

i

Raspberry Pi OS System
Administration with systemd

The first in a new series exploring the basics of Raspberry Pi Operating
System (OS) administration, this volume is a compendium of easy-to-use and
essential system administration for the novice user of the Raspberry Pi OS.

The overriding idea behind the system administration of a modern, 21st-
century Linux system such as the Raspberry Pi OS is the use of systemd to
ensure that the Linux kernel works efficiently and effectively to provide the
three foundation stones of computer operation and management: computer
system concurrency, virtualization, and secure persistence. Exercises are
included throughout to reinforce the readers’ learning goals with solutions
and example code provided on the accompanying GitHub site.

This book is aimed at students and practitioners looking to maximize their
use of the Raspberry Pi OS. With plenty of practical examples, projects, and
exercises, this volume can also be adopted in a more formal learning envir-
onment to supplement and extend the basic knowledge of a Linux operating
system.

Robert M. Koretsky is a retired lecturer in Mechanical Engineering at the
University of Portland School of Engineering. He previously worked as
an automotive engineering designer at the Freightliner Corp. in Portland,
Oregon. He’s married and has two kids and two grandkids.

ii

Raspberry Pi OS System Administration with systemd
A Practical Approach
Series Editor: Robert M. Koretsky

Raspberry Pi OS System Administration with systemd: A Practical Approach
Robert M. Koretsky

iii

Raspberry Pi OS System
Administration with

systemd
A Practical Approach

Robert M. Koretsky

iv

First edition published 2024
by CRC Press
2385 Executive Center Drive, Suite 320, Boca Raton, FL 33431

and by CRC Press
4 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

CRC Press is an imprint of Taylor & Francis Group, LLC

© 2024 Robert M. Koretsky

Reasonable efforts have been made to publish reliable data and information, but the author
and publisher cannot assume responsibility for the validity of all materials or the consequences
of their use. The authors and publishers have attempted to trace the copyright holders of all
material reproduced in this publication and apologize to copyright holders if permission to
publish in this form has not been obtained. If any copyright material has not been acknowledged
please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted,
reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means,
now known or hereafter invented, including photocopying, microfilming, and recording, or in
any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, access www.
copyright.com or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive,
Danvers, MA 01923, 978-750-8400. For works that are not available on CCC please contact
mpkbookspermissions@tandf.co.uk

Trademark notice: Product or corporate names may be trademarks or registered trademarks and
are used only for identification and explanation without intent to infringe.

The mention of third-party products, services, or websites in this book does not imply endorse-
ment or recommendation by the author or publisher. The author and publisher are not respon-
sible for the content or actions of any third-party websites or resources mentioned in this book.

Linux and Raspberry Pi are trademarks, or registered trademarks, of their respective owners.
The use of these trademarks in this book is for identification purposes only and does not imply
endorsement or affiliation.

Solaris 11.4 is a registered trademark of Oracle Corporation.

ISBN: 978-1-032-59635-8 (hbk)
ISBN: 978-1-032-59634-1 (pbk)
ISBN: 978-1-003-45553-0 (ebk)

DOI: 10.1201/b23405

Typeset in Palatino
by Newgen Publishing UK

http://www.copyright.com
http://www.copyright.com
http://dx.doi.org/10.1201/b23405

v

To my family.

Bob Koretsky

https://taylorandfrancis.com

vii

vii

Contents

Series Preface .. xi
Volume 1 Preface ..xiii

0. “Quick Start” into Sysadmin for the Raspberry Pi OS 1
0.1 Introduction ... 1
0.2 File Maintenance Commands and Help on Raspberry

Pi OS Command Usage .. 3
0.2.1 File and Directory Structure .. 3
0.2.2 Viewing the Contents of Files ... 5
0.2.3 Creating, Deleting, and Managing Files 6
0.2.4 Creating, Deleting, and Managing Directories11
0.2.5 Obtaining Help with the man Command 15
0.2.6 Other Methods of Obtaining Help 18

0.3 Utility Commands ... 19
0.3.1 Examining System Setups ... 19

0.4 Printing Commands ... 21
0.5 Chapter Summary ... 23

1. Basic System Administration .. 25
1.0 Objectives, Commands, and Primitives Covered 25
1.1 Introduction – Icebreaker with inxi and FileZilla 26

1.1.1 inxi .. 28
1.1.2 FileZilla... 29

1.2 Webmin Download and Installation .. 30
1.3 sshd and System Service Management Using systemd:

vsftpd .. 32
1.3.1 Connecting via a Secure SHell (SSH) Client

between Raspberry Pi OS Machines 32
1.4 systemd Bootup ... 38
1.5 File Systems, Connections to Persistent Media, and

Adding Disks to Your System ... 39
1.5.1 Preliminary Considerations When Adding

New Media .. 44
1.5.2 Five Quick and Easy Ways to Find Out the Logical

Device Names of Disks .. 44
1.5.3 Examples of External Disk or Media Additions 47

1.6 CUPS Printing .. 65
1.6.1 Managing CUPS Locally with systemd 66
1.6.2 Using Web-Based CUPS Administration 68

Contentsviii

1.6.3 Requirements for Using the CUPS Web Browser
Interface .. 69

1.6.4 Adding a Printer Using the CUPS Web Browser
Interface .. 70

1.6.5 Troubleshooting Issues with Accessing the CUPS
Web Browser Interface ... 71

1.6.6 Print Administration Tasks and the Home Tab 71
1.6.7 Using the Administration Tab ... 72
1.6.8 Using the Printers Tab .. 72
1.6.9 Other Examples of Web-Based Cups Management 72
1.6.10 CUPS Print Settings GUI ... 73
1.6.11 Starting CUPS Print Settings ... 73
1.6.12 Setting Up Printers by Using CUPS Print

Settings GUI ... 74
1.6.13 Configuring and Managing Printers by Using

CUPS on the Command Line .. 81
1.7 Other Linux Archiving and Backup Facilities................................. 90

1.7.1 cpio ... 90
1.7.2 dd .. 91
1.7.3 rsync ... 92

1.8 Repository Management .. 96
1.8.1 Searching Repositories with the apt-cache

Command and apt-show ... 96
1.8.2 Basic Repository Characteristics ... 97
1.8.3 Repository Listing Format in /etc/apt/sources.list 98
1.8.4 Other Suggested Procedures for Repository

Management .. 98
1.9 Tasks, Processes, Threads, and Traditional Process Control/

Monitoring ... 99
1.10 Controlling and Managing CPU Consumption by Processes 101
1.11 systemd Journal Log Messages ... 103

1.11.1 journalctl Basics .. 103
1.12 Access Control Credentials: Discretionary (DAC),

Mandatory (MAC), and Role-Based (RBAC) 105
1.12.1 Types of Credentials ... 107

1.13 sudo ... 107
1.13.1 Alias Specifications and Definition in the

Sudoers File ... 109
1.13.2 User Specifications in the Sudoers File 109
1.13.3 sudo su - ..111

1.14 Raspberry Pi OS POSIX.1e Access Control Lists (ACL’s)112
1.14.1 Using Access Control Lists (ACLs) in the

Raspberry Pi OS ...112

Contents ix

1.14.2 Raspberry Pi OS POSIX.1e ACL Model Details...............113
1.14.3 ACL Examples ... 120

1.15 Raspberry Pi OS NFS Server and Client Install
and Setting NFSv4 ACLs on the Client .. 126
1.15.1 ACLs Have Two Basic Forms .. 127
1.15.2 Installing and Configuring the NFS Server and

Clients and Setting NFSv4 ACLs on the Client 130
1.16 ufw and Netfilter Interface in the Raspberry Pi OS 141

1.16.1 ufw Defaults .. 141
1.16.2 Basic Syntax, Use Case, and Rules Examples 141
1.16.3 Advanced ufw Syntax.. 145
1.16.4 An Extended Example of Applying ufw Rules 147
1.16.5 Interpreting ufw Log Entries in the systemd

Journal .. 150
1.17 Encrypting Directories and Files Using tar and gpg 153

1.17.1 The tar Command General Syntax 153
1.17.2 Directory Encryption .. 154
1.17.3 Encrypting a User File .. 156
1.17.4 Encrypting a USB Flash Drive .. 157

1.18 How a Process Gets Its Credentials .. 159
1.18.1 Process Capabilities .. 160

1.19 Namespaces and User Namespaces ... 165
1.20 Chapter Summary ... 168

2. Applications of systemd for the Beginner .. 169
2.0 Objectives, Commands, and Primitives Covered 169
2.1 Introduction – Applications of systemd for the Beginner 170
2.2 Bootup in the Initial RAM Disk (initrd) ... 170

2.2.1 Querying the Boot Process .. 170
2.3 systemd Units and Unit Files .. 170

2.3.1 Introduction to Units and Unit Files 171
2.3.2 Roles systemd Units Play .. 171
2.3.3 Unit File Locations in the File System

and Editing or Modifying Them 172
2.3.4 Types of Units .. 174
2.3.5 Anatomy of a Unit File ... 176
2.3.6 Creating Instance Units from Template

Unit Files .. 181
2.4 Targets ... 181

2.4.1 Basic Target Concepts ... 181
2.4.2 A Target Example: Clock-Time-Based Running

of a Script File .. 184
2.4.3 Unit Management with Additional Commands 186

Contentsx

2.5 Practicing on Target Units .. 190
2.5.1 Viewing the Default Target.. 190
2.5.2 Viewing All Targets .. 191
2.5.3 Changing the Current Target by Isolating Targets 192
2.5.4 Changing to Rescue Mode... 194
2.5.5 Changing to Emergency Mode ... 195
2.5.6 Practice in Working with Targets...................................... 196
2.5.7 Other systemctl Options that Work with

Target Units.. 199
2.5.8 Using Target Shortcuts ... 200

2.6 Other Important systemd Commands ... 201
2.6.1 Cgroups .. 201
2.6.2 Journal Logging .. 205
2.6.3 systemd Timers ... 218

2.7 A Python3-Based Webserver as a “New-Style Daemon” 220
2.7.1 systemd Methods of Changing the Activation

Behavior of a New-Style Daemon 222
2.8 Chapter Summary ... 225

Questions, Problems, and Projects ... 227
Chapter 0 .. 227
Chapter 1 .. 230
Chapter 2 .. 239

Index ... 245

xi

xi

Series Preface

This series of books covers the basics of Raspberry Pi Operating System
administration, and is geared toward a novice user. Each book is a com-
plete, self-contained introduction to important system administration tasks,
and to other useful programs. The foundation of all of them is the systemd
super-kernel. They guide the user along a path that gives the “Why” and
“How to” of those important system administration topics, and they also pre-
sent the following essential application facilities in three volumes as follows:

Volume 1: Raspberry Pi OS System Administration with systemd
Volume 2: Raspberry Pi OS System A not administration with systemd and

Python
Volume 3: Raspberry Pi OS Text Editing, git, Virtualization with LXC/LXD

They can be used separately, or together, to fit the learning objectives/pace,
and interests of the individual, independent learner, or can be adopted in
a more formal learning environment, to supplement and extend the basic
knowledge of a Linux operating system in a classroom environment that uses
the Raspberry Pi OS.

In addition, each book has In-Chapter Exercises throughout, and a Question,
Problems, and Projects addendum to help reinforce the learning goals of the
individual student or reader.

An online Github site, with further materials and updates, program
source code, solutions to In-Chapter Exercises , plus other supplements, is
provided for each volume. It can be found at:

www.github.com/bobk48/RaspberryPiOS

The fundamental prerequisites of each volume are (1) knowledge of how to
type a syntactically-correct Linux command on the command line, (2) having
access to a dedicated Raspberry Pi computer with the latest Raspberry Pi
Operating System already installed and running on it, (3) being a privileged
user on the system that is able to execute the sudo command to assume
superuser status, and (4) having a basic knowledge of how to edit and save
text files in the nano text editor.

All instructions in these volumes were tested on either a Raspberry Pi 4B,
or a Raspberry Pi 400, both with 4GB of memory, and the latest version of the
Raspberry Pi OS at the time.

http://www.github.com

https://taylorandfrancis.com

xiii

xiii

Volume 1 Preface

Background

This book is a compendium of easy-to-use and essential Raspberry Pi OS
system administration tasks for the beginner. The Raspberry Pi OS is derived
from the Debian branch of Linux, and as of this writing, Debian Bullseye
was the most current version of that operating system. To present the system
administration topics and commands here, I have selected some very basic
stuff, and a few more advanced concepts, topics, commands, and details that
might not appear in a more complete system administration book.

The overriding idea behind system administration of a modern, 21st-
century Linux system such as the Raspberry Pi OS, is the use of systemd to
ensure that the Linux kernel works efficiently and effectively to provide these
three foundation stones of computer operation and management: computer
system concurrency, virtualization, and secure persistence.

And this control of the kernel by a “super-kernel,” which is what systemd
essentially is, must also promote the highest level of system performance and
speed, given the use cases the computer might be put to, and the perceived
needs of the target user base that the computer serves. Unless a novice user,
or even a more seasoned system professional, has not only a basic, but also a
more complete knowledge of how systemd controls and oversees every pro-
cess operation of a modern Linux system, they will never be able to master
administrating and implementing the kind of functionality that their use
case(s) might ultimately require. Particularly for the user base on the system,
and the demands that user base makes.

Everything illustrated in Chapters 0, 1, and 2, in the specific form (and the
syntax of commands) found there, is explicitly applicable to all Debian-family
distributions, including the Raspberry Pi OS, and also to all other versions
of Debian, including Ubuntu, and Linux Mint, RedHat-family CentOS, and
Slackware distros, such as SuSE. The major areas of development of Linux
over the last several years has been the expansion of the role that systemd
plays in every aspect of Linux operating system use.

Certainly, out of the multitude of possible topics we could have presented,
the ones you find detailed here have basically been selected in somewhat of
a subjective way. That selective way was mainly guided by these concerns:

a. The secure maintenance, in terms of concurrency, virtualization, and
persistence, of a single Linux computer system that an ordinary novice
user can install on her own personal computer.

Volume 1 Prefacexiv

b. How important the topics are in a perceived ranking of essential Linux
system administration tasks.

c. How systemd plays into the maintenance regimen chosen by that
ordinary novice user.

d. The overall pedagogic integration of the selected topics presented on
system administration with each other.

e. How well these topics serve to prepare a student for entry into any
chosen Information Technology or Computer Science profession, or
how someone already in those professions can use this book to better
their practice of that profession. In other words, for educational and
continuing education audiences.

f. To some degree, making it possible to extrapolate these topics (for
audiences in e.) from a single computer system environment to
a broader and larger-scaled computing environment, such as is
found on small-to-medium sized servers, or to cloud-based, virtual
computing.

How to Read and Use This Book

Note
The premise and prerequisite of this book is that you know what the correct
form, or structure, of a single Linux command is, and how to type one in on
the console or terminal command line!

Just to review, the general syntax or structure of a single Linux command
(often referred to as a simple command) as it is typed on the command line, is
as follows:

$ command [[-] option(s)] [option argument(s)] [command argument(s)]

where:

$ is the command line or shell prompt from the Raspberry Pi OS;
anything enclosed in [] is not always needed;
command is the name of the valid Linux command for that shell in lowercase letters;
[-option(s)] is one or more modifiers that change the behavior of command;
[option argument(s)] is one or more modifiers that change the behavior of

[-option(s)]; and
[command argument(s)] is one or more objects that are affected by command.

Volume 1 Preface xv

Note the following six essentials:

1. A space separates command, options, option arguments, and command
arguments, but no space is necessary between multiple option(s) or
multiple option arguments.

2. The order of multiple options or option arguments is irrelevant.
3. A space character is optional between the option and the option

argument.
4. Always press the <Enter> key to submit the command for interpret-

ation and execution.
5. Options may be preceded by a single hyphen - or two hyphens, --,

depending on the form of the option. The short form of the option
is preceded by a single hyphen, and the long form of the option is
preceded by two hyphens. No space character should be placed
between hyphen(s) and option(s).

6. A small percentage of commands (like whoami) take no options,
option arguments, or command arguments.

Everything on the command line is case-sensitive!
Also, it is possible, and very common, to type multiple Linux commands

(sometimes called compound commands, to differentiate them from simple
commands) on the same command line, before pressing the <Enter> key.
The components of a multiple Linux command are separated with input and
output redirection characters, to channel the output of one into the input of
another.

As stated in the Series Preface, the fundamental prerequisites of this
volume are (1) knowledge of how to type a syntactically-correct Linux
command on the command line (as detailed above), (2) having access to a
dedicated Raspberry Pi computer with the latest Raspberry Pi Operating
System already installed and running on it, (3) being a privileged user on
the system that is able to execute the sudo command to assume superuser
status, and (4) having a basic knowledge of how to edit and save text files in
the nano text editor.

An online Github site, with further materials and updates, program code,
solutions to both In-Chapter and End-of-Chapter Problems, Questions, and
Projects, and other supplements, is provided for this book. It can be found at
www.github.com/bobk48/RaspberryPiOS

All command line instructions in this volume were tested on either a
Raspberry Pi 4B, or a Raspberry Pi 400, both with 4GB of memory, and the
latest version of the Raspberry Pi OS at the time.

http://www.github.com

Volume 1 Prefacexvi

Routes through the Book

Browse the Table of Contents.
Select a topic that interests you.
Do the Examples or all the command line materials presented for that topic.
Maybe pick another topic that interests you, and do the Examples and all

the command line materials there.
Finally, go back to the beginning of the book. Do everything, from start to

finish.
Rinse and repeat the above as necessary.
Refer as much as possible to the systemd materials in Chapter 2, using them

as an encyclopedic source for the material you select out of Chapter 1.
Have fun!

newgenprepdf

1DOI: 10.1201/b23405-1

0
“Quick Start” into Sysadmin
for the Raspberry Pi OS

Objectives

To explain how to manage and maintain files and directories
To show where to get system-wide help for Raspberry Pi OS commands
To demonstrate the use of a beginner’s set of utility commands
To cover the basic commands and operators

cat cd cp exit hostname -I ip login lp lpr ls man mesg mkdir more
mv passwd,PATH pwd rm rmdir telnet unalias uname whatis whereis
who whoami

0.1 Introduction

To start working productively with system administration on the Raspberry
Pi OS, the beginner needs to have some familiarity with these sequential
topics, as follows:

How to maintain and organize files in the file structure of the operating
system. Creating a tree-like structure of folders (also called directories),
and storing files in a logical fashion in these folders, is critical to working
efficiently in the Raspberry Pi OS.

How to get help on text-based commands and their usage. With keyboard
entry, in a command-based Character User Interface (CUI) environ-
ment, being able to find out, in a quick and easy way, how to use a
command, its options, and arguments by typing it on the keyboard cor-
rectly is imperative to working efficiently.

How to execute a small set of essential utility commands to set up or cus-
tomize your working environment. Once a beginner is familiar with
the right way to construct file maintenance commands, adding a set of
utility commands makes each session more productive.

http://dx.doi.org/10.1201/b23405-1

Raspberry Pi OS System Administration with systemd2

To use this chapter successfully as a springboard into the remainder of the
book, you should carefully read, follow, and execute the instructions and
command line sessions we provide, in the order presented. Each section in this
chapter, and every subsequent chapter as well, builds on the information that
precedes it. They will give you the concepts, command tools, and methods
that will enable you to do system administration using the Raspberry Pi OS.

Throughout this book, we illustrate everything using the following version
of the Raspberry Pi OS, on the hardware listed:

System: raspberrypi Kernel: 6.1.21-v8+ aarch64 bits: 64 compiler: gcc v: 10.2.1
Console: tty0 Distro: Debian GNU/Linux 11 (bullseye)

Machine: Type: ARM Device System: Raspberry Pi 400 Rev 1.0

In this chapter, the major commands we want to illustrate are first
defined with an abbreviated syntax description, which will clarify general
components of those commands. The syntax description format is as follows:

Syntax: The exact syntax of how a command, its options, and its arguments
are correctly typed on the command line

Purpose: The specific purpose of the command
Output: A short description of the results of executing the command
Commonly used options/features: A listing of the most popular and useful

options and option arguments

In addition, the following web link is to a site that allows you to type-in a
single or multiple Raspberry Pi OS command and get a verbose explanation
of the components of that command:

https://explainshell.com/

In-Chapter Exercises

1. Type the following commands on your Raspberry Pi system’s
command line, and note the results. Which ones are syntactically
incorrect? Why? (The Bash prompt is shown as the $ character in each,
and we assume that file1 and file2 exist)

$ la -ls
$ cat
$ more -q file1
$ more file2
$ time
$ lsblk-a

https://explainshell.com

“Quick Start” 3

2. How can you differentiate a Raspberry Pi OS command from its
options, option arguments, and command arguments?

3. What is the difference between a single Raspberry Pi OS command
and a multiple Raspberry Pi OS command, as typed on the command
line before pressing <Enter>?

4. If you get no error message after you enter a Raspberry Pi OS
command, how do you know that it actually accomplished what you
wanted it to?

0.2 File Maintenance Commands and Help on
Raspberry Pi OS Command Usage

After your first-time login to a new Raspberry Pi system, one of your first
actions will be to construct and organize your workspace environment, and
the files that will be contained in it. The operation of organizing your files
according to some logical scheme is known as file maintenance. A logical
scheme used to organize your files might consist of creating bins for storing
files according to the subject matter of the contents of the files or according to
the dates of their creation. In the following sections, you will type file creation
and maintenance commands that produce a structure similar to what is shown
in Figure 0.1. Complete the operations in the following sections in the order
they are presented to get a better overview of what file maintenance really is.
Also, it is critical that you review what was presented in the Preface regarding
the structure of a Raspberry Pi OS command, so that when you begin to type
commands for file maintenance, you understand how the syntax of what you
are typing conforms to the general syntax of any Raspberry Pi OS command.

0.2.1 File and Directory Structure

When you first open a terminal, or console, window, you are working in the
home directory, or folder, of the autonomous user associated with the username
and password you used to log into the system with. Whatever directory you
are presently in is known as the current working directory, and there
is only one current working directory active at any given time. It is helpful to
visualize the structure of your files and directories using a diagram. Figure 0.1
is an example of a home directory and file structure for a user named bob. In
this figure, directories are represented as parallelograms and plain files (e.g.,
files that contain text or binary instructions) are represented as rectangles. A
pathname, or path, is simply a textual way of designating the location of a dir-
ectory or file in the complete file structure of the Raspberry Pi system you are
working on. For example, the path to the file myfile2 in Figure 0.1 is /home/

Raspberry Pi OS System Administration with systemd4

bob/myfile2. The designation of the path begins at the root (/) of the entire
file system, descends to the folder named home, and then descends again to
the home directory of the user named bob.

As shown in Figure 0.1, the files named myfile, myfile2, and renamed_file
are stored under or in the directory bob. Beneath bob is a subdirectory named
first. In the following sections, you will create these files, and the subdirec-
tory structure, in the home directory of the username that you have logged
into your Raspberry Pi system with.

In-Chapter Exercise

5. Type the following two commands on your Raspberry Pi system:
$ cd /
$ ls

Similar to Figure 0.1, sketch a diagram of the directories and files whose
names you see listed as the output of the second command. Save this dia-
gram for use later.

FIGURE 0.1
Example Directory Structure.

“Quick Start” 5

0.2.2 Viewing the Contents of Files

To begin working with files, you can easily create a new text file by using the
cat command. The syntax of the cat command is as follows:

cat [options] [file-list]
Purpose: Join one or more files sequentially or display them in the console

window
Output: Contents of the files in file-list displayed on the screen, one file at a

time
Commonly used options/features:
+E Display $ at the end of each line
-n Put line numbers on the displayed lines
-- help Display the purpose of the command and a brief explanation of

each option

The cat command, short for concatenate, allows you to join files. In the example,
you will join what you type on the keyboard to a new file being created in
the current working directory. This is achieved by the redirect character >,
which takes what you type at the standard input (in this case the keyboard)
and directs it into the file named myfile. You can consider the keyboard, and
the stream of information it provides, as a file. As stated in the Preface, this
usage is an example of a command, cat with no options, option arguments, or
command arguments. It simply uses the command, a redirect character, and a
target, or destination, named myfile, where the redirection will go.

This is the very simplest example of a multiple command typed on the
command line, as opposed to a single command, as shown and briefly
described in the Preface. In a multiple command, you can string together
single Raspberry Pi OS commands in a chain with connecting operators, such
as the redirect character shown here.

$ cat > myfile
This is an example of how to use the cat command to add plain text to a file
<Ctrl+D>
$

You can type as many lines of text, pressing <Enter> on the keyboard to dis-
tinguish between lines in the file, as you want. Then, on a new line, when
you hold down <Ctrl+D>, the file is created in the current working direc-
tory, using the command you typed. You can view the contents of this file,
since it is a plain text file that was created using the keyboard, by doing the
following:

$ more myfile
This is an example of how to use the cat command to add plain text to a file
$

Raspberry Pi OS System Administration with systemd6

This is a simple example of the syntax of a single Raspberry Pi OS command.
The general syntax of the more command is as follows:

more [options] [file-list]
Purpose: Concatenate/display the files in file-list on the screen, one screen

at a time
Output: Contents of the files in file-list displayed on the screen, one page at

a time
Commonly used options/features:
+E/str Start two lines before the first line containing str
-nN Display N lines per screen/page
+N Start displaying the contents of the file at line number N

The more command shows one screenful of a file at a time by default. If
the file is several pages long, you can proceed to view subsequent pages by
pressing the <Space> key on the keyboard, or by pressing the Q key on the
keyboard to quit viewing the output.

In-Chapter Exercise

6. Use the cat command to produce another text file named testfile. Then
join the contents of myfile and testfile into one text file, named myfile3,
with the cat command.

0.2.3 Creating, Deleting, and Managing Files

To copy the contents of one file into another file, use the cp command. The
general syntax of the cp command is as follows:

cp [options] file1 file2
Purpose: Copy file1 to file2; if file2 is a directory, make a copy of file1 in this

directory
Output: Copied files
Commonly used options/features:
-i If destination exists, prompt before overwriting
-p Preserve file access modes and modification times on copied files
-r Recursively copy files and subdirectories

For example, to make an exact duplicate of the file named myfile, with the
new name myfile2, type the following:

$ cp myfile myfile2
$

“Quick Start” 7

This usage of the cp command has two required command arguments. The
first argument is the source file that already exists and which you want to
copy. The second argument is the destination file or the name of the file that
will be the copy. Be aware that many Raspberry Pi OS commands can take
plain, ordinary, or regular files as arguments, or can take directory files as
arguments. This can change the basic task accomplished by the command. It
is also worth noting that not only can file names be arguments but pathnames
as well. A pathname is the route to any particular place in the file system
structure of the operating system. This changes the site or location, in the
path structure of the file system, of operation of the command.

In order to change the name of a file or directory, you can use the mv
command. The general syntax of the mv command is as follows:

mv [options] file1 file2
mv [options] file-list directory
Purpose: First syntax: Rename file1 to file2
 Second syntax: Move all the files in file-list to directory
Output: Renamed or relocated files
Commonly used options/features:
-f Force the move regardless of the file access modes of the destination file
-i Prompt the user before overwriting the destination

In the following usage, the first argument to the mv command is the source
file name, and the second argument is the destination name.

$ mv myfile2 renamed_file
$

It is important at this point to notice the use of spaces in Raspberry Pi OS
commands. What if you obtain a file from a Windows system that has one
or more spaces in one of the file names? How can you work with this file in
Raspberry Pi OS? The answer is simple. Whenever you need to use that file
name in a command as an argument, enclose the file name in double quotes
(“). For example, you might obtain a file that you have “detached” from an
e-mail message from someone on a Windows system, such as latest revisions
october.txt.

In order to work with this file on a Raspberry Pi system – that is, to use the
file name as an argument in a Raspberry Pi OS command – enclose the whole
name in double quotes. The correct command to rename that file to some-
thing shorter would be:

$ mv “latest revisions october.txt” laterevs.txt
$

In order to delete a file, you can use the rm command. The general syntax
of the rm command is as follows:

Raspberry Pi OS System Administration with systemd8

rm [options] file-list
Purpose: Removes files in file-list from the file structure (and disk)
Output: Deleted files
Commonly used options/features:
-f Remove regardless of the file access modes of file-list
-i Prompt the user before removing files in file-list
-r Recursively remove the files in file-list if file-list is a directory; use with

caution!

To delete the file renamed_file from the current working directory, type:

$ rm renamed_file
$

In-Chapter Exercise

7. Use the rm command to delete the files testfile and myfile3.

The most important command you will execute to do file maintenance is the
ls command. The general syntax for the ls command is as follows:

ls [options] [pathname-list]
Purpose: Sends the names of the files and directories in the directory speci-

fied by pathname-list to the display screen
Output: Names of the files and directories in the directory specified by

pathname-list, or the names only if pathname-list contains file
names only

Commonly used options/features:
-F Display a slash character (/) after directory names, an asterisk (*) after

binary executables, and an “at” character (@) after symbolic links
-a Display names of all the files, including hidden files
-i Display inode numbers
-l Display long list that includes file access modes, link count, owner,

group, file size (in bytes), and modification time

The ls command will list the names of files or folders in your current
working directory or folder. In addition, as with the other commands we
have used so far, if you include a complete pathname specification for the
pathname-list argument to the command, then you can list the names of files
and folders along that pathname list. To see the names of the files now in your
current working directory, type the following:

“Quick Start” 9

$ ls
Desktop Documents Downloads Dropbox Music Pictures Public Templates Videos
$

Please note that you will probably not get a listing of the same file names
as we showed above here, because your system will have placed some files
automatically in your home directory, as in the example we used, aside from
the ones we created together named myfile and myfile2. Also note that this
file name listing does not include the name renamed_file, because we deleted
that file.

The next command you will execute is actually just an alternate or modi-
fied way of executing the ls command, one that includes the command name
and options. As shown in the Preface, a Raspberry Pi OS command has
options that can be typed on the command line along with the command to
change the behavior of the basic command. In the case of the ls command, the
options l and a produce a longer listing of all ordinary and system (dot) files,
as well as providing other attendant information about the files.

Don’t forget to put the space character between the s and the -(dash).
Remember again that spaces delimit, or partition, the components of a
Raspberry Pi OS command as it is typed on the command line!

Now, type the following command:

$ ls -la
total 30408
drwxr-xr-x 25 bob bob 4096 May 5 07:53 .
drwxr-xr-x 5 root root 4096 Oct 20 2022 ..
drwxr-xr-x 5 bob bob 4096 Apr 23 16:32 .audacity-data
-rw------- 1 bob bob 36197 May 5 07:51 .bash_history
-rw-r--r-- 1 bob bob 220 Apr 4 2022 .bash_logout
-rw-r--r-- 1 bob bob 3523 Apr 4 2022 .bashrc
-rw-r--r-- 1 bob bob 47329 Sep 19 2022 Blandemic.txt
drwxr-xr-x 2 bob bob 4096 Apr 4 2022 Bookshelf
drwxr-xr-x 15 bob bob 4096 Apr 17 14:05 .cache
drwx------ 32 bob bob 4096 Apr 28 07:08 .config
drwx------ 3 root root 4096 Jun 29 2022 .dbus
drwxr-xr-x 7 bob bob 4096 Apr 27 05:21 Desktop
Output truncated...

As you see in this screen display (which shows the listing of files in our home
directory and will not be the same as the listing of files in your home dir-
ectory), the information about each file in the current working directory is
displayed in eight columns. The first column shows the type of file, where d
stands for directory, l stands for symbolic link, and – stands for ordinary or
regular file. Also, in the first column, the access modes to that file for user,
group, and others are shown as r, w, or x. In the second column, the number
of links to that file is displayed. In the third column, the username of the
owner of that file is displayed. In the fourth column, the name of the group
for that file is displayed. In the fifth column, the number of bytes that the file

Raspberry Pi OS System Administration with systemd10

occupies on the disk is displayed. In the sixth column, the date that the file
was last modified is displayed. In the seventh column, the time that the file
was last modified is displayed. In the eighth and final column, the name of
the file is displayed. This way of executing the command is a good way to list
more complete information about the file. Examples of using the more com-
plete information are (1) so that you can know the byte size and be able to fit
the file on some portable storage medium, or (2) to display the access modes,
so that you can alter the access modes to a particular file or directory.

In-Chapter Exercise

8. Use the ls -la command to list all of the filenames in your home dir-
ectory on your Raspberry Pi system. How does the listing you obtain
compare with the listing shown above? Remember that our listing was
done on a Raspberry Pi system.

You can also get a file listing for a single file in the current working direc-
tory by using another variation of the ls command, as follows:

$ ls -la myfile
-rw-r--r-- 1 bob bob 797 Jan 16 10:00 myfile
$

This variation shows you a long listing with attendant information for the
specific file named myfile. A breakdown of what you typed on the command
line is (1) ls, the command name, (2) -la, the options, and (3) myfile, the
command argument.

What if you make a mistake in your typing, and misspell a command name
or one of the other parts of a command? Type the following on the command
line:

$ lx -la myfile
lx: not found
$

The lx: not found a reply from Raspberry Pi OS is an error message. There
is no lx command in the Raspberry Pi OS, so an error message is displayed.
If you had typed an option that did not exist, you would also get an error
message. If you supplied a file name that was not in the current working
directory, you would get an error message, too. This makes an important
point about the execution of Raspberry Pi OS commands. If no error message
is displayed, then the command executed correctly and the results might
or might not appear on screen, depending on what the command actually
does. If you get an error message displayed, you must correct the error before
Raspberry Pi OS will execute the command as you type it.

NoteTypographic mistakes account for a large percentage of the errors
that beginners make!

“Quick Start” 11

0.2.4 Creating, Deleting, and Managing Directories

Another critical aspect of file maintenance is the set of procedures, and the
related Raspberry Pi OS commands you use to create, delete, and organize
directories in your Raspberry Pi OS account on a computer. When moving
through the file system, you are either ascending or descending to reach
the directory you want to use. The directory directly above the current
working directory is referred to as the parent of the current working direc-
tory. The directory or directories immediately under the current working dir-
ectory are referred to as the children of the current working directory. The
most common mistake for beginners is misplacing files. They cannot find the
file names listed with the ls command because they have placed or created
the files in a directory either above or below the current working directory in
the file structure. When you create a file, if you have also created a logically
organized set of directories beneath your own home directory, you will know
where to store the file. In the following set of commands, we create a direc-
tory beneath the home directory and use that new directory to store a file.

To create a new directory beneath the current working directory, you use the
mkdir command. The general syntax for the mkdir command is as follows:

mkdir [options] dirnames
Purpose: Creates directory or directories specified in dirnames
Output: New directory or directories
Commonly used options/features:
-m MODE Create a directory with given access modes
-p Create parent directories that don’t exist in the pathnames spe-

cified in dirnames

To create a child, or subdirectory, named first under the current working
directory, type the following:

$ mkdir first
$

This command has now created a new subdirectory named first under, or
as a child of, the current working directory. Refer back to Figure 0.1 for a
graphical description of the directory location of this new subdirectory.

In order to change the current working directory to this new subdirec-
tory, you use the cd command. The general syntax for the cd command is as
follows:

cd [directory]
Purpose: Change the current working directory to directory or return to the

home directory when directory is omitted
Output: New current working directory

Raspberry Pi OS System Administration with systemd12

To change the current working directory to first by descending down the
path structure to the specified directory named first, type the following:

$ cd first
$

You can always verify what the current working directory is by using the
pwd command. The general syntax of the pwd command is as follows:

pwd
Purpose: Displays the current working directory on screen
Output: Pathname of current working directory

You can verify that first is now the current working directory by typing the
following:

$ pwd
/home/bob/first
$

The output from the Raspberry Pi OS on the command line shows the
pathname to the current working directory or folder. As previously stated,
this path is a textual route through the complete file structure of the com-
puter that Raspberry Pi OS is running on, ending in the current working
directory. In this example of the output, the path starts at /, the root of the
file system. Then it descends to the directory home, a major branch of the
file system on the computer running Raspberry Pi OS. Then it descends
to the directory bob, another branch, which is the home directory name
for the user. Finally, it descends to the branch named first, the current
working directory.

On some systems, depending on the default settings, another way of deter-
mining what the current working directory is can be done by simply looking
at the command line prompt. This prompt may be prefaced with the com-
plete path to the current working directory, ending in the current working
directory.

You can ascend back up to the home directory, or the parent of the subdir-
ectory first, by typing the following:

$ cd
$

An alternate way of doing this is to type the following, where the tilde
character (~) resolves to, or is a substitute for, the specification of the com-
plete path to the home directory:

$ cd ~
$

“Quick Start” 13

To verify that you have now ascended up to the home directory, type the
following:

$ pwd
/home/bob
$

You can also ascend to a directory above your home directory, sometimes
called the parent of your current working directory, by typing the following:

$ cd ..
$

In this command, the two periods (..), represent the parent, or branch above
the current working directory. Don’t forget to type a space character between
the d and the first period. To verify that you have ascended to the parent of
your home directory, type the following:

$ pwd
/home
$

To descend to your home directory, type the following:

$ cd
$

To verify that there are two files in the home directory that begins with the
letters my, type the following command:

$ ls my*
myfile myfile2
$

The asterisk following the y on the command line is known as a metacharacter,
or a character that represents a pattern; in this case, the pattern is any set of
characters. When Raspberry Pi OS interprets the command after you press the
<Enter> key on the keyboard, it searches for all files in the current working
directory that begin with the letters my and end in anything else.

In-Chapter Exercise

9. Use the cd command to ascend to the root (/) of your Raspberry Pi OS
file system, and then use it to descend down each sub-directory from
the root recursively to a depth of 2 sub-directories, sketching a dia-
gram of the component files found on your system. Make the named
entries in the diagram as complete as possible, listing as many files as
you think necessary. Retain this diagram as a useful map of your par-
ticular Raspberry Pi OS distribution’s file system.

Raspberry Pi OS System Administration with systemd14

Another aspect of organizing your directories is the movement of files
between directories, or changing the location of files in your directories. For
example, you now have the file myfile2 in your home directory, but you
would like to move it into the subdirectory named first. See Figure 0.1 for a
graphic description to change the organization of your files at this point. To
accomplish this, you can use the second syntax method illustrated for the mv
file-list directory command to move the file myfile2 down into the subdirec-
tory named first. To achieve this, type the following:

$ mv myfile2 first
$

To verify that myfile2 is indeed in the subdirectory named first, type the
following:

$ cd first
$ ls
myfile2
$

You will now ascend to the home directory and attempt to remove or delete
a file with the rm command.

Caution: you should be very careful when using this command, because
once a file has been deleted, the only way to recover it is from archival
backups that you or the system administrator have made of the file system.

$ cd
$ rm myfile2
rm: myfile2: No such file or directory
$

You get the error message because, in the home directory, the file named
myfile2 does not exist. It was moved down into the subdirectory named first.

Directory organization also includes the ability to delete empty or
nonempty directories. The command that accomplishes the removal of
empty directories is rmdir. The general syntax of the rmdir command is
as follows:

rmdir [options] dirnames
Purpose: Removes the empty directories specified in dirnames
Output: Removes directories
Commonly used options/features:
-p Remove empty parent directories as well

To delete an entire directory below the current working directory, type the
following:

“Quick Start” 15

$ rmdir first
rmdir: first: Directory not empty
$

Since the file myfile2 is still in the subdirectory named first, first is not
an empty directory, and you get the error message that the rmdir command
will not delete the directory. If the directory was empty, rmdir would have
accomplished the deletion. One way to delete a nonempty directory is by
using the rm command with the -r option. The -r option recursively descends
down into the subdirectory and deletes any files in it before actually deleting
the directory itself. Be cautious with this command since you may inadvert-
ently delete directories and files with it. To see how this command deletes a
nonempty directory, type the following:

$ rm -r first
$

The directory first and the file myfile2 are now removed from the file
structure.

0.2.5 Obtaining Help with the man Command

A very convenient utility available on Raspberry Pi systems is the online help
feature, achieved via the use of the man command. The general syntax of the
man command is as follows:

man [options][-s section] command-list
man -k keyword-list
Purpose: First syntax: Display Raspberry Pi OS Reference Manual pages for

commands in command-list one screen at a time
Second syntax: Display summaries of commands related to

keywords
in keyword-list

Output: Manual pages one screen at a time
Commonly used options/features:
-k keyword-list Search for summaries of keywords in keyword-list
 in a database and display them
-s sec-num Search section number sec-num for manual pages
 and display them

To get help by using the man command, on usage and options of the ls
command, for example, type the following:

Raspberry Pi OS System Administration with systemd16

$ man ls

LS(1) User Commands LS(1)

NAME
ls - list directory contents

SYNOPSIS
ls [OPTION]... [FILE]...

DESCRIPTION
List information about the FILEs (the current directory
by default).
Sort entries alphabetically if none of -cftuvSUX nor –sort
is specified.

Mandatory arguments to long options are mandatory for
short options too.

-a, --all
do not ignore entries starting with .

-A, --almost-all
do not list implied . and ..

--author
Manual page ls(1) line 1 (press h for help or q to quit)

This output from Raspberry Pi OS is a Raspberry Pi OS manual page, or man
page, which gives a synopsis of the command usage showing the options,
and a brief description that helps you understand how the command should
be used. Typing q after one page has been displayed, as seen in the example,
returns you to the command line prompt. Pressing the space key on the key-
board would have shown you more of the content of the manual pages, one
screen at a time, related to the ls command.

To get help in using all the Raspberry Pi OS commands and their
options, use the man man command to go to the Raspberry Pi OS reference
manual pages.

The pages themselves are organized into eight sections, depending on topic
described, and the topics that are applicable to the particular system. Table
0. 1 lists the sections of the manual and what they contain. Most users find
the pages they need in Section 2.1. Software developers mostly use library
and system calls and thus find the pages they need in Sections 2.2 and 2.3.
Users who work on document preparation get the most help from Section 2.7.
Administrators mostly need to refer to pages in Sections 2.1, 2.4, 2.5, and 2.8.

The manual pages comprise multi-page, specially formatted, descriptive
documentation for every command, system call, and library call in
the Raspberry Pi OS. This format consists of seven general parts: name,

“Quick Start” 17

synopsis, description, list of files, related information, errors, warnings, and
known bugs. You can use the man command to view the manual page for
a command. Because of the name of this command, the man pages are nor-
mally referred to as Raspberry Pi OS man pages. When you display a man
page on the screen, the top-left corner of the page has the command name
with the section it belongs to in parentheses, as with LS(1), seen at the top of
the output manual page.

The command used to display the manual page for the passwd command
is:

$ man passwd

The manual page for the passwd command now appears on the screen, but
we do not show its output. Because they are multi-page text documents, the
manual pages for each topic take up more than one screen of text to display
their entire contents. To see one screen of the manual page at a time, press the
space bar on the keyboard. To quit viewing the manual page, press the Q key
on the keyboard.

Now type this command:

$ man pwd

If more than one section of the man pages has information on the same
word and you are interested in the man page for a particular section, you can
use the -S option. The following command line, therefore, displays the man
page for the read system call and not the man page for the shell command
read.

$ man -S2 read

The command man -S3 fopen fread strcmp sequentially displays man
pages for three C library calls: fopen, fread, and strcmp.

To exit from the display of these system calls, type <Ctrl-C>.

TABLE 0.1

Sections of the Raspberry Pi OS Manual

Section What It Describes

1 User commands
2 System calls
3 Language library calls (C, FORTRAN, etc.)
4 Devices and network interfaces
5 File formats
6 Games and demonstrations
7 Environments, tables, and macros for troff
8 System maintenance-related commands

Raspberry Pi OS System Administration with systemd18

Using the man command and typing the command with the -k option,
allows specifying a keyword that limits the search. It is equivalent to using
the apropos command. The search then yields useful man page headers
from all the man pages on the system that contain just the keyword refer-
ence. For example, the following command yields the on-screen output on
our Raspberry Pi system:

$ man -k passwd
chgpasswd (8) - update group passwords in batch mode
chpasswd (8) - update passwords in batch mode
exim4_passwd (5) - Files in use by the Debian exim4 packages
exim4_passwd_client (5) - Files in use by the Debian exim4 packages
fgetpwent_r (3) - get passwd file entry reentrantly
getpwent_r (3) - get passwd file entry reentrantly
gpasswd (1) - administer /etc/group and /etc/gshadow
openssl-passwd (1ssl) - compute password hashes
pam_localuser (8) - require users to be listed in /etc/passwd
passwd (1) - change user password
passwd (1ssl) - compute password hashes
passwd (5) - the password file
passwd2des (3) - RFS password encryption
update-passwd (8) - safely update /etc/passwd, /etc/shadow and /etc/group
vncpasswd (1) - VNC Server password utility
Output truncated…

0.2.6 Other Methods of Obtaining Help

To get a short description of what any particular Raspberry Pi OS command
does, you can use the whatis command. This is similar to the command
man -f. The general syntax of the whatis command is as follows:

whatis keywords
Purpose: Search the whatis database for abbreviated descriptions of each

keyword
Output: Prints a one-line description of each keyword to the screen

The following is an illustration of how to use whatis-
The output of the two commands are truncated.

$ whatis man
man (7) - macros to format man pages
man (1) - an interface to the online
 reference manuals
$

You can also obtain short descriptions of more than one command by
entering multiple arguments to the whatis command on the same command
line, with spaces between each argument. The following is an illustration of
this method:

“Quick Start” 19

$ whatis login set setenv
login (1) - begin session on the system
login (3) - write utmp and wtmp entries
setenv (3) - change or add an environment variable
set: nothing appropriate.
$

The following In-Chapter Exercises ask you to use the man and whatis
commands to find information about the passwd command. After com-
pleting the exercises, you can use what you have learned to change your
login password on the Raspberry Pi system that you use.

In-Chapter Exercises

10. Use the man command with the -k option to display abbreviated help
on the passwd command. Doing so will give you a screen display
similar to that obtained with the whatis command, but it will show all
apropos command names that contain the characters passwd.

11. Use the whatis command to get a brief description of the passwd
command shown above, and then note the difference between the
commands whatis passwd and man -k passwd.

0.3 Utility Commands

There are several major commands that allow the beginner to be more
productive when using a Raspberry Pi system. A sampling of these kinds
of utility commands is given in the following sections and is organized as
system setups, general utilities, and communications commands.

0.3.1 Examining System Setups

The whereis command allows you to search along certain prescribed paths to
locate utility programs and commands, such as shell programs. The general
syntax of the whereis command is as follows:

whereis [options] filename
Purpose: Locate the binary, source, and man page files for a command
Output: The supplied names are first stripped of leading pathname

components and extensions, then pathnames are displayed on
screen

Commonly used options/features:
-b Search only for binaries
-s Search only for source code

Raspberry Pi OS System Administration with systemd20

For example, if you type the command whereis bash on the command line,
you will see a list of the paths to the Bash shell program files themselves, as
follows:

$ whereis bash
bash: /bin/bash /etc/bash.bashrc /usr/share/man/man1/bash.1.gz

Note that the paths to a “built-in,” or internal, command cannot be found
with the whereis command.

When you first log on, it is useful to be able to view a display of infor-
mation about your userid, the computer or system you have logged on to,
and the operating system on that computer. These tasks can be accomplished
with the whoami command, which displays your userid on the screen. The
general syntax of the whoami command is as follows:

whoami
Purpose: Displays the effective user id
Output: Displays your effective user id as a name on standard

The following shows how our system responded to this command when
we typed it on the command line.

$ whoami
bob
$

The following In-Chapter Exercises give you the chance to use whereis,
whoami, and two other important utility commands, who and hostname to
obtain important information about your system.

To find out the IP address of the Raspberry Pi you are working on, you
can use the ip command. The general syntax of the ip command is as
follows:

ip [OPTIONS] OBJECT {COMMAND | help}
Purpose: Show/manipulate routing, network devices, interfaces, and

tunnels.
Output: Information about your LAN.

To find out the IP address of the computer you are working on, type the
following command in a terminal or console window:

“Quick Start” 21

$ ip addr
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group \

default qlen 1000
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo
 valid_lft forever preferred_lft forever
inet6 ::1/128 scope host
 valid_lft forever preferred_lft forever

2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP group \
default qlen 1000
link/ether dc:a6:32:ee:c6:6b brd ff:ff:ff:ff:ff:ff
inet 192.168.1.2/24 brd 192.168.1.255 scope global dynamic noprefixroute eth0
 valid_lft 65558sec preferred_lft 54758sec
inet6 fe80::78d9:c72e:75e2:82c/64 scope link
 valid_lft forever preferred_lft forever

3: wlan0: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN group default \
qlen 1000
link/ether dc:a6:32:ee:c6:6c brd ff:ff:ff:ff:ff:ff

$

In the above output, the IP address 192.168.1.2 is the address on the LAN of
this computer.

In-Chapter Exercises

12. Use the whereis command to locate binary files for the Korn shell, the
Bourne shell, the Bourne Again shell, the C shell, and the Z shell. Are
any of these shell programs not available on your system?

13. Use the whoami command to find your username on the system
that you’re using. Then use the who command to see how your user-
name is listed, along with other users of the same system. What is the
on-screen format of each user’s listing that you obtained with the who
command? Try to identify the information in each field on the same
line as your username.

14. Use the hostname -I command to find out the IP address of host com-
puter you are logged on to, on your LAN. Compares this to the output
of the ip addr command on that same system.

0.4 Printing Commands

A very useful and common task performed by every user of a computer
system is the printing of text files at a printer. This is accomplished using the
configured printer(s) on the local, or a remote, system. Printers are controlled
and managed with the Common UNIX Printing System (CUPS). We show
this utility in detail in Chapter 1.

Raspberry Pi OS System Administration with systemd22

The common commands that perform printing on a Raspberry Pi system
are lpr and lp. The general syntax of the lpr command is as follows:

lpr [options] filename
Purpose: Send files to the printer
Output: Files sent to the printer queue as print jobs
Commonly used options/features:
-P printer Send output to the named printer
-# copies Produce the number of copies indicated for each named file

The following lpr command accomplishes the printing of the file named
order.pdf at the printer designated on our system as spr. Remember that no
space is necessary between the option (in this case -P) and the option argu-
ment (in this case spr).

$ lpr -Pspr order.pdf
$

The following lpr command accomplishes the printing of the file named
memo1 at the default printer.

$ lpr memo1
$

The following multiple command combines the man command and the lpr
command, and ties them together with the Raspberry Pi OS pipe (|) redir-
ection character, to print the man pages describing the ls command at the
printer named hp1200.

$ man ls | lpr -Php1200
$

The following shows how to perform printing tasks using the lp command.
The general syntax of the lp command is as follows:

lp [options][option arguments] file(s)
Purpose: Submit files for printing on a designated system printer, or alter

pending print jobs
Output: Printed files or altered print queue
Commonly used options/features:
-d destination Print to the specified destination
-n copies Sets the number of copies to print.

In the first command, the file to be printed is named file1. In the second
command, the files to be printed are named sample and phones. Note that
the -d option is used to specify which printer to use. The option to specify the
number of copies is -n for the lp command.

“Quick Start” 23

$ lp -d spr file1
request id is spr-983 (1 file(s))
$ lp -d spr -n 3 sample phones
request id is spr-984 (2 file(s))
$

0.5 Chapter Summary

In this introductory chapter, we covered essential Raspberry Pi OS
commands, as specified in Table 0.2, that allow a system administrator to do

TABLE 0.2

Useful Commands for the Beginner

Command What It Does

<Ctrl+D> Terminates a process or command
alias Allows you to create pseudonyms for commands
biff Notifies you of new e-mail
cal Displays a calendar on screen
cat Allows joining of files
cd Allows you to change the current working directory
cp Allows you to copy files
exit Ends a shell that you have started
hostname Displays the name of the host computer that you are logged on to
ip Displays IP information of the current host
login Allows you to log on to the computer with a valid username/password pair
lpr or lp Allows printing of text files
ls Allows you to display names of files and directories in the current working directory
man Allows you to view a manual page for a command or topic
mesg Allows or disallows writing messages to the screen
mkdir Allows you to create a new directory
more Allows viewing of the contents of a file one screen at a time
mv Allows you to move the path location of, or rename, files
passwd Allows you to change your password on the computer
pg Solaris command that displays one screen of a file at a time
pwd Allows you to see the name of the current working directory
rm Allows you to delete a file from the file structure
rmdir Allows deletion of directories
talk Allows you to send real-time messages to other users
telnet Allows you to log on to a computer on a network or the Internet
unalias Allows you to undefine pseudonyms for commands
uname Displays information about the operating system running the computer
whatis Allows you to view a brief description of a command
whereis Displays the path(s) to commands and utilities in certain key directories
who Allows you to find out login names of users currently on the system
whoami Displays your username
write Allows real-time messaging between users on the system

Raspberry Pi OS System Administration with systemd24

file maintenance and perform other useful operations. This is a mandatory
set of essentials that even an ordinary, non- administrative user would need
to know to work efficiently in a character, or text-based interface to the oper-
ating system. Text-based commands are the predominant means that a system
administrator uses to maintain the integrity of the system. We gave examples
and showed the basic format of the following commands and primitives-cat,
cd, cp, exit, hostname, login, lp, lpr, ls, man, mesg, mkdir, more, mv, passwd,
PATH, pwd, rm, rmdir, telnet, unalias, uname, whatis, whereis, who, whoami.

25DOI: 10.1201/b23405-2

1
Basic System Administration

1.0 Objectives, Commands, and Primitives Covered

Objectives:

* To present download and installation instructions for Webmin
* To give an example of system service administration using systemd –

 vsftpd
* To describe the systemd target states
* To provide examples of making disk and media additions to a Raspberry

Pi system
* To completely describe CUPS printing in the Raspberry Pi OS
* To detail other Linux backup facilities and commands, such as rsync
* To describe repository management for a Debian system
* To describe Linux tasks, processes, and threads
* To expand upon systemd journald messaging
* To define credentialing and various access control methods, such as

DAC, MAC, and RBAC
* To describe the sudo program, command, and sudoers file
* To illustrate the uses of POSIX.1e and NFSv4 Access Control Lists (ACLs)

* To illustrate how to install an NFS server and client on Raspberry Pi OS
systems

* To illustrate how to keep a Raspberry Pi system secure using the
Uncomplicated Firewall (ufw)

* To show various encryption mechanisms, such as encrypting an entire
hard disk

* To describe process credentialing and process capabilities

* To define and give an example of Linux namespaces

* To present a thorough overview of how systemd is the “superkernel” in
the Raspberry Pi OS

http://dx.doi.org/10.1201/b23405-2

Raspberry Pi OS System Administration with systemd26

Commands and Primitives Covered:

ACL addgroup adduser apt-key cat chgrp chmod chown compgen cpio CUPS DAC dd
du exec() export fdisk FileZilla fork() ftp getcap getfacl gpg id inxi journalctl kill lp
lpadmin lpc lpinfo lpmove lpoptions lpq lpr lprm lpstat MAC mdadm Mirroring mkfs.
ext4 mount nfs4_getfacl nfs4_setfacl nice ping POSIX.1e processes capabilities ps -aux
RAID1 RBAC renice setcap setfacl ssh sshd sudo sudoers file systemctl tar top touch
ufw umask umount uname vsftpd wget

1.1 Introduction – Icebreaker with inxi and FileZilla

To expand upon your beginner’s knowledge of system administration topics
and commands, we present more advanced concepts, topics, commands, and
details here.

The overriding idea behind system administration of a modern,
21st-century Linux system, and for a Raspberry Pi OS in particular, is
the use of systemd to ensure that the Linux kernel works efficiently and
effectively to provide a computer system concurrency, virtualization,
and secure persistence. And this control of the kernel by a “superkernel”
(which is what systemd essentially is) must also promote the highest
level of system performance and speed, given the use cases the computer
might be put to and the perceived needs of the target user base that the
computer serves.

Certainly out of the multitude of possible topics we could have presented,
the ones you find here have been selected in somewhat of a subjective way.
That selective way was mainly guided by these concerns:

a. The secure maintenance, in terms of concurrency, virtualization, and
persistence, of a single Raspberry Pi OS computer system that an
ordinary novice user can install on their own personal computer.

b. How important the topics are in a perceived ranking of essential
system administration tasks.

c. How systemd plays into the maintenance regimen chosen by that
ordinary user.

d. The overall pedagogic integration of the selected topics presented on
system administration.

e. How well these topics serve to prepare a beginner for entry into any
chosen Information Technology or Computer Science profession, or
how someone already in those professions can use this chapter to
better their practice of that profession. In other words, for educational
and continuing education audiences.

Basic System Administration 27

f. To some degree, making it possible to extrapolate these topics (for
audiences in e.) from a single computer system environment to a
broader and larger-scaled computing environment, such as is
found on small- to medium-sized servers, or to cloud-based, virtual
computing.

* Our Data Storage Model Recommendation – All Raspberry Pi models
have multiple USB ports, for the attachment of additional peripherals,
such as USB flash drives, or externally mounted SATA drives. We recom-
mend that you maintain the Raspberry Pi OS on either an internal microSD
card, or an externally mounted USB3 SATA or PCIe M.2 medium. We pro-
vide an example later, Example 1.5.2, that details how to boot and run
the Raspberry Pi OS from a USB3 SATA SSD. We also recommend that
you store all of the user data on another medium, or an array of attached
media. That way, if the operating system and its bootable microSD card,
USB3 SATA SSD, or PCIe M.2 medium become corrupted or unusable for
some reason, your user data is safe on separate storage media. This technique
(or storage model) dovetails very well with the most practical methods
of operating system upgrades. Using it, you can then simply replace the
operating system microSD card, USB3 SATA SSD, or PCIe M.2 board and
reinstall either the current version of the operating system or a newer
version, without significantly impacting your data storage. This will allow
you to reattach the data drive(s) to the new operating system, onto what-
ever separate storage medium it’s on. This methodology is highly valu-
able, not only for single-user desktop computers but also for server-class
systems, such as NAS clusters that might be built using the Raspberry Pi
OS and Raspberry Pi hardware as well.

