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Preface

Mathematical modeling is the art of transforming a business problem into a clear mathematical 
formulation. For a given problem or use case, the algorithmic implementation of a model helps 
optimize parameters and generate better insights and comprehension to enable decision-making. A 
mathematical model complements a machine learning model and supports high-stake decisions in 
sensitive domains such as medicine, for example.

There are three focal topics to help you understand mathematical modeling:

• Areas where a mathematical model is useful – for example, control engineering and signal 
processing

• Tested Python-based mathematical tools – for example, graph theory and MCMC

• Underlying algorithms of mathematical optimization

I will provide concepts of mathematical modeling and various approaches to modeling through this 
book. I will guide you in choosing the optimal technique and best-suited algorithm to solve a business 
problem using Python, based on two main sources of information:

• My experience from the past 5 years as a data scientist and application developer for businesses

• My academic research (at different stages of maturity) across science disciplines for a decade

As a data professional, I believe mathematical models (equation-driven) with objectives and constraints 
in a problem are as relevant as (data-driven) machine learning models. In some cases, the right 
combination of both yields the best solutions.

Who this book is for
Data scientists, research and development professionals, and business scientists, in general, can gain 
practical insights into mathematical modeling with Python from this book.

It is assumed that you have knowledge of the following:

• Differential equations

• Linear algebra

• Basics of statistics
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• Data types and data structures

• Numerical algorithms

You will learn about the relevance of mathematical models, how interpretability must be factored into 
models while solving a business problem, and how mathematical optimization and tuning machine 
learning models are important to arrive at the optimal solution. You will also learn how to choose 
a model, keeping in mind the cost-effectiveness and efficiency of the underlying algorithm per the 
business case.

What this book covers
Chapter 1, Introduction to Mathematical Modeling, provides an introduction to the theory and concepts 
of mathematical modeling and the areas in which a mathematical model is predominant and useful.

Chapter 2, Machine Learning vis-à-vis Mathematical Modeling, describes with examples how machine 
learning models serve as predictive tools and classical mathematical models serve as prescriptive tools.

Chapter 3, Principal Component Analysis, provides the method to reduce the dimensionality of very 
high-dimensional data and examples wherein dimensionality reduction is necessary.

Chapter 4, Gradient Descent, is about an algorithm that lays the foundation for machine learning 
models. Variants of the gradient descent method are used to train machine learning as well as deep 
learning models.

Chapter 5, Support Vector Machine, provides mathematical details about an algorithm mostly utilized 
for data classification.

Chapter 6, Graph Theory, provides a theory that quantifies or models the relationships between 
interconnected entities in a network.

Chapter 7, Kalman Filter, is about a state estimation and prediction algorithm in the presence of 
imprecise and uncertain measurements of a dynamic system.

Chapter 8, Markov Chain, provides the theory of modeling a stochastic (random) process. The Markov 
chain is a class of probabilistic models that determines the next future state from knowledge of only 
the present state.

Chapter 9, Exploring Optimization Techniques, provides exposure to optimization algorithms used in 
machine learning models and those used in operations research. It also introduces you to evolutionary 
algorithms with examples.

Chapter 10, Optimization Techniques for Machine Learning, provides the methods for determining 
which algorithm to choose for the optimization of a machine learning model fitted to a dataset.
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To get the most out of this book
You will need Python 3.0 or higher versions to run the code in respective chapters. Python libraries 
required to execute a particular method have been imported (compatible versions with Python 3.0) 
in the code, which can be installed readily in the notebook or Python environment of your system.

Software/hardware covered in the book Operating system requirements
Python 3.0 or higher Windows, macOS, or Linux

Python libraries Windows, macOS, or Linux

If you are using the digital version of this book, we advise you to type the code yourself or access 
the code from the book’s GitHub repository (a link is available in the next section). Doing so will 
help you avoid any potential errors related to the copying and pasting of code.

Download the example code files
You can download the example code files for this book from GitHub at https://github.com/
PacktPublishing/A-Handbook-of-Mathematical-Models-with-Python. If there’s 
an update to the code, it will be updated in the GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at https://
github.com/PacktPublishing/. Check them out!

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, filenames, 
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “ 
The hyperparameter optimization methods in the scikit-learn Python library assume good 
performance scores are negative values close to zero.”

A block of code is set as follows:

import pandas as pd, numpy as np
from collections import Counter
import matplotlib.pyplot as plt

https://github.com/PacktPublishing/A-Handbook-of-Mathematical-Models-with-Python
https://github.com/PacktPublishing/A-Handbook-of-Mathematical-Models-with-Python
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
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When we wish to draw your attention to a particular part of a code block, the relevant lines or items 
are set in bold:

prediction = one_class_svm.predict(X_test)
prediction = [1 if i == -1 else 0 for i in prediction] #outliers 
denoted by 1, inliers by 0
print(classification_report(y_test, prediction))

Tips or important notes
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at customercare@
packtpub.com and mention the book title in the subject of your message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. 
If you have found a mistake in this book, we would be grateful if you would report this to us. Please 
visit www.packtpub.com/support/errata and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would 
be grateful if you would provide us with the location address or website name. Please contact us at 
copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you 
are interested in either writing or contributing to a book, please visit authors.packtpub.com.

mailto:customercare@packtpub.com
mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packtpub.com
http://authors.packtpub.com
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Share Your Thoughts
Once you’ve read A Handbook of Mathematical Models with Python, we’d love to hear your thoughts! 
Please click here to go straight to the Amazon review page for this book 
and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re delivering 
excellent quality content.

https://packt.link/r/1-804-61670-2


Prefacexvi

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical 
books directly into your application. 

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content 
in your inbox daily

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below

 

https://packt.link/free-ebook/9781804616703

2. Submit your proof of purchase

3. That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/9781804616703


Part 1: 
Mathematical Modeling

In this part, you will get to know the theory behind mathematical modeling. You will be introduced 
to the concepts of a mathematical model and how they are relevant in solving a business problem. A 
mathematical model relies heavily on domain knowledge, the objective of the business case formulated 
into a mathematical problem, and constraints in the context, while a machine learning (statistical) 
model relies on data. Mathematical modeling is complementary to machine learning; for some use 
cases, one is enough, whereas a few others need a blend of the two.

This part has the following chapters:

• Chapter 1, Introduction to Mathematical Modeling

• Chapter 2, Machine Learning vis-à-vis Mathematical Modeling





1
Introduction to Mathematical 

Modeling

There is a great deal of interesting work happening in data sciences, especially in the realms of Machine 
Learning (ML) and Deep Learning (DL), and they are popular for good reason. However, the more 
tried and tested old-timer, mathematical modeling, is not much talked about. Mathematical modeling 
methods are no less relevant and are complementary to ML. To create successful data products that 
solve real business problems, we must often deploy the whole breadth of available mathematical tools, 
far beyond ML.

A model is a simplified representation of a real system and captures the essence of the system. A 
mathematical model uses variables, operators, functions, equations, and equalities. Under the hood 
of mathematical models, there are first-principle models based on physical laws, stochastic models 
based on distributions, averages, and empirical models based on patterns or historical data. Based 
on the particular type of modeling, qualitative or quantitative recommendations can be made for the 
system under consideration. A mathematical model facilitates design and prototyping and substantiates 
decisions. To formulate a mathematical model, one needs the input and output, the constants and 
variables, the domain and boundary, or initial conditions and constraints. The solution can be analytic 
or numerical; in either case, it determines the typical behavior and critical parameters of the system, 
trends, dependency, and operating regimes. Systems can be deterministic, wherein we know the cause-
effect relationship, or they may be stochastic, involving probability distributions.

A few mature tools in mathematical modeling are in the following areas:

• Mathematical optimization

• Signal processing

• Control theory
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We will explore these mathematical modeling approaches in the following sections. A narrow focus 
on ML misses out on many relevant features of pure mathematical optimization in many use cases. 
Successful solutions across disparate domains blend the new world of ML with classical mathematical 
modeling techniques. For example, one can combine state-space modeling methods with ML to infer 
unobserved parameters of systems in a parameter estimation problem.

Mathematical optimization
A branch of applied mathematics is mathematical optimization, popularly known as mathematical 
programming. It finds applications in fields such as manufacturing, inventory control, scheduling, 
networks, economics, engineering, and financial portfolio allocation. Almost any classification, 
regression, or clustering problem can be cast as an optimization problem. Some problems are static, 
while some are dynamic, wherein the values of system variables change over time.

Understanding the problem

Mathematical optimization is basically choosing inputs from a set of allowed options to obtain the 
optimized or best possible output in a given problem. There are variables, which are essentially the 
decisions we have to make; constraints, which are the business rules we have to adhere to; and objectives, 
which are the business goals we are aiming to achieve by representing the real-world business problem 
as an optimization problem. For example, a hospital’s business problem is equipment and facility 
capacity planning. Medical equipment including beds and testing kits comprise the decision variables 
in this case; constraints are conventional and crisis capacity levels and regulations; and finally, the 
objective is to maximize resource utilization and service performance and minimize operating costs 
at the same time.

The most basic optimization problem consists of an objective function or cost function, which is the 
output value we try to optimize, in other words, maximize or minimize. The inputs are variables that 
can be controlled. Variables can be either discrete or continuous. The scale of a problem is pretty 
much determined by the dimensionality, that is, the number of scalar variables (also called decision 
variables) on which the search is performed. Constraints or equations place limits on how big or 
small some variables can get. Some problems have constraints, which can be equality or inequality 
constraints, while some problems do not have them at all, which implies the unbounded optimization 
of the function.

A linear programming problem is an optimization problem wherein the objective function and all 
constraints are linear, that is, the variables have only first-order terms. It was linear programming that 
led to the development of optimization in the 1940s. If either the function or one or more constraint(s) 
is non-linear, then we have a non-linear programming problem. For example, optimizing smooth 
(well-defined gradient, continuous) functions is easier. Knowing the problem type enables the selection 
of the right tool to solve it.
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Formulation of the problem

The general formulation of a mathematical problem with an objective function f(x) represents questions 
in terms of variables and constraints. A typical form is as follows:

Minimize f ( , … . . , )  such that ( , … . . , ) ≤ 0  where i = 1, 2, ...., m

The nature of variables and constraints can be quite diverse. The variables may be discrete, continuous, 
or sets (groups), and the constraints may be deterministic or stochastic. The objective function may 
also include dynamic aspects.

Sometimes we are interested in finding the global optimum point without any constraints or restrictions 
on the region in space. Such problems are unconstrained optimization problems. At other times, we have 
to solve problems subject to certain constraints, such as restrictions on control variables. For example, 
in the preceding case, we might have to minimize the function subject to ( +  … … . + ) = 1 . 
These are constrained optimization problems.

Example 1:

Let us have multiple (inequalities) constraints with two variables, x and y, as follows:

2x + 3y ≤ 34

3x + 5y ≤ 54

0 ≤ x, y

A graphical optimization would be an overlap (dark region) of the graphs, shown in Figure 1.1. Here 
the constraints are linear, and therefore, the maximum and minimum must lie on the boundary. 
And it is most likely that the optimum solution occurs at one of the three specified points. With 
non-linear constraints, the optimum occurs either at the boundaries or between them. In unconstrained 
optimization, either the function has no boundaries, or if it has, they are soft.
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Figure 1.1: Graphical representation of linear constrained optimization

Typical constraints in business problems involve time, money, and resources while attempting to 
maximize an objective function. The constraints are more particular to the use case at hand while 
minimizing an objective function. Suppose in the preceding problem the objective function is linear, 
such as f(x, y) = 20x + 35y, and the optimum is found out from the slope of the function. If f(x, y) takes 
a value, the value becomes a boundary, and the constraint plus the boundary make a linear constraint.

With linear constraints, the overlap region is considered to be feasible. Non-linear constraints can be 
very difficult to visualize as a distorted x-y plane makes it almost impossible to graph the feasible region.

Example 2:

In non-linear constrained optimization, the first step is to start on the boundary of the feasible region. 
To minimize the objective function, the vector direction should be chosen so that it decreases the 
function and stays in the feasible region. If the dot product of the gradient (slope) of the objective 
function with the vector itself is negative at a point on the boundary, then the vector is said to be 
moving in the descent direction. Also, a vector that does not violate the constraints is said to move 
in a feasible direction.

Figure 1.2: Feasible direction in non-linear constrained optimization
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The constraint equation on the boundary is g(x) =0, shown in Figure 1.2. A feasible vector cannot 
cause the value of g(x) to increase. It must either remain zero or decrease. If the dot product of the 
gradient of the constraint with the vector itself is negative or zero at the point, then the vector is said 
to be moving in a feasible direction. For example, say we have the following objective function:

Minimize 𝑓𝑓(𝑥𝑥) = 𝑥𝑥1 + 3𝑥𝑥22 

And the initial point (4, 2√2)  on a single constraint:

𝑔𝑔1(𝑥𝑥) =  𝑥𝑥1
2 +  𝑥𝑥2

2 −  24 ≤ 0 

Where   and   are the variables, in general, standing for a matrix or array. The vector <-1, 0> 
is in both descent and feasible directions. Since the initial point is randomly chosen, there is a good 
chance that the overlap between the set of all feasible vectors and the set of all descent vectors is large. 
However, as we approach the minimum, the overlap gets smaller, and at the minimum or optimum 
point, there is no overlap at all. At the optimum, one cannot minimize the objective function further 
without violating the constraint. We know we have reached the optimum when the dot product of the 
two gradients is negative, and the two vectors have a matrix determinant equal to zero.

Another possibility is that the optimum occurs in the interior of the feasible region rather than on 
the boundary. In such a case, the gradient of the objective function will be zero at that point. The 
concavity (non-convexity) of the point is determined by the eigenvalues of Hessian (second differential) 
of the function.

In optimization problems where the objective function is noisy or its gradient is computed numerically 
as the gradient is not given (complex boundary value problems, for instance), errors are induced. Even 
if the objective functions themselves are not noisy, gradient-based optimization may turn out to be 
noisy. There are different optimizers available as library functions with Scientific Python, or scipy 
for short, to solve such optimization problems, and we will learn about a few of them in the following 
chapters. Now that we have learned about the concepts of mathematical optimization, we shall explore 
another concept in mathematical modeling, which is signal processing.

Signal processing
Another branch of applied mathematics is signal processing, which finds its application in the engineering 
field, focusing on analyzing and processing signals such as sound, images, scientific measurements, 
and filtering out noise. Signal processing deals with the transformation of a signal from time-series 
to hyper-spectral images, which are obtained from different electromagnetic measurements. Classic 
transformations of signals such as spectrograms and wavelets are often used with ML techniques. 
Such representations can also be used as inputs to deep neural networks. The Kalman filter is one 
classic signal processing filter that uses a series of measurements over time to produce estimates of 
unknown variables.
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Understanding the problem

A signal is a function of a continuous variable, such as time or space. An analog signal is transformed 
into a digital signal by sampling it at specified intervals of time called the sampling period, the inverse 
of which is the sampling rate (per second or Hertz). The sampling rate has to be at least twice as high 
as the maximum frequency of the analog signal. It establishes a sufficient condition that permits a 
discrete sequence of samples to encapsulate all the information from a continuous time signal into 
a discrete time signal.

Figure 1.3: 60 kHz sinusoidal (Hann-windowed) tone burst in the 

time domain and frequency domain of the signal

The frequency domain representation of a signal is done with the Discrete Fourier Transform (DFT). 
The Fast Fourier Transform (FFT) is an efficient computation method of DFT. FFT is rarely applied 
over the entire signal (speech signal, for example) at once but rather in frames due to the stochastic 
nature of the signal, an example of which is illustrated in Figure 1.3. FFT is available as a library function 
with scipy for the computation of the frequencies of each frame. A type of Fourier transform called 
the Short-time Fourier Transform (STFT) is typically applied on each individual frame.

Formulation of the problem

It is clear that Discrete-Time Signal Processing (DSP) is meant for sampled signals and establishes 
a mathematical basis for DSP, which is essentially analyzing and modifying a signal to improve (or 
optimize) its efficiency or performance. By using DFT, a discrete sequence can be represented as its 
equivalent frequency ‘ ′  domain. The linearity property of the Fourier transform yields two signals, 

( )  and ( ) :

𝐹𝐹[𝑎𝑎𝑎𝑎1(𝑡𝑡) + 𝑏𝑏𝑎𝑎2] = 𝑎𝑎𝑋𝑋1(𝑤𝑤) + 𝑏𝑏𝑋𝑋2(𝑤𝑤) 
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Where ( )  and ( )  are the Fourier transforms of ( )  and ( )  respectively, a concept often 
used in the filtering of signals, which is the transformation of the time   domain to the frequency   
domain. The duality property of the Fourier transform is useful as it enables solving complex ones 
that otherwise would be difficult to compute directly. It yields that if x( )  has a Fourier transform  

( ) , then one can form a new function of time ( )  that has a functional form of the transformation, 
for example:

𝑋𝑋(𝑡𝑡) ⃪ → 2𝜋𝜋𝜋𝜋(−𝑤𝑤) 

A time shift affects the frequency, and a frequency shift affects the time of the functions. Let us take 
an example of a spectrogram to understand DSP.

A spectrogram displays the spectrum of frequencies of a waveform over time and is extensively used 
in the fields of music and speech processing and radars. It is generated by an optical spectrometer, a 
Fourier transform, or a wavelet transform and is usually depicted as a heat map wherein the strength or 
intensity of the signal changes with the color (brightness). To generate a spectrogram, a time-domain 
signal is divided into chunks of equal lengths that usually overlap, and FFT is applied to each chunk 
for the calculation of the frequency range. The spectrogram is a plot or graph of the spectrum on each 
segment or FFT frame, as a frequency versus a time image (or a 3D surface), shown in Figure 1.4, and 
the third dimension (represented by the color bar) indicates the amplitude of a particular frequency 
at a particular time. This process corresponds to the computation of the squared magnitude of STFT 
of the signal.

Figure 1.4: Spectrogram
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Spectrograms can be used to identify characteristics of non-stationary or non-linear signals as a 
collection of time-frequency analyses. The parameters in a spectrogram typically are frame count 
(number of FFTs making it up), frequency range (minimum and maximum), FFT spacing, and FFT 
width (width of time each FFT represents).

Spectrograms are used with recurrent neural networks (RNNs) in speech recognition, as a primary 
example. We learned about how digital signals are free (well, almost) of noise and less distorted in this 
sub-section, and in the next, we are going to explore control theory, another mathematical modeling 
technique widely used in industrial processes. Control theory is, in general, useful whenever feedback 
happens in either regulator or servo mechanisms, for example, navigation systems and industrial 
production processes.

