

1

Table of Contents
Preface

The Python Handbook

Conclusion

2

Preface
The Python Handbook follows the 80/20 rule: learn in 20% of the time the
80% of a topic.

In particular, the goal is to get you up to speed quickly with Python.

This book is written by Flavio. I publish programming tutorials on my
blog flaviocopes.com and I organize a yearly bootcamp at bootcamp.dev.

You can reach me on Twitter @flaviocopes.

Enjoy!

https://flaviocopes.com/
https://bootcamp.dev/
https://twitter.com/flaviocopes

3

The Python Handbook
1. Introduction to Python
2. Installing Python
3. Running Python programs
4. Python 2 vs Python 3
5. The basics of working with Python

5.1. Variable
5.2. Expressions and statement
5.3. Comment
5.4. Indentation

6. Data Types
7. Operators

7.0.1. Assignment operator
7.0.2. Arithmetic operator
7.0.3. Comparison operator
7.0.4. Boolean operator
7.0.5. Bitwise operator
7.0.6. is and in

8. The Ternary Operator
9. Strings
10. Booleans
11. Numbers

11.0.1. Integer number
11.0.2. Floating point number
11.0.3. Complex number
11.0.4. Arithmetic operations on number
11.0.5. Built-in Function

12. Constants
13. Enums
14. User Input
15. Control Statements
16. Lists

4

17. Tuples
18. Dictionaries
19. Sets
20. Functions
21. Objects
22. Loops

22.1. while loop
22.2. for loop
22.3. Break and continue

23. Classes
24. Modules
25. The Python Standard Library
26. The PEP8 Python style guide
27. Debugging
28. Variables scope
29. Accept arguments from the command line
30. Lambda Functions
31. Recursion
32. Nested Functions
33. Closures
34. Decorators
35. Docstrings
36. Introspection
37. Annotations
38. Exceptions
39. The with statement
40. Installing 3rd party packages using pip
41. List comprehensions
42. Polymorphism
43. Operator Overloading
44. Virtual Environments

1. Introduction to Python

5

Python is literally eating the programming world. It is growing in popularity
and usage in ways that are pretty much unprecedented in the history of
computers.

There is a huge variety of scenarios that Python excels in. Shell scripting,
task automation, Web development are just some basic examples.

Python is the language of choice for data analysis and machine learning,
but it can also adapt to create games and work with embedded devices.

Most importantly, it's the language of choice for introductory computer
science courses in universities all around the world.

Many students learn Python as their first programming language. Many are
learning it right now, many will learn it in the future. And for many of them,
Python will be the only programming language they need.

Thanks to this unique position, Python is likely going to grow even more in
the future.

The language is simple, expressive, and it's quite straightforward.

The ecosystem is huge. There seems to be a library for everything you can
imagine.

Python is a high-level programming language suitable for beginners thanks
to its intuitive syntax, its huge community and vibrant ecosystem.

It is also appreciated by professionals across many different fields.

Technically speaking it is an interpreted language that does not have an
intermediate compilation phase like a compiled language, for example C or
Java.

And like many interpreted languages, it is dynamically typed, which means
that you do not have to indicate the types of the variables you use, and
variables are not tied to a specific type.

6

This has pros and cons. In particular we can mention that you write
programs faster, but on the other hand you have less help from the tools to
prevent possible bugs and you will find out about some kinds of issues only
by executing the program at runtime.

Python supports a wide variety of different programming paradigms,
including procedural programming, object oriented programming and
functional programming. It's flexible enough to adapt to a lot of different
needs.

Created in 1991 by Guido van Rossum, it's been rising in popularity -
especially in the past 5 years, as this Google Trends infographic shows:

Starting with Python is very easy. All you need is to install the official
package from python.org, for Windows, macOS or Linux, and you're ready to
go.

7

If you are new to programming, in the following posts I will guide you to go
from zero to becoming a Python programmer.

And even if you are currently a programmer specialized into another
language, Python is a language worth knowing because I think we're just at
the start.

Lower level languages like C++ and Rust might be great for expert
programmers, but daunting to begin, and they take a long time to master.
Python, on the other hand, is a programming language for programmers, of
course, but also for the non-programmers. The students, the people doing
their day job with Excel, the scientists.

The language everyone interested in coding should learn first.

2. Installing Python
Go to https://www.python.org, choose the Downloads menu, choose your
operating system and a panel with a link to download the official package will
appear:

https://www.python.org/

8

Make sure you follow the specific instructions for your operating system. On
macOS you can find a detailed guide on https://flaviocopes.com/python-
installation-macos/.

3. Running Python programs
There are a few different ways to run Python programs.

In particular, you have a distinction between using interactive prompts,
where you type Python code and it's immediately executed, and saving a
Python program into a file, and executing that.

Let's start with interactive prompts.

If you open your terminal and type python , you will see a screen like this:

https://flaviocopes.com/python-installation-macos/

9

This is the Python REPL (Read-Evaluate-Print-Loop)

Notice the >>> symbol, and the cursor after that. You can type any Python
code here, and press the enter key to run it.

For example try defining a new variable using

name = "Flavio"

and then print its value, using print() :

print(name)

10

Note: in the REPL, you can also just type name , press the enter key
and you'll get the value back. But in a program, you are not going to see
any output if you do so - you need to use print() instead.

Any line of Python you write here is going to be executed immediately.

Type quit() to exit this Python REPL.

You can access the same interactive prompt using the IDLE application that's
installed by Python automatically:

This might be more convenient for you because with the mouse you can move
around and copy/paste more easily than with the terminal.

Those are the basics that come with Python by default. However I
recommend to install IPython, probably the best command line REPL
application you can find.

Install it with

pip install ipython

Make sure the pip binaries are in your path, then run ipython :

https://ipython.org/

11

 ipython is another interface to work with a Python REPL, and provides
some nice features like syntax highlighting, code completion, and much
more.

The second way to run a Python program is to write your Python program
code into a file, for example program.py :

and then run it with python program.py

12

Note that we save Python programs with the .py extension, that's a
convention.

In this case the program is executed as a whole, not one line at a time. And
that's typically how we run programs.

We use the REPL for quick prototyping and for learning.

On Linux and macOS a Python program can also be transformed into a shell
script, by prepending all its content with a special line that indicates which
executable to use to run it.

On my system the Python executable is located in /usr/bin/python3 , so I
type #!/usr/bin/python3 in the first line:

Then I can set execution permission on the file:

13

chmod u+x program.py

and I can run the program with

./program.py

This is especially useful when you write scripts that interact with the
terminal.

We have many other ways to run Python programs.

One of them is using VS Code, and in particular the official Python extension
from Microsoft:

14

After installing this extension you will have Python code autocompletion and
error checking, automatic formatting and code linting with pylint , and
some special commands, including:

Python: Start REPL to run the REPL in the integrated terminal:

15

Python: Run Python File in Terminal to run the current file in the
terminal:

Python: Run Current File in Python Interactive Window:

and many more. Just open the command palette (View -> Command Palette,
or Cmd-Shift-P) and type python to see all the Python-related commands:

16

Another way to easily run Python code is to use repl.it, a very nice website
that provides a coding environment you can create and run your apps on, in
any language, Python included:

17

Signup (it's free), then under "create a repl" click Python:

18

and you will be immediately shown an editor with a main.py file, ready to be
filled with a lot of Python code:

19

Once you have some code, click "Run" to run it on the right side of the
window:

20

I think repl.it is handy because:

you can easily share code just by sharing the link
multiple people can work on the same code
it can host long-running programs
you can install packages
it provides you a key-value database for more complex applications

4. Python 2 vs Python 3
One key topic to talk about, right from the start, is the Python 2 vs Python 3
discussion.

Python 3 was introduced in 2008, and it's been in development as the main
Python version, while Python 2 continued being maintained with bug fixes
and security patches until early 2020.

