

Fullstack Rust
The Complete Guide to Buildings Apps with the Rust Programming Language and Friends

Written by Andrew Weiss
Edited by Nate Murray

© 2020 Fullstack.io

All rights reserved. No portion of the book manuscript may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means beyond the number of purchased copies,
except for a single backup or archival copy. The code may be used freely in your projects,
commercial or otherwise.

The authors and publisher have taken care in preparation of this book, but make no expressed
or implied warranty of any kind and assume no responsibility for errors or omissions. No
liability is assumed for incidental or consequential damagers in connection with or arising out
of the use of the information or programs container herein.

Published by Fullstack.io.

Contents

Book Revision . 1
Join Our Discord . 1
Bug Reports . 1
Be notified of updates via Twitter . 1
We’d love to hear from you! . 1

Introduction . 1
Why Rust? . 1
Why not Rust . 8
This book’s mission . 9
Setting expectations based on your background 10
Getting your environment setup . 12
Rustup . 13
Cargo . 13
IDEs, RLS, Editors . 14
Clippy . 14
Rustfmt . 15
Documentation . 15
The Nomicon . 16

Summary . 17

Making Your First Rust App . 18
Getting started . 18
Binary vs. library . 18
The generated project . 19
Crates . 21
Making our crate a library . 22

CONTENTS

Trade-offs . 24
Print a list of numbers . 24
Testing our code . 39
Wrapping up . 40

Making A Web App With Actix . 41
Web Ecosystem . 41
Starting out . 44
Handling our first request . 51

Adding State to Our Web App . 65
Recap and overview . 65
Adding state . 65
Receiving input . 75
Custom error handling . 81
Handling path variables . 87
Wrapping up . 90

Even More Web . 91
Crates to know . 91
Building a blog . 92
Users . 96
Building the application . 100
Examples . 126
Extending our application . 129
Adding routes for posts . 136
Extending further: comments . 141
Adding routes for comments . 149

Examples . 154
Create a post . 154
Create a post . 154
Publish a post . 155
Comment on a post . 155
List all posts . 155
See posts . 157
Publish other post . 157

CONTENTS

List all posts again . 158
See users comments . 159
See post comments . 160
Wrapping up . 161

What is Web Assembly? . 162
Intro to Web Assembly . 162
Rust in the browser . 164
The Smallest Wasm Library . 165
Working with primatives . 167
Working with complex types . 172
The Real Way to Write Wasm . 186
Other Wasm Topics . 191

Command Line Applications . 193
Initial setup . 193
Making an MVP . 194
Recap . 235
Adding a configuration file . 235
Adding sessions . 243
Syntax highlighting . 259
Summary . 266

Macros . 267
Overview . 267
Declarative Macros . 268
Procedural Macros . 274
Writing a custom derive . 276
Using our custom derive . 309
Wrapping up . 314

Changelog . 315
Revision 6 (05-30-2022) . 315
Revision 5 (02-20-2020) . 315
Revision 4 (02-19-2020) . 315
Revision 3 (01-29-2020) . 315
Revision 2 (11-25-2019) . 315

CONTENTS

Revision 1 (10-29-2019) . 316

CONTENTS 1

Book Revision

Revision 6 - 2022-05-30

Join Our Discord

Come chat with other readers of the book in the official newline Discord channel:

Join here: https://newline.co/discord/rust¹

Bug Reports

If you’d like to report any bugs, typos, or suggestions just email us at:us@fullstack.io.

Be notified of updates via Twitter

If you’d like to be notified of updates to the book on Twitter, follow us at @full-
stackio².

We’d love to hear from you!

Did you like the book? Did you find it helpful? We’d love to add your face to our list
of testimonials on the website! Email us at: us@fullstack.io³.

¹https://newline.co/discord/rust
²https://twitter.com/fullstackio
³mailto:us@fullstack.io

https://newline.co/discord/rust
https://twitter.com/fullstackio
https://twitter.com/fullstackio
mailto:us@fullstack.io
https://newline.co/discord/rust
https://twitter.com/fullstackio
mailto:us@fullstack.io

Introduction
There are numerous reasons to be hopeful about the future of computing, one of
which is the existence and continued progression of the Rust programming language.

We are currently in the fifth era of programming language evolution. This is an
era where languages have been able to take all of the learnings since the 1950s and
incorporate the best parts into languages each with its own cohesive vision.

We have specialized languages cropping up for a wide variety of tasks and countless
general purpose languages being actively developed and used. There are significant
resources in industry to invest in language design and development which compli-
ment the vibrant academic community. With tools like LLVM and the explosion of
open source, creating a language has never been easier.

It is in this environment that Rust has been voted the “most loved programming
language” in the Stack Overflow Developer Survey every year since 2016. Standing
out in this increasingly crowded world of languages is enough of a reason to ask why
Rust?

Why Rust?

There are a few potential readings of this question: why should I learn Rust, why are
others using Rust, why should I choose Rust over language X? These are all relevant,
but I want to start with a bit of a philosophical argument for Rust independent of
these specific points.

There is a limit to how transformative an experience you can have when learning
a language in a similar paradigm to one you already know. Every language and
paradigm has an intrinsic style that is forced on you as you try to solve problems.

If you work within that style then your code will flow naturally and the language
will feel like it is working with you. On the other hand, if you fight the natural style
of the language you will find it hard or impossible to express your ideas.

Introduction 2

Moreover, learning and working with a language will teach you ways to be more
effective based on how the language guides you based on its natural design. How
much you are able to learn is a function of how much your prior experience and
mental models cover the new language.

Rust borrows a lot of ideas from other languages and is truly multi-paradigm,
meaning you can write mostly functional code or mostly imperative code and still
fit nicely within the language. The most unique feature of the language, the borrow
checker, is a system that enforces certain invariants which allow you to make certain
safety guarantees. Even this is built on prior art found in earlier languages.

All of these good ideas from the world of programming language design combine
in a unique way to make Rust a language that truly makes you think about writing
code from a novel perspective. It does not matter how much experience you have,
learning Rust will forever change the way you write code for the better.

Okay with that philosophical argument out of the way, let’s dig in to some specifics
of why Rust is a exciting.

To help guide this discussion, we can break things down into a few broad categories.

On language comparisons

There is no best programming language. Almost every task has a variety of languages
which could be the right tool. Every language comes with good parts and bad parts.
Evaluating these trade-offs when faced with a particular problem space is an art
unto itself. Therefore, nothing in this book is intended to disparage or denigrate any
particular alternative language. The primary goal of this book is to faithfully present
Rust. That being said, sometimes comparisons with other languages are instructive
and are meant to be instructive rather than as fuel in a flame war.

Language features

There are a lot of features of Rust which make it a great tool for a great number of
tasks. Some highlights include:

• Performance

Introduction 3

• Strong, static, expressive type system
• Great error messages
• Modern generics
• Memory safety
• Fearless concurrency
• Cross platform
• C interoperability

Let’s briefly go through some of these which are probably the biggest reasons that
Rust gets talked about.

Performance

Rust is exceptionally fast, in the same ballpark as C and C++. For some programs,
specifically due to the lack of pointer aliasing, the Rust compiler can sometimes have
enough information to optimize code to be faster than what is possible in C without
directly writing assembly. For the vast majority of use cases, you should consider
Rust to be fast enough.

Often the most obvious way to write a program is also the fastest. Part of this comes
from the commitment to zero-cost abstractions, which are summarized by Bjarne
Stroustrup, the creator of C++, as:

What you don’t use, you don’t pay for. And further: What you do use, you
couldn’t hand code any better.

Most of the abstractions in Rust, for example iterators, are zero-cost by this definition.
The most efficient way to traverse a vector of data is to use a for loop which uses an
iterator trait. The generated assembly is usually as good as you could hope for had
you written it by hand.

The other aspect of performance is memory consumption. Rust does not have a
garbage collector so you can use exactly as much memory as is strictly necessary
at any given time. Due to the design of the language, you start to think and see
every memory allocation. Using less memory is often easier than the converse. The
rest of the language is designed around making working without a garbage collector
painless.

Introduction 4

Type system

The type system of Rust is influenced by the long lineage of functional programming
languages such as ML and Haskell. It is static, nominal, strong, and for the most part
inferred. Don’t worry if that didn’t mean anything to you, but if it did then great.
You encode the ideas and constraints of your problem with types. You only have to
specify types in a few places with the rest able to be inferred.

A type system is often called expressive if it is easy to encode your ideas. Rust has
powerful abstraction facilities like sum and product types, tuples, generics, etc. which
put the type system definitely in the expressive camp.

There are some concepts which are impossible to express in static type systems.
However, most things you encounter in practice are expressible in Rust’s type system.

The compiler then checks everything for you so that you get faster feedback about
potential problems. As a result, entire classes of bugs are impossible because of this
static typing.

Memory safety

A language is memory safe if certain classes of bugs related to memory access are
not possible. Likewise, a language can be called memory unsafe if certain bugs are
possible. A non-exhaustive list of memory related bugs include: dereferencing null
pointers, use-after free, dangling pointers, buffer overflows.

If you have never written code in a memory unsafe language then these might sound
like gibberish to you, which is fine. The important point is this class of bugs is a
consistent and large source of security vulnerabilities in systems implemented with
memory unsafe languages. For example, about 20% of CVEs⁴ ever filed against the
Linux kernel are due to memory corruption or overflows. Linux is implemented
primarily in C, a spectacularly memory unsafe language.

Memory safety bugs are bad for security and reliability. They lead to vulnerabilities
and they lead to crashes. If you can rule these out at compile time then you are in a
much better state of the world.

Rust is designed to be memory safe, and thus it does not permit null pointers,
dangling pointers, or data races in safe code. There are many interacting features

⁴https://www.cvedetails.com/product/47/Linux-Linux-Kernel.html?vendor_id=33

https://www.cvedetails.com/product/47/Linux-Linux-Kernel.html?vendor_id=33
https://www.cvedetails.com/product/47/Linux-Linux-Kernel.html?vendor_id=33

Introduction 5

which allow this guarantee. The primary one is the unique system of ownership
combined with the borrow checker. This is part of the compiler that ensures pieces
of data live at least as long as they need to in order to be alive when they are used.

One other feature is the built-in Option type. This is used to replace the concept of
null found in many other languages. In some languages, every type is secretly the
union of that type with null. This means that you can always end up with bugs where
you assume some variable had a value and it actually was inhabited by the dreaded
null. Rust disallows this by not having null and instead having a type which can
explicitly wrap other types. For example, consider this Rust code:

fn print_number(num: Option<i32>) {

match num {

Some(n) => println!("I see {}!", n),

None => println!("I see nothing!"),

}

}

fn main() {

let x = Some(42);

let y = None;

print_number(x);

print_number(y);

}

The function print_number must handle the case where num is None, meaning the
Option has no value. There are a few different ways to handle that case but you
must explicitly do something for that case or else your code will not compile.

The one caveat here is that Rust does allow blocks of code to be marked unsafe and
within those blocks it is possible to violatememory safety. Some things are impossible
for the compiler to verify are safe and therefore it refuses to do so. It requires you to
use unsafe regions of code to ensure that you understand the invariants required to
make sure your code truly is safe.

This does not defeat the purpose, rather in isolates the areas of auditability to just
those sections of code which are specifically marked. Nothing you do in normal Rust,

Introduction 6

also called safe Rust, can result in a memory safety violation, unless something in
unsafe code did something wrong ahead of you.

As an example, calling C functions from Rust is unsafe. This is because Rust has no
way of knowing what the C code is doing, and C is inherently unsafe, therefore the
compiler cannot uphold its guarantees if you call out to C. However, can it be safe
to call C? Yes, provided you fill in the visibility gap for the compiler with your own
logic.

Fearless concurrency

Concurrency in programming means that multiple tasks can be worked on at the
same time. This is possible even for a single thread of execution by interleaving the
work for different tasks in chunks rather than only working on tasks as entire chunks.

Parallelism in programming means multiple tasks executing at the exact same time.
True parallelism requires multiple threads of execution (or the equivalent).

The Rust language describes its facilities for concurrent and parallel computing as
fearless concurrency with a bit of conflation of terms. I will continue in this tradition
and use concurrency to mean concurrency and/or parallelism.

Most modern, high level languages have chosen how they want to support concur-
rency and mostly force you down that path. Some more general purpose languages
provide the tools to handle concurrency however you see fit. For example, Go is
designed around Communicating Sequential Processes (CSP) and therefore concur-
rency is most easily achieved using channels and goroutines. Python, on the other
hand, has libraries for threads, multiprocesses, message passing actors, etc.

Rust is a low-level language by design and therefore provides tools that allow you to
use the model of your choice to achieve your particular goals. Therefore, there are
facilities for threads but also channels and message passing.

Regardless of what technique you choose to tackle concurrency and/or parallelism,
the same ownership model and type system that ensures memory safety also ensures
thread safety. This means that it is a compile time error to write to the same memory
from different threads without some form of synchronization. The details are less
important than the concept that entire classes of problems that are notoriously
difficult to debug in other languages are completely eliminated at compile time while,
importantly, retaining all of the performance benefits.

Introduction 7

C interoperability

Rust is foremost a systems programming language. That means it is designed for
building low level systems with strict performance requirements and reliability
constraints. Frequently in this world, C is the glue that binds many disparate systems.
Therefore being able to interoperate with C is an absolute necessity to be able to have
a serious systems language. Luckily it is straightforward to interact with C both by
calling into C from Rust, as well as exposing Rust as a C library.

Youmight be saying that sounds great but I don’t plan onwriting an operating system
anytime soon so why should I care? C is also the most common mechanism for
making dynamic languages faster. Typically, when parts of your Python or Ruby
code are showing performance problems, you can reach for an extension written in
C to speed things up. Well, now you can write that extension in Rust and get all of
the high level benefits of Rust and still make your Python or Ruby code think it is
talking to C. This is also quite an interesting area for interacting with the JVM.

Ecosystem

Software is not constructed in a vacuum, the practice of programming is often a
community driven endeavor. Every language has a community whether it actively
cultivates it or not. The ecosystem around a language includes the community of
people, but also the tooling or lack thereof.

Rust has grown quite a lot in its short life and has gone through some growing
pains as a result. However, the community has always been very welcoming and
importantly the culture is a first-class citizen. Rust specifically has a community
team as part of the governance structure of the language. This goes a long way to
helping the language and ecosystem grow and mature.

We will cover much of the useful tooling that exists around Rust in detail below.
However, suffice it to say that the tooling around the language is some of the best
that exists. There have been a lot of learnings over the past twenty years about how
to manage toolchains and dependencies and Rust has incorporated all of this quite
well.

Introduction 8

The nature of programming

The systems and applications we are building today are different than 50 years ago,
they are even different than 10 years ago. Therefore, it should not be too much of a
stretch to say that the tools we use should also be different.

There is an explosion of embedded systems due to what is commonly called the
Internet of Things. However, is C still the best tool for that job? Mission critical
software that controls real objects that could lead to serious consequences in the
case of failure should be using the best tool for the job. Rust is a serious contender in
this space. For example, it is easy to turn off dynamic memory allocation while still
being able to use a lot of the nice parts of the language.

The other explosion is continuing on the web. We have been in a web revolution
for quite a while now, but things have not slowed down. The deficits of JavaScript
are well known and have been addressed along quite a few paths. We have many
languages which compile to JavaScript but provide nice features like type systems
or a functional paradigm. However, there are fundamental performance and security
issues with JavaScript regardless of how you generate it. WebAssembly (WASM) is
a step in a different direction where we can compile languages like Rust to a format
natively executable in the browser.

Fun

Rust is fun to write. You will disagree with this and think I am crazy at some point
while you are learning Rust. There is a learning curve which can be distinctly not
fun. However, once your mental model starts to shift, you will find yourself having
moments of pure joy when your code just works after the compiler gives you the
okay.

Why not Rust

Rust is just another programming language and as such is just another software
project. This means it has built up some legacy, it has some hairy parts, and it has
some future plans which may or may not ever happen. Some of this means that for
any given project, Rust might not be the right tool for the job.

Introduction 9

One area in which Rust might not be right is when interfacing with large C++
codebases. It is possible to have C++ talk to C and then have C talk to Rust and vice
versa. That is the approach you should take today if possible. However, Rust does not
have a stable ABI nor a stable memory model. Hence, it is not directly compatible
with C++. You can incrementally replace parts of a system with Rust and you can
build new parts in Rust, but plug-and-play interoperability with C++ is not a solved
problem.

Furthermore, Rust takes time to learn. Now this is often cited as a reason for
sticking with some other language because one is deemed an expert in that language.
However, a counter point might be that you are not as much of an expert in that
language as you might believe. A further counter point is that it might not matter,
the other language might be fundamentally flawed enough that being an expert is
irrelevant. Nonetheless, there are times where using the tool you know is the right
answer.

The gap between learning Rust and knowing it from using it in anger is a bit bigger
than in some other languages. Therefore the learning curve might seem steeper than
you are used to. However, this is primarily because what is safe in Rust with the
borrow checker helping you can be insane in other languages.

Type systems are amazing. You tell the computer some facts about your problem
domain and it continually checks that those things are true and lets you know if you
screw up. Yet there are valid programs which are inexpressible in a static type system.
This is both theoretically true and actually happens in practice. Moreover, dynamic
languages can frequently be more productive for small, isolated tasks. Sometimes the
cost of the type system is not worth it.

This book’s mission

Rust has a great set of documentation around the standard library and has an official
“book”⁵ which is a great place to start if you are looking for another source ofmaterial.
However, this book has a different focus than a traditional book trying to teach
you a language. Our goal is to build realistic applications and explore some of the
techniques and tools available in Rust for accomplishing those tasks.

⁵https://doc.rust-lang.org/book/

https://doc.rust-lang.org/book/
https://doc.rust-lang.org/book/

Introduction 10

In the process of working through some common scenarios, hopefully you will also
be able to learn Rust. There is a gradual ramp up from very simple to more complex
programs as we build up our Rust toolbelt. One specific goal is to show places where
many people usually stumble and try to support you in finding your own ways over
those hurdles. This should empower you when you branch out to your own problems.

This approach has the downside of not necessarily covering every language feature
in the same depth or in the same order that you might encounter in a standard
programming language introduction. Furthermore, we will explicitly try to take
a pragmatic path rather than belabor esoteric details. Those details can be quite
interesting and will be there for you when you want to seek them out, but often
they get in the way of learning. We will sometimes do things in a less than perfect
way as the trade-off is worth the expositional benefit.

Overall the goal is to get you to a state of productivity as quickly as possible. Along
the way we will provide pointers to further material if you want to go deeper.

Setting expectations based on your
background

A great deal of terminology in the programming language space is built on a base
set of shared ideas that have become so entrenched as to be overlooked by most
every day developers. There are some lines we have to draw where we lean on some
assumed prior knowledge. Thus, if you have never written any code before this might
be a challenging book to make it entirely through. If you are willing to take some
leaps of faith then you should be able to make it.

First and foremost, absolutely zero Rust background is assumed and every new
concept will be explained as it arises.

If you have a background that only includes garbage collected, dynamically typed
languages, such as Python, JavaScript, Ruby, PHP, then the biggest hurdle will
probably be working with the type system. That being said, you might just find a
wondrous joy associated with the tight feedback loop of a compiler telling you all
the things you have done wrong. Moreover, the type inference will let you forget
about it most of the time. Some of the points around memory safety might seem less
exciting to you because all of these languages are also memory safe. The approach

Introduction 11

to achieving memory safety is different but the end result is the same. Some topics
around pointers and references might seem new, but all of these languages leak those
concepts and you probably already understand them just in a different form. For
example, if you write the following Python:

def someFunc(items = []):

items.append(1)

return items

a = someFunc()

b = someFunc()

a.append(2)

print(a)

print(b)

youwill see [1, 1, 2] printed twice. As a diligent Python programmer you know not
to use lists as default arguments to functions like this and the reason has to do with
values versus references. So even if you don’t explicitly think that you are working
with pointers, you definitely do use them all the time. Rust has many high level
syntactic features that make it feel surprisingly similar to a dynamic language.

If you have a background in functional programming coming from Haskell or the
ML family then a lot will feel quite at home. But, the use of mutability and explicit
imperative style might be less of your thing. Rust has great functional programming
facilities and the type system borrows a lot from these languages. However, Rust
is more geared towards giving you a lot of the same safety benefits of functional
programming while still writing imperative code. Shared, mutable state is the root of
all evil. Functional programming attacks that problem by doing awaywithmutability.
Rust attacks it by doing away with sharing.

If you are coming from C++ then you are in for an easier road in some ways and
a much harder one in others. I focus here on C++ as it is more superficially similar,
but many points also apply to C. Much of the syntax and most of the concepts will
be familiar to you. However, there are a few new concepts, like lifetimes, and a few
things that look the same but are not, like references and move semantics.

Introduction 12

There are APIs you will find in Rust which you might find to be highly performant,
but laughably dangerous if ported to C++. You are correct. However, the borrow
checker can make such APIs safe. For example, would you give a reference to a stack
allocated piece of data to another thread? Would you store a reference to part of a
string in a heap allocated struct? Both those are invitations to disaster in C++. They
are trivial to do correctly in Rust thanks to the borrow checker and can be great for
performance. The API you might find normal in C++ may not be expressible in safe
Rust. That is, the borrow checker may not allow you to compile code you consider
correct. You may in fact be correct. However, this is usually an API which is easy to
misuse and is only correct with a significant amount of cognitive burden on you.

Hence, coming from C++ might require the most shift in how you think about
structuring programs. You are more likely to “fight the borrow checker” because
some of the ways Rust wants you to do things are just plain against your instincts.

Rust has a bit of notoriety for having a steep learning curve, but it is actually mostly
about unlearning things from other languages. Therefore, having less experience can
work in your favor.

Getting your environment setup

This book assumes an installed version of Rust and some associated tooling. The first
step in getting setup is to visit the official installation website:

https://www.rust-lang.org/tools/install

You should be able to follow the instructions to get setup via rustup. Rust has a fast
release cadence for a programming language with a new version every six week. This
means that the particular version as of this writing will be stale by the time you are
reading it. However, Rust also puts a strong emphasis on backwards compatibility.
Thus, as long as you are using a version of Rust at least as new as when this was
written, everything should still work for you. Rust 1.37.0 should be new enough for
all the code in this book. Moreover, we are using the 2018 edition exclusively. There is
an entire guide⁶ dedicated to explaining the editions so we will not cover it in depth
here.

⁶https://doc.rust-lang.org/edition-guide/index.html

https://doc.rust-lang.org/edition-guide/index.html
https://doc.rust-lang.org/edition-guide/index.html

Introduction 13

Rustup

The rustup⁷ tool is your one stop shop for managing multiple versions of the Rust
compiler on your machine. You can have different versions of the compiler installed
next to each other and easily switch back and forth between them. You can install
nightly releases to try out new features and then easily switch back to stable for other
projects. If you have ever dealt with the absolute madness associated with managing
different versions of some languages then you will be delighted at how well rustup
just works.

One note, for some reason all of the details of rustup can be found in the Github
readme⁸ for the project. It is pretty easy to use but the command line help frequently
fails me.

Cargo

rustc is the Rust compiler, and you can invoke it directly, however you will find this
rarely to be necessary as the majority of your time will be spent interacting with
Cargo. Cargo is a dependency manager and a build system. You use a manifest to
specify details of your code and its dependencies and you can then instruct Cargo to
build your code and it will take care of the rest. You can have Cargo manage building
for other platforms and for quickly type checking via cargo check. You use it to run
tests via cargo test and for countless other tasks.

We will cover code structure later on, but the primary unit is known as a crate. You
can depend on other crates and the public repository can be found at crates.io⁹. This
is related to Cargo in that there is quite a bit of default work built in to Cargo for
working with crates.io, but it is not absolutely required.

Cargo has its own guide¹⁰ which is a great source of information when you find
yourself wondering how to do something with Cargo. You can also always run cargo

help to answer your questions from the command line.

⁷https://rustup.rs
⁸https://github.com/rust-lang/rustup
⁹https://crates.io/
¹⁰https://doc.rust-lang.org/cargo/guide/

https://rustup.rs/
https://github.com/rust-lang/rustup
https://github.com/rust-lang/rustup
https://crates.io/
https://doc.rust-lang.org/cargo/guide/
https://rustup.rs/
https://github.com/rust-lang/rustup
https://crates.io/
https://doc.rust-lang.org/cargo/guide/

Introduction 14

IDEs, RLS, Editors

The editor support story is getting better and is significantly better than it used to
be. A project known as the Rust Language Server¹¹(RLS) is designed to provide the
backend for any editor to interact with the compiler and a tool called Racer¹² which
provides faster (but less precise) information than the compiler can. This is a project
that conforms to the Language Server Protocol¹³(LSP) so that every editor which can
act as a LSP client can work with RLS. There is a reference implementation of an
RLS specific frontend for Visual Studio Code, so if you are unsure where to start that
might be one to try out.

If you have a favorite editor already, like Vim or Emacs, then there are plugins you
can use to make working with Rust more comfortable. Personally, I use Vim and a
shell for running commands directly with Cargo. This is mostly so that I can move
between environments with minimal change to my workflow, and I have found that
Rust is amenable to this style. There are some languages which are very hard to work
with without autocomplete and Rust has not been like that for me.

Check out the official website¹⁴ for an up to date list of tools.

Clippy

The linter is affectionately named Clippy¹⁵. Cargo supports an awesome feature
where you can install subcommands via rustup so that you can selectively add
components to Cargo based on your needs. Clippy can be installed this way by
running:

rustup component add clippy

and then run with:

¹¹https://github.com/rust-lang/rls
¹²https://github.com/racer-rust/racer
¹³https://langserver.org/
¹⁴https://www.rust-lang.org/tools
¹⁵https://github.com/rust-lang/rust-clippy

https://github.com/rust-lang/rls
https://github.com/racer-rust/racer
https://langserver.org/
https://www.rust-lang.org/tools
https://github.com/rust-lang/rust-clippy
https://github.com/rust-lang/rls
https://github.com/racer-rust/racer
https://langserver.org/
https://www.rust-lang.org/tools
https://github.com/rust-lang/rust-clippy

Introduction 15

cargo clippy

It provides a bunch of helpful information and is good to run against your code
regularly. There are many ways to configure it both at a project level as well as at
particular points in your code. Linters are still an under used tool that end up being
a big source of bike shedding on larger teams. However using at least something to
catch the most egregious issues is better than nothing.

Rustfmt

Rust has an official code formatter called rustfmt¹⁶. This was a project that started life
in the community and eventually got official status. However, it is not as seriously
official as gofmt for the Go language. You can configure rustfmt based on a couple
attributes and there is nothing forcing you to use it. But, you should use it. Automated
code formatting is one of the great productivity wins of the past twenty years.
Countless engineering hours will no longer be wasted debating the finer points of
column widths, tabs versus spaces, etc. Let the formatter do its job and get back to
building.

Documentation

The standard library has documentation¹⁷ which you will consult frequently. It is
thorough and well-written. I know that typing d into my browser’s address bar and
hitting enter will take me to doc.rust-lang.org.

All crates on crates.io¹⁸ will automatically have its documentation built and available
on docs.rs¹⁹ which is an amazing tool for the community. Rust has great facilities
for including documentation in your code which is why most crates are quite well
documented. One excellent feature is the ability to include code samples in your
documentation which is actually checked by the compiler. Thus the code examples
in the documentation are never out of date

¹⁶https://github.com/rust-lang/rustfmt
¹⁷https://doc.rust-lang.org/std/index.html
¹⁸https://crates.io
¹⁹https://docs.rs/

https://github.com/rust-lang/rustfmt
https://doc.rust-lang.org/std/index.html
https://crates.io/
https://docs.rs/
https://github.com/rust-lang/rustfmt
https://doc.rust-lang.org/std/index.html
https://crates.io/
https://docs.rs/

Introduction 16

The offical rustdoc book²⁰ is a great resource for learning about documenting your
Rust code.

The Nomicon

Rust has a safe and an unsafe side. You may one day find yourself wondering more
about what goes on over on the mysterious, dark unsafe side. Well look no further
than the Rustonomicon²¹ known colloquially as The Nomicon. This book will give
you more guidance about how safe and unsafe interact, what you can and cannot do
in unsafe Rust, and most importantly how not to break things when you need to use
unsafe. It is highly unusual to need to use unsafe. Even when performance is critical,
safe Rust most likely can solve your problem. However, there are instances where
you really need to reach for this tool and the Nomicon will be your friend at that
time.

²⁰https://doc.rust-lang.org/rustdoc/index.html
²¹https://doc.rust-lang.org/nomicon/

https://doc.rust-lang.org/rustdoc/index.html
https://doc.rust-lang.org/nomicon/
https://doc.rust-lang.org/rustdoc/index.html
https://doc.rust-lang.org/nomicon/

Summary
The history of computing is filled with powerful abstractions that let the machine
manage complexity and thus frees cognitive load from our minds to be spent onmore
productive tasks. We moved from machine code to assembly to high level languages
like C. Each step had a cost associated with giving up some explicit control and a
benefit of increased expressive power per unit of code written. Some of these layers
were strictly better, i.e. the cost was so negligible compared to the benefits as to be
ignored today.

These layers of abstractions continued to be built with different cost/benefit trade-
offs. Writing programs to solve complex tasks is a challenging endeavor. Some
constraints on our programs have dictated which of those layers of abstractions
we can use based on the various trade-offs. At some point, it became generally
accepted wisdom that memory safety must be traded off against performance and
control. If you want performance then you have to be close to the metal and that
is necessarily unsafe. If you want safety then you must be willing to sacrifice some
runtime performance to get it. There were counter points in small programs, but no
one has challenged this status quo when applied to programming in the large. That
is, until Rust.

You can have speed, no garbage collection and therefore a lowmemory footprint, and
you can have safety. Rust affirms our worst fears: programming is hard, humans are
fallible. But Rust also assuages those fears by having our computer handle the tasks
that are hard for humans. The concepts behind Rust are just the natural evolution in
our history of layered abstractions. Whether Rust succeeds or not, history will look
back at this as a turning point where it no longer became acceptable to give up safety.

Making Your First Rust App
Getting started

We are going to build an application in Rust to get a feel for the language and
ecosystem. The first step for all new Rust projects is generating a new project. Let’s
create a new project called numbers:

cargo new numbers

Cargo is the package manager for Rust. It is used as a command line tool to manage
dependencies, compile your code, andmake packages for distribution. Running cargo
new project_name by default is equivalent to cargo new project_name --binwhich
generates a binary project. Alternatively, we could have run cargo new project_name

--lib to generate a library project.

Binary vs. library

A binary project is one which compiles into an executable file. For binary projects,
you can execute cargo run at the root of your application to compile and run the
executable.

A library project is one which compiles into an artifact which is shareable and can
be used as a dependency in other projects. Running cargo run in a library project
will produce an error as cargo cannot figure out what executable you want it to run
(because one does not exist). Instead, you would run cargo build to build the library.

There are different formats which the Rust compiler can generate based on your
configuration settings depending on how you wish to use your library.

The default is to generate an rlib which is a format for use in other Rust projects.
This allows your library to have a reduced size for further distribution to other Rust

Making Your First Rust App 19

projects while still being able to rely on the standard library and maintain enough
information to allow the Rust compiler to type check and link to your code.

Alternative library formats exist for more specialized purposes. For example, the
cdylib format is useful for when you want to produce a dynamic library which
can be linked with C code. This produces a .so, .dylib, or .dll depending on the
target architecture you build for.

The generated project

Let’s enter the directory for our newly generated Rust project to see what is created:

cd numbers

The generated structure is:

.

├── Cargo.toml

└── src

└── main.rs

Rust code organization relies primarily on convention which can be overridden via
configuration, but for most use cases the conventions are what you want.

main.rs

For a binary project, the entry point is assumed to be located at src/main.rs.
Furthermore, inside that file, the Rust compiler looks for a function named main

which will be executed when the binary is run. Cargo has generated a main.rs file
which contains a simple “Hello, world!” application:

Making Your First Rust App 20

src/main.rs

1 fn main() {

2 println!("Hello, world!");

3 }

The syntax here says define a function (fn) with the name main which takes zero
arguments and returns the empty tuple ().

Leaving off the return type is equivalent to writing -> () after the argument list
of the function. All function calls are expressions which must return a value. The
empty tuple () is a marker for no value, which is what a function with no return
type implicitly returns.

The body of the function calls a macro println which prints its argument "Hello,
world!" to standard out followed by a newline.

We will cover macros more later, but for now we will mention a few basics. We
know it is a macro invocation and not a normal function call because of the trailing
! in the name. Macros are a powerful form of meta-programming in Rust which
you will use frequently but probably rarely find the occasion to have to write. Rust
implements println as a macro instead of as a regular function because macros
can take a variable number of arguments, while a regular function cannot.

The syntax of Rust is superficially similar to C++whichwe can see as curly braces are
used for denoting blocks and statements are semicolon terminated. However, there
is quite a bit more to the Rust grammar that we will cover as we go along.

Cargo.toml

The Cargo.toml file is the manifest file for the project which uses the TOML²²
format. This is the entry point for describing your project as well as specifying

²²https://github.com/toml-lang/toml

https://github.com/toml-lang/toml
https://github.com/toml-lang/toml

Making Your First Rust App 21

dependencies and configuration. The initial generated file contains the bare essentials
for describing your project:

Cargo.toml

1 [package]

2 name = "numbers"

3 version = "0.1.0"

4 authors = ["Your Name <your.name@example.com>"]

5 edition = "2018"

6

7 [dependencies]

The blank section for dependencies is included because nearly every project includes
some dependencies. One feature of Rust has been to keep the core language and stan-
dard library relatively slim and defer a lot of extra functionality to the community.
Therefore relying on third party dependencies is encouraged.

Crates

The primary unit of code organization in Rust is called a crate. Your code exists as
a crate which can be distributed to the community via crates.io²³. Crates in Rust
are analogous to gems in Ruby or packages in JavaScript. The registry at crates.io
is similar to rubygems.org or npmjs.com as the de facto community repository for
distributing and sharing code.

Binary Rust projects are also called crates so they do not solely represent shared
library code. Furthermore, a crate can contain both a library and an executable.

It is often difficult to foresee how other’s will want to use your software. A common
practice in the Rust community is to create dual library/binary crates even when
the primary intention of a project is to produce an executable. This can have positive
effects on the API design of your code knowing that it should be suitable for external
consumption. The binary part of the crate is typically responsible for argument
parsing and configuration, and then calls into the functionality exposed by the library

²³https://crates.io/

https://crates.io/
https://crates.io/

Making Your First Rust App 22

part of the crate. Writing all of your code only as an executable and then trying to
extract a library after the fact can be a more difficult process. Moreover, the cost of
splitting code into a library is minimal.

Making our crate a library

Cargo assumes the entry point for defining a library crate is a file src/lib.rs. Let’s
convert our current binary crate into a binary and library crate. First, we create our
library entry point:

src/lib.rs

1 pub fn say_hello() {

2 println!("Hello, world!");

3 }

There are two differences to this code from what was in main.rs. First, we changed
the name of the function from main to say_hello. This change is more cosmetic than
anything (in fact leaving it named main works just fine, main is only special in some
contexts).

The second change is the keyword pub before fn. This is a privacy identifier which
specifies that this function should be publicly accessible to users of our crate.Without
the keyword, we could call this function inside of our lib.rs file, but users of our
crate would not be able to call it. Note that our executable sees the library crate the
exact same as someonewho included our library as a dependency in their Cargo.toml
file. This ensures a proper separation of concerns between code meant to be executed
as a binary and the actual functionality of your project.

We can now change our main function to use the functionality exposed by our library:

Making Your First Rust App 23

src/main.rs

1 fn main() {

2 numbers::say_hello();

3 }

Running this code should result in the same output as before:

$ cargo run

Compiling numbers v0.1.0 (...)

Finished dev [unoptimized + debuginfo] target(s) in 0.53s

Running `target/debug/numbers`

Hello, world!

Let’s unpack this function call syntax a little bit before moving on. Even though our
binary exists in the same codebase as our library, we still must refer to the functions
in the crate by the name of the crate, numbers in this case.

We wish to call a function named say_hello which exists in the numbers crate. The
double colon operator :: is used for separating items in the hierarchy of modules.
We will cover modules later, but suffice it to say that crates can contain modules,
which themselves can contain more modules.

To resolve an item, be it a type or function, you start with the name of the crate,
followed by the module path to get to the item, and finally the name of the item.
Each part of this path is separated by ::. For example, to get a handle to the current
thread you can call the function std::thread::current. The crate here is std which
is the standard library. Then there is a module called thread. Finally inside the thread
module there is an exported function called current.

Items can exist at the top level of a crate (i.e. not nested in any modules), which you
refer to simply by the name of the crate, then ::, then the name of the item. This
is what is happening with numbers::say_hello because say_hello exists at the top
level of our numbers crate.

Making Your First Rust App 24

Trade-offs

Two of the big selling points of Rust are performance and reliability. Performance
meaning both runtime speed and memory consumption. Reliability here means
catching bugs at compile time and preventing certain classes of errors entirely
through language design. These goals are often seen as classically at odds with one
another. For example, C lives in a world where performance is of utmost importance,
but reliability is left as an exercise for the implementor.

Rust has no garbage collector and no runtime in the traditional sense. However, most
difficulties of working with manual memory management are taken care of for you
by the compiler. Therefore, you will often hear “zero cost” being used to describe
certain features or abstractions in the language and standard library. This is meant
to imply that neither performance nor reliability has to suffer to achieve a particular
goal. You write high level code and the compiler turns it into the same thing as the
“best” low level implementation.

However, in practice, what Rust really gives you is the tools to make choices about
what trade-offs you want to make. Underlying the design and construction of all
software is a series of trade-offs made explicitly or implicitly. Rust forces more of
these trade-offs to be made explicitly wihch can make the initial learning period
seem a bit more daunting especially if you have experience in languages where many
trade-offs are implicit.

This will be a topic that permeates this book, but for now we will highlight some of
these aspects as we make our numbers crate do something more interesting.

Print a list of numbers

Let’s build an application that creates a list of numbers and then prints each number
on a line by itself to standard out. As a first step, let’s just say we want to print the
numbers one through five. Therefore, our goal is the following:

Making Your First Rust App 25

$ cargo run

1

2

3

4

5

Let’s change our main function to call the yet to be defined library function print:

src/main.rs

1 fn main() {

2 numbers::print();

3 }

Since we want to print one through five, we can create an array with those numbers
and then print them out by looping over that array. Let’s create the function print

in lib.rs to do that:

src/lib.rs

1 pub fn print() {

2 let numbers = [1, 2, 3, 4, 5];

3 for n in numbers.iter() {

4 println!("{}", n);

5 }

6 }

Let’s unpack this from the inside out. We have already seen the println macro,
but here we are using it with a formatted string for the first time. There are two
main features of string interpolation in Rust that will take you through most of what
you need. The first argument to one of the printing macros (print, println, eprint,
eprintln) is a double quoted string which can contain placeholders for variables. The
syntax for placeholders to be printed “nicely” is {}, and for debugging purposes is
{:?}. The full syntax for these format strings can be found in the official docs²⁴.

²⁴https://doc.rust-lang.org/std/fmt/

https://doc.rust-lang.org/std/fmt/
https://doc.rust-lang.org/std/fmt/

Making Your First Rust App 26

The “nice” format is possible when a type implements the Display trait. The
debugging format is possible when a type implements the Debug trait. Not all types
implement Display, but the standard practice is for all public types to implement
Debug. So when in doubt, use {:?} to see the value of some variable and it should
almost always work.

We will cover traits in detail later, but we will give a crash course here for what is
necessary. Traits are part of the type system to mark certain facts about other types.
Commonly they are used to define an interface to a particular set of functions
that the type in question implements. You can define your own traits as well as
implement traits. Whether a type implements a trait must be stated explicitly in
code rather than implicitly by satisfying the functional requirements of the trait.
This is one of a few differences between Rust traits and Go interfaces.

We will see when creating types later that usually you can get a Debug implementa-
tion derived for free, but you must implement Display yourself if you want it. Most
built-in types implement Display, including integers, so we use the format string
"{}" to say expect one variable. Note that the following does not work:

println!(n);

The first argument to the print macros must be a literal string, it cannot be a variable,
even if that variable points to a literal string. Therefore, to print out a variable you
need to use the format string "{}" as we are doing. If you forget this the Rust compiler
will suggest that as what you probably want to do.

Iteration

So assuming that n holds an integer from our collection, we are printing it out using
the printlnmacro. How does n get bound to the values from our collection?We loop
over our collection using a for loop and bind n to each value. The syntax of a for

loop is:

Making Your First Rust App 27

for variable in iterator {

...

}

Note that we are calling the method iter on our array. Rust abstracts the idea of
iteration into yet another trait, this one called Iterator. We have to call iter here
to turn an array into an Iterator because arrays do not automatically coerce into
into an Iterator. We shall see shortly that this is not always necessary with other
collections.

This is also the first time we are calling a method on an object. Rust types can
implement functions that operate on themselves and can therefore be called using
this dot syntax. This is syntactic sugar for a direct function call with the receiver
object as the first argument. We will cover how these functions are defined when we
construct our own types and implement methods on them.

Defining Array Types

We can move out further now to the definition of our array. Rust borrows many
ideas of the ML family of languages so some concepts might be familiar if you have
experience in that area. By default variables are immutable. Therefore we declare
an immutable variable called numbers which is bound to an array with the numbers
we are interested in. Rust infers the type of numbers based on the value we used to
initialize the variable. If you want to see the type that is inferred by Rust, a trick is
to write:

let () = numbers;

after the line that declares the variable numbers. When you try to compile this code,
there will be a type mismatch in the assignment which will print out what the
compiler expects:

Making Your First Rust App 28

$ cargo run

Compiling numbers v0.1.0 (...)

error[E0308]: mismatched types

--> src/lib.rs:3:9

|

3 | let () = numbers;

| ^^ expected array of 5 elements, found ()

|

= note: expected type `[{integer}; 5]`

found type `()`

error: aborting due to previous error

For more information about this error, try `rustc --explain E0308`.

error: Could not compile `numbers`.

To learn more, run the command again with --verbose.

We see that the compiler inferred a type of [{integer}; 5] for numbers. Arrays in
Rust are a homogeneous container (all elements have the same type) with a fixed
size. This allows it to be stack allocated. The ability to ensure data is stack allocated
rather than heap allocated is one of the areas in which Rust allows you to decide
what trade-offs you want to make. On the other hand, because an array has a fixed
size that must be known at compile time it is not useful for data which might need to
grow or shrink or contain an unknown numbers of items. For this we have the Vec
type which we will return to shortly.

You can also see that the compiler infers the type of elements of the array to be
{integer}which is a placeholder as without any further constraints the specific type
of integer is unknown. Rust has twelve integer types which depend on size and
whether it is signed or unsigned. The default is i32 which means a signed integer
that takes 32 bits of space. The equivalent unsigned type is u32. Let’s say we wish
our numbers to be u8, that is 8-bit unsigned integers. One way to do this is to specify
directly on the numerical constant what type we want:

Making Your First Rust App 29

let numbers = [1u8, 2, 3, 4, 5];

If we do this then the compiler will infer the type [u8; 5] for our array. The other
way is to explicitly write out the type of the variable numbers:

let numbers: [u8; 5] = [1, 2, 3, 4, 5];

Type annotations are written with a colon after the variable name followed by the
type. We see that the size of the array (5) is part of the type. Therefore, even with the
same type of elements, say u8, an array with four elements is a different type than
an array with five elements.

Using std::vec::Vec

Rust provides a fewmechanisms for alleviating some of the limitations of arrays. The
first we will talk about is the vector type in the standard library, std::vec::Vec²⁵. A
vector is similar to an array in that it stores a single type of element in a contiguous
memory block. However, the memory used by a vector is heap allocated and can
therefore grow and shrink at runtime. Let’s convert our library print function to use
a vector:

src/lib.rs

1 pub fn print() {

2 let numbers = vec![1, 2, 3, 4, 5];

3 for n in numbers {

4 println!("{}", n);

5 }

6 }

We are calling another macro vec which this time constructs a vector with the given
values. This looks very similar to the array version, but is actually quite different.
Vectors own their data elements, they have a length which says how many elements
are in the container, and they also have a capacity which could be larger than the

²⁵https://doc.rust-lang.org/std/vec/struct.Vec.html

https://doc.rust-lang.org/std/vec/struct.Vec.html
https://doc.rust-lang.org/std/vec/struct.Vec.html

Making Your First Rust App 30

length. Changing the capacity can involve quite a bit of work to allocate a new region
of memory and move all of the data into that region. Therefore, as you add elements
to a vector, the capacity grows by a multiplicative factor to reduce how frequently
this process needs to take place. The biggest advantage is that you do not need to
know upfront how large the vector needs to be; the length is not part of the type.

The type of a vector is Vec<T> where T is a generic type that represents the types
of the elements. Therefore, Vec<i32> and Vec<u8> are different types, but a Vec<u8>

with four elements is the same type as one with five elements.

Note also that we are no longer explicitly calling iter on the numbers variable in our
for loop preamble. The reason for this is that Vec implements a trait that tells the
compiler how to convert it into an iterator in places where that is necessary like in
a for loop. Calling iter explicitly would not be an error and would lead to the same
running code, but this implicit conversion to an iterator is common in Rust code.

Function Arguments

Let’s abstract our print function into two functions. The entry point will still be print
(so we don’t need to change main) which will construct a collection, but it will then
use a helper function to actually print the contents of this collection. For nowwe will
go back to using an array for the collection:

src/lib.rs

1 pub fn print() {

2 let numbers = [1, 2, 3, 4, 5];

3 output_sequence(numbers);

4 }

5

6 fn output_sequence(numbers: [u8; 5]) {

7 for n in numbers.iter() {

8 println!("{}", n);

9 }

10 }

This is our first function that has input or output. Type inference does not operate on
function signatures so you must fully specify the types of all inputs and the output.

Making Your First Rust App 31

However, we still are not returning anything so by convention we elide the -> ()

return type which is the one exception to the rule of fully specifying the types in
function signatures.

The input type of our function output_sequence is our five element array of u8

values.

Rust has a few different modes of passing arguments to functions. The biggest
distinction being that Rust differentiates between:

• a function temporarily having access to a variable (borrowing) and
• having ownership of a variable.

Another dimension is whether the function can mutate the input.

The default behavior is for a function to take input by value and hence ownership
of the variable is moved into the function.

The exception to this rule being if the type implements a special trait called Copy, in
which case the input is copied into the function and therefore the caller still maintains
ownership of the variable. If the element type of an array implements the Copy trait,
then the array type also implements the Copy trait.