Control theory
A branch of mathematics and engineering is control theory, which found its use in social sciences as 
well, such as economics and psychology. It deals with the behavior or evolution of dynamical systems. 
It is particularly useful when the dynamics of a system are not arbitrary, that is, we understand the 
physics of the system. The objective of control is to develop a model from measured data. This model 
is a mathematical description of inputs applied to drive a system to a desired state, minimizing any 
delay or error simultaneously and ensuring a level of stability.

The behavior of a dynamical system is influenced by a feedback loop – a controller manipulates the 
system inputs to obtain the desired effect on the output. An error-controlled regulation is typically 
carried out with a proportional-integral-derivative (PID) controller, and as the name suggests, the 
signal is derived from a weighted sum, integral, and derivative of the error signal. The error, which 
is the difference between the actual and the desired output, is applied as feedback to the input. The 
standard terminology for a system is a process, and for a controlled variable is a process variable 
(PV), and the objective remains the reduction of the deviation error. Using a negative feedback loop, 
a measurement of PV (E in Figure 1.5) is deducted from a desired value S (set point or SP) to estimate 
an error (SP minus PV) in the system, which is used by a regulator R (Figure 1.5) to reduce the gap 
between the measured value and desired value. The error may be introduced into the system T as a 
disturbance D, as shown in the closed loop (Figure 1.5) of a controller.
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Figure 1.5: Negative feedback controller

Control theory can be linear as well as non-linear. Linear control theory is applied to devices obeying 
the superposition principle, meaning the output is roughly proportional to the input. Such (close to 
ideal) systems are tractable by frequency domain mathematical techniques such as Laplace transform, 
Fourier transform, and the Nyquist stability criterion. Non-linear control theory, on the other hand, 
applies to real-world systems that do not obey the superposition principle. Such systems are often 
governed by non-linear differential equations and analyzed using numerical methods. Non-linear 
systems are studied numerically using simulating operations using a simulation language that mirrors 
the system processes. However, if solutions in the vicinity of a stable or equilibrium point are only of 
interest, non-linear control systems can be linearized into approximations using perturbation techniques.

Understanding the problem

Mathematical techniques are served in either the frequency domain or time domain for analyzing 
control systems. The state variables in a frequency domain, representing the system’s input, output, 
and feedback, are functions of frequency. The transfer function, system function, or network function 
is a mathematical model of the relationship between the input and output, on the basis of differential 
equations governing or describing the system. The input and transfer functions are converted from 
functions of time to functions of frequency by a mathematical transformation. In this domain, the 
differential equations are replaced by algebraic equations, which are simpler to solve. The state variables 
in a time domain are functions of time, and the system is described by one or more differential equations.

Time domain techniques are used to explore and analyze real non-linear systems because frequency 
domain techniques can only be used to study (ideal) linear systems. Although the equations for 
non-linear systems are difficult to solve, computer simulation methods have made their analyses 
commonplace. A critical application of the control loop is in industrial process control systems design, 
as shown in Figure 1.6.
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Figure 1.6: Industrial control showing continuously modulated process flow

The building block of industrial processes is the control loop, which consists of all elements to measure 
and control a process value at a desired SP in the presence of perturbances. The controller may be 
an isolated piece of hardware or, within a large distributed control system, a programmable logic 
controller (PLC) system and SP inputs can be manually set or cascaded from another source. The 
green text in Figure 1.6 are tags that describe the function and identify a component and are unique 
(strings) within a plant representing the equipment components or elements. An associated sensor 
essentially captures the data of such tags.

Formulation of the problem

Modern control theory utilizes state-space methods (time-domain representation), unlike classical 
control theory, which uses transform methods (frequency-domain representation) such as the Laplace 
transform, which encodes all system information. In the state-space approach, a mathematical model 
is a set of first-order differential equations governing the related set of input, output, and state variables 
of the system. These variables are expressed as vectors, and the differential equations have a matrix 
format, which is more convenient to tackle. On the contrary, algebraic equations representing the 
behavior of a linear dynamical system are written in matrix form.

The state-space approach is not limited to linear systems and provides a convenient and compact way 
of modeling and analyzing mostly non-linear systems with multiple inputs and outputs. State space 
refers to a space whose axes are state variables, and the system state is expressed as a vector within 
that space.
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A plant or process is the part of the system that is controlled, and the controller (or simply filter) 
makes up the rest. Inputs to the process have an effect on the outputs, and the effect is measured with 
sensors and processed by the controller. The control signal is fed back to the input, thus closing the 
loop. Such a typical architecture is the PID controller, which is by and large the most used industrial 
design, shown in Figure 1.7. It calculates an error value e(t) continuously, the error being the difference 
between the desired SP and measured PV, and applies a correction on the basis of proportional, 
integral, and derivative terms.

Figure 1.7: u(t) is the control signal sent to the system, e(t) = r(t) – y(t) is the error

When such a process is monitored by multiple controllers, it becomes a distributed control system 
with a decentralized control loop. Decentralization is useful as it helps the control systems to operate 
over a large area while interaction happens through communication channels.

Some of the main control techniques extensively used in industries include adaptive control, hierarchical 
control, optimal control, robust control, and stochastic control. Apart from these, intelligent control 
uses artificial intelligence (AI) and ML approaches such as fuzzy logic, neural networks, and so on 
to control a dynamic system. Industry 4.0 is revolutionizing the way manufacturers are integrating 
AI into their operations and production facilities.

Summary
In this chapter, we introduced the concepts of mathematical modeling via the important areas it is 
largely implemented in or applied to, such as optimization, signal processing, control systems, and 
control engineering. Mathematical modeling or mathematical programming is the art of transforming 
a problem into a clear mathematical formulation. Its subsequent algorithmic implementation generates 
actionable insights and helps build further knowledge about the domain.
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The chapter helped us learn the formulation of a mathematical optimization problem in order to arrive 
at an optimal solution, the formulation being dependent on the domain we intend to investigate. A 
mathematical optimization model is like a digital twin of a real-world business scenario. It mirrors 
the business landscape in a strictly mathematical and programming setup, and such an environment 
becomes particularly relevant for the interpretability of business processes to support high-stake decisions.

In the next chapter, we will find out how mathematical models emphasize the importance of both data 
and domain knowledge. Additionally, we will learn how ML models can be cast as optimization problems.



2
Machine Learning vis-à-vis 

Mathematical Modeling

Having learned about the main components of mathematical optimization, which are decision variables, 
objective functions, and constraints, in the previous chapter, it is time to throw light on machine 
learning (ML) models, most of which can be cast as mathematical models. Humans make machines 
learn from huge amounts of historical data. ML models enhance the decision-making abilities of man 
and machine, exploiting the power of data and algorithms. There is almost always some optimization 
algorithm working in the background of most of these models.

The term ML was first popularized by Arthur L. Samuel in the 1950s, who was a pioneer in computer 
science and gaming. Data volume has increased by leaps and bounds since then, particularly in the 
last couple of decades, and making sense of huge amounts of data is beyond the scope of the human 
mind. Hence, ML stepped in and found its application in almost all domains to assist humans with 
the decision-making process.

Learning problems in data science can be broadly classified into regression, classification, and clustering 
depending on the business problem or use case. Regression and classification use supervised algorithms 
to predict a target, usually called the dependent variable, the independent variables being called 
predictors. Clustering makes use of unsupervised learning algorithms where the target is unknown. 
It is worth mentioning that learning in all ML algorithms is not all about optimization, an example of 
which is supervised learning in k-nearest neighbors (kNN). ML is a predominantly predictive tool 
helping a business plan for the future, thereby being beneficial for its bottom line. Businesses also 
leverage ML in anomaly (or outlier) detection and recommendation systems. Strictly mathematical 
modeling, on the other hand, helps businesses make decisions in areas such as electricity distribution, 
employee scheduling, and inventory management.
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Some well-known algorithms used in ML models that employ constrained optimization are as follows:

• Principal component analysis (PCA)

• Clustering with an expectation maximization algorithm (a Gaussian mixture model, for example)

• Support vector machines using the method of Lagrange multipliers

Other ML algorithms that employ unconstrained optimization are stochastic gradient descent (SGD) 
in neural networks and batch gradient descent in deep learning (neural networks with numerous hidden 
layers between the input and output). Apart from these, there are genetic algorithms in evolutionary 
learning, which encompass both constrained and unconstrained optimization problems.

The main components of ML are representation, evaluation, and optimization. By representation, 
we essentially mean putting forth the knowledge and historical data statistically to find patterns, in 
other words, the formulation of a business problem to arrive at or estimate the solution. Next is the 
evaluation of the formulation, which we call the model, and fitting our data into and comparing it 
with known examples or data samples. Finally, the algorithm behind the model optimizes its weights 
and biases for a better fit with the data, and the optimization process iterates until a desired accuracy 
for the problem is attained. We will learn about PCA and gradient descent in the following chapters.

This chapter covers the following topics:

• ML as a mathematical optimization problem

• ML as a predictive tool

• Mathematical modeling as a prescriptive tool

ML as mathematical optimization
ML can be described as finding the unknown underlying (approximate) function that maps input 
examples to output examples. This is where the ML algorithm defines a parametrized mapping 
function and optimizes or minimizes the error in the function to find the values of its parameters. ML 
is function approximation along with function optimization. The function parameters are also called 
model coefficients. Each time we fit a model to a training dataset, we solve an optimization problem.

Each ML algorithm makes different assumptions about the form of the mapping function, which in 
turn influences the type of optimization to be performed. ML is a function approximation method to 
optimally fit input data. It is particularly challenging when the data (the size or the number of examples) 
is limited. An ML algorithm must be chosen in a way that it most efficiently solves an optimization 
problem; for example, SGD is used for neural nets, while ordinary least squares and gradient descent 
are used for linear regression. When we deviate from the default algorithms, we need a good reason to 
do so. In mathematical optimization, a heuristic might sometimes be used to determine near-optimal 
solutions. This happens when the classical algorithms are too slow to even find an approximate solution 
or they fail to find an exact solution to the optimization problem. Examples of heuristics are a genetic 
algorithm and a simulated annealing algorithm.
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Example 1 – regression

An ML problem is framed as the learning of a mapping function (f) given input data (X) and output 
data (Y) such that Y = f(X). Given new input data, we should be able to map each datum onto (or 
predict) the output with our learned function, f. A prediction error is expected in general with noise 
in observed data and with a choice of learning algorithm that approximates the mapping function. 
Finding the set of inputs that results in the minimum error, cost, or loss is essentially solving the 
optimization problem. The choice of mapping function dictates the level of difficulty of optimization. 
The more biased or constrained the choice, the easier it is.

For example, linear regression is a constrained model. Using linear algebra, it can be solved analytically. 
The inputs to the mapping function in this case are the model coefficients. An optimization algorithm 
such as iterative local search can be used numerically but it is almost always less efficient than an 
analytical solution. A logistic regression (for a classification task) is a less constrained model, and an 
optimization algorithm is required in this case. The loss or error here is also called the logistic loss or 
cross-entropy. While a global search optimization algorithm can be used in both types of regression 
models, it is mostly less efficient than using either an analytical method or a local search method. An 
iterative global search (gradient descent, for example) is suitable when the search space or landscape 
is multimodal and nonlinear, as shown in Figure 2.1.

Figure 2.1: 3D landscape of unconstrained optimization space, where A is the current state
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Example 2 – neural network

A neural network is a flexible model and imposes very few constraints. A network typically has an 
input layer, a hidden layer (can be more than one), and an output layer of nodes, and the inputs to the 
mapping function are weighted to the input layer, as shown in Figure 2.2. It is this mapping function 
that the supervised learning algorithm tries to best approximate.

Figure 2.2: The three essential, minimal layers in a network

The deviation of predicted output from expected output is the error value, and this error or cost, 
shown in Figure 2.3, is minimized while approximating the function during model training. A neural 
network requires an iterative global search algorithm. Gradient descent is the preferred method to 
optimize a neural network that has variants, namely, batch and mini-batch gradient descent and SGD. 
One of the most popular SGD algorithms is Adaptive Moment Estimation (Adam), which computes 
adaptive learning rates for each parameter of the function.
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Figure 2.3: Minimization of cost function J(w) by gradient descent where w is the 

input (courtesy of Python Machine Learning by Sebastian Raschka)

A gradient is a vector of partial derivatives (slope/curvature) of the function with respect to input 
variable values. The gradient descent algorithm, as the name suggests, requires the calculation of 
this gradient. The negative of the gradient of each input is followed downhill as the gradient points 
uphill, to lead to new values of the input. A step size is used to scale the gradient and control the 
change of input with respect to the gradient. This step size or increment is the learning rate, a hyper-
parameter of the algorithm, and is the proportion in which network weights are updated. The process 
is repeated until the minimum of the function is located. Gradient descent is adapted to minimize 
the loss function of a predictive model, such as regression or classification. This adaptation results in 
SGD, as shown in Figure 2.4.

Figure 2.4: Gradient descent extension
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SGD is the extension of the gradient descent optimization algorithm, wherein the target function 
is considered to be the loss or error, such as mean squared error for regression and cross-entropy 
for classification. Since the gradients of the target function with respect to the inputs are noisy, 
and deterministic to the extent of probabilistic approximation only, the algorithm is referred to as 
“stochastic.” Due to the sparseness and noise in training data, the evaluated gradients have statistical 
noise. Generally speaking, SGD and its variants are still the most used optimization algorithms for ML 
as well as training deep learning (artificial neural network) models. The inputs to a neural network 
are the weights (model parameters) and the target function is the prediction error averaged over one 
batch, which is a subset of the training dataset.

A popular extension to SGD for the improvement of process efficiency, such as finding out the same (or 
better) loss in fewer iterations, is Adam. The Adam optimization method is computationally efficient, 
requires little memory, and is well suited for problems that are large in terms of size and features. The 
configuration parameters of Adam are the learning rate (step size), exponential decay rate (denoted by 
beta 1) for the mean (first moment) estimates, exponential decay rate (denoted by beta 2) for variance 
(second moment) estimates, and epsilon (very small number) to prevent any division by zero in the 
implementation. Larger values of learning rate (denoted by alpha) result in faster initial learning before 
an update and lower values of learning rate mean slower learning during the entire training. These 
parameters typically require very little tuning as they have intuitive interpretation.

A major challenge in using SGD to train a multi-layer neural network is the gradient calculation 
for nodes in the hidden layer(s) of the network. It can be tackled by utilizing a specific technique 
from calculus called the chain rule, and an efficient algorithm that implements this rule is called 
backpropagation, which calculates the gradient of a loss function concerning the model variables. 
The first-order derivative of a function for a specific input variable value is the rate of change of the 
function with that variable, and when there are multiple input variables, the (partial) derivatives 
form a vector. For each weight in the network, backpropagation calculates the gradient, which is then 
used by the SGD optimization algorithm to update the weights. Backpropagation works backward 
from the output toward the input of the network, as shown in Figure 2.5. It propagates the error in 
the predicted output to compute the gradient for each input variable, basically a backward flow of 
information from the cost function through the network. Backpropagation involves the recursive 
application of the chain rule, which is the calculation of the derivative of a sub-function given the 
known derivative of the parent function.
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Figure 2.5: Backpropagation in a neural network

A genetic algorithm does not utilize the structure of the model, meaning it does not require gradients. 
For problems in which we use neural network models, we need to optimize the model using gradients 
that are calculated with backpropagation. It is only fair to say that backpropagation is a part of the 
optimization process, the optimization algorithm being SGD.

Now that we have explored ML tasks such as regression, classification, and neural nets in the form 
of mathematical optimization problems, we shall learn about ML as a predictive modeling tool and 
how it is utilized in a few important domains.

ML – a predictive tool
Working through a predictive model involves optimization at multiple steps on top of optimally fitting 
the learning algorithm to the data. It involves transforming raw data into a form most appropriate for 
consumption in learning algorithms. An ML model has hyperparameters that can be configured to 
tailor it to a specific dataset. It is a standard practice to test a suite of hyper-parameters for a chosen 
ML algorithm, which is called hyper-parameter tuning or optimization. A grid search or random 
search algorithm is used for such tuning. Figure 2.6 shows the two search algorithm types. Grid search 
is more suitable for a quick search of hyperparameters and is known to perform well in general. You 
can also use Bayesian optimization for hyper-parameter tuning in some problems. We will learn about 
these optimization techniques in detail in the last part of the book.
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Figure 2.6: Grid search (L) versus random search (R)

An ML practitioner often performs a manual process for predictive model selection involving tasks 
such as data preparation, evaluating models, tuning them, and finally, choosing the best model for 
a given dataset. This can be framed as an optimization problem that can be solved with automated 
machine learning (AutoML) with little user intervention. The automated optimization approach to 
ML is also offered as a cloud product service by companies such as Google and Microsoft.

With or without a target variable in the input dataset, an ML algorithm becomes supervised or 
unsupervised learning, respectively. In reinforcement learning, certain behaviors are encouraged 
and others discouraged. The desired behavior is reinforced by rewards, which are gained through 
experiences from the environment. These three types of ML are shown in Figure 2.7.
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Figure 2.7: The three kinds of ML – supervised learning, unsupervised learning, and reinforcement learning

We will now talk about a few major domains where the ML model has safely secured its place as a 
predictive tool.

E-commerce

ML models help retailers understand the buying behavior of customers and their preferences. From 
historical purchase patterns of customers and click-through rates of products, e-commerce companies 
effectively recommend products and offer to maximize their sales. Personalized recommendations help 
retailers retain their customer base, thus creating loyalty. The following link outlines the particular 
ways ML can be utilized in the e-commerce industry:

https://blog.shift4shop.com/machine-learning-ecommerce-industry

https://blog.shift4shop.com/machine-learning-ecommerce-industry
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Sales and marketing

ML models are used in B2B marketing as well. Identifying and acquiring prospects with features similar 
to existing businesses is one use case of customer segmentation. Prioritizing known prospects and 
generating new leads based on the likelihood of customers taking action is achieved using lead-scoring 
algorithms. Companies can streamline their sales and marketing activities by being data-driven as 
well as algorithm-driven. Here are some ways sales and marketing have improved when driven by ML:

https://scinapse.ai/blog/11-ways-machine-learning-can-improve-
marketing-and

Cybersecurity

Cyber-attacks may strike an organization at any time and cause serious harm; however, they can be 
predicted and prevented by ML algorithms. From processing both structured and unstructured data 
in a short time, real-time traffic can be analyzed to track unusual or anomalous patterns. Companies 
keep attacks at bay by analyzing these outlying points in the data. This also reduces the scope of human 
error stemming from the manual processing of massive volumes of data and enables humans to focus 
on strategizing the protection of the system from cyber-attacks. The following data-driven methods 
pointed out by Kaspersky are worth studying:

https://www.kaspersky.com/enterprise-security/wiki-section/products/
machine-learning-in-cybersecurity

Having explored how ML works as a predictive modeling tool in the industry, we will learn in the next 
section how mathematical modeling can be used as a prescriptive tool in different sectors.

