

Linkerd: Up and Running

An In-Depth Look at the First Service Mesh

With Early Release ebooks, you get books in their earliest form—the authors’ raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

Jason Morgan and Flynn

 Linkerd: Up and Running

 by
 Jason
 Morgan
 and

 Flynn

 Copyright © 2024 Jason Morgan and Kevin Hood. All rights reserved.

 Printed in the United States of America.

 Published by
 O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

 O’Reilly books may be purchased for educational, business, or sales
 promotional use. Online editions are also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional sales
 department: 800-998-9938 or
 corporate@oreilly.com.

 	
 Acquisitions Editor:
 John Devins

 	
 Development Editor:
 Angela Rufino

 	
 Production Editor:
 Gregory Hyman

 	
 Interior Designer:
 David Futato

 	
 Cover Designer:
 Karen Montgomery

 	
 Illustrator:
 Kate Dullea

 	
 February 2024:
 First Edition

 Revision History for the Early Release

 	
 2022-12-05:
 First Release

 	
 2023-03-30:
 Second Release

 	
 2023-05-22:
 Third Release

 	
 2023-06-26:
 Fourth Release

 See
 http://oreilly.com/catalog/errata.csp?isbn=9781098142315
 for release details.

 The O’Reilly logo is a registered trademark of O’Reilly Media, Inc.
 Linkerd: Up and Running, the cover image, and related trade dress are
 trademarks of O’Reilly Media, Inc.

 The views expressed in this work are those of the authors and do not
 represent the publisher’s views. While the publisher and the
 authors have used good faith efforts to ensure that the information and
 instructions contained in this work are accurate, the publisher and the
 authors disclaim all responsibility for errors or omissions, including
 without limitation responsibility for damages resulting from the use of or
 reliance on this work. Use of the information and instructions contained
 in this work is at your own risk. If any code samples or other technology
 this work contains or describes is subject to open source licenses or the
 intellectual property rights of others, it is your responsibility to
 ensure that your use thereof complies with such licenses and/or rights.

 978-1-098-14231-5

Chapter 1. Service Mesh 101

A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the authors’ raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

This will be the first chapter of the final book.

If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the authors at jason@buoyant.io and flynn@buoyant.io.

So what, exactly, is a service mesh? We can start with the definition from the CNCF Glossary (https://glossary.cncf.io/service-mesh/):

In a microservices world, apps are broken down into multiple smaller services that communicate over a network. Just like your wifi network, computer networks are intrinsically unreliable, hackable, and often slow. Service meshes address this new set of challenges by managing traffic (i.e., communication) between services and adding reliability, observability, and security features uniformly across all services.

The cloud-native world is all about computing at a huge range of scales, from tiny clusters running on your laptop for development up through the kind of massive infrastructure that Google and Amazon wrangle. This works best when applications use the microservices architecture, but - as noted above - the microservices architecture is inherently more fragile than the monolith architecture.

Service meshes, fundamentally, are about hiding that fragility from the application developer — and, indeed, from the application itself. They do this by taking several features that are critical when creating robust applications and moving them from the application into the infrastructure. This allows applications developers to focus what makes their applications unique, rather than having to spend all their time worrying about how to provide the critical functions that should be the same across all applications.

Basic mesh functionality

The critical functions provided by services meshes fall into three broad categories: security, reliability, and observability. As we examine these three categories, we’ll be comparing the way they play out in a typical monolith and in a microservices application.

Of course, “monolith” can mean several different things. Figure 1-1 shows a diagram of the “typical” monolith that we’ll be considering.

[image: image to come]
Figure 1-1. A monolith

And Figure 1-2 shows the corresponding microservices application.

[image: image to come]
Figure 1-2. A microservices application

Security

Our monolith is a single process within the operating system, which means that it gets to take advantage of all the protection mechanisms offered by the operating system: other processes can’t see anything inside the monolith, and they definitely can’t modify anything inside it. Communication between different parts of the monolith are typically function calls within the monolith’s single memory space, so again there’s no opportunity for any other process to see or alter these communications. It’s true that one area of the monolith can alter the memory in use by other parts - in fact, this is a huge source of bugs! - but these are generally just errors, rather than attacks.

(Yes, this is an overgeneralization. It’s typically a useful one, though.)

With microservices, though, things are different. Each microservice is a separate process, and microservices communicate only over the network — but the protection mechanisms provided by the operating system function only inside a process. These mechanisms aren’t enough in a world where any sharing of information between microservices has to travel over the network.

Note

“But wait!” we hear you cry. “Any operating system worthy of the name can provide protections that do span more than one process! What about memory-mapped files or System V shared memory segments? What about the loopback interface and Unix-domain sockets (to stretch the point a bit)?”

You’re right: these mechanisms can allow multiple processes to cooperate and share information while still being protected by the operating system. However, they only function on a single machine. Part of the power of cloud-native orchestration systems like Kubernetes is that they’re allowed to schedule pods on any machine in your cluster, and you won’t know which machine ahead of time — so single-machine mechanisms are also not sufficient for a cloud-native world.

There are a lot of security concerns that show up when your only communication mechanism is an insecure network. Here are a few of the most significant:

	Eavesdropping

	
An evildoer may be able to intercept communications between two microservices, reading communications not intended for them. Depending on what exactly the evildoer learns, this could be a minor annoyance or a major disaster.

The typical protection against eavesdropping is encryption, which scrambles the data so that only the intended recipient can understand it.

	Tampering

	
An evildoer might also be able to modify the data in transit over the network. At its simplest, the tampering attack would simply corrupt the data in transit; at its most subtle, it would modify the data to be advantageous to the attacker.

It’s extremely important to understand that encryption alone will not protect against tampering! The proper protection is to use integrity checks like checksums, and all well-designed cryptosystems include integrity checks as part of their protocols.

	Identity Theft

	
If you hand off a credit card to your payment microservice, how do you know for certain that you’re really talking to your payment microservice? If an evildoer can successfully pretend to be one of your microservices, that opens the door to all manner of troublesome possibilities.

Strong authentication is critical to protect against this attack. It’s the only way to be sure that the workload you’re talking to is really the one you think it is.

	Overreach

	
The flip side of identity theft, an evildoer may be able to take advantage of a place where a microservice is allowed to do things that it simply shouldn’t be allowed to do. Imagine, for example, an evildoer finding that the payment microservice is perfectly happy to accept requests from the microservice that should merely be listing things for sale.

Careful attention to authorization is the key here. In a perfect world, every microservice will be able to do exactly what it needs, and no more (the principle of least privilege).

Reliability

Reliability in the monolith world typically refers to how well the monolith functions: when the different parts of the monolith communicate with function calls, you don’t typically have to worry about a call getting lost, or about one of your functions suddenly becoming unresponsive! But, again, things are more complex in the microservice world, and there are quite a few ways microservices can be unreliable:

	Request Failures

	
Sometimes requests made on the network fail. There are any number of possible reasons, ranging from a crashed microservice to a network overload or partition. Either the application or the infrastructure needs to do something to deal with the request that failed.