Suppose we want to use a vector inside print instead, so we change the code to:

src/lib.rs

1 pub fn print() {

2 let numbers = vec![1, 2, 3, 4, 5];

3 output_sequence(numbers);

4 }

5

6 fn output_sequence(numbers: [u8; 5]) {

7 for n in numbers.iter() {

8 println!("{}", n);

9 }

10 }

But this won’t work because [u8; 5] and Vec<u8> are two different types. One
possible fix is to change the input type to Vec<u8>:

Making Your First Rust App 32

src/lib.rs

1 pub fn print() {

2 let numbers = vec![1, 2, 3, 4, 5];

3 output_sequence(numbers);

4 }

5

6 fn output_sequence(numbers: Vec<u8>) {

7 for n in numbers {

8 println!("{}", n);

9 }

10 }

This works for this case. It also let’s us see what happens when passing a non-Copy
type to a function. While arrays implement the Copy trait if their elements do, Vec
does not. Hence, try adding another call to output_sequence(numbers) after the first
one:

src/lib.rs

1 pub fn print() {

2 let numbers = vec![1, 2, 3, 4, 5];

3 output_sequence(numbers);

4 output_sequence(numbers);

5 }

6

7 fn output_sequence(numbers: Vec<u8>) {

8 for n in numbers {

9 println!("{}", n);

10 }

11 }

This gives us an error:

Making Your First Rust App 33

$ cargo run

Compiling numbers v0.1.0 (...)

error[E0382]: use of moved value: `numbers`

--> src/lib.rs:4:21

|

3 | output_sequence(numbers);

| ------- value moved here

4 | output_sequence(numbers);

| ^^^^^^^ value used here after move

|

= note: move occurs because `numbers` has type `std::vec::Vec<u8>`, w\

hich does not implement the `Copy` trait

error: aborting due to previous error

For more information about this error, try `rustc --explain E0382`.

error: Could not compile `numbers`.

To learn more, run the command again with --verbose.

We can see Rust generally has very helpful error messages. The error is that a value
was used after it has been moved. The print function no longer owns numbers. The
“note” in the error explains why the move happens due to vector not implementing
the Copy trait.

Note that in the changes we have made, the body of output_sequence has remained
the same (modulo whether we call iter explicitly or not), only the type signature
has been changing. This is a hint that maybe there is a way to write a type signature
that works for both arrays and vectors. There are again several ways to accomplish
this goal.

A type signature that works for both arrays and vectors

As we have said before, Rust has a lot of power and gives you very fine-grained
control over what you want to use or don’t want to use. This can be frustrating
when starting out because any time you ask “what is the right way to do this,” you

Making Your First Rust App 34

will invariably bemet with the dreaded “it depends.” Rather than detail every possible
permutation that achieves roughly the same outcome, we are going to focus on the
most common idioms. There are certain performance reasons as well as API design
decisions that lead to different choices, but those are more exceptional cases than the
norm. We will provide pointers to the choices we are making when it matters, but
note that due to the scope of the language there is almost always more than one way
to do it.

A key type that comes in handy to alleviate some of the limitations of arrays is the
std::slice²⁶. Slices are a dynamically sized view into a sequence. Therefore, you
can have a slice which references an array or a vector and treat them the same.
This is a very common abstraction tool used in Rust. This will be more clear by seeing
this in action.

Let’s change the signature of output_sequence to take a reference to a slice, and
change print to show that it works with both arrays and vectors:

src/lib.rs

1 pub fn print() {

2 let vector_numbers = vec![1, 2, 3, 4, 5];

3 output_sequence(&vector_numbers);

4 let array_numbers = [1, 2, 3, 4, 5];

5 output_sequence(&array_numbers);

6 }

7

8 fn output_sequence(numbers: &[u8]) {

9 for n in numbers {

10 println!("{}", n);

11 }

12 }

A slice of u8 values has type [u8]. This represents a type with an unknown size
at compile time. The Rust compilation model does not allow functions to directly
take arguments of an unknown size. In order to access this slice of unknown size
with something of a known size we use indirection and pass a reference to the slice

²⁶https://doc.rust-lang.org/std/slice/index.html

https://doc.rust-lang.org/std/slice/index.html
https://doc.rust-lang.org/std/slice/index.html

Making Your First Rust App 35

rather than the slice itself. A reference to a slice of u8 values has type &[u8] which
has a known size at compile time. This size is known because it is equal to the size
of a pointer plus the length of the slice. Note that slices convert automatically into
iterators just like vectors so we again do not call iter explicitly in the body of our
function. This takes care of the signature of output_sequence however the way we
call this function from print has changed as well.

Notice that we have added an & before the variable names that are passed to output_-
sequence. You can think of this as creating a slice that represents read-only access
to the entire sequence for both the vector and array. However, this small change
in how we call the function allows us to handle vectors and arrays equally well.
Idiomatic Rust takes slices as arguments in most cases where one needs only to read
the collection. This is particularly true for strings which we will cover later.

The major difference here is that we are no longer transferring ownership into the
function output_sequence instead we are lending read-only access to that function.
The data is only borrowed for the duration of the function call. The idea of ownership
and borrowing is a core part of the Rust language and is something we will be
constantly running into.

Constructing A Vector of Numbers

Let’s make one more change to make this program more flexible. Instead of printing
out one through five, let’s take a number as input and print from one up to that value.
We could just iterate through integers and print them out as we go along rather than
using the output_sequence helper function. However, we are going to construct a
vector to show a few more language features.

Let’s create yet another helper function, generate_sequence which takes a limit as
input and outputs a vector. Our print function can then just combine these two parts:

Making Your First Rust App 36

src/lib.rs

1 pub fn print(limit: u8) {

2 let numbers = generate_sequence(limit);

3 output_sequence(&numbers);

4 }

5

6 fn generate_sequence(limit: u8) -> Vec<u8> {

7 let mut numbers = Vec::new();

8 for n in 1..=limit {

9 numbers.push(n);

10 }

11 numbers

12 }

13

14 fn output_sequence(numbers: &[u8]) {

15 for n in numbers {

16 println!("{}", n);

17 }

18 }

In printwe bind a variable to the result of calling generate_sequencewith the limit
passed to us as the argument, then we call output_sequence as before passing a
reference to a slice backed by the variable we just created.

The new function here takes an input argument, limit, and returns a Vec<u8>. This
is our first function returning something.

Again as there are a lot of different ways to do things in Rust, we are going
to just show one particular way to construct the vector we desire in order
to hit some relevant parts of the language.

First we create a new vector with Vec::new().

Making Your First Rust App 37

Unlike in some other languages, new is not special but rather has become
by convention the name of the function that returns a new instance of a
type. You can write a function called new which does something else and it
would compile just fine, but it would go against the standard way of doing
things.

By default a vector created with new, is the same as one created with vec![], and
does not allocate. Therefore, unless you actually put something into a vector it does
not use any memory.

In the code above, we see a new keyword being used, mut. Mutability is a property
of the variable or reference not of the object itself. Therefore we declare numbers

to be a mutable variable that holds an empty vector. This allows us to later call
numbers.push(n) because push is a method that requires the receiver to be mutable.
Removing the mut from the let binding will result in a compiler error when we try
to push.

In order to generate the numbers starting at 1 up to our limit, we use a for loop,
but this time the iterator is a Range²⁷ object, in particular an InclusiveRange. Ranges
can be constructed with using the syntax start..end or start..=end. Both start

and end are optional, and if you have neither, i.e. .., then you also cannot have the =
sign. By default the range is inclusive on the left (i.e. includes start), and exclusive
on the right (i.e. does not include end). The = after the two dots makes it so the range
includes the end point. We want the numbers starting at 1 up to limit, including
the limit, so we use 1..=limit. Ranges are frequently used when creating slices, for
example:

let numbers = [1, 2, 3, 4, 5];

let subset = &numbers[1..3];

Here subset is a slice of length 3-1=2 which starts at index 1, hence it is the slice [2,
3].

Iterating over this range, we push each value onto the end of our vector which causes
heap allocations every time there is not enough capacity to extend the length. Finally,
we want to return this vector from our function. The final expression in a function is

²⁷https://doc.rust-lang.org/std/ops/struct.RangeInclusive.html

https://doc.rust-lang.org/std/ops/struct.RangeInclusive.html
https://doc.rust-lang.org/std/ops/struct.RangeInclusive.html

Making Your First Rust App 38

implicitly returned so there is no need for an explicit return statement. However note
the lack of semicolon at the end of the last line of this function. The expression that
evaluates to the vector numbers is written without a semicolon and means to return
that value. If we had written a semicolon, that would be a statement whose value
is () which is not what you want to return. This is a common error so the compiler
is smart enough to tell you what to fix, but it is nonetheless an error. You can use a
return statement to return early from a function, but using the last expression of the
block as the implicit return is idiomatic Rust.

A Shorter Version with collect

The purpose of writing generate_sequence like this was to demonstrate object
construction, mutability, and ranges. Before leaving, let’s look at a very powerful
construct that is used throughout real Rust which would be a better approach to
generating this vector. We could replace generate_sequence with:

src/lib.rs

6 fn generate_sequence(limit: u8) -> Vec<u8> {

7 (1..=limit).collect()

8 }

Rust has powerful generic programming facilities which allows for the function
collect to exist. This function can be used to turn any iterator into basically any
collection.

Commonly, one takes a collection like a vector, turns it into an iterator by calling
iter, performs transformations on the generic iterator, and then calls collect at the
end to get back whatever specific collection one wants to work with. It can also be
used to directly turn one collection into another collection, which is what we are
doing here by turning a range into a vector.

Collect is a generic function over the return type, so the caller gets to determine what
they want. Here because we return the result of calling collect from our function,
type inference sees that the return type needs to be a Vec<u8> and therefore ensures
that collect generates that collection. While the type inference in Rust is good, it
some times cannot figure out what you want when using collect. Therefore, you

Making Your First Rust App 39

might find the need to use the syntax collect::<SomeType>() to help the compiler
know what you want.

This syntax, ::<>, you may see referred to as the “turbofish”.

We have changed our exported print function to require an input variable, so we
need to update our call in main to pass something in. Let’s pass in 5 to get the same
output as before:

src/main.rs

1 fn main() {

2 numbers::print(5);

3 }

Testing our code

Testing is a large topic and is something we will cover in more detail as we move to
larger applications, however let’s write our first test to see how easy it can be in Rust.
Add the following to the end of src/lib.rs:

src/lib.rs

20 #[test]

21 fn generate_sequence_should_work() {

22 let result = generate_sequence(3);

23 assert_eq!(result, &[1, 2, 3]);

24 }

Our test is just a normal function with a special attribute, #[test], before it. We will
see attributes come up frequently as they are used for a variety of purposes in Rust.
They come in two forms #[...] and #![...] which annotate the item they precede.
The name of the test comes from the name of the function. Inside of test functions

Making Your First Rust App 40

there are a series of macros you can use for asserting facts about your system. We
use assert_eq to ensure that the output of our generate_sequence function is what
we expect it to be.

We can use cargo to run all of our tests:

$ cargo test

Finished dev [unoptimized + debuginfo] target(s) in 0.43s

Running target/debug/deps/numbers-f74640eac1a29f6d

running 1 test

test generate_sequence_should_work ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured; 0 filtered \

out

Wrapping up

The Rust language is designed to allow fine grained control over performance and
reliability while writing code at a high level of abstraction. The cost is learning the
abstractions and dealing with the cognitive load of making choices as you design
a program. These considerations are important for production quality code as you
profile and optimize where you find bottlenecks. However, following the standards
of the community will get you the majority of the way to high quality applications.

Our goal is to teach you Rust by building applications. This chapter is a bit of an
anomoly as we took a long path to not get very far. We will try to avoid this as we
progress by making pragmatic choices at the many points where it is possible to get
bogged down in the small details about just the “right” way to do soemthing. The
standard library documentation is an excellent source to dig in to these details when
you want to go deeper.

Making A Web App With Actix
Web Ecosystem

One area where Rust stands out is in the building of web servers.

Rust has its origins at Mozilla primarily as a tool for building a new browser
engine. The existing engine being written in C++ combined with the syntactical
similarities encourages the idea the Rust was meant to be a replacement for C++.
There is obviously some truth to this, but in many ways this characterization sells
Rust’s potential short. While it is capable of being a systems programming language,
there are a plethora of language features that make it suitable for innumerable
programming tasks, including building web servers.

There are a few different layers to the web programming stack. Primarily we are
concerned here with the application layer which is comparable to where Django,
Rails, and Express live in Python, Ruby, and NodeJS, respectively.

The ecosystem around web application development in Rust is still quite nascent
despite the Rust language hitting 1.0 in 2015. Much of the underlying infrastructure
for building concurrent programs took until 2019 to reach a maturity sufficient to be
included in the stable version of the standard library. However, most of the ecosystem
has coalesced around similar ideas which take advantage of Rust’s particular features.

Before jumping in to building a simple web server, let’s briefly discuss a few of the
libraries that make up the web landscape.

Hyper

Hyper²⁸ is a low level HTTP library built on even lower level libraries for building
network services. Currently most web frameworks use Hyper internally for handling
the actual HTTP requests.

²⁸https://hyper.rs/

https://hyper.rs/
https://hyper.rs/

Making A Web App With Actix 42

It can be used to build both HTTP clients and servers. However, there is a bit
more boilerplate than you might want to write yourself when you want to focus
on building an application. Therefore, we will use a library at a higher level of
abstraction which still allows us to take advantage of what Hyper offers.

Actix

Actix

TheActix²⁹ project is actually a group of projects which define an actor system aswell
as a framework for building web applications. The web framework is aptly named
actix-web. It has been built on top of futures and async primitives from the beginning.
It also runs on the stable version of the compiler.

It recently hit the 1.0 milestone which should bring some much needed stability
to the ecosystem. Additionally, it has been at the top of the Tech Empower web
framework benchmarks³⁰. Even if those are artificial benchmarks, it still points to
the performance potential possible.

Actix is the library that we are going to use in this chapter, but before we dive in,
let’s look at a few others from a high level.

²⁹https://actix.rs/
³⁰https://www.techempower.com/benchmarks/#section=data-r16&hw=ph&test=plaintext

https://actix.rs/
https://www.techempower.com/benchmarks/#section=data-r16&hw=ph&test=plaintext
https://www.techempower.com/benchmarks/#section=data-r16&hw=ph&test=plaintext
https://actix.rs/
https://www.techempower.com/benchmarks/#section=data-r16&hw=ph&test=plaintext

Making A Web App With Actix 43

Rocket

Rocket

Rocket³¹ is a web framework which is easy to use while maintaining flexibility, speed,
and safety. One of the downsides to this is that currently Rocket only works with
the nightly compiler. This is mostly because certain compiler features that make the
application developer’s life better are not available on stable yet.

Moreover, Rocket intends to move to an async backend once those ideas stabilize in
the standard library, but as of version 0.4 the backend is still a synchronous design.

Finally, Rocket has not yet reached 1.0 as there is still a lot of work to do to which
might necessitate breaking changes. It is a high quality library which will not likely
have much breakage going forward, but there is still some risk which depends on
your tolerance.

Others

There are several other web frameworks in the Rust ecosystem and but it’s not
possible to cover everything here. Some promising libraries that were built up have
fallen into an unmaintained state, whereas others are still building up and are
explicitly not ready for prime time.

³¹https://rocket.rs/

https://rocket.rs/
https://rocket.rs/

Making A Web App With Actix 44

Iron

Iron³² is arguably the original Rust web framework. It was actively maintained for
quite a while, thenwas partially abandoned for a while, and then recently resurrected
and updated. Iron takes a different approach than the other web frameworks and is
more similar to frameworks in other languages.

It is built to have a small, focused core and then provide the rest of its functionality
via plugins and middleware. This style is possibly more familiar to web developers
coming from other languages, but in the Rust ecosystem, at least currently, this is
not the norm.

The core Rust language has an Async Working Group that has an experimental web
framework called Tide³³. They are working out how the async primitives in the
standard library can be used to build a web framework that is easy to use and safe.
It is explicitly not ready for production, but many of the ideas are similar to what is
being done in Actix and Rocket.

Starting out

We are going to use actix-web because it works with the stable compiler. A lot of
the underlying ideas about how data flows in the system is similar to how Rocket
works, so switching between the two should not be a fundamental shift in how the
application is built.

So let’s get started with a new project:

³²http://ironframework.io/
³³https://github.com/rustasync/tide

http://ironframework.io/
https://github.com/rustasync/tide
http://ironframework.io/
https://github.com/rustasync/tide

Making A Web App With Actix 45

cargo new messages-actix

We let cargo bootstrap our project as we have done before. The first thing we are
going to do is edit our Cargo.toml file to add all of the dependencies that we will
use:

Cargo.toml

1 [package]

2 name = "messages-actix"

3 version = "0.1.0"

4 authors = ["Your Name <your.name@example.com>"]

5 edition = "2018"

6

7 [dependencies]

8 actix-web = "1.0"

9 env_logger = "0.6"

10 serde = { version = "1.0", features = ["derive"] }

11 serde_json = "1.0"

We have already talked about our first dependency, actix-web. The second depen-
dency listed, env_logger, will be used to allow us turn on/off the logging features of
actix.

We import serde which is the de facto standard way of implementing serialization
and deserialization between native Rust types and a variety of formats. The main
serde crate takes care of much of the generic machinery, and then outsources the
specifics of different formats to other crates. Therefore, to enable marshalling to/from
JSON, we bring in the serde_json crate.

The name serde is a portmanteau of serialize and deserialize.

Dependencies can take a variety of forms depending on the level of configuration
desired. The typical format is:

Making A Web App With Actix 46

crate_name = "X.Y.Z"

where crate_name is the official name for the crate as published on crates.io and
the string value “X.Y.Z” is a semver³⁴ requirement which is interpreted the same
as “^X.Y.Z”. There exists a lot of power in specifying exactly how you want your
dependencies to update, but the most common form is crate_name = "X", where X

is the major version that your code is compatible with.

Getting the structure in place

As discussed previously, we will split up our crate into both a library and a binary by
putting most of our code in lib.rs or other further modules, and then calling into
that library from main.rs. Therefore, let’s get our main.rs file setup once and then
all of our changes will be in the library:

src/main.rs

1 use messages_actix::MessageApp;

2

3 fn main() -> std::io::Result<()> {

4 std::env::set_var("RUST_LOG", "actix_web=info");

5 env_logger::init();

6 let app = MessageApp::new(8080);

7 app.run()

8 }

We will create and export a type called MessageApp which will be the entry point
into our library, so our first step is to import this type.

³⁴https://github.com/steveklabnik/semver#requirements

https://github.com/steveklabnik/semver#requirements
https://github.com/steveklabnik/semver#requirements

Making A Web App With Actix 47

It may be initially confusing that the name of our library as specified in
Cargo.toml is messages-actix (with a hyphen), and yet in main we are
importing the type MessageApp from the crate messages_actix (with an
underscore). Crate names are allowed to contain hyphens and underscores,
but identifiers in Rust are not allowed to contain hyphens. Therefore, if you
use a crate name with an underscore the compiler knows to look for a crate
with a hyphen if one with an underscore cannot be found.

The community seems to not have completely coalesced on choosing one
style for crate names as can be noted by comparing actix-webwith serde_-

json. If you use an underscore in your crate name instead of a hyphen then
this translation step is unnecessary.

We define the main function which will be entry point for our binary. As of Rust 1.26
it is possible to for the main function to return a Result type. Result is one of the
primary error handling primitives that Rust provides. Let’s take a moment to talk
about Rust’s facilities for abstraction.

Aggregate data types

The primary mechanisms for creating aggregate data types in Rust are enums
and structs. In theoretical terms, these are aggregates of other types where structs
represent product types and enums represent sum types. Enums in Rust can contain
data and are therefore related to algebraic data types in functional languages.

We will return to structs once we get to our library code, so let’s focus on enums for
the moment by looking at Result as an example. Result is an enum that is defined
in the standard library as:

enum Result<T, E> {

Ok(T),

Err(E),

}

There are a lot of new things happening here so we will go through it step by step.
Enums represent a type where we enumerate the different possible values that a
particular value represents. These are sometimes called tagged unions. The idea is

Making A Web App With Actix 48

that a value of type Result can be in exactly one of two states: the Ok variant or the
Err variant. Enum variants can contain data like we see here, or they can be just a
name, for example:

enum Color {

Red,

Green,

Blue,

}

Result

Result is also an example of a generic type because it is parameterized by two type
variables T and E which we can see in angle brackets after the name of the type.
These generic types are used in the two variants as a way of encapsulating data
along with the identity of the variant. Generic types can have restrictions placed on
them, but here there are none so T and E can be any type. The names of variants can
be referred to just like other items that live within some outer structure using the
:: operator. Therefore, Result::Ok(true)would construct the Ok variant of the type
Result<bool, E> where E would need to be further specified by the context. For our
Color enum, we can refer to variants like Color::Red or Color::Green.

Result is a special type that is available everywhere in your code because normal
Rust code works as if a few things are automatically imported at the top of your file.
We will see Result used throughout all of the code we write in Rust because it allows
us to handle success and failure cases in a structured and cohesive way. This is one of
the tools that replace situations where one might use exceptions in another language.

Going back to our main function, we are returning the type std::io::Result<()>.
Within the std::io module there is a type definition:

type Result<T> = Result<T, std::io::Error>;

The type std::io::Error is a struct defined in that module for representing errors
from I/O operations. The syntax for the type definition above just says to create an
alias std::io::Result<T>which uses the standard Result type with the second type

Making A Web App With Actix 49

parameter (which represents the type inside the error variant) fixed to the one defined
in the std::io module. Therefore, std::io::Result<()> is the same as Result<(),
std::io::Error>.

A type aliases like this does not create a new type but rather just allows for more
convenient syntax. It is very common to see type aliases used to fix some of the
generic parameters in a type. In particular, you are likely to see this exact kind of
type alias used inmany libraries becausewriting Result<T> is muchmore convenient
than Result<T, some::crate::Error>.

Ok

The Ok variant has type () which is known as the empty tuple which we have seen
before. This is commonly used as a marker where you don’t actually care about the
value but you need some placeholder type. This Result type basically means that you
can tell the difference between a success and a failure, and if there is a failure you
will get an error that can tell you what happened, but in the success case there isn’t
anything interesting to add besides the fact that there was a success. This pattern is
similar to what we see in C with functions that return 0 on success and non-zero on
failure where each non-zero value maps to some specific type of failure.

We use this type as the result of main because our web server will be doing I/O
operations and as we will see our server returns this type to signify success or failure.
Rust will return an error code and print the debug representation of the error if the
returned result of main is the error variant, otherwise it will just exit normally. Hence
as any data in the Ok variant would go unused anyway, it is natural to use the empty
tuple as a marker of success.

Basic logging setup

The first line of our main function sets an environment variable, RUST_LOG, to the
value actix_web=info. We do this for convenience in this program so that we don’t
have to set the environment variable in our terminal, but normally you would set
this in your environment.

Most crates in Rust use the log³⁵ crate to allow for a clean separation between
log statements and where they are printed. The log crate provides a set of macros

³⁵https://docs.rs/log

https://docs.rs/log
https://docs.rs/log

Making A Web App With Actix 50

that libraries can use to make logging statements at various levels of verbosity. For
example:

pub fn do_work(num: u32) {

trace!("About to do work for num: {}", num);

...

}

Those logging statements do not actually do anything unless a program is configured
with an implementation. We choose to use the implementation provided by the env_-
logger crate which we turn on with the call to env_logger::init(). There exist
a variety of implementations that do things like add colors to the output or send
statements to files. We are going to use this simple implementation that just prints
statements to standard out based on the settings given in the RUST_LOG environment
variable.

Starting the app

Finally, the last two lines of our main function are where the real work happens.

src/main.rs

6 let app = MessageApp::new(8080);

7 app.run()

We create a new instance of our MessageApp type by calling new with a port number
and bind the result to the variable app. Then we call the run method on our app
instance. The lack of a semicolon at the end of this line means that our main function
returns the result of the run method. Based on the discussion we just had, we
therefore know that run must return a Result.

This main function will stay the same from here on, and we will pack all of the
functionality into our MessageApp type which need only expose the new and run

methods that we use.

Making A Web App With Actix 51

Handling our first request

We are going to get all of the infrastructure in place to build and run a web server
which can handle HTTP requests. Our first incarnation will just support a get request
to one route and will respond with a JSON message.

Let’s get started with our library implementation by creating lib.rs and starting out
with some imports:

src/lib.rs

1 #[macro_use]

2 extern crate actix_web;

3

4 use actix_web::{middleware, web, App, HttpRequest, HttpServer, Result};

5 use serde::Serialize;

We are going to use some of the macros exported by actix_web which we could
import individually in the 2018 edition of Rust, but for now we will import them via
the older #[macro_use] attribute on the extern crate statement.

We import some items from actix_webwhich will make our code a little less verbose.
Note in particular that we import Result which is the type alias of Result that
actix_web defines with the error type fixed to its error type.We are going to construct
a Rust type that represents the datawewant to respond to requests with, sowe import
Serialize from serde which will allow us to convert that Rust type to JSON data.

Creating our app

We saw in main that we imported a struct from our library so let’s define that:

Making A Web App With Actix 52

src/lib.rs

25 pub struct MessageApp {

26 port: u16,

27 }

This is the first time we are creating a struct which is the other primary aggregate
data type in Rust besides enums.

Structs have member data which can be of any type. Here we have one member
named port of type u16. The pub specifier before the struct keyword means that
this type will be publicly exported by our library.

Each member field has its own privacy which is not exported by default. Therefore,
even though you can reference instances of type MessageApp outside of our library,
you cannot directly access the port field. We can access the port field within the file
that defines the type, but otherwise it is hidden.

Similar to enums, structs can also be generic over the types of data they
contain. For example, Vec<T>which we have seen before is actually a struct
called Vec which has one generic type parameter.

Adding behavior to our data

Now that we have our struct defined, we can add functionality to it. Rust has a strong
separation of data and functionality. We defined the data representation of our struct,
but all methods associated with the type are defined elsewhere in what is known as
an impl block.

These blocks are used for adding functionality to types as well as for implementing
traits. All types that you create (structs, enums, etc.) can have functionality added
via an impl block. Let’s work through the impl block for MessageApp:

Making A Web App With Actix 53

src/lib.rs

29 impl MessageApp {

30 pub fn new(port: u16) -> Self {

31 MessageApp { port }

32 }

33

34 pub fn run(&self) -> std::io::Result<()> {

35 println!("Starting http server: 127.0.0.1:{}", self.port);

36 HttpServer::new(move || {

37 App::new()

38 .wrap(middleware::Logger::default())

39 .service(index)

40 })

41 .bind(("127.0.0.1", self.port))?

42 .workers(8)

43 .run()

44 }

45 }

A type can have multiple impl blocks associated with it, however typically there is
only one main one with others usually only for trait implementations. We will return
to traits and their implementation at a future point.

Self is special

The first method that we define is called new which takes a port parameter and
returns the special type Self. Inside an impl block Self has special meaning, it refers
to the type on which we are defining the implementation. So we could have written
the signature of new as:

pub fn new(port: u16) -> MessageApp

However idiomatic Rust code uses Self for such a return type. The name of new is
not special, but has become convention as the name of the constructor function for
types. Therefore, while you could name your constructors anything you want, new is
what others will expect.

Making A Web App With Actix 54

Create a MessageApp

The body of our constructor is pretty simple, we just create a MessageApp struct with
the data that was passed in. If there is a local variable with the same name and type
as a struct field, you can use a shorthand syntax by just writing the variable name in
the struct literal. Suppose for example that we wanted to add one to whatever port
was passed in to us, then we would have to use the longer syntax:

MessageApp {

port: port + 1,

}

To construct a struct we must list each field name followed by a colon followed by
the value, unless we can skip the colon and value in the situation described above.
Rust allows trailing commas in pretty much every position where a comma could
exist in the future and it is standard practice to include them to reduce future diffs
when code changes. Again we are returning this newly constructed struct because
we do not end this line with a semicolon.

Instance methods

The next method we define is called run which takes the special parameter &self
and returns the std::io::Result that we introduced in the previous section.

src/lib.rs

34 pub fn run(&self) -> std::io::Result<()> {

35 println!("Starting http server: 127.0.0.1:{}", self.port);

36 HttpServer::new(move || {

37 App::new()

38 .wrap(middleware::Logger::default())

39 .service(index)

40 })

41 .bind(("127.0.0.1", self.port))?

42 .workers(8)

43 .run()

Making A Web App With Actix 55

Inside an impl block there are a few different special values which can be the first
parameter to functions to signify that those functions are actually instance methods.
This is similar to Python where class instance methods explicitly take self as their
first parameter, and not taking self implies that the method is actually on the type
rather than a particular instance.

All of the selfs

Due to the semantics around borrowing and mutability, there are four special first
parameter values: &self, self, &mut self, and mut self. All of the forms turn
a function in a method on an instance of the type. This means that rather than
being a function on the type which is called like MessageApp::new, we need to have
constructed an instance of the type and then use dot syntax to call the method and
set the first parameter.

In our example, we first call new to construct an instance of MessageApp called app,
and then we call run as app.run(). It is also possible to make this call explicitly as
MessageApp::run(&app) but that is uncommon.

The first form, &self, is the most common form. This means that our method takes
an immutable reference to the instance invoking the method. We can read the data
inside our type, but we cannot alter it. The calling code also maintains ownership so
we are just borrowing the instance.

The second form, self, means that the method consumes self and therefore the
instance that the method is being called on has its ownership moved into the method.
This form comes usually when we are transforming a type into something else, for
example with interfaces that use the builder pattern.

The third form, &mut self, is the mutable version of the first form. This is the second
most common thing you will encounter. Our method can read and write the data
inside our type, but it does not own the value so this access is only temporary.

Finally the last form, mut self, means that this method consumes self and self is
mutable within the method. All parameters to functions can be declared mutable if
you wish them to be a mutable binding inside the function, and self is no different.
This has its uses, but is not that common.

Making A Web App With Actix 56

Running our server

The first line of our run function just prints out that we are starting a server at
a particular address and port. The next expression creates a server, binds it to an
address, sets the number of workers, and finally starts the server.

HttpServer is the type which actix-web exposes to represent something that serves
requests. The constructor takes an application factory which is any function that
when called returns an application.

We use a closure to define just such a function inline. Closures in Rust can be a
little tricky because of the ownership and borrowing semantics. The basic syntax
is to declare an argument list between pipes, ||, then possibly list the return value,
followed by the function body between curly braces.

Type inference works on closures so we can usually omit types of the
arguments and return values.

Understanding closures

The tricky bit is how the closure captures variables from the surrounding environ-
ment, so let’s take a closer look at this.

If the keyword move comes before the argument list then any variables from the
environment that the closure uses are actually moved into the closure. This means
the closure takes ownership of those variables rather than creating references.

This implies that the lifetime of the closure can be longer than its surrounding
environment because those variables are moved into the closure. Without the move
keyword, variables closed over are actually just references to the surrounding
environment.

Here we do not actually use any variables from the surrounding environment so
this example would work without the move keyword. However, we will be doing this
shortly, so it makes sense to get this out of the way now. Moreover, our intent is for
this closure to be entirely owned by the HttpServer and therefore the move signifies

Making A Web App With Actix 57

intent that the function should not have references to the environment in which it was
created.

Closures are a very nice part of Rust, and they can be hard to fully grasp at first, but
this complexity buys performance benefits with control in your hands as to exactly
what you want to happen.

Take a look at the relevant part of the code again:

src/lib.rs

36 HttpServer::new(move || {

37 App::new()

38 .wrap(middleware::Logger::default())

39 .service(index)

40 })

Inside the closure, we construct an App, which is the abstraction actix-web defines
for representing a collection of routes and their handlers. We use the new method
to create an App, and then a couple methods defined on that instance to setup our
application.

The wrap function wraps the app with a middleware specified as its only argument.
We set the Logger middleware which is provided by actix so that we can see some
information about requests as they come in.

Furthermore, we call service(index) to specify that we want to add a service to our
app which uses the handler index which we will define below.

Syntax for working with Results

The last new bit of Rust that we find in this method is the ? operator after the call to
bind. The Result type is quite special in Rust to the point of having special syntax for
the common pattern of returning an error early if one occurred or otherwise pulling
the value out of the Ok case and continuing on. The function bind returns a Result,
by putting the ? after the call, we are saying that if the returned Result is the Err

variant, then just return early with that value.

Making A Web App With Actix 58

Otherwise, take the value out of the Ok variant and continue to call workers(8) on
that value. This is a shorthand that makes working with code that might fail much
more pleasant. It is functionally equivalent to:

let result = HttpServer::new(move || {

...

}).bind(("127.0.0.1", self.port));

if result.is_err() {

return Err(result.err().unwrap());

}

result.unwrap().workers(8).run()

Creating our handler

In our code for creating our app we called service(index) in our application factory
to specify that we have a function called index which acts as a service for our
app. Let’s first decide what we want this handler to do. We are going to look for
a particular header in a get request and respond with a message based on the value
of that header.

If the header is not present we will respond with a default message. Let’s define the
structure of this response:

src/lib.rs

7 #[derive(Serialize)]

8 struct IndexResponse {

9 message: String,

10 }

We create a struct which will be the Rust representation of our response, one field
with the name message with a String value. We then use a special attribute on the
struct to derive the Serialize trait which we imported earlier from Serde. Let’s break
down these concepts a bit because they come up a lot in Rust.

Making A Web App With Actix 59

Attributes

Attributes are the way of attaching metadata to a variety of things in the language.
They can be attached to modules as a whole, structs, functions, and several other
constructs. They can attach to the thing they are defined within using the syntax
#![...] with a ! after the #. For example,

fn some_unused_variable() {

#![allow(unused_variables)]

let x = ();

}

The allow attribute is used to turn off a lint warning for the entity that contains the
attribute which is the function some_unused_variable in this example.

The other format is to attach to the item following the attribute which is what we
see with our struct. The derive attribute is probably the most common attribute
you will encounter. It allows you to implement traits for types without having to do
any more work provided the type meets the requirements for the trait to be derived.
Most structs will, at the very least, derive Debugwhich allows the struct to be printed
using the {:?} debug format specifier. Any struct can derive Debug if its constituents
implement the Debug trait which all of the builtin types do.

Debug is a built-in trait and therefore the attribute to derive it is built-in to the
compiler. It is possible to write custom derive logic so that your own traits can be
derivable. Serialize is just such a custom derivable trait. Now that we have derived
Serialize any instance of our struct can be serialized by serde into the output format
of our choice.

Deriving traits is only one use of the attribute system. There aremany other attributes
built-in to the compiler for doing things like giving inlining hints and conditional
compilation for different architectures.

Now that we have a structure for response data, let’s define the handler that will
accept requests:

Making A Web App With Actix 60

src/lib.rs

12 #[get("/")]

13 fn index(req: HttpRequest) -> Result<web::Json<IndexResponse>> {

14 let hello = req

15 .headers()

16 .get("hello")

17 .and_then(|v| v.to_str().ok())

18 .unwrap_or_else(|| "world");

19

20 Ok(web::Json(IndexResponse {

21 message: hello.to_owned(),

22 }))

23 }

Actix provides a few attributes for colocating routing information with the handler
function. This is how we were able to call service(index) without any more
information about the type of request or the path. Rocket uses these custom attributes
quite heavily for defining the structure of your application. In Actix we can use them
like we do here, or we can specify this information in our application factory which
we will show in our later handlers. In this case, we define this handler to respond to
GET requests at the root path.

How handlers work in Rust

Most of the work in defining a handler in all of the Rust web ecosystem is centered
around defining the input and output types.

There is quite a bit of work that the libraries, with the help of the compiler, can do
for us to extract data from requests and respond with proper HTTP responses while
letting us write functions that let us focus on the things that matter.

We will see this in later sections, but idiomatic design using the current web
frameworks focuses on the type signature explaining what the function uses. The
alternative would be handlers that all take a generic request as input and return
generic response as output and then the internals of the function need to be
introspected to determine what a handler does.

Making A Web App With Actix 61

A set of traits are used for defining how data can be extracted from requests, and
for defining how data is to be turned into an HTTP response. A lot of these traits
are implemented for us by the library and therefore most of the time we just get to
say what types we want to receive and what types we want to respond with and the
rest seems like magic. However, under the hood, most of the magic is really just a
function of the trait system.

Here we see from the signature that we are returning a Result with inner success
type of Json<IndexResponse>. The Result implies that this function can fail, if it
does we will return an error, but if it succeeds then the response should be a JSON
representation of our IndexResponse struct. We also see that we are going to be using
something from the HttpRequest within the body of our function.

If we took the request as a parameter but did not actually use it then we would get
a compiler warning. It is not dramatic so far in this example, but as you build more
complex handlers, focusing on the types can take you quite far in understanding an
application at a high level.

Given our type signature, let’s walk through the body of our handler. Suppose we
get a request with the header hello: Rust, then we want to respond with the JSON
{"message": "Rust"}. If we get a request without a hello header, then we will
respond with {"message": "world"}. So the first step is to try to get the value of
the hello header:

req.headers.get("hello")

Working with Options

This will return an Option<&HeaderValue>. Here, HeaderValue is a type that abstracts
the bytes that hold the actual data from the request. Option<T> is an enum in the
standard library with two variants: Some(T) and None.

The idea of Option is to represent the possibility of something not always existing and
hence replaces the need for the concept of null found in many other programming
languages. The major distinction between null in other languages and Option in Rust
is that an Option is an explicit type that has a None variant that you must deal with
and thus the concept of null cannot inhabit other types.

Making A Web App With Actix 62

Inmany other languages null can be the value of nearly every type of variable. Option
is the other main error handling primitive that complements Result. Wherein Result

carries an error value, sometimes you either have something or you don’t and in those
scenarios Option is the more suitable type to use.

We use the function and_then defined on Option to call a function with the value
inside of the option if there is one. In other words, if the header exists, we call our
closure with the value, otherwise and_then is a no-op on None. Our closure has to
return an Option so that the type in both scenarios matches up. We call to_str on
the &HeaderValue which gives us Result<&str, ToStrError> where ToStrError is a
specific error that explains why the conversion to a &str failed.

Ownership is an important part of Rust and dealing with strings is no different.
The most primitive string type is named str and is known as a string slice. This is
a slice in the same sense that [i32] is a slice of signed 32-bit integers. A string slice
is a slice of bytes, i.e. it has type [u8] and it also is valid Unicode.

The str type is almost always encountered as the borrowed variant &str which
is a reference to a valid Unicode byte array. The reference means that it points to
memory owned by someone else. In particular, static string literals are represented
with type &'static str where the notation &'static means a reference to
something with a static lifetime. The static lifetime is a special lifetime in Rust
which is the entire life of your program. Static strings are compiled into your binary
and are therefore owned by the binary. The other type of string has type String

which is a heap allocated string, i.e. it is a string you own.

As we said before, the closure we pass to and_then needs to return an Option, but
to_str returned a Result. Luckily Result has a handy function called okwhich takes
data from the Ok variant of a Result and puts it inside the Some variant of an Option,
otherwise it turns the Err variant of the Result into the None variant of Option and
discards the error. This is exactly the behavior we want here as we are going to treat
a malformed header value as the same as a missing header value.

Finally, we want our hello variable to just contain a &str, but we have an
Option<&str>. We can again use a helper defined on Option called unwrap_or_else

which will unwrap and return data inside the Some variant of the Option if it is set,

Making A Web App With Actix 63

otherwise in the case of the None variant, this function will call the provided function
and return the result.

As the first case returns &str by extracting the data out of the Some variant, the
closure we pass to unwrap_or_elsemust also return a &str. In this case we just return
"world" directly as this is our default.

Both Result and Option have a variety of helper methods defined on them which
allow you to write these functional style pipelines which transform data while still
dealing with various failure scenarios.

Frequently if you figure out what type of data you want after applying a transfor-
mation you can check the type signatures of the methods on the type that you have,
be it Result or Option, to find something that will do what you want. Many of these
tools come from the influence of ML style functional programming languages on the
design of Rust.

So after all that hello contains a &str which is either the value of the hello header
or the literal "world". Let’s return it. We need to construct an instance of our
IndexResponse struct, so the obvious initial attempt might be:

IndexResponse {

message: hello,

}

But that will not work. The type of message is String and the type of hello is &str.
So we need to convert our borrowed string into an owned string so that we can return
the data as a response.

Therefore, we need to call somemethod that explicitly makes this conversion because
it is not free. You will find that all of to_owned(), to_string(), and into() would
work to do this conversion and you will also see them all in other Rust code. They
each use traits which at the end of the day will execute the same code for this use
case.

So which one is right? It depends, but in this case, because the intent is to turn a
borrowed type into the owned variant, to_owned most accurately describes what is
happening. The use of to_string can be confusing as we have a string so turning it
into a string seems like a weird piece of code. The other option of using into which

Making A Web App With Actix 64

goes through the Into and From traits would be a reasonable choice if you care about
saving four characters for the sake of being slightly less specialized to this particular
scenario.

Once we have our struct that can be serialized to JSON we wrap it in the actix-web
web::Json type which takes care of doing all the work of properly returning a JSON
HTTP response. Finally, we can wrap this response in the Ok variant of Result to
signal that the handler succeeded.

Example requests

example

1 $ curl localhost:8080

2 {"message":"world"}

3

4 $ curl -H "hello: actix" localhost:8080

5 {"message":"actix"}

Summary

We have spent quite a bit of time getting to what is effectively the “Hello, World” of
web servers. However, we have learned a lot about Rust to get here. We have learned
about the different aggregate data types, structs and enums.We learned about helpful
standard library types like Result and Option, and how to work with them to write
clean, robust code. We briefly touched on ownership discussing String and &str,
this will certainly not be our last time talking about ownership. We also discussed
implementing traits for types and how this allows us to add behavior to our data.

In the end we have a web server that can respond to data it receives in a header,
but we now have a solid foundation of the language that will let us expand our
application as we move on. The next step is adding state to this server, along the way
we will learn quite a bit more about the language.

Adding State to Our Web App
Recap and overview

We built a basic web server in the previous chapter which is the foundation for this
chapter and the next. In this chapter we are going to add some in-memory state to
the server. This will require us to explore the concepts of interior mutability, atomic
types, as well as other tools which make it safe to share data across threads. The next
chapter is focused on state backed by a database which is distinctly different from
what we are covering here.

We are going to make the server more complex in this chapter, and sometimes this is
exactly what you need to achieve your goals. However you always want to use the
right tools for your job, so do not feel like each piece is required for every problem
you might be solving.

Adding state

We’re going to start with the Actix server we created in the previous chapter, but
we are going to make our server slightly more complex by adding state that persists
across requests.

First let’s update our set of import statements to bring in some new types that we
will use for managing state:

Adding State to Our Web App 66

src/lib.rs

4 use actix_web::{middleware, web, App, HttpServer, Result};

5 use serde::Serialize;

6 use std::cell::Cell;

7 use std::sync::atomic::{AtomicUsize, Ordering};

8 use std::sync::{Arc, Mutex};

The Cell type we will discuss shortly. The group of things we pull in from
std::sync::atomic are the tools we need to work with a usize that can be modified
atomically and therefore is thread-safe. Finally, we pull in Arc and Mutex from
std::sync which are tools we will use to safely share and mutate things that are
not atomic across multiple threads.

Actix by default will create a number of workers to enable handling concurrent
requests. One piece of state we are going to maintain is a unique usize for each
worker. We will create an atomic usize to track this count of workers because it
needs to be thread-safe however it only ever needs to increase. This is a good use
case for an atomic integer. Let’s define a static variable to hold our server counter
atomic:

src/lib.rs

10 static SERVER_COUNTER: AtomicUsize = AtomicUsize::new(0);

Static versus const

There are two things that you will see in Rust code which look similar and which
live for the entire lifetime of your program, one is denoted const and the other is
denoted static.

Items marked with const are effectively inlined at each site they are used. Therefore
references to the same constant do not necessarily point to the samememory address.

On the other hand, static items are not inlined, they have a fixed address as there
is only one instance for each value. Hence static must be used for a shared global
variable.

Adding State to Our Web App 67

It is possible to have static mut variables. However, mutable global variables are
bad. Therefore, in order to read/write mutable statics, the use of the unsafe keyword
is required.

Atomics, on the other hand, can be modified in such a way that we do not need to
mark the variable as mutable. The mut keyword is really a marker for the compiler
to guarantee that certain memory safety properties are upheld for which atomics are
immune.

Both static and const variables must have their types given explicitly, so we write
the type AtomicUsize for our variable. The new function on AtomicUsize is marked
const which is what allows it to be called in this static context.

Now we can define the struct which will hold the state for our app:

src/lib.rs

12 struct AppState {

13 server_id: usize,

14 request_count: Cell<usize>,

15 messages: Arc<Mutex<Vec<String>>>,

16 }

Each worker thread gets its own instance of this state struct. Actix takes an
application factory because it will create many instances of the application, and
therefore many instances of the state struct. Therefore in order to share information
across the different instances we will have to use different mechanisms than we have
seen so far.

Defining our state

The first part of the state will be set from the atomic usize we declared earlier. We
will see how this is set when we get to our updated factory function, but for now we
can note that this will just be a normal usize that gets set once when this struct is
initialized.

The second piece of data will keep track of the number of requests seen by the
particular worker that owns this instance of state.

Adding State to Our Web App 68

The request count is owned by each worker and changes are not meant to be shared
across threads, however we do want to mutate this value within a single request.
We cannot just use a normal usize variable because we can only get an immutable
reference to the state inside a request handler. Rust has a pattern for mutating a piece
of data inside a struct which itself is immutable known as interior mutability.

Two special types enable this, Cell and RefCell. Cell implements interior mutability
by moving values in and out of a shared memory location. RefCell implements
interior mutability by using borrow checking at runtime to enforce the constraint
that only one mutable reference can be live at any given time.

If one tries to mutably borrow a RefCell that is alreadymutably borrowed the calling
thread will panic. As we are dealing with a primitive type as the interior value,
namely usize, we can take advantage of Cell copying the value in and out and
avoid the overhead of the extra lock associated with a RefCell. Cell and RefCell are
not needed that often in everyday Rust, but they are absolutely necessary in some
situations so it is useful to be aware of them.

Finally, the last piece of state is going to be a vector of strings that represent messages
shared across all of the workers. We want each worker thread to be able to read and
write this state, and we want updates to be shared amongst the workers.

In other words, we want shared mutable state, which is typically where bugs happen.
Rust provides us with tools that makes writing safe and correct code involving shared
mutable state relatively painless. The state we care about is a vector of strings, so we
know we want a Vec<String>.

Sharing across threads

We also want to be able to read and write this vector on multiple threads in a way
that is safe. We can ensure mutually exclusive access to the vector by creating a Mutex
that wraps our vector. Mutex<Vec<String>> is a type that provides an interface for
coordinating access to the inner object (Vec<String>) across multiple threads. We
will see how this works in the implementation of our handler.

The last piece of the puzzle is that wewant to share ownership of this vector. Typically
each value in Rust has a single owner, but for this situation we want each thread to
be an owner of the data so that the vector lives until the last worker thread exits. The
mechanism for this in Rust is to use a reference counted pointer.

Adding State to Our Web App 69

There are two variants: Rc and Arc. They both are generic over a type T and provide
a reference counted pointer to a value of type T allocated on the heap. Calling clone

on an Rc will produce a new pointer to the same value on the heap. When the last Rc
pointer to a value is destroyed, the pointed-to value will then be destroyed. The A in
Arc stands for atomic as the reference counting mechanism of an Rc is non-atomic
and therefore not thread safe.

You cannot share an Rc across threads, but you can share an Arc. Otherwise they
are equivalent. Rc<T> uses a trait called Deref to allow you to call the methods of
T directly on a value of type Rc<T>. As Rust does not have a garbage collector, it is
possible to create memory leaks by creating cycles of reference counted pointers.

There is a non-owning variant called Weak which can be used to break such cycles.
This is not an issue for us here, but it is important to be aware of especially if you
are coming from a garbage collected language.