Mathematical modeling – a prescriptive tool
Businesses often make complex decisions about their course of action to achieve objectives with the 
help of mathematical modeling or heuristics. A mathematical model in this sense is a prescriptive 
analytical tool. Answering the “where” and “when” is as important as answering what happened in the 
past (descriptive analytics) and what could happen in the future (predictive analytics). If a business 
wants to drive decisions from data in addition to insights and future predictions, it has to use both 
predictive and prescriptive tools in an integrated fashion.

https://scinapse.ai/blog/11-ways-machine-learning-can-improve-marketing-and
https://scinapse.ai/blog/11-ways-machine-learning-can-improve-marketing-and
https://www.kaspersky.com/enterprise-security/wiki-section/products/machine-learning-in-cybersecurity
https://www.kaspersky.com/enterprise-security/wiki-section/products/machine-learning-in-cybersecurity
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Figure 2.8: Mathematical optimization or mathematical modeling

We will have a look at examples from industry verticals wherein these work in tandem, resulting in 
higher productivity and profitability.

Finance

Financial services, including banks, rely on ML models as well as mathematical models to determine 
the right allocation of their investment portfolios. An ML model in the form of time-series forecasting 
helps with the prediction of asset performance, which in turn is channelled into applications leveraging 
a mathematical model. Based on the market movements and forecasts, the mathematical optimization 
application determines the optimal allocation. The best portfolio allocation also takes individual 
investment objectives and preferences into account. These mitigate risks and maximize risk-adjusted 
returns on investments.

Retail

Leading retailers utilize ML models to forecast demand for products, especially high-selling ones in 
particular locations at given times. They feed these predictions into mathematical models to maximize 
profits and customer satisfaction. The mathematical optimization application, in this case, uses the 
forecast as input to generate optimal production, pricing, inventory and distribution planning, logistics, 
and warehousing, thereby making the best business decisions while minimizing operating costs. Supply 
chain management is a classic example of mathematical optimization.

Energy

Governments and industry players are making high-stakes decisions on strategic investments in network 
infrastructure and resources as electric power is making a transition from being dependent on fossil 
fuels to renewables such as solar and wind. Organizations are utilizing ML models to predict future 
power demand and capacity needs. These forecasts are fed into mathematical models or mathematical 
optimization applications that generate optimal long-term investment planning and help in making 
decisions about strategic investments.
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Digital advertising

Search engine giants such as Google leverage ML (and deep learning) models to predict the products 
and services individuals will be interested in looking up, based on their prior search history and a few 
other factors. In addition, they utilize mathematical models to figure out the online advertisements 
that can be shown to individual users at certain times. Search engine giants use this optimization 
model to charge advertisers and maximize their revenue.

These domains have added mathematical modeling to their data science toolbox that handles complex, 
significant, and scalable business problems for greater value delivery. Other industries, such as 
telecommunications and cloud computing, also use both models to precisely assess long-term demand 
and capacity needs to make the best business decisions.

Summary
In this chapter, we introduced ML models as problems of mathematical optimization or mathematical 
programming. We found out that an end-to-end ML project is the sum of multiple small optimization 
problems. We also gained knowledge about how businesses can unlock the true value of data upon 
leveraging mathematical models (primarily driven by mathematical equations) in addition to ML 
(driven by data) models. We learned that an ML model is predominantly a predictive tool and a 
mathematical model is a prescriptive one.

In the next chapter (which begins the next part of the book), we will take a meticulous look at a well-
known algorithm called PCA, utilized in an unsupervised ML model fit to data with high dimensionality. 
It is a dimensionality reduction technique and one of the most tried and tested mathematical tools 
employing constrained optimization.



Part 2: 
Mathematical Tools

In this part, you will learn some of the most tried and tested mathematical tools and algorithms. On 
the one hand, there are algorithms for data dimensionality reduction, optimization of machine learning 
models, and data classification, which are explored through Python code. On the other hand, there 
are algorithms that model the relationships between objects (data points) and estimate the current 
and future states of variables (unknown and immeasurable ones) of a dynamic system. There are also 
other algorithms that predict the next future state probabilistically from knowledge of the present 
state of a process, explained with simple examples and Python code.

This part has the following chapters:

• Chapter 3, Principal Component Analysis

• Chapter 4, Gradient Descent

• Chapter 5, Support Vector Machine

• Chapter 6, Graph Theory

• Chapter 7, Kalman Filter

• Chapter 8, Markov Chain 





3
Principal Component Analysis

A well-known algorithm to extract features from high-dimensional data for consumption in machine 
learning (ML) models is Principal Component Analysis (PCA). In mathematical terms, dimension 
is the minimum number of coordinates required to specify a vector in space. A lot of computational 
power is needed to find the distance between two vectors in high-dimensional space and in such cases, 
dimension is considered a curse. An increase in dimension will result in high performance of the 
algorithm only to a certain extent and will drop beyond that. This is the curse of dimensionality, as 
shown in Figure 3.1, which impedes the achievement of efficiency for most ML algorithms. The variable 
columns or features in data represent dimensions of space and the rows represent the coordinates in 
that space. With the increasing dimension of data, sparsity increases and there is an exponentially 
increasing computational effort required to calculate distance and density. Theoretically speaking, an 
increase in dimension practically increases noise and redundancy in large datasets. Arguably, PCA is 
the most popular technique to tackle this complexity of dimensionality in high-dimensional problems.

Figure 3.1: Curse of dimensionality

PCA comes from the field of linear algebra and is essentially a data preparation method that projects 
the data in a subspace before fitting the ML model to the newly created low-dimensional dataset. 
PCA is a data projection technique useful in visualizing high-dimensional data and improving data 
classification. It was invented in the 1900s following the principal axis theorem. The main objectives 
of PCA are to find an orthonormal basis for the data, sort dimensions in the order of importance or 
variance, discard dimensions of low importance, and focus only on uncorrelated Gaussian components.



Principal Component Analysis30

This chapter covers the following topics:

• Linear algebra for PCA

• Linear discriminant analysis – the difference from PCA

• Applications of PCA

The following section talks about linear algebra, the subject of mathematics on which PCA is based.

Linear algebra for PCA
PCA is an unsupervised method used to reduce the number of features of a high-dimensional dataset. 
An unlabeled dataset is reduced into its constituent parts by matrix factorization (or decomposition) 
followed by ranking of these parts in accordance with variances. The projected data representative of 
the original data becomes the input to train ML models.

PCA is defined as the orthogonal projection of data onto a lower dimensional linear space called the 
principal subspace, done by finding new axes (or basis vectors) that preserve the maximum variance 
of projected data; the new axes or vectors are known as principal components. PCA preserves the 
information by considering the variance of projection vectors: the highest variance lies on the first axis, 
the second highest on the second axis, and so forth. The working principle of the linear transformation 
called PCA is shown in Figure 3.2. It compresses the feature space by identifying a subspace that 
captures the essence of the complete feature matrix.

Figure 3.2: PCA working principle
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There are other approaches to reducing data dimensionality such as feature selection methods (wrapper 
and filter), non-linear methods such as manifold learning (t-SNE), and deep learning (autoencoders) 
networks; however, the widest and most popular exploratory approach is PCA. Typically, linear algebraic 
methods assume that all inputs have the same distribution, and hence, it is a good practice to (either 
normalize or standardize) scale data before using PCA if the input features have different units.

Covariance matrix – eigenvalues and eigenvectors

The constraint in PCA is all the principal axes should be mutually orthogonal. The covariance of data 
is a measure of how much any pair of features in the data vary from each other. A covariance matrix 
checks the correlations between features in data and the directions of these relationships are obtained 
depending on whether the covariance is less than, equal to, or greater than zero. Figure 3.3 displays 
the covariance matrix formula. Each element in the matrix represents the correlation between two 
features in the data where j and k run over p variates, N is the number of observations (rows), and 
the   bar and   bar in the formula denote the expected values (averages).

Figure 3.3: Covariance matrix

The objective of PCA is to explain most of the data variability with far fewer variables or features than 
that in the original dataset. Each of the N observations or records resides in p-dimensional space. 
Not all the dimensions are equally relevant. PCA seeks a smaller number of important dimensions, 
where importance is quantified by the amount of variation of the observations along each dimension. 
The dimensions figured out by PCA are a linear combination of the p features. We can take the linear 
combinations and reduce the number of plots required for visual analysis of the feature space while 
retaining the essence of the original data.

The eigenvalues and eigenvectors of a covariance matrix computed by eigendecomposition determine 
the magnitude and direction of the new subspace, respectively. In linear algebra, an eigenvector 
(associated with a set of linear equations) of a linear transformation is a non-zero vector that changes 
by a magnitude (scalar) when the transformation is applied to it. The corresponding eigenvalue is the 
magnitude or factor by which the eigenvector is scaled, and eigendecomposition is the factorization of 
a matrix into its eigenvectors and eigenvalues. The principal components are the eigenvectors. The top 
eigenvalues of a covariance matrix after sorting in descending order yield the principal components 
of the dataset.

=
1
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The first principal component (PC) of data is the linear combination of the features that have the 
highest variance. The second PC is the linear combination of the features that have maximum variance 
out of all linear combinations uncorrelated with the first PC. The first two PCs are shown in Figure 3.4, 
and this computational process proceeds until all the PCs of the dataset are found. These PCs are 
essentially the eigenvectors, and linear algebraic techniques show that the eigenvector corresponding 
to the highest eigenvalue of the covariance matrix explains the greatest proportion of data variability. 
Each PC vector defines a direction in feature space and all of them are uncorrelated – that is, mutually 
orthogonal. The PCs form the basis of the new space.

Figure 3.4: Principal components in feature space (x =  , y =  )

Number of PCs – how to select for a dataset

The question is how to determine how well a dataset is explained by a certain number of PCs. The 
answer lies in the percentage of variance retained by the number of PCs. We would ideally like to have 
the smallest number of PCs possible explaining most of the variability. There is no robust method 
to determine the number of usable components. As the number of observations and variables in the 
dataset vary, different levels of accuracy and amounts of reduction are desirable.

The proportion of variance explained (PVE) by the mth PC is computed by considering the mth 
eigenvalue. PVE is the ratio of the mth eigenvalue represented by ∅   (of jth variate in Figure 3.5) 
and the sum of the eigenvalues of all the PCs or eigenvectors. To put it simply, PVE is the variance 
explained by each PC divided by the total variance of all PCs in the dataset.

Figure 3.5: PVE calculation

In general, we look for the “elbow point” where the PVE significantly drops off to determine the 
number of usable PCs.

=
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Figure 3.6a: PVE versus PC

The first PC in the example shown in Figure 3.6a explains 62.5% of data variability, and the second 
PC explains 25%. In a cumulative manner, the first two PCs explain 87.5% of the variability, as shown 
in Figure 3.6b.

Figure 3.6b: Cumulative PVE (y axis) versus PC

Another widely used matrix decomposition method to identify the number of PCs is singular value 
decomposition (SVD). It is a reduced-rank approximation method that provides a simple means to do 
the same – that is, compute the principal components corresponding to the singular values. SVD is just 
another way to factorize a matrix and allows us to unravel similar information as eigendecomposition 
does. The singular values of the data matrix obtained via SVD are essentially the square roots of the 
eigenvalues of the covariance matrix in PCA. SVD is the same as PCA of a raw data matrix, which 
is mean-centered.
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A mathematical demonstration of SVD can be found on the Wolfram pages: https://mathworld.
wolfram.com/SingularValueDecomposition.html.

SVD is an iterative numerical method. Every rectangular matrix has SVD, although, for a few 
complex problems, it may fail to decompose some matrices neatly. You can perform SVD using the 
linear algebra class of the Python library, scipy. The scikit-learn library provides functions 
for SVD: https://scikit-learn.org/stable/modules/generated/sklearn.
decomposition.PCA.html.

High-dimensional data can be reduced to a subset of dimensions (columns) that are most relevant to 
the problem being solved. The data matrix (rows by columns) results in a matrix with a lower rank 
that approximates the original matrix and best captures its salient features.

Feature extraction methods

There are two ways in which dimensionality reduction can be done: one is feature selection and the 
other is feature extraction. A subset of original features is selected in the former approach by filtering 
based on some criteria true to the particular use case and corresponding data. On the other hand, a 
set of new features is found in the feature extraction approach.

Feature extraction is done using linear mapping from the original features, which no longer exist upon 
implementation of the method. In essence, new features constructed from available data do not have 
column names as in the original data. There are two feature extraction methods: PCA and LDA. A 
nonlinear mapping may also be used depending on the data but the method no longer remains PCA 
or LDA.

Now that we have explored PCA for the reduction of features (and hence, the reduction of the high-
dimensional space), we shall learn about a supervised method of linear feature extraction called linear 
discriminant analysis (LDA).

LDA – the difference from PCA
LDA and PCA are linear transformation methods; the latter yields directions or PCs that maximize 
data variance and the former yields directions that maximize the separation between data classes. The 
way in which the PCA algorithm works disregards class labels.

LDA is a supervised method to reduce dimensionality that projects the data onto a subspace in a way 
that maximizes the separability between (groups) classes; hence, it is used for pattern classification 
problems. LDA works well for data with multiple classes; however, it makes assumptions of normally 
distributed classes and equal class covariances. PCA tends to work well if the number of samples in 
each class is relatively small. In both cases, though, observations ought to be much higher relative to 
the dimensions for meaningful results.

https://mathworld.wolfram.com/SingularValueDecomposition.html
https://mathworld.wolfram.com/SingularValueDecomposition.html
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
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LDA seeks a projection that discriminates data in the best possible way, unlike PCA, which seeks a 
projection that preserves maximum information in the data. When regularization of the estimate of 
covariance is introduced to moderate the influence of different variables on LDA, it is called regularized 
discriminant analysis.

Figure 3.7: Linear discriminants

LDA involves developing a probabilistic model per class based on the distribution of each input 
variable (Figure 3.7). It may be considered as an application of the Bayes' theorem for classification 
and assumes that the input variables are uncorrelated; if they are correlated, the PCA transform may 
aid in removing the linear dependence. The scikit-learn library provides functions for LDA. Example 
code with a synthetic dataset is given here:

from sklearn.datasets import make_classification
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import RepeatedStratifiedKFold
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis

X, y = make_classification(n_samples = 1000, n_features = 8, n_
informative = 8,
n_redundant = 0, random_state = 1) #train examples and labels

model = LinearDiscriminantAnalysis()
cv = RepeatedStratifiedKFold(n_splits = 10, n_repeats = 3, random_
state = 1)

grid = dict()
grid['solver'] = ['svd', 'lsqr', 'eigen'] #grid configuration
search = GridSearchCV(model, grid, scoring = 'accuracy', cv = cv, n_
jobs = -1)
results = search.fit(X, y)
print('Mean Accuracy: %.4f' % results.best_score_) #model accuracy 
check
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row = [0.1277, -3.6440, -2.2326, 1.8211, 1.7546, 0.1243, 1.0339, 
2.3582] #new example
yhat = search.predict([row]) #predict on test data
print('Predicted Class: %d' % yhat) #class probability of new example

In the preceding example, the hyperparameter (solver) in the grid search is set to 'svd' (default) 
but other solver values can also be used. This example only introduces us to using LDA with scikit-
learn; there is a whole lot of customization that can be done depending on the problem being solved.

We have explored the linear algebraic methods for dimensionality reduction; we shall learn about the 
most important applications of PCA in the next section.

Applications of PCA
PCA is one fundamental algorithm and forms the foundation of ML. It finds use in diverse areas such 
as noise reduction in images, classification of data in general, anomaly detection, and other applications 
in medical data correlation. We will explore a couple of widely used applications of PCA in this section.

The scikit-learn library in Python provides functions for PCA. The following example code shows 
how to leverage PCA for dimensionality reduction while developing a predictive model that uses a 
PCA projection as input. We will be using PCA on a synthetic dataset while fitting a logistic regression 
model for classification:

from sklearn.datasets import make_classification
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import RepeatedStratifiedKFold
from sklearn.pipeline import Pipeline
from sklearn.decomposition import PCA
from sklearn.linear_model import LogisticRegression
from numpy import mean
from numpy import std
import matplotlib.pyplot as plt

def get_models():
     models = dict()
     for i in range(1, 11):
           steps = [('pca', PCA(n_components = i)), ('m', 
LogisticRegression())]
models[i] = Pipeline(steps = steps)
return models
def evaluate_model(model, X, y):
     cv = RepeatedStratifiedKFold(n_splits = 10, n_repeats = 3, 
random_state = 1)
scores = cross_val_score(model, X,  y, scoring = 'accuracy', cv = cv, 
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n_jobs = -1,  error_score = 'raise')
return scores
X, y = make_classification(n_samples = 1000, n_features = 10, n_
informative = 8, n_redundant = 2, random_state = 7)
models = get_models()
results, names = list(), list()
for name, model in models.items():
     scores = evaluate_model(model, X, y)
     results.append(scores)
     names.append(name)
print('Mean Accuracy: %.4f (%.4f)' % (mean(results), std(results))) 
red_square = dict(markerfacecolor = 'r', marker = 's')

We will plot the principal components using the following code:

plt.boxplot(results, labels = names, showmeans = True, showfliers = 
True, flierprops = red_square)
plt.grid()
plt.xlabel('Principal Components')
plt.xticks(rotation = 45)
plt.show()
row = [0.1277, -3.6440, -2.2326, 1.8211, 1.7546, 0.1243, 1.0339, 
2.3582, -2.8264,0.4491] #new example
steps = [('pca', PCA(n_components = 8)), ('m', LogisticRegression())]
model = Pipeline(steps = steps)
model.fit(X, y)
yhat = model.predict([row]) #predict on test data
print('Predicted Class: %d' % yhat) #predicted class of new example

In the preceding example, we do not see improvement in the model accuracy beyond eight components 
(Figure 3.8). It is evident that the first eight components contain maximum information about the 
class and the remaining ones are redundant.
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Figure 3.8: Classification accuracy versus the number of PCs for a synthetic dataset

The number of components after a PCA transform of features that results in the best average performance 
of the model is chosen and fed to the ML model for predictions. In the following subsection, we will 
learn about denoising and the detection of outliers using PCA.