The way that your data is deployed on your disks is a critical design con-
sideration when you are building your system and is highly dependent on
the particular use case that is guiding it.

The system we tested all of the following topics on, and in fact, everything
from this book as well, is as follows:

System: Host: raspberrypi Kernel: 6.1.21-v8+ aarch64 bits: 64 compiler: gcc
v: 10.2.1

Console: tty 0 Distro: Debian GNU/Linux 11 (bullseye)
Machine: Type: ARM Device System: Raspberry Pi 400 Rev 1.0 details:

BCM2835 rev: c03130

Anything that you are required to type on the command line below is
shown in bold type, always preceded by the shell prompt $ and always
followed by pressing <Enter> on the keyboard.

Raspberry Pi OS System Administration with systemd28

1.1.1 inxi

How can you get a quick, informational snapshot of how your Raspberry Pi
system is configured, particularly the hardware?

Use these two commands (when we did this on our Raspberry Pi 400, with
the latest operating system version on it, we got the following output to the
second command):

$ sudo apt install inxi
Output truncated …
$ sudo inxi -GSCMm -t c -P -x

System: Host: raspberrypi Kernel: 6.1.21-v8+ aarch64 bits: 64 com-
piler: gcc v: 10.2.1 Console: tty 0

Distro: Debian GNU/Linux 11 (bullseye)
Machine: Type: ARM Device System: Raspberry Pi 400 Rev 1.0 details:

BCM2835 rev: c03130
serial: 10000000fdd89bf2
Memory: RAM: total: 3.78 GiB used: 606.7 MiB (15.7%) gpu: 76 MiB
RAM Report: unknown-error: Unknown dmidecode error. Unable to gen-

erate data.
CPU: Info: Quad Core model: N/A variant: cortex-a72 bits: 64

type: MCP arch: ARMv8 rev: 3
features: Use -f option to see features bogomips: 432
Speed: 1800 MHz min/max: 600/1800 MHz Core speeds (MHz): 1:

1800 2: 1800 3: 1800 4: 1800
Graphics: Device-1: bcm2711-hdmi0 driver: vc4_hdmi v: N/A bus ID: N/A
Device-2: bcm2711-hdmi1 driver: vc4_hdmi v: N/A bus ID: N/A
Device-3: bcm2711-vc5 driver: vc4_drm v: N/A bus ID: N/A
Display: server: X.Org 1.20.11 driver: loaded: modesetting unloaded:

fbdev resolution: 1920x1080~60Hz
OpenGL: renderer: V3D 4.2 v: 2.1 Mesa 20.3.5 direct render: Yes
Partition: ID-1: / size: 438.79 GiB used: 10.96 GiB (2.5%) fs: ext4 dev: /

dev/sda2
 ID-2: /boot size: 252 MiB used: 30.4 MiB (12.1%) fs: vfat dev:

/dev/sda1
Processes: CPU top: 5 of 220
 1: cpu: 7.5% command: xorg pid: 727 mem: 88.1 MiB (2.3%)
 2: cpu: 4.0% command: sudo pid: 2119 mem: 4.36 MiB

(0.1%)
 3: cpu: 3.5% command: mutter pid: 919 mem: 79.6 MiB

(2.0%)
 4: cpu: 3.0% command: packagekitd pid: 1368 mem: 20.4 MiB

(0.5%)
 5: cpu: 2.4% command: init pid: 1 mem: 10.3 MiB (0.2%)

Basic System Administration 29

See the man page on your Raspberry Pi OS for more information about the
inxi command.

1.1.2 FileZilla

FileZilla is nominally a graphics-based ftp client and server program that
can use ssh as the tunnel or conduit between systems. It has a number of
useful functions and menu choices that allow the system administrator to
successfully, confidently, and efficiently backup and restore single files or dir-
ectories via a network globally. It is most useful for backing up and restoring
single-user files and directories.

It is not a replacement or substitute for the command-line facilities shown
in the following sections. Figure 1.1 illustrates the screen display and menus
available in the “client” version of FileZilla.

Both client and server, in our case, a local machine running the Raspberry
Pi OS system and a remote machine running the same OS, must have
ssh communications protocol enabled between them. To see more about
establishing ssh between Raspberry Pi systems, see Section 1.3. You can have
login access to an account on the remote server, or you can anonymously log
in as well if that is enabled.

FIGURE 1.1
Filezilla Main Window.

Raspberry Pi OS System Administration with systemd30

After launching FileZilla on the client, to log in to a remote host server, you
need to supply the IP address of the server, the login name and password,
and the port number (22 for ssh). Once you have successfully logged in, the
local machine’s directory and file structure are shown on the left side of the
figure. The remote machine’s directory structure is shown on the right side
of the figure. To transfer files or directories between machines, you simply
drag and drop between the appropriate panes on the left or right. If you are
overwriting previously transferred files or directories, the FileZilla default
is to give you the chance to overwrite or rename the files being transferred.

There are a number of other menu choices at the top of the FileZilla screen
that allows you to change preferences, set bookmarks, etc. For example, via
the menu choice Manage Bookmarks and the Site Manager, you can automat-
ically make multiple local directories and remote directories available for ssh
transfer as soon as you log in to the remote server sites.

1.2 Webmin Download and Installation

This section details how to install and do a very basic configuration of
Webmin on the Raspberry Pi OS. Webmin has a GUI control panel for doing
many system administration tasks, and most importantly, it is a web-based
interface that can be very effectively used to manage your system. Webmin
can set up user and group accounts, install web servers, initialize file sharing,
and many other common system administration activities. Webmin is
time-effective for beginners who do not know much about the Linux command
line or want a simpler, more intuitive graphical interface to the system.

Example 1.1 will lead you through the step-by-step download, installation,
and initial minimal but critical configuration of Webmin on the Raspberry Pi
OS. The instructions given here were executed on a Raspberry Pi 400.

Example 1.1 Webmin Installation on Raspberry Pi OS

1. Type the following on the command line to prepare your system by
installing dependencies:

$ sudo apt-get install perl libnet-ssleay-perl openssl libauthen-pam-\
perl libpam-runtime libio-pty-perl apt-show-versions python \
shared-mime-info -y

2. Type the following to download Webmin.

$ wget http://prdownloads.sourceforge.net/webadmin/webmin_\
1.998_all.deb

http://prdownloads.sourceforge.net
http://prdownloads.sourceforge.net

Basic System Administration 31

At the time of the writing of this book, the version of Webmin available was
version 1.998. This probably will not be the current version when you are exe-
cuting these instructions, but once you have Webmin installed and running,
it’s very easy to upgrade to the latest version from right within the program.
You can also check what the latest version of Webmin is by going to this URL
and substituting the latest version number found there for webmin_1.998.

https://sourceforge.net/projects/webadmin/files/

3. Install Webmin with the following commands:

$ sudo apt install ./webmin_1.998_all.deb

4. (Optional) If ufw is active on your system (which by default it is not
on the Raspberry Pi OS), allow Webmin through the firewall with the
following command:

$ sudo ufw allow 10000

5. Webmin uses 10000 as its default port in the system. To access the
Webmin panel using your favorite web browser from anywhere on
your LAN (or, for that matter, from the same machine you installed
Webmin on), type this into your URL bar on your web browser.

https://your-ip-address:10000

 where your-ip-address is the IP address of the machine you just
installed Webmin on.

6. A warning appears in the browser window the first time you try to
access Webmin, reading

 “Your connection is not private.”
 Make the Advanced choice in the dialog box that appears on the

screen, and Add Exception button choice in the subsequent box. Then
choose Proceed to your_ip_address (unsafe).

7. The Webmin sign-in screen appears in your browser window.
 Log in to your account on the system with your username and pass-

word pair, make sure you put an x in the box for Remember me, and
click on Sign in.

 The Webmin System Information panel appears on the screen,
showing a very extensive display of the state of your Raspberry Pi
system.

8. Play with Webmin in a non-destructive way. In other words, if you
encounter a Webmin function or activity that asks you to change the
basic configuration of the system, do not proceed at this point. Once

https://sourceforge.net
https://your-ip-address:10000

Raspberry Pi OS System Administration with systemd32

you learn more about Linux configuration from the sections in this
chapter, you will be better prepared to use Webmin to change them.
When you are done, choose Logout from the Webmin panel on the left
of your web browser display.

In the sections below in this chapter, you can go back into Webmin at any
time and experiment with Webmin to find out how relatively efficient and
effective Webmin is in handling the tasks we detail in those sections!

1.3 sshd and System Service Management Using systemd:
vsftpd

1.3.1 Connecting via a Secure SHell (SSH) Client between Raspberry
Pi OS Machines

The basic methodology, and the techniques we show below, allow a user on
one Raspberry Pi OS computer to remote log in and log out of another com-
puter using the SSH protocol. SSH is a very secure encrypted channel of com-
munication between a client computer and a server on a LAN or the Internet.
The computer you are using to log into another computer is known as the
SSH client. The computer you want to log into with SSH is known as the
server, or the host system.

Before this methodology can be used, both client and server systems
must be able to talk to each other over the SSH channel. In other words, the
server system must have the SSH server-side software package installed and
enabled on it. This is usually not the default on most Linux systems, so you
have to follow the installation and/or enabling instructions given for your
particular flavor of Linux to accomplish this.

There are a few approaches to enabling SSH server-side software on the
latest Raspberry Pi OS, as follows:

1. Starting from scratch, you could directly enable it when the system
is flashed to the microSD card you might be running the system
from. At installation, a convenient graphical dialog box allows you
to do this.

2. On an already-installed system, in a terminal window, you can use
the command sudo raspi-config, to descend through the Raspberry
Pi Software Configuration Tool menu choices Interface Options>SSH,
and enable it.

3. Launch the Raspberry Pi Configuration Tool from the Preferences
Menu, and do the same thing as in step 2.

Basic System Administration 33

4. By default, the SSH server-side package was not installed on our
Raspberry Pi OS systems, but in a terminal window, we were able to
install it with the following command:

$ sudo apt-get install openssh-server

After the above command is executed successfully, the SSH server-side “ser-
vice” is installed, started, and enabled. Being “enabled” means able to start at
subsequent reboots of the Raspberry Pi OS.

The client-side SSH software is installed by default on most Linux system
implementations, including on our Raspberry Pi system.

Note The user must know a valid username/password pair on the
remote server system to be able to log in to the remote system!

1.3.1.1 Login and Logout Procedures

We show three possible methods that can be used in this two-way
communications dialog once server-side software is installed.

First, if the user has previously already logged into the host success-
fully from the client before, and the authentication keys have not changed.
Second, if the user has never logged into the host successfully before from the
client. And third, if the user has logged into the host before, but the authen-
tication key on the host has changed since the last successful login. These
are practical situations one might encounter any time you use this remote
login method.

What the user types in is shown in bold text:

Method 1. Having logged in before successfully:

$ ssh bob@192.168.1.15
bob@192.168.1.15’s password: www
Linux raspberrypi 6.1.21-v8+ #1642 SMP PREEMPT Mon Apr 3 17:24:16 BST 2023 \

aarch64

The programs included with the Debian GNU/Linux system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
permitted by applicable law.
Last login: Fri May 5 07:17:44 2023 from 192.168.1.11
$ Execute Command Line Linux Commands
$ logout
Connection to 192.168.1.15 closed.
$

Raspberry Pi OS System Administration with systemd34

Method 2. Having never logged in before:

$ ssh bob@192.168.1.15
The authenticity of host ‘192.168.1.15 (192.168.1.15)’ can’t be established. ECDSA

key fingerprint is SHA256:uZpqi4U6uBN5SOBVFRbqbl5HspmV3eZAw/nUvPBTS5I.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added ‘192.168.1.15’ (ECDSA) to the list of known hosts.
bob@192.168.1.15’s password: www
Linux raspberrypi 6.1.21-v8+ #1642 SMP PREEMPT Mon Apr 3 17:24:16 BST 2023

aarch64

The programs included with the Debian GNU/Linux system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent permitted
by applicable law.

Last login: Fri May 5 07:17:44 2023 from 192.168.1.2
$ Execute Command Line Linux Commands
$ logout
Connection to 192.168.1.15 closed.
$

Method 3. Logged in before, but the host key has changed:

$ ssh bob@192.168.1.15
@@

@@@@@@@@@@@
@ WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED! @
@@

@@@@@@@@@@@
IT IS POSSIBLE THAT SOMEONE IS DOING SOMETHING NASTY!
Someone could be eavesdropping on you right now (man-in-the-middle attack)!
It is also possible that a host key has just been changed.
The fingerprint for the ECDSA key sent by the remote host is
SHA256:hNGE725MKYvuOrAHkTX7nwLYP8GKqutPJG3pAKJmvzw.
Please contact your system administrator.
Add correct host key in /home/bob/.ssh/known_hosts to get rid of this message.
Offending ECDSA key in /home/bob/.ssh/known_hosts:2
 remove with:
 ssh-keygen -f “/home/bob/.ssh/known_hosts” -R “192.168.1.15”
ECDSA host key for 192.168.1.15 has changed and you have requested strict

checking.
Host key verification failed.
rsync: connection unexpectedly closed (0 bytes received so far) [sender]
rsync error: unexplained error (code 255) at io.c(228) [sender=3.2.3]
$ ssh-keygen -f “/home/bob/.ssh/known_hosts” -R “192.168.1.15”

Output truncated...
$ ssh bob@192.168.1.15
The authenticity of host ‘192.168.1.15 (192.168.1.15)’ can’t be established.
ECDSA key fingerprint is 43:e8:cf:33:d5:ed:dd:05:d9:e9:a5:9d:d3:18:1d:2b.
No matching host key fingerprint found in DNS.
Are you sure you want to continue connecting (yes/no)? yes

Basic System Administration 35

Warning: Permanently added ‘192.168.1.15’ (ECDSA) to the list of known hosts.
bob@192.168.1.15’s password: www
Last login: Sat Dec 24 16:54:10 2016 from 192.168.1.2
Output truncated...
$ Execute Command Line Linux Commands
$ logout
Connection to 192.168.1.15 closed.
$

In all of the three methods, the user is assumed to have an account
with the same username, and possibly password, on both client and host
systems.

In method 2, the keys are generated on the host and client after the user
types in yes and presses <Enter>.

In method 3, after the first failed attempt to establish an SSH connection,
the error message indicates that the authentication key has changed
on the host. A very helpful component of the error message is the
instruction:

Add the correct host key in /home/bob/.ssh/known_hosts to get rid of
this message.

Offending ECDSA key in /usr/home/bob/.ssh/known_hosts:2
So removal of the offending key in the file /home/bob/.ssh/known_hosts

on the client machine is done by using the command:

$ ssh-keygen -f “/home/bob/.ssh/known_hosts” -R “192.168.1.15”

Then a new key is generated, an exchange can take place, and the login can
proceed.

The line in all three methods above that reads “Execute Command
Line Linux Commands” is where the user types in any of the valid Linux
commands we show in this chapter and throughout the rest of this book.
Finally, after typing logout, the user cuts the SSH channel connection and is
returned to the command-line prompt of the local client system.

Example 1.2 vsftpd

Objectives: To install, and start a system service for a secure form of ftp, using
systemd

Prerequisites: Knowledge of basic Linux commands, having SSH enabled
on your Raspberry Pi OS. To enable SSH on your Raspberry Pi OS, you can
use the raspi-config tool from the command line or the Preferences pulldown
menu and navigate to Interfacing Options to accomplish it. Or you can use
the methods shown in Section 1.3.1.1. SSH will give you access to the SFTP
functions of the protocol.

Background: One of the most important uses of systemd for system admin-
istration is managing essential system services. vsftpd is a secure ftp server

Raspberry Pi OS System Administration with systemd36

that can be used by client machines on your network or the Internet to log
into a host machine, and exchange files.

Requirements: Do the following steps, in the order presented, to meet the
requirements of this example:

1. Download and install the vsftpd server with the following command:

$ sudo apt install vsftpd

2. Use the systemd systemctl command to check the status of the vsftpd
service using the following command:

$ systemctl status vsftpd.service
● vsftpd.service - vsftpd FTP server

Loaded: loaded (/lib/systemd/system/vsftpd.service; enabled; vendor
preset>

Active: active (running) since Sun 2022-10-02 06:35:04 PDT; 8s ago
Process: 33498 ExecStartPre=/bin/mkdir -p /var/run/vsftpd/empty

(code=exite>
Main PID: 33499 (vsftpd)
 Tasks: 1 (limit: 4164)
 CPU: 13ms
 CGroup: /system.slice/vsftpd.service
 └─33499 /usr/sbin/vsftpd /etc/vsftpd.conf

Oct 02 06:35:04 raspberrypi systemd[1] : Starting vsftpd FTP server...
Oct 02 06:35:04 raspberrypi systemd[1] : Started vsftpd FTP server.

Notice from the above output that the command from step 1 not only
downloaded but also installed and started the vsftpd service.

3. From another host machine on your network, use the ftp command
to connect to the vsftpd server on your machine. Substitute the IP
address of the machine you want to ftp into for the IP 192.168.0.30
shown in this command:

ftp 192.168.1.6
Connected to 192.168.0.36.
220 (vsFTPd 3.0.3)
Name (192.168.0.6:bob): bob
331 Please specify the password.
Password: QQQ
230 Login successful.
Remote system type is UNIX.
Using binary mode to transfer files.

4. Get a directory listing of the files on the machine you are connected to:

ftp> ls

Basic System Administration 37

Here is a directory listing on the machine you are connected to:

200 PORT command successful. Consider using PASV.
150 Here comes the directory listing.

-rw-r--r-- 1 1000 1000 0 Jun 10 08:01 32m
drwxr-xr-x 2 1000 1000 4096 Jul 02 12:13 Desktop
drwxr-xr-x 2 1000 1000 4096 Jun 09 16:51 Documents
drwxr-xr-x 2 1000 1000 4096 Jun 09 16:51 Downloads
drwx------ 23 1000 1000 4096 Jul 02 11:51 Dropbox
drwxr-xr-x 2 1000 1000 4096 Jun 09 16:51 Music
drwxr-xr-x 2 1000 1000 4096 Jun 09 16:51 Pictures
drwxr-xr-x 2 1000 1000 4096 Jun 09 16:51 Public
drwxr-xr-x 2 1000 1000 4096 Jun 09 16:51 Templates
drwxr-xr-x 2 1000 1000 4096 Jun 09 16:51 Videos
-rw-r--r-- 1 1000 1000 134217728 Jun 10 08:14 disk1
226 Directory send OK.

5. Terminate the connection with the following ftp command:

ftp> exit
221 Goodbye.

#

6. In order to stop the vsftpd service, use the following command:

$ sudo systemctl stop vsftpd.service
$

7. Check the status of the vsftpd service with the following command:

$ systemctl status vsftpd.service
● vsftpd.service - vsftpd FTP server

Loaded: loaded (/lib/systemd/system/vsftpd.service; enabled; vendor preset>
Active: inactive (dead) since Sun 2022-10-02 06:44:10 PDT; 13s ago
Process: 33498 ExecStartPre=/bin/mkdir -p /var/run/vsftpd/empty
(code=exite>
Process: 33499 ExecStart=/usr/sbin/vsftpd /etc/vsftpd.conf (code=killed, si>
Main PID: 33499 (code=killed, signal=TERM)
 CPU: 203ms

Oct 02 06:35:04 raspberrypi systemd[1] : Starting vsftpd FTP server...
Oct 02 06:35:04 raspberrypi systemd[1] : Started vsftpd FTP server...

8. To restart the vsftpd service, use the following command:

$ sudo systemctl restart vsftpd.service

Raspberry Pi OS System Administration with systemd38

9. To make sure a service starts automatically at boot time, use the
following command:

$ sudo systemctl enable vsftpd.service
Synchronizing state of vsftpd.service with SysV init with /lib/systemd/

systemd-sysv-install...
Executing /lib/systemd/systemd-sysv-install enable vsftpd
$

10. To disable a service from starting at boot, use the following command:

$ sudo systemctl disable vsftpd.service
Synchronizing state of vsftpd.service with SysV service script with /lib/

systemd/systemd-sysv-install.
Executing: /lib/systemd/systemd-sysv-install disable vsftpd
Removed /etc/systemd/system/multi-user.target.wants/vsftpd.service.
$

Conclusion: This example allowed you to download, install, and start a
system service known as vsftpd. You could then connect to and use the com-
puter as an ftp server. Additionally, we showed some basic systemd service
management commands applied to the vsftpd service.

1.4 systemd Bootup

When the system boots, systemd on the kernel image is responsible for ini-
tializing the required file systems, services, and drivers necessary for the
system's operation. With systemd, this process is split up into runtime steps
whose objectives are target units. The process is done as much as possible in
parallel and is non-specific, so that the order in which target units are reached
is determined at runtime, with some default order.

Table 1.1 shows some critical systemd target units.

TABLE 1.1

Important systemd Targets

default.target The target that is booted by default. Not a real target, but rather a
symbolic link to another target like graphic.target.

emergency.target Starts an emergency shell on the console. Only use it at the boot prompt
as systemd.unit=emergency.target.

graphical.target The default target in a GUI, or desktop install. Starts a system with
network, multiuser support and a display manager.

halt.target Shuts down the system.
multi-user.target Starts a multiuser console, or terminal interface system with network.
reboot.target Reboots the system.
rescue.target Starts a single-user system without network.

Basic System Administration 39

When systemd takes over the boot process, it activates target units that are
dependencies of default.target, and all other dependencies. default.target is
an alias of graphical.target or multi-user.target, depending on whether the
system is configured for a graphical user interface, or only for a text console.

1.5 File Systems, Connections to Persistent Media,
and Adding Disks to Your System

Question: What is a computer file system?

Answer: A way of logically ordering data, so that it is persistent, can be
securely and easily located very quickly, and then accessed in a consistent
way for use.

Providing data persistence, which is the third primary objective of the
Raspberry Pi OS itself, in large part involves establishing and maintaining
connections to persistent media, such as disk drives. These drives, and the
file systems found on them, can be physically connected directly inside the
Raspberry Pi hardware, such as the microSD card, or externally via the USB
bus. They can also be some form of remote virtual drive, such as a network-
available file system on a remote drive, or remote volumes and complements
of drives.

And in some cases, a file system may not make use of a persistent storage
device or medium at all! At this higher level of abstraction, the file system
can access, use, organize, and represent any form of data, whether it is per-
sistent or volatile. We use the word volatile here to mean during the tran-
sient lifetime of some process or service. Of course, systemd and the Linux
kernel control all processes and services running on the computer. Pseudo and
special-purpose file systems (sometimes called synthetic file systems), which
can be thought of as virtual file systems, have this characteristic.

There are also established protocols for connecting to and accessing
either physical, virtual, or pseudo-file systems in the locations where they
may reside. Two examples of access protocols that establish and maintain
the connections to virtual, network-available media and file systems are the
Network File System, version 4 (NFSv4), and the Internet Small Computer
System Interface (iSCSI).

In this section, we first present an organizing scheme that you can use to
think about types of drives and file systems. A file system may be nomin-
ally assigned according to what medium it exists on: a directly connected
physical medium (such as the microSD card or a USB3 SATA SSD), a virtual
medium (such as Network-Attached Storage or Storage Area Networks that
use NFSv4 or iSCSI), or as a specialized pseudo-file system that is not on a
persistent medium at all (such as the cgroups or proc file systems).

Raspberry Pi OS System Administration with systemd40

The following sections give examples of adding directly connected phys-
ical disks to a Raspberry Pi OS system.

Additionally, we suggest an approach, when using the recommended
storage model we give in Section 1.1, to adding persistent media to your
Raspberry Pi system.

That approach is a more traditional method, where you first properly
connect the device to the computer with cables, partition that medium,
manually add a file system to it (typically the FAT32 or ext4 file system), and
then finally create directories and files in the partition(s) on the media. The
following sections detail this more traditional approach.

According to our organizing scheme, a file system can be separated into
three hierarchically arranged layers that perform very particular functions.
These layers, arranged from farthest-to-nearest to the actual hardware of the
drives or persistent media in question, are as follows:

The Logical Layer
This layer is used for interaction with user application programs and the
processes they consist of via Linux system calls. It provides the applica-
tion programming interface (API) for file operations, for example, system
calls to OPEN, CLOSE, READ, etc., and connects with the layer below
it for processing. The logical layer achieves efficient file access, logic-
ally organized directory operations, and provides user autonomy and
security.

The Virtual Layer
This layer provides the interface mechanisms for maintaining multiple, sim-
ultaneously existing implementations of physical and virtual file systems on
the same computer. For example, it makes it possible to mount and transpar-
ently use NFSv4, btrfs, ext3, ext4, fat32, and ZFS at the same time on the same
system and operate with files from all of those implementations as if they
were all of the same type.

The Linux IO (LIO) block is known as an iSCSI “target,” and represents vir-
tual layer connectivity to persistent media from various network connections.
These connections traditionally use high-speed Fibre Channel technology
to create a Storage Area Network (SAN), but most importantly can also be
achieved using Ethernet and TCP/IP.

A more detailed architectural scheme of classifying virtual layer file
systems further separates that layer into block-based, network, stack-
able, pseudo, and special purpose categories. Many of the different
implementations of file systems, such as NFSv4, ext4, xfs, btrfs, initramfs,
and the procfs, would be situated within the Virtual File Systems block.
Two very contemporary and extremely important virtual file systems are
the cgroups file system (cgroupsfs) used by systemd, and the userland,
block-based file system, ZFS.

Basic System Administration 41

The Physical Layer
This layer is concerned with the physical operation of the persistent storage
device. It processes physical blocks being read or written. It handles buffering
and memory management and is responsible for the physical placement of
blocks in specific locations on the storage medium. The physical file system
interacts with the device drivers or with the channels that physical devices
communicate over. At a certain level of simplification, this layer can be sche-
matically represented by the integrated grouping of the Block Layer, SCSI
Layers, and the Physical Device Layer.

Furthermore, and as a very integral part of the operation of the Linux
kernel, as it exists in a transient and volatile state as we have defined it, the
pseudo and special-purpose file systems can be viewed as a series of conduits
through which the entire system itself “flows.” Thinking along these lines,
when the kernel is in the CPU and attendant RAM, the kernel code itself is
organized as a file system. The kernel (or systemd superkernel) can be viewed
as a file system of volatile data structures that maintains the steady state of
the hardware and software using these conduits exclusively; this achieves
the overarching goals of virtualization, concurrency, user-autonomy, security,
and necessary archival, long-term data persistence on the file systems that
are established to do so.

Over the history of Linux, various file systems have been used to provide
speed, efficiency, security, and utility to the ordinary user. The most contem-
porary and universal of these, across the three major branches of Linux, is the
Linux Extended File System (ext). The Raspberry Pi OS we show in this book
uses it as the default file system.

The fourth version of ext, ext4, is the current and most robust version so
far. It has several features, such as large scalability, the ability to map to very
large disk array sizes, and other very critical features, such as journaling.
Following is a compact listing of some of the features of ext4:

a. It can support volumes with sizes up to 1 exabyte and files with sizes
up to 16 terabytes.

b. It uses an “extents” mapping scheme, which replaces block mapping
used by earlier versions of ext. An extent is a range of contiguous
physical blocks.

c. It is backward-compatible with ext3 and ext2. Therefore ext3 and ext2
can be mounted as ext4.

d. It delays block allocation until data is flushed to disk.
e. It has an unlimited number of subdirectories that can be created.
f. It has a multi-block allocator that can make better choices about allo-

cating files contiguously on disk.
g. It provides timestamps measured in nanoseconds.

Raspberry Pi OS System Administration with systemd42

Most importantly, from the perspective of our recommended data storage
model, adding a second hard drive, for example, allows you to keep the oper-
ating system and the user data on two different physical persistent media. That
way, if the operating system fails and the system disk is corrupted and unusable,
the data survives on the user data disk and can very easily be recovered.

There are many traditional, legacy methods of achieving the objective of
our data storage model, using facilities such as Linux disk and file mainten-
ance commands, utilities such as mdadm (a software RAID manager), and
Linux Volume Management (LVM). But from our perspective, the modern
and contemporary way of implementing the recommended data storage
model is using ZFS on redundant additional persistent media. With ZFS,
you get bit-level data integrity, volume management, RAID capabilities at all
levels, and a failure-proof backup strategy, all rolled into one utility.

There are some very important reasons for adding persistent media to your
system, aside from conforming to our recommended storage model. Your
internal microSD card may be running out of space or beginning to show
signs of failure.

Partitioning Schemes and Strategies
It should be evident to you that the Raspberry Pi OS organizes everything in
files and uses a file system to organize those files. A disk partition can be most
simply defined as a logical area of the disk that holds a file system.

Once you verify that your Raspberry Pi system can recognize the additional
media, there are several reasons to adopt a particular partitioning scheme for
a newly added disk drive. Creating multiple partitions on your hard drive
avoids full disk problems by segregating directories into those partitions and
gives the system administrator control over access to those directories and
partitions. And you can maintain different file system structures simultan-
eously in different partitions. Even installing the system into a customized
partitioning scheme allows you to install multiple operating systems on your
computer.

When adding new disk drives, you can use the traditional method of
partitioning with command-line utilities such as fdisk or gdisk or the option
of using a GUI-based method with a utility such as Gparted. As we show in
the sections below, you can implement our recommended data storage model
with a traditional ext4 Linux file system scheme. We present an example
detailing how to do this using the traditional ext4 scheme.

To help the administrator of a Raspberry Pi system with the task of adding
persistent media, the following sections will also address these general
concerns:

* The availability of software device drivers for the new hardware to
be added.

* How the hardware will be recognized, configured, and deployed on the
system.

Basic System Administration 43

As discussed in Item (1) of Section 1.5.1, our data storage model for desktop
computers is capable of deploying two or more external USB2 or 3 drives,
and its implementation is made possible by what we show in the following
sub-sections.

The additions in the traditional ext4-based example shown below in Section
1.5.3 will be done for USB flash drives but can also be easily extended to other
persistent media, such as externally mounted SSDs, spinning hard disks, or
other external media, such as PCIe M.2 cards.

SATA Disks and USB Media:
Generally, when you add a persistent medium, such as USB flash drives,
SSDs, or PCIe M.2 cards, some significant time after you have installed the
operating system on the computer, you will want to partition it. You might
even want to create a new partition table on it, create one or more partitions,
and format those partitions using a standard Linux file system, such as ext4.
We emphasize and encourage using the Gparted GUI-based application to
do this.

When you add an external USB-bus medium, such as a flash drive or other
forms of persistent storage device, it is generally already formatted to the
file system type known as FAT32 (in the case of most popular commercially
available USB flash drives), or to some other format depending on the media.
Traditionally, you can then partition the disk using the fdisk command and
add a file system to it with the mkfs command. We emphasize and encourage
the use of fdisk, or its newer sister, gdisk, to do the partitioning, if that’s the
route you want to go on the commandline.

Note
The safe removal of USB media can be done manually in the Raspberry Pi OS.
For example, using the desktop system GUI you can click on the Media Eject
button on the right side from the Taskbar at the top of the screen, and safely
remove attached, mounted removable media. Unmounting a USB flash drive,
or other USB bus media, can also be done from the command line with the
umount command.

When a USB flash drive or other external medium is automatically mounted
on a Raspberry Pi system, the path to it is /media/your_home_dir/id, where
your_home_dir is the name of your home directory on the system, and id is
the disk id number or identifier.

For example, when we added a 2 TB Seagate USB3 externally mounted
SATA disk to our Raspberry Pi 400 and created a single primary partition on
it with Gparted, along with an ext4 file system automatically added to that
partition at the same time, the newly mounted hard drive was accessed via
the following path:

/media/bob/Seagate_Backup_Drive_Plus

Raspberry Pi OS System Administration with systemd44

1.5.1 Preliminary Considerations When Adding New Media

If you insert a USB flash drive that you know is functioning properly into
your computer, and it is not recognized, the chances are that your Raspberry
Pi system does not have a device driver available to enable communication
between the computer and the flash drive.

How do you know if a new disk drive is recognized and, most importantly,
is usable on your system?

There are at least three quick and easy ways to know if the new disk drive
is recognized.

1. If it is a USB flash drive and it is formatted to FAT32, the Raspberry
Pi OS system will auto-mount it, and an icon for it will open on the
desktop (along with a file folder view of its contents).

2. In a terminal window, you can use the command systemctl –f and
watch the screen display. It will show that a new device has been
added, even though, in the case of a USB flash drive, it might be for-
matted to something other than FAT32.

3. Use the before-and-after technique shown in Section 1.5.2.

The same is true when you connect a SATA hard drive properly, but the prob-
ability of it not being recognized is much lower. The best and easiest thing
to do in a case like this is to use another USB or SATA device. The Raspberry
PiOS system has facilities to find and install device drivers on your system
for a device, but this process is time-consuming and may not be fruitful for
the particular device in question. Also, writing a driver for your device is
possible, which is even more time-consuming. The important thing here is
not that the USB flash drive is formatted to FAT32, but that a manufacturer
has the device drivers available automatically when their device is inserted.
This is not always true.

In many instances, it is important to know the physical device name, the
instance name, and the logical device name of disk drives on your system,
but practically speaking, for the Raspberry Pi OS administrator, easily finding
out the logical device name of a disk drive is most important.

You may want to add an external medium to your Raspberry Pi system that
has been used on another computer operating system previously. In that case,
the primary and secondary examples we show can be deployed to repartition
and prepare that hard disk for new use on your system.

1.5.2 Five Quick and Easy Ways to Find Out the Logical Device
Names of Disks

Before attaching a new disk drive to your Raspberry Pi system, it is important
to know how to determine, in a very quick and easy manner, what the

Basic System Administration 45

currently installed logical device names of the disk drives actually attached
and useable on your system are. What we mean by “attached and usable” is
that the disk drive is properly connected and recognized by the system and
has a device driver that the system can use to communicate with it.

Before and after: If you want to find out the logical device name of a new
disk you want to add to the system, use one of the following methods to see
what disks are on your system before you add the new disk, and then use the
same method after the new disk has been added and note the difference. The
different or new logical name that appears will be the logical device name of
the new disk.

The five simple methods that follow show how to determine what disk
drives are attached and usable on your system and what the logical device
names of those and any others you might want to add to your system are.

Method 1 – Change your current working directory to /dev. Type ls. Hard
drives, for example, show up in the ls listing as sda, sdb, etc. The full path to
the first slice, or partition, on one of these disks, is specified as /dev/sda1.
A USB bus device, like a flash drive, would show up in the ls listing as /dev/
sdc, or whatever letter designation comes after the hard drives, and the full
path to the first slice on it would be /dev/sdc1.

Method 2 – Type df -hT on the command line to find out the file system
names and paths they are mounted at on your system. On our Raspberry Pi
system, when we did this to see if a Lexar 60 Gb USB flash drive was recently
successfully attached to the system, this is the output:

$ df -hT
Filesystem Type Size Used Avail Use% Mounted on
/dev/root ext4 29G 8.3G 20G 30% /
devtmpfs devtmpfs 1.7G 0 1.7G 0% /dev
tmpfs tmpfs 1.9G 0 1.9G 0% /dev/shm
tmpfs tmpfs 759M 1.4M 758M 1% /run
tmpfs tmpfs 5.0M 4.0K 5.0M 1% /run/lock
/dev/mmcblk0p1 vfat 253M 31M 222M 13% /boot
tmpfs tmpfs 380M 28K 380M 1% /run/user/1000
/dev/sdb1 vfat 120G 2.4G 117G 2% /media/bob/Lexar
/dev/sda1 vfat 30G 27M 30G 1% /media/bob/52DC-3D26
$

We address more details of the command in Section 1.16.
Method 3 – Very similar to using the df command, use the lsblk -a

command. When we used this command and option on our Raspberry Pi
system, after we had attached the Lexar 60 Gb USB flash drive, we got the
following output:

Raspberry Pi OS System Administration with systemd46

$ lsblk -a
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
ram0 1:0 0 4M 0 disk
ram1 1:1 0 4M 0 disk
ram2 1:2 0 4M 0 disk
ram3 1:3 0 4M 0 disk
Output truncated . . .
sda 8:0 1 30G 0 disk
└─sda1 8:1 1 30G 0 part /media/bob/52DC-3D26
sdb 8:16 1 119.2G 0 disk
└─sdb1 8:17 1 119.2G 0 part /media/bob/Lexar
mmcblk0 179:0 0 29.7G 0 disk
├─mmcblk0p1 179:1 0 256M 0 part /boot
└─mmcblk0p2 179:2 0 29.5G 0 part /
$

Method 4 – Use the findmnt command. When we used this on our
Raspberry Pi system, we obtained the following output:

$ findmnt
TARGET SOURCE FSTYPE OPTIONS
/ /dev/mmcblk0p2 ext4 rw,noatime
├─/dev devtmpfs devtmpfs rw,relatime,size=1776952k,nr_

inodes=444238,mode=755
│ ├─/dev/shm tmpfs tmpfs rw,nosuid,nodev
│ ├─/dev/pts devpts devpts rw,nosuid,noexec,relatime,gid=5,mode

=620,ptmxmode=000
│ └─/dev/mqueue mqueue mqueue rw,nosuid,nodev,noexec,relatime
├─/proc proc proc rw,relatime
│ ├─/proc/sys/fs/binfmt_misc systemd-1 autofs rw,relatime,fd=29,pgrp=1,timeout=0,

minproto=5,maxproto=
│ └─/proc/fs/nfsd nfsd nfsd rw,relatime
├─/sys sysfs sysfs rw,nosuid,nodev,noexec,relatime
│ ├─/sys/kernel/security securityfs securityfs rw,nosuid,nodev,noexec,relatime
│ ├─/sys/fs/cgroup cgroup2 cgroup2 rw,nosuid,nodev,noexec,relatime,nsdel

egate,memory_recur
│ ├─/sys/fs/pstore pstore pstore rw,nosuid,nodev,noexec,relatime
│ ├─/sys/fs/bpf bpf bpf rw,nosuid,nodev,noexec,relatime,m

ode=700
│ ├─/sys/kernel/tracing tracefs tracefs rw,nosuid,nodev,noexec,relatime
│ ├─/sys/kernel/debug debugfs debugfs rw,nosuid,nodev,noexec,relatime
│ ├─/sys/kernel/config configfs configfs rw,nosuid,nodev,noexec,relatime
│ └─/sys/fs/fuse/connections fusectl fusectl rw,nosuid,nodev,noexec,relatime
├─/run tmpfs tmpfs rw,nosuid,nodev,size=777088k,nr_

inodes=819200,mode=755
│ ├─/run/lock tmpfs tmpfs rw,nosuid,nodev,noexec,relatime,size=

5120k
│ ├─/run/rpc_pipefs sunrpc rpc_pipefs rw,relatime
│ └─/run/user/1000 tmpfs tmpfs rw,nosuid,nodev,relatime,size=388540

k,nr_inodes=97135,m
│ └─/run/user/1000/gvfs gvfsd-fuse fuse.gvfsd rw,nosuid,nodev,relatime,user_

id=1000,group_id=1000
├─/boot /dev/mmcblk0p1 vfat rw,relatime,fmask=0022,dmask=0022,

codepage=437,iocharse
├─/media/bob/52DC-3D26 /dev/sda1 vfat rw,nosuid,nodev,relatime,uid=1000,gi

d=1000,fmask=0022,d
└─/media/bob/Lexar /dev/sdb1 vfat rw,nosuid,nodev,relatime,uid=1000,gi

d=1000,fmask=0022,d
$

Basic System Administration 47

Notice that some of the file system types (FSTYPE) are shown as ext4, sysfs,
tmpfs, cgroup, proc, vfat (for a Lexar USB flash drive mounted as /dev/sdb1
at /media/bob/Lexar).

Method 5 – You can also very efficiently use the GUI-Based Gparted
Partition Editor, as shown in Example 1.3. With Gparted, the installation
of which is indicated for the Raspberry Pi systems in Section 1.5.3, you can
easily find out the logical device names of disks on your system. In add-
ition, with Gparted, you can use graphical editing methods to affect several
important characteristics of the media, such as the format and partitioning
of the drives.

In-Chapter Exercise

1. Insert a USB flash drive into your computer, and mount it if neces-
sary. What command would you use to mount it? Use the findmnt
command to find out its logical device name. What is the logical
device name for this flash drive? Along what path is it mounted on
your Raspberry Pi system? What are the uses and meanings of the
other file system types shown as output to the findmnt command?
For example, are cgroup, proc, fuse.gvf, and tempfs logical, virtual,
or physical file systems, and how exactly do these differ from ext4,
or ZFS?

1.5.3 Examples of External Disk or Media Additions

In the following four examples, we provide an ordinary user, or appointed
system administrator, with the techniques necessary to manage various
methods of adding persistent external media to the system.

In Example 1.3, we install the Gnu Partition Editor(Gparted) program on a
Raspberry Pi system and use it to add a new USB-connected flash drive to the
system. We format that flash drive to ext-4.

In Example 1.4, we show how to boot from and run a Raspberry Pi system
from a USB3-mounted SSD, a system that is recommended to conform with
the data storage model we prescribed in Section 1.1.

In Example 1.5, we show how to use the mdadm program from the
command line on a Raspberry Pi system to create two USB flash drives as
a mirrored pair. This is a more traditional approach to achieve the safe and
efficient archiving of our data.

In Example 1.6, we show how to use Webmin and mdadm on a Raspberry
Pi system to achieve the same results as the command-line procedures from
Example 1.5. This will illustrate the ease and efficiency of using modern tools
on the Raspberry Pi OS to conform to our recommended data storage model
prescribed in Section1.1.

Raspberry Pi OS System Administration with systemd48

Example 1.3 Using Gparted to Add a USB Flash Drive to the System

Objectives: To install the Gnu Partition Editor(Gparted) program on a
Raspberry Pi OS, use it to add a new USB-connected flash drive to the system,
and reformat that flash drive to ext-4.

Prerequisites: Having an adequately sized USB flash drive that will mount
on the system.

Background: When writing this book, the Raspberry Pi OS automatically
recognized and mounted a properly formatted USB-connected flash drive
that you placed in one of the USB ports on the hardware you’re running
the system on. It is possible, and probable, that you want to add a
USB3-connected disk, such as an SSD, mounted in an exterior enclosure, to
the system. These instructions work just as well for that situation.

Requirements: Do the following steps, in the order presented, to meet the
requirements of this example:

1. Install the Gparted Partition Editor software if it is not already installed
on your system. This is most efficiently done using the Raspberry Pi
OS Menu>Preferences>Add/Remove Software choice. Also, it would
be very efficient to place an icon for this software on your Raspberry
Pi OS desktop if you are using a GUI desktop management system.

2. Insert the USB flash drive as a new disk on the system.
3. Launch the Gparted Partition Editor, either graphically or from the

command line with the command gparted.
4. The Gparted screen appears.

5. The current disks attached to the system appear in the menu bar at
the upper right. Note all the complete paths to the current disks by
clicking on the down-facing arrow shown in that menu bar in the
upper right corner of the Gparted screen.

6. Scroll in that bar until you reach the disk you just added to the system.
If the disk drive you just added doesn’t appear automatically in the
Gparted listing, you can’t easily use that disk drive! If it does appear,
continue to the next step. On our system, the new hard drive appeared
as /dev/sda.

7. Pick that new disk in the menu bar. It is then shown in the main
Gparted pane. Click on that disk in the main Gparted pane. You can
now partition and format that new disk. In our example, it is shown as
/dev/sda, a new disk we inserted in step 2. That disk might contain
a single partition, /dev/sda1, that has an FAT32 file system on it, and
no label, for example.

8. From the pull-down menus at the top of the Gparted window, choose
Partition>Delete, or click on the red X in the icon bar. This will delete
the partition information on that disk. It is now a pending operation.

Basic System Administration 49

9. In order to execute the pending operation, make the pull-down menu
choice Edit>Apply All Operations. In the warning window, click
Apply. A window shows you the progress, and hopefully successful
application, of the pending operation. Click close in that window
when the operation is complete.

10. The new disk should now be unallocated. Click on its listing in the
main Gparted pane. Make the pull-down menu choice Device>Create
Partition Table. Change the Select new partition table type: to gpt.
Click Apply in the warning window. Everything on that disk will be
erased! When Gparted has created a new partition table, click on that
disk again in the main Gparted pane.

11. Make the pull-down menu choice Partition>New. The Create New
Partition window appears on the screen. The defaults for the new par-
tition are to take the whole disk up with this partition, create it as a
primary partition, and set the file system as ext-4.

12. Add a label designation of your choice in the Label field. Leave all of
the other defaults in place. Click the Add button. Make the pull-down
menu choice Edit>Apply All Operations. In the warning window, click
Apply. Click the Close button when the Applying pending operations
appears.

13. You now have a created partition table on, partitioned and formatted,
and a usable USB flash drive on the system.

14. Quit Gparted by making the pull-down menu choice Gparted>Quit.

Conclusion: You have installed the Gnu Partition Editor(Gparted) program
on a Raspberry Pi OS, used it to add a new USB-connected flash drive to the
system, and reformatted that flash drive to ext-4.

Example 1.4 How to Boot from and Run a Raspberry
Pi OS System from a USB3-mounted SSD

Objectives: To detail how to boot from and run your Raspberry Pi system
from a USB3-mounted SSD.

Prerequisites:

a. Having your storage model conforms to the recommendation in
Section 1.1,

b. Completion of Example 1.3.

Note
We do the operations in this Example on the following Raspberry Pi system:

Raspberry Pi OS System Administration with systemd50

System: Host: raspberrypi Kernel: 6.1.21-v8+ aarch64 bits: 64 compiler: gcc
v: 10.2.1

Console: tty 0 Distro: Debian GNU/Linux 11 (bullseye)
Machine: Type: ARM Device System: Raspberry Pi 400 Rev 1.0

Background:
As recommended in our storage model in Section 1.1, the Raspberry Pi OS is
traditionally booted from and run from a microSD card mounted on the hard-
ware. Since kernel release 5.15.X, it is possible, and highly advantageous, to
boot and run the system from a USB3-mounted SSD or other external device.
There are several advantages to doing this, chiefly among them a perform-
ance speed increase and a storage capacity increase as well.

Requirements: Do the steps below, in the order shown, to complete the
requirements for this example.

1. Update your package manager on your system using the following
commands:

$ sudo apt update
Output truncated...
$ sudo apt upgrade
Output truncated...

2. Insert an SSD or other suitable device with a SATA-to-USB3 cable
connection capability into a USB3 port on your Raspberry Pi hard-
ware. On our Raspberry Pi 400, the USB3 ports had a blue-colored tab
inside them, visible from the outside. We connected a 128 GB Silicon
Power SSD inside an Orico SATA-to-USB tool-less enclosure. We pre-
viously formatted the SSD in Gparted with a FAT32 partition on it.

3. The SSD mounted automatically. We then used the Accessories
Menu> SD Card copier to copy the microSD Raspberry Pi OS to the
USB3-mounted SSD.

Note
In the SD Card Copier, make sure that you copy the system from the microSD
card to the SSD!

4. When the copying is done, shut down the system, and remove the
microSD card from its slot in the hardware.

5. Disconnect the power and then reconnect it to reboot the system.
6. The Raspberry Pi OS now boots from and runs on the USB3-mounted

SSD. It is an exact clone of what was on the microSD card as you did
the above steps.

Basic System Administration 51

Conclusion: At the time of the writing of this book, the Raspberry Pi OS can
boot from and run from an external USB3 SSD. To gauge the performance
speed advantages of using an SSD, we encourage you to use the Accessories
Menu> Raspberry Pi Diagnostics program to gauge the relative performance
speed advantages of an SSD over a microSD card. The log readings of SSD
versus microSD card provide that information.

Example 1.5 Creating and Managing RAID Arrays
Using mdadm on the Raspberry Pi OS

Objectives: To use the mdadm program from the command line on a
Raspberry Pi OS system to create a mirrored pair on two USB flash drives.

Prerequisites:

a. Completion of Examples 1.3 and 1.4.
b. Having two identically sized USB flash drives that are recognized by

your system and the available ports on your computer to accommo-
date them.

Special Note
Upon initial installation of mdadm on the Raspberry Pi OS, at the time of the
writing of this book, mdadm was masked by systemd. It seems the unmask
command fails when there is no existing unit file in the system other than the
symlink to /dev/null. If you mask a service, then that creates a new symlink
to /dev/null in the directory /etc/systemd/system, where systemd looks for
unit files to load when the system boots up. In this instance, there is really no
unit file.

To correct this, the general procedure is as follows:

1. Check that the unit file is a symlink to /dev/null:

$ file /lib/systemd/system/mdadm.service

If the service is masked, the above command should return:
/lib/systemd/system/mdadm: symbolic link to /dev/null

2. Delete the symlink!

$ sudo rm /lib/systemd/system/mdadm.service

3. Because you changed a unit file, reload the systemctl daemon.:

$ sudo systemctl daemon-reload

Raspberry Pi OS System Administration with systemd52

4. Check the status of the mdadm:

$ systemctl status mdadm

5. If it still isn’t loaded and running, reinstall the package:

$ sudo apt-get install --reinstall mdadm

6. Then, reload the daemon again:

$ sudo systemctl daemon-reload

7. Start the mdadm service:

$ sudo systemctl start mdadm

A specific example of this on our Raspberry Pi OS system is as follows:

bob@raspberrypi:~ $ systemctl status mdadm
• mdadm.service

Loaded: masked (Reason: Unit mdadm.service is masked.)
Active: inactive (dead)

bob@raspberrypi:~ $ sudo rm /lib/systemd/system/mdadm.service
bob@raspberrypi:~ $ sudo systemctl daemon-reload

bob@raspberrypi:~ $ systemctl status mdadm
• mdadm.service: LSB: MD monitoring daemon

Loaded: loaded (/etc/init.d/mdadm; generated)
Active: inactive (dead)
Docs: man:systemd-sysv-generator(8)

bob@raspberrypi:~ $ sudo systemctl start mdadm
bob@raspberrypi:~ $ systemctl status mdadm
• mdadm.service: LSB: MD monitoring daemon

Loaded: loaded (/etc/init.d/mdadm; generated)
Active: active (running) since Mon 2022-10-03 13:45:28 PDT; 4s ago
 Docs: man:systemd-sysv-generator(8)
Process: 5292 ExecStart=/etc/init.d/mdadm start (code=exited, status=0/SUCC>
Tasks: 1 (limit: 4164)
 CPU: 36ms
CGroup: /system.slice/mdadm.service

└─5299 /sbin/mdadm --monitor --pid-file /run/mdadm/monitor.pid --d>

Oct 03 13:45:28 raspberrypi systemd[1] : Starting LSB: MD monitoring daemon...
Oct 03 13:45:28 raspberrypi mdadm[5292]: Starting MD monitoring service: mdadm >
Oct 03 13:45:28 raspberrypi systemd[1] : Started LSB: MD monitoring daemon.

Background:
Using a more traditional approach to adding disks and partitioning them in
Linux involves the use of command-line tools such as fdisk or gdisk. In add-
ition, to ensure redundancy of storage for the user data in our recommended
storage model, we can create a level RAID1 mirror using two flash drives.

Basic System Administration 53

That way, if one of the flash drives fails, the data is retained on the other disk
in the mirror.

In order to fully support redundancy in our recommended storage model,
the Raspberry Pi OS makes available a Multiple Device Administration
(mdadm) program to allow us to securely archive the user data component
of that model. Redundant Array of Inexpensive Disks (RAID) devices are
virtual devices created from two or more real block devices, like SATA disks,
or USB flash drives. This allows multiple devices, typically whole disk drives
but also partitions on disks, to be combined into a single logical device to
hold single or multiple file systems. RAID “levels” include various degrees
of redundancy to enable the data storage component to survive varying
amounts of device failure.

To see a complete description of the mdadm command after installing the
program on your system, see the man page for mdadm. The following is a
brief description, taken from that man page, of mdadm syntax and use:

**

mdadm - manage MD devices or Linux Software RAID
Syntax: mdadm [mode] <raiddevice> [options] <component-devices>
where-
mode Assemble, Build, Create, Monitor, Grow, Incremental

Assembly, Manage, Misc,
 and Auto-detect
<raiddevice> Name to assign to new virtual device, eg. /dev/md0
[options] Mode-selection and other options.
<component-devices> The physical devices to be assigned to the array, eg. /dev/sdb
Output: New software RAID virtual device, or management of

previously created one.
Common Options:
-c, --config= Specify the config file or directory. Default is to use
 /etc/mdadm/mdadm.conf and /etc/mdadm/mdadm.conf.d, or if those
 are missing then /etc/mdadm.conf and /etc/mdadm.conf.d.
-C --create Create a new array.
-A, --assemble Assemble a pre-existing array.
-G, --grow Change the size or shape of an active array.
Example: $ sudo mdadm --create /dev/md0 --level=mirror --raid-devices=2

dev/sd[b-c]1
As superuser, create the array named md0 as a mirror of the 2 first partitions on
physical devices, /dev/sdb and /dev/sdc

**

Some further examples of mdadm syntax and use are as follows:

$ mdadm --query /dev/name-of-device

Find out if a given device is a RAID array, or is part of one, and will provide
brief information about the device:

$ mdadm --assemble --scan

Raspberry Pi OS System Administration with systemd54

Assemble and start all arrays listed in the default mdadm config file. This
command will typically go in a system startup file:

$ mdadm --stop --scan

Shut down all arrays that can be shut down (i.e., are not currently in use).
Typically found in a system shutdown script:

$ mdadm --create /dev/md0 --level=1 --raid-devices=2 /dev/sd[ac]1

Creates /dev/md0 as a RAID1 array consisting of /dev/sda1 and /dev/
sdc1:

$ mdadm -Ac partitions -m 0 /dev/md0

Scan all partitions and devices listed in /proc/partitions and assemble /
dev/md0 out of all such devices with a RAID superblock with a minor
number of 0:

$ mdadm --incremental --rebuild-map --run --scan

Rebuild the array map from any current arrays, and then start any that can
be started:

$ mdadm /dev/md4 --fail detached --remove detached

Any devices which are components of /dev/md4 will be marked as faulty
and then removed from the array:

$ mdadm --grow /dev/md4 --level=6 --backup-file=/root/backup-md4

The array /dev/md4, which is currently a RAID5 array, will be converted to
RAID6. There should normally already be a spare drive attached to the array,
as a RAID6 needs one more drive than a matching RAID5:

$ mdadm --create --help

Provide help with the Create mode:

$ mdadm --help

Provide general help:

$ mdadm --manage --help

Provides help topics on the management commands and options of mdadm
RAID.

Basic System Administration 55

The following set of commands, executed in sequence, allow you to replace
a failed disk that is part of a RAID1 array named md0:

$ mdadm --manage /dev/md0 --add /dev/sdd1

Adds /dev/sdd1 to the array md0 as a spare disk:

$ mdadm --manage /dev/md0 --fail /dev/sdb1

Marking a RAID device, /dev/sdb1, as faulty:

$ mdadm --manage /dev/md0 --replace /dev/sdb1 --with /dev/sdd1

Re-add /dev/sdd1 into array /dev/md0, replacing /dev/sdb1.

Requirements: Do the steps below in the sequence presented to complete the
requirements of this Example.

0. Having previously determined that the two flash drives you want to use
are recognized on your system, insert them into USB ports. We used two 8
GB Kingston flash drives, which are very reliable and always auto-mount on
a Raspberry Pi system. On our system, they were mounted as dev/sda and
dev/sdb.

Use the following commands to unmount them:

$ sudo umount /dev/sda1
$ sudo umount /dev/sdb1

1. Install mdadm to your system if it is not there already. Read ***Special
Note*** above!:

$ sudo apt install mdadm -y
Reading package lists... Done
Building dependency tree
Reading state information... Done
Output truncated.
$

2. Examine the USB flash drives with the following mdadm command:

$ sudo mdadm -E /dev/sd[a-b]
/dev/sda:
 MBR Magic : aa55
Partition[0] : 15144960 sectors at 2048 (type 0b)
/dev/sdb:
 MBR Magic : aa55
Partition[0] : 15144960 sectors at 2048 (type 0b)

Raspberry Pi OS System Administration with systemd56

3. Use the fdisk command, one disk at a time, to partition the two newly
added USB flash drives, making sure to first delete any partitions that
are on them. For our Kingston USB flash drives, there was only one
default partition on each one, as previously determined in step 0.

$ sudo fdisk /dev/sda
Welcome to fdisk (util-linux 2.36.1).
Changes will remain in memory only until you decide to write them.
Be careful before using the write command.
Command (m for help):d
1 Partition has been deleted.
Command (m for help):n
Partition type
 p primary (0 primary, 0 extended, 4 free)
 e extended (container for logical partitions)
Select (default p): Enter
Using default response p.
Partition number (1-4, default 1): Enter
First sector (2048-15148607, default 2048): Enter
Last sector, +sectors or +size{K,M,G,T,P} (2048-15148607, default

15148607): Enter
Partition #1 contains a vfat signature.
Do you want to remove the signature? [Y] es/[N]o: Y
The signature will be removed by a write command.
Command (m for help): p
/dev/sda: 7.22 GiB, 7756087296 bytes, 15148608 sectors
Disk model: DataTraveler 2.0
Units: sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disklabel type: dos
Disk identifier: 0x01eb214b
Device Boot Start End Sectors Size Id Type
/dev/sda1 2048 15148607 15146560 7.2G 83 Linux

filesystem/RAID signature on partition 1 will be wiped.
Command (m for help):

Command (m for help): l
00 Empty 24 NEC DOS 81 Minix / old Lin bf Solaris
Output truncated…
Command (m for help): t
Selected partition 1
Hex code (type L to list all codes): FD
Changed type of partition ‘Linux’ to ‘Linux raid autodetect’.