Okay, now that we have our state defined, let’s update our handler to use that state.
The first step will be to change our response struct to include information from our
state:

src/lib.rs

18 #[derive(Serialize)]

19 struct IndexResponse {

20 server_id: usize,

21 request_count: usize,

22 messages: Vec<String>,

23 }

We will respond with the id of the server that handled this request, the number of
requests this server has seen so far, and the vector of messages.

With our desired response defined, let’s change our index handler to do the job:

Adding State to Our Web App 70

src/lib.rs

25 #[get("/")]

26 fn index(state: web::Data<AppState>) -> Result<web::Json<IndexResponse>\

27 > {

28 let request_count = state.request_count.get() + 1;

29 state.request_count.set(request_count);

30 let ms = state.messages.lock().unwrap();

31

32 Ok(web::Json(IndexResponse {

33 server_id: state.server_id,

34 request_count,

35 messages: ms.clone(),

36 }))

37 }

Extracting data from requests

We have updated the signature of our function to take the state as input while still
returning a JSON representation of our response struct. It may seem a bit magical to
just define the input parameter of our handler to be the state rather than having to
figure out how to get that from our server or the request. The mechanism that allows
this is a trait called FromRequest and the generic term for this concept is an extractor.

Extractors are types that implement the FromRequest trait which allow types to
define how they are constructed from a request. The underlying framework provides
many extractors for things like query parameters, form input, and in this case getting
the state that the application factory created for the current worker.

This turns out to be a powerful and safe abstraction because the compiler is able
to provide a lot of guarantees about what data is and is not available. Any type
that implements FromRequest can technically fail to extract said type and thus uses
Result in the implementation. You can define your handler to take a Result<T> or
an Option<T> for any T that implements FromRequest to be able to handle the failure
of extraction in your handler.

Adding State to Our Web App 71

We will see below how the AppState gets constructed in the application factory,
but for now we can assume that our handler will be called with an instance of
web::Data<AppState> which is just a wrapper around our state that handles the
FromRequest implementation. This wrapper implements the Deref trait so that we
can treat a value of Data<AppState> effectively as if it was a value of AppState.

The first thing we do in our handler is to update the number of requests this server
has handled. As the request_count field is a Cell, we have to use the get and set

methods on Cell to update the value. We could have used an atomic usize for this
variable as well, but we chose to use a Cell to demonstrate how to use it.

The reason that we cannot mutate request_count directly is that our state variable
is an immutable reference. There is no way for us to update server_id for example.
Hence, we first use get to get the current value inside our cell and then add one to
account for the current request. We use set to store this new value back into the
Cell.

Effectively working with locks

Next we need to get access to our messages vector. Recall that state.messages has
type Arc<Mutex<Vec<String>>>. First Arc implements Deref so that when we call
a method on state.messages it will automatically get called on the value of type
Mutex<Vec<String>>. To get access to the data inside the mutex we call the lock

method on the mutex.

The lock method blocks until the underlying operating system mutex is not held by
another thread. This method returns a Result wrapped around a MutexGuard which
is wrapped around our data. The Result that is returned will be an error only if the
mutex is poisoned which basically means a thread paniced while holding the lock
and likely your program is in a bad state. We choose to use the unwrap method on
Result which pulls data out of the Ok variant, but instead panics on the Err variant.
We do this because if we get back an error from lock we don’t really know how
to handle that state of the world so also panicing is not a bad option. This might
not always be the right choice, but often you will see lock().unwrap() used with
mutexes.

The type of the variable we get from state.messages.lock().unwrap() is actually a
MutexGuard<Vec<String>>. Again through the magic of Deref you can just treat this

Adding State to Our Web App 72

as the vector of strings we want.

It is relevant to us because it explains how mutexes work in Rust. RAII (Resource
Acquisitions Is Initialization) is a pattern for managing resources which is central to
Rust. In particular, when a value goes out of scope, a special method called drop

is called by the compiler if the type of the value implements the Drop trait. For
a MutexGuard, the mutex is locked when the guard is constructed and the lock is
unlocked in the guard’s drop method.

Therefore, the lock is only locked for as long as you have access to the guard.
Additionally, you only have access to the data protected by the mutex through the
guard. Hence, the data is only accessible while the lock is locked. You don’t have to
worry about calling unlock at the right time or ensuring that you actually locked the
mutex in all the places that you read or write the vector of messages. All of that is
taken care of for you by the compiler.

Responding with data

Finally, we can construct an instance of our response struct to be serialized and
returned as JSON. The one piece to note is that we call ms.clone() for the value
we set on the messages field of our response struct. The clone method creates an
explicit copy of a value if the type implements the Clone trait.

We cannot just pass themessages vector directly because that wouldmove ownership
and that is not what we want to do (nor even possible because it is shared). We want
to return a copy of the vector of messages to be serialized. Because this copyingmight
be expensive Rust does not do it implicitly, rather you are required to state that you
want it to happen explicitly by calling clone.

For things that can be copied cheaply, there is a separate trait called Copy which will
result in implicit copies being created. You can decide what behavior you want for
the types you create based on what traits you derive or implement.

Now that our handler is in place, we just need to update the application factory inside
our run method to incorporate our state:

Adding State to Our Web App 73

src/lib.rs
47 pub fn run(&self) -> std::io::Result<()> {

48 let messages = Arc::new(Mutex::new(vec![]));

49 println!("Starting http server: 127.0.0.1:{}", self.port);

50 HttpServer::new(move || {

51 App::new()

52 .data(AppState {

53 server_id: SERVER_COUNTER.fetch_add(1, Ordering::Se\

54 qCst),

55 request_count: Cell::new(0),

56 messages: messages.clone(),

57 })

58 .wrap(middleware::Logger::default())

59 .service(index)

60 })

61 .bind(("127.0.0.1", self.port))?

62 .workers(8)

63 .run()

64 }

We create the shared messages vector outside of the application factory closure with
the line:

let messages = Arc::new(Mutex::new(vec![]));

We do this so that each worker can actually share the same messages array rather
than each of them creating their own vector which would be unconnected from the
other workers.

To add state to the application we use the datamethod on App and pass in the initial
value of our state. This is what makes the web::Data<AppState> extractor work.

Constructing our state

We have three parts to our state that each get setup differently. First we have the id of
the worker which we call server_id. When each of the workers start their instance
of the app, this AppState struct will be constructed.

Adding State to Our Web App 74

For server_id, we use the global SERVER_COUNTER variable to set the value for the
server id. The fetch_add method will atomically add an amount equal to the first
argument to the global variable and return whatever value was in the variable prior
to the addition. So the first time this is called SERVER_COUNTER will be incremented
from zero to one, but the server_id will be set to zero as that was the value in
SERVER_COUNTER before fetch_add was called.

The second argument to fetch_add controls how atomic operations synchronize
memory across threads. The strongest ordering is SeqCst which stands for sequen-
tially consistent. The best advice is to use SeqCst until you profile your code, find out
that this is a hot spot, and then can prove that you are able to use one of the weaker
orderings based on your access pattern.

The second piece of data is the request_count. We initialize this value by putting
zero inside a Cell. Each thread will own its own Cell so we just construct the cell
inside the application factory closure which is executed by the worker thread and
therefore has affinity to that thread which is what we desire.

Finally, we clone the Arc value that wraps the shared messages value which means
that we create a new pointer to the shared data. We have to use Arc instead of Rc
because all of the clone calls are happening on different threads. If you tried to use
an Rc here the compiler would give you an error because it can tell you are moving
across a thread boundary.

The rest of our run function is exactly the same. In particular, the service(index) call
is the same even though we changed the signature of the handler. This is due to some
generic programming done by the underlying actix library to deal with handlers with
a flexible number of extractor input arguments.

Example requests

Adding State to Our Web App 75

example

1 $ curl localhost:8080

2 {"server_id":0,"request_count":1,"messages":[]}

3

4 $ curl localhost:8080

5 {"server_id":1,"request_count":1,"messages":[]}

6

7 $ curl localhost:8080

8 {"server_id":2,"request_count":1,"messages":[]}

9

10 $ curl localhost:8080

11 {"server_id":3,"request_count":1,"messages":[]}

Receiving input

Our app can now respond with a list of messages stored on the server. However, this
is of limited use without a way to actually add messages. Let’s add the ability to post
messages which will get added to our list of messages.

First we want to be able to accept JSON data as input, so we will import the
Deserialize item from serde so that we can derive the ability to construct structs
from JSON data:

src/lib.rs

5 use serde::{Deserialize, Serialize};

Let’s define our input and output data for the method that accepts data:

Adding State to Our Web App 76

src/lib.rs

25 #[derive(Deserialize)]

26 struct PostInput {

27 message: String,

28 }

29

30 #[derive(Serialize)]

31 struct PostResponse {

32 server_id: usize,

33 request_count: usize,

34 message: String,

35 }

Our input will just be of the form {"message": "some data"}, so we create a struct
PostInput and derive Deserialize. We will then be able to use Serde to turn JSON
data with that format into instances of our struct. Serde has defaults that usually
do what you want, but if you wanted to change the name of a field or otherwise
customize the input/output format you can use custom attributes on your struct.

The output will be very similar to our IndexResponse in that we will include
information about the worker that handled this request, but instead of returning
the whole list of messages, we will just echo back the message that was input.

Given our input and output data format, let’s define our handler:

src/lib.rs

50 fn post(msg: web::Json<PostInput>, state: web::Data<AppState>) -> Resul\

51 t<web::Json<PostResponse>> {

52 let request_count = state.request_count.get() + 1;

53 state.request_count.set(request_count);

54 let mut ms = state.messages.lock().unwrap();

55 ms.push(msg.message.clone());

56

57 Ok(web::Json(PostResponse {

58 server_id: state.server_id,

59 request_count,

Adding State to Our Web App 77

60 message: msg.message.clone(),

61 }))

62 }

This handler will handle our posted messages, we chose the name post for the name
of the function, but it has nothing to do with the HTTP method used for taking data.

Note that we are not using an attribute to define the method and route as we will
construct this service differently in our runmethod to demonstrate the other style of
route configuration.

Looking at our handler’s function signature we see that we expect JSON input data,
we will access the state of our app, and we are returning a JSON representation of our
PostResponse struct. The web::Json<T> extractor attempts to deserialize the request
body using serde into the type specified. If deserialization fails for any reason, an
error is returned. This behavior can be customized as we will see later.

Note that we can take in as many request extractors as we need to make
our handler do what we want. Technically the library implements the
ability to take up to nine extractors, but you can take an arbitrary number
by combining them into a tuple rather than having them be separate
arguments.

Thanks to the extractor doing the hard work of getting the JSON from the request
and constructing an instance of PostInput, we know that inside our method we have
input data in the format we expect.

Therefore, we can do something similar to our index method except we want to
modify our messages vector. We lock the mutex to get access to the vector and then
we push this message onto the end. Note that we declare our message vector variable
ms to be mutable so that we can call pushwhich is safe because as we are holding the
mutex we have exclusive read/write access to the vector.

We have to clone the message as we push it into the vector because this vector owns
each element andwe only have a borrowed reference to our PostInput data. This also
explains why we clone the message when we return it as part of our PostResponse.

We can now update our application factory to define the route leading to our post
handler:

Adding State to Our Web App 78

src/lib.rs

96 .wrap(middleware::Logger::default())

97 .service(index)

98 .service(

99 web::resource("/send")

100 .data(web::JsonConfig::default().limit(4096))

101 .route(web::post().to(post)),

102)

The service method takes a resource definition. For our index method because we
used the special attribute syntax this resource definition is generated for us. For
the post handler, we are going to create our own resource. The code is pretty self
explanatory.

First we create a resource for the specific path /send with web::resource("/send").

The data method is used for specifying route specific data or for configuring route
specific extractors. We use it here to demonstrate how to configure the JSON
extractor for this route by setting a limit on the number of bytes to deserialize to
4096 bytes.

We then declare the route configuration for this resource by passing route data to the
routemethod. There are methods for each HTTP method, so we use web::post() to
say that this route requires a POST request.

Finally, to is called with our handler function post to indicate which function to call
for this route.

While we are at it, let’s also create a post request that clears out all the messages:

Adding State to Our Web App 79

src/lib.rs

63 #[post("/clear")]

64 fn clear(state: web::Data<AppState>) -> Result<web::Json<IndexResponse>\

65 > {

66 let request_count = state.request_count.get() + 1;

67 state.request_count.set(request_count);

68 let mut ms = state.messages.lock().unwrap();

69 ms.clear();

70

71 Ok(web::Json(IndexResponse {

72 server_id: state.server_id,

73 request_count,

74 messages: vec![],

75 }))

76 }

This is similar to our index request so we will just repurpose the response type and
also return IndexResponse from clear. The implementation follows our post handler,
except instead of pushing a new message onto our vector, we mutate it by calling
clear to remove all messages.

Lastly we just return an empty vector in our response because we know that we just
cleared out our vector.

As we used the attribute syntax to define the route as a post request to /clear, we
need only add a service to our app:

src/lib.rs

102)

103 .service(clear)

104 })

105 .bind(("127.0.0.1", self.port))?

106 .workers(8)

Example requests

Adding State to Our Web App 80

example

1 $ curl localhost:8080

2 {"server_id":0,"request_count":1,"messages":[]}

3

4 $ curl -X POST -H "Content-Type: application/json" -d '{"message": "hel\

5 lo"}' localhost:8080/send

6 {"server_id":1,"request_count":1,"message":"hello"}

7

8 $ curl -X POST -H "Content-Type: application/json" -d '{"message": "hel\

9 lo again"}' localhost:8080/send

10 {"server_id":2,"request_count":1,"message":"hello again"}

11

12 $ curl -X POST -H "Content-Type: application/json" -d '{"message": "hel\

13 lo"}' localhost:8080/send

14 {"server_id":3,"request_count":1,"message":"hello"}

15

16 $ curl localhost:8080

17 {"server_id":4,"request_count":1,"messages":["hello","hello again","hel\

18 lo"]}

19

20 $ curl -X POST localhost:8080/clear

21 {"server_id":5,"request_count":1,"messages":[]}

22

23 $ curl localhost:8080

24 {"server_id":6,"request_count":1,"messages":[]}

25

26 $ curl -X POST -H "Content-Type: application/json" -d '{"message": "hel\

27 lo after clear"}' localhost:8080/send

28 {"server_id":7,"request_count":1,"message":"hello after clear"}

29

30 $ curl localhost:8080

31 {"server_id":0,"request_count":2,"messages":["hello after clear"]}

Adding State to Our Web App 81

Custom error handling

We can now post messages to our app and get them back out. But currently, if
you make a mistake when posting a message and send data like {"my_message":

"hello"}, then the app will return a 500 status code. This is not a great user
experience. There are a variety of mechanisms for dealing with errors. For now, we
will customize the error handler associated with the JSON decoding step so that the
app sends back more detailed information about errors.

First, let’s add some imports from actix_web that will make dealing with errors less
verbose:

src/lib.rs

4 use actix_web::{

5 error::{Error, InternalError, JsonPayloadError},

6 middleware, web, App, HttpRequest, HttpResponse, HttpServer, Result,

7 };

Rather than returning a 500 response with no data, we are going to respond with
a more appropriate status code along with an error message. As the rest of our
functions are returning JSON, we want our error handler to also return JSON.
Therefore, let’s define a struct to represent the response from our error handler:

src/lib.rs

41 #[derive(Serialize)]

42 struct PostError {

43 server_id: usize,

44 request_count: usize,

45 error: String,

46 }

This is the same structure as our other responses, but we are going to have an error
field with a string that holds a message about what went wrong.

Given the data we want to output, let’s define the handler function that will be called
in the case of a JSON error:

Adding State to Our Web App 82

src/lib.rs

88 fn post_error(err: JsonPayloadError, req: &HttpRequest) -> Error {

89 let state = req.app_data::<AppState>().unwrap();

90 let request_count = state.request_count.get() + 1;

91 state.request_count.set(request_count);

92 let post_error = PostError {

93 server_id: state.server_id,

94 request_count,

95 error: format!("{}", err),

96 };

97 InternalError::from_response(err, HttpResponse::BadRequest().json(p\

98 ost_error)).into()

99 }

The type for this handler is defined by the JsonConfig type and is not as flexible as
the other handlers that we can define. In particular, the signature of the function has
to be exactly this, we cannot use extractors to get different input, and we have to
return the Error type from actix_web.

This might change in a future version of the library, but for now this is the
required signature.

The first argument is an instance of the enum JsonPayloadError which contains
information about what went wrong. The second argument is a reference to the
request that led to this error. We still want to access our state because we want
to update the request count and get the id of the current worker to return in our
response.

We can do this by doing what the state extractor would have done for us and pull
our state out of the app_data set on the request.

Generic return types

Actix uses a type safe bag of additional data attached to requests called app_data.
The state is just the value inside of that data with type AppState.

Adding State to Our Web App 83

The line to pull out the state looks a bit complicated but we can break it down. The
app_data function is generic having the signature:

fn app_data<T>(&self) -> Option<&T>

This is a function that returns a reference to a type that was previously stored as a
piece of data. It is up to the caller (i.e. us) to say what type we want to get back.

We have to give the compiler some help by putting a type annotation somewhere
so that app_data knows what type we want. We do that by using the ::<> turbofish
syntax, namely app_data::<AppState> means call app_data<T>() with T bound to
the type AppState. The implementation has to know how to handle any generic type
but for us we just know that we will get back the data we want if it was previously
stored, otherwise the Option will be the None variant.

The actual signature of app_data is fn app_data<T: 'static>(&self) -> Option<&T>

but the 'static lifetime bound on the generic type T is not important for the current
discussion.

To get direct access to our state, we call unwrap on the Optionwe get back. Given that
our app is properly configured, we will always get back our state. Thus, this Option
should never be None.

However, it is worth noting that if we did not configure the state properly we would
not see this error until runtime when this call to unwrap panics. We could match on
the value of the option and handle the None case by returning a fallback error, but
that is a future improvement.

Creating useful errors

Once we have the state, we can work with it in the exact same way that we did in
our other handlers where the extractor took care of the previous step for us.

We create our PostError struct with the id and request count gathered from the state.
We set the error message to be the string representation of the JsonPayloadError that

Adding State to Our Web App 84

was passed to us. The format macro takes a format string along with the necessary
variables to fill in the placeholders and returns an owned String. In this case, we use
the format string "{}" to use the Display trait implementation of your error to get a
nice message.

This is in contrast to "{:?}"which uses the Debug trait implementation which would
not be a nice message. In a real app, you would probably want a more user friendly
message than even just displaying this error. One approach would be to match on
the different variants of the JsonPayloadError enum and make our own message in
the different scenarios.

Finally, wewant to construct an Errorwith our struct turned into JSON. InternalError
is a helper provided by actix to wrap any error and turn it into a custom response.
So we call the constructor from_response, passing in the JsonPayloadError which
gets stored as the cause of the error, and then the second argument is the custom
response we want to return.

The HttpResponse struct has a variety of helpers for building responses, one of which
is BadRequestwhich sets the status code to 400 which by the spec means the server is
working properly but your request was bad for some reason. This method returns a
response builder which has a jsonmethod that can take anything that is serializable
into JSON and sets it as the response body.

Interpreting compiler errors

That covers the entirety of the final line in our handler except for that call to into()

at the end. If you leave off this call you will get a compiler error that ends with:

= note: expected type `actix_web::Error`

found type `actix_web::error::InternalError<actix_web::error\

::JsonPayloadError>`

This is correct, we are returning an InternalError struct when our function claims
to return an Error struct. So we can’t just return that struct directly. However,
Rust has a pair of traits std::convert::From and std::convert::Into which define
explicit transformations between types. The documentation states that From<T> for

Adding State to Our Web App 85

U implies Into<U> for T which means that typically only one side of the conversion
is implemented.

In particular, libraries usually implement the From trait to define how to construct an
instance of their type from other things. Users can then create their own types and
call into to hook into the conversion facilities provided by the library.

To make this more concrete, in this case, actix_web::Error implements From<T> for
any Twhich implements the ResponseError trait. As InternalError implements the
ReponseError trait, we can explicitly say that we want to convert our InternalError
into an Error and let the From implementation of Error take care of what that means.

In order to use our new error handler, we simply declare that we want to use it
by calling the error_handler method on the JsonConfig setup in our application
factory:

src/lib.rs

120 .service(index)

121 .service(

122 web::resource("/send")

123 .data(

124 web::JsonConfig::default()

125 .limit(4096)

126 .error_handler(post_error),

127)

128 .route(web::post().to(post)),

129)

While we are here let’s also update the format of the logger middleware. Near the
top of our file let’s define a string constant that specifies our desired log format:

src/lib.rs

13 const LOG_FORMAT: &'static str = r#""%r" %s %b "%{User-Agent}i" %D"#;

The details for what is available can be found in the actix_web documentation.
This format is similar to the default but removes a few of the less useful pieces of
information, and we change the reporting of the time spent processing the request to

Adding State to Our Web App 86

be in milliseconds by using %D. We are using a raw string because we want to include
quotation marks inside our string without having to escape them.

The syntax is the character r followed by zero or more # characters followed by an
opening " character. To terminate the string you use a closing " character followed
by the same number of # characters you used at the beginning. Here we use one #

character, but there are cases where you want to use more, for example if you want
to embed "# inside your string.

We then change our middleware specification in our application factory to use this
format. We do this by replacing middleware::Logger::default() with:

src/lib.rs

119 .wrap(middleware::Logger::new(LOG_FORMAT))

Example requests

example

1 $ curl -X POST -H "Content-Type: application/json" -d '{"bad": "hello"}\

2 ' localhost:8080/send

3 {"server_id":0,"request_count":1,"error":"Json deserialize error: missi\

4 ng field `message` at line 1 column 16"}

5

6 $ curl localhost:8080

7 {"server_id":1,"request_count":1,"messages":[]}

8

9 $ curl -X POST -H "Content-Type: application/json" -d '{"message": "hel\

10 lo"}' localhost:8080/send

11 {"server_id":2,"request_count":1,"message":"hello"}

12

13 $ curl localhost:8080

14 {"server_id":3,"request_count":1,"messages":["hello"]}

Adding State to Our Web App 87

Handling path variables

Before wewrap up, let’s add onemore route to our API to show the basics of handling
variable paths. Rather than having to get the entire list of messages, let’s add a
GET request to /lookup/{index} which will attempt to get only the message at that
particular index in our list. First we will define a struct to represent this response:

src/lib.rs

100 #[derive(Serialize)]

101 struct LookupResponse {

102 server_id: usize,

103 request_count: usize,

104 result: Option<String>,

105 }

The different part of this struct from our previous responses is the result field which
has type Option<String>. We use an Option because the lookupmight fail if the index
happens to be out of bounds of the current vector of messages. The None variant will
be serialized to null in JSON, and the Some variant will serialize to just the inner
data.

With our desired response defined, let’s create the handler for this lookup operation:

src/lib.rs

107 #[get("/lookup/{index}")]

108 fn lookup(state: web::Data<AppState>, idx: web::Path<usize>) -> Result<\

109 web::Json<LookupResponse>> {

110 let request_count = state.request_count.get() + 1;

111 state.request_count.set(request_count);

112 let ms = state.messages.lock().unwrap();

113 let result = ms.get(idx.into_inner()).cloned();

114 Ok(web::Json(LookupResponse {

115 server_id: state.server_id,

116 request_count,

117 result,

Adding State to Our Web App 88

118 }))

119 }

We use an attribute to define the route for this handler as a GET request to
/lookup/{index}. This syntax says to match the exact path /lookup/ and then expect
a variable afterwards. The name inside the braces in the attribute defining the route
is not actually important for our use case, but can be good documentation.

The signature of our input types has changed to include a web::Path extractor in
addition to the Data extractor we use again because we still want to work with the
state.

The Path extractor uses the generic type specified, in this case usize, to attempt
to deserialize the path segment to this type. If we had multiple path segments,
then we would pass a tuple with the different expected types in order to allow
for deserialization. You can also pass a custom type that implements Deserialize to
handle more complex use cases.

Our implementation of lookup is quite similar to handlers we have seen before,
except for:

let result = ms.get(idx.into_inner()).cloned();

First we call into_inner on the Path<usize> variable. This converts the Pathwrapper
into the inner type it is wrapping, in this case a usize. Then, we use that usize
variable as the argument to the get method on our vector.

The get method on Vec<T> returns Option<&T>, that is it maybe returns a reference
to one of the elements inside the vector. This method does not modify the vector, so
it cannot return Option<T> as that would require moving data out of the vector and
therefore modifying the vector. As the variable ms was not declared mut we know
that we are only ever calling methods which do not mutate the vector.

An Option is returned because the index passed in might be out of bounds so this is
a safe way of accessing data in the vector without having to manually check that the
index is valid.

Our result variable needs to be of type Option<String>, but we have a variable
of type Option<&String>. The Option enum implements a method cloned which

Adding State to Our Web App 89

converts Option<&T> to Option<T> by cloning the inner data in the Some case, and
doing nothing in the None case. This is exactly the behavior we want.

The last piece of the puzzle is to hook the lookup up to our app by declaring it as a
service in our application factory:

src/lib.rs

149)

150 .service(clear)

151 .service(lookup)

152 })

153 .bind(("127.0.0.1", self.port))?

Example requests

example

1 $ curl localhost:8080

2 {"server_id":0,"request_count":1,"messages":[]}

3

4 $ curl localhost:8080/lookup/2

5 {"server_id":1,"request_count":1,"result":null}

6

7 $ curl -X POST -H "Content-Type: application/json" -d '{"message": "hel\

8 lo"}' localhost:8080/send

9 {"server_id":2,"request_count":1,"message":"hello"}

10

11 $ curl -X POST -H "Content-Type: application/json" -d '{"message": "hel\

12 lo again"}' localhost:8080/send

13 {"server_id":3,"request_count":1,"message":"hello again"}

14

15 $ curl -X POST -H "Content-Type: application/json" -d '{"message": "goo\

16 dbye"}' localhost:8080/send

17 {"server_id":4,"request_count":1,"message":"goodbye"}

18

19 $ curl localhost:8080

Adding State to Our Web App 90

20 {"server_id":5,"request_count":1,"messages":["hello","hello again","goo\

21 dbye"]}

22

23 $ curl localhost:8080/lookup/2

24 {"server_id":6,"request_count":1,"result":"goodbye"}

25

26 $ curl localhost:8080/lookup/0

27 {"server_id":7,"request_count":1,"result":"hello"}

28

29 $ curl localhost:8080/lookup/foo

30 -> 404

31

32 $ curl localhost:8080/lookup/99

33 {"server_id":1,"request_count":2,"result":null}

Wrapping up

We added some realistic pieces to our web server: state shared across worker threads,
handling structured input data, and variable URL paths. Along the way we learned
about interior mutability, sharing ownership via reference counting, and safely
sharing data across threads with locks.

Working effectively with multiple threads is often thought of as a dangerous activity.
Such an attitude is fully justified in languages where the compiler is not helping you
get things correct. This is one reasonmany languages are built to hide this complexity.
Hopefully, after working with locks to share data in this chapter you feel like Rust’s
approach is not as hard.

Even More Web
Crates to know

The vibrant Rust ecosystemmakes building complex applications in Rust much easier.
This ecosystem continues to grow so that even if something is currently missing,
chances are a new crate is on the horizon that will solve your problem. And if not,
you can help the community by writing a crate yourself.

We will expand our understanding of building a web application by adding persis-
tence via a SQL database. There are a few tools for working with SQL in Rust, from
directly accessing the database via wrappers around C libraries to full blown Object
Relational Mapping (ORM) libraries. We will take somewhat of a middle-ground
approach and use the Diesel³⁶ crate.

Diesel

Diesel is both an ORM and a query builder with a focus on compile time safety, per-
formance, and productivity. It has quickly become the standard tool for interacting
with databases in Rust.

Rust has a powerful type system which can be used to provide guarantees that rule
out a wide variety of errors that would otherwise occur at runtime. Diesel has built
abstractions that eliminate incorrect database interactions by using the type system
to encode information about what is in the database and what your queries represent.
Moreover, these abstractions are zero-cost in the common cases which allows Diesel
to provide this safety with the same or better performance than C.

The crate currently supports three backends: PostgreSQL, MySQL, and Sqlite. Switch-
ing between databases is not completely free as certain features are not supported by
all backends. However, the primary interaction between your code and the database

³⁶https://diesel.rs

https://diesel.rs/
https://diesel.rs/

Even More Web 92

is in Rust rather than SQL, so much of the interactions with Diesel are database
agnostic. For managing common database administration tasks like migrations,
Diesel provides a command line interface (CLI) which we will show how to use.

The Diesel getting started³⁷ is a great resource for an overview of how Diesel works
and what it can do.

Building a blog

We are going to build a JSON API around a database that represents a blog. In order
to capture most of the complexity of working with a database we will have a few
models with some relationships. Namely, our models will be:

• Users
• Posts
• Comments

A Post will have one User as an author. Posts can have many Comments where
each Comment also has a User as author. This provides enough opportunity for
demonstrating database interactions without getting overwhelmed by too many
details.

We will start out by getting all of the necessary infrastructure in place to support
Users. This will involve putting a few abstractions in place that are overkill for a
single model, however they will pay dividends when we subsequently add Posts and
Comments.

Aswe have already gone through quite a bit of details related to Actix and building an
API, the focus here will be more on the new parts related to working with persistence.
Therefore some of the details of working with actix-web will be assumed.

Getting setup

Let’s get started like with all Rust projects and have Cargo generate a new project:

³⁷http://diesel.rs/guides/getting-started/

http://diesel.rs/guides/getting-started/
http://diesel.rs/guides/getting-started/

Even More Web 93

$ cargo new blog-actix

Our first step will be editing our manifest to specify the dependencies that we are
going to need:

Cargo.toml

1 [package]

2 name = "blog-actix"

3 version = "0.1.0"

4 authors = ["Your Name <you@example.com>"]

5 edition = "2018"

6

7 [dependencies]

8 actix-web = "1.0"

9

10 env_logger = "0.6"

11 futures = "0.1"

12 serde = "1.0"

13 serde_json = "1.0"

14 serde_derive = "1.0"

15

16 diesel = { version = "^1.1.0", features = ["sqlite", "r2d2"] }

17 dotenv = "0.10"

The new dependencies beyond what we have previously used with actix-web are
diesel, and dotenv. The diesel dependency we have already discussed, but there is
a bit of a new twist here.

Cargo supports the concept of features, which represent additional pieces of function-
ality that can be enabled for a crate. This is typically used for conditionally including
transitive dependencies and conditional compilation to either include or exclude code
based onwhat you need or don’t need. Good crates allow you to pick and choose only
what you want to minimize compilation times and binary sizes. The Rust compiler
can remove code that ends up not being used in the final binary, but using features is
one way to ensure this happens and makes you explicitly specify what you are using.

Even More Web 94

One thing Diesel uses features for is to specify what backend you want to use. For
our purposes we are going to use Sqlite. As an embedded file based database we will
be able to work with persistence without having to setup the external dependency
of a database server. We will be clear as to what parts of this code depend on this
database choice.

The other feature of Diesel that we are specifying, r2d2, adds the r2d2 generic
database connection pool crate as a dependency of Diesel and turns on some
functionality. Any reasonable production system will use a connection pool for
interacting with a database, the reasons are best described in the r2d2 documentation:

Opening a new database connection every time one is needed is both
inefficient and can lead to resource exhaustion under high traffic condi-
tions. A connection pool maintains a set of open connections to a database,
handing them out for repeated use.

Finally, we include dotenv as a dependency which is a tool for managing environ-
ment variables. By default Dotenv looks for a file named .env in the current directory
which lists environment variables to load. As we will need it later, let’s create this
file with one variable DATABASE_URL with a file URL to a file in the current directory
which will hold our Sqlite database:

<<.env³⁸

Installing the Diesel CLI

As we previously mentioned, Diesel has a CLI for managing common database tasks.
Cargo has the ability to install binary crates on your system via the cargo install

command. Therefore, we can install the Diesel CLI with:

$ cargo install diesel_cli --no-default-features --features sqlite

By default this installs a binary at ∼/.cargo/bin but it is possible to configure this.

As we mentioned Diesel uses features for turning on and off certain functionality.
Crates that use features typically have a default set that is turned on if you otherwise

³⁸code/intermediate/blog-actix/.env

code/intermediate/blog-actix/.env
code/intermediate/blog-actix/.env

Even More Web 95

do not specify anything. It is possible to turn off this default behavior via the
command line argument --no-default-features, and for the CLI we do this because
the default is to include support for all three database backends. This will cause
errors running CLI commands if you do not have some of the necessary components
installed. So we turn off the default and then turn on only Sqlite support via
--features sqlite.

Migrations

The Diesel CLI binary is named diesel, so we can setup our project for working with
Diesel by running the setup command:

diesel setup

Diesel CLI requires a DATABASE_URL environment variable to be defined so that Diesel
knows the location of the database. This environment variable can be manually
passed for each Diesel CLI command, but defining it within a .env file makes things
much more convenient. This is one reason we created the .env file above.

This will create a migrations directory as well as a diesel.toml file. If you are using
Postgres this command will also create a migration that creates a SQL function for
working with timestamps. This does not happen for other backends.

Diesel manages migrations using a directory called migrations with a subdirectory
for each migration. The name of the subdirectories are a timestamp prefix followed
by a name. Within each migration directory are two self-explanatory files: up.sql
and down.sql. Diesel uses SQL for migrations rather than a custom DSL. Therefore
changing databases requires rewriting most of your migrations.

Running migrations

The primary use for the CLI is managing migrations which uses the migration

command with further subcommands. To see all migrations and whether they have
been applied we use the list subcommand:

Even More Web 96

diesel migration list

To run all pending migrations we use the run subcommand:

diesel migration run

You can get help for diesel in general by calling diesel --help or for a particular
command by passing --help with that command, i.e.:

diesel migration --help

Schema

When setting up the project with the diesel setup command, the Diesel CLI
automatically generated a diesel.toml file that tells Diesel to track and maintain
the database schema within a schema file named schema.rs. This file is located in
the project’s src directory, and it contains a Rust representation of the database
schema. By having a Rust representation of all of the database’s tables and columns,
you get modules that let you declaratively query the database. Running migrations
updates the Rust representation of the database schema and persists all changes to
the src/schema.rs schema file. You can specify a different file for storing the Rust
representation of the database schema bymodifying the file field in the diesel.toml
file.

Users

Let’s get started creating our application which will support managing users. We are
not going to get into the weeds of authentication or authorization, rather our focus
will be on manipulating persisted data via a JSON API.

Create users migration

The first step is to add a migration that will create the database table users to hold
our users:

Even More Web 97

diesel migration generate create_users

This creates a directory migrations/YYYY-MM-DD-HHMMSS_create_users with two
empty files. In up.sql let’s put the SQL for creating our users table:

migrations/2019-04-30-025732_create_users/up.sql

1 CREATE TABLE users (

2 id INTEGER PRIMARY KEY NOT NULL,

3 username VARCHAR NOT NULL

4)

Each user has an id which will be the primary key for fetching users as well as the
key used for referencing users in other tables. We also require each user to have a
username which is a string. You can get arbitrarily creative here depending on your
domain, but for simplicity we only have these two columns.

This syntax is specific to a SQLite backend. If you decide to switch to a different
backend, then you might need to rewrite migrations to make them compatible with
the new backend. For example, some databases allow you to restrict the size of
VARCHAR columns, which might be a reasonable thing to do for usernames. However,
SQLite does not actually enforce the length of a VARCHAR.

The corresponding down.sql file should perform whatever transformations are
necessary to undue what happens in up.sql. In this case as the up migration is
creating a table, we can drop the table in our down migration:

migrations/2019-04-30-025732_create_users/down.sql

1 DROP TABLE users

You can do whatever you want in up and down, but for your own sanity, the schema
should be the same before running the migration and after running up followed by
down. That is down should revert the schema to the prior state. As some migrations
will update data in the database it is not necessarily true that the data in the database
is preserved by running up followed by down. The reversibility of migrations is
typically only a statement about the schema, but the exact semantics are up to you.

Even More Web 98

Make username unique

We create yet another migration, this time to add an index to our users table. We do
this to ensure that usernames are unique in our system and that we can lookup users
by their username quickly. First we have diesel create the files for us with:

diesel migration generate index_username

Then we add the code to create the index to up.sql:

migrations/2019-04-30-025922_index_username/up.sql

1 CREATE UNIQUE INDEX username_unique_idx ON users (username)

Again this is Sqlite syntax, although all backends have a similar syntax for this
operation. The important part of this index is the UNIQUE keyword. This let’s us rely
on the database for the enforcement of unique usernames rather than introducing
racy code that tries to manage this at the application layer.

As before, we want our down migration to reverse what we did in up, so we drop
the index in down.sql:

migrations/2019-04-30-025922_index_username/down.sql

1 DROP INDEX username_unique_idx

Schema

We run our migrations via the Diesel CLI with:

1 diesel migration run

Once this runs successfully two things will be true. First, the database file at blog.db
will be in the state after running all of our up migrations. You can verify this by
opening the Sqlite shell:

Even More Web 99

sqlite3 blog.db

and dumping the schema:

sqlite> .schema

CREATE TABLE __diesel_schema_migrations (

version VARCHAR(50) PRIMARY KEY NOT NULL,

run_on TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP

);

CREATE TABLE users (

id INTEGER PRIMARY KEY NOT NULL,

username VARCHAR NOT NULL

);

CREATE UNIQUE INDEX username_unique_idx ON users (username);

Note that the __diesel_schema_migrations table is automatically created by Diesel
and it is how the CLI knows which migrations have or have not run.

The second thing that happens is the file src/schema.rs is updated with Rust code
which Diesel uses to understand the state of your database. This file should look like:

src/schema.rs

1 table! {

2 users (id) {

3 id -> Integer,

4 username -> Text,

5 }

6 }

It doesn’t look like much because of the magic of the macros that Diesel provides.
Here only the table!macro is used, but there are a few more that we will encounter
as our data model evolves.

Even More Web 100

Building the application

With the database taken care of for the moment, we turn now to our actual
application. We are going to build out the scaffolding which supports users and also
will be easily extensible later on.

Main

As we have done before, we are going to split our application into a small main.rs,
which is the binary entry point, and keep everything else in a library which our main
can call in to. So without further ado, let’s add the following to main.rs:

src/main.rs

1 use dotenv::dotenv;

2 use std::env;

3

4 fn main() -> std::io::Result<()> {

5 dotenv().ok();

6

7 env::set_var("RUST_LOG", "actix_web=info");

8 env_logger::init();

9 let database_url = env::var("DATABASE_URL").expect("DATABASE_URL mu\

10 st be set");

11 let app = blog_actix::Blog::new(8998);

12 app.run(database_url)

13 }

Everything here we have seen in our simpler web applications except the interaction
with dotenv. Calling dotenv().ok() sets environment variables based on the con-
tents of the .env file in the current directory and ignores any error that might result.
Dotenv only sets environment variables from that file if they are not already set so
you can always override the file by setting the variable directly in your environment
before running the program.

Even More Web 101

As we have a .env file with DATABASE_URL defined we will end up with that
environment variable set so our call to env::var("DATABASE_URL") will succeed. We
pass this URL to the run call of our app which kicks off everything.

Setting up our library

Let’s turn to our library entry point which we have seen needs to export the Blog

struct that we call from our main function. As is standard we start with some import
statements to make our subsequent code easier to work with:

src/lib.rs

1 #[macro_use]

2 extern crate diesel;

3 #[macro_use]

4 extern crate serde_derive;

5

6 use actix_web::{middleware, App, HttpServer};

7 use diesel::prelude::*;

8 use diesel::r2d2::{self, ConnectionManager};

Working with Diesel requires some macros to be in scope which is why we have the
macro_use attribute on the extern crate diesel item. We also want to derive the
Serialize and Deserialize traits from Serde for working with JSON so we bring
those macros in to scope. The actix_web use statement is just bringing some items
into scope to make our code more readable.

Diesel has a prelude which includes common types and functions which you almost
always need while working with your database and the standard practice is to use
the * import to bring all of the things exported in the prelude into scope as there is
very little chance of a conflict.

As we discussed previously r2d2 is a connection pooling library that Diesel provides
an interface to because we turned that feature on in our manifest.

The next thing we do for code readability is to create a type alias for our pool of
database connections:

Even More Web 102

src/lib.rs

15 type Pool = r2d2::Pool<ConnectionManager<SqliteConnection>>;

This is common practice as the exact details of this type are not usually relevant
where we are using it, rather just the fact that it is a connection pool. Overusing type
aliases can sometimes lead to more confusing code, but underusing them can also
lead to noisy code. When to use one is a bit of art and style, but it makes a lot of
sense here.

Modules and code organization

In previous chapters we have had all of our library code in src/lib.rs partially out
of convenience and partially because the cost of spreading code across multiple files
was higher than the benefit. Here we are going to be spreading our code out into
multiple modules that together form our library. Each one has a clear purpose and
the separation makes it easier to scale the codebase.

Rust has a module system to organize code within a crate for readability and ease
of reuse as well as to control privacy of items. You can declare modules within a file
with the mod keyword followed by a name, followed by curly braces to contain the
code for the module:

mod a_module {

fn some_function() {}

fn hidden_function() {}

mod inner_module {

fn inner_function() {}

fn inner_hidden_function() {}

}

}

fn do_things() {

a_module::some_function();

a_module::inner_module::inner_function();

}

Even More Web 103

This code will not compile however. By default all items in Rust are private, so it is
not possible to refer to any of the items inside a_module from outside because the lack
of privacy specifier implies they are private. If we want the above code to compile,
we would need to expose the functions to the outside. There are some technicalities
to specifying privacy that allows you to make very fine grained judgements about
how public an item actual is. We will show this through some examples as necessary,
but otherwise it is not strictly necessary to know until you need it. The simplest fix to
the above modules is to use the pub keyword to expose the items we want to expose:

mod a_module {

pub fn some_function() {}

fn hidden_function() {}

pub mod inner_module {

pub fn inner_function() {}

fn inner_hidden_function() {}

}

}

We can also spread modules over files and directories which helps with file size and
makes working with large projects much easier. Instead of declaring a module inline,
you can simply refer to it via:

mod a_module;

The language then expects to find a file a_module.rs or a file mod.rs inside a directory
with the name of the module, i.e. a_module/mod.rs. Prior to the 2018 edition of Rust,
if you wanted to have submodules of a module then you were required to use the
directory plus mod.rs file method. In current Rust, you can have submodules within a
directory and still have a file with the module name at the same level as the directory.
In other words, our example above in modern Rust can have this form:

Even More Web 104

src/

├── a_module

│ └── inner_module.rs

├── a_module.rs

└── lib.rs

Or it can have this form (which was the only form prior to the 2018 edition):

src/

├── a_module

│ ├── inner_module.rs

│ └── mod.rs

└── lib.rs

There is a bit of flexibility even beyond this depending on the structure of the rest of
the library around this, but this is what you will find most often in practice. We
mention the mod.rs style as you will see it in other codebases that existed prior
to the 2018 edition and did not migrate completely to the new style. It is not the
recommended style any longer.

Returning back to our library, we specify the modules that make up our crate in
src/lib.rs:

src/lib.rs

10 mod errors;

11 mod models;

12 mod routes;

13 mod schema;

We will have to create files and/or directories for these in order for this to compile,
but we get these out of the way so they are part of the library. If you create a file
in src but do not include it in the root module which is represented by src/lib.rs

then that file will be completely ignored by Cargo and will not be part of your library.
Therefore in order to actuallymake thesemodules part of our librarywemust include
them in our root module.

Even More Web 105

Note also that these are all private. We currently are not exposing the existence of
these modules to outside users of our library. The decision to separate the code into
modules is thus purely for the internal code structure and has not external impact.

The four modules we define are:

• errors
– code for working with various failure scenarios

• models
– code to define the Rust representation of our data model as represented by
our database

• routes
– code for defining the handlers that will make up the functions that get
called by the framework in response to web requests

• schema
– this is autogenerated by Diesel as we have mentioned before

The src/schema.rs file that we discussed previously now makes sense as a module
that is part of our library which can be made available by including it here at the
root. The macros used in that file are one of the reasons we imported them at the top
of this file.

Application struct

We turn now to the Blog struct that we expose publicly and which we use from
our main. This follows a very similar structure to the other applications we have
developed. First we define a struct to hold some configuration data:

src/lib.rs

17 pub struct Blog {

18 port: u16,

19 }

For this again we only store the port that we are going to bind to. Then we create
our implementation to add some functionality to our struct:

Even More Web 106

src/lib.rs

21 impl Blog {

22 pub fn new(port: u16) -> Self {

23 Blog { port }

24 }

25

26 pub fn run(&self, database_url: String) -> std::io::Result<()> {

27 let manager = ConnectionManager::<SqliteConnection>::new(databa\

28 se_url);

29 let pool = r2d2::Pool::builder()

30 .build(manager)

31 .expect("Failed to create pool.");

32

33 println!("Starting http server: 127.0.0.1:{}", self.port);

34 HttpServer::new(move || {

35 App::new()

36 .data(pool.clone())

37 .wrap(middleware::Logger::default())

38 .configure(routes::users::configure)

39 })

40 .bind(("127.0.0.1", self.port))?

41 .run()

42 }

43 }

In our runmethod we take a String representation of a database URL as input which
we use to construct a pool of database connections. The ConnectionManager type is
generic over the underlying connection which we specify as SqliteConnection. The
SqliteConnection type is imported as part of the Diesel prelude because we turned
the Sqlite feature on. We then use the r2d2 factory method to construct a connection
pool and store it in the pool variable.

Similar to our previous chapter where we created an app with state, we are going to
follow the same pattern except here the type of the state is a connection pool. As the
closure that gets passed to HttpServer::new is a factory we have to clone our pool
so that each worker will have access to the same shared pool. It is an implementation

Even More Web 107

detail but the Pool type is just an Arc around a struct that manages connections so
calling clone on the pool is the same as calling clone on an Arc, exactly how we
managed state before.

The only other new piece here is the call to configure to set up the routes for users.
We are passing a function to configure routes::users::configure which tells us
that our routesmodule needs to publicly expose a submodule called users, and that
submodule needs to publicly expose a function called configure. In the previous
chapters we constructed all of our routes directly inside this factory function. Here
we are using the configure method on App which takes one argument which satisfies
the trait bound FnOnce(&mut ServiceConfig) which basically means a function that
takes one argument of type &mut ServiceConfig and which we are only guaranteed
that it is okay to call it once. When we get to the users module inside the routes

module we will see how the configuremethod does the work of defining routes and
handlers.

The choice to centralize this routing or to spread it out to separate modules is a matter
of preference. There are trade-offs to both approaches, so although we demonstrate
one style in this chapter, what you end up using will depend on your actual system.

We now take each of the modules that we previously declared in order to round out
our library.

Errors

The first module we are going to deal with is the errors module. We define our
own error type which unifies our notion of error states across different parts of the
application. This encapsulates the different types of errors that can happen so we
can explicitly handle those scenarios and can avoid generic 500 errors as much as
possible. We also use this type to translate errors from other libraries to our own
domain specific error type.