In the simplest case, the mesh can simply manage retries for the application: if the call fails because the called service dies or times out, just resend the request. This won’t always work, of course: not all requests are safe to retry, and not every failure is transient. But in many cases, simple retry logic can be used to great effect.

	Service Failure

	
A special case of request failures comes up when it isn’t just a single instance of a microservice that crashes, but all instances. Maybe a bad version was deployed, or maybe an entire cluster crashed. In these cases the mesh can help by failing over to a backup cluster, or to a known-good implementation of the service.

Again, this can’t always happen without application help (failover of stateful services can be quite complex, for example). But microservices are often designed to manage without state, in which case mesh failover can be a huge help.

	Service Overload

	
Another special case: sometimes the failure is happening because too many requests are piling onto the same service. In these cases, circuit breaking can help avoid a cascade failure: if the mesh fails some requests quickly, before dependent services get involved and cause further trouble, it can help limit the damage. This is a bit of a drastic technique, but this type of enforced load shedding can dramatically increase the overall reliability of the application as a whole.

Observability

It’s difficult to see what’s going on in any computing application: even a slow machine, these days, operates on time scales a billion times faster than the one we humans live by! Within a monolith, observability is often handling by logging, or by dashboards inside the monolith that collect global metrics from many different areas of the monolith. This is much less feasible with a microservices architecture, and if it were feasible, it wouldn’t tell the whole story.

In the microservices world, “observability” tends to focus more on the call graph and the golden metrics.

	The Call Graph

	
When looking at a microservices application, the first critical thing is usually knowing which services are getting called by which other services. This is the call graph, and a critical thing that a service mesh can do is to provide metrics about how much traffic is going over each edge of the graph, how much is succeeding, how much is failing, etc.

The call graph is a critical starting point because problems that the user sees from outside the cluster may actually be caused by problems with a single service buried deep in the graph. It’s very important to have visibility into the whole graph to be able to solve problems.

	The Golden Metrics

	
There are a great many metrics that we could collect for every microservice. Over time, four of them have repeatedly proven especially useful in a wide variety of situations1:

	
Latency: how long are requests taking to complete?

	
Traffic: how many requests is a given service handling?

	
Errors: how many requests are failing? (This can also be reported as its inverse, the success rate.)

	
Saturation: how much of this service’s capacity is being used?

We’ll discuss these in much greater detail in the Observability chapter, but it’s worth noting at this point that these metrics have proven so useful that many meshes devote considerable effort into recording these specific metrics — and, also, that the service mesh is an an ideal place to track them.

So…​ Why Do We Need This?

Put bluntly, the things provided by the mesh are not optional.

You’re never going to hear the engineering team say “oh, we don’t need security” or “oh, reliability isn’t important” (though you might have to convince people of the need for observability — hopefully this book will help!). The choice isn’t between having these three features or not: it’s between having them provided by the mesh, or needing to provide them in the application.

Providing them in the application is costly: your development staff will have to write all the code to make these things happen. It’s prone to failure — getting this stuff right is hard, and the temptation will be to have senior developers focus on the crown jewels of logic specific to your business, rather than the equally-critical but much less visible work of getting retries right. Finally, it’s prone to incompatibility between parts of the application, especially as the application grows.

Overall, we think that pushing as much of this functionality into the mesh is the smart way to do this, and we think that Linkerd is the best of the meshes out there. If we haven’t convinced you, too, by the end of the book, please reach out and let us know where we fell short!

How Do Meshes Actually Work?

Finally, let’s take a quick look at how service meshes actually function.

At a high level, all meshes are fundamentally doing the same job: they insert themselves into the low-level network processing of an application and mediate everything the application does on the network. This is the only practical way to allow the mesh to provide all the functionality it’s designed to provide without requiring changes to the application itself.

At a low level, most meshes - including Linkerd - use the sidecar model of injecting a proxy container next to every application container2. Once running, the proxy reconfigures the host’s network routing rules so that all traffic into and out of the application container goes through the proxy. This allows the proxy to control everything necessary for the functionality of the mesh.

There are other models, but the sidecar model has tremendous advantages in terms of operational simplicity and security:

	
From the perspective of basically everything else in the system, the sidecar acts like it is part of the application. In particular, this means that all the things that the operating system does to guarantee the safety of the application Just Work™ for the sidecar, too. This is a very, very important characteristic, enough so that we’ll talk quite a bit more about it in chapter XX.

	
In much the same way, managing the sidecar is exactly the same as managing any other application or service. For example, kubernetes rollout restart will Just Work™ to restart an application pod and its sidecar as a unit.

There are disadvantages, of course. The biggest is every application pod needs a sidecar container — even if your application has thousands of pods. Another common concern is around latency: the sidecar, by definition, requires some time to process network traffic. Again, we’ll talk more about this later, but it’s worth noting up front that Linkerd goes to a lot of trouble to minimize the sidecar’s impact, and in practice Linkerd is very fast and very lightweight.

1 These were originally described in the “Monitoring Distributed Systems” post from Google (https://sre.google/sre-book/monitoring-distributed-systems/) as the four “Golden Signals”, but we prefer “Golden Metrics”.
2 The name comes from the analogy of bolting a sidecar onto a motorcycle.

Chapter 2. Intro to Linkerd

A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the authors’ raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

This will be the second chapter of the final book.

If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the authors at jason@buoyant.io and flynn@buoyant.io.

Linkerd is one of the oldest CNCF projects and, depending on how you look at it, predates open source Kubernetes. In this chapter we’ll learn more about Linkerd, where does it come from? What makes it special? And how does it work? We’ll keep the history lesson short, useful, and, hopefully, interesting.

We’re going to keep this chapter short and if you’re looking to get right to the important information feel free to skip ahead to Linkerd architecture.

Where does Linkerd come from?

The Linkerd project was founded by some former twitter engineers and largely based off of the Finagle library. The first version of Linkerd is called Linkerd1, today Linkerd1 is near end of life and we won’t discuss it again after this section. Going forward when talking about Linkerd we will be referring to Linkerd2.

Linkerd1

This first version of Linkerd had a lot of powerful features but suffered from some performance issues related to being dependent on the JVM. Linkerd1 was also a multi platform mesh that supported a number of different container schedulers. Buoyant, the company behind Linkerd, rewrote Linkerd1 into Linkerd2.

Linkerd2

When Buoyant decided to re write Linkerd they made a few design choices that still have a major impact on the project today. The project dropped support for other container orchestration engines and moved to exclusively supporting Kubernetes. At the same time they chose to write the linkerd2 proxy instead of adopting an existing tool, like Envoy.

Linkerd and Rust

At the time Linkerd2 was being written the Rust programming language had been gaining attention for enabling developers to write high performance code that avoided many of the memory management vulnerabilities inherrant to c and c++.

