB
	versus transactions in optimizing storage, Store Data in an Optimized Form for Its Intended Use
	for users in Application Insights, User Analytics

	anomaly detection, Batch, Azure Batch
	anonymization of data, Data Privacy
	Apache Kafka, HDInsight
	Apache Spark, HDInsight, Azure Data Factory
	APIs (Application Programming Interfaces)	as alternative to SDKs, When All Else Fails, Use the APIs
	DAB, GraphQL
	functional, HTTP APIs, Applications
	program-oriented, HTTP APIs
	requests for data delivery from, HTTP APIs-OData versus GraphQL
	use of IoT data, Data Consumers

	app isolation, for security, App isolation
	App Services, Azure Arc and Kubernetes, Azure Stack Hub, Instrumentation
	append-only storage, Treat Writes as Idempotent
	Application Insights, Azure Application Insights-User Analytics
	APTs (advanced persistent threats), Advanced Persistent Threats
	Arduino, Azure MXChip-MXChip Software
	ARM (Azure Resource Manager) template, Provision Devices with an IoT Hub through the Device Provisioning Service
	ARM processors, and Windows 11, Windows IoT Core
	artificial intelligence (AI)	Batch and AI models, Azure Batch
	and compute offloading to save network bandwidth, Compute Offloading to Save Network Bandwidth
	features for R&D, AI and ML-AI and ML
	with IoT Edge, Bringing the Cloud Closer with AI
	machine learning (see machine learning)
	operationalizing models as data output, Storage

	asynchronous programming, functions, Azure Functions
	asynchronous versus synchronous communication, Synchronous Versus Asynchronous Messaging
	attestation	hardware-based, Security features
	TPM-based, Claiming and Provisioning

	augmented reality, Kinect for, Kinect
	authentication, device, Azure IoT Device SDKs, Security
	auto-forwarders, Service Bus, Auto-Forwarders and Subscription Filtering
	automated testing, enabling for device simulators, Enable Automated Testing-Scale and load testing
	Automation, Event Grid routing, Security Assessments
	Avro data serialization format, Integrated message routing, Data Formats for Datasets
	Azure, Preface, Microsoft as a Cloud Company
	Azure App Services, Azure Arc and Kubernetes, Azure Stack Hub, Instrumentation
	Azure Application Insights, Azure Application Insights-User Analytics
	Azure Arc, Edge Computing, Azure Arc and Kubernetes-Install the Device Simulator to MicroK8S Using the Azure Portal, Azure Logic Apps
	Azure Automation, Event Grid routing, Security Assessments
	Azure Batch, Azure Batch-Set Up the Batch Job
	Azure Blob Storage	and Data Box Gateway, Azure Data Box Gateway
	and Data Lake, Azure Data Lake-General-Purpose Blob Storage Versus Data Lake
	file downloads in, Pull-Style Delivery
	file uploads in, File Uploads, Using a direct method to upload a file to Azure
	and IoT Edge, Storage
	landing data, Azure Blob Storage, Set Up Azure Blob Storage to Land Data-Set Up Azure Blob Storage to Land Data
	partitioning, Partition Your Data Appropriately

	Azure Cache for Redis, Open Source Databases
	Azure CLI, Deploy a Module on IoT Edge, Connect MicroK8S to Azure Arc-Connect MicroK8S to Azure Arc
	Azure Container Apps, Scaling
	Azure Container Registry (ACR), Container Basics
	Azure Cosmos DB (see Cosmos DB)
	Azure Data Box Gateway, Azure Data Box Gateway
	Azure Data Explorer (ADX)	and Azure Monitor, Azure Data Explorer (Log Analytics), Kusto Query Language (KQL), Monitoring and Alerting
	cold path data processing, Azure Data Explorer-Azure Data Explorer
	stream data processing, Azure Data Explorer (ADX), Azure Data Explorer

	Azure Data Factory, Azure Data Factory-Start the Data Flow
	Azure Data Lake, Azure Data Lake-General-Purpose Blob Storage Versus Data Lake
	Azure Data Share, Azure Data Share-Hybrid approaches
	Azure Databricks, HDInsight
	Azure Device Provisioning Service (DPS), IoT Messaging and Management, Azure IoT Device SDKs, Claiming and Provisioning-Provision Devices with an IoT Hub through the Device Provisioning Service
	Azure Digital Twins (ADT), Azure Digital Twin, IoT Management
	Azure Event Grid	Event Grid System Topics, Create an Event Grid System Topic
	file uploads, File Uploads
	for Kubernetes with Arc, Azure Arc and Kubernetes
	message routing with, Event Grid routing-Event Grid routing
	and webhooks, Webhooks

	Azure Event Hubs, Integrated message routing, Event Grid routing, Azure Data Explorer (ADX)
	Azure Files, Pull-Style Delivery
	Azure Functions, Azure Functions	Event Grid routing, Event Grid routing
	Function Apps, Create a Function App-Create a Function App, Azure Functions-Azure Functions, Create Some Functions Save Data-Create Some Functions Save Data
	message filtering and enrichment, Message filtering and enrichment
	Web PubSub and SignalR setup, Setting up Web PubSub and SignalR-Start the service

	Azure HDInsight, Azure Data Lake, HDInsight-HDInsight
	Azure IoT Edge, Edge Computing, Azure IoT Edge-Deploy a Module on IoT Edge	AI capabilities, Bringing the Cloud Closer with AI
	versus Arc with Kubernetes, IoT Edge or Arc with Kubernetes?
	deploying a module, Deploy a Module on IoT Edge-Deploy a Module on IoT Edge
	extensibility, Extensibility (Bring Your Own Code)
	further reading topics, Azure IoT Edge
	installing, Install Azure IoT Edge
	and Kinect, Kinect Cloud Services
	message brokering, Message Brokering-Message filtering and enrichment
	modules, IoT Edge Modules
	protocol gateways for messages, Custom Solutions, Protocol gateway
	SQL database leverage, Data
	storage, Storage
	Stream Analytics integration, Azure Stream Analytics

	Azure IoT Edge modules, IoT Edge Modules
	Azure IoT Hub	ADX integration with, Azure Data Explorer
	AMQP restrictions, Advanced Message Queuing Protocol (AMQP)
	creating new route for Service Bus demo, Create a New Route on IoT Hub
	integrated message routing, Integrated message routing
	and IoT Edge, Azure IoT Edge
	message routing, Message Routing-Setting up message routing
	messaging and management, IoT Messaging and Management-IoT Messaging and Management
	protocol support, Protocols
	in prototyping, Prototype
	provisioning devices, Claiming and Provisioning-Provision Devices with an IoT Hub through the Device Provisioning Service
	twinning devices, Twinning, Device Twinning with IoT Hub-Azure Cosmos DB
	updating devices, Azure IoT Device SDKs

	Azure Kubernetes Services, Scaling
	Azure Logic Apps, Event Grid routing, Azure Logic Apps-Azure Logic Apps, Cold Path Push, Webhooks
	Azure Machine Learning (ML)	for edge computing, Bringing the Cloud Closer with AI
	as extension for Kubernetes with Arc, Azure Arc and Kubernetes
	Power BI’s use of, Power BI
	with Stream Analytics, Azure Stream Analytics
	with Synapse Analytics, Azure Synapse Analytics

	Azure Monitor, Azure Arc and Kubernetes, Azure Data Explorer (ADX), Azure Monitor-Monitoring and Alerting
	Azure MXChip, Azure MXChip-What Makes It Unique?, Committing to a Dev Board
	Azure portal	ARM template, Provision Devices with an IoT Hub through the Device Provisioning Service
	C2D messaging from, Cloud-to-device messaging from the Azure portal
	installing device simulator to MicroK8S, Install the Device Simulator to MicroK8S Using the Azure Portal
	instrumentation setup for Application Insights, Instrumentation

	Azure Resource Manager (ARM) template, Provision Devices with an IoT Hub through the Device Provisioning Service
	Azure RTOS, Real-Time Operating System (RTOS)
	Azure Security Center for IoT, Azure Security Center-Azure Sentinel
	Azure Sentinel, Security Monitoring, Azure Sentinel, Managing Threats with Microsoft Defender for IoT
	Azure Service Bus, Integrated message routing, Event Grid routing, Azure Data Explorer (ADX), Azure Service Bus-Create Some Functions Save Data
	Azure SignalR Service, Azure SignalR Service-Start the service
	Azure Speech Service, Kinect Cloud Services
	Azure Sphere, Azure Sphere-What Makes It Unique?, Committing to a Dev Board, App isolation
	Azure SQL, Azure SQL-Azure SQL, Azure Data Explorer, Azure Data Factory
	Azure SQL Edge, Data
	Azure Stack, Azure Stack-Azure Stack Edge
	Azure Stack Edge, Azure Stack Edge
	Azure Stack HCI, Azure Stack HCI
	Azure Stack Hub, Azure Stack Hub
	Azure Stream Analytics, Message filtering and enrichment, Azure Stream Analytics-Azure Stream Analytics
	Azure Synapse Analytics	and HTAP, Hybrid Transaction Analytics Processor (HTAP), Creating an HTAP with Cosmos DB and Azure Synapse Analytics-Create an Azure Synapse Analytics workspace and link it to Cosmos DB
	and Power BI, Connecting Power BI to Data
	serverless model for lakehouse, Lakehouse
	storage considerations, Azure Synapse Analytics

	Azure Synapse Pipelines, Cold Path Data Processing
	Azure Table storage, Cosmos DB
	Azure Update Management, Security Assessments
	Azure Vision Services, Kinect Cloud Services
	Azure Web PubSub, Azure Web PubSub, Web PubSub versus SignalR Service-Start the service
	Azure-centric devices, Azure-Centric IoT Devices-Summary

B
	bandwidth issues, edge computing advantage, Access to Critical Services Without Bandwidth Constraints
	batch data processing, Data Processing	on Azure, Batch Processing on Azure-Start the Data Flow
	cold path, Cold paths, Batch processes-IoT use cases for batch processing
	in Kappa Architecture, Kappa Architecture
	legacy systems, IoT use cases for batch processing, Disadvantages
	push delivery with cold path, Cold Path Push
	for reports, IoT use cases for batch processing, Disadvantages