We create a new file at src/errors.rs which corresponds to the mod errors;

statement in our root module. Let’s first add some imports:

Even More Web 108

src/errors.rs

1 use actix_web::error::BlockingError;

2 use actix_web::web::HttpResponse;

3 use diesel::result::DatabaseErrorKind::UniqueViolation;

4 use diesel::result::Error::{DatabaseError, NotFound};

5 use std::fmt;

We are going to translate some actix_weberrors and some diesel errors to our own
custom type, so we bring in some types to reduce the amount of noise when refering
to those errors. We are also going to describe how our error type can be converted
into an HTTP response so we pull in parts of actix_web that are convenient for that
purpose. Finally, we bring in the std::fmtmodule becausewe are going to implement
a trait from within that module for our error type.

There are multiple ways of representing errors in Rust including a number of crates
that make the definition of an error type easier. However, we are going to take
the straightforward route of creating an enum for our error type. In this context
encountering an error means we enter one of a small number of states where we
want to return an error code and a message instead of continuing to process the
request. This is a natural use case for an enumerated type. We define the type as:

src/errors.rs

7 #[derive(Debug)]

8 pub enum AppError {

9 RecordAlreadyExists,

10 RecordNotFound,

11 DatabaseError(diesel::result::Error),

12 OperationCanceled,

13 }

These are the only error states that we going to explicitly handle. As you build up
your application and rely on more libraries that could fail you can add variants to
this type to capture those errors if you want to deal with them this way. It is also
possible to handle errors directly and not use this machinery which will allow us to
return early with a custom status code and message.

Even More Web 109

The first two variants relate to errors returned fromDiesel that we convert into easier
to work with variants. We also have a catch-all DatabaseError for other Diesel errors
that we don’t specifically handle. We use a tuple struct to capture the underlying
Diesel error for later use. Finally, OperationCanceled is related to a actix_web error
having to do with an async operation which we will explain later.

First we will implement the fmt::Display trait for our type:

src/errors.rs

15 impl fmt::Display for AppError {

16 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {

17 match self {

18 AppError::RecordAlreadyExists => write!(f, "This record vio\

19 lates a unique constraint"),

20 AppError::RecordNotFound => write!(f, "This record does not\

21 exist"),

22 AppError::DatabaseError(e) => write!(f, "Database error: {:\

23 ?}", e),

24 AppError::OperationCanceled => write!(f, "The running opera\

25 tion was canceled"),

26 }

27 }

28 }

We automatically implemented the Debug trait with the derive attribute on our struct
which allows us to format instances of our type with the debug string formatter: {:?}.
Implementing Display let’s us print our type with {}. We must implement this trait
because a different trait we want to implement requires Debug and Display to be
implemented.

The implementation is pretty straightforward and most implementations of Display
look like this. The macro write! is like println! except the first argument is a
“Writer” and it returns a Result in the case of an error. The println!macro can panic
in certain error scenarios rather than returning a Result. The &mut fmt::Formatter

argument implements a trait that makes it a “Writer” so typically you just use
write!(f, ...) and fill in the ... with whatever you want to represent your type
when it is formatted using {}.

Even More Web 110

From and Into

Rust usually does not implicit convert one type to another, but there is a mechanism
for telling Rust how to convert between types which you can opt in to. There are two
related traits: From and Into. You must explicitly implement one of these traits to be
able to take advantage of some automatic type conversions. The other trait you do
not implement can be derived as the two traits are, in a sense, inverses of each other.
In the standard library and most code you will encounter only From is implemented
and then Into is automatically satisfied for free.

One place that uses From is the ? operator for early returning the Err variant of a
Result. That is if the error that would be returned is type X and the expected return
type is Y then you can still use the ? operator if Y implements From<X>.

We are going to use this trait with our AppError type by implementing From<X> for a
couple different values of X so that the ? operator works without having to explicitly
convert errors. The first conversion we are going to implement is for database errors:

src/errors.rs

26 impl From<diesel::result::Error> for AppError {

27 fn from(e: diesel::result::Error) -> Self {

28 match e {

29 DatabaseError(UniqueViolation, _) => AppError::RecordAlread\

30 yExists,

31 NotFound => AppError::RecordNotFound,

32 _ => AppError::DatabaseError(e),

33 }

34 }

35 }

So From<diesel::result::Error> for AppError means that you will be given
an instance of diesel::result::Error and are expected to return an instance of
AppError. We match on the Diesel error to handle the two specific cases we care
about.

We see here the types that we imported fromDiesel, in particular, when a unique con-
straint is violated at the database level, Diesel will convert this into a DatabaseError(UniqueViolation,

Even More Web 111

_) where the _ represents more data that we don’t care about. We just care that
whatever query we executed resulted in this specific type of error. We convert that
to our RecordAlreadyExists variant as we will only get unique constraint violations
when we try to insert a record that already exists based on what we have defined
to be unique. Specifically, we have set a unique constraint on username so trying
to insert two users with the same username will result in this RecordAlreadyExists
error being created.

The second case is when we try to get a record from the database that does not exist.
Diesel will return a NotFound error which we just turn into our variant with basically
the same name.

Finally, the catch all case in the match statement means Diesel encountered an error
other than these two and the only thing we know how to do is call it a DatabaseError
and capture the underlying error if wemaybe want to do something with it later. This
is useful for debugging.

The encapsulation here means that we do not have to have any code destructing
Diesel errors anywhere else in our code. We can just convert any Diesel error into
our AppError and then only deal with that type in our code. This layer of abstraction
allows us to reduce the surface area of necessary changes if we decide to change how
we handle database errors across the entire application.

The next type we want to convert into our custom type is BlockingError<AppError>:

src/errors.rs

36 impl From<BlockingError<AppError>> for AppError {

37 fn from(e: BlockingError<AppError>) -> Self {

38 match e {

39 BlockingError::Error(inner) => inner,

40 BlockingError::Canceled => AppError::OperationCanceled,

41 }

42 }

43 }

BlockingError<T> is an actix web specific error that we will encounter when we
get to the implementation of our handlers. We use this From‘ to do what is clearly
a simple conversion lest we have to include code like this in every handler. Our

Even More Web 112

handlers will return futures but we must use blocking code to interact with the
database. Therefore our handlers will run blocking code which can either succeed
or can fail because the future was canceled or the underlying blocking code returned
an error.

Errors as responses

The main advantage of creating our own error type is that we define how to turn
an instance of AppError into an HTTP response and therefore automatically get nice
error responses by just returning an error from a handler. As we are writing a JSON
API, let’s create a struct to represent a JSON error response:

src/errors.rs

45 #[derive(Debug, Serialize)]

46 struct ErrorResponse {

47 err: String,

48 }

JSONAPIs should return JSON content or nothing as their error. SomeAPIs strangely
return HTML data when errors occur because their framework does this by default.
Don’t write an API like that. We instead will return an object with one key err and a
string value. You can make your own decision about how much or little information
to return as part of an erroneous request.

Actix web defines a trait ResponseError which allows you to specify how the type
inside a Err variant of a Result gets turned into a response. Let’s implement it for
AppError:

Even More Web 113

src/errors.rs

50 impl actix_web::ResponseError for AppError {

51 fn error_response(&self) -> HttpResponse {

52 let err = format!("{}", self);

53 let mut builder = match self {

54 AppError::RecordAlreadyExists => HttpResponse::BadRequest(),

55 AppError::RecordNotFound => HttpResponse::NotFound(),

56 _ => HttpResponse::InternalServerError(),

57 };

58 builder.json(ErrorResponse { err })

59 }

60

61 fn render_response(&self) -> HttpResponse {

62 self.error_response()

63 }

64 }

This trait is why we implemented Display for our error. First ResponseError has the
trait bound Debug + Displaywhich means that in order to implement ResponseError
for your type, your type must also implement Debug and Display.

The trait requires error_response to be implemented which we do by matching
on our error and setting useful response codes to the cases we care about and 500
otherwise, and then using the Display formatting to create an errormessage to return
as JSON.

The trait also has a method render_response which has a default implementation,
but the default overrides the content type and data which is not what we want. So we
instead just implement this method to return the same thing as our error_response
method which is what we want. When we get to our handler implementations we
will see where this is called.

Models

The next module we are going to implement will be our layer that contains the
interactions with the database. We will define the Rust representations of our data

Even More Web 114

model as well as functions for how to get those objects from the database. To get
started we pull in some imports:

src/models.rs

1 use crate::errors::AppError;

2 use crate::schema::{users};

3 use diesel::prelude::*;

As we are going to be working with the database we pull in the Diesel prelude and
we also bring in the users item from the autogenerated schema. We shall see how
this is used to refer to different parts of the users database table.

In order to make our lives easier we are going to define our own Result type which
will be an alias for Result in the standard library with the error type fixed as our
AppError type:

src/models.rs

5 type Result<T> = std::result::Result<T, AppError>;

This way, we can just return Result<T> and not have to write AppError everywhere
because throughout this module, all errors will be of the AppError type. It would be
noisy to have it written everywhere.

User struct

We need a Rust struct to represent a user in the database. We create the struct just
like any other:

Even More Web 115

src/models.rs

7 #[derive(Queryable, Identifiable, Serialize, Debug, PartialEq)]

8 pub struct User {

9 pub id: i32,

10 pub username: String,

11 }

Our users have ids which are i32 because that maps to the database integer type and
a username which is a String because the database column is a VARCHAR. We have
seen the Serialize, Debug, and PartialEq trait derives before so we will not belabor
those here, but Queryable and Identifiable are new.

Queryable is a trait that indicates this struct can be constructed from a database
query. From the Diesel docs:

Diesel represents the return type of a query as a tuple. The purpose of this
trait is to convert from a tuple of Rust values that have been deserialized
into your struct

So basically by deriving this trait we can automatically get a User struct from queries
of the users table.

Identifiable is a trait that indicates that this struct represents a single row in a
database table. It assumes a primary key named id but you can configure the derive
attribute if you want to change the name of the primary key. It is required for
associations which we will use later.

Create User

We have our model defined, let’s get into actually talking to the database to create a
user:

Even More Web 116

src/models.rs

13 pub fn create_user(conn: &SqliteConnection, username: &str) -> Result<U\

14 ser> {

15 conn.transaction(|| {

16 diesel::insert_into(users::table)

17 .values((users::username.eq(username),))

18 .execute(conn)?;

19

20 users::table

21 .order(users::id.desc())

22 .select((users::id, users::username))

23 .first(conn)

24 .map_err(Into::into)

25 })

26 }

Our function takes a SqliteConnection and a username string and returns either a
User or an error. This function does not have to worry about where to get a database
connection it simply assumes one and this let’s us then interact with the database.

This code is slightly more complex because we are using Sqlite instead of a backend
that supports a RETURNING clause. Sqlite does not support getting the id of a just
inserted row as part of the insert statement. Instead we have to do another query
to actually get the data back out to build a User struct. Because of this we run
both queries inside a transaction to ensure that the logic of fetching the most
recently inserted user actually returns the user that we just inserted. There are other
approaches we could take to achieve the same end.

The connection type supports a method transaction which takes a closure. The
closure must return a Result. If the Result is the error variant then the transaction
is rolled back and the error result is returned. If instead we have the Ok variant then
the transaction is committed and the successful result is returned.

Our first Diesel statement involves inserting a user with the supplied username
into the users table. The nice thing about Diesel is that the code for doing this is
readable and mostly self explanatory. The imported users item from the schema has
an item for each column on the table as well as an item for the table as a whole, i.e.

Even More Web 117

users::table. There is a lot of machinery going on in the background to ensure that
the types are correct based on what the database represents. Each database column
has a unique type so you catch at compile time if you tried to insert the wrong type
into a column rather than at runtime.

The execute method on the query builder returns a Result with the error being the
Diesel specific error type. We can use the ? operator here and return a Result with
our AppError error type because of our From implementation in our errors module.

The second statement inside the transaction is fetching a single user from the
database.We create a querywherewe order by descending id to get themost recently
inserted row. As this is inside a transaction this select will execute logically after the
insertion and therefore this will be the user we just inserted. We specify with the
select method what columns we want in a tuple, in this case id and username. The
first method tells Diesel to do a LIMIT 1 and expect a single result. This therefore
returns a Resultwith the successful variant being the resulting record or a not found
error. The return type of our function is what gives Diesel enough information to
convert the tuple that is returned into our User struct in addition to the fact that we
derived Queryable.

Finally we call map_err(Into::into) which is a bit of a magical incantation. As we
cannot use the ? operator here to return our Result we have to explicitly convert
the Diesel error type to our AppError to match the function signature. Rust does not
automatically do this type conversion, however we can still use the type signature
to help us. map_err is a method on Result which transforms the error variant with
the supplied function and returns the success variant as is. We can pass the function
Into::into to map_err and this uses the function signature to determine what to
transform the error into. Furthermore, we can use Into here because we implemented
From and Into gets implemented automatically.

Fetching a user

We can create users but this is not so fun unless we can also fetch a user from the
database. We have two ways to identify a user: by id and by username. Rather than
write two different functions for these use cases we are going to write one function
which takes an enum that encapsulates which key to use for looking up the user. To
this end, let’s define an enum representing this key:

Even More Web 118

src/models.rs

27 pub enum UserKey<'a> {

28 Username(&'a str),

29 ID(i32),

30 }

Our enum is either an ID which holds an i32 for looking up by the primary key or
a Username which holds a reference to a string. We have seen the 'static lifetime
before but this is our first instance of a generic lifetime for a type we are creating.

As a referesher, lifetimes of references in Rust are checked by the compiler to ensure
that the data referenced outlives the reference to it. In other words, the concept
of lifetimes guarantees that we will not try to access memory after it has been
deallocated while still being able to have access to data that we do not own. Lifetimes
live in the same space as generic types and can be thought of as a kind of type. Here
our type UserKey<'a> specifies that it has one generic lifetime parameter named 'a.
We need to specify this generic parameter so that we can give a definite lifetime to
the string reference inside our Username variant.

Any composite type with a reference inside must declare a lifetime on that reference
otherwise there is no way for the compiler to make any guarantees about the liveness
of the underlying data. It is possible to use the special lifetime 'static and not make
our enum generic but that would force us to only be able to use static strings.

A different approach would be to declare the Username variant as Username(String).
This would most likely be just fine in this instance even if it resulted in an extra heap
allocation (which depending on where we get the username from may or may not
be required). However, making that decision at each juncture can lead to death by a
thousand allocations. Instead, Rust gives you the tools to avoid the extra allocation
while maintaining memory safety by ensuring that our reference is alive for at least
as long as necessary.

Newcomers to Rust often use String and clone in many places that are unnecessary
with just a bit of extra work after having been scarred by the borrow checker early
on. Do not have a fear of heap allocations, but if you take a little extra time you
might be surprised how many you can avoid by working with the compiler.

Even More Web 119

Now that we have a notion of a key to lookup a user by, we can write our function
to actually get the user:

src/models.rs

32 pub fn find_user<'a>(conn: &SqliteConnection, key: UserKey<'a>) -> Resu\

33 lt<User> {

34 match key {

35 UserKey::Username(name) => users::table

36 .filter(users::username.eq(name))

37 .select((users::id, users::username))

38 .first::<User>(conn)

39 .map_err(AppError::from),

40 UserKey::ID(id) => users::table

41 .find(id)

42 .select((users::id, users::username))

43 .first::<User>(conn)

44 .map_err(Into::into),

45 }

46 }

We match on our key to decide which query to run. If we have a username then we
do a filter by username equal to the value passed in. If we have an id, then we can
use the special find function which attempts to find a single record based on the
primary key for that table. Both queries use first to execute the query which as we
said before either returns one instance of the type we are trying to return or returns
a not found error.

Routes

Finally we are ready to get to our functions for handling requests by building out
our third module, routes. This module is different than the rest in that it will have
submodules. We create a src/routes.rs file which will be the entry point for the
module, and then submodules will live inside a directory named routes.

Let’s get some preliminaries out of theway for the base routesmodule beforemoving
on to the users submodule. First, some imports:

Even More Web 120

src/routes.rs

1 use crate::errors::AppError;

2 use actix_web::HttpResponse;

Then we declare the users submodule:

src/routes.rs

4 pub(super) mod users;

This is similar to what we saw in the root module where we declared our other
modules, e.g. mod routes;, however we also have the funny looking pub(super).

You can declare an item as public with pub then it can be accessed externally from
any module that can access all of the item’s parent modules. If you want to restrict
the visibility of an item to a specific scope then you can use one of pub(in path),
pub(crate), pub(super), or pub(self), where path is a given module path. The
visibility you choose depends on if and how you want an item to be exposed above
the current module.

The module above routes is our root module at src/lib.rs. We want that module
to be able to refer to the users module. However we do not want say our models
module to be able to refer to the users module. So we restrict the visibility of the
users module to only the module one step up in the hierarchy.

There is quite a bit of power in the Rust module system and for a long time it caused
some confusion. The current system has been reworked to address some of that
confusion. When you write a library it is important to decide what you really want
to expose and be able to hide the rest as implementation details. Rust gives quite a
bit of flexibilty in this regard and it is one of the features that makes growing Rust
codebases more manageable.

pub(self) is equivalent to nothing at all, i.e. pub(self) mod foo is the same as mod
foo which is actually private. Why? The answer lies in macros that can generate
code with visibility specifiers. If a macro outputs code like pub($arg) where $arg

Even More Web 121

is an input argument, you might want to specify that the item should be private, so
passing self as the argument achieves that goal.

The last part of our base routes module is a generic function which we will use to
eliminate some repetitive code in our handlers:

src/routes.rs

6 fn convert<T, E>(res: Result<T, E>) -> Result<HttpResponse, AppError>

7 where

8 T: serde::Serialize,

9 AppError: From<E>,

10 {

11 res.map(|d| HttpResponse::Ok().json(d))

12 .map_err(Into::into)

13 }

This function takes some generic result and returns another result with fixed types
which will end up being nice to return from our handler functions. We turn the
success variant into a successful HTTP response with the data serialized as JSON.
The error variant is turned into our AppError type which due to the work we did
earlier can be returned from a handler and will result in a proper response with the
relevant status code and JSON error message.

Now we can’t just serialize any type into JSON nor can we convert any type to
our AppError. We put trait bounds on the generic parameters to specify that we can
only accept input arguments if the success variant is a type that can be serialized to
JSON, i.e. T: serde::Serialize, and we can get an AppError from the error variant,
i.e. AppError: From<E>. The syntax using the where after the function signature is
sometimes necessary for complex trait bounds and is always possible to use. The
other format of trait bound is directly in the specification of the names of the generic
parameters between the name of the function and the opening parenthesis.

Given those trait bounds the implementation is pretty simple. We take the result
and call map which operates only on the success variant and builds a response. The

Even More Web 122

json method on the response builder just requires that the argument passed can be
serialized with Serde which is true given our bound. We chain with this call the
invocation of map_errwhich operates only on the error variant. Here we rely on our
From implementation and that definition of Into::into and this works because of
the trait bound and the specified return type.

Routes for a user

Let’s create our user module at src/routes/users.rs to fill in the module specified
in our base routes module. First, as usual, some imports:

src/routes/users.rs

1 use crate::errors::AppError;

2 use crate::routes::convert;

3 use crate::{models, Pool};

4 use actix_web::{web, HttpResponse};

5 use futures::Future;

Note that our convert function in the routes module was not public but we are using
it here. Private items are visible to the module they are defined in as well as all
descendants.

Create a user

Our first handler is going to take a username as input and attempt to create a user.
As we have seen before, we create a struct to represent the input data:

src/routes/users.rs

13 #[derive(Debug, Serialize, Deserialize)]

14 struct UserInput {

15 username: String,

16 }

As we derive Deserialize we will be able to accept this type as a JSON post body.
We are now in place to write our handler:

Even More Web 123

src/routes/users.rs

18 fn create_user(

19 item: web::Json<UserInput>,

20 pool: web::Data<Pool>,

21) -> impl Future<Item = HttpResponse, Error = AppError> {

22 web::block(move || {

23 let conn = &pool.get().unwrap();

24 let username = item.into_inner().username;

25 models::create_user(conn, username.as_str())

26 })

27 .then(convert)

28 }

We need the input data as the JSON body of the request and we need a handle to
our database pool which we put inside our application state back in our application
factory. The return type is new so let’s unpack it.

Future<Item, Error> is a future in the traditional sense, an object that represents
a computation which can be queried for a result or an error. This is a standard
approach to writing asynchronous code where you return immediately some value
that represents a computation rather than doing the computation before returning.
Eventually the future resolves to a result or an error when the computation completes.
Actix web is designed to work with both synchronous and asynchronous handlers,
but so far we have only used the synchronous ones.

The syntax impl Futuremeans that we are going to return some type that implements
the Future trait, but we are not telling you exactly what that type is. This gives us
some flexibilty and is necessary for some types which are hard (or impossible) to
write.

As Future is a generic trait, we must fix the Item and Error types that are otherwise
generic so that the return type is fully specified. The Item is the type that the future
resolves to in a successful case. The Error is self explanatory. We want to return an
HttpResponse in the successful case and our AppError in the other case.

Given all of the pieces we have built to get here, the handler itself is pretty
straightforward. We get a connection to the database out of the pool. We get the

Even More Web 124

username from the input data. Given those two values we can use our create_user
function in the models module to do the work. But what is web::block?

Diesel is synchronous, it does not directly support futures for interacting with the
database. Therefore we use web::block which executes a blocking function on a
thread pool and returns a future that resolves to the result of the function execution.

Finally, we can use our convert function to turn the result of the call to models::create_-
user into the response we desire. Note that here we see why we implemented
From<BlockingError<AppError>> for our AppError type. The map_err function inside
convert relies on that From implementation.

Find a user

We have two ways to find a user, by username or by id. Let’s create a handler called
find_user which implements the lookup by username:

src/routes/users.rs

30 fn find_user(

31 name: web::Path<String>,

32 pool: web::Data<Pool>,

33) -> impl Future<Item = HttpResponse, Error = AppError> {

34 web::block(move || {

35 let conn = &pool.get().unwrap();

36 let name = name.into_inner();

37 let key = models::UserKey::Username(name.as_str());

38 models::find_user(conn, key)

39 })

40 .then(convert)

41 }

The structure is pretty similar to our previous handler. This will be a GET request
so we expect the username to be a string in the path. We have to create a
UserKey::Username and then call our models::find_user function to do the work.
The rest of the handler structure is the same as before.

Let’s create get_user which does the lookup by id:

Even More Web 125

src/routes/users.rs

43 fn get_user(

44 user_id: web::Path<i32>,

45 pool: web::Data<Pool>,

46) -> impl Future<Item = HttpResponse, Error = AppError> {

47 web::block(move || {

48 let conn = &pool.get().unwrap();

49 let id = user_id.into_inner();

50 let key = models::UserKey::ID(id);

51 models::find_user(conn, key)

52 })

53 .then(convert)

54 }

This is basically the same thing except we expect an i32 in the path instead of a string
and we create the other variant of the UserKey enum.

Wiring the routes up

Recall the configuration of our app inside the application factory in src/lib.rs:

src/lib.rs

34 App::new()

35 .data(pool.clone())

36 .wrap(middleware::Logger::default())

37 .configure(routes::users::configure)

We call configure on the application builder with routes::users::configure. Let’s
define that function to get our user routes all hooked up:

Even More Web 126

src/routes/users.rs

7 pub fn configure(cfg: &mut web::ServiceConfig) {

8 cfg.service(web::resource("/users").route(web::post().to_async(crea\

9 te_user)))

10 .service(web::resource("/users/find/{name}").route(web::get().t\

11 o_async(find_user)))

12 .service(web::resource("/users/{id}").route(web::get().to_async\

13 (get_user)));

14 }

The signature of this function is specified by Actix web. The only parameter is a
mutable reference to a service configuration object. We saw in our earlier apps that
we can create services that map URLs to routes which have methods and handlers.
The object passed to us here allows for that exact same style of configuration.

We define three routes:

• POST /users which calls create_user
• GET /users/find/{name} which calls find_user
• GET /users/{id} which calls get_user

We use to_async to specify the handlers here because our handlers return futures
rather than to that we used before with synchronous handlers.

Examples

We can test things out by running cargo run in one terminal and then using curl to
try the endpoints that we just created.

Create a new user

The most basic functionality is posting JSON data to create a new user:

Even More Web 127

curl -s -H 'Content-Type: application/json' -X POST http://localhost:89\

98/users -d '{"username":"Frank"}'

{

"id": 1,

"username": "Frank"

}

Create another new user

We can create yet another user and see that the auto incrementing ids in our database
do what we expect:

curl -s -H 'Content-Type: application/json' -X POST http://localhost:89\

98/users -d '{"username":"Bob"}'

{

"id": 2,

"username": "Bob"

}

Create a new user already exists

Let’s see all of our error handling working by trying to create a user with a duplicate
username:

curl -s -H 'Content-Type: application/json' -X POST http://localhost:89\

98/users -d '{"username":"Bob"}'

{

"err": "This record violates a unique constraint"

}

Lookup user by name

The next handler we created was to lookup a user by their username:

Even More Web 128

curl -s -H 'Content-Type: application/json' http://localhost:8998/users\

/find/Frank

{

"id": 1,

"username": "Frank"

}

Lookup user by primary key

We should also be able to get a user by primary key:

curl -s -H 'Content-Type: application/json' http://localhost:8998/users\

/1

{

"id": 1,

"username": "Frank"

}

Lookup user by name that doesn’t exist

Again we can see our error handling working by trying to find a user that we did
not create:

curl -s -H 'Content-Type: application/json' http://localhost:8998/users\

/find/Steve

{

"err": "This record does not exist"

}

Note that you can add the -v flag to Curl to see that status code for this response is
404 as a consequence of our implementation of ResponseError for AppError.

Even More Web 129

Extending our application

We have built quite a lot of parts that allows us to post some JSON data to create a
user record and fetch users by username or primary key. With those pieces in place
we can now easily add posts and comments. Posts are going to be our next step.

Extending the data model

The first step in adding a new data model is to modify our schema to support the
new model. Let’s get Diesel to generate a migration for us:

diesel migration generate create_posts

We can then add the necessary SQL for creating a posts table to up.sql:

migrations/2019-04-30-030252_create_posts/up.sql

1 CREATE TABLE posts (

2 id INTEGER PRIMARY KEY NOT NULL,

3 user_id INTEGER NOT NULL REFERENCES users (id),

4 title VARCHAR NOT NULL,

5 body TEXT NOT NULL,

6 published BOOLEAN NOT NULL DEFAULT 0

7)

Posts have a title and a body and a boolean specifying whether they are published
or not. They also have a reference to a user which represents the author of the post.
This syntax is particular to Sqlite so if you are using a different database this will
have to change.

We also need to include the reverse of this migration in the corresponding down.sql:

Even More Web 130

migrations/2019-04-30-030252_create_posts/down.sql

1 DROP TABLE posts

Let’s have Diesel run the migrations with diesel migration run. This command
will modify the schema of the database as well as update our schema module to:

src/schema.rs

1 table! {

2 posts (id) {

3 id -> Integer,

4 user_id -> Integer,

5 title -> Text,

6 body -> Text,

7 published -> Bool,

8 }

9 }

10

11 table! {

12 users (id) {

13 id -> Integer,

14 username -> Text,

15 }

16 }

17

18 joinable!(posts -> users (user_id));

19

20 allow_tables_to_appear_in_same_query!(

21 posts,

22 users,

23);

The users table stays the same and the posts table appears as we would expect,
however there are some new bits. First we see the joinable! macro which says sets
up the necessary Rust types to allow posts and users to be joined. This is inferred

Even More Web 131

from the database schema because of the foreign key specification in our migration,
i.e. REFERENCES users (id).

There are debates about foreign key constraints in the database for certain data
models and access patterns, but most of the time you want to let the database do
what it is good at and enforce those invariants. Moreover, you get the automatic
relationship mapping in Diesel if you specify the relationship at the database level.

The other new piece is the macro allow_tables_to_appear_in_same_query!. This is
because we have more than one table now. It generates code that allows types from
different tables to be mixed in the same query which is necessary for doing joins and
sub-selects. It is not really necessary to understand the details of thesemacros towork
with Diesel as it does the right thing most of the time. In exceptional circumstances
you can consult the Diesel docs to find out more about the schema definitions.

Post model

We are going to expand on our models module. An alternative approach could be
to split the models module into submodules for each model type similar to how we
split routes into submodules. Where to draw these organizational lines is a matter
of preference. For the models we decide on the single module approach because it
makes working with the relationships between models a little bit simpler.

Our first step is to import posts from the generated schema:

src/models.rs

3 use crate::schema::posts;

Then we can introduce a struct that represents one post row in the database:

Even More Web 132

src/models.rs

15 #[derive(Queryable, Associations, Identifiable, Serialize, Debug)]

16 #[belongs_to(User)]

17 pub struct Post {

18 pub id: i32,

19 pub user_id: i32,

20 pub title: String,

21 pub body: String,

22 pub published: bool,

23 }

Our database schema is directly translated to Rust types where each field is a
column of the appropriate type. Note that the not null constraints we specified in
our migration on each column is why we use types directly rather than wrapping
them in Option. If we allowed nulls for some column then the type would have to
be optional in Rust. We have also seen all of the traits that we are deriving before
except for Associations, and the belongs_to attribute is new as well.

The concept of an association in Diesel is always from child to parent, i.e. there is
no “has many” like in other ORMs. Declaring the association between two records
requires the belongs_to attribute on the child and specifies the name of the struct
that represents the parent. The belongs_to attribute accepts a foreign_key argument
if the relevant foreign key is different from table_name_id. Both the parent and child
must implement the Identifiable trait which we satisfy by deriving it. Finally, in
addition to the belongs_to annotation, the struct also needs to derive Associations.
Deriving this trait uses the information in belongs_to to generate the relevant code
to make joins possible.

Creating a post

Let’s now write the functions to work with posts in the database starting with
creating one:

Even More Web 133

src/models.rs
49 pub fn create_post(conn: &SqliteConnection, user: &User, title: &str, b\

50 ody: &str) -> Result<Post> {

51 conn.transaction(|| {

52 diesel::insert_into(posts::table)

53 .values((

54 posts::user_id.eq(user.id),

55 posts::title.eq(title),

56 posts::body.eq(body),

57))

58 .execute(conn)?;

59

60 posts::table

61 .order(posts::id.desc())

62 .select(posts::all_columns)

63 .first(conn)

64 .map_err(Into::into)

65 })

66 }

We need a connection to the database and all of the relevant fields. We require a User
object here which is a matter of choice. Instead we could have accepted a user_id

directly. By default we set the post to be unpublished based on our schema, so we
don’t take a published parameter. The code for inserting into the posts table and then
fetching the post is very similar to that for a user. Again the use of a transaction is a
limitation of Sqlite not supporting a way to return data from an insert statement.

One difference here is the use of select(posts::all_columns)which is a shorthand
that Diesel provides so that we do not have to write out a tuple with each column
explicitly listed. Depending on the struct you are serializing to you may or may not
be able to use this. If you always want a subset of columns it can be useful to write
your own helper to represent a tuple of that subset.

Publish a post

As we stated our create method uses the database default for the published column
and therefore in order to set published to true we need to update the database row

Even More Web 134

for a particular post. Let’s create a function that takes the id of a post and sets the
value of published to true:

src/models.rs

67 pub fn publish_post(conn: &SqliteConnection, post_id: i32) -> Result<Po\

68 st> {

69 conn.transaction(|| {

70 diesel::update(posts::table.filter(posts::id.eq(post_id)))

71 .set(posts::published.eq(true))

72 .execute(conn)?;

73

74 posts::table

75 .find(post_id)

76 .select(posts::all_columns)

77 .first(conn)

78 .map_err(Into::into)

79 })

80 }

This is our first instance of updating an existing row in the database. Issuing an
update to the database uses the aptly named update function from Diesel. The
argument to update can be a table, a filtered table (which is what we use here), or a
reference to a struct that implements the Identifiable trait. If you pass just a table
then the update applies to all rows of that table which is typically not what you want.

In this case we wish to only update the row with id equal to the post_id passed in
as an argument. We are only updating a single column so we pass one expression to
the set method, but if you want to update multiple columns you can pass a tuple to
set instead.

Diesel also has a trait called AsChangeset which you can derive which allows you
to take a value like post and call diesel::update(...).set(&post) to set all of the
fields (except the primary key) on the struct based on the current state of that struct.

Even More Web 135

See the Diesel update guide) for more information.
https://diesel.rs/guides/all-about-updates/

Retrieve posts

We are going to implement two different ways of retrieving posts. One to get all
published posts and the other to get only those posts written by a particular user.
First, let’s get all posts:

src/models.rs

124 pub fn all_posts(conn: &SqliteConnection) -> Result<Vec<(Post, User)>> {

125 posts::table

126 .order(posts::id.desc())

127 .filter(posts::published.eq(true))

128 .inner_join(users::table)

129 .select((posts::all_columns, (users::id, users::username)))

130 .load::<(Post, User)>(conn)

131 .map_err(Into::into)

132 }

The return type of this function is a list of tuples where the first element is a post
and the second element is the author. Diesel is built around queries that have this
flat result structure. You might be used to other ORMs where a post object would
have an author field which contains an embedded user object. In most uses of Diesel
you will find tuples being used to represent related models rather than hierarchical
structs.

We order the posts based on their id as this will make them newest first. Clearly a
more robust model would include timestamps that we could sort by, but the idea is
similar. We also select only those posts which have been published.

For each post we want to fetch all of the data about the post as well as data about
the author. Hence we are finally getting to see a query involving multiple tables. To
accomplish this we need to join with the users table. We can use inner_join with

https://diesel.rs/guides/all-about-updates/
https://diesel.rs/guides/all-about-updates/

Even More Web 136

just the name of the table and Diesel will figure out how to perform the join based
on the association attributes we put on the Post model. The argument to select is a
tuple with two elements both of which are tuples representing the columns we want
to fetch. We then tell load the type to coerce these columns into and Diesel takes
care of the rest.

The second way we are going to retrieve posts is only those authored by a particular
user:

src/models.rs

134 pub fn user_posts(

135 conn: &SqliteConnection,

136 user_id: i32,

137) -> Result<Vec<Post>> {

138 posts::table

139 .filter(posts::user_id.eq(user_id))

140 .order(posts::id.desc())

141 .select(posts::all_columns)

142 .load::<Post>(conn)

143 .map_err(Into::into)

144 }

We have a choice here whether to take a User struct or just a user_id as input. If
we chose the User struct route, this would require doing a database fetch somewhere
else to reify the struct just to pull the id off inside this function. However that could
be a design you want to adopt depending on how you want to handle the case of a
user_id that does not exist. We choose the straight user_idmethod here which will
just result in an empty set of posts if the user does not exist.

As the author is the same for all of these posts we only return a vector of posts rather
than the tuple of our previous function. Other than that this function is much like
our other fetching functions.

Adding routes for posts

With the data model in place and the necessary functions written for interacting with
the database, we now can expose this functionality as part of our API by building the

Even More Web 137

necessary routes. First, we declare and export the soon to be written posts module
within our routes module:

src/routes.rs

5 pub(super) mod posts;

Then we create the routes/posts.rs file to contain the code for our post routes. We
start off with the same imports as our routes::users module:

src/routes/posts.rs

1 use crate::errors::AppError;

2 use crate::routes::convert;

3 use crate::{models, Pool};

4 use actix_web::{web, HttpResponse};

5 use diesel::prelude::*;

6 use futures::Future;

Creating a post

Our first task will be to create a post. As we have done before we create a struct to
represent the JSON input data:

src/routes/posts.rs

18 #[derive(Debug, Serialize, Deserialize)]

19 struct PostInput {

20 title: String,

21 body: String,

22 }

We only need to get the title and body of the Post as the rest of the information will
be inferred from the URL or will take on a default value. Let’s next write the handler
function for adding a post:

Even More Web 138

src/routes/posts.rs

24 fn add_post(

25 user_id: web::Path<i32>,

26 post: web::Json<PostInput>,

27 pool: web::Data<Pool>,

28) -> impl Future<Item = HttpResponse, Error = AppError> {

29 web::block(move || {

30 let conn: &SqliteConnection = &pool.get().unwrap();

31 let key = models::UserKey::ID(user_id.into_inner());

32 models::find_user(conn, key).and_then(|user| {

33 let post = post.into_inner();

34 let title = post.title;

35 let body = post.body;

36 models::create_post(conn, &user, title.as_str(), body.as_st\

37 r())

38 })

39 })

40 .then(convert)

41 }

We will structure the URL so that the relevant user_id for the author will be part
of the path. We take that path as input as well as the post as JSON and the database
pool. This is much like our previous handlers so we will focus only on the unique
bits here. We wrote our create_post function to take a user struct as input rather
than just a plain id, therefore we need to convert the id we take as input into a User
before we can use it. We do that so the error that results from a missing user happens
first before we even try to create a post.

We use the and_thenmethod on Result to continue on to creating a post only in the
case where we actually found a user. This way we handle all of the different errors
without having a mess of conditionals. We again build on all of the model code we
wrote earlier so that the process of creating the post is mostly just plumbing the
different parts together. In the end we again use our convert function to map the
result into our expected form.

Even More Web 139

Publishing a post

The process of publishing a post in our API is quite simple, we just need a post_id

in the path and can then rely on the model code we wrote earlier:

src/routes/posts.rs

42 fn publish_post(

43 post_id: web::Path<i32>,

44 pool: web::Data<Pool>,

45) -> impl Future<Item = HttpResponse, Error = AppError> {

46 web::block(move || {

47 let conn: &SqliteConnection = &pool.get().unwrap();

48 models::publish_post(conn, post_id.into_inner())

49 })

50 .then(convert)

51 }

Fetching posts

We can fetch posts either given a user_id or just fetch them all. In the first case we
expect to find the id in the path:

src/routes/posts.rs

53 fn user_posts(

54 user_id: web::Path<i32>,

55 pool: web::Data<Pool>,

56) -> impl Future<Item = HttpResponse, Error = AppError> {

57 web::block(move || {

58 let conn: &SqliteConnection = &pool.get().unwrap();

59 models::user_posts(conn, user_id.into_inner())

60 })

61 .then(convert)

62 }

In the second case, we do not need any extra input to find all posts:

Even More Web 140

src/routes/posts.rs

64 fn all_posts(pool: web::Data<Pool>) -> impl Future<Item = HttpResponse,\

65 Error = AppError> {

66 web::block(move || {

67 let conn: &SqliteConnection = &pool.get().unwrap();

68 models::all_posts(conn)

69 })

70 .then(convert)

71 }

Wiring up our routes

As we did for users, we are going to export a configure function which modifies an
input configuration to add the relevant routes for posts:

src/routes/posts.rs

8 pub fn configure(cfg: &mut web::ServiceConfig) {

9 cfg.service(

10 web::resource("/users/{id}/posts")

11 .route(web::post().to_async(add_post))

12 .route(web::get().to_async(user_posts)),

13)

14 .service(web::resource("/posts").route(web::get().to_async(all_post\

15 s)))

16 .service(web::resource("/posts/{id}/publish").route(web::post().to_\

17 async(publish_post)));

18 }

Weadd the four routes for the handlers we just wrote. Note that the path /users/{id}/posts
accepts both a POST and a GET request which route to our add_post and user_posts

handlers, respectively. Otherwise this is analogous to our configuration of the users
routes.

Finally, we add a call to configure inside our application factory to actually add
these routes to our app:

Even More Web 141

src/lib.rs

38 .configure(routes::posts::configure)

Extending further: comments

The last piece of our puzzle is going to be adding comments. A comment will
reference a user which represents the author of the comment and a post which is
what the comment is commenting on. Adding this model is quite similar to adding
posts so although we are going to show all of the necessary code changes, we will
only explicate the elements which are novel

Modifying the model

Let’s generate our migration:

diesel migration generate create_comments

In our up.sql we create a table for comments, the difference here being that
comments will have foreign keys to both users and posts:

migrations/2019-04-30-031136_create_comments/up.sql

1 CREATE TABLE comments (

2 id INTEGER PRIMARY KEY NOT NULL,

3 user_id INTEGER NOT NULL REFERENCES users (id),

4 post_id INTEGER NOT NULL REFERENCES posts (id),

5 body TEXT NOT NULL

6)

The down.sql just drops the table as we have seen before:

Even More Web 142

migrations/2019-04-30-031136_create_comments/down.sql

1 DROP TABLE comments

Generated schema

After running these migrations, we get our final schema:

src/schema.rs

1 table! {

2 comments (id) {

3 id -> Integer,

4 user_id -> Integer,

5 post_id -> Integer,

6 body -> Text,

7 }

8 }

9

10 table! {

11 posts (id) {

12 id -> Integer,

13 user_id -> Integer,

14 title -> Text,

15 body -> Text,

16 published -> Bool,

17 }

18 }

19

20 table! {

21 users (id) {

22 id -> Integer,

23 username -> Text,

24 }

25 }

26

Even More Web 143

27 joinable!(comments -> posts (post_id));

28 joinable!(comments -> users (user_id));

29 joinable!(posts -> users (user_id));

30

31 allow_tables_to_appear_in_same_query!(comments, posts, users,);

The changes here from the previous schema are what we should expect by now. We
have a table for comments and the relevant joinable! calls based on the foreign
keys.

Comment model

Like for our other models, we add the import of the Diesel generated comments item
from the schema:

src/models.rs

2 use crate::schema::comments;

Let’s then create a struct to represent one row in the comments table:

src/models.rs

25 #[derive(Queryable, Identifiable, Associations, Serialize, Debug)]

26 #[belongs_to(User)]

27 #[belongs_to(Post)]

28 pub struct Comment {

29 pub id: i32,

30 pub user_id: i32,

31 pub post_id: i32,

32 pub body: String,

33 }

This is quite similar to our Post struct except we have an extra belongs_to attribute
for the User association.

Even More Web 144

Creating a comment

We choose to take the user_id and post_id directly for convenience here as we create
a function for creating a comment:

src/models.rs

81 pub fn create_comment(

82 conn: &SqliteConnection,

83 user_id: i32,

84 post_id: i32,

85 body: &str,

86) -> Result<Comment> {

87 conn.transaction(|| {

88 diesel::insert_into(comments::table)

89 .values((

90 comments::user_id.eq(user_id),

91 comments::post_id.eq(post_id),

92 comments::body.eq(body),

93))

94 .execute(conn)?;

95

96 comments::table

97 .order(comments::id.desc())

98 .select(comments::all_columns)

99 .first(conn)

100 .map_err(Into::into)

101 })

102 }

The function here follows the same pattern as we have seen before for creating other
models with again the transaction to support returning the newly created Comment

struct due to the constraints of Sqlite.

Getting comments on a post

Let’s write a function that takes a post_id and fetches all the comments on that post:

Even More Web 145

src/models.rs

161 pub fn post_comments(conn: &SqliteConnection, post_id: i32) -> Result<V\

162 ec<(Comment, User)>> {

163 comments::table

164 .filter(comments::post_id.eq(post_id))

165 .inner_join(users::table)

166 .select((comments::all_columns, (users::id, users::username)))

167 .load::<(Comment, User)>(conn)

168 .map_err(Into::into)

169 }

As the post is known we do not need to return the post with the comment, but
we do want to return the user who made the comment. This looks quite similar to
our function for fetching all posts where we join with the users table and select the
relevant data.

This is a point of API design with a REST-like system where you can decide how
much or how little to include in your responses. This is a much larger topic than
we can cover, but note that although we are making one choice, each application
will need to consider their own trade-offs.

Getting all comments by a user

We are going to fetch all comments made by a particular user, but just fetching the
comments alone would be lacking some important information, notably information
about the post the comment is on. So wewant to fetch the post for each comment, but
we don’t want to fetch all of the post data because that would be too much. Instead
we are going to make a new struct to represent a subset of the post data that we want
to fetch alongside each comment. Let’s start with the struct for our post:

Even More Web 146

src/models.rs

170 #[derive(Queryable, Serialize, Debug)]

171 pub struct PostWithComment {

172 pub id: i32,

173 pub title: String,

174 pub published: bool,

175 }

We have just enough data to identify the post and give some context but we don’t
fetch the entire body.We note that this derives Queryable but not Identifiable. This
struct can be constructed from a query but it does not represent an entire row in a
table.

Now, let’s write our function to get the comments for a particular user:

src/models.rs

177 pub fn user_comments(

178 conn: &SqliteConnection,

179 user_id: i32,

180) -> Result<Vec<(Comment, PostWithComment)>> {

181 comments::table

182 .filter(comments::user_id.eq(user_id))

183 .inner_join(posts::table)

184 .select((

185 comments::all_columns,

186 (posts::id, posts::title, posts::published),

187))

188 .load::<(Comment, PostWithComment)>(conn)

189 .map_err(Into::into)

190 }

We filter based on the passed in user_id and then join with the posts data to get the
extra information about the posts. We use the select method to narrow down which
columns from the posts table we need to construct our PostWithComment struct and
then load a tuple which results in getting the return type wewant which is a vector of

Even More Web 147

tuples where each element is a comment and some data about that post the comment
is on.

This method is similar to all comments for a particular post except it is the other
association. For that method as the user is a small object we just fetch entire user
structs, but one would probably want to restrict that output as well as the user model
grows.

Including comments in our post fetching functions

Now that we have comments as a model, we are going to go back and edit our two
methods for fetching posts and incorporate comments into the results.

We start with the method for fetching all posts. The change in implementation of
this function is driven by the change in the return type inside the Result from:

Vec<(Post, User)>

to:

Vec<((Post, User), Vec<(Comment, User)>)>

That is, instead of fetching a tuple of post and author, we want to get the post, author,
and a vector of comments where we include the author of the comment alongside
the comment itself. Looking at the type of each element of the vector by itself can
help clarify what is going on:

((Post, User), Comments)

where

type Comments = Vec<(Comment, User)>;

Once you have a good sense for what we are trying to obtain, the code for
accomplishing this will make more sense. Let’s jump into it:

Even More Web 148

src/models.rs

124 pub fn all_posts(conn: &SqliteConnection) -> Result<Vec<((Post, User), \

125 Vec<(Comment, User)>)>> {

126 let query = posts::table

127 .order(posts::id.desc())

128 .filter(posts::published.eq(true))

129 .inner_join(users::table)

130 .select((posts::all_columns, (users::id, users::username)));

131 let posts_with_user = query.load::<(Post, User)>(conn)?;

132 let (posts, post_users): (Vec<_>, Vec<_>) = posts_with_user.into_it\

133 er().unzip();

134

135 let comments = Comment::belonging_to(&posts)

136 .inner_join(users::table)

137 .select((comments::all_columns, (users::id, users::username)))

138 .load::<(Comment, User)>(conn)?

139 .grouped_by(&posts);

140

141 Ok(posts.into_iter().zip(post_users).zip(comments).collect())

142 }

We first perform the same query as before which gets all posts and their correspond-
ing authors and set this as posts_with_user. We then use the unzip method on
std::iter::Iterator which turns an iterator of pairs into a pair of iterators. In this
case we turn Vec<(Post, User)> into (Vec<Post>, Vec<User>). We can then fetch
all of the comments that belong to those posts by passing a reference to that vector
to belonging_to which we get from deriving Associations on Comment.

To associate the comments into chunks indexed by the posts we use the grouped_by
method provided by Diesel. Note this does not generate a GROUP BY statement in SQL
rather it is just operating on the data structures in memory of already loaded data. In
the end this transforms a Vec<(Comment, User)> into Vec<Vec<(Comment, User)>>.