Linkerd2 proxy

The Linkerd2 proxy is not a general purpose proxy, it was purpose built for use in Linkerd. As a Linkerd operator you will have very few direct interactions with the proxy. The Linkerd control plane will be your main interface when working with Linkerd.

Linkerd Architecture

Because Linkerd is written to be Kubernetes native all of it’s control surface is exposed in Kubernetes objects. You will manage, configure, and troubleshoot Linkerd via the Kubernetes API.

Like other service mesh offerings Linkerd is broken into two main components, the control plane which we’ll talk about next, and the data plane which is composed of the various linkerd2 proxies that run beside your applications. Linkerd works by leveraging the Kubernetes concept of sidecars. This allows every application container to be paired with a dedicated proxy that handles all network traffic.

Linkerd Extensions

As of Linkerd 2.10 the control plane components, that side of linkerd responsible for configuring and managing the linkerd2-proxy, were broken up into extensions to allow users more control over what gets installed in their clusters. Linkerd has a core control plane and 5 official extensions. Linkerd extensions can be written by anyone and allow developers to customize Linkerd or the Linkerd cli.

The rest of this chapter will talk about Linkerd’s architecture and dive into the individual extensions that make up Linkerd. Continute reading to learn about the core Linkerd component, the Linkerd control plane.

The Linkerd Control Plane

As of this writing the core Linkerd control plane is composed of 3 primary components. The proxy injector, the identity service, and the destination controller. We will discuss these components in more detail in later chapters. For now all you need to know if that these components are responsible for allowing you to add individual applications to your service mesh and enabling the core observability, reliability, and security features Linkerd provides.

Linkerd Viz

The Linkerd Viz extension provides the Linkerd dashboard and it’s associated components. It also provides some additional cli options that are useful when troubleshooting applications in your cluster.

Viz is made up of the following components:

Tap

Tap allows Linkerd to surface the metadata about individual requests flowing between your applications. Tap data is useful for debugging application issues in live environments.

Tap Injector

The tap injector modifies the proxy injector and instructs it to add the appropriate Tap variables to the proxies. It’s worth noting that any proxies that started prior to the viz extension being installed will not be able to publish tap data until they’ve been restarted.

Metrics API

The Metrics API is involved in collecting metrics for the Linkerd dashboard. The metrics API provides the underlying summary data for the Linkerd dashboard as well as the Linkerd CLI. Like all dashboard components it is not involved in providing information to the Linkerd proxies.

Web

The Web component provides the Linkerd viz dashboard. This unauthenticated component is the main component behing providing the Linkerd Viz dashboard.

Prometheus and Grafana

Linkerd’s Viz extension ships with a prometheus and grafana instance. The grafana dashboards are fully opensource and can be imported into any other grafana instance. Both these components can be externalized and used even without the viz extension.

Warning

As of Linkerd 2.12 Linkerd can no longer automatically include Grafana. Grafana must be handled via a seperate install. You can read more about installing Grafana for Linkerd here: https://linkerd.io/2.12/tasks/grafana/

Linkerd Multicluster

The Linkerd Multicluster extension provides users the ability to connect clusters together over any public or private networks. The multicluster extension connects clusters via a special gateway that allows all traffic to appear as if it originates locally in the cluster. This allows users to avoid configuring any special networking settings when connecting clusters. We’ll dive deeper into multicluster connections in a later chapter.

Linkerd Jaeger

The Linkerd Jaeger extension provides users with, an optional, Jaeger instance and modifies your Linkerd proxies to allow forward tracing information. It’s important to understand that while Linkerd can aid your application based tracing by providing details on how the proxies are contributing to your distributed application’s flow it cannot add tracing intrumentation to your application. Or to say it another way, to use tracing with Linkerd your application must first be configured to propagate tracing headers and create and emit it’s own spans.

Linkerd CNI

The Linkerd CNI plugin is a CNI plugin that does not replace your Kubernetes CNI. The CNI plugin allows Linkerd users to avoid using the Linkerd init container to configure pods to route inbound and outbound traffic through the proxy. The default behavior in Linkerd relies on a priviledged init container to rewrite the IPTables rule on a host to route all traffic through the proxy. Some users do not want to allow those priviledges and instead use the Linkerd CNI plugin. While we will address the CNI plugin in more detail later it is important for readers to be aware that this plugin must be installed before installing any other Linkerd components and is the only extension that can, and must, be installed before the core control plane.

Linkerd SMI

The service mesh interface (SMI) is a project out of the CNCF that aims to provide a standard interface, or more accurately a standard set of kubernetes custom resources, that can control the behavior of a service mesh. The SMI project has seem somewhat mixed results in terms of adoption and today Linkerd only supports one SMI custom resource, the trafficSplit. In Linkerd 2.11 the project maintainers split the SMI resources into it’s own extension to ensure that work on supporting SMI resources would not impact the work on core Linkerd features.

The SMI extension exists exclusively to install and upgrade any SMI resources Linkerd supports.

Chapter 3. Deploying Linkerd

A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the authors’ raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

This will be the third chapter of the final book.

If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the authors at jason@buoyant.io and flynn@buoyant.io.

Now that we understand what Linkerd is, and a bit about how it works, it’s time to dig into deploying Linkerd in your environment. We’re going to dive into the whats, whys, and hows of installing Linkerd. You can also check out the official Linkerd docs to review their getting started guide.

Considerations

Installing Linkerd can often be quick, easy, and painless. Unfortunately, some of that ease of use can mask real pitfalls that you’ll want to avoid. We’ll dive more into the specifics as we get to the install section — for now, suffice it to say that when you install Linkerd in your actual non-demo environments, you’ll want to be sure to plan for generating and storing your certificates. You’ll also want to be sure you have a good understanding of all non-HTTP ports being used by your applications, so that you can configure protocol discovery correctly for them (this is covered in more detail in chapter 4).

Linkerd Versioning

We mentioned in Chapter 2 that this book is focused exclusively on Linkerd2, the second major version of Linkerd that is effectively a rewrite of the project. In recognition of that, Linkerd uses a versioning that looks like semantic versioning but is in fact distinct. Linkerd has 2 major release channels, Stable and Edge. You can read more about their versioning scheme and release in the official Linkerd documentation.

Stable

With Linkerd’s stable release channel, the project follows a modified semantic versioning scheme:

stable-2.<major>.<minor>.<patch>

This means that when seeing e.g. “Linkerd 2.12.3”, the major version is 12 and the minor version is 3. This release has no patch number.

The rules of semantic versioning are that a change to the major version means that Linkerd has introduced breaking changes or significant new capability, while a change to only the minor version indicates that the new release is fully backward compatible with the previous version and includes improvements or bug fixes. Patch releases are rare and indicate a security fix has been issued for a given minor version.