	BI (business intelligence) tools, Lakehouse, Business Intelligence Tools-Connecting Power BI to Data
	bidirectional versus unidirectional messaging, Bidirectional Versus Unidirectional Communication, Common Protocols, Hypertext Transfer Protocol (HTTP)
	binary data, messaging, Binary
	Blob Storage (see Azure Blob Storage)
	Bluetooth connectivity, Bluetooth
	body of message, Body-Binary
	body-tracking software, Kinect, Kinect Software, What’s It For?
	botnets, Botnets
	bulk inserts in IoT, IoT use cases for batch processing, Disadvantages
	bulk uploads in IoT, IoT use cases for batch processing, Disadvantages
	Business Critical databases (vCore model), Azure SQL, Azure SQL
	business intelligence (BI) tools, Lakehouse, Business Intelligence Tools-Connecting Power BI to Data

C
	C-based programming languages	as challenge for MXChip users, MXChip Software
	IoT device support for, Compatibility, Constrained Application Protocol (CoAP)

	C2D (cloud-to-device) messaging, IoT Messaging and Management, Device Messaging, Cloud-to-Device (C2D) Messaging
	CAP theorem, Prefer Eventual Consistency over Strong Consistency
	Cassandra API, Cosmos DB, Cosmos DB
	cellular connections, Cellular
	chaining of messages, Service Bus, Auto-Forwarders and Subscription Filtering
	character encoding, messages, Properties, Encoding
	chroot command, Linux, App isolation
	CI/CD (continuous integration/continuous delivery), Build, test, and release
	citizen developers, enabling, Azure Logic Apps
	claiming, device, Device Lifecycle Management, Claiming and Provisioning-Claiming and Provisioning, Lax Access Controls
	cleaning data, Data Preparation
	client-server architecture in IoT, Common Protocols
	cloning a repository for device example, Cloning the Repository
	cloud computing and storage	Azure Sphere cloud services, Azure Sphere Cloud Services
	and edge computing, Cloud, Life on the Edge
	internet’s lack of SLA for cloud-based communication, Commands (Direct Methods)
	load testing of cloud-side components, Scale and load testing
	Microsoft’s involvement in, Microsoft the Software Company
	role in IoT device operations, Cloud
	scale testing of cloud-side components, Scale and load testing

	cloud-connected devices, Microsoft as a Cloud Company
	cloud-to-device (C2D) messaging, IoT Messaging and Management, Device Messaging, Cloud-to-Device (C2D) Messaging
	CoAP (Constrained Application Protocol), Constrained Application Protocol (CoAP)
	code process for device software, Build, test, and release-Build, test, and release
	cold path data processing, Cold paths, Data Movement, Cold Path Data Processing-Summary	ADX, Azure Data Explorer-Azure Data Explorer
	architecture of, Cold Path-IoT use cases for batch processing
	batch processing, Cold paths, Batch processes-IoT use cases for batch processing
	characteristics versus hot path, Which Type of Data Path Should You Use?
	Data Factory, Azure Data Factory-Start the Data Flow
	Lambda Architecture, Lambda Architecture
	in push-style data delivery, Cold Path Push

	collecting data, Collecting Data-Data About the Software on the Device, Data Collection	Azure Monitor, Data Collection
	with sensors, MXChip Hardware, Kinect Software, Hardware Without Dev Boards

	columnar databases, Cosmos DB, Azure Data Explorer (Log Analytics)
	comma-separated values (CSV) data format, Data Formats for Datasets
	command (direct method) messages, C2D, Commands (Direct Methods)-Using a direct method to upload a file to Azure
	communications (see messaging, device)
	compatibility criterion, operating system, Compatibility
	compliance and regulations, Data Localization When Dealing with Data Sovereignty and Security Issues, Data Privacy, Monitoring Your Solution
	compute	Batch’s leveraging with VMs, Azure Batch
	cold path for data to minimize, Cold Path
	cost versus storage, Storage Is Cheap, Compute Is Expensive-Star schemas
	decoupling from storage with data lake, Data Lakes Versus Data Warehouses
	IoT hardware capacity, Hardware
	offloading with edge computing, Compute Offloading to Save Network Bandwidth
	resource component in R&D, Compute
	Windows IoT capacity, What’s It For?

	connectivity, device	and asynchronous messaging advantage, Synchronous Versus Asynchronous Messaging
	edge computing reliability for, Reliable Connectivity for Critical Services, A Disconnected Cloud That Performs with No Network Connection
	further reading on, Devices
	hardware assessment in R&D, Connectivity-Others
	internet connection, IoT Devices
	RTOS for, Real-Time Operating System (RTOS)
	secure communication issue, Security, Insecure Communications
	SLA for, Setting Goals with Service Level Agreements

	consent and transparency issues, Data Privacy
	consistency criterion, operating system, Consistency
	constrained devices, IoT Devices	Azure Sphere, Azure Sphere Hardware
	device hardware, Hardware
	limited compute capacity of, Hardware
	management of, IoT Messaging and Management
	MXChip hardware, MXChip Hardware
	RTOS for, Real-Time Operating System (RTOS)
	security hardening of, Security features

	consumers, data, Data Consumers, Data Consumers-Summary	BI tools, Business Intelligence Tools-Connecting Power BI to Data
	external systems integrations for, External Systems Integrations-External Systems Integrations
	functional applications, Applications
	perspective of, Data Consumers
	predictive analytics and ML, Data Consumers
	and producers in Service Bus, Queues and Topics
	protection responsibilities, Security
	and pull-style data delivery, Pull-Style Delivery
	push-style deliveries to, Data Presentation Layer
	raw data consumers, Raw Data Consumers
	real-time data processing need for, Data Consumers
	reporting tools, Reporting Tools
	security and privacy, Security and Privacy-Data Privacy

	containers and containerization	Azure IoT Edge, Edge Computing
	Azure Sphere, Azure Sphere Software
	Docker, Edge Computing, App isolation, Applying updates to the sample device in a Docker container-Applying updates to the sample device in a Docker container, A Disconnected Cloud That Performs with No Network Connection
	edge computing, Container Basics-Container Basics
	further reading topics, Edge and Containers-Kubernetes on the Edge
	Kubernetes, Edge Computing, Scaling, Azure Arc and Kubernetes-IoT Edge or Arc with Kubernetes?, Kubernetes on the Edge
	and scaling solutions, Scaling
	updating in main sequence with, Applying updates to the sample device in a Docker container-Applying updates to the sample device in a Docker container

	content hash property of message, Properties
	content length property of message, Properties
	content type property of message, Properties
	continuous integration/continuous delivery (CI/CD), Build, test, and release
	correlation ID property, message, Properties
	Cosmos DB	and ADX, Azure Data Explorer
	DAB, GraphQL
	Data Factory demo, Create a Data Sink for Cosmos DB
	and Graph API, Azure Cosmos DB
	and HTAP, Hybrid Transaction Analytics Processor (HTAP), Creating an HTAP with Cosmos DB and Azure Synapse Analytics-Create an Azure Synapse Analytics workspace and link it to Cosmos DB
	limitations with Power BI, Connecting Power BI to Data
	OData implementation, OData
	OLTP solutions, Cosmos DB-Cosmos DB
	saving messages in Service Bus demo, Create Some Functions Save Data-Create Some Functions Save Data
	Table API, Cosmos DB

	cost consideration	monitoring resource utilization, Monitoring Your Solution
	storage versus compute, Storage Is Cheap, Compute Is Expensive-Star schemas

	creation timestamp property, message, Properties
	cross-border data transfers, Data Privacy
	cryptographic microcontrollers, Security features
	CSV (comma-separated values) data format, Data Formats for Datasets
	customer relationship management (CRM), External Systems Integrations
	cybersecurity (see security)

D
	D2C (device-to-cloud) messaging, IoT Messaging and Management, Device Messaging, Device-to-Cloud (D2C) Messaging-Adding enrichments to messages
	dashboards	Azure Monitor, Monitoring and Alerting
	BI tools, Business Intelligence Tools
	operational, Data Consumers

	data	cleaning, Data Preparation
	collecting (see collecting data)
	deduplicating, Data Preparation, Performance Considerations
	enrichment of, Azure IoT Device SDKs, Message filtering and enrichment, Data Processing
	exporting, IoT use cases for batch processing, Azure Data Explorer
	insecure, Insecure Data
	normalizing, Loosen up on normalization, Online Transaction Processor (OLTP) Versus Online Analytics Processor (OLAP), Data Processing, Datasets
	partitioning, Partition Your Data Appropriately-Partition Your Data Appropriately, Azure Data Factory
	preparing, Data Preparation
	privacy concern in classifying, Data Privacy
	states or statelessness, Twinning, Azure Functions, Azure Logic Apps

	data access	controls on Azure, Lax Access Controls
	HTTP APIs, HTTP APIs
	RBAC, Monitoring, Logging, and Security, Data Privacy
	SAS tokens, Claiming and Provisioning, Pull-Style Delivery
	as security issue, Lax Access Controls-Lax Access Controls