On that date, Python 2 support was discontinued.

21

Many programs are still written using Python 2, and organizations still
actively work on those, because the migration to Python 3 is not trivial and
those programs would require a lot of work to upgrade those programs. And
large and important migrations always introduce new bugs.

But new code, unless you have to adhere to rules set by your organization
that forces Python 2, should always be written in Python 3.

This book focuses on Python 3.

5. The basics of working with
Python

5.1. Variable

We can create a new Python variable by assigning a value to a label, using the
 = assignment operator.

In this example we assign a string with the value "Roger" to the name label:

name = "Roger"

Here's an example with a number:

age = 8

A variable name can be composed by characters, numbers, the _

underscore character. It can't start with a number. These are all valid
variable names:

22

name1
AGE
aGE
a11111
my_name
_name

These are invalid variable names:

123
test!
name%

Other than that, anything is valid unless it's a Python keyword. There are
some keywords like for , if , while , import and more.

There's no need to memorize them, as Python will alert you if you use one of
those as a variable, and you will gradually recognize them as part of the
Python programming language syntax.

5.2. Expressions and statement

We can expression any sort of code that returns a value. For example

1 + 1
"Roger"

A statement on the other hand is an operation on a value, for example these
are 2 statements:

name = "Roger"
print(name)

A program is formed by a series of statements. Each statement is put on its
own line, but you can use a semicolon to have more than one statement on a
single line:

23

name = "Roger"; print(name)

5.3. Comment

In a Python program, everything after a hash mark is ignored, and
considered a comment:

#this is a commented line

name = "Roger" # this is an inline comment

5.4. Indentation

Indentation in Python is meaningful.

You cannot indent randomly like this:

name = "Flavio"
 print(name)

Some other languages do not have meaningful whitespace, but in Python,
indentation matters.

In this case, if you try to run this program you would get a IndentationError:
unexpected indent error, because indenting has a special meaning.

Everything indented belongs to a block, like a control statement or
conditional block, or a function or class body. We'll see more about those
later on.

6. Data Types
Python has several built-in types.

24

If you create the name variable assigning it the value "Roger", automatically
this variable is now representing a String data type.

name = "Roger"

You can check which type a variable is using the type() function, passing
the variable as an argument, and then comparing the result to str :

name = "Roger"
type(name) == str #True

Or using isinstance() :

name = "Roger"
isinstance(name, str) #True

Notice that to see the True value in Python, outside of a REPL, you
need to wrap this code inside print() , but for clarity reasons I avoid
using it

We used the str class here, but the same works for other data types.

First, we have numbers. Integer numbers are represented using the int
class. Floating point numbers (fractions) are of type float :

age = 1
type(age) == int #True

fraction = 0.1
type(fraction) == float #True

You saw how to create a type from a value literal, like this:

name = "Flavio"
age = 20

25

Python automatically detects the type from the value type.

You can also create a variable of a specific type by using the class constructor,
passing a value literal or a variable name:

name = str("Flavio")
anotherName = str(name)

You can also convert from one type to another by using the class constructor.
Python will try to determine the correct value, for example extracting a
number from a string:

age = int("20")
print(age) #20

fraction = 0.1
intFraction = int(fraction)
print(intFraction) #0

This is called casting. Of course this conversion might not always work
depending on the value passed. If you write test instead of 20 in the
above string, you'll get a ValueError: invalid literal for int() with base
10: 'test' error.

Those are just the basics of types. We have a lot more types in Python:

 complex for complex numbers
 bool for booleans
 list for lists
 tuple for tuples
 range for ranges
 dict for dictionaries
 set for sets

and more!

We'll explore them all soon.

26

7. Operators
Python operators are symbols that we use to run operations upon values and
variables.

We can divide operators based on the kind of operation they perform:

assignment operator
arithmetic operators
comparison operators
logical operators
bitwise operators

plus some interesting ones like is and in .

7.0.1. Assignment operator

The assignment operator is used to assign a value to a variable:

age = 8

Or to assign a variable value to another variable:

age = 8
anotherVariable = age

Since Python 3.8, the := walrus operator is used to assign a value to a
variable as part of another operation. For example inside an if or in the
conditional part of a loop. More on that later.

7.0.2. Arithmetic operator

Python has a number of arithmetic operators: + , - , * , / (division), %
(remainder), ** (exponentiation) and // (floor division):

27

1 + 1 #2
2 - 1 #1
2 * 2 #4
4 / 2 #2
4 % 3 #1
4 ** 2 #16
4 // 2 #2

Note that you don't need a space between the operands, but it's good for
readability.

 - also works as a unary minus operator:

print(-4) #-4

 + is also used to concatenate String values:

"Roger" + " is a good dog"
#Roger is a good dog

We can combine the assignment operator with arithmetic operators:

 +=

 -=

 *=

 /=

 %=

..and so on

Example:

age = 8
age += 1
age is now 9

7.0.3. Comparison operator

28

Python defines a few comparison operators:

 ==

 !=

 >

 <

 >=

 <=

You can use those operators to get a boolean value (True or False)
depending on the result:

a = 1
b = 2

a == b #False
a != b #True
a > b #False
a <= b #True

7.0.4. Boolean operator

Python gives us the following boolean operators:

 not

 and

 or

When working with True or False attributes, those work like logical AND,
OR and NOT, and are often used in the if conditional expression
evaluation:

condition1 = True
condition2 = False

not condition1 #False
condition1 and condition2 #False
condition1 or condition2 #True

29

Otherwise, pay attention to a possible source of confusion.

 or used in an expression returns the value of the first operand that is not a
falsy value (False , 0 , '' , [] ..). Otherwise it returns the last operand.

print(0 or 1) ### 1
print(False or 'hey') ### 'hey'
print('hi' or 'hey') ### 'hi'
print([] or False) ### False
print(False or []) ### []

The Python docs describe it as if x is false, then y, else x .

 and only evaluates the second argument if the first one is true. So if the first
argument is falsy (False , 0 , '' , [] ..), it returns that argument.
Otherwise it evaluates the second argument:

print(0 and 1) ### 0
print(1 and 0) ### 0
print(False and 'hey') ### False
print('hi' and 'hey') ### 'hey'
print([] and False) ### []
print(False and []) ### False

The Python docs describe it as if x is false, then x, else y .

7.0.5. Bitwise operator

Some operators are used to work on bits and binary numbers:

 & performs binary AND
 | performs binary OR
 ̂ performs a binary XOR operation
 ~ performs a binary NOT operation
 << shift left operation
 >> shift right operation

30

Bitwise operators are rarely used, only in very specific situations, but they are
worth mentioning.

7.0.6. is and in

 is is called the identity operator. It is used to compare two objects and
returns true if both are the same object. More on objects later.

 in is called the membership operator. Is used to tell if a value is
contained in a list, or another sequence. More on lists and other sequences
later.

8. The Ternary Operator
The ternary operator in Python allows you to quickly define a conditional.

Let's say you have a function that compares an age variable to the 18
value, and return True or False depending on the result.