Edge

Linkerd’s edge release channel represents the latest changes to Linkerd available at any one time. You should be cautious while using edge releases and provide feedback about your experience to the Linkerd team. Edge releases are generally provided on a weekly basis with the following versioning scheme:

edge-<two digit year>.<month>.<number within the month>

For example, edge-23.1.1 would be the first edge release of the first month of the year 2023.

Concepts

Chapters 1 and 2 introduced you to what a service mesh is and gave you an overview of Linkerd. Working with Linkerd in a live environment will require you to be familiar with microservices in general and Kubernetes in particular. Beyond that, it’s useful to have a basic understanding of TLS, certifying authorities, and TCP.

TLS

Transport Layer Security (TLS) is a tool that allows secure communication over an insecure network, even if the parties communicating have never done so before. It is a fundamental technology that underpins data security and privacy on the internet. When using Linkerd you’ll rely on TLS to provide application identity and provide transport layer security in the form of encrypted communications between your apps. TLS is a BIG topic but you can be operationally effective with Linkerd if you understand that TLS uses a combination of a private key, that is only available to a server, and a public key, that is available to everyone to establish the identity of a server as well as to encrypt communications between the server and a client.

[image: image to come]
Figure 3-1. TLS Architecture

Certifying Authorities

Certifying authorities (like Venafi, Let’s Encrypt, almost every cloud provider, and many others) have the ability to provide certificates that are widely trusted as a mechanism for establishing secure connections with TLS. Certifying authorities typically work by creating a hierarchy of certificates that form a chain of trust from a single root. In order to use Linkerd you will need to use, or create, your own certifying authority.

CAs and environments

In order for Linkerd to establish a multi cluster connection between clusters they will need to share a common root CA. Typically most organizations will want to ensure that each level of environment they use, like Dev, UAT, Prod, Test, etc. are unable to communicate with each other. We recommend creating one root CA for every environment level, so dev clusters can peer with dev clusters but never with test or prod. Create CAs in a manner that is consistent with the needs of your environment. If you aren’t certain we strongly suggest creating one root CA per environment.

[image: image to come]
Figure 3-2. Certificate Trust Hierarchy

Workloads, Pods, and Services

Linkerd is a service mesh that is designed around Kubernetes. This means that,
unlike some other service mesh options, you can use Linkerd without ever
interacting with any of its custom resource definitions. Linkerd uses
Kubernetes constructs like workloads, pods, and services to manage the
majority of its routing and configuration options — so if you have something
that runs in Kubernetes today, you can add Linkerd to it and it should behave
the same, just with the benefits of Linkerd added to it. There are some
exceptions to this that we’ll detail in chapter 4.

Deploying Linkerd on Kubernetes

In order to deploy Linkerd you’ll need to have a Kubernetes cluster available. This guide will use a k3s cluster deployed locally using the k3d tool. If you’re already comfortable installing and deploying Linkerd feel free to skip ahead to Chapter 4.

Required tools

For the rest of this book we’re going to be assuming you have the following tools available:

	
kubectl

	
helm

	
the linkerd cli

	
k3d

	
step cli

Provisioning a Kubernetes Cluster

Start with creating a k3d cluster:

k3d cluster create linkerd

k3d will provision your kubernetes cluster and update your kubeconfig. You can test your connection to your new cluster by running:

kubectl get nodes

You should also validate that the cluster is configured correctly and that you have the appropriate permissions for the install by running a pre install check via the Linkerd CLI:

linkerd check --pre

Installing Linkerd via the CLI

The Linkerd CLI makes it easy to get started with a Linkerd install. It will generate the kubernetes manifests required to install Linkerd and allow you to easily apply them to your cluster. Run the following commands to install Linkerd via the CLI:

linkerd install --crds | kubectl apply -f -

This will install the Linkerd custom resources definitions (CRDs) in your cluster. As of Linkerd 2.12, installing Linkerd’s CRDs is done by a separate chart and requires its own command when running an install. Following the CRD install you’ll need to continue the installation by installing the core Linkerd control plane:

linked install | kubectl apply -f -

With this complete the Linkerd control plane will begin setting itself up in your cluster. You’ll soon have access to all the tools you need to run a minimal Linkerd service mesh. You can confirm the install has completed successfully by running:

linkerd check

Installing Linkerd via Helm

The folks at Buoyant, the makers of Linkerd, recommend in their production runbook guide that you use helm to install and manage Linkerd. All of Linkerd’s tooling uses helm templates under the hood in order to generate kubernetes manifests. Helm provides a well tested, documented, and supported path for installing and upgrading Linkerd. Using the helm based install also forces you to generate your own certificates for Linkerd. That simplifies the process of renewing your certificates later.

Generate Linkerd Certificates

Installing Linkerd with helm requires you to generate your own root and intermediary certificates. You can use a number of tools for this but we recommend you use the small step cli tool. It provides a straightforward way to create and examine certificates.

Start by creating your certificates:

Example 3-1. Creating certificates for Linkerd

Start by creating your root certificate, which Linkerd refers to
as the _trust anchor_ certificate.

step certificate create root.linkerd.cluster.local ca.crt ca.key \
 --profile root-ca --no-password --insecure

Next, create the intermediary certificate. Linkerd refers to this
as the _identity issuer_ certificate.

step certificate create identity.linkerd.cluster.local issuer.crt issuer.key \
--profile intermediate-ca --not-after 8760h --no-password --insecure \
--ca ca.crt --ca-key ca.key

The Linkerd docs cover this subject in some detail. Please refer to the latest version of the docs if you run into any difficulty.

Helm install

After generating certificates, you can install Linkerd with helm. Once again, please refer to the official docs for the most up to date instructions.

Example 3-2. Installing Linkerd with Helm

Add the Linkerd stable repo
helm repo add linkerd https://helm.linkerd.io/stable

Update your helm repositories
helm repo update

Install the Linkerd CRDs
helm install linkerd-crds linkerd/linkerd-crds \
 -n linkerd --create-namespace

Install the Linkerd control plane
helm install linkerd-control-plane \
 -n linkerd \
 --set-file identityTrustAnchorsPEM=ca.crt \
 --set-file identity.issuer.tls.crtPEM=issuer.crt \
 --set-file identity.issuer.tls.keyPEM=issuer.key \
 linkerd/linkerd-control-plane

Ensure your install was successful
linkerd check

linkerd check will let you know the current state of Linkerd in your cluster. It’s useful for ensuring your install completed successfully.

Configuring Linkerd

Now that we’ve completed an install of Linkerd’s core control plane we’re going to pause and take a look at what options we have for configuring the Linkerd control plane in your cluster. Let’s summarize the common configuration points for the control plane.

Linkerd Control Plane

As of Linkerd 2.12 the control plane is managed and configured via the linkerd/linkerd-control-plane helm chart. The following settings provide important configuration points for Linkerd. The particular settings will be found by reviewing the current helm chart values. We’ll talk about the general settings and you’ll need to map them to the appropriate locations in your values file. See chapter 6 for some examples of Linkerd helm values files.