	Data API Builder (DAB), GraphQL
	data architecture, Data Processing, Data Architectures-Which Style of Architecture Should You Use?	(see also data processing; storage, data)

	data consumers (see consumers, data)
	data controller extension, Kubernetes with Arc, Azure Arc and Kubernetes
	data ecosystem (see IoT Landscape)
	data engineering, Data Movement
	data estate versus dataset, Datasets
	data flow, Data Factory, Azure Data Factory, Create a Data Flow to Move Data-Start the Data Flow
	data formats for datasets, Data Formats for Datasets-Data Formats for Datasets
	data grooming, Data Preparation
	data ingestion, Real time, Azure Data Explorer, Setting Goals with Service Level Agreements, Monitoring Your Solution
	data input, Data Input
	data lakes, Data Persistence, Azure Data Lake	Azure Data Lake, Azure Data Lake-General-Purpose Blob Storage Versus Data Lake
	compute decoupled from storage in, Data Lakes Versus Data Warehouses
	versus data warehouses, Data Lakes Versus Data Warehouses
	and Delta Architecture, Delta Architecture
	and Lambda Architecture, Lambda Architecture

	data leaks or breaches, Data Leaks
	data localization, with edge computing, Data Localization When Dealing with Data Sovereignty and Security Issues
	data minimalization, privacy concern, Data Privacy
	data modeling, Data Architectures
	data movement, Data Processing-Cold paths, Data Movement-Which Type of Data Path Should You Use?, Azure Data Factory
	data persistence, Data Persistence-Data Persistence, Batch processes
	data pipelines, Data Movement	Azure Synapse Pipelines, Cold Path Data Processing
	Data Factory demo, Azure Data Factory, Create a Pipeline to Move Data
	Service Bus, Azure Service Bus

	data presentation layer, Data Presentation Layer
	data processing, Data Processing-Cold paths, Data Processing Architectures-Summary	batch (see batch data processing)
	data movement, Data Processing-Cold paths, Data Movement-Which Type of Data Path Should You Use?, Azure Data Factory
	data persistence, Data Persistence-Data Persistence, Batch processes
	data processing cycle, Data Processing Cycle-Storage
	and data storage, General Principles for Data Storage-Create Retention Policies, Data Storage (Again)
	HTAP, Hybrid Transaction Analytics Processor (HTAP)-Create an Azure Synapse Analytics workspace and link it to Cosmos DB
	landing data, Landing Your Data-What About File Shares or File Sharing Services?
	OLAP, Online Transaction Processor (OLTP) Versus Online Analytics Processor (OLAP), OLAP Solutions on Azure-Lakehouse
	OLTP, Online Transaction Processor (OLTP) Versus Online Analytics Processor (OLAP)-Open Source Databases

	data servicing layer (see servicing layer)
	data sink, Data Movement, Create a Data Sink for Cosmos DB
	data sovereignty, Data Privacy
	data storage (see storage, data)
	data stream, Hot Path	(see also streaming data processing)

	Data Transaction Unit (DTU) model, Azure SQL
	data warehouses, Data Persistence, Data Lakes Versus Data Warehouses-Data Lakes Versus Data Warehouses	and Lambda Architecture, Lambda Architecture
	OLAP solutions as, Online Transaction Processor (OLTP) Versus Online Analytics Processor (OLAP)
	Power BI analysis using, Connecting Power BI to Data

	database-as-a-service (DBaaS), OLTP Solutions on Azure
	databases	Azure SQL, Azure SQL, Open Source Databases
	columnar, Cosmos DB, Azure Data Explorer (Log Analytics)
	versus datasets, Datasets
	graph database for twinning, Device Twinning with IoT Hub-Azure Cosmos DB
	with IoT Edge, Data
	relational (PostgreSQL), Cosmos DB

	Databricks, HDInsight
	datasets, Data Processing, IoT use cases for batch processing, Disadvantages, Datasets
	DDoS (distributed denial of service) attack, Botnets
	deduplicating data, Data Preparation, Performance Considerations
	Defender for IoT, Security Assessments, Managing Threats with Microsoft Defender for IoT
	Delta Architecture, Delta Architecture-Disadvantages
	Delta data format, Data Formats for Datasets
	Delta Lake, Lakehouse, Delta Architecture
	denial of service (DoS) attacks, DoS
	denormalization, data, Data Processing, Datasets
	dependencies	SDK, SDKs
	setting up sample device or simulator, Dependencies

	deprovisioning, device, Device Lifecycle Management, Deprovisioning
	dev board	app development without, Hardware Without Dev Boards
	committing code to, Committing to a Dev Board

	development planning, How to Try Before You Buy, IoT Edition-Summary
	device claiming, Device Lifecycle Management, Claiming and Provisioning-Claiming and Provisioning, Lax Access Controls
	device ID property, message, Properties
	device management, as custom messaging solution, Device Management
	Device Provisioning Service (DPS), IoT Messaging and Management, Azure IoT Device SDKs, Claiming and Provisioning-Provision Devices with an IoT Hub through the Device Provisioning Service
	device simulator, Device Simulators-A Word About Device Simulator Services, Creating a Device for the Examples-Cloning the Repository, Install the Device Simulator to MicroK8S Using the Azure Portal-Install the Device Simulator to MicroK8S Using the Azure Portal
	device spoofing, Device Spoofing
	device-to-cloud (D2C) messaging, IoT Messaging and Management, Device Messaging, Device-to-Cloud (D2C) Messaging-Adding enrichments to messages
	devices, IoT Devices	adoption rate of, Monitoring Your Solution
	cloud domain, Cloud
	desired properties, IoT Messaging and Management
	development planning for, How to Try Before You Buy, IoT Edition-Summary
	disposal of, Deprovisioning
	domains accessed by, IoT Devices as the Nexus of Three Domains-Cloud
	further reading topics, Devices-Devices
	hardware domain for, Hardware-Hardware
	lifecycle of (see lifecycle management, device)
	management and monitoring, IoT Messaging and Management
	Microsoft’s relationship to, IoT Devices and Microsoft-IoT on Azure: Microsoft’s Combination of Software, Hardware, and Cloud
	registration and provisioning, IoT Messaging and Management
	self-monitoring, Data About the Device
	setting goals for IoT solution, Setting Goals with Service Level Agreements-Setting Goals with Service Level Agreements
	software domain for, Software
	twinning, IoT Messaging and Management, Azure IoT Device SDKs

	dimension tables, Star schemas
	direct method (command) messages, C2D, Commands (Direct Methods)-Using a direct method to upload a file to Azure
	disposal policies for data, Data Privacy
	distributed denial of service (DDoS) attack, Botnets
	distributed tracing, Application Insights, Azure Application Insights
	DNS (domain name system) threats, DNS Threats
	DNSSEC, DNS Threats
	Docker, Edge Computing, App isolation, Applying updates to the sample device in a Docker container-Applying updates to the sample device in a Docker container, A Disconnected Cloud That Performs with No Network Connection
	DoS (denial of service) attacks, DoS
	downloading files for data delivery, Pull-Style Delivery, Hybrid approaches
	DPS (Device Provisioning Service), IoT Messaging and Management, Azure IoT Device SDKs, Claiming and Provisioning-Provision Devices with an IoT Hub through the Device Provisioning Service
	drivers, device, Devices
	DTLS over UDP secure connection, Security
	DTU (Data Transaction Unit) model, Azure SQL
	Dynamics 365, Microsoft as a Cloud Company

E
	edge computing, Edge Computing, Life on the Edge-Summary	Azure Arc, Edge Computing, Azure Arc and Kubernetes-Azure Arc and Kubernetes, Setting Up Arc with MicroK8S-Install the Device Simulator to MicroK8S Using the Azure Portal
	Azure Data Box Gateway, Azure Data Box Gateway
	Azure Stack, Azure Stack-Azure Stack Edge
	and cloud role in IoT devices, Cloud
	containers and containerization, Container Basics-Container Basics
	for data localization, Data Localization When Dealing with Data Sovereignty and Security Issues
	further reading topics, Edge and Containers-Azure IoT Edge
	IoT Edge (see Azure IoT Edge)
	reasons for using, Why Use Edge Computing?-A Disconnected Cloud That Performs with No Network Connection
	and Windows Server IoT, Windows Server IoT

	edge devices (see constrained devices)
	elastic pools, Azure SQL, Azure SQL
	ELT (extract, load, transform), Azure Synapse Analytics
	employee awareness for safeguarding data, Data Privacy
	enclosure, device, Devices
	encoding property of messages, Properties, Encoding
	encryption, message, Azure IoT Device SDKs, Security
	energy management systems, integrations for, External Systems Integrations
	enrichment, data, Azure IoT Device SDKs, Message filtering and enrichment, Data Processing
	enterprise resource planning (ERP), Microsoft as a Cloud Company, External Systems Integrations
	environment, collecting data from, Data Collected from the Environment
	ETL (extract, transform, load)	batch processing, Batch Processing on Azure, Azure Batch
	and cold path data, Cold paths
	Data Factory data flows, Azure Data Factory
	Lambda Architecture, Advantages
	Synapse Analytics, Azure Synapse Analytics

	Event Grid (see Azure Event Grid)
	Event Grid System Topics, Create an Event Grid System Topic
	Event Hubs, Integrated message routing, Event Grid routing, Azure Data Explorer (ADX)
	events	alarm level, Events
	edge computing for better response times, Better Response Time to Events on Premises
	near real-time data processing for, Near real time
	severity assignment, Properties
	SIEM, Azure Sentinel
	SSE, Azure SignalR Service

	eventual versus strong consistency, data storage, Prefer Eventual Consistency over Strong Consistency-Prefer Eventual Consistency over Strong Consistency
	exporting data, IoT use cases for batch processing, Azure Data Explorer
	extensibility, with IoT Edge, Extensibility (Bring Your Own Code)
	Extensible Markup Language (XML), Extensible Markup Language (XML), Data Formats for Datasets
	Extensible Messaging and Presence Protocol (XMPP), Extensible Messaging and Presence Protocol (XMPP)
	external applications and APIs, use of IoT data, Data Consumers

F
	façade pattern, servicing layer, The Servicing Layer
	fact tables, Star schemas
	fault detection and diagnostics, Monitoring Your Solution
	features in ML data, IoT use cases for batch processing
	file shares or file sharing services, landing data, What About File Shares or File Sharing Services?
	File Transfer Protocol (FTP), Cold Path Push, Pull-Style Delivery
	file transfers	avoiding in messaging, Binary
	Data Box Gateway, Azure Data Box Gateway
	direct method in conducting, Using a direct method to upload a file to Azure-Using a direct method to upload a file to Azure
	downloads for data delivery, Pull-Style Delivery, Hybrid approaches
	uploads for messages, File Uploads

	filtering data	edge computing, Aggregations and Filtering Data to Reduce Network Traffic, Message filtering and enrichment
	Service Bus subscriptions, Auto-Forwarders and Subscription Filtering

	firmware, device, Devices
	flattening data (denormalization), Data Processing, Datasets
	formatting of IoT messages, Message Formatting-Binary
	FreeRTOS, Real-Time Operating System (RTOS)
	FTP (File Transfer Protocol), Pull-Style Delivery
	Function Apps, Data, Create a Function App-Create a Function App, Azure Functions-Azure Functions, Create Some Functions Save Data-Create Some Functions Save Data
	functional APIs, HTTP APIs
	functional applications for consumers, Applications