Finally, we can use the zipmethod on iterator to take all of these vectors and combine
them into the output format we were looking for. posts.into_iter().zip(post_-
users) just turns (Vec<Post>, Vec<User>) back into Vec<(Post, User)>. The final

Even More Web 149

zip(comments) takes Vec<(Post, User)> and Vec<Vec<(Comment, User)>> and puts
them together into a single vector of our desired return type.

With this in place, modifying the posts for a particular user to include comments is
a straightforward exercise in the same vein:

src/models.rs

142 pub fn user_posts(

143 conn: &SqliteConnection,

144 user_id: i32,

145) -> Result<Vec<(Post, Vec<(Comment, User)>)>> {

146 let posts = posts::table

147 .filter(posts::user_id.eq(user_id))

148 .order(posts::id.desc())

149 .select(posts::all_columns)

150 .load::<Post>(conn)?;

151

152 let comments = Comment::belonging_to(&posts)

153 .inner_join(users::table)

154 .select((comments::all_columns, (users::id, users::username)))

155 .load::<(Comment, User)>(conn)?

156 .grouped_by(&posts);

157

158 Ok(posts.into_iter().zip(comments).collect())

159 }

Adding routes for comments

We have our model in place so now we turn to the handlers for our routes. First we
declare and export our comments route module:

Even More Web 150

src/routes.rs

4 pub(super) mod comments;

We bring in the same imports that we have in our other routes modules:

src/routes/comments.rs

1 use crate::errors::AppError;

2 use crate::routes::convert;

3 use crate::{models, Pool};

4 use actix_web::{web, HttpResponse};

5 use diesel::prelude::*;

6 use futures::Future;

Creating a comment

As in our other cases, we need a struct to represent the JSON input for a comment:

src/routes/comments.rs

17 #[derive(Debug, Serialize, Deserialize)]

18 struct CommentInput {

19 user_id: i32,

20 body: String,

21 }

With that in place, we can create a handler for adding a comment:

Even More Web 151

src/routes/comments.rs

23 fn add_comment(

24 post_id: web::Path<i32>,

25 comment: web::Json<CommentInput>,

26 pool: web::Data<Pool>,

27) -> impl Future<Item = HttpResponse, Error = AppError> {

28 web::block(move || {

29 let conn: &SqliteConnection = &pool.get().unwrap();

30 let data = comment.into_inner();

31 let user_id = data.user_id;

32 let body = data.body;

33 models::create_comment(conn, user_id, post_id.into_inner(), bod\

34 y.as_str())

35 })

36 .then(convert)

37 }

We take just the id of the post as input in the path and as our model function for
creating a comment just takes the post id as input we can call our function directly.

Again this is a design decision and we went this route here to show the opposite
approach as we did for creating a post. In that function we fetched the user before
creating the post, here we just try to create the comment given whatever post id
we are given. If the database has foreign key constraints then passing a bad post id
will result in an error at the database level. If the database does not support those
constraints or you do not specify them then this would be a source of bugs if you did
not otherwise validate the input. The design is up to you.

Getting all comments on a post

We can build on our previous functions to create a simple handler for getting all
comments for a particular post:

Even More Web 152

src/routes/comments.rs

38 fn post_comments(

39 post_id: web::Path<i32>,

40 pool: web::Data<Pool>,

41) -> impl Future<Item = HttpResponse, Error = AppError> {

42 web::block(move || {

43 let conn: &SqliteConnection = &pool.get().unwrap();

44 models::post_comments(conn, post_id.into_inner())

45 })

46 .then(convert)

47 }

Getting all comments by a user

Similarly, given a user we can fetch all of their comments:

src/routes/comments.rs

49 fn user_comments(

50 user_id: web::Path<i32>,

51 pool: web::Data<Pool>,

52) -> impl Future<Item = HttpResponse, Error = AppError> {

53 web::block(move || {

54 let conn: &SqliteConnection = &pool.get().unwrap();

55 models::user_comments(conn, user_id.into_inner())

56 })

57 .then(convert)

58 }

Wiring the routes up

Finally, as we did for users and posts, we expose a configure function to connect our
handlers to routes:

Even More Web 153

src/routes/comments.rs

8 pub fn configure(cfg: &mut web::ServiceConfig) {

9 cfg.service(web::resource("/users/{id}/comments").route(web::get().\

10 to_async(user_comments)))

11 .service(

12 web::resource("/posts/{id}/comments")

13 .route(web::post().to_async(add_comment))

14 .route(web::get().to_async(post_comments)),

15);

16 }

Moreover, we add the call to configure for comments to our application factory:

src/lib.rs

39 .configure(routes::comments::configure)

Examples
Create a post

curl -s -H 'Content-Type: application/json' -X POST http://localhost:89\

98/users/1/posts -d '{"title":"Frank says hello","body":"Hello friends"\

}'

{

"id": 1,

"user_id": 1,

"title": "Frank says hello",

"body": "Hello friends",

"published": false

}

Create a post

curl -s -H 'Content-Type: application/json' -X POST http://localhost:89\

98/users/2/posts -d '{"title":"Bob is here too","body":"Hello friends, \

also"}'

{

"id": 2,

"user_id": 2,

"title": "Bob is here too",

"body": "Hello friends, also",

"published": false

}

Examples 155

Publish a post

curl -s -H 'Content-Type: application/json' -X POST http://localhost:89\

98/posts/1/publish

{

"id": 1,

"user_id": 1,

"title": "Frank says hello",

"body": "Hello friends",

"published": true

}

Comment on a post

curl -s -H 'Content-Type: application/json' -X POST http://localhost:89\

98/posts/1/comments -d '{"user_id":2,"body":"Hi Frank, this is your fri\

end Bob"}'

{

"id": 1,

"user_id": 2,

"post_id": 1,

"body": "Hi Frank, this is your friend Bob"

}

List all posts

Examples 156

curl -s -H 'Content-Type: application/json' http://localhost:8998/posts

[

[

[

{

"id": 1,

"user_id": 1,

"title": "Frank says hello",

"body": "Hello friends",

"published": true

},

{

"id": 1,

"username": "Frank"

}

],

[

[

{

"id": 1,

"user_id": 2,

"post_id": 1,

"body": "Hi Frank, this is your friend Bob"

},

{

"id": 2,

"username": "Bob"

}

]

]

]

]

Examples 157

See posts

curl -s -H 'Content-Type: application/json' http://localhost:8998/users\

/1/posts

[

[

{

"id": 1,

"user_id": 1,

"title": "Frank says hello",

"body": "Hello friends",

"published": true

},

[

[

{

"id": 1,

"user_id": 2,

"post_id": 1,

"body": "Hi Frank, this is your friend Bob"

},

{

"id": 2,

"username": "Bob"

}

]

]

]

]

Publish other post

Examples 158

curl -s -H 'Content-Type: application/json' -X POST http://localhost:89\

98/posts/2/publish

{

"id": 2,

"user_id": 2,

"title": "Bob is here too",

"body": "Hello friends, also",

"published": true

}

List all posts again

curl -s -H 'Content-Type: application/json' http://localhost:8998/posts

[

[

[

{

"id": 2,

"user_id": 2,

"title": "Bob is here too",

"body": "Hello friends, also",

"published": true

},

{

"id": 2,

"username": "Bob"

}

],

[

]

],

Examples 159

[

[

{

"id": 1,

"user_id": 1,

"title": "Frank says hello",

"body": "Hello friends",

"published": true

},

{

"id": 1,

"username": "Frank"

}

],

[

[

{

"id": 1,

"user_id": 2,

"post_id": 1,

"body": "Hi Frank, this is your friend Bob"

},

{

"id": 2,

"username": "Bob"

}

]

]

]

]

See users comments

Examples 160

curl -s -H 'Content-Type: application/json' http://localhost:8998/users\

/2/comments

[

[

{

"id": 1,

"user_id": 2,

"post_id": 1,

"body": "Hi Frank, this is your friend Bob"

},

{

"id": 1,

"title": "Frank says hello",

"published": true

}

]

]

See post comments

curl -s -H 'Content-Type: application/json' http://localhost:8998/posts\

/1/comments

[

[

{

"id": 1,

"user_id": 2,

"post_id": 1,

"body": "Hi Frank, this is your friend Bob"

},

{

"id": 2,

"username": "Bob"

}

Examples 161

]

]

Wrapping up

We built a database-backed web server with interrelated models of varying degrees
of complexity. Nearly every web server with a database is a slight extension of the
ideas here. The number of models will grow and the queries will get more complex,
but the basic ideas are the same.

Hopefully the last few chapters have given you the confidence to build your next web
application with Rust. The expressive type system, increasingly vibrant ecosystem,
and top-notch performance make Rust a strong contender against any other platform.

What is Web Assembly?
Intro to Web Assembly

Modern web browsers expose a set of APIs related to the user interface and user
interactions (DOM, CSS, WebGL, etc.) as well as an execution environment for
working with these APIs which executes JavaScript. WebAssembly, abbreviated
Wasm, is a type of code which was created to be run inside this browser execution
environment as an additional language alongside JavaScript. The purpose is therefore
not to replace JavaScript but rather to augment it in situations which have different
constraints.

Wasm is a language but as its name implies it is akin to a low level assembly language
which is not meant to be written by hand, in contrast with JavaScript. Rather Wasm
is intended to be a compilation target for higher level languages. As we will discuss,
the strongly typed nature of Wasm along with the low-level memory model, imply
that the currently most suitable languages for compiling to Wasm are C++ and Rust.

As part of the specification of Wasm, no web specific assumptions are made, thus
although the original intent was to introduce a low level language to the web, the
design allows Wasm to be used in a variety of other contexts as well.

The primary goals ofWasm are safety, speed, efficiency, and portability. Wasm is safe
as code is validated and executed in a sandboxed environment that guarantees mem-
ory safety. JavaScript in the browser is also executed in a sandboxed environment
which is part of where the idea comes from. In more traditional contexts, languages
that are translated to machine code and run directly on host hardware are harder
to secure in this fashion. As Wasm is designed to be translated to machine code
it provides near native performance. There are still a few performance penalties
to the environment that differentiate Wasm from truly native code, but the gap is
continuing to narrow as the platform matures.

The representation of Wasm code is designed so that the process of transmitting,
decoding, validating, and compiling is streamable, parallelizable, and efficient. In

What is Web Assembly? 163

other words, a binary format was created for Wasm based on all of the learnings
from the growth of JavaScript on the web over the past several decades.

Type System

Wasm has four value types, abbreviated valtype:

• i32
• i64
• f32
• f64

These types represent 32 and 64 bit integers, as well as 32 and 64 bit floating point
numbers. These floating point numbers are also known as single and double precision
as defined by IEEE 754. The integer types are not signed or unsigned in the spec even.
Do not be confused by the fact that the term i32 is the Rust syntax for a signed 32
bit integer. As we will see later we can use either unsigned or signed integer types in
Rust code, e.g. both i32 and u32, with the signedness in Wasm inferred by usage.

Wasm has functions which map a vector of value types to a vector of value types:

function = vec(valtype) -> vec(valtype)

However, the return type vector is currently limited to be of length at most 1. In other
words, Wasm functions can take 0 or more arguments and can either return nothing
or return a single value. This restriction may be removed in the future.

Memory

Wasm has a linear memory model which is just a contiguous vector of raw bytes.
Your code can grow this memory but not shrink it. Data in the memory region is
accessed via load and store operations based on an aligned offset from the beginning
of the memory region. Access via an offset from the beginning of the region is where
the linear name comes from. This memory region is exposed by a Wasm module
and can be accessed directly in JavaScript. Sharing memory is dangerous but is the
primary way by which JavaScript and Wasm can interact performantly.

What is Web Assembly? 164

Execution

TheWebAssembly computationalmodel is based on a stackmachine. Thismeans that
every operation can be modeled by maybe popping some values off a virtual stack,
possibly doing something with these values, and then maybe pushing some values
onto this stack. Each possible operation is well-defined in the Wasm specification as
to exactly how a specific opcode interacts with the stack. For example, imagine we
start with an empty stack and we execute the following operations:

1 i64.const 16

2 i64.const 2

3 i64.div_u

The first operation has two parts, i64.const is an opcode which takes one argument,
16 in this case. Thus, i64.const 16 means push the value 16 as an i64 constant onto
the top of the stack. Similarly the second operation pushes 2 onto the stack leaving
our stack to look like:

1 2

2 16

The next operation i64.div_u is defined to pop two values off the top of the stack,
perform unsigned division between those two values and push the result back onto
the top of the stack. In this case the first number popped off divides the second
number popped off, so at the end of this operation the stack contains:

1 8

Rust in the browser

Rust uses the LLVM project as the backend for its compiler. This means that the
Rust compiler does all of the Rust specific work necessary to build an intermediate
representation (IR) of your code which is understood by LLVM. From that point,

What is Web Assembly? 165

LLVM is used to turn that IR into machine code for the particular target of your
choosing.

Targets in LLVM can roughly be thought of as architectures, such as x86_64 or armv7.
Wasm is just another target. Hence, Rust can support Wasm if LLVM supports Wasm,
which luckily it does. This is also one of the ways that C++ supports Wasm through
the Clang compiler which is part of the LLVM project.

Rust installations are managed with the rustup tool which makes it easy to have
different toolchains (nightly, beta, stable) as well as different targets installed
simultaneously. The target triple for wasm is wasm32-unknown-unknown. The target
triples have the form <arch>-<vendor>-<sys>, for example x86_64-apple-darwin is
the default triple for a modern Macbook. The unknown vendor and system mean to
use the defaults for the specific architecture. We can install this by running:

rustup target add wasm32-unknown-unknown

The Smallest Wasm Library

Let’s create a Wasm library that does absolute nothing but generate a Wasm library.
We start off by creating a library with Cargo:

cargo new --lib do-nothing

We need to specify that our library will be a C dynamic library as this is the type of
compilation format that Wasm uses. Depending on the target architecture this is also
how you would build a .so on Linux or .dylib on Mac OS. We do this by adding
the lib section to our Cargo.toml:

What is Web Assembly? 166

Cargo.toml

1 [package]

2 name = "do-nothing"

3 version = "0.1.0"

4 authors = ["Your Name <you@eample.com>"]

5 edition = "2018"

6

7 [lib]

8 crate-type = ["cdylib"]

We can then remove all of the code in src/lib.rs to leave a blank file. This
technically is a Wasm library, just with no code. Let’s make a release build for the
Wasm target:

cargo build --target wasm32-unknown-unknown --release

By default, Cargo puts the build artifacts in target/<target-triple>/<mode>/ or
target/<mode> for the default target, which in this case is target/wasm32-unknown-unknown/release.
Inside that directory, we have a do_nothing.wasm file which is our “empty” Wasm
module. But how big is it:

ls -lh target/wasm32-unknown-unknown/release/do_nothing.wasm

-rwxr-xr-x 2 led staff 1.4M Jul 8 21:55 target/wasm32-unknown-unkn\

own/release/do_nothing.wasm

1.4M to do nothing! That’s insane! But it turns out it is because the output binary still
includes debug symbols.

Stripping out debug symbols can be done with a tool called wasm-stripwhich is part
of the WebAssembly Binary Toolkit (WABT)³⁹. The repository includes instructions
on how to build that suite of tools. Assuming you have that installed somewhere on
your path, we can run it to strip our binary:

³⁹https://github.com/WebAssembly/wabt

https://github.com/WebAssembly/wabt
https://github.com/WebAssembly/wabt

What is Web Assembly? 167

wasm-strip target/wasm32-unknown-unknown/release/do_nothing.wasm

We can then check the size of our new binary:

ls -lh target/wasm32-unknown-unknown/release/do_nothing.wasm

-rwxr-xr-x 2 led staff 102B Jul 8 22:01 target/wasm32-unknown-unkn\

own/release/do_nothing.wasm

Amuchmore reasonable 102 bytes.We canmake this better by running onemore tool
which is to actually optimize the binary, wasm-opt as part of the Binaryen library⁴⁰.
Again this repository has instructions for how to build and install this suite of tools.
Running this against our binary requires us to specify a new file to put the output:

wasm-opt -o do_nothing_opt.wasm -Oz target/wasm32-unknown-unknown/relea\

se/do_nothing.wasm

Let’s check the size of this optimized binary:

ls -lh do_nothing_opt.wasm

-rw-r--r-- 1 led staff 71B Jul 8 22:04 do_nothing_opt.wasm

We got down to 71 bytes. That is about as good as we can do. It is possible to manually
shave a few more bytes off, but for all intents and purposes this is the baseline that
we will build up from. This is incredibly small in the JavaScript ecosystem, but we
are also not doing anything.

We are not going to spend too much time on optimizing the size of the Wasm
binaries in subsequent things that we build, but it is important to use these tools
for production use cases lest your binaries become unmanageable. We will point
out certain features which dramatically increase binary size, but some of these are
necessary for many applications.

Working with primatives

We are going to build upon our library that does nothing in small steps to understand
how Wasm operates. The first step is to expose a function which only deals with
primative values. Let’s create a new library:

⁴⁰https://github.com/WebAssembly/binaryen

https://github.com/WebAssembly/binaryen
https://github.com/WebAssembly/binaryen

What is Web Assembly? 168

cargo new --lib do-addition

Again we specify that we want our library to be a cdylib in Cargo.toml:

Cargo.toml

1 [package]

2 name = "do-addition"

3 version = "0.1.0"

4 authors = ["Your Name <you@example.com>"]

5 edition = "2018"

6

7 [lib]

8 crate-type = ["cdylib"]

We expose a single function addwhich takes two unsigned integers and returns their
sum as an unsigned integer:

src/lib.rs

1 #[no_mangle]

2 pub extern "C" fn add(a: u32, b: u32) -> u32 {

3 a + b

4 }

The #[no_mangle] attribute tells the Rust compiler that we want the name of our
function to be add in the final binary instead of some more complicated name
that is auto-generated based on the name and types. Both Rust and C++ use name
mangling for managing certain language features that are easier to implement if
everything has a unique name. Usually you don’t have to worry about the exact
name of your functions in the compiled executable, but because we are exposing a
library which will be callable from JavaScript we need to know the actual name
we need to call. Without this attribute, we would end up with something like
N15do_addition_4a3b56d3add3 as the name of the add function.

We also put themodifier extern "C" on the function to say that wewant this function
to use the right calling conventions thatWasmwill understand. Otherwise this is just
a simple publicly exposed Rust function.

What is Web Assembly? 169

Tomake the process of building things easier we show one possible build script which
builds our crate and performs all of the optimization steps we talked about in the
previous section:

build.sh

1 #!/bin/bash

2

3 WABT_BIN=$HOME/Code/wabt/bin

4 BINARYEN_BIN=$HOME/Code/binaryen/bin

5 TARGET=wasm32-unknown-unknown

6 NAME=do_addition

7 BINARY=target/$TARGET/release/$NAME.wasm

8

9 cargo build --target $TARGET --release

10 $WABT_BIN/wasm-strip $BINARY

11 mkdir -p www

12 $BINARYEN_BIN/wasm-opt -o www/$NAME.wasm -Oz $BINARY

We then make this script executable:

chmod +x build.sh

We can then build and optimize our Wasm module with ./build.sh. Let’s check the
size of our final binary in this first example where we are actually doing something:

$ ls -lh do_addition.wasm

-rw-r--r-- 1 led staff 101B Jul 16 22:45 do_addition.wasm

We are up some small number of bytes from our function which did nothing, as
expected, but at 101 bytes this is still quite small.

Let’s build up an HTML shell that will host our Wasm module and see our code
working. The simplest thing is to have an HTML page which loads our Wasm code,
uses it, and prints something to the JavaScript console:

What is Web Assembly? 170

www/index.html

1 <!DOCTYPE html>

2 <script type="module">

3 async function init() {

4 const { instance } = await WebAssembly.instantiateStreaming(

5 fetch("./do_addition.wasm")

6);

7

8 const answer = instance.exports.add(1, 2);

9 console.log(answer);

10 }

11

12 init();

13 </script>

We must use an async function as all Wasm code must be asynchronously loaded at
the time of this writing. Most likely this will remain true going forward. We write a
function init which encapsulates the things we want to do and then call that as the
last thing we do in our script.

The WebAssembly module in JavaScript exposes APIs for working with Wasm files
and types, but the easiest to use is instantiateStreaming which let’s us fetch our
Wasm code and turn it into a module which we can interact with from JavaScript.
This function returns a result object which contains an instance object and a module
object. The module is useful if you want to share the compiled code with other
contexts like Web Workers. For our purposes, we just care about the instance as
it contains references to all the exported Wasm functions.

Our add function can be found as a property on the exports property of the instance
object. Therefore, we can treat instance.exports.add like a JavaScript function
which takes two integers and returns an integer, when really it is backed by native
machine code generated from Rust.

Opening most browsers with this HTML page will not work because of browser
restrictions on loadingWasm from local files. The easiest workaround is to serve your
Wasm code and use that server to view your example. If you have Python installed
on your system, you can run a simple server with:

What is Web Assembly? 171

serve.py

1 #!/usr/bin/env python3

2

3 import http.server

4 import socketserver

5

6 PORT = 8080

7

8 Handler = http.server.SimpleHTTPRequestHandler

9

10 Handler.extensions_map[".wasm"] = "application/wasm"

11

12 httpd = socketserver.TCPServer(("", PORT), Handler)

13

14 print("serving at port", PORT)

15 httpd.serve_forever()

Note the one change from the simplest Python file server is to explicitly set theMIME
type for .wasm files. This makes sure browsers handle these files correctly.

We make this script executable as well:

chmod +x serve.py

And can then run it to serve our files:

./serve.py

Navigate to http://localhost:8080/www and look in the console to see Rust running
in the browser:

1 3

That’s really all there is to it. The Rust compiler knows how to turn your Rust code
into the Wasm format. The JavaScript engine in the browser knows how to load

What is Web Assembly? 172

Wasm code. And, finally, there is some execution engine in the browser which can
execute that Wasm code when called via the JavaScript interface. The one caveat
is that the only Rust functions which are valid to expose to Wasm only deal with
integers and floating point numbers.

Working with complex types

Being limited to integers and floating point numbers might seem like a pretty severe
limitation, but any complex type can be built on top of these primitives with some
effort and hopefully help from some tools. In order to understand the tools that make
this easy we are first going to go the hard route and manually expose functions that
operate on strings. This is not intended for production use, but is to make the tools
we will show in the next section less magical.

Let’s start by creating a new Rust library:

cargo new --lib hello-raw

Again we make our crate generate a dynamic library:

Cargo.toml

1 [package]

2 name = "hello-raw"

3 version = "0.1.0"

4 authors = ["Your Name <you@example.com>"]

5 edition = "2018"

6

7 [lib]

8 crate-type = ["cdylib"]

Our goal is to expose the function greet which takes a &str as input and returns a
new heap allocated String:

What is Web Assembly? 173

src/lib.rs

4 pub extern "C" fn greet(name: &str) -> String {

5 format!("Hello, {}!", name)

6 }

Note that we make it public and specify the extern "C"modifier to ensure it has the
right calling convention. However we did not specify #[no_mangle] because we are
not going to call this directly and therefore we want Rust to mangle the name so that
the wrapper that we do expose can use the name greet.

Webassembly does not understand &str or String types, it can just take 0 or more
numeric inputs and return a single numeric output. So we have to figure out how
to turn &str into 1 or more numeric inputs and String into a single numeric output.
There are actually many different ways to do this, each with trade-offs, and we are
going to demonstrate one approach.

So let’s instead write a greet function which takes two integers as input and returns
one integer:

src/lib.rs

8 #[export_name = "greet"]

9 pub extern "C" fn __greet_wrapper(

10 arg0_ptr: *const u8,

11 arg0_len: usize,

12) -> *mut String {

13 let arg0 = unsafe {

14 let slice = std::slice::from_raw_parts(arg0_ptr, arg0_len);

15 std::str::from_utf8_unchecked(slice)

16 };

17 let _ret = greet(arg0);

18 Box::into_raw(Box::new(_ret))

19 }

There is a lot going on in this code so we will go through it in detail but first let’s talk
at a high level about what is going on. We have turned the string input into a pointer
(which is just an integer) to the beginning of where the string lives in memory and

What is Web Assembly? 174

the length of the string (also an integer). Inside the function we do some work to turn
that input into a &str which we then pass to our original greet function. We then
do some work to take the String output of greet and turn it into a pointer which
again is just an integer. So we have a function which only uses integer inputs and
output but effectively exposes the higher level greet function we wrote that operates
on strings.

Let’s get into the details by first discussing the input and output types of our wrapper
function. Pointers are not common inmost of Rust because you usually use references
when sharing data. However, when working across FFI (Foreign Function Interface)
boundaries, e.g. when talking to JavaScript, we use pointers directly as they are a
concept shared on both sides. We take a pointer to a memory region containing bytes
(a u8 value is just one byte) which represents a string and the length of that string.
It is the responsibility of the caller to ensure that this pointer is valid and that the
length is correct.

The return type is a pointer to a mutable String, i.e. a heap allocated String. Recall
that String itself is already on the heap so this is an extra allocation. It is an implicit
contract of our function that the caller is responsible for making sure that this pointer
gets passed back to Rust at some point to clean up the memory on the heap. By
returning a mutable pointer we are effectively saying you own this thing that we
created because mutability in Rust comes from being the sole owner of an object.
This is the same contract as our original greet function as the caller becomes the
owner of the returned String. This concept is just a bit more implicit due to the FFI
boundary.

The first step in our function is to take the pointer and length and turn it into a
string slice, i.e. a &str. This is inherently an unsafe operation as the compiler has no
mechanism to verify that the pointer actually points to useful data or that the length
is correct. We use an unsafe block to tell the compiler we know it cannot check this
for us but we are guaranteeing that the relevant invariants are satisfied. The standard
library provides a function std::slice::from_raw_partswhich will give us a &[u8].
This function is marked as unsafe which is why we have to call it inside an unsafe
block.

The unsafe keyword does not turn off a lot of the checks the compiler does, but
it does allow you to perform operations that it is impossible for it to verify. This
definitely can lead to undefined behavior if you violate invariants you presumed to

What is Web Assembly? 175

be satisfying.

Given that we have a &[u8] we want to turn this into a &str which is really just
a fancy name for a &[u8] which is also valid UTF-8. There are two mechanism for
doing this std::str::from_utf8 and std::str::from_utf8_unchecked. The former
performs validity checks on the input to ensure that the passed in slice really is UTF-
8. The latter just says trust me it is valid UTF-8 don’t bother checking. The former
returns Result<&str, Utf8Error>while the latter just returns &str. We are therefore
adding one more implicit contract to our exposed function, the pointer we get must
be to a sequence of bytes, the length must match the length of that sequence, and the
sequence of bytes must be valid UTF-8. If any of those are violated then undefined
behavior can result.

We could have used the safe conversion method, but it is unclear what we would do
in the failure scenario. One possible answer is to throw a JavaScript exception. We
have chosen to make the implicit assumption of valid UTF-8 input, but that choice
is up to you.

Now that we converted the input parts into a string slice we no longer have to do
anything unsafe and can continue in normal, safe Rust. This is the canonical way to
use unsafe code in Rust. Keep the block as small as possible to get back into safe Rust
quickly. This makes auditing the code and understanding the necessary invariants
much more manageable. If you run into strange behavior it is possible to focus your
debugging efforts on what is going on in the unsafe blocks. If these are small and
contained then at least you have a chance.

We proceed to call our original greet function to get the relevant String back. We
then need to somehow give a pointer to this String to the caller and ensure that
the underlying memory is not deallocated. We use Box::new to create a new heap
allocation to hold the String. Note that the String is already on the heap by its nature,
but we create a new heap allocation to own the String because we can keep the String
alive if we can keep the Box alive as it becomes the owner of the String. We do this
by using the associated function Box::into_raw. This function consumes the Box and
returns exactly the raw pointer we want.

The documentation for Box::into_raw is clear that whoever gets this raw pointer is
responsible for managing the memory and must do something to ensure the box gets
destroyed when it is no longer needed, otherwise you will leak memory. Note that
this is not unsafe, leaking memory is not unsafe just undesirable. The Rust compiler

What is Web Assembly? 176

makes no guarantees about memory leaks and in fact you need to explicitly “leak”
memory this way to accomplish some tasks. We will show later how we handle
this and make sure that we clean up after ourselves. But it is important to note the
underlying String is kept alive because the Box that owns the String is now owned
by whoever called our function.

We will have more Rust to write, but in order to motivate it, let’s turn now to the
JavaScript side of things. We also need to write something of a wrapper function
in JavaScript as it would not be a nice API to have to figure out how to turn your
JavaScript string into a pointer and a length. Rather we want our consumers to call
a function with a string and get back a string and not even need be aware that there
is Rust running underneath. Let’s write the greet function in JavaScript:

www/index.html

9 function greet(arg0) {

10 const [ptr0, len0] = passStringToWasm(arg0);

11 try {

12 const retptr = wasm.greet(ptr0, len0);

13 const mem = new Uint32Array(wasm.memory.buffer);

14 const rustptr = mem[retptr / 4];

15 const rustlen = mem[retptr / 4 + 1];

16 const realRet = getStringFromWasm(rustptr, rustlen).slice();

17 wasm.__boxed_str_free(retptr);

18 return realRet;

19 } finally {

20 wasm.__free(ptr0, len0);

21 }

22 }

This is much more complicated that our previous interaction with WebAssembly.
The first step is to call a helper function that takes our input argument and turns it
into the pointer and length that we can call our Wasm function with. We will define
this shortly, but take it for granted for now but do know that this function puts
the JavaScript string we took as an argument into the linear memory space shared
between JavasScript and Wasm.

What is Web Assembly? 177

We setup a try/finally block to ensure that the string that was just moved into the
Wasm memory always gets freed even if something funky happens while we are
interacting with our exposed Wasm function. Inside the try block, we first call the
greet function that we exposed with the pointer and length we got and declare a local
variable to hold the pointer to the String we get back. This pointer points to a chunk
of memory inside the Wasm linear memory region.

We can get a handle to the memory region shared withWasm via the buffer property
on the memory property that is exposed on our Wasm instance. The memory property
is an instance of a WebAssembly.Memory object. This object can do two things, one
is grow the memory region via a grow method, the other is give a handle to the
underlying memory via the buffer property.

JavaScript has a variety of typed arrays for exposing an array-like view of an
underlying buffer of binary data. We can construct an array that contains unsigned
32-bit integers (exactly what the 32-bit Wasm memory region is) by passing the
Wasm buffer into the Uint32Array constructor. This is the fundamental concept for
working with the shared memory region between JavaScript andWasm. You create a
typed array with the shared buffer and then read or write to this typed array. Wasm
can also read and write to this buffer. While this is very dangerous to do, it allows
for communication to exist between JavaScript and Wasm.

The pointer that is returned from the Wasm function is an offset from the beginning
of the memory region, due to the return type and the fact that the array view over
the memory buffer has type Uint32 we need to do this little bit of arithmetic to get
the array index for the pointer to the underlying bytes and the index of the length
of the returned String. This works because in Rust a String is just a Vec<u8> and a
Vec<u8> is a struct with two fields, the first being roughly a pointer to a buffer of u8
values, and the second is a length. So we use that fact here to know that the pointer
to the String is really a pointer to a buffer of bytes and a length.

Given a pointer to some bytes and a length, we use another utility function to extract
a string from theWasmmemory region into JavaScript. We use slice to make a copy
in JavaScript so we can safely tell Rust to free thememory it is currently using for that
string. The following line where we call __boxed_str_free tells us that we need to
implement this function over in Rust which will take a *mut String and do whatever
is necessary to free it. This is how we hold up JavaScript’s end of the bargain to not
leak memory.

What is Web Assembly? 178

Finally, we can return the JavaScript string that results from this whole process.
No matter what happens in this whole process, if something goes wrong or not,
the finally block will execute and free the memory in the Wasm address space
associated with the argument. We used passStringToWasm to move the argument
into the Wasm memory so we use __free to let it go. Again we see that we need to
implement __free in Rust for this to work.

Before returning to Rust, let’s implement the two helpers we need in JavaScript.
First, let’s take care of moving a JavaScript string into the Wasm memory region
and returning a pointer into that region and a length:

www/index.html

24 function passStringToWasm(arg) {

25 const buf = new TextEncoder('utf-8').encode(arg);

26 const len = buf.length;

27 const ptr = wasm.__malloc(len);

28 let array = new Uint8Array(wasm.memory.buffer);

29 array.set(buf, ptr);

30 return [ptr, len];

31 }

JavaScript provides anAPI for turning a string into amemory buffer via a TextEncoder
object. We say that we want the string encoded as UTF-8 to conform to the invariants
in our Rust code. We then ask our Wasm instance to allocate memory of this
particular size via a call to __malloc. We will need to write this. Finally, we create
a Uint8Array with the Wasm memory buffer so that we can set the newly allocated
memory to the bytes of our string. We then return the pointer and length which is
all that is needed to reference the string in the Wasm memory region.

Lastly, let’s write the function that will get us a JavaScript string out of the Wasm
memory region:

What is Web Assembly? 179

www/index.html

33 function getStringFromWasm(ptr, len) {

34 const mem = new Uint8Array(wasm.memory.buffer);

35 const slice = mem.slice(ptr, ptr + len);

36 const ret = new TextDecoder('utf-8').decode(slice);

37 return ret;

38 }

This is mostly the reverse process of putting the string into the memory region. We
get a Uint8Array view of theWasmmemory and then use slice to copy the bytes into
a new typed array specified by the starting and ending points. This slicemethod on
typed arrays is semantically the same as the one on normal JavaScript arrays. Given
this array of bytes we use a TextDecoder to turn it into a string, again assuming that
the bytes represent a UTF-8 string.

Okay so if we expose __malloc, __free, and __boxed_str_free in our Rust library
with the correct semantics then our Wasmmodule and our JavaScript code will work
in concert to properly call a Rust function from JavaScript that takes a string and
returns a string.

To support the implementation of memory allocation and deallocation functions, we
pull in some imports:

src/lib.rs

1 use std::alloc::{alloc, dealloc, Layout};

2 use std::mem;

Let’s start with the hardest function and get progressively easier. First up then is
__malloc:

What is Web Assembly? 180

src/lib.rs

21 #[no_mangle]

22 pub extern "C" fn __malloc(size: usize) -> *mut u8 {

23 let align = mem::align_of::<usize>();

24 if let Ok(layout) = Layout::from_size_align(size, align) {

25 unsafe {

26 if layout.size() > 0 {

27 let ptr = alloc(layout);

28 if !ptr.is_null() {

29 return ptr

30 }

31 } else {

32 return align as *mut u8

33 }

34 }

35 }

36

37 panic!("malloc failed")

38 }

First the signature should be expected by now, we want this publicly accessible, we
want it to use the “C” calling convention, and we want the name to be __malloc

so we specify #[no_mangle]. We take a size as input (we use the byte length of our
string) and return a pointer to some allocated bytes of that size.

Although you rarely have to deal with these low level APIs, as Rust is a systems
language, it provides the facilities for working with memory layouts and proper
alignment. The first thing we do is get the minimum alignment for a usize based on
the ABI. We need this to pass to the Layout constructor because in order to allocate
memory you need both a size and an alignment. Properly aligning our memory is
necessary for a variety of reasons but suffice it to say that Rust takes care of this for
us.

The next thing we do is generate a memory layout for the particular size and
alignment. This can fail and return an error if the alignment is bad (zero or not a
power of two) or if size is too big, otherwise this should succeed. Given our layout,

What is Web Assembly? 181

we can then proceed to actually allocating memory. If the resulting size of the layout
is not positive then we don’t need to allocate anything (and if fact calling alloc with
a zero sized Layout could lead to undefined behavior depending on the architecture).
In this case we just cast the alignment to the right type and return it as that is about
all we can do.

Otherwise we have a real region of memory we need to allocate so we use the alloc
function provided by the standard library. It is possible to customize the allocator
used, but by default a standard one is used per platform. This is how the interaction
with the allocator is exposed regardless. We get back a pointer from alloc which
is the location of our newly allocated region of memory of the size and alignment
specified by our layout. We only return this pointer if it is not null. A null pointer
returned from alloc most likely means you are out of memory.

If we make it to the end of this function without having already returned something
it means either the Layout failed to build or we are probably out of memory. There
are a variety of things you could do in this scenario, calling panic is a reasonable one.

If you use any method that can panic in your Rust code, even if you definitely
never panic, your Wasm module will increase quite a bit in size because of extra
code related to panics. There are non-panicing alternatives to a lot of methods and
there are other things you can do in these scenarios. It is possible to configure your
code so that you are not allowed to panic, notably by using no_std which means
disallowing anything from the std module, but that can be extreme (although
necessary in some environments).

Okay, we can allocate memory in the Wasm address space via an exposed function
in Rust, let’s take care of deallocating memory:

What is Web Assembly? 182

src/lib.rs

40 #[no_mangle]

41 pub unsafe extern "C" fn __free(ptr: *mut u8, size: usize) {

42 if size == 0 {

43 return

44 }

45 let align = mem::align_of::<usize>();

46 let layout = Layout::from_size_align_unchecked(size, align);

47 dealloc(ptr, layout);

48 }

We take a pointer to the memory region we want to deallocate and the size of that
region. If the size is zero then there is nothing to do. Otherwise we do the reverse of
allocation, we get an alignment, use that to get a Layout, and then pass the pointer
and the layout to dealloc. Note that our entire function is marked as unsafe as part
of the signature rather than putting an unsafe block inside the function.

You can either expose a “safe” function which might do unsafe things internally, or
you can say calling a function is inherently unsafe. The distinction is meant to imply
who is responsible for the invariants. If you expose a safe function then you are
responsible for making your invariants clear and usually handling the cases where
they are not upheld. If you mark a function as unsafe, you are still responsible for
making your invariants clear but you are saying that it is the responsibility of the
caller to handle the bad cases. The exact lines are sometimes blurry. Should our greet
wrapper function be unsafe rather than just using unsafe internally? Possibly, but we
theoretically control the JavaScript code that is calling it and therefore think we can
maintain the invariants.

Lastly, we need to implement __boxed_str_free to prevent leaking the String we
return:

What is Web Assembly? 183

src/lib.rs

50 #[no_mangle]

51 pub unsafe extern "C" fn __boxed_str_free(ptr: *mut String) {

52 let _b = Box::from_raw(ptr);

53 }

We mark this function as unsafe for the same reason as __free. Box::from_raw is an
unsafe function which takes a raw pointer and constructs a box from it. By creating
this box and putting it into a local variable we ensure that the Box will be dropped
at the end of the function body. When the Box is dropped, as it is the sole owner
of the String, the String will also be dropped. The input type being *mut String is
sufficient to tell Rust the right code to execute to drop both the Box and the String
as this drives the type inference of from_raw.

With all of that out of the way, we can add the code to exercise our Wasm code from
JavaScript:

www/index.html

40 const result = greet("Rust");

41 console.log(result);

The full code listing for the JavaScript side is here which includes instantiating the
Wasm module:

www/index.html

1 <!DOCTYPE html>

2 <script type="module">

3 async function init() {

4 const { instance } = await WebAssembly.instantiateStreaming(

5 fetch("./hello_raw.wasm")

6);

7 const wasm = instance.exports;

8

9 function greet(arg0) {

10 const [ptr0, len0] = passStringToWasm(arg0);

What is Web Assembly? 184

11 try {

12 const retptr = wasm.greet(ptr0, len0);

13 const mem = new Uint32Array(wasm.memory.buffer);

14 const rustptr = mem[retptr / 4];

15 const rustlen = mem[retptr / 4 + 1];

16 const realRet = getStringFromWasm(rustptr, rustlen).slice();

17 wasm.__boxed_str_free(retptr);

18 return realRet;

19 } finally {

20 wasm.__free(ptr0, len0);

21 }

22 }

23

24 function passStringToWasm(arg) {

25 const buf = new TextEncoder('utf-8').encode(arg);

26 const len = buf.length;

27 const ptr = wasm.__malloc(len);

28 let array = new Uint8Array(wasm.memory.buffer);

29 array.set(buf, ptr);

30 return [ptr, len];

31 }

32

33 function getStringFromWasm(ptr, len) {

34 const mem = new Uint8Array(wasm.memory.buffer);

35 const slice = mem.slice(ptr, ptr + len);

36 const ret = new TextDecoder('utf-8').decode(slice);

37 return ret;

38 }

39

40 const result = greet("Rust");

41 console.log(result);

42 }

43

44 init();

45 </script>

What is Web Assembly? 185

Similarly to the last section, we create a build script to handle creating the Wasm
module:

build.sh

1 #!/bin/bash

2

3 WABT_BIN=$HOME/Code/wabt/bin

4 BINARYEN_BIN=$HOME/Code/binaryen/bin

5 TARGET=wasm32-unknown-unknown

6 NAME=hello_raw

7 BINARY=target/$TARGET/release/$NAME.wasm

8

9 cargo build --target $TARGET --release

10 $WABT_BIN/wasm-strip $BINARY

11 mkdir -p www

12 $BINARYEN_BIN/wasm-opt -o www/$NAME.wasm -Oz $BINARY

Again we make it executable:

chmod +x build.sh

We also need a server so we repeat the same Python server for convenience:

serve.py

1 #!/usr/bin/env python3

2

3 import http.server

4 import socketserver

5

6 PORT = 8080

7

8 Handler = http.server.SimpleHTTPRequestHandler

9

10 Handler.extensions_map[".wasm"] = "application/wasm"

11

What is Web Assembly? 186

12 httpd = socketserver.TCPServer(("", PORT), Handler)

13

14 print("serving at port", PORT)

15 httpd.serve_forever()

We want to make it executable so that we can run it directly:

chmod +x serve.py

Run the server:

./serve.py

Navigate to http://localhost:8080/www and look in the console to see:

1 Hello, Rust!

The Real Way to Write Wasm

Rust has been at the forefront of the development of WebAssembly and therefore
there is a solid set of tools available for automating much of the tedious glue that we
saw is necessary for working with complex types. The majority of the heavy lifting
is done by the wasm-bindgen⁴¹ crate and CLI. Built on top of wasm-bindgen is the
wasm-pack⁴² tool. This is a build tool which automates the process of exposing your
Wasm module as an NPM module. The wasm-pack documentation has examples
and templates for getting up and running with Wasm in the browser and in NodeJS
environments. We are going to replicate our simple greet function but this time rely
on these tools to do the work.

The first step is to install the wasm-pack⁴³ CLI. This will be needed later on but is
good to get out of the way because you may hit snags based on what is on your
system. Currently, wasm-pack uses npm under the hood to handle certain tasks so
you will need it installed as well.

Let’s create a Rust library to hold our Wasm code:
⁴¹https://github.com/rustwasm/wasm-bindgen
⁴²https://rustwasm.github.io/docs/wasm-pack/introduction.html
⁴³https://rustwasm.github.io/wasm-pack/installer/

https://github.com/rustwasm/wasm-bindgen
https://rustwasm.github.io/docs/wasm-pack/introduction.html
https://rustwasm.github.io/wasm-pack/installer/
https://github.com/rustwasm/wasm-bindgen
https://rustwasm.github.io/docs/wasm-pack/introduction.html
https://rustwasm.github.io/wasm-pack/installer/

What is Web Assembly? 187

cargo new --lib hello-bindgen

As before we need to set our crate type to be a dynamic library, but now we are also
going to be adding a dependency on the wasm-bindgen crate:

Cargo.toml

1 [package]

2 name = "hello-bindgen"

3 version = "0.1.0"

4 authors = ["Your Name <you@example.com>"]

5 edition = "2018"

6

7 [lib]

8 crate-type = ["cdylib"]

9

10 [dependencies]

11 wasm-bindgen="^0.2"

Next we are going to write the greet function as before but this time we are going to
use wasm-bindgen to help:

src/lib.rs

1 use wasm_bindgen::prelude::*;

2

3 #[wasm_bindgen]

4 pub fn greet(name: &str) -> String {

5 format!("Hello, {}!", name)

6 }

We import the items in the wasm-bindgen prelude so that the generated code has
what it needs to work with. Then getting your code exposed to JavaScript is as simple
as adding the wasm_bindgen attribute. Our greet function needs to be public to be
exposed, but otherwise this is all the code we need to write.

Nowwe can use wasm-pack to build a JavaScript package that contains our compiled
Wasm code with one simple command:

What is Web Assembly? 188

wasm-pack build

This will produce output in the pkg directory:

hello-bindgen/pkg/

├── hello_bindgen.d.ts

├── hello_bindgen.js

├── hello_bindgen_bg.d.ts

├── hello_bindgen_bg.wasm

└── package.json

This is a JavaScript package which can be used like any other but internally it uses
Wasm. The easiest way to see that our function was exported as expected is to look
at the generated TypeScript definition file:

pkg/hello_bindgen.d.ts

1 /* tslint:disable */

2 /**

3 * @param {string} name

4 * @returns {string}

5 */

6 export function greet(name: string): string;

Now we need to have a JavaScript project that uses our package. We can use npm to
create an application based on the wasm-app template:

npm init wasm-app hello-bindgen-app

This step is unnecessary if you are using the Wasm package in an existing JavaScript
application, but for our purposes this is the most expedient path. We modify the
package.json file to make our Wasm package a dependency:

What is Web Assembly? 189

hello-bindgen-app/package.json

29 "dependencies": {

30 "hello-bindgen": "file:../pkg"

31 },

32 "devDependencies": {

33 "webpack": "^4.29.3",

34 "webpack-cli": "^3.1.0",

35 "webpack-dev-server": "^3.1.5",

36 "copy-webpack-plugin": "^5.0.0"

37 }

Then we edit index.js to load our package and call the greet function:

hello-bindgen-app/index.js

1 import * as wasm from "hello-bindgen";

2

3 let result = wasm.greet("Rust");

4 console.log(result);

We need to use npm to install the dependencies needed to package and serve our
code:

npm install

Finally, we can use the bundled webpack dev server to view our code by running the
start script that comes with the template we used:

npm start

Again we can navigate to http://localhost:8080 and look in the console to see:

1 Hello, Rust!

What is Web Assembly? 190

What just happened?

The wasm-bindgen crate generates some Rust code based on where you put the
attribute. We annotated a function so the crate will generate a wrapper function
that handles marshalling the complex data types, &str and String in this case, into
integers that Wasm can handle. Note that we did not say extern "C" on our greet
function which is by design. As in our manual example, the actual greet function
that is exposed ends up being a wrapper which calls into our original greet function
which will get a mangled name.

You can put the wasm_bindgen attribute on structs, impl blocks, and a variety of other
Rust items to expose them to JavaScript. The wasm-bindgen docs⁴⁴ are a great source
for understanding what and how things are exposed and what options you have.

The next step is that wasm-pack uses the wasm-bindgen CLI to generate JavaScript
wrapper code based on items annotated with the wasm_bindgen attribute. The
JavaScript glue code requires you to run an extra step outside of the normal Rust
build process. The internals of the code generated by wasm-bindgen on the Rust side
means that you really want to use wasm-bindgen to generate the JavaScript wrappers
for you as well.