Instead of writing:

def is_adult(age):
 if age > 18:
 return True
 else:
 return False

You can implement it with the ternary operator in this way:

def is_adult(age):
 return True if age > 18 else False

First you define the result if the condition is True, then you evaluate the
condition, then you define the result if the condition is false:

<result_if_true> if <condition> else <result_if_false>

31

9. Strings
A string in Python is a series of characters enclosed into quotes or double
quotes:

"Roger"
'Roger'

You can assign a string value to a variable:

name = "Roger"

You can concatenate two strings using the + operator:

phrase = "Roger" + " is a good dog"

You can append to a string using += :

name = "Roger"
name += " is a good dog"

print(name) #Roger is a good dog

You can convert a number to a string using the str class constructor:

str(8) #"8"

This is essential to concatenate a number to a string:

print("Roger is " + str(8) + " years old") #Roger is 8 years old

A string can be multi-line when defined with a special syntax, enclosing the
string in a set of 3 quotes:

32

print("""Roger is

 8

years old
""")

#double quotes, or single quotes

print('''
Roger is

 8

years old
''')

A string has a set of built-in methods, like:

 isalpha() to check if a string contains only characters and is not empty
 isalnum() to check if a string contains characters or digits and is not
empty
 isdecimal() to check if a string contains digits and is not empty
 lower() to get a lowercase version of a string
 islower() to check if a string is lowercase
 upper() to get an uppercase version of a string
 isupper() to check if a string is uppercase
 title() to get a capitalized version of a string
 startsswith() to check if the string starts with a specific substring
 endswith() to check if the string ends with a specific substring
 replace() to replace a part of a string
 split() to split a string on a specific character separator
 strip() to trim the whitespace from a string
 join() to append new letters to a string
 find() to find the position of a substring

and many more.

33

None of those methods alter the original string. They return a new, modified
string instead. For example:

name = "Roger"
print(name.lower()) #"roger"
print(name) #"Roger"

You can use some global functions to work with strings, too.

In particular I think of len() , which gives you the length of a string:

name = "Roger"
print(len(name)) #5

The in operator lets you check if a string contains a substring:

name = "Roger"
print("ger" in name) #True

Escaping is a way to add special characters into a string.

For example, how do you add a double quote into a string that's wrapped into
double quotes?

name = "Roger"

 "Ro"Ger" will not work, as Python will think the string ends at "Ro" .

The way to go is to escape the double quote inside the string, with the \
backslash character:

name = "Ro\"ger"

This applies to single quotes too \' , and for special formatting characters
like \t for tab, \n for new line and \\ for the backslash.

34

Given a string, you can get its characters using square brackets to get a
specific item, given its index, starting from 0:

name = "Roger"
name[0] #'R'
name[1] #'o'
name[2] #'g'

Using a negative number will start counting from the end:

name = "Roger"
name[-1] #"r"

You can also use a range, using what we call slicing:

name = "Roger"
name[0:2] #"Ro"
name[:2] #"Ro"
name[2:] #"ger"

10. Booleans
Python provides the bool type, which can have two values: True and
 False (capitalized)

done = False
done = True

Booleans are especially useful with conditional control structures like if
statements:

35

done = True

if done:
 # run some code here
else:
 # run some other code

When evaluating a value for True or False , if the value is not a bool we
have some rules depending on the type we're checking:

numbers are always True unless for the number 0
strings are False only when empty
lists, tuples, sets, dictionaries are False only when empty

You can check if a value is a boolean in this way:

done = True
type(done) == bool #True

Or using isinstance() , passing 2 arguments: the variable, and the bool
class:

done = True
isinstance(done, bool) #True

The global any() function is also very useful when working with booleans,
as it returns True if any of the values of the iterable (list, for example)
passed as argument are True :

book_1_read = True
book_2_read = False

read_any_book = any([book_1_read, book_2_read])

The global all() function is same, but returns True if all of the values
passed to it are True :

36

ingredients_purchased = True
meal_cooked = False

ready_to_serve = all([ingredients_purchased, meal_cooked])

11. Numbers
Numbers in Python can be of 3 types: int , float and complex .

11.0.1. Integer number

Integer numbers are represented using the int class. You can define an
integer using a value literal:

age = 8

You can also define an integer number using the int() constructor:

age = int(8)

To check if a variable is of type int , you can use the type() global
function:

type(age) == int #True

11.0.2. Floating point number

Floating point numbers (fractions) are of type float . You can define an
integer using a value literal:

fraction = 0.1

Or using the float() constructor:

37

fraction = float(0.1)

To check if a variable is of type float , you can use the type() global
function:

type(fraction) == float #True

11.0.3. Complex number

Complex numbers are of type complex .

You can define them using a value literal:

complexNumber = 2+3j

or using the complex() constructor:

complexNumber = complex(2, 3)

Once you have a complex number, you can get its real and imaginary part:

complexNumber.real #2.0
complexNumber.imag #3.0

Again, to check if a variable is of type complex , you can use the type()
global function:

type(complexNumber) == complex #True

11.0.4. Arithmetic operations on number

38

You can perform arithmetic operations on numbers, using the arithmetic
operators: + , - , * , / (division), % (remainder), ** (exponentiation)
and // (floor division):

1 + 1 #2
2 - 1 #1
2 * 2 #4
4 / 2 #2
4 % 3 #1
4 ** 2 #16
4 // 2 #2

and you can use the compound assignment operators

 +=

 -=

 *=

 /=

 %=

..and so on

to quickly perform operations on variables, too:

age = 8
age += 1

11.0.5. Built-in Function

There are 2 built-in functions that help with numbers:

 abs() returns the absolute value of a number.

 round() given a number, returns its value rounded to the nearest integer:

round(0.12) #0

You can specify a second parameter to set the decimal points precision:

39

round(0.12, 1) #0.1

Several other math utility functions and constants are provided by the
Python standard library:

the math package provides general math functions and constants
the cmath package provides utilities to work with complex numbers.
the decimal package provides utilities to work with decimals and
floating point numbers.
the fractions package provides utilities to work with rational numbers

We'll explore some of those separately later on.

12. Constants
Python has no way to enforce a variable to be a constant.

The nearest you can go is to use an enum:

class Constants(Enum):
 WIDTH = 1024
 HEIGHT = 256

And get to each value using for example Constants.WIDTH.value .

No one can reassign that value.

Otherwise if you want to rely on naming conventions, you can adhere to this
one: declare variables that should never change uppercase:

WIDTH = 1024

No one will prevent to overwrite this value, and Python will not stop it.

That's what does most Python code you will see.

40

13. Enums
Enums are readable names that are bound to a constant value.

To use enums, import Enum from the enum standard library module:

from enum import Enum

Then you can initialize a new enum in this way:

class State(Enum):
 INACTIVE = 0
 ACTIVE = 1

Once you do so, you can reference State.INACTIVE and State.ACTIVE , and
they serve as constants.

Now if you try to print State.ACTIVE for example:

print(State.ACTIVE)

it will not return 1 , but State.ACTIVE .

The same value can be reached by the number assigned in the enum:
 print(State(1)) will return State.ACTIVE . Same for using the square
brackets notation State['ACTIVE'] .

You can however get the value using State.ACTIVE.value .

You can list all the possible values of an enum:

list(State) # [<State.INACTIVE: 0>, <State.ACTIVE: 1>]

You can count them:

len(State) # 2

41

14. User Input
In a Python command line application you can display information to the
user using the print() function:

name = "Roger"
print(name)

We can also accept input from the user, using input() :

print('What is your age?')
age = input()
print('Your age is ' + age)

This approach gets input at runtime, meaning the program will stop
execution and will wait until the user types something and presses the
 enter key.

You can also do more complex input processing and accept input at program
invocation time, and we'll see how to do that later on.

This works for command line applications. Other kinds of applications will
need a different way of accepting input.