G
	gateway devices, Custom Solutions, Azure IoT Edge, Azure Data Box Gateway
	general messages, C2D, General Messages
	General Purpose databases (vCore model), Azure SQL, Azure SQL
	general-purpose input/output (GPIO), What’s It For?, Hardware Without Dev Boards
	geo-replication feature, Blob Storage, Azure Blob Storage
	Git (GitHub repositories), Git
	GitOps, further reading topics, Containers and GitOps
	Graph API, Cosmos DB, Cosmos DB
	graph database, for twinning, Device Twinning with IoT Hub-Azure Cosmos DB
	graphics processing units (GPUs), AI and ML, Bringing the Cloud Closer with AI
	GraphQL, GraphQL-OData versus GraphQL

H
	Hadoop Distributed File System (HDFS) protocol, Azure Data Lake, HDInsight, Pull-Style Delivery
	Hadoop ecosystem, HDInsight, HDInsight
	hard disk drives (HDDs), Partition Your Data Appropriately
	hardware, Hardware-Hardware	constraints on device, Hardware, MXChip Hardware
	development without dev board, Hardware Without Dev Boards
	installing IoT Edge as appliance, Azure IoT Edge
	IoT capacity, Hardware
	Microsoft’s history with, Microsoft as a Hardware Company
	R&D considerations, Hardware-Others
	SDK amendments to interact with, Azure IoT Device SDKs
	storage considerations, Partition Your Data Appropriately
	virtualization for device simulation, Experiment Using Virtualization-Experiment Using Virtualization

	hardware-as-a-service, Azure Stack Edge as, Azure Stack Edge
	hash, message content, Properties
	HCI (Hyperconverge Infrastructure), Azure Stack HCI
	HDDs (hard disk drives), Partition Your Data Appropriately
	HDF5 (Hierarchical Data Format version 5), Data Formats for Datasets
	HDFS (Hadoop Distributed File System) protocol, Azure Data Lake, HDInsight, Pull-Style Delivery
	HDInsight, Azure Data Lake, HDInsight-HDInsight
	health monitoring for device, Monitoring Your Solution
	Helm package manager, Kubernetes, Connect MicroK8S to Azure Arc
	high-level apps, Azure Sphere, Azure Sphere Software
	high-performance compute (HPC), Azure Batch, Azure Batch
	historical analysis, cold path data, Cold paths
	hopping window, near real-time data processing, Near real time
	hot path data processing, Hot paths, Hot Path Data Processing-Summary	Azure Functions, Azure Functions
	batch processing restrictions on, Batch processes
	characteristics versus cold path, Which Type of Data Path Should You Use?
	Kappa Architecture, Kappa Architecture
	Lambda Architecture, Lambda Architecture
	Logic Apps, Azure Logic Apps-Azure Logic Apps
	messaging, Messaging Platforms
	in push-style data delivery, Hot Path Push-Webhooks
	real-time and near real-time processing role, Hot Path-Near real time
	Service Bus, Azure Service Bus-Create Some Functions Save Data
	Stream Analytics, Azure Stream Analytics-Azure Stream Analytics

	HPC (high-performance compute), Azure Batch, Azure Batch
	HTTP APIs, Data Share, HTTP APIs-OData versus GraphQL
	hybrid approaches, Data Share, Hybrid approaches
	hybrid transactional/analytical processing (HTAP), Hybrid Transaction Analytics Processor (HTAP)-Create an Azure Synapse Analytics workspace and link it to Cosmos DB	OLAP and OLTP, OLTP as OLAP
	Power BI analysis using, Connecting Power BI to Data
	Synapse Analytics and Cosmos DB, Hybrid Transaction Analytics Processor (HTAP), Creating an HTAP with Cosmos DB and Azure Synapse Analytics-Create an Azure Synapse Analytics workspace and link it to Cosmos DB

	Hyperconverge Infrastructure (HCI), Azure Stack HCI
	Hyperscale model, Azure SQL, Azure SQL
	Hypertext Transfer Protocol (HTTP), Hypertext Transfer Protocol (HTTP)-Hypertext Transfer Protocol (HTTP), Webhooks-Webhooks
	hypervisors, Security features

I
	image and video processing, Batch, Azure Batch
	in-place data sharing, Azure Data Share
	incident response, Security Center, Incident Response
	industrial IoT (IIoT), Managing Threats with Microsoft Defender for IoT
	information architecture, Data Architectures
	ingesting data, Real time, Azure Data Explorer, Setting Goals with Service Level Agreements, Monitoring Your Solution
	input bindings, Functions, Azure Functions
	input/output operations per second (IOPs), Partition Your Data Appropriately
	instrumentation, application, Instrumentation
	integrated message routing, Integrated message routing
	integration testing, Integration and regression testing
	internet connectivity, IoT Devices	(see also connectivity, device)

	Internet of Things (IoT), Preface	(see also devices)

	IOPs (input/output operations per second), Partition Your Data Appropriately
	IoT Edge (see Azure IoT Edge)
	IoT Landscape, The IoT Landscape-Conclusion	Azure-centric devices, Azure-Centric IoT Devices-Summary
	data consumers, Data Consumers
	data persistence, Data Persistence-Data Persistence
	data presentation layer, Data Presentation Layer
	data processing, Data Processing-Cold paths
	development planning, How to Try Before You Buy, IoT Edition-Summary
	devices, IoT Devices
	edge computing, Edge Computing
	messaging and management, IoT Messaging and Management-IoT Messaging and Management
	monitoring, logging, and security, Monitoring, Logging, and Security-Monitoring, Logging, and Security

	IoT on Azure, IoT on Azure: Microsoft’s Combination of Software, Hardware, and Cloud-Summary

J
	JavaScript (Node.js), Node.js, Azure Stream Analytics
	JavaScript Object Notation (JSON), JavaScript Object Notation (JSON), Encoding, Data Formats for Datasets
	job setup, batch processing, Set Up the Batch Job

K
	Kappa Architecture, Kappa Architecture-Disadvantages, Which Style of Architecture Should You Use?, Azure Stream Analytics
	key performance indicators (KPIs), Monitoring Your Solution-Monitoring Your Solution
	key rotations, main sequence updates, Updates
	key storage, TPMs, Security features
	keys, revoking during deprovisioning, Deprovisioning
	Kinect, Kinect-What Makes It Unique?
	Kubernetes, Edge Computing, Scaling, Azure Arc and Kubernetes-IoT Edge or Arc with Kubernetes?, Kubernetes on the Edge
	Kusto Query Language (KQL), Azure Data Explorer, Kusto Query Language (KQL)

L
	labels for ML data, IoT use cases for batch processing
	lakehouses, Lakehouse
	Lambda Architecture, Lambda Architecture-Disadvantages
	latency measures, SLA for, Setting Goals with Service Level Agreements
	legacy systems, batch processing in, IoT use cases for batch processing, Disadvantages
	lifecycle management, device, The Device Lifecycle-Summary	Azure Sphere contribution to, What Makes It Unique?
	deprovisioning, Device Lifecycle Management, Deprovisioning
	device claiming, Device Lifecycle Management, Claiming and Provisioning-Claiming and Provisioning, Lax Access Controls
	main sequence, Main Sequence-Applying updates to the sample device in a Docker container
	manufacturing, Manufacturing
	R&D phase, Research and Design-Build, test, and release
	shipping phase, Shipping

	Linux	Azure Sphere, Azure Sphere Software
	hardware compatibility of, Compatibility
	Microsoft’s acceptance of, Microsoft the Software Company
	operating system security with, Security features
	virtualization with Ubuntu, Experiment Using Virtualization

	Live Metrics Stream, Application Insights, Instrumentation
	load testing of cloud-side components, Scale and load testing
	Log Analytics Workspace, Azure Data Explorer (Log Analytics)
	Log Analytics, Sentinel, Azure Sentinel
	logging tools and processes, Monitoring, Logging, and Security, Monitoring and Alerting, Application Logging
	Logic Apps, Event Grid routing, Azure Logic Apps-Azure Logic Apps, Cold Path Push, Webhooks
	long polling, Bidirectional Versus Unidirectional Communication, Hypertext Transfer Protocol (HTTP), Azure SignalR Service
	long-term storage, cold path data, Cold paths
	long-term support (LTS) model for OS updates, Consistency

M
	machine learning (ML)	Azure ML, Bringing the Cloud Closer with AI, Azure Arc and Kubernetes, Azure Synapse Analytics, Azure Stream Analytics, Power BI
	Azure Synapse, Azure Synapse Analytics
	batch processing for, IoT use cases for batch processing
	dataset generation for, Data Processing
	features for R&D, AI and ML-AI and ML
	and Kappa Architecture, Disadvantages

	main sequence	communication, Communication
	in device lifecycle, Device Lifecycle Management, Main Sequence-Applying updates to the sample device in a Docker container
	security best practices, Lax Access Controls
	twinning, Twinning-Azure Cosmos DB
	updates, Updates-Applying updates to the sample device in a Docker container

	malware, Malware-Ransomware
	man-in-the-middle attacks, Man-in-the-Middle
	Managed Instances model, Azure SQL, Azure SQL
	manufacturing, Manufacturing, Lax Access Controls
	manufacturing execution systems (MES), External Systems Integrations
	MapReduce, HDInsight
	Maria DB, Azure SQL for, Open Source Databases
	materialized views, ADX, Azure Data Explorer, Kusto Query Language (KQL)
	MCU (microcontroller unit), Hardware
	memory, device, Devices
	message brokering, Real-Time Versus Store-and-Forward Messaging, MQ Telemetry Transport (MQTT), Message Brokering-Message filtering and enrichment, Azure Service Bus
	message enrichment, IoT Edge, Azure IoT Device SDKs, Message filtering and enrichment
	message ordering, disabling for Service Bus, Performance Considerations
	message routing, Message Routing-Extensible Messaging and Presence Protocol (XMPP)
	messaging, device, IoT Messaging and Management-IoT Messaging and Management, Device Messaging-Summary	bidirectional versus unidirectional, Bidirectional Versus Unidirectional Communication, Common Protocols, Hypertext Transfer Protocol (HTTP)
	custom solutions, Custom Solutions-Integrations with Azure
	D2C, Device-to-Cloud (D2C) Messaging-Adding enrichments to messages
	formatting of IoT messages, Message Formatting-Binary
	hot path data movement in, Messaging Platforms
	monitoring throughput, success rates, and response times, Monitoring Your Solution
	properties of messages, Properties-Properties
	protocols, Common Protocols, Protocols
	real-time data processing, Real time
	real-time versus store-and-forward, Real-Time Versus Store-and-Forward Messaging
	SDKs for, Azure IoT Device SDKs
	synchronous versus asynchronous, Synchronous Versus Asynchronous Messaging