Example 3-3. View Helm Values

helm show values linkerd/linkerd-control-plane

Cluster Networks

Linkerd doesn’t have a way to read your cluster network settings at install time. The linkerd-control-plane chart defaults to using the most common network ranges as the cluster network. If your cluster’s IP addresses are not in one of the ranges below, you’ll need to override the IP range at install time:

10.0.0.0/8, 100.64.0.0/10, 172.16.0.0/12, and 192.168.0.0/16

Linkerd control plane resources

The default, non HA, install of linkerd doesn’t set resource requests or limits. You should consider setting requests and limits for your control plane components to aid in scheduling pods and ensuring Linkerd has the resources it needs to function. Be cautious: as of Linkerd 2.12 the Linkerd destination component has a fairly fixed memory footprint that scales with the number of endpoints in your cluster. If the memory limit you set is too low you may find yourself in a loop of destination components being OOMKilled.

Opaque and Skip ports

Opaque and skip ports are Linkerd names for special rules that are applied to certain ports. You’ll want to review the relevant Linkerd docs for the most up to date information on the topic. We’ll give a brief overview of the concepts here, see chapter 4 for more details.

An Opaque port in Linkerd is a port that should be treated as a generic TCP connection. It refers to traffic that Linkerd should process without protocol detection or applying any kind of protocol specific logic, similar to the way simple network load balancing works. A port should be marked as Opaque at install time if you know it will be part of the mesh and serving non-HTTP TCP traffic. It’s important to understand that marking a port as opaque disables all protocol detection on that port.

This section is dedicated to discussing global install time Linkerd configuration values. Any opaque port set at install time will be applied globally to all workloads.

Default Opaque Ports

The following ports are the defaults configured at install time:

	
SMTP 25 and 587

	
MYSQL 3306

	
Galera 4444

	
Postgres 5432

	
Redis 6379

	
ElasticSearch 9300

	
Memcached 11211

A skip port is one that you instruct Linkerd to ignore. Traffic that is skipped, or ignored, by Linkerd will bypass the proxy and not be handled by the mesh. Unlike opaque ports, skip ports need to be configured as either, or both, inbound and/or outbound.

Default Skip Ports

The following ports are ignored by default in a standard Linkerd install:

	
Galera 4567 and 4568

Linkerd Viz

Linkerd’s open source dashboard component, referred to as Linkerd viz, provides an easy to use dashboard for Linkerd. It will collect and present useful metrics for Linkerd operators. The dashboard provides the following details about your linkerd environment:

	
Detailed application metrics, broken down by

	
namespace

	
workload

	
Pod

	
and Service

	
Information about connections between your applications, including

	
TLS status

	
Meshed status

	
Workload identity

	
Path based details via Tap

	
A breakdown of metrics on a path by path basis

Deployment considerations

When installing Linkerd viz it’s important to understand that while it ships with an instance of Prometheus, that default instance is not a reliable long term store. This instance of Prometheus stores all its metric information in memory, which means that all metrics will be purged regularly as it runs out of memory. In order to rely on Linkerd viz as a long term store of metrics you must replace that instance with one that has a durable information store.

The Linkerd viz dashboard also has no built in authentication mechanism. It is incumbent on you to be selective of how, and to whom, you expose the dashboard.

You can read more about productionalizing Linkerd viz in Chapter 6.

Summary

Ideally you have a good sense for how to install Linkerd as well as an understanding of the major configuration points in Linkerd. You should also have a good grasp of the potential points of friction with installing Linkerd. Specifically, generating certificates and handling non HTTP traffic. While you can use either the Linkerd CLI or the Linkerd helm charts to install Linkerd we recommend that you default to using helm.

Chapter 4. Adding Workloads to the Mesh

A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the authors’ raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

This will be the fourth chapter of the final book.

If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the authors at jason@buoyant.io and flynn@buoyant.io.

Getting Linkerd running in your cluster is a great first step. But it’s
pointless to run Linkerd with nothing else: to get actual value out of your
Linkerd cluster, you’ll need to get workloads running in your service mesh. In
this chapter, we’ll show how to do exactly that.

Note

Remember: workloads, not services, as we discussed in chapter 3. The
workload is the thing doing the work of whatever function you need; the
service is the way Kubernetes gives you a way to find your workload.

What does it mean to add a workload to the mesh?

“Adding a workload to the mesh” really means “adding the Linkerd sidecar to
each of your workload’s Pods.” Ultimately this means editing changing the
Pod’s definition to include the sidecar container. While you could do this
by manually editing the YAML that defines the Pod, it’s much easier and safer
to let Linkerd do the heavy lifting instead.

Linkerd includes a Kubernetes admission controller called the
linkerd-proxy-injector. Its job, unsurprisingly, is to inject Linkerd
proxies into workload Pods. Of course it doesn’t do this blindly: instead, it
looks for Kubernetes annotations that tell it which Pods need to be injected.

Injecting individual workloads

The most common way to handle injection is to add the linkerd.io/inject:
enable annotation directly to the Pod itself, typically by adding the
annotation to the Pod template in a Deployment, DaemonSet, etc. Whenever
linkerd-proxy-injector sees a new Pod with this annotation, it will inject
the proxy sidecar into the Pod for you.

It’s worth pointing out that the value of the annotation is important:
enable means to do a normal sidecar injection. We’ll look more at other
values in “Other linkerd.io/inject values”.

Note

It doesn’t matter what kind of resource is being used to create the Pod:
Deployments, DaemonSets, hand-tooled ReplicaSets, Argo Rollout resources, all
of them create their Pods exactly the same way. What the Linkerd injector
notices is that a new Pod exists, not what caused it to be created.

Injecting all workloads in a namespace

You can also add the linkerd.io/inject annotation to a Namespace, rather
than to a Pod. Once that’s done, every new Pod created in that namespace will
be injected (and, again, it does not matter what causes the new Pod to be
created).

This can be very useful for situations where automation is creating Pods, but
it’s difficult or error-prone to modify the annotations on the Pods
themselves. For example, some ingress controllers will recreate Deployments
every time you change a resource: rather than mess about with laboriously
modifying the Pod template used by the ingress controller (if it’s even
possible), you can just annotate the Namespace in which the Deployments will
be created.

Other linkerd.io/inject values

The value of the linkerd.io/inject annotation does matter — it’s not just a
matter of having a non-empty string there. There are three specific values that are meaningful:

	
linkerd.io/inject: enabled is the most common case:
linkerd-proxy-injector will add a proxy container to the Pod, and tell the
proxy to run in its “normal” mode.

	
linkerd.io/inject: ingress will add a proxy container to the Pod, but the
proxy will run in “ingress” mode (which we’ll discuss in chapter 5).

	
linkerd.io/inject: disabled explicitly tells linkerd-proxy-injector to
not add the proxy sidecar, even if there’s a Namespace annotation that would otherwise say to add the sidecar.