Command (m for help): p
Disk /dev/sda: 7.22 GiB, 7756087296 bytes, 15148608 sectors
Disk model: DataTraveler 2.0
Units: sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disklabel type: dos

Basic System Administration 57

Disk identifier: 0x01eb214b

Device Boot Start End Sectors Size Id Type
/dev/sda1 2048 15148607 15146560 7.2G fd Linux raid autodetect

Filesystem/RAID signature on partition 1 will be wiped.

Command (m for help): w
The partition table has been altered.
Calling ioctl() to re-read partition table.
Syncing disks.
$

Repeat Step 3. for /dev/sdc

4. Check the metadata superblock on both disks:

$ sudo mdadm -E /dev/sd[b-c]1
mdadm: No md superblock detected on /dev/sda1.
mdadm: No md superblock detected on /dev/sdb1.
$

Notice there are no metadata mdadm superblocks! Basically, that means that
no RAID arrays have been created yet.

5. Create a RAID1 array with the two flash drives as devices:

$ sudo mdadm --create /dev/md0 --level=mirror --raid-devices=2 \
/dev/sd[a-b]1

mdadm: Note: this array has metadata at the start and
may not be suitable as a boot device. If you plan to
store ‘/boot’ on this device please ensure that
your boot-loader understands md/v1.x metadata, or use
--metadata=0.90

Continue creating array? Y
mdadm: Defaulting to version 1.2 metadata
mdadm: array /dev/md0 started.

$ cat /proc/mdstat
Personalities : [raid1]
md0 : active raid1 sdb1[1] sda1[0]

7568128 blocks super 1.2 [2/2] [UU]
[>....................] resync = 4.1% (314560/7568128) finish=35.1min

speed=3442K/sec

unused devices: <none>

$ sudo mdadm -E /dev/sd[a-b]1
dev/sda1:

Magic : a92b4efc
Version : 1.2

Feature Map : 0x0
Array UUID : 6cf34f72:c212ef04:b9126e4a:ceb653f4

Name : raspberrypi:0 (local to host raspberrypi)

Raspberry Pi OS System Administration with systemd58

Creation Time : Thu Oct 6 06:53:44 2022
Raid Level : raid1

Raid Devices : 2

Avail Dev Size : 15136320 (7.22 GiB 7.75 GB)
Array Size : 7568128 (7.22 GiB 7.75 GB)

Used Dev Size : 15136256 (7.22 GiB 7.75 GB)
Data Offset : 10240 sectors

Super Offset : 8 sectors
Unused Space : before=10160 sectors, after=64 sectors

State : active
Device UUID : 0b7472eb:f0f02bad:c230a8f5:26c5e890

Update Time : Thu Oct 6 06:55:54 2022
Bad Block Log : 512 entries available at offset 16 sectors

Checksum : 640df1c7 - correct
Events : 1

Output truncated...

6. Check RAID device type and RAID array:

$ sudo mdadm --detail /dev/md0
/dev/md0:

Version : 1.2
Creation Time : Thu Oct 6 06:53:44 2022

Raid Level : raid1
Array Size : 7568128 (7.22 GiB 7.75 GB)

Used Dev Size : 7568128 (7.22 GiB 7.75 GB)
Raid Devices : 2
Total Devices : 2

Persistence : Superblock is persistent

Update Time : Thu Oct 6 06:55:54 2022
State : clean, resyncing

Active Devices : 2
Working Devices : 2
Failed Devices : 0
Spare Devices : 0

Consistency Policy: resync

Resync Status : 11% complete

Name : raspberrypi:0 (local to host raspberrypi)
UUID : 6cf34f72:c212ef04:b9126e4a:ceb653f4
Events : 1

Number Major Minor RaidDevice State
 0 8 1 0 active sync /dev/sda1
 1 8 17 1 active sync /dev/sdb1

$

Basic System Administration 59

7. Wait until the md0 array is totally resynced. In the output of the above
command, resyncing was only 11% complete. On our Raspberry Pi
system, total resyncing took approximately 35 minutes for the size of
the flash drives we were dealing with. Then, when resyncing is done,
create an ext4 File System on md0, and mount it at /mnt/raid1:

$ sudo mkfs.ext4 /dev/md0
mke2fs 1.46.2 (28-Feb-2021)
Creating file system with 1892032 4k blocks and 473280 inodes
Filesystem UUID: af6667aa-d650-4349-9581-fd49361b7b9a
Superblock backups stored on blocks:
 32768, 98304, 163840, 229376, 294912, 819200, 884736, 1605632

Allocating group tables: done
Writing inode tables: done
Creating journal (16384 blocks): done
Writing superblocks and filesystem accounting information: done
$

8. The following commands mount the array at /mnt/raid1 and allow
you to put some data in the filesystem you created there:

$ sudo mkdir /mnt/raid1
$ sudo mount /dev/md0 /mnt/raid1/
$ sudo touch /mnt/raid1/raspberrypi.txt
$ sudo chmod u+x /mnt/raid1/raspberrypi.txt
$ sudo nano /mnt/raid1/raspberrypi.txt

Add the text-

A Raspberry Pi OS example of mirrored disks using mdadm.

Then save it, and quit nano.

In-Chapter Exercise

2. How would you ensure that /dev/md0 array is started upon every
reboot of the system? Hint: See the procedures of Example 1.5.4.

9. To remove the RAID1 array and zero out the flash drives for later use,
execute the following commands:

$ sudo umount /dev/md0
$

This has unmounted the file system on the array.

$ sudo mdadm --stop /dev/md0
mdadm: stopped /dev/md0
$

Raspberry Pi OS System Administration with systemd60

This has stopped the array.
Also, remove the directory /mnt/raid1 with the following command:

$ sudo rm -r /mnt/raid1
$

Delete the partitions on /dev/sdb and /dev/sdc using fdisk, gdisk, or
Gparted, and then create new ones on them formatted to FAT32 if you want
to continue using them as USB flash drives on your system.

Conclusion: This example illustrated the traditional method of adding per-
sistent media to a Raspberry Pi OS system by partitioning it with fdisk,
making it redundant using mdadm RAID, creating a file system on it, and
mounting it at a selected location in the file system.

Example 1.6 RAID1 Using Webmin, mdadm, and the Gnome
Disk Utility (Disks)

Objectives: To create a RAID-1 mirrored pair on two flash drives attached to
your system, using the facilities of Webmin to accomplish the same things
that the mdadm commands do. Additionally, clone your home directory on
the system to the RAID-1 mirrored pair, thus segregating the system files
from your user data files in order to maintain a secure level of redundancy,
per our recommended data storage model.

Prerequisites:

a. Having two equal-sized USB flash drives available that you want to
sacrifice for this example.

b. Having some familiarity with Webmin after doing Section 1.2.

Background: Webmin has the ability to manage RAID arrays on a Raspberry
Pi system. In this example, you will use Webmin, mdadm, and the gnu disk
management program in conjunction, to accomplish the mirroring of two
USB flash drives in a RAID-1 configuration, and also clone your home direc-
tory onto that mirrored pair.

If you haven’t done Example 1.5, the following ***Special Note*** is applic-
able to you here in this example:

Special Note
Upon installation of mdadm on the Raspberry Pi OS, at the time of the
writing of this book, mdadm was masked by systemd. It seems the unmask
command fails when there is no existing unit file in the system other than the
symlink to /dev/null. If you mask a service, then that creates a new symlink
to /dev/null in the directory /etc/systemd/system, where systemd looks
for unit files to load when the system boots up. Therefore, in essence, there is
really no unit file.

Basic System Administration 61

To correct this, the general procedure is as follows:

1. Check that the unit file is a symlink to /dev/null

$ file /lib/systemd/system/mdadm.service

If the service is masked, the above command should return:

/lib/systemd/system/mdadm: symbolic link to /dev/null

2. Delete the symlink!

$ sudo rm /lib/systemd/system/mdadm.service

3. Because you changed a unit file, reload the systemctl daemon.:

$ sudo systemctl daemon-reload

4. Check the status of the mdadm:

$ systemctl status mdadm

5. If it still isn’t loaded and running, reinstall the package:

$ sudo apt-get install --reinstall mdadm

6. Then, reload the daemon again:

$ sudo systemctl daemon-reload

7. Start the mdadm service:

$ sudo systemctl start mdadm

A specific example of this on our Raspberry Pi OS system is as follows:

bob@raspberrypi:~ $ systemctl status mdadm
• mdadm.service

Loaded: masked (Reason: Unit mdadm.service is masked.)
Active: inactive (dead)

bob@raspberrypi:~ $ sudo rm /lib/systemd/system/mdadm.service
bob@raspberrypi:~ $ sudo systemctl daemon-reload
bob@raspberrypi:~ $ systemctl status mdadm
• mdadm.service: LSB: MD monitoring daemon

Loaded: loaded (/etc/init.d/mdadm; generated)
Active: inactive (dead)
Docs: man:systemd-sysv-generator(8)

bob@raspberrypi:~ $ sudo systemctl start mdadm
bob@raspberrypi:~ $ systemctl status mdadm

Raspberry Pi OS System Administration with systemd62

• mdadm.service: LSB: MD monitoring daemon
Loaded: loaded (/etc/init.d/mdadm; generated)
Active: active (running) since Mon 2022-10-03 13:45:28 PDT; 4s ago

Docs: man:systemd-sysv-generator(8)
Process: 5292 ExecStart=/etc/init.d/mdadm start (code=exited, status=0/SUCC>

Tasks: 1 (limit: 4164)
CPU: 36ms

CGroup: /system.slice/mdadm.service
└─5299 /sbin/mdadm --monitor --pid-file /run/mdadm/monitor.pid --d>

Oct 03 13:45:28 raspberrypi systemd[1] : Starting LSB: MD monitoring daemon...
Oct 03 13:45:28 raspberrypi mdadm[5292]: Starting MD monitoring service: mdadm >
Oct 03 13:45:28 raspberrypi systemd[1] : Started LSB: MD monitoring daemon.

Requirements: Do the following steps in the order presented to complete the
requirements of this example.

1. Install the tools necessary to setup RAID-1 Mirroring on two attached
flash drives.

If you haven’t already done this for Example 1.3., install Webmin:

$ sudo apt install webmin -y

If you haven’t already done this for Example 1.5, install the mdadm software
RAID utility:

$ sudo apt install mdadm -y

Install the gnome disk management tool:

$ sudo apt install gnome-disk-utility -y

2. Reboot:

$ sudo reboot

The following steps allow us to use Webmin to build the RAID-1 array on the
two flash drives.

3. Open the gnome disk management tool from Raspberry Pi Menu >
Preferences. You can also use the command:

$ gnome-disks

In the gnu disk management tool, choose the two flash drives, one at a
time, and format both with the default formatting choices.

4. Open the web browser and enter this URL:

https://localhost:10000

https://localhost

Basic System Administration 63

Webmin runs on localhost at port 10000. As noted in Example 1.3, since
https is used and the SSL Certificate is not installed, your browser will show a
warning. Click Advanced and then click Accept to take the risk and continue.

5. Login with your username/password pair.
6. In Webmin, choose Refresh Modules. Then expand the pull-down

menu (the blue colored lines at the upper left of the Webmin pane
onscreen) choice >Hardware, and select Linux RAID.

7. On the screen that appears, the RAID1 (Mirrored) choice will be avail-
able. At this point, you could choose other levels of RAID if so desired.
Select RAID1 (Mirrored) and click the button ‘Create RAID device of
level:’.

8. Choose the two flash drives (which show on our Raspberry Pi OS
system as SCSI devices under Partitions in RAID) by holding down
the Ctrl key and clicking on them one at a time. Make a choice ‘Skip
initialization of devices’, since this would be time-consuming even
when initializing 8 GB flash drives.

The following steps allow you to choose the RAID mode in the Webmin
interface.

9. Click the button ‘Create’ in the lower left Create RAID Device pane.
Webmin should execute the selections you’ve made very quickly
because you’ve skipped initialization of the disks.

You can then check more details by examining /dev/md0 in the Linux
RAID screen that appears. The two disks are shown as Partitions in RAID,
and the Filesystem status is ‘Active, but not mounted’.

The new RAID array must be formatted before mounting it. This can be
done using the gnu disk management tool .

10. Select the RAID-1 array, and make the plus sign (+) choice in the gnu
disk management tool. In the gnu disk management tool dialog box
that appears for this, name the array “Home Data.” Select the radio
button ‘Internal disk for use with Linux systems only (Ext4)’, and then
click on the ‘Create’ button. Wait a minute while the gnu disk manage-
ment tool does its work!

Go back to Webmin. All the disks attached to a RAID device are shown in
the Webmin interface.

This array named ‘Home Data’ needs to be auto-mounted at every boot.

http://https

Raspberry Pi OS System Administration with systemd64

11. In the gnu disk management tool, select the array in the Disks listing,
and beneath its display in the main pane, make the meshing gears
button choice. Select Edit Mount Options.

12. Toggle ‘User Session Defaults’ to be in the on position (to the left),
and then click on the OK button. After authentication, this process
modifies the “/etc/fstab” file appropriately to auto-mount our
RAID-1 array.

After every reboot of your system, the automatically mounted RAID-1
array shows up as the “Home Data” folder in the Raspberry Pi OS File
Manager on your desktop.

To conform to our recommended data storage model, it would be very
useful and secure to mirror our home directory, which is now stored on the
microSD card that the Raspberry Pi OS resides on, to the RAID-1 array on the
flash drives that we’ve created in the above steps of this Example.

13. In a terminal, type the following:

$ dir /mnt
30bbf3f0-8d02-49e2-8989-b69a34d92c38

Use your mouse to copy the name of the RAID mount. On our system, it
showed the mounted array as “30bbf3f0-8d02-49e2-8989-b69a34d92c38.”
Replace the directory name with the one shown on your system. Then use
this command to clone the home directory by typing the following, substi-
tuting your directory name for the one on our system:

$ sudo rsync -av /home/* /mnt/30bbf3f0-8d02-49e2-8989-b69a34d92c38/

To make this new directory mount as /home instead of the default home dir-
ectory, do the following:

$ sudo nano /etc/fstab

Use nano to go to the line /dev/disk... (probably the last line after the reboot
you did in) and change mount point to “/home.” Quit and save /dev/disk
in nano.

Reboot the system. Your home directory is now on mirrored RAID-1 array
named ‘Home Data’.

14. Cleanup – To remove the RAID-1 array, and zero out the flash drives
for later use, execute the following:
a. Remove the entry from step 13. in the /etc/fstab file using nano.

Then reboot.
 In Webmin, make the menu choice Hardware>Linux RAID, then

select /dev/md0. At the bottom of the RAID Device screen, make

Basic System Administration 65

the choice Delete RAID array. Make the red button choice ‘Yes,
Delete it’.
This has removed the mirrored array we created in the steps above.

b. Also remove the directories /mnt/30bbf3f0-8d02-49e2-8989-
b69a34d92c38, and mnt/home with the following commands:

$ sudo rm -r /mnt/30bbf3f0-8d02-49e2-8989-b69a34d92c38
$ sudo rm -r /mnt/home

where home is the name of your home directory which was cloned
onto the mirrored pair.

c. Finally, delete the partitions on /dev/sdb and /dev/sdc using the
traditional commands fdisk, gdisk, or, if you so desire, Gparted.
Then you’ll be able to create new ones on them formatted to FAT32
if you want to continue using them as USB flash drives on your
system.

Note Compare the three sub-steps in step 14 to those analogous steps
found in Example 1.5..

Conclusion:
This example has used Webmin, mdadm, and the gnu disk manage-
ment program to implement a secure, redundant data storage model on a
Raspberry Pi system.

1.6 CUPS Printing

You can configure and manage a printer for use on your Raspberry Pi system
using the three basic methods we show in this section. These methods are
generally applicable to printers that are connected directly to your computer,
and this most likely is via a USB connection. We also briefly mention how
network-attached printers can be configured.

The three basic methods are:

1. A web-based browser CUPS interface,
2. Using the Raspberry Pi OS Menu choice Preferences > Print

Settings, and

3. Using the Raspberry Pi OS command line in a terminal.

The configured printer in all three methods is controlled and managed with
the Common UNIX Printing System (CUPS).

Raspberry Pi OS System Administration with systemd66

In method 1, we show a web-based browser front end to CUPS that allows
you to manage printers, print jobs, and other configuration settings.

In method 2, we show the built-in graphical front end to CUPS, accessed
via the Menu, which comes with the Raspberry Pi OS and achieves much of
the same functionality as method 1.

In method 3., we show a completely text-based interface for controlling and
managing printers from the command line.

What the Common UNIX Printing System (CUPS) Accomplishes:
Using CUPS is a standard way of printing in both Linux and Unix. Since

it was developed to provide as many printer definitions as possible, it will
more than likely enable you to directly connect your model of printer or
connect to a print server on your LAN.

It is basically composed of two parts- a scheduler and a filtering system.
The scheduler arranges jobs in print queues and sends them to the filtering
system that translates the print data into device driver information for the
particular printer you want your documents to print on.

1.6.1 Managing CUPS Locally with systemd

Using systemd, via the systemctl command, allows you to start, stop, reload,
or restart the CUPS service. This is a higher level of management for your
local printers via a system service.

1.6.1.1 Starting CUPS Service Using systemd

In the Raspberry Pi OS, when you attach a new printer via a USB cable to
the hardware, it will generally be automatically recognized and attached
via CUPS. If the CUPS service has not already been started, it will be auto-
matically started and run when connecting the new printer. But to start the
CUPS service without having any printers attached or powered on, do the
following:

To start the CUPS service, and check its status, use the following commands:

$ sudo systemctl start cups
$ sudo systemctl status cups
• cups.service: CUPS Scheduler

Loaded: loaded (/lib/systemd/system/cups.service; enabled; vendor preset:
enabled)

Active: active (running) since Thu 2022-10-06 00:00:45 PDT; 10h ago
TriggeredBy: • cups.socket

• cups.path
Docs: man:cupsd(8)

Main PID: 11613 (cupsd)
Status: “Scheduler is running...”
Tasks: 1 (limit: 4164)

CPU: 33ms
CGroup: /system.slice/cups.service

└─11613 /usr/sbin/cupsd -l

Basic System Administration 67

Oct 06 00:00:45 raspberrypi systemd[1] : Starting CUPS Scheduler...
Oct 06 00:00:45 raspberrypi systemd[1] : Started CUPS Scheduler.

We see from the output that CUPS is running.

1.6.1.2 Stopping CUPS Service with systemd

The CUPS service can be stopped using the systemctl stop cups.service
command, as follows:

$ sudo systemctl stop cups.service

When you check the status of the CUPS service after stopping the CUPS
service, its status is inactive (dead), but still enabled.

Enabled means it will persistently start every time the system is rebooted.

1.6.1.3 Restarting, Enabling, or Disabling the CUPS Service with systemd

Restarting a service means that a service is stopped and then started again. If
the service is not currently running, restarting it simply starts the service. Use
the following command to restart the CUPS service:

$ sudo systemctl restart cups.service

You can also perform a conditional restart of a service using systemctl. A con-
ditional restart only restarts a service if it is currently running. Any service in
an inactive state is not started.

$ sudo systemctl condrestart cups.service

In the above command example, the CUPS service was in an inactive
state before the command was executed. When the conditional restart is
accomplished, no error messages appear. The cup daemon was not started
because conditional restarts only affect active services.

It is always a good practice to check the status of a service after stopping,
starting, or conditionally restarting it.

1.6.1.4 Configuring CUPS as a Persistent Service Using systemd

You can use the systemctl command to enable or disable the CUPS services
on your Raspberry Pi OS system server, whether that is local or remote.

Using the enable option on the systemctl command sets a service to always
start at boot (be persistent). The following shows exactly how to accom-
plish this:

$ sudo systemctl enable cups.service

Raspberry Pi OS System Administration with systemd68

Disabling a service with systemd:
You can use the disable option on the systemctl command to keep a ser-

vice from starting at boot. However, it does not immediately stop the service.
You need to use the stop option discussed in the “Stopping a service with
systemd” section. The following example shows how to disable a currently
enabled service.

$ sudo systemctl disable cups.service

1.6.2 Using Web-Based CUPS Administration

CUPS offers its own web-based administrative tool for adding, deleting, and
modifying printer configurations on your computer. The CUPS print service
(using the cupsd daemon) listens on port 631 to provide access to the CUPS
web-based administrative interface and share printers. You can use the CUPS
web browser GUI to manage your printing environment, both locally and
on a LAN or the Internet, in the Raspberry Pi OS. This section describes the
requirements for using the web browser interface and the administrative
tasks that you can perform.

1.6.2.1 Using the Web-Based Interface to CUPS Locally

We found that if a powered-on printer has been automatically detected on
your local computer, you can begin to use the web-based browser interface on
that local machine. If CUPS has been enabled at system boot and is running
on your computer, you can immediately use CUPS web-based administra-
tion from your web browser. A simple and easy way to test whether CUPS
is running is to open a web browser on the local computer and type the
following into its URL locator box:

http://localhost:631

A prompt for a valid login name and password may appear. If so, type the
root login name and the root user’s password, and click OK. The web-based
CUPS interface Home Tab screen display should appear in your browser
window. By default, web-based CUPS administration is available only from
the local host.

1.6.2.2 LAN or Web-Based CUPS

To access LAN or web-based CUPS administration from another computer,
do the following:

1. On your local machine, from the web-based CUPS interface Home Tab
screen, select the Administration Tab. Then put check marks in the

http://localhost

Basic System Administration 69

boxes next to Allow remote administration, Share printers connected
to this system, and Allow printing from the Internet.

2. Select the Change Settings button.
3. You may need to restart the CUPS service with the systemctl command

before the change takes effect, as shown in Section 1.6.1.3.
4. After doing the previous steps, you can view the CUPS interface from

a remote computer’s web browser (and you can access CUPS locally
as well as localhost:631) using the IP address of the computer you
have your printer(s) connected to.
 For example, to see the web-based CUPS interface Home Tab screen in
a web browser, on a machine with an IP address of 192.168.0.8, type in:

http://192.168.0.8:631

On that machine, it is not necessary to have a printer detected at that time, or
even powered on, if those two things had been previously done.

In-Chapter Exercise

3. You have two computers on a LAN, named Pi400 and Pi4. You attach
a printer, which is automatically detected and useable on Pi4 only.
You use the steps shown in Section 1.6.2.2 to allow you to manage the
printer from your LAN. From a web browser on Pi400, you access the
CUPS web-based interface on Pi4. From Pi4, can you also use a web
browser and access the web-based interface on Pi400 to manage the
printer on Pi4?

1.6.3 Requirements for Using the CUPS Web Browser Interface

The web-based browser interface can be accessed from a supported browser
like Firefox. Depending on the task that you are performing, you might
be prompted for a username and password, or for the root username and
password.

The following requirements must be met before using the web-based
browser interface:

1. We found that if a printer has been automatically detected on the com-
puter you are trying to access CUPS on, the CUPS daemon goes from
the inactive to the active (running) state on that computer. Then you
can begin to use the web-based browser interface.

2. The CUPS software packages must be installed on the system that you
are accessing via the CUPS web-based browser interface pages. That
system can be the local computer or a remote computer.
Note These software packages were installed on our Raspberry

Pi OS system by default.

http://192.168.0.8

Raspberry Pi OS System Administration with systemd70

3. The following CUPS packages are required:
CUPS, cups-libs, foomatic-db, foomatic-db-engine.

4. The CUPS scheduler, svc:/application/cups/scheduler, must also be
running on the system you are accessing.

To verify that the CUPS scheduler is running, open a terminal window and
type the following command:

$ sudo systemctl status cups.service

• cups.service: CUPS Scheduler
Loaded: loaded (/lib/systemd/system/cups.service; enabled; vendor preset:

enabled)
Active: active (running) since Thu 2022-10-06 12:54:09 PDT; 2h 0min ago

TriggeredBy: • cups.socket
• cups.path

Docs: man:cupsd(8)
Main PID: 23641 (cupsd)

Status: “Scheduler is running...”
Tasks: 3 (limit: 4164)

CPU: 1.382s
CGroup: /system.slice/cups.service

└─23641 /usr/sbin/cupsd -l
└─23644 /usr/lib/cups/notifier/dbus dbus://

Oct 06 12:54:09 raspberrypi systemd[1] : Starting CUPS Scheduler...
Oct 06 12:54:09 raspberrypi systemd[1] : Started CUPS Scheduler.
$

1.6.4 Adding a Printer Using the CUPS Web Browser Interface

To configure a printer that is not automatically detected, you can add a
printer from the Administration Tab as seen on the Home Tab screen dis-
play. With the Administration Tab screen displayed, you can add a printer
as follows:

1. Click the Add Printer button. The Add New Printer screen appears.
2. Check the box that corresponds to the printer you want to add. Then

press the Continue button.

3. In the Add Printer dialog box that appears, type a Name, Location,
and Description for the printer; also choose if you want to share this
printer, and click Continue.

4. Select the make of the print driver. If you don’t see the manufacturer
of your printer listed, choose PostScript for a PostScript printer or HP
for a PCL printer. For the manufacturer you choose, you can select a
specific model.

Basic System Administration 71

5. Choose Add Printer button to continue.

6. On the Set Printer Options page that appears, change any of the default
options presented for your printer.

7. Your printer should be available. If the printer is added successfully,
click the name of your printer to have the new printer page appear;
from the printer page, you can select Maintenance or Administration
to print a test page or modify the printer configuration.

1.6.5 Troubleshooting Issues with Accessing the
CUPS Web Browser Interface

If you encounter an error while attempting to access the CUPS web browser
interface, or you cannot access the interface, see Section 1.6.3 to ensure that all
of the requirements have been met. In addition, verify your browser’s proxy
settings to determine whether a proxy server has been configured. If so, try
turning off the proxy server, then re-attempt to access the CUPS web browser
interface.

1.6.6 Print Administration Tasks and the Home Tab

Common print administration tasks that you can perform by using the CUPS
web browser interface include the following- customizing a print server
setup, assigning a print client to a common print server, setting up and man-
aging directly attached printers and printer classes on servers, setting up and
managing remote printers and printer classes on servers, and managing print
jobs from print clients

When you first access the CUPS web browser interface at http://
localhost:631, you see the menu choices available from the Home Tab screen.
From this tab, you can access all of the print administration tasks, which are
grouped by category, and the full set of CUPS documentation.

The following tabs are also displayed on the Home Tab screen display:

 * Administration – Enables you to access most print administration tasks,
including CUPS server configuration.

 * Classes – Enables you to search printer classes. CUPS provides collections
of printers, which are called printer classes. Print jobs that are sent to
a class are forwarded to the first available printer in that class. Classes
can be members of other classes. Therefore, you can define very large,
distributed printer classes for high-availability printing.

 * Help or Documentation – Enables you to access the CUPS documenta-
tion, which includes manuals, system administration documentation,
FAQs, and online help.

http://localhost
http://localhost

Raspberry Pi OS System Administration with systemd72

 * Jobs – Enables you to view and manage print jobs for configured printers.
 * Printers – Enables you to view information about and modify the

settings of a specific printer.

1.6.7 Using the Administration Tab

Most printing tasks can be performed from the Administration Tab.
It is important to realize that some tasks can be performed from mul-

tiple tabs.
Basic server settings can also be changed from the Administration Tab. For

more information about CUPS server configuration, see the cupsd.conf man
page on your Raspberry Pi system.

Table 1.2 describes the most important operation categories and individual
tasks that can be performed from the Administration Tab.

1.6.8 Using the Printers Tab

The Printers Tab, seen on the Home Tab screen display, enables you to view
and modify information for configured print queues.

From the Printers tab, you can also perform the following tasks: print a test
page, stop the printer, reject a print job, move a print job, cancel all print jobs,
unpublish the printer, modify a printer configuration, set printer options,
delete a printer, set a specific printer as the default, and set allowed users for
a printer.

1.6.9 Other Examples of Web-Based Cups Management

With the basic printer configuration done, you can now do further config-
uration and management of your printers. Following is a partial listing of
important Home Tab screen display menu choices available:

1. List print jobs. Click the Jobs Tab from the Home Tab screen display
to see what print jobs are active from any printers you have already
configured. Click Show Completed Jobs button to see information
about jobs that have already been printed.

TABLE 1.2

CUPS Administration Tab Menu Choices

Operation Category Task

Printers Add Printer, Find New Printers, Manage Printers
Classes Add Class, Manage Classes
Jobs Manage Jobs
Server Edit Configuration File, View Page Log

Basic System Administration 73

2. Cancel or move a print job. If you sent a print job to the wrong printer,
the Move Job selection can be used to move the job to a different
printer. From the Administration Tab, click Manage Jobs; then click
Show Active Jobs to see what print jobs are currently in the queue for
the printer. Select the Cancel Job button next to the print job you want
to cancel or select Move Job to move the print job to another printer.

3. Manage Printers. You can click the Manage Printers Tab from the top
of the Administration Tab screen display to view your configured
printers. For each printer that appears, you can select Maintenance or
Administrative tasks as follows:
a. Under Maintenance, click Pause Printer (to stop the printer from

printing but still accept print jobs for the queue),
b. Reject Jobs (not to accept any new print jobs),
c. Move All Jobs (to move them to another printer defined on the

system),
d. Cancel All Jobs (to delete all print jobs), or Print Test Page (to print

a page)
4. Command-line Printing: Select the Command-Line Printing and

Options button on the CUPS Home Tab screen display to get help
with using Linux command-line methods for printing and doing
print management. There is a verbose description of command-line
methods shown here.

1.6.10 CUPS Print Settings GUI

CUPS support in the Raspberry Pi OS includes a Gnome-based GUI
tool, system-config-printer. Generically, across many UNIX and Linux
distributions, this tool is known as the Print Manager. It can be launched from
the command line, or by making the Raspberry Pi Menu choice (at the top left
of the desktop) Preferences > Print Settings. CUPS is the default print service
on the Raspberry Pi OS and is managed by systemd. Detection of directly
attached printers, such as our USB-connected examples in this section, is auto-
matic. CUPS can also automatically discover other CUPS printers on a net-
work if those printers have sharing enabled. As in other parts of our treatment
of CUPS, we do not emphasize the network set of options in this section.

1.6.11 Starting CUPS Print Settings

To start the CUPS Print Settings GUI, use one of the following methods:
From the command line, type the following command:

$ system-config-printer

From the Raspberry Pi Menu, choose Preferences>Print Settings.

Raspberry Pi OS System Administration with systemd74

Figure 1.2 shows the window that opened when we launched the Print
Settings GUI.

1.6.12 Setting Up Printers by Using CUPS Print Settings GUI

This section describes the procedures and steps that are required to set up a local
printer by using CUPS Print Settings GUI. In the following sections, we give
some indications about when and how you would know that the troubleshooting
procedures are necessary for your installation and configuration.

1.6.12.1 How to Set Up a New Local Printer

The following example steps give a basic procedure for setting up a new
locally attached printer by using the CUPS Print Settings GUI. It is possible,
given the make and model of the printer you have attached to your com-
puter, that you would only be required to do part of step 1..

Example 1.7 Local Printer Setup

1. Connect the new printer to your local hardware system, then power
it on. If the printer is automatically detected by the system, a notifica-
tion message appears. If the printer is not automatically detected, there
are not many things you can do. This is very similar to adding a new
USB flash drive or hard disk to the system: if it is not detected, there
are not many troubleshooting steps you can easily take to get it to be
recognized.

You may, at this point, not have to do any configuration, depending upon
whether or not you can actually get a test page, or other document, to print
immediately. For example, when we attached the HP-Laserjet-1200 printer to
our Raspberry Pi OS on a Raspberry Pi 400, it was immediately recognized
and enabled. And that model of HP printer is more than fifteen years old!

FIGURE 1.2
Print Settings GUI.

Basic System Administration 75

a. Start CUPS Print Settings GUI by making the Menu choice Prefer
ences>Print Settings, or by typing the following command in a
terminal window:

$ system-config-printer

If you right-click on the newly attached printer icon display in the Main
window of the Print Settings GUI and make the menu choice Properties, the
Printer Properties dialog box appears. On it, there is a button that is labeled
Print Test Page. Click on this. The Printer State changes to Processing. If
a “good” test page comes out of your printer, game over! You could also
attempt to do some further testing by printing document types that you
would normally need to print and verify the results.

If you are adding a new printer that is not automatically configured
properly, or you cannot get a test page or other document to print, do the
remaining following steps:

b. Choose the Make and Model: Change... button from the Printer
Properties window.

2. CUPS selects the USB device that is physically connected to your
system.

3. In the Change Driver window, your printer should be highlighted.
4. Determine whether to accept the default printer driver or provide a

PPD file.

To use the default driver, leave the Select Printer From Database option
selected.

To provide a PPD file, you can then:

a. Select the Provide PPD File option – The Select a File window is
displayed.

b. Locate the specified PPD file on your system, then click Open to
associate the PPD file with the new printer.

5. From the left pane of the next Choose Driver window, select a printer
model. From the right pane, select a printer driver. Then, click Forward.
By default, CUPS selects a “recommended” printer model and the
appropriate driver for your printer. You can, at this point, optionally
make another selection from the list of available drivers, if you feel
this other driver would work better in configuring the printer.

6. To save your changes, click Apply. If prompted, type your password
or the root password.

After you have saved your changes, the newly configured printer is
displayed in the CUPS Print Settings GUI window.

Raspberry Pi OS System Administration with systemd76

7. (An optional step) To set the printer as the default, right-click the
printer name.
a. Choose the Set as Default option.
b. In the Set Default Printer window, choose one of the following

options:
Set as the system-wide default printer (default).
Set as my personal default printer.

Click OK to save the printer configuration.
8. Try printing a test page, or other document, at the printer. If you are not

successful in printing a test page or another document at the printer,
go back into the steps above to further troubleshoot your printer.

1.6.12.2 Configuring and Managing Printers by Using CUPS Print
Settings GUI

This section describes how to administer printers by using CUPS Print
Settings GUI. If you select the printer of interest in the main Print Settings
GUI window and then select Printer > Properties, you are presented with the
following choices in the Printer Properties dialog window, which allow you
to modify the properties of a configured printer.

The Printer Properties dialog includes the following six sections for config-
uring new and existing printers:

* Settings
In the Settings section, you can configure the following properties:

Description: Descriptive text about the printer. For example, our printer
description is Hewlett-Packard HP LaserJet 1200.

Location: A description of the physical location of the printer; for example,
raspberrypi.

Device URI: Information about the protocol that is used to access the printer.
For example, usb://HP/LaserJet%201200?serial=00CNCY043969.
Make and Model - Information about the make and model of the printer;

for example, HP LaserJet 1200 pcl3 and hpcups 3.21.2.
The default settings for the above two options can be changed by clicking

the Change button.
Printer State: Information about the current status of the printer; for

example, Idle.
Tests and Maintenance: Contains the option to Print Test Page

* Policies
In the Policies section, you can configure the properties that control how a
printer behaves.

State- Specifies the following printer states: Enabled, Accepting
Requests, Shared

Basic System Administration 77

More than one state can be checked off at the same time!
Policies: Specifies how the printer behaves during error conditions.
Banner: Specifies whether starting or ending banner pages are printed with

each print job.

* Access Control
The Allow or Deny lists determine which users can print to the printer. For
our HP 1200 LaserJet, printing is allowed for everyone.

* Installable Options
For our HP LaserJet 1200, a Duplexer could be deployed to print on two sides
of the same sheet of paper if desired by checking the Duplexer Installed box.

* Printer Options
In the Printer Options section, you can configure printer-specific options.

For example, for an HP LaserJet 1200, the following configurable options
are displayed:

Media Size, Double-sided printing, Media Source, Output mode, Media
type, and Print Quality

The number and types of Printer Options are determined by the PPD file
that is associated with the specified printer.

* Job Options
Determines the options that are associated with a print job, for example, the
number of copies and page orientation, as well as certain image options. The
number and types of options are determined by the PPD file that is associated
with the specified printer.

* Ink/Toner Levels
Only available if marker levels are reported for this printer.

1.6.12.3 An Example of How to Modify the Properties of an Existing
Configured Printer

Example 1.8 contains steps that describe how to modify the basic configur-
ation of an existing installed printer. It assumes that you can print from this
printer normally.

Example 1.8 Modifying Printer Properties

1. Start the CUPS Print Manager GUI by making the Menu choice
Preferences > Print Settings, or by typing the following command in a
terminal window:

$ system-config-printer

Raspberry Pi OS System Administration with systemd78

The Printer configuration main dialog window is displayed and lists all of
the configured printers and any newly detected printers.

2. Right-click the name of the printer for which you want to modify the
properties, then choose Properties.

The Printer Properties dialog box appears. The Properties dialog box
contains six separate sections, each of which contains properties that are
grouped by category. By default, the Settings section of the dialog is displayed.

3. In the Settings section, to modify the printer description or location,
type any new information that you want in the corresponding text field.

4. A Uniform Resource Identifier (URI) is an addressing technology for
identifying resources on the Internet or LAN. The terms URI and URL
are used similarly. URIs can be used with application-level protocols,
called URI schemes. When creating print queues for network-attached
printers by using CUPS print commands or the Print Manager, you
can specify the device as a device-uri.

To modify the device URI:

a. As noted in Section 1.6.12.2, our device URI was listed as:

usb://HP/LaserJet%201200?serial=00CNCY043969

b. Click the Change button next to the setting.
c. From the list of available devices, select a device, then click Apply.
d. When prompted, type your password, or the root password. You

are then returned to the Settings section.
5. To modify the printer make and model:

a. Click the Change button next to the setting.
b. In the Choose Driver window, select a printer make, then click

Forward.
Note: By default, CUPS uses the Select Printer From Database
option and selects the appropriate printer-make for you.
Alternatively, you can provide your own PPD file.

c. From the left pane of the next Choose Driver window, select a
printer model. From the right pane, select a printer driver, then
click Forward.

d. In the Existing Settings dialog, choose from the following options,
then click Apply.
Use the new PPD (Postscript Printer Description) as is.
Try to copy the option settings over from the old PPD.

Basic System Administration 79

e. If prompted, type your password, or the root password. You are
returned to the Settings section of the Printer Properties dialog.

6. Click OK.

1.6.12.4 How to Rename a Printer

It sometimes becomes necessary to rename local printers with more descrip-
tive titles, particularly if you have more than one attached to the system.
Of course, renaming network-attached printers is important so that you can
keep track of where your documents are being printed.

1. Start the CUPS Print Settings GUI by making the Menu choice
Preferences > Print Settings, or by typing the following command in a
terminal window:

$ system-config-printer

The Printer configuration main dialog window is displayed, listing all
the configured printers and any newly-detected printers.

2. Right-click the name of the printer that you want to rename.
3. Choose the Rename option.
4. Type a new name for the printer.
5. Type your password, or the root password when prompted, if

necessary.
6. Click OK to save the changes.

1.6.12.5 How to Duplicate a Printer Configuration

This procedure would be necessary if you wanted to replace an old printer
with an exact duplicate, or duplicate an old configuration for a similar new
printer.

1. Start the CUPS Print Settings GUI by choosing the Menu Preferences
> Print Settings, or by typing the following command in a terminal
window:

$ system-config-printer

The Printer configuration dialog appears, listing all of the configured
printers and any newly-detected printers.

2. Right-click the name of the printer that you want to copy the
configuration.

3. Choose the Duplicate option, or type CTRL-D.

Raspberry Pi OS System Administration with systemd80

4. In the Duplicate Printer window, type a name for the printer, then click OK.
5. Type your password, or the root password when prompted, if necessary.

6. Click OK.

1.6.12.6 How to Delete a Printer

This procedure would be necessary when you no longer have a named
printer attached to the system, or need to completely replace its configuration
definition on the system before upgrading the drivers and other attendant
packages related to the printer. For example, in the process of troubleshooting
the HP LaserJet 1200, we needed to delete the original printer and its config-
uration before loading new drivers and installing the printer again.

1. Start the CUPS Print Settings GUI by choosing the Menu Preferences
> Print Settings, or by typing the following command in a terminal
window:

$ system-config-printer

The Printer configuration dialog appears, listing all of the configured
printers and any newly-detected printers.

2. Right-click the name of the printer that you want to delete, then choose
Delete.

3. Click Delete in the Confirm Deletion dialog.

1.6.12.7 How to Disable or Enable a Printer

When you configure a new printer by using the CUPS Print Settings GUI,
the printer is enabled by default. This procedure describes how to disable or
enable a printer.

1. Start the CUPS Print Settings GUI by choosing the Menu Preferences
> Print Settings, or by typing the following command in a terminal
window:

$ system-config-printer

The Printer configuration dialog appears, listing all of the configured
printers and any newly-detected printers.

2. Right-click the name of the printer that you want to disable, or enable,
then deselect the option.

3. Type your password, or the root password when prompted, if
necessary.

4. Click OK.

Basic System Administration 81

1.6.12.8 How to Manage Print Jobs for a Specified Printer

This procedure is probably the most frequent and important one you will
execute, especially if you are printing high volumes of documents.

1. Start the CUPS Print Settings GUI by choosing the Menu Preferences
> Print Settings, or by typing the following command in a terminal
window:

$ system-config-printer

The Printer configuration dialog appears, listing all of the configured
printers and any newly detected printers.

2. Right-click the name of the printer for which you want to manage print
jobs, then choose View Print Queue, or type CTRL-F. The Document
Print Status (printer-name) window appears, listing all of the print jobs
for the specified printer.
In this window, you can view the following information:
Job, User, Document, Printer, Size, Time submitted, and Status

3. To view information about completed jobs or printer status, select the
appropriate option from the Show completed jobs menu.

4. To perform a specific action on a print job, select the print job, then
select an action from the available choices on the menu bar at the top of
the window. Alternatively, you can right-click the name of a print job,
and from the list of available options, select an action. For example, to
refresh the view of the jobs, click on the Refresh job list choice at the
top of the window (the clockwise turning arrow.)

1.6.13 Configuring and Managing Printers by Using CUPS
on the Command Line

This section briefly describes some of the CUPS command-line utilities on a
Raspberry Pi system. It describes how to set up and administer your printers
with them. We provide a range of examples of command-line control and
management of printers in this section.

1.6.13.1 CUPS Command-Line Utilities

CUPS provides various commands to set up printers and make those printers
accessible, both on a local machine where the printer is directly connected to
it, and to systems on a LAN or the Internet. In addition, CUPS supports sev-
eral printer-specific options to the command-line utilities that enable you to
control printer configuration. Table 1.3 lists frequently used CUPS commands.

Some CUPS command-line names are the same as legacy command-line
print commands from UNIX System-V and BSD, but the behavior of

Raspberry Pi OS System Administration with systemd82

commands under CUPS management is somewhat different. You should con-
sult the man pages on your system for all of the commands shown in Table
1.3 for further descriptions and clarification. For each sub-section below, we
first provide the general form of the command-line utility, and then give a
specific Example showing the actual use of the utility on our Raspberry Pi
system.

1.6.13.2 How to Set Up a Printer by Using the lpadmin Command

If you have successfully attached a new printer directly to your computer, this
section will allow you to view and manage the configuration for that printer.

1. After connecting the printer to the system, turn on the power to the
printer.
 Consult the printer documentation for information on how to cor-
rectly setup the hardware, in terms of USB cables, switch settings on
the printer itself, etc.

2. Use the lpadmin command with the -p option to add a printer to CUPS.
 Only the most commonly used options of the CUPS lpadmin
command are shown here. For information about other options, see
the lpadmin man page.

$ sudo lpadmin -p printer-name -E -v device -m ppd

where

-p specifies the name of the printer to add,
-E enables the destination and accepts jobs,
-v sets the device-URI attribute of the print queue,
-m allows the designation of the PPD file for the printer, from the

“model” directory, or by using one of the driver interfaces that your
system provides.

TABLE 1.3

CUPS Command-Line Utilities

Command Task

cancel Cancels a print request
lpadmin Sets up or changes a printer or class configuration
lpinfo Shows available devices or drivers known to the CUPS server
lpmove Moves a specified job or all jobs to a new destination
lpoptions Displays or sets printer options and defaults
lp Submits a print request
lpstat Displays the status information for queues and requests

Basic System Administration 83

3. Verify that the printer is correctly configured.

$ lpstat -p printer-name -l

where

-p the option that specifies you will be providing the name of the
printer.

printer-name provides the option argument, which is the actual printer name.
-l shows a long listing of printers, classes, or jobs.

The following provides a more practical application of the lpadmin command
options and their details.

To add an HP LaserJet printer, model P1006, by using a network inter-
face URI with the IP address 192.168.0.8, and utilizing a particular ppd, you
would type the following command:

$ sudo lpadmin -p HP_Laserjet_P1006 -E -v socket://192.168.0.8 -m laserjet.\
ppd

1.6.13.3 Setting a Default Printer on Your System

It is very common on single-computer, and LAN-networked print server
configurations, to have a default printer set so that all documents for printing
go to that default. You can specify the default printer used on the system in
one of the following ways:

* By setting the LPDEST or PRINTER environment variable.
The LPDEST environment variable determines the destination of the

printer. If the LPDEST variable is not set, the PRINTER variable is used. The
PRINTER variable determines the output device or destination. If both the
LPDEST and PRINTER variables are not set, an unspecified device is used.

* By using the lpoptions command.
Use this command to display or set printer options and defaults. For more

information, see the lpoptions man page.
The print command searches for the default printer in the following order:

1. The printer name as set by the lp command with the -d option;
2. The value of the LPDEST environment variable;

3. The value of the PRINTER environment variable.

For instructions on setting up printers by using the CUPS web browser inter-
face, see Section 1.6.

Raspberry Pi OS System Administration with systemd84

1.6.13.4 How to Set a Default Printer at the Command Line

The default printer can be a local printer or a remote printer. Following
are various methods of changing the default printer and some additional
examples that show the application of those methods.

1. Set the system’s default printer by using one of the following methods:

* By specifying the PRINTER variable:

$ sudo export PRINTER=printer-name

where printer-name specifies the name of the printer to be assigned as the
system’s default printer. If you do not specify printer-name, the system is set
up with no default printer.

Note – When using the lp command with the -d option, the destination
printer, which might not be the default printer, is specified. If the -d option is
not specified, the print command searches for information about the printer
in the PRINTER environment variable.

* By specifying the LPDEST variable:

$ sudo export LPDEST=printer-name

where printer-name specifies the name of the printer to be assigned as the
system’s default printer. If you do not specify the printer-name, the system is
set up with no default printer.

Note: If both the LPDEST and the PRINTER environment variables are set,
LPDEST takes precedence.

* By using the lpoptions command:

$ sudo lpoptions -d printer-name

where
-d Specifies the destination printer.
printer-name Specifies the name of the printer that is assigned as the

system’s default printer. If you do not specify printer-name,
the system is set up with no default printer.

2. Verify the system’s default printer.

$ lpstat -d

3. To print to the default printer with the lp command, type the following
command:

$ lp filename

Basic System Administration 85

1.6.13.5 Setting a Default Printer by Specifying the PRINTER Variable

The following example shows how to set the printer HP_Laserjet_P1006 as
the system’s default printer by using the PRINTER variable.

$ export PRINTER=HP_Laserjet_P1006
$ lpstat -d

system default destination: HP_Laserjet_P1006

1.6.13.6 Setting a Default Printer by Specifying the LPDEST Variable

The following example shows how to set the printer HP_Laserjet_P1006 as
the system’s default printer by specifying the LPDEST variable.

$ sudo export LPDEST=HP_Laserjet_P1006
$ lpstat -d

system default destination: HP_Laserjet_P1006

1.6.13.7 Setting a Default Printer by Using the lpoptions Command

The following shows how to set the printer HP_Laserjet_P1006 as the system’s
default printer. The printer HP_Laserjet_P1006 is used as the system’s default
printer if the LPDEST or the PRINTER environment variable is not set. Output
on our system of the lpoptions command is shown.

$ lpoptions -d HP_Laserjet_P1006

copies=1 cups-browsed=true device-uri=ipps://bob-PowerEdge-T110.
local:631/printers/HP_LaserJet_P1006 finishings=3 job-cancel-after=
10800 job-hold-until=no-hold job-priority=50 job-sheets=none,none marker-
change-time=0 number-up=1 printer-info=‘lpb @ Pi400’ printer-
is-accepting-jobs=true printer-is-shared=false printer-location=Pi400.local
printer-make-and-model=’Remote Printer’ printer-state=3 printer-state-
change-time=1478838854 printer-state-reasons=none printer-type=2097158
printer-uri-supported=ipps://Pi400:631/printers/HP_LaserJet_P1006

$ lpstat -d

system default destination: HP_LaserJet_P1006

The lpoptions command creates a ~/.lpoptions file that includes and entry
for the default printer HP_Laserjet_P1006 in the file. By default, all print jobs
are now directed to the HP_Laserjet_P1006 printer.

Raspberry Pi OS System Administration with systemd86

1.6.13.8 How to Print to a Specified Printer

If you have more than one printer defined and directly connected to your
system, or you are sharing other network-enabled printers on your LAN, the
following steps help you print to one of those specific printers:

1. (An optional step) Verify the status of the printer.

$ lpstat -p printer-name

where
-p is the option allowing you to designate a specific printer.
printer-name is the option argument designating name of the printer you

want to print to.

2. Give the destination printer name as an option argument to the lp
command.

$ lp -d destination-printer filename

where
-d specifies the destination printer.
destination-printer specifies the name of the printer that you are assigning

as the destination printer.
filename specifies the file name to print.

1.6.13.9 Printing to a Specified Printer by Using the lp Command

The following example shows how to set the printer HP_Laserjet_P1006 as
the destination printer when executing the lp command:

$ lp -d HP_Laserjet_P1006 Proposal.doc

request id is HP_Laserjet_P1006-1 (1 file(s))

$ lpstat -d

system default destination: HP_Laserjet_P1006
The -d option of the lp command takes precedence over the LPDEST and

PRINTER environment variables.
In the above example, the default printer is HP_Laserjet_P1006.

1.6.13.10 How to Verify the Status of Printers

The lpstat command displays information about accessible printers and jobs.
Do the following steps to verify the status of printers on your system:

Basic System Administration 87

1. Log in to any system on the LAN your computer is hooked up to.
2. (An optional step) Verify the status of all printers, or a specific printer.

Only the most commonly used options are shown here. For informa-
tion about other options, see the lpstat man page.

$ lpstat [-d] [-p] printer-name [-l] [-t]

where

-d shows the system’s default printer,
-p printer-name shows whether a printer is active or idle and when the

printer was enabled or disabled,
-l shows the characteristics of printers and jobs,
-t shows status information about CUPS, including the status

of all printers, for example, whether printers are active and
accepting print requests.

You can specify multiple printer names with this command. Use a space or a
comma to separate printer names. If you use spaces, enclose the list of printer
names in quotation marks. If you do not specify printer-name, the status of
all printers is displayed.

1.6.13.11 Displaying the Status of Printers

To display the status of the printer HP_Laserjet_P1006, use the following
commands:

$ lpstat -p HP_Laserjet_P1006

printer HP_Laserjet_P1006 is idle, enabled since Thu 10 Nov 2016
08:34:14 PM PST

To display the system’s default printer, use the following command:

$ lpstat -d

system default destination: HP_Laserjet_P1006
To display the description of the printers HP-LaserJet-1200 and

HP_Laserjet_P1006:

$ lpstat -p “HP-LaserJet-P1200, HP_Laserjet_P1006” -D

printer HP-LaserJet-1200 faulted. enabled since Jan 5 11:35 2023. available.
Description: Printer in Orange Bedroom
printer HP_Laserjet_P1006 is idle. enabled since Jan 5 11:36 2023. available.
Description: Printer in Basement.

Raspberry Pi OS System Administration with systemd88

To display the characteristics of the printer HP_Laserjet_P1006, use the
following command:

$ lpstat -p HP_Laserjet_P1006 -l

printer HP_LaserJet_P1006 is idle. enabled since Jan 5 11:36 2017 PM PST

1.6.13.12 How to Print a File to the Default Printer

This sub-section is probably the most important and often-used procedure
you will do with your computer and printer. Do the following steps:

1. Log in to any system on the network.
2. (Optional) Verify the status of the printer.

$ lpstat -p printer-name

3. Issue a print request as follows:

$ lp filename

Note: Only the basic command is shown in this procedure. For information
about the other options, option arguments, and command arguments to these
commands, see the lpstat and lp man pages on your system.

1.6.13.13 How to Delete a Printer and Remove Printer Access

There may come a time when you want to delete a printer and its config-
uration completely from the system. For example, when we first installed
the HP_Laserjet_P1006 on our system, it was erroneously configured with
an earlier release of the HPLIP drivers that did not allow us to print with it.
So we had to delete that printer and its configuration, and reinstall some of
the drivers. We were then able to re-install that printer successfully. Do the
following steps to delete a printer, and remove access to it:

1. On the system that is the print client, delete information about the
printer.

$ sudo lpoptions -x printer-name

where
printer-name Specifies the name of the printer to delete.
-x Deletes the specified printer.

Note – The -x option only removes the default options for a specific printer
and instance. The original print queue still remains until it is deleted by using
the lpadmin command.

Basic System Administration 89

In-Chapter Exercise

4. Give a general example of using the lpadmin command to delete a
print queue.

2. Delete the printer.

$ sudo lpadmin -x printer-name

3. Verify that the printer has been deleted, as follows:
a. Confirm that the printer has been deleted on the print client.

$ sudo lpstat -p printer-name -l

The command output displays a message indicating the printer does
not exist.
b. Confirm that the printer has been deleted on the print server.

$ sudo lpstat -p printer-name -l

The command output displays a message indicating that the printer does
not exist.

1.6.13.14 Deleting a Printer

The following command-line sequence example shows how to delete the
printer HP_Laserjet_P1006 from the print client named Pi400, and then from
the print server named Pi4.

Pi400$ sudo lpoptions -x HP_Laserjet_P1006

Pi400$ sudo lpstat -p HP_Laserjet_P1006 -l

Switch to the Pi4

Pi4$ sudo lpadmin -x HP_Laserjet_P1006

Pi4$ sudo lpstat -p HP_Laserjet_P1006 -l

lpstat: Invalid destination name in list “HP_Laserjet_P1006”!

In-Chapter Exercises 5. through 14

5. Why is an error generated by the command sudo lpstat -p HP_
Laserjet_P1006 –l given on the Pi4?

6. Use the Linux Print Manager utility on your system to add a new
printer named “localprinter” to your system (the printer should be

Raspberry Pi OS System Administration with systemd90

connected and powered-on to set up a print queue for the new printer).
The printers setup is dependent upon the make and model you have
available for your actual system.

For the next three exercises only, power off your printer first. Then use only
typed command-line operations to do the three exercises.

7. Use the lp command to print any particular file of interest to that
printer.

8. Check the print queue for that printer to see that the print job is there.
9. Remove the print job from the queue (cancel it).

10. Set up the CUPS web-browser-based interface, so other systems on
your LAN can print to the printer “localprinter.”

11. Check the status of “localprinter” from a web browser on another
computer on your LAN.

12. Actually execute CUPS administration, using the web-browser-based
interface, from one computer on your LAN to the computer that has
“localprinter” connected to it.

13. Use the systemctl command to see the status of the cups.service.
14. Delete the “localprinter” printer from your system, using any of the

methods you feel most comfortable with.

1.7 Other Linux Archiving and Backup Facilities

In addition to the traditional tar facility, there are several other facilities and
methods a system administrator can use to archive and backup individual
user accounts, files, file systems, and the entire system itself. As stated above,
to get a more complete listing of the capabilities and options available for
the command-line facilities shown in this, and all other sections, consult the
man pages on your system for these commands. We briefly describe and give
simple examples of some of the more modern and useful of these facilities
and methods below.

1.7.1 cpio

As universally available as tar on Linux systems, the cpio command allows
the system administrator to back up the entire system and transfer files
between file systems. It may be used in conjunction with the find command,

Basic System Administration 91

but not necessarily if you are backing up an entire file system. An abbreviated
listing of the man page for cpio is as follows:

cpio
Purpose: Copies files to an archive, extracts files from an archive, or passes files to \

another directory tree.
Syntax:
cpio -o [aBcv] > directory for creation of an archive, and
cpio -i [Btv] [pattern] for restoring an archive.
Output: Created or Restored archive file.
Common Options:
-o creates the archive
-v prints the names of the files that are archived
-i extracts the archive
Command Arguments:
directory A directory where the archive is found.
pattern Source for the restored archive.

When creating an archive, cpio takes the list of files to be processed from the
standard input, and then sends the archive to the standard output. A simple
example of this would be as follows:

$ ls | cpio -ov > backup.cpio

In a more complicated example, the following commands backup selected
files in the /home/bob directory to a USB flash drive, for the sake of this
illustration, generically named device:

$ cd /home/bob
$ touch level.1.cpio.timestamp
$ find . –newer level.0.cpio.timestamp –print \ | cpio –oacvB > device
Output truncated…
$

A simple example of extracting a cpio archive is as follows:

$ cpio -iv < backup.cpio

1.7.2 dd

The dd facility is used to copy a single file, part of a file, a partition, or part
of a partition, and can treat the data stream using, for example, compres-
sion or format conversion. An abbreviated version of the dd man page is
as follows:

Raspberry Pi OS System Administration with systemd92

dd
Purpose: To copy a file (from standard input to standard output, by default) with

possibly a changeable I/O block size, while optionally doing file conversions on it.
Syntax:
dd [options] if=device of=device bs=blocksize
Output: Modified file.
Common Options:
--help Provides help on the dd command.
--version Supplies the version number of the utility.
Operands and Command Arguments:
ibs=bytes Sets the input block size in bytes. This makes dd read bytes per block.