	metadata, message, Properties-Properties
	metrics monitoring type, Monitoring and Alerting
	microcontroller unit (MCU), Hardware
	microcontrollers (microprocessors), Devices
	MicroK8S, Azure Arc and Kubernetes, Setting Up Arc with MicroK8S-Install the Device Simulator to MicroK8S Using the Azure Portal
	Microsoft Azure (see entries beginning with Azure)
	Microsoft Defender for IoT, Security Assessments, Managing Threats with Microsoft Defender for IoT
	Microsoft Dynamics 365, Microsoft as a Cloud Company
	Microsoft Office 365, Microsoft as a Cloud Company
	Microsoft, software, hardware, and cloud provider, IoT Devices and Microsoft-Microsoft as a Cloud Company
	MIME (Multipurpose Internet Mail Extensions), Properties
	Minikube, Azure Arc and Kubernetes
	minimum viable product, identifying, Minimum viable product
	MiroK3S, Azure Arc and Kubernetes
	ML (see machine learning)
	Mongo API, Cosmos DB, Cosmos DB
	MongoDB, Hybrid Transaction Analytics Processor (HTAP)
	monitoring tools and processes, Monitoring, Logging, and Security-Monitoring, Logging, and Security, Monitoring and Logging-Summary	Application Insights, Azure Application Insights-User Analytics
	Azure Monitor, Azure Monitor-Monitoring and Alerting
	consumer-facing, Data Consumers
	KPIs, Monitoring Your Solution-Monitoring Your Solution
	Security Center, Azure Security Center-Azure Sentinel
	setting goals for IoT solution, Setting Goals with Service Level Agreements-Setting Goals with Service Level Agreements

	MQ Telemetry Transport (MQTT), MQ Telemetry Transport (MQTT), Hypertext Transfer Protocol (HTTP)
	multidimensional data models, OLAP Solutions on Azure
	Multipurpose Internet Mail Extensions (MIME), Properties
	MXChip, Azure MXChip-What Makes It Unique?, Committing to a Dev Board
	MySQL, Azure SQL for, Open Source Databases

N
	near real-time data processing, Warm paths, Near real time-Near real time
	Neo4J, Cosmos DB
	.NET Framework, Microsoft the Software Company
	Network File System (NFS), Azure Blob Storage, Pull-Style Delivery
	network security issues, Lax Network Security
	Node.js, Node.js
	normalization, data, Loosen up on normalization, Online Transaction Processor (OLTP) Versus Online Analytics Processor (OLAP), Data Processing, Datasets
	notification ecosystem for devices, Applications, Monitoring and Alerting

O
	OCR (optical character recognition), Batch, Azure Batch
	OData (Open Data Protocol), OData-OData, OData versus GraphQL
	Office 365, Microsoft as a Cloud Company
	online analytics processor (OLAP), Online Transaction Processor (OLTP) Versus Online Analytics Processor (OLAP), OLAP Solutions on Azure-Lakehouse
	online time for device, monitoring, Monitoring Your Solution
	online transaction processor (OLTP), Online Transaction Processor (OLTP) Versus Online Analytics Processor (OLAP), OLTP Solutions on Azure-Open Source Databases, OLTP as OLAP, Azure Data Explorer
	online versus offline, optimizing data storage, Store Data in an Optimized Form for Its Intended Use
	Open Data Protocol (OData), OData-OData, OData versus GraphQL
	open source databases, Azure SQL, Open Source Databases
	operating systems	Azure Stack HCI, Azure Stack HCI
	containers’ affinity for particular, Container Basics
	research and design considerations, Operating systems-Consistency
	updating, Updates

	operational technology (OT), Defender with, Managing Threats with Microsoft Defender for IoT
	optical character recognition (OCR), Batch, Azure Batch
	Optimized Row Columnar (ORC) data format, Data Formats for Datasets
	output binding, Functions, Azure Functions
	output, data processing, Output
	“over the air” (OTA) software updates, Updates

P
	Parquet data format, Data Formats for Datasets
	partitioning, data, Partition Your Data Appropriately-Partition Your Data Appropriately, Azure Data Factory
	PC as device for demos, Hardware Without Dev Boards-Explore the Code
	performance (see scalability and performance)
	perimeter versus edge computing, Life on the Edge
	persistence, data, Data Persistence-Data Persistence, Batch processes
	personally identifiable information (PII), Data Privacy
	phishing schemes, Social Engineering
	physical threats to devices, Physical Threats
	pipelines (see data pipelines)
	platform downtime, monitoring, Monitoring Your Solution
	platform updates, main sequence, Updates
	platform-as-a-service (PaaS), IoT Messaging and Management, Life on the Edge
	pool configuration for VMs, Batch job, Set Up the Batch Job
	PostgreSQL API, Cosmos DB, Open Source Databases
	Power Automate, Event Grid routing
	Power BI, Power BI-Connecting Power BI to Data
	Power over Ethernet (PoE), Ethernet
	power supply, Devices
	predictions and forecasting, Cold paths, Data Processing
	presentation layer, Data Presentation Layer
	privacy, data, Data Privacy-Data Privacy
	Private Key Infrastructure (PKI), Claiming and Provisioning
	processing of data (see data processing)
	producers and consumers, Service Bus, Queues and Topics
	program-oriented APIs, HTTP APIs
	proof of concept phase, R&D, Proof of concept
	properties of messages, Properties-Properties
	protocol gateways, Custom Solutions, Protocol gateway
	protocols, IoT Messaging and Management, Bidirectional Versus Unidirectional Communication	AMQP, Advanced Message Queuing Protocol (AMQP)
	CoAP, Constrained Application Protocol (CoAP)
	FTP, Cold Path Push, Pull-Style Delivery
	HDFS, Azure Data Lake, HDInsight, Pull-Style Delivery
	IoT Hub, Protocols
	messaging, Common Protocols, Protocols
	OData, OData-OData, OData versus GraphQL
	SDKs as wrappers for IoT devices, Azure IoT Device SDKs
	SMB, Pull-Style Delivery
	XMPP, Extensible Messaging and Presence Protocol (XMPP)

	prototyping, R&D, Prototype
	provisioning, device, Device Lifecycle Management	DPS, IoT Messaging and Management, Azure IoT Device SDKs, Claiming and Provisioning-Provision Devices with an IoT Hub through the Device Provisioning Service
	security best practices, Lax Access Controls

	pseudonymization of data, Data Privacy
	publisher/subscriber model, MQTT, MQ Telemetry Transport (MQTT)
	pull-style data delivery, Pull-Style Delivery-Pull-Style Delivery
	push-style deliveries to consumers, Data Presentation Layer, Push-Style Delivery-Webhooks

Q
	Qemu, Experiment Using Virtualization, Build, test, and release
	querying data	Azure SQL, Azure SQL-Azure SQL, Azure Data Explorer, Azure Data Factory
	with BI tools, Business Intelligence Tools
	GraphQL, GraphQL-OData versus GraphQL
	KQL, Azure Data Explorer, Kusto Query Language (KQL)
	OData, OData-OData
	PostgreSQL, Cosmos DB, Open Source Databases
	SQL server, Data, Azure Data Factory
	Stream Analytics, Azure Stream Analytics

	Queue Storage, Event Grid routing
	queues and topics, Service Bus, Queues and Topics-Topic Actions

R
	ransomware, Ransomware
	Raspberry Pi, Experiment Using Virtualization, Committing to a Dev Board
	raw data	consumers of, Raw Data Consumers
	storage structure for, Storage

	raw storage (data lakes), Data Persistence
	RBAC (role-based access control), Monitoring, Logging, and Security, Data Privacy
	reads versus writes, optimizing data storage, Store Data in an Optimized Form for Its Intended Use
	real-time analytics, and ADX, Azure Data Explorer
	real-time apps, Azure Sphere, Azure Sphere Software
	real-time data consumption, Business Intelligence Tools, Business Intelligence Tools
	real-time data processing, Data Processing	consumer need for, Data Consumers
	hot path data, Hot paths, Real time-Real time
	messaging and broadcasting, Real-Time Versus Store-and-Forward Messaging, Real time, Azure SignalR Service-Start the service

	real-time operating system (RTOS), Real-Time Operating System (RTOS)
	recovery point objectives (RPOs), SLA for, Setting Goals with Service Level Agreements
	recovery time objectives (RTOs), SLAs for, Setting Goals with Service Level Agreements
	Redis, Azure Cache for, Open Source Databases
	reference data, Stream Analytics, Azure Stream Analytics
	regression testing, Integration and regression testing
	relational database (PostgreSQL), Cosmos DB, Open Source Databases
	remote database management systems (RDMBS), Storage Is Cheap, Compute Is Expensive
	remote procedure call (RPC), in C2D communication, Commands (Direct Methods)
	reporting	batch processing for, IoT use cases for batch processing, Disadvantages
	versus BI tools for data consumers, Business Intelligence Tools-Business Intelligence Tools
	servicing layer, Reporting Tools
	SLA for, Setting Goals with Service Level Agreements

	research and design (R&D), device lifecycle, Device Lifecycle Management, Research and Design-Build, test, and release	hardware, Hardware-Others
	minimum viable product, Minimum viable product
	proof of concept phase, Proof of concept
	prototyping, Prototype
	security best practices, Lax Access Controls
	software, Software-Build, test, and release

	resident datasets, BI tools, Business Intelligence Tools
	resource-constrained devices (see constrained devices)
	response times	message, Better Response Time to Events on Premises
	SLA for expected, Setting Goals with Service Level Agreements

	RESTful data access APIs, OData
	retention policies for data, Create Retention Policies, Azure Blob Storage, Data Privacy
	role-based access control (RBAC), Monitoring, Logging, and Security, Data Privacy
	routing of messages, Message Routing-Setting up message routing
	RPOs (recovery point objectives), SLA for, Setting Goals with Service Level Agreements
	RTOS (real-time operating system), Real-Time Operating System (RTOS)
	RTOs (recovery time objectives), SLAs for, Setting Goals with Service Level Agreements