All of the generated code, either in Rust via the attribute, or in JavaScript via the CLI,
is quite similar to what we did by hand in the previous section. For example, check
out the generated JavaScript wrapper in pkg/hello_bindgen.js:

pkg/hello_bindgen.js

91 /**

92 * @param {string} name

93 * @returns {string}

94 */

95 export function greet(name) {

96 const ptr0 = passStringToWasm(name);

97 const len0 = WASM_VECTOR_LEN;

98 const retptr = globalArgumentPtr();

99 try {

100 wasm.greet(retptr, ptr0, len0);

⁴⁴https://rustwasm.github.io/docs/wasm-bindgen/

https://rustwasm.github.io/docs/wasm-bindgen/
https://rustwasm.github.io/docs/wasm-bindgen/

What is Web Assembly? 191

101 const mem = getUint32Memory();

102 const rustptr = mem[retptr / 4];

103 const rustlen = mem[retptr / 4 + 1];

104

105 const realRet = getStringFromWasm(rustptr, rustlen).slice();

106 wasm.__wbindgen_free(rustptr, rustlen * 1);

107 return realRet;

108

109

110 } finally {

111 wasm.__wbindgen_free(ptr0, len0 * 1);

112

113 }

114

115 }

This should look very familiar. Note that wasm-bindgen uses a slightly more
complicated wrapper on the Rust side which requires a different calling convention
in Wasm. In particular, note that the greet function takes a return pointer as the first
argument and does not return anything. However both approaches achieve the same
goal.

Other Wasm Topics

WebAssembly is a broad topic with an increasing surface area. We will try to cover
at a high level many of the common questions that arise when people first encounter
Wasm.

The DOM and friends

As part of the wasm-bindgen project, there is the web_sys⁴⁵ crate which exposes a
large number of raw Web APIs. Manipulating the DOM is one thing that is possible
using this crate.

⁴⁵https://rustwasm.github.io/wasm-bindgen/api/web_sys/

https://rustwasm.github.io/wasm-bindgen/api/web_sys/
https://rustwasm.github.io/wasm-bindgen/api/web_sys/

What is Web Assembly? 192

Threads

There is a proposal⁴⁶ to add threads to WebAssembly. As part of this proposal there
are also ideas about atomics and other concepts necessary to make shared linear
memory across threads manageable. There is a good summary blog post⁴⁷ by Alex
Crichton which breaks down a lot of the exciting details.

WebAssembly System Interface (WASI)

WebAssembly derives its security features from only having access to what it is
explicitly given. That is, Wasm can be compiled to machine code but it cannot do
things like open arbitrary sockets unless the system explicitly passes an instance the
capability to do so. Today this is done via the JavaScript APIs available toWasm code
running in the browser. But there is an effort to run Wasm outside of the browser.

Outside the browser there is a real system to deal with. This leads to the question
of portability of Wasm code across different systems that might want to execute the
code. It also begs the question about how to handle safely support system calls like
open for opening a file.

Wasm is an assembly language for a logical machine which can therefore be
implemented virtually on any number of platforms. The WebAssembly System
Interface, or WASI, is an attempt to standardize the system calls that Wasm knows
about so that different implementations can build to a spec and therefore abstract
the underlying operating system from the assembly language. This is being designed
with portability and security as the paramount concerns. It is still in early days but
it is a very exciting proposition.

⁴⁶https://github.com/WebAssembly/threads
⁴⁷https://rustwasm.github.io/2018/10/24/multithreading-rust-and-wasm.html

https://github.com/WebAssembly/threads
https://rustwasm.github.io/2018/10/24/multithreading-rust-and-wasm.html
https://github.com/WebAssembly/threads
https://rustwasm.github.io/2018/10/24/multithreading-rust-and-wasm.html

Command Line Applications
Many command line applications that we use every day were written long ago when
the dominate high level language was C. Ever since there have been improvements
made to these fundamental programs as well as attempts to replace them. One niche
where Rust fits nicely is in building these command line applications.

One example is ripgrep⁴⁸ which can replace grep for many use cases, is faster, and
provides a lot of nice extra features. Rust is a big part of the success story of ripgrep.

One feature that is becoming increasingly more important is the ability to support
multiple platforms without the need for parallel codebases or ugly hacks. Mac and
Linux support have gotten much closer over the years, but Windows is still a much
harder target to hit for a wide variety of languages. This is one area that Go has
worked quite well at addressing and Rust also shines here as well.

Building command line utilities can greatly simplify your life if you spend a lot of
time in the terminal. Sometimes stitching together awk, Perl, and Bash for the third
time starts to make you wonder if there is a better way. Before Rust’s ecosystem
got to the current state it might have made sense to reach for Python or Ruby with
their plethora of libraries to build a simple command line tool. But we are now at a
point where you can have performance, safety, and a ton of great features by putting
together crates out in the wild.

Initial setup

Let’s walk through building a simple command line application for making HTTP
requests. This has sufficiently complexity to be interesting, but not too much so that
we can focus on the Rust parts of the problem rather than the details of this particular
application.

We are going to build something like cURL with a few extra features, so let’s create a
new project:

⁴⁸https://blog.burntsushi.net/ripgrep/

https://blog.burntsushi.net/ripgrep/
https://blog.burntsushi.net/ripgrep/

Command Line Applications 194

1 cargo new hurl

Making an MVP

We are going to walk through quite a bit of code before we get to a runnable version
of our application. This is just to get us to an MVP with a few simple features. After
that we will expand our feature set with some nice things that curl is missing.

Basic feature set

We want to support some basic use cases. In all scenarios we want to:

• Parse the response if it is JSON
• Print out information about the request including headers
• Print out the response as nicely as possible

Let’s go through a few simple motivating examples:

• Make a GET request to example.com

1 $ hurl example.com

Here we see that the default is to make a GET request as no other method is given
and no data is being sent.

• Make a POST request to example.com with a JSON object {"foo":"bar"} as the
data:

1 $ hurl example.com foo=bar

Here we see the default when data is being sent is to make a POST request. Also, the
default is to make a request using JSON rather than a form.

• Make a PUT request to example.com using HTTPS, set the X-API-TOKEN header
to abc123, and upload a file named foo.txt with the form field name info:

Command Line Applications 195

1 $ hurl -s -f PUT example.com X-API-TOKEN:abc123 info@foo.txt

We see the -s for --secure option used to turn on HTTPS and -f option used to turn
on sending as a form. We want headers to be specified with a colon separating the
name from the value and files to be uploaded by using @ between the form field name
and the path to the file on disk.

• Make a form POST request to example.com, use bob as the username for basic
authentication, set the query parameter of foo equal to bar, and set the form
field option equal to all:

1 $ hurl -f -a bob POST example.com foo==bar option=all

In this last example, before making the request, the user should be prompted for their
password which should be used for the basic authentication scheme.

Building the features

First things first, we need to add dependencies to our manifest:

Cargo.toml

1 [package]

2 name = "hurl"

3 version = "0.1.0"

4 authors = ["Your Name <you@example.com>"]

5 edition = "2018"

6

7 [dependencies]

8 structopt = "0.3"

9 heck = "0.3"

10 log = "0.4"

11 pretty_env_logger = "0.3"

12 serde = "1.0"

13 serde_json = "1.0"

14 reqwest = "0.9.20"

15 rpassword = "4.0"

Command Line Applications 196

Whoa that is a lot of dependencies. It is easiest to get most of these out of the way
now as working them in after the fact makes things overly complicated. We will get
to each of these in detail as we use them, but the quick overview of each is:

• structopt - command line argument parsing, and much more.
• heck - converting strings to different cases (e.g. snake_case, camelCase).
• log - logging facade for outputting verbose information.
• pretty_env_logger - logging implementation that works with log.
• serde - (de)serialization of data.
• serde_json - serde for JSON data.
• reqwest - HTTP client.
• rpassword - ask a user for a password without echoing it to the terminal.

We are going to walk through building this application by going file by file as we
build out the necessary bits.

The main entry point: main.rs

As we are building a binary application, we will need some code in main.rs to kick
things off. As the functionality here will not be used in a library, and is in fact mostly
building on other libraries, we will forgo the advice of creating a separate library that
we call into and instead work directly in main.rs.

Let’s bring in some imports to get started:

src/main.rs

1 use structopt::StructOpt;

2 use heck::TitleCase;

3 use log::trace;

The structopt crate defines a trait StructOpt and a custom derive which allows you
to derive that trait for a type you create. These two pieces together create a system for
declaratively specifying how your application takes input from the command line.

Underlying structopt is another crate called clap. You can, and many people
do, build a command line application directly by interacting with the clap crate.

Command Line Applications 197

However, structopt abstracts a lot of those details away, as it is mostly boilerplate,
and instead allows you to focus on describing your options using the type system.

If this sounds too abstract at the moment, bear with me, as it will all become clear
shortly. Nonetheless, we need to import the trait as we will use that functionality in
our main function.

We import TitleCase which is also a trait from the heck crate so that we can
convert strings into their title cased equivalents. For example, this_string would
be converted to ThisString. We could write this logic ourselves, but why bother
to worry about all the edge cases when a high quality crate already exists for this
purpose.

Finally, the import of the trace macro from the log crate is to enable us to leverage
the log crate’s nice features to implement a form of verbose logging. Logging in Rust
has largely concentrated on the abstraction provided by the log crate.

When youwrite a library or other tool that wants to generate logs, you use themacros
in the log crate to write those messages at various verbosity levels. When you are
creating an application where you want to enable seeing these different log messages,
you bring in a separate crate (or write some extra code yourself) which provides the
concrete implementation of how those macros get turned into output. It is possible to
have an implementation that writes everything to a file, or that only turns on some
verbosity levels, or that writes to the terminal with pretty colors.

As we are creating a binary, we depend on a concrete implementation of the logging
functionality, but for actually generating the messages we just need the macros
defined in the log crate.

As part of building this application, we are going to split up the functionality into
different modules. We define those modules here that we will soon write so they
become part of our application:

src/main.rs

5 mod app;

6 mod client;

7 mod errors;

As you should recall, this tells the compiler to look for files (or directories) with those
names and to insert that code here with the appropriate scoping.

Command Line Applications 198

We next use a use statement to bring our to be written error type into scope to make
our type signatures easier to write:

src/main.rs

9 use errors::HurlResult;

One feature wewant to support is pretty printing JSON responses. An aspect of pretty
printing that can be quite handy is making sure that the keys are sorted. JSON objects
do not have a well-defined order so we are free to print them anyway wewant. There
is an argument that we should faithfully represent the result based on the order of
the bytes from the server. However, we are writing our own tool and are therefore
free to make decisions such as this. Thus, let’s create a type alias that we will be able
to use with serde to get an ordered JSON object:

src/main.rs

11 type OrderedJson = std::collections::BTreeMap<String, serde_json::Value\

12 >;

Rust hasmultiple hashmap implementations in the standard library, one in particular
is the BTreeMap which stores entires sorted by the key. In this case, we expect our
response to have string keys and arbitrary JSON values. This type alias is not doing
any work, but we will see how we use it with serde to get the result we are looking
for.

We are going to practice a little speculative programming here by writing a main
function with code for things that do not yet exist. Given that structure, we then just
have to make those things exist and we will be done. Without further ado, our main
function:

Command Line Applications 199

src/main.rs

13 fn main() -> HurlResult<()> {

14 let mut app = app::App::from_args();

15 app.validate()?;

16

17 if let Some(level) = app.log_level() {

18 std::env::set_var("RUST_LOG", format!("hurl={}", level));

19 pretty_env_logger::init();

20 }

21

22 match app.cmd {

23 Some(ref method) => {

24 let resp = client::perform_method(&app, method)?;

25 handle_response(resp)

26 }

27 None => {

28 let url = app.url.take().unwrap();

29 let has_data = app.parameters.iter().any(|p| p.is_data());

30 let method = if has_data {

31 reqwest::Method::POST

32 } else {

33 reqwest::Method::GET

34 };

35 let resp = client::perform(&app, method, &url, &app.paramet\

36 ers)?;

37 handle_response(resp)

38 }

39 }

40 }

First, we return a Result, in particular our custom HurlResult with a success type
of () meaning we only have a meaningful value to report for errors, and that the Ok
case just means everything worked. This shows that the HurlResult type we need to
write is generic over the success type as we have seen other result type aliases before.

Command Line Applications 200

The first line of our function uses a call to from_args which is defined on the
StructOpt trait. Therefore, we need a struct called App in the app module which
implements this trait. This does all of the command line argument parsing including
exiting if something can’t be parsed as well as printing a help message when
necessary.

We then have a call to validatewhich uses the ? operator to exit early if this function
fails. This is not part of the argument parsing that StructOpt does. Rather, this is for
handling certain constraints on the arguments that StructOpt is unable to enforce.
Wewill see what this is when we get to defining App, but it just shows that sometimes
we need workarounds even if a crate does almost everything we need.

There are two further sections. The first uses the log_level method on our app
to get a value to setup logging. The pretty_env_logger crate uses environment
variables to configure what to print, so we explicitly set the RUST_LOG environment
variable based on the value we get. The format is RUST_LOG=binary_name=level

where binary_name is not surprisingly the name of your binary and level is one
of the five level values that log defines: trace, debug, info, warn, and error. After
setting the environment variable, we call pretty_env_logger::init() to actually
hook this logging implementation into our use of the macros from the log crate.

The second piece is the heart of our application. We use the cmd (short for command),
property on our app to direct what type of request to make. There are two cases,
either we got a command which specifies the HTTP verb to use, in that case we use
the client module to make the request and then call a handle_response function with
the result.

If we did not get a command, i.e. app.cmd matches None, then we are in the default
case where we just got a URL. In this case, we make a GET request if we do not have
any data arguments, otherwise we make a POST request. We also call a method on
the clientmodule tomake this request and pipe through to the same handle_response
function.

So in either case we end up with a response from our client module that we need to
handle. Let’s turn to that handler function:

Command Line Applications 201

src/main.rs

41 fn handle_response(

42 mut resp: reqwest::Response,

43) -> HurlResult<()> {

First, the signature. We expect a response as input, which in this case is just the
Response type from the reqwest crate, and we return our result type.

The purpose of our tool is to print useful information to standard output and therefore
“handling” the response means doing that printing. First, we are going to build up a
string based on the metadata about the response. Then we will turn to printing the
body.

Our first useful piece of data is the status code of the response as well as the version
of HTTP that was used to communicate said response.

src/main.rs

44 let status = resp.status();

45 let mut s = format!(

46 "{:?} {} {}\n",

47 resp.version(),

48 status.as_u16(),

49 status.canonical_reason().unwrap_or("Unknown")

50);

The string s is going to be our buffer that we use for building up the output. We start
out by using format! to create a String based on the version stored in the response,
the status code, and the description of that status. Example results for this string
are “HTTP/1.1 200 OK” or “HTTP/1.1 403 Forbidden”. We use the Debug output of
resp.version() because that is defined to be what we want to show. Sometimes
Display is not defined or Debug is what you want to see so don’t always think of
{:?} as strictly for debugging.

Next up we want to show the headers from the response. We are going to gather
them into a vector which we will combine into a string after the fact.

Command Line Applications 202

src/main.rs

51 let mut headers = Vec::new();

52 for (key, value) in resp.headers().iter() {

53 let nice_key = key.as_str().to_title_case().replace(' ', "-");

54 headers.push(format!(

55 "{}: {}",

56 nice_key,

57 value.to_str().unwrap_or("BAD HEADER VALUE")

58));

59 }

The response type has a headers function which returns a reference to a Header type
that gives us access to the headers. We have to explicitly turn it into an iterator by
calling the iter so that we can process each key/value pair. We are again using the
format! macro to construct a string for each header.

We create a nice to read key by transforming the raw key in the header map into
a consistent style. The to_title_case method is available because we imported the
TitleCase trait from heck.

We expect the value to have a string representation, but in case that fails we use a
quick and dirty “BAD HEADER VALUE” replacement. We do not want to fail the
entire response printing if one header value cannot be printed correctly. Luckily we
can use the unwrap_or method to easily handle this case.

One special exception is content length. The reqwest crate does not treat content
length as a normal header value and instead provides a content_length function on
the response type to get this value. Let’s use this function to get a content length to
add to your list of headers:

Command Line Applications 203

src/main.rs

60 let result = resp.text()?;

61 let content_length = match resp.content_length() {

62 Some(len) => len,

63 None => result.len() as u64,

64 };

65 headers.push(format!("Content-Length: {}", content_length));

There is one bit of complication, this function returns an Option and thus we have
to deal with computing a value if this function returns None. We accomplish this by
getting the text of the response and computing a length.

As far as I can tell, reqwest behaves this way because of compression. The content
length of the response is not necessarily the same as the content length that is given in
the response header because the actually response body could be compressed. After
decompressing the body, we end up with a different length. The library returns None
in this case to signal that if you want to compute an accurate content length, you
have to do it yourself.

This leads to the question of what do you want to show in this case? The length
given in the response header or the length of the decompressed body? We choose the
length of the decompressed body as that is more inline with a user’s expectations.

Now that we have all of our headers, we can put it together with our status string
and print our first piece of information.

src/main.rs

66 headers.sort();

67 s.push_str(&(&headers[..]).join("\n"));

68 println!("{}", s);

We put the headers into a vector so that we can sort by the name of the header here.
This makes it easier to find headers in the output. We then use the join method on
string slices to turn the list of headers into a newline separated string. As join is not
a method on Vec, we have to use &headers[..] to get a reference to a slice of type
&[String]. We then turn the output of that function from String to &str with the

Command Line Applications 204

extra & at the beginning. This allows us to pass the result to push_strwhich appends
onto our already constructed status string s. Finally we print the whole thing out.

Finally, we want to print out the body of the response. We already stored the raw text
of the response in the variable result which we used for computing content length.
One nicety we want to provide is pretty printing JSON results if the result is JSON.
Therefore, we try to parse the body into JSON and then pretty print if that works,
otherwise we just print the raw body.

src/main.rs

70 let result_json: serde_json::Result<OrderedJson> = serde_json::from\

71 _str(&result);

72 match result_json {

73 Ok(result_value) => {

74 let result_str = serde_json::to_string_pretty(&result_value\

75)?;

76 println!("{}", result_str);

77 }

78 Err(e) => {

79 trace!("Failed to parse result to JSON: {}", e);

80 println!("{}", result);

81 }

82 }

83

84 Ok(())

85 }

Note here that aswe are specifying the type of result_json as serde_json::Result<OrderedJson>
the actually representation of the JSON will be ordered by the keys if it is correctly
parsed. This is because of our type alias for OrderedJson telling serde that it should
use a BTreeMap as the container for the top level JSON object.

The application module

We already wrote code that depends on the existence of an appmodule, so let’s make
that real by creating src/app.rs and getting started with some imports:

Command Line Applications 205

src/app.rs

1 use log::{debug, trace};

2 use std::convert::TryFrom;

3 use structopt::StructOpt;

4

5 use crate::errors::{Error, HurlResult};

Thismodule is the core of howwe interact with the user via command line arguments.
The App struct is both the data that configures what we will do as well as the majority
of the code we need to write to handle getting that data. This is because of the
StructOpt custom derive macro which we take advantage of.

The structopt crate is built on the clap crate. You may also see people using Clap

to create command line applications. We are doing the same thing, but writing
significantly less code by using a form of declarative programming. We are going to
build up a large struct definition in pieces and explain as we go, but in the end wewill
have almost everything we need to build a full featured command line application.

Our first step is to declare our struct with the name App:

src/app.rs

7 /// A command line HTTP client

8 #[derive(StructOpt, Debug)]

9 #[structopt(name = "hurl")]

10 pub struct App {

Comments that start with three slashes, ///, are known as doc comments. They are
treated specially by the compiler and used for auto-generating crate documentation.
Notice that we put such a comment on top of the derives for our struct which will
associate that comment with the struct as a whole.

We derive Debugwhich is normal and we have seen before, but the magic happens by
deriving StructOpt. This is a type of macro known as a custom derive which means
that code in the structopt crate will be given our struct definition as input and will
output code which will then be included in our crate. This is how the Debug derive
works as well except that custom code is part of the standard library. Usually these

Command Line Applications 206

derives are used to implement traits, but they can also be used for any number of
other purposes.

We also see an attribute #[structopt(name = "hurl")] which is ignored by the rest
of the compiler but is something that the StructOpt derive uses for customization.
Doc comments are included as part of the struct definition to the custom derive and
therefore structopt uses the doc comment on this struct as part of the help message
which gets created as part of the code that is generated.

We then create several options for our application to accept at the command line by
creating fields on our struct:

src/app.rs

11 /// Activate quiet mode.

12 ///

13 /// This overrides any verbose settings.

14 #[structopt(short, long)]

15 pub quiet: bool,

16

17 /// Verbose mode (-v, -vv, -vvv, etc.).

18 #[structopt(short, long, parse(from_occurrences))]

19 pub verbose: u8,

20

21 /// Form mode.

22 #[structopt(short, long)]

23 pub form: bool,

24

25 /// Basic authentication.

26 ///

27 /// A string of the form `username:password`. If only

28 /// `username` is given then you will be prompted

29 /// for a password. If you wish to use no password

30 /// then use the form `username:`.

31 #[structopt(short, long)]

32 pub auth: Option<String>,

33

34 /// Bearer token authentication.

Command Line Applications 207

35 ///

36 /// A token which will be sent as "Bearaer <token>" in

37 /// the authorization header.

38 #[structopt(short, long)]

39 pub token: Option<String>,

40

41 /// Default transport.

42 ///

43 /// If a URL is given without a transport, i.e example.com/foo

44 /// http will be used as the transport by default. If this flag

45 /// is set then https will be used instead.

46 #[structopt(short, long)]

47 pub secure: bool,

48

49 /// The HTTP Method to use, one of: HEAD, GET, POST, PUT, PATCH, DE\

50 LETE.

51 #[structopt(subcommand)]

52 pub cmd: Option<Method>,

53

54 /// The URL to issue a request to if a method subcommand is not spe\

55 cified.

56 pub url: Option<String>,

The types of the variables determine what type of flag/option is created. For example,
a field with type bool like quiet creates a flag which sets the field to true if it
is present and is otherwise set to false. Each field has documentation in the help
message created by the doc comments. The attributes on the fields are further used
for customization. For example, short, long says that the field should be usable
using a short form like -q for quiet and a long form --quiet.

The structopt docs explain exactly what each type implies but they are mostly what
one would expect. An Option around a type signifies that argument is optional,
whereas a non-optional field that is not a bool would be treated as a required
positional argument. We use parse(from_occurrences) on the verbose field to allow
the u8 field to be inferred from the number of times the argument is passed. This is
a common pattern to use for verbosity by command line tools.

Command Line Applications 208

The one special field you might notice is cmd which has a attribute of subcommand.
We will get to this below, but basically this means that we need to define a Method

type which also derives StructOpt which will be used to create a subprogram here.
As this is wrapped in an Option this is not required.

Finally, the last piece of data that we accept is a list of parameters:

src/app.rs

56 /// The parameters for the request if a method subcommand is not sp\

57 ecified.

58 ///

59 /// There are seven types of parameters that can be added to a comm\

60 and-line.

61 /// Each type of parameter is distinguished by the unique separator\

62 between

63 /// the key and value.

64 ///

65 /// Header -- key:value

66 ///

67 /// e.g. X-API-TOKEN:abc123

68 ///

69 /// File upload -- key@filename

70 ///

71 /// this simulates a file upload via multipart/form-data and requ\

72 ires --form

73 ///

74 /// Query parameter -- key==value

75 ///

76 /// e.g. foo==bar becomes example.com?foo=bar

77 ///

78 /// Data field -- key=value

79 ///

80 /// e.g. foo=bar becomes {"foo":"bar"} for JSON or form encoded

81 ///

82 /// Data field from file -- key=@filename

83 ///

84 /// e.g. foo=@bar.txt becomes {"foo":"the contents of bar.txt"} o\

Command Line Applications 209

85 r form encoded

86 ///

87 /// Raw JSON data where the value should be parsed to JSON first --\

88 key:=value

89 ///

90 /// e.g. foo:=[1,2,3] becomes {"foo":[1,2,3]}

91 ///

92 /// Raw JSON data from file -- key:=@filename

93 ///

94 /// e.g. foo:=@bar.json becomes {"foo":{"bar":"this is from bar.j\

95 son"}}

96 #[structopt(parse(try_from_str = parse_param))]

97 pub parameters: Vec<Parameter>,

98 }

This is mostly documentation, and that documentation should explain what is going
on. The Vec<Parameter> type means that we accept multiple values of this type of
input. As this is a custom type we also need to implement parse_param to work with
the attribute that allows us to define a custom parsing function.

With our definition out of the way, most of the hard work of creating a nice command
line interface is taken care of. We have a few pieces still left to take care of to handle
some of the custom pieces of our app, but for most applications just defining the
struct with the right field types can be all you need to do.

We need to add some methods to our App. There is no way to declaratively say that
we want exactly one of cmd or url to exist. This is partially because of the way we
define Method as we will see below and it is partially due to limitations in the custom
derive. Therefore, we create a validate method to check this constraint after the
parsing has completed and will allow us to error out in that case.

Command Line Applications 210

src/app.rs

93 impl App {

94 pub fn validate(&mut self) -> HurlResult<()> {

95 if self.cmd.is_none() && self.url.is_none() {

96 return Err(Error::MissingUrlAndCommand);

97 }

98 Ok(())

99 }

100

101 pub fn log_level(&self) -> Option<&'static str> {

102 if self.quiet || self.verbose <= 0 {

103 return None;

104 }

105

106 match self.verbose {

107 1 => Some("error"),

108 2 => Some("warn"),

109 3 => Some("info"),

110 4 => Some("debug"),

111 _ => Some("trace"),

112 }

113 }

114 }

The other thing we add is a helper to turn the quiet and verbose settings into a string
log level for use with our logging implementation.

Now we can turn to our data structure for the subcommand:

Command Line Applications 211

src/app.rs

116 #[derive(StructOpt, Debug)]

117 #[structopt(rename_all = "screaming_snake_case")]

118 pub enum Method {

119 HEAD(MethodData),

120 GET(MethodData),

121 PUT(MethodData),

122 POST(MethodData),

123 PATCH(MethodData),

124 DELETE(MethodData),

125 }

We create an enum because we want to use the name of the enum, which is an HTTP
method, as the name of the subcommand. StructOptworks just as well with an enum
as a struct, provided you follow the rules for what the variants can be. In our case,
each variant has the same inner data which itself derives StructOpt. The one extra
attribute we use here rename_all = "screaming_snake_case" is so that our program
uses the form hurl POST whatever.com instead of hurl post whatever.com. This is
a purely stylistic choice.

The inner data for each enum variant is a struct to contain the URL and the
parameters:

src/app.rs

154 #[derive(StructOpt, Debug)]

155 pub struct MethodData {

156 /// The URL to request.

157 pub url: String,

158

159 /// The headers, data, and query parameters to add to the request.

All of the doc comments on the parameters field in the top level App struct are
repeated here in the code, but we omit them for brevity:

Command Line Applications 212

src/app.rs

191 #[structopt(parse(try_from_str = parse_param))]

192 pub parameters: Vec<Parameter>,

193 }

Generally, the same thing repeated can be a sign of some missing abstraction or
constant, but in this case the repeated documentation is about as good as we can do.

We also define one helper method on our Method enum to get the data out of each
variant:

src/app.rs

127 impl Method {

128 pub fn data(&self) -> &MethodData {

129 use Method::*;

130 match self {

131 HEAD(x) => x,

132 GET(x) => x,

133 PUT(x) => x,

134 POST(x) => x,

135 PATCH(x) => x,

136 DELETE(x) => x,

137 }

138 }

139 }

We have been using the Parameter type in our definitions above, so it is now time to
define it:

Command Line Applications 213

src/app.rs

195 #[derive(Debug)]

196 pub enum Parameter {

197 // :

198 Header { key: String, value: String },

199 // =

200 Data { key: String, value: String },

201 // :=

202 RawJsonData { key: String, value: String },

203 // ==

204 Query { key: String, value: String },

205 // @

206 FormFile { key: String, filename: String },

207 // =@

208 DataFile { key: String, filename: String },

209 // :=@

210 RawJsonDataFile { key: String, filename: String },

211 }

This enum is used to specify the data for the different types of parameters that accept.
Each one has a particular use case and having the nice shorthand is quite helpful
when mixing and matching.

Our final task in this module is to write our parse_param function which will take
a string and maybe turn it into a Parameter. In order to make this task easier, we
define a Token type:

src/app.rs

258 #[derive(Debug)]

259 enum Token<'a> {

260 Text(&'a str),

261 Escape(char),

262 }

We have these special separator characters like : and ==, but we need some notion

Command Line Applications 214

of escaping to allow those to appear in keys and values. We further write a helper
function to take string and parse it into a vector of these tokens:

src/app.rs

264 fn gather_escapes<'a>(src: &'a str) -> Vec<Token<'a>> {

265 let mut tokens = Vec::new();

266 let mut start = 0;

267 let mut end = 0;

268 let mut chars = src.chars();

269 loop {

270 let a = chars.next();

271 if a.is_none() {

272 if start != end {

273 tokens.push(Token::Text(&src[start..end]));

274 }

275 return tokens;

276 }

277 let c = a.unwrap();

278 if c != '\\' {

279 end += 1;

280 continue;

281 }

282 let b = chars.next();

283 if b.is_none() {

284 tokens.push(Token::Text(&src[start..end + 1]));

285 return tokens;

286 }

287 let c = b.unwrap();

288 match c {

289 '\\' | '=' | '@' | ':' => {

290 if start != end {

291 tokens.push(Token::Text(&src[start..end]));

292 }

293 tokens.push(Token::Escape(c));

294 end += 2;

295 start = end;

Command Line Applications 215

296 }

297 _ => end += 2,

298 }

299 }

300 }

This is not the most exciting or elegant parsing code. We use a pair of indexes into
the source string along with possibly some lookahead to tokenize the input. Basically
this is looking for \, =, @, and : following a \ character to indicate that this otherwise
special character should be escaped and treated as a literal. Everything else gets
turned into a piece of text.

Finally, we can write our parse_param function which gets a string from the
command line and tries to turn it into a Parameter or an appropriate error:

src/app.rs

302 fn parse_param(src: &str) -> HurlResult<Parameter> {

303 debug!("Parsing: {}", src);

304 let separators = [":=@", "=@", "==", ":=", "@", "=", ":"];

305 let tokens = gather_escapes(src);

306

307 let mut found = Vec::new();

308 let mut idx = 0;

309 for (i, token) in tokens.iter().enumerate() {

310 match token {

311 Token::Text(s) => {

312 for sep in separators.iter() {

313 if let Some(n) = s.find(sep) {

314 found.push((n, sep));

315 }

316 }

317 if !found.is_empty() {

318 idx = i;

319 break;

320 }

321 }

Command Line Applications 216

322 Token::Escape(_) => {}

323 }

324 }

325 if found.is_empty() {

326 return Err(Error::ParameterMissingSeparator(src.to_owned()));

327 }

328 found.sort_by(|(ai, asep), (bi, bsep)| ai.cmp(bi).then(bsep.len().c\

329 mp(&asep.len())));

330 let sep = found.first().unwrap().1;

331 trace!("Found separator: {}", sep);

332

333 let mut key = String::new();

334 let mut value = String::new();

335 for (i, token) in tokens.iter().enumerate() {

336 if i < idx {

337 match token {

338 Token::Text(s) => key.push_str(&s),

339 Token::Escape(c) => {

340 key.push('\\');

341 key.push(*c);

342 }

343 }

344 } else if i > idx {

345 match token {

346 Token::Text(s) => value.push_str(&s),

347 Token::Escape(c) => {

348 value.push('\\');

349 value.push(*c);

350 }

351 }

352 } else {

353 if let Token::Text(s) = token {

354 let parts: Vec<&str> = s.splitn(2, sep).collect();

355 let k = parts.first().unwrap();

356 let v = parts.last().unwrap();

357 key.push_str(k);

Command Line Applications 217

358 value.push_str(v);

359 } else {

360 unreachable!();

361 }

362 }

363 }

364

365 if let Ok(separator) = Separator::try_from(*sep) {

366 match separator {

367 Separator::At => Ok(Parameter::FormFile {

368 key,

369 filename: value,

370 }),

371 Separator::Equal => Ok(Parameter::Data { key, value }),

372 Separator::Colon => Ok(Parameter::Header { key, value }),

373 Separator::ColonEqual => Ok(Parameter::RawJsonData { key, v\

374 alue }),

375 Separator::EqualEqual => Ok(Parameter::Query { key, value }\

376),

377 Separator::EqualAt => Ok(Parameter::DataFile {

378 key,

379 filename: value,

380 }),

381 Separator::Snail => Ok(Parameter::RawJsonDataFile {

382 key,

383 filename: value,

384 }),

385 }

386 } else {

387 unreachable!();

388 }

389 }

We use our gather_escapes function to tokenize the input. Then we loop over those
tokens looking for separators. We are trying to find the earliest and longest separator

Command Line Applications 218

as some of them have overlap. The found vector will contain all of the separators
that match in the first text segment with an separator. We also store the index in
the segment where this separator starts. If we have anything in that list we can stop
looking for more, so we break. We error out if no separators are found as that is an
erroneous state.

We sort by location and then length of the separator to match our desired condition.
Then as we know the vector is not empty we can extract the separator for this
parameter from the first element in the vector.

The next chunk of code is using the data we have stored so far to construct a key and
value for the particular separator.

Finally, we use the text value of the separator to get a separator type which we then
use to construct the appropriate Parameter. The code for going from a separator
string to a Separator as well as the Separator enum definition is straightforward:

src/app.rs

230 #[derive(Debug)]

231 enum Separator {

232 Colon,

233 Equal,

234 At,

235 ColonEqual,

236 EqualEqual,

237 EqualAt,

238 Snail,

239 }

240

241 impl TryFrom<&str> for Separator {

242 type Error = ();

243

244 fn try_from(value: &str) -> Result<Self, Self::Error> {

245 match value {

246 ":" => Ok(Separator::Colon),

247 "=" => Ok(Separator::Equal),

248 "@" => Ok(Separator::At),

249 ":=" => Ok(Separator::ColonEqual),

Command Line Applications 219

250 "==" => Ok(Separator::EqualEqual),

251 "=@" => Ok(Separator::EqualAt),

252 ":=@" => Ok(Separator::Snail),

253 _ => Err(()),

254 }

255 }

256 }

The client module

We need some mechanism for actually making HTTP requests based on all of this
configuration we are building. The module that is responsible for this we call client,
so let’s get started as usual with some imports in src/client.rs:

src/client.rs

1 use crate::app::{App, Method, Parameter};

2 use crate::errors::{Error, HurlResult};

3 use log::{info, debug, trace, log_enabled, self};

4 use reqwest::multipart::Form;

5 use reqwest::{Client, RequestBuilder, Response, Url};

6 use serde_json::Value;

7 use std::collections::HashMap;

8 use std::fs::File;

9 use std::io::BufReader;

10 use std::time::Instant;

A lot more imports than usual as there is quite a bit to take care of in this module.
We are going to build up many small functions to which can be put together to make
the different requests we are trying to make. Let’s first recall how we call the client
module from main:

Command Line Applications 220

src/main.rs

22 match app.cmd {

23 Some(ref method) => {

24 let resp = client::perform_method(&app, method)?;

25 handle_response(resp)

26 }

27 None => {

28 let url = app.url.take().unwrap();

29 let has_data = app.parameters.iter().any(|p| p.is_data());

30 let method = if has_data {

31 reqwest::Method::POST

32 } else {

33 reqwest::Method::GET

34 };

35 let resp = client::perform(&app, method, &url, &app.paramet\

36 ers)?;

37 handle_response(resp)

38 }

39 }

We see that there are two entry points, perform_method and perform. Let’s start with
perform_method:

src/client.rs

12 pub fn perform_method(

13 app: &App,

14 method: &Method,

15) -> HurlResult<Response> {

16 let method_data = method.data();

17 perform(

18 app,

19 method.into(),

20 &method_data.url,

21 &method_data.parameters,

Command Line Applications 221

22)

23 }

This is a simple helper function which takes our Method struct and gets the relevant
data from it so that we can call the more general perform function. The only missing
piece that we rely on is the method.into() call which converts our Method struct into
the reqwest::Method type. We need to write the code for that conversion, which we
will put into our app module alongside the definition of Method:

src/app.rs

141 impl From<&Method> for reqwest::Method {

142 fn from(m: &Method) -> reqwest::Method {

143 match m {

144 Method::HEAD(_) => reqwest::Method::HEAD,

145 Method::GET(_) => reqwest::Method::GET,

146 Method::PUT(_) => reqwest::Method::PUT,

147 Method::POST(_) => reqwest::Method::POST,

148 Method::PATCH(_) => reqwest::Method::PATCH,

149 Method::DELETE(_) => reqwest::Method::DELETE,

150 }

151 }

152 }

This is a straightforward implementation of the From trait which as we have seen
before gives us the reciprocal Into trait for free which we are using in our function
call.

So we just need to implement the general perform function and we will be done:

Command Line Applications 222

src/client.rs

25 pub fn perform(

26 app: &App,

27 method: reqwest::Method,

28 raw_url: &str,

29 parameters: &Vec<Parameter>,

30) -> HurlResult<Response> {

The signature says that we take in the various configuration data and try to return a
response. We chose to call this module client because that is the name of the type
that reqwest uses for the object that can be used to make HTTP requests. Our first
step is therefore to create a Client which we imported from reqwest, parse the url
into a something useful, and then further validate our parameters based on whether
or not it is a multipart request:

src/client.rs

31 let client = Client::new();

32 let url = parse(app, raw_url)?;

33 debug!("Parsed url: {}", url);

34

35 let is_multipart = parameters.iter().any(|p| p.is_form_file());

36 if is_multipart {

37 trace!("Making multipart request because form file was given");

38 if !app.form {

39 return Err(Error::NotFormButHasFormFile);

40 }

41 }

We are using a helper here in the call to determine whether this is a multipart request,
p.is_form_file() which we need to define on Parameter. We again go back to
app.rs to define some helpers on Parameter:

Command Line Applications 223

src/app.rs

213 impl Parameter {

214 pub fn is_form_file(&self) -> bool {

215 match *self {

216 Parameter::FormFile { .. } => true,

217 _ => false,

218 }

219 }

220

221 pub fn is_data(&self) -> bool {

222 match *self {

223 Parameter::Header { .. } => false,

224 Parameter::Query { .. } => false,

225 _ => true,

226 }

227 }

228 }

Without these helpers these match statements would be quite messy written inline
inside the closure and would leak quite a bit of the implementation details of
Parameter which is not necessary.

Let’s finish up perform by building and sending the request:

src/client.rs

43 let mut builder = client.request(method, url);

44 builder = handle_parameters(builder, app.form, is_multipart, parame\

45 ters)?;

46 builder = handle_auth(builder, &app.auth, &app.token)?;

47

48 if log_enabled!(log::Level::Info) {

49 let start = Instant::now();

50 let result = builder.send().map_err(From::from);

51 let elapsed = start.elapsed();

52 info!("Elapsed time: {:?}", elapsed);

53 result

Command Line Applications 224

54 } else {

55 builder.send().map_err(From::from)

56 }

57 }

The Client type has a request method which returns a builder given a HTTP method
and a URL. We use some soon-to-be written helpers to modify the builder with our
various configuration details. Finally, we send the request with builder.send().map_-
err(From::from). However, we have two cases, one where logging is enabled at at
least the Info level andwhen it is not. If we are logging, thenwe use the time facilities
in the standard library to compute the time required to get the response back. If we
are not logging, then we just send the request. The map_err(From::from) bit is so that
we can turn the error possibly returned from reqwest into our custom error type. We
will see how this is implemented when we get to the error module.

Our perform function is done, but we still have a few speculative helpers left to write
before we can call this module quits. First, let’s parse the raw URL string we got into
the Url type exposed by reqwest:

src/client.rs

149 fn parse(app: &App, s: &str) -> Result<Url, reqwest::UrlError> {

150 if s.starts_with(":/") {

151 return Url::parse(&format!("http://localhost{}", &s[1..]));

152 } else if s.starts_with(":") {

153 return Url::parse(&format!("http://localhost{}", s));

154 }

155 match Url::parse(s) {

156 Ok(url) => Ok(url),

157 Err(_e) => {

158 if app.secure {

159 Url::parse(&format!("https://{}", s))

160 } else {

161 Url::parse(&format!("http://{}", s))

162 }

163 }

164 }

165 }

Command Line Applications 225

We provide two convenience ways to call localhost URLs. First, if you want to use the
default port of 80 on localhost then you can specify the URL as :/some_path where
some_path is optional. In that case we strip off the leading colon and interpolate the
rest of the given URL into a string which explicitly mentions localhost.

The other case is if you put something after the color which is not a slash then that
is interpreted to mean that you want to specify the localhost port along with your
URL so we just use append the raw URL to localhost. In other words, if you want
to make a request to say localhost:8080 you can just use :8080. This is a nice little
convenience for local development. In both cases we use the Url::parse method to
do the heavy lifting.

If neither of these two scenarios applies, then we try to parse the given string directly.
If that succeeds thenwe are good to go and just return that. Otherwise, we try to add a
scheme to the given URL. The reqwest Url::parse function requires a scheme so just
using example.com would fail to parse. The App struct has a secure flag for whether
to use https by default, so we switch on that value to decide which scheme to try.
We return the result from this call to parse directly as there isn’t much else to try if
this also fails.

Let’s turn to handling the various different parameters we could add to the request.
This function is long so at first glance it might be intimidating. However, taken step
by step we will see the length is driven by the fact that we support seven different
parameter types rather than any lurking complexity. Let’s start with the signature:

src/client.rs

75 fn handle_parameters(

76 mut builder: RequestBuilder,

77 is_form: bool,

78 is_multipart: bool,

79 parameters: &Vec<Parameter>,

80) -> HurlResult<RequestBuilder> {

We take a RequestBuilder and some parameter data and return a builder or an
error. The mut in front of the builder argument just means to make the builder

Command Line Applications 226

argument work like a mutable local variable. We do this because the methods on
RequestBuilder consume the receiver, i.e. they take self as their first argument
rather than &self or &mut self, and return a new RequestBuilder. We could have
instead continually used let bindings to update the builder variable, but we will see
that using this mutable approach reduces the noise a bit.

With that out of the way, try to walk through the rest of the function. First let’s setup
some state to use as we loop over our parameters:

src/client.rs

81 let mut data: HashMap<&String, Value> = HashMap::new();

82 let mut multipart = if is_multipart {

83 Some(Form::new())

84 } else {

85 None

86 };

We declare a HashMap from strings to JSON values which will be the container for
the data that we will eventually add to the request. If the request is a multipart form
based on the argument passed in to us, we create a Form object inside an Option for
later use. This form object is provided by reqwest for exactly this purpose of adding
each part of a multipart form to a request.

Now we can loop over our parameters, and use a big a match statement to handle
each one individually:

src/client.rs

88 for param in parameters.iter() {

89 match param {

90 Parameter::Header { key, value } => {

91 trace!("Adding header: {}", key);

92 builder = builder.header(key, value);

93 }

94 Parameter::Data { key, value } => {

95 trace!("Adding data: {}", key);

96 if multipart.is_none() {

97 data.insert(key, Value::String(value.to_owned()));

Command Line Applications 227

98 } else {

99 multipart = multipart.map(|m| m.text(key.to_owned()\

100 , value.to_owned()));

101 }

102 }

103 Parameter::Query { key, value } => {

104 trace!("Adding query parameter: {}", key);

105 builder = builder.query(&[(key, value)]);

106 }

107 Parameter::RawJsonData { key, value } => {

108 trace!("Adding JSON data: {}", key);

109 let v: Value = serde_json::from_str(value)?;

110 data.insert(key, v);

111 }

112 Parameter::RawJsonDataFile { key, filename } => {

113 trace!("Adding JSON data for key={} from file={}", key,\

114 filename);

115 let file = File::open(filename)?;

116 let reader = BufReader::new(file);

117 let v: Value = serde_json::from_reader(reader)?;

118 data.insert(key, v);

119 }

120 Parameter::DataFile { key, filename } => {

121 trace!("Adding data from file={} for key={}", filename,\

122 key);

123 let value = std::fs::read_to_string(filename)?;

124 data.insert(key, Value::String(value));

125 }

126 Parameter::FormFile { key, filename } => {

127 trace!("Adding file={} with key={}", filename, key);

128 multipart = Some(

129 multipart

130 .unwrap()

131 .file(key.to_owned(), filename.to_owned())?,

132);

133 }

Command Line Applications 228

134 }

135 }

The Header type is easy, we just call the header method to update our builder. The
Data type is slightly harder as we insert the key and value into the data map if we
are not building a multipart form, otherwise we use the methods on Form to add the
key and value to the form. As our multipart variable is inside an Option we use map
to operate on the Form type inside.

Adding query string elements is also easy given the query method on the builder.
The RawJsonData type is likewise straightforward, we just have to use serde to parse
the string into a Value before inserting into our data map.

The last three parameters all deal with files.

First, RawJsonDataFile parses the file into a JSON value using serde and inserts the
result into ourmap.We use the nice facilities provided by the standard library to open
a handle to a file and to build a buffered reader around that handle. We can then pass
that reader directly to the from_reader function. This automatically handles all of
the complexity of ensuring the file is available, incrementally reading it, ensuring it
is closed even if something goes wrong, etc.

Second, DataFile reads a string from filename and inserts that string as a value
directly in our data map. The read_to_stringmethod is not what you want in many
cases dealing with file I/O in Rust, but sometimes (like here), it is exactly what you
need.

Lastly, we deal with FormFile which is quite simple thanks to the file function
provided by the Form type. We call unwrap on multipart here because the existence
of a FormFile parameter is equivalent to is_multipart being true so we know that
in this branch of the match statement multipart must not be None.

Now that all of the parameters have been converted into more amenable data
structures, we can add them to the builder:

Command Line Applications 229

src/client.rs

134 if let Some(m) = multipart {

135 builder = builder.multipart(m);

136 } else {

137 if !data.is_empty() {

138 if is_form {

139 builder = builder.form(&data);

140 } else {

141 builder = builder.json(&data);

142 }

143 }

144 }

145

146 Ok(builder)

147 }

If we are in the multipart form case then we use the multipart method, otherwise
we either use the form or json methods depending on the is_form flag passed to
us. We do the simply check to ensure that data is actually not empty before trying to
serialize it as part of the request. Finally, if we have made it this far without returning
an error then we know that we can successfully return our builder.

The last bit of information is dealing with authentication information. We have a
helper which will also modify the builder to add the relevant data:

src/client.rs

58 fn handle_auth(

59 mut builder: RequestBuilder,

60 auth: &Option<String>,

61 token: &Option<String>,

62) -> HurlResult<RequestBuilder> {

63 if let Some(auth_string) = auth {

64 let (username, maybe_password) = parse_auth(&auth_string)?;

65 trace!("Parsed basic authentication. Username={}", username);

66 builder = builder.basic_auth(username, maybe_password);

67 }

Command Line Applications 230

68 if let Some(bearer) = token {

69 trace!("Parsed bearer authentication. Token={}", bearer);

70 builder = builder.bearer_auth(bearer);

71 }

72 Ok(builder)

73 }

If we do not have an auth string or a token then we just return the builder unchanged.
Otherwise, we use the basic_auth or bearer_authmethods on the builder to add the
particular pieces of auth information. Our basic auth path makes use of a helper to
get the username and password:

src/client.rs

167 fn parse_auth(s: &str) -> HurlResult<(String, Option<String>)> {

168 if let Some(idx) = s.find(':') {

169 let (username, password_with_colon) = s.split_at(idx);

170 let password = password_with_colon.trim_start_matches(':');

171 if password.is_empty() {

172 return Ok((username.to_owned(), None));

173 } else {

174 return Ok((username.to_owned(), Some(password.to_owned())));

175 }

176 } else {

177 let password = rpassword::read_password_from_tty(Some("Password\

178 : "))?;

179 return Ok((s.to_owned(), Some(password)));

180 }

181 }

We accept the forms myUserName, myUserName:, and myUserName:myPassword as valid
basic auth strings. The first form without a colon assumes that you have input
your username and want to type in your password. We use the extremely helpful
rpassword crate which provides the read_password_from_tty method to ask the
user to enter a password. This captures that value and returns it as a string without
echoing the user input as you would expect.