The default is 512 bytes.
obs=bytes Sets the output block size to bytes. This makes dd write bytes per

block. The default is 512 bytes.
bs=bytes Set both input and output block sizes to bytes. This makes dd read

and write bytes per block, overriding any ‘ibs’ and ‘obs’ settings.
device: file or pathname to object being processed.
blocksize Blocksize of copied file.

A multi-command example of using dd, used in conjunction with ssh and
tar, is as follows:

$ ssh bob@192.168.0.13:/home/bob “dd if=backup.tar ibs=512” | tar --\
extract --verbose --read-full-records --file –

The above command extracts the remote file backup.tar file at 192.168.0.13:/
home/bob in input 512-byte blocks and streams it through dd to the system
you typed this command on.

1.7.3 rsync

The rsync command is a modern and very space-efficient way to backup
selected files and directories, particularly from one machine to another using
ssh across a network. Its operation can also be automated via the use of
systemd scheduling “timers.” Here we provide an extensive example of the
use of rsync, coupled with Python, to underscore our point about the utility
of both rsync and Python usage in Linux.

Example 1.9 Extended Python Script Example Using rsync to Do a
“Rotating” Backup

Objective: Use Python3 in conjunction with the rsync command to do a daily,
rotating backup of selected directories and files locally and across a network,
with a depth of five sequentially retained backups.

Basic System Administration 93

Prerequisites:
You should prepare to execute the Python script file by doing the following:

a. Create a file in /home/your_username/.rsync/exclude (where your_
username is your login name on your Raspberry Pi system) which
contains filename matching patterns for rsync to ignore. You should
exclude patterns such as *.tmp or *.o

b. You have a remote machine on your LAN or intranet, and know its IP
address, that you can ssh into. You must have the access permissions
and credentials to access directories and files on that remote machine.
On our Raspberry Pi system, this IP address was 192.168.0.25.

c. You should make sure that you setup ssh on the remote machine so
that you can do a login to it without having to type in a password. Not
having done this would prevent automating the Python script with
legacy cron, or a systemd timer. We provide a Project at the end of this
chapter that asks you to automate this script file using a systemd timer.

We provide the Python code for the example presented in step 5 of the
Requirements subsequently.

Background: As well as using the rsync command to achieve the objectives,
it also uses the cpio command and the Python methods copytree and rmtree,
from the shutil utility.

Basically, there are five operations this Python script file performs:

1. Checks to see if several numbered, or versioned, backup directories
exist. If they don’t exist, it creates them.

2. Removes the last version, or oldest directory.
3. Hard copies directory “1” into directory “2.” A hard copy makes a

copy in which the two files share the same disk space, i.e., your files
take up no extra room.

4. rsync’s the files you want to backup to directory “1.” rsync only
overwrites changed files. This example does this rsync operation first
between source and local machine “backup “directories, and then
between those backup directories, and their equivalent directories and
files on the remote machine.

5. Also, specifically backs up designated source code, a very critical
operation if you’re a developer of applications.

Notice that the provided script file does not use OOP but uses an imperative/
procedural programming methodology.

Raspberry Pi OS System Administration with systemd94

Requirements:

1. Type in the source code for this script file exactly as shown below.
2. Read through the basic procedural steps outlined in the Background

of this example above in careful conjunction with the Python code
you typed in step 1 of these Requirements. Try to comprehend the
sequence of the script file as it accomplishes its procedures from
beginning to end. Produce a diagram or flowchart of how the program
works. A graphic will always help to clarify the flow of the script file
as it accomplishes its objectives.

3. **Critical** Modify the Python source code shown below using
your favorite text editor, so that the lines of code under the function
backupserver(), that assigns sources, localsources, localcode, target,
host (the remote machine), and user are relevant and pertinent to dir-
ectories, host, and your username on your Raspberry Pi system!

4. Once step 3 changes are made, execute your modified Python code.
5. Verify that the script file is doing what it is intended to do; in other

words, test it on your Raspberry Pi system. That testing will include
debugging and a verification regimen that is your responsibility to
design and certify.

#!/usr/bin/python3

This script file does a daily, local, rotating backup to a remote machine, using rsync
#
import time
import datetime
import os
import shutil
import UserString
def backupserver():

debug_flag = “debug”
sources = [“/home/bob/test_dir”]
codetarget = “/home/bob/some_code/”
target = “/home/bob/Daily_Backups/”
host = “192.168.0.25”
user = “bob”
Target can be reached, start the rotation of the snapshot directories
if (debug_flag == “debug”):

print (“Date: “ + str(datetime.date.today()))
print (host +“ is up, rotating snapshots.”)

Check to see if the directories exist
i = 1
while i <= 5:

temp_path = target + str(i) + “/”
if not os.path.exists(temp_path):

try:

Basic System Administration 95

os.makedirs(temp_path)
print (“Created “ + temp_path)

except:
print (“Couldn’t create “ + temp_path)

i = i + 1
Cycle through the backups
First deleting the oldest one #5
print (“Deleting oldest archive”)
shutil.rmtree(target + “5”)
Cycle through 2 - 4
print “Cycle backups”
os.rename(target + “4”, target + “5”)
os.rename(target + “3”, target + “4”)
os.rename(target + “2”, target + “3”)
Do hard copy of 1
os.system(‘find “’ + target + ‘1” -print | cpio -pdl ‘ + target +”2”)
print (“Copy first backup”)
Copy tree does a full copy whereas cpio does hard link copies (i.e. each \

copied file
takes up no extra space)
shutil.copytree(target + “1”, target + “2”)
os.system(‘cd “’ + target + ‘1”; find . -print | cpio -pdl “’ + target + ‘2” ’)
print (“Rsyncing now”)
Rsync from local directories to local backup
for source in sources:

print (“Local directories “ + source)
os.system(‘rsync -azv -e --delete --delete-excluded ‘ +

‘--exclude-from=/home/bob/.rsync/exclude “’ + source +
‘ “ “’ + target+’1” ’)

Rsync from the server to the local backup
for source in sources:

print (“Downloading “ + source)
os.system(‘rsync -azv -e ssh --delete --delete-excluded ‘ +

‘--exclude-from=/home/bob/.rsync/exclude ‘ + user
+ “@” +

host + ‘:“’ + source + ‘” “’ + target+’1” ’)
Backup only the targeted programming source code
newfolder = codetarget + str(datetime.date.today())
Make the new directory
if not os.path.exists(newfolder):
os.makedirs(newfolder)
Here’s the critical operation.

Find all the source files from our rsync backup and copy them as hard links
print (“Backing up source”)
os.system(‘cd “’ + target + ‘1”; find . \(‘ + “ -name ‘*.cpp’ -or -name ‘Makefile’ ” + “-or -

name ‘*.c’ -or -name ‘*.h’ -or -name ‘*.lex’ -or -name ‘*.y’ ” + “ -or -
name ‘*.bat’ -or -name ‘*.py’ \) “ + ‘ -print | cpio -pdl “’ +

newfolder +’ ” ’)
backupserver()

Conclusion: Given your system administration backup requirements, this
example has provided a technique you can deploy that uses a powerful
strategy for fairly complex archiving of your system’s persistent data.

Raspberry Pi OS System Administration with systemd96

1.8 Repository Management

Since the Raspberry Pi OS is derived from Debian Linux, a large majority
of its default software, in the form of pre-configured packages, comes from
those sources. The repositories are grouped into categories according to how
much support is given to packages in a particular category. For example,
the main Debian repository contains packages that directly have a hand in
writing source code and other attendant modules. Unsupported, and to some
degree, unreliable software packages are also available in the other major
categories. There is always the possibility, with an “open” software operating
system such as the Raspberry Pi OS, to install from source code itself. But this
route has largely been co-opted by various levels and forms of pre-packaged
applications.

It is possible to install from alternative software repositories in order to be
able to install software not found in the default repositories. You can view the
official repositories using the following commands:

$ cat /etc/apt/sources.list
deb http://deb.debian.org/debian bullseye main contrib non-free
deb http://security.debian.org/debian-security bullseye-security main contrib non-free
deb http://deb.debian.org/debian bullseye-updates main contrib non-free
Uncomment deb-src lines below then ‘apt-get update’ to enable ‘apt-get source’
#deb-src http://deb.debian.org/debian bullseye main contrib non-free
#deb-src http://security.debian.org/debian-security bullseye-security main contrib

non-free
#deb-src http://deb.debian.org/debian bullseye-updates main contrib non-free

GUI-based repository management, in other words, where you get your
software packages from, is normally accomplished via the Raspberry Pi OS
Menu choice Preferences > Add/Remove Software. Underneath this GUI, the
Advanced Packaging Tool(APT) is the primary tool for installing packages.
In the following section, we use the command line to show some of the basic
characteristics of package repository listings and the files that they give you
access to.

1.8.1 Searching Repositories with the apt-cache Command and apt-show

Suppose a friend of yours tells you about a game that’s available on Raspberry
Pi systems named Seven Kingdoms. How do you find out if it’s available
on your system, and what its characteristics are? You can use the following
commands to do that:

$ apt-cache search seven kingdoms

7kaa: Seven Kingdoms Ancient Adversaries: real-time strategy game
7kaa-data: Seven Kingdoms Ancient Adversaries - game data

http://deb.debian.org
http://security.debian.org
http://deb.debian.org
http://deb.debian.org
http://security.debian.org
http://deb.debian.org

Basic System Administration 97

$ apt-cache show 7kaa

Package: 7kaa
Version: 2.15.4p1+dfsg-1
Installed-Size: 1799
Maintainer: Debian Games Team <pkg-games-devel@lists.alioth.debian.org>
Architecture: arm64
Depends: 7kaa-data (= 2.15.4p1+dfsg-1), libc6 (>= 2.27), libcurl3-gnutls (>=
7.16.2), libenet7, libgcc-s1 (>= 3.0), libopenal1 (>= 1.14), libsdl2-2.0-0 (>=
2.0.12+dfsg1), libstdc++6 (>= 5.2), libuuid1 (>= 2.16)
Suggests: 7kaa-music (>= 2.15)
Description-en: Seven Kingdoms Ancient Adversaries: real-time strategy game
Seven Kingdoms, designed by Trevor Chan, brings a unique blend of
Real-Time Strategy with the addition of trade, diplomacy, and espionage.
.
The game enables players to compete against up to six other kingdoms allowing
players to conquer opponents by defeating them in war (with troops or
machines), capturing their buildings with spies, or offering opponents money
for their kingdom.
.
In 2009, Enlight Software released the game under the GPL license. 7kfans
project is updating the game and provides a community for fans. A free Seven
Kingdoms will help continue the legacy.
Description-md5: 37b0a07b664e6e2e6b3370a23d7a49cb
Homepage: http://www.7kfans.com/
Tag: game::strategy, interface::graphical, interface::x11, role::program,
uitoolkit::sdl, use::gameplaying, x11::application
Section: games
Priority: optional
Filename: pool/main/7/7kaa/7kaa_2.15.4p1+dfsg-1_arm64.deb
Size: 663204
MD5sum: a5fe610f90c7f86d4d534d60a0813c00
SHA256: 834c90e55492c284b5a206c4d404e4dcd4a96e188fd1334719ea680d37
4ac425

1.8.2 Basic Repository Characteristics

APT stores a list of repositories, sometimes called “software channels”, in the
file /etc/apt/sources.list.

It also stores lists of repositories in any file with the suffix .list under the
directory /etc/apt/sources.list.d/

You can add new repositories to the /etc/apt/sources.list, but APT will also,
by default, look in the /etc/apt/sources.list.d/ directory for text files ending
with the .list extension. In order to take effect, the lines in these text files should
have the same format and structure as the /etc/apt/sources.list file does.

http://www.7kfans.com

Raspberry Pi OS System Administration with systemd98

Another way of adding repositories to be searched is by creating a new text
file (ending in .list) for it in the directory /etc/apt/sources.list.d/. This is a
cleaner and more organized way of keeping track of your repositories, and
you can always remove the repository by deleting or commenting out that
file. Editing these files from the command line allows a user to add, remove,
or temporarily disable software repositories.

You can produce a backup of the configuration file sources.list before you
edit it using the following command:

$ sudo cp /etc/apt/sources.list /etc/apt/sources.list.backup

1.8.3 Repository Listing Format in /etc/apt/sources.list

A typical repository line in either of these two files will look similar to the
following:

deb http://deb.debian.org/debian bullseye main contrib non-free

where
deb (or deb-src), which refers to where the apt command will find binary

packages (deb) or source packages (deb-src),
the actual URL, which apt will use in order to “pull” from the repository,
the codename of the release; in this case, bullseye, and
the Component named main, which references whether or not the reposi-

tory contains software that is free and open source, and is supported
officially.

Software packages have source code available, so if you are a developer,
you are able to use this repository to fix bugs by altering the source code, and
“packaging” up your changes. Software marked restricted is still supported
but may have a questionable license. For example, in our repository listing
shown in Section 1.8 above, the following source is given:

#deb-src http://deb.debian.org/debian bullseye main contrib non-free

In-Chapter Exercise

15. Name the parts of the entries for the following line in a /etc/apt/
sources.list file:
deb http://deb.debian.org/debian bullseye-updates main contrib non-free

1.8.4 Other Suggested Procedures for Repository Management

1. Always back up configuration files like /etc/apt/sources.list before
you begin editing it! You can then reinstate your original source

http://deb.debian.org
http://deb.debian.org
http://deb.debian.org

Basic System Administration 99

listings if something goes wrong with the entries in the newly added
repository.

2. If you decide to add other repositories to sources.list, make sure
that the repository actually works with your release of the software.
Repositories that are not designed to work with your version can
introduce faults in your operating system and might force you to
re-install the entire system!

3. Also, make sure that you really need to add external repositories as
the software package(s) you are looking for may already have been
introduced into the official repositories.

4. You may be asked to enter a security key when adding a non-Debian
repository to your sources.

5. As much as possible, retrieve updated package lists by using the sudo
apt-get update command when you have edited /etc/apt/sources.
list.

1.9 Tasks, Processes, Threads, and Traditional
Process Control/Monitoring

Before discussing traditional methods of process control, and how to monitor
processes, it is instructive at this point to know what a “task” refers to in
the Raspberry Pi OS. In particular, knowing what the difference is, if any,
between a process and a thread, in the context of Linux tasks. And this is
useful knowledge, especially with respect to the kernel itself. To make clear
the differences between tasks, processes, and threads, consider this set of
comparisons between them:

A preliminary sketch of what a Linux “task” is, relative to processes and
threads, and with reference to the kernel, is as follows:

In Linux, a task and a thread are synonymous on a conceptual level.
A process at this level can be thought of as a completely independent vir-

tual environment, which runs at least one task. A very good example is a
single-thread process.

Each task is an independently executing module within the virtual envir-
onment of a process.

The main task of a process (usually called the “leading thread”), defines
the Task ID (TID) number, which is the same as the nominal Process ID (PID)
number.

Every new thread that is spawned by a process, using system calls, creates
a new task within the process.

In order to identify these new tasks in the kernel, they get assigned their
own individual Task ID (TID) number.

Raspberry Pi OS System Administration with systemd100

All tasks within a process share the same Thread Group ID (TGID) number.
A more complete description of what the difference is between processes

and threads is given by the following listing of points:

1. With respect to the Linux kernel, a task that can be run and scheduled
through the CPU is called a “process.”

2. Each process has a globally unique Process ID (PID) number and a
Thread Group ID (TGID) number.

3. A “stand alone” process, or “single-threaded” process, has a PID that
is equal to its TGID, and no other process can have this TGID value.

4. A “threaded” process has its TGID value shared by other processes: they
all have the same TGID value.

5. Processes sharing the same TGID also share the same memory space,
signal handlers, etc..

6. If a “threaded” process has a PID that is equal to its TGID, it can be
called “the leading thread.”
In a systems program, making the system call getpid() from within a
process will return its TGID (or “leading thread” PID).

7. From within a systems program, making the system call gettid() from
within a process will return its PID.

8. Both a process and thread can be created with the very important
Linux-specific clone() system call.

9. “Numbered” folders in /proc, which you can list with the ls command,
are TGIDs.

10. “Numbered” folders in /proc/TGID/task contain numbers that
are PIDs.

11. Even though you don’t see every existing PID using the command ls
/proc, you can still give the command cd /proc/any_PID, where any_
PID is the PID of a process of interest.

12. In conclusion, and with respect to the kernel, only processes exist. Each
process has its own PID. A thread is just a different kind of process.

Questions: “Are all processes threads, and why?”, and “Is the Linux kernel
itself a process, and what are the threads created by this process?”

Answers: Since Linux is a multi-tasking, concurrent execution environment,
all processes can be considered threads of execution through the system.

And at the conceptual level we are addressing here, the Linux kernel is not
a process, but can be thought of as simply a complex interrupt handler, that
controls the movement of tasks as threads through the CPU and the CPU’s
supportive virtualized memory system and persistent media.

Basic System Administration 101

1.10 Controlling and Managing CPU Consumption by Processes

The traditional way of managing the CPU consumption of a process is to
use the nice and renice commands. In this sub-section, we illustrate the way
you can use those commands effectively after monitoring and assessing a
process's activity.

Only the root, or a user with sudo privileges, can increase a process's CPU
priority by decreasing its nice value.

A more contemporary method of managing CPU priority is accomplished
with systemd cgroups.

The following code example shows the display of the four top current
processes using the most CPU resources running on the system. When we
type this in on our Raspberry Pi OS system, we get the output shown:

$ ps -aux | head -5

USER PID % CPU % MEM VSZ RSS TTY STAT START TIME COMMAND
root 1 0.0 0.2 168300 9832 ? Ss Oct08 0:16 /sbin/init
 splash
root 2 0.0 0.0 0 0 ? S Oct08 0:01 [kthreadd]
root 3 0.0 0.0 0 0 ? I< Oct08 0:00 [rcu_gp]
root 4 0.0 0.0 0 0 ? I< Oct08 0:00 [rcu_par_gp]

$

The pgrep command displays the PIDs of running processes. Here are some
examples of how to use pgrep to find the process IDs of the running processes
and pipe those PIDs to another command to produce the output.

To search for kthreadd, run the following ps command:

$ ps -p `pgrep kthreadd`
 PID TTY TIME CMD
 2 ? 00:00:01 kthreadd
$

To search for systemd, run the following ps command:

$ ps -fp `pgrep systemd`
UID PID PPID C STIME TTY STAT TIME CMD
root 1 0 0 Oct08 ? Ss 0:16 /sbin/init splash
root 140 1 0 Oct08 ? Ss 0:09 /lib/systemd/

systemd-journald
root 167 1 0 Oct08 ? Ss 0:08 /lib/systemd/systemd-udevd
root 486 1 0 Oct08 ? Ss 0:04 /lib/systemd/systemd-logind
bob 682 1 0 Oct08 ? Ss 0:01 /lib/systemd/systemd --user
systemd+ 83391 1 0 Oct12 ? Ssl 0:01 /lib/systemd/

systemd-timesyncd

$

Raspberry Pi OS System Administration with systemd102

To search for nginx and improve its priority access to the CPU (assumes you
have the nginx daemon installed and running!):

$ sudo renice -1 `pgrep nginx`
[sudo] password for bob: QQQ
7630 (process ID) old priority 0, new priority -1
7631 (process ID) old priority 0, new priority -1
7632 (process ID) old priority 0, new priority -1
$

To change nginx back to priority 0:

$ sudo renice 0 `pgrep nginx`
7630 (process ID) old priority 1, new priority 0
7631 (process ID) old priority 1, new priority 0
7632 (process ID) old priority 1, new priority 0

The nice and renice commands, as seen in the previous examples, change
process priorities in the CPU.

Here is an example of using a command with nice to change a command’s
nice value:

Run the vi text editor at a higher priority:

$ sudo nice -n -1 vi

When a process is already running, you can change the process’s nice value
using the renice command. Here are some examples of the renice command:

Renice sarwar’s processes +2:

$ renice +2 -u sarwar

Renice PID 2576 by +5

$ renice +5 2576

Renice sarwar’s ksmserver processes to –3:

$ renice -3 `pgrep -u sarwar ksmserver `

2545: old priority -1, new priority -3
2546: old priority -1, new priority -3
2547: old priority -1, new priority -3

The back quotes are used in the previous command lines to show that
the output of the pgrep command (usually PIDs) should be redirected to
the either the nice or renice command. The nice settings for your processes
are displayed by default (as NI in the display later) when you run the top
command. You can run the top command, with a delay of screen updates
every 10 seconds, as follows:

Basic System Administration 103

$ top -d 10
top - 07:13:23 up 7 days, 18:03, 2 users, load average: 0.18, 0.16, 0.17
Tasks: 229 total, 1 running, 228 sleeping, 0 stopped, 0 zombie
%Cpu(s): 1.5 us, 1.1 sy, 0.0 ni, 97.4 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
MiB Mem : 3794.4 total, 1353.8 free, 772.7 used, 1667.8 buff/cache
MiB Swap: 100.0 total, 99.5 free, 0.5 used. 2824.2 avail Mem

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
624 root 20 0 470808 255720 45488 S 4.8 6.6 228:37.97 Xorg
Output truncated...

Based upon the output of the top command, you could stop an unimportant
or runaway process with the kill command, as follows. We previously had
determined the PID of an unimportant process as 19993 (not shown in the top
command output above). Be careful here, if you kill an important process,
your system goes down!

$ sudo kill -9 19993
$

1.11 systemd Journal Log Messages

Question: What do we use the systemd journal for primarily?

Answer: To check for unauthorized entry into our system and to monitor
system performance.

But it has many other uses, for example, in monitoring system perform-
ance. The journal is created and controlled by the journald daemon, which
directs all of the messages produced by the kernel, initrd, services, etc., into a
binary record structure. The systemd journal is a single, centralized manage-
ment tool for logs, regardless of where the log messages are sent from.

One salient feature of using systemd is that log messages currently can be
output using the traditional message printing APIs with the syslog function
call, as well as by using the journal API function calls.

And a critical, and somewhat controversial aspect of systemd journal
logging, is that the log files are stored as binary data, and can be searched by
specialized database traversal techniques.

Storing the log data in a binary format, most importantly, means that the
data can be displayed in useful output formats.

Access to the logs kept by the journal daemon is done using the journalctl
command. In this section, we give you a basic overview of what can be
viewed with the journalctl command.

1.11.1 journalctl Basics

A very simple first command to use when you want to view logs with
the journalctl command, is to type that command with no options or
arguments: To have a first look at the logs, just type in:

Raspberry Pi OS System Administration with systemd104

$ journalctl

The output you get is very similar to the traditional output when viewing
system logs. With the following notable exceptions:

Lines of error priority (and higher) will be highlighted red.
Lines of notice/warning priority will be highlighted bold.
The timestamps are converted into your local time-zone.
The output is auto-paged by pressing the space bar.

This will show all available data, including rotated logs.
Between the output of each boot, we’ll add a line clarifying that a new boot

begins now.
By default, ordinary, unprivileged users can only watch their own logs.

To add an ordinary, unprivileged user to the adm group, use the following
command:

$ sudo usermod -a -G adm somename

where somename is the name you want to assign a new user.
After logging out and back in as somename, you have access to the full

journal of the system and all users. To view logs as they grow, use the
following command:

$ journalctl -f

This command shows the last ten Journal log lines, and then waits for
changes and shows them as they take place.

To view the Journal logs of just the current boot environment (since the last
reboot), use the following command:

$ journalctl -b

Listing all log messages with priority levels ERROR and worse, from the
current boot environment, use the following command:

$ journalctl -b -p err

To see Journal entries in a more restricted timeframe, for example, from
yesterday until now, type the following command:

$ journalctl --since=yesterday

All log messages from the day before at 00:00 in the morning until right
now are shown on the screen.

To search for entries that were recorded in the journal on 22 October until
today, use the following command:

Basic System Administration 105

$ journalctl --since=2022-10-25 --until=today

To see messages logged to the journal by a particular service unit, such as
nginx, use the following command:

$ journalctl -u httpd --since=00:00 --until=9:30

Finally, to see journal entries for a particular device, such as the disk drive
at /dev/sda, use the following command:

$ journalctl /dev/sda

1.12 Access Control Credentials: Discretionary (DAC),
Mandatory (MAC), and Role-Based (RBAC)

The nomenclature we use in this section deserves some attention. When we
talk about access control via security checks, here are some important terms:

Objects: The entities that are targeted, or worked on, by the processes of
a program. For example, processes themselves can be objects, or the
processes generated by executing instances of a program.

Files/inodes are another form of object, particularly the executable form
of file objects, and the attendant data structure holding their informa-
tion. Not to be confused with file system objects, which we have so far
referred to as either an ordinary file or a directory.

Object Ownership: Indicates the owning user and group.
Object Context: Security checks done when objects are acted on.
Subjects: An object that is acted upon by another object. Processes are active

subjects, such as those processes that are created by an exec() or fork()
system call from an originating process.

Subject Context: Security checks done when an active subject performs its
operations.

Action: What a subject does to an object. This includes reading, writing,
creating and deleting files; forking or signaling.

Permissions: Security checks when a subject acts upon an object. Taking
the subject context, the object context, and the action, and searching
one or more sets of permissions to see whether the subject is granted
or denied permission to act in the desired manner on the object, given

http://httpd

Raspberry Pi OS System Administration with systemd106

those contexts. In simple terms, match subject and object permissions,
and let the subject act or not on the object.

There are three basic “classes” of permissions:

1. Discretionary Access Control (DAC):
Sometimes the object will include sets of rules as part of its description.
This is an ‘Access Control List’ or ‘ACL’. A Raspberry Pi OS file may
supply more than one ACL. A traditional file, for example, includes a
permissions mask that is an abbreviated ACL with three fixed classes
of subject (‘user’ or ‘owner’, ‘group’, and ‘other’ or ‘everyone’), each of
which may be granted certain privileges (‘read’, ‘write’ and ‘execute’ -
whatever those map to for the object in question). File permissions do
not allow the arbitrary specification of subjects, however, and so are
of limited use.
A file might also support a POSIX1e ACL, or an NFSv4 ACL. This is a
list of rules that grants various permissions to arbitrary subjects.

2. Mandatory access control (MAC):
The system as a whole may have one or more sets of permissions
that get applied to all subjects and objects, regardless of their source.
Security Extended Linux (SELinux) is an example of this.

3. Role-Based Access Control (RBAC):
Rather than use the user ID to determine what access rights users and
groups have on the system, the Role-Based Access Control (RBAC)
model grants access based on the role or roles that a user assumes.
The classic RBAC example is the use of the sudo command to grant an
unprivileged user root privileges.

These forms of access control policies determine what access action is allowed
on what object, under what circumstances (DAC, MAC, or Role-Based Access
Control (RBAC)), and by what subject.

A permission, for example, can be thought of as read, write, or execute
privilege. A subject, for example, can be thought of as an executing process.
Most importantly, an object is a process since everything is done on files, and
the data in them are controlled through active processes.

On the command-line, an ordinary user, or the system administrator, is
able to implement resource use restrictions and privileges by controlling
process credential assignments, exercised on subject executable image files,
via the chmod command. An ordinary unprivileged user can be given the
required privileged role with the sudo command. Then, as root, she can
issue a privileged chmod, chown, and chgrp to grant or modify file and
directory access permissions and use the DAC, MAC, or RBAC methods
as well.

Basic System Administration 107

1.12.1 Types of Credentials

We are concerned with the five basic types of credentials that the Linux kernel
supports. These are as follows:

* Traditional UNIX Credentials

1. Real User ID
2. Real Group ID

UID and GID are assigned to most Linux objects. These in large part define
the object context of that object, with processes included in this assignment.

3. Effective (EUID), Saved (SUID), and FS (FSID) User ID
4. Effective (EGID), Saved (SGID), and FS (FSGID) Group ID
5. Supplementary groups

The additional credentials used by processes, EUID/EGID/GROUPS, are used
as the subject context, and real UID/GID will be used as the object context.

1.13 sudo

The sudo program allows a single command to be run as root, or even as
some other user. The system administrator utilizes a policy listing file (named
sudoers) that contains commands that each user can execute. When any user
needs to run a command that requires root permissions, that user types sudo
command in a console terminal, allowing them to run command. Then, sudo
consults its permissions list in the policy listing file. If the user has permis-
sion to run that command, it runs the command. If the user does not have
permission to run the command, sudo denies execution. Running sudo does
not require knowing root’s password, but by default, requires the user’s own
password to execute successfully.

An important security access consideration, before you allow someone to
execute the sudo command successfully, is finding out what group or groups
you, or any other user for that matter, actually belong to on your system. The
user you want to include in the sudoers file may already belong to a group
that has adequate access privileges! For you, this can be simply done by exe-
cuting the following command:

$ id
uid=1000(bob) gid=1000(bob) groups=1000(bob),4(adm), 20(dialout), 24(cdrom),

27(sudo),29(audio), 44(video),46(plugdev), 60(games), 100(users), 104(input),
106(render), 108(netdev), 117(lpadmin), 997(gpio), 998(i2c), 999(spi)

Raspberry Pi OS System Administration with systemd108

From the above output on our system, user bob belongs to the groups bob,
adm, dialout, cdrom, sudo, audio, video, plugdev, games, users, input,
render, netdev, lpadmin, gpio, i2c, and spi. Therefore, he already has access
to files and directories that those groups have access to.

To find out what groups are defined on the system, you can use the
following commands:

$ compgen -g
root
daemon
bin
sys
adm
tty
disk
Output truncated...

In this way, before assigning groups or users in the sudoer file “aliases”, you
have an idea of what groups exist on the system. We detail sudoer aliases in
the following sections.

There are two aspects to sudo: the sudo program itself, and the sudoers
policy file that the program uses. The sudoers policy file can only be edited
by root. The sudo program includes a special tool, visudo, just for editing and
validating the sudoers policy file. The path to the executable program visudo
is /usr/sbin.

The sudoers policy file must only be edited with visudo, because that
special editing tool has safeguards built into it. Typing sudo visudo on the
command line of our Raspberry Pi system launches the nano text editor to
allow editing of the sudoers file. The sudoers file itself is found in /etc. At
this point, you should use the sudo more command to examine the contents
of the sudoers file in /etc on your system.

The sudoers file recognizes seven types of user specification lists. They are
usernames, group names (such as lxd), aliases defined within the sudoers
file itself, UID numbers, GID numbers, netgroups, and non-UNIX groups.
See the following section for applications of some of these seven specifica-
tion lists.

The sudoers file is composed of two types of entries: aliases, and user
specifications. Aliases are names that can be assigned to a variety of groups of
objects, like users, hosts, etc. User specifications dictate who may run what.
When multiple entries match a user, they are applied in order. Where there
are multiple matches, the last match is used (which is not necessarily the
most specific match). A user specification determines which commands a
user may run (and as what user) on specific hosts.

By default, commands are run as root, but this can be changed on a
per-command basis.

In the following two sections, we give examples of alias entries and various
forms of user specification.

Basic System Administration 109

1.13.1 Alias Specifications and Definition in the Sudoers File

There are four kinds of aliases: User_Alias, Runas_Alias, Host_Alias, and
Cmnd_Alias.

A generalized syntactic description of these alias specifications is as follows:

Alias = ‘User_Alias’ User_Alias (‘:’ User_Alias)* |
‘Runas_Alias’ Runas_Alias (‘:’ Runas_Alias)* |
‘Host_Alias’ Host_Alias (‘:’ Host_Alias)* |
‘Cmnd_Alias’ Cmnd_Alias (‘:’ Cmnd_Alias)*

User_Alias = NAME ‘=’ User_List

Runas_Alias = NAME ‘=’ Runas_List

Host_Alias = NAME ‘=’ Host_List

Cmnd_Alias = NAME ‘=’ Cmnd_List

NAME = [A-Z]([A-Z][0-9]_)*

An alias definition is given in the following format:

Alias_Type NAME = object1, object2, ...

where:

Alias_Type is one of User_Alias, Runas_Alias, Host_Alias, or Cmnd_Alias.
NAME is a string of uppercase letters, numbers, and underscore characters (‘_’).
NAME must start with an uppercase letter. To put several alias definitions of the same

type on a single line, joined by a colon (‘:’). For example-

Alias_Type NAME = object1, object2...: NAME = object4, object5...

You cannot redefine an existing alias. But it is possible to use the same
name for aliases of different types, but a name collision is possible, which
would generate an error.

The following is a typical alias entry in a sudoers file, where group1 can be
an alias name that includes more than one user. This alias specifies that the
user group1 may run /bin/ps, /bin/nano, and /usr/sbin/vsftpd, but only
as the user admin on the host named Pi400:

group1 Pi400 = (admin) /bin/ps, /bin/nano, /usr/bin/vsftpd

1.13.2 User Specifications in the Sudoers File

The user specifications in the sudoers file contain policy rules, one rule per
line. Every rule uses the general format as follows:

who where = (as_whom) what

Raspberry Pi OS System Administration with systemd110

where

who is the user that this rule applies to. who can also be a user specification
list—for example, a group name.

where is the hostname of the system this rule applies to.

= separates the where from (as_whom) and what.

(as_whom) designates the user specification list sudo will run the what.

what lists the full path to each command this policy rule applies to.

You must specify full pathnames to command(s) you include in the
sudoers file.

A syntactic description of the kinds of user specifications is as follows:

User specification
User_Spec = User_List Host_List ‘=’ Cmnd_Spec_List

(‘:’ Host_List ‘=’ Cmnd_Spec_List)*

Cmnd_Spec_List = Cmnd_Spec |
Cmnd_Spec ‘,’ Cmnd_Spec_List

Cmnd_Spec = Runas_Spec SELinux_Spec Tag_Spec* Cmnd

Runas_Spec = ‘(‘ Runas_List (‘:’ Runas_List)? ‘)’

SELinux_Spec := (‘ROLE=role’ | ‘TYPE=type’)

Tag_Spec = (‘EXEC:’ | ‘NOEXEC:’ | ‘FOLLOW:’ | ‘NOFOLLOW’ |
‘LOG_INPUT:’ | ‘NOLOG_INPUT:’ | ‘LOG_OUTPUT:’ |
‘NOLOG_OUTPUT:’ | ‘MAIL:’ | ‘NOMAIL:’ | ‘PASSWD:’ |
‘NOPASSWD:’ | ‘SETENV:’ | ‘NOSETENV:’)

The following command uses the -l option to sudo to allow you to list the
permissions currently defined as policy in the sudoers file for the user typing
in the command:

$ sudo -l
Matching Defaults entries for bob on raspberrypi:

env_reset, mail_badpass, secure_path=/usr/local/sbin\:/usr/local/bin\:/usr/sbin\:/
usr/bin\:/sbin\:/bin,

env_keep+=NO_AT_BRIDGE, env_keep+=“http_proxy HTTP_PROXY”, env_keep+=”http
s_proxy HTTPS_PROXY”,

env_keep+=“ftp_proxy FTP_PROXY”, env_keep+=RSYNC_PROXY, env_keep+=”no_
proxy NO_PROXY”

User bob may run the following commands on raspberrypi:
(ALL : ALL) ALL
(ALL) NOPASSWD: ALL

http://http_proxy
http://HTTP_PROXY”
http://HTTP_PROXY”
http://HTTP_PROXY”

Basic System Administration 111

We see from the above output, for example, that user bob can run all
commands as root.

In the following simple user specification rule, mansoor has the permission
to run any command:

mansoor ALL = ALL
The following rule allows user mansoor to run the visudo program:
mansoor ALL = /usr/sbin/visudo
Using a group name in a sudoers alias entry has the following syntax,
where everyone in the group named lxd, on the system named Pi400, can
run all of the commands in /etc/sbin as the user lxd:

$ lxd Pi400 = (lxd) /etc/sbin*

Using a user ID number in a sudoers alias entry has the following
syntax, where the user with ID 1002 can run everything in the /usr/sbin
directory:

#1002 ALL = /usr/sbin/*

Notice that the user ID number is prefaced with the pound sign character (#).

1.13.3 sudo su -

You can efficiently use the command sudo su - to run a login shell, unlike the
default operation of the su command, which preserves both the environment
variables, and the present working directory of the previous user.

To start a shell as a login shell, with an environment exactly like a real login,
you can use the - (hyphen) option as follows.

bob@raspberrypi:~$ sudo su -
root@raspberrypi:~#

This will clear all the previous environment variables except for TERM,
start new environment variables HOME, SHELL, USER, LOGNAME, and
PATH, and change the current directory to the user’s home directory.

Note*** To terminate the new shell, and return to the previous one, type exit
on the command line.

root@raspberrypi:~#exit
logout
bob@raspberrypi:~ $

Raspberry Pi OS System Administration with systemd112

1.14 Raspberry Pi OS POSIX.1e Access Control Lists (ACLs)

Access Control Lists (ACLs) provide the ordinary, unprivileged user with the
ability to set finer access controls on directories, and files, than the traditional
UNIX and Linux permissions, whether they are used on EXT4, or NFS file
systems. The root file system of the Raspberry Pi OS is an EXT4 file system.
Two different basic types of ACL apply to files and directories. An ACL that
defines the current access permissions of files and directories is called an
access ACL. An ACL, which only makes sense to set on a directory, and that
defines the permissions that this directory object inherits from its parent dir-
ectory at the time of its creation, is called a default ACL. Additional basic
types of ACLs are minimal and extended ACLs. ACL permissions that can be
equivalent to the traditional file mode permissions are called minimal ACLs.
Minimal ACLs have three entries, which can be the same as the traditional file
permissions. ACLs with more than three entries are called extended ACLs.
Extended ACLs also contain a mask entry and may contain any number of
named user and named group entries. These terms, and the conditions under
which they are applied, are explained in the following sections.

1.14.1 Using Access Control Lists (ACLs) in the Raspberry Pi OS

The traditional UNIX and Linux permissions model, which defines secure
access to file objects like a regular file or a directory, set permissions of read,
write, and execute. Other advanced techniques for setting permissions are
setting the setuid, setgid, and sticky bit. Beyond these, the Access Control List
(ACL) model gives users finer-grained control over file and directory object
security. Every file object can be thought of as having associated with it an
access ACL that controls the discretionary access to that object. As mentioned
earlier, for a directory, this ACL is referred to as a default ACL.

Question: Why would an ordinary user, or a system administrator, want to
use ACLs rather than just rely on the traditional permissions model?

Answer: To set discretionary controls on a file so that more than one group
can access it. In the traditional permissions model, any file can only belong to one
group. Therefore, to serve different collections of users, many different groups
have to exist. Only administrators can create and assign group memberships.
But with ACLs, a file can belong to many groups and, in addition, can be
given access privileges by an ordinary user.

In-Chapter Exercise

16. Does it make any sense to set the permissions on a regular file, so
that a group, user, or others have access to it, when that group, user,
or others do not have permissions set to access the directory which
contains the regular file?

Basic System Administration 113

If you have correctly answered the question posed in In-Chapter Exercise
16 above, you can see why the Examples presented in this section apply
mainly to directories. ACLs provide the ordinary, unprivileged user with
the ability to set finer access controls on directories and files, but with some
performance costs, whether they are used on EXT4 file system objects, or
even possibly on an NFS file system. Our Raspberry Pi system supports
the traditional permissions model, and the ACL model (referred to here as
POSIX.1e).

We cover the basics of the following topics in the sub-sections indicated:

1.14.2 Raspberry Pi OS POSIX.1e ACL Model Details
1.14.3 Examples of Setting ACLs

In order to get more help and to get more detail on ACLs on your Raspberry
Pi system, we encourage you to consult the man pages for acl, setfacl, and
getfacl.

1.14.2 Raspberry Pi OS POSIX.1e ACL Model Details

The default implementation of ACLs on the Raspberry Pi OS uses POSIX.1e
syntax. These ACLs are set and displayed with the setfacl and getfacl
commands.

The traditional file system object permission model defines three classes
of users: owner, group, and other. Each of these classes is associated with
a set of permissions. The permissions defined are read (r), write (w), and
execute (x). In this model, the owner class permissions define the access
privileges of the file owner, the group class permissions define the access
privileges of the owning group, and the other class permissions define the
access privileges of all users that are not in one of the previous two classes.
The ls -l command displays the owner, group, and other class permissions
as its output.

For example, rwxrw-r- - for some regular file, translates to read, write, and
execute permission for the owner class, read and write permission for the
group class, and read permission for others.

1.14.2.1 Basic Types of the POSIX.1e ACL Model

For our purposes here in this section, a “file system object” can be both a
regular file or a directory. As stated above, there are two different basic
types of ACL that apply to files and directories. An ACL that defines
the current access permissions of files and directories is called an access
ACL. An ACL, which can only logically be set on a directory, and that
defines the permissions that a directory object inherits from its parent
directory at the time of its creation, is called a default ACL. We give two
extended examples of setting and viewing these two basic types of ACL
in Section 1.14.3.

Raspberry Pi OS System Administration with systemd114

In-Chapter Exercise

17. Why is it logical that only directories can be associated with
default ACLs?

Again, as stated above, additional basic types of ACLs are minimal and
extended ACLs. ACL permissions that can be equivalent to the traditional file
mode permissions are called minimal ACLs. Minimal ACLs have three entries,
which can be the same as the traditional file permissions. An example of a
minimal ACL, obtained on the command line with the getfacl command, is
as follows:

$ getfacl acltest
file: acltest
owner: bob
group: bob
user::rw-
group::r--
other::r--

Note that the last three lines of output are the same as traditional permissions.
As noted above, ACLs with more than three entries are called extended ACLs.

Extended ACLs also contain a mask entry and may contain any number of
named user and named group entries. An example of the extended ACL type,
obtained on the command line with the getfacl command, is as follows:

$ getfacl acltest2
file: acltest
owner: bob
group: bob
user::rwx
user:mansoor:rwx
group::rwx
mask::rwx
other::---

1.14.2.2 How Permissions Map to the Basic ACL Types

An ACL, whether it is access, default, simple, or extended, as defined above,
draws its permission classes from those shown in Table 1.4. Each of the three
traditional file permission classes (owner, group, and others) is represented
by an ACL entry. The only other classes that are added in an extended ACL
are permissions for additional users or additional groups. This is very critical
to understanding POSIX.1e ACLs, because this feature allows a file object to
have its permissions controlled by and associated with different users and
groups: the very objective gained by using POSIX.1e ACLs in the first place.

Table 1.4 shows the allowed Entry Types and their text formats, as opposed
to their numerical forms. Each Text Format in the table consists of a type, a

Basic System Administration 115

qualifier that specifies to which user or group the entry applies, and a set of
permissions.

Table 1.5 shows ACL entries and their descriptions.
Table 1.6 shows default ACL entries and their descriptions.

In-Chapter Exercise

18. What undefined qualifiers do not require a specification of qualifica-
tion, as seen in Table 1.4? Why?

1.14.2.3 The Meaning of the “Mask” Entry

The extended classes, “Named group” and “Named user”, assign
permissions to the group class, which already contains the owning group
entry. In minimal ACLs, the group class permissions are the same as the
owning group permissions. In an extended ACL, the group class contains

TABLE 1.5

ACL Entries in Extended BNF

ACL Entry Description

u[ser]::perms File owner permissions.
g[roup]::perms File group permissions.
o[ther]:perms Permissions for users other than the file owner or members of file group.
m[ask]:perms The ACL mask. The mask entry indicates the maximum permissions

allowed for users (other than the owner) and for groups. The mask is a
quick way to change permissions on all the users and groups.

For example, the mask:r-- mask entry indicates that users and groups
cannot have more than read permissions, even though they might have
write/execute permissions.

u[ser]:uid:perms Permissions for a specific user. For uid, you can specify either a user
name or a numeric UID.

g[roup]:gid:perms Permissions for a specific group. For gid, you can specify either a group
name or a numeric GID.

TABLE 1.4

Allowed Types of POSIX.1e ACL Entries

Entry Type Text Format

Owner user::rwx
Named user user:name:rwx
Owning group group::rwx
Named group group:name:rwx
Mask mask::rwx
Others other::rwx

Raspberry Pi OS System Administration with systemd116

ACL entries with different permission sets than the group class. That is the
meaning of “extended.” The group class permissions can possibly contain
conflicting permission sets, given that they now have several competing
specifications included in them. This raises the possibility of inconsistency.
For example, the results of using the getfacl command on the directory
file object named acltest_dir, after adding an extended ACL specification
of r - - for the already-existing group named “development”, yields the
following:

$ getfacl acltest_dir
file: acltest
owner: bob
group: bob
user::rwx
user:manny:rwx
group:development:r--
group::rwx
mask::rwx
other::---

As found in the example above, with extended ACLs, the Owning group
(bob) class permissions (rwx) are mapped to what is known as the “mask”,
or masking entry, with its attendant permissions. The Owning group (bob)
entries (rwx) still define the owning group permissions. The group class
permissions for the Owning group bob, as shown (rwx) are more “inclu-
sive”, that is, they include more permissions. They represent the widest,
most inclusive set of the permissions that any entry in the Owning group
class will grant. On the file object acltest_dir, to handle the “inconsistency” of
differences in Named group and Owning group permissions, the “masking”
permissions are used and are specified, as shown in the example, as the mask
entry. This means that permissions in entries that are a member of the group
class are also present in the mask entry and are effective.

TABLE 1.6

ACL Default Entries in Extended BNF

Default ACL Entry Description

d[efault]:u[ser]::perms Default file owner permissions.
d[efault]:g[roup]::perms Default file group permissions.
d[efault]:o[ther]:perms Default permissions for users other than the file owner or

members of the file group.
d[efault]:m[ask]:perms Default ACL mask.
d[efault]:u[ser]:uid:perms Default permissions for a specific user. For uid, you can specify

either a user name or a numeric UID.
d[efault]:g[roup]:gid:perms Default permissions for a specific group. For gid, you can

specify either a group name or a numeric GID.

Basic System Administration 117

Take note that permissions that are absent in the mask entry are masked and
do not take effect.

In-Chapter Exercise

19. Construct a hypothetical extended ACL on paper that shows how a
named user manny, with an rw- set of permissions, sets the mask of
the Owning group class, even though the Owning group permissions
are set to r--.

So what do the mask entries actually mean and achieve? Following, we
show some specific explanatory examples of mask entry use. The first example
shows what the extended ACLs would look like after making a change to the
users traditional permissions with the chmod command. Notice it has no
effect on the ACL mask entries:

$ chmod u-w acltest
$ getfacl acltest
file: acltest
owner: bob
group: bob
user::r-x
user:manny:rwx
group::rwx
group:development:r--
mask::rwx
other::---

When the chmod command changes any of the traditional permissions, for
the owner, group, or other class, the ACL entry changes as well. And when the
Owner class ACL entry permissions change, via use of the setfacl command
and its option, the traditional permissions of the Owner class change also.

But if you change the group traditional permissions with chmod, notice the
effect on the ACL mask entries:

$ chmod g-w acltest
$ getfacl acltest
file: acltest
owner: bob
group: bob
user::r-x
user:manny:rwx #effective:r-x
group::rwx #effective:r-x
group:development:r--
mask::r-x
other::---

If an ACL entry contains permissions that are disabled by the mask entry,
such as user manny’s write access, and the Owning groups' write access, the

Raspberry Pi OS System Administration with systemd118

getfacl display shows a comment next to each that signifies the “effective” set
of permissions that are given by that entry.

After executing the chmod command to remove the write permission from
the group class, the mask permissions have changed. Now write permission
is limited to the owner of the directory acltest_dir. This output includes a
comment for all those entries in which the effective permissions do not cor-
respond to the original permissions because they are modified by the mask entry.

In-Chapter Exercise

10. How can you restore the original group write permission on the
acltest_dir directory?

In conclusion, with extended ACLs, masking permissions do the
following: permissions in entries that are a member of the group class also in
the mask entry, are effective. Permissions that are not in the mask entry are
masked and do not take effect. The owner and other entries are not in the
group class. Their permissions are always effective and not masked.

1.14.2.4 Drawbacks and Alternatives to the POSIX.1e ACL Model

Some of the drawbacks of the POSIX.1e ACL model are as follows:
Unfortunately, at the time of the writing of this book, the Raspberry Pi OS

and the POSIX.1e ACL model that it supports does not easily allow for the
interoperability, in terms of Network File System, version 4 (NFSv4) ACLs,
between Linux and non-Linux servers and clients.

For example, if a Linux user were to mount an NFSv4 ACL-compliant file
system as an NFS shared resource, the default POSIX.1e implementation on
Linux would not be able to take advantage of the NFSv4 ACL model of that file
system. As noted above, that restriction is true even if a user were to install a
special tool, nfs4-acl-tools, in addition to enabling NFS server facilities on the
remote system and client facilities on her Linux system. Since that is necessarily
a more advanced application of ACLs, we briefly cover the particular situation
of interoperabilty between POSIX.1e and NFSv4 ACLs in Section 1.15.

Another very practical limitation in this respect is virtualization with LXC/
LXD containers. If you create LXC/LXD containers, on the Linux host for
those containers, the NFSv4 ACLs could not be used on LXD container file
objects.

Additionally, ACLs are not retained by the tar command.

1.14.2.5 Command Syntax for Setting and Viewing POSIX.1e ACLs

To set or modify ACLs, use the setfacl command. To see the results of
using setfacl, use the getfacl command. Following is an abbreviated syntax

Basic System Administration 119

description of those two commands, taken from the man pages for those
commands, with common and allowable POSIX.1e ACL options shown:

setfacl - set file access control lists
Syntax: setfacl [-bkndRLPvh] [{-m|-x} acl_spec] [{-M|-X} acl_file] file ...

setfacl --restore=file
Purpose:

The setfacl utility sets discretionary access control information on the
specified file(s).

Output: Modified ACL specifications.
Common Options and Option Arguments:

-b Remove all ACL entries except for base ACL entries owner, group, others.
-m [entries]

Modify the ACL on the specified file. New entries will be added,
and existing entries will be modified according to the entries
argument. For NFSv4 ACLs, you can also use the -a and -x
options instead.

-M file
Modify the ACL entries on the specified files by adding new ACL
entries and modifying existing ACL entries with the ACL entries
specified in the file file.

-x entries
If entries is specified, remove the ACL entries specified there
from the access or default ACL of the specified files.

getfacl - get file access control lists
Syntax: getfacl [-aceEsRLPtpndvh] file ...

getfacl [-aceEsRLPtpndvh] -
Purpose:
The getfacl utility writes discretionary access control information associated with

the specified file(s) to standard output
Output: Indicated file ACL settings on stdout.

The complete output format of an example getfacl command, and of which
we show many example cases in the sub-sections below, is as follows:
1: # file: filename
2: # owner: bob
3: # group: admin
4: # flags: -s-
5: user::rwx
6: user:mansoor:rwx #effective:r-x
7: group::rwx #effective:r-x
8: group:developers:r-x
9: mask::r-x
10: other::r-x
11: default:user::rwx
12: default:user:mansoor:rwx #effective:r-x
13: default:group::r-x
14: default:mask::r-x
15: default:other::---

Raspberry Pi OS System Administration with systemd120

Common Options:
-a Display the file access control list.
-d Display the default access control list.
-n Display numeric user and group IDs .

1.14.3 ACL Examples

Example 1.10 provides the ordinary user with the ability to set and view
POSIX.1e ACL attributes on files and directories.

Example 1.10 Setting and Viewing Access ACLs

Objectives: Using the getfacl and setfacl commands on the command line
to set and view ACLs on files.

Prerequisites: Reading and understanding all of the material and exercises
presented above. Additionally, and perhaps most importantly, review
material related to umask, particularly the way umask is set depending upon
whether or not you are working in a login or non-login terminal. The premise
of this example is that you are giving the following commands and working
in a non-login terminal.

Background: The commands presented here allow an ordinary user
to change the ACLs of files and directories. For more information on
the commands, see the man pages for getfacl and setfacl on your Linux
system.

Requirements: Do the steps presented, in the order shown, to fulfill the
requirements for this example.

1. Before creating a directory, check the default umask setting, then use
the umask command to define which access permissions should be
masked each time a file object is created. The command umask 007
sets the default permissions by giving the owner the full range of
permissions (0), giving the group the full range of permissions (0), and
giving other users no permissions at all (7). umask “masks” the per-
mission bits, effectively turning them off. For a complete description
of how this masking takes place, look at the umask man page on your
system.

Then, create a directory and check its traditional permissions with the ls -la
command.

Basic System Administration 121

$ umask
0022
$ umask 007
$ mkdir acltest
$ ls -la acltest
total 8
drwxrwx--- 2 bob bob 4096 Oct 6 09:56 .
drwxr-xr-x 44 bob bob 4096 Oct 6 09:56 ..
$

2. These traditional permissions have an equivalent representation of
ACL access permissions. Display the ACLs of the same directory using
the getfacl command:

$ getfacl acltest
file: acltest
owner: bob
group: bob
user::rwx
group::rwx
other::---

The first three output lines display the name, owner, and owning group of
the directory. The next three lines contain the three ACL entries for owner,
owning group, and other. This output is an example of a “minimum” ACL
listing, as opposed to an “extended” ACL listing. The getfacl command
produces the same information as ls -la command from step 1.

3. Give read, write, and execute access to user Mansoor in addition to
the existing permissions. For that, the -m (modify) option of setfacl is
used. Shown is the access ACL using the getfacl command.

$ setfacl -m user:mansoor:rwx acltest
$ getfacl acltest
file: acltest
owner: bob
group: bob
user::rwx
user:mansoor:rwx
group::rwx
mask::rwx
other::---

Two additional entries have been added to the ACL: one is for user mansoor,
and the other for the mask entry.

The “mask” entry is applied by the setfacl command and is governed by
the group class permissions. It is composed of whatever is in the group class
permission set, the logical “union” of all group class permissions.

Raspberry Pi OS System Administration with systemd122

4. Use the ls -la command to show changes to the traditional permissions
of the directory.

$ ls -la acltest
total 8
drwxrwx---+ 2 bob bob 4096 Oct 6 09:56 .
drwxr-xr-x 44 bob bob 4096 Oct 6 09:56 ..

An additional “+” character is displayed after the traditional permissions of
all files that have extended ACLs.

The permissions of the group class permissions include read and write
access. Traditionally such file permission bits would indicate read and
write access for the owning group. With ACLs, the effective permissions of
the owning group are defined as the intersection of the permissions of the
owning group and mask entries. The effective permissions of the owning
group in the example are rwx, the same permissions as before creating add-
itional ACL entries as done in step 3.

According to the output of the ls -la command in this step, the permissions for
the mask entry include read and write access. Traditionally, such permissions
would mean that the owning group also has write access to the directory. The
access permissions for the owning group are the “union” of the owning group
permissions and the mask permissions, which is rwx in our example.

5. The group class permissions are modified using the setfacl or chmod
command. If we remove write access from the group class using the
chmod command for example, we can use ls -la and getfacl to see how
the traditional permissions and ACLs have been changed.

$ chmod g-w acltest
$ ls -la acltest
total 8
drwxr-x---+ 2 bob bob 4096 Oct 6 09:56 .
drwxr-xr-x 44 bob bob 4096 Oct 6 09:56 ..
$ getfacl --omit-header acltest
user::rwx
user:mansoor:rwx #effective:r-x
group::rwx #effective:r-x
mask::r-x
other::---

If an ACL entry contains permissions that are disabled by the mask entry,
getfacl adds a comment that shows the effective set of permissions granted
by that entry. If the owning group entry had written access, there would have
been a similar comment for that entry.

After executing the chmod command to remove the write permission
from the group class permissions, the output of the ls command shows us
that the mask permissions have changed accordingly: write permission is
now limited to the owner of the directory acltest. The output of the getfacl

Basic System Administration 123

confirms this. This output includes a comment for all those entries in which
the effective permission bits do not correspond to the original permissions
because they are reset according to the mask entry. The original permissions
can be restored at any time with chmod g+w, as is done in the next step.

6. Give write access to the group class again, and view the traditional
and ACL access permissions.

$ chmod g+w acltest
$ ls -la acltest
total 8
drwxrwx---+ 2 bob bob 4096 Oct 6 09:56 .
drwxr-xr-x 44 bob bob 4096 Oct 6 09:56 ..
$ getfacl --omit-header acltest
user::rwx
user:mansoor:rwx
group::rwx
mask::rwx
other::---

Conclusion:
An important thing to notice here is that after adding the write permis-

sion back to the group class, the access ACL defines the same permissions as
before taking the permission away.

Example 1.11 Setting and Viewing Default ACLs

Objectives: To give some simple cases of setting and viewing default ACLs.
Prerequisites: Completion of Example 1.10. Additionally, and perhaps most

importantly, review material related to umask, particularly the way umask is
set depending upon whether or not you are working in a login or non-login
terminal. The premise of this example is that you are giving the following
commands and working in a non-login terminal.

Background: Directories can have a default ACL, which is a special kind
of ACL defining the access permissions that objects in the directory inherit
when they are created. A default ACL affects both sub-directories and files.

There are two ways in which the permissions of a directory’s default ACL
are passed to files and sub-directories: a sub-directory inherits the default
ACL of the parent directory both as its default ACL and as its ACL, or a file
inherits the default ACL as its ACL.