S
	SAS (Shared Access Signature) tokens, Claiming and Provisioning, Pull-Style Delivery, Hybrid approaches
	scalability and performance, Scalable Data Architecture-Summary	asynchronous messaging, Synchronous Versus Asynchronous Messaging
	HTAP, Hybrid Transaction Analytics Processor (HTAP)-Create an Azure Synapse Analytics workspace and link it to Cosmos DB
	IoT messaging and management, IoT Messaging and Management
	landing data, Landing Your Data-What About File Shares or File Sharing Services?
	monitoring, Monitoring Your Solution
	OLAP, Online Transaction Processor (OLTP) Versus Online Analytics Processor (OLAP), OLAP Solutions on Azure-Lakehouse
	OLTP, Online Transaction Processor (OLTP) Versus Online Analytics Processor (OLAP)-Open Source Databases
	principles for, General Principles for Data Storage-Create Retention Policies
	scaling of messaging, Scaling
	Service Bus, Performance Considerations
	servicing layer’s contribution, The Servicing Layer

	scalar value functions, JavaScript, Azure Stream Analytics
	scale testing of cloud-side components, Scale and load testing
	SDKs (software development kits), IoT device, Azure IoT Device SDKs-When All Else Fails, Use the APIs, SDKs
	seasonality, time series data, Azure Data Explorer
	secure communication protocols, IoT Messaging and Management
	security, Monitoring, Logging, and Security, IoT Security-Summary	app isolation in device software, App isolation
	APTs, Advanced Persistent Threats
	Azure Sphere cloud services, Azure Sphere Cloud Services
	connectivity issues, Connectivity-Others
	for consumers, Security and Privacy-Data Privacy
	as custom messaging solution, Security
	data access control issues, Lax Access Controls-Lax Access Controls
	data leaks or breaches, Data Leaks
	Defender for IoT, Security Assessments, Managing Threats with Microsoft Defender for IoT
	in device lifecycle, Device Lifecycle Management
	device mechanisms for, Devices
	device spoofing, Device Spoofing
	DNS threats, DNS Threats
	DoS attacks, DoS
	DPS, IoT Messaging and Management
	and edge computing for data localization, Data Localization When Dealing with Data Sovereignty and Security Issues
	features for R&D, Security features
	insecure communications, Insecure Communications
	insecure data, Insecure Data
	key rotations, main sequence updates, Updates
	malware, Malware-Ransomware
	man-in-the-middle attacks, Man-in-the-Middle
	MQTT drawbacks, MQ Telemetry Transport (MQTT)
	network security issues, Lax Network Security
	operating systems, Security features
	physical threats, Physical Threats
	and privacy, Data Privacy-Data Privacy
	R&D best practices, Lax Access Controls
	Security Center, Azure Security Center-Azure Sentinel
	social engineering attacks, Botnets, Social Engineering
	software vulnerabilities, Software Vulnerabilities

	security information and event management (SIEM), Azure Sentinel, Managing Threats with Microsoft Defender for IoT
	security, orchestration, automation, and response (SOAR), Azure Sentinel, Managing Threats with Microsoft Defender for IoT
	semi-structured data, Datasets
	sending timestamp property, message, Properties
	sensors	development with PC, Hardware Without Dev Boards
	Kinect, Kinect Software
	MXChip, MXChip Hardware

	Sentinel, Security Monitoring, Azure Sentinel, Managing Threats with Microsoft Defender for IoT
	Server Message Block (SMB) protocol, Pull-Style Delivery
	Server-Sent Events (SSE), Azure SignalR Service
	serverless solutions	Azure Functions as, Azure Functions
	Azure SQL, Azure SQL
	Logic Apps, Azure Logic Apps
	Synapse Analytics, Lakehouse

	Service Bus, Integrated message routing, Event Grid routing, Azure Data Explorer (ADX), Azure Service Bus-Create Some Functions Save Data
	Service Health, Azure Monitor, Monitoring and Alerting
	service level agreements (SLAs), Commands (Direct Methods), Setting Goals with Service Level Agreements-Setting Goals with Service Level Agreements
	servicing layer, The Servicing Layer-Summary	Azure Data Share, Azure Data Share-Hybrid approaches
	consumer perspective, Data Consumers
	data formats, Data Formats for Datasets-Data Formats for Datasets
	datasets, Datasets
	pull-style data delivery, Pull-Style Delivery-Pull-Style Delivery
	push-style data delivery, Data Presentation Layer, Push-Style Delivery-Webhooks
	reports from, Reporting Tools

	sessions, turning off in Service Bus, Performance Considerations
	severity property, message, Properties
	shadow IT, Azure Logic Apps
	Shared Access Signature (SAS) tokens, Claiming and Provisioning, Pull-Style Delivery, Hybrid approaches
	sharing of files, landing data, What About File Shares or File Sharing Services?
	shipping phase, device lifecycle, Shipping
	SIEM (security information and event management), Azure Sentinel, Managing Threats with Microsoft Defender for IoT
	simplicity criterion, operating system, Simplicity
	SLAs (service level agreements), Commands (Direct Methods), Setting Goals with Service Level Agreements-Setting Goals with Service Level Agreements
	sliding window, near real-time data processing, Near real time
	SMB (Server Message Block) protocol, Pull-Style Delivery
	SnapCraft, Experiment Using Virtualization, App isolation, Set Up MicroK8S
	snapshot-based data sharing, Azure Data Share
	snowflake schema, Star schemas
	SOAR (security, orchestration, automation, and response), Azure Sentinel, Managing Threats with Microsoft Defender for IoT
	social engineering attacks, Botnets, Social Engineering
	soft deletes feature, Blob Storage, Azure Blob Storage
	software, Software	build, test, release process, Build, test, and release-Build, test, and release
	collecting data about, Data About the Software on the Device
	versus hardware-based TPMs, Security features
	as original Microsoft focus, Microsoft the Software Company
	patches and updates for, Device Lifecycle Management
	R&D, Software-Build, test, and release
	security vulnerabilities, Software Vulnerabilities
	updating during main sequence, Updates

	software development kits (SDKs), IoT device, Azure IoT Device SDKs-When All Else Fails, Use the APIs, SDKs
	solid state drives (SSDs), Partition Your Data Appropriately
	speech and vision services, Kinect, Kinect-What Makes It Unique?
	SQL API, Cosmos DB, Cosmos DB, Hybrid Transaction Analytics Processor (HTAP)
	SQL server, Data, Azure Data Factory
	SQL Server Integration Services (SSIS), Azure Data Factory
	SQL Server Reporting Services (SSRS), Reporting Tools
	SQL VMs, Azure SQL, Azure SQL
	SSDs (solid state drives), Partition Your Data Appropriately
	SSE (Server-Sent Events), Azure SignalR Service
	star schema, Star schemas, Online Transaction Processor (OLTP) Versus Online Analytics Processor (OLAP)
	states, data, Twinning, Azure Functions, Azure Logic Apps
	stationarity, time series data, Azure Data Explorer
	Storage Tables API, OData
	storage, data	Azure Table, Cosmos DB
	Blob Storage (see Azure Blob Storage)
	cost versus compute, Storage Is Cheap, Compute Is Expensive-Star schemas
	in data processing, General Principles for Data Storage-Create Retention Policies, Data Storage (Again)
	formats for, Datasets
	integrated message routing for accounts, Integrated message routing
	IoT Edge, Storage
	landing data, Landing Your Data-What About File Shares or File Sharing Services?
	long-term, Cold paths
	optimizing form for intended use, Store Data in an Optimized Form for Its Intended Use
	of output from data processing, Storage
	partitioning, Partition Your Data Appropriately-Partition Your Data Appropriately, Azure Data Factory
	principles for, General Principles for Data Storage-Create Retention Policies
	separating reads and writes, Separate Reads and Writes
	strong versus eventual consistency, Prefer Eventual Consistency over Strong Consistency-Prefer Eventual Consistency over Strong Consistency, Cosmos DB
	structure for raw data, Storage
	Synapse Analytics, Azure Synapse Analytics
	TPM keys, Security features
	wiping data as part of deprovisioning, Deprovisioning
	writes, treating as idempotent, Treat Writes as Idempotent

	streaming data processing	ADX for, Azure Data Explorer (ADX), Azure Data Explorer
	Azure Functions advantages for, Azure Functions
	and Kappa Architecture, Advantages
	Live Metrics Stream, Instrumentation
	messaging and broadcasting, Real-Time Versus Store-and-Forward Messaging, Real time, Azure SignalR Service-Start the service
	near real-time, Warm paths, Near real time-Near real time
	real-time, Data Processing, Data Consumers, Real time-Real time
	Service Bus pros and cons, Performance Considerations
	Stream Analytics, Message filtering and enrichment, Azure Stream Analytics-Azure Stream Analytics

	structured data, Datasets
	structured storage (see data warehouses)
	subscriptions, in Service Bus, Queues and Topics
	subtype property of message, Properties
	supply chain management systems, External Systems Integrations
	Synapse Analytics (see Azure Synapse Analytics)
	synchronous versus asynchronous communication, Synchronous Versus Asynchronous Messaging
	system maintenance, Monitoring Your Solution

T
	Table API, Cosmos DB, Cosmos DB, OData
	task setup, Batch job, Set Up the Batch Job
	TCP and UDP custom messaging solutions, Custom TCP and UDP
	telemetry, Telemetry	Application Insights, Azure Application Insights
	deduplicating data, Data Preparation
	hot path data, Hot paths
	near real-time data processing of, Near real time

	temporary storage, Data Persistence
	Tensor Processing Units (TPUs), AI and ML, Bringing the Cloud Closer with AI
	text fields for title or subject, messages, Properties
	time dependence, time series data, Azure Data Explorer
	time series data	ADX, Azure Data Explorer (ADX), Azure Data Explorer-Azure Data Explorer
	Power BI analysis using, Connecting Power BI to Data
	in warm path data movements, Warm Path