15. Control Statements
What's interesting to do with booleans, and expressions that return a boolean
in particular, is that we can make decisions and take different roads
depending on their True or False value.

In Python we do so using the if statement:

42

condition = True

if condition == True:
 # do something

When the condition test resolves to True , like in the above case, its block
gets executed.

What is a block? A block is that part that is indented one level (4 spaces
usually) on the right:

condition = True

if condition == True:
 print("The condition")
 print("was true")

The block can be formed by a single line, or multiple lines as well, and it ends
when you move back to the previous indentation level:

condition = True

if condition == True:
 print("The condition")
 print("was true")

print("Outside of the if")

In combination with if you can have an else block, that's executed if the
condition test of if results to False :

43

condition = True

if condition == True:
 print("The condition")
 print("was True")
else:
 print("The condition")
 print("was False")

And you can have different linked if checks with elif , that's executed if
the previous check was False :

condition = True
name = "Roger"

if condition == True:
 print("The condition")
 print("was True")
elif name == "Roger":
 print("Hello Roger")
else:
 print("The condition")
 print("was False")

The second block in this case is executed if condition is False , and the
 name variable value is "Roger".

In a if statement you can have just one if and else checks, but
multiple series of elif checks:

44

condition = True
name = "Roger"

if condition == True:
 print("The condition")
 print("was True")
elif name == "Roger":
 print("Hello Roger")
elif name == "Syd":
 print("Hello Syd")
elif name == "Flavio":
 print("Hello Flavio")
else:
 print("The condition")
 print("was False")

 if and else can also be used in an inline format, which lets us return a
value or another based on a condition.

Example:

a = 2
result = 2 if a == 0 else 3
print(result) # 3

16. Lists
Lists are an essential Python data structure.

The allow you to group together multiple values and reference them all with a
common name.

For example:

dogs = ["Roger", "Syd"]

A list can hold values of different types:

45

items = ["Roger", 1, "Syd", True]

You can check if an item is contained into a list with the in operator:

print("Roger" in items) # True

A list can also be defined as empty:

items = []

You can reference the items in a list by their index, starting from zero:

items[0] # "Roger"
items[1] # 1
items[3] # True

Using the same notation you can change the value stored at a specific index:

items[0] = "Roger"

You can also use the index() method:

items.index("Roger") # 0
items.index("Syd") # 2

As with strings, using a negative index will start searching from the end:

items[-1] # True

You can also extract a part of a list, using slices:

items[0:2] # ["Roger", 1]
items[2:] # ["Syd", True]

46

Get the number of items contained in a list using the len() global function,
the same we used to get the length of a string:

len(items) #4

You can add items to the list by using a list append() method:

items.append("Test")

or the extend() method:

items.extend(["Test"])

You can also use the += operator:

items += ["Test"]

items is ['Roger', 1, 'Syd', True, 'Test']

Tip: with extend() or += don't forget the square brackets. Don't do
 items += "Test" or items.extend("Test") or Python will add 4
individual characters to the list, resulting in ['Roger', 1, 'Syd', True,
'T', 'e', 's', 't']

Remove an item using the remove() method:

items.remove("Test")

You can add multiple elements using

items += ["Test1", "Test2"]

#or

items.extend(["Test1", "Test2"])

47

These append the item to the end of the list.

To add an item in the middle of a list, at a specific index, use the insert()
method:

items.insert(1, "Test") # add "Test" at index 1

To add multiple items at a specific index, you need to use slices:

items[1:1] = ["Test1", "Test2"]

Sort a list using the sort() method:

items.sort()

Tip: sort() will only work if the list holds values that can be compared.
Strings and integers for example can't be compared, and you'll get an
error like TypeError: '<' not supported between instances of 'int' and
'str' if you try.

The sort() methods orders uppercase letters first, then lowercased letters.
To fix this, use:

items.sort(key=str.lower)

instead.

Sorting modifies the original list content. To avoid that, you can copy the list
content using

itemscopy = items[:]

or use the sorted() global function:

print(sorted(items, key=str.lower))

48

that will return a new list, sorted, instead of modifying the original list.

17. Tuples
Tuples are another fundamental Python data structure.

They allow you to create immutable groups of objects. This means that once a
tuple is created, it can't be modified. You can't add or remove items.

They are created in a way similar to lists, but using parentheses instead of
square brackets:

names = ("Roger", "Syd")

A tuple is ordered, like a list, so you can get its values referencing an index
value:

names[0] # "Roger"
names[1] # "Syd"

You can also use the index() method:

items.index("Roger") # 0
items.index("Syd") # 2

As with strings and lists, using a negative index will start searching from the
end:

names[-1] # True

You can count the items in a tuple with the len() function:

len(names) # 2

49

You can check if an item is contained into a tuple with the in operator:

print("Roger" in names) # True

You can also extract a part of a tuple, using slices:

names[0:2] # ('Roger', 'Syd')
names[1:] # ('Syd',)

Get the number of items in a tuple using the len() global function, the same
we used to get the length of a string:

len(names) #2

You can create a sorted version of a tuple using the sorted() global
function:

sorted(names)

You can create a new tuple from existing tuples using the + operator:

newTuple = names + ("Vanille", "Tina")

18. Dictionaries
Dictionaries are a very important Python data structure.

While lists allow you to create collections of values, dictionaries allow you to
create collections of key / value pairs.

Here is a dictionary example with one key/value pair:

dog = { 'name': 'Roger' }

50

The key can be any immutable value like a string, a number or a tuple. The
value can be anything you want.

A dictionary can contain multiple key/value pairs:

dog = { 'name': 'Roger', 'age': 8 }

You can access individual key values using this notation:

dog['name'] # 'Roger'
dog['age'] # 8

Using the same notation you can change the value stored at a specific index:

dog['name'] = 'Syd'

And another way is using the get() method, which has an option to add a
default value:

dog.get('name') # 'Roger'
dog.get('test', 'default') # 'default'

The pop() method retrieves the value of a key, and subsequently deletes the
item from the dictionary:

dog.pop('name') # 'Roger'

The popitem() method retrieves and removes the last key/value pair
inserted into the dictionary:

dog.popitem()

You can check if a key is contained into a dictionary with the in operator:

51

'name' in dog # True

Get a list with the keys in a dictionary using the keys() method, passing its
result to the list() constructor:

list(dog.keys()) # ['name', 'age']

Get the values using the values() method, and the key/value pairs tuples
using the items() method:

print(list(dog.values()))
['Roger', 8]

print(list(dog.items()))
[('name', 'Roger'), ('age', 8)]

Get a dictionary length using the len() global function, the same we used to
get the length of a string or the items in a list:

len(dog) #2

You can add a new key/value pair to the dictionary in this way:

dog['favorite food'] = 'Meat'

You can remove a key/value pair from a dictionary using the del statement:

del dog['favorite food']

To copy a dictionary, use the copy() method:

dogCopy = dog.copy()

52

19. Sets
Sets are another important Python data structure.

We can say they work like tuples, but they are not ordered, and they are
mutable. Or we can say they work like dictionaries, but they don't have keys.

They also have an immutable version, called frozenset .

You can create a set using this syntax:

names = {"Roger", "Syd"}

Sets work well when you think about them as mathematical sets.