Noise reduction

PCA finds use in the reduction of noise in data, especially images. PCA reconstruction of an image by 
denoising can be achieved with the decomposition method of the scikit-learn Python library. Details of 
the library function with examples can be found here: https://scikit-learn.org/stable/
auto_examples/applications/plot_digits_denoising.html

A good exercise would be to reconstruct images obtained from a video sequence exploring linear 
PCA as well as kernel PCA and check which one provides smoother images.

Image compression (Figure 3.9) is another important application of PCA.

Figure 3.9: Image compression with PCA

https://scikit-learn.org/stable/auto_examples/applications/plot_digits_denoising.html
https://scikit-learn.org/stable/auto_examples/applications/plot_digits_denoising.html
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The percentage of variance expressed by the PCs determines how many features should be the input 
to deep learning models (neural networks) for image classification so that the computing performance 
is not affected while dealing with huge and high-dimensional datasets.

Anomaly detection

Detecting anomalies is common in fraud detection, fault detection, and system health monitoring in 
sensor networks. PCA makes use of the cluster method for detecting an outlier, typically collective 
and unordered outliers. Cluster-based anomaly detection assumes that the inlying (normal) data 
points belong to large and dense clusters, and outlying (anomalous) ones belong to small or sparse 
clusters or do not belong to any of them. Example code with sample telemetry data can be found in 
the following repository: https://github.com/ranja-sarkar/mm.

The PCs apply distance metrics to identify anomalies. PCA, in this case, determines what constitutes 
a normal class. As an exercise, you can use unsupervised learning methods such as K-means and 
Isolation Forest to detect outliers in the same dataset for a comparison of the results and gain more 
meaningful insights.

Summary
In this chapter, we learned about two linear algebraic methods used to reduce the dimensionality 
of data: namely, principal component analysis and linear discriminant analysis. The focus was on 
PCA, which is an unsupervised method to reduce the feature space of high-dimensional data and to 
know why this reduction is necessary for solving business problems. We did a detailed study of the 
mathematics behind the algorithm and how it works in ML models. We also learned about a couple 
of important applications of PCA along with the Python code.

In the next chapter, we will learn about an optimization method called Gradient Descent, which is 
arguably the most common (and popular) algorithm to optimize neural networks. It is a learning 
algorithm that works by minimizing a given cost function. As the name suggests, it uses a gradient 
(derivative) iteratively to minimize the function.

https://github.com/ranja-sarkar/mm
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Gradient Descent

One optimization algorithm that lays the foundation for machine learning models is gradient descent 
(GD). GD is a simple and effective tool useful to train such models. Gradient descent, as the name 
suggests, involves “going downhill.” We choose a direction across a landscape and take whichever 
step gets us downhill. The step size depends on the slope (gradient) of the hill. In machine learning 
(ML) models, gradient descent estimates the error gradient, helping to minimize the cost function. 
Very few optimization methods are as computationally efficient as gradient descent. GD also lays the 
foundation for the optimization of deep learning models.

In problems where the parameters cannot be calculated analytically by use of linear algebra and must 
be searched by optimization, GD finds its best use. The algorithm works iteratively by moving in the 
direction of the steepest descent. At each iteration, the model parameters, such as coefficients in linear 
regression and weights in neural networks, are updated. The model continues to update its parameters 
until the cost function converges or reaches its minimum value (the bottom of the slope in Figure 4.1a).

Figure 4.1a: Gradient descent
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The size of a step taken in each iteration is called the learning rate (a function derivative is scaled 
by the learning rate at each iteration). With a learning rate that is too low, the model may reach the 
maximum permissible number of iterations before reaching the bottom, whereas it may not converge 
or may diverge (the so-called exploding gradient problem) completely if the learning rate is too high. 
Selecting the most appropriate learning rate is crucial in achieving a model with the best possible 
accuracy, as seen in Figure 4.1b.

Figure 4.1b: Learning rates in gradient descent

For GD to work, the objective or cost function must be differentiable (meaning the first derivative 
exists at each point in the domain of a univariate function) and convex (where two points on the 
function can be connected by a line segment without crossing). The second derivative of a convex 
function is always positive. Examples of convex and non-convex functions are shown in Figure 4.2. 
GD is a first-order optimization algorithm.

Figure 4.2: Example of convex (L) and non-convex (R) function
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In a multivariate function, the gradient is a vector of derivatives in each direction in the domain. Such 
functions have saddle points (quasi-convex or semi-convex) where the algorithm may get stuck and 
obtaining a minimum is not guaranteed. This is where second-order optimization algorithms are 
brought in to escape the saddle point and reach the global minimum. The GD algorithm finds its use 
in control as well as mechanical engineering, apart from ML and DL. The following sections compare 
the algorithm with other optimization algorithms used in ML and deep learning (DL) models and 
specifically examines some commonly used gradient descent optimizers.

This chapter covers the following topics:

• Gradient descent variants

• Gradient descent optimizers

Gradient descent variants
The workings of the gradient descent algorithm to optimize a simple linear regression model (y = mx 
+ c) is elaborated with Python code in this section.

Application of gradient descent

Keeping the number of iterations the same, the algorithm is run for three different learning rates 
resulting in three models, hence three MSE (mean squared error) values. MSE is the calculated loss 
or cost function in linear regression:

import numpy as np
import matplotlib.pyplot as plt
from sklearn.metrics import mean_squared_error
#gradient descent method
class GDLinearRegression:
    def __init__(self, learning_rate, epoch):
        self.learning_rate, self.iterations = learning_rate, epoch
       #epoch is number of iterations
    def fit(self, X, y):
        c = 0
        m = 5
        n = X.shape[0]
        for _ in range(self.iterations):
            b_gradient = -2 * np.sum(y - m*X + c) / n
            m_gradient = -2 * np.sum(X*(y - (m*X + c))) / n
            c = c + (self.learning_rate * b_gradient)
            m = m - (self.learning_rate * m_gradient)
        self.m, self.c = m, c
    def predict(self, X):



Gradient Descent44

        return self.m*X + self.c
#dataset
np.random.seed(42)
X = np.array(sorted(list(range(5))*20)) + np.random.normal(size = 100, 
scale = 0.5)
y = np.array(sorted(list(range(5))*20)) + np.random.normal(size = 100, 
scale = 0.3)
#model 1
Clf_1 = GDLinearRegression(learning_rate = 0.05, epoch = 1000)
Clf_1.fit(X, y)
y_pred = Clf_1.predict(X)
mse_1 = mean_squared_error(y, y_pred)
plt.style.use('fivethirtyeight')
plt.scatter(X, y, color='black')
plt.plot(X, y_pred)
plt.gca().set_title("Linear Regression Model 1")
print('Slope = ', round(Clf_1.m, 4))
print('Intercept = ', round(Clf_1.c, 4))
print('MSE = ', round(mse_1, 2))

Two other models are trained with two different learning rates, one higher and another lower than 
model 1, as seen here:

#model 2
Clf_2 = GDLinearRegression(learning_rate = 0.2, epoch = 1000)
Clf_2.fit(X, y)
y_pred = Clf_2.predict(X)
mse_2 = mean_squared_error(y, y_pred)
plt.style.use('fivethirtyeight')
plt.scatter(X, y, color='black')
plt.plot(X, y_pred)
plt.gca().set_title("Linear Regression Model 2")
print('MSE = ', round(mse_2, 2))
#model 3
Clf_3 = GDLinearRegression(learning_rate = 0.0001, epoch = 1000)
Clf_3.fit(X, y)
y_pred = Clf_3.predict(X)
mse_3 = mean_squared_error(y, y_pred)
plt.style.use('fivethirtyeight')
plt.scatter(X, y, color='black')
plt.plot(X, y_pred)
plt.gca().set_title("Linear Regression Model 3")
print('MSE = ', round(mse_3, 2))
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Upon executing the code, the linear regression models obtained (Figure 4.3) show how carefully the 
parameter (learning rate) should be chosen to attain optimal performance or the best accuracy of 
the ML model.

Figure 4.3: Gradient descent for a linear regression model

There are GD variants (Figure 4.4) that differ in the data size used to compute the gradient of the 
objective function. A trade-off between the accuracy of the parameter (coefficient or weight) and the 
time taken to do it is made depending on the amount of data. The variants are batch gradient descent 
(BGD), mini-batch gradient descent, and stochastic gradient descent (SGD), which we will now 
discuss in the following subsection.

Mini-batch gradient descent and stochastic gradient descent

BGD, also known as vanilla gradient descent, is simply gradient descent and computes the gradient 
for the entire training data to perform one update (in one step) and thus can be very slow. Common 
examples of ML models that are optimized using BGD are linear regression and logistic regression 
for smaller datasets.

For bigger datasets, we generally use mini-batch GD, which allows the splitting of training data into 
mini-batches that can be processed individually. After each mini-batch is processed, the parameters 
are updated and this continues until the entire dataset has iteratively been processed. One full cycle 
through the data is called an epoch. A number of steps are taken to reach the global minimum, which 
introduces some variance into the optimization process. This variant of GD is usually used for modeling 
problems where efficiency is as important as accuracy.

SGD performs frequent parameter updates (for each training example) with a high level of variance 
that causes the cost function to fluctuate heavily. This enables it to jump to a new and potentially better 
local minimum. Upon slowly decreasing the learning rate, SGD shows convergence behavior similar 
to BGD. SGD is computationally faster than BGD as it considers one example at a time.
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Figure 4.4: Gradient descent variants

SGD is typically the algorithm of choice for training a neural network. A key challenge with SGD while 
minimizing the highly non-convex error functions common in neural networks is avoiding getting 
trapped in their numerous suboptimal local minima. These saddle points make it very hard for SGD 
to escape, as the gradient is close to zero in all dimensions. In the next section, we outline some GD 
optimizers that deal with such challenges.

Gradient descent optimizers
The optimizers discussed here are widely used to train DL models depending on the degree of the 
non-convexity of the error or cost function.

Momentum

The momentum method uses a moving average gradient instead of a gradient at each time step and 
reduces the back-and-forth oscillations (fluctuations of the cost function) caused by SGD. This process 
focuses on the steepest descent path. Figure 4.5a shows movement with no momentum by creating 
oscillations in SGD while Figure 4.5b shows movement in the relevant direction by accumulating 
velocity with damped oscillations and closer to the optimum.

Figure 4.5a: SGD with no momentum
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Figure 4.5b: SGD with momentum

The momentum term reduces updates for dimensions whose gradients change directions and as a 
result, faster convergence is achieved.

Adagrad

The adagrad optimizer is used when dealing with sparse data as the algorithm performs small updates 
of parameters based on features that occur often. In adagrad, different or “adaptive” learning rates 
are used for every update at every time step (Figure 4.6). The algorithm uses larger learning rates for 
infrequent features and smaller ones for more frequent features. The major advantage of using this 
optimizer is that the learning rate is not set manually. And when the learning rate shrinks to almost 
zero, the model gains no new knowledge.

Figure 4.6: Adagrad optimizer
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RMSprop

The RMSprop optimizer is similar to the adagrad optimizer and hence known as leaky adagrad, 
only it uses a different method for parameter updates. The RMSprop algorithm restricts oscillations 
in the vertical direction so that it can take larger steps in the horizontal direction (Figure 4.7). The 
algorithm adaptively scales the learning rate in each dimension by using an exponentially weighted 
average of the gradient that allows it to focus on the most recent gradients.

Figure 4.7: RMSprop optimizer

Adam

The adaptive moment estimation (adam) optimizer inherits the advantages of both the momentum 
and RMSprop optimization algorithms (Figure 4.8). It combines the ideas of a moving average gradient 
and an adaptive learning rate. These two respectively represent the estimates of the first moment (mean) 
and second moment (variance) of the gradient of the cost function, hence the name.
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Figure 4.8: Adam optimizer

It has been empirically observed that the adam optimizer is effective and works better than SGD in 
practice. It has become the default optimizer of choice to train DL models. For further reading, check 
out the following MachineLearningMastery article: https://machinelearningmastery.
com/adam-optimization-algorithm-for-deep-learning/.

Summary
In this chapter, we learned about a foundational optimization algorithm and its variants used in 
training ML and DL models. An application of the optimization technique in Python to a linear 
regression problem was also elaborated on. Both the cost function and its gradient, and how to 
update the gradient to converge to the optimal point, are mathematical concepts every data scientist 
must understand thoroughly; optimizing a cost function is the basis of achieving an optimal model 
for a problem or predictions. Different ways can be used to estimate the gradients depending on the 
behavior of the cost function.

In the following chapter, we will explore another fundamental algorithm, known as support vector 
machines (SVMs). Although SVMs can be used for regression problems, they are more widely used 
for classification tasks.

https://machinelearningmastery.com/adam-optimization-algorithm-for-deep-learning/
https://machinelearningmastery.com/adam-optimization-algorithm-for-deep-learning/
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Support Vector Machine

This chapter explores a classic algorithm that one must keep in one’s machine learning arsenal called the 
support vector machine (SVM), which is mainly used for classification problems rather than regression 
problems. Since its inception in the 1990s, it was commonly used to recognize patterns and outliers 
in data. Its popularity declined after the emergence of boosting algorithms such as extreme gradient 
boost (XGB). However, it prevails as one of the most commonly used supervised learning algorithms.

In the 1990s, efficient learning algorithms based on computational learning were developed for 
non-linear functions. Algorithms such as linear learning algorithms have well-defined theoretical 
properties. With this development, efficient separability (decision surfaces) of nonlinear regions that 
use kernel functions was established. Nonlinear SVMs are quite frequently used for the classification 
of real (nonlinear) data.

SVM was initially known as a binary classifier that could be used for one-class classification of skewed 
or imbalanced class distribution. This unsupervised algorithm could effectively learn from the majority 
or normal class in a dataset to classify new data points as either normal or outlier. The process of 
identifying the minority or rarity class generally referred to as outlier is called anomaly detection, as 
the outlier is an anomaly and the rest of the data is normal. Classification involves fitting a model on 
the normal data (training examples) and predicting whether incoming new data is normal (inlier) or 
outlier. One-class SVM is most suited for a specific problem where the minority class does not have a 
consistent pattern or is a noisy instance, making it difficult for other classification algorithms to learn 
a decision boundary. The outliers in general are treated as deviations from normal.

In general, SVMs are effective in problems where the number of variables is greater than the number 
of records, meaning, in high-dimensional spaces. The algorithm uses a subset of training examples in 
the decision function, hence it is memory-efficient. It turns out the algorithm is versatile, as different 
kernels can be specified for the decision function.

This chapter covers the following topics:

• Support vectors in SVM

• Kernels for SVM

• Implementation of SVM
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We will learn about support vectors and kernels in the forthcoming sections.

Support vectors in SVM
SVM is an algorithm that can produce significantly accurate results with less computation power. It is 
widely used in data classification tasks. If a dataset has n number of features, SVM finds a hyperplane 
in the n-dimensional space, which is also called the decision boundary, to classify the data points. 
An optimal decision boundary maximizes the distance between the boundary and instances in both 
classes. The distance between data points in the classes (shown in Figure 5.1a) is known as the margin:

Figure 5.1a: Optimal hyperplane

An SVM algorithm finds the optimal line in two dimensions or the optimal hyperplane in more 
than two dimensions that separates the space into classes. The optimal hyperplane or optimal line 
maximizes the margin (the distance between the data points of the two classes). In 3D (or more), 
data points become vectors and those (very small subset of training examples) that are closest to or 
on the hyperplanes (just outside the maximum margin) are called support vectors (see Figure 5.1b):

Figure 5.1b: Support vectors
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If all support vectors are at the same distance from the optimal hyperplane, the margin is said to be 
good. The margin shown in Figure 5.1b is bad, as support vectors in class +1 are very close to the 
optimal hyperplane, while those in class -1 are far away from it. Moving a support vector moves the 
decision boundary or hyperplane while moving other data points has no effect.

If the number of features in an input dataset is two, the hyperplane is just a line. If the number is 
three, then the hyperplane (shown in Figure 5.2) is a two-dimensional plane. The dimension of the 
decision boundary depends on the number of features, and the data points on either side of it (the 
hyperplane) belong to different classes:

Figure 5.2: Hyperplane in 3D feature space

Support vectors influence the position and orientation of the hyperplane. The margin of the classifier 
is maximized using support vectors. The margin is hard if the data is linearly separable. For most 
practical problems, data is not linearly separable, and in such cases the margin is soft. This allows for 
data points within the marginal distance (shown in Figure 5.3) between two data class separators:



Support Vector Machine54

Figure 5.3: Soft margin

It is better to have a large margin that might allow for some margin violation to occur. The larger the 
margin, the lower the error of the classifier. Maximizing the margin is equivalent to minimizing loss 
in machine learning algorithms. The function that helps maximize the margin is hinge loss. Hinge 
loss (error) is zero if data is classified correctly, meaning we have a hard margin as the points are 
not close to the hyperplane. Hinge loss is one if most of the data points are classified incorrectly. In 
general, support vectors are within the margin boundaries (soft margin) when the problem is not 
linearly separable.

In the next section, the kernel trick is introduced. Kernel is a technique used in SVMs to classify data points 
that are not linearly separable. Kernel functions enable operation in a high-dimensional feature space 
without computing data coordinates in that space, hence this operation is not computationally expensive.

Kernels for SVM
With a kernel trick, a 2D space is converted into a 3D space using a mapping function such that the 
nonlinear data can be classified or separated in a higher dimension (see Figure 5.4). The transformation 
of original data for mapping into the new space is done via kernel. The kernel function defines inner 
products (measure of similarity) in the transformed space.

The compute and storage requirements of SVMs increase with the number of training examples. 
The core of the algorithm is a quadratic programming problem separating support vectors from the 
training dataset. A linear kernel, which is just a dot product, is the fastest implementation of SVM. A 
few examples of linear and nonlinear kernels are shown in Figure 5.5a. The most common nonlinear 
SVM kernels are radial basis function (RBF), sigmoid, and polynomial.
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Figure 5.4: (a) Example of non-linear separator (L), and (b) Data effectively classified in higher dimension

SVMs are very effective for small datasets that are not linearly separable. Small data means that the 
number of features is more than the training size, due to which SVMs suffer from overfitting in some 
cases. The right kernel function and regularization (penalty function) come to the rescue in those 
cases. Each kernel has a different mathematical formulation, hence the set of parameters varies from 
one to another.