	TLS over TCP secure connection, Security
	topics, Service Bus, Topic Actions, Create a Service Bus with a Topic and Subscriptions-Create a New Route on IoT Hub
	TPM (trusted platform model), Security features
	TPUs (Tensor Processing Units), AI and ML, Bringing the Cloud Closer with AI
	training ML models from datasets, Data Processing
	transactional systems	devices as, Treat Writes as Idempotent
	OLTP as, Azure Data Explorer

	transactions versus analytics, optimizing data storage, Store Data in an Optimized Form for Its Intended Use
	transformation, data, Data Processing, Azure Data Factory, Reporting Tools
	transparent gateway, IoT Edge, Transparent gateway
	trends, time series data, Azure Data Explorer
	trusted platform model (TPM), Security features
	tumbling window, near real-time data processing, Near real time
	twinning, device, IoT Messaging and Management, Twinning-Azure Cosmos DB	ADT, Azure Digital Twin
	configurations, Azure IoT Device SDKs
	further reading, IoT Management
	and message enrichments, Azure IoT Device SDKs

	type property of message, Properties

U
	Ubuntu Core, Experiment Using Virtualization
	Ubuntu Server, Setting Up Arc with MicroK8S
	UI (user interface), for device, Devices
	unconstrained devices, IoT Devices	cloud-connected devices, Microsoft as a Cloud Company
	compute capabilities of, Hardware
	device hardware, Hardware
	gateway devices, Custom Solutions, Azure IoT Edge, Azure Data Box Gateway
	Raspberry PI, Committing to a Dev Board
	TPM for attestation on, Security features

	unidirectional versus bidirectional messaging, Bidirectional Versus Unidirectional Communication, Common Protocols, Hypertext Transfer Protocol (HTTP)
	unstructured data, Datasets
	uploading files, messaging, File Uploads
	uptime	monitoring device, Monitoring Your Solution
	SLA for solution expectation, Setting Goals with Service Level Agreements

	user experience, planning device for, The User Experience
	user inputs, collecting data from, Data Collected from User Inputs
	user interface (UI), for device, Devices
	user-defined functions, JavaScript, Azure Stream Analytics
	UTF-8, Encoding

V
	vCore model, Azure SQL, Azure SQL
	virtual machine (VM)	Azure Batch’s use of, Azure Batch
	versus containers as virtual technologies, Container Basics

	VirtualBox, Experiment Using Virtualization-Experiment Using Virtualization
	virtualization technology, Experiment Using Virtualization-Experiment Using Virtualization, Container Basics
	Visual Studio, Microsoft the Software Company, Azure Sphere Software
	Visual Studio Code (VS Code), Visual Studio Code
	visualization tools	Azure Monitor, Monitoring and Alerting
	BI tools, Business Intelligence Tools
	KQL, Kusto Query Language (KQL)
	operational, Data Consumers

	VM Scale Sets, Scaling
	volatile storage, Data Persistence

W
	warm path data processing, Warm paths, Warm Path
	Watchtower project, Applying updates to the sample device in a Docker container, Applying updates to the sample device in a Docker container
	Web PubSub, Azure Web PubSub, Web PubSub versus SignalR Service-Start the service
	webhooks, Event Grid routing, Webhooks-Webhooks
	WebSockets, Hypertext Transfer Protocol (HTTP), Azure Web PubSub
	WiFi connectivity, WiFi
	Windows IoT, Windows for IoT-What Makes It Unique?
	Windows IoT Core, Windows IoT Core, Windows for IoT Cloud Services, Experiment Using Virtualization
	Windows IoT Enterprise, Windows IoT Enterprise, Windows for IoT Cloud Services
	Windows Server IoT, Windows Server IoT
	Windows UWP, Windows IoT Core
	workflow model, Logic Apps, Azure Logic Apps

X
	X.509 certificates, Claiming and Provisioning
	x86 versus ARM processors, Windows IoT Core, Experiment Using Virtualization
	XML (Extensible Markup Language), Extensible Markup Language (XML), Data Formats for Datasets
	XMPP (Extensible Messaging and Presence Protocol), Extensible Messaging and Presence Protocol (XMPP)

Y
	Yarn, HDInsight
	Yocto Project, Experiment Using Virtualization

 About the Author

 Blaize Stewart has been interested in software development since childhood and wrote his first web apps while in high school when internet applications were still a novel idea. Since that time, Blaize has built numerous applications for all kinds of devices, including embedded systems, handheld devices, desktop apps, and web apps. This broad experience equipped him for the next wave of challenges: building scalable systems in the cloud. Since the nascent days of cloud computing, Blaize has been at the forefront of building cloud systems with a global scale.

 Colophon

 The animal on the cover of Architecting IoT Solutions on Azure is a swallow tanager (Tersina viridis), a brightly colored bird native to South America.

 They are sexually dimorphic, which means that the males and females differ outside of organs related to reproduction. In this case, the physical difference in appearance is striking: the males are cerulean with various black and white markings, while females are medium green with a yellow belly.

The nest site is determined by both male and female: the male usually scouts potential locations while the female chooses the specific spot. A clutch is three eggs, on average. Both parents are involved in raising their chicks, although the female is primarily responsible for incubation. The tanagers’ diet is mostly fruit, but they also partake of insects, often catching them midair. They consume smaller fruits whole, but for larger fruits, they work at the flesh of the fruit in their mouths and then eject the pit or seeds.

The current IUCN conservation status of the swallow tanager is Least Concern. Many of the animals on O’Reilly covers are endangered; all of them are important to the world.

 The cover illustration is by Karen Montgomery, based on an antique line engraving from Shaw’s Zoology. The series design is by Edie Freedman, Ellie Volckhausen, and Karen Montgomery. The cover fonts are Gilroy Semibold and Guardian Sans. The text font is Adobe Minion Pro; the heading font is Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

OEBPS/assets/aisa_0904.png
Cosmos DB
alarms

[Devices H loT Hub HLogicapp

Cosmos DB
telemetry

OEBPS/assets/aisa_0801.png
Jawnsuo)

Off Azure

J1afe| Supines

NUBISISIAd

Azure
Hot path
Warm path
Cold path

JuawaSeuew pue SuiSesssuw 10|

Off Azure

sadineQ

OEBPS/assets/aisa_0805.png
Speed layer (hot path)

Servicing

layer

Data sources Batch layer

OEBPS/assets/aisa_0804.png
Data sources

Speed layer (hot path)

Batchlayer (cold path)

A 4

Servicing
layer

OEBPS/assets/aisa_0803.png
Hot path

Real time

Warm path

Near real time

Time series

Cold path

« High latency

« Large datasets

« Complex computation

« Heavy use of data
persistence

Batch processing

OEBPS/assets/aisa_0802.png
Storage

Processing Preparation

OEBPS/assets/aisa_0903.png
Cosmos DB
alarms

. Function
[Devices H loT Hub H app

Cosmos DB
telemetry

OEBPS/assets/aisa_0902.png
Cosmos DB

alarms

Stream

Devices loT Hub analytics

Cosmos DB

telemetry

OEBPS/assets/aisa_0901.png
Jawnsuo)

Off Azure

J1afe| Supines

NUBISISIAd

Azure
Hot path
Warm path
Cold path

JuawaSeuew pue SuiSesssuw 10|

Off Azure

sadineQ

OEBPS/assets/aisa_0806.png
Datasources

Speed ingestion

(hot path) Real-tir_ne
Batchingestion | processing,
(coldpath) __| and analytics

Persisted data
(data lake)

Servicing
layer

OEBPS/assets/cover.png
OREILLY"

Architecting
loT Solutions
on Azure

Conquering Complexity for Scalable Device
and Data Management

Blaize Stewart

OEBPS/assets/aisa_1001.png
Jawnsuo)

Off Azure

J1afe| Supines

NUBISISIAd

Azure
Hot path
Warm path
Cold path

JuawaSeuew pue SuiSesssuw 10|

Off Azure

sadineQ

OEBPS/assets/aisa_0905.png
Function
app

Function
app

Service Bus
topic

'

e

telemetry
subscription

telemetry

OEBPS/assets/aisa_1201.png
Jawnsuo)

J1afe| Supines

NUBISISIAd

Azure
Hot path
Warm path
Cold path

JuawaSeuew pue SuiSesssuw 10|

Off Azure

sadineQ

OEBPS/assets/aisa_1101.png
Jawnsuo)

Off Azure

J1afe| Supines

NUBISISIAd

Azure
Hot path
Warm path
Cold path

JuawaSeuew pue SuiSesssuw 10|

Off Azure

sadineQ

OEBPS/assets/aisa_0206.png

OEBPS/assets/aisa_0205.png
[or— X+

€ > C @ sresamplesgihubioiot-devit-web-simultor/

MXChip o Dev ®oy @
e proviion coud sevice and then- Ly

» smssuncion — P

Srskeshaeino

Skminces i ean

B

1 rerovens

St o speserrs o512
Satic o sgioy st b 3

OEBPS/assets/aisa_0204.png
Hardware
MXChip

Software
MXChip SDK,
Arduino tools

Cloud
Azure loT
services

OEBPS/UbuntuMono-BoldItalic.otf

OEBPS/UbuntuMono-Italic.otf

OEBPS/UbuntuMono-Regular.otf

OEBPS/css_assets/titlepage_footer_ebook.png
Beijing + Boston + Farnham - Sebastopol + Tokyo

OEBPS/assets/aisa_0203.png
Hardware
Azure Sphere boards

Cloud
Azure Sphere
services,
Azure loT
services

Software
Azure Sphere
apps and SDKs

OEBPS/toc01.html
		Preface

		Who Should Read This Book

		Navigating This Book

		Conventions Used in This Book

		Using Code Examples

		O’Reilly Online Learning

		How to Contact Us

		Acknowledgments

		1. The IoT Landscape

		Off Azure

		IoT Devices

		Edge Computing

		Azure

		IoT Messaging and Management

		Data Processing

		Data Persistence

		Data Presentation Layer

		Data Consumers

		Monitoring, Logging, and Security

		Conclusion

		2. Azure-Centric IoT Devices

		IoT Devices as the Nexus of Three Domains

		Hardware

		Software

		Cloud

		IoT Devices and Microsoft

		Microsoft the Software Company

		Microsoft as a Hardware Company

		Microsoft as a Cloud Company

		IoT on Azure: Microsoft’s Combination of Software, Hardware, and Cloud

		Azure Sphere

		Azure Sphere Hardware

		Azure Sphere Software

		Azure Sphere Cloud Services

		What’s It For?

		What Makes It Unique?

		Azure MXChip

		MXChip Hardware

		MXChip Software

		MXChip Cloud Services

		What’s It For?

		What Makes It Unique?

		Kinect

		Kinect Hardware

		Kinect Software

		Kinect Cloud Services

		What’s It For?