You can intersect two sets:

set1 = {"Roger", "Syd"}
set2 = {"Roger"}

intersect = set1 & set2 #{'Roger'}

You can create a union of two sets:

set1 = {"Roger", "Syd"}
set2 = {"Luna"}

union = set1 | set2
#{'Syd', 'Luna', 'Roger'}

You can get the difference between two sets:

set1 = {"Roger", "Syd"}
set2 = {"Roger"}

difference = set1 - set2 #{'Syd'}

53

You can check if a set is a superset of another (and of course if a set is a
subset of another)

set1 = {"Roger", "Syd"}
set2 = {"Roger"}

isSuperset = set1 > set2 # True

You can count the items in a set with the len() global function:

names = {"Roger", "Syd"}
len(names) # 2

You can get a list from the items in a set by passing the set to the list()
constructor:

names = {"Roger", "Syd"}
list(names) #['Syd', 'Roger']

You can check if an item is contained into a set with the in operator:

print("Roger" in names) # True

20. Functions
A function lets us create a set of instructions that we can run when needed.

Functions are essential in Python and in many other programming languages
to create meaningful programs, because they allow us to decompose a
program into manageable parts, they promote readability and code reuse.

Here is an example function called hello that prints "Hello!":

def hello():
 print('Hello!')

54

This is the function definition. There is a name (hello) and a body, the set
of instructions, which is the part that follows the colon and it's indented one
level on the right.

To run this function, we must call it. This is the syntax to call the function:

hello()

We can execute this function once, or multiple times.

The name of the function, hello , is very important. It should be descriptive,
so anyone calling it can imagine what the function does.

A function can accept one or more parameters:

def hello(name):
 print('Hello ' + name + '!')

In this case we call the function passing the argument

hello('Roger')

We call parameters the values accepted by the function inside the
function definition, and arguments the values we pass to the function
when we call it. It's common to get confused about this distinction.

An argument can have a default value that's applied if the argument is not
specified:

def hello(name='my friend'):
 print('Hello ' + name + '!')

hello()
#Hello my friend!

Here's how we can accept multiple parameters:

55

def hello(name, age):
 print('Hello ' + name + ', you are ' + str(age) + ' years old!')

In this case we call the function passing a set of arguments:

hello('Roger', 8)

Parameters are passed by reference. All types in Python are objects but some
of them are immutable, including integers, booleans, floats, strings, and
tuples. This means that if you pass them as parameters and you modify their
value inside the function, the new value is not reflected outside of the
function:

def change(value):
 value = 2

val = 1
change(val)

print(val) #1

If you pass an object that's not immutable, and you change one of its
properties, the change will be reflected outside.

A function can return a value, using the return statement. For example in
this case we return the name parameter name:

def hello(name):
 print('Hello ' + name + '!')
 return name

When the function meets the return statement, the function ends.

We can omit the value:

56

def hello(name):
 print('Hello ' + name + '!')
 return

We can have the return statement inside a conditional, which is a common
way to end a function if a starting condition is not met:

def hello(name):
 if not name:
 return
 print('Hello ' + name + '!')

If we call the function passing a value that evaluates to False , like an empty
string, the function is terminated before reaching the print() statement.

You can return multiple values by using comma separated values:

def hello(name):
 print('Hello ' + name + '!')
 return name, 'Roger', 8

In this case calling hello('Syd') the return value (note: not what it's printed
on screen, but the return value) is a tuple containing those 3 values: ('Syd',
'Roger', 8) :

def hello(name):
 print('Hello ' + name + '!')
 return name, 'Roger', 8

print(hello('Syd')) #('Syd', 'Roger', 8)

21. Objects
Everything in Python is an object.

57

Even values of basic primitive types (integer, string, float..) are objects. Lists
are objects, tuples, dictionaries, everything.

Objects have attributes and methods that can be accessed using the dot
syntax.

For example, try defining a new variable of type int :

age = 8

 age now has access to the properties and methods defined for all int
objects.

This includes, for example, access to the real and imaginary part of that
number:

print(age.real) # 8
print(age.imag) # 0

print(age.bit_length()) #4

the bit_length() method returns the number of bits necessary
to represent this number in binary notation

A variable holding a list value has access to a different set of methods:

items = [1, 2]
items.append(3)
items.pop()

The methods depend on the type of value.

The id() global function provided by Python lets you inspect the location in
memory for a particular object.

id(age) # 140170065725376

Your memory value will change, I am only showing it as an example

58

If you assign a different value to the variable, its address will change, because
the content of the variable has been replaced with another value stored in
another location in memory:

age = 8

print(id(age)) # 140535918671808

age = 9

print(id(age)) # 140535918671840

But if you modify the object using its methods, the address stays the same:

items = [1, 2]

print(id(items)) # 140093713593920

items.append(3)

print(items) # [1, 2, 3]
print(id(items)) # 140093713593920

The address only changes if you reassign a variable to another value.

Some objects are mutable, some are immutable. This depends on the object
itself. If the object provides methods to change its content, then it's mutable.
Otherwise it's immutable. Most types defined by Python are immutable. For
example an int is immutable. There are no methods to change its value. If
you increment the value using

age = 8
age = age + 1

#or

age += 1

59

and you check with id(age) you will find that age points to a different
memory location. The original value has not mutated, we switched to another
value.

22. Loops
Loops are one essential part of programming.

In Python we have 2 kinds of loops: while loops and for loops.

22.1. while loop

 while loops are defined using the while keyword, and they repeat their
block until the condition is evaluated as False :

condition = True
while condition == True:
 print("The condition is True")

This is an infinite loop. It never ends.

Let's halt the loop right after the first iteration:

condition = True
while condition == True:
 print("The condition is True")
 condition = False

print("After the loop")

In this case, the first iteration is ran, as the condition test is evaluated to
 True , and at the second iteration the condition test evaluates to False , so
the control goes to the next instruction, after the loop.

It's common to have a counter to stop the iteration after some number of
cycles:

60

count = 0
while count < 10:
 print("The condition is True")
 count = count + 1

print("After the loop")

22.2. for loop

Using for loops we can tell Python to execute a block for a pre-determined
amount of times, up front, and without the need of a separate variable and
conditional to check its value.

For example we can iterate the items in a list:

items = [1, 2, 3, 4]
for item in items:
 print(item)

Or, you can iterate a specific amount of times using the range() function:

for item in range(04):
 print(item)

 range(4) creates a sequence that starts from 0 and contains 4 items: [0, 1,
2, 3] .

To get the index, you should wrap the sequence into the enumerate()

function:

items = [1, 2, 3, 4]
for index, item in enumerate(items):
 print(index, item)

22.3. Break and continue

61

Both while and for loops can be interrupted inside the block, using two
special keywords: break and continue .

 continue stops the current iteration and tells Python to execute the next
one.

 break stops the loop altogether, and goes on with the next instruction after
the loop end.

The first example here prints 1, 3, 4 . The second example prints 1 :

items = [1, 2, 3, 4]
for item in items:
 if item == 2:
 continue
 print(item)

items = [1, 2, 3, 4]
for item in items:
 if item == 2:
 break
 print(item)

23. Classes
In addition to using the Python-provided types, we can declare our own
classes, and from classes we can instantiate objects.

An object is an instance of a class. A class is the type of an object.

Define a class in this way:

class <class_name>:
 # my class

For example let's define a Dog class

62

class Dog:
 # the Dog class

A class can define methods:

class Dog:
 # the Dog class
 def bark(self):
 print('WOF!')

 self as the argument of the method points to the current object
instance, and must be specified when defining a method.

We create an instance of a class, an object, using this syntax:

roger = Dog()

Now roger is a new object of type Dog.

If you run

print(type(roger))

You will get <class '__main__.Dog'>

A special type of method, __init__() is called constructor, and we can use it
to initialize one or more properties when we create a new object from that
class:

class Dog:
 # the Dog class
 def __init__(self, name, age):
 self.name = name
 self.age = age

 def bark(self):
 print('WOF!')