Figure 5.5a: Data classification using linear kernel (L), RBF kernel (M), and polynomial kernel (R) functions

The parameter exponent (degree) in a polynomial kernel when set to 1 becomes a linear kernel and 
when set to 3 becomes a cubic kernel, an example of which is shown in Figure 5.5a (rightmost). The 
sigmoid kernel cumulative distribution function goes from 0 to 1 to classify data and is mostly used 
as an activation function or perceptron in neural networks. An example of data classification by SVM 
with sigmoid kernel function is shown in Figure 5.5b:



Support Vector Machine56

Figure 5.5b: Sigmoid kernel (L), data classified using sigmoid (R)

All SVM kernels have a parameter that trades off the misclassification of the dataset against the simplicity 
of the separator. While training an SVM with the RBF kernel, which is an exponential (  ) function, 
the parameter a is greater than zero and defines the influence of a training example on the separator. 
The selection of the parameters in respective kernel functions is critical to an SVM’s performance.

In imbalanced datasets, the parameters dedicated to providing weights on classes and samples become 
significant, as they might be required to give more importance to a certain sample or class in such 
cases. The effect of sample weighting on the class boundary is shown in Figure 5.6, wherein the data 
point size is proportional to the sample weights:

Figure 5.6: Classification with constant sample weight (L), with modified weight (R)

While various methods and algorithms can detect outliers in a dataset, the kernel method used by the 
one-class SVM algorithm has been demonstrated in this chapter. Other examples include the decision 
tree ensemble method in the Isolation Forest algorithm, the distance or density method in the local 
outlier factor algorithm, and so on. Anomaly types can be point or collective, and one selects the 
algorithm for detection based on the anomaly type in a dataset. Figures 5.7a and 5.7b show examples 
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of these anomaly types. A point anomaly is a global behavior while a collective anomaly is a local 
abnormal (non-normal) behavior. There can also be datasets wherein an anomaly can be entirely 
contextual, which most of the time is visible in time-series data.

Figure 5.7a: Examples of point anomalies

 Figure 5.7b: Example of a collective (non-point) anomaly

In the following section, we will implement a one-class SVM solution using Python, as this solution 
in general has proven to be useful for problems where the (point) outliers forming the minority class 
lack structure and are predominantly noisy examples (i.e. severe deviations from inliers).

Implementation of SVM
The one-class SVM algorithm does not use (ignores) the examples that are far from or deviated from 
the observations during training. Only the observations that are most concentrated or dense are 
leveraged for (unsupervised) learning and such an approach is effective in specific problems where 
very few deviations from normal are expected.



Support Vector Machine58

A synthetic dataset is created to implement SVM. We will have about 2% of the synthetic data in 
the minority class (outliers) denoted by 1 and 98% in the majority class (inliers) denoted by 0, and 
leverage the RBF kernel to map the data into a high-dimensional space. The Python code (with the 
scikit-learn library) runs as follows:

import pandas as pd, numpy as np
from collections import Counter
import matplotlib.pyplot as plt
from sklearn.datasets import make_classification
from sklearn.svm import OneClassSVM
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report
X, y = make_classification(n_samples = 10000, n_features = 2, n_
informative = 2,
                           n_redundant = 0, n_classes = 2,
                           n_clusters_per_class = 1,
                           weights = [0.98, 0.02], class_sep = 0.5, 
random_state = 0)
#Dataset as pandas dataframe
df = pd.DataFrame({'feature1': X[:, 0], 'feature2': X[:, 1], 'target': 
y})
#Split dataset into train and test subsets in the ratio 4:1
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 
0.2, random_state = 42)
#Train SVM model with RBF
one_class_svm = OneClassSVM(nu = 0.01, kernel = 'rbf', gamma = 
'auto').fit(X_train)
#nu (specifies number of outliers) = 1% , gamma is a parameter for 
nonlinear kernels
prediction = one_class_svm.predict(X_test)
prediction = [1 if i == -1 else 0 for i in prediction] #outliers 
denoted by 1, inliers by 0
print(classification_report(y_test, prediction))

The report of the classifier (Figure 5.8) clearly shows that the one-class SVM model has a recall of 
23%, which means the model captures 23% of outliers. The F1-score is the harmonic mean of the two 
measures, namely precision and recall:

Figure 5.8: Classification report of one-class SVM
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We will visualize the outliers using the following code:

#Visualization of outliers
df_test = pd.DataFrame(X_test, columns = ['feature1', 'feature2'])
df_test['y_test'] = y_test
df_test['svm_predictions'] = prediction
fig, (ax1, ax2) = plt.subplots(1, 2, figsize = (16, 8))
ax1.set_title('Original Data')
ax1.scatter(df_test['feature1'], df_test['feature2'], c = df_test['y_
test'])
ax2.set_title('One-Class SVM Prediction')
ax2.scatter(df_test['feature1'], df_test['feature2'], c = df_
test['svm_predictions'])

The default threshold of the algorithm for identifying these 2% outliers can also be customized so 
that fewer or more data points are labeled as outliers depending on the use case. What is evident from 
Figure 5.9 is that most of the outliers (yellow) have been detected correctly by the classifier:

Figure 5.9: Classification by one-class SVM

One-class SVM is particularly useful as an anomaly detector and finds wide usage in sensor data 
captured from machines in the manufacturing industry.
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Summary
In this chapter, we explored SVM as a classifier. In addition to linear data, SVMs can efficiently classify 
non-linear data using kernel functions. The method used by the SVM algorithm can be extended to 
solve regression problems. SVM is utilized for novelty detection as well, wherein the training dataset 
is not polluted with outliers and the algorithm is exploited to detect a new observation as an anomaly, 
in which case the outlier is called a novelty.

The next chapter is about graph theory, a tool that provides the necessary mathematics to quantify 
and simplify complex systems. Graph theory is the study of relations (connections or edges) between 
a set of nodes or individual entities in a dynamic system. It is an integral component of ML and DL 
because graphs provide a means to represent a business problem as a mathematical programming 
task in the form of nodes and edges.
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Graphs are mathematical structures that are used to model pairwise relationships. Graph theory 
provides a tool to quantify these relationships in a dynamic system. In other words, graphs are ways 
to represent a network or a collection of interconnected objects. Graph theory is mostly applied in 
operations research and social sciences. Its history dates back to the 18th century when the Swiss 
mathematician Leonhard Euler solved the Königsberg bridge problem (Figure 6.1), which served as 
a precursor to graph theory. The city of Königsberg in Russia was set on both sides of the Pregel river 
and included two large islands, namely, Kneiphof and Lomse, which were connected by seven bridges. 
The problem was to devise a walk through the city that would cross each of these bridges only once. 
Euler drew out the first known visual representation of a modern graph for the city. It is represented 
(abstractly) by a set of points known as vertices or nodes, connected by a set of lines known as edges. 
Edges represent the relationships between nodes.

Figure 6.1: Seven bridges of Königsberg

A graph theory problem typically uses the framework of mathematical optimization, which has 
three components, namely, the objective function, decision variables, and constraints. The objective 
function is minimized to obtain the optimal path between nodes in a graph because there can be 
multiple paths connecting two nodes (multigraphs). The objective of using a graph to solve a problem 
is multifold. One could be to visualize the edges, figure out closely connected nodes, and identify the 
nodes that directly influence the objective function. A possible decision variable among others could 
be whether or not to add an edge between two nodes. A typical constraint could be the degree each 
node can attain, that is, the maximum number of connections each node can have to other nodes in 
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the network. A well-known problem solved using graph theory is the traveling salesman problem 
(TSP), in which the shortest path starts and ends at the same vertex/node and visits each edge exactly 
once. Such examples (routing) are related to the field of linear programming.

Figure 6.2a: Simple graph (L) and multigraph (R)

Graphs come in a variety of sorts, the most common of which are simple graphs and multigraphs. 
These are shown in Figure 6.2a and there is also a graph or directed graph (edges have directions) 
together with a function that assigns a positive real number to each edge, known as a network. A 
network is in fact an oriented edge-labeled graph, as shown in Figure 6.2b.

Figure 6.2b: Graph as network (model)

There is a restricted type of graph known as trees. Tree data structures are different from graph data 
structures (Figure 6.3). A tree, which is a hierarchical model, can never have cyclical links (edges) like 
some graphs have. Trees are directed acyclic graphs (DAGs) and are unidirectional. A graph has no 
root (source) node, whereas a tree does have this node, along with child nodes, and every child has 
one parent node.
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Figure 6.3: Tree (L) with n-1 edges (n = number of nodes) and graph 

(R) with no rule about the number of edges it can have

Graphs can also have loops, circuits, and self-loops. There are databases that use graph structures for 
semantic queries with nodes and edges. Querying relationships (edges labeled, directed) is fast in 
general, as they are perpetually stored in the database. Graph databases are commonly called NoSQL. 
Graphs are utilized in analyzing social networks as well.

This chapter covers the following topics:

• Types of graphs

• Optimization use case

• Graph neural networks

The next section discusses the types of graphs depending on labels, directions, and the weights of 
edges in the graphs.

Types of graphs
The primary graph types are undirected, directed, and weighted graphs, as illustrated in Figure 6.4. 
Social networks can be undirected as well as directed graphs. In the former, edges end up being 
unordered pairs, for example, Facebook. In the latter, edges are ordered pairs, for example, Twitter, 
in which one node is an origin and the other a destination.
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Figure 6.4: Three standard graph types

We will explore each of these graphs in the following subsections.

Undirected graphs

While solving a problem using graph theory, the first step is to determine the type of graph we are 
dealing with. In undirected graphs, there is no particular direction of the edges between nodes, in 
other words, the edge is bidirectional. An edge connecting node 1 to node 2 (Figure 6.5) would be 
identical to the edge connecting node 2 to node 1.

Figure 6.5: Directed and undirected graphs

Directed graphs

In directed graphs, or digraphs, there is a specified direction between the nodes. The edge between 
nodes 1 and 2 is directed from 1 toward 2 (Figure 6.5) and a link directed toward 1 from 2 would not 
be permitted. In other words, the edges between nodes are unidirectional.
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Weighted graphs

If the edge between two nodes or vertices has an associated weight to represent implications such 
as distance or cost, the corresponding graph is said to be weighted. Weighted graphs can be either 
directed or undirected (Figure 6.6). Weighted graphs are applicable to many real-world scenarios, for 
example, search engines comparing flight times and cost or route planning.

Figure 6.6: Undirected weighted graph (L) and directed weighted graph (R)

Any graph can be represented mathematically through an adjacency matrix, which describes all 
permitted routes or paths between nodes in the graph. An adjacency matrix for a directed graph is 
shown in Figure 6.7a, and that of an undirected graph is illustrated in Figure 6.7b.

Figure 6.7a: Adjacency matrix of a directed graph

We know by now that graphs make networks more interpretable and easier to visualize. More computer 
memory is consumed by an adjacency matrix for a bigger graph (more nodes) like the one of the 
weighted graph shown in Figure 6.7c.
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Figure 6.7b: Adjacency matrix of an undirected graph

Figure 6.7c: Adjacency matrix of a weighted (directed) graph

Most adjacency matrices are sparse; that is, the graphs are not densely connected, making 
computations harder.

Now that we have explored the different graphs, we will investigate a use case of an optimization 
problem solved using graph theory.

Optimization use case
Graphs can be used to model relations and processes in physical, biological, and information systems. 
They have a wide range of applications, such as ranking hyperlinks in search engines, the study of 
biomolecules, computer network security, GPS in maps to find the shortest route, and social network 
analysis. There are knowledge graphs for information mining as well. In the following subsection, we 
pick a dataset and formulate the problem in a way that is solved using graph theory.
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Optimization problem

There can be multiple paths between origin and destination airports. An airline seeks the shortest possible 
path between airports, wherein the shortest path can be defined in terms of either distance or airtime. 
If the city airports are represented as nodes and the flight routes between them as edges, we convert the 
problem into a graph (Figure 6.8a). The dataset can be found in the GitHub repository: https://
github.com/ranja-sarkar/graphs.

Figure 6.8a: Network (flight routes) between origin (city) airport and destination (city) airport

We can identify the shortest (minimum airtime or minimum distance) possible path between any 
two city airports from the graph. Example code in Python to arrive at the solution is explained in the 
following subsection.

Optimized solution

The dataset, a sample of which is displayed in Figure 6.8b, has records of flights in January 2017 from 
the USA out of the origin (source) city, which is given by Origin, to the destination city, which is 
given by Dest. The distance between the origin and destination and the airtime of the flight are the 
most relevant variables required to find the optimized solution.

http://ebay.co.uk
http://ebay.co.uk
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Figure 6.8b: Dataset for the case study

You can have a look at the nodes and edges of the corresponding graph resulting from executing the 
code. The graph (network) of flights is shown in Figure 6.8a:

import pandas as pd, numpy as np
import networkx as nx
import matplotlib.pyplot as plt
#dataset
data = pd.read_csv('FlightsUSA.csv')
df = nx.from_pandas_edgelist(data, source = 'Origin', target = 'Dest', 
edge_attr = True)
#df.nodes()
#df.edges()
plt.figure(figsize = (18,12))
nx.draw_networkx(df, with_labels = True)

A passenger wishing to take the shortest route from LAS (Las Vegas) to PBI (Palm Beach in Florida) 
with respect to the distance and airtime metrics can run the piece of code (consuming Dijkstra’s shortest-
path algorithm contained in the NetworkX Python library) and self-serve or decide on the best route:

shortest_airtime = nx.dijkstra_path(df, source = 'LAS', target = 
'PBI', weight = 'AirTime')
shortest_dist = nx.dijkstra_path(df, source = 'LAS', target = 'PBI', 
weight = 'Distance')
print(shortest_dist,shortest_airtime)

The shortest path between LAS and PBI based on distance is shown in the output in Figure 6.9a.

Figure 6.9a: Output when the model parameter is distance
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The shortest path based on airtime is shown in Figure 6.9b.

Figure 6.9b: Output when the model parameter is airtime

The algorithm creates the shortest path set first by picking the vertex closest to the source vertex, then 
a vertex from the remaining ones closest to the source. This continues until the set includes all vertices/
nodes. Graph theory can therefore be applied to travel planning and finding the best route to deliver 
post, among other usages. The mathematical formulation of graphs is intuitive and comprehensive. 
In the next section, we will introduce graph neural networks (GNNs), which will involve diving into 
deep learning (DL).

Graph neural networks
DL algorithms make use of graphs to predict at the level of nodes, edges, or entire graphs. In node 
classification, the label of samples (nodes) is determined by looking at the labels of neighbors. In graph 
classification, the entire graph is classified into different categories, an example being categorizing 
documents using natural language processing. The relationships (edges) between nodes or entities are 
utilized in recommendation systems. Image and text are types of structured data that can be described 
as grids of pixels and sequences of words, respectively. These are shown in Figure 6.10a. Graphs, in 
contrast, are unstructured data. Graphs can contain any kind of data, including images and text.

 

Figure 6.10a: Structured data (L) as opposed to graphs/networks (R)

GNNs organize graphs using a process called message passing so that DL algorithms can use the 
embedded information about the neighbors of each node to find patterns and make predictions. 
Typically, the input to a GNN pipeline (Figure 6.10b) is a defined graph structure with its type and scale.
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Figure 6.10b: GNN has a graph as an input

In graph theory, the concept of node embedding is implemented, meaning mapping nodes to a lower 
dimensional (than the actual dimension) space so that similar nodes in the graph are close to each 
other. Figure 6.11 illustrates how information from the input graph will propagate to the outside of the 
neural networks (gray boxes). Therefore, the aggregation of information takes multiple (three here) 
layers. A model can be trained by supervised and unsupervised means. In the latter, only the graph 
structure is used and similar nodes have similar embeddings. The former is used for a supervised 
task such as node classification.

Figure 6.11: Propagation of information

GNN architectures are used in image and text classification problems. They are also used in relation 
(semantic) extraction. They have become powerful tools in recent years for any problem that can be 
modeled by graphs.
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Summary
In this chapter, we learned about a theory that is helpful in simplifying and quantifying complex 
connected systems called networks. Graph theory is the study of relationships (represented as edges 
in graphs) between dynamic entities and helps better interpret network models. We further elaborated 
(with Python code) on how an optimization problem can be mathematically formulated and solved 
using this concept. A lot of problems can be approached using a graph framework that involves the 
components of mathematical optimization, as discussed in a section of this chapter.

This chapter also introduced GNNs, which operate on the structure and property of a graph. A single 
property is predicted for an entire graph for a graph-level task, a property of each node is predicted 
for a node-level task, and the property of each existing edge in a graph is predicted abstractly an edge-
level task. GNNs are applied when graphs are complex and deep.

In the next chapter, we will study the Kalman filter, which is one of the most efficient estimation 
algorithms. It provides a recursive computation method to estimate the (unknown) state of a discrete 
data-controlled process by using a series of measurements that are typically noisy, as well as calculating 
the uncertainty in measurement. Kalman filtering is a concept applied to topics such as signal processing, 
wherein the variables of interest which cannot be directly measured are indirectly measured.
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Kalman Filter

In a dynamic system, there is uncertain information. To capture the uncertainty, yet another mathematical 
tool, called the Kalman filter, comes into play. One can utilize the Kalman filter to optimally estimate 
the system’s next state, and it is ideal for continuously changing systems. It is especially useful for 
handling noisy sensor data by collating sensor data to best estimate the parameter of interest. In 
other words, the Kalman filter is an estimator of the system’s states in the presence of imprecise and 
uncertain measurements. It is mostly useful for the estimation of unobserved variables in real time.

The Kalman filter algorithm is widely used in signal processing, target tracking, navigation, and 
control applications. In tracking and control systems, an accurate and precise estimation of location 
and velocity, which are hidden (unknown) states, is a challenge. The uncertainty in the measurement 
of hidden states is attributed to external factors, such as atmospheric effects and thermal noise. The 
Kalman filter is an algorithm to estimate the hidden states of a dynamic system and predict the future 
state of the system based on past estimations. It is named after Rudolf E. Kalman, who published his 
famous paper on a recursive solution to a discrete data linear-filtering problem in 1960.

A system is governed by a set of equations, and this set is called a dynamic model or state space model. 
If a system’s current state and the dynamic model are known, the subsequent state can be estimated. 
The uncertainty in the dynamic model is influenced by external factors and is called process noise. 
This is the error or misalignment between the equations of motion and the actual motion of the 
system. The random error or uncertainty in measurement is called measurement noise. In order to 
improve the estimation of the future state of the system, it becomes essential to account for process 
noise as well as measurement noise. The Kalman filter takes both of these uncertainties into account.