		What Makes It Unique?

		Windows for IoT

		Windows IoT Software

		Windows for IoT Hardware

		Windows for IoT Cloud Services

		What’s It For?

		What Makes It Unique?

		Azure IoT Device SDKs

		Supported Languages and Platforms

		Real-Time Operating System (RTOS)

		When All Else Fails, Use the APIs

		Summary

		3. How to Try Before You Buy, IoT Edition

		Thinking Through Your Software

		The User Experience

		Collecting Data

		Data Collected from User Inputs

		Data Collected from the Environment

		Data About the Device

		Data About the Software on the Device

		Device Simulators

		Accelerate Development

		Enable Feature Development Independent of Device Development

		Enable Automated Testing

		Device Simulator Best Practices

		A Word About Device Simulator Services

		Experiment Using Virtualization

		Hardware Without Dev Boards

		Creating a Device for the Examples

		Setting Up the Sample Device or the Device Simulator

		Dependencies

		Cloning the Repository

		Explore the Code

		Committing to a Dev Board

		Summary

		4. The Device Lifecycle

		Device Lifecycle Management

		Research and Design

		Three Phases of R&D

		Hardware

		Software

		Manufacturing

		Shipping

		Claiming and Provisioning

		Provision Devices with an IoT Hub through the Device Provisioning Service

		Main Sequence

		Communication

		Twinning

		Device Twinning with IoT Hub

		Updates

		Deprovisioning

		Summary

		5. Device Messaging

		Synchronous Versus Asynchronous Messaging

		Real-Time Versus Store-and-Forward Messaging

		Bidirectional Versus Unidirectional Communication

		Message Formatting

		Properties

		Body

		Common Protocols

		MQ Telemetry Transport (MQTT)

		Advanced Message Queuing Protocol (AMQP)

		Hypertext Transfer Protocol (HTTP)

		Device-to-Cloud (D2C) Messaging

		Telemetry

		Events

		File Uploads

		Message Routing

		Message Enrichments

		Cloud-to-Device (C2D) Messaging

		Commands (Direct Methods)

		General Messages

		Custom Solutions

		Security

		Device Management

		Message Routing

		Scaling

		Integrations with Azure

		Summary

		6. Life on the Edge

		Why Use Edge Computing?

		Better Response Time to Events on Premises

		Reliable Connectivity for Critical Services

		Access to Critical Services Without Bandwidth Constraints

		Aggregations and Filtering Data to Reduce Network Traffic

		Compute Offloading to Save Network Bandwidth

		Data Localization When Dealing with Data Sovereignty and Security Issues

		A Disconnected Cloud That Performs with No Network Connection

		Container Basics

		Azure IoT Edge

		IoT Edge Modules

		Message Brokering

		Data

		Storage

		Bringing the Cloud Closer with AI

		Extensibility (Bring Your Own Code)

		Creating an IoT Edge Device and Deploying a Module

		Install Azure IoT Edge

		Deploy a Module on IoT Edge

		Azure Arc and Kubernetes

		IoT Edge or Arc with Kubernetes?

		Setting Up Arc with MicroK8S

		Set Up MicroK8S

		Connect MicroK8S to Azure Arc

		Install the Device Simulator to MicroK8S Using the Azure Portal

		Azure Data Box Gateway

		Azure Stack

		Azure Stack Hub

		Azure Stack HCI

		Azure Stack Edge

		Summary

		7. Scalable Data Architecture

		General Principles for Data Storage

		Partition Your Data Appropriately

		Storage Is Cheap, Compute Is Expensive

		Prefer Eventual Consistency over Strong Consistency

		Separate Reads and Writes

		Treat Writes as Idempotent

		Store Data in an Optimized Form for Its Intended Use

		Create Retention Policies

		Landing Your Data

		Azure Blob Storage

		Azure Data Lake

		General-Purpose Blob Storage Versus Data Lake

		Set Up Azure Blob Storage to Land Data

		What About File Shares or File Sharing Services?

		Online Transaction Processor (OLTP) Versus Online Analytics Processor (OLAP)

		OLTP Solutions on Azure

		Cosmos DB

		Azure Data Explorer (ADX)

		Azure SQL

		Open Source Databases

		OLAP Solutions on Azure

		Azure Synapse Analytics

		HDInsight

		Data Lakes Versus Data Warehouses

		Lakehouse

		Hybrid Transaction Analytics Processor (HTAP)

		OLTP as OLAP

		Creating an HTAP with Cosmos DB and Azure Synapse Analytics

		Summary

		8. Data Processing Architectures

		Data Storage (Again)

		Data Processing Cycle

		Data Collection

		Data Preparation

		Data Input

		Data Processing

		Output

		Storage

		Data Movement

		Hot Path

		Cold Path

		Warm Path

		Which Type of Data Path Should You Use?

		Data Architectures

		Lambda Architecture

		Kappa Architecture

		Delta Architecture

		Which Style of Architecture Should You Use?

		Summary

		9. Hot Path Data Processing

		Messaging Platforms

		Hot Paths

		Azure Stream Analytics

		Azure Functions

		Azure Logic Apps

		Azure Service Bus

		Queues and Topics

		Auto-Forwarders and Subscription Filtering

		Topic Actions

		Performance Considerations

		Create a Service Bus with a Topic and Subscriptions

		Create a New Route on IoT Hub

		Create Some Functions Save Data

		Summary

		10. Cold Path Data Processing

		Azure Data Explorer

		Batch Processing on Azure

		Azure Batch

		Create a Batch Account

		Set Up the Batch Job

		Azure Data Factory

		Create a Data Factory to Move Data

		Create a Source Dataset from Your Storage Account

		Create a Data Sink for Cosmos DB

		Create a Data Flow to Move Data

		Create a Pipeline to Move Data

		Start the Data Flow

		Summary

		11. The Servicing Layer

		Datasets

		Data Formats for Datasets

		Push-Style Delivery

		Cold Path Push

		Hot Path Push

		Pull-Style Delivery

		Azure Data Share

		HTTP APIs

		Hybrid approaches

		Summary

		12. Data Consumers

		Reporting Tools

		Business Intelligence Tools

		Power BI

		Connecting Power BI to Data

		Applications

		External Systems Integrations

		Raw Data Consumers

		Security and Privacy

		Security

		Data Privacy

		Summary

		13. Monitoring and Logging

		Setting Goals with Service Level Agreements

		Monitoring Your Solution

		Azure Monitor

		Data Collection

		Azure Data Explorer (Log Analytics)

		Kusto Query Language (KQL)

		Monitoring and Alerting

		Azure Application Insights

		Instrumentation

		Application Logging

		User Analytics

		Azure Security Center

		Security Assessments

		Security Monitoring

		Incident Response

		Azure Sentinel

		Summary

		14. IoT Security

		Software Vulnerabilities

		Malware

		Botnets

		Ransomware

		Data Leaks

		DoS

		Insecure Communications

		Device Spoofing

		Insecure Data

		Lax Access Controls

		Physical Threats

		Lax Network Security

		DNS Threats

		Man-in-the-Middle

		Social Engineering

		Advanced Persistent Threats

		Managing Threats with Microsoft Defender for IoT

		Summary

		15. Further Reading

		Devices

		Edge and Containers

		Containers and GitOps

		Kubernetes on the Edge

		Azure IoT Edge

		IoT Management

		Data Architecture

		Conclusion

		Index

		About the Author

OEBPS/DejaVuSans-Bold.otf

OEBPS/assets/aisa_0202.png

OEBPS/DejaVuSerif.otf

OEBPS/assets/aisa_0201.png
SI3WNSU0)

Off Azure

J1afe| Supines

NUBISISIAd

Azure
Hot path
Warm path
Cold path

JuawaSeuew pue SuiSesssuw 10|

0Off Azure

OEBPS/UbuntuMono-Bold.otf

OEBPS/assets/aisa_0101.png
SI3WNSU0)

Off Azure

J1afe| Supines

NUBISISIAd

Azure
Hot path
Warm path
Cold path

JuawaSeuew pue SuiSesssuw 10|

Off Azure

sadineQ

OEBPS/assets/aisa_0702.png
Messaging Integration
latform | |(Function apps,
logic apps,

Synapse

loThub analytics

eventgrid) analytics)

OEBPS/assets/aisa_0701.png
SI3WNSU0)

Off Azure

J1afe| Supines

NUBISISIAd

Azure
Hot path
Warm path
Cold path

JuawaSeuew pue SuiSesssuw 10|

Off Azure

sadineQ

OEBPS/assets/aisa_0402.png
Manufacturing

Security

Software patches and updates

Device
claiming

J[

Device
shipping

J[

Device
provisioning

E

Main T
imunications,
updates and twmnlng

Device
deprovisioning

Time

>
>

OEBPS/assets/aisa_0401.png
SI3WNSU0)

Off Azure

J1afe| Supines

NUBISISIAd

®
Ss
2| B
k<]
g

JuawaSeuew pue SuiSesssuw 10|

Warm path
Cold path

Off Azure

sadineQ

OEBPS/assets/aisa_0208.png
Hardware

Bring your own
hardware

Software
SDKs for Python,
Java, C#, Node.js,
and C++, RTOS

support

Cloud
Standard Azure
loT services

OEBPS/assets/aisa_0207.png
Hardware
Bring your own
hardwareto run
Windows loT

Cloud

Software

Windows OS, MDM solutions,
Wir:rt]joev‘glsa ppS. Azure AD, Azure
Windows SDKs services for

Windows

for devices, etc.

OEBPS/assets/aisa_0601.png
SI3WNSU0)

Off Azure

J1afe| Supines

NUBISISIAd

Azure
Hot path
Warm path
Cold path

JuawaSeuew pue SuiSesssuw 10|

Off Azure

OEBPS/assets/aisa_0501.png
SI3WNSU0)

Off Azure

J1afe| Supines

NUBISISIAd

®
Ss
2| B
k<]
g

JuawaSeuew pue SuiSesssuw 10|

Warm path
Cold path

Off Azure

sadineQ

OEBPS/assets/aisa_0404.png

OEBPS/assets/aisa_0403.png
Proof of concept-shows the
technical feasibility of an idea

Prototype-refines the proof of

concept to generate interest

Minimal viable product-refines
prototype to amanufacturable
product