Command Line Applications 231

The other two cases with colons mean that you are giving your password and we do
not prompt the user to enter one. In the first case, myUserName:, we are saying that
we explicitly want to provide no password.

The errors module

We are almost done! We have been using the errors from this module throughout the
code we have written so far. It might be tempting to write your code using unwrap

and panic! everywhere at first rather than propagating errors when you are just
in a prototyping stage. The next best thing to that is returning results but strings for
errors when you know youwill need errors but youwant to delay creating structured
errors.

Let me caution you against both those approaches. Creating a simple error enum
along with a type alias for your particular result is a tiny amount of work. Let’s do
that now:

src/errors.rs

1 use std::fmt;

2

3 pub enum Error {

4 ParameterMissingSeparator(String),

5 MissingUrlAndCommand,

6 NotFormButHasFormFile,

7 ClientSerialization,

8 ClientTimeout,

9 ClientWithStatus(reqwest::StatusCode),

10 ClientOther,

11 SerdeJson(serde_json::error::Category),

12 IO(std::io::ErrorKind),

13 UrlParseError(reqwest::UrlError),

14 }

15

16 pub type HurlResult<T> = Result<T, Error>;

We import std::fmt to make our Display implementation easier to write, but the
real code here is just a simple enum and a type alias. You don’t have to know about

Command Line Applications 232

all of these errors up front. We do here as we have a bit more foresight in a book with
the rest of the code already written. In fact, most likely you will have only a couple
simply variants at first. Then you will add some more which wrap errors from other
libraries or the standard library. Then you will add more of your own as needed. But
getting just something in place along with the type alias will make your future self
much happier.

Let’s beef up our error type with a couple necessities. First, we implement Display:

src/errors.rs

18 impl fmt::Display for Error {

19 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {

20 match self {

21 Error::ParameterMissingSeparator(s) => {

22 write!(f, "Missing separator when parsing parameter: {}\

23 ", s)

24 }

25 Error::MissingUrlAndCommand => write!(f, "Must specify a ur\

26 l or a command!"),

27 Error::NotFormButHasFormFile => write!(

28 f,

29 "Cannot have a form file 'key@filename' unless --form o\

30 ption is set"

31),

32 Error::ClientSerialization => write!(f, "Serializing the re\

33 quest/response failed"),

34 Error::ClientTimeout => write!(f, "Timeout during request"),

35 Error::ClientWithStatus(status) => write!(f, "Got status co\

36 de: {}", status),

37 Error::ClientOther => write!(f, "Unknown client error"),

38 Error::SerdeJson(c) => write!(f, "JSON error: {:?}", c),

39 Error::IO(k) => write!(f, "IO Error: {:?}", k),

40 Error::UrlParseError(e) => write!(f, "URL Parsing Error: {}\

41 ", e),

42 }

43 }

44 }

Command Line Applications 233

For each variant we write something meaningful, nothing really fancy here. We then
implement Debug directly to be the same as Display:

src/errors.rs

40 impl fmt::Debug for Error {

41 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {

42 write!(f, "{}", self)

43 }

44 }

This approach could be debated, but this mainly serves the purpose of getting the
nice error message in some contexts which do a debug print by default where we do
not have control.

We also want to implement the std::error::Error trait for our Error type:

src/errors.rs

46 impl std::error::Error for Error {

47 fn source(&self) -> Option<&(dyn std::error::Error + 'static)> {

48 match self {

49 Error::UrlParseError(e) => Some(e),

50 _ => None,

51 }

52 }

53 }

The custom error type world in Rust has been all over the place since Rust 1.0,
however the standard library as of around 1.30 started to incorporate much of the
learnings from the community so that one can often do more with just the normal
tools rather than pulling another crate. However, if you are interested the following
crates provide some interesting features around errors: error-chain, failure, context-
attribute, err-derive, snafu, fehler, anyhow, and thiserror.

The last piece of our error puzzle is to provide implementations of the From trait for
errors from other libraries that we want to wrap in our custom enum. There are four
of these that are relevant. First, reqwest::Error:

Command Line Applications 234

src/errors.rs

55 impl From<reqwest::Error> for Error {

56 #[inline]

57 fn from(err: reqwest::Error) -> Error {

58 if err.is_serialization() {

59 return Error::ClientSerialization;

60 }

61 if err.is_timeout() {

62 return Error::ClientTimeout;

63 }

64 if let Some(s) = err.status() {

65 return Error::ClientWithStatus(s);

66 }

67 Error::ClientOther

68 }

69 }

Next up is serde_json::error::Error:

src/errors.rs

71 impl From<serde_json::error::Error> for Error {

72 #[inline]

73 fn from(err: serde_json::error::Error) -> Error {

74 Error::SerdeJson(err.classify())

75 }

76 }

Third is std::io::Error for dealing with file system errors:

Command Line Applications 235

src/errors.rs

78 impl From<std::io::Error> for Error {

79 #[inline]

80 fn from(err: std::io::Error) -> Error {

81 Error::IO(err.kind())

82 }

83 }

Finally, we wrap reqwest::UrlError which comes up in URL parsing:

src/errors.rs

85 impl From<reqwest::UrlError> for Error {

86 #[inline]

87 fn from(err: reqwest::UrlError) -> Error {

88 Error::UrlParseError(err)

89 }

90 }

Recap

Phew, that was an adventure. But we can now perform all of the requests as described
in the basic set of features that we intended to support. The remainder of this chapter
is adding a few add-on features to make this utility slightly more useful. However,
we have a surprisingly rich set of features from a relatively small codebase. This is
primarily enabled by relying on the rich ecosystem of crates available to us.

Adding a configuration file

Our first extension will be to add a configuration file which we can use to set defaults
across program executions. As we are writing Rust, let’s use TOML for the format of
our configuration file. To get started, let’s bring in a few more dependencies to our
Cargo.toml file:

Command Line Applications 236

Cargo.toml

16 dirs = "2.0"

17 lazy_static = "1.4"

18 toml = "0.5"

The dirs crate is a helpful utility which can give us a path to a user’s home directory
in a cross platform way. The lazy_static crate is to create static constants which
are too complicated or impossible to create at compile time. Lastly, the toml crate is
for reading/writing the TOML format.

Changes to main

We are going to make most of our changes in new modules, so let’s add those at the
top of our main.rs file:

src/main.rs

7 mod config;

8 mod directories;

Then, let’s add one extra call to get the configuration data incorporated into our app
by calling process_config_file on our app after we have parsed and validated the
command line arguments:

src/main.rs

16 let mut app = app::App::from_args();

17 app.validate()?;

18 app.process_config_file();

Adding the configuration to our app

Moving over to app.rs, let’s bring in PathBuf for working with file system paths:

Command Line Applications 237

src/app.rs

3 use std::path::PathBuf;

Let’s also bring in our configmodule so that we can reference types from it without
needing the crate prefix everywhere:

src/app.rs

6 use crate::config;

The location of the configuration file is something we want further be able to
configure so we add a config field to the App struct which optionally takes a path to
look for the file. The doc comment here explains what the file is and where we will
look for it:

src/app.rs

51 /// Configuration file.

52 ///

53 /// A TOML file which is stored by default at HOME/.config/hurl/con\

54 fig

55 /// where HOME is platform dependent.

56 ///

57 /// The file supports the following optional keys with the given ty\

58 pes:

59 /// verbose: u8

60 /// form: bool

61 /// auth: string

62 /// token: string

63 /// secure: bool

64 ///

65 /// Each option has the same meaning as the corresponding configura\

66 tion

67 /// option with the same name. The verbose setting is a number from\

68 0

69 /// meaning no logging to 5 meaning maximal log output.

Command Line Applications 238

70 #[structopt(short, long, env = "HURL_CONFIG", parse(from_os_str))]

71 pub config: Option<PathBuf>,

The new structopt attribute here is env = "HURL_CONFIG" which allows the user to
set the location of the configuration file via the HURL_CONFIG environment variable
in addition to the ability to pass it as a command line argument. The fact that you
can get that extra bit of configurability with just a few extra characters really shows
the nicety of using structopt.

The parse(from_os_str) attribute to get the PathBuf is something that is built in to
structopt as this is a very common need.

Finally, let’s add the process_config_file method to our App struct:

src/app.rs

121 pub fn process_config_file(&mut self) {

122 let config_path = config::config_file(self);

123 let config_opt = config::read_config_file(config_path);

124 if let Some(mut config) = config_opt {

125 if self.verbose == 0 {

126 if let Some(v) = config.verbose {

127 self.verbose = v;

128 }

129 }

130 if !self.form {

131 if let Some(f) = config.form {

132 self.form = f;

133 }

134 }

135 if !self.secure {

136 if let Some(s) = config.secure {

137 self.secure = s;

138 }

139 }

140 if self.auth.is_none() {

141 self.auth = config.auth.take();

142 }

Command Line Applications 239

143 if self.token.is_none() {

144 self.token = config.token.take();

145 }

146 }

147 }

We use helper functions from the config module to get the path and read the file at
that path if it exists. We then use the resulting data structure, if we were able to find
and parse one, to update our app struct.

The config module

The module for finding and loading the configuration file is pretty small. We first
import some things we will need:

src/config.rs

1 use serde::Deserialize;

2 use std::fs;

3 use std::path::PathBuf;

4

5 use crate::app::App;

6 use crate::directories::DIRECTORIES;

Then we declare a struct to hold the data that we support in the configuration file:

src/config.rs

8 #[derive(Debug, Deserialize)]

9 pub struct Config {

10 pub verbose: Option<u8>,

11 pub form: Option<bool>,

12 pub auth: Option<String>,

13 pub token: Option<String>,

14 pub secure: Option<bool>,

15 }

Command Line Applications 240

The use of Deserialize here is what allows the toml crate to be able to use the serde
machineary to turn our file into an instance of this struct.

The first helper function we need is one which takes our App struct and returns a
PathBuf to find a configuration file:

src/config.rs

17 pub fn config_file(app: &App) -> PathBuf {

18 app.config

19 .as_ref()

20 .cloned()

21 .filter(|config_path| config_path.is_file())

22 .unwrap_or_else(|| DIRECTORIES.config().join("config"))

23 }

If the app has a valid file defined as its config field then we use that, otherwise we
use the helper provided by the directories module to give us a path to our default
config directory. By using unwrap_or_else we ensure that we always return some
PathBuf from this function.

Now that we have a path, we can write our helper which attempts to read and parse
that file into our Config struct:

src/config.rs

25 pub fn read_config_file(path: PathBuf) -> Option<Config> {

26 fs::read_to_string(path).ok().map(|content| {

27 let config: Config = toml::from_str(&content).unwrap();

28 config

29 })

30 }

We turn the Result returned by read_to_string into an Option using ok() which is
a common idiom when you care about failure but not the specifics of the error. The
error variant just gets turned into None so we can use map on that option to be able
to operate only on the case when we know we have a string of data from a file. We
then use the toml crate along with serde to turn that string into our expected data
structure.

Command Line Applications 241

The use of unwrap here is for expedience. You could choose to handle that error and
return None in that case as well, or return a specific error instead.

The directories module

We turn now to the module responsible for doing the cross platform home directory
lookup. We start with a couple familiar imports:

src/directories.rs
1 use lazy_static::lazy_static;

2 use std::path::{Path, PathBuf};

Note that the first import is bringing in the lazy_staticmacro from the lazy_static
crate. This used to be accomplished with the macro_use attribute at the top level of
the crate, but thankfully macros have become regular items.

We also want to include one import but only if you are building for MacOS. We can
do this in Rust using the cfg attribute:

src/directories.rs
4 #[cfg(target_os = "macos")]

5 use std::env;

This says roughly if the target operating system is MacOS then include the subse-
quent item when compiling, otherwise remove it. This is a much more sane system
of conditional compilation, especially if you are used to C-style # defines.

We create a struct to hold the default path to our configuration file:

src/directories.rs
7 pub struct Directories {

8 config: PathBuf,

9 }

If one wanted to include other directories such as to store data output then this struct
could have additional members. We do it this way to make that type of modification
easier.

Let’s then add some methods to our Directories type:

Command Line Applications 242

src/directories.rs

11 impl Directories {

12 fn new() -> Option<Directories> {

13 #[cfg(target_os = "macos")]

14 let config_op = env::var_os("XDG_CONFIG_HOME")

15 .map(PathBuf::from)

16 .filter(|p| p.is_absolute())

17 .or_else(|| dirs::home_dir().map(|d| d.join(".config")));

18

19 #[cfg(not(target_os = "macos"))]

20 let config_op = dirs::config_dir();

21

22 let config = config_op.map(|d| d.join("hurl"))?;

23

24 Some(Directories { config })

25 }

26

27 pub fn config(&self) -> &Path {

28 &self.config

29 }

30 }

First, our new method returns a Option because we might not be able to find the
directory we are looking for. As we discussed above, we are using the cfg attribute
to do different things depending on if we are on MacOS or not. Here it looks like we
define the variable config_op twice. However, depending on the target, it will only
be defined once. The rest of the code can work with that value. The compiler checks
that the types match in both cases so everything is safe regardless of which OS we
are targeting.

The MacOS case is just trying to use a particular environment variable that is the
recommended way of finding your home directory, if it is defined. Otherwise we
fallback to the dirs crate. In other other case we just use the dirs crate directly.

After that we add hurl to the end of the path and stick that path inside the
Directories struct that we return.

Command Line Applications 243

We also create a convenience method which turns the PathBuf into a Path by the
magic of the Deref trait.

Finally we use lazy_static to expose a static reference to a newly constructed
Directories struct:

src/directories.rs
32 lazy_static! {

33 pub static ref DIRECTORIES: Directories =

34 Directories::new().expect("Could not get home directory");

35 }

We use expect here to crash if we cannot get a path to the home directory. This
only occurs if we literally cannot construct a path, it is not about whether the config
directory exists or whether the config file exists. Without a home directory there is
notmuchwe can dowhen it comes to configuration files. This is a further opportunity
to clean up as this case could be more gracefully handled and probably just ignored.

Adding sessions

A common pattern that comes up when testing APIs on the command line is to make
multiple requests that depend on one another. The most common dependency comes
from authentication where we login as a user and then want to perform some actions
on their behalf. A session is the common terminology for a set of activity between
logging in and logging out. Therefore wewill use this name for the concept of sharing
state across requests.

As we said the primary use case for sessions is authentication but we might also
want to always set a specific header. This is distinct from our configuration file as
it is more specific to a particular group of requests and can also be modified by the
response.

Like the configuration change, we will thread the session through the app starting in
main and ending in a session module where most of the details are implemented.

Adding the session to main

The easy bit is adding are declaration that there will be a session module:

Command Line Applications 244

src/main.rs

8 mod directories;

9 mod errors;

10 mod session;

Then, inside our main function, after setting up logging, but before we match on the
cmd argument, we will try to get a session:

src/main.rs

21 if let Some(level) = app.log_level() {

22 std::env::set_var("RUST_LOG", format!("hurl={}", level));

23 pretty_env_logger::init();

24 }

25

26 let mut session = app

27 .session

28 .as_ref()

29 .map(|name| session::Session::get_or_create(&app, name.clone(),\

30 app.host()));

31

32 match app.cmd {

It may not be clear from this code due to type inference but the session variable here
has type Option<Session>. Wewill have some type of session field on the app which
is optional and if it exists then we will turn that into a Session.

We then move to handle_response:

Command Line Applications 245

src/main.rs

50 fn handle_response(

51 app: &app::App,

52 mut resp: reqwest::Response,

53 session: &mut Option<session::Session>,

54) -> HurlResult<()> {

We add the app and session to this function as the response might update the session.
Inside this function let’s take care of that update:

src/main.rs

93 if !app.read_only {

94 if let Some(s) = session {

95 s.update_with_response(&resp);

96 s.save(app)?;

97 }

98 }

99 Ok(())

This is just after we have finished all of our output and are about to return. If the
session is not read only and the session exists, then we update the session from the
response and save the session.

We need to update the calls to handle_response and in the process we also want to
update our calls to perform_method and perform to also take the session. First, let’s
update the case where cmd is exists:

Command Line Applications 246

src/main.rs

32 Some(ref method) => {

33 let resp = client::perform_method(&app, method, &mut sessio\

34 n)?;

35 handle_response(&app, resp, &mut session)

36 }

Then we can update the situation where cmd is None:

src/main.rs

36 None => {

37 let url = app.url.take().unwrap();

38 let has_data = app.parameters.iter().any(|p| p.is_data());

39 let method = if has_data {

40 reqwest::Method::POST

41 } else {

42 reqwest::Method::GET

43 };

44 let resp = client::perform(&app, method, &mut session, &url\

45 , &app.parameters)?;

46 handle_response(&app, resp, &mut session)

47 }

We pass a mutable reference to the perform functions because we need the session
to possibly fill in data in the request and we also will fill in the session with other
data provided as part of the request as parameters. This will be more clear when we
get to the client module, but for now this is just plumbing.

Supporting sessions in the app module

The app module is responsible for command line argument based configuration.
Therefore our primary responsibility here is to add the fields to the App struct
necessary for configuring the session. Let’s add those fields:

Command Line Applications 247

src/app.rs

44 /// Session name.

45 #[structopt(long)]

46 pub session: Option<String>,

47

48 /// Session storage location.

49 #[structopt(long, parse(from_os_str))]

50 pub session_dir: Option<PathBuf>,

51

52 /// If true then use the stored session to augment the request,

53 /// but do not modify what is stored.

54 #[structopt(long)]

55 pub read_only: bool,

The session field is a name to use for a particular session. Specifying the same
name is how sessions get reused across requests. We also provide the ability to
specify where the session data should be stored. By default we will put things in
our configuration directory for convenience, but this gives the user an option to put
it somewhere else. Finally, the read_only field determines whether the session should
be modified by the request and response or if it should only be used to augment the
request as it currently exists on disk.

While we are here, let’s add one helper method to the app struct which we will use
when we try to store the session. First we bring in one useful helper from the session
module:

src/app.rs

8 use crate::session::make_safe_pathname;

Then we add the host method to the app:

Command Line Applications 248

src/app.rs

177 pub fn host(&self) -> String {

178 if let Some(url) = &self.url {

179 make_safe_pathname(url)

180 } else if let Some(cmd) = &self.cmd {

181 make_safe_pathname(&cmd.data().url)

182 } else {

183 unreachable!();

184 }

185 }

This is a simple way to get some string representation of the URL we are making
requests to. Sessions are unique based on this host value and the configured named.

Adding sessions to the client

Recall that the client is responsible for actually making the network request. The
session will be part of building up the request and as we saw is part of our perform
methods. Therefore, let’s start with importing the session type:

src/client.rs

4 use crate::session::Session;

Then we can add the session to perform_method as we saw before at the call site in
main.rs:

Command Line Applications 249

src/client.rs

13 pub fn perform_method(

14 app: &App,

15 method: &Method,

16 session: &mut Option<Session>,

17) -> HurlResult<Response> {

As this just delegates to perform, we can just pass the passed in session along directly:

src/client.rs

19 perform(

20 app,

21 method.into(),

22 session,

23 &method_data.url,

24 &method_data.parameters,

25)

Our perform method needs the signature updated to take the session:

src/client.rs

28 pub fn perform(

29 app: &App,

30 method: reqwest::Method,

31 session: &mut Option<Session>,

32 raw_url: &str,

33 parameters: &Vec<Parameter>,

34) -> HurlResult<Response> {

We then need to modify our request builder from the session, and possible modify
the session based on the other data available. We do this by creating a function called
handle_session which takes the builder and all of the pertinent data and returns a
new builder. We call this right after creating our builder:

Command Line Applications 250

src/client.rs

47 let mut builder = client.request(method, url);

48 builder = handle_session(

49 builder,

50 session,

51 parameters,

52 !app.read_only,

53 &app.auth,

54 &app.token,

55);

Let’s implement handle_session mostly by delegating to methods on the session:

src/client.rs

87 fn handle_session(

88 mut builder: RequestBuilder,

89 session: &mut Option<Session>,

90 parameters: &Vec<Parameter>,

91 update_session: bool,

92 auth: &Option<String>,

93 token: &Option<String>,

94) -> RequestBuilder {

95 if let Some(s) = session {

96 trace!("Adding session data to request");

97 builder = s.add_to_request(builder);

98 if update_session {

99 trace!("Updating session with parameters from this request"\

100);

101 s.update_with_parameters(parameters);

102 s.update_auth(auth, token);

103 }

104 }

105 builder

106 }

Command Line Applications 251

If we have a session, then we update the builder by adding the session data to the
request. Furthermore, if we are not in read only mode which means we want to
update the session, then we pass the parameters and authentication information to
the session for updating.

Implementing sessions

Finally we get to the meat of building sessions. We have many small tasks to
accomplish in the session module which when put together will do everything we
need. Let’s start with a big stack of imports:

src/session.rs

1 use crate::app::{App, Parameter};

2 use crate::directories::DIRECTORIES;

3 use crate::errors::HurlResult;

4 use reqwest::header::COOKIE;

5 use reqwest::RequestBuilder;

6 use serde::{Deserialize, Serialize};

7 use std::collections::HashMap;

8 use std::fs::{create_dir_all, File, OpenOptions};

9 use std::io::{BufReader, BufWriter};

10 use std::path::PathBuf;

We will get to each of these as they come up, but let’s move on to defining the struct
to contain the session data:

src/session.rs

12 #[derive(Debug, Default, Serialize, Deserialize)]

13 pub struct Session {

14 path: PathBuf,

15 name: String,

16 host: String,

17 auth: Option<String>,

18 token: Option<String>,

19 headers: HashMap<String, String>,

Command Line Applications 252

20 cookies: Vec<(String, String)>,

21 }

We derive Serialize and Deserialize because we are going to read and write this
struct to a file. The path, name, and host are used uniquely describe the file system
location for the session. The other fields: auth, token, headers, and cookies should
be self-explanatory.

Most of our functionality will live as methods implemented on this struct, so let’s get
started with new:

src/session.rs

23 impl Session {

24 pub fn new(app: &App, name: String, host: String) -> Self {

25 let path = Session::path(app, &name, &host);

26 Session {

27 path,

28 name,

29 host,

30 ..Default::default()

31 }

32 }

Constructing a new session is accomplished by using a helper method to get a path
and then storing the data we are given inside a new session struct and using default
values for the rest. The syntax ..Default::default() inside a struct literal is known
as the struct update syntax. It means to use the values from a default constructed
instance of Session to fill in any fields which are not provided above.

The Default::default() bit is not special, but as we derive Default on our struct it is
just one way to create a full Session struct with default values. If other_sessionwas
a variable with type Session, then you could write ..other_session to use the values
from other_session to fill in the missing values. You can think of it as updating the
struct named after the .. with the values explicitly provided.

Before we get to path, let’s finish our construction methods by moving on to load

which loads a Session from a file:

Command Line Applications 253

src/session.rs

34 pub fn load(app: &App, name: &str, host: &str) -> HurlResult<Self> {

35 let path = Session::path(app, name, host);

36 let file = File::open(path)?;

37 let reader = BufReader::new(file);

38 serde_json::from_reader(reader).map_err(|e| e.into())

39 }

We use path again to get the path, then we do the standard sequence of opening a
file, putting a reader around the file handle, and then using serde to deserialize a
type from the data in the file. Here serde knows what to turn the data in the file into
because of the return type of the function.

Finally, we can implement get_or_create which is the convenient method we used
in main which puts together load and new:

src/session.rs

40 pub fn get_or_create(app: &App, name: String, host: String) -> Self\

41 {

42 match Session::load(app, &name, &host) {

43 Ok(session) => session,

44 Err(_) => Session::new(app, name, host),

45 }

46 }

Now let’s see how we get a consistent path for storing the session file:

Command Line Applications 254

src/session.rs

48 fn path(app: &App, name: &str, host: &str) -> PathBuf {

49 let mut session_dir = Session::dir(app, host);

50 let mut filename = make_safe_pathname(name);

51 filename.push_str(".json");

52 session_dir.push(filename);

53 session_dir

54 }

We use another helper to get the directory which we combine with the result of
make_safe_pathname applied to the name of the session to get a full path to the file
where we want to store the session.

The dir helper starts with getting a directory based on the app configuration or using
a default, and then adds a path based on the host:

src/session.rs

56 fn dir(app: &App, host: &str) -> PathBuf {

57 let mut session_dir = app

58 .session_dir

59 .as_ref()

60 .cloned()

61 .filter(|session_dir| session_dir.is_dir())

62 .unwrap_or_else(|| DIRECTORIES.config().join("sessions"));

63 session_dir.push(make_safe_pathname(host));

64 session_dir

65 }

This is how we combine the host and session name to get consistent session file.

The session needs to be able to save itself to disk, sowe implement save on an instance
of session:

Command Line Applications 255

src/session.rs

67 pub fn save(&self, app: &App) -> HurlResult<()> {

68 let dir = Session::dir(app, &self.host);

69 create_dir_all(dir)?;

70 let file = OpenOptions::new()

71 .create(true)

72 .write(true)

73 .truncate(true)

74 .open(&self.path)?;

75 let writer = BufWriter::new(file);

76 serde_json::to_writer(writer, &self).map_err(|e| e.into())

77 }

We start by ensuring the directorywhere wewant to store the file exists. The function
create_all_dir is effectively mkdir -p which creates all intermediate directories as
needed. We then open the file at our specified path and serialize our data structure
to disk as JSON. We use the OpenOptions builder to specify exactly how we want the
file opened. We want the file on disk to exactly represent the current struct we are
trying to write in both cases where the file does and does not exist. We need create

for the does not exist case, and we need truncate to properly handle all cases when
the file does exist.

That takes care of all of the functionality of reading/writing the session to disk. We
turn now to how we actually use the session to modify the request and how we
modify the session from the request and response.

First let’s deal with updating the session from the request parameters:

Command Line Applications 256

src/session.rs

79 pub fn update_with_parameters(&mut self, parameters: &Vec<Parameter\

80 >) {

81 for parameter in parameters.iter() {

82 match parameter {

83 Parameter::Header { key, value } => {

84 let lower_key = key.to_ascii_lowercase();

85 if lower_key.starts_with("content-") || lower_key.s\

86 tarts_with("if-") {

87 continue;

88 }

89 self.headers.insert(key.clone(), value.clone());

90 }

91 _ => {}

92 }

93 }

94 }

We have chosen to only support headers as a parameter that we store in the session
so that is the only parameter type that we care about. We store the headers in the
headers field on the session, but we exclude a few keys as persisting them across
request is almost certainly not what you want to do.

Next we update the session with auth data if it is available:

src/session.rs

94 pub fn update_auth(&mut self, auth: &Option<String>, token: &Option\

95 <String>) {

96 if auth.is_some() {

97 self.auth = auth.clone();

98 }

99

100 if token.is_some() {

101 self.token = token.clone();

102 }

103 }

Command Line Applications 257

We have two remaining tasks. One is to add the session to the request. The other is to
update the session from the response. Let’s first update the request with the session:

src/session.rs

104 pub fn add_to_request(&self, mut builder: RequestBuilder) -> Reques\

105 tBuilder {

106 for (key, value) in self.headers.iter() {

107 builder = builder.header(key, value);

108 }

109 let cookies = self

110 .cookies

111 .iter()

112 .map(|(name, value)| format!("{}={}", name, value))

113 .collect::<Vec<String>>()

114 .join("; ");

115 if cookies.is_empty() {

116 return builder;

117 }

118 builder.header(COOKIE, cookies)

119 }

IF we have headers, we add them to the request. Further, if we have cookies, we turn
them into the expected format for the cookie header and add that to the request. The
format of the cookie header is given by the HTTP specification and the key for the
cookie header is provided by reqwest as the constant COOKIE.

The only part of the response that we want to absorb into the session is the cookies,
so let’s write the function for updating the session accordingly:

Command Line Applications 258

src/session.rs

120 pub fn update_with_response(&mut self, resp: &reqwest::Response) {

121 for cookie in resp.cookies() {

122 self.cookies

123 .push((cookie.name().to_owned(), cookie.value().to_owne\

124 d()));

125 }

126 }

127 }

Lastly, we have used the helper make_safe_pathname in a few places, but we still have
to write it:

src/session.rs

128 pub fn make_safe_pathname(s: &str) -> String {

129 let mut buf = String::with_capacity(s.len());

130 for c in s.chars() {

131 match c {

132 'a'..='z' | 'A'..='Z' | '0'..='9' | '_' | '-' | ' ' => buf.\

133 push(c),

134 _ => buf.push('_'),

135 }

136 }

137 buf

138 }

This is one choice for turning a string into something that is safe for storing on the
file system. You can choose your own scheme if you want, but this demonstrates one
approach that works.

Session recap

We can now execute the following requests

Command Line Applications 259

1 $ hurl --session foo POST example.com X-API-TOKEN:abc123 info=fuzz

2 $ hurl --session foo example.com/info

and the second request will include the X-API_TOKEN:abc123 header. This is a really
nice feature that you either realize you’ve always wanted or will some day.

Syntax highlighting

One final feature to add a bit of polish to our little application: syntax highlighting.
We are going to implement this in a way that is not completely general to save
on space, but all the ideas are still here. Moreover, as most syntax highlighting is
designed around programming languages, we will have to do some custom work to
support highlighting our output.

Let’s start with adding one more dependency to our manifest:

Cargo.toml

19 syntect = "3.2"

Adding highlighting to main

We start by importing some types related to highlighting and declare a syntax

module which will encapsulate our custom syntax:

src/main.rs

14 use syntect::highlighting::Theme;

15 use syntect::parsing::SyntaxSet;

16

17 mod syntax;

Early on in our main function, we are going to build a syntax set and a theme:

Command Line Applications 260

src/main.rs

26 if let Some(level) = app.log_level() {

27 std::env::set_var("RUST_LOG", format!("hurl={}", level));

28 pretty_env_logger::init();

29 }

30

31 let (ss, ts) = syntax::build()?;

32 let theme = &ts.themes["Solarized (dark)"];

33

34 let mut session = app

35 .session

A SyntaxSet is exactly what it sounds like, it is a set of grammatical syntaxes which
can be highlighted. You can think about it as a way to go from raw text to structured
text. A theme is a description of what colors to apply based on the annotations in
that structured text.

Our syntax module will expose a build function that takes care of this, but it exposes
both a set of syntaxes as well as a set of themes. To get one theme we have to ask for
one particular theme from the theme set. Here we cheat a bit and hard code one that
is included by default by the syntect crate. This is one opportunity for an extension
by making this configurable.

The response is what we want to highlight, so we add our syntax set and theme to
handle_response:

src/main.rs

58 fn handle_response(

59 app: &app::App,

60 ss: &SyntaxSet,

61 theme: &Theme,

62 mut resp: reqwest::Response,

63 session: &mut Option<session::Session>,

64) -> HurlResult<()> {

Instead of calling println!, we are going to call highlight_string which will still
print the string but with colors:

Command Line Applications 261

src/main.rs

88 s.push_str(&(&headers[..]).join("\n"));

89 highlight_string(ss, theme, "HTTP", &s);

We need to add a call to println!("") to add a newline between the header content
and the body:

src/main.rs

91 println!("");

92 let result_json: serde_json::Result<OrderedJson> = serde_json::from\

93 _str(&result);

If we managed to parse the body as JSON then we replace to print call again with
highlight_string:

src/main.rs

95 let result_str = serde_json::to_string_pretty(&result_value\

96)?;

97 highlight_string(ss, theme, "JSON", &result_str);

We need to pass the syntax set and theme to handle_response in the case we have a
cmd:

src/main.rs

41 let resp = client::perform_method(&app, method, &mut sessio\

42 n)?;

43 handle_response(&app, &ss, theme, resp, &mut session)

and in the case where we do not have a cmd:

Command Line Applications 262

src/main.rs

52 let resp = client::perform(&app, method, &mut session, &url\

53 , &app.parameters)?;

54 handle_response(&app, &ss, theme, resp, &mut session)

Finally, we can implement the real highlighting:

src/main.rs

113 fn highlight_string(ss: &SyntaxSet, theme: &Theme, syntax: &str, string\

114 : &str) {

115 use syntect::easy::HighlightLines;

116 use syntect::util::{as_24_bit_terminal_escaped, LinesWithEndings};

117

118 let syn = ss

119 .find_syntax_by_name(syntax)

120 .expect(&format!("{} syntax should exist", syntax));

121 let mut h = HighlightLines::new(syn, theme);

122 for line in LinesWithEndings::from(string) {

123 let regions = h.highlight(line, &ss);

124 print!("{}", as_24_bit_terminal_escaped(®ions[..], false));

125 }

126 println!("\x1b[0m");

127 }

The syntect crate has a really nice set of features because it provides an incredible
amount of intricate customizations and details for syntax highlighting, but it also
provides some easy convenience methods when you don’t need to get too deep into
the details.

We name our two syntaxes "JSON" and "HTTP" and pass those as the syntax argument
to this function so that we can easily look up the right syntax from our syntax set.

We use this syntax and theme to construct a HighlightLines object which is used
to generate text in colored regions for printing. The as_24_bit_terminal_escaped

method is a nice utility for turning those colored regions into escape sequences for
use in terminal output. The LinesWithEndingswill add newlines if they don’t exist so

Command Line Applications 263

that we know that we can use print! instead of println! and still will get newlines
at the end of our lines.

Finally, we print out the terminal reset character which ends all highlighting and
puts us back in to normal shell mode so that we don’t leak our highlighting onto
later shell commands.

Supporting syntax highlighting errors

We want to gracefully handle failing to load syntax definitions, so let’s add a variant
to our error enum to represent this failure:

src/errors.rs

12 IO(std::io::ErrorKind),

13 UrlParseError(reqwest::UrlError),

14 SyntaxLoadError(&'static str),

15 }

The only other thing we need to do is add support for printing this error:

src/errors.rs

36 Error::UrlParseError(e) => write!(f, "URL Parsing Error: {}\

37 ", e),

38 Error::SyntaxLoadError(typ) => write!(f, "Error loading syn\

39 tax for {}", typ),

Luckily, if you somehow forgot to do that the compiler would give you an error
because the match statement in the Debug implementation would no longer be
exhaustive.

The syntax module

We have one purpose in this module, to load syntax and theme sets. Let’s add the
relevant imports to this new src/syntax.rs file:

Command Line Applications 264

src/syntax.rs

1 use crate::errors::{Error, HurlResult};

2 use syntect::highlighting::ThemeSet;

3 use syntect::parsing::syntax_definition::SyntaxDefinition;

4 use syntect::parsing::{SyntaxSet, SyntaxSetBuilder};

We expose one public function, build, which returns a syntax set and a theme set:

src/syntax.rs

6 pub fn build() -> HurlResult<(SyntaxSet, ThemeSet)> {

7 let mut builder = SyntaxSetBuilder::new();

8 let http_syntax_def = include_str!("../HTTP.sublime-syntax");

9 let def = SyntaxDefinition::load_from_str(http_syntax_def, true, No\

10 ne)

11 .map_err(|_| Error::SyntaxLoadError("HTTP"))?;

12 builder.add(def);

13

14 let json_syntax_def = include_str!("../JSON.sublime-syntax");

15 let json_def = SyntaxDefinition::load_from_str(json_syntax_def, tru\

16 e, None)

17 .map_err(|_| Error::SyntaxLoadError("JSON"))?;

18 builder.add(json_def);

19 let ss = builder.build();

20

21 let ts = ThemeSet::load_defaults();

22 Ok((ss, ts))

23 }

Syntect uses a builder pattern for constructing a syntax set. We first create the HTTP
syntax and then the JSON syntax. For the theme we just use the provided load_-

defaults method to get a decent set of themes to return.

The code to construct each syntax definition is the same except for the path to the
file which is brought in via include_str!. The path used here is relative to the
file in which this macro exists. As we are inside the src directory, this implies

Command Line Applications 265

that ../HTTP.sublime-syntax is therefore located in the same directory as our
Cargo.toml file.

The include_str! macro is extremely handy. This reads a file at compile time and
includes the bytes directly in the binary as a &'static str. This allows you to have
the benefit of keeping data separate in a file, without the cost of having to read it at
runtime. Obviously this makes your binary bigger, but this is such a great tool when
you want to make that trade-off.

The two syntax definition files are in the sublime syntax format which is what
Syntect uses. This format is a YAML file which describes how to assign predefined
highlight attributes to pieces of text based on regular expressions. The HTTP syntax
we define does some highlighting of the version, status, and headers:

HTTP.sublime-syntax

1 %YAML 1.2

2 ---

3 name: HTTP

4 file_extensions:

5 - http

6 scope: source.http

7 contexts:

8 main:

9 - match: ([A-Z]+)(+)([^]+)(+)(HTTP)(/)(\d+\.\d+)

10 captures:

11 1: function.name.http

12 2: string.quoted.double.http

13 3: entity.name.section.http

14 4: string.quoted.double.http

15 5: keyword.http

16 6: keyword.operator.http

17 7: constant.numeric.integer.decimal.http

18 - match: (HTTP)(/)(\d+\.\d+)(+)(\d{3})(+)(.+)

19 captures:

20 1: keyword.http

21 2: keyword.operator.http

22 3: constant.language.http

Command Line Applications 266

23 4: string.quoted.double.http

24 5: constant.numeric.integer.decimal.http

25 6: string.quoted.double.http

26 7: keyword.symbol.http

27 - match: (.*?)(*)(:)(*)(.+)

28 captures:

29 1: function.name.http

30 2: string.quoted.double.http

31 3: keyword.operator.http

32 4: string.quoted.double.http

33 5: string.quoted.double.http

This syntax is completely custom for this application and could easily be extended
or changed based on what you might rather see.

The JSON syntax is similar but much longer. You can find various packages as part
of the Sublime editor repo. For example, a good JSON syntax can be found here:

https://raw.githubusercontent.com/sublimehq/Packages/v3186/JavaScript/JSON.sublime-
syntax

This comes from the sublimehq/Packages repo available here:

https://github.com/sublimehq/Packages/

Summary

We built a fraction of the features of cURL but we added some nice things on top like
syntax highlighting and sessions. Although there is quite a bit of code that we had
to write, we still only wrote a tiny fraction compared to the amount of work that is
done for us by the great libraries that we built on top of.

The ecosystem of crates has matured to the point that you can probably find a solid
library to accomplish most of the mundane tasks. The fun part is putting them all
together to build interesting, useful, and new experiences.

Macros
Overview

Writing code that generates code is known as metaprogramming. Some languages
have no native support for this, while others accomplish it textual substitution, and
still others have the ability to operate on syntax as data. This last concept comes from
Lisp and is called a macro. In short, a macro is a thing which takes code as input and
produces code as output. Rust has a set of macro features depending on what you are
trying to accomplish and how much work you want to undertake. These are:

• declarative macros
• procedural custom derive macros
• procedural attribute macros
• procedural function-like macros

Macros serve to reduce the amount of code you need to write, but it is important
to understand that anything you can do with a macro you could have done by
hand. There is nothing magic going on in the world of macros even if it sometimes
feels otherwise. That is not to understate the enormous power of metaprogramming.
Generating code can be a significant multiplier to your productivity and is absolutely
the right tool for some jobs.

But, as always, with great power comes great responsibility. Code that generates code
can be hard to understand, hard to change, and hard to debug. Frequently macros are
not the right tool to reach for. If you can get awaywith using a function or some other
abstraction mechanism for reducing repetition, then you should almost certainly use
that instead of a macro.

There are two primary reasons to reach for a macro. The first is if you want a
functionwith a variable number of arguments. The second reason is if youwant to do
something that must happen at compile time, like implement a trait. It is impossible

Macros 268

to write a normal function that does either of these in regular Rust, but both can be
accomplished with macros.

We are going to cover declarative macros in a limited fashion as they are the
less powerful but better documented type of macros. If you can accomplish your
task easily with a declarative macro, then fantastic. However, they can get hairy
very quickly. Moreover, as we will see, the more powerful procedural macros are
actually closer to writing regular Rust and are thereforemore approachable for bigger
problems.

Declarative Macros

The name of this type of macro comes from the fact that the language used to
implement these is a declarative style language inspired by Scheme. You can think
of it as being similar to a big match statement where the conditions are matching on
syntactic constructs and the result is the code you want to generate.

Rather than explain all the syntax and go through a bunch of boilerplate, let’s first
just write a macro that is similar to something you have seen before. Suppose the
standard library did not come with the vec! macro. We find ourselves writing code
like:

let mut v = Vec::new();

v.push(1);

v.push(2);

v.push(3);

let v = v;

This starts to get tedious and it requires that weird let v = v; line to get an immutable
binding to our vector after we are done filling it up. We could have instead put the
creation code in a block such as:

Macros 269

let v = {

let mut a = Vec::new();

a.push(1);

a.push(2);

a.push(3);

a

};

In some ways that is a little better, but we still have a lot of repetition going on. Can
we instead write some function that does this for us? That would look like:

let v = make_vector(1, 2, 3);

This implies this signature:

fn make_vector(x0: i32, x1: i32, x2: i32) -> Vec<i32>

That would work if we only wanted to create three elements vectors of type i32. It
is easy to make the type more general by using a generic:

fn make_vector<T>(x0: T, x1: T, x2: T) -> Vec<T>

But can we extend this to an arbitrary number of elements? Rust does not support
functions with a variable number of arguments, commonly called variadic functions.
There is no way to write a function in Rust that takes an unknown number of
arguments. We could write out many similar functions:

fn make_vector_1<T>(x0: T) -> Vec<T>

fn make_vector_2<T>(x0: T, x1: T) -> Vec<T>

fn make_vector_3<T>(x0: T, x1: T, x2: T) -> Vec<T>

...

Depending on your use case, like if you are constantly making only one size vector
but you do it in a lot of places, then maybe that could work. But this certainly does
not scale. Enter macros which execute at compile time and are therefore not bound
by the same constraints as the rest of the Rust language.

Let’s implement this as a macro called myvec:

Macros 270

main.rs

1 macro_rules! myvec {

2 ($($x:expr),*) => ({

3 let mut v = Vec::new();

4 $(v.push($x);)*

5 v

6 });

7 ($($x:expr,)*) => (myvec![$($x),*])

8 }

The syntax for creating a macro is to invoke a macro called macro_rules (very meta)
with the name of your new macro, myvec in this case, without the exclamation point,
followed by braces to denote the body of the macro.

The body of a macro is just a series of rules with the left side of an arrow, =>,
indicating what pattern to match, and the right side specifying what code to generate.
The patterns are checked in order from top to bottom, so they move from more
specific to more general so that the specific patterns get a chance to match.

We have two possiblematch arms, let’s start by explaining the first one. ($($:expr),*)
The outer set of parentheses exists to denote the entire pattern. Inside we see
$($x:expr),* which can be broken down into two parts. The inside $x:expr means
to match a Rust expression and bind it to the variable $x. The outer part $(...),*
means to match zero or more comma separated things inside the parentheses. So the
total pattern means to match zero or more comma separated expressions, with each
expression bound to the variable $x. We will see how that is possible to bind multiple
expressions to a single name when we get to the right hand side.

The right hand side is surrounded by parentheses as well which signifies encloses
the entirety of the code to generate. We then also have curly braces surrounding our
code, these mean to literally generate a set of curly braces around our code so that
we are actually outputting a block. If you did not have these then the macro would
expand to just the literal lines of code. Sometimes that is what you want, but for us
as we are going to use this macro as the right hand side of an assignment, we want
it to expand to a single expression.

The macro definition grammar is a bit wild. As our first example of this, the outer
parentheses can actually be any balanced bracket, i.e. (), [], or {} are all acceptable

Macros 271

in that position. So sometimes you might see ($($x:expr),*) => {{ ... }} which
still means to generate a single block, as the outer braces is just there so that the
compiler knows where the right hand side begins and ends.

Then the rest of the right hand side looks just like the example code that we are
replacing, except for the funky bit in middle. We are creating a vector, doing what
looks kinda like our push, and then returning that vector. On the right hand side
of a match inside a macro definition the syntax $(...)* means to repeat the code
inside the parentheses for each repetition captured in the match arm. Within those
parentheses the expression that we captured will be substituted directly for $x. It is
in this way of expanding a repetition on the right that we get access to each of the
repeated captures on the left.

The code inside that repetition v.push($x); is exactly what we were using before if
you mentally replace $x with the different expressions that we pass to our macro.

From just what we have covered so far, we can understand that:

let a = myvec![1, 2, 3];

will expand to

let a = {

let mut v = Vec::new();

v.push(1);

v.push(2);

v.push(3);

v

};

which is exactly the code we saw earlier in our motivation to write this macro. What
about if we wrote:

let a = myvec![1, 2, 3,];

Note the trailing comma after the 3. This is where the second match arm comes
in. It turns out that the syntax in the first match arm ($(...),*) implies matching

Macros 272

a repetition of what is inside $(...) exactly separated by commas, i.e. without a
trailing comma. Without the second part of our macro, having a trailing comma
would be a syntax error as the first arm does not match and it is an error to have a
macro without any arms that match.

Our second pattern $($x:expr,)* with the comma inside the repetition, $(...)*,
means that we expect to see expressions followed by commas. This arm therefore
only matches if we explicitly do have a trailing comma.

We use the right hand side to convert the trailing comma version to the version
without a trailing comma and then rely on our previous pattern to match. We do this
by recursively calling our macro and expanding $($x:expr,)* to $($x),*. Moving
the comma from inside the repetition to outside means to take it from a list of
expressions each followed by a comma to a list of expressions separated by commas.

With this little syntactic trampoline we get a macro which supports optional trailing
commas. Rust generally supports trailing commas so your macros should too. It is
a bit unfortunate that you need to go through this hoop for all macros to support
both styles. Further, it is reasonable to feel like this syntax is weird and really not
like the rest of Rust. You are correct. This declarative style of macro will probably be
deprecated at some point in a future Rust version.

Expanding a macro

Sometimes you think your macro is not quite working how you expect but you can’t
quite tell why. It would be great if you could see what the macro expands into to see
if the generated code is what you expect. Look no further than the cargo expand⁴⁹
command. There are installation instructions on the Github repo for the project, but
the short story is cargo install cargo-expand should allow you to then run cargo

expand from the root of a crate to see all macros expanded out. This works for all
types of macros including procedural macros which we will cover later.

You must have a nightly toolchain installed for the expansion to work. You just need
it installed, you don’t have to be using it directly, the command will find it as needed
as long as you have it installed. This can be accomplished using rustup.