63

We use it in this way:

roger = Dog('Roger', 8)
print(roger.name) # 'Roger'
print(roger.age) # 8

roger.bark() # 'WOF!'

One important features of classes is inheritance.

We can create an Animal class with a method walk() :

class Animal:
 def walk(self):
 print('Walking..')

and the Dog class can inherit from Animal:

class Dog(Animal):
 def bark(self):
 print('WOF!')

Now creating a new object of class Dog will have the walk() method as
that's inherited from Animal :

roger = Dog()
roger.walk() # 'Walking..'
roger.bark() # 'WOF!'

24. Modules
Every Python file is a module.

You can import a module from other files, and that's the base of any program
of moderate complexity, as it promotes a sensible organization and code
reuse.

64

In the typical Python program, one file acts as the entry point. The other files
are modules and expose functions that we can call from other files.

The file dog.py contains this code:

def bark():
 print('WOF!')

We can import this function from another file using import , and once we
do, we can reference the function using the dot notation, dog.bark() :

import dog

dog.bark()

Or, we can use the from .. import syntax and call the function directly:

from dog import bark

bark()

The first strategy allows us to load everything defined in a file.

The second strategy lets us pick the things we need.

Those modules are specific to your program, and importing depends on the
location of the file in the filesystem.

Suppose you put dog.py in a lib subfolder.

In that folder, you need to create an empty file named __init__.py . This
tells Python the folder contains modules.

Now you can choose, you can import dog from lib :

from lib import dog

dog.bark()

65

or you can reference the dog module specific function importing from
 lib.dog :

from lib.dog import bark

bark()

25. The Python Standard Library
Python exposes a lot of built-in functionality through its standard library.

The standard library is a huge collection of all sort of utilities, ranging from
math utilities to debugging to creating graphical user interfaces.

You can find the full list of standard library modules here:
https://docs.python.org/3/library/index.html

Some of the important modules are:

 math for math utilities
 re for regular expressions
 json to work with JSON
 datetime to work with dates
 sqlite3 to use SQLite
 os for Operating System utilities
 random for random number generation
 statistics for statistics utilities
 requests to perform HTTP network requests
 http to create HTTP servers
 urllib to manage URLs

Let's introduce how to use a module of the standard library. You already
know how to use modules you create, importing from other files in the
program folder.

Well that's the same with modules provided by the standard library:

https://docs.python.org/3/library/index.html

66

import math

math.sqrt(4) # 2.0

or

from math import sqrt

sqrt(4) # 2.0

We'll soon explore the most important modules individually to understand
what we can do with them.

26. The PEP8 Python style guide
When you write code, you should adhere to the conventions of the
programming language you use.

If you learn the right naming and formatting conventions right from the
start, it will be easier to read code written by other people, and people will
find your code easier to read.

Python defines its conventions in the PEP8 style guide. PEP stands for
Python Enhancement Proposals and it's the place where all Python language
enhancements and discussions happen. There are a lot of PEP proposals, all
available at https://www.python.org/dev/peps/.

PEP8 is one of the first ones, and one of the most important, too. It defines
the formatting and also some rules on how to write Python in a "pythonic"
way.

You can read its full content here: https://www.python.org/dev/peps/pep-
0008/ but here's a quick summary of the important points you can start
with:

Indent using spaces, not tabs

https://www.python.org/dev/peps/
https://www.python.org/dev/peps/pep-0008/

67

Indent using 4 spaces.
Python files are encoded in UTF-8
Use maximum 80 columns for your code
Write each statement on its own line
Functions, variable names and file names are lowercase, with
underscores between words (snake_case)
Class names are capitalized, separate words are written with the capital
letter too, (CamelCase)
Package names are lowercase and do not have underscores between
words
Variables that should not change (constants) are written in uppercase
Variable names should be meaningful
Add useful comments, but avoid obvious comments
Add spaces around operators
Do not use unnecessary whitespace
Add a blank line before a function
Add a blank line between methods in a class
Inside functions/methods, blank lines can be used to separate related
blocks of code to help readability

27. Debugging
Debugging is one of the best skills you can learn, as it will help you in many
difficult situations.

Every language has its debugger. Python has pdb , available through the
standard library.

You debug by adding one breakpoint into your code:

breakpoint()

You can add more breakpoints if needed.

68

When the Python interpreter hits a breakpoint in your code, it will stop, and
it will tell you what is the next instruction it will run.

Then and you can do a few things.

You can type the name of any variable to inspect its value.

You can press n to step to the next line in the current function. If the code
calls functions, the debugger does not get into them, and consider them
"black boxes".

You can press s to step to the next line in the current function. If the next
line is a function, the debugger goes into that, and you can then run one
instruction of that function at a time.

You can press c to continue the execution of the program normally, without
the need to do it step-by-step.

You can press q to stop the execution of the program.

Debugging is useful to evaluate the result of an instruction, and it's especially
good to know how to use it when you have complex iterations or algorithms
that you want to fix.

28. Variables scope
When you declare a variable, that variable is visible in parts of your program,
depending on where you declare it.

If you declare it outside of any function, the variable is visible to any code
running after the declaration, including functions:

69

age = 8

def test():
 print(age)

print(age) # 8
test() # 8

We call it a global variable.

If you define a variable inside a function, that variable is a local variable,
and it is only visible inside that function. Outside the function, it is not
reachable:

def test():
 age = 8
 print(age)

test() # 8

print(age)
NameError: name 'age' is not defined

29. Accept arguments from the
command line
Python offers several ways to handle arguments passed when we invoke the
program from the command line.

So far you've run programs either from a REPL, or using

python <filename>.py

You can pass additional arguments and options when you do so, like this:

70

python <filename>.py <argument1>
python <filename>.py <argument1> <argument2>

A basic way to handle those arguments is to use the sys module from the
standard library.

You can get the arguments passed in the sys.argv list:

import sys
print(len(sys.argv))
print(sys.argv)

The sys.argv list contains as the first item the name of the file that was ran,
e.g. ['main.py'] .

This is a simple way, but you have to do a lot of work. You need to validate
arguments, make sure their type is correct, you need to print feedback to the
user if they are not using the program correctly.

Python provides another package in the standard library to help you:
 argparse .

First you import argparse and you call argparse.ArgumentParser() , passing
the description of your program:

import argparse

parser = argparse.ArgumentParser(
 description='This program prints the name of my dogs'
)

Then you proceed to add arguments you want to accept. For example in this
program we accept a -c option to pass a color, like this: python program.py
-c red

71

import argparse

parser = argparse.ArgumentParser(
 description='This program prints a color HEX value'
)

parser.add_argument('-c', '--color', metavar='color', required=True,
 help='the color to search for')

args = parser.parse_args()

print(args.color) # 'red'

If the argument is not specified, the program raises an error:

➜ python python program.py
usage: program.py [-h] -c color
program.py: error: the following arguments are required: -c

You can set an option to have a specific set of values, using choices :

parser.add_argument('-c', '--color', metavar='color', required=True,
 choices={'red','yellow'}, help='the color to search for')

➜ python python program.py -c blue
usage: program.py [-h] -c color
program.py: error: argument -c/--color: invalid choice: 'blue'
(choose from 'yellow', 'red')

There are more options, but those are the basics.

And there are community packages that provide this functionality, too, like
Click and Python Prompt Toolkit.

30. Lambda Functions

https://click.palletsprojects.com/en/7.x/
https://python-prompt-toolkit.readthedocs.io/en/master/index.html

72

Lambda functions (also called anonymous functions) are tiny functions that
have no name and only have one expression as their body.