We’ll discuss ingress mode more in chapter 5: it’s a workaround for ingress
controllers that only know how to route requests directly to workload
endpoints. In most cases, you should use linkerd.io/inject: enable to get
“normal” mode.

Why might you decide not to add a workload to the mesh?

In general:

	
You always want to add your application workloads to the mesh.

	
You never want to add cluster infrastructure to the mesh.

So, for example, things in the kube-system namespace are never injected. All
of these Pods are designed to protect themselves no matter what else is going
on, and some of them need to be sure that nothing is between them and the
network layer, so you shouldn’t inject them.

Likewise, a Kubernetes conversion webhook generally shouldn’t be in the mesh.
The webhook mechanism itself already makes specific demands around TLS, and
the mesh won’t help with that. (It probably won’t hurt, but there’s really no
point.) Another good example here is CNI implementations: these need direct
access to the network layer, and shouldn’t be injected.

On the other hand, the workloads that are part of your application running in
the cluster should always be injected into the mesh.

Other proxy configuration

Although the basic linkerd.io/inject annotation is the only proxy
configuration option you must provide, there are actually quite a few other
things you can configure about the proxy. The full list can be found in the
Linkerd Proxy Configuration documentation at
https://linkerd.io/2.12/reference/proxy-configuration/, but two areas very
much worth learning about from the start are protocol detection and
Kubernetes resource limits.

Protocol detection

As we discussed in chapter 1, Linkerd puts a lot of effort into operational
simplicity: whenever possible, Linkerd tries to make sure things “just work”
when you bring your application into the mesh. Protocol detection is a
critical part of this, because Linkerd has to know the protocol being used
over a connection in order to correctly manage the connection.

There are several reasons that Linkerd (or any other mesh) needs to know the
protocol in use over the wire; we’ll touch on just a few of them:

	
Observability: Linkerd can’t provide proper metrics without understanding
the flow of the protocol. Identifying the beginning and end of a request is a
crucial aspect to measuring request rate and latency. Reading status for a
request is a critical aspect of measuring the success rate.

	
Reliability: Any reliability feature beyond the most basic requires
understanding the protocol in flight. Consider load balancing, for example: if
Linkerd doesn’t know the protocol, it can only do connection-based load
balancing, where an incoming TCP connection is assigned to a specific workload
Pod.

However, connection-based load balancing doesn’t work very well for protocols
like HTTP/2 and gRPC. In these protocols, a single long-lived connection can
carry many requests, with multiple requests active at the same time. Linkerd
can dramatically improve reliability and performance by assigning individual
requests to workload Pods, rather than fixing an entire connection to a Pod.
(It’s a fun Linkerd fact that it does this automatically, with zero
configuration: just install Linkerd and you get this for free.)

	
Security: if a workload makes a TLS connection to another workload,
Linkerd shouldn’t try to reencrypt it, and also shouldn’t try to do anything
fancy with load-balancing, since it won’t be able to see anything inside the
connection. (This implies that you’ll get the best results with Linkerd by
having your workloads not use TLS between each other: let Linkerd do mTLS
for you!)

When Protocol Detection Goes Wrong

Automatic protocol detection has one major limitation: it can only work for
protocols where the entity that makes the connection is also the first one to
send data (client-speaks-first protocols). It will fail for protocols where
the entity that receives the connection is the first to send data
(server-speaks-first protocols).

The reason for this limitation is that until Linkerd knows the protocol, it
can’t make reasonable decisions about how to do load balancing, so it can’t
decide what server to connect to, so it can’t find out what the server will
say! Every proxy has this frustratingly circular issue.

In the cloud-native world, many - perhaps most? - common protocols are,
happily, client-speaks-first protocols: for example, HTTP, gRPC, and TLS
itself are all client-speaks-first. Unfortunately, there are some important
server-speaks-first protocols out there: SMTP, MySQL, and Redis are all
examples.

If Linkerd cannot detect the protocol, it will assume it’s a raw TCP
connection, simply because that’s the least common denominator that will
always function. The problem is that for server-speaks-first protocols,
Linkerd will wait 10 seconds before assuming that it won’t be able to detect
the protocol, and that 10-second delay is obviously not what you want. To
prevent that, you need to tell Linkerd that it should either skip the
connection entirely, or it should treat it as opaque.

opaque vs skip

When you tell Linkerd to skip a connection, you’re telling it to have
absolutely nothing to do with that connection. In fact, the Linkerd proxies
don’t touch the connection at all: the packets flow straight from workload to
workload.

This means that Linkerd can’t do mTLS, load balance, collect metrics, or
anything. The connection effectively happens outside the mesh entirely.

An opaque connection, on the other hand, does pass through the Linkerd
proxies, which means that it is carried over mTLS: it’s still encrypted and
Linkerd still enforces any policy that has been configured, but you’ll only
get per-connection metrics and load balancing (because Linkerd knows that it
can’t see into the stream to look at individual requests).

This all implies that if you need to use server-speaks-first protocols, it’s
better to mark them as opaque, rather than skipping them entirely. Skipping
should only be necessary when the destination of the traffic isn’t part of
your mesh — since opaque connections still rely on a Linkerd proxy to do
mTLS, they can’t work if there’s no proxy there to receive the connection!

Configuring Protocol Detection

There are two ways to tell Linkerd about protocols: you can use a Server
resource, which we’ll cover when we talk policy in chapter 9, or you can use
annotations to mark specific ports as opaque or skipped:

	
config.linkerd.io/opaque-ports: connections to or from these ports will
always be treated as opaque

	
config.linkerd.io/skip-inbound-ports: connections coming into this
workload on these ports will always be skipped

	
config.linkerd.io/skip-outbound-ports: connections leaving this workload
on these ports will always be skipped

All of these take comma-separated lists of port numbers, or port ranges, so
all of the following are legal:

	
config.linkerd.io/opaque-ports: 25

This will treat only port 25 as opaque.

	
config.linkerd.io/skip-inbound-ports: 3300,9900

This will skip connections coming in on port 3300 or 9900.

	
config.linkerd.io/skip-inbound-ports: 8000-9000

This will skip connections coming in on any port between 8000 and 9000, inclusive.

	
config.linkerd.io/skip-outbound-ports: 25,587,8000-9000

This will skip connections going out on port 25, port 587, or any port between
8000 and 9000, inclusive.

There’s also config.linkerd.io/skip-subnets, which skips any connection to
or from any listed subnets. Its argument is a comma-separated list of CIDR
ranges, e.g. config.linkerd.io/skip-subnets: 10.0.0.0/8,192.168.1.0/24.