If the parent directory does not have a default ACL, the permissions
defined by the umask are subtracted from the permissions that are given by
the system call file access mode parameter. If a default ACL exists for the
parent directory, the permission bits assigned to the new object correspond
to the overlapping portion or logical “intersection” of the permissions of the
system call-set mode parameter, discussed below, and those that are defined
in the default ACL.

Raspberry Pi OS System Administration with systemd124

The previous example examined ACLs that define access permissions of
file system objects. This example examines default ACLs.

It is important to note that only directories can be associated with default
ACLs. Regular files do not have default ACLs because no file system objects
can be created “inside” of regular files.

When a sub-directory is created, the new sub-directory inherits the
parent directory’s default ACL, both as its access ACL and default ACL.
Regular files inherit the default ACL of the directory they are created in as
an access ACL.

System calls for accessing and changing file attributes include the following:

access(), chmod(), chown(), rename(), umask(), and utime().

The permissions of inherited access ACLs are modified by the file access
mode parameter that each system call that creates the file system object
exercises. The file access mode parameter established by these system calls
contains the traditional nine permission bits that are the permissions of the
owner, group, and other class permissions. The effective permissions of each
class are set to the logical “intersection” of the permissions defined for any
class in the ACL and specified in the system call file access mode parameter.

The umask setting has no effect if a default ACL exists.
Requirements: Do the steps presented, in the order shown, to fulfill the

requirements for this example.

1. Create a group named development on your system, with the
addgroup command.

$ sudo addgroup development
[sudo] password for bob: QQQ
Adding group `development’ (GID 1002) ...
Done.

2. Add a default ACL to the directory acltest you created in the first
example, which gives read and execute privileges to members of the
development group on the directory acltest. Finally, use the getfacl
command to view the ACLs on that directory.

$ setfacl -d -m group:development:r-x acltest
$ getfacl --omit-header acltest
user::rwx
user:mansoor:rwx
group::rwx
mask::rwx
other::---
default:user::rwx
default:group::rwx
default:group:development:r-x
default:mask::rwx
default:other::---

Basic System Administration 125

Following the access ACL, the default ACL is printed with each entry prefixed
with “default:”. This output format is an extension to POSIX.1e which is typ-
ically available on all Linux systems.

We have only specified an ACL entry for the development group in the
setfacl command. The other entries required for a complete ACL have been
copied from the access ACL to the default ACL.

The default ACL contains no entry for mansoor, so mansoor will not
have access (except possibly through group membership or the other class
permissions). getfacl returns both the ACL and the default ACL. The default
ACL is formed by all lines that start with ‘default’. Although we executed the
setfacl command with an entry for the ‘development’ group for the default
ACL, setfacl automatically used all other entries from the ACL to create
a default ACL. Default ACLs do not have an immediate effect on access
permissions. They only are effective when directory file system objects are
created. These new objects inherit permissions only from the default ACL of
their parent directory.

3. This step will show that a subdirectory inherits ACLs, as shown next.
Unless otherwise specified, the mkdir command uses a value of 0777
as the mode parameter to the mkdir system call, which it uses for cre-
ating the new directory. Observe that both the access and the default
ACL contain the same entries.

$ mkdir acltest/acltest2
$ getfacl --omit-header acltest/acltest2
user::rwx
group::rwx
group:development:r-x
mask::rwx
other::---
default:user::rwx
default:group::rwx
default:group:development:r-x
default:mask::rwx
default:other::---

As expected, the newly created subdirectory named acltest2 has the
permissions from the default ACL of the parent directory. The ACL of the
sub-directory acltest2 is an exact reflection of the default ACL of its parent
directory, acltest. And, most importantly, the default ACLs that this directory
will pass to objects created in it are also the same.

4. In this step, we will create a file with the text editor vi, inside the dir-
ectory acltest, and show how it inherits permissions.

Raspberry Pi OS System Administration with systemd126

$ cd acltest
~/acltest $ vi testfile1
In your favorite text editor, create and save a sample file named testfile1. We used vi.
~/acltest $
~/acltest $ ls -la testfile1
-rw-rw----+ 1 bob bob 21 Oct 6 13:07 testfile1
~/acltest $
~/acltest $ getfacl --omit-header testfile1
user::rw-
group::rwx #effective:rw-
group:development:r-x #effective:r--
mask::rw-
other::---

Conclusion:
In this example, we have given some simple cases of setting and viewing

default ACLs and have explained mask and effective ACLs.

In-Chapter Exercise

11. To get practical experience with setting and viewing ACLs, execute all
of the steps of Examples 1.10 and 1.11, and verify that the output of
each is the same on your Raspberry Pi system.

1.15 Raspberry Pi OS NFS Server and Client Install
and Setting NFSv4 ACLs on the Client

The NFSv4 ACL model is very similar to the Windows NT ACL model. The
major differences between NFSv4 and the POSIX.1e ACLs, as they were
illustrated in the sections above, are as follows:

1. NFSv4 ACLs provide finer-grained permissions than the rwx model.
2. NFSv4 ACLs allow for both Allow and Deny entries.
3. NFSv4 ACLs provide more complete and extensive inheritance syntax

and contents. POSIX.1e ACLs also have inheritance, but with the
NFSv4 model, as far as directories are concerned, you can specify
whether inheritance is applied to the directory itself, to just one level
of subdirectories below that, or is propagated downward to all the
subdirectories of the upper-level directory.

4. NFSv4 ACLs enable administrators to designate the order in which
ACL entries are verified. With POSIX.1e ACLs, the file system itself
reorders ACL entries into a definite, strict access checking order.

Basic System Administration 127

5. There is some interoperability and translation between NFSv4 ACLs
and POSIX.1e ACLs.

Note
Permissions can be specified in three different ACL formats: verbose, com-
pact, or positional. The verbose format uses descriptive words to indicate
the permissions, which are separated with a forward slash (/) character.
Compact format uses the applicable permission letters in ACL permission
assignment. Positional format, similar to compact format, uses the hyphen
character(-) to identify that there are no applicable permissions positionally
in the listing of assigned permission.

In this section, we create an NFSv4 server and client and view and manipu-
late ACLs on the client Raspberry Pi OS machine using the NFSv4 ACL
protocol.

1.15.1 ACLs Have Two Basic Forms

1. Trivial (Minimal) ACL contains only entries for traditional UNIX user
categories that are represented as owner@, group@, and everyone@.

For a newly created file, the default ACL has the following entries, shown
in positional format:

file: acl_default_for_file
owner: bob
group: bob

owner@:rw-p--aARWcCos:------:allow
group@:r-----a-R-c--s:------:allow
everyone@:r-----a-R-c--s:------:allow

For a newly created directory, the default ACL has the following entries,
shown in positional format:

file: acl_default_for_directories
owner: bob
group: bob

owner@:rwxp--aARWcCos:------:allow
group@:r-x---a-R-c--s:------:allow
everyone@:r-x---a-R-c--s:------:allow

2. Nontrivial (Extended) ACL contains entries for added user categories.
The entries might also include inheritance flags or be ordered in a
nontraditional way. A nontrivial entry might look like the following
example, where permissions are specifically granted to user mansoor,
shown in verbose format:

0:user:mansoor:read_data/write_data:file_inherit:allow

Raspberry Pi OS System Administration with systemd128

1.15.1.1 ACL Entry Descriptions: Components of NFSv4
ACL Command Entry Descriptions

The following describes the “positional,” or abbreviated format, of the syn-
tactic components, both general and specific, of the setfacl command applied
to files and directories. We also show the general form of the output from the
getfacl command after the example is executed:

 Command To Whom Permissions To What
Files setfacl –a 0 user:bob:rwx-----------:------:allow filename
 a b c d e f g h i

Directories setfacl –a 0 user:bob:r-------------:fd----:allow dirname
 a b c d e f g h i
key-
a-command
b-option
c-position option argument starting at 0, cannot be a number at the end!
d- ACL tag
e- ACL qualifier, in these cases user
f- 14 permissions, in short form, the hyphens(-) optional
g- 6 inheritance flags, for directories only, the hyphens(-) optional
h- ACL type, either allow or deny
i- command argument, a filename or directory name specification

Format of getfacl output for the preceding file’s command:

%getfacl filename
#file filename
#owner owner name
#group group name
position 0 user:bob:rwx-----------:------:allow filename
position 1 owner@ ---------------------------------------
position 2 group@ --
position 3 everyone@ -------------------------------------

An example of a “verbose” format display is as follows, on a system capable of
displaying NFSv4 ACLs(in our case, a Solaris 11.4 UNIX system):

$ ls -v file.1
-rw-r--r-- 1 root root 206663 Aug 31 11:53 file.1

0:owner@:execute:deny
1:owner@:read_data/write_data/append_data/write_xattr/write_attributes

/write_acl/write_owner:allow
2:group@:write_data/append_data/execute:deny
3:group@:read_data:allow
4:everyone@:write_data/append_data/write_xattr/execute/write_attributes

/write_acl/write_owner:deny
5:everyone@:read_data/read_xattr/read_attributes/read_acl/synchronize

:allow

Basic System Administration 129

An example of a compact format display of ACLs is as follows:

A::OWNER@:rwatTnNcCy
A::john@nfsdomain.org:rxtncy
A::bobby@nfsdomain.org:rwadtTnNcCy
A:g:GROUP@:rtncy
D:g:GROUP@:waxTC
A::EVERYONE@:rtncy
D::EVERYONE@:waxTC

It would be very beneficial for you to use the following additional sample
entry as a reference to the elements that comprise an ACL entry. These elem-
ents apply to both trivial and nontrivial ACLs,

user:mansoor:read_data/write_data:file_inherit:allow

where:
ACL tag and qualifier: The user category. In trivial ACLs, only entries for

owner@, group@, and everyone@ are set. In nontrivial ACLs, user:username
and group:groupname are added. In the example, the entry tag and quali-
fier are user:mansoor.

Access privileges: Permissions that are granted or denied to the entry type.
In the example, user mansoor’s permissions are shown in long form as
read_data and write_data.

Inheritance flags: An optional list of ACL flags that control how permissions
are propagated in a directory structure. In the sample entry, file_inherit is
also granted to user:mansoor.

ACL type (permission control): Determines whether the permissions in an
entry are allowed or denied. In the example, the permissions for mansoor
are allowed.

Table 1.7 describes each ACL entry type more fully.
Table 1.8 describes ACL access privileges more fully.

TABLE 1.7

ACL Entry Types

ACL Entry Type Description

owner@ Specifies the access granted to the owner of the object
group@ Specifies the access granted to the owning group of the object
everyone@ Specifies the access granted to any user or group that does not match any

other ACL entry
user With a user name, specifies the access granted to an additional user of the

object
group With a group name, specifies the access granted to an additional group of

the object

Raspberry Pi OS System Administration with systemd130

Table 1.9 provides additional details about ACL delete and delete_child
behavior.

1.15.2 Installing and Configuring the NFS Server and Clients and
Setting NFSv4 ACLs on the Client

In the procedures, we illustrate how to create an NFS share on a client
Raspberry Pi OS machine and share an NFS file system from an NFS server
on the same network. Additionally, we show how to interrogate and set
NFSv4 ACLs on the client system.

On our Raspberry Pi OS systems, the following is true in the code below:
The IP address of the server on the LAN is 192.168.1.33
The IP address of the client on the LAN is 192.168.1.24
The user on the server and client is bob, with sudo privilege on both

machines.
Why would you want to share user data using the Network File System

(NFS)? Traditionally NFS has the great utility of allowing users on multiple
“client” systems to easily and securely share diverse file system types and

TABLE 1.8

ACL Access Privileges

Access Privilege

Compact
Access
Privilege Description

add_file w Permission to add a new file to a directory
add_subdirectory p On a directory, permission to create a subdirectory
append_data p Permission to modify a file but only beginning from the EOF
delete d Permission to delete a file
delete_child D Permission to delete a file or directory within a directory
execute x Permission to execute a file or search the contents of a

directory
list_directory r Permission to list the contents of a directory
read_acl c Permission to read the ACL (ls)
read_attributes a Permission to read basic attributes (non-ACLs) of a file
read_data r Permission to read the contents of the file
read_xattr R Permission to read the extended attributes of a file
synchronize s Permission to access a file locally at the server with

synchronized read and write operations
write_xattr W Permission to create extended attributes or write to the

extended attributes directory
write_data w Permission to modify or replace the contents of a file
write_attributes A Permission to change the times associated with a file or

directory to an arbitrary value
write_acl C Permission to write the ACL or the ability to modify the ACL

by using the chmod command
write_owner o Permission to change the file’s owner or group, or the ability

to execute the chown or chgrp commands on the file

Basic System Administration 131

their data that are contained on a “server” machine. We extend this model
by showing you how to achieve the same sharing in a simple manner.
The NFS protocol was developed by Sun Microsystems in the early 1980s.
It was designed to allow a client computer to access files over a network.
The NFS protocol is an “open” standard defined in an official Request
for Comments(RFC), and anyone can install it easily on a variety of hardware
architectures and operating systems. It is primarily used by network
administrators setting up Network Attached Storage (NAS) systems, or
ordinary people at home constructing media servers.

It would be very useful to get some exposure to the NFSv4 ACL model, for
two important reasons. First, that model allows an ordinary user to exercise
a much wider range of permission controls than the default POSIX.1e ACL
model on the Raspberry Pi OS. Second, in anticipation of the NFSv4 models’
complete adoption in Linux, you can experiment with the NFSv4 commands
and options and gain some familiarity with the details of it.

Procedure I Installing the NFS Server and Client

On the Server

Install the NFS server software.

$ sudo apt install nfs-kernel-server
Output truncated...

Create the folder that will be shared.

$ sudo mkdir -p /mnt/sharedfolder

Change the ownership and group of that folder to an anonymous user.

$ sudo chown nobody:nogroup /mnt/sharedfolder

Adjust the traditional permissions on that folder.

$ sudo chmod 777 /mnt/sharedfolder

TABLE 1.9

ACL Delete and Delete_Child

Parent Directory Permissions Target Object Permissions

“ “ (empty)
ACL Allows
Delete

ACL Denies
Delete

Delete Permission
Unspecified

ACL allows delete_child Permit Permit Permit
ACL denies delete_child Permit Deny Deny
ACL allows only write and execute Permit Permit Permit
ACL denies write and execute Permit Deny Deny

Raspberry Pi OS System Administration with systemd132

Modify the export file so you can share the folder, and anyone can gain
access to it. The file /etc/exports contain a table of local physical file systems
on an NFS server that are accessible to NFS clients. The contents of the file are
maintained by the server’s system administrator.

Each file system in this table has a list of options and an access control list.
The table is used by exportfs(8) to give information to mountd(8).

The file format is similar to the SunOS exports file. Each line contains an
export point and a whitespace-separated list of clients allowed to mount the
file system at that point. Each listed client may be immediately followed by
a parenthesized, comma-separated list of export options for that client. No
whitespace is permitted between a client and its options list.

$ sudo nano /etc/exports

Add the following line at the end of the file:

/mnt/sharedfolder 192.168.1.24(rw,sync,no_subtree_check,no_root_squash)

Save and quit.
Execute the export with this command:

$ sudo exportfs -a

Restart the NFS server.

$ sudo systemctl restart nfs-kernel-server

Check the firewall.

$ sudo ufw status
Staus:inactive
$

If it were active, and you wanted to inactivate it, the easiest way to do that is
with the Gufw graphical firewall manager, accessible from the Raspberry Pi
OS Menu> Preferences> Firewall Configuration.

On the Client
You need to install the NFS software on the client system, if it’s not already
installed, as follows:

$ sudo apt-get install nfs-common
Reading package lists... Done
Building dependency tree... Done
Reading state information... Done
...

You also need to install the nfs4-acl-tools on the client in order to interro-
gate or set NFSv4 ACLs on that system:

Basic System Administration 133

$ sudo apt-get install nfs4-acl-tools
Reading package lists... Done
Building dependency tree... Done
Reading state information... Done
…

Create a directory that will hold the share from the server:

$ sudo mkdir -p /mnt/sharedfolder_client

Mount the share on the client with the following command:

$ sudo mount 192.168.1.33:/mnt/sharedfolder /mnt/sharedfolder_client\

Procedure II- Applying and Testing NFSv4 ACLs on Client Files and \
Directories

Note
NFSv4 ACLs can only be interrogated or applied on NFS-mounted file
systems!

The file system we are sharing is an EXT4 file system as it exists on the server,
but as mounted on the client, it is an NFS file system! So you can only inter-
rogate, or apply NFSv4 ACLs using the nfs4-acl-tools if you’re working on
the client system.

In order for you to apply NFSv4 ACLs on a Raspberry Pi system, we provide
complete information on the nfs4_setfacl command from the man page for
nfs4_setfacl(1) on a Raspberry Pi OS as follows:

SYNOPSIS
 nfs4_setfacl [OPTIONS] COMMAND file...
 nfs4_editfacl [OPTIONS] file...

DESCRIPTION
nfs4_setfacl manipulates the NFSv4 Access Control List (ACL) of one or more

files (or directories), provided they are on a mounted NFSv4 file system which
supports ACLs.

nfs4_editfacl is equivalent to nfs4_setfacl -e.

Refer to the nfs4_acl(5) manpage for information about NFSv4 ACL terminology
and syntax.

COMMANDS
-a acl_spec [index]

add the ACEs from acl_spec to file’s ACL. ACEs are inserted starting at the
indexth posi tion (DEFAULT: 1) of file’s ACL.

-A acl_file [index]
add the ACEs from the acl_spec in acl_file to file’s ACL. ACEs are inserted
starting at the indexth position (DEFAULT: 1) of file’s ACL.

Raspberry Pi OS System Administration with systemd134

-x acl_spec | index
delete ACEs matched from acl_spec - or delete the indexth ACE - from file’s
ACL. Note that the ordering of the ACEs in acl_spec does not matter.

-X acl_file
delete ACEs matched from the acl_spec in acl_file from file’s ACL. Note that
the ordering of the ACEs in the acl_spec does not matter.

-s acl_spec
set file’s ACL to acl_spec.

-S acl_file
set file’s ACL to the acl_spec in acl_file.

-e, --edit
edit file’s ACL in the editor defined in the EDITOR environment variable
(DEFAULT: vi(1)) and set the resulting ACL upon a clean exit, assuming
changes made in the editor were saved. Note that if multiple files are
specified, the editor will be serially invoked once per file.

-m from_ace to_ace
modify file’s ACL in-place by replacing from_ace with to_ace.

-?, -h, --help
display help text and exit.

--version
display this program’s version and exit.

NOTE: if ‘-’ is given as the acl_file with the -A/-X/-S flags, the acl_spec will be
read from stdin.

OPTIONS
-R, --recursive

recursively apply to a directory’s files and subdirectories. Similar to
setfacl(1), the default behavior is to follow symlinks given on the command
line and to skip symlinks encountered while recursing through directories.

-L, --logical
in conjunction with -R/--recursive, a logical walk follows all symbolic links.

-P, --physical
in conjunction with -R/--recursive, a physical walk skips all symbolic links.

--test
display results of COMMAND, but do not save changes.

PERMISSIONS ALIASES
With nfs4_setfacl, one can use simple abbreviations (“aliases”) to
express generic “read” (R), generic “write” (W), and generic “execute”
(X) permissions, familiar from the POSIX mode bits used by, e.g., chmod(1).
To use these aliases, one can put them in the permissions field of an
NFSv4 ACE and nfs4_setfacl will convert them: an R is expanded to rntcy,
a W is expanded to watTNcCy (with D added to directory ACEs), and an X is
expanded to xtcy.

Basic System Administration 135

Please refer to the nfs4_acl(5) manpage (above) for information on specific
NFSv4 ACE permissions.

For example, if one wanted to grant generic “read” and “write” access on
a file, the NFSv4 permissions field would normally contain something like
rwatTnNcCy. Instead, one might use aliases to accomplish the same goal
with RW.

The two permissions not included in any of the aliases are d (delete) and
o (write-owner). However, they can still be used: e.g., a permissions field
consisting of Wdo expresses generic “write” access as well as the ability to
delete and change ownership.

EXAMPLES
Assume that the file `foo’ has the following NFSv4 ACL for the following examples:

A::OWNER@:rwatTnNcCy
D::OWNER@:x
A:g:GROUP@:rtncy
D:g:GROUP@:waxTC
A::EVERYONE@:rtncy
D::EVERYONE@:waxTC

- add ACE granting `alice@nfsdomain.org’ generic “read” and “execute”
access (defaults to prepending ACE to ACL):

$ nfs4_setfacl -a A::alice@nfsdomain.org:rxtncy foo

- add the same ACE as above, but using aliases:
$ nfs4_setfacl -a A::alice@nfsdomain.org:RX foo

- edit existing ACL in a text editor and set modified ACL on clean save/exit:
$ nfs4_setfacl -e foo

- set ACL (overwrites original) to contents of a spec_file named `newacl.txt’:
$ nfs4_setfacl -S newacl.txt foo

- recursively set the ACLs of all files and subdirectories in the current directory,
skipping all symlinks encountered, to the ACL contained in the spec_file named
`newacl.txt’:

$ nfs4_setfacl -R -P -S newacl.txt *

- delete the first ACE, but only print the resulting ACL (does not save changes):
$ nfs4_setfacl --test -x 1 foo

- delete the last two ACEs above:
$ nfs4_setfacl -x “A::EVERYONE@rtncy, D::EVERYONE@:waxTC” foo

- modify (in-place) the second ACE above:
$ nfs4_setfacl -m D::OWNER@:x D::OWNER@:xo foo

- set ACLs of `bar’ and `frobaz’ to ACL of `foo’:
$ nfs4_getfacl foo | nfs4_setfacl -S - bar frobaz

Raspberry Pi OS System Administration with systemd136

To test the interrogation, setting, and translation of NFSv4 ACLs between
server and client, do the following on both server and client:
On the Server:

$ cd /mnt/sharedfolder
/mnt/sharedfolder$ ls
/mnt/sharedfolder$ touch test0
/mnt/sharedfolder$ ls -la
total 3
drwxrwxrwx 2 nobody nogroup 3 Oct 21 13:22 .
drwxr-xr-x 3 root root 3 Oct 21 13:02 ..
-rw-rw-r-- 1 bob bob 0 Oct 21 13:22 test0
/mnt/sharedfolder$

On the Client:

$ cd /mnt/sharedfolder_client
/mnt/sharedfolder_client $ ls
test0
/mnt/sharedfolder_client $ ls -la
total 6
drwxrwxrwx 2 nobody nogroup 3 Oct 21 13:22 .
drwxr-xr-x 3 root root 4096 Oct 21 13:11 ..
-rw-rw-r-- 1 bob bob 0 Oct 21 13:22 test0

/mnt/sharedfolder_client $ nfs4_getfacl test0
A::OWNER@:rwatTcCy
A::GROUP@:rwatcy
A::EVERYONE@:rtcy
/mnt/sharedfolder_client $

On the Server:
Since the file system on the server for the directory /mnt/sharedfolder is an
ext4 file system, you cannot set NFSv4 ACLs on files and directories on the
server. So to change permissions on those entities, you have to use the trad-
itional UNIX file permission command, chmod.

/mnt/sharedfolder$ chmod u+x,g+x,o+wx test0
/mnt/sharedfolder$

On the Client:

/mnt/sharedfolder_client $ ls -la
total 6
drwxrwxrwx 2 nobody nogroup 3 Oct 21 13:22 .
drwxr-xr-x 3 root root 4096 Oct 21 13:11 ..
-rwxrwxrwx 1 bob bob 0 Oct 21 13:22 test0

/mnt/sharedfolder_client $ nfs4_getfacl test0
A::OWNER@:rwaxtTcCy
A::GROUP@:rwaxtcy
A::EVERYONE@:rwaxtcy

Basic System Administration 137

Notice the change in the ACL specs for Owner@, Group@, and Everyone@
from what it was previously.

/mnt/sharedfolder_client $ chmod g-x test0
/mnt/sharedfolder_client $ nfs4_getfacl test0
A::OWNER@:rwaxtTcCy
A::GROUP@:rwatcy
D::GROUP@:x
A::EVERYONE@:rwaxtcy
/mnt/sharedfolder_client $ df -hT
file system Type Size Used Avail Use% Mounted on
/dev/root ext4 29G 3.4G 25G 13% /
devtmpfs devtmpfs 325M 0 325M 0% /dev
tmpfs tmpfs 455M 0 455M 0% /dev/shm
tmpfs tmpfs 182M 1.1M 181M 1% /run
tmpfs tmpfs 5.0M 4.0K 5.0M 1% /run/lock
/dev/mmcblk0p1 vfat 255M 31M 225M 12% /boot
tmpfs tmpfs 91M 20K 91M 1% /run/user/1000
192.168.1.33: nfs4 47G 3.1G 44G 7% /mnt/sharedfolder_
/mnt/sharedfolder client

Notice that in the next nfs4_setfacl command, we specify the principal as
1000, the uid of bob on this client system.

/mnt/sharedfolder_client $ nfs4_setfacl -a A::1000:W test0
/mnt/sharedfolder_client $ nfs4_getfacl test0
A::OWNER@:rwaxtTcCy
D::1000:x
A::1000:rwatcy
A::GROUP@:rwatcy
D::GROUP@:x
A::EVERYONE@:rwaxtcy
/mnt/sharedfolder_client $

On the Server:
To create a sub-directory on the server, and put a file in it, to test how the

client will respond to that creation.

/mnt/sharedfolder$ mkdir test_dir
/mnt/sharedfolder$ cd test_dir
/mnt/sharedfolder/test_dir$ touch test1
/mnt/sharedfolder/test_dir$ ls -la
total 3
drwxrwxr-x 2 bob bob 3 Oct 22 05:25 .
drwxrwxrwx 3 nobody nogroup 4 Oct 22 05:24 ..
-rw-rw-r-- 1 bob bob 0 Oct 22 05:25 test1
/mnt/sharedfolder/test_dir$

Raspberry Pi OS System Administration with systemd138

On the Client:
/mnt/sharedfolder_client $ cd test_dir
/mnt/sharedfolder_client/test_dir $ nfs4_getfacl test1
A::OWNER@:rwatTcCy
A::GROUP@:rwatcy
A::EVERYONE@:rtcy
/mnt/sharedfolder_client/test_dir $

Note

A very critical point here, you should note the translations of permissions
from what they are set to on the server, and what they resolve to in terms
of NFSv4 ACLs on the client! This is particularly true if the two operating
systems are different, i.e., Raspberry Pi OS and Solaris 11.4, for example.

Procedure III – Applying and Testing NFSv4 ACLs on Client Files and
Directories Shared from a Solaris 11.4 Server

This Procedure aims to show how NFSv4 ACLs are translated between a
server and a client, where the server is a UNIX machine, and the client is
a Raspberry Pi OS machine. This procedure is also an illustration of how
NFSv4 ACLs are inherited by sub-directories on a file system on the server.

It’s assumed in this Procedure that you have access to a Solaris 11 server on
your LAN (our representative UNIX system illustrated here is Solaris 11.4)
and that you have root privileges on that server. Additionally

1. we had an external USB flash drive mounted on the Solaris 11 system,
with a file system mounted at /test4 on that flash drive,

2. there is a file named file1, and a directory named test2.dir, in the
mounted file system on the flash drive.

On the Solaris 11 Server:
The first step is to change the file inheritance mode to “allow” for newly

created subdirectories.

chmod A+user:bob:read_data:file_inherit:allow /test4/test2.dir
#

Next, enable the NFS server software, and see if it’s running.

svcadm enable network/nfs/server
svcs -a | grep -i nfs
disabled 3:40:07 svc:/network/nfs/cbd:default
disabled 3:40:07 svc:/network/nfs/client:default
online 3:40:28 svc:/network/nfs/fedfs-client:default
online 3:40:31 svc:/network/nfs/cleanup-upgrade:default
Output truncated ...
#

Basic System Administration 139

Mount the NFS directory.

share -F nfs -o rw,root /test4
#

Check that it’s mounted.

share -F nfs
test4 /test4 sec=sys,root,rw
#

Change to the mounted directory.

cd /test4
#

List the files and directories in it.

ls
file1 test2.dir
#

Make the subdirectory test2.dir the current working directory.

cd test2.dir
#

Create a file named ‘file2’ in this subdirectory.

touch file2
#

List the files in that subdirectory.

ls
file2
#

Interrogate the NFSv4 ACL settings on the file named ‘file2’ in that directory.
Notice in Solaris 11, the ls command and its pertinent options are used to
accomplish this, similar to the nfs4_getfacl command in the Raspberry Pi OS
nfs4-acl-tools suite.

ls -V file2
-rw-r--r--+ 1 root root 0 Oct 24 00:35 file2

user:bob:r-------------:------I:allow
owner@:rw-p--aARWcCos:-------:allow
group@:r-----a-R-c--s:-------:allow
everyone@:r-----a-R-c--s:-------:allow

#

Raspberry Pi OS System Administration with systemd140

Also notice that for the user bob, the file_inherit option of the chmod
command above set the inherit flag on file2, and that that chmod command
also added the read_data ACL on ‘file2’.

On the Raspberry Pi OS Client:
Mount the Solaris 11 directory on the Raspberry Pi OS client. In this pro-
cedure, the IP address of the Solaris 11.4 server is 192.168.1.31.

$ sudo mount -t nfs 192.168.1.31:/test4 /mnt
$

Change the working directory to /mnt.

$ cd /mnt
$

Notice that there are two entities in that shared folder on our system, a file
and a subdirectory:

$ ls
file1 test2.dir
$

Descend into the subdirectory

$ cd test2.dir
$

The file created on the server is in that share.

$ ls
file2
$

Check the NFSv4 ACLs on that file.

$ nfs4_getfacl file2
A::100:r
A::OWNER@:rwatTnNcCoy
A:g:GROUP@:rtncy
A::EVERYONE@:rtncy
$

It’s, again very important to notice the ACE translations from what the NFSv4
ACLs assigned to that file on the Solaris server are to what they are shown as
via the nfs4-acl-tools on the Raspberry Pi OS. As in Procedure II. above, the
first ACL is for the id of user 100 on the Solaris system, which is bob.

Basic System Administration 141

1.16 ufw and Netfilter Interface in the Raspberry Pi OS

The Raspberry Pi OS uses the Uncomplicated Firewall (ufw) to protect
your system. By default, the firewall is configured to allow all outgoing
connections but to deny all incoming connection requests. The default con-
figuration file for its rules is located in /etc/ufw/ufw.conf. If you want to
know more about text-based modifications to firewall rules, see the ufw man
page on your Linux system.

It is not absolutely necessary to change the firewall rules, and the basic
details of using the command-line method of doing this are shown here.

Note
Be very careful when adding custom rules or modifying the firewall, it may
endanger your system’s security!

1.16.1 ufw Defaults

The default firewall configuration utility for the Raspberry Pi OS is ufw.
Unlike the iptables firewall configuration utility, ufw is a much easier way
to create an IPv4 or IPv6 host-based firewall. It is a rule-based system, which
means that you create rules to control network connection access to your
system. By default, ufw is disabled for example. But once enabled, it has a
minimal set of rules, as part of its profile, that go into effect. ufw’s most basic
application is to allow or deny access on ports or from specific IP addresses.

ufw is based upon the Netfilter interface to the Linux kernel, particularly
the filter table operations and protocols found in that interface. The rule
format is also similar to the Packet Filter (PF) syntax in OpenBSD UNIX.

There is a GUI front end for ufw, known as gufw. gufw can easily be installed
on your system from the Raspberry Pi OS Menu> Preferences> Add/Remove
Software. In the Questions and Problems section at the end of this chapter, in
Problem 27., we pose a scenario of firewall creation that uses gufw.

1.16.2 Basic Syntax, Use Case, and Rules Examples

An abbreviated listing of the ufw man page is as follows:

ufw
Purpose:

ufw is used to manage a Linux firewall, and provides an easy to use interface
for the creation of firewall rules. The rules use a basic syntax as shown below.

Syntax:
ufw [option[s]] [command] [rule[s]]

Output: New, modified, or deleted firewall rules to/from ports/ IP addresses, or
devices.

Raspberry Pi OS System Administration with systemd142

Common Options:
--version show program’s version number and exit
-h, --help show help message and exit
--dry-run don’t modify anything, just show the changes
Common Commands:
enable reloads firewall and enables firewall on boot.
disable unloads firewall and disables firewall on boot
reload reloads firewall rules
default change the default connection policy
logging toggle and affect logging to journalctl
reset disables and resets firewall to defaults
status show status of firewall and rules
allow add a valid allow rule
deny add a valid deny rule
reject add a valid reject rule
limit add a valid limit rule
delete deletes a valid by specification
insert inserts a valid rule as a numbered rule

Common Rules:
ufw allow 22 allow tcp and udp port 22 to any IP address on a

valid NIC
ufw deny proto tcp to any port 80 deny all connectons to tcp port 80
ufw allow in on enp2s0 to 192.168.0.6 proto tcp allow tcp connections through

enp2s0 nic to IP address
192.168.0.6

ufw limit ssh/tcp allow rate limiting on ssh to prevent brute-force
attacks

ufw delete deny 80/tcp delete the rule denying tcp connections on
port 80

ufw delete 3 delete rule 3, number determined with the status
command

When you turn ufw on, it uses a default set of rules (profile) for the average
home user. By default, all “incoming” connections are denied. Following is a
listing of the simple syntactic forms.

Use Case and Rules Examples:

To Check the Status, Enable, and Disable ufw:

Use Case 1.
To turn ufw on with the default set of rules:

$ sudo ufw enable
Firewall is active and enabled on system startup
$

Use Case 2.
To check the status of UFW:

Basic System Administration 143

$ sudo ufw status verbose
Status: active
Logging: on (low)
Default: deny (incoming), allow (outgoing), disabled (routed)
New profiles: skip
$

Note carefully that by default, deny is being applied to incoming connections.

Use Case 3.

$ sudo ufw show raw
Verbose output truncated...

You can also read the rules files in /etc/ufw (the files whose names end with
.rules).

To Disable ufw Use.

Use Case 4.
To disable ufw use:

$ sudo ufw disable
Firewall stopped and disabled on system startup
$

To Allow and Deny Connections by Creating Rules:
The allow command rule syntax is as follows:

sudo ufw allow <port>/<optional: protocol>

Use Case 5.
To allow incoming tcp and udp packet on ephemeral port 32000

$ sudo ufw allow 32000
$

Use Case 6.
To allow incoming tcp packets on port 22

$ sudo ufw allow 22/tcp
$

Use Case 7.
To allow incoming udp packets on ephemeral port 16000

$ sudo ufw allow 16000/udp

The deny syntax is as follows:

sudo ufw deny <port>/<optional: protocol>

Raspberry Pi OS System Administration with systemd144

Use Case 8.
To deny tcp and udp packets on port 23

$ sudo ufw deny 23
$

Use Case 9.
To deny incoming tcp packets on port 23

$ sudo ufw deny 23/tcp
$

Use Case 10.
To deny incoming udp packets on port 23

$ sudo ufw deny 23/udp
$

Deleting an Existing Rule:
To delete a rule, prefix the original rule with delete. For example, if the ori-

ginal rule was:
ufw deny 8080/tcp, then to delete it, use:

Use Case 11.

$ sudo ufw delete deny 8080/tcp
$

To Allow by Service Name:

The allow syntax is as follows:

sudo ufw allow <service name>

Use Case 12.
To allow ssh by name

$ sudo ufw allow ssh
$

Rule added
Rule added (v6)

Basic System Administration 145

Check the status of rules after the above command:

$ sudo ufw status
Status: active
To Action From
-- ------ ----
22 ALLOW Anywhere
22 (v6) ALLOW Anywhere (v6)
$

Deny by Service Name:
The deny syntax is as follows:

sudo ufw deny <service name>

Use Case 13.
To deny ssh by name

$ sudo ufw deny ssh
$

ufw Logging
System logs can record events that impact ufw, as well as the effects net-

work connections and traffic have on other components of the system.

Use Case 14.
To enable logging use:

$ sudo ufw logging on
$

Use Case 15.
To disable logging use:

$ sudo ufw logging off
$

In-Chapter Exercise

12. What is the biggest advantage of logging ufw events?

1.16.3 Advanced ufw Syntax

The advanced syntax, or long-form syntax, can contain more command
arguments. These can specify objects like source and destination addresses,
ports, and protocols.

Allow Access
This section shows how to allow specific access.

Raspberry Pi OS System Administration with systemd146

Allow by Specific IP
The allow syntax is as follows:

sudo ufw allow from <ip address>

Use Case 16.
To allow packets from 192.168.0.8:

$ sudo ufw allow from 192.168.0.8
$

To Add a Rule to Allow by Subnet

Use Case 17.
You may use a subnet mask as follows:

$ sudo ufw allow from 192.168.1.0/24
$

To Add a Rule to Allow by specific port and IP address:
The general syntax for adding an allow rule is as follows:

sudo ufw allow from <target> to <destination> port <port number>

Use Case 18.
Allow IP address 192.168.0.4 access to port 22 for all protocols-

$ sudo ufw allow from 192.168.0.4 to any port 22
$

Use Case 19.
To add a range of ports into a rule, then the following command example will
do that:

$ sudo ufw allow 32000:32500/tcp
$

To allow to a specific port, IP address, and using a specific protocol:
The general syntax for specific ports, IP addresses, and protocols is:

sudo ufw allow from <target> to <destination> port <port number> proto
<protocol name>

Use Case 20.
To allow IP address 192.168.0.4 access to port 22 using TCP

$ sudo ufw allow from 192.168.0.4 to any port 22 proto tcp
$

Deny Access
To deny connections by designating a specific IP address

Basic System Administration 147

The general format for denying to a specific IP address is:

sudo ufw deny from <ip address>

Use Case 21.
To block connections from 192.168.0.12:

$ sudo ufw deny from 192.168.0.12
$

To deny by a specific port and IP address:
The general syntax for denying is:

sudo ufw deny from <ip address> to <protocol> port <port number>

Use Case 22.
To deny a connection from IP address 192.168.0.7 to port 22 for all protocols

$ sudo ufw deny from 192.168.0.7 to any port 22
$

Specification by Numbered Rules
Listing rules with a reference number:

Use Case 23.
Use the status numbered rule construct to show the order and id number of
existing rules:

$ sudo ufw status numbered
Status: active
 To Action From
-- ------ ----
[1] 65000 DENY IN 16000
[2] 65000 (v6) DENY IN 16000 (v6)
$

To delete a numbered rule

Use Case 24.
After executing the command in Use Case 23., you can delete rules using the
numbers found at the left margin of the output. The following will delete the
first rule, and the remaining rules will shift up in numbering to fill in the list.

$ sudo ufw delete 1
$

1.16.4 An Extended Example of Applying ufw Rules

The following example applies some of the previous Use Case commands
in an extended and more complex arrangement. Basically, it applies some

Raspberry Pi OS System Administration with systemd148

user-defined rules in the first two steps, and then shows a means of changing
those rules. For a further description of rule syntax and interaction, we refer
you on to the existing documentation for the Netfilter interface.

Example 1.12

1. Deny connection from the IP address 192.168.0.8 for ssh:

$ sudo ufw deny from 192.168.0.8 to any port 22
Rule added
$

2. Allow ssh connections from all other IP addresses on our LAN, using
the tcp protocol:

$ sudo ufw allow from 192.168.0.0/24 to any port 22 proto tcp
Rule added

3. Check the status of ufw rules:

$ sudo ufw status
Status: active
To Action From
-- ------ ----
22 DENY 192.168.0.8
22/tcp ALLOW 192.168.0.0/24
$

4. To test the above rules, first login from the machine with the IP address
of 192.168.0.8 on your LAN:

$ ssh bob@192.168.0.6
ssh: connect to host 192.168.0.6 port 22: Connection timed out
$

To further test, you can login from a machine on your LAN that is not
192.168.0.8. You should be able to ssh login from any other machine on your
LAN within the range specified.

5. Add an additional deny rule to deny an ssh connection from
192.168.0.31. Since the rules are evaluated in order, from 1 to n, an
addition of a deny rule at this point would make it rule #3. Therefore,
according to the precedents of chain and rule evaluation designated in
the Netfilter protocols, it is not evaluated. The following steps are one
way of moving a rule into the chain of evaluation.

Basic System Administration 149

So first delete rule #2, the allow rule for all IP addresses on the LAN:

$ sudo ufw delete allow from 192.168.0.0/24 to any port 22 proto tcp
Rule deleted
$

Check the status of rules:

$ sudo ufw status
Status: active
To Action From
-- ------ ----
22 DENY 192.168.0.8
$

6. Add in the rule denying ssh connections from 192.168.0.31, using tcp
protocol:

$ sudo ufw deny from 192.168.0.31 to any port 22
Rule added
$

7. Add back the rule allowing ssh from all other IP addresses on the
LAN, at the end of the chain:

$ sudo ufw allow from 192.168.0.0/24 to any port 22 proto tcp
Rule added
$

8. Check the status of rules:

$ sudo ufw status
Status: active
To Action From
-- ------ ----
22 DENY 192.168.0.8
22 DENY 192.168.0.31
22/tcp ALLOW 192.168.0.0/24
$

9. Test from 192.168.0.8 and 31 and from some other IP on the LAN to
verify the effectiveness of the rules.

In-Chapter Exercises

13. What ufw rule could have been used at step 5 that would have the
same effect as steps 6 through 8?

14. Give all the ufw commands that would erase all the rules
established here.

Raspberry Pi OS System Administration with systemd150

1.16.5 Interpreting ufw Log Entries in the systemd Journal

Question: Why would you want to look at log entries generated by ufw?

Answer: Someone is trying to crack into your machine from your LAN or
the Internet, and you want to have information about their method of attack.

This section details an example procedure for generating ufw-blocked
messages in the log kept by the systemd Journal. We then give brief descriptions
of the details of the components of the log entry. The Journal, and the journalctl
command in particular, allows you to view consolidated log messages from a
variety of sources on your system, all using one command. We give details of
the systemd Journal, and the journalctl command, in Section 1.11.

Example 1.13 ufw Log Entries

1. You have to set up a deny rule that blocks connections. In this example,
to set up a rule that blocks connections from 192.168.0.8 on our LAN,
we give the following ufw rule:

$ sudo ufw deny in log-all from 192.168.0.8
Rule added
$

The log-all parameter turns on full ufw logging. Since this parameter
generates quite a bit of log entry data, it would be advisable to turn logging
off promptly, as shown in step 5.

2. When we view ufw’s verbose status, it gives us this output:

$ sudo ufw status verbose
Status: active
Logging: off
Default: deny (incoming), allow (outgoing), disabled (routed)
New profiles: skip
To Action From
-- ------ ----
Anywhere DENY IN 192.168.0.8 (log-all)
$

3. Attempt to log in to the current machine that you set up the rule on
in step 1, from some other place on your LAN or possibly from the
Internet. We attempted an ssh login from another machine on our
LAN with an IP address of 192.168.0.8. Of course, this login attempt
assumes that sshd is running on the system you created the ufw
rule on in step 1. In the Questions and Problems section at the end
of this chapter, we pose a problem where you use different forms of
remote login and note the differences in log entries for those types of
attempted connections.

Basic System Administration 151

4. Immediately examine the Journal log, using the journalctl –f
command. The –f option of the journalctl command shows you log
entries generated in real time. This yields log entries similar to the
one in the next step. This is the contemporary method of examining
system logging.

5. Turn ufw logging off with the following command:

$ sudo ufw logging off
Logging disabled
$

6. Here is a sample of one of the log entries we got by using journalctl -f.
Following it, we will comment on some of the items in it that would
be useful for a system administrator to use when analyzing the entry.

Log Entry
Nov 01 11:23:33 raspberry pi kernel: [UFW BLOCK] IN=enp2s0 OUT= MAC=ff:ff:ff:ff:ff:

ff:b8:ac:6f:9a:80:dc:08:00 SRC=192.168.0.8 DST=192.168.0.6 LEN=194 TOS=0x00
PREC=0x00 TTL=64 ID=53133 DF PROTO=TCP SPT=17500 DPT=17500 LEN=174

An explanation of the components of this entry is as follows:

Date - Nov 01 11:23:33
Places entries in time order, so you can see the progress of what connections
have been done, or most importantly, what connections have been attempted.
Since this log entry in the Journal was generated and viewed in real time
using the journalctl –f command, it is a very recent excerpt from the real time
display of the Journal log.

Hostname – raspberry pi kernel
The server’s hostname is useful to identify the machine you are reading
the Journal on if you are dealing with several remote machines and are
monitoring their Journal entries.

Event - [UFW BLOCK]

A short description of the logged event; depending on the level of error
generated, this could be just an Audit.

IN - enp2s0

Incoming connection at the NIC enp2s0. Useful if the machine you are
monitoring the log entry on has several NIC’s, connected to different branches
on your network.

OUT- blank

Raspberry Pi OS System Administration with systemd152

IN our log entry, blank because it is not an outgoing connection attempt.

MAC- ff:ff:ff:ff:ff:ff:b8:ac:6f:9a:80:dc:08:00

A 14-byte combination of the Destination MAC, Source MAC, and EtherType
fields, following Ethernet protocol.

SRC - 192.168.0.8

The source IP, in our case the IP address of the machine on the LAN we
attempted to connect from. If this source is an IPV4 address, it can tell you how
to apply an additional set of filtering rules to prevent unwanted connections.

DST - 192.168.0.6

This indicates the destination IP. In this case, the IP address of the system we
created the deny rule on.

LEN - 194

This indicates the length in bytes of the packet. Can tell you about what type
of entry connection has been attempted.

The next five entry components are not important in basic log
interpretation:

TOS - 0x00
PREC -0x00
TTL - 64
ID – 53133
DF
PROTO - TCP

The protocol of the packet - TCP or UDP. TCP in our case, because it was an
ssh connection.

SPT - 17500

The port the source sent the packet through from. Interesting here that the ssh
client on 192.168.0.8 used an ephemeral port to attempt the connection on.

DPT - 17500

The port on the destination the packet was sent to. Again, interesting that the
packet was routed to this ephemeral port on the destination system, and ufw
blocked it.

LEN - 174

Not important in basic log interpretation.

Basic System Administration 153

1.17 Encrypting Directories and Files Using tar and gpg

The Raspberry Pi OS has several utilities that allow you to archive your files
and directories in a single file, and the tar command is the most popular,
widely used, and traditional method that allows you to achieve this. But in
the 21st century, one has to wonder why these traditional commands are
still used, with the ubiquity and prevalence of cheap and plentiful archival
storage media available, such as large gigabyte capacity flash drives, SSDs,
NAS, and cloud storage? When was the last time any ordinary user of the
Raspberry Pi reverted to using a tape drive? This section offers a rational for
the continued use of these traditional archiving methods.

Contemporary tar on Linux is the Gnu version.
The tar (short for tape archive) utility was originally designed to save file
systems on tape as a backup, so that files could be recovered in the event of
a system crash. It is primarily used now to pack a directory hierarchy as an
ordinary disk file. That disk file can then be either saved for system backup
purposes locally or remotely, or transmitted to someone via the Internet.
It is also used commonly with a compression utility, such as gzip, via a
command-line option. Doing so saves disk space and transmission time. The
saving in disk space results primarily from the fact that empty space within a
cluster is not wasted. A brief description of the tar utility follows.

The GNU version of tar has some important functional features, and
incorporates a more friendly syntax, than traditional UNIX tar. Therefore, for
beginners, we only show the “long form” of the Gnu-style syntax because it
is more intuitive and easy to understand. Once you get more familiar with
tar, you may switch to the UNIX-style short form at your discretion.

System administrators normally use a cost-effective archival medium for
archiving complete file system structures as backups so that, when a system
crashes for some reason, files can be recovered. Linux-based computer
systems normally crash for reasons beyond the operating system’s control,
such as a disk head crash because of a power surge. Linux rarely causes a
system to crash because it is a well-designed, coded, and tested operating
system. In a typical commercial server installation, backup is done every day
during off hours (late night or early morning) when the system is not nor-
mally in use.

1.17.1 The tar Command General Syntax

The general syntax of the tar command, shown with Gnu-style syntax as
opposed to traditional UNIX-style syntax, is as follows:

tar
Syntax: tar [operation mode] [operation mode options] [FILE…]

Raspberry Pi OS System Administration with systemd154

Purpose: Archive (copy in a particular format) files to or, restore files from,
an archival medium (which can be an ordinary file). Directories
are by default archived and restored recursively.

Output: Archived or restored files or directory structures.
Main Operations and Operation Options in Gnu-Style Usage:
--append Append files to the end of an archive.
--concatenate Append an archive to the end of another archive.
--compare Find differences between archive and file system.
--create Create a new tape and record archive files on it
--delete Delete from the archive.
--extract Extract files from an archive.
--help Display a short option summary.
--list List the contents of an archive.
--show-defaults Show built-in defaults for options.
--test-label Test the archive volume label and then exit.
--update Append files which are newer than the versions in an archive.
--usage Display a list of available options.
--version Display program version and copyright information.

Common Options:
--preserve-permissions Extract information about traditional file permissions.
--acls Enable POSIX.1e ACL support.
--gzip Filter the archive through gzip.
--verbose Verbosely list files processed.
--file ARCHIVE.tar Send archive to file named ARCHIVE.tar.

Command Arguments:
FILE… Target, either an archive file, or file object to be archived.

1.17.2 Directory Encryption

The objective of this section is to illustrate not only encryption and compres-
sion of an entire directory but also to further show use of the tar command to
preserve the directory structure.

Example 1.14 Directory Encryption

Objectives: To take a directory, and treat it with tar and gpg, to both com-
press and encrypt it.

Prerequisites: Having a directory, containing files you want to protect with
encryption using gpg.

Requirements: Do the following steps in the order presented to fulfill the
requirements of this example.

1. While in your home directory, use the following command to tar/
compress and encrypt a directory of your choice. In our case the direc-
tory was named 18_C:

Basic System Administration 155

$ tar --gzip --create --verbose --file - 18_C | gpg -c > 18_C.tar.gz.gpg
18_C/
18_C/THE ARCADES PROJECT.pdf
gpg: directory ‘/home/bob/.gnupg’ created
gpg: keybox ‘/home/bob/.gnupg/pubring.kbx’ created
18_C/beautiful-flower-3447424_1280.jpg
18_C/rs_1024x759-200729103613-1024-The-Lost-Boys-cast-photo-3-ch-

072920.jpg
18_C/640px-Seattle_-_Showbox_marquee_01.jpg
18_C/Canguilhem_Georges_The_Normal_and_the_Pathologic_1991.pdf
18_C/allfiles_final.zip
18_C/20220425154705.pdf
18_C/thumb16.jpg
18_C/TextToSpeech.m4a
$

On our Raspberry Pi system, a graphical dialog box opened on screen, asking
to enter a password and confirm it. Remember to write down the passphrase
so you can decrypt the directory! The tarred, compressed, and encrypted dir-
ectory is named 18_C.tar.gz.gpg.

2. This step decrypts and “untars” and uncompresses the encrypted dir-
ectory and all its files.

$ gpg --decrypt 18_C.tar.gz.gpg | tar --extract --gunzip --verbose --file -
gpg: AES256.CFB encrypted data
gpg: encrypted with 1 passphrase
18_C/
18_C/THE ARCADES PROJECT.pdf
18_C/beautiful-flower-3447424_1280.jpg
18_C/rs_1024x759-200729103613-1024-The-Lost-Boys-cast-photo-3-ch-

072920.jpg
18_C/640px-Seattle_-_Showbox_marquee_01.jpg
18_C/Canguilhem_Georges_The_Normal_and_the_Pathologic_1991.pdf
18_C/allfiles_final.zip
18_C/20220425154705.pdf
18_C/thumb16.jpg
18_C/TextToSpeech.m4a
$

In-Chapter Exercise

15. Use the methods of Example 1.14 to encrypt, but not compress, an
important directory under your home directory on your system. Then,
decrypt that directory using gpg. Where are the decrypted files placed,
for example, is the original directory you encrypt overwritten?

Raspberry Pi OS System Administration with systemd156

1.17.3 Encrypting a User File

There are times when an ordinary user might want to keep one or more files
secure by encrypting them. This might be true when you want to archive the
files using a USB flash drive or other removable medium, and want to avoid
loss of privacy if you lose the flash drive. The following example illustrates
the use of gpg to encrypt a single important file.

Example 1.15 Encryption of a Single File

Objective: To encrypt an important file in your home directory.
Prerequisites: Doing Example 1.14, and having a file in your home direc-

tory you want to encrypt.
Requirements: Do the following steps in the order presented to fulfill the

requirements of this example.

1. Create a file with nano, that contains the string “This is a test file for
encryption.”

$ nano newfile

Or use some existing file.

2. Use gpg to encrypt the file. Make sure to enter a passphrase you can
remember, or even write down the passphrase!

$ gpg --symmetric --cipher-algo AES256 newfile

 On our Raspberry Pi OS system, a graphical dialog box opened on
screen, asking to enter a password and confirm it. Remember to write
down the passphrase so you can decrypt the directory!
$

You can replace the AES56 with many other alogrithms, such as IDEA, 4DES,
CAST5, BLOWFISH, AES, etc..

3. Examine the contents of newfile. It’s unreadable.

$ more newfile.gpg
##h D= (` \#
33 v #K Y+ m# v (7 -

Ym ‘&g@\ # 4 8H q#G1{zG# H # $+ < j# l d
/# w OA

4. Delete the original, unencrypted file.

$ rm newfile

Basic System Administration 157

5. Decrypt the file we encrypted in step 2..

$ gpg newfile.gpg
gpg: WARNING: no command supplied. Trying to guess what you mean ...
gpg: AES256.CFB encrypted data
gpg: encrypted with 1 passphrase

6. Examine what is in your current working directory.

$ ls

Notice both the newly decrypted file and the encrypted file are both there.

7. Examine the contents of the newly decrypted file.

$ more newfile
This is a test file for encryption.
$

Notice its contents are the same as the original.

In-Chapter Exercise

16. Use the methods of Example 1.15 to encrypt an important file in your
home directory on your system. Then, decrypt that file using gpg.
Where is the decrypted file placed, for example, is the original file you
encrypted overwritten?

1.17.4 Encrypting a USB Flash Drive

Since USB removable media are easily subject to loss of privacy issues, we
present this method of encrypting an entire USB flash drive. An important
aspect of this method is that it may be applied to other partitions, which may
be on other persistent media attached to your system.

Example 1.16 How to Encrypt a USB Flash Drive

Objectives: To encrypt an entire single-partition USB flash drive.
Prerequisites: Having a blank, automatically mounted USB flash drive for

use on your system.
Background: The facilities that allow this procedure to be done are the

cryptsetup utility, which is available by default on the Raspberry Pi OS, and
the Disks utility. A properly single-partitioned and formatted USB flash drive,
which is usable on your Raspberry Pi system, automounts, and an icon for
it appears on the desktop when it is inserted into a USB port. This example
allows you to encrypt that flash drive, so that in case it is lost, the private

Raspberry Pi OS System Administration with systemd158

data you subsequently put on it is not compromised. Also, if you insert it in
another computer, you can type in the encryption passphrase, and it will be
unlocked and usable on that second computer as well. This feature allows
you to safely transport the flash drive between computer sites.

Requirements: Do the following steps, in the order presented, to fulfill the
requirements of this example.

1. Insert your USB flash drive into a USB port, and then Launch the Disks
utility from the Raspberry Pi OS Menu> Accessories. In the left side of
the Disk utility window, your disk drives will be shown.

2. Click on the USB flash drive in the left side window. On the right side of
the window, information about your USB flash drive will be shown. In the
little black square under the block showing the flash drive partition, make
a choice “unmount selected partition” by clicking on the black square.

3. Click on the black gearbox square under the block showing the flash
drive partition, and make the choice Format Partition. In the Format
Volume window that opens on the screen,
a. Next to Type, select the radio button ‘Internal disk for use with

Linux systems only (Ext4)’
b. Check the box Password protect volume (LUKS)
c. Give the volume a name of your choice in the Volume Name field.
d. Click the Next block at the top of the Format Volume window.
e. Type in a Passphrase, and Confirm Passphrase. Make sure you can

remember the passphrase
f. Click Next
g. Click on the red Format… button in the upper-right of the Format

Volume window
e. Wait until the file system is built, then quit the Disk utility.

4. Withdraw the USB flash drive from the computer, and reinsert it.
A window appears on screen, asking you to “Enter a passphrase to
unlock the volume.” In the password field, enter the passphrase you
typed-in in step 3.e. above. If you always want the passphrase to be
remembered whenever you plug this USB flash drive into the com-
puter, check off the Remember forever choice. Then click on the connect
button. The USB flash drive will be mounted, and a file window will
open into it.

5. You are now free to add directories and files to the flash drive. Notice
that on the Raspberry Pi desktop, the icon for the USB flash drive
appears with an unlocked u-lock figure shown on it.

6. To eject the USB flash drive, right-click on the gray arrow plus bar in
the upper-right corner of the desktop, and choose that flash drive.

7. When mounting this USB flash drive on another computer, you will
be asked for the passphrase before it can be unlocked on the other
computer.

Basic System Administration 159

In-Chapter Exercise

17. Use the methods of Example 1.16 to encrypt a USB flash drive you
attach to your system. Then, detach the flash drive, mount it on
another Raspberry Pi OS computer, and use the passphrase to unlock
it on that computer.