In Python they are defined using the lambda keyword:

lambda <arguments> : <expression>

The body must be a single expression. Expression, not a statement.

This difference is important. An expression returns a value, a statement
does not.

The simplest example of a lambda function is a function that doubles that
value of a number:

lambda num : num * 2

Lambda functions can accept more arguments:

lambda a, b : a * b

Lambda functions cannot be invoked directly, but you can assign them to
variables:

multiply = lambda a, b : a * b

print(multiply(2, 2)) # 4

The utility of lambda functions comes when combined with other Python
functionality, for example in combination with map() , filter() and
 reduce() .

31. Recursion

73

A function in Python can call itself. That's what recursion is. And it can be
pretty useful in many scenarios.

The common way to explain recursion is by using the factorial calculation.

The factorial of a number is the number n mutiplied by n-1 , multiplied by
 n-2 ... and so on, until reaching the number 1 :

3! = 3 * 2 * 1 = 6
4! = 4 * 3 * 2 * 1 = 24
5! = 5 * 4 * 3 * 2 * 1 = 120

Using recursion we can write a function that calculates the factorial of any
number:

def factorial(n):
 if n == 1: return 1
 return n * factorial(n-1)

print(factorial(3)) # 6
print(factorial(4)) # 24
print(factorial(5)) # 120

If inside the factorial() function you call factorial(n) instead of
 factorial(n-1) , you are going to cause an infinite recursion. Python by
default will halt recursions at 1000 calls, and when this limit is reached, you
will get a RecursionError error.

Recursion is helpful in many places, and it helps us simplify our code when
there's no other optimal way to do it, so it's good to know this technique.

32. Nested Functions
Functions in Python can be nested inside other functions.

A function defined inside a function is visible only inside that function.

74

This is useful to create utilities that are useful to a function, but not useful
outside of it.

You might ask: why should I be "hiding" this function, if it does not harm?

One, because it's always best to hide functionality that's local to a function,
and not useful elsewhere.

Also, because we can make use of closures (more on this later).

Here is an example:

def talk(phrase):
 def say(word):
 print(word)

 words = phrase.split(' ')
 for word in words:
 say(word)

talk('I am going to buy the milk')

If you want to access a variable defined in the outer function from the inner
function, you first need to declare it as nonlocal :

def count():
 count = 0

 def increment():
 nonlocal count
 count = count + 1
 print(count)

 increment()

count()

This is useful especially with closures, as we'll see later.

33. Closures

75

If you return a nested function from a function, that nested function has
access to the variables defined in that function, even if that function is not
active any more.

Here is a simple counter example.

def counter():
 count = 0

 def increment():
 nonlocal count
 count = count + 1
 return count

 return increment

increment = counter()

print(increment()) # 1
print(increment()) # 2
print(increment()) # 3

We return the increment() inner function, and that has still access to the
state of the count variable even though the counter() function has ended.

34. Decorators
Decorators are a way to change, enhance or alter in any way how a function
works.

Decorators are defined with the @ symbol followed by the decorator name,
just before the function definition.

Example:

@logtime
def hello():
 print('hello!')

76

This hello function has the logtime decorator assigned.

Whenever we call hello() , the decorator is going to be called.

A decorator is a function that takes a function as a parameter, wraps the
function in an inner function that performs the job it has to do, and returns
that inner function. In other words:

def logtime(func):
 def wrapper():
 # do something before
 val = func()
 # do something after
 return val
 return wrapper

35. Docstrings
Documentation is hugely important, not just to communicate to other people
what is the goal of a function/class/method/module, but also to yourself.

When you'll come back to your code 6 or 12 months from now, you might not
remember all the knowledge you are holding in your head, and reading your
code and understanding what it is supposed to do, will be much more
difficult.

Comments are one way to do so:

this is a comment

num = 1 #this is another comment

Another way is to use docstrings.

The utility of docstrings is that they follow conventions and as such they can
be processed automatically.

This is how you define a docstring for a function:

77

def increment(n):
 """Increment a number"""
 return n + 1

This is how you define a docstring for a class and a method:

class Dog:
 """A class representing a dog"""
 def __init__(self, name, age):
 """Initialize a new dog"""
 self.name = name
 self.age = age

 def bark(self):
 """Let the dog bark"""
 print('WOF!')

Document a module by placing a docstring at the top of the file, for example
supposing this is dog.py :

"""Dog module

This module does ... bla bla bla and provides the following classes:

- Dog
...
"""

class Dog:
 """A class representing a dog"""
 def __init__(self, name, age):
 """Initialize a new dog"""
 self.name = name
 self.age = age

 def bark(self):
 """Let the dog bark"""
 print('WOF!')

Docstrings can span over multiple lines:

78

def increment(n):
 """Increment
 a number
 """
 return n + 1

Python will process those and you can use the help() global function to get
the documentation for a class/method/function/module.

For example calling help(increment) will give you this:

Help on function increment in module
__main__:

increment(n)
 Increment
 a number

There are many different standards to format docstrings, and you can choose
to adhere to your favorite one.

I like Google's standard: https://github.com/google/styleguide/blob/gh-
pages/pyguide.md#38-comments-and-docstrings

Standard allows to have tools to extract docstrings and automatically
generate documentation for your code.

36. Introspection
Functions, variables and objects can be analyzed using introspection.

First, using the help() global function we can get the documentation if
provided in form of docstrings.

Then, you can use print() to get information about a function:

https://github.com/google/styleguide/blob/gh-pages/pyguide.md#38-comments-and-docstrings

79

def increment(n):
 return n + 1

print(increment)

<function increment at 0x7f420e2973a0>

or an object:

class Dog():
 def bark(self):
 print('WOF!')

roger = Dog()

print(roger)

<__main__.Dog object at 0x7f42099d3340>

The type() function gives us the type of an object:

print(type(increment))
<class 'function'>

print(type(roger))
<class '__main__.Dog'>

print(type(1))
<class 'int'>

print(type('test'))
<class 'str'>

The dir() global function lets us find out all the methods and attributes of
an object:

80

print(dir(roger))

['__class__', '__delattr__', '__dict__', '__dir__', '__doc__',
'__eq__', '__format__', '__ge__', '__getattribute__', '__gt__',
'__hash__', '__init__', '__init_subclass__', '__le__', '__lt__',
'__module__', '__ne__', '__new__', '__reduce__', '__reduce_ex__',
'__repr__', '__setattr__', '__sizeof__', '__str__',
'__subclasshook__', '__weakref__', 'bark']

The id() global function shows us the location in memory of any object:

print(id(roger)) # 140227518093024
print(id(1)) # 140227521172384

It can be useful to check if two variables point to the same object.

The inspect standard library module gives us more tools to get information
about objects, and you can check it out here:
https://docs.python.org/3/library/inspect.html

37. Annotations
Python is dynamically typed. We do not have to specify the type of a variable
or function parameter, or a function return value.

Annotations allow us to (optionally) do that.

This is a function without annotations:

def increment(n):
 return n + 1

This is the same function with annotations:

def increment(n: int) -> int:
 return n + 1

https://docs.python.org/3/library/inspect.html

81

You can also annotate variables:

count: int = 0

Python will ignore those annotations. A separate tool called mypy can be run
standalone, or integrated by IDE like VS Code or PyCharm to automatically
check for type errors statically, while you are coding, and it will help you
catch type mismatch bugs before even running the code.

A great help especially when your software becomes large and you need to
refactor your code.

38. Exceptions
It's important to have a way to handle errors.

Python gives us exception handling.