Default Opaque Ports

As of Linkerd 2.12, several ports are marked as opaque by default:

	Protocol
	Ports
	Notes

	SMTP

	25, 587

	

	MySQL

	3306, 4444

	Ports 4567 and 4568 might also be used by Galera; they’re not opaque by default

	PostgreSQL

	5432

	

	Redis

	6379

	

	ElasticSearch

	9300

	

	Memcache

	11211

	

If you’re using these products on their default ports, they’ll work seamlessly
with Linkerd even though they’re server-speaks-first protocols. If you’re
using these ports for client-speaks-first protocols, you’ll need to use a
Server resource to override the port default (or - better - just choose a
different port for your client-speaks-first protocol!).

Kubernetes resource limits

Compared to protocol detection, Kubernetes resource limits are much more
straightforward! There’s a simple set of annotations to set that will allow you to specify resource requests and limits:

	Annotation
	Effect

	config.linkerd.io/proxy-cpu-limit

	Maximum amount of CPU units that the proxy sidecar can use

	config.linkerd.io/proxy-cpu-request

	Amount of CPU units that the proxy sidecar requests

	config.linkerd.io/proxy-ephemeral-storage-limit

	Used to override the limitEphemeralStorage config

	config.linkerd.io/proxy-ephemeral-storage-request

	Used to override the requestEphemeralStorage config

	config.linkerd.io/proxy-memory-limit

	Maximum amount of Memory that the proxy sidecar can use

	config.linkerd.io/proxy-memory-request

	Amount of Memory that the proxy sidecar requests

Summary

So there you have it: the start-to-finish guide for getting your workloads to
be an effective part of the Linkerd mesh. Hopefully you now have a good
understanding of how to make everything work, and of the gotchas along the way
(like server-speaks-first protocols). Next up: getting Linkerd and ingress
controllers to play nicely together.

Chapter 5. Ingress and Linkerd

A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the authors’ raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

This will be the fifth chapter of the final book.

If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the authors at jason@buoyant.io and flynn@buoyant.io.

Whenever you work with Kubernetes, you always have to find a way for your
users outside your cluster to be able to make requests of (some of) the
services running inside your cluster. This is the ingress problem: the
cluster wants to protect everything inside from the big scary Internet, but
that’s where your legitimate users are.

There’s an entire class of applications out there whose sole purpose is
solving the ingress problem, unsurprisingly called ingress controllers. In
this chapter, you’ll learn how to make Linkerd and the ingress controller of
your choice play nicely with each other.

There are a lot of different ingress controllers, which approach the ingress
problem in fascinatingly different ways, but there are some common threads
across all of them:

	
They are all designed to live right at the edge of a cluster (usually behind
a Kubernetes Service of type LoadBalancer), exposed directly to the Internet
so that their clients can reach them. Security is always a major concern for
an ingress controller.

	
They always have a way to control which requests from outside get routed to
which services inside. This is another critical security issue: installing
an ingress controller cannot mean that all the services in your cluster are
open to the Internet.

All the popular ingress controllers support sophisticated routing controls at
layer 7, typically focusing on HTTP. Many also support more limited control
for routing layer 4 connections.

	
At layer 7, the ingress controller might have capabilities like “route an
HTTP request where the hostname is foo.example.com and the path starts
with /bar/ to the Service named bar-service“.

	
At layer 4, its capabilities are likely to be along the lines of “route TCP
connections arriving on port 1234 to the Service named bar-service“.

Depending on which ingress controller is in use, the actual way the user
configures routing can vary significantly.

	
Ingress controllers can always terminate and originate TLS connections
(again, mostly focusing on HTTPS) in order to handle security at the edge of
the cluster. This does not mean that Linkerd’s mTLS is being extended all the
way to the client. While it’s technically possible to arrange that, the
certificate management needed to make that happen is challenging in practice.

As we’ll see when we dive into security in chapter 9, it turns out that having
the two TLS worlds be separate isn’t actually a problem. Allowing the ingress
controller to manage TLS with its client while allowing Linkerd to manage mTLS
within the cluster is a powerful combination.

	
Finally, many ingress controllers offer capabilities like end-user
authentication, circuit breaking, rate limiting, etc. (These ingress
controllers may also be called API Gateways.)

Ingress Controllers with Linkerd

Linkerd doesn’t have a lot of constraints in terms of which ingress controller
you use: almost any of them will work, usually without much trouble. From
Linkerd’s point of view, the ingress is just another meshed workload, and from
the ingress controller’s point of view, Linkerd is mostly invisible.

Note

Some other meshes take a very different approach here, requiring a very tight
integration between the ingress controller and the mesh. Linkerd takes this
very ingress-agnostic approach because it tends to increase flexibility,
lessen operational complexity, and make it easier to adopt the ingress
controller and the service mesh at different times.

The Ingress Controller Is Just Another Meshed Workload

From Linkerd’s point of view, the ingress controller is mostly just a workload
in the mesh. The fact that clients outside the cluster can talk to the ingress
controller is really not something that Linkerd worries about: you still need
to inject a sidecar into the ingress controller, and all the usual Linkerd
features like mTLS and metrics just work.

The single way that the ingress controller will almost always need special
handling is that you’ll almost always want to tell Linkerd to skip the ingress
controller’s incoming ports. This is because the ingress controller may need
access to the client’s IP address for routing or authorization purposes, but
if Linkerd is handling the connection, then the only IP address the ingress
controller will ever see is that of the Linkerd proxy.

Note

Remember that the ingress controller has to be designed to safely handle
connections directly from the Internet. Telling Linkerd not to handle the
incoming connections for the ingress controller shouldn’t be any problem from
the security point of view.

You’ll use the config.linkerd.io/skip-incoming-ports that we covered in
Chapter 4 to skip the incoming ports. Pay attention to the port numbers — you
need to skip the port(s) on which the ingress controller Pod is actually
listening, which will often not be the port that the client uses! For
example, if you associate your ingress controller with a Service like this
one:

apiVersion: v1
kind: Service
metadata:
 name: myservice
spec:
 type: LoadBalancer
 ports:
 - name: http
 port: 80
 protocol: TCP
 targetPort: 8080

then you’ll need to skip inbound port 8080: trying to skip inbound port 80
would have no effect whatsoever. So the correct annotation would be:

config.linkerd.io/skip-incoming-ports: 8080

Linkerd Is (Mostly) Invisible

From the point of view of the ingress controller, Linkerd is basically
invisible. This is by design: adding Linkerd to a running application is meant
to just work, after all! But there are two things to be aware of to make sure
that everything is working as smoothly as possible: the ingress controller
should use cleartext within the cluster, and it should route to Services
rather than endpoints.

Use Cleartext Within the Cluster

We know: this is probably the only time in years you’ve seen anyone recommend
using cleartext instead of TLS. To be clear, we’re not talking about the
connection from the client to the ingress controller! (Definitely use HTTPS
for that.) Here, we’re talking about the connections made from the ingress
controller to meshed workloads in the cluster.

For those connections, you should use cleartext. If the ingress controller
originates TLS to the workload, Linkerd can’t do anything more than
per-connection proxying: you miss out on per-request load balancing, proper
request metrics, and a lot of other really useful things that Linkerd brings
to the table. Using cleartext connections allows all the advanced
functionality, and is still safe because Linkerd’s mTLS will protect the
connection.