1.18 How a Process Gets Its Credentials

Each Linux Raspberry Pi OS process, or task, has a number of data struc-
ture identifiers that are created by the relevant system calls to maintain
that process’s autonomy and the steady state of the multi-programming
model. These identifiers are critical to authentication checks on processes.
As examples, a child process created by the fork system call inherits its
parent’s session ID and process group ID. A process’s session and group ID
are maintained across an execve system call. These identifiers include objects
such as Process ID (PID), Parent Process ID (PPID), Process Group ID and
Session ID, and User and Group Identifiers. All of these identifiers, and the
data structures associated with them, play directly into the Raspberry Pi OS
security model. Most important to our notion of security are User and Group
Identifiers.

In terms of process authentication checks, User and Group Identifiers
are listed as real user and group ID, effective user and group ID, the saved
set-user-ID and set-group-id, the specific file system user and group ID, and
supplementary group IDs.

The interaction of assignments of these identifiers is complex but can be
prioritized as follows:

* Privileged processes (with UID=0) have access to everything.

* The effective UID is the same as the owner’s UID; access is given by the
owner’s permissions on a file object.

* The effective GID, or supplementary process GID’s match the owning
group GID, permission is given by the owning group permissions on
the file object.

* Finally, access permissions are given by the “other” permission on the
file object.

Additionally, a process’s user IDs are applied in other ways, such as:

1. When determining the permissions for sending signals, such as the
kill signal.

Raspberry Pi OS System Administration with systemd160

2. When determining the permissions for setting process scheduling,
such as setting the nice value.

3. When checking resource limits and the number of inotify instances
possible for the process.

For more information on credentials, see the man page for credentials on
your Raspberry Pi OS system.

1.18.1 Process Capabilities

There is also a way to assign credentials to processes through a scheme known
as “capabilities.” Capabilities use a finer-grained technique to limit, or grant
credentials to processes you want to give privileges to. This is in contrast to
the traditional RBAC method of using sudo to give coarse-grained privileges
to a process or set of processes initiated by an unprivileged user.

For a more complete discussion of Linux Capabilities, see the man page for
capabilities on your system. The scope of capabilities generally follows this
outline:

1. Set of permitted capabilities
2. Set of inheritable capabilities
3. Set of effective capabilities
4. Capability bounding set

These make the most sense when they apply to processes, which are the active
element in system operation. They are privileged permissions exercised in a
“finer-grained” context. Finer-grained is used here to mean a more specific,
targeted privilege, such as those shown in Table 1.10. These are applied to a
process or processes that ordinarily, via the traditional model, could only be
granted a blanket, all-or-none tableau of privileges. Including a user in the
sudoers file is an example of this traditional model’s application.

Capabilities are controlled by changes in the traditional Linux permissions
but can also be set more finely and viewed directly by the capset and getcap
system calls.

It is possible to use Bash to assign and view process capabilities using the
setcap and getcap commands. Essentially, a program and its processes have
individualized and custom high-level privileges, rather than a blanket or
generalized high-level privilege, such as a user ID of 0 (root). We show an
example of this technique in Example 1.17.

You can also assign capabilities from within system programs using the
appropriate system calls from the libcap API.

For each process, the kernel maintains three capability sets that contain any
of the capabilities specified in Table 1.10 if they are enabled. At the same time, if

Basic System Administration 161

TABLE 1.10

Linux Capabilities

Capability What It Applies To

CAP_AUDIT_CONTROL Enable and disable kernel auditing
CAP_AUDIT_READ Allow reading the audit log via a multicast netlink socket.
CAP_AUDIT_WRITE Write records to kernel auditing log.
CAP_BLOCK_SUSPEND Employ features that can block system suspend.
CAP_CHOWN Make arbitrary changes to file UIDs and GIDs (see chown(2)).
CAP_DAC_OVERRIDE Bypass file read, write, and execute permission checks.
CAP_DAC_READ_SEARCH Bypass file read permission checks and directory read and

execute permission checks;
CAP_FOWNER Bypass permission checks on operations that normally require

the file system UID of the process to match the UID of the file.
CAP_FSETID Don’t clear set-user-ID and set-group-ID mode bits when a file

is modified; set the set-group-ID bit for a file whose GID does
not match the file system or any of the supplementary GIDs of
the calling process.

CAP_IPC_LOCK Lock memory (mlock(2), mlockall(2), mmap(2), shmctl(2)).
CAP_IPC_OWNER Bypass permission checks for operations on System V IPC objects.
CAP_KILL Bypass permission checks for sending signals (see kill(2)).
CAP_LEASE Establish leases on arbitrary files (see fcntl(2)).
CAP_LINUX_IMMUTABLE Set the FS_APPEND_FL and FS_IMMUTABLE_FL inode flags .
CAP_MAC_ADMIN Override Mandatory Access Control (MAC).
CAP_MAC_OVERRIDE Allow MAC configuration or state changes.
CAP_MKNOD Create special files using mknod(2).
CAP_NET_ADMIN Perform various network-related operations.
CAP_NET_BIND_SERVICE Bind a socket to Internet domain privileged ports (port numbers

less than 1024).
CAP_NET_BROADCAST (Unused) Make socket broadcasts, and listen to multicasts.
CAP_NET_RAW Use RAW and PACKET sockets.
CAP_SETGID Make arbitrary manipulations of process GIDs and

supplementary GID list.
CAP_SETFCAP Set file capabilities.
CAP_SETPCAP If file capabilities are not supported: grant or remove any

capability in the caller’s permitted capability set to or from any
other process.

CAP_SETUID Make arbitrary manipulations of process UIDs.
CAP_SYS_ADMIN Perform a range of system administration operations.
CAP_SYS_BOOT Use reboot(2) and kexec_load(2).
CAP_SYS_CHROOT Use chroot(2).
CAP_SYS_MODULE Load and unload kernel modules.
CAP_SYS_NICE Raise process nice value (nice(2), setpriority(2)) and change the

nice value for arbitrary processes.
CAP_SYS_PACCT Use acct(2).
CAP_SYS_PTRACE Trace arbitrary processes using ptrace(2).
CAP_SYS_RAWIO Perform I/O port operations (iopl(2) and ioperm(2)).
CAP_SYS_RESOURCE Use reserved space on ext2 file systems, and other resource limits.
CAP_SYS_TIME Set system clock.
CAP_SYS_TTY_CONFIG Use vhangup(2); employ various privileged ioctl(2) operations

on virtual terminals.
CAP_SYSLOG Perform privileged syslog(2) operations.
CAP_WAKE_ALARM Trigger something that will wake up the system.

Raspberry Pi OS System Administration with systemd162

a file has associated capability sets, then these sets are used to determine the
capabilities that are given to a process if it uses the exec() system call on that
file. The three sets for process and file, arranged in order from least to most
inclusive, are:

Inheritable: These are capabilities that can be passed on to the permitted set
when a process uses the exec() system call when accessing a file.

Effective: These are the capabilities used to perform privilege checking for
the process.

Permitted: These are the maximum capabilities, formed from effective and
inherited capabilities, that a process can actually use.

The possible file capability set and its contents give executable file process
capabilities.

It assigns a group of capabilities that are given to the process’s permitted
capability set during a system call to exec() made by the process.

Think of the process and file sets as the raised ridges on a house key (the
process set) and as tumblers in the lock on the front door (the file set). If
the key ridges match the tumbler settings, you are granted access and can
open the door lock with the key. The process can be authenticated via its
capability set checked against the capability set on any file it wants to use
exec() on .

The simplified syntax of the setcap command is as follows:

setcap [-options] (capabilities) filename

The simplified syntax of the getcap command is as follows:

getcap [-options] filename

See the man pages on your system for more details about the setcap and
getcap commands.

Example 1.17 Setting Capabilities on the Command Line

Objectives: To set and view a process capability using the setcap and getcap
commands.

Prerequisites: Having a root-privileged account, and also having created a
standard, non-privileged account (which we named lowly, with a password
low) that is not a member of the root, or sudoers group. In the steps below,
when you are required to use the privileged account, that account should be
a part of the sudoers group to execute the sudo command as shown.

Background: We modify a copy of the Bash external command /bin/ping
program, so that when it is used from an unprivileged account, it can execute
without setting the SUID permission bit.

Basic System Administration 163

To quickly and easily switch between privileged and unprivileged
accounts, you can make use of the virtual terminals available in Linux
with the <Ctrl>+<Alt>+Function key(s). On our Raspberry Pi system,
<Ctrl>+<Alt>+F2 enabled us to log into the unprivileged account in a vir-
tual, text-only terminal. To return to the default tty, and into the privileged
account was available by using <Ctrl>+<Alt>+F7.

Requirements: Do the following steps in the order presented to meet the
requirements of this example.

0. If you haven’t added an unprivileged user to your Raspberry Pi OS
system, use the following command:

$ sudo adduser lowly
Adding user `lowly’ ...
Adding new group `lowly’ (1001) ...
Adding new user `lowly’ (1001) with group `lowly’ ...
Creating home directory `/home/lowly’ ...
Copying files from `/etc/skel’ ...
New password: QQQ
Retype new password: QQQ
passwd: password updated successfully
Changing the user information for lowly
Enter the new value, or press ENTER for the default

Full Name []: low
Room Number []:
Work Phone []:
Home Phone []:
Other []:

Is the information correct? [Y/n] Y
$

1. Use <Ctrl>+<Alt>+F2 to login to the unprivileged account, and use
the ls –la command to see the permission bits set on the system-wide
/bin/ping executable program. Then test ping, by executing the ping
command to connect to localhost:

$ ls -la /bin/ping
-rwsr-xr-x 1 root root 44168 May 7 2014 /bin/ping
$ /bin/ping localhost
PING localhost (127.0.0.1) 56(84) bytes of data.
64 bytes from localhost (127.0.0.1): icmp_seq=1 ttl=64 time=0.048 ms
64 bytes from localhost (127.0.0.1): icmp_seq=2 ttl=64 time=0.053 ms
64 bytes from localhost (127.0.0.1): icmp_seq=3 ttl=64 time=0.053 ms
<Ctrl>+C
--- localhost ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 1998ms
rtt min/avg/max/mdev = 0.048/0.051/0.053/0.006 ms

Raspberry Pi OS System Administration with systemd164

The “s” bit of the file’s permission mode is the setuid-executable bit, and as
an unprivileged user, you are able to use ping because of this.

2. While still in the unprivileged account, copy the /bin/ping file to the
unprivileged user home directory. As the command below shows, ping
loses its privilege and no longer works, as shown by the following
commands:

$ cp /bin/ping .
$ ls -la ping
-rwxr-xr-x 1 lowly lowly 44168 Dec 25 15:16 ping
$./ping localhost
ping: icmp open socket: Operation not permitted
$

ping requires privilege to write the network packets that are used to probe
the network. The Linux kernel checks to see whether this copy of ping in
the unprivileged account is capable(CAP_NET_RAW), which means cap_
effective (pE) for the current process includes CAP_NET_RAW. By default,
root gets all effective capabilities, so it defaults to having more-than-enough
privilege to successfully use ping. Similarly, when setuid-root, the /bin/ping
version is also overly privileged. If some attacker were to discover a new
buffer-overflow or more subtle bug in the ping application, then they might
be able to exploit it to invoke a shell with root privilege. File system cap-
ability support adds the ability to bestow just-enough privilege to the ping
application.

3. To give the unprivileged ping just enough privilege to execute the
ping command in it’s home directory, switch to the privileged account
by using the key combination <Ctrl>+<Alt>+F7. Use the utilities from
libcap to do the following:

$ sudo setcap cap_net_raw=ep /home/lowly/ping
$ sudo getcap /home/lowly/ping
ping = cap_net_raw+ep
$

What the first command does is add a limited permitted (the p argument)
capability for CAP_NET_RAW, and also sets the effective bit (e), to automat-
ically raise this effective bit in the unprivileged ping process at the time the
ping command is executed.

4. Switch back to the unprivileged account using <Ctrl>+<Alt>+F2, and
then use the following command to test the local ping command:

Basic System Administration 165

$.ping localhost
PING localhost(localhost (::1)) 56 data bytes
64 bytes from localhost (::1): icmp_seq=1 ttl=64 time=0.256 ms
64 bytes from localhost (::1): icmp_seq=2 ttl=64 time=0.226 ms
64 bytes from localhost (::1): icmp_seq=3 ttl=64 time=0.232 ms
64 bytes from localhost (::1): icmp_seq=4 ttl=64 time=0.257 ms
64 bytes from localhost (::1): icmp_seq=5 ttl=64 time=0.234 ms
64 bytes from localhost (::1): icmp_seq=6 ttl=64 time=0.233 ms
<Ctrl>+C
--- localhost ping statistics ---
6 packets transmitted, 6 received, 0% packet loss, time 5112ms
rtt min/avg/max/mdev = 0.226/0.239/0.257/0.012 ms
$

Unlike setting the setuid-root permission bit, the ping in the unprivileged
account after step 3 is not given blanket privileges, such as any privilege
to modify a file that is not owned by the calling user, or to deploy a kernel
module in some way. There is no direct way to subvert this localized ping
program.

Conclusion: Instead of giving a process blanket root privileges, Linux cap-
abilities allow you to only give an application and its processes just enough
privilege to accomplish its objectives.

In-Chapter Exercise

18. Following the general procedure of Example 1.17, give an unprivil-
eged user the capability of changing both owner and group of any file
on your system. Utilize the information found in Table 1.10.

1.19 Namespaces and User Namespaces

These are security-related features built into the Raspberry Pi OS kernel that
differentiate it from UNIX kernels, particularly FreeBSD and Solaris. They
are methods of creating a virtual environment for a group of processes. The
kinds of resources that can be ‘virtualized’ in these environments for groups
of processes are currently process IDs, hostnames, user IDs, network access,
interprocess communication, and file systems. Namespaces are a funda-
mental component of the container virtualization technique, for systems like
Docker, or LXD/LXC.

User namespaces isolate security-related identifiers and attributes of
processes, in particular, user IDs and group IDs, the root directory, keys,
and very importantly capabilities (as seen in Section 1.18). A very distinctive

Raspberry Pi OS System Administration with systemd166

characteristic useful in isolating, or “sandboxing” processes, is that a process’s
user and group IDs can be different inside and outside a user namespace. In
particular, a process can be unprivileged outside a user namespace but inside
have a user ID of 0; in other words, the process has full privileges to utilize
system resources inside the user namespace but cannot have full privileges on
system resources outside the namespace. These isolated processes can share
the global resources within a locally scoped, privileged environment.

The details of the namespaces and cgroups APIs are beyond what we can
reasonably cover in this book. But we do provide an example, which can be
found in it’s entirety in the Example sub-section of the user_namespaces man
page on your system. We encourage you to refer to the namespaces, and
user_namespaces man pages on your Raspberry Pi OS system for a more
complete and detailed description of these two kernel features.

Example 1.18 Namespaces

Objectives: To allow experimentation with establishing various forms of
namespaces, using a system program illustrated and pre-built into the user_
namespaces man page.

Prerequisites: Using the man user_namespaces command, copy the sample
program from the EXAMPLES sub-section, called userns_child_exec.c, into a
text editor of your choice. Save the file as example_1_18.c, and compile it
with the command

gcc -w example_1_18_1.c -o example_1_18

Background: The program example_1_18.c is designed to allow
experimenting with user namespaces, as well as other types of namespaces. It
creates namespaces as specified by command-line options and then executes
operations inside those namespaces. Of course, if you are already familiar
with the namespaces API, the comments and functions inside the program
source code provide a basic explanation of the program.

The following Bash session demonstrates its use.
Requirements: Do the steps below, in the order presented, to complete the

requirements for this example.

1. Examine the version of the kernel, to verify the level of namespace
functionality available on your system. You need to have at least
kernel level 3.8 or higher:

$ uname -rs
Linux 6.1.21-v8+
$

2. Examine your user and group ID numbers, so that you can supply
them as subsequent command-line arguments:

Basic System Administration 167

$ id -u
1000
$ id -g
1000
$

3. Create a new user namespace with a new shell(bash), a new user (-U),
mount (-m), PID (-p), with user ID (-M) and group ID (-G) 1000 (as
found in step 2.), and indexed to PID 0 inside the new namespace. Use
the following command:

$./example_1_18 -p -m -U -M '0 1000 1' -G '0 1000 1' bash
#

You now have a bash shell in the new namespace, as indicated by the new
shell pronpt (#).

4. To see the real and effective user and group id’s in the new namespace,
repeat the two commands from step 2.:

id -u
0
id -g
0

You are now a privileged user in this new namespace, since you designated
this mapping in the command in step 3. with -M '0 1000 1' and -G '0 1000 1'.

5. The shell in this new namespace is PID 1, as you can see by typing the
following command:

echo $$
1

6. Mount a new /proc file system, and list all of the processes visible
in the new namespace. This shows that the shell is isolated from any
processes outside the namespace:

mount -t proc proc /proc
ps ax
PID TTY STAT TIME COMMAND
1 pts/0 S 0:00 bash
38 pts/0 R+ 0:00 ps -ax

7. Inside the user namespace, the shell has user and group ID’s of 0. This
is shown by the following command:

Raspberry Pi OS System Administration with systemd168

namespaces # cat /proc/$$/status | egrep '^[UG]id'
Uid: 0 0 0 0
Gid: 0 0 0 0

8. Since we have used the clone() system call in the program example_
1_18 to clone the user and process ID spaces, any program you run
inside the new namespace has a PID assigned inside the namespace.
To verify this, open another terminal and use the ps -ax command to
find the PID’s of the example_1_18 process, and its bash shell. Then
compare these PID’s to those inside the new namespace.

9. To terminate the isolated process, type the exit command.

exit
$

1.20 Chapter Summary

This chapter presented the core of the system administrator commands and
procedures that are the foundation of this volume, which provide computer
system concurrency, virtualization, and secure persistence for the Raspberry
Pi hardware and software. We covered the following: ACL addgroup adduser
apt-key cat chgrp chmod chown compgen cpio CUPS DAC dd du exec() export
fdisk FileZilla fork() ftp getcap getfacl gpg id inxi journalctl kill lp lpadmin
lpc lpinfo lpmove lpoptions lpq lpr lprm lpstat MAC mdadm Mirroring
mkfs.ext4 mount nfs4_getfacl nfs4_setfacl nice ping POSIX.1e processes cap-
abilities ps -aux RAID1 RBAC renice setcap setfacl ssh sshd sudo sudoers file
systemctl tar top touch ufw umask umount uname vsftpd wget.

169DOI: 10.1201/b23405-3

2
Applications of systemd for the Beginner

2.0 Objectives, Commands, and Primitives Covered

Objectives:

* Describe the systemd “superkernel,” sub-commands, and applications
* Expose and emphasize the importance of systemd units and unit files
* Dissect the anatomy of a unit file, with a specific example
* Show how to create instance units from unit template files
* Describe systemd targets, their variety, and their utility
* Give a specific systemd target example – running a clock-time-

based script
* Add to the repertoire of unit management commands
* Provide much additional practice with target units to the novice user
* Illustrate how to switch the system between important target states
* Expand our coverage of Linux cgroups, in the context of a systemd

environment
* Briefly mention the Linux kernel namespace concept
* Define and expound upon the systemd journal daemon, journald
* How to view system logs with the journalctl command
* How to maintain the journal, and execute varieties of boot process

querying
* Give further examples of systemd-controlled timers
* Illustrate the activation behavior of “new-style” daemons

To cover the Commands and primitives:

id -u, journalctl, ncat, nmap, systemctl, systemd-activate, systemd-cgls,
systemd-socket-activate, who -r

http://dx.doi.org/10.1201/b23405-3

Raspberry Pi OS System Administration with systemd170

2.1 Introduction – Applications of systemd for the Beginner

In this chapter, we give a novice user a brief, but useful, introduction to the
Linux “superkernel” known as systemd. Unless that novice user, or even a
more seasoned system professional, has not only a basic, but also a more
complete knowledge of how systemd controls and oversees every process
operation of a modern Linux system, they will never be able to master admin-
istrating and implementing the kind of functionality that their use case(s)
might ultimately require. Particularly for the user base on the system, and the
demands that the user base makes.

Everything illustrated in this chapter, in the specific form (and the syntax of
commands) found here, is explicitly applicable to the Raspberry Pi OS.

The selective choices of subject matter are made according to the pedagogic
needs of a beginner, as it follows from the system administration materials
that precede it in the last chapter.

Anything that you are required to type on the command line is shown in
bold type, always followed by pressing <Enter> on the keyboard.

2.2 Bootup in the Initial RAM Disk (initrd)

The initial RAM disk implementation (initrd) can also be set up using
systemd, and follows a prescribed structure. initrd is a scheme for loading
a root file system, from a variety of possible sources, into memory, and it is
used as part of the Raspberry Pi OS startup process.

2.2.1 Querying the Boot Process

As shown in Section 2.6.2.6 Boot Process Querying, the systemd journald daemon
and journal give you the ability to view log records of how the system boots. In
particular, it allows you to look at a log record of the current boot process, and
past boot processes, with some specific command line tools, options, and their
arguments. We refer you to Section 2.6.2.6 for a more complete treatment of the
systemd journal, and its capabilities with respect to booting logs.

2.3 systemd Units and Unit Files

Systemd unit files are one of the most critical and ubiquitous features of
systemd that a beginner needs to understand. In this section, we discuss

Applications of systemd for the Beginner 171

more of the lower-level functionality and application of systemd Units and
Unit Files.

2.3.1 Introduction to Units and Unit Files

In systemd, a unit refers to an object that changes the characteristics of the
steady state of the Raspberry Pi OS, or its normal operating condition. Units,
and unit files, are the primary objects that systemd creates and manipulates,
with user commands such as systemctl. These objects are configured with
files called unit files. We will introduce you to the different units that systemd
can handle. We will also be covering some of the many “directives” that
can be put in unit files in order to configure the way these objects handle
resources on your system.

2.3.2 Roles systemd Units Play

Units and unit files take on a very standardized format, which we describe
in detail because they are the primary instrument of user functionality and
control in systemd. They enable you to manage system resources, using the
daemons, services, and utility commands shown in Figure 2.1. They are

FIGURE 2.1
systemd Architecture.

Raspberry Pi OS System Administration with systemd172

found schematically on the first two top levels of that figure. We provide that
figure for your reference as follows.

A unit works with and affects traditional system services, network
resources, devices, file system mounts, resource pools known as Control
Groups, and even very transient tasks such as single Linux commands.

Some of the key advantageous features that units have are:

1. socket-based activation: The delay of the start of service until activa-
tion of its socket(s). This feature is very crucial in making the system
run faster and the startup process itself much faster.

2. D-bus-based activation: Units can be started when an associated bus
is published.

3. path-based activation: A unit can be started based on activity on, or
the availability of, certain file system paths.

4. udev device-based activation: The start of units can also be delayed
until the first time a piece of hardware becomes available. This feature
is also very crucial in making the system run faster, and startup much
faster.

5. implicit dependency mapping: Most of the dependence between
units, during their start time, can be built by systemd itself, although
by editing and changing the dependencies between units, this can be
modified by the user.

6. instances and templates: Template unit files can be used to create
multiple instances of the same general unit. This is very critical and
efficient in operating system virtualization via containers and virtual
machines!

7. security: Units can implement security features, via the use of direct-
ives in the unit file.

8. drop-ins and snippets extensibility: Units can easily be extended by
providing modifiers that will override parts of the system’s unit file.

We address many of the above features in the following sections.

2.3.3 Unit File Locations in the File System and Editing or
Modifying Them

Unit files are located in basically three different, very standardized locations
in the Raspberry Pi OS file system structure, depending upon how important
the unit file is.

Table 2.1 lists these default locations and gives a brief description of their
utility.

Adding, or modifying a unit by editing it to modify the way that the
unit functions, should be done by creating it in the /etc/systemd/system

Applications of systemd for the Beginner 173

directory. Unit files found in this directory location take precedence over any
of the other locations.

If you need to modify the system’s copy of a unit file, putting a replacement
in this directory is the most reliable, safest, and flexible way to do this.

To override specific directives from the system’s generic unit file, you
create unit file “snippets”, i.e., smaller versions, within a very standard
and specific subdirectory. This will add to or modify the directives of the
system’s copy, allowing you to specify only the behavior of the unit you
want to change. These systemd directives are what specify explicitly how
the unit behaves.

To do this, you create a directory named after the unit file with .d appended
to the name. For a unit called example.service, you create a subdirectory
called example.service.d. Within this directory, a file ending with .conf can
be used to override or add to the directives of the system’s default unit file.

2.3.3.1 Editing Unit Files

Editing unit files is secondarily important to actually creating one from
scratch, for a service that you want to create and run on the Raspberry Pi OS.
We show how to create a unit file below. The premier systemd command,
systemctl, provides options for editing and modifying unit files if you need
to make adjustments. The systemctl edit command, by default, will open a
unit file snippet for the unit in question.

For example, to further customize an nginx webserver service, which has
a unit file automatically created by the Aptitude package manager when it is
installed on the Raspberry Pi OS, you can use the following command:

$ sudo systemctl edit nginx.service

This will be a blank file that can be used to override or add directives on top
of the existing service unit definition. A directory will be created within the
/etc/systemd/system directory, which contains the name of the unit with
.d appended. For instance, for the nginx.service, a directory called nginx.
service.d will be created.

Within this directory, a snippet will be created called override.conf. When
the unit is loaded, systemd will merge the override snippet with the full unit

TABLE 2.1

Unit File Locations

/etc/systemd/system Place where unit files used to override default ones are stored.
/run/systemd/system Middle-priority unit file location, the systemd process itself uses this

location for dynamically created unit files created at runtime.
/lib/systemd/system System copy where software using the unit file is installed. Also

locates the default controlling unit file for the software.

Raspberry Pi OS System Administration with systemd174

file. The snippet’s directives will take precedence over those found in the ori-
ginal unit file.

To edit the full unit file, instead of creating a snippet, use the --full option:

$ sudo systemctl edit --full nginx.service

This will load the current unit file into the default editor, where it can be
changed. When you exit the editor, the changed file will be written to /etc/
systemd/system, which will take precedence over the system’s unit defin-
ition found in /lib/systemd/system.

To remove any additions you have made, either delete the unit’s .d config-
uration directory, or the modified service file from /etc/systemd/system. To
remove a snippet, use the following command:

$ sudo rm -r /etc/systemd/system/nginx.service.d

To remove a full modified unit file, type:

$ sudo rm /etc/systemd/system/nginx.service

After deleting the file or directory, you should reload the systemd process so
that it no longer attempts to reference these files and reverts back to using the
system default copies.

You can do this with the following very ubiquitous and critical command:

$ sudo systemctl daemon-reload

In-Chapter Exercise

1. When you install the nginx Webserver, where does the installer locate
the default copy of the service unit file? How did you find this out?
If you haven’t done the installation of nginx, either do that now, or
answer this exercise with another service that you have installed.

2.3.4 Types of Units

systemd units, and the files that define them, are the primary mechanism
that systemd uses to keep in control of system state. If you look at the suffix
attached to a unit file, you can determine which of the twelve types of unit it
is. The following list describes the types of units available to systemd:

1. service: A service unit, which we detail most extensively below,
describes how to manage a service or application on the system.
Important things like path to executable code, how the service starts or
stops, when and how it should be automatically started, and depend-
encies and ‘order-of-starting’ information. These are also part of
cgroup categories, as we detail in Section 2.6.1.

Applications of systemd for the Beginner 175

2. socket: This defines network, IPC socket, or a FIFO buffer, that are
used for a socket-based activation, which we give examples of below.
Socket-based activation means starting a service when the socket it’s
attached to sees traffic. This allows the starting of services in parallel, a
very critical speedup procedure different from what has traditionally
been available to init systems.

3. device: Describes a device that requires systemd management by
udev, or the sysfs file system. Udev is a device manager for the Linux
kernel, and manages device nodes in the /dev directory. Udev also
manages user space events, and hardware devices that are added into
the system or removed from it.

4. .mount: Defines mountpoints on the system. These are assigned names
after the mount path, with slashes changed to dashes in those names.

5. .automount: Defines a mountpoint that is automatically assigned.
These must be named after the mount point they refer to, and have a
matching .mount unit to define the actual details of the mount.

6. swap: Defines swap space on the Raspberry Pi OS. The name of
these units comes from the device name or file pathname of the swap
space.

7. target: Provides a way of coordinating other units operations, when
the system starts up, or when there are changes in the system’s state.
A good example, that we describe in Section 2.5.3, is going from the
multi-user.target state to the graphical.target state, and vice versa. We
cover much of what can be done with targets in this chapter.

8. path: Defines a path that can be used for path-based activation.
Path-based activation allows the operating system to take action if a
particular file, group of files, or directory gets modified or changed
somehow.

9. .timer: We illustrate these in detail in Section 2.6.3. They define timing
controls that systemd uses when controlling system state.

10. snapshot: Created automatically by the systemctl snapshot command.
There is no unit file associated with snapshots. It allows you to recon-
struct portions of the current state of the system after making changes.
It is important to note that snapshots do not survive across reboots
or restarts of the system and are used essentially to roll back to tem-
porary system states during the current boot.

11. slice: Defined by Linux cgroup nodes, allowing system resources to be
given to any processes associated with the named slice. These are also
a crucial cgroup feature, detailed in Section 2.6.1.

12. scope: Created automatically by systemd, using information from
its bus interfaces. These are also a crucial cgroup feature, detailed in
Section 2.6.1.

Raspberry Pi OS System Administration with systemd176

We will mainly be focusing on .service unit files, and their editing and cre-
ation, for the ordinary user of a Raspberry Pi system. This is due to the fact
that they are most useful for an ordinary user, and the use cases she might put
the system to. We will also detail, to some extent, their use by an appointed
system administrator to manage the state of the system in general. Aside
from .service unit files, all of the other unit file types are basically coordin-
ating and synchronization tools, that link services to hardware, cgroups, IPC
sockets, timing constraints, etc. This coordination and synchronization is the
hallmark and greatest advantage systemd has, and its major advantage over
any older UNIX or Linux init system(s).

2.3.5 Anatomy of a Unit File

The internal structure of unit files is segregated into sections. Sections are
delimited by a pair of square brackets “[“ and “]”, with the section name
enclosed in the brackets. Each section extends until the beginning of the next
section or until the end of the file.

2.3.5.1 An Example Service Unit File – ssh.service

It would be very instructive at this point to show the structure, and the exact
contents of a typical service unit file. Figure 2.2 shows the contents of the ssh
unit file on our Raspberry Pi system, found in /lib/systemd/system. You
should carefully look at this figure while reading an actual service unit file
(perhaps the ssh service file on your system) for comparison.

2.3.5.2 The General Format of Unit Files

As seen in Figure 2.2, the sample file is divided into sections. Section names
are case-sensitive, and enclosed in square brackets []. Within each section, the
way the unit works and stores data is done using standard, simple directives,
with allowed values assigned as follows:

In any section:
[Section]
Directive=value
Directive=value

If you use an override file, as is explained when editing the unit file in Section
2.3.3, directives are reset by assigning them to an empty string or null string.
For example, the system’s copy of a unit file could have a directive set to a
value as follows:

Directive=default_value

Applications of systemd for the Beginner 177

The default_value can be eliminated in an override file by referencing the dir-
ective without a value, like this:

Directive=

2.3.5.3 ssh Example Unit, Service, and Install Sections Directives

This section details the specific directives for the three sections of the ssh
example unit file shown in Figure 2.2.

[Unit] Section Directives

The first section found in the ssh.service unit file is the [Unit] section. This is
generally used for defining metadata for the unit and configuring the rela-
tionship of the unit to other units.

Although section order does not matter to systemd when reading the file,
this section is traditionally placed at the top because it provides an overview
of the unit. The particular directives that are in the [Unit] section are:

1. Description=OpenBSD Secure Shell server
Describes the name and basic functioning of the unit. It’s used by various
systemd tools.

[Unit]
Description=OpenBSD Secure Shell server
Documentation=man:sshd(8) man:sshd_config(5)
After=network.target auditd.service
ConditionPathExists=!/etc/ssh/sshd_not_to_be_run

[Service]
EnvironmentFile=-/etc/default/ssh
ExecStartPre=/usr/sbin/sshd -t
ExecStart=/usr/sbin/sshd -D $SSHD_OPTS
ExecReload=/usr/sbin/sshd -t
ExecReload=/bin/kill -HUP $MAINPID
KillMode=process
Restart=on-failure
RestartPreventExitStatus=255
Type=notify
RuntimeDirectory=sshd
RuntimeDirectoryMode=0755

[Install]
WantedBy=multi-user.target
Alias=sshd.service

FIGURE 2.2

ssh Unit File Example.

Raspberry Pi OS System Administration with systemd178

1.a. Documentation=man:sshd(8) man:sshd_config(5)
This directive names existing man pages that describe ssh, and the sshd
daemon.

2. After=network.target auditd.service
Units lthat will will be started before starting the current unit.

3. ConditionPathExists=!/etc/ssh/sshd_not_to_be_run
This can be used to provide a generic unit file that will only be run on appropriate
systems. If the condition is not met, the unit is skipped.

[Service] Section Directives
The [Service] section provides a configuration that is only applicable for
services.

The basic thing that should be specified in the [Service] section is the Type=
of the service. This categorizes services by their process and behavior as a
daemon. This is important because it tells systemd how to correctly manage
the service and find out its state.

1. EnvironmentFile=-/etc/default/ssh
 Reads the environment variables for the unit from a text file. The text

file should contain new-line-separated variable assignments. Lines
without a “=” separator, or lines starting with; or # will be ignored as
comments. A line ending with a backslash will be continued on the
following one.

2.a. ExecStartPre=/usr/sbin/sshd -t
 Additional commands that are executed before or after the command

in ExecStart=, respectively. Syntax is the same as for ExecStart=, except
that multiple command lines are allowed, and the commands are
executed one after the other, serially.

2.b. ExecStart=/usr/bin/sshd –D $SSHD_OPTS
 Probably the most critical directive! It designates the full path and the

possible arguments of the command to be executed to start the pro-
cess. This may only be specified once (except for “oneshot” services).

3. ExecReload=/bin/kill –HUP $MAINPID
 This optional directive indicates the command necessary to reload the

configuration of the service if available. One additional, special envir-
onment variable is set: if known, $MAINPID is set to the main process
of the daemon, and may be used for command lines.

4. KillMode=process
 Designates how processes associated with this unit shall be killed.

Applications of systemd for the Beginner 179

5. Restart=on-failure
 Indicates how systemd will attempt to automatically restart the ser-

vice. Allowable values are “always”, “on-success”, “on-failure”,
“on-abnormal”, “on-abort”, or “on-watchdog”.

6. RestartPreventExitStatus=255
 Lists exit status definitions, when returned by the main service pro-

cess, prevent automatic service restarts, no matter what the restart
setting configured, with Restart=. Exit status definitions are numeric
exit codes, or termination signal names, separated by spaces.

7. Type=notify
 Establishes the process start-up type for this service unit, within cer-

tain constraints. That type can be: simple, forking, oneshot, dbus,
notify, or idle.

8. RuntimeDirectory=sshd
 Take as argument(s) a space character-separated list of directory

names. The directory names are relative, and may not include the des-
ignation of parent directory (..).

9. RuntimeDirectoryMode=0755
 Designates the access mode of the directories specified in

RuntimeDirectory=, StateDirectory=,
 CacheDirectory=, LogsDirectory=, or ConfigurationDirectory=, as an

octal number. Defaults to 0755.

[Install] Section Directives
The last section found in the ssh.service unit file is the [Install] section. This
section is optional. It is used to configure extra features of a unit that will
either enable or disable it. A unit can be automatically started at boot with direct-
ives in this section.

1. WantedBy=multi-user.target

The WantedBy= directive is the most common way to specify how a unit
is enabled. It is similar to the Wants= directive in the [Unit] section. When
a unit with this directive is enabled, a directory is created within /etc/
systemd/system named after the specified unit with .wants appended to the
name. A symbolic link to the current unit is created, creating the depend-
ency. If the current unit has WantedBy=multi-user.target, a directory called
multi-user.target.wants is created within /etc/systemd/system (if it’s not
already there), and a symbolic link to the current unit is placed within that

Raspberry Pi OS System Administration with systemd180

directory. Disabling this unit removes the link and removes the dependency
relationship.

2. Alias=sshd.service

 Allows the unit to be enabled under another name, or alias.

2.3.5.4 Additional Unit File Sections and Their Unit-Specific
Section Directives

As can be seen in our ssh service unit file example in Section 2.3.5.2, the
Service Section is found between the Unit Section and the Install Section.

In a more complex unit file, the following sections are found between the
Unit and Install Sections. Note that among the 12 unit types, most contain
directives that only apply to their type.

The following brief listings provide references for additional critical values
assigned to directives in those sections:

The [Socket] Section
Socket unit files are configured because, as seen in many sections and
problems we present below, many services implement socket-based activa-
tion to achieve system parallelization and speed.

Note that each socket unit must have a matching service unit that will be
activated when the socket receives activity.

Perhaps the hallmark of systemd control, the methods of socket control
simplify and enhance an administrator’s ability to oversee everything that is
happening on the computer. By default, the socket name will attempt to start
the service of the same name upon receiving a connection. When the service
is initialized, the socket will be passed to it, allowing it to begin processing
any requests.

To specify the actual socket, the premier directive is ListenStream=,which
defines an address for a stream socket, and which supports socket IPC com-
munication. Services that use TCP generally use this unit type.

The [Timer] Section
This section is used to schedule system events. At some specific time, either
measured on a clock, on the calendar, or after a certain delay. This unit file
type is meant to replace the traditional function of the cron daemon. A unit
file, such as a service unit, must be created, to be activated when the timer is
“triggers”!

The [Timer] section of a unit file contains the directive “Unit=”, which spe-
cifies the unit that should be activated when the timer signals the event.

Applications of systemd for the Beginner 181

2.3.6 Creating Instance Units from Template Unit Files

For an ordinary user, template unit files let you reproduce a unit file sev-
eral times, to get multiple copies of it (which you can slightly modify for
each copy).

The primary commercial reason for using template unit files, and their mechanisms,
is to run multiple containers on a server.
For example, when you want to have many services listen on many sockets
or ports at the same time, you could run multiple instances of the service as
separate isolated virtual machines or container environments, each with a
different name, and each using different ephemeral ports they are listening on.

You must map these virtual machine or container’s ports to network-facing
IP addresses.

These could be public-facing network addresses assigned by a DHCP
server, rather than private addresses, as is used primarily by container soft-
ware such as Docker.

2.3.6.1 Template and Instance Unit Names for Services

A template unit file contains an @ symbol after the name, and before the type.

In-Chapter Exercise

2. Find an example of a template unit file on your Raspberry Pi OS.

2.4 Targets

Targets, or target units, are the same as all other systemd unit types. They
collect units together using dependencies (for changes in state such as booting
or shutdown), and create standard, or user-defined names, for synchroniza-
tion of dependencies between units.

As an example of their use, the processes that start up the system and shut
it down are used by systemd with the sequential (not hard-wired) use of
target units.

2.4.1 Basic Target Concepts

systemd can boot, do system service management, and perform other
functions for the Raspberry Pi OS by using standard and named target units.
For example, the target graphical.target provides a multiuser system with

Raspberry Pi OS System Administration with systemd182

network connectivity and a graphical display manager. An interdependent
set of units with unit dependencies can group controls related to system state,
and provides a way of establishing custom system state controls.

Table 2.2 shows some critical systemd target units.
Following are listings and descriptions of some other special system target

units. For a full list, refer to the man page on your system for systemd.special.
Incidentally, these target states are the equivalents of “run levels” found in
the older legacy Linux init system(s).

basic.target

A special target unit that does the basic boot-up operation. systemd automat-
ically adds dependencies of the types Requires= and After= for this target
unit. This starts all local mount points plus /var, /tmp and /var/tmp, swap
devices, sockets, timers, path units, and other initialization processes neces-
sary for necessary daemons.

ctrl-alt-del.target

This target starts whenever Control+Alt+Del is pressed on the console. It’s
aliased through a symbolic link to reboot.target.

default.target

The bootup default systemd unit. It’s aliased through a symbolic link to
multi-user.target or graphical.target.

emergency.target

The special target unit that starts an emergency shell on the main console.
Similar to rescue.target, but which also starts the most basic services and
mounts all file systems.

TABLE 2.2

systemd Important Targets

default.target The target that is booted by default. Not a real target, but a symbolic
link to another target like graphical.target.

emergency.target Starts an emergency shell on the console. Only used at the boot
prompt as systemd.unit=emergency.target.

graphical.target The default target in a desktop system GUI installation. Starts a
system with network, multiuser support, and a display manager.

halt.target Shuts down the system.
multi-user.target Starts a multiuser system with network.
reboot.target Reboots the system.
rescue.target Starts a single-user system without network.

Applications of systemd for the Beginner 183

exit.target

The special service unit for shutting down the system, or the user service
manager.

final.target

Target that is used during system shutdown and may be used to start late
services after all normal services are already terminated and all mounts
unmounted.

graphical.target

A special target unit for graphical login and operation, the default target on
Raspberry Pi systems that use a GUI-based desktop.

Note
This target requires multi-user.target as a dependency.

halt.target

Target unit for shutting down and halting the system.

kexec.target

Target unit for shutting down and rebooting the system via kexec.

multi-user.target

Target unit for setting up a multi-user system with a text-only console
interface.

Primarily used in server machines. This target is a dependency required by
graphical.target.

poweroff.target

Target unit for shutting down and powering off the system.

reboot.target

Target unit for shutting down and rebooting the system.

rescue.target

Target unit that starts the base system processes (including the system mount
points.) and starts a rescue shell.

shutdown.target

Target unit that stops all services upon system shutdown.

Raspberry Pi OS System Administration with systemd184

slices.target

Target unit that establishes all slice units that become active after booting.

sockets.target

Target unit that configures all socket units that become active after booting.

sysinit.target

Target that starts the services needed for system initialization.

system-update.target

Target unit that manages off-line system updates.

timers.target

Target unit that manages all timers that become active after booting.

umount.target

Target unit that unmounts all mount points and automount points upon
system shutdown.

2.4.2 A Target Example: Clock-Time-Based Running of a Script File

Question: Why would you want to do this, as an ordinary user?
Answer: Because at some particular time of the day, you want the system

to automatically backup critical directories and files on designated
media, via some automating shell script, like Bash, or perhaps a
Python3 script file.

“Monotonic Scheduling” of events can be thought of as basing an event
happening on the system in clock time. Clock time is designated in minutes,
hours, days, weeks, etc. The following example creates a timer unit that relies
on a specific target unit to execute a script file on a daily basis. The service
which needs to be run daily can be designated as a dependency of this target.

The script file, which is named your_script, is made into a service, via the
creation of a service unit file. your_script can have arguments when it is run,
as shown below. Also, you must set the permissions on your_script, with
chmod 755, so that it will execute properly when it is a service!

To get more information about how systemd specifies the time, see the man
page for systemd.time.

1. Use the following command to create a directory that will hold the
calendar-based timer unit:

$ sudo mkdir /etc/systemd/system/timer_daily.target.wants

Applications of systemd for the Beginner 185

2. The following timer unit file will need to be created, using the nano
text editor, in the path specified below:

$ sudo nano /etc/systemd/system/timer_daily.timer

[Unit]
Description=Daily Timer for Events

[Timer]
OnBootSec=5min
OnUnitActiveSec=1d
Unit=timer_daily.target

[Install]
WantedBy=basic.target

3. Create the target unit, with the nano text editor, in the specified
directory:

$ sudo nano /etc/systemd/system/timer_daily.target

[Unit]
Description=Daily Timer Target
StopWhenUnneeded=yes

4. Now that we have a timer unit and timer target file created, adding
events to this target involves placing an event into the /etc/systemd/
system/timer_daily.target.wants folder.
For any particular event to take place daily, create a service unit file for
the particular event in the /etc/systemd/system/timer_daily.target.
wants folder.
For example, if you wish to run your_script.service daily (which for
example, runs a Bash script named your_script), create the following
file with the nano text editor:

$ sudo nano /etc/systemd/system/timer_daily.target.wants/your_\
script.service

[Unit]
Description=Whatever your script file does

[Service]
User=bob
Type=Simple
Nice=19
IOSchedulingClass=2
IOSchedulingPriority=7
ExecStart=/home/bob/your_script –arg1 –arg2

Use more ExecStart lines in the above file if you want to start more
than one event daily.

Raspberry Pi OS System Administration with systemd186

5. Start and enable the daily timer:

$ sudo systemctl start timer_daily.timer

$ sudo systemctl enable timer_daily.timer

In-Chapter Exercise

3. Using the five previously mentioned steps, take a Bash script of your
own, and have systemd execute it daily.

2.4.3 Unit Management with Additional Commands

So far, we have been working with services and displaying information about
the unit and unit files that systemd is maintaining. However, we can find out
more specific information about units using some additional commands. The
following topics provide that specific information, by using the commands
shown.

Displaying a Unit File
To display the unit file that systemd has loaded into its system, you can use
the cat command. For example, to see the unit file for the sshd daemon, type
the following:

$ sudo systemctl cat sshd
/lib/systemd/system/ssh.service
[Unit]
Description=OpenBSD Secure Shell server
Documentation=man:sshd(8) man:sshd_config(5)
After=network.target auditd.service
ConditionPathExists=!/etc/ssh/sshd_not_to_be_run

[Service]
EnvironmentFile=-/etc/default/ssh
ExecStartPre=/usr/sbin/sshd -t
ExecStart=/usr/sbin/sshd -D $SSHD_OPTS
ExecReload=/usr/sbin/sshd -t
ExecReload=/bin/kill -HUP $MAINPID
KillMode=process
Restart=on-failure
RestartPreventExitStatus=255
Type=notify
RuntimeDirectory=sshd
RuntimeDirectoryMode=0755

[Install]
WantedBy=multi-user.target
Alias=sshd.service
$

Applications of systemd for the Beginner 187

The output is the unit file as available to the currently running systemd
process. This can be critical if you have recently modified unit files or are
overriding certain options in a unit file installed and built by the package
management system.

Displaying Dependencies
To see a unit’s dependency tree, you can use the list-dependencies command:

$ sudo systemctl list-dependencies sshd.service

This will display a hierarchy mapping the dependencies that must be dealt
with in order to start the unit in question. Dependencies, in this context,
include those units that are either required by or wanted by the units above it.

sshd.service
● └─-.mount
● └─system.slice
● └─sysinit.target
● └─apparmor.service
● └─dev-hugepages.mount
● └─dev-mqueue.mount
● └─fake-hwclock.service
● └─keyboard-setup.service
● └─kmod-static-nodes.service
● └─plymouth-read-write.service
● └─plymouth-start.service
● └─proc-sys-fs-binfmt_misc.automount
● └─sys-fs-fuse-connections.mount
● └─sys-kernel-config.mount
● └─sys-kernel-debug.mount
● └─sys-kernel-tracing.mount
● └─systemd-ask-password-console.path
● └─systemd-binfmt.service
● └─systemd-boot-system-token.service
● └─systemd-hwdb-update.service
● └─systemd-journal-flush.service
● └─systemd-journald.service
● └─systemd-machine-id-commit.service
● └─systemd-modules-load.service
● └─systemd-pstore.service
● └─systemd-random-seed.service
● └─systemd-sysctl.service
● └─systemd-sysusers.service
● └─systemd-timesyncd.service
● └─systemd-tmpfiles-setup-dev.service
● └─systemd-tmpfiles-setup.service
● └─systemd-udev-trigger.service
● └─systemd-udevd.service
● └─systemd-update-utmp.service
● └─cryptsetup.target
● └─local-fs.target

Raspberry Pi OS System Administration with systemd188

● │ └─-.mount
● │ └─boot.mount
● │ └─systemd-fsck-root.service
● │ └─systemd-remount-fs.service
● └─swap.target

The recursive dependencies are only displayed for .target units, which indi-
cate system states. To recursively list all dependencies, include the --all flag.

To show reverse dependencies (units that depend on the specified unit),
you can add the – reverse flag to the command. Other flags that are useful are
the - - before and - - after flags, which can be used to show units that depend
on the specified unit starting before and after themselves, respectively.

Checking Unit Properties
To see the low-level properties of a unit, you can use the show command.
This will display a list of properties that are set for the specified unit using a
key=value format:

$ sudo systemctl show sshd.service
Type=notify
Restart=on-failure
NotifyAccess=main
RestartUSec=100ms
TimeoutStartUSec=1min 30s
TimeoutStopUSec=1min 30s
RuntimeMaxUSec=infinity
WatchdogUSec=0
WatchdogTimestamp=Mon 2016-08-08 15:51:56 PDT
WatchdogTimestampMonotonic=8131498
FailureAction=none
PermissionsStartOnly=no
RootDirectoryStartOnly=no
RemainAfterExit=no
GuessMainPID=yes
MainPID=914

Output truncated…

If you want to display a single property, you can use the -p flag with the
property name. For example, to see the conflicts that the sshd.service unit
has, you can type:

$ sudo systemctl show sshd.service -p Conflicts
Conflicts=shutdown.target
$

Masking and Unmasking Units
systemd has the ability to mark a unit as completely unstartable, automatic-
ally or manually, by linking it to /dev/null. This is called “masking” the unit,
and is done with the mask command:

Applications of systemd for the Beginner 189

$ sudo systemctl mask nginx.service

This will prevent the nginx service from being started, automatically or
manually, for as long as it is masked.

If you check the list-unit-files, you will see the service is now listed as masked:

$ sudo systemctl list-unit-files

If you attempt to start the service, you will see a message like this:

$ sudo systemctl start nginx.service
Failed to start nginx.service: Unit nginx.service is masked.
$

To unmask a unit, making it available for use again, simply use the unmask
command:

$ sudo systemctl unmask nginx.service

This will return the unit to its previous state, allowing it to be started or
enabled.

Editing Unit Files
While the specific format for all unit files is outside of the scope of this chapter,
systemctl provides several built-in mechanisms for editing and modifying
unit files if you need to change them. The edit command, by default, will
open a unit file snippet for the unit in question:

$ sudo systemctl edit nginx.service

This will be a blank file that can be used to override or add directives to the
unit definition. A directory will be created within the /etc/systemd/system
directory, which contains the name of the unit with .d appended. For instance,
for the nginx.service, a directory called nginx.service.d will be created.

Within this directory, a snippet will be created called override.conf. When
the unit is loaded, systemd will, in memory, merge the override snippet with
the full unit file. The snippet’s directives will take precedence over those
found in the original unit file.

If you wish to edit the full unit file instead of creating a snippet, you can
pass the --full flag:

$ sudo systemctl edit --full nginx.service

This will load the current unit file into the default editor, where it can be
modified. On our Raspberry Pi system, the default editor was nano. When
you save and exit the editor, the saved file will be written to /etc/systemd/
system, which will take precedence over the system’s unit definition, found
in /lib/systemd/system.

Raspberry Pi OS System Administration with systemd190

To remove any changes you made, either delete the unit’s .d configur-
ation directory or the modified service file from /etc/systemd/system. For
example, to remove a snippet, we could type:

$ sudo rm -r /etc/systemd/system/nginx.service.d

To remove a full modified unit file, we would type:

$ sudo rm /etc/systemd/system/nginx.service

After deleting the file or directory, you should reload the systemd process
so that it no longer tries to reference these files and reverts back to using the
system copies. The following command does this:

$ sudo systemctl daemon-reload

In-Chapter Exercise

4. To get practice with the service management commands presented in
the above section, execute them on your system, using the nginx ser-
vice rather than sshd.

2.5 Practicing on Target Units

Systemd “target” states are instanced by target unit text files. Target units
filenames end with the .target file extension, and are used to basically collect
and create other systemd units through dependencies.

The graphical.target unit, which is used to instantiate or create a GUI
session as a Raspberry Pi desktop system, starts many other system ser-
vices on our Raspberry Pi system. It also starts the multi-user.target unit,
because that target is a dependency of graphical.target. The multi-user.target
unit starts many other critical system services, such as NetworkManager
(NetworkManager.service,) or D-Bus (dbus.service), and is, or becomes, a
milestone target unit.

2.5.1 Viewing the Default Target

To find out which target unit is the final target which determines the oper-
ating state of the system, you can use the following command:

$ sudo systemctl get-default
graphical.target
$

Applications of systemd for the Beginner 191

This executes the symbolic link located at /etc/systemd/system/default.
target, and displays the result.

Note
The default target unit can be different from the current target that defines
the current state of the system!

2.5.2 Viewing All Targets

To list all currently loaded target units, use the following:

$ sudo systemctl list-units --type target

For each target unit, this command displays its full name (UNIT) followed
by a note on whether the unit has been loaded (LOAD), its high-level
(ACTIVE) and low-level (SUB) unit activation state, and a short description
(DESCRIPTION).

By default, the systemctl list-units command displays only active units. If
you want to list all loaded units regardless of their state, run this command
with the --all or -a command line option:

$ sudo systemctl list-units --type target --all

When we executed this command on our Raspberry Pi Os system, we got the
following output:

$ systemctl list-units --type target --all
UNIT LOAD ACTIVE SUB DESCRIPTION
basic.target loaded active active Basic System
cryptsetup.target loaded active active Encrypted Volumes
emergency.target loaded inactive dead Emergency Mode
getty.target loaded active active Login Prompts
graphical.target loaded active active Graphical Interface
local-fs-pre.target loaded active active Local File Systems (Pre)
local-fs.target loaded active active Local File Systems
multi-user.target loaded active active Multi-User System
network-online.target loaded active active Network is Online
network-pre.target loaded active active Network (Pre)
network.target loaded active active Network
nfs-client.target loaded active active NFS client services
nss-user-lookup.target loaded active active User and Group Name Lookups
paths.target loaded active active Paths
remote-fs-pre.target loaded active active Remote File Systems (Pre)
remote-fs.target loaded active active Remote File Systems
rescue.target loaded inactive dead Rescue Mode
rpcbind.target loaded inactive dead RPC Port Mapper
shutdown.target loaded inactive dead Shutdown
slices.target loaded active active Slices
sockets.target loaded active active Sockets
swap.target loaded active active Swap

Raspberry Pi OS System Administration with systemd192

sysinit.target loaded active active System Initialization
● syslog.target not-found inactive dead syslog.target
time-sync.target loaded active active System Time Synchronized
timers.target loaded active active Timers
umount.target loaded inactive dead Unmount All Filesystems
zfs.target loaded active active ZFS startup target

LOAD = Reflects whether the unit definition was properly loaded.
ACTIVE = The high-level unit activation state, i.e. generalization of SUB.
SUB = The low-level unit activation state, values depend on unit type.

28 loaded units listed.
To show all installed unit files use ‘systemctl list-unit-files’.
$

2.5.2.1 Viewing the Currently Loaded Targets

To list all currently loaded target units, use the following command:

$ sudo systemctl list-units --type target

The following command illustrates the systemd logging facility (which has
effectively replaced older, more traditional logging mechanisms) known as
journald. The command that displays various aspects of systemd-style logging
is the journalctl command. We describe journalctl in detail in Section 2.6.2. To
use journalctl, along with the grep command, to list the current target, type
the following:

$ sudo journalctl | grep Reached | tail -3
Apr 24 10:14:20 raspberrypi systemd[1] : Reached target Graphical Interface.
Apr 27 06:14:07 raspberrypi systemd[765]: Reached target Printer.
Apr 27 06:14:07 raspberrypi systemd[1] : Reached target Printer.
$

The output of the above command shows the current target unit and the two
previous to it.

2.5.3 Changing the Current Target by Isolating Targets

It is possible to start all of the units associated with a target at once, and stop
all units that are not part of the dependency tree for that target. This is similar
to changing the runlevel in older, legacy init systems.

For instance, if you are operating in a GUI environment, with graphical.
target currently defining the system state, you can shut down the graphical
system, and put the system into a multi-user, Character User Interface (CUI)
state by what is termed “isolating” the multi-user.target. This is achieved with
the isolate command. Since graphical.target (lower down on the dependency
tree) depends on multi-user.target, all of the graphical units below multi-
user.target will be terminated.

Applications of systemd for the Beginner 193

But you need to look very carefully at the dependencies of the target you
are isolating before doing this, to make sure that you are not stopping vital
system services, that would make the system unuseable. To do this, use the
following command:

$ sudo systemctl list-dependencies multi-user.target

To switch over to a different target unit in the current session, type the
following command:

$ sudo systemctl isolate name.target

Replace name with the name of the target unit you want to use (for example,
multi-user). This command starts the target unit named multi-user.target,
and all dependent units, and immediately terminates all other units. To turn
off the graphical user interface and change to the multi-user.target unit in the
current session, type the following command:

$ sudo systemctl isolate multi-user.target

Note and Caveat
Note: When you execute this command, make sure that you don’t have
running programs, such as an opened document in LibreOffice! Switching
target states will terminate those running programs ungracefully, and, in the
case of LibreOffice, will require you to recover those documents.
Caveat: After executing the above command on our Raspberry Pi system,
at the time of the writing of this book, it was necessary to change the vir-
tual terminal to another virtual terminal (tty1 through 7 were the possibil-
ities), such as tty1 by holding down the following keystroke sequence at
one time

<Ctrl>+<Alt>+F1

where F1 represents the function key F1 on your keyboard.
You are then logged into the system now running in the multi-user.target

state, in a text-only, Character User Interface (CUI). This caveat was neces-
sary because the active graphical display manager (lightdm), and the normal
virtual terminal for display of X Window System programs on our desktop,
did not hook up tty7 (the default screen display in a graphical.target state) to
the display screen! So we simply switched our virtual display to tty2 with the
keystroke sequence above to facilitate the target isolation.

After we tried the next command:

$ sudo systemctl isolate graphical.target

on our system, the display switched to graphical.target automatically after a
few seconds.