If you wrap lines of code into a try: block:

try:
 # some lines of code

If an error occurs, Python will alert you and you can determine which kind of
error occurred using a except blocks:

try:
 # some lines of code
except <ERROR1>:
 # handler <ERROR1>
except <ERROR2>:
 # handler <ERROR2>

To catch all exceptions you can use except without any error type:

http://mypy-lang.org/

82

try:
 # some lines of code
except <ERROR1>:
 # handler <ERROR1>
except:
 # catch all other exceptions

The else block is ran if no exceptions were found:

try:
 # some lines of code
except <ERROR1>:
 # handler <ERROR1>
except <ERROR2>:
 # handler <ERROR2>
else:
 # no exceptions were raised, the code ran successfully

A finally block lets you perform some operation in any case, regardless if
an error occurred or not

try:
 # some lines of code
except <ERROR1>:
 # handler <ERROR1>
except <ERROR2>:
 # handler <ERROR2>
else:
 # no exceptions were raised, the code ran successfully
finally:
 # do something in any case

The specific error that's going to occur depends on the operation you're
performing.

For example if you are reading a file, you might get an EOFError . If you
divide a number by zero you will get a ZeroDivisionError . If you have a type
conversion issue you might get a TypeError .

Try this code:

83

result = 2 / 0
print(result)

The program will terminate with an error

Traceback (most recent call last):
 File "main.py", line 1, in <module>
 result = 2 / 0
ZeroDivisionError: division by zero

and the lines of code after the error will not be executed.

Adding that operation in a try: block lets us recover gracefully and move
on with the program:

try:
 result = 2 / 0
except ZeroDivisionError:
 print('Cannot divide by zero!')
finally:
 result = 1

print(result) # 1

You can raise exceptions in your own code, too, using the raise statement:

raise Exception('An error occurred!')

This raises a general exception, and you can intercept it using:

try:
 raise Exception('An error occurred!')
except Exception as error:
 print(error)

You can also define your own exception class, extending from Exception:

84

class DogNotFoundException(Exception):
 pass

 pass here means "nothing" and we must use it when we define a class
without methods, or a function without code, too.

try:
 raise DogNotFoundException()
except DogNotFoundException:
 print('Dog not found!')

39. The with statement
The with statement is very helpful to simplify working with exception
handling.

For example when working with files, each time we open a file, we must
remember to close it.

 with makes this process transparent.

Instead of writing:

filename = '/Users/flavio/test.txt'

try:
 file = open(filename, 'r')
 content = file.read()
 print(content)
finally:
 file.close()

You can write:

85

filename = '/Users/flavio/test.txt'

with open(filename, 'r') as file:
 content = file.read()
 print(content)

In other words we have built-in implicit exception handling, as close() will
be called automatically for us.

 with is not just helpful to work with files. The above example is just meant
to introduce its capabilities.

40. Installing 3rd party packages
using pip
The Python standard library contains a huge number of utilities that simplify
our Python development needs, but nothing can satisfy everything.

That's why individuals and companies create packages, and make them
available as open source software for the entire community.

Those modules are all collected in a single place, the Python Package
Index available at https://pypi.org, and they can be installed on your system
using pip .

There are more than 270.000 packages freely available, at the time of
writing.

You should have pip already installed if you followed the Python
installation instructions.

Install any package using the command pip install :

pip install <package>

or, if you do have troubles, you can also run it through python -m :

https://pypi.org/

86

python -m pip install <package>

For example you can install the requests package, a popular HTTP library:

pip install requests

and once you do, it will be available for all your Python scripts, because
packages are installed globally.

The exact location depends on your operating system.

On macOS, running Python 3.9, the location is
 /Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/site-

packages .

Upgrade a package to its latest version using:

pip install –U <package>

Install a specific version of a package using:

pip install <package>==<version>

Uninstall a package using:

pip uninstall <package>

Show an installed package details, including version, documentation website
and author information using:

pip show <package>

41. List comprehensions

https://pypi.org/project/requests/

87

List comprehensions are a way to create lists in a very concise way.

Suppose you have a list:

numbers = [1, 2, 3, 4, 5]

You can create a new list using a list comprehension, composed by the
 numbers list elements, power 2:

numbers_power_2 = [n**2 for n in numbers]
[1, 4, 9, 16, 25]

List comprehensions are a syntax that's sometimes preferred over loops, as
it's more readable when the operation can be written on a single line:

numbers_power_2 = []
for n in numbers:
 numbers_power_2.append(n**2)

and over map() :

numbers_power_2 = list(map(lambda n : n**2, numbers))

42. Polymorphism
Polymorphism generalizes a functionality so it can work on different types.
It's an important concept in object-oriented programming.

We can define the same method on different classes:

88

class Dog:
 def eat():
 print('Eating dog food')

class Cat:
 def eat():
 print('Eating cat food')

Then we can generate objects and we can call the eat() method regardless
of the class the object belongs to, and we'll get different results:

animal1 = Dog()
animal2 = Cat()

animal1.eat()
animal2.eat()

We built a generalized interface and we now do not need to know that an
animal is a Cat or a Dog.

43. Operator Overloading
Operator overloading is an advanced technique we can use to make classes
comparable and to make them work with Python operators.

Let's take a class Dog:

class Dog:
 # the Dog class
 def __init__(self, name, age):
 self.name = name
 self.age = age

Let's create 2 Dog objects:

89

roger = Dog('Roger', 8)
syd = Dog('Syd', 7)

We can use operator overloading to add a way to compare those 2 objects,
based on the age property:

class Dog:
 # the Dog class
 def __init__(self, name, age):
 self.name = name
 self.age = age
 def __gt__(self, other):
 return True if self.age > other.age else False

Now if you try running print(roger > syd) you will get the result True .

In the same way we defined __gt__() (which means greater than), we can
define the following methods:

 __eq__() to check for equality
 __lt__() to check if an object should be considered lower than another
with the < operator
 __le__() for lower or equal (<=)
 __ge__() for greater or equal (>=)
 __ne__() for not equal (!=)

Then you have methods to interoperate with arithmetic operations:

 __add__() respond to the + operator
 __sub__() respond to the – operator
 __mul__() respond to the * operator
 __truediv__() respond to the / operator
 __floordiv__() respond to the // operator
 __mod__() respond to the % operator
 __pow__() respond to the ** operator
 __rshift__() respond to the >> operator
 __lshift__() respond to the << operator

90

 __and__() respond to the & operator
 __or__() respond to the | operator
 __xor__() respond to the ̂ operator

There are a few more methods to work with other operators, but you got the
idea.

44. Virtual Environments
It's common to have multiple Python applications running on your system.

When applications require the same module, at some point you will reach a
tricky situation where an app needs a version of a module, and another app a
different version of that same module.

To solve this, you use virtual environments.

We'll use venv . Other tools work similarly, like pipenv .

Create a virtual environment using

python -m venv .venv

in the folder where you want to start the project, or where you already have
an existing project.

Then run

source .venv/bin/activate

Use source .venv/bin/activate.fish on the Fish shell

Executing the program will activate the Python virtual environment.
Depending on your configuration you might also see your terminal prompt
change.

Mine changed from

91

 ➜ folder

to

 (.venv) ➜ folder

Now running pip will use this virtual environment instead of the global
environment.

92

Conclusion
Thanks a lot for reading this book.

For more, head over to flaviocopes.com.

Send any feedback, errata or opinions at flavio@flaviocopes.com

https://flaviocopes.com/
mailto:flavio@flaviocopes.com

	Preface
	The Python Handbook
	Conclusion