Any measured (or computed) parameter is an estimate and it can be significantly improved by the usage 
of multiple sensors. In this regard, two terms, namely, accuracy and precision, have to be understood 
well as they cannot be used interchangeably. Accuracy indicates the closeness of the measurement 
to the true value, while precision indicates the variability in measurements of the same parameter. 
Accuracy and precision form the basis of an estimate of a hidden state of the system. Figure 7.1 shows 
the high accuracy and high precision of an estimate:
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Figure 7.1: High accuracy and high precision of measurement

Unbiased systems have no or significantly low built-in systematic error (bias) and, hence, are high-
accuracy systems. Real systems are biased and have process noise. High-precision systems have low 
variance (or low uncertainty). The influence of variance can be reduced by averaging (smoothing) 
measurements. The more measurements, the closer the estimate to the true value. A probability 
distribution function (PDF) describes a measurement as it is a random variable. The dispersion in 
distribution (Figure 7.2) shows the measurement noise. In a low-precision and low-accuracy system, 
the estimates are neither close to each other nor to the true value and they will be spread all over the 
four quadrants of spatial coordinates.

Figure 7.2: Measurement distribution
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Now that the concepts of a measurement and its precision and accuracy are clear, we will discuss how 
the Kalman filter works. This chapter covers topics that are essentially the component steps of this 
estimation algorithm, concluding with an illustrative Python code:

• Computation of measurements

• Filtration of measurements

• Implementation of the Kalman filter

The Kalman filter will be tested out with an example to estimate the position (displacement) and 
velocity of a moving object using Python in the last section.

Computation of measurements
We will start with a flow diagram of the Kalman filter algorithm, shown in Figure 7.3a. The Kalman 
filter requires an initial guess to start with. This input can be a very rough estimate. So, step 0 is the 
initial guess and step 1 is the measurement of the state variable.

Figure 7.3a: Flow diagram of the Kalman filter

When the input is a measured value, the output is the current state estimated using the state update 
equation in step 2, which is calculated from the predicted value of the current state and the residual 
scaled (updated) by a factor called the Kalman gain. The Kalman gain takes the input measurement 
uncertainty into account, the residual being the difference between the measured and predicted values. 
This update and estimate make the second step in the algorithm.
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The output from step 2 is fed to predict the next state of the system. The state for the next iteration is 
predicted using the dynamic model. The prediction in step 3 is basically an extrapolation of the current 
state utilizing the set of equations of dynamism. This continues for several iterations and the Kalman 
gain is calculated at each iteration. An illustrative example of tracking the values (true, measured, 
estimated, and predicted) of a constant velocity aircraft in one dimension is shown in Figure 7.3b, 
which also exemplifies a univariate Kalman filter:

Figure 7.3b: Estimated and predicted values (positions) of constant velocity aircraft

It is evident from the figure that the estimation algorithm (Kalman filter) has a smoothing effect on 
the measurements and converges toward the true value with an increasing number of iterative steps. 
The next section describes the filtration of random variables in the form of measurements to optimize 
the uncertainty in the estimate.

Filtration of measurements
The Kalman filter has inputs and outputs like any filter. The inputs are noisy and inaccurate measurements, 
while the outputs are much less noisy and more accurate estimates. Mathematically speaking, the 
inputs to the filter are a measured value and measurement covariance matrix. The dynamic system 
model is the state transition matrix (representing equations) and process noise covariance matrix, 
the Kalman gain is internal and dependent on the system, and the outputs from the filter are the state 
variable and state covariance matrix. This is illustrated in Figure 7.4a:
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Figure 7.4a: Input and output of the Kalman filter

When an estimate is propagated in time, the future state is inherently uncertain and hence, the error 
covariance matrix grows with time. The dynamic model (equations of motion) is approximate; the 
process noise (uncertainty) adds to the existing noise, and this is represented by the process noise 
covariance matrix. The estimate needs to be converted from the state space to the measurement 
space and this conversion is done via another matrix (state-to-measurement). For Kalman filters 
applied to linear systems discussed in this chapter, this transformation matrix is simple, whereas 
the transformation can be complex for non-linear (or extended) Kalman filters. If the system is 
non-linear, a non-linear state estimator or filter is utilized. For example, extended Kalman filters do 
a linearization of the distribution around the mean of the current estimate and use it in the predict 
and update states of the algorithm.

The Kalman gain is computed in each iteration and it determines the influence of the input measurement 
(new information) on the estimate. If the input measurement is very noisy, the Kalman gain will trust 
its current state estimate more than the input. The Kalman filter has the ability to recognize how to 
appropriately put weights on its current estimate and a new input measurement at each time step to 
produce an optimal estimate.

Figure 7.4b: Kalman filtering in the form of distribution functions



Kalman Filter78

To summarize, the Kalman filter is an optimal filter that treats two random variables (prior estimate 
and measurement) to estimate the current state variable, as shown in Figure 7.4b, by minimizing the 
uncertainty. If we have a prior distribution with a high variance and a measured distribution with a 
lower variance, the Kalman filter combines the two to estimate a distribution with a higher peak and 
narrower variance than the prior.

In the following section, the computation and filtration of measurements leveraging the Kalman filter 
estimation algorithm are implemented with Python code.

Implementation of the Kalman filter
In this illustrative example, time-series data is used as input and the Kalman filter provides estimates at 
each time step. The example is of a moving vehicle for which initializations of velocity, displacement, and 
acceleration are made. Acceleration values at different time steps are also incorporated. The kinematic 
equation, which relates displacement, velocity, and acceleration of the vehicle, yields the true values:

import numpy as np
import math, random
import matplotlib.pyplot as plt

current_vel, current_disp, current_accel = 2, 0, 0
total_time = 100
accel_dict = {0:0,5:2,10:8, 20: -2,40:5,45: 9, 60: -3,85:0}
true_values = []
for t in range (1, total_time+1):
     current_disp = current_disp + current_vel + (1/2) * current_accel
     try:
         current_accel = accel_dict[t]
     except KeyError:
                    pass
     current_vel = current_vel + current_accel
     true_values.append((current_disp, current_vel, current_accel))

Random noise (error) is added to the true values in the form of small perturbations, and measurements 
are determined:

err_range = [700, 30, 15] #noise
measurements = []
for item in true_values:
     d,v,a = item
     random_err = [random.randint(-1*err_range[0], err_range[0]), 
random.randint(-1*err_range[1], err_range[1]), random.randint(-1*err_
range[2], err_range[2])]
      new_disp = d + random_err[0] if d+random_err[0] > 0 else 0
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      new_vel = v + random_err[1]
      new_accel = a + random_err[2]
      measurements.append((new_disp, new_vel, new_accel))

We can compare the true values with the measured values of displacement. On running the following 
piece of code, we obtain a visual comparison (Figure 7.5). Similarly, we can make a visual comparison 
of true values with the measured values of velocity as well:

plt.plot([i for i in range(total_time)], [y[0] for y in true_values], 
'r--', label = 'True Values')
plt.plot([i for i in range(total_time)], [y[0] for y in measurements], 
'b--', label = 'Measurements')
plt.ylabel("Displacement")
plt.xlabel("Time (s)")
plt.legend()
plt.show()

Figure 7.5: True values versus measurements for displacement
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We are, therefore, done with the computation of measurements. Next is the filtration of measurements 
for which the noisy data is fed into the Kalman filter. Displacement and velocity are initialized and 
the error covariance (Q) is estimated. The transition matrix (A) is also used wherein it is assumed 
acceleration of the vehicle is unknown. The measurement error (R) is higher than the estimation error 
due to noise in the data. H in the following code yields states and P is the error matrix:

x_k = np.asarray([30,20])
Q = np.asarray([[0.004,0.002],[0.002,0.001]])
A = np.asarray([[1,1],[0,1]])
R = np.asarray([[0.4,0.01],[0.04,0.01]])
H = np.asarray([[1,0],[0,1]])
P = np.asarray([[0,0],[0,0]])
estimation = []
for k_loop in range(total_time):
     z_k = np.asarray([measurements[k_loop][0], measurements[k_loop]
[1]])
     x_k = A.dot(x_k)
     P = (A.dot(P)).dot(A.T) + Q
            K = (P.dot(H.T)).dot(np.linalg.inv((H.dot(P).dot(H.T)) + 
R))
     x_k = x_k + K.dot((z_k - H.dot(x_k)))

     P = (np.identity(2) - K.dot(H)).dot(P)
     estimation.append((x_k[0], x_k[1]))

We can now compare the true values with an estimated value of displacement as well as velocity.  
On running the following piece of code, we obtain a visual comparison (Figure 7.6) of only displacement:

plt.plot([i for i in range(total_time)], [y[0] for y in true_values], 
'r--', label = 'True Values')
plt.plot([i for i in range(total_time)], [y[0] for y in measurements], 
'b--', label = 'Measurements')
plt.plot([i for i in range(total_time)], [y[0] for y in estimation], 
'g--', label = 'Estimated Values')
plt.title('Estimation of displacement')
plt.ylabel("Displacement")
plt.xlabel("Time (s)")
plt.legend()
plt.show()
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Figure 7.6: True values versus estimated values of displacement

It is evident that the Kalman filter provides estimates of the displacement of a moving vehicle that are 
very close to the true values when used on noisy data. The example of a moving vehicle used in the 
algorithm implementation is illustrated in Figure 7.7:

Figure 7.7: Optimal state estimate of a moving vehicle

Though synthetic data was utilized in the Python code, the usage and application are generic, and 
the algorithm works for a dynamic system provided the matrices governing the system dynamics are 
set up properly.
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Summary
In this chapter, we explored the Kalman filter – the estimation and prediction algorithm utilized to 
solve problems in signal processing, navigation, and control systems. There are linear and univariate 
(one-dimensional) Kalman filters in which the system dynamics are assumed to be linear. Many 
dynamic processes, however, have more than one dimension, and in such cases, we utilize multivariate 
and mostly non-linear (or extended) Kalman filters. For example, the state vector that describes a 
moving object’s position and velocity in space is six-dimensional, and a non-linear Kalman filter is 
utilized to determine the displacement (and velocity) in space of such an object. Also, the Kalman 
filter consumes low computational power (leading to a shorter runtime) due to the usage of matrices 
in its operation that occupy less computer memory. The Kalman filter is arguably the best estimation 
algorithm with noisy data as it mitigates the uncertainty by combining the information we have and 
providing us with a distribution we can feel more confident about.

The next chapter is the last one in this part (Mathematical Tools) of the book and is about the Markov 
chain, an algorithm to sample states from a population with a complex probability distribution. It is 
a probabilistic tool to traverse a system of states. In other words, it randomly walks across a graph 
and helps predict the next state just from knowledge of the present.



8
Markov Chain

The Markov chain is one of the most important stochastic processes and solves real-world problems 
with probabilities. A Markov chain is a model of random movement in a discrete set of possible 
locations (states), in other words, a model of transition from one location (state) to another with a 
certain probability. It is named after Andrey Markov, the Russian mathematician who is best known 
for his work on stochastic processes. It is a mathematical system describing a sequence of events in 
which the probability of each event depends only on the previous event.

“The future depends only upon the present, not upon the past.”

The events or states can be written as { , , , . . } , where   is the state at time t. The process {} has 
a property, which is   , which depends only on   and does not depend on { , , … . , } . Such 
a process is called a Markovian or Markov chain. It is a random walk to traverse a system of states. 
A two-state Markov chain is one in which a state can transition onto itself (that is, staying in the 
same state). It is shown in Figure 8.1 (which is a state diagram). An example of a Markov chain is the 
PageRank algorithm, which is used by Google to determine the order of results for a search.

Figure 8.1: Two-state (A and E) Markov chain
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Markov chains are quite powerful when it comes to including real-world phenomena in computer 
simulations. It is a class of probabilistic graphical models representing a dynamic process, the limitation 
being that it can only take on a finite number of states. Markov chains have no long-term memory 
(are memory-less, in short) and hence know no past states. Therefore, the only state determining the 
future state in a Markov chain is the present, and this is called a Markov property.

This chapter covers the following topics:

• Discrete-time Markov chain

• Markov Chain Monte Carlo (MCMC)

The following section discusses the very foundation of a Markov chain, which is a discrete-time 
stochastic process.

Discrete-time Markov chain
For a discrete-time Markov process, ( )   while in continuous time   is replaced by   where   
runs until infinity. Given the present state, past and future states are independent in a Markov chain, 
which in turn means that the future is only dependent on the present. In the following subsections, 
we will learn about the transition matrix and an application of the Markov chain in time-series data 
for short-term forecasting.

Transition probability

The transition probabilities between Markov states are captured in a state transition matrix. The 
dimension of the transition matrix is determined by the number of states in the state space. Every 
state is included as a row and a column, and each cell in the matrix gives the probability of transition 
from its row’s state to its column’s state, as shown in Figure 8.2. In order to forecast one step ahead, 
one must know the transition matrix and the current state. The transition probability (matrix element) 
is typically established from historical sequential data.

Figure 8.2: Transition matrix for the two states
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Application of the Markov chain

Markov chains model the behavior of a random process. They can be used for text prediction in order 
to autocomplete sentences or to model the evolution of time-series data, for example, modeling the 
behavior of financial markets.

An example of modeling the price of stock using a Markov chain is depicted in the following Python 
code. A set of states (in the order increase, decrease, and stable) is defined for the time 
evolution of the stock price with the probability of transition between these states. The transition 
matrix is used to predict the probable future (next state) price:

import numpy as np
states = ["increase", "decrease", "stable"] #Markov states
transition_probs = np.array([[0.6, 0.3, 0.1], [0.4, 0.4, 0.2], [0.5, 
0.3, 0.2]])
num_steps = 10                 #time-steps for simulation
def MC_states(current_state):
     future_states = []
for i in range(num_steps):
           probs = transition_probs[states.index(current_state)]
           new_state = np.random.choice(states, p = probs)
           future_states.append(new_state)
           current_state = new_state #Update current state
     return future_states
#output
MC_states("increase")

The output is a sequence of future states, shown in Figure 8.3, given a current state. A different output is 
obtained if the current state is set to decrease or stable (initial state) while executing the function 
in the code. The sequence of states depicts the evolution of the stock price over time. Caution must 
be exercised when the system does not exhibit stationary behavior, that is, the transition probabilities 
between states change over time. In that case, a complex Markov model or a different model altogether 
may be used to capture the system's behavior.

Figure 8.3: Output of the example code in Python
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If   is the number of times the sequence is in state   (state is observed) and   is the number of times 
there is a transition from state i to state j, then the transition probability is defined as follows:

In the next section, we will learn about a sampling method, MCMC, which is used for high-dimensional 
probability distributions wherein the next sample is dependent on the current sample drawn randomly 
from a population. In short, the samples drawn from the distribution are probabilistically dependent 
on each other. The volume of a sample space increases exponentially with the number of parameters 
or dimensions, and modeling such a space could easily be inaccurate with the usage of straightforward 
methods such as Monte Carlo sampling. The MCMC method is an attempt to harness the properties 
of a random problem and construct the corresponding Markov process efficiently.

Markov Chain Monte Carlo
MCMC is a method of random sampling from a target population/distribution defined by high-
dimensional probability definition. It is a large-scale statistical method that draws samples randomly 
from a complex probabilistic space to approximate the distribution of attributes over a range of future 
states. It helps gauge the distribution of a future outcome and the sample averages help approximate 
expectations. A Markov chain is a graph of states over which a sampling algorithm takes a random walk.

The most known MCMC algorithm is perhaps Gibbs sampling. The algorithms are nothing but 
different methodologies for constructing the Markov chain. The most general MCMC algorithm is 
Metropolis-Hastings and has flexibility in many ways. These two algorithms will be discussed in the 
next subsections.

Gibbs sampling algorithm

In Gibbs sampling, the probability of the next sample in the Markov chain is calculated as the conditional 
probability of the prior sample. Samples in the Markov chain are constructed by changing one random 
variable at a time (conditioned on other variables in the distribution), meaning subsequent samples 
in the search space are closer. Gibbs sampling is most appropriate with a discrete (not continuous) 
distribution, which has a parametric form that allows sampling and calculating the conditional 
probability. An example of sampling with Gibbs sampler is shown in Figure 8.4, which reproduces 
the desired distribution.

=   
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Figure 8.4: Gibbs sampler reproducing a desired Gaussian mixture

A Gibbs sampler is more efficient than a Metropolis-Hastings algorithm (discussed in the next 
subsection). It starts with a proposal distribution and a proposal is always accepted; that is, the 
acceptance probability is always 1. We will use an example of the bivariate Gaussian distribution to 
illustrate a Gibbs sampler with Python code in the last subsection.

Metropolis-Hastings algorithm

The Metropolis-Hastings algorithm is used for probabilistic models where Gibbs sampling cannot be 
used. It does not assume that the state of the next sample can be generated from a target distribution, 
which is the main assumption in Gibbs sampling. This algorithm involves using a surrogate probability 
distribution, also called the kernel, and an acceptance criterion that helps decide whether the new sample 
can be accepted into the Markov chain or has to be rejected. The proposed distribution (surrogate) is 
suggestive of an arbitrary next sample and the acceptance criterion ensures an appropriate limiting 
direction in getting closer to the true or desired the state of the next sample. The starting points of 
these algorithms are important and different proposal distributions can be explored.
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How does this algorithm work?

1. We start with a random state.

2. Based on the proposal probability, we randomly pick a new state.

3. We calculate the acceptance probability of the proposed new state.

For example, say the probability of a flipped coin landing on heads is the acceptance probability. 
If it lands on heads, we accept the sample; otherwise, we reject it.

4. We repeat the process for a long time.

We discard the initial few samples as the chain does not reach its stationary state. The period before 
the chain reaches its stationary state is called the burn-in period (see Figure 8.5). The accepted draws 
will converge to the stationary distribution after some time.

Figure 8.5: Markov chain

The stationary distribution shows the probability of being at any state X at any given time and is 
always reached if a very large number of samples is generated. This distribution is exactly the posterior 
distribution we’re looking for. A posterior distribution is proportional to the product of likelihood 
and prior distribution. The Metropolis-Hastings algorithm is analogous to a diffusion process wherein 
all states are communicating (by design) and hence the system eventually settles into an equilibrium 
state, which is the same as converging to a stationary state. This property is called ergodicity.