Raspberry Pi OS System Administration with systemd194

So, to switch back to a graphical.target state, type the following command:

$ sudo systemctl isolate graphical.target

Question: If you hold down <Ctrl>+<Alt>+F2 while the graphical.target
is active (i.e., you have a desktop environment on-screen) and switch to a
virtual terminal (tty 2), have you switched to the multi-user.target as well?
And what command or commands would show you the savings in system
resources by shifting to a multi-user.target state versus being in the graphical.
target state?

Answer: No, the way to conserve system resources is to use sudo systemctl
isolate multi-user.target. Just switching to another tty, and even logging in
there, doesn’t effect the target state the system is in, or the number of resources
used by services in that target state. And of the commands like ps -aux
| less, htop, top, our favorite is the pstree command. It shows the signifi-
cant differences in running processes for the multi-user.target and graphical.
target states. Of course, Webmin also achieves that.

2.5.3.1 Changing the Default Target

To have the system use a different default target unit when it starts up, type
the following command:

$ sudo systemctl set-default name.target

Substitute name with the name of the target unit you want to be the
new default (such as multi-user). This replaces the /etc/systemd/system/
default.target file with a symbolic link to /usr/lib/systemd/system/name.
target, where name is the name of the target unit you want to have be the
new default.

To configure the system to use the multi-user.target unit by default, type
the following command:

$ sudo systemctl set-default multi-user.target

After a restart of the system, you will exclusively be able to login via a text-
only, CUI. To permanently change back to a graphical.target state at restart,
type the following command:

$ sudo systemctl set-default graphical.target

2.5.4 Changing to Rescue Mode

An ordinary, unprivileged user of a Raspberry Pi system would not have
recourse to use the commands found in this section, and the following

Applications of systemd for the Beginner 195

section. Most of the time, the system is operating normally, and also starts
up normally.

Rescue mode allows a valuable, single-user environment to be in place to
repair the system, when it is unable to complete the regular Boot and Startup
processes. In rescue mode, the system attempts to mount all local file systems
and start some important system services, but it does not activate any net-
work interfaces, or allow multiple users to be logged into the system at the
same time.

To change the current target and enter rescue mode in the current session,
type the following command:

$ sudo systemctl rescue
Welcome to rescue mode! After logging in, type
journalctl -xb to view system logs,
systemctl reboot to reboot,
systemctl default or the key combination <Ctrl>+D to boot into default mode:
Give root password for maintenance (or press <Ctrl>+D to continue):

This command is similar to systemctl isolate rescue.target, but it also sends
a warning message to all users that are currently logged into the system.
To prevent systemd from sending this message, type this command with
the --no-wall command option:

$ sudo systemctl --no-wall rescue

2.5.5 Changing to Emergency Mode

Emergency mode is exactly the state it sounds like – the most minimal
environment possible that allows for the repair of the system. Even, believe
it or not, in instances when the system is unable to enter rescue mode itself!
In emergency mode, the system mounts the root file system in read-only
mode and does not attempt to mount any other local file systems. Like
rescue mode, it does not activate network interfaces and only starts a few
essential services.

To change the away from the current target, and enter emergency mode,
type the following command:

$ sudo systemctl emergency
Welcome to emergency mode!
After logging in, type journalctl -xb to view system logs,
systemctl reboot to reboot,
systemctl default or <Ctrl>+D to boot into default mode.
Give root password for maintenance (or press Control-D to continue):

This command is similar to systemctl isolate emergency.target, but it can
also send an informative message to all users that are currently logged into

Raspberry Pi OS System Administration with systemd196

the system. To prevent systemd from sending this message, run this command
with the --no-wall command line option:

$ sudo systemctl --no-wall emergency

The above two sections, which allow you to change the system state to
rescue or emergency modes, are most likely to be used when the system is not
working correctly, or when there is a performance-oriented problem. But then
what does an ordinary user do when a normal boot into either multi-user.
target or graphical.target cannot be done at all, for whatever reason? There
are several options, which we do not cover here in detail, to interrupt the boot
process, or boot into previous kernel versions. A listing of these situations is
as follows:

a. Power or hardware-related issues.
b. Entering GRUB2 recovery mode.

c. Booting into previous “boot environments.”

d. If using the Zettabyte File System(ZFS) on zpools, using ZFS
Recovery Mode.

2.5.6 Practice in Working with Targets

Following is a short command line practice session that allows you to work
with the systemctl command, and the important options shown in the pre-
ceding sections, to effect systemd target states.

1. Check the default systemd.target:

$ sudo systemctl get-default

graphical.target

$

2. List the target units, and determine the current systemd target with
the Linux multiple command joining who -r with options, and grep:

$ sudo systemctl list-units --type=target |grep active |egrep “graphical|multi|re\
scue|emergency”

graphical.target loaded active active Graphical Interface

multi-user.target loaded active active Multi-User System

The following command checks the target state we are currently in:

$ sudo who -r
 run-level 5 2017-08-10 13:50
$

Applications of systemd for the Beginner 197

Note
The legacy run-level 5 designation corresponds to the graphical.target state.

3. Now we can change the systemd target to multi-user.target, use the
multiple command systemctl list-units, conjoining grep and egrep to
check units availability and status, and finally, the who -r command to
find the run level:

$ sudo systemctl set-default multi-user.target

Removed symlink /etc/systemd/system/default.target.
Created symlink from /etc/systemd/system/default.target to /lib/

systemd/system/multi-user.target.

$ sudo systemctl list-units --type=target | grep active | egrep “graphical|multi\
|rescue|emergency”

graphical.target loaded active active Graphical Interface
multi-user.target loaded active Multi-User System
$ sudo who -r
 run-level 5 2022-11-15 06:37
$

Dependencies between targets imply one systemd target can be part of
another systemd target. Both graphical. target includes multi-user.target, and
multi-user.target depend on various other targets. Now check the systemd
target dependencies using the following systemctl list-dependencies
command, which checks the dependencies for systemd multi-user.target:

$ sudo systemctl list-dependencies multi-user.target |grep target
multi-user.target
● └─basic.target
● │ └─paths.target
● │ └─slices.target
● │ └─sockets.target
● │ └─sysinit.target
● │ │ └─cryptsetup.target
● │ │ └─local-fs.target
● │ │ └─swap.target
● │ └─timers.target
● └─getty.target
● └─nfs-client.target
● │ └─remote-fs-pre.target
● └─remote-fs.target
● │ └─nfs-client.target
● │ └─remote-fs-pre.target
● └─zfs.target
● └─zfs-import.target
● └─zfs-volumes.target
$

Raspberry Pi OS System Administration with systemd198

To list the available systemd targets on the system, use the following
command:

$ sudo systemctl list-units --type=target
UNIT LOAD ACTIVE SUB DESCRIPTION
basic.target loaded active active Basic System
cryptsetup.target loaded active active Local Encrypted Volumes
getty.target loaded active active Login Prompts
graphical.target loaded active active Graphical Interface
local-fs-pre.target loaded active active Local File Systems (Pre)
local-fs.target loaded active active Local File Systems
multi-user.target loaded active active Multi-User System
network-online.target loaded active active Network is Online
network.target loaded active active Network
nfs-client.target loaded active active NFS client services
paths.target loaded active active Paths
remote-fs-pre.target loaded active active Remote File Systems (Pre)
remote-fs.target loaded active active Remote File Systems
slices.target loaded active active Slices
sockets.target loaded active active Sockets
swap.target loaded active active Swap
sysinit.target loaded active active System Initialization
time-set.target loaded active active System Time Set
time-sync.target loaded active active System Time Synchronized
timers.target loaded active active Timers
zfs-import.target loaded active active ZFS pool import target
zfs-volumes.target loaded active active ZFS volumes are ready
zfs.target loaded active active ZFS startup target

LOAD = Reflects whether the unit definition was properly loaded.
ACTIVE = The high-level unit activation state, i.e. generalization of SUB.
SUB = The low-level unit activation state, values depend on unit type.
23 loaded units listed. Pass --all to see loaded but inactive units, too.
To show all installed unit files use ‘systemctl list-unit-files’.

4. Reboot the system using the systemctl reboot command. Since we set
the default systemd target to multi-user.target, the system will restart
into that target state.

$ sudo systemctl reboot
Output truncated...

5. Once the system has restarted, check the systemd target units and the
currently active target state.

$ sudo systemctl list-units --type=target |grep active |egrep “graphical|multi|r\
escue|emergency”
basic.target loaded active active Basic System
cryptsetup.target loaded active active Encrypted Volumes
getty.target loaded active active Login Prompts
local-fs-pre.target loaded active active Local File Systems (Pre)
local-fs.target loaded active active Local File Systems

Applications of systemd for the Beginner 199

mail-transport-agent.target loaded active active Mail Transport Agent
multi-user.target loaded active active Multi-User System
network-online.target loaded active active Network is Online
network-pre.target loaded active active Network (Pre)
network.target loaded active active Network
paths.target loaded active active Paths
remote-fs-pre.target loaded active active Remote File Systems (Pre)
remote-fs.target loaded active active Remote File Systems
slices.target loaded active active Slices
sockets.target loaded active active Sockets
swap.target loaded active active Swap
sysinit.target loaded active active System Initialization
time-sync.target loaded active active System Time Synchronized
timers.target loaded active active Timers
zfs.target loaded active active ZFS startup target

20 loaded units listed. Pass --all to see loaded but inactive units, too.

$ sudo who -r
run-level 3 2022-11-15 07:37

Since we are now in the multi-user.target state, multi-user.target is shown
bolded in the above output. Also, the sudo who -r command shows us we are
in runlevel 3, the legacy equivalent of the multi-user.target state.

2.5.7 Other systemctl Options that Work with Target Units

Targets, as defined and illustrated above, are unit files that describe the
system state, or points of synchronization. Like other units, they can be iden-
tified by the file extension .target.

Targets are used to coordinate and group units together.
This brings the system to some desired states, which then allows use of

case-dictated functionality. For example, the Raspberry Pi OS on hardware
that is configured as a server, with a text-only CUI, does not have the per-
formance overhead, which is essentially a wasted resource, of a graphical
display manager, or desktop environment.

Targets are used as a coordination point, that makes desired functionality
available, allowing the system administrator to designate the “milestone”
state (which might consist of many inter-dependent targets,) rather than des-
ignating individual units to start to produce that state.

Target unit files specify, in their content configuration, that they are
WantedBy=, or RequiredBy= some individual unit file, thus establishing
dependency relationships. Units that must be made available can specify this
condition using the Wants=, Requires=, and After= designations to indicate
that particular dependency relationship.

Raspberry Pi OS System Administration with systemd200

2.5.8 Using Target Shortcuts

There are target units available for critical events, such as powering off the
system, or rebooting. The systemctl command has options that give you
faster and better methods to allow execution of those critical events.

To halt the system, you can use the halt command:

$ sudo systemctl halt

To initiate a full shutdown, you can use the poweroff command:

$ sudo systemctl poweroff

A restart can be started with the reboot command:

$ sudo systemctl reboot

The above three commands notify logged-in users that the critical event is
about to occur (that is very important in a multi-user system, where many
users might be in the middle of critical operations!,) something is running, or
isolating a particular target will not do.

Note
Ordinary Linux system commands will tie together the necessary operations
to accomplish the above state changes on the system, so that they will work
properly with systemd-controlled state changes.

For example, an ordinary Linux command that will do this, to reboot the
system, is simply:

$ sudo reboot

In-Chapter Exercise

5. You want to ssh into a newly-installed Raspberry Pi system from
another machine on your LAN or intranet. When you attempt that,
you get some obscure error message that denies you access via ssh to
the new machine. Out of the multitude of debugging scenarios you
could go through to find out why you are getting the error, you could
use one single systemd command while sitting at the new machine
to find out whether the sshd daemon is running, or even installed.
Then proceed to solve your problem quickly and easily from there.
What systemd command from the above sections gives that expedient
procedure?

Applications of systemd for the Beginner 201

2.6 Other Important systemd Commands

As can be seen above, the systemctl command affects Units and Targets.
But systemd has other important commands that provide control of many
system functions. The following sections detail the use of some of these other
important systemd commands.

2.6.1 Cgroups

Control groups (cgroups), included as part of systemd in the Linux kernel,
allow you to create prioritized, and structured groups of processes running
on your system. They are invoked by the systemd systemctl command.
Considering the various ways of using cgroups, the most important one
is to monitor and control Raspberry Pi OS resources. Cgroup monitoring,
assessment, and control is used via systemd unit files. It can be transient or
persistent.

The systemd-run command is used to create and start a transient unit as
its own cgroup self-contained module, and then run a Linux command in
that unit.

To create persistent cgroups, it is necessary to build service unit files for
them in the /etc/systemd/system directory. That directory is the standard
location for user-installed and user-defined services in systemd.

The objective of this section is to provide a pictorial description of the
cgroup “tree,” give some basic definitions, further describe the structure of
cgroup unit types, and illustrate their standard arrangement. We also define
Linux “namespaces,” point you to a system programming example of name-
space creation, and provide sources of further documentation for you to
explore.

2.6.1.1 Default Cgroup Hierarchies for System Resource Control

To start, we show an instructive diagram, one which you can obtain on your
own Raspberry Pi system with the systemd-cgls command. Following are
the truncated results of that command on our Raspberry Pi system:

$ systemd-cgls
Control group /:
Control group /:
-.slice
└─user.slice
│ └─user-1000.slice
│ └─user@1000.service
│ │ └─app.slice
│ │ │ └─gvfs-goa-volume-monitor.service
│ │ │ │ └─1046 /usr/libexec/gvfs-goa-volume-monitor
│ │ │ └─pulseaudio.service

Raspberry Pi OS System Administration with systemd202

│ │ │ │ └─781 /usr/bin/pulseaudio --daemonize=no --log-target=journal
│ │ │ └─gvfs-daemon.service
│ │ │ │ └─ 879 /usr/libexec/gvfsd
│ │ │ │ └─ 885 /usr/libexec/gvfsd-fuse /run/user/1000/gvfs -f
│ │ │ │ └─ 1066 /usr/libexec/gvfsd-trash --spawner :1.8 /org/gtk/gvfs/exec_spaw/0
│ │ │ │ └─ 63616 /usr/libexec/gvfsd-network --spawner :1.8 /org/gtk/gvfs/exec_spaw/2
│ │ │ │ └─ 63630 /usr/libexec/gvfsd-dnssd --spawner :1.8 /org/gtk/gvfs/exec_spaw/4

…
└─init.scope
│ │ └─765 /lib/systemd/systemd --user
│ │ └─766 (sd-pam)
│ └─session-3.scope
│ │ └─1219 /bin/login -f
│ │ └─1492 -bash
│ └─session-1.scope
│ └─ 760 lightdm --session-child 14 17
…
└─systemd-timesyncd.service
│ └─446 /lib/systemd/systemd-timesyncd
└─avahi-daemon.service
│ └─481 avahi-daemon: running [raspberrypi.local]
│ └─485 avahi-daemon: chroot helper
└─systemd-logind.service
└─518 /lib/systemd/systemd-logind

In-Chapter Exercises

6. Compare the output of the above systemd-cgls command with the
pstree command output. How are they similar in both structure and
content? How are they different? Execute the pstree command and the
systemd-cgls command on your Raspberry Pi system, and compare
the output you get to the output we show, in terms of fine-grained
similarities and differences. What options of the pstree command
can give displays of PID’s, similar to the output of the systemd-cgls
command?

****For Experts****

7. Are PID and cgroup number the same for all processes and threads?
Write a system program that creates multiple persistent threads with
the fork() system call, and then examine the cgroup numbers assigned
to those threads.

Next, we give you some basic definitions that more fully describe the objects
found in the systemd-cgls command’s output graphics.

Slice – A group of units that organizes them in some way.

Service – A process, or a group of processes, which is started using a ser-
vice unit configuration file.

Applications of systemd for the Beginner 203

For example, systemd-logins.service is a service.

Scope – Processes that are started and stopped by transient processes that
use the fork() system call, and are registered by systemd at runtime. All
user sessions are a good example of this.

In the command output text above, init.scope, and session-c1.scope are
examples.

Slices, services, and scopes, are most importantly created by the system
administrator, or by system programs. By default, systemd, and the oper-
ating system, start up mandatory and essential services automatically at
system startup, dictated by the final target state that the system will run in.

Three slices are created by default:

 • -.slice — the root slice;

 • system.slice — the default path location for all system services;

 • user.slice — the default path location for all user sessions;

In-Chapter Exercise

****For Experts****

8. Are the threads you created for In-Chapter Exercise 7. slices, ser-
vices, or scope units? Why?

To summarize, looking at the output of the systemd-cgls commands above,
the root of the cgroup tree is the root slice, -.slice. The first major branch, aside
from the system.slice, is the user.slice, with a number of scopes under that for
user sessions. Proceeding down the tree, there are a number of other slices
grouped under the major “branch” known as the system.slice, for example,
avahi-daemon.service, cron.service, cups.service, ssh.service, etc. That is a
capsule overview of the tree.

It is useful to list loaded slice unit types, by using the following command:

$ systemctl list-units --type=slice
UNIT LOAD ACTIVE SUB DESCRIPTION
-.slice loaded active active Root Slice
system-configure\x2dprinter.slice loaded active active system-configure\x2dprinter.slice
system-bthelper.slice loaded active active system-bthelper.slice
system-getty.slice loaded active active system-getty.slice
system-modprobe.slice loaded active active system-modprobe.slice
system-systemd\x2dfsck.slice loaded active active system-systemd\x2dfsck.

slice
system.slice loaded active active System Slice
user-1000.slice loaded active active User Slice of UID 1000
user.slice loaded active active User and Session Slice

Raspberry Pi OS System Administration with systemd204

LOAD = Reflects whether the unit definition was properly loaded.
ACTIVE = The high-level unit activation state, i.e. generalization of SUB.
SUB = The low-level unit activation state, values depend on unit type.
9 loaded units listed. Pass --all to see loaded but inactive units, too.
To show all installed unit files use ‘systemctl list-unit-files’.
$

2.6.1.2 Additional Cgroup Reference Resources

To find more information about resource control under systemd, the unit
hierarchy, as well as the kernel resource controllers, refer to the materials
listed below:

Cgroup-Related systemd Documentation
The following man pages give you more information on systemd cgroups:

systemd.resource-control – describes the configuration options for resource control
shared by system units.

systemd.unit – describes common options of all unit configuration files.
systemd.slice – provides general information about .slice units.
systemd.scope – provides general information about .scope units.
systemd.service – provides general information about .service units.

Additionally, you can install the kernel documentation on cgroups, by
using the following command on your Raspberry Pi OS system:

$ sudo apt install linux-doc
Reading package lists... Done
Building dependency tree... Done
Reading state information... Done
The following packages were automatically installed and are no longer required:

geoclue-2.0 ipcalc kaccounts-providers kactivities-bin kactivitymanagerd
kdeconnect kded5 keditbookmarks kinit kio kpackagelauncherqml kpackagetool5

Output truncated...
Use ‘sudo apt autoremove’ to remove them.
The following additional packages will be installed:

linux-doc-5.10
The following NEW packages will be installed:

linux-doc linux-doc-5.10.179-1
0 upgraded, 2 newly installed, 0 to remove and 0 not upgraded.
Need to get 30.3 MB of archives.
After this operation, 167 MB of additional disk space will be used.
Do you want to continue? [Y/n] Y
Output truncated…
$

Once the documentation for the kernel has been downloaded, you can access
and view the cgroups-specific content by viewing the cgroups man page on
your system.

Applications of systemd for the Beginner 205

2.6.1.3 Linux Namespaces

There is a kernel-level construct in Raspberry Pi OS Linux, appropriately
called “namespaces”, which segregates and isolates the cgroup processes
seen above in Section 2.6.1, and their system resources, in a separate and
protected environment. This allows them to operate in their own process
environments on the system. A very close analogy of namespaces, which you
might be familiar with, is the concept of a variable’s “scope” in a high level
computer programming language, such as C or Python.

Namespaces use the clone system call to accomplish this process isolation.
The biggest and most important use of namespaces is in the system-level
creation, and maintenance, of Linux containers, such as LXD/LXC. For com-
plete reference information on namespaces, consult the man pages on your
Raspberry Pi system for namespaces(7), and user_namespaces(7) – particularly
the EXAMPLE on the user_namespaces man page, which gives an excellent
and instructive C language system programming implementation of the
clone system call used to create a child process that executes a shell command
in a new namespace.

2.6.2 Journal Logging

System logging using log files is extremely useful for system administration.
The logs record activity and events on a Raspberry Pi Linux system. Journal
logging with systemd is very similar to the traditional methods available for
logging. They are created so that the system administrator can carefully, sys-
tematically, and periodically audit the general operation of the system, espe-
cially with regard to performance enhancements that have been made and to
maintain system security.

2.6.2.1 systemd Journal Log Messages

The systemd journal is created and managed by a special daemon, named
journald, which channels all of the messages produced by the facilities and
programs such as the kernel, initrd, systemd services, etc. into a database
record structure. The systemd journal is a single, centralized management
program for collecting together logs, regardless of where the log messages
themselves are generated.

A critical, as well as controversial aspect of systemd journal logging, is
that the log files are stored as binary data, and can be searched by processes
deploying a specialized database traversal program. They are not plain text
files. Previous legacy system logs were text files that could be viewed easily
as such, or even edited in a text editor such as nano, Vi, or emacs.

Storing the log information in a binary format mandates that the log infor-
mation be displayed in useful output formats specific to proprietary database
management technologies. Simply stated, using that proprietary technology

Raspberry Pi OS System Administration with systemd206

is a major drawback. But logs can be displayed using the journalctl command
that we show in the next section.

2.6.2.2 Using the journalctl Command to Query the Journal

The journalctl command is a convenient way of querying entries in the
journal database. Following is a synopsis of the command, extracted from
the journalctl manpage

journalctl - Query the systemd journal

Syntax:
journalctl [options...] [matches...]

Purpose:
journalctl may be used to query the contents of the systemd journal as written by

systemd-journald.service.
If called without options or arguments, it will show the full contents of the journal,

starting with the oldest entry collected.
All users are granted access to their private per-user journals. However, by default,

only root users who are members of a few special groups are granted access to the
system journal and the journals of other users.

Commonly Used Features:

-a, --all Show all fields in full, even if they include unprintable
characters or are very long.

-f, --follow Show only the most recent journal entries, and continuously
print new entries as they are appended to the journal.

-r, --reverse Reverse output so that the newest entries are displayed first.
-u, --unit=UNIT|PATTERN Show messages for the specified systemd unit UNIT (such as

a service unit), or for any of the units matched by PATTERN.
-S, --since=, -U, --until= Start showing entries on or newer than the specified

date, or on or older than the specified date, respectively.
Date specifications should be of the format “2012-10-30
18:17:16”.

To get more information about the use of the journalctl command, particu-
larly about the structure that the command uses to query the journal, examine
the man journalctl command contents as necessary on your system.

2.6.2.3 Journal Logging Basics and Applied to the Webserver2 Program

In this section, we show how to use the journalctl command and its options
and arguments to do some basic systemd-style journal query operations.
We then apply a set of those commands and options to a program named
“webserver2”. That program generates systemd-style journal log output.

Applications of systemd for the Beginner 207

Our use of the journalctl command applied to that program’s journal output
is relevant in this section, so as to better and more practically illustrate the use
of journalctl options and arguments to a real application.

2.6.2.3.1 Basic Log Viewing

To see the logs that the journald daemon has collected, use the journalctl
command.

When used without any options or arguments, every journal entry that
is in the system will be displayed. The oldest entries will be first in the
listing:

$ journalctl
-- Journal begins at Mon 2022-04-04 07:52:30 PDT, ends at Thu 2022-11-17 05:17:01

PST. --
Apr 04 07:52:30 raspberrypi kernel: Booting Linux on physical CPU 0x0000000000

[0x410fd083]
Apr 04 07:52:30 raspberrypi kernel: Linux version 5.15.32-v8+ (dom@buildbot)

(aarch64-linux>
Apr 04 07:52:30 raspberrypi kernel: random: fast init done
Apr 04 07:52:30 raspberrypi kernel: Machine model: Raspberry Pi 400 Rev 1.0
Output truncated…

But what if you want to see the journal with the newest entry first? Use the –r
(reverse) option on the basic journalctl command.

$ journalctl -r
-- Journal begins at Mon 2022-04-04 07:52:30 PDT, ends at Thu 2022-11-17 05:17:01

PST. --
Nov 17 05:17:01 raspberrypi CRON[36470]: pam_unix(cron:session): session closed

for user root
Nov 17 05:17:01 raspberrypi CRON[36471]: (root) CMD (cd / && run-parts --report /

etc/cron>
Nov 17 05:17:01 raspberrypi CRON[36470]: pam_unix(cron:session): session opened

for user >
Nov 17 05:04:28 raspberrypi systemd-logind[519]: Removed session 83.
Nov 17 05:04:28 raspberrypi systemd-logind[519]: Session 83 logged out. Waiting for

processes to exit.
Nov 17 05:04:28 raspberrypi systemd[1] : session-83.scope: Succeeded.
Nov 17 05:04:28 raspberrypi sshd[36257]: pam_unix(sshd:session): session closed

for user bob
Output truncated…

In-Chapter Exercise

9. From the output of the above two commands executed on your
Raspberry Pi system, what can you tell about the most recent current
boot time, and the current time?

Raspberry Pi OS System Administration with systemd208

2.6.2.3.2 Journal Query Structures

The main purpose of collecting the log information together from many
sources, thus centralizing them in one place, such as in the journal, is to be
able to quickly and easily look at and take action based on the entries in
the log that are important to you for some reason. That could be true of an
ordinary desktop user, or a server system administrator.

Because of this, the most important use features of the journalctl command’s
options, and arguments, are its methods of ordering, and making inquiries
into the journal, or separating out more useful, understandable, and compact
information from it. Following are some of the ways these searches through
the log can be done.

For example, the journal has many “field headings” that can be used for
inquiry. Each of these fields acts as an index, or key, to specific kinds or sets
of entries in the journal. Some of those fields are passed to it from the process
being logged, and some are applied by the daemon journald, with data it
gathers from the system at the time the log is from.

A leading underscore indicates that a field is of the latter type. The journal
automatically records and indexes logging for that type of query. You can get
more information about all of the available journal fields by typing:

$ man systemd-.journal-fields

2.6.2.3.3 Querying by Time

You can also see parts of the log in a “from-to” display. You would most
likely want to do this when the system has been operating for a long time
without a reboot. You can do an inquiry by using the --since and --until
options, which limit the entries displayed to those after, or before some
specified given times.

The time parameters are in a variety of formats. For absolute time values,
you should use the following format:

YYYY-MM-DD HH:MM:SS

For example, we can see all of the entries since 2022-04-04 07:52:30 PDT using
this command:

$ journalctl --since “2022-04-04 07:52:30 PDT”

If parts of the above time specification argument are left off, standard
defaults are used instead. For example, if the date is omitted, the current date
will be used. If the time component is missing, “00:00:00” (midnight) will be
used. The seconds field can be left off to default to “00”:

$ journalctl --since “2022-04-04 “ --until “2022-04-04 08:30 PDT”

Applications of systemd for the Beginner 209

The journal also accepts some relative values, and English-language
shortcuts. For example, you can use the words “yesterday,” “today,”
“tomorrow,” or “now.” You do relative times by placing these symbols before
arguments: “-” or “+” to a numbered value or using words like “ago.”

To get the data from yesterday, use this command:

$ journalctl --since yesterday

If you used another system monitoring tool, and it gave information about
a service interruption starting at 11:00 PM and continuing until an hour ago,
you could type:

$ journalctl --since 11:00 --until “1 hour ago”

2.6.2.3.4 Querying by Unit

The most useful, and practical way of querying, is by designating the service
unit’s name you are interested in. You use the -u option to query by unit.

For example, to see all of the logs from the webserver2 unit on your system,
use the following command:

$ journalctl -u webserver2.service

You can perform compound queries by adding arguments to the above
unit query by unit name. To query by time and name, to check on how the
status of the service you are interested in, use the following command:

$ journalctl -u webserver2.service --since today

Compound querying is useful when you want to compare log entries from
related units running on the system. For example, if you want to compare
log entries from your webserver2 service to the status of another unit, you
can view the entries from both in chronological order by using the following
compound query statement:

$ journalctl -u webserver2.service -u systemd-logind.service --since \
yesterday

This allows you to study the interactions between different programs and
debug targets and the interaction of dependencies, instead of just individual,
isolated units.

2.6.2.3.5 Querying by Process, User, or Group ID

Several services may fork many child processes to accomplish their purposes.
If you know the exact PID of a process you are interested in, you can perform
a journalctl query by PID. To do this, execute the query by specifying the

Raspberry Pi OS System Administration with systemd210

_PID field. For example, if the PID we’re interested in is 1, use the following
command:

$ journalctl _PID=1

You can also show all of the entries logged from a specific user, or group.
This is done with the _UID or _GID filters. For example, if webserver2 is being
run by the user bob, you can find the user ID with the following command:

$ id -u bob
1000
$

Then, you can use the ID that was returned to structure a query command
based on the results, as follows:

$ journalctl _UID=1000 --since today

The -F option of the journalctl command is used to show all of the available
values for a given journal field. To see which group IDs the systemd journal
has entries for, use the following command:

$ journalctl -F _GID
0
1000
7
123
65534
109
116
110
113
$

The above output shows all of the values that the journal has stored for the
group ID field. This can help you construct your queries with the Group
ID field.

2.6.2.3.6 Querying by Component Path

You can apply a filter to the query by providing a pathname. If the path-
name leads to an executable image, journalctl will display all of the entries
that are related to that particular executable image. For example, to find log
entries that involve the webserver2 executable program, use the following
command:

$ journalctl /home/bob/webserver2

where the path to the executable image is /home/bob, and the name of the
executable program is webserver2.

Applications of systemd for the Beginner 211

Usually, if a unit file is available for the executable, this method is more under-
standable and gives useful information to someone trying to achieve system
administration tasks, such as security intrusions (entries from associated child
processes, etc.). However, this does not always yield useful information.

2.6.2.3.7 Querying by Priority

One query filter that system administrators are very interested in is message
priority. While it is useful to log information at a very verbose level, when
actually trying to read and interpret the observed and available information,
listing low-priority logs can be obscure and useless.

You can use journalctl to display only messages of a specified priority or
above by using the -p option. This allows you to filter out lower-priority
messages. For instance, to show only entries logged at the error level or
above, you can type:

$ journalctl --b -p err
-- Journal begins at Mon 2022-04-04 07:52:30 PDT, ends at Thu 2022-11-17 08:17:02 \

PST. --
Nov 15 06:37:22 raspberrypi systemd-modules-load[145]: Failed to find module ‘lp’
Nov 15 06:37:22 raspberrypi blkmapd[165]: open pipe file /run/rpc_pipefs/nfs/ \

blocklayout faile>
Nov 15 06:37:22 raspberrypi systemd-modules-load[145]: Failed to find module \

‘ppdev’
Nov 15 06:37:22 raspberrypi systemd-modules-load[145]: Failed to find module \

‘parport_pc’
Output truncated ...

This will display all messages marked as error, critical, alert, or emergency.
The journal implements the legacy UNIX/Linux syslog message levels. You
can use either the priority name, or its corresponding numeric value. In order
of highest to lowest priority, these are shown in Table 2.3.

The above numbers or names can be used interchangeably with the -p
option. Selecting a priority will display messages marked at the specified
level and those above it.

In-Chapter Exercise

10. What does the --b directive in the previous command do, as far as a
compound query?

2.6.2.4 Query Output Display

The above queries showed particular kinds of log entry outputs. There
are other ways we can add options and addendums to the queries. The
journalctl output is more condensed and legible, thus a more readable dis-
play. Organized in a more understandable way if you want to cull certain
information from it.

Raspberry Pi OS System Administration with systemd212

Note
In certain output displays below, exiting, or stopping, the display of journal
entries can be done by typing q on the command line.

To display a certain number of log entries, you can use the -n option. By
default, it will display the most recent 10 entries:

$ journalctl -n

You can also specify the number of entries you’d like to see, with a number
after the -n:

$ journalctl -n 15

2.6.2.4.1 Displaying Log Entries in Real Time

To show the content of the journal in real time, and see the logs as they are
being written, use the -f option

$ journalctl -f

Adjusting how journalctl displays log data shrinking or expanding can
be achieved by using the following option. By default, journalctl will show
the entire entry in the pager, left-to-right, allowing the entries to trail off to
the right of the screen. This rightward-extensive display data can be seen
by pressing the right arrow key. If you’d rather have the output truncated,
inserting an ellipsis where information has been removed, you can use
the --no-full option:

TABLE 2.3

systemd Error Priorities

Priority Name Description and Possible Action(s) To Be Taken

0 emerg Emergency- A “panic” condition - notify system administration.
1 alert Alert- Notify system administrator who can fix the problem.

Example: loss of backup ISP connection.
2 crit Critical- Failure in a primary system. Fix crit problems before alert

problems. Example: loss of disk subsystem.
3 err Error- Non-urgent failures, should be sent to developers or

development admins.
4 warning Warning- Not an error, but shows that an error will occur if action is

not taken, e.g. file system nearly full.
5 notice Notice- Unusual events, but not error conditions. No immediate action

required.
6 info Information- Normal operating messages - No action required.
7 debug Debug- Info useful for developers for debugging the app, not useful

during operations.

Applications of systemd for the Beginner 213

$ journalctl - -no-full
-- Journal begins at Mon 2022-04-04 07:52:30 PDT, ends at Thu 2022-11-17 08:17:02

PST. --
Apr 04 07:52:30 raspberrypi kernel: Booting Linux on physical CPU 0x0000000000

[0x410fd083]
Apr 04 07:52:30 raspberrypi kernel: Linux version 5.15.32-v8+ (dom@buildbot)

(aarch64-lin…T>
Apr 04 07:52:30 raspberrypi kernel: random: fast init done
Apr 04 07:52:30 raspberrypi kernel: Machine model: Raspberry Pi 400 Rev 1.0
Apr 04 07:52:30 raspberrypi kernel: efi: UEFI not found.
Apr 04 07:52:30 raspberrypi kernel: Reserved memory: created CMA memory pool at

0x0000000…20 MiB
Apr 04 07:52:30 raspberrypi kernel: OF: reserved mem: initialized node linux,cma,

compati…a-pool
Apr 04 07:52:30 raspberrypi kernel: Zone ranges:
Apr 04 07:52:30 raspberrypi kernel: DMA [mem

0x0000000000000000-0x000000003fffffff]
Apr 04 07:52:30 raspberrypi kernel: DMA32 [mem

0x0000000040000000-0x00000000fbffffff]
Output truncated ...

You can also specify to journalctl to display all of its information, no matter
whether it includes unprintable characters. We can do this with the -a
option:

$ journalctl -a

By default, journalctl displays the output of a query in a “paged” manner,
one screenful at a time. To be able to process the data with text manipulation
tools, such as a text editor, or LibreOffice Writer for example, you can output
to standard output, redirecting it into a post-processing program, or to a disk
file. You can do this with the --no-pager option. In the following example, we
redirect the pager output to a file named “page1”:

$ journalctl --no-pager > page1

2.6.2.4.2 Query Output Formats

If you are post-processing journal log entries with some particular program,
as mentioned above, you will have an easier time parsing the data into that
program if it is in a more amenable format. The journal can be displayed its
output in a variety of formats. You can do this using the -o, option with a
format specifier.

For example, you can output the journal entries in JSON format with the
following command:

$ journalctl -b -u webserver2 -o json

Raspberry Pi OS System Administration with systemd214

This is useful for parsing with certain utility programs. You could use the
json-pretty format to get a better handle on the data structure before passing
it off to the JSON consumer:

$ journalctl -b -u webserver2 -o json-pretty

Table 2.4 shows the formats that might be used for such a display.
These options allow you to display the journal entries in whatever format

best suits how you want to do the post-processing treatment of the content
of the journal.

2.6.2.5 Journal Maintenance

It may become necessary to not only look through older boot environments,
and correlate the logs found in them with the most current boot logs, but
to delete older, obsolete log entries. Log and journal maintenance is an
important aspect of system administration.

Note
At the time this book was written, “vacuuming”, or cleaning out journal log
files, only works on archived files and corrupted files, and does not work on
active log files!

You can find out the amount of space that the active and archived journals
are currently occupying on disk by using the --disk-usage option of the
journalctl command:

$ journalctl --disk-usage

Archived and active journals take up 48.0M in the file system.

The active journal logs cannot be pruned.

TABLE 2.4

journalctl Output Formats

cat Displays only the message field itself.
export A binary format suitable for transferring or backing up.
json Standard JSON with one entry per line.
json-pretty JSON formatted for better human-readability
json-sse JSON formatted output wrapped to make add server-sent event compatible
short The default syslog style output
short-iso The default format augmented to show ISO 8601 wallclock timestamps.
short-monotonic The default format with monotonic timestamps.
short-precise The default format with microsecond precision
verbose Shows every journal field available for the entry, including those usually

hidden internally.

Applications of systemd for the Beginner 215

When this facility becomes available for active journal logs, there are basic-
ally two different ways you will be able to do that.

1. If you use the --vacuum-size option, you can shrink your journal by
indicating a size. This will remove only old archived entries that are
corrupted or empty, until the total journal space taken up on disk is at
the requested size:

$ sudo journalctl --vacuum-size=1M
sudo journalctl --vacuum-size=1M
Deleted archived journal /var/log/journal/42ef46612dc64ec2bf13b9704a661ec8/

user-1000@0005fa1821e06e36-c096421281b7ec8d.journal~ (8.0M).
Deleted archived journal /var/log/journal/42ef46612dc64ec2bf13b9704a661ec8/ sys

tem@0005fa1821194676-6ee6ae817589e0dc.journal~ (16.0M).
Vacuuming done, freed 24.0M of archived journals from /var/log/journal/42ef46612d

c64ec2bf13b9704a661ec8.
Vacuuming done, freed 0B of archived journals from /run/log/journal.
Vacuuming done, freed 0B of archived journals from /var/log/journal.
$

2. Another way that you can prune the archived journal log is by spe-
cifying a cutoff time with the --vacuum-time option. Any entries
beyond that time are deleted. This allows you to keep the entries that
have been created after a specific time.

For instance, to keep entries from the last year, you can type:

$ sudo journalctl --vacuum-time=1years

Limiting Journal Expansion
You can limit how much persistent storage on disk the journal can take
up. This can be done by editing the /etc/systemd/journald.conf file. The
following items in that file can be used to limit the journal growth:

SystemMaxUse=: The maximum disk space that can be used by the journal in
persistent storage.

SystemKeepFree=: The amount of space that the journal should leave free when
adding journal entries to persistent storage.

SystemMaxFileSize=: How large individual journal files can grow to in persistent
storage before being rotated.

RuntimeMaxUse=: The maximum disk space that can be used in volatile storage
(within the /run file system).

RuntimeKeepFree=: The amount of space to be set aside for other uses when
writing data to volatile storage (within the /run file system).

RuntimeMaxFileSize=: The amount of space that an individual journal file can take
up in volatile storage (within the /run file system) before being rotated.

Raspberry Pi OS System Administration with systemd216

2.6.2.6 Boot Process Querying

Using the journal, you can examine logs of the present boot record and its
progress, and past boot records. This is useful from a system administration
perspective, when something goes wrong with the boot process, or when
software or hardware on the system fails to start or operate properly after the
system boots and is in the steady state condition.

2.6.2.6.1 Querying Past Boots

To display the information from the current boot, there are times when past
boot sequence records would be helpful to examine and compare to the
current one. The journal can save information from many previous boots,
and the journalctl command can be made to display that information in an
effective and concise comparative way. Note that in order for you to retain
journal information from past boots, you must complete the procedures
shown in this section first.

To enable persistent boot information, you can do the following:

1. Create the directory to store the journal with the following command:

$ sudo mkdir -p /var/log/journal

2. Edit the journal configuration file with the editor of your choice:

$ sudo nano /etc/systemd/journald.conf
Under the [journal] section, uncomment (remove the # sign) the Storage=

option, and set it to “persistent” to enable persistent logging:
/etc/systemd/journald.conf
. . .
[Journal]
Storage=persistent

When retaining previous boots via persistence is enabled on your system,
the journalctl command provides some options for working with boots as a
unit. To see the boots that journald knows about, use the --list-boots option
with journalctl:

$ journalctl --list-boots
0 d536f728b3da464cbf4e740e95adffda Mon 2023-04-24 10:13:44 PDT—Sun

2023-04-30 12:30:15 PDT
$

The above command will display a line for each boot, as shown in Table 2.5.
To display more verbose information from these boots, you can use infor-

mation from either the first or second column. To see the journal from the
previous boot, use the -1 relative pointer with the -b flag:

$ journalctl -b 0

Applications of systemd for the Beginner 217

You can also use the boot ID to call back the same data from boot 0:

$ journalctl -b d536f728b3da464cbf4e740e95adffda

2.6.2.6.2 The Current Boot

To display journal logs from the current boot, use the following command:

$ journalctl -b

This will show you all of the journal entries that have been collected since
the most recent reboot, particularly if you have done the procedures in the
previous section and then rebooted a number of times. You can then monitor
information about your current environment.

2.6.2.6.3 Displaying Kernel Messages

Kernel messages related to booting, those usually found in dmesg output,
can be retrieved from the journal as well. To display only these messages, we
can add the -k or --dmesg flags to the journalctl command:

$ journalctl -k

By default, this will display the kernel messages from the current boot.
You can specify an alternative boot environment using the normal boot selec-
tion specifications above, being sure that a persistent boot environment was
enabled. For instance, to get the messages from five boots ago (if they exist in
the journal!,) you could type:

$ journalctl -k -b -5

In-Chapter Exercises

11. A new app you have installed refuses to run on your Raspberry Pi
system. Out of the multitude of debugging scenarios you could go
through to find out why that app is misbehaving, you could use a single
systemd command to check the most recent record of system activity,
and then solve the problem with the app quickly and easily from there.

TABLE 2.5

systemctl Boot Information

0 The first column is the offset for the boot from 0,
the current boot environment.

0 d536f728b3da464cbf4e740e95adffda An absolute reference, the boot ID is in the
second column.

Mon 2023-04-24 10:13:44 PDT—Sun
2023-04-30 12:30:15 PDT

The time that the boot session spans, with two
time specifications (from-to).

Raspberry Pi OS System Administration with systemd218

Which specific command in the previous sections most compactly provides
you with the procedure to expedite your viewing of recent system activity?

12. To get practice with the journalctl commands from the previous
section, query the boot record from three previous system boots (if
there are that many!) from the current boot environment.

2.6.3 systemd Timers

systemd takes on many of the functions and facilities that legacy Cron did,
via support for clock-time-based, and calendar-time-based events.

From a system administrator’s perspective, systemd can do Cron-like
scheduling of system events. We give examples below of clock-time-based
running of a single script, and calendar-based scheduling of events.

In order to get a complete description of how systemd deals with time-based
specifications and operations, see the man page for systemd.time.

2.6.3.1 An Example of Clock-Time-Based Running of a Script

If you have a script /usr/local/bin/myscript that you want to run every
hour, do the following steps:

1. Create a service unit file, named myscript.service, with your favorite text
editor. Save it in /etc/systemd/system/, with the following content:

[Unit]
Description=Whatever MyScript Does

[Service]
Type=simple
ExecStart=/home/bob/myscript

Note that it is important to set the Type variable to be “simple,” not “oneshot.”
If you specify “oneshot”, the script will be run the first time, and then systemd
will not run it again, and will turn off the timer.

2. Create the following timer unit file, in the same directory as the service
unit file above.

[Unit]
Description=Runs myscript every hour

[Timer]
Time to wait after booting before we run first time
OnBootSec=10min
Time between running each consecutive time
OnUnitActiveSec=1h
Unit=myscript.service

[Install]
WantedBy=multi-user.target

Applications of systemd for the Beginner 219

3. To start and enable the service:

$ sudo systemctl start myscript.timer

and to enable it for every subsequent boot:

$ sudo systemctl enable myscript.timer

In-Chapter Exercises

13. #!/bin/bash
My first script converted into a service
echo “Hello World!”

If the above script file in your home directory on your Raspberry Pi system
(which you have named myscript) is made into a service with the three steps
shown above, how can you get the message “Hello World!” to display every
10 minutes on the stdout of a terminal?

14. (a) What command do you use to stop the service? (b) What command
do you use to ensure the service does not run on every subsequent boot?

2.6.3.2 Example of Calendar-Based Running of the above Script File

If you want to start the service shown in Section 2.6.3.1 according to a calendar
event, and not a clock-based interval specification, create a new timer unit,
and link the service unit file from that example to that new timer unit.

1. Create the timer unit with your favorite text editor (or nano if you,)
using the following command:

$ sudo nano /etc/systemd/system/cal.timer

Then put this text into that file

[Unit]
Description=Calendar-based timer

[Timer]
OnCalendar=Mon-Fri *-*-* 00:00:00
Unit=myscript.service

[Install]
WantedBy=basic.target

The service file and the timer unit file are put in the /etc/systemd/system/ folder.

2. To start the calendar timer

$ sudo systemctl start cal.timer

Raspberry Pi OS System Administration with systemd220

and to enable it for every subsequent boot:

$ sudo systemctl enable cal.timer

In-Chapter Exercise

15. What does the time stamp Mon-Fri *-*-* 00:00:00 in the above example
specify for the running of the script file?

2.7 A Python3-Based Webserver as a “New-Style Daemon”

For our purposes here in these sections of the chapter, a “new-style” daemon,
program, app, or method is one that is systemd-controlled. This example
deploys a special Python3 module that easily creates a webserver daemon,
and puts this module under the control of systemd as a new-style daemon.
You don’t absolutely need to have any Python knowledge, just to follow
along with the steps shown below:

1. Place a valid index.html file in your home directory. Our home direc-
tory in the steps below is /home/bob. Additionally, our very simple
index.html file is this

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.0 Transitional//EN”>
<html>
<head>

<meta http-equiv=“content-type” content=”text/html; charset=utf-8”/>
<title></title>
<meta name=“generator” content=”LibreOffice 4.3.5.2.0 (FreeBSD)”/>
<meta name=“created” content=”2015-04-25T18:47:03.316903354”/>
<meta name=“changed” content=”2015-04-25T18:48:11.213818830”/>

<link href=“/home/bob/favicon.ico” rel=”icon” type=”image/x-icon” />
</head>
<body lang=“en-US” dir=”ltr” style=”background: transparent”>
<p>Under Construction</p>
</body>
</html>

2. Create a service unit file for the webserver in /etc/systemd/system,
named simp.service, with the following content. We used the command
sudo nano simp.service to achieve this:

[Service]
ExecStart=/usr/bin/python3 -m http.server -d /home/bob 8000

http://http-equiv=“content-type”content=”text
http://http.server-d

Applications of systemd for the Beginner 221

3. To start the service, use the following command:

$ sudo systemctl start simp.service

4. To view the status of the service, type the following:

$ systemctl status simp.service

● simp.service
Loaded: loaded (/etc/systemd/system/simp.service; static)
Active: active (running) since Tue 2022-11-22 08:48:25 PST; 16s ago

Main PID: 141711 (python3)
Tasks: 1 (limit: 4164)

CPU: 191ms
CGroup: /system.slice/simp.service

└─141711 python3 -m http.server -d /home/bob 8000

Nov 22 08:48:25 raspberrypi systemd[1] : Started simp.service.
$

5. To view the web page this service provides, in a web browser on your
local machine, type-in the URL 127.0.0.1:8000

The index.html file is now displayed in your browser.

6. To stop the service, type the following command:

$ sudo systemctl stop simp.service

In-Chapter Exercise

16. (a). Modify the service file for simp.service, so that the Python3 built-in
webserver is exposed on port 8001. Also, modify the contents of
the index.html file code so that it is customized to your liking.
Add things like more text, images, links to other pages, etc. Name
the service simp2, and complete the 6 steps shown above to make
it into a systemd-controlled service. Then run the services simp
and simp2 simultaneously, and with your favorite Web browser,
browse to ports 8000 and 8001. What do you see there?

(b). How can you expose the ports 8000 and 8001 to the Internet
safely, so that from a remote site, you can see the webpages
you’ve created for this Exercise?

The above examples illustrated how simple Bourne shell script files, and
a Python built-in, can be made into daemon services under the control and
monitoring of systemd. The first and second examples illustrated how to

http://http.server-d

Raspberry Pi OS System Administration with systemd222

make a shell script a daemon by adding a service unit file for it in /etc/
systemd/system. The third example illustrated how to make a simple Python
built-in, that runs a Python-based webserver application, into a systemd
service.

2.7.1 systemd Methods of Changing the Activation Behavior of a
New-Style Daemon

There are several other “new-style” techniques and methods that can be
applied instead of, or to replace an old-style daemon (a traditional UNIX or
Linux daemon,) to update it to be systemd-compliant and more effectively,
and efficiently controlled by systemd.

These include the following general ways of achieving that:

Boot-Based Activation
“Old-style” daemons are started when the system boots, and/or by individual
script files on a per-service basis, using UNIX BSD or SysV initialization. This
is the traditional method of service activation, used before systemd’s instal-
lation in the kernel. systemd uses a modernized version of activation, both
when the system boots, and at runtime, using minimal service description
files we have described in the sections above.

Socket-Based Activation
The chief advantage of socket-based activation of daemons is, most import-
antly, the simplification of configuration and the program development pro-
cess. In socket-based activation, the creation and binding of listening sockets
happens in systemd. Using initialization and service unit files for daemon
configuration, systemd installs the sockets, and then assigns them to the
systemd-started process when some triggering event occurs.

Bus-Based Activation
When the D-Bus InterProcess Communication (IPC) system is used, new-
style daemons deploy bus activation so that they are automatically activated
when a client application accesses their IPC interfaces, or channels.

Device-Based Activation
New-style daemons that manage a particular type or class of hardware, like
disk volumes or ZFS datasets, are activated only when the hardware of the
respective kind is plugged in, or otherwise becomes available.

Path-Based Activation
systemd provides a way to bind service activation to file system changes.
This is implemented using path-based activation configured in path unit
files, as illustrated and described in the man page for systemd.path.

Applications of systemd for the Beginner 223

Timer-Based Activation
New-style daemons can implement clean-up jobs that are intended to be
executed in regular intervals. In systemd, this is implemented via timer unit files
as shown in examples above, as described in the man page for systemd.timer.

It is possible, and preferable, for services to be activated by more than one
of the above methods.

Examples of this are Wi-Fi, Bluetooth, and CUPS printer services, which
can be made active when their respective devices are plugged in, or when
activity is first seen on a particular port.

We provide a simple example of socket-based activation in Section 2.7.1.1.

2.7.1.1 A Simple Sockets-Based Activation Example

Note
Part of the efficiency and speed advantage systemd gives the Raspberry Pi
OS is the ability to delay the start of services and daemons until they are actu-
ally needed, instead of running all of them when the system boots and enters
the steady operating state.

Sockets-based activation for a daemon, such as a web server, means that when
a request is made on a specified port that the web server is hooked to, the web
server then starts as a daemon. It then services all requests made on that port.

In this example, we use the special systemd-activate command, which
is usually used to test sockets-based activation, to achieve our objectives.
systemd-activate “listens” on a port.

Following are steps you can easily take to make a web server application
start when a HTTP request is made on a particular port of your choosing.
You can change the port numbers shown in the example steps below to any
ephemeral ports you want.

1. ***Optional*** Place a valid index.html file in your home directory on
your Raspberry Pi OS system, if you haven’t already done so for the
example above in Section 2.7. Our home directory in the steps below
is /home/bob. Additionally, our very simple index.html file is this:

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.0 Transitional//EN”>
<html>
<head>

<meta http-equiv=“content-type” content=”text/html; charset=utf-8”/>
<title></title>
<meta name=“generator” content=”LibreOffice 4.3.5.2.0 (FreeBSD)”/>
<meta name=“created” content=”2015-04-25T18:47:03.316903354”/>
<meta name=“changed” content=”2015-04-25T18:48:11.213818830”/>
<link href=“/home/bob/favicon.ico” rel=”icon” type=”image/x-icon” />

</head>
<body lang=“en-US” dir=”ltr” style=”background: transparent”>
<p>Under Construction</p>
</body>
</html>

http://HTTP
http://http-equiv=“content-type”content=”text

Raspberry Pi OS System Administration with systemd224

2. Type the following command (where instead of the path /home/bob,
you substitute the path to the directory where you placed the index.
html file:

$ systemd-socket-activate -l 2000 -a python3 -m http.server -d \
/home/bob 8096

Listening on [::]:2000 as 3.

This command awaits a request on port 2000, and then when one comes
in (from a web browser, for example), it executes the command shown after
the -a option to activate the Python3 http.server webserver built-in application.
So basically you are using the systemd-socket-activate command to activate
port 2000, and then coupling Python3 to this activation to run the http.server
built-in application on port 8096.

3. To test this activation, with your favorite web browser, set the URL to

http://your_ip_address:2000.

Our local network web address was 192.168.1.2.

Note You will get an error in the browser, or the browser will spin for a
while. No worries!

In the terminal window you typed the command into, this will be displayed

Listening on [::]:2000 as 3.
Communication attempt on fd 3.
Connection from 192.168.1.2:38070 to [::ffff:192.168.1.2]:2000
Spawned python3 (python3 -m http.server -d /home/bob 8096) as PID 129730.
Execing python3 (python3 -m http.server -d /home/bob 8096)
Serving HTTP on 0.0.0.0 port 8096 (http://0.0.0.0:8096/) ...

You just “primed” the systemd-socket-activate program, and it has spawned
the Python3 http.server application! You can check this by using the ps -aux
command in another terminal window at this point.

4. Set your browser’s URL to http://your_ip_address:8096, and press
Enter. You have accessed the Python3 http.server on port 8096. To
check this, use the ps -aux command again. It should now show
two processes running: the systemd-socket-activate process, and the
Python3 http.server process, which was socket-activated. Plus, per-
haps a couple of Web browser processes as well.

5. Something similar to this will now show in the terminal window from
Step 2:

http://http.server-d
http://http.server-d
http://http.server
http://http.serverbuilt-inapplicationonport8096
http://http.serverbuilt-inapplicationonport8096
http://your_ip_address
http://http.server-d
http://http.server-d
http://HTTPon0.0.0.0port8096
http://0.0.0.0:8096
http://http.serverapplication
http://your_ip_address
http://http.serveronport8096
http://http.serverprocess

Applications of systemd for the Beginner 225

192.168.1.2 - - [30/Apr/2023 15:39:13] “GET / HTTP/1.1” 200 -
192.168.1.2 - - [30/Apr/2023 15:39:13] code 404, message File not found
192.168.1.2 - - [30/Apr/2023 15:39:13] “GET /favicon.ico HTTP/1.1” 404 -

Whatever is in the directory you set in Step 1. above will be displayed. If
the directory contains files, it will show you a listing of the files in the direc-
tory. And if there is a valid HTTP-formatted index.html file in that directory,
as optionally shown in Step, your web browser will show its valid HTML
contents in the browser window.

6. To terminate the Python3 built-in http.server, hold down <Ctrl> +
C on the keyboard in the terminal window you typed the command
from Step 2. You’ll get a Keyboard interrupt received, exiting message.

One of the obvious drawbacks of this example is that the Python3 built-in
http.server web server does not stop running after requests have stopped
coming into it on port 8096. It’s not socket-deactivated. Building a timeout
into this simple example would be an interesting exercise, so that the web
server is not always running. And, as you can see, the Simple Sockets-Based
Activation Example is not a rigorous and thorough explication of socket-
based activation, but it gives you the idea behind it using a single, and very
simple, systemd command.

In-Chapter Exercises

17. How would you terminate the simple sockets-based activation
example you created above from the command line?

18. Use the ncat command (from the nmap tools) to achieve the same
results as the systemd-socket-activate program example above, except
instead of a Python3 webserver program, launch a bash shell.

(Hint: On a server, use ncat to both listen on a port, and then start the bash
shell when a request comes in on that port, and on a client connect to the
server on that port)

2.8 Chapter Summary

In this chapter, we provided a complete overview of the superkernel known
as systemd, which essentially controls everything on the Raspberry Pi OS
system, including the Linux kernel itself. We covered the following basic
systemd, and other Linux commands- id -u, journalctl, ncat, nmap, systemctl,
systemd-activate, systemd-cgls, systemd-socket-activate, who -r .

http://HTTP
http://HTTP
http://HTTP-formattedindex.html
http://http.server
http://http.server

https://taylorandfrancis.com

227

227

Questions, Problems, and Projects

Chapter 0

1. Create a directory called Raspberry in your home directory. What
command line did you use to do this?

2. Give a command line for displaying the files lab1, lab2, lab3, and lab4.
Can you give two more command lines that do the same thing? What
is the command line for displaying the files lab1.c, lab2.c, lab3.c, and
lab4.c? (Hint: use shell metacharacters.)

3. Give a command line for printing all the files in your home directory
that start with the string memo and end with .ps on a printer called
upmpr. What command line did you use to do this?

4. Give the command line for nicknaming the command who -H as W.
Give both Bash and C shell versions. Where would you put it if you
want it to execute every time you start a new shell?

5. Type the command man ls > ~/Raspberry/ls.man on your system.
This command will put the man page for the ls command in the ls.
man file in your Raspberry directory (the one you created in Problem
1). Give the command for printing two copies of this file on a printer in
your lab. What command line would you use to achieve this printing?

6. What is the mesg value set to for your environment? If it is on, how
would you turn it off for your current session? How would you set it
off for every login?