Route to Services, not Endpoints

This is an area where Kubernetes nomenclature and concepts are particularly
challenging. A Kubernetes Service actually has three entirely distinct parts,
and all three are relevant for this point:

	
The Service causes a name to appear in the cluster’s DNS service.

	
That DNS name is associated with a single IP address for the Service itself.

	
The Service is also associated with a set of Pods, and each Pod has an IP
address that is different from every other Pod’s and from the Service’s IP
address.

Collectively, the IP addresses of the Pods are called the endpoints of the
Service. (Kubernetes also has resources called Endpoints and EndpointSlice,
but we’re just talking about the set of Pod IP addresses for the moment.)

The IP address the ingress controller uses for its connections matters because
normally, Linkerd will only load-balance connections made to the Service’s IP
address, not connections made directly to an endpoint’s IP address. This
makes it easy for the ingress controller to simply hand off all load-balancing
decisions to Linkerd, while still making it possible to have the ingress
controller do its own load balancing.

Depending on which ingress controller you’re using, you might need to
specifically configure what kind of routing you want the ingress controller to
do. Some ingress controllers, though, cannot be configured to route to the
Service IP. For these ingress controllers, you’ll need to use Linkerd’s
ingress mode.

Ingress Mode

To use ingress mode, inject the proxy with:

linkerd.io/inject: ingress

rather than:

linkerd.io/inject: enabled

When ingress mode is active, Linkerd routes based on the l5d-dst-override
header. The ingress controller must inject this header to every request, with
a fully-qualified Service DNS name as its value; Linkerd will then treat the
connection as if it had been made to that Service’s IP address.

Remember that Linkerd cannot create the l5d-dst-override header itself: the
ingress controller is responsible for doing so, and and ingress controller
that cannot inject this header is not compatible with Linkerd ingress mode. In
general, it is far better to configure the ingress controller to route to
Services rather than to use ingress mode.

Specific Ingress Controller Examples

Here are some specific examples of configuring different ingress controllers
for use with Linkerd. This is not an exhaustive list by any means — it’s
just a convenient set to show a fairly wide range of possibilities. The
Linkerd ingress documentation at https://linkerd.io/2.12/tasks/using-ingress/
has more on this topic.

For our examples here, we’ll take a look at Emissary-ingress, NGINX, and Envoy
Gateway.

Emissary-ingress

Emissary-ingress is an open-source, Kubernatives-native API Gateway that’s
been around since 2017. It’s built on the Envoy proxy, focuses on operational
simplicity and self-service configuration, and has been a CNCF Incubating
project since 2021. It defines its own native configuration CRDs, but can also
use Ingress resources or Gateway API. You can find out more about Emissary at
https://www.getambassador.io/products/api-gateway. (Full disclosure: Flynn is
the original author of Emissary.)

There’s really not too much to dig into as far as setting up Emissary with
Linkerd: it basically just works. Emissary defaults to routing to Services, so
really the only thing to consider when adding Emissary to the Linkerd mesh is
to skip Emissary’s incoming ports if you need for Emissary to know client IP
addresses. And you’ll want to make sure that Emissary isn’t originating TCP to
the workloads.

NGINX

NGINX is an open-source API Gateway and Web server from long before Kubernetes
came along. Though it’s not a CNCF project itself, it served as the core of
the ingress-nginx Kubernetes ingress controller, which was one of the first
ingress controllers using the Ingress resource, and has been sufficiently
popular for long enough that people generally mean ingress-nginx when they
talk about running NGINX for Kubernetes. You can learn more about
ingress-nginx at https://docs.nginx.com/nginx-ingress-controller.

By default, ingress-nginx will route to endpoint IPs, not Service IPs. To
tell it to route to Service IPs instead, you’ll need to include an
ingress-nginx annotation on your Ingress resources:

nginx.ingress.kubernetes.io/service-upstream: "true"

Installing and meshing ingress-nginx after that should be painless. Remember
to look at skipping incoming ports, too!

Envoy Gateway

Envoy Gateway is an extremely new open-source ingress controller: so new, in
fact, that it’s included here mostly due to its potential, even though it’s
not ready for production use yet. It’s part of the Envoy proxy CNCF project,
which is the basis of Emissary-ingress and Contour, both CNCF API Gateways,
and in 2021 all three projects decided to work together on a common ingress
controller core, configured with Gateway API.

As of this writing, Envoy Gateway is at version 0.3.0 and is still fairly far
from production-ready, but it’s far enough along that you can use it in a
cluster with Linkerd. You can learn more about it at
https://gateway.envoyproxy.io.

Envoy Gateway, like all Gateway API ingress controllers, has the interesting
characteristic that the user doesn’t directly install the Pods that handle
data (the data plane). Instead, the Gateway API spec demands that the user
install only the control plane piece, and allow the control plane to create
the data-plane pods. Envoy Gateway interprets this to mean that whenever it sees a change to the Gateway resource that defines a data plane, the data-plane Deployment gets deleted and recreated.

This makes it a touch challenging to use Envoy Gateway with Linkerd: rather
than applying Linkerd annotations to the data-plane Deployment, the most
effective way to do it is to apply them to the envoy-gateway-system
namespace, which is where the data-plane Deployment will be created. Once past
that hurdle, Envoy Gateway works cleanly with Linkerd: as always, pay
attention to the incoming ports!

Summary

One of Linkerd’s strengths is its ability to work with a wide variety of
ingress controllers: as long as a given ingress controller can accept the
Linkerd sidecar and route to Services, it should work seamlessly with Linkerd.
This leaves you free to choose whatever ingress controller works well for your
team and your application, and be confident that it’ll get along with Linkerd.

 About the Authors

 Jason Morgan is a Technical Evangelist for Linkerd at Buoyant, maintainer of the CNCF Cloud Native Glossary,
 and co-author of the CNCF Landscape guide. Passionate about helping others on their cloud native journey,
 Jason educates engineers on Linkerd, the original service mesh. You might have encountered his articles in
 The New Stack, where he breaks complex technology concepts down for a broader audience. Before joining Buoyant,
 Jason worked at Pivotal and VMware Tanzu.

 Flynn is a Technical Evangelist at Buoyant, working on spreading the good word about Linkerd, Kubernetes, and
 cloud-native development in general. He is also the original author and a maintainer of the Emissary-ingress
 API gateway, also a CNCF project. His career in computing spans nearly forty years and runs the gamut from
 bringup on bare metal to distributed applications, with a common thread of communications and security throughout.

OEBPS/Images/image-to-come.png
IMAGE TO COME

OEBPS/Images/cover.png
OREILLY"

Linkerd:
Up & Running

An In-Depth Look at the First Service Mesh

Early
Release

RAW &
UNEDITED

Jason Morgan
& Flynn