In the next subsection, we illustrate the Metropolis-Hastings sampling algorithm, also with Python 
code, using the example of bivariate distribution.
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Illustration of MCMC algorithms

The working of the Gibbs sampling algorithm is shown with a simple bivariate Gaussian distribution 
in the following code. We pass the two parameters (mu and sigma) for the conditional probability 
distribution and discard a part of initially sampled values for the algorithm to converge even if the 
starting (guess) value is way off. This part of the sample is known as burn-in:

import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
np.random.seed(42)
def gibbs_sampler(mus, sigmas, n_iter = 10000):
    samples = []
    y = mus[1]
    for _ in range(n_iter):
        x = p_x_y(y, mus, sigmas)
        y = p_y_x(x, mus, sigmas)
        samples.append([x, y])
    return samples
def p_x_y(y, mus, sigmas):
    mu = mus[0] + sigmas[1, 0]/sigmas[0, 0] * (y - mus[1])
    sigma = sigmas[0, 0]-sigmas[1, 0]/sigmas[1, 1]*sigmas[1, 0]
    return np.random.normal(mu, sigma)
def p_y_x(x, mus, sigmas):
    mu = mus[1] + sigmas[0, 1] / sigmas[1, 1]*(x - mus[0])
    sigma = sigmas[1, 1] - sigmas[0, 1]/sigmas[0, 0]*sigmas[0, 1]
    return np.random.normal(mu, sigma)

mus = np.asarray([5, 5])
sigmas = np.asarray([[1, 0.9], [0.9, 1]])
samples = gibbs_sampler(mus, sigmas)
burnin = 200
x = list(zip(*samples[burnin:]))[0]
y = list(zip(*samples[burnin:]))[1]
sns.jointplot(samples[burnin:], x = x, y = y, kind = 'kde')
sns.jointplot(samples[burnin:], x = x, y = y, kind = 'reg')
plt.show()

We run the code and the Gibbs sampler yields an output, shown in Figure 8.6a, in two forms, namely, 
a kernel distribution estimation plot and a linear regression fit. The output is the resulting (target) 
distribution based on sampled values using the Gibbs sampling algorithm.
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Figure 8.6a: Target distribution from the Gibbs sampling algorithm

We run a similar setup (bivariate distribution) for Metropolis-Hastings sampler. The Python code and 
output are given as follows. To begin with, we plot the true distribution and then use the multivariate 
normal distribution as the proposal. Figure 8.6b is the output (target distribution) based on sampling 
using the algorithm:

import numpy as np
import matplotlib.pyplot as plt
from tqdm import tqdm as tqdm
def density(z):
    z = np.reshape(z, [z.shape[0], 2])
    z1, z2 = z[:, 0], z[:, 1]
    norm = np.sqrt(z1 ** 2 + z2 ** 2)
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    exp1 = np.exp(-0.5 * ((z1 - 2) / 0.6) ** 2)
    exp2 = np.exp(-0.5 * ((z1 + 2) / 0.6) ** 2)
    v = 0.5 * ((norm - 2) / 0.4) ** 2 – np.log(exp1 + exp2)
    return np.exp(-v)
r = np.linspace(-5, 5, 1000)
z = np.array(np.meshgrid(r, r)).transpose(1, 2, 0)
z = np.reshape(z, [z.shape[0] * z.shape[1], -1])
def metropolis_sampler(target_density, size = 100000):
    burnin = 5000
    size += burnin
    x0 = np.array([[0, 0]])
    xt = x0
    samples = []
    for i in tqdm(range(size)):
        xt_candidate = np.array([np.random.multivariate_normal(xt[0], 
np.eye(2))])
      accept_prob = (target_density(xt_candidate))/(target_
density(xt))
      if np.random.uniform(0, 1) < accept_prob:
         xt = xt_candidate
      samples.append(xt)
    samples = np.array(samples[burnin:])
     samples = np.reshape(samples, [samples.shape[0], 2])
    return samples
q = density(z) #true density
plt.hexbin(z[:,0], z[:,1], C = q.squeeze())
plt.gca().set_aspect('equal', adjustable ='box')
plt.xlim([-3, 3])
plt.ylim([-3, 3])
plt.show()
samples = metropolis_sampler(density)
plt.hexbin(samples[:,0], samples[:,1])
plt.gca().set_aspect('equal', adjustable = 'box')
plt.xlim([-3, 3])
plt.ylim([-3, 3])
plt.show()
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Figure 8.6b: True distribution (L) and target distribution (R) from 

the Metropolis-Hastings sampling algorithm

For finite (discrete as well as continuous) state spaces, the existence of a unique stationary state is 
guaranteed. We start from a prior probability distribution and end with a stationary distribution, 
which is the posterior or target distribution based on sampled values.

Summary
In this chapter, we learned about the Markov chain, which is utilized to model special types of stochastic 
processes, such as problems wherein one can assume the entire past is encoded in the present, which 
in turn can be leveraged to determine the next (future) state. An application of the Markov chain in 
modeling time-series data was illustrated. The most common MCMC algorithm (Metropolis-Hastings) 
for sampling was also covered with code to illustrate. If a system exhibits non-stationary behavior 
(transition probability changes with time), then a Markov chain is not the appropriate model and a 
more complex model may be required to capture the behavior of the dynamic system.

With this chapter, we conclude the second part of the book. In the next chapter, we will explore 
fundamental optimization techniques, some of which are used in machine learning. We will touch 
upon evolutionary optimization, optimization in operations research, and that are leveraged in training 
neural networks.



Part 3: 
Mathematical Optimization

In this part, you will have exposure to optimization techniques that lay the foundation for machine 
learning, deep learning, and other models used in operations research. Optimization techniques 
are extremely powerful for predictive and prescriptive analytics and find applications in several 
complex problems in heavy industry. Additionally, blending classical mathematical modeling with 
machine learning often allows for the extraction of more meaningful insights for specific sensitive 
business problems.

This part has the following chapters:

• Chapter 9, Exploring Optimization Techniques

• Chapter 10, Optimization Techniques for Machine Learning 





9
 Exploring Optimization 

Techniques

This chapter primarily aims to address the question, “Why is optimization necessary while solving 
problems?” Mathematical optimization, or mathematical programming, is a powerful decision-making 
tool that has been talked about in depth in the chapters of Part I. What is important is to recall the 
simple fact that optimization yields the best result to a problem by reducing errors that are, essentially, 
the gaps between predicted and real data. Optimization comes at a cost; almost all optimization 
problems are described in terms of costs such as money, time, and resources. This cost function is the 
error function. If a business problem has clear goals and constraints, such as in the airline and logistics 
industries, mathematical optimization is applied for efficient decision-making.

In machine learning (ML) problems, the cost is often called the loss function. ML models make 
predictions about trends or classify data wherein training a model is a process of optimization, as 
each iteration in this process aims to improve the accuracy of the model and lower the margin of 
error. Selecting the optimum value of hyperparameters is key to ensuring an accurately and efficiently 
performing model. Hyperparameters are the elements of an ML model (for example, learning rate, 
number of clusters, etc.) that are tuned to fit a specific dataset to the model. In short, they are parameters 
whose values control the learning process. Optimization is an iterative process, meaning that the ML 
model becomes more accurate with each iteration in most cases and becomes better at predicting an 
outcome or classifying data.

The right blend of ML and mathematical optimization can prove to be useful for certain business 
problems. For example, the output of an ML model can determine the scope of an optimization 
model, especially in routing problems where one uses both predictive maintenance with ML as well as 
clustering, the results of which are fed into a mathematical model to create optimal routes. Similarly, 
an ML model may learn from a mathematical model. Initial values of decision variables obtained 
from a mathematical model can be used in an ML model that not only predicts optimal values of the 
decision variables, but also helps accelerate the performance of an optimization algorithm.
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ML optimization is performed using algorithms that exploit a range of techniques to refine an ML 
model. The optimization process searches for the most effective configuration or set of hyperparameters 
for the model to suit the specific use case (dataset) or business problem.

To summarize, ML is data-driven and optimization is algorithm-driven. Every ML model operates on 
the principle of minimizing the cost function; hence, optimization is a superset at its core.

This chapter covers the following topics:

• Optimizing machine learning models

• Optimization in operations research

• Evolutionary optimization

The next section explores approaches and techniques used in optimizing ML models to arrive at the 
best set of hyperparameters.

Optimizing machine learning models
The concept of optimization is integral to an ML model. ML helps make clusters, detect anomalies, 
predict the future from historical data, and so forth. However, when it comes to minimizing costs in 
a business, finding optimal placement of business facilities, et cetera, what we need is a mathematical 
optimization model.

We will talk about optimization in machine learning in this section. Optimization ensures that the 
structure and configuration of the ML model are as effective as possible to achieve the goal it has 
been built for. Optimization techniques automate the testing of different model configurations. The 
best configuration (set of hyperparameters) has the lowest margin of error, thereby yielding the most 
accurate model for a given dataset. Getting the hyperparameter optimization right for an ML model 
can be tedious, as both under-optimized (underfit) as well as over-optimized (overfit) models fail. 
Overfitting is when a model is trained too closely to training data, resulting in inaccurate yields with 
new data. Underfitting is when a model is poorly trained, making it ineffective with training data as 
well as new data. Hyperparameters can be sought manually, which is an exhaustive method using trial 
and error. Underfit, optimal, and overfit models are illustrated in Figure 9.1 as follows:
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Figure 9.1: Under-optimized (L) and over-optimized (R) model fits

The main techniques of optimization include random search, grid search of hyperparameters, and 
Bayesian optimization, all of which are discussed in the following subsections.

Random search

The process of random sampling of the search space and identifying the most effective configuration 
of a hyperparameter set is random search. A random search technique discovers new combinations 
of hyperparameters for an optimized ML model. The number of iterations in the search process has to 
be set, which limits these new combinations, without which the process is a lot more time-consuming. 
It is an efficient process as it replaces an exhaustive search with randomness. A search space can be 
thought of as a volume in space, each dimension of which represents a hyperparameter, and each 
point or vector in the volume represents a model configuration. An optimization procedure involves 
defining the search space.

The search space is a dictionary in the Python code, and the scikit-learn library provides 
functions to tune model hyperparameters. An example code of a random search for a classification 
model is provided here:

import pandas as pd
from scipy.stats import loguniform
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import RepeatedStratifiedKFold
from sklearn.model_selection import RandomizedSearchCV

dataframe = pd.read_csv('sonar.csv')
data = dataframe.values
X, y = data[:, :-1], data[:, -1]
#Model
model = LogisticRegression()
cv = RepeatedStratifiedKFold(n_splits = 10, n_repeats = 3, random_
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state = 1)
#Define search space
space = dict()
space['solver'] = ['newton-cg', 'lbfgs', 'liblinear']
space['penalty'] = ['none', 'l1', 'l2', 'elasticnet']
space['C'] = loguniform(1e-5, 100)

search = RandomizedSearchCV(model, space, n_iter = 500, scoring = 
'accuracy',
                            n_jobs = -1, cv = cv, random_state = 1)
result = search.fit(X, y)

print('Best Score: %s' % result.best_score_)
print('Best Hyperparameters: %s' % result.best_params_)

The dataset used is a set of 60 patterns obtained by bouncing sonar signals off a metal cylinder under 
various conditions. Each pattern is a set of numbers lying in the range between 0.0 and 1.0, with each 
number representing the energy within a frequency band integrated over a period of time. The label 
associated with each record is either R if the object is a rock, or M if the object is a metal cylinder or 
mine. Data can be found in the GitHub repository at https://github.com/ranja-sarkar/
dataset.

An example code of random search for a linear regression model has also been provided. The insurance 
dataset with two variables, namely the number of claims and total payment (in Swedish Krona) for all 
claims in geographical Swedish zones, can be found in the GitHub repository at https://github.
com/ranja-sarkar/dataset.

The difference between regression and classification tasks is in choosing the performance scoring 
protocol for the models. The hyperparameter optimization methods in the scikit-learn Python 
library assume good performance scores are negative values close to zero (for regression), with zero 
representing a perfect regression model:

import pandas as pd
from scipy.stats import loguniform

from sklearn.linear_model import Ridge
from sklearn.model_selection import RepeatedKFold
from sklearn.model_selection import RandomizedSearchCV

df = pd.read_csv('auto-insurance.csv')
data = df.values
X, y = data[:, :-1], data[:, -1]
#Model
model = Ridge()

https://github.com/ranja-sarkar/dataset
https://github.com/ranja-sarkar/dataset
https://github.com/ranja-sarkar/dataset
https://github.com/ranja-sarkar/dataset
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cv = RepeatedKFold(n_splits = 10, n_repeats = 3, random_state = 1)

#Define search space
space = dict()
space['solver'] = ['svd', 'cholesky', 'lsqr', 'sag']
space['alpha'] = loguniform(1e-5, 100)
space['fit_intercept'] = [True, False]
space['normalize'] = [True, False]

search = RandomizedSearchCV(model, space, n_iter = 500, scoring 
=      'neg_mean_absolute_error', n_jobs = -1, cv = cv, random_state = 
1)
result = search.fit(X, y)
print('Best Score: %s' % result.best_score_)
print('Best Hyperparameters: %s' % result.best_params_)

The runtime of the code depends on the size of the search space and the system processor speed. The 
result class in the code provides the outcome, the most important value being the best score for 
the best performance of the model and the hyperparameters that achieved this score. Once the best 
set of hyperparameters becomes known, one can define a new model, set the hyperparameters to the 
known values, and fit the model on available data. This model can then be used for predictions on 
new data. The number of random configurations in the parameter space look like Figure 9.2, which 
shows that random search works best for low-dimensional data:

Figure 9.2: Random search

In the next subsection, we elaborate on grid search for optimization of classification and regression models.
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Grid search

The process of assessing the effectiveness of known hyperparameter values of an ML model is grid 
search. Each hyperparameter is represented as a dimension on a grid across the search space and 
each point in the grid is searched and evaluated. Grid search is great for checking intuitive guesses 
and hyperparameter combinations that are known to perform well in general. As mentioned earlier, 
an optimization procedure involves defining a search space (a dictionary in Python), which can be 
thought of as a volume where each dimension represents a hyperparameter and each point (vector) 
represents a model configuration. A discrete grid has to be defined here. In other words, the grid 
search space takes discrete values (that can be on a log scale) instead of a log-uniform distribution 
used in a random search space.

A sample code of grid search for a classification model using the same dataset (sonar.csv) explored 
for a random search algorithm is given here:

import pandas as pd
from scipy.stats import loguniform
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import RepeatedStratifiedKFold
from sklearn.model_selection import GridSearchCV

dataframe = pd.read_csv('sonar.csv')
data = dataframe.values
X, y = data[:, :-1], data[:, -1]

#Model
model = LogisticRegression()
cv = RepeatedStratifiedKFold(n_splits = 10, n_repeats = 3, random_
state = 1)
#Define search space
space = dict()
space['solver'] = ['newton-cg', 'lbfgs', 'liblinear']
space['penalty'] = ['none', 'l1', 'l2', 'elasticnet']
space['C'] = [1e-5, 1e-4, 1e-3, 1e-2, 1e-1, 1, 10, 100]

search = GridSearchCV(model, space, scoring = 'accuracy', n_jobs = -1, 
cv = cv)
result = search.fit(X, y)

print('Best Score: %s' % result.best_score_)
print('Best Hyperparameters: %s' % result.best_params_)
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A sample code of a grid search for a linear regression model using the same dataset (auto-insurance.
csv) explored for a random search algorithm is provided as follows. The best hyperparameters 
obtained using the random search and grid search algorithms for this dataset can be compared to get 
an estimate of which algorithm works better for the dataset:

import pandas as pd
from sklearn.linear_model import Ridge
from sklearn.model_selection import RepeatedKFold
from sklearn.model_selection import GridSearchCV
df = pd.read_csv('auto-insurance.csv')
data = df.values
X, y = data[:, :-1], data[:, -1]
#Model
model = Ridge()
cv = RepeatedKFold(n_splits = 10, n_repeats = 3, random_state = 1)
#Define search space
space = dict()
space['solver'] = ['svd', 'cholesky', 'lsqr', 'sag']
space['alpha'] = [1e-5, 1e-4, 1e-3, 1e-2, 1e-1, 1, 10, 100]
space['fit_intercept'] = [True, False]
space['normalize'] = [True, False]

search = GridSearchCV(model, space, scoring = 'neg_mean_absolute_
error', n_jobs = -1, cv = cv)
result = search.fit(X, y)
print('Best Score: %s' % result.best_score_)
print('Best Hyperparameters: %s' % result.best_params_)

The scores obtained for the datasets with random search and grid search in classification and regression 
models are nearly identical. The selection of optimization technique for a given dataset depends on 
the use case. Though random search might in some cases result in better performance, it needs more 
time, while grid search is appropriate for quick searches of hyperparameters that perform well in 
general. The values of hyperparameters are placed like a matrix as shown in Figure 9.3, similar to a grid:
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Figure 9.3: Grid search

Another method, known as Bayesian optimization, whose search procedure is different from the 
preceding two, is discussed in the following subsection.

Bayesian optimization

A directed and iterative approach to global optimization using probability is Bayesian optimization. 
This is a Gaussian process that converges fast for continuous hyperparameters that is, in a continuous 
search space (Figure 9.4). In Bayesian optimization, a probabilistic model of the function is built, and 
maps hyperparameters to the objectives evaluated on a validation dataset. This process evaluates a 
hyperparameter configuration based on the current model, then updates it until an optimal point is 
reached and it attempts to find the global optimum in a minimum number of steps. In most cases, it 
is more efficient and effective than optimization by way of random search. The optimization landscape 
(multiple local minima) with one global minimum is illustrated as follows:

Figure 9.4: Optimization landscape (response surface)
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Bayesian optimization incorporates prior belief (marginal probability) about the objective function 
and updates the prior with samples drawn from the function to obtain a posterior belief (conditional 
probability) that better approximates the function, which is illustrated in Figure 9.5. This process 
repeats itself until the extremum of the objective function is located or resources are exhausted:

Figure 9.5: Bayesian statistics

Bayesian search is typically beneficial when there is a large amount of data, the learning is slow, and 
tuning time has to be minimized. The scikit-optimize library provides functions for Bayesian 
optimization of ML models. A sample code for hyperparameter tuning by the Bayesian method in a 
classification problem is provided as follows:

import numpy as np
from sklearn.datasets import make_blobs
from sklearn.model_selection import cross_val_score
from sklearn.neighbors import KNeighborsClassifier
from skopt.space import Integer
from skopt.utils import use_named_args
from skopt import gp_minimize

#Generate classification dataset
X, y = make_blobs(n_samples = 500, centers = 3, n_features = 2) ##3 
class labels in data
#Model kNN
model = KNeighborsClassifier()
#Define search space
search_space = [Integer(1, 5, name = 'n_neighbors'), Integer(1, 2, 
name = 'p')]
@use_named_args(search_space)
def evaluate_model(**params):
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    model.set_params(**params)
    result = cross_val_score(model, X, y, cv = 5, n_jobs = -1, scoring 
= 'accuracy')
    estimate = np.mean(result)
    return 1.0 – estimate
#Optimize
result = gp_minimize(evaluate_model, search_space)
print('Accuracy: %.3f' % (1.0 - result.fun))
print('Best Parameters: n_neighbors = %d, p = %d' % (result.x[0], 
result.x[1]))

The model used for approximating the objective function is called the surrogate model, and the 
posterior probability is a surrogate objective function that can be used to estimate the cost of candidate 
samples. The posterior is used to select the next sample from the search space and the technique that 
does this is called the acquisition function. Bayesian optimization is best when the function evaluation 
is expensive or the form of the objective function is complex (nonlinear, non-convex, highly multi-
dimensional, or highly noisy) – for example, in deep neural networks.