7. What does the command lpr -Pqpr [0-9]*.jpg do? Explain your answer.
8. Use the passwd command to change your password. If you are on a

network, be aware that you might have to use the yppasswd command
to modify your network login password. Also, make sure you abide
by the rules set up by your system administrator for coming up with
good passwords!

9. Using the correct terminology (e.g., command, option, option argu-
ment, and command argument), identify the constituent parts of the
following Raspberry Pi OS single commands.

ls -la *.exe

lpr –Pwpr file27

chmod g+rwx *.*

10. View the man pages for each of the useful commands listed in Table 0.2.
Which part of the man pages is most descriptive for you? Which of

Questions, Problems, and Projects228

the options shown on each of the man pages is the most useful for
beginners? Explain.

11. How many users are logged on to your system at this time? What
command did you use to discover this?

12. Determine the name of the operating system that your computer runs.
What command did you use to discover this?

13. Give the command line for displaying manual pages for the socket,
read, and connect system calls on your system.

Advanced Questions and Problems

14. Following is a typical /etc/profile configuration file, this particular
one is from a default installation on our Raspberry Pi system:

/etc/profile: system-wide .profile file for the Bourne shell (sh(1))
and Bourne compatible shells (bash(1), ksh(1), ash(1), ...).

if [“$(id -u)” -eq 0]; then
PATH=“/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin”

else
PATH=“/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/\

local/games:/usr/games”
fi
export PATH

if [“${PS1-}”]; then

if [“${BASH-}”] && [“$BASH” != “/bin/sh”]; then
The file bash.bashrc already sets the default PS1.
PS1=‘\h:\w\$ ‘
if [-f /etc/bash.bashrc]; then

. /etc/bash.bashrc
fi

else
if [“$(id -u)” -eq 0]; then

PS1=‘# ‘
else

PS1=‘$ ‘
fi

fi
fi

if [-d /etc/profile.d]; then

for i in /etc/profile.d/*.sh; do
if [-r $i]; then

. $i
fi

done
unset i

fi

Questions, Problems, and Projects 229

Write an explanatory sentence in your own words describing exactly what
you consider important lines in the file accomplish, including the comments
(the lines that begin with the pound sign #). Examine this file on your
Raspberry Pi system. How does it compare, line-for-line, with the one above?
We assume here that, by default, Bash is both the interactive and login shell
on your system.

15. What is the default umask setting in an ordinary, non-privileged
account on your Raspberry Pi system, from both a login and non-login
shell? Describe in your own words what the umask setting is, and how
it is applied to newly-created directories and files. Is the umask set in /
etc/profile on your Raspberry Pi system? If not, where can the umask
be set most effectively on a persistent basis, for a particular single user,
both in a login and non-login shell?

16. Assume that all users, when they log into your Raspberry Pi system,
have Bash as their default shell. What file sets the shell prompt
for them on your Raspberry Pi system? Is it the file illustrated in
Problem 14? Describe the lines in the file that actually specify the
shell prompt, and give a short description of the components of those
lines. Experiment to find out which file accomplishes the actual shell
prompt setting for ordinary users (for both interactive or login shells),
and write an explicit description of what you have discovered.

Additionally, set the shell prompt for yourself in the current interactive
shell, so that it contains the following:

A display of just the date/time.
A display of the date and time, hostname and current directory.
A display where the entire prompt is in red text, along with hostname and

current directory.
Then make those changes persistent for yourself in both login and inter-

active shells. Finally, undo the persistent changes.
As a follow-up, design your own shell prompt so that it contains the infor-

mation you want in a useful display given your use case(s), and make that
designed prompt persistent for yourself on your Raspberry Pi system.

17. Give a sequential list of the exact commands you would use to
make the TC shell the default login shell for your user account
on your Raspberry Pi system. Is the TC shell installed by default
on your Raspberry Pi system? If not, how would you install it on
a Debian-family or CentOS system? Give the exact commands for
installation of not only the TC shell, but any of the other 4 major
Raspberry Pi OS shells available.

18. Execute all of the compound command Examples provided at the web
link explainshell.com, and then use the output shown to explain all

https://explainshell.com

Questions, Problems, and Projects230

of them in your own words. Try executing the Examples with mean-
ingful arguments on your Raspberry Pi system, if possible.

Project 1

After completing Problems 14 through 16, gather your findings together
in a summary report that details the default settings (within the scope
of the files you have examined and in the context of those problems) of
the Bash environment on your Raspberry Pi system. For example, which
actual file takes precedence by default, and what components of the Bash
environment are set in that file? What are the critical default settings in
the Bash environment, and what actual files on your Raspberry Pi system
affect them?

Chapter 1

1. ***Note*** At the time of the writing of this book, the Raspberry Pi
foundation supported a “Lite” release of the Raspberry Pi OS, which
can be the basis for a “server’ install. It comes with a terminal console
interface instead of a desktop. On this platform, 99% of “server” apps
run on it.
Write a brief outline of how to install the “server“, non-GUI-interface
of the Raspberry Pi OS, on your computer hardware. Briefly detail
exactly how the “Lite” installation procedure differed from a Desktop
distribution installation. If you didn’t do the installation, find out from
the system manager how the installation was done, and why it was
done in that way.

2. After doing Problem 1, do the following steps on the server edition in
order to complete the requirements for this problem:
a. If you have not already done so, download, install, and test the

vsftpd service on your system, as shown in Example 1.2.
b. Use the adduser command to create a new user account on your

Linux system with the following configuration:

$ sudo adduser ftp2
Adding user `ftp2’ ...
Adding new group `ftp2’ (1004) ...
Adding new user `ftp2’ (1003) with group `ftp2’ ...
Creating home directory `/home/ftp2’ ...
Copying files from `/etc/skel’ ...
Enter new UNIX password: YYY
Retype new UNIX password: YYY

Questions, Problems, and Projects 231

passwd: password updated successfully
Changing the user information for ftp2
Enter the new value, or press ENTER for the default

Full Name []:
Room Number []:
Work Phone []:
Home Phone []:
Other []:

Is the information correct? [Y/n] Y

$

c. Test your new user account locally on your LAN by using the
command ftp 0 with username ftp2. Test it from the Internet.
Put files in the users account, and retrieve files from that account
locally from another account and from the Internet.

3. After doing Problems 1 and 2 for a server edition install, and given
the steps needed to accomplish user account management, make a
table or chart of what users and groups need to be added to your
system, and what their default account parameters and group
memberships should be. What command can you use to identify all
existing groups on the system? Use the batch mode account creation
technique to implement the users and groups from the table or chart
you created.

4. Do the same operations as in Examples 1.3 and 1.4, except use
externally-mounted USB3 bus SATA SSDs, flash drives, or PCIe M.2
modules instead of the drive types specified in those Examples.

In the case of duplicating Example 1.3, you might be adding an
externally-mounted USB3 bus SATA SSD. In the case of duplicating
Example 1.4, you will be doing that on an externally mounted USB3 SATA
SSD or PCIe M.2 module.

Following are some advisories about how to complete the duplicate of
Example 1.3 successfully

Make sure you know the logical device name of your system disk, such as
/dev/sda. Don’t do this problems steps by mistake using that drive! If you
do, you will render the system unbootable!

5. Execute Example 1.5 on available hardware. What would be the
security and archival advantages of creating a mdadm RAID1,
mirrored pair of SATA hard disks? To follow up on Example 1.5, repeat
the Example using a selected higher order of RAID on the requisite
number of readily available multiple disks in your array.

6. Add a shared network printer to your Linux system without a direct
USB connection, and outline the steps necessary to get the printer to
actually work, given your installation type.

Questions, Problems, and Projects232

7. Rewrite the following bash and Tcsh scripts in Python 3:

#!/bin/bash
if [-d “/usr/bin”] ; then

echo “/usr/bin is a directory”
else

echo “/usr/bin is not a directory”
fi

#!/bin/bash
echo “Enter input: \c”
read line
echo “You entered: $line”
echo “Enter another line: \c”
read word1 word2 word3
echo “The first word is: $word1:”
echo “The second word is: $word2:”
echo “The rest of the line is: $word3:”
exit 0

#!/bin/bash
echo “The command name is: $0.”
echo “The number of command line arguments passed as parameters\

is: $#.”
echo “The value of the command line arguments are: $1 $2 $3 $4 $5\

$6 $7 $8 $9.”
echo “Another way to display values of all the arguments: $@.”
echo “Yet another way is: $*.”
exit 0

#!/bin/tcsh
if (($#argv == 0) || ($#argv > 1)) then
 echo “Usage: $0 ordinary_file”
 exit 1
endif
if (-f $1) then
 set filename = $argv[1]
 set fileinfo = `ls -il $filename`
 set inode = $fileinfo[1]
 set size = $fileinfo[6]
 echo “File Name: $filename”
 echo “Inode Number: $inode”
 echo “Size (bytes): $size”
 exit 0
else
 echo “$0: argument must be an ordinary file”
 exit 1
endif

8. What is the meaning of the term archive?
9. What is the tar command used for? Give all its uses.

Questions, Problems, and Projects 233

10. You want to create a tar archive of a project that contains several dir-
ectories, sub-directories, and files, and save the archive on a USB flash
drive mounted on your system so that you can distribute the archive
to your friends. (a) What is the pathname to a USB flash drive mounted
on your system? (b) How would you designate a USB flash drive as
the destination for where the tar archive would be created, as an argu-
ment to the tar command? How would you encrypt the USB flash
drive so that only people with the passphrase can see what is on it?

11. If you have not encrypted the USB flash drive, what are the access
permissions for the files on the USB flash drive from Problem 10?

12. Give a command line for creating a tar archive of your current
directory.

13. Give commands for compressing and keeping the archive from
Problem 12 in the backups directory in your home directory.

14. Give commands for restoring the backup file in Problem 13 in the ~/
backups directory.

15. Give a command line for copying your home directory to a directory
called home.back so that access privileges and file modification time
are preserved.

16. Why is the tar command preferred over the cp -r command for cre-
ating backup copies of directory hierarchies?

17. Suppose that you download a file, RaspberryPiBook.tar.Z from an ftp
site. Give the sequence of commands for restoring this archive and
installing it in your ~/RaspberryPiBook directory.

18. Use the tar command to create a compressed archive of a directory of
your choosing in a new directory you create named backups under
your home directory. Name the compressed archive something.tar.gz,
where something is the name of the directory you chose to backup.
Show the command lines that you used to perform these tasks.

19. Use the tar command to restore the compressed tar archive ~/backups/
courses.tar.gz you produced in Problem 18 above, into a new directory
named mirrors under your home directory. Show the command lines
that you used to perform these tasks.

20. Use the Raspberry Pi OS Menu choice Accessories > SD Card Copier to
clone your system microSD card onto another adequate-sized microSD
card. Make sure the target microSD card has a large enough capacity
to achieve the cloning! To test the clone, gracefully shut down your
system, and remove the original system microSD card. Then replace it
with the cloned target, and restart the system.

***Hint: In order for us to achieve this easily, we mounted an adequate size
microSD card in a Vanja OTG/USB Multi-Function Card Reader/Writer,

Questions, Problems, and Projects234

plugged that device into a USB port on our Pi 400, and used the SD Card
Copier facility to do the cloning.

21. Mansoor is working with Bob on a project. He needs to be able to read,
write, create, and delete files related to the project, which are located
in the Project directory in Bob’s home directory. Bob and Mansoor are
ordinary users without administrative privileges. They wish to do
this project without contacting the system administrator to request
new groups, group membership changes, sudo changes, etc. When
the project is over, Bob will remove the modified permissions on his
home and the Project directory for user “mansoor” himself, instead of
contacting the system administrator.

On your own Raspberry Pi system, in conjunction with another user, use
ACLs to accomplish the following (substituting valid usernames on your
system for Bob and Mansoor):

a. Create a project directory under Bob’s home directory named “Project”.
b. Set the ACL on Bob’s home directory so Mansoor has read, write, and

execute privileges on it.

c. Set the ACL on the Project directory so that Mansoor has rwxo
privileges on it.

d. Have Bob create some files in the Project directory.

e. Have Mansoor make Bob’s home directory the current directory.

f. Have Mansoor test whether or not he can-
delete files in Bob’s home directory,
delete the Project directory from Bob’s home directory,
list, create new files, or remove the files that Bob put in the Project

directory.
g. Have Bob revoke Mansoor’s x privileges on Bob’s home directory and

the directory Project.
h. Have Mansoor test the revocation of modify privileges from step g.
i. Why can Mansoor still see the files in Bob’s home directory, and the

files in the Project directory, but not delete or modify any files in those
directories after step g?

j. What command(s) would Bob have to execute to deny Mansoor access
to his home directory?

Note
Show verification of ACL settings at as many steps as necessary to validate
what you have done.

Questions, Problems, and Projects 235

22. If you give a set of users permissions to a project directory using ACLs,
how can you ensure that sub-directories that are created by the pro-
ject manager beneath that project directory provide the same access
privileges to those users?

23. Create a project directory on your system and create a git repository in it
for any number of local users on your computer system. Then use ACLs
to give access to the project directory to the users that are collaborating
in the project. This should allow those users to push to and pull from the
git repository. Have your allowed users test the repository. Also test the
security of the repository, i.e., can non-allowed users access it?

24. After completion of Chapter 1, Section 1.15, Procedures I, II, and III,
use the nfs4-acl-tools to accomplish the same things that are done in
the example on a remote NFS UNIX file system, such as on a FreeBSD
or Solaris 11.4 server mounted on your local Raspberry Pi OS system.
In order to do this, you must first install the nfs4-acl-tools on your
local system. Then install and use a UNIX-based NFS server on
another machine on your network which has an NFSv4 file system,
and on your local machine install an NFS client. Connect client to
server, and mount the remote file system on your machine. Finally,
use the nsf4-acl-tools to set and view ACL inheritance on the files on
the remote machine, as is done in Procedures I, II, and III.

How do you know ahead of time that the remote NFS file system is capable
of NFSv4-compliant ACLs? Then answer these questions:

a. Are there any system calls that directly affect ACLs, and what are
their names and functions?

b. What are some examples of system calls that deal with the file
access mode parameter?

25. Do all Use Cases from Chapter 1, Section 1.16.2 on your Raspberry Pi
system, and note the results.

26. Use gufw to do all Use Cases in Chapter 1, Section 1.16.2 on your
Raspberry Pi system, and remark on how much easier (or harder) it is
to accomplish the same things you did in Problem 25 in gufw.

27. Do all the steps shown in Chapter 1, Section 1.16.5, Example 1.13 on
your Raspberry Pi system, and interpret the log entries in the Journal as
shown in that section. Use gufw to construct the rule shown in step 1:

sudo ufw deny in log-all from 192.168.0.8

Furthermore, try different forms of entry, such as vsftp and http on different
standard and ephemeral ports, and note what is present in Journal log entry
components for each.

http://http

Questions, Problems, and Projects236

28.

a. On our Raspberry Pi system, CUPS is active when no printer is
plugged in or attached. That can be seen by using the command
systemctl status cups.service. Examine the cups.service systemd
service unit file in /lib/systemd/system, and write a short
paragraph-long description, in your own words, for why CUPS
is active when no powered-on printers are attached to the system.
This question assumes that CUPS is installed on your system,
according to the requirements shown in Section, and that it is
enabled at system boot.

b. How would you make CUPS unavailable, or inactive when no
printer is plugged-in or attached?

29. Execute all of the steps of Example 1.5 up to step 8, using two USB
flash drives mounted on your computer. You can put more data into /
mnt/raid1 for testing purposes.

Then, do the following parts of that Example:

a. Add a third USB flash drive equivalent in size to the originals
into the RAID1 array md0. On our Raspberry Pi system, it
was named /dev/sdd. Do steps 2 and 3 on the newly added
flash drive.

b. Check the integrity of the data placed in /mnt/raid1.
c. Replace /dev/sdc with the new flash drive /dev/sdd, and wait

for the array to be resynced. On our Raspberry Pi system, this took
about 30 minutes.

d. Again, check the integrity of any data you may have placed in /
mnt/raid1.

e. Execute step 12 to remove the RAID1 array, and zero out the flash
drives so that they can be reused as FAT32 formatted drives.

Extras for Experts

30. Execute the following steps of the user and group creation method,
in detail for your Raspberry Pi system, according to the following
constraints:

a. Your systems capabilities to accommodate additional per-
sistent media,

b. whether or not you want to use a traditional partitioning/file
system creation/file system mounting –based approach,

c. your security model, in terms of how it isolates users and groups
from one another,

Questions, Problems, and Projects 237

d. your system performance model as it affects users and groups,
e. how many users and groups you plan to accommodate.

For example, you can add one or more additional hard drives to your
system, limit the privileges you want ordinary users to have, allow them to
run their own executable programs from their home directories, and have a
small-scale set of user accounts and groups.

The user and group creation method is as follows:

Step 1. A second persistent medium, such as an internally-mounted SATA
hard drive, an externally-mounted USB-bus device, or some other
medium connected that uses some other bus architecture, must be
added to your system. See the basic traditional approach of doing this
in Section 1.5.3.

 You can also create “home” directories on that drive as well, that will
become the home directories for new users that you add to the system
as needed.

Step 2. When you are using the adduser command to add individual
new users, if you use the --home option, you can specify that the
new user’s home directory be the same directory you created in Step
1. To use a template for larger-scale account creation, you can use the
newuser command. You can also customize the default “skeleton” file
that is used by the adduser command, so that it uniformly provisions
newly-created user accounts, groups, etc., so that all new accounts have
their home directories on the new hard disk.

Step 3. If you manipulate the ownership permissions of the directories
from steps 1 and 2, the new user will own and have access to the
directories on the second hard disk. This is achieved by a privileged
user via the chmod and chown commands. But you must also con-
sider the impact of these permission changes on your system’s
security model.

 By tailoring the home directory and file security so it is in conform-
ance with your security model, via traditional file access permissions,
or via Access Control Lists (ACL’s) as shown in Section 1.15 above, you
can ensure that users and groups are limited and structured to conform
to both the security model, and any performance use case(s) designed
by you.

31. Using the following system program, named killer.c, and the general
procedure of Chapter 1, Example 1.17, give an unprivileged user the
capability of terminating any process on your system with the killer.c
executable-version system program.

Questions, Problems, and Projects238

/* killer.c: killer signal pid */

#include <sys/types.h>

int main(int argc, char *argv[])
{

pid_t pid;
int signal;

if (argc != 3) {
printf("Inappropriate number of command line arguments.\n");
exit(0);

}
pid = atoi(argv[1]);
signal = atoi(argv[2]);

if (kill(pid, signal) == -1) {
perror("Kill failed");
exit(1);

}
exit(0);

}

Compile the above system program, and run it as follows:

$ gcc -w killer.c -o killer
$ sudo apt-get install csh
Output truncated...
$ csh

% ps
PID TTY TIME CMD
15995 pts/3 00:00:00 bash
16693 pts/3 00:00:00 csh
16695 pts/3 00:00:00 ps
% ./killer 16693 2

% ps
PID TTY TIME CMD
15995 pts/3 00:00:00 bash
16693 pts/3 00:00:00 csh
16702 pts/3 00:00:00 ps
% ./killer 16693 9
Killed

$ ps
PID TTY TIME CMD
15995 pts/3 00:00:00 bash
16704 pts/3 00:00:00 ps
$

Note
Your process ID numbers in the above instructions will be different than what
is shown here. Also, we assume that the gcc compiler is installed already on
your Raspberry Pi system, which it is by default on our systems.

Questions, Problems, and Projects 239

The killer.c program in the above session takes a PID and a signal number
as command line arguments, and uses the kill() system call to send the spe-
cified signal to the process with the given PID. After compiling the program
and saving the executable code in the file called killer, install the C shell, start
a C shell process and use the ps command to see the PID of the new C shell
process. We then use the killer program to send signal number 2 (SIGINT) to
the new C shell process (PID 16693). The output of the ps command shows
that, as expected, the C shell does not terminate. When we send signal
number 9 (SIGKILL; sure kill) to the new C shell process, the shell terminates.
The SIGHUP signal would also terminate the shell process.

Project 1

After completing the Requirements of Chapter 1, Example 1.9, automate the
Python3 script file using a systemd timer so that it runs on a schedule that is
useful to you.

Chapter 2

1. Answer the following as completely as you can:
a. Is a systemd unit a target, or can it be a target? b. Is a systemd

target a unit, or can it be a unit?
 This question is aimed at getting you to think about the concep-
tual organization of systemd, as shown in Figure 2.1, as well as the
details of what units and targets are.

2. How can you easily verify that the milestone boot targets shown in
Figure 2.2 are reached in the order local-fs-pre.target, sysinit.target,
basic.target, multi-user.target, and graphical.target shown in that
figure, when your system boots? The basic assumption here is that
you are booting into a Raspberry Pi OS desktop environment, but you
can also describe verification on the basis of using a CUI text-only set
of systemd commands.

3. What systemctl command can be used to change your Raspberry Pi
system from the final target state graphical.target to multi-user.target,
and then change the final target state back to graphical.target. Test
these operations on your system.

4. Take a Bash script file that is useful to you, and turn it into a
systemd-controlled service that executes at an appropriately-timed
interval. Place the script file in your home directory on the system,
and set permissions on it properly. Start, stop, restart, and edit the
operation of the service with the appropriate systemctl commands.

Questions, Problems, and Projects240

5. Compare the information and logs found in /var/log to the contents
of the journal, excluding the directory /var/log/journal if that exists.
Prepare a report of the significant similarities and differences that you
notice, particularly with respect to searching, rotating, and retention
of the logs.

6.
 Part 1. Write a simple Bash script file that can repeatedly back up a

single source directory under your home directory, to a target direc-
tory that is either on a USB-mounted thumb drive on the system, or
to a remote computer on your LAN. Use the tar command and appro-
priate options, to compress the target archived directory, or use the scp
or rsync commands to create an uncompressed backup on the target.
Be sure to name the backup on the target with some meaningful label,
to differentiate sequential backups that you make, and make sure you
test this script file to see that it works correctly!

 In order to help you complete this problem, and to refresh your memory
about how to do copying operations with the scp, ssh, and rsync
commands, we repeat some examples of those copying operations here.

 Following is a condensed collection of examples that use scp, ssh/
dd, and rsync to copy files and directories locally and remotely. It is
understood in these examples that you have permission access to the
local files and directories, and that you have permission access to the
remote locations as well.
a. An example of using secure copy (scp) to copy all the files in the

directory webserver2 to a remote directory of the same name.

$ scp webserver2/*.* bob@192.168.0.25:/home/bob/webserver2/

b. An example of extracting the remote file backup.tar file at /home/
bob in 512 byte blocks and streaming it through dd to the current
working directory on the system you typed this command.

$ ssh bob@192.168.0.13:/home/bob “dd if=backup.tar ibs=512”\
tar xvBf –

c. An example of using rsync to copy an entire directory named
syncdir in the current working directory locally to a mounted USB
thumbdrive named USBint:

$ rsync -av syncdir /media/bob/USBint’)

d. An example of using rsync to copy an entire directory named
syncdir2 in the current working directory in push mode, remotely
to an OS X machine:

$ rsync -av -e ssh syncdir2 bob@192.168.0.7:/Users/b/unix3e

Questions, Problems, and Projects 241

e. An example of using rsync to copy a file named rsynctest from
the current working directory to the local destination on a thumb
drive named USBint is

$ rsync -av rsynctest /home/bob/USBint

Part 2. To make the above script file practical and useful for you, make it a
systemd service that can be run on some regular basis (to be determined by
you). So, for example, you could time the service to run daily at 9:00 PM.
Make sure to enable this service so it is persistent across boots!

7. Examine the man page for the systemctl command on your system,
and write a short report that describes its syntax, purpose, options
and option arguments, and sub-commands that pertain to units and
unit files.

8. It would be helpful if you could “rewind” the system into a previously
saved boot environment. How would that be possible, using what you
know of systemd and the Raspberry Pi OS? Sketch a way of doing that.

9. Write a brief description of why you would change the system state
into the following targets:
poweroff.target, rescue.target, multi-user.target, graphical.target,

reboot.target, emergency.target.
10. Determine which systemd commands must be run as root, using the

sudo command, and which do not require root privilege. Produce a
table of those commands. Explain exactly what your strategy was in
finding out the information that allowed you to answer this question.

Advanced Questions, Problems, and Projects

11. What is the snapshot feature of systemd, and how and why do you use
it? What other Raspberry Pi OS facilities, programs, and systems have
similar capabilities, and how does their implementations compare in
detail to systemd snapshots?

12. In terms of starting up your system, what does systemd do when
the target units in Figure 2.2 cannot be reached, for whatever reason?
What strategies can be deployed, and what specific systemd tactics
can be used, to start up the system when these targets cannot be
reached? In other words, what path of execution can be followed,
and why? Does the system immediately enter into rescue or emer-
gency mode? What are systemd’s error-handling capabilities, as
far as system startup go? How did you find this out? And most
importantly, how can you use your answers to these questions as
a trouble-shooting guide on your Linux system, when the requisite
target states cannot be reached?

Questions, Problems, and Projects242

Project 1

To practice with changing the system state to rescue and emergency modes,
use the commands in Sections 2.5.4 and 2.5.6, to achieve what is shown
there on your system. And when your system goes into those states, care-
fully explore and document the capabilities of rescue and emergency mode
operations. For example, what file system commands and facilities do you
have available to you in those modes? Can you mount external media while
the system is in those modes, so that you can save and backup important user
data files? It would be very useful to become familiar with these two system
state targets (by experimenting with bringing your Linux system into these
states!), so that if an emergency happens, you can recover from it.

Project 2

Take the following Python rolling-backup program script, and use the
methods of this chapter to run it on your Linux system. As shown in those
sections, implement the Python script as a clock-time-based or calendar-based
systemd service. Modify the Python code so that the service runs at time
intervals that are useful for you.

Also, make sure you change the source and target directories in the Python
code so that they suit your specific needs, and work with the file system struc-
ture of your Linux system. For those familiar with Python programming, use
any enhancements to it that you feel would make the script file more “Pythonic”.

#!/usr/local/bin/python
import os
import shutil
target = “/home/bob/USBint/” #Target directory, or where you are \

backing up to
i = 1
while i <= 5:

temp_path = target + str(i) + “/”
if not os.path.exists(temp_path):

try:
os.makedirs(temp_path)
print “Created “ + temp_path

except:
print “ Could not create “ + temp_path

i = i + 1
print “Deleting the oldest archive”
shutil.rmtree(target + “5”)
print “Recycle the backups”
os.rename(target + “4”, target + “5”)
os.rename(target + “3”, target + “4”)
os.rename(target + “2”, target + “3”)
Do the backups
os.system(‘cp -a ‘ + target + “1” + “ “ + target + “2”)
os.system(‘rsync -av /home/bob/python/’ + “ “ + target + “1”) #Source \

directory here

Questions, Problems, and Projects 243

Project 3

Convert the Python script file shown in Project 2 to a Bash script file that does
exactly the same thing. Then, as specified in Project 2, use systemd to enable
the Bash script to run at a time interval that is useful for you. Also, change
the source and target directories to suit your specific use case needs, and
Raspberry Pi system configuration as well.

Project 4

According to the steps shown in Section 2.7.1.1 A Simple Sockets-Based
Activation Example, create a simple webserver with the Python built in, on
an LXC container, and expose it in a public IP address, using bridging, so that
it can be viewed on the Internet.

Note
Be careful to set the parameters of your router firewall correctly, as well as
the firewall of the LXC container, so that hackers can’t penetrate both your
network, the LXC container, and the Raspberry Pi OS system you’re using as
an Internet server.

https://taylorandfrancis.com

245

245

Index

A

Access control credentials, 105– 107
types of, 107
Access Control Lists (ACL), 106, 236

access privileges, 130
basic formats, 127
compact format display of, 129
components of, 128– 130
default, 112– 113

entries in extended BNF, 116
Delete and Delete_ Child, 131
entries in extended BNF, 115
entry descriptions, 128– 130
extended, 112, 114, 116
minimal, 112, 114
POSIX.1e ACL model

command syntax for setting and
viewing, 118– 120

drawbacks and alternatives to, 118
types of, 115

Raspberry Pi OS
POSIX.1e, 112– 120
use in, 112– 113

setting and viewing access, 120– 123
setting and viewing default, 123– 126

Addgroup command, 26, 124, 168
Adding a printer, by using CUPS web

browser interface, 70– 71
Adding new media, considerations for,

44
Adduser command, 26, 163, 168, 229,

236
Advanced Packaging Tool (APT), 96, 103
Application programming interface

(API), 40
Apropos command, 18– 19
Apt command, 36, 98
Aptitude package manager, 173
.automount, 175

B

Bash shell program files, 20
Binary data, 103, 205

Boot- based activation, 222
Booting logs, 170
Boot Process Querying, 170

of current boots, 217
for displaying kernel messages,

217– 218
of past boots, 216– 217

Bootup, in the Initial RAM Disk (initrd),
170

Bus- based activation, 172, 222

C

Calendar- based running, of the script
file, 219– 220

Capabilities, 26, 42, 90, 160, 162– 165
Cat command, 5
Cd command, 11, 13
Cgroups file system (cgroupsfs), 39– 40
Channel of communication, 32
Character User Interface (CUI), 1, 192,

193
Chgrp command, 26, 106, 168
Chmod command, 26, 106, 117– 118, 122,

134, 140, 168, 236
Chmod g+ w mydir, 123
Chown command, 106, 236
C language system programming, 205
Clock- time- based running of a script,

218– 219
Clone() system call, 100, 168, 205
Cloud storage, 153
Common UNIX Printing System

(CUPS), 21, 65– 90
adding a printer using the CUPS web

browser interface, 70– 71
Administration Tab menu choices, 72
configuring and managing printers by

using CUPS on the command
line

command- line utilities, 81– 82
to delete a printer and remove

printer access, 88– 89
for deleting a printer, 89– 90

Index246

for displaying the status of printers,
87– 88

to print a file to the default printer,
88

to print to a specified printer, 86
to set a default printer at the

command line, 84
to set a default printer by specifying

the LPDEST variable, 85
to set a default printer by specifying

the lpoptions command, 85
to set a default printer by specifying

the PRINTER variable, 85
setting a default printer on your

system, 83
to set up a printer by using the

lpadmin command, 82– 83
by using the lp command, 86
to verify the status of printers,

86– 87
managing locally with systemd

configuring CUPS as a persistent
service using systemd, 67– 68

restarting, enabling, or disabling
service with systemd, 67

starting service using systemd,
66– 67

stopping service using systemd, 67
print administration tasks and the

Home Tab, 71– 72
print settings

GUI, 73– 74
starting of, 73– 74

requirements for using, 69– 70
settings by using CUPS Print Settings

GUI
configuring and managing printers,

76– 77
for deletion of printer, 80
to disable or enable a printer, 80
for duplication of a printer

configuration, 79– 80
to manage print jobs for a specified

printer, 81
modification of the properties of an

existing configured printer, 77– 79
of new local printer, 74– 76
renaming of printer, 79

troubleshooting issues, 71
using Administration Tab, 72
using Printers Tab, 72
using web- based CUPS

administration
LAN or web- based CUPS, 68– 70
web- based interface to CUPS

locally, 68
web- based cups management, 72– 73

Compgen, 26, 108, 168
Computer file system, 39– 40

considerations when adding new
media, 44

external disk/ media additions, 47– 65
Linux file system, 43
logical device names of disks,

methods for finding, 44– 47
logical layer, 40
partitioning schemes and strategies,

42– 43
physical layer, 41– 42
SATA disks and USB media, 43
virtual layer, 40

Computer Science, 26
Contents of files, viewing of, 5– 6
Control Groups, 172, 201
Cp command, 6– 7
Cpio command, 26, 90– 91, 93, 168
CPU consumption, of a process, 101– 103
Credentials, of Linux Raspberry Pi OS

process, 159– 165
process capabilities, 160, 162
setting capabilities on the command

line, 162– 165
Cupsd.conf command, 72

D

Data storage model, 27, 42– 43, 47, 60,
64– 65

D- Bus (dbus.service), 190, 222
D- bus- based activation, 172
Dd command, 91– 92, 239
Debian repository, 96, 99
Default.target, 38, 39, 182, 194, 197
Device- based activation, 172, 222
Device- uri, 78
Df command, 45

Index 247

Df- hT command, 45
DHCP server, 181
Directory, 1

current working directory, 3
encryption, 154– 155
home directory, 3, 13
structure of, 4

Dirnames, 11
Discretionary Access Control (DAC), 106
Docker software, 181
Drop- ins and snippets extensibility, 172

E

Ethernet, 40, 152
Exec() system, 105
Execute Command Line Linux

Commands, 35
Exportfs command, 132
Ext4 file system, 40, 43, 112– 113, 133, 136
External disk/ media additions, 47– 65

F

FAT32 file system, 48
Fdisk command, 26, 42– 43, 52, 56, 60,

65, 168
Fibre Channel technology, 40
FIFO buffer, 175
File maintenance, 3, 8, 11, 23, 42
File system types (FSTYPE), 43, 47, 130
FileZilla, 26, 29– 30, 168
Find command, 90
Findmnt command, 46– 47
Firefox, 69
Fopen command, 17
Fork() system, 105, 202– 203
Formatting of RAID array, 63
Fread command, 17
FreeBSD, 165, 234
Ftp server, 35, 37– 38

G

Gdisk command, 43, 52
Getcap command, 160, 162
Getfacl command, 113, 114, 116, 118, 120,

121, 124– 125, 128
Getpid(), 100
Gettid(), 100

Gnu disk management tool, 60, 63– 65
Gnu Partition Editor(Gparted) program,

47– 49
Gparted command, 48
Gparted Partition Editor software, 47– 48
Gpg command, 153– 156, 168
Graphical display manager (lightdm),

182, 193, 199
Graphical.target, 39, 175, 181, 183, 190,

192, 194, 196, 197, 238, 240
Graphical user interface, 39, 193
Grep command, 101– 102, 192
Gufw graphical firewall manager, 132
Gufw.gufw, 141

H

“Home Data” array, 63– 64
Hostname- I command, 21
Host system, 32

I

Id, 26, 43, 111, 159, 166, 210
Implicit dependency mapping, 172
Information Technology, 26
Instances and templates, 172
Internet Small Computer System

Interface (iSCSI), 39
Inxi command, 26, 28– 29, 168
Ip addr command, 21
IP address, 20, 30
Ip command, 20
IPC socket, 175– 176
Isolate command, 167, 192

J

Journalctl command, 103– 105, 192, 207,
208, 210, 218

Output Formats, 214
Journald, 192
Journal expansion, 215
Journal logging, 103

applied to the Webserver2 program,
206– 211

basic log viewing, 207
Journal Log Messages, 103– 105,

205– 206
journal query structures, 208

Index248

querying by
component path, 210– 211
priority, 211
process, user, or group ID, 209– 210
time, 208– 209
unit, 209

Journal maintenance, 214– 215

K

Kill command, 103
Killer.c program, 238

L

Latest revisions october.txt, 7
LibreOffice Writer, 213
Linux archiving and backup facilities

cpio command, 90– 91
dd facility, 91– 92
rsync command, 92– 95

Linux capabilities, 160, 161, 165
Linux Extended File System, 41
Linux file system, 42– 43
Linux init system(s), 176
Linux IO (LIO) block, 40
Linux namespaces, 205
Linux “superkernel”, see Systemd

commands
Linux systems, 26, 32
Linux Volume Management (LVM), 42
List- dependencies command, 187, 197
Local client system, 35
Log data shrinking/ expanding, 212
Log entries, display in real time, 212– 213
Log files, 103
Logical device names of disks, methods

for finding, 44– 47
Lpadmin command, 82– 83, 88, 89
Lp command, 22
Lp filename, 88
Lpinfo command, 82, 168
Lpmove command, 26, 168
Lpoptions command, 26, 82– 85, 88– 89,

168
Lpr command, 22
Lprm command, 26, 168
Lpstat command, 86
Lsblk - a command, 45
Ls command, syntax for, 8, 9

Ls- la command, 10, 122
Ls- l command, 113
Lx- la command, 10

M

Manage Bookmarks, 30
Man command, use of, 15, 17– 18, 22
Mandatory access control (MAC), 106
Man - k passwd command, 19
Man man command, 16
Mansoor command, 127, 129
“Mask” entry, meaning of, 115– 118
Mdadm program (a software RAID

manager), 42, 47, 53– 55
installation of, 60– 61

Metacharacter, 13
Mirroring, 26, 60, 62, 168
Mkdir command, 11, 125
Mkfs command, 43
Mkfs.ext4, 26, 59, 168
“Monotonic scheduling” of events,

184
.mount, 175
Mountd, 132
Multi- user.target, 38– 39, 179, 190, 192,

194, 197, 199
Mv command, 7
Mv file- list directory command, 14

N

Namespaces, 165– 168
Ncat command, 225
Network- Attached Storage (NAS)

systems, 39, 131
Network File System (NFS), 113, 130

and client, 131
protocol, 131
version 4 (NFSv4), 39

NetworkManager (NetworkManager.
service), 190

Newuser command, 236
Nfs4_ getfacl command, 139
Nfs4_ setfacl command, 137
NFSv4 ACL model, 106

applying and testing on client files,
138

installing and configuring, 130– 131
setting of, 126– 140

Index 249

Nginx webserver service, 173– 174
Nice command, 101– 102

O

Order.pdf, 22
Override.conf, 173

P

Packet Filter (PF) syntax, in OpenBSD
UNIX, 141

Partitioning schemes and strategies,
42– 43

Passwd command, 17, 19, 226
Path- based activation, 172, 175, 222
Pathname, 3, 7
Pathname- list, 8
Pgrep command, 101– 102
Physical Device Layer, 41
Ping program, 26, 162– 164, 168
POSIX.1e ACL model, 106, 131
Print administration tasks, 71– 72
Printers

adding of
by using the CUPS web browser

interface, 70– 71
Administration Tab, 72
Administration Tasks, 71– 72
Command- Line Printing, 73
configuring and managing of

set up by using the lpadmin
command, 82– 83

by using CUPS on the Command
Line, 81– 90

cupsd.conf command, 72
default printer, setting up of, 83

at the Command Line, 84
by specifying the PRINTER

variable, 85
by using the lpoptions command,

85
deletion of, 80, 88– 90
duplication of configuration,

79– 80
Home Tab, 71– 72
managing of print jobs, 81
method to disable or enable, 80
Pause Printer, 73
Properties dialog box, 78

setting up of, 74– 76
default printer, 83

status of
displaying of, 87– 88
verification of, 86– 87

system- config- printer, 73
web- based cups management, 72– 73

Printing commands, 21– 23
Print Manager, 73
Process control, methods for, 99– 101
Processes, 26, 39– 41, 99– 102, 105, 107,

160, 165, 166, 170, 178, 201
Process ID (PID), 99– 100
Proc file system, 39
Ps - aux command, 224
Ps command, 238
Pstree command, 194
Pwd command, 12
Python3 script file, 92– 95, 184

activation behavior of
boot- based, 222
bus- based, 222
device- based, 222
path- based, 222
socket- based, 222
timer- based, 223

“new- style” techniques, 222
sudo nano simp.service, 220
webserver as a “new- style daemon”,

220– 225
systemd methods of changing the

activation behavior of, 222– 223

Q

Query output display, 211– 214
displaying log entries in real time,

212– 213
query output formats, 213– 214

R

RAID1 array, 26, 52, 54– 55, 57, 59– 60,
230, 235

Raspberry Pi OS, 1– 2
creating and managing RAID arrays

using mdadm on, 51– 60
data storage model, 47
distribution’s file system, 13
file maintenance commands

Index250

creating, deleting, and managing
directories, 11– 15

creating, deleting, and managing
files, 6– 10

file and directory structure, 3– 4
obtaining help with the man

command, 15– 18
other methods of obtaining help,

18– 19
viewing the contents of files, 5– 6

Gnu Partition Editor(Gparted)
program, 47

man pages, 17
manual of, 17
method to boot from USB3- mounted

SSD, 49– 51
printing commands, 21– 23
ufw and Netfilter interface in

advanced ufw syntax, 145– 147
basic syntax, use case and rules

examples, 141– 145
extended example of applying ufw

rules, 147– 149
interpreting ufw log entries in the

systemd journal, 150– 152
ufw defaults, 141

utility commands of
examining system setups, 19– 21

Webmin installation on, 30– 32
Raspberry Pi Software Configuration

Tool, 32
Raspi- config tool, 35
Recursive dependencies, 188
Redundant Array of Inexpensive Disks

(RAID) devices, 53
Remote host server, 30
Renice command, 101– 102
Repository management, 96– 99

basic characteristics, 97– 98
GUI- based, 96
listing format in/ etc/ apt/ sources.

list, 98
other suggested procedures for, 98– 99
searching with the apt- cache

Command, and apt- show, 96– 99
Request for Comments (RFC), 131
Rm command, 7– 8, 14, 15
Rmdir command, 14, 15

Role- Based Access Control (RBAC), 106
Rsync command, 92– 95

S

SATA disks, 43
Scope, 175
Script file, clock- time- based running of,

184– 186
Secure SHell (SSH) client, for connecting

Raspberry Pi OS machines, 32– 38
login and logout procedures, 33– 38

Security, 172
Security checks, 105
Security Extended Linux (SELinux), 106
Server, 32
“Server” machine, 131
.service unit files, 176
Setcap command, 160, 162
Setfacl command, 113, 117, 120– 122, 125,

128
Seven Kingdoms, 96
Shell programs, 19
Site Manager, 30
Slice, 175
Snapshot, 28, 175, 240
Socket- based activation, 172, 175, 180,

222
Solaris, 165
SSH client, 32
SSH protocol, 32
SSH server- side software package, 32
Storage Area Network (SAN), 39, 40
Strcmp command, 17
Sudoers file, 26, 107– 109, 160, 168
Sudo program, 106, 107– 108

alias specifications and definition in
the Sudoers file, 109

sudo su - , 111
user specifications, 109– 111

Sudo raspi- config command, 32
Sudo systemctl disable cups.service, 68
Sudo systemctl enable cups.service, 67
Sudo systemctl start cups, 66
Sudo systemctl status cups, 66
Sudo systemctl status cups.service, 70
Sudo who- r command, 199
Sun Microsystems, 131

Index 251

SunOS exports file, 132
Superkernel, 26
Swap space, on the Raspberry Pi OS

system, 175
Syntax, 1, 6
Synthetic file systems, 39
Sysfs file system, 175
System- config- printer, 73, 75, 80
Systemctl command, 66, 67, 68, 171, 173,

196, 200, 240
Systemctl edit command, 173
Systemctl list- dependencies command,

197
Systemctl reboot command, 198
Systemctl snapshot command, 175
Systemctl stop cups.service command,

67
Systemd- activate command, 223
Systemd- cgls command, 201
Systemd commands

applications of, 170
architecture of, 171
basic log viewing, 207– 209
boot process querying

of current boots, 217
for displaying kernel messages,

217– 218
of past boots, 216– 217

Bootup, 38– 39
Control groups (cgroups), 201– 205

additional reference resources, 204
hierarchies for system resource

control, 201– 204
Linux namespaces, 205

important targets, 182
journal logging, 103, 205– 218

applied to the Webserver2 program,
206– 211

basic log viewing, 207
journalctl command, 206
Journal Log Messages, 103– 105,

205– 206
journal query structures, 208
querying by component path,

210– 211
querying by priority, 211
querying by process, user, or group

ID, 209– 210

querying by time, 208– 209
querying by unit, 209

journal maintenance, 214– 215
journal query structures, 208
management of, 175
query output display, 211– 214
recursive dependencies, 188
superkernel, 41, 170
timers, 218– 220

calender- based running of a script,
219– 220

clock- time- based running of a
script, 218– 219

units and unit files, 170– 171
advantageous features of, 172
anatomy of, 176– 180
creation of instance units from

template unit files, 181
displaying of, 186– 190
editing of, 173– 174, 189– 190
general format of, 176– 177
locations in the file system, 172– 173
masking and unmasking units,

188– 189
properties of, 188
roles of, 171– 172
ssh example unit, service, and

install sections directives, 177– 180
ssh.service, 176
synchronization of dependencies

between, 181
template and instance unit names

for services, 181
types of, 174– 176, 181
unit- specific section directives, 180

Systemd- run command, 201
Systemd- socket- activate command, 224

T

Tar command, 231– 232
Tar facility, 90
Targets, 175

basic concepts, 181– 184
basic.target, 182
changing of

current target by isolating targets,
192– 194

Index252

default target, 194
changing to

emergency mode, 195– 196
rescue mode, 194– 195

clock- time- based running of a script
file, 184– 186

graphical.target, 181
practicing on, 190– 200

working with targets, 196– 199
sudo systemctl isolate multi- user.

target, 194
systemctl isolate emergency.target, 195
systemctl isolate rescue.target, 195
systemctl options that work with, 199
systemd important targets, 182
types of, 182– 184
unit management with additional

commands, 186– 190
unit text files, 190
using shortcuts, 200
viewing of

all target, 191– 192
currently loaded targets, 192
default target, 182– 183

Tar (tape archive) utility, 153
GNU version of, 153
tar command, 153– 154
UNIX tar, 153

Task ID (TID) number, 99
TCP/ IP protocol, 40
Thread Group ID (TGID) number, 100
Timer- based activation, 223
Top command, 102– 103
Touch, 26, 139, 168

U

Udev device- based activation, 172, 175
Ufw (uncomplicated firewall), 26, 31,

132, 142– 145
advance syntax, 145– 147
application of, 147– 149
defaults, 141
log entries, 150– 152

Umask 007 command, 120

Umount command, 43
Uname command, 1, 24, 26, 166, 168
Uniform Resource Identifier (URI), 78
Unmask command, 51, 60, 120, 189
URI schemes, 78
USB flash drive, encrypting of, 157– 159
USB media, 43

booting Raspberry Pi OS System from,
49– 51

safe removal of, 43
umount command, 43
using Gparted to add a USB flash

drive to the system, 48– 49
Use of spaces, in Raspberry Pi OS

commands, 7
User file, encrypting of

single file, 156– 157
USB flash drive, 157– 159

Userid command, 20
User Namespaces, 165– 168
Utility commands, 19– 21, 171

V

Virtual computing, 27
Virtual file systems, 39– 40
Vsftpd system service, 38

W

.wants, 179
Web- based browser interface, 30,

68– 69
Webmin installation, on Raspberry Pi

OS, 30– 32
Webmin System Information panel, 31
Wget, 26, 168
Whatis command, 18– 19
Whereis bash command, 20
Whereis command, 19– 21
Whoami command, 20, 21
Who command, 21

X

X Window System programs, 193

	Cover
	Half Title
	Series Information
	Title Page
	Copyright Page
	Dedication
	Table of Contents
	Series Preface
	Volume 1 Preface
	Background
	How to Read and Use This Book
	Routes Through the Book

	0 “Quick Start” Into Sysadmin for the Raspberry Pi OS
	0.1 Introduction
	0.2 File Maintenance Commands and Help On Raspberry Pi OS Command Usage
	0.2.1 File and Directory Structure
	0.2.2 Viewing the Contents of Files
	0.2.3 Creating, Deleting, and Managing Files
	0.2.4 Creating, Deleting, and Managing Directories
	0.2.5 Obtaining Help With the Man Command
	0.2.6 Other Methods of Obtaining Help

	0.3 Utility Commands
	0.3.1 Examining System Setups

	0.4 Printing Commands
	0.5 Chapter Summary

	1 Basic System Administration
	1.0 Objectives, Commands, and Primitives Covered
	1.1 Introduction – Icebreaker With Inxi and FileZilla
	1.1.1 Inxi
	1.1.2 FileZilla

	1.2 Webmin Download and Installation
	Example 1.1 Webmin Installation On Raspberry Pi OS

	1.3 Sshd and System Service Management Using Systemd: Vsftpd
	1.3.1 Connecting Via a Secure SHell (SSH) Client Between Raspberry Pi OS Machines
	1.3.1.1 Login and Logout Procedures
	Example 1.2 Vsftpd

	1.4 Systemd Bootup
	1.5 File Systems, Connections to Persistent Media, and Adding Disks to Your System
	1.5.1 Preliminary Considerations When Adding New Media
	1.5.2 Five Quick and Easy Ways to Find Out the Logical Device Names of Disks
	1.5.3 Examples of External Disk Or Media Additions
	Example 1.3 Using Gparted to Add a USB Flash Drive to the System
	Example 1.4 How to Boot From and Run a Raspberry Pi OS System From a USB3-Mounted SSD
	Example 1.5 Creating and Managing RAID Arrays Using Mdadm On the Raspberry Pi OS
	Example 1.6 RAID1 Using Webmin, Mdadm, and the Gnome Disk Utility (Disks)

	1.6 CUPS Printing
	1.6.1 Managing CUPS Locally With Systemd
	1.6.1.1 Starting CUPS Service Using Systemd
	1.6.1.2 Stopping CUPS Service With Systemd
	1.6.1.3 Restarting, Enabling, Or Disabling the CUPS Service With Systemd
	1.6.1.4 Configuring CUPS as a Persistent Service Using Systemd

	1.6.2 Using Web-Based CUPS Administration
	1.6.2.1 Using the Web-Based Interface to CUPS Locally
	1.6.2.2 LAN Or Web-Based CUPS

	1.6.3 Requirements for Using the CUPS Web Browser Interface
	1.6.4 Adding a Printer Using the CUPS Web Browser Interface
	1.6.5 Troubleshooting Issues With Accessing the CUPS Web Browser Interface
	1.6.6 Print Administration Tasks and the Home Tab
	1.6.7 Using the Administration Tab
	1.6.8 Using the Printers Tab
	1.6.9 Other Examples of Web-Based Cups Management
	1.6.10 CUPS Print Settings GUI
	1.6.11 Starting CUPS Print Settings
	1.6.12 Setting Up Printers By Using CUPS Print Settings GUI
	1.6.12.1 How to Set Up a New Local Printer
	1.6.12.2 Configuring and Managing Printers By Using CUPS Print Settings GUI
	1.6.12.3 An Example of How to Modify the Properties of an Existing Configured Printer
	Example 1.8 Modifying Printer Properties
	1.6.12.4 How to Rename a Printer
	1.6.12.5 How to Duplicate a Printer Configuration
	1.6.12.6 How to Delete a Printer
	1.6.12.7 How to Disable Or Enable a Printer
	1.6.12.8 How to Manage Print Jobs for a Specified Printer

	1.6.13 Configuring and Managing Printers By Using CUPS On the Command Line
	1.6.13.1 CUPS Command-Line Utilities
	1.6.13.2 How to Set Up a Printer By Using the Lpadmin Command
	1.6.13.3 Setting a Default Printer On Your System
	1.6.13.4 How to Set a Default Printer at the Command Line
	1.6.13.5 Setting a Default Printer By Specifying the PRINTER Variable
	1.6.13.6 Setting a Default Printer By Specifying the LPDEST Variable
	1.6.13.7 Setting a Default Printer By Using the Lpoptions Command
	1.6.13.8 How to Print to a Specified Printer
	1.6.13.9 Printing to a Specified Printer By Using the Lp Command
	1.6.13.10 How to Verify the Status of Printers
	1.6.13.11 Displaying the Status of Printers
	1.6.13.12 How to Print a File to the Default Printer
	1.6.13.13 How to Delete a Printer and Remove Printer Access
	1.6.13.14 Deleting a Printer

	1.7 Other Linux Archiving and Backup Facilities
	1.7.1 Cpio
	1.7.2 Dd
	1.7.3 Rsync
	Example 1.9 Extended Python Script Example Using Rsync to Do a “Rotating” Backup

	1.8 Repository Management
	1.8.1 Searching Repositories With the Apt-Cache Command and Apt-Show
	1.8.2 Basic Repository Characteristics
	1.8.3 Repository Listing Format in /etc/apt/sources.list
	1.8.4 Other Suggested Procedures for Repository Management

	1.9 Tasks, Processes, Threads, and Traditional Process Control/Monitoring
	1.10 Controlling and Managing CPU Consumption By Processes
	1.11 Systemd Journal Log Messages
	1.11.1 Journalctl Basics

	1.12 Access Control Credentials: Discretionary (DAC), Mandatory (MAC), and Role-Based (RBAC)
	1.12.1 Types of Credentials

	1.13 Sudo
	1.13.1 Alias Specifications and Definition in the Sudoers File
	1.13.2 User Specifications in the Sudoers File
	1.13.3 Sudo Su -
	1.14 Raspberry Pi OS POSIX.1e Access Control Lists (ACLs)
	1.14.1 Using Access Control Lists (ACLs) in the Raspberry Pi OS
	1.14.2 Raspberry Pi OS POSIX.1e ACL Model Details
	1.14.2.1 Basic Types of the POSIX.1e ACL Model
	1.14.2.2 How Permissions Map to the Basic ACL Types
	1.14.2.3 The Meaning of the “Mask” Entry
	1.14.2.4 Drawbacks and Alternatives to the POSIX.1e ACL Model
	1.14.2.5 Command Syntax for Setting and Viewing POSIX.1e ACLs

	1.14.3 ACL Examples
	Example 1.10 Setting and Viewing Access ACLs
	Example 1.11 Setting and Viewing Default ACLs

	1.15 Raspberry Pi OS NFS Server and Client Install and Setting NFSv4 ACLs On the Client
	1.15.1 ACLs Have Two Basic Forms
	1.15.1.1 ACL Entry Descriptions: Components of NFSv4 ACL Command Entry Descriptions

	1.15.2 Installing and Configuring the NFS Server and Clients and Setting NFSv4 ACLs On the Client

	1.16 Ufw and Netfilter Interface in the Raspberry Pi OS
	1.16.1 Ufw Defaults
	1.16.2 Basic Syntax, Use Case, and Rules Examples
	1.16.3 Advanced Ufw Syntax
	1.16.4 An Extended Example of Applying Ufw Rules
	Example 1.12

	1.16.5 Interpreting Ufw Log Entries in the Systemd Journal
	Example 1.13 Ufw Log Entries

	1.17 Encrypting Directories and Files Using Tar and Gpg
	1.17.1 The Tar Command General Syntax
	1.17.2 Directory Encryption
	Example 1.14 Directory Encryption

	1.17.3 Encrypting a User File
	Example 1.15 Encryption of a Single File

	1.17.4 Encrypting a USB Flash Drive
	Example 1.16 How to Encrypt a USB Flash Drive

	1.18 How a Process Gets Its Credentials
	1.18.1 Process Capabilities
	Example 1.17 Setting Capabilities On the Command Line

	1.19 Namespaces and User Namespaces
	Example 1.18 Namespaces

	1.20 Chapter Summary

	2 Applications of Systemd for the Beginner
	2.0 Objectives, Commands, and Primitives Covered
	2.1 Introduction – Applications of Systemd for the Beginner
	2.2 Bootup in the Initial RAM Disk (Initrd)
	2.2.1 Querying the Boot Process

	2.3 Systemd Units and Unit Files
	2.3.1 Introduction to Units and Unit Files
	2.3.2 Roles Systemd Units Play
	2.3.3 Unit File Locations in the File System and Editing Or Modifying Them
	2.3.3.1 Editing Unit Files

	2.3.4 Types of Units
	2.3.5 Anatomy of a Unit File
	2.3.5.1 An Example Service Unit File – Ssh.service
	2.3.5.2 The General Format of Unit Files
	2.3.5.3 Ssh Example Unit, Service, and Install Sections Directives
	2.3.5.4 Additional Unit File Sections and Their Unit-Specific Section Directives

	2.3.6 Creating Instance Units From Template Unit Files
	2.3.6.1 Template and Instance Unit Names for Services

	2.4 Targets
	2.4.1 Basic Target Concepts
	2.4.2 A Target Example: Clock-Time-Based Running of a Script File
	2.4.3 Unit Management With Additional Commands

	2.5 Practicing On Target Units
	2.5.1 Viewing the Default Target
	2.5.2 Viewing All Targets
	2.5.2.1 Viewing the Currently Loaded Targets

	2.5.3 Changing the Current Target By Isolating Targets
	2.5.3.1 Changing the Default Target

	2.5.4 Changing to Rescue Mode
	2.5.5 Changing to Emergency Mode
	2.5.6 Practice in Working With Targets
	2.5.7 Other Systemctl Options That Work With Target Units
	2.5.8 Using Target Shortcuts

	2.6 Other Important Systemd Commands
	2.6.1 Cgroups
	2.6.1.1 Default Cgroup Hierarchies for System Resource Control
	2.6.1.2 Additional Cgroup Reference Resources
	2.6.1.3 Linux Namespaces

	2.6.2 Journal Logging
	2.6.2.1 Systemd Journal Log Messages
	2.6.2.2 Using the Journalctl Command to Query the Journal
	2.6.2.3 Journal Logging Basics and Applied to the Webserver2 Program
	2.6.2.3.2 Journal Query Structures
	2.6.2.4 Query Output Display
	2.6.2.5 Journal Maintenance
	2.6.2.6 Boot Process Querying

	2.6.3 Systemd Timers
	2.6.3.1 An Example of Clock-Time-Based Running of a Script
	2.6.3.2 Example of Calendar-Based Running of the Above Script File

	2.7 A Python3-Based Webserver as a “New-Style Daemon”
	2.7.1 Systemd Methods of Changing the Activation Behavior of a New-Style Daemon
	2.7.1.1 A Simple Sockets-Based Activation Example

	2.8 Chapter Summary

	Questions, Problems, and Projects
	Chapter 0
	Advanced Questions and Problems
	Project 1

	Chapter 1
	Project 1

	Chapter 2
	Advanced Questions, Problems, and Projects
	Project 1
	Project 2
	Project 3
	Project 4

	Index