Consider the following code in our main.rs that includes the myvecmacro definition:

⁴⁹https://github.com/dtolnay/cargo-expand

https://github.com/dtolnay/cargo-expand
https://github.com/dtolnay/cargo-expand

Macros 273

main.rs

10 fn main() {

11 let a = myvec![1, 2, 3, 4,];

12

13 let aa = vec![1, 2, 3, 4,];

14 }

We can run cargo expand from the root of this crate to see:

#![feature(prelude_import)]

#[prelude_import]

use std::prelude::v1::*;

#[macro_use]

extern crate std;

fn main() {

let a = {

let mut v = Vec::new();

v.push(1);

v.push(2);

v.push(3);

v.push(4);

v

};

let aa = <[_]>::into_vec(box [1, 2, 3, 4]);

}

We see our macro expands out to exactly what we expect based on walking through
the code. For comparison we also include a call to the vec! macro which is in the
standard library. This expands to calling an inherent method on the slice type that
gets passed syntax for a boxed slice literal slice.

If you keep digging through the source you can eventually work out the entire
implementation at play here. It only uses normal functions so there are no more
macros hidden by this function call. This approach is technically more performant
than what we are doing at the expense of a little clarity.

Macros 274

More information

The Rust reference⁵⁰ has a section on “macros by example” which covers the grammar
of this type of macro in more detail. In particular, besides expressions, you can match
most of the other parts of Rust syntax like statements and types. There is also a good
explanation for matching multiple related repeated items and how you can sort out
that repetition.

For a more complex example, see this blog post⁵¹ which provides an example of
computing expressions in reverse polish notation at compile time using a declarative
macro.

Procedural Macros

Declarative macros were the original type of macro that one could write in stable
Rust, but for a long time procedural macros were used internally in the compiler as
well as in an unstable form with the nightly toolchain. As of Rust 1.30 this type of
macro became available on stable.

There are three types of procedural macros:

• Custom derive
• Attribute-like
• Function-like

It is easier to see examples of these than to try to explain them theoretically.

Custom derive

First, custom derive means that you can create define a trait MyCoolTrait and write
a macro that allows the following code to work:

⁵⁰https://doc.rust-lang.org/1.30.0/reference/macros-by-example.html
⁵¹https://blog.cloudflare.com/writing-complex-macros-in-rust-reverse-polish-notation/

https://doc.rust-lang.org/1.30.0/reference/macros-by-example.html
https://blog.cloudflare.com/writing-complex-macros-in-rust-reverse-polish-notation/
https://doc.rust-lang.org/1.30.0/reference/macros-by-example.html
https://blog.cloudflare.com/writing-complex-macros-in-rust-reverse-polish-notation/

Macros 275

#[derive(MyCoolTrait)]

struct SomeStruct;

These means that SomeStruct will implement MyCoolTrait automatically by having
the implementation generated at compile time. This works by sending the syntax of
the item the derive is placed on to some code that you write which in turn returns
new syntax which will be added to the source alongside the item. We will see an
example of this when we write our own custom derive later.

Attribute-like

Attributes are the annotations on items inside the syntax #[...]. For example,
#[derive(Debug)] is an attribute, it is the derive attribute which takes arguments.
Unlike the custom derive macros which allow us to define how arguments to the
derive attribute operator, we can instead create new attributes. One example we saw
when working on building a web server was defining route information:

#[get("/lookup/{index}")]

fn lookup(...) {

The get attribute is custom and is implemented via a procedural macro. This type of
macro is a function that takes the arguments to the attribute as raw syntax as well
as the item it is being defined on as syntax and then generates code. Attributes can
go in a lot of different places, a lot more than where the derive attribute is valid, so
these are a pretty powerful mechanism for extending the Rust syntax.

Function-like

This type of procedural macro is maybe less obvious as you might expect something
like the following:

let sql = sql!(SELECT * FROM users WHERE id=4);

Macros 276

This is a form of function-like procedural macro, however function-like macros are
not currently stable in expression or statement position. It is expected that this will
stabilize at some not too distant point in the future, but as of Rust 1.40 we still do not
have this feature.

However, using the proc-macro-hack⁵² crate you can get function-like procedural
macros in expression and statement positions. This is a hack because it requires
creating a couple extra crates to get everything working.

The type of function-like procedural macro that you can do on stable today looks
like:

gen_object! {

class Foo: SomeThing {

x: u32,

y: RefCell<i16>,

}

impl Foo {

...

}

}

This means that gen_object takes all of the subsequent syntax as input and then
generates new code to replace it.

We will concentrate on one type of procedural macro although the others use similar
techniques so doing one should inform you quite a bit about all types of procedural
macros.

Writing a custom derive

Our goal for the remainder of this chapter is to implement a procedural macro that
can be used as an argument to the derive attribute. Themost important step inwriting
a macro is to know that you need one.

⁵²https://github.com/dtolnay/proc-macro-hack

https://github.com/dtolnay/proc-macro-hack
https://github.com/dtolnay/proc-macro-hack

Macros 277

Primarily this happens when you find yourself writing repetitive, tedious code. You
almost certainly need towrite that code first however. If you jump straight to amacro,
you are going to have a bad time when you try to figure out what exactly you want
to generate. This is similar to our myvec! declarative macro above, where we first
wrote out the code by hand for a particular example that we wanted to replace.

Motivation

The builder pattern is one of the classic “Gang of Four” design patterns that is
typically thought of in the context of object-oriented code. However, it has a place
elsewhere, and can be quite useful in some problem domains. The pattern separates
construction from the actual representation of an object.

So instead of writing:

struct Item {

a: u32,

b: Option<&'static str>,

c: String,

}

let item = Item { a: 42, b: None, c: String::new("foobar") };

we would write

let item = ItemBuilder::new()

.a(42)

.c("foobar")

.build();

We might not actually know the internal representation of Item, we just know the
API of ItemBuilder and understand that we will get an Item after we call build. It
is possible to provide some niceties like being able to pass a &str to the method for c
instead of having to create the String explicitly, and using a default None value for
b if it is not otherwise specified.

Macros 278

You might want to keep the internal representation of your struct hidden and
therefore not expose the fields for direct construction, but you also want to make
constructing an object easy. We have used builders in other chapters, for example
when building a network request with the reqwest library, we use a RequestBuilder.

Some advanced uses of the builder pattern in Rust are to implement a form of what
is sometimes called the typestate pattern. Specifically, as it is possible to return
different types from each method, we can ensure that certain constraints are satisfied
at compile-time. An example is best to illustrate this, although we will keep things a
bit contrived to focus on the design pattern.

Suppose we want to build a network request:

struct Request {

url: String,

body: String,

token: Option<String>,

}

We require the URL to be set before the body but the token can be set at any time
if it is set at all. We can only build a request if we have both a URL and a body. We
start with a RequestBuilder:

struct RequestBuilder {

token: Option<String>,

}

The entry point for our API is RequestBuilder::new(), then we only provide the
methods which are valid to call. In particular, there is no body method because the
body must be set after the URL:

Macros 279

impl RequestBuilder {

pub fn new() -> Self {

RequestBuilder { token: None }

}

pub fn token(mut self, token: String) -> Self {

self.token = Some(token);

self

}

pub fn url(self, url: String) -> RequestWithUrlBuilder {

RequestWithUrlBuilder {

url,

token: self.token,

}

}

}

We change the return type after the URL method because this moves us into a
different conceptual state. This state is one where we know we have a URL:

struct RequestWithUrlBuilder {

url: String,

token: Option<String>,

}

Again we implement only the methods which are valid to be called in this state:

Macros 280

impl RequestWithUrlBuilder {

pub fn token(mut self, token: String) -> Self {

self.token = Some(token);

self

}

pub fn body(self, body: String) -> FullRequestBuilder {

FullRequestBuilder {

url: self.url,

body,

token: self.token,

}

}

}

We move states to one with a known url and body by changing types again:

struct FullRequestBuilder {

url: String,

body: String,

token: Option<String>,

}

Finally, we can expose a build method which will get us the final request type we
are trying to produce:

impl FullRequestBuilder {

pub fn token(mut self, token: String) -> Self {

self.token = Some(token);

self

}

pub fn build(self) -> Request {

Request {

url: self.url,

Macros 281

body: self.body,

token: self.token,

}

}

}

Given this API, we can build a request:

let req = RequestBuilder::new()

.url("www.example.com")

.body("foobar")

.build();

and we can build one with a token:

let req = RequestBuilder::new()

.url("www.example.com")

.token("abc123")

.body("foobar")

.build();

Importantly, the following are compile-time errors:

RequestBuilder::new()

.body("foo")

.url("www.example.com")

.build();

RequestBuilder::new()

.url("www.example.com")

.build();

This pattern is pretty simple in this context, but it is merely a specific example of a
much broader technique of embedding logic into the type system.

Macros 282

However, this type of complex builder is not needed that often. Frequently, you just
have many structs with many default fields and just need builders for each. In this
case it is annoying to have to write basically the same code for each struct you want
a builder for. It would be nice if you could just “derive” all of the builder code from
the definition of your struct.

Initial setup

We are writing a procedural macro and as of today this requires its own standalone
crate. This crate has a specific type which the compiler treats specially to get all this
to work. Therefore, let’s get started by having cargo create a new crate for us:

1 cargo new builder

We will add some dependencies to our manifest and also specify under the lib key
that we are a proc-macro:

Cargo.toml

1 [package]

2 name = "builder"

3 version = "0.1.0"

4 authors = ["Your Name <your.name@example.com>"]

5 edition = "2018"

6

7 [lib]

8 proc-macro = true

9

10 [dependencies]

11 proc-macro2 = "1.0"

12 quote = "1.0"

13 syn = { version = "1.0", features = ["full"]}

The one proc-macro = true line is what tells the compiler to inject a specific
dependency into your crate and also that your procedural macros that are exported
can actually be used by other crates.

Macros 283

The compiler automatically exposes a library called proc-macro to your code as
if it was a crate that you depend on. This is a bit quirky and has some negative
consequences. Primarily the downside is that code that uses proc-macro can only
execute in procedural macro contexts. This means that you cannot use tools for
understanding Rust syntax in normal code unless it does not depend on proc-macro.
Furthermore, you cannot unit test the proc-macro code.

A separate crate proc-macro2 was created to fix these problems. The foundational
crates for parsing Rust syntax, syn, and generating Rust syntax, quote, are written
against the proc-macro2 crate. Our basic plan is to write a macro with these tools, and
then write some tiny amount of code to shuttle back and forth between the built-in
proc-macro crate and proc-macro2.

Building the scaffold

Looking at the source of many popular procedural macro crates you might be
surprised to discover they are often implemented as a single lib.rs file. This is not
necessary, nor universal, but it often is the case because procedural macros tend to
have very specific and limited scope.

You might want to ask if your macro really needs to be doing everything you have
it doing if you find yourself breaking things up too much. On the other hand, if you
are building something like serde⁵³ then you can benefit quite a bit from modularity.

Our macro will not have much configuration or other extra bits so a single lib.rs file
works quite well. Let’s get started with the imports that will make our lives easier:

⁵³https://serde.rs/

https://serde.rs/
https://serde.rs/

Macros 284

src/lib.rs

1 extern crate proc_macro;

2 use proc_macro::TokenStream;

3 use quote::quote;

4 use std::fmt;

5 use syn::parenthesized;

6

7 use syn::parse::Result as SynResult;

The first line might be a surprise as the 2018 edition did away with the need for
extern crate declarations. However, as of this writing because proc_macro is a built-
in crate, you must still use the extern crate syntax. This is because the compiler
looks in your manifest to resolve crate references but you can’t put proc_macro as a
normal dependency in the manifest because it isn’t normal. Now you don’t have to
use extern crate with std but proc_macro did not get that special treatment. There
is an unused meta crate that is automatically included that might replace proc_macro
in the future, but not today.

Let’s write the public interface to our library:

src/lib.rs

9 #[proc_macro_derive(Builder, attributes(builder))]

10 pub fn builder_derive(input: TokenStream) -> TokenStream {

11 let ast = syn::parse(input).expect("Could not parse type to derive \

12 Builder for");

13

14 impl_builder_macro(ast)

15 }

This is the entirety of what is exported by our library. Before turning to the overall
structure of this function and what the attribute means, let’s look at the implementa-
tion. We call syn::parse to turn the input into a data structure representing the AST
(Abstract Syntax Tree) of the item we are defined on. We then pass that to our real
implementation, impl_builder_macro which we will get to later. The type signature

Macros 285

of impl_builder_macro along with type inference is what tells syn::parsewhat type
to turn our input into.

Here and throughout this chapter, the docs for the syn crate⁵⁴ will be an invaluable
resource. The it can be a bit daunting to try to figure out what types are possible
as parts of the syntax as you tear it down and build it back up. The docs are very
thorough and can help give you a grasp on the complexity of Rust syntax.

This is the highest level of protection against syntax errors as we use expect to panic
if we can’t parse the input. It is common to panic or use the compile_errormacro in
procedural macros. This is because the code is executing at compile time so causing
a panic is sometimes the only thing you can do to stop the compilation process when
you cannot proceed. This is not runtime code so some of the normal rules do not
apply.

As a further note along this line, we are operating very early in the compilation
process. This is before type checking and before a lot of other compiler passes.
We only have very basic information at the syntax level, we have no semantic
information. For example, this means there is no way to say do something special if a
type implements a trait. You are only give the literal tokens that make up the syntax
of the source code. You can do a lot with this, but remember that this is nowhere
near as much information as the full compilation process works with.

Let’s break down the function a little bit more by looking at the proc_macro_derive
attribute. This attribute takes the name of the derive as the first argument which is
Builder in our case. This makes it so we can write:

#[derive(Builder)]

struct Request {

...

}

The second argument to proc_macro_derive is optional and defines helper attributes.
The syntax here is towrite attributes(...)with a comma separated list of attributes
that we want to define inside the parentheses. We are defining a single attribute,
builder, so that we can write:

⁵⁴https://docs.rs/syn/1.0/syn/index.html

https://docs.rs/syn/1.0/syn/index.html
https://docs.rs/syn/1.0/syn/index.html

Macros 286

#[derive(Builder)]

struct Request {

#[builder]

pub x: i32,

...

}

We are going to use a slightly more complicated form of that attribute when we
get around to defining how we will handle it. But to cover the general case here,
attributes can take arguments if you want them to or not. So you might also see:

#[derive(Builder)]

struct Request {

#[builder(foo, bar=32)]

pub x: i32,

...

}

It is up to the implementation of the macro to decide what the attribute means
and whether arguments mean anything. We will get the raw syntax and have to
decide what to do with it. It might not be immediately obvious but even though we
are declaring the name of an attribute here, all macros get access to all attributes.
Therefore, other macros will see our attributes, they typically just choose to ignore
them. You have to declare them like this to inform the compiler that such an attribute
is not a syntax error.

The function builder_derive has the signature (TokenStream) -> TokenStream

which is the form that every custom derive must implement. The input is the item
that the derive is defined on and the return value is appended to the module or block
where that item is defined. In other words,

Macros 287

#[derive(Builder)]

struct Request {

#[builder(foo, bar=32)]

pub x: i32,

...

}

effectively becomes

struct Request {

pub x: i32,

...

}

// output from builder_derive(...) as syntax

Custom attribute macros have a signature of (TokenStream, TokenStream) ->

TokenStream where the first argument is the arguments to the attribute itself and
the second attribute is the item the attribute is on. The return value replaces the item
with an arbitrary number of items. For example,

#[get("/")]

fn foobar() {

}

means that there is a procedural macro that defines a function getwhich will receive
the token stream representing ("/") as its first argument, and the token stream
representing fn foobar() {} as its second argument. The token stream output from
that function will replace all of that code.

Function-like proceduralmacros have the same signature as a derivemacro, (TokenStream)
-> TokenStream, where the input is the entirety of the macro invocation, but instead
of getting appended to the module the token stream that is returned replaces the
input at the same location in the source.

Besides using different attributes to mark the exported function that is about all the
extra information you need to know to implement these other types of procedural
macros after we work our way through a custom derive.

Macros 288

Let’s get back to our implementation by writing the impl_builder_macro function
we referenced earlier:

src/lib.rs

16 fn impl_builder_macro(ty: syn::DeriveInput) -> TokenStream {

17 match parse_builder_information(ty) {

18 Ok(info) => info.into(),

19 Err(e) => to_compile_errors(e).into(),

20 }

21 }

The point of this function is to move into the world of proc_macro2 by passing the
syn input into a function which only operates in this other world. We then use an
into implementation of a type we will write soon to convert back into the proc_-

macro world which we then use to return the expected TokenStream back up. Note
that the proc_macro2::TokenStream type implements the Into trait to get a proc_-

macro::TokenStream so we expect to get proc_macro2::TokenStream values that we
just need to call into on.

Friendly error handling

We are also converting to the more standard style of using result style error propaga-
tion by handling the transformation of an error into something that the procedural
macro system can work with. We do that by writing the to_compile_errors function
that we will see next:

src/lib.rs

23 fn to_compile_errors(errors: Vec<syn::Error>) -> proc_macro2::TokenStre\

24 am {

25 let compile_errors = errors.iter().map(syn::Error::to_compile_error\

26);

27 quote! { #(#compile_errors)* }

28 }

Macros 289

We assume that our errors come as a vector of syn::Errors which are the expected
type of errors we will encounter. That is, we are going to mostly be running into
syntax errors. One nice feature of syn is the associated function syn::Error::to_-

compile_error which converts the error type into a nice diagnostic error which the
compiler will understand when returned as a token stream.

This is our first place where we are actually generating code. The quote!macro uses
a syntax similar to the macro_rulesmacro for generating code, except it interpolates
variables using the syntax #variable. This interpolation requires the variable to
implement the ToTokens trait.

In our case we are interpolating the compile_errors variable. However this variable
is an iterator. Therefore, like in declarative macros, we use the #(...)* syntax to
generate code for each element in the compile_errors iterator.

The output of the quote!macro is the interpolated syntax as a proc_macro2::TokenStream.
The inside of the macro in this case is just an interpolation, but it can be arbitrary
Rust syntax. We will see this more later, but one nicety of procedural macros is
that you can just write normal Rust with some interpolations rather than the more
complicated syntax construction of a declarative macro.

As our error function expects a vector of errors we declare a type alias to make the
corresponding Result type easier to write:

src/lib.rs

28 type MultiResult<T> = std::result::Result<T, Vec<syn::Error>>;

Furthermore, we define a struct to make working with a vector of errors a little easier:

src/lib.rs

52 #[derive(Debug, Default)]

53 struct SyntaxErrors {

54 inner: Vec<syn::Error>,

55 }

The advantage of doing this is to implement the following helper functions:

Macros 290

src/lib.rs

57 impl SyntaxErrors {

58 fn add<D, T>(&mut self, tts: T, description: D)

59 where

60 D: fmt::Display,

61 T: quote::ToTokens,

62 {

63 self.inner.push(syn::Error::new_spanned(tts, description));

64 }

65

66 fn extend(&mut self, errors: Vec<syn::Error>) {

67 self.inner.extend(errors);

68 }

69

70 fn finish(self) -> MultiResult<()> {

71 if self.inner.is_empty() {

72 Ok(())

73 } else {

74 Err(self.inner)

75 }

76 }

77 }

We create an addmethodwhich appends a single error to our vector. This uses generic
types to accept anything that can be turned into tokens along with anything that can
be nicely printed as the description. The new_spanned function uses the token trees,
tts, input to capture source information to information the compiler where to draw
errors when printing the error out.

A span in the Rust compiler is effectively a region of source code. You can think
of it as a start and end position used to draw the arrows and lines in the compiler
error messages. It can get more complicated than that as you might know if you have
ever seen the nice diagrams that come out with borrow checker errors. But for our
purposes you can think of it has a region of source code. Each piece of syntax defines
a span so usually you can bootstrap a span if you have some input tokens.

Macros 291

Getting this right is sometimes a bit of an art and can really make your macro
maddeningly hard to use or delightful. The goal is to inform the compiler as much as
possible as to what syntax is causing the problem and to describe as best as you can
how to fix it. The worst scenario is when the error just points at #[derive(Builder)]
and has some opaque message.

The extend method is self-explanatory. The finish method consumes this wrapper
struct to return a value of our MultiResult. The consequence of this is that you can
use the ? operator after calling finish to report as many errors as you can diagnose
at once. This is another nice feature for your users. It is great if you can discover
multiple errors at once so they can fix them all rather than having to fix one only
to find out there are more lurking under the covers. Sometimes it is not possible or
desirable to find all errors up front, but when you can you should. This vector of
errors makes it possible.

Getting into the parser

Okay, we have our error infrastructure in place. Now we can write our next helper
function which takes the syn input and returns a result with our builder code or a
vector of errors:

src/lib.rs

30 fn parse_builder_information(ty: syn::DeriveInput) -> MultiResult<Build\

31 erInfo> {

32 use syn::spanned::Spanned;

33 use syn::Data;

34

35 let span = ty.span();

36 let syn::DeriveInput {

37 ident,

38 generics,

39 data,

40 attrs,

41 ..

42 } = ty;

43

Macros 292

44 match data {

45 Data::Struct(struct_) => parse_builder_struct(struct_, ident, g\

46 enerics, attrs, span),

47 _ => Err(vec![syn::Error::new(

48 span,

49 "Can only derive `Builder` for a struct",

50)]),

51 }

52 }

The first line brings the Spanned trait into scope so that we can call the span method
on our input. We destructure the syn::DeriveInput type into the specific constituent
parts that we care about. Specifically, we match the data field against the syn::Data
enum to see if the item we are defined on is a struct.

The entire purpose of this function is to ensure that we are being derived on a struct
and not on an enum or any other possible item. If we are not being derived on a
struct then we create an error and stop here. Otherwise, we pass the pieces of data
that we have gathered on to yet another helper function.

Let’s turn now to the BuilderInfo type we see in our type signature:

src/lib.rs

79 struct BuilderInfo {

80 name: syn::Ident,

81 generics: syn::Generics,

82 fields: Vec<(Option<syn::Ident>, syn::Type, Vec<BuilderAttribute>)>,

83 }

This is all of the information we need from the parsed AST to be able to generate
the code we want. We have the name of the type as an syn::Ident, we have the
declaration of any generics from the type, and lastly we have a vector of fields. We
will get to BuilderAttribute next, but as an example consider:

Macros 293

#[derive(Builder)]

struct Item<T, U>

where

T: Default

{

a: u32,

b: T,

#[builder(required)]

c: U

}

Here name is Item, the generics field captures <T, U> where T: Default, and fields
contains a: u32, b: T, and #[builder(required)] c: U. Each of those are wrapped in
a suitable data structure that both captures this syntax as well as information about
where it lives in the source. The fields vector contains a tuple of identifier, type, and
attributes so for example a: u32 would be something like (Some(a), u32, vec![]).
We will see how this exactly plays out later, but this should give you an idea of what
this structure holds.

Handling attributes

We turn now to BuilderAttribute which is an enum defining all of the attributes
we support. We are only going to support one variant but this should elucidate how
you can manage multiple attributes.

src/lib.rs

247 enum BuilderAttribute {

248 Required(proc_macro2::TokenStream),

249 }

This is going to capture the attribute:

#[builder(required)]

Macros 294

The meaning of this attribute is to specify that a field must be set as part of the build
process and therefore a default value should not be used. For simplicity, we are going
to enforce this by causing a panic if the field is not set. For fields not marked required,
we will assume the type of the field implements the Default trait. For a different use
case you might want to flip this assumption and make everything required and only
make things default if they are explicitly marked. Or you could do something more
complicated that combines these two extremes.

As we said we only have one attribute that we care about, but we are going to go
through the trouble of handling a list of attributes for explanatory purposes. Thus,
we define BuilderAttributeBody to be a collection of BuilderAttributes. We then
implement the Parse trait from syn for this type. Implementing this trait is how to
work custom logic into the work that syn does.

src/lib.rs

268 struct BuilderAttributeBody(Vec<BuilderAttribute>);

269

270 impl syn::parse::Parse for BuilderAttributeBody {

271 fn parse(input: syn::parse::ParseStream) -> SynResult<Self> {

272 use syn::punctuated::Punctuated;

273 use syn::token::Comma;

274

275 let inside;

276 parenthesized!(inside in input);

277

278 let parse_comma_list = Punctuated::<BuilderAttribute, Comma>::p\

279 arse_terminated;

280 let list = parse_comma_list(&inside)?;

281

282 Ok(BuilderAttributeBody(

283 list.into_pairs().map(|p| p.into_value()).collect(),

284))

285 }

286 }

The purpose of our implementation of parse is to remove the parentheses from

Macros 295

#[builder(...)] so that BuilderAttribute only has to deal with the tokens inside.
We also deal with the logic of a comma separated list here.

The parenthesized!(inside in input) means to take the ParseStream in input,
remove the parentheses from the outside and store the inner tokens in inside. This
is a macro defined in syn for this very common scenario. There are similar parser
macros for removing curly braces (braced!) and square brackets (bracketed!).

The next step is to parse a sequence of BuilderAttribute types separated by commas
allowing an optional trailing comma. The Punctuated<T,P> type is used to handle
this very common case of a list of T separated by P. We use parse_terminated

which allows trailing punctuation. If you do not want to accept trailing punctuation,
then you can use parse_separated_nonempty. Comparing this to the declarative
macro method of handling this is a good example of how different procedural and
declarative macros are. We are writing real Rust code here and using types and traits
to drive our implementation. This is in contrast to the Scheme style pattern matching
of declarative macros.

The final work that needs to be done is to extract the BuilderAttribute types from
this punctuated list. We do that by using the into_pairs method on Punctuated

which returns an iterator of Pair<BuilderAttribute, Comma> and then for each
of these we just call into_value to get the BuilderAttribute out. Finally, we call
collect on the iterator to turn it into the vector that our return type expects.

This might seem a bit confusing, it again helps to read the docs for the syn crate
for the Punctuated type. It is the only way that any of this can make sense. The
common parsing tasks have specialized functions available so it is best to start there
to hopefully find what you are looking for.

Okay, now we can turn to implementing the Parse trait for BuilderAttribute:

Macros 296

src/lib.rs

251 impl syn::parse::Parse for BuilderAttribute {

252 fn parse(input: syn::parse::ParseStream) -> SynResult<Self> {

253 use syn::Ident;

254

255 let input_tts = input.cursor().token_stream();

256 let name: Ident = input.parse()?;

257 if name == "required" {

258 Ok(BuilderAttribute::Required(input_tts))

259 } else {

260 Err(syn::Error::new(

261 name.span(),

262 "expected `required`",

263))

264 }

265 }

266 }

The spirit here is quite simple, but the mechanics are little cumbersome. We want to
check if the attribute is literally required, if so thenwe return a success, otherwise we
declare a failure. We call methods from syn to turn the input into an Ident which
is the only thing we expect to find. If this step fails then we will return an error
because of the ? operator. We then compare this Ident to "required". If we get a
match, then we wrap the input token stream inside our enum variant. Otherwise we
use the location of the Ident that we did parse to generate an error saying that we
got something unexpected.

With all of these parse functions in place, we can write a helper to go from a vector
of syn::Attributes to our desired type:

Macros 297

src/lib.rs

219 fn attributes_from_syn(attrs: Vec<syn::Attribute>) -> MultiResult<Vec<B\

220 uilderAttribute>> {

221 use syn::parse2;

222

223 let mut ours = Vec::new();

224 let mut errs = Vec::new();

225

226 let parsed_attrs = attrs.into_iter().filter_map(|attr| {

227 if attr.path.is_ident("builder") {

228 Some(parse2::<BuilderAttributeBody>(attr.tokens).map(|body|\

229 body.0))

230 } else {

231 None

232 }

233 });

234

235 for attr in parsed_attrs {

236 match attr {

237 Ok(v) => ours.extend(v),

238 Err(e) => errs.push(e),

239 }

240 }

241

242 if errs.is_empty() {

243 Ok(ours)

244 } else {

245 Err(errs)

246 }

247 }

This is really just some boilerplate around the parsing functions we just wrote. We
define a vector of attributes to return and a vector of errors. We will only return one
of these in the end, but it depends on what we see along the way.

Macros 298

The Iterator trait has many useful methods, filter_map which we use here is a
way to both map over an iterator and remove some unwanted items at the same
time. The closure passed to filter_map returns an Option<T>. The resulting iterator
will “unwrap” the values that are Some(T) to just be a T and will not include the None
values. Due to how Option implements IntoIterator, you can also use flat_map

here for the same effect, but filter_map is more descriptive as to what we are trying
to accomplish.

We take the attributes we are passed as input, we ignore any that are not the builder
attribute, and ones that do match we parse into our specialized types. The parse2

function is for parsing proc_macro2 types but is otherwise the same as parse for
proc_macro types. Suppose we have:

#[something(else), builder(required)]

We would then be iterating over something(else) and builder(required). The first
thing we would see is an attr.path of something which is not builder so we return
None for that attribute which effectively excludes it from the parsed_attrs result.
The next thing we see has a path that matches builder so we take then tokens of
the attribute which is (required) and we parse that into a BuilderAttributeBody

which relies on our Parse trait implementation from earlier. Once we have that we
call map(|body| body.0) which is because the Parse trait returns a Result so we
have to deal with getting inside the Ok variant to pull the Vec<BuilderAttribute>

out of the tuple struct wrapper we put around it.

We had to do it this way becausewe could not implement Parse on Vec<BuilderAttribute>
directly as we do not own Vec nor Parse. Rust trait implementation rules require that
you either own the trait or own the type (where own means is defined within the
cratewith the trait implementation).We do own our tuple struct sowe can implement
Parse. But then to get what we want out we have to do this little map trick to pull
the vector out.

The rest of the function is straight forward. We iterate over the parsed_attrs and
accumulate the good and bad parts. Then if we encountered no errors we can return
our good result, otherwise we return the errors.

Macros 299

Finishing up the parsing

Now we can turn to the real meat of our parsing. Let’s start with the signature:

src/lib.rs

167 fn parse_builder_struct(

168 struct_: syn::DataStruct,

169 name: syn::Ident,

170 generics: syn::Generics,

171 attrs: Vec<syn::Attribute>,

172 span: proc_macro2::Span,

173) -> MultiResult<BuilderInfo> {

We already dealt with ensuring that we are getting derived on a struct so we know
that we have a syn::DataStruct to work with. The rest of the input was pulled
out of the parsed input because it is the only things we need to eventually define
a BuilderInfo struct. The point of this function is to deal with all of the various
error cases that might occur so that we know if we end up with a BuilderInfo struct
that everything is legit for doing code generation.

The first step is to check the attributes defined on the struct itself to see if anyone
tried to use a builder attribute there:

src/lib.rs

174 use syn::Fields;

175

176 let mut errors = SyntaxErrors::default();

177

178 for attr in attributes_from_syn(attrs)? {

179 match attr {

180 BuilderAttribute::Required(tts) => {

181 errors.add(tts, "required is only valid on a field");

182 }

183 }

184 }

Macros 300

We do not support #[builder(required)] on the entire struct so we add an error to
our collection of errors if we see one. We do not return early here as we want to keep
parsing and collecting errors if there are more that we can find.

src/lib.rs

186 let fields = match struct_.fields {

187 Fields::Named(fields) => fields,

188 _ => {

189 errors.extend(vec![syn::Error::new(

190 span,

191 "only named fields are supported",

192)]);

193 return Err(errors

194 .finish()

195 .expect_err("just added an error so there should be one\

196 "));

197 }

198 };

Our next step is to get a handle on the fields defined on the struct. You can define
unnamed struct fields if you are defining a tuple struct, for instance

struct Foo(String)

has one unnamed field. We do not support that type of struct. We therefore look for
named fields and pull out the inner data, otherwise we add an error and then return
all the errors we have gathered so far. We do not go any further looking for errors
because without named fields there is not much we can do.

Macros 301

src/lib.rs

198 let fields = fields

199 .named

200 .into_iter()

201 .map(|f| match attributes_from_syn(f.attrs) {

202 Ok(attrs) => (f.ident, f.ty, attrs),

203 Err(e) => {

204 errors.extend(e);

205 (f.ident, f.ty, vec![])

206 }

207 })

208 .collect();

For each of our named fields, we need to extract the identifier, type, and attributes.
We do this by iterating over the fields and then using methods on the field type to
get the information we want. We use our previously defined attributes_from_syn

to extract attribute information. Note that we will look at the attributes for every
field so we have the potential to accumulate multiple errors depending on the input.

Finally, we return our errors if we encountered any, or we return a successful result
containing our BuilderInfo struct:

src/lib.rs

210 errors.finish()?;

211

212 Ok(BuilderInfo {

213 name,

214 generics,

215 fields,

216 })

217 }

Generating code

All of the work so far has been on the parsing side of the macro. We rely very heavily
on syn to do the hard work of parsing Rust syntax but it still takes quite a bit of code

Macros 302

to extract the necessary information out of the extensive information that is available
to us. But now we are done parsing in the sense that we can move forward under the
assumption of a well defined BuilderInfo struct that we just need to generate code
for.

Our first step is to get an implementation of Into<TokenStream> for BuilderInfo:

src/lib.rs

85 impl From<BuilderInfo> for TokenStream {

86 fn from(other: BuilderInfo) -> TokenStream {

87 other.generate_builder().into()

88 }

89 }

Aswe have seen before we choose to implement From<BuilderInfo> for TokenStream
rather than implementing Into directly and then rely on the automatic reflexive
implementation. This is just yet another indirection to a helper method generate_-

builder defined on BuilderInfo. This is a stylistic choice, but it can be useful to
keep your trait implementations slim and keep the logic that really works with the
internals of your struct inside an impl block for the struct itself.

The other advantage here is that, as we will see shortly, generate_builder can oper-
ate only in terms of proc_macro2 types and this trait encapsulates the proc_macro2
to proc_macro dance using another call to into.

Let’s get started with our code generation by getting the preamble out of the way:

src/lib.rs

91 impl BuilderInfo {

92 fn generate_builder(self) -> proc_macro2::TokenStream {

We are inside the impl block for our type and we are writing a function which
consumes the struct to return a proc_macro2::TokenStream. There is nothing else
happening after this function so there is no reason not to consume self here.

The structure of the implementation of this function is a little bit inside-out so it
might help to go through quickly to the end and then come back to clarify. This is

Macros 303

because we create variables that hold bits of code which then get interpolated into
the final code.

First, we build the code for the setters:

src/lib.rs

93 let gen_typ = syn::Ident::new("__Builder_T", proc_macro2::Span:\

94 :call_site());

95

96 let setters = self.fields.iter().map(|(n, t, _)| {

97 quote! {

98 fn #n<#gen_typ: Into<#t>>(mut self, val: #gen_typ) -> S\

99 elf {

100 self.#n = Some(val.into());

101 self

102 }

103 }

104 });

For each field we create a function that can be used to set the value for that field. The
quote!macro allows us to write normal Rust code and interpolate variables in scope
with #variable. So it is easiest to understand the generated code by looking at an
example. If we have a field like field_name: U, then this code creates the following
code:

fn field_name<__Builder_T: Into<U>>(mut self, val: __Builder_T) -> Self\

{

self.field_name = Some(val.into());

self

}

The one weird thing here is that we create an identifier __Builder_T which we use
as our generic type variable. This gets into the concept of macro hygiene which can
be a complicated topic. The basic problem we are trying to work around is suppose
we used T as the type variable but T was already defined to be something in the
surrounding code.

Macros 304

One type of hygiene would allow that and would treat those two T types has different
because they were created in different contexts. However that does not allow you
create identifiers that you want to be able to be referred to outside of your macro.

A different type of hygiene makes identifiers that you create be the same as if
they were part of the source where the macro is called. This is sometimes called
unhygienic. This means your created identifiers can be used by regular code.
However this also means they can accidentally conflict. You must specify the type
of hygiene you are opting into when creating an identifier by passing a syn::Span

to the constructor of an identifier. We use call_site hygiene here to show what it
is. This is the type that would otherwise conflict with an existing name, but it is also
the type we have to use later. We therefore use __Builder_T as it is highly unlikely
this will conflict with an existing type. You could alternatively use def_site hygiene
here to avoid this.

The next thing we create are the fields on the builder struct itself:

src/lib.rs

104 let builder_fields = self.fields.iter().map(|(n, t, _)| {

105 quote! {

106 #n: Option<#t>,

107 }

108 });

The builder struct holds the state as we are in the process of building up the data.
We choose to implement this by having an optional field for each field in our target
struct. That is, if we have the struct:

#[derive(Builder)]

struct Item {

a: u32,

b: String,

}

then we will have a builder struct like:

Macros 305

struct ItemBuilder {

a: Option<u32>,

b: Option<String>,

}

This code takes the field a: u32 and generates the field:

a: Option<u32>,

It is just that snippet of that we are generating. Obviously thismakes no sensewithout
being inside a larger struct definition, but we need this individual pieces to be able
to build up that larger structure.

The next thing we build is a default field for each field:

src/lib.rs

110 let builder_defaults = self.fields.iter().map(|(n, _, _)| {

111 quote! {

112 #n: None,

113 }

114 });

This will be used to implement Default for our builder struct which we will do by
setting every field to None.

The next piece is the code for each field in our build function:

Macros 306

src/lib.rs

116 let builder_build = self.fields.iter().map(|(n, _t, a)| {

117 if a.is_empty() {

118 quote! {

119 #n: self.#n.unwrap_or_else(Default::default),

120 }

121 } else {

122 quote! {

123 #n: self.#n.unwrap(),

124 }

125 }

126 });

We know that our attribute vector will either be empty or have one element. If it has
one element then the field is required, otherwise it might never be set. In the case
that it is not required we use Default::default to fill in the value. Therefore, if a
field does not implement Default it must be marked required. We use unwrap on the
option for required field which will cause a runtime panic if build is called when a
required field is not set. We leave it up to you to extend this to more complex error
handling scenarios. Again we are just defining a snippet of the whole which makes
no sense without being inside something larger. That is, this code takes a field such
as a: u32 and generates:

a: self.a.unwrap(),

The last pieces we need before putting everything together are the name of the builder
and the generics information:

Macros 307

src/lib.rs

128 let name = self.name;

129 let (impl_generics, ty_generics, maybe_where) = self.generics.s\

130 plit_for_impl();

131 let builder_name = syn::Ident::new(&format!("{}Builder", name),\

132 name.span());

We take the name which is the identifier of the struct, that is for

1 #[derive(Builder)]

2 struct Item {

3 ...

4 }

the name is Item and we construct an identifier ItemBuilder which has hygiene as
if it was in the same context as where Item is defined. This is so that code that uses
Item can use ItemBuilder as if it was hand-written in the same place.

The function split_for_impl on the generics type is defined exactly to give you the
pieces of the generic information you need so that they can be interpolated as you
generate code. The generics defined on a struct need to be put in different places
when you define a trait for that struct.

We can finally output the code which defines our builder struct:

src/lib.rs

131 quote! {

132 impl #impl_generics #name #ty_generics #maybe_where {

133 fn builder() -> #builder_name #ty_generics {

134 #builder_name::new()

135 }

136 }

137

138 impl #impl_generics Default for #builder_name #ty_generics \

139 #maybe_where {

140 fn default() -> Self {

Macros 308

141 #builder_name {

142 #(#builder_defaults)*

143 }

144 }

145 }

146

147 struct #builder_name #ty_generics #maybe_where {

148 #(#builder_fields)*

149 }

150

151 impl #impl_generics #builder_name #ty_generics #maybe_where\

152 {

153 fn new() -> Self {

154 Default::default()

155 }

156

157 #(#setters)*

158

159 fn build(self) -> #name #ty_generics {

160 #name {

161 #(#builder_build)*

162 }

163 }

164 }

165 }

166 }

167 }

The first part of this code adds an impl block for our struct which defines a function
builderwhich returns an instance of our builder. If your struct already has a builder
method then this will be a compiler error. This is one of the nice things in Rust about
being able to define multiple impl blocks for the same item. Even if you have an impl

for your struct, we can create another one and it just adds our functions.

The next part of this code implements Default for our builder. It does this by creating
a struct literal by interpolating the iterator of fields defined by builder_defaults

Macros 309

using the #(...)* syntax we saw earlier.

Thenwe create the struct itself again using the repetition syntax #(builder_fields)*
to interpolate the fields we defined earlier into the struct definition.

Finally, we create an impl block for the builder struct which defines new to return
Default::default, interpolates all of the setter functions, and then defines a build

function which consumes the builder and constructs an instance of the struct we are
trying to build. This uses builder_build fields we created above.

If we squint and ignore all of the noise from the # characters and imagine the #(...)*
as multiple values the structure of the code should hopefully look like what you
expect. If not then it might help to come back here after we go through a full example
of using this derive and the code it generates.

Using our custom derive

Let’s take this bad boy for a spin. Create a new crate with whatever name you like:

1 cargo new builder-test

We edit our manifest to depend on our procedural macro crate:

Cargo.toml

1 [package]

2 name = "builder-test"

3 version = "0.1.0"

4 authors = ["Your Name <your.name@example.com>"]

5 edition = "2018"

6

7 [dependencies]

8 builder = { path = "../builder", version = "0.1.0" }

I created this test crate in a sibling directory to the macro crate so that we can use
this simple path specifier to rely on the local crate that we just created. The path is
relative to the Cargo.toml file which is why it requires going up one level.

Let’s put some code in main.rs to get started:

Macros 310

src/main.rs

1 use builder::Builder;

2

3 #[derive(Debug)]

4 struct X {}

5

6 #[derive(Debug, Builder)]

7 struct Item<T, U>

8 where

9 T: Default,

10 {

11 a: u32,

12 b: Option<&'static str>,

13 c: String,

14 #[builder(required)]

15 d: X,

16 e: T,

17 #[builder(required)]

18 f: U,

19 }

We import the Buildermacro from our crate and then define a couple structs to work
with. We are just trying to stretch some of the complexity we handled by introducing
generics and the X and U types which specifically do not implement Default.

Then in our main function, we can build some Item structs using the generated code:

Macros 311

src/main.rs

21 fn main() {

22 let item: Item<i32, &str> = Item::builder()

23 .a(42u32)

24 .b("hello")

25 .c("boom".to_owned())

26 .d(X {})

27 .e(42i32)

28 .f("hello")

29 .build();

30

31 println!("{:#?}", item);

32

33 let item2 = Item::<u32, u64>::builder().b(None).d(X {}).f(99u64).bu\

34 ild();

35 println!("{:#?}", item2);

36 }

If we cargo run everything should compile and you should see the two items printed
out. That at least means the builder works as intended.

To understand the generated code we can use cargo expand again to see what is
happening. This will produce quite a bit of output, but the relevant bits for us are:

impl<T, U> Item<T, U>

where

T: Default,

{

fn builder() -> ItemBuilder<T, U> {

ItemBuilder::new()

}

}

impl<T, U> Default for ItemBuilder<T, U>

where

T: Default,

Macros 312

{

fn default() -> Self {

ItemBuilder {

a: None,

b: None,

c: None,

d: None,

e: None,

f: None,

}

}

}

struct ItemBuilder<T, U>

where

T: Default,

{

a: Option<u32>,

b: Option<Option<&'static str>>,

c: Option<String>,

d: Option<X>,

e: Option<T>,

f: Option<U>,

}

impl<T, U> ItemBuilder<T, U>

where

T: Default,

{

fn new() -> Self {

Default::default()

}

fn a<__Builder_T: Into<u32>>(mut self, val: __Builder_T) -> Self {

self.a = Some(val.into());

self

}

fn b<__Builder_T: Into<Option<&'static str>>>(mut self, val: __Buil\

der_T) -> Self {

Macros 313

self.b = Some(val.into());

self

}

fn c<__Builder_T: Into<String>>(mut self, val: __Builder_T) -> Self\

{

self.c = Some(val.into());

self

}

fn d<__Builder_T: Into<X>>(mut self, val: __Builder_T) -> Self {

self.d = Some(val.into());

self

}

fn e<__Builder_T: Into<T>>(mut self, val: __Builder_T) -> Self {

self.e = Some(val.into());

self

}

fn f<__Builder_T: Into<U>>(mut self, val: __Builder_T) -> Self {

self.f = Some(val.into());

self

}

fn build(self) -> Item<T, U> {

Item {

a: self.a.unwrap_or_else(Default::default),

b: self.b.unwrap_or_else(Default::default),

c: self.c.unwrap_or_else(Default::default),

d: self.d.unwrap(),

e: self.e.unwrap_or_else(Default::default),

f: self.f.unwrap(),

}

}

}

Comparing this to the code to generate the code should clarify what each of the parts
is doing.

Macros 314

Wrapping up

Macros are a powerful and incredibly useful language feature. Quite a bit of the
positive ergonomics of using Rust comes from the ability to automatically derive
traits. Hopefully you have quite a bit more insight into how this is done and how
you can accomplish this if needed.

Macros are more than just for deriving traits and they can be a nice way to simplify
many repetitive programming tasks. However, they can also be confusing, brittle,
and overly complex for many tasks. Therefore, try not to use them, but know they
are in your back pocket when you really need to reach for them.

Changelog
Revision 6 (05-30-2022)

• Fixes typos and grammatical errors in Chapters 2, 3, 4 and 5

Revision 5 (02-20-2020)

• Fixes two code imports in the WASM chapter
• Fixes a change in the intermediate/messages-actix project and manuscript in
Chapter 3

Revision 4 (02-19-2020)

• Added Chapter 7: Macros
• Updates to the intro
• Fixed typos
• Chapter 3: Fixed the messages-actix code
• Updated blog-actix version
• Added builder and builder-test code

Revision 3 (01-29-2020)

Pre-release revision 3

Revision 2 (11-25-2019)

Pre-release revision 2

Changelog 316

Revision 1 (10-29-2019)

Initial pre-release version of the book

	Table of Contents
	Book Revision
	Join Our Discord
	Bug Reports
	Be notified of updates via Twitter
	We'd love to hear from you!
	Introduction
	Why Rust?
	Why not Rust
	This book’s mission
	Setting expectations based on your background
	Getting your environment setup
	Rustup
	Cargo
	IDEs, RLS, Editors
	Clippy
	Rustfmt
	Documentation
	The Nomicon

	Summary
	Making Your First Rust App
	Getting started
	Binary vs. library
	The generated project
	Crates
	Making our crate a library
	Trade-offs
	Print a list of numbers
	Testing our code
	Wrapping up

	Making A Web App With Actix
	Web Ecosystem
	Starting out
	Handling our first request

	Adding State to Our Web App
	Recap and overview
	Adding state
	Receiving input
	Custom error handling
	Handling path variables
	Wrapping up

	Even More Web
	Crates to know
	Building a blog
	Users
	Building the application
	Examples
	Extending our application
	Adding routes for posts
	Extending further: comments
	Adding routes for comments

	Examples
	Create a post
	Create a post
	Publish a post
	Comment on a post
	List all posts
	See posts
	Publish other post
	List all posts again
	See users comments
	See post comments
	Wrapping up

	What is Web Assembly?
	Intro to Web Assembly
	Rust in the browser
	The Smallest Wasm Library
	Working with primatives
	Working with complex types
	The Real Way to Write Wasm
	Other Wasm Topics

	Command Line Applications
	Initial setup
	Making an MVP
	Recap
	Adding a configuration file
	Adding sessions
	Syntax highlighting
	Summary

	Macros
	Overview
	Declarative Macros
	Procedural Macros
	Writing a custom derive
	Using our custom derive
	Wrapping up

	Changelog
	Revision 6 (05-30-2022)
	Revision 5 (02-20-2020)
	Revision 4 (02-19-2020)
	Revision 3 (01-29-2020)
	Revision 2 (11-25-2019)
	Revision 1 (10-29-2019)