The process of optimization lowers errors or loss from predictions in an ML model and improves the 
model’s accuracy. The very premise of ML relies on a form of function optimization so inputs can be 
almost accurately mapped to expected outputs.

In the next section, we will learn about mathematical optimization in operations research.

Optimization in operations research
The term operations research was coined during World War I, when the British military brought 
together a group of scientists to allocate insufficient resources (food, medicines, etc.) in the most 
effective way possible to different military operations. Therefore, the term implies optimization, which 
is maximizing or minimizing an objective function subject to constraints, often in complex problems 
and in high dimensions. Operations problems typically include planning work shifts or creating a 
schedule for large organizations, designing facilities for customers at a large store, choosing investments 
for available funds, supply chain management, and inventory management, all of which can be posed 
or formulated as mathematical problems with a collection of variables and their relationships.

In operations research, a business problem is mapped to a lower-level generic problem that is concise 
enough to be described in mathematical notations. These generic problems can in turn be expressed 
using higher-level languages; for example, resources and activities are used to describe a scheduling 
problem. The higher-level language is problem-specific, hence the generic problems can be described 
using modeling paradigms. A modeling paradigm is a set of rules and practices that allows for the 
representation of higher-level problems using lower-level data structures such as matrices. These 
data structures or matrices are passed to the last step of abstraction, which is algorithms. The most 
prominent modeling paradigms are linear programming, integer programming, and mixed-integer 
programming, all of which use linear equality constraints. There is a family of algorithms to solve these 
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linear programming problems. Search algorithms, such as branch and bound, solve integer programming 
problems, while the simplex algorithm is used in a linear programming modeling paradigm.

An example of how to solve a knapsack problem by optimization is illustrated with the following data 
(Figures 9.6a and 9.6b):

Figure 9.6a: Knapsack problem

Let’s say the constraint is the ability to only carry a maximum of 2.9 kg in the camping sack, while the 
total weight of all items is 3.09 kg. The item’s value assists in choosing the optimum number of items. 
As the number of items increases, the problem becomes bigger, and solving it by trying all possible 
combinations of items takes a significant amount of time:

Figure 9.6b: Knapsack problem with another variable

The objective function is value, which must be maximized. The best of items has to be chosen to 
meet the constraint of 2.9 kg by total weight. A solver (pulp, in this case) is used to solve this linear 
programming problem, as shown in the following code. The decision variables (to be determined) are 
given by = {1, 0} . The variable is 1 if the item is chosen and 0 if the item is not chosen:

from pulp import *
#value per weight
v = {'Sleeping bag': 4.17, 'Pillow': 5.13, 'Torch': 10.0, 'First Aid 
Kit': 8.0, 'Hand sanitiser': 2.0}
#weight
w = {'Sleeping bag': 1.2, 'Pillow': 0.39, 'Torch': 0.5, 'First Aid 
Kit': 0.5, 'Hand sanitiser': 0.5}

limit = 2.9
items = list(sorted(v.keys()))
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# Model
m = LpProblem("Knapsack Problem", LpMaximize)
# Variables
x = LpVariable.dicts('x', items, lowBound = 0, upBound = 1, cat = 
LpInteger)

#Objective
m += sum(v[i]*x[i] for i in items)
#Constraint
m += sum(w[i]*x[i] for i in items) <= limit
#Optimize
m.solve()
#decision variables
for i in items:
    print("%s = %f" % (x[i].name, x[i].varValue))

This code when executed results in the following output:

x_First_Aid_Kit = 1.0
x_Hand_sanitizer = 0.0
x_Pillow = 1.0
x_Sleeping_bag = 1.0
x_Torch = 1.0

Going by the result (optimal solution), a hand sanitizer must not be carried in the sack. This is a simple 
integer programming problem as decision variables are restricted to being integers. In a very similar 
manner, other practical business problems such as production planning are solved by mathematical 
optimization wherein the right resources are chosen to maximize profit and so on. When operations 
research is combined with ML predictions, data science is effectively transformed into decision science, 
allowing organizations to make actionable decisions.

In the next section, we will learn about evolutionary optimization, which is motivated by optimization 
processes observed in nature such as the migration of species, bird swarms, and ant colonies.

Evolutionary optimization
Evolutionary optimization makes use of algorithms that mimic the selection process within the 
natural world. Examples of this are genetic algorithms that optimize via natural selection. Each 
iteration of a hyperparameter value is like a mutation in genetics that is assessed and altered. The 
process continues using recombined choices until the most effective configuration is reached. Hence, 
each generation improves with every iteration as it is optimized. Genetic algorithms are often used 
to train neural networks.
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An evolutionary algorithm typically consists of three steps: initialization, selection, and termination. 
Fitter generations survive and proliferate, like in natural selection. In general, an initial population of 
a wide range of solutions is randomly created within the constraints of the problem. The population 
contains an arbitrary number of possible solutions to the problem, or the solutions are roughly 
centered around what is believed to be an ideal solution. These solutions are then evaluated in the 
next step according to a fitness (or objective) function. A good fitness function is one that represents 
the data and calculates a numerical value for the viability of a solution to a specific problem. Once 
the fitness of all solutions is calculated, the top-scoring solutions are selected. There may be multiple 
fitness functions that result in more than one optimal solution, which is when a decider is used to 
narrow down a single problem-specific solution that is based on some key metrics. Figure 9.7 depicts 
the steps of these algorithms as follows:

Figure 9.7: Steps of evolutionary algorithms

The top solutions make the next generation in the algorithm. These solutions typically have a mixture 
of the characteristics of solutions from the previous generation. New genetic material is introduced 
into this new generation, which, mathematically speaking, means introducing new probability 
distribution. This step is mutation, without which optimal results are difficult to achieve. The last step 
is termination, when the algorithm reaches either some threshold of performance or some maximum 
number of iterations (runtime). A final solution is then selected and returned.

An evolutionary algorithm is a heuristic-based approach to solving problems that would take too long 
to exhaustively process using deterministic methods. It is a stochastic search technique typically applied 
to combinatorial problems or in tandem with other methods to find an optimal solution quickly.

Summary
In this chapter, we learned about optimization techniques, especially the ones used in machine learning 
that aim to find the most effective hyperparameter configuration for an ML model fitted to a dataset. 
An optimized ML model has minimum errors, thereby improving the accuracy of predictions. There 
would be no learning or development of models without optimization.



 Exploring Optimization Techniques108

We touched upon optimization algorithms that are used in operations research, as well as evolutionary 
algorithms that find usage in the optimization of deep learning models and network modeling of 
more complex problems.

In the final chapter of the book, we will learn about how standard techniques are selected to optimize 
ML models. Multiple optimal solutions may exist for a given problem and there may be multiple 
optimization techniques to arrive at them. Hence, it is essential to choose the technique carefully 
while building the model addressing the pertinent business question.



10
Optimization Techniques for 

Machine Learning

We discussed mathematical optimization techniques in the previous chapter and their necessity in 
business problems that require minimizing the cost (error) function and in predictive modeling, 
wherein the machine learns from historical data to predict the future. In Machine Learning (ML), 
the cost is a loss function or an energy function that is minimized. It can be challenging in most cases 
to know which optimization algorithm should be considered for a given ML model. Optimization 
is an iterative process to maximize or minimize an objective function and there is always a trade-off 
between the number of iteration steps taken and the computational hardship to get to the next step. In 
this chapter, hints of how to choose an optimization algorithm given a problem (hence, an objective) 
have been provided. The choice of optimization algorithm depends on different factors, including the 
specific problem to be solved, the size and complexity of the associated dataset, and the resources, 
such as computational power and memory, available.

Direct search as well as stochastic search algorithms are designed for an objective function where the 
derivative of this function is not available. Strictly speaking, optimization algorithms can be grouped 
into those that use derivatives and those that do not use derivatives. Optimization algorithms that 
rely on gradient descent are fast and efficient; however, they require well-behaved objective functions 
to work well. We can fall back on an exhaustive search if the function has tricky characteristics, but 
it takes an extremely long time (Figure 10.1). There are optimization methods tougher than gradient 
descent, such as Genetic Algorithms (GAs) and simulated annealing. These take longer computational 
time and a greater number of steps than gradient descent, but they discover the optimal point even 
when it is very difficult to find.
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Figure 10.1: Performance of optimization algorithms

There can be derivative-free as well as gradient-based algorithms for optimization. Optimization 
algorithms used in ML models can in general be grouped into ones that use the first derivative (called 
the gradient) of the objective function and others that use the second derivative (called the Hessian) 
of the function in the search space.

This chapter covers the following topics:

• General optimization algorithms

• Complex optimization algorithms

Complex optimization algorithms encompass differentiable and non-differential functions. The next 
two sections cover examples of general and complex optimization algorithms.

General optimization algorithms
The most common optimization problem encountered in ML is continuous function optimization, 
wherein the function’s input arguments are (real) numeric values. In training ML models, optimization 
entails minimizing the loss function till it reaches or converges to a local minimum (value).

An entire search domain is utilized in global optimization whereas only a neighborhood is explored 
in local optimization, which requires the knowledge of an initial approximation, as evident from 
Figure 10.2a. If the objective function has local minima, then local search algorithms (gradient 
methods, for example) can also be stuck in one of the local minima. If the algorithm attains a local 
minimum, it is nearly impossible to reach the global minimum in the search space. In discrete search 
space, the neighborhood is a finite set that can be completely explored, while the objective function 
is differentiable (gradient methods, Newton-like methods) in continuous search space.
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Figure 10.2a: Local minimum versus global minimum

Functions may be of a discrete nature, taking discrete variables, and are found in combinatorial 
optimization problems (an example is the Traveling Salesman Problem (TSP), depicted in Figure 10.2b) 
wherein the feasible solutions are also discrete. Generally speaking, it is more efficient searching 
through continuous space to find the optimum than searching through discrete space.

Figure 10.2b: TSP is a combinatorial optimization problem
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Bracketing algorithms are optimization algorithms with one input variable where the optima is known 
to exist within a specific range. They assume that a single optimum (unimodal objective function) 
is present in the known range of search space. These algorithms may sometimes even be used when 
the derivative information is unavailable. The bisection method of optimization is one such example.

Optimization algorithms with more than one input variable are local descent algorithms. The process 
in local descent involves choosing a direction for movement in the search space, then performing a 
bracketing search in a line or hyperplane in the chosen direction. Local descent is also called the line 
search algorithm; it is, however, computationally expensive to optimize each directional move in the 
search space. Gradient descent is a classic example of the line search algorithm.

Algorithms that are grouped in accordance with whether they use gradient (first-order) or gradient 
of gradient (second-order) information to move in the search space to find the optimal point are 
discussed in the following subsections.

First-order algorithms

The first derivative (gradient or slope) of the objective function is used in first-order optimization 
algorithms. First-order algorithms are generally referred to as gradient descent (or steepest descent). 
Unlike gradient descent, regularization algorithms use a predefined objective function. An ML model 
learns by minimizing an objective (cost function) and regularization is used on top of that when such 
a model overfits.

The gradient in the search space is calculated using a step size, called the learning rate, which is a 
hyperparameter controlling the distance of movement in the space (Figure 10.3). Too small a step 
size leads to a long time to search for the optimum point, while too large a step size might lead to 
completely missing it. Optimizers have hyperparameters such as the learning rate, which can have a 
big impact on the performance of the ML model.

Figure 10.3: Learning rates in gradient descent
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Gradient descent variants are batch gradient descent, mini-batch gradient descent, and Stochastic 
Gradient Descent (SGD). Batch gradient descent computes the gradient with respect to the entire 
training dataset (all training examples), whereas SGD computes that with respect to each training 
example. A mini-batch performs an update for every (mini-) subset of training examples and hence 
takes the best of both worlds. A batch gradient descent can be very slow, whereas mini-batch gradient 
descent is very efficient. Mini-batch gradient descent is a good choice for problems with huge data. 
SGD performs frequent updates and hence the objective function fluctuates heavily, but it brings better 
convergence to the optimum. SGD is used to train artificial neural networks.

Figure 10.4: First-order algorithm (gradient descent) example

Minor extensions to the gradient descent procedure of optimization lead to several algorithms, 
such as momentum, Adaptive Gradient (AdaGrad), and Adaptive Moment Estimation (Adam). 
Momentum, for example, is a method that helps accelerate SGD in the relevant direction (Figure 10.4) 
for faster convergence. Methods such as adagrad and Adam compute adaptive learning rates for 
each parameter, helping the function converge quickly. However, Adam might be the best choice for 
sparse data. Adam uses both the gradient and second moment of the gradient. Adagrad is good for 
problems with very noisy data and ill-conditioned cost functions; that is; different dimensions of the 
cost function are not of the same scale.

Second-order algorithms

The second derivative (Hessian) of the objective function is used in second-order optimization algorithms, 
provided the Hessian (curvature) matrix can be either calculated or approximated. These algorithms 
are used for univariate objective functions that have a single real variable, few of which show either 
the minimum or the maximum while optimizing but a saddle point in its domain (search space). 
Newton’s method is an example of a second-order optimization algorithm. A comparison of gradient 
descent (first-order) with Newton’s method (second-order) of optimization is shown in Figure 10.5.



Optimization Techniques for Machine Learning114

Figure 10.5: Gradient descent (green) and Newton’s method (red) t,  

to find routes from  to   considering very small learning rates

Such algorithms work better for neural networks; however, computation and storage become 
challenging with a huge number of dimensions or parameters. In order to successfully use second-
order algorithms, one must simplify the matrix, which is typically done by approximating the Hessian 
matrix with a simpler form.

The following section elaborates the differentiability of objective functions, which is what decides whether 
to select a general (discussed in this section) or complex optimization algorithm given a problem.

Complex optimization algorithms
The nature of the objective function helps select the algorithm to be considered for the optimization of 
a given business problem. The more information that is available about the function, the easier it is to 
optimize the function. Of most importance is the fact that the objective function can be differentiated 
at any point in the search space.

Differentiability of objective functions

A differentiable objective function is one for which the derivative can be calculated at any given point 
in input space. The derivative (slope) is the rate of change of the function at that point. The Hessian is 
the rate at which the derivative of the function changes. Calculus helps optimize simple differentiable 
functions analytically. For differentiable objective functions, gradient-based optimization algorithms 
are used. However, there are objective functions for which the derivative cannot be computed, typically 
for very complex (noisy, multimodal, etc.) functions, which are called non-differentiable objective 
functions. There can be discontinuous objective functions as well, for which the derivatives can only 
be calculated in some regions of the search space. Stochastic and population algorithms handle such 
functions and are, hence, sometimes called black-box algorithms.
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When an analytical form of the objective function is not available, one generally uses simulation-
based optimization methods. The next subsection talks briefly about the algorithms considered while 
finding a feasible solution is challenging using classical methods, and they either compute or build 
around assumptions about the derivatives of objective functions.

Direct and stochastic algorithms

Direct and stochastic optimization algorithms are used in problems where the derivative of the 
objective function is unknown or cannot be calculated, that is, the search space is discontinuous. The 
former algorithms are deterministic and assume the objective function is unimodal (it has a single 
global optimum). Direct search is often referred to as pattern search as it effectively navigates through 
the search space using geometric shapes. Gradient information is approximated from the objective 
function and used in initiating a line search in the search space, eventually (with repeated line searches) 
triangulating the region of optimum. Powell’s method is one example of a direct search algorithm. It 
is a gradient-free method because the function to be optimized with it is non-differentiable.

On the other hand, stochastic algorithms make use of randomness in the global search, hence the name. 
These typically involve sampling the objective function and can handle problems with deceptive local 
optima. Simulated annealing (Figure 10.6) is an example of a stochastic search algorithm, that is, of 
global optimization, which occasionally accepts poorer initial configurations. Simulated annealing is 
a probabilistic technique used to solve unconstrained and bound-constrained optimization problems. 
It is a metaheuristic to approximate global optimization in a large search space of a physical process 
wherein the system energy is minimized.

Figure 10.6: Simulated annealing is a stochastic optimization algorithm
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Population optimization algorithms such as GAs are also stochastic and typically used for multimodal 
objective functions with multiple global optima and not-so-smooth (highly noisy) functions. These 
algorithms maintain a population of candidate solutions that add robustness to the search, thereby 
increasing the likelihood of overcoming local optima. The efficiency of these is very sensitive to the 
variables used in describing the problem. As with other heuristic algorithms, evolutionary algorithms 
have many degrees of freedom and, therefore, are difficult to tune for good model performance.

A GA pursues the evolution analogy, which proceeds by maintaining an even number of individuals in 
the population. These individuals make a generation, and a new generation is produced by randomly 
selecting a pair wherein the fitter individual is more likely to be chosen. GA is used to solve complex 
optimization problems by initialization (of the population), fitness assignment (to individuals in the 
population), and selection of the best (recombined) solution to the problem. A large community of 
researchers is working on GAs for utilization in most practical problems.

Summary
In this chapter, we gained knowledge about which optimization algorithm must be considered to 
minimize (continuous) objective functions that are generally encountered in ML models. Such models 
have a real-valued evaluation of the input variables and involve local search. The differentiability of an 
objective function is perhaps the most important factor when considering the optimization algorithm 
type for a given problem.

The chapter did not contain an exhaustive list of algorithms to optimize ML models but captured 
the essence of the main ones and their underlying behavior with examples. It also touched upon the 
concepts of deterministic optimization and stochastic optimization, the latter encompassing GAs, 
whose utility is evolving in real-world problems.

Epilogue
This book was primarily targeted at data scientists early in their careers. It was assumed that readers 
of this book have knowledge of linear algebra and the basics of statistics, differential equations, 
fundamental numerical algorithms, data types, and data structures. Having said that, it must be realized 
that transforming a business problem into a mathematical formulation is an art.

While exploring the world of data science, it is important to understand the relevance of classical 
mathematical models and how they can be utilized along with ML models to solve business problems, 
often complex ones. Hybrid (blended) models enable better decision-making and become particularly 
essential for high-stake decisions in sensitive domains. Mathematical optimization typically elevates an 
ML model for the best interpretation of the connection between decision variables and relevant data 
and business objectives and of the optimal solution to the business problem. Nevertheless, simpler 
(pure or unblended) models are more often explainable, and while building complex ones, we need 
to look at the aspects of efficiency and cost.
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